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Dank verpflichtet.
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04/1997–07/1998 Teilzeitbeschäftigter wissenschaftlicher Mitarbeiter an der

TU Berlin, Forschungsgebiet: Quantentransporttheorie

08/1998 – 07/1999 TMR Stipendiat an der TU Berlin

09/1999 – 08/2000 TMR Stipendiat an der Universität Granada

iii



Contents

1 Introduction 1

1.1 Classical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 The Boltzmann Equation . . . . . . . . . . . . . . . . . . . . 2

1.1.2 The Fokker-Planck Equation . . . . . . . . . . . . . . . . . . . 5

1.2 Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Open Quantum Systems . . . . . . . . . . . . . . . . . . . . . 6

2 The model of Caldeira and Leggett 9

2.1 Source of Diffusion in Various Kinetic Models . . . . . . . . . . . . . 13

2.1.1 Diffusion in the Original Model . . . . . . . . . . . . . . . . . 14

2.1.2 Diffusion from Resonances in the Scaling Limit . . . . . . . . 17

2.1.3 Comparison of the Three Models . . . . . . . . . . . . . . . . 18

2.2 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 The Wigner Formalism . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Solution by Characteristics . . . . . . . . . . . . . . . . . . . . 22

2.2.3 The Thermodynamic Limit . . . . . . . . . . . . . . . . . . . 24

2.2.4 Digression on Stochastic Integrals . . . . . . . . . . . . . . . . 26

2.3 The Fokker-Planck Equation from the Original Caldeira-Leggett Model 29

2.3.1 Evolution Without Friction . . . . . . . . . . . . . . . . . . . 29

2.3.2 Computing the Dynamics of the Test-Particle when the Mem-

ory Vanishes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.3 The Caldeira-Leggett Limits: Obtaining the Fokker-Planck

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Scaling Limit at High Temperature: The Frictionless Heat Equation . 37

2.4.1 Large Space/Time Convergence of the Wigner Distribution . . 37

2.5 Heat Equation with Friction at Finite Temperature . . . . . . . . . . 44

2.5.1 A Priori Bounds and Continuity Results . . . . . . . . . . . . 45

2.5.2 Transport Equation Before Scaling Limits . . . . . . . . . . . 49

2.5.3 Obtaining Diffusion from Scaling Limit . . . . . . . . . . . . . 50

2.5.4 Derivation of the Limiting Equation . . . . . . . . . . . . . . . 52

iv



3 Electron in a Harmonic Ionic Lattice 57

3.1 Second Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Weak Electron-Phonon Interaction . . . . . . . . . . . . . . . . . . . 64

3.2.1 The Case of a Constant Potential: V ≡ const. . . . . . . . . . 67

3.2.2 The Case of a Constant Electric Field: The Barker-Ferry

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Scaling limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

v



1 Introduction

The question of time irreversibility plays a prominent role in classical physics, where

at the end of the 19th century Ludwig Boltzmann gave some explanation for this

phenomena. He dealt with the well known problem, that the microscopic laws of

mechanics are time reversible, but on a macroscopic level we observe time irreversible

processes. Boltzmann explained this phenomena by describing large systems (like

gases) in statistical terms and basically telling us that some states of the system

have a much higher probability than other states, which leads to time irreversible

behaviour.

Already in the early days of quantum mechanics the problem of time irreversibil-

ity was attacked, see for example [53]. In 1955 Leon Van Hove [65] gave a derivation

of a dissipative master equation based on perturbation theoretical arguments. He

discusses at length the relation between the irreversible transport equation and the

reversibility of the Schrödinger equation. A more recent treatment of this approach

was given by Fischetti in [31] and [32]. He treats electron transport in small semi-

conductors by using the Pauli master equation and gives also a fine overview over

the history of this approach and the problems connected with it.

An alternative approach to dissipation lies in considering quantum mechanical

systems coupled to a reservoir, which usually leads to kinetic equations instead of

master equations. This approach goes back to Feynman [28] and will be the basis

for this work, which is organized as follows:

In Section 1.1 we will revise the problem of time irreversibility in classical physics,

by giving an outline of the derivation of the Boltzmann equation and which math-

ematical assumptions lead to dissipation. We will also shortly comment on the

Fokker-Planck equation. In Section 1.2 we will introduce the theory of open quan-

tum systems in general, which is essential for the two special models discussed in

the main part of the thesis.

The model treated in Chapter 2 was given by Caldeira and Leggett in [8] and

is perhaps the easiest possible model of a system plus reservoir type, where the

small system is coupled linearly to the reservoir. Our treatment here largely follows

[12]. The limiting procedure of [8] to obtain a Fokker Planck equation is made

mathematically rigorous, and after giving some criticism on the mechanism leading

to dissipativity in the original approach, two different possible ways are given to
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obtain diffusion under physically more acceptable conditions. Still there remains

the assumption, that the system is coupled linearly to the reservoir, which seems to

be not at all possible to justify.

We then study in Chapter 3, following [33], a physically more relevant model

without the linear coupling assumption. It describes an electron coupled to a phonon

bath described in the formalism of second quantization. By the procedure of tracing

out the phonon bath and by asymptotic analysis with respect to a small coupling

parameter we obtain a very complicated scattering term which has the so called

property of memory, a well known feature in this context (see [17]). We show how

our obtained equation, which is still time reversible, is related to the Barker-Ferry

equation in the case of a linear potential. Finally we give some scaling limits leading

again to Fokker-Planck-like equations.

1.1 Classical Mechanics

First we want to sketch how time irreversibility is treated classically. Conceptually a

many particle system is approximately described by a kinetic equation which gives

the dynamics of a single-particle density. The complicated interaction with the

surrounding and/or other particles is taken into account by collision terms, effective

potentials, etc. We just want to give 2 typical examples of time irreversible kinetic

equations.

1.1.1 The Boltzmann Equation

In classical mechanics the problem of time irreversibility was first solved by Ludwig

Boltzmann in 1872. Clearly the laws of classical mechanics are time reversible, but

in nature we observe phenomena which are definitely time irreversible. Boltzmann

could give an explanation of this by his famous H–theorem.

We just want to outline the mathematical key ingredients. First of all, the

description for a system with a large number of particles is stated in statistical

terms. For example to describe a gas in normal conditions the function P (1)(t, x, ξ)

gives the probability density of finding one fixed particle at time t at a certain point

(x, ξ) of the six-dimensional phase space associated with the position and velocity of

the particle. In the simplest model for the molecules of the gas we just might think

of the particles as perfectly elastic spheres. To evaluate the effects of collisions on the
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time evolution of P (1) we have to know the probability of finding another molecule

with its center exactly one diameter from the center of the first molecule. Thus

in order to write the evolution equation of P (1) one would need P (2)(t, x1, x2, ξ1, ξ2)

which gives the probability density of finding at time t the i - th molecule at xi with

velocity ξi, i = 1, 2.

Neglecting external forces we have

∂P (1)

∂t
+ ξ1 · ∇x1P

(1) = G− L , (1.1)

with the gain term

G = (N − 1)σ2

∫
IR3
ξ2

∫
B+

P (2)(t, x1, x1 + σn, ξ1, ξ2)|(ξ2 − ξ1) · n| dn dξ2 , (1.2)

and the loss term

L = (N − 1)σ2

∫
IR3
ξ2

∫
B−

P (2)(t, x1, x1 + σn, ξ1, ξ2)|(ξ2 − ξ1) · n| dn dξ2 , (1.3)

where N is the number of molecules with diameter σ, n ∈ B the unit sphere, B+ is

the hemisphere corresponding to (ξ2 − ξ1) · n > 0 and B− = B \B+.

We can rewrite G by using the fact that the probability density P (2) is continuous

at a collision, i.e.

P (2)(t, x1, x2, ξ1, ξ2) = P (2)(t, x1, x2, ξ1 − n(n · V ), ξ2 + n(n · V )) , (1.4)

where we have written V = ξ2 − ξ1 and n is such that x2 − x1 = σn. Using the

notation ξ′1 = ξ1 − n(n · V ), ξ′2 = ξ2 + n(n · V ) we obtain

G = (N − 1)σ2

∫
IR3
ξ2

∫
B−

P (2)(t, x1, x1 − σn, ξ′1, ξ′2)|(ξ2 − ξ1) · n| dn dξ2 , (1.5)

where we have changed n into −n.

The crucial step to obtain a time irreversible evolution equation is the so called

Boltzmann – Grad limit, with N → ∞, σ → 0 and Nσ2 finite. But to obtain a

closed equation, Boltzmann had to make a very special assumption, namely the

assumption of molecular chaos: The collision between two preselected particles is a

rather rare event, thus two particles that are to collide can be thought of to be two

randomly chosen particles:

P (2)(t, x1, x2, ξ1, ξ2) = P (1)(t, x1, ξ1)P (1)(t, x2, ξ2) (1.6)
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for (ξ2 − ξ1) · n < 0.

Note that this recipe can be applied for the loss term and the gain term in the

form (1.5), but not for (1.2). This is exactly the point where time irreversibility

enters in the classical case. The chaos assumption (1.6) is valid just for particles

which are about to collide, but not everywhere.

Applying the Boltzmann – Grad limit we obtain the Boltzmann equation

∂P (1)

∂t
+ ξ1 · ∇x1P

(1)

= N

∫
IR3
ξ2

∫
B−

[
P (1)(t, x1, ξ

′
1)P (1)(t, x2, ξ

′
2)− P (1)(t, x1, ξ1)P (1)(t, x2, ξ2)

]
×B(θ, |ξ2 − ξ1|)d(θ, φ) dξ2 ,

(1.7)

where θ is the angle between n and V , and φ is the other angle which together with

θ identifies the unit vector n. In the case of hard spheres the function B(θ, |ξ2− ξ1|)
specifying the interaction law between the molecules looks like B(θ, |ξ2 − ξ1|) =

cos θ sin θ|ξ2 − ξ1|.
Now mathematically the time irreversibility of (1.7) is expressed by the famous

H–theorem. From now on we use the more usual notation f(t, x, ξ) instead of

P (1)(t, x1, ξ1) for the probability density. Then the Boltzmann equation reads

∂f

∂t
+ ξ · ∇xf = Q(f, f) , (1.8)

with the collision term Q(f, f) (for more details see [13]). Multiplying both sides of

this equation by log f and integrating with respect to ξ, we obtain

∂H
∂t

+∇x · J = S , (1.9)

where

H =
∫
f log fdξ ,

J =
∫
ξf log fdξ ,

S =
∫

log fQ(f, f)dξ .

For the Boltzmann equation the inequality S ≤ 0 holds ([13]), with equality S = 0

iff f is a Maxwellian. Therefore for space homogeneous solutions we arrive at the

H–theorem:

∂H
∂t
≤ 0 , (1.10)
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i.e. H is a decreasing quantity unless f is a Maxwellian. In the general case the

situation ia a little bit more complicated due to boundary conditions in space. We

can define H =
∫

Ω
Hdx where Ω is the space domain occupied by the gas. So the

inequality

∂H

∂t
≤
∫
∂Ω

J · n dσ (1.11)

holds, where n is the inward normal and dσ the surface element. If we assume for

example that Ω is a compact domain with specular reflection then the boundary

term disappears (cf. [13]) and we obtain

dH

dt
≤ 0 . (1.12)

Boltzmann’s H–theorem shows the basic feature of irreversibility of his equality,

the quantities H (in the space homogeneous case) and H (in the cases with suitable

boundary conditions) always decrease in time and up to the sign they have physically

the meaning of entropy.

1.1.2 The Fokker-Planck Equation

The nonlinear Boltzmann equation is the archetypical example of a kinetic equation,

which approximately describes dynamical processes of many-body systems. It is the

special case for describing an interacting particle system in the low density limit.

An alternative approach is to look at models consisting of a small system coupled

to a reservoir. For an excellent review discussing system + reservoir models and

interacting particle systems with all sorts of Markovian limits leading to different

kinetic equations see [62].

In view of our quantum mechanical results we just want to mention the linear

Fokker-Planck equation

∂f

∂t
+ ξ · ∇xf = γx · ∇xf +D∆xf , (1.13)

γ and D being some physical constants. Fokker-Planck equations were first derived

in the context of Brownian motion of particles, but today they are applied in in-

credibly many different situations in various disciplines such as physics, chemistry

or electrical ingeneering. Of course due to its linear character the Fokker-Planck

equation is much easier to handle than the nonlinear Boltzmann equation, still it
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has similar features of entropy and equilibrium solutions. For an extensive treatment

of derivations and analytical properties of Fokker-Planck equations see [59].

To describe transport phenomena one usually considers a free test-particle sub-

ject to a collision mechanism. In these models the collisions are provided by im-

purities (Lorenz gas) or by a system of many noninteracting particles (Rayleigh

gas or phonon models) and one focuses only on the dynamics of the test-particle.

The goal is to derive an equation for the reduced phase space distribution from the

Hamiltonian dynamics with many degrees of freedom. A scaling limit is necessary

to eliminate the details of the single collisions and to keep only their cumulative

long-time effects. The effect of a single collision is weakened. In the case of a heavy

test-particle ([24]) the scaling limit leads to the Fokker-Planck equation, which can

be obtained in a two step limit as well: first one obtains a linear Boltzmann equation

via a low density limit, then a Fokker-Planck equation from a mass rescaling (see

[62]).

1.2 Quantum Mechanics

For quite a while it has been a dream of physicist to derive something like a Quantum

Boltzmann equation, but although there has been a considerable amount of research

on this topic (see e.g. [41]), this is still an open problem. In the recent literature

there are suggestions of how a nonlinear Quantum Boltzmann term might look like

(see e.g. [23]), but up to our knowledge a derivation starting from microscopic

principles like in Section 1.1.1 is still missing.

So we are not going to treat the quantum mechanical many particle system case,

but only models of the form Particle + Reservoir. Besides perturbation theoretical

arguments the concept of open quantum systems forms the basic approach to obtain

diffusion for quantum mechanical systems.

1.2.1 Open Quantum Systems

Thermodynamics distinguishes all systems on the basis of interaction with their

surroundings into

1. isolated systems, which can exchange neither energy nor matter with their

surroundings,
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2. closed systems, which can exchange all the energy in the form of heat and

3. open systems, which may exchange both matter and energy.

The theory of open systems plays an increasing role, not only in physics, but also in

chemistry, biology, even in social sciences and others. This is closely related to the

wide range of applications of the Fokker–Planck equation (for the concept of syner-

getics see [59] and the literature given there). There are attempts to view biological

and chemical phenomena as features of open systems in the sense of physics, we just

want to mention the dissipative structures of Prigogine [55], the Gaia hypothesis by

James Lovelock and Lynn Margulis or the ultraweak bioluminiscence discovered by

Fritz Popp [54]. Like in laser physics, these are examples of open systems far from

equilibrium, whereas we are going to concentrate on open systems close to thermal

equilibrium.

The notion of open systems in quantum mechanics has a slightly different defini-

tion than in thermodynamics, because it is not so clear how to distinguish between

matter and energy. Actually it depends very much on the formalism, if we think

in terms of exchange of energy (first quantization) or in terms of particles (second

quantization). Furthermore the total number of particles involved might change.

The usual approach is to look at a quantum mechanical system consisting of a small

system (the ’open’ system) coupled to a large system (the reservoir), which is ac-

tually that large, that it is basically not influenced by the behaviour of the small

system.

For describing the open system A we use a complete microscopic description of

the composite system A+R, where R is some reservoir, in our case close to thermal

equilibrium. The composite system is isolated and therefore it may be described in

any quantum mechanical formalism. The Hamiltonian of A+R typically looks like

H = HA +HR +HI , (1.14)

where HA is the free Hamiltonian for the test-particle, HR is the free Hamiltonian

for the reservoir, and HI is the interaction Hamiltonian. Now the detailed state of

the reservoir R is of no relevance and therefore we want to eliminate the coordinates

of R, which might be done by taking the trace with respect to the variables of the

reservoir. Still, just applying this recipe usually does not lead to time irreversibility

but to a time reversible equation with a memory term. (For a very general outline

of this process see [17]).
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Like in classical statistical mechanics one has to consider in some sense an infinite

system to obtain the macroscopic property of time irreversibility. The process of

passing to an infinite reservoir leads to the quantum theory of collective phenomena,

treated extensively in [60]. This non-trivial generalization of traditional quantum

mechanics is assumed to be able to give rise to several physically relevant structures,

that do not occur in the quantum theory of finite systems.
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2 The model of Caldeira and Leggett

As a first model of the form (1.14) we want to study the following Hamiltonian given

by Caldeira and Leggett in [8]:

HCL =

(
− ~

2

2M
∆x + V (x)

)
(2.1)

+
NΩ∑
j=1

(
−~

2

2
∆Rj +

1

2
ω2
j |Rj|2

)
+

1√
N

(
NΩ∑
j=1

CjRj

)
· x .

The first term of (2.1) represents the Hamiltonian of the test-particle with mass

M where x ∈ IRd denotes the test-particle position in dimension d. The abstract

reservoir is a set of finitely many (say NΩ, which is assumed to be integer) indepen-

dent oscillators written in normal variables Rj ∈ IRd, having frequencies ωj ∈ [0,Ω]

and masses m = 1. Here Ω is the maximum frequency of the oscillators and N is the

number of oscillators per unit frequency. The typical case is the uniform frequency

distribution: ωj = j
N

on [0,Ω]. The coupling is linear in x and the Rj’s, with cou-

pling coefficients given by the Cj’s. The normalization factor N−1/2 simply stems

from the central limit theorem, since, roughly speaking, the variables Rj’s become

independent random variables with vanishing expectation in the thermodynamic

limit N → ∞ (cf. Section 2.2.3 and Sectionstochint). The operator H acts on the

Hilbert space L2
x(IR

d) ⊗
(⊗NΩ

j=1 L
2
Rj

(IRd)
)

. The authors of [8] consider only d = 1

for simplicity, as we shall do as well, but the method extends to any dimension.

This is perhaps the simplest model of an open quantum system, due to the linear

coupling assumption. We want to treat it here just as an abstract model, without

referring to special physical situations. For some criticism of the model itself in

physical terms see the beginning of Chapter 3.

Caldeira and Legett used the Feynman path integral formalism, which is parti-

cularly powerful when HR is quadratic and the interaction is linear in the reservoir

variables. In this case the partial trace TrR leads to explicit Gaussian integrals in

the reservoir variables, but in general it is not Gaussian in the test-particle variables.

However, if the total Hamiltonian is quadratic, in particular if the coupling is linear

in the test-particle variables, then the full evolution is given by a Gaussian integral,

which, in principle, is explicit. The difficulty stems from the large (infinite) number

of variables. The idea of how to treat this problem was first developped by Feynman,

Hibbs, and Vernon [28], [29]. They integrated out the reservoir variables, i.e. they

9



computed the time evolution of the wave function of the test-particle itself, given

by TrR{exp(it~−1(HA +HR +HI))}, where TrR is the partial trace on the Hilbert

space of the reservoir and ~ = h/2π, where h is the Planck constant.

Caldeira-Leggett also assume that the reservoir is initially in thermal equilibrium

at inverse temperature β, i.e. the initial density matrix of the system A+R is given

by

ρ0 = ρ0
A ⊗ exp (−βHR) , (2.2)

where ρ0
A is the initial state of the test-particle. Finally, they choose the coupling

coefficients,

Cj := λωj (2.3)

with some λ > 0.

Remarks:

• Instead of uniformly spaced oscillator frequencies ωj = j
N

, it is sufficient to

assume that the frequency distribution %N(ω)dω = 1
N

∑NΩ
j=1 δ(ω−ωj)dω tends,

in the thermodynamic limit (N → ∞), to a uniform distribution %(ω)dω on

[0,Ω] with density, say, c, i.e.

lim
N→∞

1

N

NΩ∑
j=1

h(ωj) =

∫ ∞
0

h(ω)%(ω)dω = c

∫ Ω

0

h(ω)dω, ∀h ∈ C[0,Ω] (2.4)

with %(ω) being c times the characteristic function of [0,Ω]. Without loss

of generality c = 1 can be assumed because changing c to 1 is equivalent to

changing λ→
√
cλ.

• In fact, the physically relevant quantity is the spectral density of the bath, i.e.

the measure

JN(ω)dω =
C2(ω)

ω
%N(ω)dω =

1

N

NΩ∑
j=1

C2
j

ωj
δ(ω − ωj) (2.5)

(see (3.23) in [8], apart from constants), which in the case of [8] converges

to the measure λ2ω · 1(ω ≤ Ω)dω in the limit N → ∞ (here 1(·) is the

characteristic function). The original model can be considered for any spectral
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density, but our analysis shows that the assumption J(ω) ∼ ω is needed for the

Caldeira-Leggett derivation. However, in Section 2.4 we present a model where

this assumption is not needed to derive a modified Fokker-Planck equation.

For a different model in Section 2.5 we show that the diffusion mechanism is

robust with respect to the spectral density; derivation of the Laplacian term in

the Fokker-Planck equation does not require uniform frequency distribution.

However, in that model the friction term would be time-delayed if % is not

uniform.

• We chose N to denote the number of oscillators per unit frequency instead

of the total number of oscillators. Since N → ∞ limit will be taken first,

mathematically it is equivalent to letting the total number of oscillators go to

infinity. However, in case of the only physical model discussed here (in Section

3), this choice of N will have a physical meaning: it will be the the size of the

harmonic crystal measured on the lengthscale of the confining potential.

Now the main steps of [8] are the following:

• First, using that HI +HR is quadratic and relying on Feynman path integrals,

Caldeira and Leggett explicitly compute the evolution of the test-particle after trac-

ing out the reservoir variables. The evolution equation of the test-particle involves

a diffusive forcing term and a memory term (friction), the latter being non-local

in time (see (2.8) below, as well as (2.25)). These terms translate the effect of the

evolution of the reservoir on the test-particle. It is very standard in this context

that integrating out the reservoir variables gives rise to a non-Markovian evolution

for the test-particle, despite that the evolution of the full system is Markovian (cf.

also (3.21)).

• Second, they perform the thermodynamical limit where the number of oscilla-

tors (per unit frequency) in (2.1) becomes infinite (N →∞).

• Third, they consider the semiclassical limit ~ → 0, they perform the limit

Ω→∞, i.e. the frequency range becomes infinite (removing ultraviolet cutoff), and

they let the inverse temperature β go to zero.

These last two limits allow them to eliminate all the non-Markovian effects.

Caldeira and Leggett state the Fokker Planck equation

∂tw + v · ∇xw −∇xVeff (x) · ∇vw = γ∇v(vw) + σ∆vw (2.6)
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for the particle’s Wigner distribution w = w(t, x, v), which can be interpreted as a

phase space (quasi)density, as a result of their asymptotic procedures. The friction

coefficient γ is given as γ = σβ/M , which is the well-known Einstein’s relation

between friction, diffusivity and inverse temperature.

This type of equation is also known under the name of “Quantum Brownian

motion”, or “Quantum Langevin equation”, and received a large interest in the

context of interaction between light and matter (see, e.g. [16]).

The paper by Caldeira and Leggett raises several questions which have to be

addressed. The most serious is that the limiting equation (2.6) is not of Lindblad

form (see [1], [21], [48]), which is a generic condition for quantum systems to preserve

the complete positivity of the density operator along the evolution. Recall that the

true quantum evolution preserves this property. This shortcoming is closely related

to the fact, that the equation itself contains β (as the ratio of γ and σ), while

β → 0 limit was actually used along its derivation. This is not just a mathematical

inconsistency. Either the friction term should be negligible compared to the diffusion

term in (2.6) if β → 0 limit is really taken; or there should be an extra term in the

equation if β is thought of as a small but nonzero number. In the latter case this

extra term should restore the Lindblad form of the equation, and it is not clear why

this term could be considered negligible compared to the friction.

The confusion probably comes from the unspecified order of limits, which is the

second important question and the paper [8] is admittedly vague about it (see com-

ments after (3.33) in [8]). In fact, in several cases [8] uses ”asymptotic regimes”

without taking rigorous limits. The Caldeira-Leggett system relaxes to equilibrium

under very mild conditions without any further limits (apart from N →∞). How-

ever, the precise equation which governs this relaxation depends on the physical

parameters of the system. In particular, only in some limiting regimes it is true that

the limiting equation is a differential equation (i.e. time-delayed memory terms van-

ish). Furthermore, to obtain a Fokker-Planck type equation, especially a Laplacian

term (∆v), requires further restrictions which are implicitly assumed in various steps

of the Caldeira-Leggett derivation. We will demonstrate in particular, that the ∆v

term in (2.6) is due to the special choice of the coupling constants Ck ∼ ωk (or,

equivalently, to J(ω) ∼ ω) and to the fact that the cutoff frequency Ω goes to in-

12



finity. In physical systems finite Ω is more realistic, but then the resulting equation

contains a modified (cutoff) Laplacian, and the system will not be described by a

diffusive equation for short times. Although apparently Caldeira-Leggett are not

interested in short times (see their remark below (3.35) in [8]) they do not formulate

this concept rigorously. The scaling limit, we introduce in Sections 2.4 and 2.5 will

be the precise mathematical tool for this.

Finally, from a mathematical point of view, it is desirable to eliminate the non-

rigorous steps in the original derivation; especially since the order of limits actually

does influence the form of the limiting equation. In addition, the systematic use

of the Feynman path integral should be avoided in a rigorous proof, since it is a

mathematically undefined concept.

Our main results are Theorem 2.1, 2.2 and 2.3.

2.1 Source of Diffusion in Various Kinetic Models

In order to explain the origin of diffusion (∆v) in [8], we have to analyze the effects

of the limits introduced there. To avoid Feynman path integrals, we present the

basic idea of [8] in the mathematical language we will use in our proofs.

We take the Hamiltonian as in [8] (see (2.1)) with M = 1 and specify the choice

V (x) = 1
2
x2 (harmonic oscillator), in the spirit of [18], [2], [36], [64], [16]. We use

the fact that, for Gaussian Hamiltonians, the evolution equation for the Wigner

transform of the density matrix is a first order linear partial differential equation

([66], [49], [35]), which can be solved by the method of characteristics (see also [64]

for a similar observation).

In the quadratic case, we can scale ~ out of the equation (2.1). Let

H :=
1

2

(
−∆x + x2

)
+

1

2

NΩ∑
j=1

(
−∆Rj + ω2

jR
2
j

)
+

1√
N

( NΩ∑
j=1

CjRj

)
· x, (2.7)

then exp (−it~−1HCL) and exp (−itH) are unitarily equivalent under the rescaling

of variables x → x~−1/2, Rj → Rj~
−1/2, or in other words, we choose units where

~ = 1, M = 1.

If V (x) is not quadratic, then it gives rise to a genuine pseudodifferential operator

in the Wigner equation and ~ cannot be scaled out. In the semiclassical limit (~→ 0)

this term converges to the differential operator ∇xV ·∇vw in (2.6). This fact is well-

known for general semiclassical Wigner equations [49], [50], [37], [51].
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We will not prove Theorem 2.1 for a general potential because our main goal is

to find the origin of diffusivity which is independent of the confining potential. We

restrict ourselves to the most convenient quadratic case.

We also present two different scaling limits starting from (2.7) which allows to

follow the dynamics up to long times. However, we believe that not just our result

on the original Caldeira-Leggett model (in Section 2.3) can be extended to include

general potentials, but also the resonance effect in Sections 2.4 and 2.5.

2.1.1 Diffusion in the Original Model

After integrating out the reservoir variables in the equations for the characteristics,

it eventually reduces to the following ODE for the particle’s position variable X(t)

(see (2.25) for the exact result),

X
′′
(t) +X(t) = f(t) + λ2

∫ t

0

S(t− s)X(s) ds . (2.8)

Here λ is as in (2.3), S is an explicit function corresponding to the memory effect,

and the forcing term f is,

f(t) = − λ√
N

NΩ∑
j=1

ωj

[
Rj cosωjt+ Pj

sinωjt

ωj

]
, (2.9)

where Rj, Pj are the initial position and momentum variables of the oscillators.

Let R∗j :=
√

2βωjRj and P ∗j :=
√

2βPj be their rescaled versions. In the high

temperature limit these become standard Gaussian variables since the classical Gibbs

distribution is given by,∏
j

e−β(P 2
j +ω2

jR
2
j ) =

∏
j

e−
1
2

[(P ∗j )2+(R∗j )2] ,

and at high temperature the quantum Gibbs distribution converges to the classical

one (for the precise formulas, see (2.26)-(2.27)). Hence the choice (2.3) for Cj gives

that,

f(t) = − λ√
2β

NΩ∑
j=1

[ R∗j√
N

cos(ωjt) +
P ∗j√
N

sin(ωjt)
]
, (2.10)
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and as β → 0, R∗j , P
∗
j approach to standard Gaussians.

After integration by parts in the memory term in (2.8) we obtain (see (2.44))

X ′′(t) +X(t) = f(t) + λ2ΩX(t)− (M ?X ′)(t)− xM(t) (2.11)

where M is an approximate Dirac delta function M(t) ∼ λ2δ0(t) in the limit Ω→∞.

Here ? stands for convolution. The term λ2Ω is the frequency shift of the test-

particle oscillator. The friction term M ? X ′ has a main Markovian part λ2X ′ and

a non-Markovian part which is negligible as Ω→∞.

The effect of the limits introduced in [8] are as follows

• The high temperature limit (β → 0) plays two roles. First, it makes the

rescaled initial data R∗j , P
∗
j standard Gaussians. Second, it forces the full friction

term to be negligible compared to the forcing term.

• In the thermodynamic limit (N → ∞) the sum in (2.10) becomes the sum of

the real and imaginary parts of the truncated complex white noise,

dW (Ω)(t) :=

∫ Ω

0

eiωtg(dω) ,

where g(dω)’s are independent centered Gaussian random variables with variance

E
[
g(dω)2

]
= dω (for precise definition see Section 2.2).

• Removing the ultraviolet cutoff (Ω→∞) gives the (complex) white noise,

dW (t) =

∫ ∞
0

eiωtg(dω) (2.12)

for the forcing term. To prevent instability (λ2Ω > 1), we have to take the simul-

taneous limit λ → 0, Ω → ∞ which may lead to a nonzero constant phase shift

λ2Ω.

Our main concern is to identify the origin of the ∆v (diffusion) term, which will

come from the forcing term. Hence this term should not vanish in the limit, which

indicates that β → 0 and λ→ 0 limits must be related:

λ = λ0β
1/2 (2.13)

with some fixed λ0.

In summary, the solution X(t) to (2.8) converges to the solution of a pure har-

monic oscillator with a white noise forcing, i.e. θX(t)+σX ′(t) ∼ (η ?dW )(t), where
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η(s) = θ sin s + σ cos s is the harmonic oscillator trajectory (with initial condition

η(0) = σ, η′(0) = θ). In particular the mean square displacement (both in space

and velocity)

E
∣∣∣θX(t) + σX ′(t)

∣∣∣2 ∼ E
∣∣∣(η ? dW (Ω)

)
(t)
∣∣∣2 =

∫ Ω

0

∣∣∣ ∫ t

0

η(t− s)e−iωsds
∣∣∣2dω (2.14)

behaves quadratically in t for small t for every finite Ω, hence it is not diffusive for

short times. The diffusive behavior (linear mean square displacement) is regained

only after the Ω→∞ limit or after long times.

We emphasize that, from this point of view, the v-Laplacian in the CL model

immediately stems from the particular asymptotic distribution of the frequencies

(uniform from zero to infinity) in the forcing term. In other terms this model

demonstrates diffusion in a setup where a plain diffusive forcing mechanism was

essentially put in by hand. Diffusion appears already in very short time scales as a

result of high frequency oscillators. This means that there is a shorter, unexplored

time scale on which most of the oscillators live, hence the initial Hamiltonian with

the Caldeira-Leggett limits should not be considered microscopic, rather mesoscopic.

This problem is especially transparent if the heat bath is provided by phonons

(crystal lattice vibrations) which have a physical ultraviolet cutoff (lattice spacing).

In other words, for systems with UV cutoff and without time rescaling, ∆v is not

the correct diffusion operator.

In contrast to this diffusive mechanism, the source of the diffusion in more re-

alistic models dealing with a moving test-particle interacting with many degrees of

freedom is the scaling limit, especially time rescaling. This means that in these

models the full frequency spectrum of the diffusion is collected over a long time

from the cumulative effects of interactions with bounded frequency, and the diffu-

sive behaviour is visible only on a much larger time (and sometimes space) scale

than that of the microscopic interaction (collision) mechanism. This makes a key

difference between the present model and other works dealing, for instance, with

collisional models as scaling limits of microscopic dynamics, i.e. macroscopic long

time behaviour of Schrödinger equations (see e.g. [62], [63], [44], [38], [25], [26], [27],

[51], [52], [10], [11], [42] or also [5]).

We remedy this drawback of the CL scaling in Sections 2.4 and 2.5, as we indi-

cate now.
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2.1.2 Diffusion from Resonances in the Scaling Limit

In Section 2.4, we show that one can also recover a diffusive non-kinetic behaviour

from the Caldeira-Leggett Hamiltonian under a more realistic space-time scaling

limit. Namely, for a fixed cutoff in frequency Ω, and after the high-temperature

limit, we consider the resulting dynamics for the test-particle for large time t ∼ α−2

and large space and velocity variables x, v ∼ α−1. Here α→ 0 is a scaling parameter

and we defineX = αx, V = αv, T = α2t to be the macroscopic (or rescaled) position,

velocity and time variables. We prove that the phase space density is subject to a

heat equation both in the (rescaled) velocity and position variables. In particular,

the energy of the test-particle increases up to α−2 due to the resonances with bath

particles of high energy (but bounded frequency). Recall that the temperature of

the heat bath is β−1 → ∞, hence bath particles can have large energy even with

bounded frequency.

In this case the diffusion indeed comes from the cumulative effect of bounded

frequency interactions via a change of scale. This is in fact a high energy diffusion

in phase space; the test-particle is heated up. The forcing frequency distribution

can be quite arbitrary, the only condition is that it has to carry energy at the re-

sonant frequency. The diffusion comes from a pure resonance effect, and this seems

to be a more universal physical feature in this context (see [16]). However, the high

temperature limit is still essential in this derivation.

In Section 2.5, we keep the temperature fixed and we rescale only time, t = Tδ−1

(where δ → 0 plays the role of α2 above), space and velocity remain unscaled. The

reason is that the bath temperature is finite, hence the typical energy (”tempera-

ture”) of the test-particle remains finite as well. Since the particle Hamiltonian is

confining (energy level sets are compact in phase space), the particle remains ef-

fectively localized. As a result we get a small scale diffusion in phase space with

friction, after integrating out the fast circular motion. Again the diffusion comes

from resonance and is developed over a long time period, and the contributing bath

frequencies are bounded.

One of the important features of these models is that the derivation is quite

insensitive to the actual form of the spectral density J(ω) (2.5); the only relevant

quantity is its value at the resonant frequency.
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2.1.3 Comparison of the Three Models

The main goal of our investigation is to derive diffusion, i.e. a ∆v term in the

limiting equation. The time dependence of the mean square displacement of the

characteristics (2.14) is quadratic for small time (unless Ω → ∞) and is linear for

large time. To see diffusion on all times considered, there are two alternatives: either

we take Ω→∞ or we rescale time.

I.) If Ω → ∞, then the coupling λ must go to zero to keep the frequency shift

λ2Ω finite. Up to a positive time t, the total effect of the friction term is of order λ2t,

while the diffusive (forcing) term is roughly of order λ2t/β for larger times, see (2.61),

however for short times it is only quadratic in t. Hence for finite times λ2t → 0,

the friction term vanishes. Moreover, the diffusive term vanishes as well, unless

β → 0 is chosen such that λ2 ∼ β, i.e. the weak coupling and high temperature

limits must be related. The frequency shift is λ2Ω and its actual size depends on

the simultaneous limits λ → 0, Ω → ∞. If λ → 0 is taken first, then Ω → ∞ and

the frequency shift vanishes. If λ2Ω is kept at a positive constant along the limits,

then we see a frequency shift. These two cases are described in Theorem 2.1, where

frictionless Fokker-Planck equations are derived on the microscopic time scale.

II.) If we consider long times, i.e. t = α−2T , α→ 0 and T is fixed, then the size

of the diffusive term is roughly λ2α−2T/β for all T . To compensate for the blowup

α−2, we can either rescale space and velocity (x = α−1X, v = α−1V ) or we set

λ2 ∼ α2.

II/a. If we rescale space and velocity as well, then the friction term has a size

λ2T and the diffusion term is of order λ2T/β (in the new variables). One would

like to keep λ and β fixed to see both friction and diffusion. But since the phase

shift, λ2Ω, has to be kept finite, it forces keeping Ω finite as well. This is the most

realistic physical situation. However, the friction has a non-Markovian part, whose

size is λ2T if Ω is fixed (and it goes to zero only if Ω → ∞). Hence the limiting

equation must have a term which is nonlocal in time. This is the extra term which

is missing in (2.6), but its inclusion would lead to an integro-differential equation

and not to Fokker-Planck.

To derive a differential equation, the non-Markovian friction part has to be killed.

With finite Ω it is possible only if λ → 0, and then the full friction is eliminated.
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In order not to eliminate the diffusive term as well, β ∼ λ2 is necessary. This

again leads to the high temperature limit, but now Ω is fixed and the diffusion

comes from long-time cumulative resonance effects. The fast oscillator motion on

the microscopic time scale has to be integrated out; either in time or by a radial

averaging. This is the model in Section 2.4.

II/b. If we set λ2 ∼ α2 and keep β finite, then we see a finite diffusion on a

microscopic space and velocity scale. The friction term λ2t remains positive and

the ratio of the friction to the diffusion is β, which gives Einstein relation. Hence Ω

could be kept fixed to see the diffusion mechanism.

However, the non-Markovian part of the memory does not vanish unless Ω→∞.

The qualitative analysis of Section 2.5 shows that Ω can grow very slowly (like

| logα|7), i.e. the non-Markovian part of the friction is weak for large times and

moderately large Ω. This was probably the heuristic idea of Caldeira and Leggett to

neglect this term. However, this effect shows up only after time rescaling; for finite

microscopic times t this term is not negligible.

Hence we let Ω→∞, and assume that λ2Ω converges to a fixed number (possibly

zero). This number gives the frequency shift. Again, we see that the size of the

frequency shift delicately depends on the simultaneous limiting procedure. This is

the model of Section 2.5 (where δ := α2 is introduced for brevity).

We point out that in models II/a and II/b the origin of the diffusion is the

time rescaling. Since the forcing frequencies are kept finite, there is no diffusion on

the microscopic scale; it becomes visible only after the large time rescaling. Hence

the physically questionnable limits, β → 0, Ω → ∞ have nothing to do with the

emergence of the diffusion in these models.

However, at least one of these limits is necessary to arrive at a differential equa-

tion instead of an integro-differential equation with time delayed memory term. In

model II/a. (Section 2.4) we use β → 0 and keep Ω fixed, while in II/b. (Section

2.5) we let Ω→∞ and keep β finite.

We always consider nonnegative times t ≥ 0. However, most of our computations

are valid for any time, except those which are directly responsible for the emergence

of the diffusion (Laplacian, or linear mean square displacement). We shall point out

these steps. If time were evolved backward, t < 0, then the same argument would

yield an opposite sign of the Laplacian (so that along the evolution it is regularizing)
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in the final limiting equations. This is the usual phenomenon of irreversibility of the

parabolic equations.

2.2 Preliminary Results

2.2.1 The Wigner Formalism

The density matrix,

ρN,ε := ρN,ε(t, x, y, R,Q) , (2.15)

which is the solution of,

i∂tρ
N,ε = [H, ρN,ε] , (2.16)

represents the state of the system ”particle + reservoir” at time t with the reservoir

variables R = (R1, . . . , RNΩ), Q = (Q1, . . . , QNΩ). We index the density matrix by

N and the superscript ε = (β,Ω, λ), which stands for all the other scaling parame-

ters; recall that β is the inverse temperature, Ω is the frequency range and λ is the

coupling strength in the Hamiltonian (2.7).

We take the initial data (independent of ε for simplicity),

ρ0
A ⊗ e−βHR , (2.17)

with ρ0
A := ρN,εA (t = 0). Here HR := 1

2

∑NΩ
k=1

(
− ∆Rk + ω2

kR
2
k

)
is the reservoir

Hamiltonian and ρN,εA (t, x, y) is the density matrix at time t of the test-particle. It

is defined by

ρN,εA (t, x, y) :=

∫
IRNΩ

ρN,ε(t, x, y, R, R) dR ,

with the obvious notation dR = dR1 . . . dRNΩ. As usual, we do not distinguish

between operators and their kernels in the notation. Following [8], we have to

compute,

TrR

(
e−itH

(
ρ0
A ⊗ e−βHR

)
eitH

)
,

where TrR is the partial trace over the reservoir variables. We observe that the

Hamiltonian (2.7) is quadratic, so that equation (2.16) can actually be transformed
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into a first order transport partial differential equation by using the Wigner trans-

form. Indeed, let us define the Wigner transform wN,ε(t) of ρN,ε(t) by,

wN,ε(t, x, v, R, P ) :=

∫
IRNΩ+1

ρN,ε
(
t, x+

y

2
, x− y

2
, R +

Q

2
, R− Q

2

)
(2.18)

× exp
(
− i[yv +

NΩ∑
k=1

QkPk]
)
dy dQ .

Also, let us define the Wigner transform of ρN,εA by,

wN,εA (t, x, v) :=

∫
IR

ρN,εA

(
t, x+

y

2
, x− y

2

)
exp(−iyv) dy .

We have the well-known property,

wN,εA (t, x, v) :=

∫
IR2NΩ

wN,ε(t, x, v, R, P ) dR dP , (2.19)

and the initial datum for wN,ε is easily computed from (2.17) and the Mehler kernel,

wN,ε(t = 0, x, v, R, P ) = w0(x, v)WN,ε
0 (R, P ) (2.20)

with

WN,ε
0 (R, P ) :=

NΩ∏
k=1

[
4π
(cosh(βωk)− 1

cosh(βωk) + 1

)1/2

exp
(
− {ωk(cosh(βωk)− 1)

sinh(βωk)
R2
k}
)

× exp
(
− { sinh(βωk)

ωk(cosh(βωk) + 1)
P 2
k }
) ]

.

Here, w0(x, v) is the initial datum for the test-particle, i.e. it is the Wigner transform

of ρ0
A(x, y) and we shall assume the following regularity for w0,

ŵ0(ξ, η) :=

∫
IR2

w0(x, v) exp(−i[xξ + vη]) dx dv ∈ L1(Rξ × Rη) . (2.21)

It is well known that, if ρN,ε satisfies the Von-Neumann equation (2.16) with

Hamiltonian given by (2.7), then its Wigner transform (2.18) satisfies the following

partial differential equation,

∂tw
N,ε + v ∂xw

N,ε − x ∂vwN,ε +
NΩ∑
k=1

(
Pk ∂Rkw

N,ε − ω2
kRk ∂Pkw

N,ε
)

(2.22)

− λ√
N

( NΩ∑
k=1

ωkRk

)
∂vw

N,ε − λ√
N

( NΩ∑
k=1

ωkx ∂Pkw
N,ε
)

= 0 .

21



As a conclusion we can now rephrase our original problem in the Wigner formal-

ism: following [8], we want to derive a diffusive behaviour for wN,εA (t), the trace of

wN,ε(t), in the thermodynamic limit (N →∞) and in certain limiting regimes of ε.

Here, wN,ε satisfies (2.22) with initial datum (2.20).

2.2.2 Solution by Characteristics

Equation (2.22) can easily be solved by the method of characteristics. In fact, for

all values of time t, and for all smooth, compactly supported test functions φ(x, v),

we have, ∫
IR2

wN,εA (t, x, v)φ(x, v) dx dv (2.23)

=

∫
IR2NΩ+2

w(t = 0, x, v, R, P ) φ(X(t), V (t)) dx dv dR dP

=

∫
IR2NΩ+6

ŵ0(ξ, η)φ̂(θ, σ)ei(xξ+vη)e−i(X(t)θ+V (t)σ)

×WN,ε
0 (R, P ) dx dv dR dP dξ dη dθ dσ,

where we have introduced the (forward) characteristics,

X ′(t) = V (t) , V ′(t) = −X(t)− λ√
N

NΩ∑
k=1

ωkRk(t) (2.24)

R′k(t) = Pk(t) , P ′k(t) = −ω2
kRk(t)−

λ√
N
ωkX(t) ,

with initial data X(0) = x, V (0) = v, Rk(0) = Rk and Pk(0) = Pk. Here we used

that the flow (2.24) preserves the Lebesgue measure over R2(NΩ+1). For simplicity,

we did not index the characteristics by N , ε, but X(t), V (t) in (2.23) depend on

N, ε. However, sometimes we will use XN(t) for special emphasis.

Integrating with respect to Rk(t) in (2.24) and inserting the result in the equation

for X(t) gives,

X ′′(t) +X(t) = − λ√
N

NΩ∑
k=1

ωk

[
Rk cosωkt+ Pk

sinωkt

ωk

]
(2.25)

+
λ2

N

NΩ∑
k=1

∫ t

0

ωk sinωk(t− s)X(s)ds .
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The right-hand-side of (2.25) is of the form ’forcing term + memory term’.

In view of (2.20) and (2.23), the partial trace over the oscillators is an integral

with respect to a Gaussian distribution in Rk, Pk with (unnormalized) density,

exp
[
− ωk(cosh βωk − 1)

sinh βωk
R2
k −

sinh βωk
ωk(cosh βωk + 1)

P 2
k

]
. (2.26)

Changing variables such that,

rk =

√
2ωk(cosh βωk − 1)

sinh βωk
Rk , pk =

√
2 sinh βωk

ωk(cosh βωk + 1)
Pk ,

we obtain (after normalization) the standard Gauss measure,

dµN =
NΩ∏
k=1

1

2π
e−

1
2

(r2
k+p2

k)drkdpk , (2.27)

i.e. rk, pk are independent standard Gaussian variables. The integration with respect

to this probability measure will be denoted by EN .

Using these new variables and integration by parts with respect to s, the equation

(2.25) for XN(t) = X(t) becomes,

X ′′N(t) +XN(t) = fN(t) + λ2ΩXN(t)− (MN ? X
′
N)(t)− xMN(t) , (2.28)

with,

fN(t) := − λ√
N

NΩ∑
k=1

Aβ(ωk)
[
rk cosωkt+ pk sinωkt

]
, (2.29)

and,

MN(t) :=
λ2

N

NΩ∑
k=1

cosωkt . (2.30)

Here we defined,

A(ω) = Aβ(ω) :=

√
ω(cosh βω + 1)

2 sinh βω
.

We see that the memory term is split into three parts. The term λ2ΩXN induces

a frequency shift of the test-particle oscillator, MN ?X
′
N is the friction term and the

last inhomogeneous term will be irrelevant. We define

a2 = a2
ε := 1− λ2Ω
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(recall that ε stands for the triple (β,Ω, λ)), and we always assume that aε is uni-

formly separated from zero, i.e. c0 ≤ aε ≤ 1 with some constant c0 > 0. We can

rewrite (2.28) as

X ′′N(t) + a2XN(t) = fN(t)− (MN ? X
′
N)(t)− xMN(t) . (2.31)

2.2.3 The Thermodynamic Limit

We now perform the limit N → ∞. A possible way is to solve (2.25) (iteratively),

and compute the limit in the corresponding formulae (see (2.50) later). This rigor-

ously gives the thermodynamic limit but we present an alternative approach which

is more illuminating to explain the asymptotic diffusion that we shall recover in

Section 2.3. We first need an a priori bound.

Lemma 2.1 Let XN(t) solve (2.31) with initial conditions X(0) = x, X ′(0) = v,

and let

FN(t) := sup
s≤t

EN |XN(s)|+ sup
s≤t

EN |X ′N(s)| . (2.32)

Then there is a constant C > 0 such that

FN(t) ≤ CeKt

(
|x|+ |v|+K|x|+ sup

s≤t

{
se−Ks

}[
λ2Ω

(
β−1 + Ω

)]1/2
)
. (2.33)

uniformly in N , where

K = K(λ,Ω) := Cλ2
(

1 +
1

|Ω− a|

)
. (2.34)

and a2 = 1− λ2Ω ∈ (0, 1].

Proof. From the fundamental solution of (2.31), one has

XN(t) = x cos at+ va−1 sin at (2.35)

+

∫ t

0

a−1 sin a(t− s)
[
fN(s)− (MN ? X

′
N)(s)− xMN(s)

]
ds ,

X ′N(t) = −xa sin at+ v cos at

+

∫ t

0

cos a(t− s)
[
fN(s)− (MN ? X

′
N)(s)− xMN(s)

]
ds .
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First step. To estimate the memory term in (2.35), we write,∫ t
0

sin[a(t− s)](MN ? X
′
N)(s)ds =

(
sin(a · ) ? MN ? X

′
N

)
(t)

=
∫ t

0

( ∫ s
0

sin[a(s− u)]MN(u)du
)
X ′N(t− s)ds ,

An easy calculation shows that the inner integral is bounded by∣∣∣ ∫ s

0

sin[a(s− u)]MN(u)du
∣∣∣ =

∣∣∣(MN ? sin(a · )
)

(s)
∣∣∣ (2.36)

≤ kλ2
(

1 +
1

|a− Ω|

)
,

with a universal constant k uniformly in N . Indeed, notice that,

lim
N→∞

MN(s) = λ2 sin Ωs

s
=: M(s) , (2.37)

uniformly for s ∈ [0, t]. Moreover
∫ s

0
sin[a(s − u)]M(u)du can be estimated by

splitting the integration into two regimes u ≤ 1 and u ≥ 1 (or u ≤ s regime only

if s ≤ 1) and both regimes can be estimated by elementary integration by parts to

obtain (2.36).

Hence the expected value of the integral of the memory terms in (2.35) is esti-

mated by,

EN

∣∣∣∣∣
∫ t

0

a−1 sin a(t− s)
[
− (MN ? X

′
N)(s)− xMN(s)

]
ds

∣∣∣∣∣ (2.38)

≤ a−1kλ2
(

1 +
1

|a− Ω|

)[
|x|+

∫ t

0

FN(s) ds
]
,

and similarly for the cosine term in (2.35).

Second step. For the forcing term one computes,

EN

∣∣∣ ∫ t

0

sin[a(t− s)]fN(s)ds
∣∣∣ ≤ t sup

s≤t

(
EN |fN(s)|2

)1/2

. (2.39)

We have,

EN |fN(s)|2 =
λ2

N

NΩ∑
k=1

A2
β(ω) ≤ k̂λ2Ω

(
β−1 + Ω

)
, (2.40)
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where k̂ is again some positive constant, independent of N . Indeed, this sum is an

approximating Riemann sum for the integral,

λ2

∫ Ω

0

A2
β(ω)dω = λ2

∫ Ω

0

ω(cosh βω + 1)

2 sinh βω
dω ,

which satisfies the estimate (2.40). Hence we obtain,

EN

[
|XN(t)|+ |X ′N(t)|

]
≤ |x|+ |v|+ kλ2

(
1 +

1

|a− Ω|

)[
|x|+

∫ t

0

FN(s) ds
]

+t
[
k̂λ2Ω

(
β−1 + Ω

)]1/2

. (2.41)

By a standard Gronwall-type argument we conclude (2.33).

2.2.4 Digression on Stochastic Integrals

Stochastic integration is integration with respect to a random measure. Once the

measure is specified, the integrals are defined as limits of integrals of stepfunctions.

We do not develop this notion here, just indicate how it is related to the present

problem.

Definition 2.1 The ensemble of random variables g(A), A running over the Borel

sets of IR, is called standard Gaussian random measure if g(A) is a centered real

Gaussian random variable for all A and Eg(A)g(B) = |A ∩ B| where | · | is the

Lebesgue measure.

In the thermodynamic limit N → ∞, the forcing term (2.29) converges in an

L2(dµN) sense towards the stochastic integral,

f(t) := −λ
∫ Ω

0

Aβ(ω)
[
r(dω) cosωt+ p(dω) sinωt

]
, (2.42)

where r(dω), p(dω) are independent standard Gaussian random measures. The

expectation with respect to their joint measure is denoted by E. Clearly fN(t)

is a Riemann sum approximation of f(t) by choosing rk := N1/2r
([

k−1
N
, k
N

])
and

pk := N1/2p
([

k−1
N
, k
N

])
, since their distribution is dµN (see (2.27)). In particular we

can realize all fN ’s and f on a common probability space. Note that f(t) is formally

a white noise (see (2.12)) when the ’hyperbolic factor’ Aβ(ω) is replaced by one and

Ω =∞.
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Lemma 2.2 For 1 < Ω <∞ there exist a random function X(t) such that,

lim
N→∞

(
sup
s≤t

E|XN(s)−X(s)|+ sup
s≤t

E|X ′N(s)−X ′(s)|
)

= 0 , (2.43)

and X(t) almost surely satisfies the equation,

X ′′(t) + a2X(t) = f(t)− (M ?X ′)(t)− xM(t) , (2.44)

with initial conditions X(0) = x, X ′(0) = v. Moreover,

F (t) := sup
s≤t

E|X(s)|+ sup
s≤t

E|X ′(s)| ,

satisfies the same estimate as FN(t) (see (2.33)),

F (t) ≤ CeKt

(
|x|+ |v|+K|x|+ sup

s≤t

{
se−Ks

}[
λ2Ω

(
β−1 + Ω

)]1/2
)
. (2.45)

Proof. Let us define X(t) by the integral equation,

X(t) = x cos at+ va−1 sin at (2.46)

+

∫ t

0

a−1 sin[a(t− s)]
[
f(s)− (M ?X ′)(s)− xM(s)

]
ds ,

Since, ∫ t

0

E|f(s)|2ds = λ2

∫ Ω

0

ω(cosh βω + 1)

2 sinh βω
dω <∞ ,

X(t) is well defined almost surely and satisfies (2.44). Moreover, the uniformity of

(2.33) in N , and (2.43) shows that F (t) satisfies (2.45). So we are left with proving

(2.43).

Let ZN(s) := XN(s)−X(s), then it satisfies (from (2.35) and (2.46)),

ZN(t) =

∫ t

0

a−1 sin[a(t− s)]
[
fN(s)− f(s)− (M ? Z ′N)(s)

−(MN −M) ? X ′N(s)− x(MN −M)(s)
]
ds ,

and a similar formula holds Z ′N(t). Clearly ZN(0) = Z ′N(0) = 0. Hence, similarly to

(2.41),

E
(
|ZN(s)|+ |Z ′N(s)|

)
≤ K

∫ t
0
F̃N(s)ds

+a−1t sups≤t

({
|x|+ t supu≤t E|X ′N(u)|

}
|MN(s)−M(s)|+ E|fN(s)− f(s)|

)
,
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with F̃N(t) = sups≤t E|ZN(s)|+sups≤t E|Z ′N(s)|. We use again a Gronwall argument

to obtain (2.43), based upon the control of supu≤t E|X ′N(u)| from Lemma 2.1 and

the facts that |MN(s)−M(s)| → 0 (see (2.37)) and E|fN(s)− f(s)| → 0 uniformly

for s ≤ t as N →∞.

In order to check E|fN(s)− f(s)| → 0, we observe that,

rk = N1/2r
([k − 1

N
,
k

N

])
= N1/2

∫
1
(
ω ∈

[k − 1

N
,
k

N

])
r(dω) ,

to obtain,

E|f(s)− fN(s)|2 (2.47)

= λ2

∫ Ω

0

[
Aβ(ω)−

NΩ∑
k=1

Aβ(ωk) · 1
(
ω ∈

[k − 1

N
,
k

N

])]2

dω ,

which goes to zero as N →∞, uniformly in s ≤ t. For uniformly spaced frequencies,

ωk = k
N

, (2.47) is straightforward. For frequencies satisfying only the uniform density

condition (2.4) with c = 1, first one has to verify that

lim
N→∞

1

N
#
{
k :

∣∣ωk − k

N

∣∣ ≥ η
}

= 0

for any η > 0, and then using the continuity of the function Aβ(ω) to conclude the

result.

The conclusion of Section 2.2 is the,

Lemma 2.3 Assume (2.4) with c = 1 and assume (2.21). Let wN,εA (t) be defined

as (2.19), while wN,ε(t) is the solution of (2.22) with initial datum (2.20). Then,

in the thermodynamic limit, we have for all φ(x, v) ∈ C∞c (R2) locally uniformly for

t ∈ R,

lim
N→∞

∫
IR2

wN,εA (t, x, v)φ(x, v)dx dv =

∫
IR2

wεA(t, x, v)φ(x, v)dx dv , (2.48)

where wεA is defined by,∫
IR2

wεA(t, x, v)φ(x, v)dxdv = (2.49)

= E

∫
IR6

ŵ0(ξ, η)φ̂(θ, σ)ei(xξ+vη)e−i(X(t)θ+X′(t)σ)dξ dη dx dv dθ dσ ,

and X satisfies (2.44) .
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For the proof one only has to observe that the dominated convergence theorem

applies and use Lemma 2.2 and (2.23) (recalling that X is actually XN in that

formula).

Remark: As an alternative proof which avoids any reference to probabilistic con-

cepts, we can easily compute the right-hand-side of (2.23) directly by performing a

finite dimensional Gaussian integration with respect to dµN (again, X(t) is actually

XN(t) in (2.23)). In this case all the integrals
∫ NΩ

0
(. . . )dω are finite sums and the

N → ∞ limit is taken only after having performed the dµN integration. We easily

find that the right-hand-side of (2.23) is equal to,∫
IR2

ŵ0

(
A(t)θ + A′(t)σ , B(t)θ +B′(t)σ

)
φ̂(θ, σ) (2.50)

× exp
[
−
∫ Ω

0

[Aω(t)θ + A′ω(t)σ]2

2λω
dω −

∫ Ω

0

[Bω(t)θ +B′ω(t)σ]2

2µω
dω
]
dθ dσ ,

where λω = [2ω(cosh(βω) − 1)]/[sinh(βω)], µω = [2 sinh(βω)]/[ω(cosh(βω) + 1)],

and,

Ψ(t) = λ2

∫ Ω

0

∫ t

0

ω sin(ω[t− s]) sin(s) ds dω ,

A(t) = cos(t) + (Ψ ? A)(t) ,

B(t) = sin(t) + (Ψ ? B)(t) ,

Aω(t) = −
∫ t

0

λω cos(ωs) sin(t− s) ds+ (Ψ ? Aω)(t) ,

Bω(t) = −
∫ t

0

λ sin(ωs) sin(t− s) ds+ (Ψ ? Bω)(t) .

2.3 The Fokker-Planck Equation from the Original Caldeira-

Leggett Model

2.3.1 Evolution Without Friction

In the spirit of [8], we would like to exhibit a scaling where the solution of (2.44) is

close to the solution X̃(t) of the equation without friction term below. The scaling

parameters are ε = (β,Ω, λ). The frictionless equation (compare with (2.44)) is,

X̃ ′′(t) + a2X̃(t) = f(t) , with, X̃(0) = x , X̃ ′(0) = v , (2.51)

29



recalling that a2 = a2
ε = 1− λ2Ω ∈ (0, 1].

We need a continuity result ensuring that X(t) and X̃(t) are close. If Y (t) =

X(t)− X̃(t), then,

Y ′′(t) + a2Y (t) = −(M ?X ′)(t)− xM(t) ,

with initial conditions Y (0) = Y ′(0) = 0. Given the bound (2.45) on X(t) and

(2.36) it is trivial to see that,

E
(
|Y (t)|+ |Y ′(t)|

)
(2.52)

≤ KteKt

(
|x|+ |v|+K|x|+ sup

s≤t

{
se−Ks

}[
λ2Ω

(
β−1 + Ω

)]1/2
)
,

where K = Cλ2(1 + 1
|Ω−a|) (see (2.34)). So in particular the solution of (2.44) tends

to the solution of (2.51) in a very strong norm if the right-hand-side of (2.52) goes

to zero. This happens for example for such limiting regimes of ε = (β,Ω, λ) that

λ→ 0 and Ω→∞ in such a way that a2 = 1− λ2Ω ∈ (0, 1] and λ2β−1/2 → 0.

Hence, as soon as one can ensure a small right-hand-side in (2.52), we can replace

X by X̃ in (2.48)-(2.49) by the Lebesgue theorem, since the x, v, θ, σ integrations

range over a bounded domain (φ is compactly supported) and we assumed ŵ0(ξ, η) ∈
L1 (see (2.21)). This proves

Lemma 2.4 Let w̃εA be defined as,∫
IR2

w̃εA(t, x, v)φ(x, v)dxdv (2.53)

= E

∫
IR6

ŵ0(ξ, η)φ̂(θ, σ)ei(xξ+vη)e−i(X̃(t)θ+X̃′(t)σ)dξ dη dx dv dθ dσ ,

analogously to (2.49). Then,

lim
ε

∫
IR2

w̃εA(t, x, v)φ(x, v)dxdv = lim
ε

∫
IR2

wεA(t, x, v)φ(x, v)dxdv , (2.54)

for any limit of the parameters ε = (β,Ω, λ) for which the right hand side of (2.52)

goes to zero.
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2.3.2 Computing the Dynamics of the Test-Particle when the Memory

Vanishes

In this section we compute wε(t, x, v) when X is actually replaced by X̃, the solution

of (2.51), in (2.49). We have,

X̃(t) = x cos at+ va−1 sin at+

∫ t

0

a−1 sin a(t− s)f(s)ds ,

X̃ ′(t) = −xa sin at+ v cos at+

∫ t

0

cos[a(t− s)]f(s)ds .

Hence ∫
IR2

w̃εA(t, x, v)φ(x, v)dx dv (2.55)

= E

∫
IR6

ŵ0(ξ, η)φ̂(θ, σ)ei(xξ+vη)e−i(X̃(t)θ+X̃′(t)σ) dξ dη dx dv dθ dσ

= E

∫
IR2

ŵ0

(
ξθ,σ(t), ηθ,σ(t)

)
φ̂(θ, σ)e−i

∫ t
0 ηθ,σ(t−s)f(s)ds dθ dσ ,

with,

ηθ,σ(t) := θa−1 sin at+ σ cos at , ξθ,σ(t) := θ cos at− σa sin at , (2.56)

which are, by the way, harmonic oscillator trajectories,

d

dt
ηθ,σ(t) = ξθ,σ(t) ,

d

dt
ξθ,σ(t) = −a2ηθ,σ(t) .

After performing the expectation in (2.55), we arrive at

Lemma 2.5 With the notations above, we have for any t ≥ 0,∫
IR2

w̃εA(t, x, v)φ(x, v) dx dv (2.57)

=

∫
IR2

ŵ0

(
ξθ,σ(t), ηθ,σ(t)

)
φ̂(θ, σ)e−

1
2
Q(t) dθ dσ ,

with

Q(t) := Q(t; θ, σ; β, a) = λ2

∫ Ω

0

A2
β(ω)H(t, ω)dω , (2.58)
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H(t, ω) := H(t, ω; θ, σ; a) =
∣∣∣ ∫ t

0

ηθ,σ(s)e−iωsds
∣∣∣2 . (2.59)

The functions ξθ,σ, ηθ,σ are defined by (2.56). The function H(t, ω) satisfies the

following estimate

H(t, ω) ≤ γ2

4a2

{∣∣∣eit(a−ω) − 1

a− ω

∣∣∣2 +
4

(a+ ω)2

}
(2.60)

with γ2 := θ2 + a2σ2. Assuming Ω > 1 we also have

Q(t) = Iλ2tγ2 cosh βa+ 1

2a sinh βa
+ λ2γ2B(t) (2.61)

with I := π
2

and with a function B satisfying B(0) = 0 and

|B(t)| ≤ C
[
1 + β−1

][
1 + (log t)+

][
1 + log Ω

]
(2.62)

with a universal constant C. Also, we have the estimate:

Q(t) = E
(
f ? ηθ,σ

)2

(t) = E
(
θX̃(t) + σX̃ ′(t)

)2

+O
[
(|x|+ |v|)(|θ|+ |σ|)

]
. (2.63)

Remarks:

• Notice that Q(t) grows quadratically in t for small t (since H does so). This

means that the test-particle as described by the Wigner distribution wεA has

a ballistic behaviour when the memory effects disappear (quadratic growth of

the mean squared displacement EX̃2(t)). In the rest of this paper we show

that, under several specific scaling limits, one can indeed replace wεA with w̃εA
(see Lemma 2.4) and recover a linear growth for Q(t), i.e. a diffusive behaviour

for the test-particle. In particular, this is where the time asymmetric condition

t ≥ 0 is used.

• Suppose that the frequency distribution %(ω) (see (2.4)) is not uniform (hence

J(ω) is not linear). By the same calculation, we still obtain (2.57) except that

Q(t) is given by λ2
∫ Ω

0
A2
β(ω)H(t, ω)%(ω)dω. Assuming that %(ω) is bounded

and it is differentiable around the resonant frequency ω = a, we obtain the

analogue of (2.61),

Q(t) = Iλ2tγ2%(a)
cosh βa+ 1

2a sinh βa
+ λ2γ2B(t) ,
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and the estimates (2.60), (2.62) remain valid. The proof is identical. This

remark will be used in Sections 2.4 and 2.5.

Proof. We only have to show the estimates (2.60) and (2.62). These are straight-

forward calculations. We use the following notation,

aσ + iθ = γeiφ .

(i.e. θ = γ sinφ, aσ = γ cosφ and γ2 = θ2 + a2σ2). Hence, from (2.56),

ηθ,σ(t) =
γ

2a

(
ei(φ−at) + e−i(φ−at)

)
,

and

H(t, ω) =
γ2

4a2

∣∣∣e2iφ e
−it(a+ω) − 1

a+ ω
− eit(a−ω) − 1

a− ω

∣∣∣2 ,
which proves (2.60).

To prove (2.61)-(2.62), for any Ω > 1 we obtain, by extracting the worst singu-

larity

Q(t) = λ2

∫ Ω

0

ω(cosh βω + 1)

2 sinh βω
H(t, ω)dω (2.64)

= λ2 γ
2

4a2
B̃(t) + λ2 γ

2

4a2

∫ Ω

0

ω(cosh βω + 1)

2 sinh βω

∣∣∣eit(a−ω) − 1

a− ω

∣∣∣2dω ,
with,

B̃(t) :=

∫ Ω

0

ω(cosh βω + 1)

2 sinh βω
(2.65)

×
{∣∣∣e−it(a+ω) − 1

a+ ω

∣∣∣2 − 2Re
(
e2iφ e

−it(a+ω) − 1

a+ ω

eit(a−ω) − 1

a− ω

)}
dω ,

and B̃(0) = 0. With the substitution ω′ = t(a− ω) in (2.65), one easily computes

|B̃(t)| ≤ C
[
1 + β−1

][
1 + (log t)+

][
1 + log Ω

]
. (2.66)

The second integral in (2.64) is proportional to t for large t since Ω > 1. Obvi-

ously it becomes uniformly bounded if Ω < a ≤ 1 (a trivial behaviour), and this is
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the very reason why we assumed Ω > 1 in this section. Then the main contribution

comes from ω ∼ a, and by the same change of variables as above, the result is,

Q(t) = λ2γ2B(t) + Iλ2tγ2 cosh aβ + 1

2a sinh aβ
(2.67)

with I := π
2
, and B̃(t) is replaced by some B(t) which also satisfies (2.66) and

B(0) = 0.

2.3.3 The Caldeira-Leggett Limits: Obtaining the Fokker-Planck Equa-

tion

In this section we rigorously perform the scaling limit introduced in [8]. We prove

the following,

Theorem 2.1 Let wεA be the Wigner distribution of the test-particle after the ther-

modynamic limit, as given by Lemma 2.3. We recall that ε stands for (β,Ω, λ). Let

λ = λ0β
1/2 with some fixed λ0.

a) [Nonzero frequency shift.] Assume that a2 = 1− λ2Ω = 1− λ2
0βΩ ∈ (0, 1]

is fixed. Then for any t ≥ 0 the following weak limit exists

W (t, x, v) = lim
Ω→∞,β→0

βΩ=(1−a2)λ−2
0

wεA(t, x, v) . (2.68)

The limit holds in the topology of C0([0,∞)t;D′x,v). Moreover, W satisfies the

Fokker-Planck equation,

∂tW + v∂xW − a2x∂vW −
λ2

0π

2
∆vW = 0 , (2.69)

with initial datum W (t = 0) = w0 satisfying (2.21)

b) [No frequency shift.] For any t ≥ 0 the following weak limit exists,

W (t, x, v) = lim
Ω→∞

lim
β→0

wεA(t, x, v) . (2.70)

[the order of limits cannot be interchanged], and W satisfies the Fokker-Planck equa-

tion,

∂tW + v∂xW − x∂vW −
λ2

0π

2
∆vW = 0 , (2.71)

with initial datum W (t = 0) = w0 satisfying (2.21)
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Proof. For the proof of part a) first notice that Lemma 2.4 applies since the

right hand side of (2.52) goes to zero under the prescribed limits. Hence X can be

replaced by X̃ and we can therefore rely on Lemma 2.5 above. On the other hand,

since we assumed λ = λ0β
1/2, we readily observe,

lim∗ Q(t) = λ2
0 lim∗

∫ Ω

0

βA2
β(ω)H(t, ω)dω (2.72)

= λ2
0

∫ ∞
0

∣∣∣ ∫ t

0

η2
θ,σ(s)e−iωsds

∣∣∣2dω ,
where lim∗ stands for the simultaneous limit β → 0, Ω → ∞ such that a2 =

1− λ2
0βΩ ∈ (0, 1] is fixed. Here we used that βAβ(ω)2 → 1 in our limit if ω ≤ Ω1/2

and that H(t, ω) ∈ L1(dω), see (2.60). The contribution ω ≥ Ω1/2 to the integral

vanishes in the limit by the estimate (2.60) and the trivial bound z cosh z+1
sinh z

≤ 2(1+z).

Hence from the unitarity of the Fourier transform∫ ∞
0

∣∣∣ ∫ t

0

g(s)e−iωsds
∣∣∣2dω = π

∫ t

0

|g(s)|2ds , (2.73)

which is valid for any real function g, we obtain

lim∗ Q(t) = λ2
0π

∫ t

0

η2
θ,σ(s)ds . (2.74)

Here t ≥ 0 is used, and this step is the origin of irreversibility. The end of the

calculation is trivial. From Lemma 2.5 together with (2.74) we have,

lim∗
∫

IR2

wεA(t, x, v)φ(x, v) dx dv =

∫
IR2

ŵ0

(
ξθ,σ(t), ηθ,σ(t)

)
(2.75)

×φ̂(θ, σ)e−Iλ
2
0

∫ t
0 η

2
θ,σ(s)ds dθ dσ ,

where η and ξ are defined in (2.56) and I = π
2
. We can define,

W (t, x, v) := lim∗ wεA(t, x, v) , (2.76)

as a weak limit given by (2.75). Then differentiating (2.75) gives (using (2.56)),∫
IR2

∂tW (t, x, v)φ(x, v)dx dv (2.77)

=

∫
IR2

∂tŴ (t, θ, σ)φ̂(θ, σ)dθ dσ

=

∫
IR2

[
− a2ηθ,σ(t)∂ξ + ξθ,σ(t)∂η − Iλ2

0η
2
θ,σ(t)

]
×ŵ0

(
ξθ,σ(t), ηθ,σ(t)

)
φ̂(θ, σ)e−Iλ

2
0

∫ t
0 η

2
θ,σ(s)dsdθ dσ .
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Letting t = 0, we have,

∂t

∣∣∣
t=0
Ŵ (t, θ, σ) =

[
− a2σ∂θ + θ∂σ − Iλ2

0σ
2
]
Ŵ (t, θ, σ)

∣∣∣
t=0

, (2.78)

which is exactly the Fokker-Planck equation (2.71) after Fourier transforming,

∂t

∣∣∣
t=0
W (t, x, v) =

[
a2x∂v − v∂x + Iλ2

0∆v

]
W (t, x, v)

∣∣∣
t=0

. (2.79)

Considering t = 0 is not a restriction, since the proof works for any L1 initial

condition.

The proof of part b) is completely analogous. We again notice that under the

prescribed limits the right hand side of (2.52) goes to zero, hence Lemma 2.4 applies.

Here ηθ,σ and ξθ,σ depend on the limiting parameters, since a2 = 1−λ2Ω = 1−λ2
0βΩ.

But limβ→0 a = 1, hence

lim
β→0

ηθ,σ(s) = θ sin s+ σ cos s , lim
β→0

ξθ,σ(s) = θ cos s− σ sin s (2.80)

uniformly for s ∈ [0, t]. Therefore

lim
Ω→∞

lim
β→0

Q(t) = λ2
0 lim

Ω→∞

∫ Ω

0

∣∣∣ ∫ t

0

[
θ sin s+ σ cos s

]
e−iωsds

∣∣∣2dω (2.81)

= λ2
0

∫ ∞
0

∣∣∣ ∫ t

0

[
θ sin s+ σ cos s

]
e−iωsds

∣∣∣2dω
= πλ2

0

∫ t

0

[
θ sin s+ σ cos s

]2
ds .

Again, the last step is robust in a sense that it does not use the particular form

of the function
[
θ sin s + σ cos s

]
, instead it uses (2.73). But it is rigid in a sense

that Ω = ∞ is essential to get diffusive (linear) behaviour for the mean square

displacement (2.63).

To conclude, we follow the calculation (2.75)-(2.79). In addition to the limit

(2.81), we have to replace ξθ,σ(s), ηθ,σ(s) by their limiting values (2.80) in the ar-

gument of ŵ0 to arrive at the analogue of (2.75). Dominated convergence theorem

applies if we assume, additionally, that ŵ0 is continuous and bounded. However

ŵ0 ∈ L1, hence it can be approximated by such functions in L1-norm. Using that

the flow (θ, σ) 7→
(
ξθ,σ(s), ηθ,σ(s)

)
is measure preserving and that φ̂ is bounded, one

can easily see that the approximation error can be made arbitrarily small.

The rest of the calculation is identical to the proof of part a) and we obtain

(2.71).
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2.4 Scaling Limit at High Temperature: The Frictionless

Heat Equation

We propose a different way to get diffusion from the Hamiltonian (2.7). As we

mentioned, obtaining diffusion for the test-particle means that we have to extract

linear dependence in time for Q(t). In this section, linear growth is obtained from

time rescaling and from the special form of linear combinations of sin s and cos s

in Lemma 2.5. It relies on a resonance effect which comes from a singularity near

ω ∼ a. The system X̃ ′′(t) + a2X̃(t) (see (2.51)) picks up those modes from the

forcing term f(t) in (2.42) for which the frequency ω is close to its eigenfrequency.

So, in this section we assume Ω > 1 but finite, contrary to the previous section.

This effect is more robust (see the remark after (2.81)) in the sense that one could

leave the hyperbolic functions βA2
β in (2.72) without ensuring a limit where it goes

to 1. In other terms, we do not need the high temperature limit β → 0 to obtain

diffusion, unlike in Section 2.3, where this limit made the dω measure uniform and

we recovered a white noise forcing term.

Nevertheless, Lemma 2.5 needs the right-hand-side of (2.52) to go to zero in

order to be applicable (one needs the friction to vanish), and this cannot be achieved

keeping β fixed (cf. the comparison of the models in Section 2.1), hence we again

set λ = λ0β
1/2, β → 0.

2.4.1 Large Space/Time Convergence of the Wigner Distribution

Let α be a small parameter. We describe the behaviour of the test-particle, as

given by its Wigner distribution wεA on time scales of order 1/α2. We consider the

diffusive scaling, i.e. the space coordinate scales as 1/α. Since the test-particle is a

fast harmonic oscillator, and energies are transferred back and forth between space

and velocity, we also have to consider velocities of order 1/α. Hence we introduce

the following scaling,

t = Tα−2, x = Xα−1, v = V α−1 , (2.82)

where the capital letters are unscaled quantities (macroscopic variables). The rescaled

reduced Wigner transform is defined as,

W ε,α
T (X,V ) := wεA(Tα−2, Xα−1, V α−1) , (2.83)
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where wεA is defined in Lemma 2.3 (after the thermodynamic limit). Its Fourier

transform is,

Ŵ ε,α
T (Θ,Σ) = α2ŵεA(Tα−2,Θα,Σα) , (2.84)

where we use Θ = θα−1 and Σ = σα−1 rescaled dual variables. The initial condition

is,

W ε,α
T=0(X,V ) = W0(X,V ) , Ŵ ε,α

T=0(Θ,Σ) = Ŵ0(Θ,Σ) , (2.85)

and we assume that,

Ŵ0(Θ,Σ) ∈ L1(RΘ × RΣ) . (2.86)

The macroscopic testfunction Φ(X,V ) is a smooth function with compact sup-

port, the microscopic testfunction is defined as,

φ(x, v) = Φ(xα, vα) = Φ(X,V ) ,

and in Fourier variables, φ̂(θ, σ) = α−2Φ̂(θα−1, σα−1) = α−2Φ̂(Θ,Σ).

We are now in position to state the theorem of this section,

Theorem 2.2 Define the large time/space scale Wigner distribution W ε,α
T (X,V ) as

in (2.83). Assume (2.86) for the initial data. Assume that λ = λ0β
1/2 with a fixed

λ0 > 0 and fix the frequency cutoff Ω > 1. Hence the limits of the parameters

ε = (β,Ω, λ) are reduced to β → 0. Then:

a) The following high-temperature limit exists in the weak sense for any T ≥ 0:

Wα
T (X,V ) := lim

β→0
W ε,α
T (X,V ) .

b) Define the following time average of Wα over one cycle of the harmonic

oscillator (2.56),

W#,α
T (X,V ) :=

1

2πα2

∫ T+2πα2

T

Wα
S (X,V )dS . (2.87)

Then the weak limit,

W+
T (X,V ) := lim

α→0
W#,α
T (X,V ) , (2.88)
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exists for each T ≥ 0 and it satisfies the heat equation in phase space,

∂TW
+
T =

πλ2
0

4
(∆X + ∆V )W+

T , (2.89)

with initial condition W+
T=0(X,V ) given by

Ŵ+
0 (X,V ) =

1

2π

∫ 2π

0

Ŵ0

(
X sin s+ V cos s, X cos s− V sin s

)
ds . (2.90)

c) Define the radial average,

W ∗,α
T (X,V ) :=

1

2π

∫ 2π

0

Wα
T (R cos s, R sin s)ds (2.91)

with R :=
√
X2 + V 2, and clearly W ∗,α

T depends on R only. Again, the weak limit,

W †
T (X,V ) := lim

α→0
W ∗,α
T (X,V ) ,

exists and the radially symmetric function W †
T satisfies the heat equation (2.89) with

initial condition,

W †
T=0(X,V ) :=

1

2π

∫ 2π

0

W0(R cos s, R sin s)ds .

Remarks:

• The same theorem is true if the frequency distribution function %(ω) is not

uniform (see (2.4)), but it is only bounded and with bounded derivative. In

particular the sharp cutoff is not necessary. The right hand side of the equation

(2.89) is multiplied by the resonant spectral density %(1). The proof relies on

two modifications of the % ≡ 1 proof given below. First, the memory kernel

M(t) (see (2.30) and (2.37)) is modified to λ2
∫ Ω

0
cos(ωt)%(ω)dω, and it still

satisfies an estimate similar to (2.36) which leads to Lemma 2.4, hence the

memory can be eliminated. Further, the second remark after Lemma 2.5 gives

the large time behavior of Q(t) in the general case. The details are left to the

reader.

• Here we identified the equation in a weak sense in the space and velocity

variables, but in a strong sense in the time variable and some averaging ((2.87)

or (2.91)) was needed to ensure the existence of the limit. If we want to consider

the limit in a weak sense in time as well, then there is no need for averaging.

Based upon part b), one can easily prove that W+
T (X,V ) can also be identified

as the weak limit in space, velocity and time, i.e. we have the following
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Corollary 2.1 Under the above conditions the weak limit

W+
T (X,V ) := lim

α→0
lim
β→0

W ε,α
T (X,V )

exists in the topology of D′
(

[0,∞)T × IRX × IRV

)
, it coincides with (2.88) and

satisfies (2.89).

Proof of Theorem 2.2. Using the rescaling and the definition of wεA (2.49), we

have,

〈W ε,α
T ,Φ〉 =

∫
IR2

W ε,α
T (X,V )Φ(X,V )dX dV (2.92)

= α2

∫
IR2

wεA(Tα−2, x, v)φ(x, v)dx dv

= α2 E

∫
IR6

ŵ0(ξ, η)φ̂(θ, σ)ei(xξ+vη)e−i(θX(t)+σX′(t))dξ dη dx dv dθ dσ

= E

∫
IR6

Ŵ0(ξα−1, ηα−1)Φ̂(Θ,Σ)ei(xξ+vη)

×e−iα(ΘX(t)+ΣX′(t))dξ dη dx dv dΘ dΣ ,

where t = Tα−2.

First Step: the limit β → 0.

Due to the choice λ = λ0β
1/2, we can replace X(t) by X̃(t) in the β → 0 limit.

For, the right hand side of (2.52) goes to zero as β → 0, hence Lemma 2.4 applies.

Hence,

lim
β→0
〈W ε,α

T ,Φ〉 =

= lim
β→0

E

∫
IR6

Ŵ0(ξα−1, ηα−1)Φ̂(Θ,Σ)ei(xξ+vη)e−iα(ΘX̃(t)+ΣX̃′(t))dξ dη dx dv dΘ dΣ

= lim
β→0

E

∫
IR2

Ŵ0

(
ξΘ,Σ(Tα−2), ηΘ,Σ(Tα−2)

)
Φ̂(Θ,Σ)e−

1
2
Q(Tα−2) dΘ dΣ , (2.93)

where in the second step we also used Lemma 2.5 and the fact that α−1ξαΘ,αΣ = ξΘ,Σ

and α−1ηαΘ,αΣ = ηΘ,Σ (see (2.56)).

Recall that both Q(t) and the trajectories ξΘ,Σ, ηΘ,Σ depend on β, since a2 =

1−λ2Ω = 1−λ2
0βΩ appears in their definition (see (2.56)). Similarly to the argument
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at the end of the proof of part b) of Theorem 2.1, using that Ŵ0 ∈ L1(dΘ dΣ),

Φ̂ ∈ L∞ ∩C0, Q ≥ 0, we see that the limit can be taken inside the integral and the

trajectories ξΘ,Σ, ηΘ,Σ can be replaced by their limiting values (as a→ 1)

η∗Θ,Σ(s) := θ sin t+ σ cos t ξ∗Θ,Σ(s) := θ cos t− σ sin t . (2.94)

We also use (see (2.61)) that

lim
β→0

Q(t) = Iλ2
0tγ

2 + λ2
0γ

2B0(t) .

with B0(t) satisfying B0(0) = 0 and

|B0(t)| ≤ C
[
1 + (log t)+

][
1 + log Ω

]
(2.95)

(see (2.62)). We also recall that γ2 = θ2 + σ2 = α2(Θ2 + Σ2) =: α2Γ2. Hence,

lim
β→0
〈W ε,α

T ,Φ〉 =

∫
IR2

Ŵ0

(
ξ∗Θ,Σ(Tα−2), η∗Θ,Σ(Tα−2)

)
Φ̂(Θ,Σ)× (2.96)

× exp
{
− 1

2

[
Iλ2

0Tα
−2 + λ2

0B0(Tα−2)
]
α2(Θ2 + Σ2)

}
dΘ dΣ .

This relation defines the Fourier transform,

Ŵ α
T (Θ,Σ) := lim

β→0
Ŵ ε,α
T (Θ,Σ) ,

as a weak limit, and its inverse Fourier transform,

Wα
T (X,V ) := lim

β→0
W ε,α
T (X,V ) .

We can compute its time derivative in Fourier space,

〈∂T Ŵα
T , Φ̂〉 =

∫
α−2

[
− η∗Θ,Σ(Tα−2)∂ξ + ξ∗Θ,Σ(Tα−2)∂η −

−α
2

2

[
Iλ2

0 + λ2
0B
′
0(Tα−2)

]
(Θ2 + Σ2)

]
Ŵ0

(
ξ∗Θ,Σ(Tα−2), η∗Θ,Σ(Tα−2)

)
×Φ̂(Θ,Σ) exp

{
− 1

2

[
Iλ2

0Tα
−2 + λ2

0B0(Tα−2)
]
α2(Θ2 + Σ2)

}
dΘ dΣ .

As usual, we can let T = 0 to obtain,

∂T

∣∣∣
T=0

Ŵα
T (Θ,Σ) (2.97)

= α−2

[
− Σ∂Θ + Θ∂Σ −

α2

2

[
Iλ2

0 + λ2
0B
′
0(0)

]
(Θ2 + Σ2)

]
Ŵ0(Θ,Σ) .
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Second Step: the macroscopic limit α→ 0.

Now the difficulty in (2.97) is that the convective term is too big compared to

the last diffusive term since the motion takes place on two different time scales.

There is the fast (microscopic) time scale of the harmonic oscillator described by

α−2[−Σ∂Θ + Θ∂Σ]. Then there is a slow, macroscopic diffusive scale. We present

two ways to average out the fast motion.

Part b) of Theorem 2.2: Averaging over a cycle.

Here we define W#,α according to (2.87). Now for any T fixed the formula,

lim
α→0
〈Ŵ#,α

T , Φ̂〉 = lim
α→0

∫
Ŵ#,α
T (Θ,Σ)Φ̂(Θ,Σ)dΘdΣ

= lim
α→0

∫ [
1

2πα2

∫ T+2πα2

T

Ŵ0

(
ξ∗Θ,Σ(Sα−2), η∗Θ,Σ(Sα−2)

)
×e−I1λ2

0S(Θ2+Σ2)dS

]
Φ̂(Θ,Σ)dΘdΣ , (2.98)

defines a function,

Ŵ+
T (Θ,Σ) := lim

α→0
Ŵ#,α
T (Θ,Σ) , (2.99)

weakly, as we show below. Here I1 := I
2

= π
4

for brevity. Note that in (2.98) we

neglected the term involving B0 in the exponential (see (2.96)) since the estimate

(2.95) readily implies α2B0(Tα−2)→ 0. The exponential factor in (2.96) converges

to that in (2.98) uniformly for all S ≤ T . Using Φ̂ ∈ L1, we can apply the dominated

convergence theorem along with approximating Ŵ0 by bounded functions, similarly

to the argument at the end of the proof of Theorem 2.1.

We have to show that the limit on the right-hand-side of (2.98) exists,

〈Ŵ#,α
T , Φ̂〉 =

∫
IR2

[
1

2πα2

∫ T+2πα2

T

Ŵ0

(
ξ∗Θ,Σ(Sα−2), η∗Θ,Σ(Sα−2)

)
e−I1λ

2
0T (Θ2+Σ2)dS

+
1

2πα2

∫ T+2πα2

T

Ŵ0

(
ξ∗Θ,Σ(Sα−2), η∗Θ,Σ(Sα−2)

)
×
[
e−I1λ

2
0S(Θ2+Σ2) − e−I1λ2

0T (Θ2+Σ2)
]
dS

]
Φ̂(Θ,Σ)dΘdΣ . (2.100)
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The first term in (2.100) is independent of α, because it is just the integral of

Ŵ0(ξ∗(s), η∗(s)) over one full cycle of the harmonic oscillator (2.94),

1

2πα2

∫ T+2πα2

T

Ŵ0

(
ξ∗Θ,Σ(Sα−2), η∗Θ,Σ(Sα−2)

)
dS

=
1

2π

∫ 2π

0

Ŵ0

(
ξ∗Θ,Σ(s), η∗Θ,Σ(s)

)
ds .

The second term in (2.100) vanishes in the limit α→ 0 since,∣∣∣e−I1λ2
0S(Θ2+Σ2) − e−I1λ2

0T (Θ2+Σ2)
∣∣∣ ≤ 2πI1λ0α

2(Θ2 + Σ2)e−I1λ
2
0T (Θ2+Σ2)

(use that |S − T | ≤ 2πα2), which kills the factor α−2 in (2.100) and then the length

of the integration interval goes to zero. Dominated convergence theorem again has

to be applied after an approximation. This shows that the limit in (2.99) makes

sense and,

〈W+
T ,Φ〉 = 〈Ŵ+

T , Φ̂〉

=

∫
IR2

[ 1

2π

∫ 2π

0

Ŵ0

(
ξ∗Θ,Σ(s), η∗Θ,Σ(s)

)
ds
]

×e−I1λ2
0T (Θ2+Σ2)Φ̂(Θ,Σ)dΘdΣ . (2.101)

The time derivative is,

〈∂TW+
T ,Φ〉 = −I1λ

2
0

∫
IR2

(Θ2 + Σ2)
[ 1

2π

∫ 2π

0

Ŵ0

(
ξ∗Θ,Σ(s), η∗Θ,Σ(s)

)
ds
]

×e−I1λ2
0T (Θ2+Σ2)Φ̂(Θ,Σ)dΘdΣ

= −I1λ
2
0

〈
Ŵ+
T , (Θ

2 + Σ2)Φ̂
〉

= −I1λ
2
0

〈
W+
T ,−(∆X + ∆V )Φ

〉
,

which completes the proof of (2.89). The initial condition (2.90) is easily obtained

from (2.101) by setting T = 0 and taking inverse Fourier transform.

Part c) of Theorem 2.2: Radial average

The other possibility to eliminate the fast modes is to use the radial function
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W ∗,α
T defined in (2.91). Now the formula,

lim
α→0
〈Ŵ ∗,α

T , Φ̂〉 = lim
α→0

∫
Ŵ ∗,α
T (Θ,Σ)Φ̂(Θ,Σ) dΘ dΣ

= lim
α→0

∫ [
1

2π

∫ 2π

0

Ŵ0

(
ξ∗Γ cos s,Γ sin s(Tα

−2), η∗Γ cos s,Γ sin s(Tα
−2)
)
ds

]
e−I1λ

2
0T (Θ2+Σ2)Φ̂(Θ,Σ) dΘ dΣ , (2.102)

(with Γ :=
√

Θ2 + Σ2) defines a radial function,

Ŵ †
T (Θ,Σ) := lim

α→0
Ŵ ∗,α
T (Θ,Σ) ,

(depending only on Θ2 +Σ2) as a weak limit, as we show below. Note that in (2.102)

we again neglected the term involving B0 in the exponential for the same reason as

in (2.98).

We have to show that the limit on the right-hand-side of (2.102) exists. But,

ξ∗Γ cos s,Γ sin s(Tα
−2) = Γ cos(s+ Tα−2) , η∗Γ cos s,Γ sin s(Tα

−2) = Γ sin(s+ Tα−2) ,

hence,
1

2π

∫ 2π

0

Ŵ0

(
ξ∗Γ cos s,Γ sin s(Tα

−2), η∗Γ cos s,Γ sin s(Tα
−2)
)
ds

=
1

2π

∫ 2π

0

Ŵ0(Γ cos s,Γ sin s)ds =: Ŵ †
0 (Θ,Σ) ,

independently of α, which is the ”radialized” initial condition in Fourier space.

So it is clear that the limit on the right-hand-side of (2.102) exists,

lim
α→0
〈Ŵ ∗,α

T , Φ̂〉 =

∫
Ŵ †

0 (Θ,Σ)e−I1λ
2
0T (Θ2+Σ2)Φ̂(Θ,Σ) dΘ dΣ =: 〈Ŵ †

T , Φ̂〉 ,

and clearly W †
T also satisfies the heat equation (2.89). This ends the proof of Theo-

rem 2.2.

2.5 Heat Equation with Friction at Finite Temperature

Here we choose a scaling where the Markovian part of the friction term does not

vanish, i.e. we can keep β fixed and still get finite diffusion. Again we look at large

time t = Tδ−1 but now we do not scale the space variable. To eliminate the fast
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mode, we again integrate the angle. The result is a radial Fokker-Planck equation

with friction. While the test-particle performs many cycles, it slowly diffuses out,

and this diffusion is slowed down by a friction. The diffusion comes from resonance.

In this scaling limit the solution of (2.44) is close to the solution X̃(t) of an

equation without a time delayed (non-Markovian) friction term, but a Markovian

friction term will be present. Let us choose,

λ := λ0δ
1/2 ,

with some λ0 < 1 fixed. We compare the solution of (2.44) to that of

X̃ ′′(t) + Iλ2X̃ ′(t) + a2X̃(t) = f(t) ; X̃(0) = x , X̃ ′(0) = v , (2.103)

with a2 := 1− λ2Ω = 1− λ2
0δ
−1Ω, and,

I =

∫ ∞
0

sin Ωs

s
ds =

π

2
. (2.104)

We choose the scaling such that a ∈ (0, 1], hence we always assume that Ω ≤ δ−1,

but to exploit resonance, we also assume Ω > 2. The new term λ2IX̃ ′(t) for the

approximate characteristic is due to the fact that M(t) ∼ λ2Iδ0(t) as Ω→ 0, where

δ0 denotes the Dirac delta measure. This term is the main part of the full friction

(M?X ′) in (2.44). Notice that it is small compared with the pure harmonic oscillator

terms, X̃ ′′ + a2X̃, but it is not negligible, since we will consider long times t ∼ λ−2.

2.5.1 A Priori Bounds and Continuity Results

As in Section 2.3 we need a priori estimates for X, i.e. for,

F (t) := sup
s≤t

E|X(s)|+ sup
s≤t

E|X ′(s)| ,

and estimates on the difference between X̃(t) and X(t). The estimate (2.45) in

Lemma 2.2 (which originates in (2.33) in Lemma 2.1), however, is not precise enough

for large times. The following estimate is a more precise version of Lemma 2.2.

Lemma 2.6 Let t = Tδ−1, λ = λ0δ
1/2 with fixed λ0 < 0 and T ≥ 0 and we

assume that 2 ≤ | log δ|7 ≤ Ω ≤ δ−1 We also fix β > 0, hence the limit of scaling

parameters ε = (β,Ω, λ) is reduced to δ → 0, Ω → ∞ with the side condition that

Ω ∈
[
| log δ|7, δ−1

]
.
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Let X be the solution to (2.44), then,

F (Tδ−1) ≤ C(β, λ0, T )
(

1 + |x|+ |v|
)
, (2.105)

where C is monotone increasing in T . Moreover, if X̃ is the solution to (2.103),

then the difference Y (t) =: X(t)− X̃(t) satisfies,

lim
δ→0

(
sup

s≤Tδ−1

E|Y (s)|+ sup
s≤Tδ−1

E|Y ′(s)|
)

= 0 . (2.106)

In particular,

lim
δ→0

∫
IR2

w̃εA(s, x, v)φ(x, v)dxdv = lim
δ→0

∫
IR2

wεA(s, x, v)φ(x, v)dxdv , (2.107)

uniformly for all s ≤ Tδ−1, where w̃εA(t, x, v) is the Wigner transform corresponding

to X̃, defined exactly as (2.53), but X̃(t) now being the solution to (2.103).

Proof. We follow essentially the proof of Lemma 2.1. The characteristics (2.44)

fulfill

X(t) = x cos at+ va−1 sin at

+

∫ t

0

a−1 sin a(t− s)
[
f(s)− (M ?X ′)(s)− xM(s)

]
ds ,

X ′(t) = −xa sin at+ v cos at

+

∫ t

0

cos a(t− s)
[
f(s)− (M ?X ′)(s)− xM(s)

]
ds . (2.108)

Similarly to the proof of (2.38) one obtains

E
∣∣∣ ∫ t

0

a−1 sin a(t− s)
[
(M ?X ′)(s) + xM(s)

]
ds
∣∣∣ ≤ K

[ ∫ t

0

F (s)ds+ |x|
]
,(2.109)

recalling the value of K (2.34), and the cosine term in X ′(t) is similar.

Now we estimate the random forcing term. First we use

E
∣∣∣ ∫ t

0

f(s) a−1 sin a(t− s) ds
∣∣∣ ≤ (E

∣∣∣ ∫ t

0

f(s) a−1 sin a(t− s) ds
∣∣∣2)1/2

, (2.110)
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then notice that a−1 sin a(t− s) = ηθ,σ(t− s) with θ = 1, σ = 0 (see (2.56)). Hence

(cf. (2.59))

E
∣∣∣ ∫ t

0

f(s)a−1 sin a(t− s) ds
∣∣∣2 ≤ λ2

∫ Ω

0

A2
β(ω)H(t, ω; 1, 0; a) (2.111)

which is just Q(t) = Q(t; 1, 0; β, a), see (2.58). Hence from (2.61), (2.62) we get

E
∣∣∣ ∫ t

0

f(s) a−1 sin a(t− s) ds
∣∣∣2 ≤ C2

1(β, λ0, T ) (2.112)

using the relations among the parameters; t = Tδ−1, λ = λ0δ
1/2 and Ω ≤ δ−1.

Similar estimate is valid for the cosine term.

The estimates (2.109), (2.110) and (2.112) lead to the a priori bound,

F (t) ≤ |x|+ |v|+K
[ ∫ t

0

F (s)ds+ |x|
]

+ C1(β, λ0, T ) , (2.113)

and by the standard Gronwall argument we obtain,

F (t) ≤ C2(β, λ0, T )
(

1 + |x|+ |v|
)
. (2.114)

By monotonicity of C2 in T , we get the a priori bound (2.105) on X(t) and X ′(t).

From the equation (2.44) we also get a similar bound for X ′′(t). We estimate

E|X ′′(t)| ≤ a2E|X(t)|+
(
E|f(t)|2

)1/2

+ |x||M(t)|+
∫ t

0

|M(s)| E|X ′(t− s)|ds .

For the forcing term we use

E|f(t)|2 = λ2

∫ Ω

0

ω(cosh βω + 1)

2 sinh βω
dω ≤ C3(β)λ2Ω2

(see (2.40)) and that

|M(s)| = λ2
∣∣∣sin Ωs

s

∣∣∣ ≤ 2Ωλ2

1 + Ωs
. (2.115)

These estimates, along with t = Tδ−1, λ = λ0δ
1/2 and Ω ≤ δ−1, give that

sup
s≤Tδ−1

E|X ′′(s)| ≤ C4(β, λ0, T )
(
|x|+ |v|+ Ω1/2

)
, (2.116)

using the a priori bounds (2.45), and C4 is monotone in T .
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For the continuity result, notice that Y (t) := X(t)− X̃(t) satisfies the equation,

Y ′′(t) + Iλ2Y ′(t) + a2Y (t) = Iλ2X ′(t)− (M ?X ′)(t)− xM(t) , (2.117)

with initial conditions Y (0) = Y ′(0) = 0. Using (2.104) we obtain,∣∣∣Iλ2X ′(s)− (M ?X ′)(s)
∣∣∣ ≤ λ2

∣∣∣ ∫ s

0

sin Ωu

u

(
X ′(s)−X ′(s− u)

)
du
∣∣∣

+ λ2 |X ′(s)|
∣∣∣ ∫ ∞

s

sin Ωu

u
du
∣∣∣ . (2.118)

The second term is estimated by (const)λ2|X ′(s)| with a universal constant if s ≤ 1

and by (const)λ2(Ωs)−1|X ′(s)| ≤ (const)λ2Ω−1|X ′(s)| if s ≥ 1.

In the first term we split the integration domain. For u ≥ Ω−2/3 we use integra-

tion by parts, (2.45) and (2.116)

λ2 E
∣∣∣ ∫ s

Ω−2/3

d

du

(cos Ωu

Ω

)
u−1
(
X ′(s)−X ′(s− u)

)
du
∣∣∣

≤ C5(β, λ0, T )δ| log δ|Ω−1/3
(

1 + |x|+ |v|
)

(2.119)

for all s ≤ Tδ−1. For the domain 0 ≤ u ≤ Ω−2/3, we use Taylor expansion: |X ′(s)−
X ′(s − u)| ≤ |u| supσ≤s |X ′′(σ)| and the bound (2.116). We obtain finally, using

(2.45),

E
∣∣∣Iλ2X ′(s)− (M ?X ′)(s)

∣∣∣ ≤ C6(β, λ0, T, x, v)δ| log δ|Ω−1/6 , (2.120)

if 1 ≤ s ≤ Tδ−1 and

E
∣∣∣Iλ2X ′(s)− (M ?X ′)(s)

∣∣∣ ≤ πλ2
0δF (t)

≤ C7(β, λ0, x, v)δ
(

1 + | log δ|Ω−1/6
)
, (2.121)

if s < 1.

We now introduce the two fundamental solutions ϕ and ψ of Y ′′+Iλ2Y ′+a2Y = 0

with ϕ(0) = 0, ϕ′(0) = 1 and ψ(0) = 1, ψ′(0) = 0. They are explicitly given as,

ϕ(t) = b−1e−Iλ
2t/2 sin bt , ψ(t) = e−Iλ

2t/2 cos bt+
Iλ2

2
ϕ(t) , (2.122)
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with b := (a2 − I2λ4/4)1/2. Note that they are bounded functions for small enough

δ. Hence, by (2.115), (2.120) and (2.121),

E |Y (t)| = E
∣∣∣ ∫ t

0

ϕ(t− s)
(
Iλ2X ′(s)− (M ?X ′)(s)− xM(s)

)
ds
∣∣∣

≤

(
C8(β, λ0, T, x, v)| log δ|Ω−1/6

+C7(β, λ0, x, v)δ + 2λ2|x|
[
1 + (log Ωt)+

])
‖φ‖∞

≤ C9(β, λ0, T, x, v)Ω−1/6| log δ| . (2.123)

The constants C8 and C9 can be chosen monotone in T , so the same estimate is

valid for sups≤Tδ−1 E |Y (s)|. The argument for Y ′ is similar, which proves (2.106).

2.5.2 Transport Equation Before Scaling Limits

Armed with (2.107), it is enough to compute w̃εA(t, x, v). The calculation is the same

as in Section 2.3 except for the different fundamental solutions ϕ and ψ given in

(2.122). We redefine,

ηθ,σ := θϕ(t) + σϕ′(t) , (2.124)

ξθ,σ := θψ(t) + σψ′(t) ,

and in complete analogy to Lemma 2.5 we state the,

Lemma 2.7 We have for t ≥ 0,∫
IR2

w̃εA(t, x, v)φ(x, v) dx dv

=

∫
IR2

ŵ0

(
ξθ,σ(t), ηθ,σ(t)

)
φ̂(θ, σ)e−

1
2
Q(t) dθ dσ ,

with

Q(t) := λ2

∫ Ω

0

A2
β(ω)H(t, ω)dω ,

and H is given again as H(t, ω) =
∣∣∣ ∫ t0 ηθ,σ(s)e−isωds

∣∣∣2, but with the new ηθ,σ defined

in (2.124). We also have exactly the same estimate as (2.63), but with the redefined

quantities.
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2.5.3 Obtaining Diffusion from Scaling Limit

In this section, and with similar arguments as in Section 2.4, we again obtain linear

dependence in time of Q(t) for large t. Indeed, we first write,

ϕ(t) =
1

2ib

(
etu − etū

)
, with, u := −Iλ

2

2
+ ib .

With these notations, we have,

ηθ,σ(t) =
1

2ib

(
θ
(
etu − etū

)
+ σ
(
uetu − ūetū

))
,

hence,

H(t, ω) =
1

4b2

∣∣∣∣∣(θ + σu)
et(u−iω) − 1

u− iω
− (θ + σū)

et(ū−iω) − 1

ū− iω

∣∣∣∣∣
2

.

We now take the scaling t = Tδ−1 for a fixed T and δ → 0. The terms with

denominator ū− iω = −Iλ2/2− i(
√
a2 − I2λ4/4 + ω) have no singularity (they are

bounded) so the first term of H is the main term. Extracting the main term, we

can write (cf. (2.64)),

H(t, ω) = (θ2 + a2σ2)

[
1

4a2

∣∣∣et(u−iω) − 1

u− iω

∣∣∣2 + U(t, ω)

]
.

Using u = ai+O(δ), 0 < a2 ≤ 1, b2 = a2 +O(δ2) we obtain for small enough δ that,∫ ∞
0

∣∣U(Tδ−1, ω)
∣∣dω ≤ C10(a, β, λ0, T )| log δ| .

With some elementary calculations this implies,

Q(Tδ−1)

= λ2(θ2 + a2σ2)

[
1

4a2

∫ Ω

0

A2
β(ω)

∣∣∣∣∣eTδ
−1(u−iω) − 1

u− iω

∣∣∣∣∣
2

dω +B1(Tδ−1)

]

= λ2(θ2 + a2σ2)

[
A2
β(a)

4a2

∫ a−
√
δ

a+
√
δ

∣∣∣∣∣eTδ
−1(u−iω) − 1

u− iω

∣∣∣∣∣
2

dω +B3(Tδ−1)

]
,

where the functions Bj (j = 1, 2, 3) satisfy |Bj(Tδ
−1)| ≤ C11(a, β, λ0, T )δ−1/2. We

used that the function ω 7→ A2
β(ω) is bounded with a bounded derivative around
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ω ∼ a, and that the function z 7→ (etz − 1)/z is uniformly bounded by t in the

vicinity of the imaginary axis.

Since the derivative of z 7→ |(etz − 1)/z|2 is bounded by t2, one can replace u by

ai in the last integral at the expense of an error 2
√
δ|u − ia|t2 = O(δ−1/2). Finally

one can evaluate,∫ a−
√
δ

a+
√
δ

∣∣∣∣∣eTδ
−1(a−ω)i − 1

a− ω

∣∣∣∣∣
2

dω = 2πTδ−1 +O(δ−1/2)

At this step T ≥ 0 is used. In summary, we obtained,

Q(Tδ−1) = (θ2 + a2σ2)
(
λ2

0T
π(cosh(βa) + 1)

4a sinh βa
+B4(Tδ−1)

)
. (2.125)

The error satisfies
∣∣B4(Tδ−1)

∣∣ ≤ C12(β, λ0, T )δ1/2, hence,

lim
δ→0

Q(Tδ−1) = cβλ
2
0γ

2T , (2.126)

with γ := θ2 + ǎ2σ2 and

cβ :=
π(cosh(βǎ) + 1)

4ǎ sinh βǎ
, (2.127)

assuming that

ǎ := lim
δ→0,Ω→∞

a = lim
δ→0,Ω→∞

(
1− λ0Ωδ−1

)
(2.128)

exists, and ǎ ∈ (0, 1].

Since we will keep β fixed and choose λ = λ0δ
1/2 with a fixed λ0, δ and Ω are left

as a scaling parameters from the triple ε = (β,Ω, λ). Like in Section 2.4 (cf.(2.83))

we introduce,

W ε
T (x, v) := wεA(Tδ−1, x, v) , (2.129)

and notice that only the time is rescaled. We will assume that Ω → ∞ along with

δ → 0 in such a way that the limit (2.128) exists and Ω ∈
[
| log δ|7, δ−1

]
. Clearly

either Ω ∼ δ−1, in which case ǎ < 1, or Ω � δ−1, when ǎ = 1. In the latter case,

however, we need Ω ≥ | log δ|7.
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2.5.4 Derivation of the Limiting Equation

We need the notion of ”radial” function with respect to the elliptical phase space

trajectories of the oscillator Y ′′ + ǎ2Y . As usual, the dual variables to the phase

space coordinates (x, v) are (θ, σ). With ǎ > 0 fixed, let

γ = γ(θ, σ) :=
√
θ2 + ǎ2σ2 , r = r(x, v) :=

√
x2 + ǎ−2v2 ,

which will be considered either variables or functions, depending on the context. If a

function u(x, v) depends only on x2 +ǎ−2v2, then it can be written as u(x, v) = u∗(r)

with some function u∗ defined on IR+. Then the two dimensional Fourier transform

û(θ, σ) =
∫

exp
[
− i(θx+ σv)

]
u(x, v)dxdv is a function of θ2 + ǎ2σ2 only, hence it

can be written as û(θ, σ) = ũ∗(γ). Here ũ∗ can be thought of as the ”elliptical-

radial” Fourier transform of u∗, but in order to avoid confusion, we will always

perform Fourier transforms on IR2, i.e. between u(x, v) ↔ û(θ, σ), even if these

functions are ”radial”.

For any function u(x, v) we can form the ”radial” average of its Fourier transform

û(θ, σ) by defining

û#(θ, σ) :=
1

2π

∫ 2π

0

û
(
γ cos s, ǎ−1γ sin s

)
ds

(
=

1

2πγ

∫
θ̃2+ǎ2σ̃2=γ2

û(θ̃, σ̃)dθ̃dσ̃

)
,

which is a function of γ, hence it can be written as

û#(θ, σ) = ũ#,∗(γ) .

In this notation # refers to ”radial” averaging, and ∗ indicates that we consider the

radial part of the function. Tilde indicates that it comes from the two dimensional

Fourier transform û of the original function u.

Theorem 2.3 Define the large time scale Wigner function W ε
T (x, v) as in (2.129).

Assume that λ = λ0δ
1/2, λ0 < 1 and fix β > 0, ǎ ∈ (0, 1]. The initial condition

W ε
0 (x, v) = w0(x, v) satisfies ŵ0(θ, σ) ∈ L1(IRθ×IRσ). Consider the ”radial” average

of Ŵ ε
T ,

W̃#,ε
T (γ) :=

1

2π

∫ 2π

0

Ŵ ε
T (γ cos s, ǎ−1γ sin s)ds .
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Then for any T ≥ 0 the limit,

Ŵ+
T (θ, σ) := lim

δ→0,Ω→∞
1−λ2

0Ωδ→ǎ
Ω≥| log δ|7

W̃#,ε
T (θ, σ) , (2.130)

exists in a weak sense and it is a function of γ = (θ2 + ǎ2σ2)1/2 only. Hence,

its inverse Fourier transform W+
T (x, v) is a function of r = (x2 + ǎ−2v2)1/2 only

and it can be written as W+,∗
T (r) := W+

T (x, v). This function satisfies the ”radial”

Fokker-Planck equation,

∂TW
+,∗
T =

πλ2
0

4
∂r(rW

+,∗
T ) +

cβλ
2
0

2
∆rW

+,∗
T , (2.131)

(cβ is given in (2.127)) with initial condition W+,∗
0 (r) := W+

T=0(x, v) whose Fourier

transform Ŵ+
0 (θ, σ) is given by,

Ŵ+
0 (θ, σ) := ŵ#

0 (θ, σ) =
1

2π

∫ 2π

0

ŵ0

(
γ cos s, ǎ−1γ sin s

)
ds . (2.132)

Remarks:

• The weak limit lim∗∗Ŵ ε
T (θ, σ) (without averaging over the angular variables)

does not exist (here lim∗∗ stands for the same limit as in (2.130)). However,

time averaging can again replace angular averaging (see Corollary 2.1 and the

remark there), i.e. our method easily proves that lim∗∗W ε
T (x, v) exists in a weak

sense in all variables (x, v, T ), i.e. in the topology of D′
(

IRx× IRv× [0,∞)T
)
,

and it satisfies (2.131) weakly in space, velocity and time.

• Since the diffusion coefficient 1
2
λ2

0cβ in (2.131) behaves as β−1 for small β (high

temperature), we see that Einstein’s relation is satisfied at high temperatures.

At small temperatures the diffusion does not disappear (limβ→∞ cβ > 0), which

is due to the ground state quantum fluctuations of the heat bath.

• Similarly to the first remark after Theorem 2.2, one can investigate how this

theorem is modified if % is not uniform (in particular if the cutoff is not sharp).

The diffusive mechanism is not affected by this generalization, thanks to the

second remark after Lemma 2.5, the only change is an extra %(ǎ) factor in the

second term on the right hand side of (2.131). But the modified memory kernel,
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M(s) = λ2
∫ Ω

0
cos(ωs)%(ω)dω, does not converge to the delta function δ0(t) as

Ω→∞, hence the nonuniform frequency distribution makes the memory term

nonlocal in time. The details are left to the reader.

Proof. The proof is similar to the proof of Theorem 2.2, hence we skip certain

steps. Let φ(x, v) ∈ C∞0 (IR× IR). Similarly to (2.92) we obtain from (2.49),

〈W ε
T , φ〉 =

∫
ŵεA(Tδ−1, θ, σ)φ̂(θ, σ)dθ dσ

= E

∫
ŵ0(ξ, η)φ̂(θ, σ)ei(xξ+vη)e−i(θX(t)+σX′(t))dξ dη dx dv dθ dσ .

Thanks to (2.107), in the limit δ → 0 we can replace X by X̃ and to take the limiting

value (2.126) of Q in the formulae (we again have to approximate ŵ0 by bounded

functions first). We obtain (cf. (2.93)),

lim∗∗〈W ε
T , φ〉 = lim∗∗E

∫
ŵ0(ξ, η)φ̂(θ, σ)ei(xξ+vη) (2.133)

× e−i(θX̃(Tδ−1)+σX̃′(Tδ−1))dξ dη dx dv dθ dσ

= lim∗∗
∫
ŵ0

(
ξθ,σ(Tδ−1), ηθ,σ(Tδ−1)

)
φ̂(θ, σ)e−

1
2
Q(Tδ−1)dθ dσ

where lim∗∗ stands for the limit in (2.130). Recall that the functions ξθ,σ and ηθ,σ

now depend on the limiting parameters, since ϕ and ψ do, and they are oscillating,

which again prevents the existence of the weak limit in the last line of (2.133) without

averaging.

Time averaging is analogous to part b) of Theorem 2.2, and it gives the weak

limit in space, velocity and time. We skip the details of the proof of the statement

of the first remark.

Performing a radial avegaring (with respect to the limiting ellipses given by the

level curves of r = r(x, v) or γ = γ(θ, η)) is the same as using ”radial” testfunctions

φ which depend only on r; i.e. φ̂(θ, σ) depends only on γ hence it can be written as

φ̂(θ, σ) = φ̃∗(γ). In this case

〈Ŵ#,ε
T , φ̂〉 = 〈Ŵ ε

T , φ̂〉 .
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From the explicit formulas (2.122), (2.124) it is straightforward to check that

lim∗∗ sup
s≤Tδ−1

∣∣∣∣∣ ([ξθ,σ(s)
]2

+ ǎ2
[
ηθ,σ(s)

]2)
−e−Iλ2

0sδ
([
ξ̌θ,σ(s)

]2
+ ǎ2

[
η̌θ,σ(s)

]2)∣∣∣∣∣ = 0 , (2.134)

where ξ̌ and η̌ are the solutions to Y ′′ + ǎ2Y = 0, i.e.

ξ̌θ,σ(s) := θ cos(ǎs)− σǎ sin(ǎs) , η̌θ,σ(s) := θǎ−1 sin(ǎs) + σ cos(ǎs) .

Since the flow (θ, σ) 7→
(
ξθ,σ(s), ηθ,σ(s)

)
is measure preserving, one can change

variables ∫
IR2

ŵ0

(
ξθ,σ(t), ηθ,σ(t)

)
φ̂(θ, σ)e−

1
2
Q(t) dθ dσ

=

∫
IR2

ŵ0(θ, σ)φ̂
(
ξ∗θ,σ(t), η∗θ,σ(t)

)
e−

1
2
Q∗(t) dθ dσ ,

where η∗(t) := η(−t), ξ∗(t) := ξ(−t) are the backward trajectories. In this way we

pushed the trajectories into the argument of φ̂, where only their ξ2 + ǎ2η2 combina-

tion matters, and we can apply (2.134) to replace ξ, η by ξ̌, η̌, finally we can change

variables backwards, now along these new trajectories.

Hence together with (2.126) and with c′β := cβ/2 for simplicity, we have

lim∗∗〈Ŵ#,ε
T , φ̂〉 = lim∗∗〈Ŵ ε

T , φ̂〉

= lim∗∗
∫

IR2

ŵ0

(
e−Iλ

2
0T/2ξ̌θ,σ(Tδ−1) , e−Iλ

2
0T/2η̌θ,σ(Tδ−1)

)
× φ̃∗(γ)e−c

′
βλ

2
0Tγ

2

dθ dσ ,

if we can show that this latter limit exists. But the right hand side above is in

fact independent of the limiting parameters δ,Ω, since we can first integrate on

ellipses θ2 + ǎ2σ2 = (const), similarly to the same calculation in the proof of part

c), Theorem 2.2. Hence,∫
IR2

ŵ0

(
e−Iλ

2
0T/2ξ̌θ,σ(Tδ−1) , e−Iλ

2
0T/2η̌θ,σ(Tδ−1)

)
φ̃∗(γ)e−c

′
βλ

2
0Tγ

2

dθ dσ

=

∫
IR2

W̃+,∗
0

(
γe−Iλ

2
0T/2

)
φ̃∗(γ)e−c

′
βλ

2
0Tγ

2

dθ dσ ,
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where we recall the definition of W̃+
0 (2.132), which depends only on γ2 = θ2 + ǎ2σ2,

and we let W̃+,∗
0 (γ) := W̃+

0 (θ, σ). Therefore, the relation,

lim∗∗〈Ŵ#,ε
T , φ̂〉 =

∫
IR2

W̃+,∗
0

(
γe−Iλ

2
0T/2

)
φ̃∗(γ)e−c

′
βλ

2
0Tγ

2

dθ dσ

defines the weak limit,

Ŵ+
T (θ, σ) := lim∗∗Ŵ#,ε

T (θ, σ)

and it is a function depending only on θ2 + ǎ2σ2, i.e. it can be written as W̃+,∗
T (γ) :=

Ŵ+
T (θ, σ). Also, we readily obtain the equation satisfied by W̃+,∗

T (γ) by computing,〈
∂T

∣∣∣
T=0

Ŵ+
T , φ̂

〉
= ∂T

∣∣∣
T=0

∫
IR2

W̃+,∗
0

(
γe−Iλ

2
0T/2

)
φ̃∗(γ)e−c

′
βλ

2
0Tγ

2

dθ dσ

=

∫
IR2

[
− Iλ2

0

2
γ∂γ − c′βλ2

0γ
2
]
W̃+,∗

0 (γ)φ̃∗(γ)dθ dσ ,

from which (2.131) follows, recalling that I = π
2

and the value of c′β = cβ/2 from

(2.127).
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3 Electron in a Harmonic Ionic Lattice

One of the physical situations described by the Caldeira-Leggett Hamiltonian is a

single localized electron interacting with phonons. If a semiconductor is modeled

as a perfect crystal, the electrons moving in the crystal are not scattered by the

lattice ions at all. Because of thermal energy the ions do not remain stationary but

each ion moves in a region of space centered at its lattice point. The strong forces

which are provided by the interaction of an ion with all the other ions act on this

ion when it is not at its lattice point. This leads to lattice vibrations which can

be approximated by harmonic oscillations. The independent normal modes of these

oscillations are called phonons which can be considered as particles (bosons, cf. [58],

[67]).

For simplicity, we considered in the abstract model treated above only the one

dimensional situation. In that case the phonons are generated by a periodic chain

of ions, sitting at the the points of Λ = { j
Ω

: j = 0, 1, 2, . . . NΩ} ⊂ TN where

the points 0 and N are identified. Here TN is the 1 dimensional torus of length N .

Let Λ∗ = { j
N

: j = 0, 1, 2, . . . NΩ} ⊂ TΩ be the dual lattice. Assuming nearest

neighbor harmonic coupling, the Hamiltonian of the lattice vibrations is exactly HR

in (2.1) written in normal variables, Rj, which are the Fourier transforms of the

ion displacements (see e.g. [58]). After linearization in the phonon variables the

interaction of an electron with the crystal lattice is,

HI =
∑
k∈Λ∗

Ck ·Rk exp(ik · x) , (3.1)

where Ck is the k-th Fourier component of the electron-phonon interaction, which

comes from a two-body interaction between the electron and the ions.

The essential point in (3.1) is that this interaction is non-linear in x. One can

reach linear coupling by assuming that the quantity k · x in (3.1) remains small

during the full evolution of the system, and linearize the exponential accordingly.

This means that the wavelength (= O(|wavevector|−1) = O(|k|−1)) of the crystal

oscillation should be bigger than the displacement of the particle (x) during its

full evolution. Furthermore, in the original Caldeira-Leggett model (as well as in

Section 2.3) the ultraviolet cutoff was removed (Ω→∞) in order to obtain diffusion

(see Section 2.1). Therefore, we are led to assume big frequencies together with

big wavelengths, wherease their product, the sound speed, is a bounded physical
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constant.

On the level of the Hamiltonian, notice that if Ck were frequency independent

(equivalently, J(ω) ∼ ω−1) then
∑

k∈Λ∗ Rk, to which the particle coordinate is cou-

pled (2.1), is just the displacement of the ion at the origin as the normal modes are

the Fourier transforms of the displacement vectors. In other words, the test-particle

is assumed to remain in the vicinity of the origin, and it is assumed to interact with

only one single ion of the crystal lattice for all its dynamics (see e.g. [19]). On the

other hand, if we wish to derive a diffusive equation for the electron, then for large

values of time it is expected to move away from the origin. Even if the diffusion

appears only in the velocity (see (1.5)), the large velocity implies large fluctuation

in the configuration variable as well.

Coupling depending linearly on the frequency, Cj ∼ ωj, considered in [8], cor-

responds to J(ω) ∼ ω. Theoretically, it can be obtained from a three dimensional

phonon model with radial coupling. In this case Rj is the sum of all modes Rk

with the same frequency ωj, where k runs through the dual of the three dimensional

lattice Λ. However, we should remark that the Ohmic law J(ω) ∼ ω breaks down

for large frequencies in real systems.

In summary, the linear model effectively involves an implicit mean-field assump-

tion by requiring that the test-particle is coupled to the same mode for all its evo-

lution, which seems incompatible with the finite sound speed of the metals along

with the removed UV cutoff. This leaves a serious doubt on the applicability of the

linear coupling assumption for diffusion models for electron propagation in an ionic

lattice (see also [2] for a brief criticism of this assumption).

3.1 Second Quantization

We now want to give a physically more relevant model for the electron – phonon

interaction [33]. Two interaction processes occur: the electron can be scattered such

that either a phonon is emitted or a phonon is absorbed, where in both processes

the total wave number remains constant. Due to these scattering events the number

of phonons is not conserved. To deal with this non-constant number of particles one

uses the procedure of 2nd quantization, which was originally introduced in quantum

field theory. So although our model is purely non-relativistic we use the formalism

of field quantization [7].

For the sake of simplicity we again use a one-electron model which means that we
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neglect electron-electron interactions and are just interested in the dynamics of one

electron. We will also neglect the effects of the periodical potential of the stationary

lattice, thus obtaining the so called Fröhlich Hamiltonian. Moreover we model the

phonon Hamiltonian such that it has states of thermal equilibrium.

This means, we consider a modified version of the Fröhlich-Hamiltonian

HSQ = HA +HR +HI ,

which is again of the form (1.14) but the Hamiltonian acts now on wave-functions

which lie in the state space

S = L2(IR3
x)⊗FS,

where FS is the Boson-Fock Space (see [57]). This means that a wave function ψ ∈ S
is actually a sequence of functions ψ = (ψ(n))∞n=0, where ψ(n) = ψ(n)(x, q1, . . . , qn)

(for n ≥ 1) is invariant under permutation of q1, . . . , qn (clearly ψ(0) = ψ(0)(x)) . S
is a separable Hilbert-Space with the inner product given by

〈φ, ψ〉S :=

∫
IR3
x

φ(0)(x)ψ(0)(x) dx+
∞∑
n=1

∫
IR3
x

∫
IR3n

q(n)

φ(n)(x, q(n))ψ(n)(x, q(n)) dxdq(n) ,

where q(n) := (q1, . . . , qn) for n ≥ 1.

The physical interpretation of |ψ(n)(x, q1, . . . , qn)|2 is the probability of finding

the electron in an infinitesimal neighbourhood of x (electron position space) and n

phonons in an infinitesimal neighbourhood of q(n) (phonon momentum space). The

electron position density is given by

n(x) =
∣∣∣ψ(0)(x)

∣∣∣2 +
∞∑
n=1

∫
IR3n

q(n)

∣∣∣ψ(n)(x, q(n))
∣∣∣2 dq(n) , (3.2)

and the current density by

J(x) =
~

m∗
Im
(
ψ(0)(x)∇xψ

(0)(x)
)

+
~

m∗

∞∑
n=1

∫
IR3n

q(n)

Im
(
ψ(n)(x, q(n))∇xψ

(n)(x, q(n))
)
dq(n) ,

(3.3)

where ~ is the Planck-constant and m∗ the electron mass.

The three terms of the Hamiltonian HSQ have the following form:

HA = − ~
2

2m∗
∆ + V (x), (3.4)
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V (x) denoting a given realvalued external potential. The Hamiltonian for the

phonons is

HR = ~

∫
IR3
q

a+
q aq

(
ω(q) + Z(Dq)

)
dq , (3.5)

with the annihilation and creation operators

(aqφ)(n)(x, q(n)) =
√
n+ 1φ(n+1)(x, q, q(n)) n = 0, 1, . . . ,

(a+
q φ)(n)(x, q(n)) =

{
1√
n

∑n
l=1 δ(q − ql)φ(n−1)(x, lq

(n)) n = 1, 2, . . .

0 n = 0 ,

where we introduced the notation lq
(n) := (q1, . . . , ql−1, ql+1, . . . , qn).

In the phonon-Hamiltonian ω(q) is the realvalued phonon-frequency and as a

modification of the usual Hamiltonian we introduced the pseudodifferential operator

Z(Dq) which describes the phonon-phonon interactions. The mathematical reason

for introducing Z(Dq) is that we would like to have an orthonormal basis (ONB)

of FS consisting of eigenfunctions of HR, which can be physically interpreted that

the phonons are driven into states of thermal equilibrium. If we use the definition

of the annihilation and creation operators then HR can be written as

(HRψ)(n)(x, q(n)) = ~

n∑
l=1

ω(ql)ψ
(n)(x, q(n))

+
~

(2π)3

n∑
l=1

∫
IR3
q

Ẑ(ql − q)ψ(n)(x, q, lq
(n)) dq,

where Ẑ denotes the Fourier transform of the function Z. Ẑ is supposed to be

realvalued. Here and in the sequel we set
∑0

l=1 cl := 0. Finally the electron-phonon

interaction Hamiltonian is given by

HI = i~

∫
IR3
q

F (q)
(
aqe

iqx − a+
q e
−iqx
)
dq , (3.6)

where the term with the annihilation operator models phonon absorption and the one

with the creation operator models phonon emission. The realvalued function F (q)

describes the details of the electron-phonon interaction. Again using the definitions
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of aq and a+
q the interaction term reads

(HIψ)(n)(x, q(n)) = i~
√
n+ 1

∫
IR3
q

F (q)eiqxψ(n+1)(x, q, q(n)) dq

− i~√
n

n∑
l=1

F (ql)e
−iqlxψ(n−1)(x, lq

(n)).

Remark: Since V, Ẑ, F and ω are real-valued easy calculations show that the

Hamiltonian HSQ is formally self-adjoint (for HI see also [57], p.209f, Segal quanti-

zation).

To study the dynamics of the system we introduce the density operator ρ : S → S
which fulfills the von-Neumann equation

i~ρt = [HSQ, ρ],

where [A,B] := AB −BA denotes the commutator of the operators A and B. The

operator ρ is self-adjoint, positive and trace-class, therefore there exists an ONB

{ρl | l ∈ IN} of eigenfunctions of ρ such that

ρψ =
∞∑
l=1

µl〈ψ, ρl〉S ρl,

where µl ≥ 0 are the corresponding eigenvalues. Using the eigenfunctions ρl we

introduce the density matrix elements

r(n,m)(x, q
(n); y, p(m), t) :=

∞∑
l=1

µlρ
(m)
l (y, p(m), t)ρ

(n)
l (x, q(n), t) n,m = 0, 1, . . .

which determine the density operator ρ by

(ρψ)(n)(x, q(n), t) =
∞∑
m=0

∫
IR3
y

∫
IR3m

p(m)

ψ(m)(y, p(m), t)r(n,m)

(
x, q(n); y, p(m), t

)
dydp(m).

It is easy to show that the eigenfunctions of ρ fulfill the equation

i~
∂

∂t
ρl = HSQρl , (3.7)
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which gives the connection between the von-Neumann dynamics and the Schrödinger

picture(cf. [45]). Using (3.7) we obtain the equation

i~
∂

∂t
r(n,m)(x, q

(n); y, q(m), t) =
∞∑
l=1

µl

[
(HSQρl)

(m)(y, p(m), t)ρ
(n)
l (x, q(n), t)

− ρ(m)
l (y, p(m), t)(HSQρl)(n)(x, q(n), t)

]
,

(3.8)

which describes the dynamics of the density matrix. As a first step to obtain a

transport equation for the electrons we introduce

W(n,m)(x, v, q
(n); p(m), t)

:=
1

(2π)3

∫
IR3
η

r(n,m)

(
x+

~

2m∗
η, q(n);x− ~

2m∗
η, p(m), t

)
eiv·η dη.

The matrix W := (W(n,m))n,m=0,1,... is called Wigner Matrix. It is the Wigner-

transformation of the density-matrix r = (r(n,m))n,m=0,1,... with respect to the elec-

tron coordinates x and y. Note that

n(x, t) =

∫
IR3
v

W(0,0)(x, v, t) dv +
∞∑
n=1

∫
IR3
v

∫
IR3n

q(n)

W(n,n)

(
x, v, q(n); q(n), t

)
dq(n)dv ,

and

J(x, t)=

∫
IR3
v

vW(0,0)(x, v, t) dv +
∞∑
n=1

∫
IR3
v

∫
IR3n

q(n)

vW(n,n)

(
x, v, q(n); q(n), t

)
dq(n)dv.

The transport equation satisfied by W(n,m) is easily derived from equation (3.8):

∂

∂t
W(n,m) + v · ∇xW(n,m) + θ~[V ]W(n,m) = QpW(n,m) + (Qe−pW )(n,m) . (3.9)

The operator

θ~[V ]W(n,m)(x, v, q
(n), p(m), t) :=

i

(2π)3

∫
V (x+ ~

2m∗
η)− V (x− ~

2m∗
η)

~

× W(n,m)(x, v
′, q(n); p(m), t)ei(v−v

′)·η dv′dη
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is the usual pseudo-differential operator which stems from the external potential of

the electron. The phonon-Hamiltonian gives the operator

QpW(n,m)(x, v,q
(n); p(m), t)

:=− i
( m∑
k=1

ω(pk)−
n∑
k=1

ω(qk)
)
W(n,m)(x, v, q

(n); p(m), t)

− i

(2π)3

[
m∑
k=1

∫
IR3
p

Ẑ(pk − p)W(n,m)(x, v, q
(n); p, kp

(m), t)dp

−
n∑
k=1

∫
IR3
q

Ẑ(qk − q)W(n,m)(x, v, q, kq
(n); p(m), t)dq

]
,

(3.10)

and finally we obtain for the electron-phonon interaction operator

(Qe−pW )(n,m)

:= Q−1 W(n,m+1) +Q−2 W(n+1,m) −Q+
1 W(n,m−1) −Q+

2 W(n−1,m) , (3.11)

with

Q−1 W(n,m+1) =
√
m+ 1

∫
IR3
p

F (p)eip·xW(n,m+1)(x, v −
~

2m∗
p, q(n); p, p(m), t) dp,

Q−2 W(n+1,m) =
√
n+ 1

∫
IR3
q

F (q)e−iq·xW(n+1,m)(x, v −
~

2m∗
q, q, q(n); p(m), t) dq,

Q+
1 W(n,m−1) =

1√
m

m∑
k=1

F (pk)e
−ipk·xW(n,m−1)(x, v +

~

2m∗
pk, q

(n); kp
(m), t),

Q+
2 W(n+1,m) =

1√
n

n∑
k=1

F (qk)e
iqk·xW(n−1,m)(x, v +

~

2m∗
qk, kq

(n); p(m), t).

We now introduce the phonon trace of the (Wigner)matrix W

w(x, v, t) := (tr pW )(x, v, t) := W(0,0)(x, v, t)+
∞∑
n=1

∫
IR3n

q(n)

W(n,n)(x, v, q
(n); q(n), t) dq(n),

which acts as the quantum-equivalent of the phase space distribution function of the

electron in classical mechanics. Taking the phonon trace of (3.9) leads (after some
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calculations) to the transport equation

wt + v · ∇xw + θ~[V ]w =2
∞∑
n=0

√
n+ 1

∫
IR3
q

∫
IR3n

q(n)

F (q)

· Re
[
eiq·x

(
W(n,n+1)(x, v −

~

2m∗
q, q(n); q, q(n), t)

−W(n,n+1)(x, v +
~

2m∗
q, q(n); q, q(n), t)

)]
dq(n)dq.

(3.12)

Remarks:

• Note that tr p(QpW ) = 0.

• In the right hand side of (3.12) the subdiagonal elements W(n,n+1) are still

present, which means that we do not have a closed equation for w(x, v, t).

• Note that n(x, t) =
∫

IR3
v
w(x, v, t)dv and J(x, t) =

∫
IR3
v
vw(x, v, t)dv.

3.2 Weak Electron-Phonon Interaction

To derive an approximating closed equation for w(x, v, t) we now assume that the

electron-phonon interaction is small. Therefore we write in (3.6) εF (q) instead of

F (q) with 0 < ε� 1 and treat the problem with methods of asymptotic analysis for

ε→ 0. The now ε-dependent Wigner matrix is solution of the transport equation

LW ε = QpW
ε + εQe−pW

ε , (3.13)

where we introduced the Wigner transport operator

L :=
∂

∂t
+ v · ∇x + θ~[V ].

Qp and Qe−p are now considered to act on the Wigner matrix W ε as defined in (3.9).

For W ε we make the ansatz

W ε := W 0 + εW 1 + ε2W 2 + ε3W 3 +O(ε4). (3.14)

For the initial condition we assume

W ε(t = 0) = w0
IA , (3.15)
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where w0
I = w0(t = 0) is a given (Wigner)function of x and v and A is defined as

the density matrix corresponding to the operator (cf. [3])

T :=
1

tr p(e−βH
0
R)
e−βH

0
R , with HR = Idx ⊗H0

R .

H0
R is the phonon operator acting on FS. The exact definition of A will be given

after we have introduced a special ONB in Lemma 3.1. The operator T describes

the phonons in a state of thermal equilibrium, where β is a constant (indirectly pro-

portional to the lattice temperature), this means we have the same initial conditions

for the reservoir as in the Caldeira Leggett model. Note that T is normalized such

that tr pT = 1.

We make the following assumption on H0
R:

(A1) ω(q) and Ẑ(q) are such that there exists an ONB of realvalued eigenfunctions

{ψk(q)|k ∈ IN} in L2(IR3
q) and eigenvalues λk ∈ IR such that

~ω(q)ψk(q) +
~

(2π)3

∫
IR3
q′

Ẑ(q − q′)ψk(q′) dq′ = λkψk(q).

Note that (A1) holds if growth conditions on ω(q) and on Z = Z(x) at x = q =∞
are imposed (confinement of phonons). The eigenfunctions can be chosen realvalued

because ω(q) and Ẑ are realvalued. With this assumption we have the following

Lemma 3.1 If (A1) holds, then there exists an ONB of FS consisting of eigenfunc-

tions of H0
R.

Proof: Define

ψ
(n)
~k

(q1, . . . , qn) :=
1√
n!

∑
σ∈Pn

ψkσ(1)
(q1) · . . . · ψkσ(n)

(qn) ,

where ~k = (k1, . . . , kn) is a multiindex and P n is the permutation group of n ele-

ments. Because of the structure of HR it is obvious that

H0
Rψ

(n)
~k

(q(n)) = λ~kψ
(n)
~k

(q(n)) with λ~k :=
n∑
j=1

λkj ,

λkj being the eigenvalue corresponding to ψkj .
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By definition the functions ψ~k(q1, . . . , qn) are invariant under permutation of the

arguments and therefore

ψ~k := (0, . . . , 0, ψ
(n)
~k

(q(n)), 0, . . . ) ∈ FS .

Adding the vacuum state ψ0 := (1, 0, 0, . . . ) we finally find that the so constructed

set {ψ~k} is an ONB of FS because (ψk)k∈IN is an ONB of L2(IR3
q), cf. [56]. 2

Now we use the ONB constructed above to represent the matrix A of the initial

condition (3.15). To obtain a unique representation we use only multiindices ~k =

(k1, . . . , kn) ordered such that k1 ≤ . . . ≤ kn. We thus obtain ∀φ ∈ FS:

(H0
Rφ)(n)(q(n)) =

∑
~k∈INn

k1≤...≤kn

λ~k

∫
IR3n

p(n)

φ(n)(p(n))ψ
(n)
~k

(p(n)) dp(n)ψ
(n)
~k

(q(n)).

Using the definition of the operator T we can write

(Tφ)(n)(q(n)) =
∞∑
m=1

∫
IR3m

p(m)

φ(m)(p(m))A(n,m)(q
(n), p(m)) dp(m) ,

where we have

A(n,n)(q
(n), p(n)) =

1

Tr

∑
~k∈INn

k1≤...≤kn

e−βλ~kψ
(n)
~k

(p(n))ψ
(n)
~k

(q(n)) n = 1, 2, , . . .

with Tr :=
∑

n

∑
~k∈INn

k1≤...≤kn
e−βλ~k and because of the construction of the ONB it is

clear that

A(n,m)(q
(n), p(m)) = 0 n 6= m.

Plugging the ansatz (3.14) into equation (3.13) we obtain by equating the coefficients

of equal powers of ε:

LW 0 −QpW
0 = 0 ,

LW 1 −QpW
1 = Qe−pW

0 ,

LW 2 −QpW
2 = Qe−pW

1 ,

LW 3 −QpW
3 = Qe−pW

2 ,

(3.16)

and from (3.15) we obtain the initial conditions

W 0(t = 0) =w0A ,

W 1(t = 0) =W 2(t = 0) = W 3(t = 0) = 0 .
(3.17)
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Using the first equation of (3.16) and the initial condition for W 0 the separation

ansatz W 0
n,m = w0(x, v, t)Mn,m(qn, pm) shows that M = A, i.e. W 0 = w0A. A short

calculation gives QpA = 0, therefore also QpW
0 = 0.

In the following we will use the convention that for a superscript α ∈ {0, 1, 2, 3, ε}
the function wα will denote the phonon trace of the matrix Wα, i.e. wα := tr pW

α.

Remarks:

• Note that this notation is consistent for W 0 because of the normalization of

A, trpA = 1.

• The interpretation of the structure of W 0 = w0A is that if there is no electron-

phonon interaction at all (i.e. ε = 0) the phonons will be in a state of thermal

equilibrium which is given by the operator T .

If we take the phonon traces of equations (3.16) we are thus led to the equations

Lw0 = 0 ,

Lw1 = tr p(Qe−pW
0) ,

Lw2 = tr p(Qe−pW
1) ,

Lw3 = tr p(Qe−pW
2) .

(3.18)

We have already used tr p(QpW
α) = 0 and another calculation shows that also

tr p(Qe−pW
0) = 0. Actually this can be seen easily by taking into account the fact

that A(n,m) = 0 for n 6= m and therefore (Qe−pW
0)(n,n) = 0,∀n ≥ 0. With a similar

argument one can see that tr p(Qe−pW
2) = 0. So taking into account the initial

conditions (3.17) we have found w1 ≡ w3 ≡ 0 and, formally,

Lwε = ε2tr p(Qe−pW
1) +O(ε4) ,

where we have of course wε = tr pW
ε = w0 + ε2w2 +O(ε4).

3.2.1 The Case of a Constant Potential: V ≡ const.

W 1 is now calculated from

LW 1 −QpW
1 = Qe−p(w

εA) , (3.19)

which is the second equation of (3.16) with w0 replaced by wε. If we are able to

solve equation (3.19) for W 1 we will have a closed equation for wε which is exact
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up to the order ε4. To do so we assume now V ≡ const. which means θ~[V ] ≡ 0. In

this simple case equation (3.19) becomes

∂

∂t
W 1 + v · ∇xW

1 −QpW
1 = Qe−p(w

εA) ,

which can be solved explicitely by means of a separation ansatz and the variation

of the constants formula. Using the orthogonality properties of the eigenfunctions

of H0
R one finally obtains after long calculations

tr p(Qe−pW
1) =

2

Tr

∫ t

τ=0

∫
IR3
p

∫
IR3
q

∞∑
n=0

∑
~k∈INn+1

k1≤...≤kn+1

n+1∑
j=1

Re
{
ei(q−p)·x+ip·vτ

· Fkj(p)Fkj(q)e
i
~
λkj τ

(
e−βλ~kD0

1 − e
−βλ

j
~kD0

2

)}
dq dp dτ ,

(3.20)

with Fkj(p) := F (p)ψkj(p) and

D0
1 := e−i

~

2m∗ p·qτwε
(
x− (v − ~

2m∗
q)τ, v − ~

2m∗
(p+ q), t− τ

)
− ei

~

2m∗ p·qτwε
(
x− (v +

~

2m∗
q)τ, v − ~

2m∗
(p− q), t− τ

)
,

D0
2 := e−i

~

2m∗ p·qτwε
(
x− (v − ~

2m∗
q)τ, v +

~

2m∗
(p− q), t− τ

)
− ei

~

2m∗ p·qτwε
(
x− (v +

~

2m∗
q)τ, v +

~

2m∗
(p+ q), t− τ

)
.

So in the case of V ≡ const. we obtain the transport equation for wε

∂

∂t
wε + v · ∇xw

ε = ε2I0
scat +O(ε4) , (3.21)

where I0
scat is the term on the right hand side of (3.20).

Remarks:

• The most important property of I0
scat is the non-locality in time. This expresses

the fact that the scattering term has a memory of the whole history of the

states of the system, i.e. phonon scattering is nonlocal in time when a fully

quantistic viewpoint is taken.

• An easy calculation shows that if Fj(q) is either symmetric or antisymmetric,

i.e. Fj(q) = Fj(−q) or Fj(q) = −Fj(−q), then equation (3.21) (without the
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O(ε4)-term) is time reversible (i.e. the equation is invariant under the trans-

formation t→ −t, v → −v). Fj has such symmetry properties, for example, if

F is symmetric or antisymmetric and ψj is symmetric which is the case if ω

and Ẑ are symmetric.

3.2.2 The Case of a Constant Electric Field: The Barker-Ferry Equation

We now consider a linear potential V = −E ·x where E is the constant electric field.

In this case the pseudo-differential operator θ~[V ] becomes the differential operator

− 1
m∗
E · ∇v which means that the operator L is the Vlasov transport operator

L =
∂

∂t
+ v · ∇x −B · ∇v, B =

E

m∗
.

So we can again solve equation (3.19) by the method of characteristics and by similar

calculations as in the case of V ≡ const. we derive the transport equation

∂

∂t
wε + v · ∇xw

ε −B · ∇vw
ε = ε2IBscat +O(ε4) ,

where we have to replace D0
1 and D0

2 in the expression (3.20) by

DB
1 := eip

B
2
τ2−i ~

2m∗ p·qτwε
(
x− (v − ~

2m∗
q)τ − B

2
τ 2, v − ~

2m∗
(p+ q) +Bτ, t− τ

)
− eip

B
2
τ2+i ~

2m∗ p·qτwε
(
x− (v +

~

2m∗
q)τ − B

2
τ 2, v − ~

2m∗
(p− q) +Bτ, t− τ

)
,

DB
2 := eip

B
2
τ2−i ~

2m∗ p·qτwε
(
x− (v − ~

2m∗
q)τ − B

2
τ 2, v +

~

2m∗
(p− q) +Bτ, t− τ

)
− eip

B
2
τ2+i ~

2m∗ p·qτwε
(
x− (v +

~

2m∗
q)τ − B

2
τ 2, v +

~

2m∗
(p+ q) +Bτ, t− τ

)
.

Remark: In the physical literature the Ferry-Barker equation is quite well known

(see e.g.[6]). It is a transport equation for an electron in a constant electric field

with a scattering term describing the electron-phonon interaction for the space ho-

mogenous case. If we take a space homogenous function wε = wε(v, t) and then

integrate IBscat with respect to x we are led to a scattering operator which is struc-

turally analogous to the one appearing in the Ferry-Barker equation.
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We can write the scattering term also in pseudo-differential operator (PDO)

form. For this purpose we introduce

f(x, k) :=

∫
IR3
q

e−iqxF (q)ψk(q) dq,

δf(x, η, k) := f(x+ η, k)− f(x− η, k),

µf(x, η, k) := f(x+ η, k) + f(x− η, k).

Using this notation we obtain

IBscat =
1

Tr

∫ t

τ=0

∞∑
n=0

∑
~k∈INn+1

k1≤...≤kn+1

n+1∑
j=1

Re

{
e
i
~
λkj τδf(x,

~

2m∗i
∇v, kj)

((
e−βλ~k + e

−βλ
j
~k

)
δf(x− B

2
τ 2 − vτ, ~

2m∗i
∇v,2, kj)

+
(
e−βλ~k − e−βλj~k

)
µf(x− B

2
τ 2 − vτ, ~

2m∗i
∇v,2, kj)

)
wε(x− B

2
τ 2 − vτ, v +Bτ, t− τ)

}
dτ ,

(3.22)

where the notation ∇v,2 signifies that the PDO acts only on the second argument of

w.

3.3 Scaling limits

We shall assume in this chapter that Tr = 1. For the independent variables we

introduce the scaling

t = νt̃, x = γxx̃, v = γvṽ, q = αq̃ ,

and for the other occuring quantities we have

wε(x, v, t) = w̃ε(x̃, ṽ, t̃), ψk(q) = α−
3
2 ψ̃k(q̃),

E = AEẼ, F (q) = AF F̃ (q̃), λ~k = AP λ̃~k .

The scaling is chosen such that the set {ψ̃k} is an ONB of L2(IR3
q̃). Note that

[ψ(n)] = (m3)
n−1

2 , [q] = m−1, [E] = kg ms−2, [F ] = m3/2s−1.
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We introduce the 3 dimensionless parameters

ε := γvm
∗AF
AE

α
3
2 , σ :=

m∗γv
νAE

, κ := αγx.

Setting ν = γx
γv
, γx = ~

m∗γv
and γv = ~AE

m∗AP
we obtain the scaled equation

σwt + σv · ∇xw − E · ∇vw

= ε2

∞∑
n=0

∑
~k∈INn+1

k1≤...≤kn+1

n+1∑
j=1

∫ t
σ

τ=0

Re

{
eiσλkj τδf(κx,

κ

2i
∇v, kj)

((
e−βλ~k + e

−βλ
j
~k

)
δf(κx− σE

2
τ 2 − σvτ, κ

2i
∇v,2, kj)

+
(
e−βλ~k − e−βλj~k

)
µf(κx− σE

2
τ 2 − σvτ, κ

2i
∇v,2, kj)

)
wε(x− σE

2
τ 2 − σvτ, v + Eτ, t− στ)

}
dτ ,

(3.23)

where we have dropped “˜” for the scaled quantities. The scaling is chosen such

that σ is indirectly proportional to the strength of the electric field, κ is proportional

to the scaling parameter of q and ε is proportional to the strength of the electron-

phonon interaction.

Limit 1

Taking the limit σ → 0 (which means we consider strong electric fields) and ε2

σ
∼

const we formally obtain the limiting equation

wt + v · ∇xw −
1

σ
E · ∇vw =

ε2

σ

∞∑
n=0

∑
~k∈INn+1

k1≤...≤kn+1

n+1∑
j=1

∫ ∞
τ=0

Re

{
δf(κx,

κ

2i
∇v, kj)

((
e−βλ~k + e

−βλ
j
~k

)
δf(κx,

κ

2i
∇v, kj)

+
(
e−βλ~k − e−βλj~k

)
µf(κx,

κ

2i
∇v, kj)

)
wε(x, v + Eτ, t)

}
dτ.

(3.24)
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If we then take the limit κ→ 0 (small wave vectors q) the PDOs become differential

operators:

δf(κx,
iκ

2
∇v, kj)w(x, v, t) = iκ∇xf(0, kj) · ∇vw(x, v, t) +O(κ3),

µf(κx,
iκ

2
∇v, kj)w(x, v, t) = 2f(0, kj)w(x, v, t) +O(κ2).

Assuming that Fkj(q) = F (q)ψkj(q) is antisymmetric we conclude f(0, kj) = 0 and

in the limit δf dominates. Thus we derive

wt + v · ∇xw −
1

σ
E · ∇vw =

ε2κ2

σ

∫ ∞
τ=0

∇T
vM∇vw(x, v + Eτ, t)dτ (3.25)

with the matrix

M =
∞∑
n=0

∑
~k∈INn+1

k1≤...≤kn+1

n+1∑
j=1

(
e−βλ~k + e

−βλ
j
~k

)
Gkj ⊗Gkj ,

Gkj =

∫
IR3
q

F (q)ψkj(q)q dq .

Using the equality∫ ∞
τ=0

∫
IRξ

h(ξ + τ)h(ξ)dξ dτ =
1

2

(∫
IRξ

h(ξ)dξ

)2

,

we can proof easily that the scattering term in (3.25) is dissipative.

Limit 2

We obtain another simplified scattering term if we are only interested in the equation

for small times. We set σ = 1 (electric field strength of order one) and take first the

limit κ→ 0 which leads to the approximation

wt + v · ∇xw−E · ∇vw=ε2κ2

t∫
τ=0

cos(λkjτ)∇T
vM∇v,2w(x+

E

2
τ 2− vτ, v+Eτ, t− τ)dτ.

Taylor expansion with respect to t gives the equation

wt + v · ∇xw − E · ∇vw = ε2κ2t∇T
vM∇vw(x, v, t) + o(ε2κ2t). (3.26)

Taking only the leading term of this expansion gives a dissipative (Fokker-Planck)

scattering term.
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