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Abstract
We investigate the space-time regularity of the local time associated with Volterra–
Lévy processes, including Volterra processes driven by α-stable processes for α ∈
(0, 2]. We show that the spatial regularity of the local time for Volterra–Lévy process
is P-a.s. inverse proportional to the singularity of the associated Volterra kernel. We
apply our results to the investigation of path-wise regularizing effects obtained by
perturbation of ordinary differential equations by a Volterra–Lévy process which has
sufficiently regular local time. Following along the lines of Harang and Perkowski
(2020), we show existence, uniqueness and differentiability of the flow associated
with such equations.
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1 Introduction

Occupation measures and local times associated with d-dimensional paths (pt )t∈[0,T ]
have received much attention over the past decades from both in the analytical and the
probabilistic community. The occupation measure essentially quantifies the amount
of time the path p spends in a given set, i.e. for a Borel set A ∈ B(Rd) the occupation
measure is given by

μt (A) = λ{s ∈ [0, t]| ps ∈ A},

where λ is the Lebesgue measure onR. The local time is given as the Radon–Nikodym
derivative of the occupation measure with respect to the Lebesgue measure. The exis-
tence of the local time is generally not assured without some further knowledge of
the path p, and the existence of the local time associated with the Weierstrass func-
tion, and other deterministic fractal like paths, is, to the best of our knowledge, still
considered an open question. However, when (pt )t∈[0,T ] is a stochastic process, exis-
tence of the local time can often be proved using probabilistic techniques, and much
research has been devoted to this aim, see, e.g. [14] and the references therein for a
comprehensive overview. Knowledge of probabilistic and analytic properties of the
local time becomes useful in a variety problems arising in analysis. For example, given
a measurable path p with an existing local time, the following formula holds

t∫

0

b(x − ps) ds = b ∗ Lt (x),

where ∗ denotes convolution, and L : [0, T ] × R
d → R+ is the local time associated

with p. Thus, analytical or probabilistic questions relating to the left hand side integral
can often be answered with the knowledge of the probabilistic and analytic properties
of the local time L .

In this article, we will study regularity properties of the local time associated with
Volterra–Lévy processes given on the form
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zt =
t∫

0

k(t, s) dLs, t ∈ [0, T ], (1.1)

where k(t, ·) ∈ Lα([0, t]) for all t ∈ [0, T ] with α ∈ (0, 2], and L is a Lévy
process on a filtered probability space (�,F , P). In the case, when L = B is a
Brownian motion, then joint regularity in time and space of the local time associated
with Volterra processes has received some attention in recent years as this knowledge
can be applied towards regularization of ordinary differential equations (ODEs) by
noise [6,12,13,15], as discussed in detail below. Furthermore, in [13], the authors
investigated the regularity of the local time associated with α-stable processes, i.e.
when the kernel k ≡ 1, and L is an α-stable process. One goal of this article is
therefore to extend these results to the general case of Volterra–Lévy processes, as
well as apply this to the regularization by noise procedure. Towards this end, we
formulate a simple local non-determinism condition for these processes, which will
be used to determine the regularity of the local time. The regularity of the local time
is then proved in Sobolev space, by application of the recently developed stochastic
sewing lemma [19], similarly as done for Gaussian Volterra processes in [15]. By
embedding, it follows that the local time is also contained in a wide range of Besov
spaces.

As an application of our results on regularity of the local time, we show existence
and pathwise uniqueness of stochastic differential equations (SDEs) of the form

d

dt
xt = b(xt ) + d

dt
zt , x0 = ξ ∈ R

d (1.2)

even when b is a Besov-distribution (the exact regularity requirement of z and b
will be given in Sect. (1.1) below). It is well known that certain stochastic processes
provide a regularizing effect on SDEs on the form of (1.2). By this, we mean that if
the process (zt )t∈[0,T ] is given on some explicit form, (1.2) might be well posed, even
when b does not satisfy the usual assumption of Lipschitz and linear growth. In fact,
in [6], the authors show that if z is given as a sample path of a fractional Brownian
motion with Hurst index H ∈ (0, 1), Eq. (1.2) is well posed and has a unique solution
even when b is only a distribution in the generalized Besov–Hölder space Cβ with
β < 1

2H − 2. More recently, Perkowski and one of the authors of the current article
in [15] proved that there exists a certain class of continuous Gaussian processes with
exceptional regularization properties. In particular, if z in (1.2) is given as a path of such
a process, then a unique solution exists to (1.2) (where the equation is understood in
the pathwise sense), for any b ∈ Cβ with β ∈ R. Moreover, the flowmap ξ �→ xt (ξ) is
infinitely differentiable. We then say that the path z is infinitely regularizing. Not long
after this result was published, Galeati and Gubinelli [12], showed that in fact almost
all continuous paths are infinitely regularizing by using the concept of prevalence.
Furthermore, the regularity assumption on b was proven to be inverse proportional to
the irregularity of the continuous process z. In fact, this statement holds in a purely
deterministic sense, see, e.g. [12, Thm. 1]. The main ingredient in this approach to
regularization by noise is to formulate the ODE/SDE into a nonlinear Young equation,
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involving a nonlinear Young integral, as was first described in [6]. This reformulation
allows one to construct integrals, even in the case when traditional integrals (Riemann,
Lebesgue, etc.) do not make sense. A particular advantage of this theory is furthermore
that the framework itself does not rely on any probabilistic properties of the processes,
such as Markov or martingale properties. This makes this framework particularly
suitable when considering SDEs where the additive stochastic process is of a more
exotic type. As is demonstrated in the current paper, the framework is well suited to
study SDEs driven by Volterra–Lévy processes, which is a class of processes difficult
to analyse using traditional probabilistic techniques. We believe that this powerful
framework can furthermore be applied towards analysing several interesting problems
relating to ill-posed SDEs and ODEs in the future.

Historically, the investigation of similar regularising effects for SDEs with general
Lévy noise seems to have received less attention compared to the case when the SDE
(1.2) is driven by a continuous Gaussian process. Of course, the general structure of
the Lévy noise excludes several techniques which has previously been applied in the
Gaussian case. However, much progress has been made also on this front when the
equation has jump type noise, and although several interesting results deserve to be
mentioned, we will only discuss here some the most recent results and refer the reader
to [4,9,10,18,30] for further results. In [22], Priola showed that (1.2) has a path-wise
unique strong solution (in a probabilistic sense) when z = L is a symmetric α-stable
process with α ∈ (0, 2) and b is a bounded β-Hölder continuous function of order
β > 1 − α

2 . In [23], this result was put in the context of path-by-path uniqueness
suggested by Davie [7]. More recently, in [8] the authors prove that the martingale
problemassociatedwith (1.2) iswell posed, evenwhenb is only assumed to bebounded
and continuous, in the case when z = L is an α-stable process with α = 1 (being the
critical case). Further in [2], the authors show strong existence and uniqueness of (1.2)
when z = L is an one-dimensional α-stable process, and b ∈ Cβ with β > 1

2 − α
2 .

Thus, allowing here for possibly distributional coefficients b when α is sufficiently
large (i.e. greater than 1). Our results can be seen as an extension of the last result to a
purely pathwise setting, and to the case of general Volterra–Lévy processes. Similarly
as seen in the Gaussian case, the choice of Volterra kernel then dictates the regularity
β ∈ R of the distribution b ∈ Cβ that can be considered to still obtain existence and
uniqueness.

1.1 Main Results

We present here the main results to be proven in this article. The first result provides
a simple condition to show regularity of the local time associated with Volterra–Lévy
processes.

Theorem 1 Let (Lt )t∈[0,T ] be a Lévy process on a filtered probability space (�,F , P),
with characteristic ψ : R

d → C, and let k be a real valued and possibly singular
Volterra kernel satisfying for t ∈ [0, T ], k(t, ·) ∈ Lα([0, t]) with α ∈ (0, 2]. Define
the Volterra–Lévy process (zt )t∈[0,T ] by zt :=

t∫
0
k(t, s) dLs , where the integral is

defined in Definition 17. Suppose that the characteristic triplet and the Volterra kernel
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satisfy for some ζ > 0 and α ∈ (0, 2]

inf
t∈[0,T ] inf

s∈[0,t] inf
ξ∈Rd

t∫
s

ψ(k(t, r)ξ) dr

(t − s)ζ |ξ |α > 0.

If ζ ∈ (0, α
d ), then there exists a γ > 1

2 such that the local time L : �×[0, T ]×R
d →

R+ associated with z is contained in Cγ ([0, T ]; Hκ(Rd)) for any κ < α
2ζ − d

2 , P-a.s..

Corollary 2 There exists a class of Volterra–Lévy processes zt = ∫ t
0 k(t, s) dLs such

that for each t ∈ [0, T ], its associated local time Lt is a test function. More precisely,
we have that (t, x) �→ Lt (x) ∈ Cγ ([0, T ];D(Rd)) P-a.s. for any γ ∈ (0, 1). Here,
D(Rd) denotes the space of test functions on R

d .

See Example 32, (iv) for proof of this corollary.
Inspired by [6,13,15], we apply the result on regularity of the local time to prove

regularization of SDEs by Volterra–Lévy noise. Since we will allow the coefficient b
in (1.2) to be distributional-valued, it is not a priori clear what we mean by a solution.
Indeed, since the integral

∫ t
0 b(xs) ds is not well defined in a Riemann or Lebesgue

sense if b is truly distributional, it is not a priori clear how to make sense of (1.2). We
therefore begin with the following definition of a solution, which is in line with the
definition of pathwise solutions to SDEs used in [6,13,15].

Definition 3 Consider a Volterra–Lévy process z given as in (1.1) with measurable
paths, and associated local time L . Let b ∈ S ′(Rd) be a distribution such that b ∗ L ∈
Cγ ([0, T ]; C2(Rd)) for some γ > 1

2 . Then, for any ξ ∈ R
d we say that x is a solution

to

xt = ξ +
t∫

0

b(xs) ds + zt , ∀t ∈ [0, T ],

if and only if x − z ∈ Cγ ([0, T ]; R
d), and there exists a θ ∈ Cγ ([0, T ]; R

d) such that
θ = x − z, and θ solves the nonlinear Young equation

θt = ξ +
t∫

0

b ∗ L̄dr (θr ), ∀t ∈ [0, T ].

Here, L̄ t (z) = Lt (−z) where L is the local time associated with (zt )t∈[0,T ], and the
integral is interpreted in the nonlinear Young sense, described in Lemma 38.

Theorem 4 Suppose (zt )t∈[0,T ] is a Volterra–Lévy process such that its associated
local time L ∈ Cγ ([0, T ]; Hκ) for some κ > 0 and γ > 1

2 , P-a.s.. Then, for any
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b ∈ Hβ(Rd) with β > 2− κ , there exists a unique pathwise solution to the equation

xt = ξ +
t∫

0

b(xs) ds + zt , ∀t ∈ [0, T ],

where the solution is interpreted in sense of Definition 3.Moreover, if β > n+1−κ for
some n ∈ N, then the flow mapping ξ �→ xt (ξ) is n-times continuously differentiable.

1.2 Structure of the Paper

In Sect. 2, we recall some basic aspects from the theory of occupation measures,
local times, and Sobolev/Besov distribution spaces. Section 3 introduces a class of
Volterra processes where the driving noise is given as a Lévy process. We show a
construction of suchprocesses, even in the case of singularVolterra kernels, anddiscuss
conditions under which the process is continuous in probability. Several examples of
Volterra–Lévy processes are given, including a rough fractional α-stable process, with
α ∈ [1, 2). In Sect. 4, we provide some sufficient conditions for the characteristics
of Volterra–Lévy processes such that their associated local time exists and is P-a.s.
contained in a Hölder-Sobolev space of positive regularity. At last, we apply the
concept of local times in order to prove regularization by noise for SDEs with additive
Volterra–Lévy processes. Here, we apply the framework of nonlinear Young equations
and integration, and thus, our results can truly be seen as pathwise, in the “rough path”
sense. An appendix is included in the end, where statements and proofs of some
auxiliary results are given.

1.3 Notation

For a fixed T > 0, we will denote by xt the evaluation of a function at time t ∈ [0, T ],
and write xs,t = xt − xs . For some n ∈ N, we define

�n
T := {(s1, . . . , sn) ∈ [0, T ]n| s1 ≤ · · · ≤ sn}.

To avoid confusion, the letter L will be used to denote a Lévy process, while L will
be used to denote the local time of a process. For γ ∈ (0, 1) and a Banach space E , the
space Cγ

T E := Cγ ([0, T ]; E) is defined to be the space of functions f : [0, T ] → E
which is Hölder continuous of order γ . The space is equipped with the standard semi-
norm

‖ f ‖γ := sup
s �=t∈[0,T ]

‖ ft − fs‖E
|t − s|γ ,

and note that under the mapping f �→ | f0| + ‖ f ‖γ the space Cγ

T E is a Banach space.
We let S(Rd) denote the Schwartz space of rapidly decreasing functions on R

d ,
and S ′(Rd) its dual space. Given f ∈ S(Rd), let F f be the Fourier transform of f
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defined by

F f (ξ) := (2π)−d/2
∫

Rd

e−i〈ξ,x〉 f (x) dx .

Let s be a real number. TheSobolev space Hs(Rd) consists of distributions f ∈ S ′(Rd)

such that F f ∈ L2
loc(R

d) and

‖ f ‖2Hs :=
∫

Rd

(1 + |ξ |2)s |F f (ξ)|2 dξ < ∞.

For α > 0, if
∫ T
0 | f (s)|α ds < ∞, then we say f ∈ Lα([0, T ]).

2 OccupationMeasures and Local Times, and Distributions

This section is devoted to give some background on the theory of occupation measures
and local times, as well as definitions of Sobolev and Besov spaces, which will play
a central role throughout this article.

2.1 OccupationMeasure and Local Times

The occupation measure associated with a process (xt )t∈[0,T ] gives information about
the amount of time the process spends in a given set. Formally,we define the occupation
measure μ associated with (xt )t∈[0,T ] evaluated at t ∈ [0, T ] by

μt (A) = λ{s ≤ t |xs ∈ A},

where λ denotes the Lebesgue measure. The Local time L associated with x is then
the Radon–Nikodym derivative with of μ with respect to the Lebesgue measure(as
long as this exists). We therefore give the following definition.

Definition 5 Consider a process x : [0, T ] → R
d be a process, and let μ denote the

occupation measure of x . If there exists a function L : [0, T ] × R
d → R+ such that

μt (A) =
∫

A

Lt (z) dz, for A ∈ B(Rd),

then we say that L is the local time associated with the process (xt )t∈[0,T ].

Remark 6 The interpretation of the local time Lt (z) is the time spent by the process
x : [0, T ] → R

d at a given point z ∈ R
d . Thus, the study of this object has received

much attention from people investigating both probabilistic and path-wise properties
of stochastic processes. For purely deterministic processes (xt )t∈[0,T ], the local time
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might still exist; however, as discussed in [15], if x is a Lipschitz path, there exists
at least two discontinuities of the mapping z �→ Lt (z). On the other hand, it is well
known (see [14]) that the local time associatedwith the trajectory of a one-dimensional
Brownian motion is 1

2 -Hölder regular in its spatial variable (a.s.). More generally, for
the trajectory of a fractional Brownian motion with Hurst index H ∈ (0, 1), we
know that its local time L is contained in Hκ (a.s.) for κ < 1

2H − d
2 , while still

preserving Hölder regularity in time. This clearly shows that the more irregular the
trajectory of the fractional Brownian motion is, the more regularity we obtain in the
local time associated with this trajectory. In this case, the regularity of the local time
can therefore be seen as an irregularity condition. This heuristic has recently been
formalized in [13]. There, the authors show that if the local time associated with a
continuous path (xt )t∈[0,T ] is regular (i.e. Hölder continuous or better) in space, then
x is truly rough, in the sense of [11]. More recently, the authors of [15] showed that
the local time associated with trajectories of certain particularly irregular Gaussian
processes (for example the log-Brownian motion) is infinitely differentiable in space,
and almost Lipschitz in time. In the current article, we will extend this analysis to
Lévy processes.

The next proposition will be particularly interesting towards applications in differ-
ential equations, and which we will use in subsequent sections.

Proposition 7 (Local time formula) Let b be a measurable function, and suppose
(xt )t∈[0,T ] is a process with associated local time L. Then, the following formula
holds for any ξ ∈ R

d and (s, t) ∈ �2
T

t∫

s

b(ξ + xr ) dr = b ∗ L̄s,t (ξ),

where L̄t (z) = Lt (−z) and Ls,t = Lt − Ls denotes the increment.

A proof of this statement follows directly from the definition of the local time, see
[14, Thm. 6.4] for further details.

Remark 8 It is readily seen that, formally, the local time can be expressed in the
following way for ξ ∈ R

d and (s, t) ∈ �2
T

Ls,t (ξ) =
t∫

s

δ(ξ − Xr ) dr ,

where δ is the Dirac distribution.

Remark 9 For future reference, we also recall here that the Dirac distribution δ is
contained in the in-homogeneous Sobolev space H− d

2 −ε for any ε > 0 (See, e.g. [3,
Remark 1.54]).
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2.2 Besov Spaces and Distributions

Before introducing the notion of Besov spaces, we give a definition of the Paley–
Littlewood blocks, which plays a central role in the construction of these spaces.

Definition 10 (Paley–Littlewood blocks) For j ∈ N, ρ j := ρ(2− j ·) where ρ is a
smooth function supported on an annulus A := {x ∈ R

d : 4
3 ≤ |x | ≤ 8

3 } and ρ−1
is a smooth function supported on the ball B 4

3
. Then, {ρ j } j≥−1 is a partition of unity

([3]). For j ≥ −1 and some f ∈ S ′, we define the Paley–Littlewood blocks � j in the
following way

� j f = F−1(ρ jF f ).

Definition 11 For α ∈ R and p, q ∈ [1,∞], the in-homogeneous Besov space Bα
p,q

is defined by

Bα
p,q =

{
f ∈ S ′

∣∣∣ ‖ f ‖Bα
p,q

:=
⎛
⎝ ∑

j≥−1

2 jqα‖� j f ‖qL p(Rd )

⎞
⎠

1
q

< ∞
}
.

Wewill typically write Cα := Bα∞,∞. Besides, by the definition of the partition of unity
and Fourier–Plancherel formula ([3, Examples p99]), the Besov space Bα

2,2 coincides
with Sobolev space Hα .

Remark 12 We will work with regularity of the local time in the Sobolev space
Hκ . However, towards applications to regularization by noise in SDEs, we will
also encounter Besov spaces, through Young’s convolution inequality. We there-
fore give a definition of these spaces here. Of course, through Besov embedding,

Hκ ↪→ B
κ−( d2 − d

p )

p,q for any p, q ∈ [2,∞] and κ ∈ R, (e.g. [3, Prop. 2.20]), and thus,
our results imply that the local time is also included in these Besov spaces. We will,
however, not specifically work in this setting to avoid extra confusion, but refer the
reader to [12,13] for a good overview of regularity of the local time associated with
Gaussian processes in such spaces.

3 Volterra–Lévy Process

In this section, we give a brief introduction on Lévy processes and stochastic integral
for a Volterra kernel with respect to a Lévy process. General references for this part
are [28, Chp. 4] and [1, Chp. 2, Chp. 4]. In Sect. 3.1, we give the definition of Volterra–
Lévy processes (with possibly singular kernels) and obtain the associated characteristic
function. Particularly, our framework includes Volterra processes driven by symmetric
α-stable noise. In the end, we provide several examples of Volterra–Lévy processes,
including the fractional α-stable process.

We begin to provide a definition of Lévy processes, as well as a short discussion
on a few important properties.
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Definition 13 (Lévy process) Let T > 0 be fixed. We say that a càdlàg and (Ft )-
adapted stochastic process (Lt )t∈[0,T ] defined on a complete probability space
(�,F , (Ft )t∈[0,T ], P), and which satisfies the usual assumptions is a Lévy process
if the following properties hold:

(i) L0 = 0 (P-a.s.).
(ii) L has independent and stationary increments.
(iii) L is continuous in probability, i.e. for all ε > 0, and all s > 0,

lim
t→s

P(|Lt − Ls | > ε) = 0.

Furthermore, let ν be a σ -finite measure on R
d . We say that it is a Lévy measure if

ν({0}) = 0,
∫

Rd

(1 ∧ |x |2)ν(dx) < ∞.

Remark 14 A known description of Lévy process is Lévy-Khintchine formula: for a
d-dimensional Lévy process L , the characteristic function ψ of L verifies that for
t ≥ 0, there exists a vector a ∈ R

d , a positive definite symmetric d ×d matrix σ and a
Lévy measure ν such that the characteristic function is given by E[ei〈ξ,Lt 〉] = e−tψ(ξ)

with

ψ(ξ) = −i〈a, ξ 〉 + 1

2
〈ξ, σξ 〉 −

∫

Rd−{0}
(ei〈ξ,x〉 − 1 − i〈ξ, x〉1|x |≤1(x))ν(dx). (3.1)

Here, the triple (a, σ, ν) is called the characteristic of the random variable L1.

The typical examples for Lévy processes are the case when the Lévy triplet is given
by (0, σ, 0), resulting in a Brownian motion. Another typical example is when the
characteristic triplet is given by (0, 0, ν) and the Lévy measure ν defines an α-stable
process. We provide the following definition for this class of processes.

Definition 15 (Standard α-stable process) If a d-dimensional Lévy process (Lt )t≥0
has the following characteristic function

ψ(ξ) = cα|ξ |α, ξ ∈ R
d

with α ∈ (0, 2] and some positive constant cα , then we say (Lt )t≥0 is a standard
α-stable process.

We nowmove on to the construction of Volterra–Lévy processes, given of the form

zt =
t∫

0

k(t, s) dLs, t ∈ [0, T ]. (3.2)
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Ofcourse in the casewhen (Lt )t∈[0,T ] is aGaussianprocess, or even a square integrable
martingale, the construction of such a stochastic integral is by now standard, and z is
constructed as an element in L2(�) given that k(t, ·) ∈ L2([0, t]) for all t ∈ [0, T ], see,
e.g. [24]. However, in the case whenL is not square integrable, then the construction
of z as a stochastic integral is not as straight forward. However, several articles discuss
also this construction in the case of α-stable processes, which would be sufficient for
our purpose. The next remark gives only a brief overview on this construction, and we
therefore ask the interested reader to consult the given references for further details
on the construction.

Remark 16 Consider a symmetric α-stable processL with α ∈ (0, 2). From [28, Ex.
25.10, p162], we know that E[|Lt |p] = Ct p/α for any −1 < p < α and t ∈ [0, T ],
and thus, the process is not square integrable and the standard “Itô type” construction
of the Volterra process in 3.2 cannot be applied. However, in [27, Chp. 3.2-3.12] the
authors propose several different ways of constructing integral

∫ t
0 k(t, s) dLs given

that k(t, ·) ∈ Lα([0, t]). In particular, in [27, Chp. 3.6] it is shown that the Volterra-
stable process below is well-defined and exists in L p(�) for any p < α, given that the
kernel k(t, ·) ∈ Lα([0, t]) for all t ∈ [0, T ]. In fact, in the case whenL is a symmetric
α-stable process, it is known that for any 0 < p < α

⎛
⎝E

⎡
⎣

∣∣∣∣∣∣
t∫

0

k(t, s) dLs

∣∣∣∣∣∣
p⎤
⎦

⎞
⎠

1
p

�p,α,d

(∫ t

0
|k(t, s)|α ds

) 1
α

, (3.3)

where �p,α,d means that they differ up to a constant depending on p, α and d (recall
that d is the dimension ofL ). See, e.g. [26] and the references therein for more details
on this relation and the construction of such integrals.

The above discussion yields the following definition of the Volterra–Lévy process.

Definition 17 (Volterra–Lévy process) Fix T > 0, and let (Lt )t∈[0,T ] be a Lévy pro-
cess as given in Definition 13. For a given kernel k : �2

T → R with the property that
for any t ∈ [0, T ], k(t, ·) ∈ Lβ([0, t]) with β ∈ (0, 2], define

zt =
t∫

0

k(t, s) dLs, t ≥ 0

where the integral is constructed in L p(�) sense for p ≤ β, as discussed above. Then,
we call the stochastic process (zt )t∈[0,T ] a Volterra–Lévy process, where L is the
associated Lévy process to z and k is called the Volterra kernel.

Based on this definition, it is readily to have the following known property of
Volterra–Lévy process, see, e.g. [25].
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Proposition 18 Let (Lt )t∈[0,T ] be a Lévy process on a probability space (�,F , P),
such that E[|Lt |p] < ∞ for all 0 < p < β where β ∈ (0, 2]. If k(t, ·) ∈ Lβ([0, t])
for any t ∈ [0, T ], then the Volterra–Lévy process (zt )t∈[0,T ] given by

zt =
t∫

0

k(t, s) dLs

is well defined as an element of L p(�) for any 0 < p < β. For 0 ≤ s ≤ t ≤ T , the
characteristic function of z is given by

E[exp(i〈ξ, zt 〉)] = exp

⎛
⎝−

t∫

0

ψ(k(t, s)ξ) ds

⎞
⎠ , (3.4)

and the conditional characteristic function is given by

E[exp(i〈ξ, zt 〉)|Fs] = E0,s,t (ξ) exp

⎛
⎝−

t∫

s

ψ(k(t, r)ξ) dr

⎞
⎠ , (3.5)

where E0,s,t (ξ) := exp
(
i〈ξ,

∫ s
0 k(t, r) dLr 〉

)
.

Everything we have introduced so far only relates to the probabilistic properties
of Volterra–Lévy process without any details regarding its sample path behaviour.
Towards the goal of proving regularity of the local time associated with (zt )t∈[0,T ], as
done in Sect. 4, we require that the process z is continuous in probability.

Remark 19 Recall that given a sufficiently regular Volterra kernel k, continuity in
probability can for example be obtained from the fact L p-convergence entails P-
convergence using, e.g. Markov’s inequality. Indeed, suppose (zt )t∈[0,T ] is a Volterra–
Lévy process, as given in Definition 17. It is readily checked that z is continuous in
probability if there exists a p > 0 such that

E[|zt − zs |p] → 0 when s → t .

This particular fact will be used in Examples 22 and 23 below.

Below we provide three examples of different types of Volterra processes driven
by Lévy noise.

Example 20 (Brownian motion) Let β = 2, k(t, ·) ∈ L2([0, t]) for t ∈ [0, T ].
Suppose L is a Brownian motion with values in R

d . Then, it is well known that
zt = ∫ t

0 k(t, s) dLs is well-defined in L2(�) as a Wiener integral. The sample paths
of such processes are clearly measurable, and depending on the regularity of the kernel
k, the process may also be (Hölder) continuous.
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Example 21 (Square-integrable martingale case) Let β = 2, k(t, ·) ∈ L2([0, t]) for
t ∈ [0, T ] and L be a (Ft )-martingale satisfying E[|Lt |2] < ∞, for all t ∈ [0, T ].
Then, we know zt = ∫ t

0 k(t, s) dLs, t ≥ 0 is well-defined according to Proposition 18
(this is also clear from classical martingale theory, e.g. [1]).

The next example considers the case of α-stable processes and gives explicit con-
ditions on the Volterra kernel k so that the resulting Volterra process is continuous in
probability.

Example 22 (Standard α-stable case) Let α ∈ (0, 2), and supposeL is a standard α-
stable process, as defined in Definition 13. Assume k : �2

T → R is a Volterra kernel
such that k(t, ·) ∈ Lα([0, t]) for all t ∈ [0, T ], and that

H(t, s) :=
s∫

0

|k(t, r) − k(s, r)|α dr (3.6)

is such that H(t, s) → 0 when s → t for all t ∈ [0, T ]. By Proposition 18, we know
that zt = ∫ t

0 k(t, s)Ls, t ≥ 0 is well defined for α ∈ (0, 2) (see also [27, Section 3.6
Examples]). Furthermore, (zt )t∈[0,T ] is continuous in probability. Indeed, note that
zt − zs = ∫ t

s k(t, r) dLr + ∫ s
0 k(t, r) − k(s, r) dLr . Using that for any p > 0

E[|zt − zs |p] �p E[|
t∫

s

k(t, r) dLr |p] + E[|
s∫

0

k(t, r) − k(s, r) dLr |p],

and the relation in (3.3), there exists a p > 0 such that

E[|zt − zs |p] �p,α,d

⎛
⎝

t∫

s

|k(t, r)|α dr
⎞
⎠

p
α

+ H(t, s)
p
α

where by assumption H(t, s) → 0 when s → t for all t ∈ [0, T ], and the integra-
bility of k yields out that

∫ t
s |k(t, r)|α dr → 0 as s → t . Therefore, we conclude by

Remark 19 that (zt )t∈[0,T ] is continuous in probability.

With the above preparation at hand, we can then construct fractional α-stable pro-
cesses and give a representation of its characteristic function. We summarize this in
the following example.

Example 23 (Fractional α-stable process) Let L be an α-stable process with α ∈
(0, 2], and consider the Volterra kernel k(t, s) = (t − s)H− 1

α , H ∈ (0, 1). Then,
the process zt = ∫ t

0 k(t, s) dLs is called a fractional α-stable process (of Riemann–
Liouville type) and specifically if α = 2, then L is a Brownian motion and z is a
fractional Brownian motion. Note that in this case k(t, ·) ∈ Lα([0, t], ds) for any
H ∈ (0, 1). There is a more detailed study of fractional processes of this type in [27,
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Chapter 7]. An application of Proposition (3.4) yields that the characteristic function
associated with the fractional α-stable process z is given by

E[exp(i〈ξ, zt 〉)] = exp

(
−cα

|ξ |αt Hα

Hα

)
.

Furthermore, it is simply checked that the function H defined as in (3.6) with the

kernel k(t, s) = |t − s|H− 1
α satisfies H(t, s) → 0 when s → t , and thus by the same

argument as used in Example 22, it is readily checked that the fractional α-stable
process (zt )t∈[0,T ] is continuous in probability.

4 Regularity of the Local Time Associated with Volterra–Lévy
Processes

This section is devoted to prove space-time regularity of the local time associated
with Volterra–Lévy processes, as defined in Sect. 3. We begin to give a notion of local
non-determinism for these processes and provide a few examples of specific processes
which satisfy this property.

4.1 Local Non-determinism Condition for Volterra–Lévy Process

The following definition of a local non-determinism condition can be seen as an exten-
sion of the concept of strong local non-determinism used in the context of Gaussian
processes, see, e.g. [13,15,29].

Definition 24 Let L be a Lévy process with characteristic ψ : R
d → C as given in

(3.1), and let z be a Volterra–Lévy process (Definition 17) with Lévy process L and
Volterra kernel k : �2

T → R satisfying k(t, ·) ∈ Lα([0, t]) for all t ∈ [0, T ]. If for
some ζ > 0 and α ∈ (0, 2], the following inequality holds

lim
t↓0 inf

s∈(0,t] inf
ξ∈Rd

∫ t
s ψ(k(t, r)ξ) dr

(t − s)ζ |ξ |α > 0. (4.1)

Then, we say that z is (α, ζ )-Locally non-deterministic ((α, ζ )-LND).

Remark 25 The elementary example of a Volterra kernel is k(t, s) := 1[0,t](s) for any
0 ≤ s ≤ t ≤ T . In this case, the Volterra–Lévy process is just given as the Lévy
process itself, i.e. zt = Lt . If we letL be a standard d-dimensional α-stable process,
condition (4.1) fulfils for ζ = 1. Hence, a standard d-dimensional α-stable process
is (α, 1)-LND, which coincides with the conclusion in [20, Proposition 4.5, Example
(a)].

Remark 26 There already exists several concepts of local non-determinism, but, as far
as we know, most of them are given in terms of a condition on the variance of certain
stochastic processes. The only exception we are aware of is the definition of Nolan
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in [20] for α-stable processes, where a similar condition is stated in L p spaces, with
p = α (see [20, Definition 3.3]). Of course working with general α-stable processes,
we do in general not have finite variance, and thus, the standard definitions of such
a concept are not applicable. On the other hand, in the case when α = 2, we have
finite variance, and then, the above criterion would be very similar to the condition
for strong local non-determinism for Gaussian Volterra processes, as discussed for
example in [29]. Working with the conditional characteristic function of Volterra α-
stable processes, we see, however, that this condition in some sense is what needs to
be replaced in order to prove existence and regularity of local times associated with
these processes.

It is readily seen that the Volterra α-stable process satisfies (4.1), with ζ depending
on the choice of kernel k. The condition is, however, somewhat more general, as
we only require the processes to behave similarly to Volterra α-stable processes. Let
us provide an example to discuss some interesting process that satisfies the LND
condition.

Example 27 (Volterra kernel) As two examples ofVolterra kernel thatwe are interested
most, we give a specific discussion here. The first one usually relates to fractional type
processes, for instance, fractional Brownian motion and fractional stable processes.
As we will see later, the second one makes the corresponding Volterra–Lévy process
an infinitely regularising process, similarly to the Gaussian counterpart discussed in
[15].

(i) For α ∈ (0, 2], H ∈ (0, 1), let k(t, s) = F(t, s)(t − s)H− α
2 , where F : �2

T →
R \ 0 is continuous and F(t, s) � 1 when |t − s| → 0, where � means that the
two sides are comparable up to a positive constant. It can be easily checked that
k(t, ·) ∈ Lα([0, t]) for t ∈ [0, T ].

(ii) Let p > 1
α
, and consider the kernel k(t) := t− 1

α (ln 1
t )

−p for t ∈ [0, 1). It is readily
seen that k(t, ·) ∈ Lα([0, t]) for any t < 1.

Example 28 (Gaussian case: α = 2) Let L = B be a Brownian motion. Then, the
Gaussian Volterra process zt = ∫ t

0 k(t, s) dBs, t ∈ [0, T ] is (2, ζ )-LND according to
definition 24 if

lim
t↓0 inf

s∈(0,t]

∫ t
s |k(t, r)|2 dr

(t − s)ζ
> 0.

Aswementioned, theLévy processL does not have to beGaussian type processes. For
non-Gaussian typeL , we mostly consider α-stable processes or the processes which
has similar behaviour to stable processes. Since the condition (4.1) only focuses on
the characteristic function ψ ofL , there is a large class of jump processes which can
be studied here.

Example 29 (Stable type processes) Fix an α ∈ (0, 2). Given a kernel k : �2
T → R

with k(t, ·) ∈ Lα([0, t]) and satisfying for some ζ > 0, the following inequality

lim
t↓0 inf

s∈(0,t]

∫ t
s |k(t, r)|α dr

(t − s)ζ
> 0. (4.2)
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Then, the following list of processes satisfies the LND condition in Definition 24:

(i) L is a standard d-dimensional α-stable process, i.e.

ψ(ξ) = cα|ξ |α, cα > 0.

Then, obviously zt = ∫ t
0 k(t, r) dLr , t > 0 is (α, ζ )-LND.

Besides, here if k(t, s) = k(t − s) for 0 ≤ s ≤ t < ∞ and
∫ t
0 |k(t, s)|α ds >

0, according to Definition 24, the process z is (α, 1)-LND, which coincides the
conclusion in [20, Proposition 4.5].

(ii) L = (L1, . . . ,Ld), whereL1, . . . ,Ld are independent 1-dimensional standard
α-stable processes. In this case, the corresponding characteristic function ψ is
given by

ψ(ξ) = cα(|ξ1|α + · · · + |ξd |α), cα > 0.

By Jensen’s inequality, it follows that |ξ1|α + ...+|ξd |α = |ξ1|2· α
2 + ...+|ξd |2· α

2 ≥
(|ξ1|2 + ... + |ξd |2) α

2 = |ξ |α for α ∈ (0, 2], which implies ψ(ξ) ≥ cα|ξ |α . By
(4.2), we conclude that zt = ∫ t

0 k(t, r) dLr , t > 0, is (α, ζ )-LND.
(iii) L is a d-dimensional Lévy process with characteristic function

ψ(ξ) = |ξ |αlog(2 + |ξ |), ξ ∈ R
d .

We additionally assume α ∈ (0, 1) (see [17] Example 1.5). This process is not
really a stable process, but the small size jumps of this process have similar
behaviour to stable processes. Since |ξ |αlog(2 + |ξ |) ≥ |ξ |α for ξ ∈ R

d , then

lim
t↓0 inf

s∈(0,t] inf
ξ∈Rd

∫ t
s ψ(k(t, r)ξ) dr

(t − s)ζ |ξ |α ≥ lim
t↓0 inf

s∈(0,t] inf
ξ∈Rd

∫ t
s |k(t, r)|α dr

(t − s)ζ
> 0.

Therefore, zt = ∫ t
0 k(t, r) dLr , t > 0, is (α, ζ )-LND.

The following theorem shows the regularity of the local time associated with
Volterra–Lévy processes which is (α, ζ )-LND according to Definition 24.

4.2 Regularity of the Local Time

With the concept of local non-determinism at hand, we are now ready to prove the
regularity of the local time associated with Volterra–Lévy processes, and thus also
proving Theorem 1. The following theorem provides a proof of Theorem 1, as well
as giving P-a.s. bounds for the Fourier transform of the occupation measure and the
local time.

Theorem 30 (Regularity of Local time) Let z : � × [0, T ] → R
d be a Lévy Volterra

process with characteristic ψ : R
d → C on a complete filtered probability space

(�,F , {Ft }t∈[0,T ], P), and suppose z is (α, ζ )-LND for some ζ ∈ (0, α
d ) and α ∈
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(0, 2], continuous in probability, and adapted to the filtration (Ft )t∈[0,t]. Then, the
local time L : �×[0, T ]×R

d → R+ associated with z exists and is square integrable.
Furthermore, for any κ < α

2ζ − d
2 there exists a γ > 1

2 such that the local time is

contained in the space Cγ

T H
κ .

Proof We will follow along the lines of the proof of [15, Theorem 17], but adapt to
the case of Lévy processes. To this end, we will apply the stochastic sewing lemma
from [19], which is provided in Lemma 37 for self-containedness.

A Fourier transform of the occupation measure μs,t (dx) yields
∫ t
s e

i〈ξ,zr 〉 dr . Note
that this coincides with the Fourier transform of the local time Ls,t (x) whenever L
exists. Our first goal is therefore to show that for any p ≥ 2, the following inequality
holds for some λ ≥ 0 and γ ∈ ( 12 , 1)

‖̂μs,t (ξ)‖L p(�) � (1 + |ξ |2)− λ
2 |t − s|γ .

To this end, the stochastic sewing lemma (see Lemma 37) will provide us with this
information. We begin to define

Aξ
s,t :=

t∫

s

E[exp(i〈ξ, zr 〉)|Fs] dr ,

and for a partition P[s, t] of [s, t] define

Aξ

P[s,t] :=
∑
u,v

Aξ
u,v

If the integrand Aξ satisfies the conditions (i)–(ii) in Lemma 37, then a unique limit to
Aξ

s,t = lim|P |→0Aξ

P exists in L p(�). Note that then
∫ t
s e

i〈ξ,zr 〉 dr = Aξ
s,t in L p(�).

We continue to prove that conditions (i)-(ii) in Lemma 37 are indeed satisfied for our
integrand A. It is already clear that Aξ

s,s = 0, and Aξ
s,t is (Ft )-measurable. For any

point u ∈ [s, t], we define

δu fs,t := fs,t − fs,u − fu,t

for any function f : [0, T ]2 → R. It follows by the tower property and linearity of
conditional expectations that

E[δu Aξ
s,t |Fs] = E[

t∫

s

E[exp(i〈ξ, zr 〉)|Fs] dr

−
t∫

s

E[exp(i〈ξ, zr 〉)|Fs] dr −
u∫

s

E[exp(i〈ξ, zr 〉)|Fu] dr |Fs] = 0.
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At last, we will need to control the term ‖δu Aξ
s,t‖L p(�). To this end, using Proposi-

tion 18, we know that

Aξ
s,t =

t∫

s

E0,s,r (ξ) exp

⎛
⎝−

r∫

s

ψ(k(r , l)ξ) dl

⎞
⎠ dr ,

where E is defined as in (3.5). Therefore, it is readily checked that

δu A
ξ
s,t =

t∫

u

E0,s,r (ξ) exp

⎛
⎝−

r∫

s

ψ(k(r , l)ξ) dl

⎞
⎠

−E0,u,r (ξ) exp

⎛
⎝−

r∫

u

ψ(k(r , l)ξ) dl

⎞
⎠ dr .

Of course, moments of the complex exponential E0,s,r (ξ) is bounded by 1, i.e. for any
r ∈ [s, t], ‖E0,s,r (ξ)‖L p(�) ≤ 1, and therefore, it follows that

‖δu Aξ
s,t‖L p(�) �

t∫

u

exp

⎛
⎝−

r∫

s

ψ(k(r , l)ξ) dl

⎞
⎠ + exp

⎛
⎝−

r∫

u

ψ(k(r , l)ξ) dl

⎞
⎠ dr .

Using the fact that z is (α, ζ )-LND for some ζ ∈ (0, 1), and using that (r − s)ζ ≥
(r − u)ζ we obtain the estimate

‖δu Aξ
s,t‖L p(�) �

t∫

u

exp
(−c|ξ |α(r − u)ζ

)
dr .

Note in particular that this holds for any p ≥ 2. By the property of the exponential
function, we have that for any η ∈ R+

exp
(−cα|ξ |α(r − u)ζ

) ≤ exp(T ζ )
(
1 + |ξ |α)−η

(r − u)−ζη sup
q∈R+

qη exp(−q).

(4.3)

Since 1+ |ξ |α � (1+ |ξ |2) α
2 for all α ∈ (0, 2], applying this relation in (4.3), and

assuming that 0 ≤ ηζ < 1
2 , it follows that for all p ≥ 2 there exists a γ > 1

2 and
λ < α

2ζ

‖δu Aξ
s,t‖L p(�) � (1 + |ξ |2)− λ

2 (t − u)γ .

Thus, both conditions of (A.1) in Lemma 37 are satisfied. By a simple addition and
subtraction of the integrand Aξ

s,t in (A.2), it follows that for all p ≥ 2 the limiting
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process Aξ
s,t satisfies

‖Aξ
s,t‖L p(�) � (1 + |ξ |2)− λ

2 (t − u)γ . (4.4)

We will now show that μ̂s,t (ξ) = Aξ
s,t in L p(�). For a partition P of [s, t], we have

‖̂μs,t (ξ) − Aξ
s,t‖L p(�) ≤

∑
[u,v]∈P

v∫

u

‖ei〈ξ,zr 〉 − E[ei〈ξ,zr 〉|Fu]‖L p(�) dr .

By Minkowski’s inequality, we have

‖ei〈ξ,zr 〉 − E[ei〈ξ,zr 〉|Fu]‖L p(�)

≤ ‖ei〈ξ,zr 〉 − ei〈ξ,zu〉‖L p(�) + ‖E[ei〈ξ,zr 〉 − ei〈ξ,zu 〉|Fu]‖L p(�),

and by Jensen’s inequality it follows that

‖E[ei〈ξ,zr 〉 − ei〈ξ,zu 〉|Fu]‖L p(�) ≤ ‖ei〈ξ,zr 〉 − ei〈ξ,zu〉‖L p(�).

This implies that

‖ei〈ξ,zr 〉 − E[ei〈ξ,zr 〉|Fu]‖L p ≤ 2‖ei〈ξ,zr 〉 − ei〈ξ,zu〉|Fu‖L p(�).

Furthermore, for fixed ε > 0 then

‖ei〈ξ,zr 〉 − ei〈ξ,zu 〉‖L p(�) ≤ ‖(ei〈ξ,zr 〉 − ei〈ξ,zu〉)1|ei〈ξ,zr 〉−ei〈ξ,zu 〉|>ε‖L p(�) + ε

≤ P(|ei〈ξ,zr 〉 − ei〈ξ,zu〉| > ε) + ε

since ‖ei〈ξ,zr 〉 − ei〈ξ,zu〉‖Lq (�) ≤ 1 for any q. We conclude that for any ε > 0

‖̂μs,t (ξ) − Aξ
s,t‖L p(�) ≤ 2ε(t − s) + 2

∑
[u,v]∈P

v∫

u

P(|ei〈ξ,zr 〉 − ei〈ξ,zu〉| > ε) dr .

(4.5)

Since this holds for any partitionP , letting themesh tend to 0, and using the assumption
that z is continuous in probability, it follows that ei〈ξ,zr 〉 is continuous in probability
(see, e.g. the continuous mapping theorem), and thus

lim
|P |→0

∑
[u,v]∈P

v∫

u

P(|ei〈ξ,zr 〉 − ei〈ξ,zu〉| > ε) dr

≤ lim
|P |→0

sup
[u,v]∈P

sup
r∈[u,v]

P(|ei〈ξ,zr 〉 − ei〈ξ,zu 〉| > ε)(t − s) = 0.
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Since (4.5) holds for any partition (also for partitions with infinitesimal mesh), we
conclude that for any ε > 0

‖̂μs,t (ξ) − Aξ
s,t‖L p(�) ≤ 2ε(t − s)

and since ε can be chosen arbitrarily small, we conclude that μ̂s,t (ξ) = Aξ
s,t in L

p(�).
We move on to estimate the Sobolev norm ‖Ls,t‖Hκ for some appropriate κ ∈ R.

We begin to observe that

‖‖μs,t‖Hκ ‖L p(�) =
[

E

(∫
Rd

(1 + |ξ |2)κ |̂μs,t (ξ)|2dξ

) p
2
] 1

p

.

By Minkowski’s inequality, it follows that

‖‖μs,t‖Hκ ‖L p(�) � ‖(1 + | · |2) κ
2 ‖̂μs,t‖L p(�)‖L2(Rd )

and then use the bound from (4.4) to observe that

‖‖μs,t‖Hκ ‖L p(�) � (t − s)γ ‖(1 + | · |2) κ−λ
2 ‖L2(R).

Choosing κ = λ − d
2 − ε for some arbitrarily small ε > 0, it follows that

‖(1 + | · |2) κ−λ
2 ‖L2(R) = ‖(1 + | · |2) d

4 −ε/2‖L2(R) < ∞.

Recalling that λ < α
2ζ , since ε > 0 could be chosen arbitrarily small, we obtain that

for any κ < α
2ζ − d

2 there exists a γ > 1
2 such that

‖‖μs,t‖Hκ ‖L p(�) � (t − s)γ .

Since p ≥ 2 can be chosen arbitrarily large, we conclude by Kolmogorov’s theorem
of continuity that there exists a set �′ ⊂ � of full measure such that for all ω ∈ �′
there exists a C(ω) > 0 such that

‖μs,t (ω)‖Hκ ≤ C(ω)(t − s)γ

In particular, this implies that for almost all ω ∈ �, μ(ω) ∈ L2(Rd) and thus the local
time L(ω) (given as the density of μ) exists, and our claim follows. ��
Remark 31 In the case, when α = 2, then X is a Gaussian process, and Theorem 30
provides the same regularity of the associated local time for aGaussianVolterra process
as proven in for example [15] (orwithout considering the joint time regularity, as shown
in [5,14,21]). This theorem can therefore be seen as an extension of this work to the
class of Volterra–Lévy processes.
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We will now give several examples on the application of Theorem 30 to show the
regularity of the local time for a few specific Volterra α-stable processes. All of the
following examples also were studied for dimension d = 1 in [20, Corollary 4.6,
Examples], it shows that the local time Lt (x) of a Volterra α-stable process exists a.s.
and is continuous for (t, x) ∈ [0, T ] × R, furthermore for fixed t ∈ [0, T ], Lt (x) is
Hölder continuous for x ∈ R with some order less than 1. The method therein [20]
heavily relies on the Lα-representation for α-stable processes.

Example 32 (Regularity of the local time for Volterra α-stable processes)We consider
Volterra-α-stable processes

zt =
t∫

0

k(t − s) dLs, t ≥ 0,

where L is a d-dimensional standard α-stable process with α ∈ (0, 2].
(i). Let d = 1 and k(t) ≡ 1 for all t ≥ 0, then

zt = Lt

is an one-dimensional standard α-stable process. When α ∈ (1, 2], we know that
an one-dimensional standard α-stable processL is (α, 1)-LND, and continuous in
probability. According to above theorem, there exists a γ > 1

2 , such that the local
time associated with z, and thus alsoL is contained in Cγ

T H
κ for any κ < α

2 − 1
2 ,

P-a.s..
(ii) Let k(t) = e−at with a > 0. Then, the Ornstein–Uhlenbeck–Lévy process

zt =
t∫

0

e−a(t−s) dLs, t ≥ 0

is (α, ζ )-LND for α ∈ (0, 2] and ζ = 1, and continuous in probability. Hence,
there exists a γ > 1

2 , such that the process z has a local time L ∈ Cγ

T H
κ for any

κ < α
2 − d

2 , P-a.s..
(iii) Let (zt )t∈[0,T ] be a fractional α-stable process as in Example 23. Then, (zt )t∈[0,T ]

is continuous in probability, and there exists a γ > 1
2 such that the local time L

associated with z is contained in Cγ

T H
κ for any κ < 1

2H − d
2 , P-a.s.. Note that in

this case, one obtains the same regularity for the local time, as one would for the
fractional Brownian motion (see, e.g. [15]).

(iv) Fix T < 1 and let k(t) = t− 1
α ln( 1t )

−p for some p > 1, and suppose (Lt )t∈[0,T ] is a
standard α-stable process for some α ∈ (0, 2]. Let (zt )t∈[0,T ] be the Volterra–Lévy
process built from k andL . It is readily checkedwith, Example 22 andExample 27
that this process is continuous in probability. Moreover, note that in this case z is
(α, ζ )-LNDfor any ζ > 0.Thus, for anyγ ∈ (0, 1) the local time L associatedwith
z is contained in Cγ

T H
κ for any κ ∈ R, P-a.s.. Furthermore, if z is càdlàg, then the
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local time L has compact support, P-a.s. and thus L ∈ Cγ ([0, T ];D(Rd)), P-a.s.
where D(Rd) denotes the space of test functions on R

d . This proves in particular
Corollary 2.

5 Regularization of ODEs Perturbed by Volterra–Lévy Processes

With the knowledge of the spatio-temporal regularity of the local time associated with
a Volterra–Lévy process, we can solve additive SDEs with possibly distributional-
valued drift’s coefficients. The goal of this section is to prove Theorem 4. To this end,
we will recall some of the tools from the theory of nonlinear Young integrals and
corresponding equations. This theory for construction of integrals and equations is by
now well known (see, e.g. [6,16] and more recently [12,15] for an overview), but for
the sake of self-containedness, we have included some short versions of proofs in the
appendix. We also mention that conditions for existence and uniqueness of nonlinear
Young equations can be stated inmore general terms thanwhat is used here.We choose
to work with a simple set of conditions to provide a clear picture of the regularising
effect in SDEs driven by Volterra–Lévy noise, in contrast to the full generality which
could be accessible.More general conditions for existence and uniqueness of nonlinear
Young equations can for example be found in [12].

Lemma 33 Suppose � : [0, T ]×R
d → R

d is contained in Cγ

T Cκ for some γ ∈ ( 12 , 1)
and κ > 1

γ
, and satisfies the following inequalities for (s, t) ∈ �T

2 and ξ, ξ̃ ∈ R
d

(i) |�s,t (ξ)| + |∇�s,t (ξ)| � |t − s|γ
(ii) |�s,t (ξ) − �s,t (ξ̃ )| � |t − s|γ |ξ − ξ̃ |
(iii) |∇�s,t (ξ) − ∇�s,t (ξ̃ )| � |t − s|γ |ξ − ξ̃ |κ−1.

(5.1)

Then, for any ξ ∈ R
d there exists a unique solution to the equation

yt = ξ +
t∫

0

�dr (yr ). (5.2)

Here, the integral is interpreted as the nonlinear Young integral described in
Appendix B

t∫

0

�dr (yr ) = lim
|P |→0

∑
[u,v]∈P

�u,v(yu),

for any partition P of [0, t].
Proof See proof in Appendix B. ��
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From here on, all analysis is done pathwise. That is, we now consider a subset
�′ ⊂ � of full measure such that for all ω ∈ �′ the local time L(ω) associated
with a Volterra–Lévy process is contained in Cγ

T H
κ , for γ and κ as given through

Theorem 30. With a slight abuse of notation, we will write L = L(ω).
Before moving on to prove existence and uniqueness of ODEs perturbed by

Volterra–Lévy processes, we will need a technical proposition on the convolution
of the local time with certain (possibly distributional) vector fields.

Proposition 34 Let (zt )t∈[0,T ] be a Volterra–Lévy process which is continuous in prob-
ability and (α, ζ )-LND for some ζ ∈ (0, 1], such that the associated local time L is
contained in Cγ

T H
κ for some γ > 1

2 and κ < α
2ζ − d

2 . Suppose b ∈ Hβ for some

β ∈ R. Then, the following inequality holds for any θ < β + κ and (s, t) ∈ �2
T

‖b ∗ L̄s,t‖Cθ � ‖b‖Hβ ‖L‖Cγ
T H

κ |t − s|γ , P − a.s. (5.3)

Here, L̄t (x) = Lt (−x).

Proof FromTheorem 30,we know that Ls,t ∈ Hκ for κ < α
2ζ − d

2 , thus, an application
of Young’s convolution inequality reveals that (5.3) holds. ��

A combination of Lemma 33 and Proposition 34 provides the existence and unique-
ness of ODEs perturbed by (α, ζ )-LND Volterra–Lévy processes. The following
corollary and proposition can be seen as proof of Theorem 4.

Corollary 35 (SDEs driven by stable Volterra processes) Let (zt )t∈[0,T ] be a Volterra–
Lévy process which is continuous in probability, and (α, ζ )-LND according to
definition 24 for some ζ ∈ (0, α

d ) and α ∈ (0, 2]. Suppose b ∈ Hβ for some β ∈ R

such that the following inequality holds β + α
2ζ − d

2 ≥ 2. Then, for any ξ ∈ R
d there

exists a unique solution y ∈ Cγ

T (Rd) to the equation

yt = ξ +
t∫

0

b ∗ L̄dr (yr ), t ∈ [0, T ]. (5.4)

Here, the integral and solution is interpreted pathwise in sense of Lemma 33 by setting
�s,t (x) := b ∗ L̄s,t (x), where we recall that L̄t (x) = Lt (−x) and L is the local time
associated with (zt )t∈[0,T ].

Proof By Proposition 34, we know that b ∗ L ∈ Cγ

T Cθ for any θ < β + α
2ζ − d

2 . Since

β + α
2ζ − d

2 ≥ 2, set �s,t (x) := b ∗ L̄s,t (x), and it follows directly that conditions
(i)–(iii) of Lemma 33 are satisfied, and thus, a unique solution to (5.4) exists. ��

Additionally to existence and uniqueness, the authors of [15] provided a general
program to prove higher order differentiability of the flow mapping ξ �→ yt (ξ). We
will here apply this program in order to show differentiability of flows associated with
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ODEs perturbed by sample paths of a Volterra–Lévy process. It is well known that if
b ∈ Ck for some k ≥ 1, the flow ξ �→ yt (ξ) where y is the solution to the ODE

yt = ξ +
t∫

0

b(yr ) dr ,

is k-times differentiable. Translating this to the abstract framework of nonlinear Young
equations; let y be the solution to

yt = ξ +
t∫

0

�dr (yr ), ξ ∈ R
d ,

where � ∈ Cγ

T Cκ for some κ > 1
γ
. Then, the flow ξ �→ yt (ξ) is κ times differen-

tiable. Recall that � in our setting represents the convolution between the (possibly
distributional) vector field b and the local time associated with the irregular path of a
Volterra–Lévy process.We therefore provide a proposition to highlight the relationship
between the regularity of the vector field b, the regularity of the local time associated
with a Volterra–Lévy process, and the differentiability of the flow.

Proposition 36 Let (zt )t∈[0,T ] be a Volterra–Lévy process taking values in R
d which

is continuous in probability, and (α, ζ )-LND for some α ∈ (0, 2] and ζ ∈ (0, α
d ).

Suppose b ∈ Hβ for some β ∈ R such that β + α
2ζ − d

2 ≥ 1 + n for some integer

n ≥ 1. Let y(ξ) ∈ Cγ

T (Rd) denote the solution to (5.4) starting in ξ ∈ R
d . Then, the

flow map ξ �→ y·(ξ) is n-times Fréchet differentiable.

Proof This result for abstract Young equations was proven in [15, Thm. 2], but we
give a short outline of the proof here. Denote by θ = β + α

2ζ − d
2 , and since θ ≥ 2 it

follows that there exists a unique solution to (5.4). We will prove the differentiability
of the flow by induction and begin to show the existence of the first derivative. It is
readily checked that the first derivative of the flow ξ �→ y·(ξ) needs to satisfy the
equation

∇ yt (ξ) = 1 +
t∫

0

∇�dr (yr (ξ))∇ yr (ξ), for t ∈ [0, T ], (5.5)

where the integral is understood in sense of the nonlinear Young integral in
Lemma 38,by setting �1

s,t (us) = ∇�s,t (ys(ξ))us where us = ∇ ys(ξ) ∈ R
d×d . Since

(5.5) is a linear equation, existence and uniqueness can be simply verified following
along the lines of the proof of Lemma 33. ��
Acknowledgements F.A. Harang gratefully acknowledges financial support from the STORM project
274410, funded by the Research Council of Norway. Financial support for C. Ling by the DFG through the
CRC 1283 “Taming uncertainty and profiting from randomness and low regularity in analysis, stochastics
and their applications” is acknowledged.

123



1730 Journal of Theoretical Probability (2022) 35:1706–1735

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A. Stochastic Sewing Lemma

We recite the stochastic Sewing lemma given in [19] for self containedness. However,
we refer to the aforementioned article for a discussion and full proof of this statement.

Lemma 37 Let (�,F , {Ft }t∈[0,T ], P) be a complete probability space, whereF0 con-
tains all P-null sets. Suppose p ≥ 2 and let A : �2

T → R
d be a stochastic process

such that As,s = 0, As,t is (Ft )-measurable, and (s, t) �→ As,t is right-continuous
from �2

T into L p(�). Set δu As,t := As,t − As,u − Au,t for all (s, u, t) ∈ �3
T and

assume that there exists constants β > 1, κ > 1
2 , and C1,C2 > 0 such that

‖E
[
δu As,t |Fs

] ‖L p(�) ≤ C1|t − s|β
‖δu As,t‖L p(�) ≤ C2|t − s|κ .

(A.1)

Then, there exists a unique (up to modifications) (Ft )-adapted stochastic process A
such that the following properties are satisfied:

(i) A : [0, T ] → L p(�) is right continuous, and A0 = 0.
(ii) There exists two constants C1,C2 > 0 such that the following inequalities hold

‖As,t − As,t‖L p(�) ≤ C1|t − s|β + C2|t − s|κ
‖E

[As,t − As,t |Fs
] ‖L p(�) ≤ C1|t − s|β,

(A.2)

where we write As,t = At − As .

Furthermore, for every (s, t) ∈ �2
T and partition P of [s, t], define

AP
s,t :=

∑
[u,v]∈P

Au,v.

Then, AP
s,t converge to As,t in L p(�) when the mesh size |P| → 0.
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Appendix B. Nonlinear Young integration and equations

This section is devoted to give the necessary background regarding the nonlinear young
integral, and Young equations. We begin to prove the existence of the nonlinear Young
integral.

Lemma 38 Let � : [0, T ]×R
d → R

d be contained in Cγ

T C1 and satisfy the following
condition for x, y ∈ R

d

|�s,t (x)| � ‖�‖Cγ
TC1 |t − s|γ and |�s,t (x) − �s,t (y)| � ‖�‖Cγ

TC1 |x − y||t − s|γ ,

(B.1)

for some γ ∈ (0, 1). Furthermore, suppose y : [0, T ] → R
d is contained in Cη

T such
that γ + η > 1. For a partition P of the interval [0, T ], define Ξs,t := �s,t (ys) and
the sum

IP =
∑

[u,v]∈P
Ξu,v. (B.2)

Then, there exists a unique function I ∈ Cγ

T satisfying Is,t = It − Is given by
It := lim|P |→0 IP . We then define

t∫

s

�dr (yr ) = Is,t .

Moreover, we have that ‖δ�(y)‖Cγ+η � ‖�‖Cγ
T C1‖y‖Cη , and it follows from [11,

Lemma 4.2] that

|
t∫

s

�dr (yr ) − �s,t (ys)| � ‖�‖Cγ
T C1‖y‖Cη |t − s|η+γ . (B.3)

Proof To prove this, we make use of the classical sewing lemma from the theory of
rough paths (see [11, Lemma 4.2]). Set Ξs,t = �s,t (ys). Then, we know from the
sewing lemma that the abstract Riemann sum in (B.2) converge and (B.3) holds if
there exists a β > 1, such that

|Ξs,t | � |t − s|γ |δuΞs,t | � |t − s|β, (B.4)

where δuΞs,t = Ξs,t −Ξs,u −Ξu,t . It follows by elementary algebraic manipulations
that

δuΞs,t = �u,t (ys) − �u,t (yu), (B.5)
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and thus invoking the assumption in (B.1), we obtain that

|δuΞs,t | � |t − u|γ |ys − yu | � |t − s|γ+η.

Since � ∈ Cγ

T , and due to the assumption that η + γ > 1, it follows that (B.4) is
satisfied, and thus our claim follows from the sewing lemma ([11, Lemma 4.2]). ��
Remark 39 Of course, the nonlinear Young integral coincides with the classical Young
integral if the abstract integrand �s,t (ys) is for example given by �s,t (ys) = ys Xs,t ,
for some γ -Hölder continuous path x . Furthermore, if b is a measurable function, and
z is path of finite p-variation, then set �s,t (ys) = ∫ t

s b(ys + zr ) dr . In this case, it is
readily checked that the integral coincides with the classical Riemann integral

t∫

0

b(yr + zr ) dr =
t∫

0

�dr (yr ).

See [12] for a comprehensive introduction and discussion of the nonlinear integral.

For self-containedness, we include a proof of Lemma 33. The existence and unique-
ness of these equations has been proven in [6,15], and we refer to these references for
a full account on these results.

Proof of Lemma 33 This proof follows along the lines of [15, Lemma 30], and thus,
we only give here a shorter recollection of the most important details. Let β ∈ ( 1

κ
, γ )

where we recall that κ > 1
γ
by assumption, and let ST : Cβ

T (Rd) → Cβ
T (Rd) be the

solution map given by

ST (y) :=
{
ξ +

t∫

0

�dr (yr )
∣∣ t ∈ [0, T ]

}
.

Let BT (ξ) ⊂ Cβ
T (Rd) be a unit ball centered at ξ ∈ R

d . In order to prove existence
and uniqueness of (5.2), we will begin to show that there exists a τ > 0 such thatSτ

leaves the unit ballBτ (ξ) invariant. In the second step, we will show that there exists
a τ ′ > 0 such that the solution map Sτ ′ is a contraction on the unit ball Bτ ′(ξ). It
then follows by Picard’s fixed point theorem that a unique solution exists in the unit
ball Bτ̄ (ξ ) for τ̄ = τ ∧ τ ′. In the end, since ξ �→ �(ξ) is globally bounded, we can
iterate the solution to the intervals [kτ̄ , (k + 1)τ̄ ∧ T ] for k ∈ N.
We begin to show the invariance. By application of (B.3) and (i) in (5.1), it follows
that for y ∈ Bτ (ξ)

‖Sτ (y)‖Cβ
τ

� ‖�‖Cγ
τ L∞τγ−β + ‖�‖Cγ

τ Cκ ‖y‖Cβ
τ
τ γ .

Using that y ∈ Bτ (ξ), and thus in particular ‖y‖Cβ
τ

≤ 1, it follows that

‖Sτ (y)‖Cβ
τ

� ‖�‖Cγ
τ Cκ τ

γ−β.
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By choosing τ > 0 sufficiently small, we obtain ‖Sτ (y)‖Cβ
τ

≤ 1, and thus,Sτ leaves
the unit ballBτ (ξ) invariant. We continue to prove the contraction property. Applying
(B.3), it follows from Lemma 38 that for y, z ∈ Bτ ′(ξ) we have

‖Sτ ′ (y) − Sτ ′ (z)‖Cβ

τ ′
� ‖�(y) − �(z)‖Cβ

τ ′
+ ‖

·∫

0

(�dr (y) − �dr (z)) − (�(y) − �(z))‖Cβ

τ ′

� ‖�(y) − �(z)‖Cβ

τ ′
+ ‖δ[�(y) − �(z)]‖Cβ′ (τ ′)β ′−β, (B.6)

for some β ′ > 1. We may assume that z0 = y0 = ξ . For the first term on the right
hand side, it follows by assumption (B.1) (ii) that

‖�(y) − �(z)‖Cβ

τ ′
�� (τ ′)γ−β‖y − z‖Cβ

τ ′
, (B.7)

wherewehaveused that y0−z0 = 0. For the second termon the right hand side of (B.6),
we appeal to the proof of the nonlinear Young integral in Lemma 38, and we will need
to show that the action of the δ-operator on the integrand Ξs,t := �s,t (ys) − �s,t (zs)
is sufficiently regular and has a contractive property. That is, we will prove that for
(s, u, t) ∈ �3

τ ′ , the following inequality holds |δuΞs,t | � |t − s|μ‖y − z‖Cβ . By the
fundamental theorem of calculus, it follows that

Ξs,t =
1∫

0

∇�s,t (ρys + (1 − ρ)zs)dρ(ys − zs).

By the same algebraic manipulations as used in (B.5), it is readily checked that for
(s, u, t) ∈ �3

T we have

δuΞs,t =
1∫

0

∇�u,t (ρys + (1 − ρ)zs)(ys − zs)

−∇�u,t (ρyu + (1 − ρ)zu)dρ(yu − zu)dρ.

By addition and subtraction of ∇�u,t (ρys + (1 − ρ)zs)(yu − zu) inside the above
integral, invoking (i) of (5.1) and using that κ ≥ 1, we begin to observe that

|∇�u,t (ρys + (1 − ρ)zs)[(ys − zs) − (yu − zu)]| � ‖�‖Cγ
T Cκ ‖y − z‖Cβ

τ ′
|t − s|γ+β.

(B.8)

Furthermore, invoking (iii) of (5.1), it follows that

|[∇�u,t (ρys + (1 − ρ)zs) − ∇�u,t (ρyu + (1 − ρ)zu)](yu − zu)|
� [‖y‖Cβ

τ ′
∨ ‖z‖Cβ

τ ′
]κ−1‖�‖Cγ

T Cκ |t − u|γ |u − s|β(κ−1)(|y0 − z0| + ‖y − z‖Cβ

τ ′
).
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(B.9)

Due to the assumption that β ∈ ( 1
κ
, γ ) it follows that β(κ − 1) + γ > 1. Combining

(B.8) and (B.9), it follows that for y, z ∈ Bτ ′(ξ) with z0 = y0 = ξ we set β ′ =
β(κ − 1) + γ and we have

‖δuΞs,t‖Cβ′
τ ′

�� ‖y − z‖Cβ

τ ′
. (B.10)

Thus, inserting (B.7) and (B.10) into the right hand side of (B.6), we obtain the
inequality

‖Sτ ′(y) − Sτ ′(z)‖Cβ

τ ′
�� ‖y − z‖Cβ

τ ′
(τ ′)γ−β.

By choosing τ ′ > 0 small enough, it is clear that the solution mapSτ ′ is a contraction
on the ballBτ ′(ξ). Note in particular that the contraction bound is independent on the
initial data, due to the assumption of boundedness of the derivatives of � (recall that
Cγ

τ � Cγ

b ([0, τ ]) when γ ∈ (0, 1)).
It follows that Sτ∧τ ′ is a contraction and leaves the ball Bτ ′(ξ) invariant, and it

follows by Picard’s fixed point theorem that there exists a unique solution to (5.2)
on in Bτ ′(ξ). By standard procedures, one can now iterate the solution to the whole
interval [0, T ], and we ask the patient reader to consult [11, Section 8.3] for further
details on this part. At last we note that the solution is indeed contained in the space
Cγ

T . Indeed, assume y ∈ Cβ
T satisfies (5.2). Using the inequality in (B.4), the following

inequality holds

|ys,t | = |
t∫

s

�dr (yr )| � |�s,t (ys)| + ‖�‖Cγ
T Cκ ‖y‖Cβ

T
|t − s|γ+β �y,�,T |t − s|γ ,

and it follows that y ∈ Cγ

T . This concludes our proof. ��
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