
Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 915 (2017) 394–413

www.elsevier.com/locate/nuclphysb

Towards single-valued polylogarithms in two variables 

for the seven-point remainder function in 

multi-Regge kinematics

Johannes Broedel a,∗, Martin Sprenger b, Alejandro Torres Orjuela a,c

a Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin, IRIS Adlershof, 
Zum Großen Windkanal 6, 12489 Berlin, Germany

b Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich, Wolfgang-Pauli-Strasse 27, 
8093 Zürich, Switzerland

c Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany

Received 25 August 2016; received in revised form 23 November 2016; accepted 20 December 2016

Available online 27 December 2016

Editor: Stephan Stieberger

Abstract

We investigate single-valued polylogarithms in two complex variables, which are relevant for the seven-
point remainder function in N = 4 super-Yang–Mills theory in the multi-Regge regime. After constructing 
these two-dimensional polylogarithms, we determine the leading logarithmic approximation of the seven-
point remainder function up to and including five loops.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

One of the most interesting results in the study of scattering amplitudes in planar N = 4
super-Yang–Mills theory is that certain amplitudes can be constructed to high loop orders solely 
from understanding the space of functions describing the amplitude, its symmetries as well as its 
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limiting behavior in special kinematic regimes. Indeed, following this program of bootstrapping 
the six-point amplitude, the remainder function is by now known up to four loops [1–4] and it is 
very likely that this program can be continued to higher orders.

Much less, however, is known about the seven-point amplitude. The MHV remainder function 
in general kinematics has been calculated up to two loops [5], while the symbol is known up to 
three loops [6,7]. It is therefore a sensible idea to consider specific kinematic configurations, hop-
ing to obtain higher-order results in those special settings which can then be used as constraints 
on a potential ansatz for the full seven-point remainder function.

The special kinematic configuration considered in this paper is the multi-Regge limit. This 
limit has been studied in the seven-point case before: the Mandelstam regions have been classified 
[8,9], and the remainder function has been calculated in the most interesting Mandelstam region 
in the leading logarithmic approximation (LLA) [10]. Furthermore, the seven-point remainder 
function has been studied at strong coupling [11,12] as well as from the perspective of the symbol 
for two [13] and three loops [14].

In this paper, we follow the path of understanding for the six-point remainder function in the 
multi-Regge limit: while first expressed in Fourier–Mellin space up to next-to-leading logarith-
mic order (NLLA) [15–17], the identification of the relevant space of functions paved the way 
for an efficient evaluation of the remainder function in momentum space [18–20]. In the six-
point case, these functions are single-valued harmonic polylogarithms (SVHPLs) which we will 
briefly review below.

Similarly, in ref. [10], the seven-point MHV remainder function was written down in Fourier–
Mellin space. Due to the complicated nature of the integral, it was so far only evaluated up to 
two loops. In this paper we therefore set out to identify a suitable two-variable generalization of 
SVHPLs constituting the relevant space of functions in the seven-point case. We construct those 
functions from their differential behavior, which allows us to obtain results up to five loops.

The paper is organized as follows. In section 2 we review the six-point case and the construc-
tion of the SVHPLs describing the remainder function. In subsection 3.1 we then move on to 
seven gluons and highlight the differences to the six-point case and the two-dimensional general-
ization of HPLs in subsection 3.2 before constructing the two-dimensional analogue of SVHPLs 
in subsection 3.3. Using these functions, we obtain expressions for the remainder function in 
LLA up to five loops in subsection 3.4, before concluding in section 4.

2. Six-point remainder function in multi-Regge kinematics

2.1. Starting point/setup

The six-point remainder function RMHV
6 in N = 4 super-Yang–Mills theory1 describes the 

discrepancy between the full amplitude and the BDS ansatz [21],

AMHV
6 = ABDS eRMHV

6 . (2.1)

While the calculation of the six-point remainder function in general kinematics requires a multi-
tude of different techniques, its determination in the so-called multi-Regge kinematics is simpler. 
The multi-Regge limit refers to the kinematical regime of the scattering amplitude in which the 

1 For simplicity of presentation, we confine ourselves to the MHV remainder function; the six-point remainder function 
for NMHV is described and evaluated in refs. [18,3,4,20].
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rapidities of the outgoing particles are strongly ordered. In terms of external momenta ki , the 
multi-Regge limit can be most easily described using dual variables xii+1 := xi − xi+1 := ki . 
Expressed in terms of dual conformal cross ratios ui , the multi-Regge behavior reads:

u1 := x2
13x

2
46

x2
14x

2
36

→ 1, u2 := x2
24x

2
15

x2
25x

2
14

→ 0, u3 := x2
35x

2
26

x2
36x

2
25

→ 0, (2.2)

where the reduced cross ratios

ũ2 := u2

1 − u1
=: 1

|1 + w|2 , ũ3 := u3

1 − u1
=: |w|2

|1 + w|2 (2.3)

are kept finite. As visible from eq. (2.3), six-point multi-Regge kinematics is completely deter-
mined by a complex parameter w and the large cross ratio u1.

While the naïve limit eq. (2.2) yields a vanishing remainder function, a non-trivial result can 
be obtained by an analytic continuation to the so-called Mandelstam region [15,16], which is 
implemented by a clockwise continuation of the large cross ratio u1,

u1 → e−2iπu1 (2.4)

before taking the limit (2.2). For this setup, the six-point remainder function in multi-Regge 
kinematics can be written as a Fourier–Mellin integral [16,22,17]:

eRMHV
6 +iπδ|MRK = cosπωab + i

a

2

∞∑
n=−∞

(−1)n
( w

w∗
) n

2

∞∫
−∞

dν

ν2 + n2

4

|w|2iν�MHV
reg (ν, n)

× exp

[
−ω(ν,n)

(
log(1 − u1) + iπ + 1

2
log

|w|2
|1 + w|4

)]
.

(2.5)

In the above equation, the first term originates from a Regge pole exchange, while the second 
term comes from the exchange of a two-Reggeon bound state, which gives rise to a Regge-cut 
contribution. The so-called impact factor �MHV

reg (ν, n) and the BFKL eigenvalue ω(ν, n) appear-

ing in the latter have an expansion in powers of the loop-counting parameter a = g2Nc

8π2 :

ω(ν,n) = −a(Eν,n + aE(1)
ν,n + a2E(2)

ν,n) +O(a4),

�MHV
reg = 1 + a �(1),MHV + a2 �(2),MHV +O(a3) . (2.6)

Physically, the BFKL eigenvalue ω(ν, n) describes the evolution of the two-Reggeon bound state, 
while the impact factor describes the coupling of the two-Reggeon bound state to the physical 
gluons. While the first orders of these quantities were determined by direct calculation [16,22,17,
18,2], a general solution based on the Wilson-loop OPE [23–26] has been identified in ref. [27].

In the six-point (and seven-point) calculations below, we will only need the lowest-order term 
of the BFKL eigenvalue, which reads

Eν,n = −1

2

|n|
ν2 + n2

4

+ ψ

(
1 + iν + |n|

2

)
+ ψ

(
1 − iν + |n|

2

)
− 2ψ(1), (2.7)

where ψ(x) is the digamma function. The two other quantities appearing in eq. (2.5), the phase 
δ and the Regge-pole contribution ωab, are related to the cusp anomalous dimension γK(a) via
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ωab = 1

8
γK(a) log |w|2 and δ = 1

8
γK(a) log

|w|2
|1 + w|4 (2.8)

and are thus known to all orders [28].
Finally, the term log(1 − u1) in the integrand of eq. (2.5) is large because of the behavior 

of the cross ratio u1 in the multi-Regge limit eq. (2.2). This suggests to organize the remainder 
function in powers of log(1 − u1) at each loop order:

RMHV
6

∣∣
MRK = 2πi

∞∑
	=2

	−1∑
n=0

a	 logn(1 − u1)
[
g(	)

n (w,w∗) + 2πi h(	)
n (w,w∗)

]
. (2.9)

In the above equation, all terms with n = 	 − 1 are referred to as the leading logarithmic approx-
imation (LLA) and terms with n = 	 − 1 − k belong to (Next-to)k-LLA. Since the imaginary 
and real parts g(	)

n and h(	)
n are not independent [18], it is sufficient to calculate all imaginary 

parts g(	)
n in order to determine the full remainder function. For more details on the six-point 

remainder function in the multi-Regge limit we refer the reader to ref. [20] and continue with the 
description of the relevant functions for the evaluation of eq. (2.5).

2.2. Single-valued harmonic polylogarithms in one variable

Before describing the functions governing the integral eq. (2.5), let us introduce harmonic 
polylogarithms (or HPLs for short) [29], which are defined as iterated integrals

Ha1,a2,...,an(z) =
z∫

0

dtfa1Ha2,...,an(t) , (2.10)

where the integration weights fa are given as

f−1 = 1

1 + t
, f0 = 1

t
, and f1 = 1

1 − t
. (2.11)

In eq. (2.10), the length of the index vector �a = {a1, . . . , an} is called the weight of a HPL, while z
is referred to as the argument. For the six-point remainder function, only the latter two integration 
weights in eq. (2.11) will appear. Corresponding to the weights f0 and f1 we introduce two letters 
x0 and x1 which will be used as non-commutative bookkeeping variables in generating functions 
for polylogarithms below.

From their definition eq. (2.10) it is clear that HPLs satisfy the differential equation

∂

∂z
Ha1,a2,...,an = fa1(z)Ha2,...,an(z). (2.12)

Harmonic polylogarithms of low weight can be conveniently expressed in terms of logarithms 
and dilogarithms, for example

H0,...,0︸︷︷︸
w

(z) = 1

w! logw(z), H1,...,1︸︷︷︸
w

(z) = 1

w! (− log(1 − z))w, H0,...,0︸︷︷︸
(w−1)

,1(z) = Liw(z) .

(2.13)

Furthermore, harmonic polylogarithms satisfy a scaling identity

Hk·a1,...,k·an(k · z) = Ha1,...,an(z) for k �= 0, z �= 0 , (2.14)

which is valid whenever an �= 0.
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Given that the usual logarithm has a branch cut which is canonically chosen to lie along the 
negative real axis, its iterated and integrated versions have branch cuts, as well. However, it 
is possible to obtain single-valued harmonic polylogarithms (SVHPLs) by linearly combining 
products of the form Hs1(z)Hs2(z̄) in a way that all branch cuts cancel. The combinations of 
HPLs leading to SVHPLs are unique and can be determined from demanding triviality of the 
monodromies around singular points of HPLs [30].

The lowest-weight SVHPLs2 read

L0(z) = H0(z) + H0(z̄)

L1(z) = H1(z) + H1(z̄)

L0,0(z) = H0,0(z) + H0,0(z̄) + H0(z)H0(z̄)

L1,0(z) = H1,0(z) + H0,1(z̄) + H1(z)H0(z̄)

L1,0,1(z) = H1,0,1(z) + H1,0,1(z̄) + H1,0(z)H1(z̄) + H1(z)H1,0(z̄)

... (2.15)

While up to weight three the expressions follow an obvious pattern, ζ -values make an appearance 
starting at weight four, for example

L1,0,1,0(z) = H1,0,1,0(z) + H0,1,0,1(z̄) + H1,0,1(z)H0(z̄) + H1(z)H0,1,0(z̄)

+ H1,0(z)H01(z̄) − 4ζ3H1(z̄). (2.16)

An elaborate introduction to SVHPLs in the context of the six-point remainder function in MRK 
in which the method for solving the single-valuedness condition is carefully explained can be 
found in section 3 of ref. [18].

In the remainder of this subsection, let us collect several properties of SVHPLs which will be 
useful below: Two SVHPLs labeled by words s1 and s2 satisfy the shuffle relation

Ls1(z)Ls2(z) =
∑

s∈s1 s2

Ls(z) , (2.17)

where the shuffle s1 s2 refers to all permutations of s1 ∪ s2 which leave the order of elements 
in s1 and s2 unaltered. The generating functional for the SVHPLs,

L{0,1}(z) =
∑

s∈X({x0,x1})
Ls(z)s = 1 +L0(z) x0 +L1(z) x1 +L0,0(z) x0x0

+L0,1(z) x0x1 + . . . , (2.18)

where X({x0, x1}) are all words3 in the alphabet {x0, x1}. This generating functional satisfies the 
differential equations

∂

∂z
L{0,1}(z) =

(
x0

z
+ x1

1 − z

)
L{0,1}(z), ∂

∂z̄
L{0,1}(z) = L{0,1}(z)

(
y0

z̄
+ y1

1 − z̄

)
,

(2.19)

2 As will be clear from the examples given in eq. (2.15), the Ls (z) are functions of both z and z̄. For simplicity, 
however, we will denote these functions as Ls (z).

3 For convenience, SVHPLs will be labeled by the indices of the letters rather than by the letters themselves.



J. Broedel et al. / Nuclear Physics B 915 (2017) 394–413 399
where {y0, y1} is an additional alphabet, which appears in the construction of SVHPLs in ref. [30]
and is related by the single-valuedness condition to the alphabet {x0, x1} mentioned above. Solv-
ing this condition order by order, one finds

y0 = x0 and

y1 = x1 − ζ3(2x0x0x1x1 − 4x0x1x0x1 + 2x0x1x1x1 + 4x1x0x1x0 + · · · ) + · · · , (2.20)

and can thus find the analogue of eq. (2.15) for Ls for an arbitrary label s constructed from 
the alphabet {x0, x1}. Note, however, that from eq. (2.19) the Ls(z) satisfy the same differential 
equation in z as the corresponding HPL Hs(z), cf. eq. (2.12).

2.3. Calculation of the six-point remainder function

As pointed out at the end of subsection 2.1, the problem of calculating the remainder function 
RMHV

6 |MRK via eq. (2.5) boils down to evaluating the real part of the sum over the integral, which 

will yield the functions g(	)
n . The crucial ingredients here are the loop expansions of the impact 

factor �MHV
reg (ν, n) and the BFKL eigenvalue ω(ν, n) in eq. (2.6).

To calculate g(	)
n one would then expand the integral to the desired loop and logarithmic 

order, close the contour at infinity and sum up the residues. This, however, becomes cumbersome 
already beyond the lowest loop order.

As discussed in ref. [18], the functions g(	)
n can be expressed in terms of SVHPLs. This opens 

a natural and simpler way for the calculation of eq. (2.5): one starts from an ansatz in SVHPLs 
and compares the series expansions in (w, w∗) of both the ansatz and the integral. Following this 
approach the remainder function was calculated up to five loops, as well as for higher loop orders 
in LLA and NLLA [18,2,19].

A more direct evaluation of the remainder function eq. (2.5) was developed in ref. [20]. The 
key insight, first used in refs. [31,19], is that the leading term of any SVHPL is simply given by 
the harmonic polylogarithm with the same index structure

Ls(w,w∗) = Hs(w) + . . . , (2.21)

as exemplified in eq. (2.15). Importantly, the term Hw(w) is the only term in the expansion of 
the SVHPL which does not depend on w∗. Comparing with the dispersion relation (2.5), we see 
that the leading terms are encoded in the residues at ν = − in

2 as only for those poles the residues 
will have no contribution from w∗.

Since the remainder function can be expressed in terms of SVHPLs exclusively, a viable 
approach consists of simply determining the leading terms, which will be a linear combination 
of HPLs and obtaining the full result by simply promoting HPLs to SVHPLs via

Hs(w) → Ls(w,w∗) . (2.22)

In performing the above replacement, the contributions from the omitted residues are restored 
automatically.

In ref. [20], we started from this observation and identified recursion relations between differ-
ent integrals which hold on the locus of the poles ν = − in

2 , but which by using eq. (2.22) lift to 
relations of the full result. Employing these relations, we reduced all integrals to a set of trivial 
basis integrals. This allowed us to efficiently evaluate the remainder function up to very high 
loop- and logarithmic orders and to prove Pennington’s formula [32] for the six-point remainder 
function in LLA.
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Given the success of this approach for the six-point remainder function, it is natural to ask, 
whether a similar formalism can be established for seven points. This idea is going to be dis-
cussed in the next section.

3. Seven-point remainder function in multi-Regge kinematics

3.1. From six to seven gluons

We now move on to the seven-point MHV remainder function in multi-Regge kinematics, 
which is defined similarly to the six-point case,

AMHV
7 = ABDSeRMHV

7 . (3.1)

The kinematics in this case is governed by seven conformal cross ratios,

u1,1 = x2
37x

2
46

x2
47x

2
36

, u2,1 = x2
15x

2
24

x2
14x

2
25

, u3,1 = x2
35x

2
26

x2
25x

2
36

,

u1,2 = x2
14x

2
57

x2
15x

2
47

, u2,2 = x2
16x

2
25

x2
15x

2
26

, u3,2 = x2
36x

2
27

x2
26x

2
37

, (3.2)

ũ = x2
13x

2
47

x2
37x

2
14

.

In the multi-Regge limit the cross ratios u1,s , s = 1, 2, and ũ approach 1, while all other cross 
ratios tend to zero. Due to a conformal Gram relation, only six of the above cross ratios are in-
dependent. It is, however, advantageous for what follows to keep all seven cross ratios explicitly. 
The remaining kinematic freedom in the multi-Regge limit is again given by the reduced cross 
ratios

ũa,s := ua,s

1 − u1,s

, (3.3)

which are finite in the multi-Regge limit and which we again parameterize by two complex 
variables w1, w2 defined as

ũ2,1 =: 1

|1 + w1|2 , ũ3,1 =: |w1|2
|1 + w1|2 , ũ2,2 =: 1

|1 + w2|2 , ũ3,2 =: |w2|2
|1 + w2|2 . (3.4)

A key difference to the six-point case is that several interesting Mandelstam regions exist, in 
which Regge cuts appear. However, as is shown in [8,9], the seven-point remainder function can 
be written as a linear combination of three elementary building blocks in every Regge region. 
These building blocks are usually called the short cuts which describe a Regge cut in the s45-
and s56-channel, respectively, as well as the long cut which describes a Regge cut which spans 
the s456-channel, see [8,9] for details and Fig. 1 for a pictorial representation. As it turns out, 
the short cuts are fully determined by the BFKL eigenvalue and impact factor of the six-point 
amplitude. Therefore, we focus on the long cut in which a new ingredient appears. To study the 
long cut, one can take the analytic continuation4

4 Subtleties in the choice of path that arise due to the conformal Gram relation are, for example, discussed in ref. [12], 
but do not play a role here.
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Fig. 1. In the seven-point case, the remainder function in every Regge region can be written as a linear combination of 
the Regge pole contribution, the short cuts in the s45- and s56-channel and the long cut in the combined s456-channel. 
See [8,9] for details.

ũ → e−2πi ũ (3.5)

of the remainder function, before going to the multi-Regge limit. In this Mandelstam region, the 
short cuts do not contribute and the remainder function is fully determined by the long cut. In 
LLA, the remainder function in this region was stated in ref. [9] and reads

RMHV
7 = 1 + iπ

∞∑
	=2

	−1∑
k=0

a	

k!(	 − 1 − k)! logk(1 − u1,1)

× log	−1−k(1 − u1,2)I7

[
Ek

ν,n E	−k−1
μ,m

]
, (3.6)

where we define

I7 [F(ν, n,μ,m)] :=
∞∑

n=−∞

∞∑
m=−∞

+∞∫
−∞

dν

2π

+∞∫
−∞

dμ

2π
w

iν+n/2
1 (w∗

1)iν−n/2

× w
iμ+m/2
2 (w∗

2)iμ−m/2C(ν,n,μ,m)F(ν, n,μ,m), (3.7)

and where

C(ν,n,μ,m) = (−1)n+m
�

(−iν − n
2

)
�

(
iμ + m

2

)
�

(
i(ν − μ) + m−n

2

)
�

(
1 + iν − n

2

)
�

(
1 − iμ + m

2

)
�

(
1 − i(ν − μ) + m−n

2

) (3.8)

is the so-called central emission vertex. Comparing expression (3.7) with the corresponding equa-
tion for the six-point case (2.5), we see that this is a new ingredient. Like in the six-point case 
there is again a nice physical interpretation of all the terms in eqs. (3.7) and (3.6), with the central 
emission vertex C(ν, n, μ, m) describing the emission of a physical gluon from a bound state of 
two reggeized gluons and the BFKL eigenvalue Eν,n describing the evolution of the bound state 
of two reggeized gluons, of which we have two because of the appearance of the central emission 
vertex. The impact factor which describes the coupling of the bound state to the physical gluons 
does not appear in eq. (3.7) since it is trivial in LLA. We can represent eq. (3.6) graphically as 
shown in Fig. 2. Note that eq. (3.6) has a similar form to eq. (2.9), only with two distinct large 
logarithms. Furthermore, as always in LLA, the real part vanishes.

Let us now study the symmetry properties of eq. (3.7). Using the expressions for the LLA 
BFKL eigenvalue eq. (2.7) and the central emission vertex eq. (3.8) we see that the remainder 
function is invariant under exchange of

ν ↔ −μ, n ↔ −m, (3.9)

which corresponds to a swap

w1 ↔ 1
, (3.10)
w2
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Fig. 2. Pictorial representation of eqs. (3.6) and (3.7), with C being the central emission vertex, GBFKL describing the 
evolution of the two-Reggeon bound state and χ1, χ2 being the building blocks of the impact factor.

as well as under exchange of

n ↔ −n, m ↔ −m (3.11)

which, in turn, corresponds to

w1 ↔ w∗
1, w2 ↔ w∗

2 . (3.12)

These symmetry properties will be very useful when evaluating the remainder function later on.
To evaluate eq. (3.7), one first closes the contours of the two integrals at infinity and then 

sums up the residues. A convenient choice is to close the contour of the μ-integration in the 
upper half-plane and the contour of the ν-integration in the lower half-plane. This corresponds 
to the choice w1 < 1 and w2 > 1, which is compatible with the symmetry w1 ↔ 1

w2
. In [10], this 

calculation was carried out for the integrals appearing at two loops, with the result

I7
[
Eν,n

] = 1

2

⎛
⎝log

∣∣∣∣∣1 + w1

1 + 1
w2

∣∣∣∣∣
2

+ log

∣∣∣∣∣1 + 1 + 1
w2

w1

∣∣∣∣∣
2
⎞
⎠ , (3.13)

which takes the form of the six-point two-loop result with a rescaled variable, w → w1

1+ 1
w2

. From 

this result, we can also immediately obtain I7
[
Eμ,m

]
by making use of the symmetry (3.9)

discussed before. Indeed, a special class of integrals is obtained when only one of the two energy 
eigenvalues Eν,n or Eμ,m appears in the integrand, for definiteness let us choose Eν,n. In this 
case, the μ-integration can be carried out explicitly and results in a rescaling of the parameters 
(w1, w∗

1). This reduces the integral to a six-point integral, that is, upon replacing

w → w1

1 + 1
w2

(3.14)

one can effectively obtain the simple two-loop solution eq. (3.13) from the corresponding two-
loop LLA integral of eq. (2.5). Starting from three loops, integrals with both types of energy 
eigenvalues Eν,n and Eμ,m appear causing a more complicated result. We therefore have to re-
sort to other means of solving the integral. As in the six-point case, a sensible starting point is 
trying to understand the relevant functions describing the remainder function.
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3.2. Harmonic polylogarithms in two variables

Contrary to the situation in the six-point scenario, where the kinematics is determined by one 
complex parameter w, in the seven-point case we need to find SVHPLs in two complex variables 
w1 and w2 (cf. eq. (3.13)). In the discussion to follow we will use variables y and z, which will 
be related to w1 and w2 later on.

3.2.1. Two new letters
Harmonic Polylogarithms depending on two complex parameters – or two-dimensional har-

monic polylogarithms (2dHPLs) for short5 – have been constructed in ref. [33]. The implemen-
tation relies on introducing two new integration weights accompanying the weights fa defined 
in eq. (2.11),

fz = 1

t + z
and f1−z = 1

1 − t − z
. (3.15)

Similar to the six-point scenario, where the function f−1 does not appear, the function fz is not 
needed for the seven-point remainder function in MRK. In accordance, we will introduce the 
additional letter x1−z only.

Up to weight three, all 2dHPLs can be expressed in terms of generalized polylogarithms. For 
the simplest cases the relations read:

H1−z(y) = H1

( y

1 − z

)
= − log

(
1 − y

1 − z

)
,

H1,1−z(y) = 1

2
log2(1 − y) − log(1 − y) log(1 − z) + Li2

( z

1 − y

)
− Li2(z) , (3.16)

where a complete set of relations leading to expressions for all possible labels up to weight three 
is presented in appendix A.2 of ref. [33].

While the labels y and z appear to be on unequal footing in the above formulæ, this is actu-
ally a choice of notation only: there are numerous relations between different representations of 
2dHPLs. In particular, it is always possible to switch y and z in label and argument of a 2dHPL, 
for example:

H0,1,1−y(z) = H1(z)H0,1(y)−H1(y)H0,1(z)−H0,1,1(y)+H0,1,1(z)+H0,1,1−z(y) . (3.17)

This type of relation, which can be easily derived for every label by reverting to the integral 
representation of 2dHPls, will be a crucial ingredient in fixing ζ -terms in 2dSVHPLs below.

In order to have a canonical representation, we will choose 2dHPLs with labels from
{0, 1, 1 − z} for the argument y and 1dHPLs with labels from {0, 1} for the argument z. Solving 
for shuffle relations by choosing a Lyndon basis [34] for the labels we will finally use

HLyndon({0,1,1−z})(y) and HLyndon({0,1})(z) . (3.18)

As pointed out in ref. [13], this choice is actually a basis for the 2dHPLs appearing in the seven-
point remainder function in MRK.

5 In the following sections we will sometimes refer to the HPLs and SVHPLs discussed in subsection 2.2 as 1dHPLs 
and 1dSVHPLs, respectively.
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3.2.2. Differential equations for 2dHPLs
With a second complex parameter entering the definition of 2dHPLs, an obvious question is 

the one about the differential behavior of those functions. While one could use relations like 
eq. (3.17) and thus trace back derivatives with respect to one variable appearing in the label of 
the polylogarithm to a derivative with respect to the argument, it is far more efficient to consider 
derivatives with respect to the labels of a 2dHPL directly. The necessary formulæ for taking those 
derivatives are listed and explained in Appendix A.

In terms of a generating function of 2dHPLs6 with argument y

H {0,1,1−z}(y) =
∑

s∈X({x0,x1,x1−z})
Hs(y)s

=1 + H0(y) x0 + H1(y) x1 + H1−z(y) x1−z

+ H0,0(y) x0x0 + H0,1(y) x0x1 + H0,1−z(y) x0x1−z

+ H1,0(y) x1x0 + H1,1(y) x1x1 + H1,1−z(y) x1x1−z

+ H1−z,0(y) x1−zx0 + H1−z,1(y) x1−zx1 + H1−z,1−z(y) x1−zx1−z

+ . . . , (3.19)

the y-derivative can be written down immediately after considering the defining equation (2.10)
together with the additional integration weight f1−z:

∂

∂y
H {0,1,1−z}(y) =

(
x0

y
+ x1

1−y
+ x1−z

1−y−z

)
H {0,1,1−z}(y) . (3.20)

Proceeding to the derivative with respect to z, it is no longer possible to write the derivative 
in multiplicative form as in eq. (3.20). Instead, one can describe the pattern of how letters and 
prefactors are attached to existing words depending on their particular letters. Writing

∂

∂z
H {0,1,1−z}(y) = �

(
H {0,1,1−z}(y)

)
(3.21)

the operation � acts as follows:

• for each sequence of letters s = x1−z . . . x1−z, promote

s → x0s

1−z
+ x1s

z
− sx0

1−z
− sx1

z
(3.22a)

• for each sequence of letters s = x1 . . . x1, promote

s → x1−zs

z(1 − z)
− sx1−z

z(1 − z)
(3.22b)

• to any complete word s, add a leading 1 −z:

s → y

(1 − z)(1 − y − z)
x1−zs . (3.22c)

6 Again, instead of noting the full word s in the subscript of a 2dHPL, we just write the indices of the letters.
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In order to extract the derivative of a particular 2dHPL with label s one expands both sides of 
eq. (3.21) and compares the coefficients of the word s.

In practice, aiming to find the z-derivative of H0,1−z,1(y) for example, one has to browse 
through all words of length two, which upon adding one letter following the rules eq. (3.22)
will yield the word x0x1−zx1. Starting from H0,1(y)x0x1, one can insert a letter x1−z between 
x0 and x1, making use of the first part of rule (3.22b). Taking H0,1−z(y)x0x1−z, a letter x1 can 
be appended to the right, which amounts to using the last part of rule (3.22a). Finally, the word 
x0x1−zx1 can be reached by prepending x0 to the word x1−zx1 accompanying H1−z,1(y), thus 
using the first term in rule (3.22a):

∂

∂z
H0,1−z,1(y)x0x1−zx1 = H0,1(y)

z(1−z)
x0x1−zx1 − H0,1−z(y)

z
x0x1−zx1 + H1−z,1(y)

1−z
x0x1−zx1 .

(3.23)

Another example, where one has to make use of rules (3.22a) and (3.22c) reads:

∂

∂z
H1−z,0,0(y)x1−zx0x0 = y

(1−z)(1−y−z)
H0,0(y) x1−zx0x0 − 1

1−z
H1−z,0(y)x1−zx0x0 .

(3.24)

3.3. Single-valued harmonic polylogarithms in two variables

The canonical way to identify single-valued versions of 2dHPLs would be to find a generaliza-
tion of the single-valuedness condition formulated in ref. [30] for the alphabet {x0, x1}. However, 
although this generalization does most certainly exist, an explicit expression thereof is currently 
not known to us.7 Therefore we continue on a different path: we postulate several constraints 
the single-valued versions of 2dHPLs should satisfy and later on argue that the functions thus 
constructed are indeed single-valued. In order to find those constraints, we take guidance by the 
properties of 1dHPLs reviewed in subsection 2.2:

• Differential equations: 1dSVHPLs satisfy the same differential equations as their 1dHPL 
counterpart (cf. eqs. (2.12) and (2.19)): therefore we require the generating functional of 
2dSVHPLs with argument y

L{0,1,1−z}(y) =
∑

s∈X({x0,x1,x1−z})
Ls(y)s

=1 +L0(y) x0 +L1(y) x1 +L1−z(y) x1−z

+L0,0(y) x0x0 +L0,1(y) x0x1 +L0,1−z(y) x0x1−z

+L1,0(y) x1x0 +L1,1(y) x1x1 +L1,1−z(y) x1x1−z

+L1−z,0(y) x1−zx0 +L1−z,1(y) x1−zx1 +L1−z,1−z(y) x1−zx1−z

+ . . . , (3.25)

to satisfy

∂

∂y
L{0,1,1−z}(y) =

(
x0

y
+ x1

1 − y
+ x1−z

1 − y − z

)
L{0,1,1−z}(y) (3.26)

7 As pointed out in the conclusions, the paper [35] provides an explicit construction of those functions.
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∂

∂z
L{0,1,1−z}(y) = �

(
L{0,1,1−z}(y)

)
. (3.27)

where the operation � has been defined in eq. (3.22).
• Limiting behavior: In the limit z → 0, the alphabet will shrink since x1−z → x1. Thus we 

demand to recover the corresponding 1dSVHPLs in the limit (1 − z) → 1.
• Switching variables: Consistency with the relations switching the variable in the label and 

the argument. This means we require all relations like eq. (3.17) to hold upon replacing 
H → L.

In short, we require 2dSVHPLs to inherit the properties of 2dHPLs and in addition we demand 
a consistent reduction to 1dSVHPLs in the limit z → 0. We will explicitly show in the following 
that those constraints are indeed sufficient to pin down 2dSVHPLs in two variables to at least 
weight four.

In practice, we can gain some experience regarding the structure of the 2dSVHPLs by studying 
a simple ad hoc construction: We start from the 2dHPLs as given by Gehrmann and Remiddi 
and reviewed in subsection 3.2. Since these functions can be expressed in terms of generalized 
polylogarithms up to weight three, we can promote each 1dHPL separately to its single-valued 
version using relations like eq. (2.15).

This is most easily explained using an example: a candidate for a single-valued 2dHPL can 
be obtained via

H1,1−z(y) = 1

2
log2(1 − y) − log(1 − y) log(1 − z) + Li2

( z

1 − y

)
− Li2(z)

= H1,1(y) − H1(y)H1(z) + H0,1

( z

1−y

)
− H0,1(z)

→ L1,1(y) −L1(y)L1(z) +L0,1

( z

1−y

)
−L0,1(z). (3.28)

Making use of the scaling relation

Ha1,a2,...,an

(
y

1 − z

)
= H(1−z)a1,(1−z)a2,...,(1−z)an(y), (3.29)

where ai ∈ {0, 1} and which holds whenever the last index is not 0 (see the discussion around 
eq. (2.14)), as well as

H0,...,0︸︷︷︸
n

(
y

1 − z

)
= 1

n! (H0(y) + H1(z))
n , (3.30)

one can express the above candidate for a single-valued polylogarithm in terms of 2dHPLs:

L1,1−z(y) = H1,1−z(y) + H1(y)H1−z̄(ȳ) + H1−z̄,1(ȳ) +L0(z)
(
H1−z̄(ȳ) − H1(ȳ)

)
−L1(z)H1(ȳ) . (3.31)

Note that in eq. (3.31) the variable z in the label is complex-conjugated whenever the argument 
of the HPL is ȳ. Following this ad hoc approach we find functions up to weight three which 
perfectly match the first orders of the integral eq. (3.6). Furthermore, note that we did not express 
1dSVHPLs of z in terms of usual HPLs, as this relates to a feature of 2dSVHPLs to be elaborated 
on below: if expressed in the basis eq. (3.18), 2dSVHPLs split into a canonical part as well as a 
part in which 1dSVHPLs of argument z are multiplied by 2dHPLs of arguments y and ȳ (with 
labels possibly containing 1 −z and 1 −z̄). By canonical we refer to the pattern
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La1,a2,...,an(y)
∣∣
can.

=
n∑

k=0

Ha1,...,ak
(y)Hān,ān−1,...,āk+1(ȳ) (3.32)

that is already present for 1dSVHPLs (see eq. (2.15)). Quite naturally, the additional terms one 
finds beyond the canonical part are exactly those needed to preserve the derivative rule eq. (3.27).

Since our ad hoc construction of 2dSVHPLs only works up to weight three, we would now 
like to turn these observations into a construction of higher-weight 2dSVHPLs by the following 
algorithm: We start from a known 2dSVHPL and add a letter to the left by integrating in y, thus 
making use of the differential equation (3.26). This fixes the 2dSVHPL of higher weight up to a 
function of ȳ, z and z̄.

Based on the assumptions that HPLs of argument z only appear in single-valued combinations 
we make the most general ansatz of terms

La1,...,an(z)Hb1,...,bm(ȳ), (3.33)

where ai ∈ {0, 1} and bi ∈ {0, 1, 1 −z̄}, compatible with the overall weight. Demanding that this 
ansatz satisfies relations eq. (3.27) for differentiation in z then fixes the ansatz completely.

To clarify the procedure, let us consider an example. Starting from the obvious weight one 
expressions

L0(y) = H0(y) + H0(ȳ),

L1(y) = H1(y) + H1(ȳ),

L1−z(y) = H1−z(y) + H1−z̄(ȳ), (3.34)

we can, for example, write down an ansatz for L1,1−z(y) as

L1,1−z(y) =H1,1−z(y) + H1−z̄,1(ȳ) + H1(y)H1−z̄(ȳ)

+L0(z) (c1H0(ȳ) + c2H1(ȳ) + c3H1−z̄(ȳ))

+L1(z) (c4H0(ȳ) + c5H1(ȳ) + c6H1−z̄(ȳ)) , (3.35)

which by differentiation with respect to z is then fixed to give eq. (3.31). Carrying this out for 
all functions up to weight three, we can compare the results of this algorithm with our ad hoc 
construction and find a perfect matching, as we should. Additional complications start from 
weight four where ζ -values are going to appear. As the 2dSVHPLs at weight three do not contain 
any zetas, those terms cannot be fixed by the y- and z-derivative and we have to add a term

ζ3

(
c1H1(ȳ) + c2H1−z̄(ȳ)

)
(3.36)

to the ansatz of every 2dSVHPLs at weight four. Note that the two terms above are the only 
ones consistent with the reduction z → 0, as well as vanishing in the limit ȳ → 0. Demanding a 
consistent reduction in the limit z → 0 and consistency with the relations exchanging argument 
and label fixes most of the ζ -terms, but not all. However, we can impose an additional constraint: 
as shown in [33], a 2dHPL evaluated at y = 1 − z can be written as a combination of 1dHPLs of 
argument z. Similarly, setting y = 1 −z, ȳ = 1 −z̄ in our ansatz, we expect to obtain a combination 
of 1dSVHPLs of weight four. As it turns out, this constraint is strong enough to fix all coefficients. 
As an example containing a ζ -value, we find

L0,0,1,1−z(y) = L0,0,1,1−z(y)
∣∣
can.

+L0,0,1(z)H1−z̄(ȳ)

+L0,1(z)
(
H0(y)H1−z̄(ȳ) + H1−z̄,0(ȳ)

)
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+L1(z)
(

− H0,0(y)H1(ȳ) − H0(y)H1,0(ȳ) − H1,0,0(ȳ)
)

+L0(z)
(

− H0,0(y)H1(ȳ) + H0,0(y)H1−z̄(ȳ) − H0(y)H1,0(ȳ)

+ H0(y)H1−z̄,0(ȳ) − H1,0,0(ȳ) + H1−z̄,0,0(ȳ)
)

− 2ζ3H1−z̄(ȳ).

(3.37)

The expressions for all other Lyndon basis elements up to weight four can be found in the file 
attached to the arXiv submission of this paper.

Going on to weight five, our constraints do not seem to be strong enough to fix all coefficients, 
which is due to the growth of both the number of Lyndon basis elements and the larger number of 
terms appearing in the ansatz for the ζ -terms, i.e. the analogue of eq. (3.36) at weight five. We are 
only able to fully fix those 2dSVHPLs at weight five whose label contains two different indices 
only.8 The expressions for the weight-five 2dSVHPLs can also be found in the file attached to the 
arXiv submission, but note that those still contain fudge factors. It would be interesting to see if 
there are additional constraints which allow to completely fix the functions at weight five as well.

Up to weight three it is obvious from our ad hoc construction that the resulting functions 
are single-valued: they are composed from single-valued components by definition. For higher 
weights we can only argue that this is indeed the case: Starting from our ansatz and fixing 
all fudge coefficients does not only reproduce the 2dSVHPLs constructed naïvely, but yields 
functions, which including their ζ -parts perfectly match the analytical properties of the integral 
eq. (3.6). While this does not prove single-valuedness, the perfect matching with the explicit 
calculation of the integral strongly supports our conjecture.

3.4. Matching the results

Now that we have constructed a suitable class of functions, we want to generate expressions 
for the seven-point remainder function eq. (3.6) beyond two loops. We do this by simply writing 
down an ansatz with the correct weight and matching the series expansion of the ansatz to data 
generated from calculating residues of eq. (3.6). This also allows us to identify the variables in 
argument and label and we find that

(y, z) →
(

−w1,− 1

w2

)
(3.38)

is the correct choice. In the following we will use the abbreviation x := 1
w2

.
This leads to the following results at two loops,

I7
[
Eν,n

] = 1

2
L1(−x)L1+x(−w1) + 1

2
L0,1+x(−w1) + 1

2
L1+x,0(−w1)

+L1+x,1+x(−w1),

I7
[
Eμ,m

] = − 1

2
L1(−w1)L0(−x) − 1

2
L1(−w1)L1(−x) + 1

2
L0(−x)L1+x(−w1)

+L1(−x)L1+x(−w1) − 1

2
L1,1+x(−w1) − 1

2
L1+x,1(−w1)

+L1+x,1+x(−w1) + 1

2
L0,1(−x) + 1

2
L1,0(−x) +L1,1(−x).

8 This is not surprising, as those 2dSVHPLs can be constructed from 1dSVHPLs using the rescaling identity.
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Note again that I7
[
Eμ,m

]
can be obtained from I7

[
Eν,n

]
by using the symmetry (3.9) as well 

as the relations (3.17). At three loops we find

I7

[
E2

ν,n

]
= 1

2
L1(−x)L0,1+x(−w1) + 1

4
L1,1(−x)L1+x(−w1) + 1

4
L1(−x)L1+x,0(−w1)

+L1(−x)L1+x,1+x(−w1) + 1

4
L0,0,1+x(−w1) + 1

2
L0,1+x,0(−w1)

+L0,1+x,1+x(−w1) + 1

4
L1+x,0,0(−w1) +L1+x,0,1+x(−w1)

+L1+x,1+x,0(−w1) + 2L1+x,1+x,1+x(−w1)

as well as

I7
[
Eν,n Eμ,m

]
= −1

4
L0,1(−w1)L0(−x) − 1

4
L0,1(−w1)L1(−x) − 3

4
L0,1(−w1)L1+x(−w1)

− 1

4
L1(−w1)L0,1(−x) + 1

2
L0,1(−x)L1+x(−w1) + 1

4
L0(−x)L0,1+x(−w1)

+ 1

2
L1(−x)L0,1+x(−w1) − 1

4
L1,0(−w1)L0(−x) − 1

4
L1,0(−w1)L1(−x)

− 3

4
L1,0(−w1)L1+x(−w1) + 1

4
L1,0(−x)L1+x(−w1) − 1

2
L1,1(−w1)L0(−x)

− 1

2
L1,1(−w1)L1(−x) − 1

4
L1(−w1)L1,1(−x) +L1,1(−x)L1+x(−w1)

− 1

4
L1(−x)L1,1+x(−w1) + 1

4
L0(−x)L1+x,0(−w1) + 1

2
L1(−x)L1+x,0(−w1)

+ 1

2
L0(−x)L1+x,1+x(−w1) + 3

2
L1(−x)L1+x,1+x(−w1) + 1

2
L0,1,1+x(−w1)

+ 1

2
L0,1+x,1(−w1) + 1

2
L0,1+x,1+x(−w1) + 1

4
L1,0,1+x(−w1) − 1

2
L1,1,1+x(−w1)

+ 1

2
L1,1+x,0(−w1) − 1

2
L1,1+x,1+x(−w1) + 1

4
L1+x,0,1(−w1) +L1+x,0,1+x(−w1)

+ 1

2
L1+x,1,0(−w1) − 1

2
L1+x,1,1(−w1) + 1

2
L1+x,1+x,0(−w1) − 1

2
L1+x,1+x,1(−w1)

+ 2L1+x,1+x,1+x(−w1).

As explained before, the remaining integral at three loops, I7
[
E2

μ,m

]
, can be obtained by sym-

metry. All further results up to five loops are too lengthy to be reproduced here and we refer the 
reader to the file accompanying the arXiv submission of this paper.

Before we close let us make one additional but important remark. Recall that the key property 
of the one-dimensional SVHPLs that allowed us to directly construct the full result from a small 
set of residues in the six-point was that the leading term of the 1dSVHPL was a HPL with the 
same index structure which only depends on w. However, comparing with the explicit expres-
sions of our 2dSVHPLs, e.g. eq. (3.31), we see that a similar statement holds – the leading term 
of a given 2dSVHPL is the 2dHPL with the same index structure which only depends on y and z
but not on the complex-conjugated variables. This means that we should be able to construct the 
full result solely from the residues at



410 J. Broedel et al. / Nuclear Physics B 915 (2017) 394–413
ν = − i n

2
, and μ = i m

2
, (3.39)

which leads to an expression in 2dHPLs, and then making the replacement

Hw(y) → Lw(y). (3.40)

We have checked that this indeed reproduces the full result. This in turn means that it should be 
possible to follow a procedure similar to [20] to reconstruct the remainder function from a set of 
simple basis integrals.

It is because of this remark that we present the formula for the five-loop remainder function 
in terms of 2dSVHPLs in the attached file, even though we cannot fully fix the ζ -parts of all 
those functions yet. We have obtained the full result in 2dHPLs and checked that the prescrip-
tion eq. (3.40) works for the ζ -free part. Furthermore, the integrals contributing to the five-loop 
remainder function which only contain one kind of energy eigenvalue,

I7

[
E4

ν,n

]
, I7

[
E4

μ,m

]
(3.41)

only contain 2dSVHPLs of weight five with two different indices, which we fully understand. 
Here, too, the prescription eq. (3.40) works. We are therefore convinced that the formula as 
written down in the file attached to the arXiv submission is correct.

4. Conclusions

Setting up an efficient approach for calculating the MHV remainder function for seven points 
in N = 4 super-Yang–Mills requires the construction of single-valued harmonic polylogarithms 
in two variables, 2dSVHPLs. In this paper, we have started the investigation of their analyti-
cal properties and constructed those functions up to and including weight four. The analytical 
constraints we are using, however, are not strong enough for completely determining the single-
valued version of 2dHPLs starting from weight five, since we cannot fix the coefficients of all 
terms proportional to zeta values.

Upon availability of expressions for 2dHPLs, it is possible to apply a similar concept as the 
one introduced in ref. [19]: by calculating a certain subset of the residues contributing to the 
seven-point MHV remainder function only, one can determine the leading term of the 2dSVH-
PLs, which later on can be promoted to the full single-valued expression.

Using this method, we have expressed the remainder function in terms of 2dSVHPLs up to 
five loops. It would be interesting to see whether there are further constraints on the 2dSVHPLs 
which would allow us to go beyond weight five.

While we provide an ad-hoc construction of the 2dSVHPLs, in a recent paper [35] an explicit 
construction of those functions is provided to arbitrary weight in a different language. Naturally, 
it would be interesting to compare our results to the more general approach in ref. [35].

Furthermore, the pattern we find is simple enough to suggest that it should be possible to iden-
tify a formula similar to the formula derived in ref. [32] for the LLA of the six-point remainder 
function.
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Appendix A. Derivatives of harmonic polylogarithms

Derivatives of HPLs can be most easily stated in general form using the language of Gon-
charov polylogarithms. Given their integral definition

Ga1,a2,...,an(y) =
y∫

0

dt

t − a1
Ga2,...,an(t) , (A.1)

and comparing with the integration weights f0, f1 and f1−z leads to

Ga1,a2,...,an(y) = (−1)(#(1)+#(1−z))Ha1,a2,...,an(y) , (A.2)

that is, the relative sign is determined by the number of 1’s and (1 − z)’s appearing in the label. 
In terms of Goncharov polylogarithms, derivatives with respect to label and argument read [36]:

∂

∂y
Ga1,a2,...,an(y) = 1

y − a1
Ga2,...,an(y)

∂

∂ai

Ga1,a2...,an(y) = 1

ai−1 − ai

Ga1,...,âi−1,...,an
(y) + 1

ai − ai+1
Ga1,...,âi+1,...,an

(y)

− ai−1 − ai+1

(ai−1 − ai)(ai − ai+1)
Ga1,...,âi ,...,an

(y)

∂

∂an

Ga1,...,an(y) = 1

an−1 − an

Ga1,...ân−1,an
(y) − an−1

(an−1 − an)an

Ga1,...,an−1(y) , (A.3)

where â denotes omission of the respective entry. Given the terms of the form 1
ai−1−ai

in the 
derivatives, it is obvious that for neighboring elements of the same kind one will get divergent 
terms. However, by shifting the entries in the label by a small value ε one can safely determine 
the derivative and successively take ε → 0. For example one finds:

∂

∂z
H1−z,1−z,1−z(y) = − ∂

∂z
G1−z+ε,1−z,1−z+ε(y)

∣∣∣
ε→0

= − y G1−z,1−z(y)

(1 − z)(1 − y − z)

= − y H1−z,1−z(y)

(1 − z)(1 − y − z)
. (A.4)
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