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AAbstract  

The main principle in landslide hazard and risk assessment is that conditions of past and present 
landslide activity indicate future landslide occurrence. Hence, the probabilistic assessment of land-
slide hazard and risk requires a profound knowledge about spatiotemporal landslide activity over 
longer time spans and large areas. However, for most parts of the world such information is largely 
missing, because the identification of landslide activity still mainly relies on time-consuming and 
resource-intensive conventional methods (i.e. visual interpretation of optical data supported by 
comprehensive field surveys) and because all efforts to automate this landslide mapping procedure 
are hitherto limited to small areas and/or very short time periods or even single events. 

This thesis presents the development of an automated approach for efficient multi-temporal iden-
tification of landslides based on optical satellite-based remote sensing time series data. The 
developed approach allows for retrospective analysis of long-term landslide occurrence and for 
monitoring recent landslide activity for large areas. For this purpose, a comprehensive optical re-
mote sensing database has been created. To achieve best temporal resolution, data of multiple 
optical sensors are used simultaneously. In total, the database consists of 729 datasets acquired by 
Landsat-(E)TM, SPOT 1 & 5, IRS-1C (LISS3), ASTER, and RapidEye between 1986 and 2013 for a 
landslide-affected area of 12000 km2 in Southern Kyrgyzstan, Central Asia. 

The developed approach comprises automated multi-sensor pre-processing as well as knowledge-
based and uncertainty-related multi-temporal change detection methods to enable efficient and 
robust spatiotemporal identification of landslides in a highly heterogeneous multi-sensor time se-
ries database. The change detection builds on the analysis of temporal NDVI-trajectories, 
representing footprints of vegetation changes over time. Landslide-specific trajectories are charac-
terized by abrupt vegetation cover destruction and longer-term revegetation rates resulting from 
landslide-related disturbance and dislocation of the fertile soil cover. In combination with DEM-
derivatives the developed approach enables automated identification of landslides of different siz-
es, shapes and in different stages of development under varying natural conditions. 

The approach is applied to two scenarios. Firstly, the recent landslide activity (2009 – 2013) is iden-
tified by a RapidEye-based application of the approach in a 7500 km2 area. Secondly, a long-term 
analysis (1986 - 2013) is performed on the basis of the multi-sensor database in a highly landslide-
affected region of 2500 km2. In both cases, the number of automatically mapped landslides exceeds 
the existing landslide records of the Kyrgyz authorities by more than a factor of ten. In total, al-
most 2000 landslides are mapped, whereas the size of the landslides ranges from 50 m2 to 2.8 km2. 
The identified landslide occurrence shows clear spatial patterns with highest activity along the 
foothills of the Tien-Shan mountain ranges. Temporally, the long-term analysis reveals a peak of 
landslide activity for the years 2003 and 2004. In these years, the annual landslide rate was more 
than five times higher than the identified long-term average rate of 57 landslides per annum. These 
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spatiotemporal activity patterns are evaluated against the morphological setting (predisposing fac-
tor) and the temporal variations of the precipitation (triggering factor), exemplarily showing the 
suitability of the achieved results to determine the individual or combined influence of specific 
landslide-causing factors in an analyzed region. For the derivation of the recent landslide activity, 
the approach takes advantage of the high spatial (5 m) and temporal resolution (acquisition inter-
vals of up to several days/weeks) of the RapidEye data, allowing identification of small landslides 
that are often pre-cursors of subsequent more hazardous landslides. Thus, the approach can also 
provide valuable information for early warning applications in the context of a regular landslide 
monitoring system. 

Overall, the presented approach identifies spatiotemporal landslide activity patterns to improve the 
regional landslide process understanding. This builds an important step to realize probabilistic 
landslide hazard and risk assessments in order to contribute to the mitigation of the landslide con-
sequences for the local population of remote mountainous regions such as Southern Kyrgyzstan. 
Moreover, the multi-sensor applicability and uncertainty-related landslide change detection of the 
approach provides a great potential to be applied to other global landslide hotspots (e.g. South-
East Asia and South America) as well as to new optical sensors (e.g. Sentinel-2), opening up new 
opportunities to establish a widely applicable large area landslide monitoring system. 
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ZZusammenfassung 

Zur Gefahreneinschätzung von Hangrutschungen greift man auf das grundlegende Prinzip zu-
rück, dass zukünftige Hangrutschungen den gleichen Bedingungen unterliegen wie vergangene 
und gegenwärtige. Eine Voraussetzung für solche probabilistischen Gefährdungseinschätzungen 
sind daher fundierte Kenntnisse der raumzeitlichen Hangrutschungsaktivität über möglichst lange 
Zeiträume und große Gebiete. Allerdings fehlt solches Wissen in den meisten Regionen der Erde, 
da die Erfassung der Hangrutschungsaktivität nach wie vor meistens durch zeit- und arbeitsauf-
wendige Methoden erfolgt (d. h. visuelle Interpretation von optischen Fernerkundungsdaten und 
umfassenden Geländearbeiten) und weil Ansätze diese Hangrutschungsidentifizierung zu automa-
tisieren sich bisher auf kleine Untersuchungsgebiete und/oder auf kurze Zeiträume beschränken. 

In dieser Dissertation wird eine automatische Methode zur effizienten Hangrutschungsidentifizie-
rung auf Basis von Zeitreihen optischer Satellitenfernerkundungsdaten entwickelt. Diese Methode 
erlaubt großflächig eine rückwirkende Analyse langzeitlichen Hangrutschungsvorkommens und 
ein Monitoring rezenter Hangrutschungsaktivität. Zu diesem Zweck wurde eine umfangreiche 
Datenbank optischer Fernerkundungsdaten erstellt, die, um eine möglichst hohe zeitliche Auflö-
sung zu erreichen, Daten mehrerer optischer Sensoren einschließt. Insgesamt enthält die Daten-
bank 729 Datensätze sieben verschiedener optischer Satellitensysteme (Landsat-(E)TM, SPOT 1 & 
5, IRS-1C (LISS3), ASTER und RapidEye). Die Aufnahmen erstrecken sich über einen Zeitraum 
von 1986 bis 2013 und über ein 12000 km2 großes von Hangrutschungen betroffenes Gebiet im 
südlichen Kirgisistan (Zentralasien). 

Die entwickelte Methode umfasst automatische multisensorale Vorverarbeitungsschritte sowie 
wissensbasierte und Unsicherheiten einbeziehende Algorithmen der multitemporalen Verände-
rungsdetektion um eine effiziente und robuste raumzeitliche Identifizierung von Hangrut-
schungen auf Basis einer stark heterogenen multisensoralen Datenzeitreihe zu ermöglichen. Die 
Algorithmen zur Veränderungsdetektion basieren auf der Analyse von zeitlichen NDVI-Trajekto-
rien, welche ein Abbild zeitlicher Vegetationsveränderungen darstellen. Hangrutschungstypische 
Muster sind gekennzeichnet durch abrupte Vegetationszerstörung und einen langsamen Wieder-
bewuchs, da durch die Hangrutschungen fruchtbarer Oberboden gestört oder gar verlagert 
worden ist. In Verbindung mit reliefbeschreibenden Parametern erlaubt der entwickelte Ansatz 
somit die automatische Identifizierung von Hangrutschungen unterschiedlicher Größe, Form und 
Entwicklungsstadien unter verschiedenen natürlichen Bedingungen. 

Die Methode wird auf zwei Szenarien angewendet. Zunächst wird die rezente Hangrutschungs-
dynamik auf Basis der RapidEye-Daten für ein Gebiet von 7500 km2 untersucht. Anschließend 
erfolgt eine langzeitliche Analyse (1986-2013) eines 2500 km2 großen stark von Hangrutschungen 
betroffenen Gebietes mittels der multisensoralen Datenbank. In beiden Fällen übersteigt die An-
zahl der automatisch identifizierten Hangrutschungen jene offizieller kirgisischer Berichte um 
mehr als das Zehnfache. Insgesamt sind annähernd 2000 Hangrutschungen mit einer Größe von 
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50 m2 bis 2.8 km2 identifiziert worden. Das erfasste Hangrutschungsvorkommen zeigt deutliche 
räumliche Muster mit höchster Aktivität entlang der Hänge des Tien-Shan Gebirgsvorlandes. 
Zeitlich betrachtet hat die langzeitliche Analyse ein Aktivitätsmaximum in den Jahren 2003 und 
2004 ergeben. Diese Jahre waren durch eine mehr als fünffach erhöhte Hangrutschungsaktivität 
gegenüber dem langjährigen Mittel von 57 Hangrutschungen gekennzeichnet. Diese raumzeit-
lichen Hangrutschungsaktivitätsmuster werden in der Dissertation der morphologischen Beschaf-
fenheit (ursächlicher Faktor) und den zeitlichen Variationen des Niederschlages (auslösender 
Faktor) gegenübergestellt. So wird exemplarisch die Eignung der erzielten Identifizierungs-
ergebnisse gezeigt, einzelne oder zusammenhängende Einflüsse von Hangrutschungen verursa-
chenden Faktoren für ein Untersuchungsgebiet quantitativ zu bewerten. Für die Ableitung rezenter 
Hangrutschungsaktivität wird auf die RapidEye-Daten zurückgegriffen, die durch ihre hohe 
räumliche (5 m) und zeitliche Auflösung (Datenwiederholungsrate von bis zu wenigen Tagen und 
Wochen) eine Identifizierung von kleinen Rutschungen als Vorboten von größeren gefährlicheren 
Hangrutschungen zu ermöglichen. Dadurch kann die Methode innerhalb eines regelmäßigen 
Monitorings auch für Frühwarnsysteme nützliche Informationen liefern. 

Die entwickelte Methode erlaubt die identifizierung von raumzeitliche Hangrutschungsaktivitäts-
muster, welche zur Verbesserundie des regionalen Hangrutschungsprozessverständnis beitragen. 
Damit ist ein wichtiger Beitrag geschaffen zur Realisierung von Hangrutschungsgefährdungs-
einschätzungen, und damit zur potentiellen Reduzierung des Hangrutschungsrisikos für die lokale 
Bevölkerung von abgelegenen Gebirgsregionen wie im Falle Südkirgistans. Des Weiteren hat die 
Methode durch ihre sensorübergreifenden und Unsicherheiten einbeziehenden Analysealgorith-
men ein großes Potential auf weitere hangrutschungsgefährdete Gebiete (wie bspw. Südostasien 
oder Südamerika) sowie auf neue optische Sensoren (z. B. Sentinel-2) angewandt zu werden, was 
Möglichkeiten für ein vielseitig und großflächig anwendbares Monitoringsystem eröffnet. 
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11 Rationale and Structure 

Landslides are a worldwide natural hazard causing thousands of fatalities and severe monetary loss-
es every year (Highland & Brobowsky 2008; Nadim et al. 2006; Petley 2012). To predict and thus 
reduce landslide risk in the future, a profound knowledge about the past landslide activity is of ut-
most importance (Corominas & Moya 2008; Fell et al. 2008; Guzzetti et al. 2012; Varnes 1984). 
These records about past landslide activity have to be as complete as possible in time and space, in 
order to derive spatial and temporal probabilities of landslide occurrence as a crucial prerequisite of 
landslide hazard and risk assessment (Corominas et al. 2014; Guzzetti et al. 2005; van Westen et al. 
2008). However, most regions, especially those with most fatalities in Asia (Petley 2010; Petley 2012), 
struggle with the limited availability of such comprehensive landslide records, because conventional 
mapping of landslides is an extremely time-consuming and labor-intensive task (Galli et al. 2008; 
Guzzetti et al. 2012; Wieczorek 1983). Thus, efficient strategies are needed for spatiotemporally pre-
cise mapping of landslide occurrence over large areas, which allow a retrospective derivation of 
long-term landslide activity as well as a regular monitoring of recent landslide activity. 

In this context, the objective of the thesis is the development of a methodology enabling the utili-
zation of long-available satellite remote sensing data (since the 1980s) for the automated analysis of 
the spatiotemporal landslide activity over large areas and long time spans. To be most precise in 
determining the temporal occurrence of landslides, each suitable dataset, regardless of the acquir-
ing sensor, has to be integrated in the landslide analysis during the complete time span of satellite 
data availability. Consequently, this leads to comprehensive remote sensing time series databases 
of irregular temporal resolution and variable sensor characteristics. The mapping of landslides in 
such heterogeneous time series databases requires the development of efficient and robust meth-
ods for data pre-processing and multi-temporal landslide identification. The desired outcome of 
such an analysis is a multi-temporal landslide inventory, containing the location, extent and time 
of landslide occurrence, which serves as a basis for large-area probabilistic landslide hazard and 
risk assessment. 

The thesis comprises five main chapters. Chapter I gives an overview of the general research back-
ground, presents the specific research framework and poses main research objectives and research 
questions. Chapters II-IV present consecutive stand-alone manuscripts, whose sub-objectives con-
tribute to the overall thesis. Chapter II deals with the geometric normalization of the multi-sensor 
time series database, Chapter III with the monitoring of spatiotemporal landslide activity using 
RapidEye imagery, and Chapter IV with the derivation of long-term landslide activity based on 
multi-sensor optical satellite images. Chapter V discusses the overall research questions, consider-
ing the insights of Chapters II-IV. Figure I-1 illustrates the outline of the thesis and shows the main 
contributions of each chapter, whereas specific contributions and objectives of the individual 
manuscripts are presented in more detail in Section I-4. 
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Figure I-1. Structure of the thesis. Chapters II-IV are subdivided into two parts: (top) method objectives and (bottom) application ob-
jectives (for more detail see Section I-4). 

22 Research Background 

The research background provides an overview of the landslide research in general (Section I-2.1) 
and the satellite-based remote sensing landslide investigations in particular (Section I-2.2). 

2.1 Towards Landslide Hazard and Risk Assessments 
This section summarizes the main concepts of landslide analysis and the related nomenclature the 
thesis is based on. More detailed information about further aspects of landslide research is provid-
ed by comprehensive overview articles (Corominas et al. 2014; Cruden 1993; Fell et al. 2008; 
Highland & Brobowsky 2008; Varnes 1978). 

2.1.1 Landslide Processes and Landslide Inventory Types 
Landslide is a generic term defining the downslope movement of a mass of rock, debris, or earth 
under the influence of gravity. Landslides can be classified into different types, based on a combi-
nation of the type of material (rock, soil, earth, mud, debris) and the type of movement (fall, 
topple, slide, spread, or flow). A complex landslide represents a slope failure in which one of the 
landslide types is followed by another type (or even types), such as a rock fall-debris flow. Land-
slides are further classified as deep-seated or shallow, depending on the type of movement and the 
depth of the disruption. A reactivation defines a landslide failure that occurs in place of a former 
landslide. A fresh failure is often specified as a landslide that occurs at a slope with missing signs of 
former failures. More information about the widely accepted definitions on landslide types and 
processes can be found in Cruden (1993), Cruden & Varnes (1996), Highland & Brobowsky (2008), 
and Varnes (1978). In this thesis, the generic terms “landslide”, “mass movement”, and “slope fail-
ure” are used interchangeably. 
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A landslide is a result of the interplay of predisposing and triggering factors. Predisposing factors – 
also called causative factors, environmental factors, and terrain factors – are characteristics of a 
slope determining the shear strength of the material. Commonly accepted predisposing factors are 
geology (lithological and structural properties), morphology (e.g. slope gradient, slope aspect, cur-
vature), and land use (mainly described by the state and type of the vegetation surface cover). 
Predisposing factors are usually considered as static1 conditions, defining a lower or higher proba-
bility of landslides. In contrast, triggering factors change the conditions on very short notice and 
set off the actual failure by exceeding a threshold where the shear stress is higher than the shear 
strength of the material2. Most frequent landslide triggers are precipitation (rainfall of different 
intensity and duration, snow melt, change of groundwater level) and seismic shaking (earthquakes 
of different magnitude peak ground acceleration) as well as volcanic activity (Clague 2013; Coro-
minas et al. 2014; Corominas & Moya 2008; Guzzetti et al. 2012). 

A landslide inventory contains the location of past landslides and their characteristics. The loca-
tion is usually provided as point-based coordinates or as spatially explicit polygons. Where known, 
landslide characteristics include the date of occurrence, the landslide type, state of activity, dimen-
sion (e.g. area, width, length, volume, and depth), consequences (e.g. damage, fatalities), etc. The 
sets of recorded characteristics vary between the inventories due to different properties of the 
study areas as well as to different spatial scales and methods used to create the inventory. Land-
slide inventories can be differentiated into historical, event-based, seasonal and multi-temporal 
inventories (Fell et al. 2008; Guzzetti et al. 2012; Hervás 2013; Malamud et al. 2004; Van Den 
Eeckhaut & Hervás 2012; van Westen et al. 2008). 

Historical inventories comprise the cumulative effect of landslides over a long period from 
tens to thousands of years. They usually comprise major landslides or landslide-prone slopes, 
whereas the age of the landslides is either unknown or given in relative terms, such as recent, 
old or historic (Murillo-Garcia et al. 2015; Wieczorek 1983). 

Event inventories contain landslides that have been triggered by a single major triggering 
event such as intense tropical rainstorms or large earthquakes. Prominent landslide triggering 
events were the typhoon Morakot (Taiwan) and the Wenchuan earthquake (China). The ty-
phoon Morakot hit central Taiwan on 7 August 2009 and triggered more than 20000 
landslides that caused several hundreds of fatalities (Lin et al. 2011). The Wenchuan earth-
quake on 12 May 2008 with a magnitude of 7.9 Mw was one of the deadliest earthquakes in 
the recent past, whereas almost one third of the approximately 80000 fatalities have been 
caused by over 60000 triggered landslides (Huang & Fan 2013). 

Seasonal inventories contain landslides related to multiple triggering events within one season 
of landslide activation. Such inventories are required for areas in which several events per sea-
son are likely to occur such as Southeast Asia, where landslide-prone areas are affected by 
several typhoons every year (Weng et al. 2011). For both, event and seasonal inventories the 
date of landslide occurrence is usually assigned to the date of the triggering event. 

                                                           
1 The state of the predisposing factors is static to a certain extent only (depending on the observed time scale). Some 
factors can be considered as quasi-static (e.g. geology) and others are more dynamic such as human interference, which 
often affects the land use or soil properties of a slope. 
2 Many landslides also occur without the knowledge about distinct triggers. In such cases, slowly evolving changes of the 
conditions of the slope lead to a tipping point setting off the failing of the slope (Clague 2013). 
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Multi-temporal inventories are created by repeated documentation of landslides independent-
ly of specific triggering events during a longer period of time. The dates of occurrence are 
either precisely known or assigned to the time period between repeated documentation. 
Thus, these inventories provide detailed information about the past spatiotemporal landslide 
activity of a region (Galli et al. 2008; Saba et al. 2010). 

22.1.2 Landslide Inventories as Requirement for Subsequent Landslide Investigations 
“The past and present are keys to the future” (Varnes 1984) is a central principle in landslide re-
search, expressing that future landslides occur under same or similar conditions that resulted in 
landslide failures in the past (Corominas & Moya 2008; Fell et al. 2008; Guzzetti et al. 2012). Thus, 
landslide inventories, representing the past and present landslide activity of a certain area, are the 
main prerequisite and the most important input dataset for the subsequent assessment of landslide 
susceptibility, hazard and risk (Cascini 2008; Corominas et al. 2014; Fell et al. 2008; Highland & 
Brobowsky 2008; van Westen et al. 2008). Figure I-2 illustrates the main steps from a landslide in-
ventory to the prediction of landslide risk. 

 
Figure I-2. Schematic representation of landslide risk assessment. 

For the assessment of landslide susceptibility only predisposing factors are taken into account. 
For this purpose, the different factors and their characteristic combinations are analyzed against 
the spatial distribution of past landslide activity in order to map susceptible areas with the poten-
tial for future landslides. If available, this susceptibility assessment is performed for different sizes 
and types of landslides (Corominas et al. 2014; Fell et al. 2008; Guzzetti et al. 2005).

Landslide hazard assessment relates the temporal variations of landslides and triggering factors to 
determine the conditions that led to a certain frequency of landslides of different types and sizes 
(temporal landslide probability). In combination with the spatial distribution of the predisposing 
factors, a landslide hazard map shows the probability that a landslide of a certain type and intensity 
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will develop at a certain location in a given period of time (Corominas et al. 2014; Fell et al. 2008; 
Guzzetti et al. 2005; Peruccacci et al. 2012). 

Landslide risk combines the probability information from a landslide hazard map with an analysis 
of all possible consequences (e.g. property damage, casualties, and loss of service). For this pur-
pose, the elements at risk (e.g. infrastructure and population) are evaluated against their 
vulnerability to potential landslides. As a result landslide risk maps show for example how likely 
buildings will be destroyed or casualties can be expected in case of a landslide of a certain intensity, 
extent and downslope movement (Corominas et al. 2014; Fell et al. 2008; van Westen et al. 2008). 

To allow comprehensive analysis of the conditions in which past landslides have occurred, the un-
derlying landslide inventory is required to provide temporally and spatially precise information 
about the landslide failures for the longest possible period of time (Corominas & Moya 2008; 
Guzzetti et al. 2005; Guzzetti et al. 2012). However, despite their importance, such multi-temporal 
landslide inventories are largely unavailable or incomplete in space and time for most parts of the 
world (Guzzetti et al. 2012; Nadim et al. 2006). The main reason for this incompleteness in multi-
temporal inventory availability is the high mapping effort, which such inventories usually require. 
Conventional mapping methods comprise the visual interpretation of high-resolution optical im-
agery and the mapping based on field surveys (Section I-2.1.3). 

22.1.3 Landslide Mapping – Conventional Methods 
Field-based mapping is commonly used to analyze single landslides in areas that are easy to access 
and where landslides have the potential to threaten local infrastructure and population. Field map-
ping contributes to the detailed characterization of the landslide process such as the description of 
material involved and movement type of the landslide. However, the suitability of the field-based 
methods for large area landslide mapping is hampered by the high mapping effort and the difficulties 
to access all parts of a study area. In addition, the detailed spatial delineation of the landslide is also 
very difficult, because the relief often impedes the ability to investigate all parts of a larger landslide 
from the viewing position at the bottom of a slope. Moreover, without additional information, the 
date of landslide occurrence is not precisely obtainable by visiting landslides after the failure and thus 
field-based mapping is inconvenient to map the temporal variations of the landslide activity retro-
spectively. In the context of landslide inventory mapping of large areas, the field-based methods are 
mainly used to validate other mapping procedures such as the visual or automated interpretation of 
remote sensing data (Galli et al. 2008; Guzzetti et al. 2012; Wieczorek 1983). 

For several decades landslide inventory mapping has been largely based on the visual interpretation 
of aerial photographs or more recently of high resolution optical satellite imagery. Landslide failures 
usually disturb the Earth's surface, which leads to characteristic changes in surface cover and mor-
phology that can be used as diagnostic features for landslide identification in panchromatic, 
multispectral and stereoscopic optical imagery. Especially fresh failures show distinct signs of surface 
disturbances that can be clearly distinguished from the undisturbed usually vegetated surroundings. 
As a result, optical imagery is suitable for the delineation of the outline of a landslide. If available, 
archived imagery can contribute to the retrospective analysis of spatiotemporal landslide activity by 
mapping the landslide failures between subsequent acquisitions. In practice, the labor-intensive and 
time-consuming visual interpretation hinders the multi-temporal mapping of landslides over large 
areas. However, optical imagery is often used to prepare a one-time landslide mapping based on a set 
of aerial photographs or high-resolution satellite data that have been acquired in the same period of 
time (Guzzetti et al. 2012; Michoud et al. 2010; van Westen et al. 2008). 
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22.2 Satellite Remote Sensing for Large-Area Landslide Investigations 
This section provides a general insight in the remote sensing-based landslide research. The focus 
lies on satellite-based approaches that have the potential to contribute to large-area investigations 
in the context of landslide inventory mapping as a requirement for regional landslide risk assess-
ments (cf. Section I-2.1). Although this thesis solely builds on optical satellite data (Section 2.2.2), 
the potential contribution of using radar remote sensing is also discussed (Section 2.2.1). For an 
overview of landslide applications based on other platforms (terrestrial and airborne remote sens-
ing) or on how remote sensing techniques contribute to the characterization of predisposing or 
triggering factors there are comprehensive review articles: Guzzetti et al. (2012), Jaboyedoff et al. 
(2012), Michoud et al. (2010), Scaioni et al. (2014), Stumpf et al. (2010), Wasowski & Bovenga 
(2014), and van Westen et al. (2008). 

2.2.1 Radar Data 
Synthetic Aperture Radar (SAR) is widely used for landslide investigations, mainly focusing on the 
measurement of small surface deformations in the context of slow-moving landslides. SAR is an 
active system that records the phase and amplitude of the electromagnetic signal backscattered 
from the Earth’s surface. Using two or more SAR images allows a generation of interferograms, 
representing images of the phase difference between two SAR images (Interferometric SAR - In-
SAR). For multi-temporal acquisitions the phase difference is a result of the topography, 
roughness, atmospheric effects, noise, and the possible ground displacement (e.g. due to slow-
moving landslides) that occurred between the SAR image acquisitions along the line of sight 
(Scaioni et al. 2014; Wasowski & Bovenga 2014). Differential InSAR (DInSAR) techniques allow 
the extraction of the displacement component in an accuracy of several millimeters to centimeters 
by eliminating the other effects (Cascini et al. 2009; Hilley et al. 2004; Tofani et al. 2013). An exten-
sive overview of DInSAR approaches used for the investigation of slow-moving landslides can be 
found in: Colesanti & Wasowski (2006), Delacourt et al. (2007), Scaioni et al. (2014), and 
Wasowski & Bovenga (2014). 

In case of more rapidly moving landslides, their strong surface disturbances lead to a loss of coher-
ence between the analyzed SAR images. This loss of coherence prevents the DInSAR analysis from 
providing meaningful results, and thus impedes the determination of the local surface displace-
ments (Wasowski & Bovenga 2014). Recently published case studies use dual or full polarization 
SAR images to map rapid landslides after their failure. For this purpose, these studies analyze the 
dominant scattering mechanisms of the surface cover, which in case of a landslide is assumed to 
change from volume scattering (caused by the natural vegetation before failure) to surface scatter-
ing (caused by the bare soil after failure). However, so far, these studies have been designed to 
investigate the potential of polarimetric SAR data and thus have only been applied to specific test 
cases (Czuchlewski et al. 2003; Li et al. 2014; Plank et al. 2015; Shibayama & Yamaguchi 2014; Shi-
mada et al. 2014; Yonezawa et al. 2012). 

Main contributions to landslide research: 

· Identification of very slow moving landslides or landslide parts. 
· Measured displacement rates provide information about the state of activity of already known 

landslides or can indicate areas of potential onsets of rapid landslides. 
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22.2.2 Optical Data 
In optical remote sensing, surface materials are differentiated by their spectral reflectance signa-
ture. In case of a landslide, this spectral signature is ambiguous and depends on the material that is 
exposed after a landslide failure. Strictly speaking, since these materials are not unique properties 
of landslides, the direct spectral identification of landslides is impracticable. Nevertheless, due to 
the high spectral and morphological contrast between landslide-related disturbances and their 
vegetated surroundings, landslides can still be clearly identified in optical imagery (Guzzetti et al. 
2012; Metternicht et al. 2005; Roessner et al. 2005). As a result, a wide range of approaches have 
been published, dealing with the (semi-)automated detection of landslide failures in optical satel-
lite images (recent review articles are: Guzzetti et al. (2012) and Scaioni et al. (2014)). Often, either 
the absence of the vegetation cover (mono-temporal approaches) or the loss or disturbance of veg-
etation cover (multi-temporal approaches) is used as the main diagnostic feature for landslide 
identification. Moreover, these approaches implement, albeit to different degrees, information 
about the local texture, shape properties of derived objects, and external data such as derivatives of 
a digital elevation model. This way, they are capable of the identification and the delineation of the 
surface cover disturbances that have been caused in the process of a landslide failure. Typical opti-
cal data used for the landslide investigations represent multi-spectral and panchromatic satellite 
remote sensing data with spatial resolutions from 30 m up to sub-meter resolution. Section I-2.2.3 
provides a detailed overview of the existing approaches and shows how they contribute to land-
slide inventory mapping for different applications and scales. 

A secondary field of application using optical data is the feature tracking method. Optical feature 
tracking aims at the precise comparison of corresponding areas between multi-temporal optical 
images. The displacements of these corresponding areas provide information about the rates of 
movement for targets such as slow-moving landslides. For optical satellite images, the minimum 
size of detectable displacement amounts approximately to 1/5 of the original pixels size, which is 
less detailed than the resolvable displacement achieved by most DInSAR approaches (Delacourt et 
al. 2007; Scaioni et al. 2014). 

Main contributions to landslide research: 
· Retrospective identification and delineation of landslides after failure. 
· Potential for efficient landslide inventory generation for large areas. 

2.2.3 Optical Satellite-Based Approaches for (Semi-)Automated Landslide Inventory Mapping 
Due to the wide and long-term availability of optical remote sensing data as well as its proved poten-
tial to automate the landslide identification process (Section I-2.2.2) a large variety of optical remote 
sensing-based landslide mapping approaches have been published. This section provides an overview 
of the state of the art methods and identifies the needs for further methodological developments. 

State of the Art 
The developed (semi-)automated approaches can be loosely grouped by the geographical element 
(pixel or object) and by the number of data acquisitions (mono- or bi-temporal) used for landslide 
identification. An extensive list is given in the Table App-1. 

The pixel-oriented approaches label areas that have been affected by landslide failures (e.g. Borghuis 
et al. 2007; Cheng et al. 2004), but are inadequate to relate the pixel-based results to individual slope 
failures. Thus, they do not allow the assessment of landslide dimensions and frequencies, which are a 
crucial requirement for subsequent landslide hazard and risk analysis. In recent years, an increasing 
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number of landslide mapping approaches has been published using object-oriented analysis (OOA). 
These approaches allow the derivation of these landslide dimensions and frequencies by assigning 
single objects to individual landslides (e.g. Barlow et al. 2006; Martha et al. 2010) or landslide parts 
(e.g Hölbling et al. 2015). Moreover, OOA allows the integration of contextual information (e.g. ob-
ject direction in relation to local relief) to further improve the mapping reliability. 

Mono-temporal approaches use single data acquisitions to identify preceding landslides based on 
supervised or unsupervised classification algorithms (e.g. Aksoy & Ercanoglu 2012; Stumpf & 
Kerle 2011). Since such approaches restrict their analysis to data of a single acquisition date, they 
cannot provide any information about the date of landslide occurrence. For this reason, the prepa-
ration of historical inventories is the most common application for mono-temporal approaches 
(e.g. Dou et al. 2015). However, some studies propose mono-temporal landslide identification also 
for event inventory mapping (cf. Table App-1). In such cases, a dataset acquired right after a land-
slide triggering event (post-event image) serves as the basis for landslide mapping, whereas the 
date of the detected landslides is assigned to the date of the triggering event. This usually results in 
an overestimation of the event-related landslide activity, because landslides prior to the triggering 
event might be mistaken as event-related. 

Bi-temporal approaches identify landslides that have been occurred between the acquisitions of a 
bi-temporal image pair. They use analytical change detection algorithms (e.g. Mondini et al. 2011) 
or compare mono-temporal landslide classifications from both images (e.g. Lodhi 2011). If a bi-
temporal image pair consists of image acquisitions right before and right after a landslide trigger-
ing event, these approaches are very suitable for event-based landslide inventory mapping (e.g. 
Parker et al. 2011; Tsai et al. 2010). 

Research Gap 
Despite the vast variety of developed landslide mapping approaches, little effort has been under-
taken to promote automated multi-temporal inventory mapping, which is surprising, since it 
represents the most important requirement for landslide hazard and risk assessment (Sec-
tion I-2.1). Multi-temporal inventories require the continuous mapping of the spatiotemporal 
landslide occurrence over a long period of time. So far, Martha et al. (2012, 2013) have applied a bi-
temporal approach to subsequent image pairs of a multi-temporal database of annual data cover-
age from 1998 to 2009 for an area of 81 km2 in the Indian Himalaya. This small case study shows 
the basic potential of existing bi-temporal approaches in the context of multi-temporal landslide 
mapping. However, there is still a strong need for an approach that allows: 

· automated multi-temporal landslide mapping  
· for large areas 
· over longest possible time periods, 

which enables the derivation of multi-temporal inventories 

· of short update intervals 
· and object-based results. 

Such an approach requires a multi-temporal database of a large number of satellite remote sensing 
archive data as well as new methodological developments, which enable a robust multi-temporal 
landslide mapping by making efficient use of such comprehensive time series databases. 
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33 Research Framework 

The thesis concentrates its methodological developments and spatiotemporal landslide investiga-
tions on a landslide-affected region in Southern Kyrgyzstan. To illustrate the research framework 
of the thesis, Section I-3 describes study area, the case areas used throughout the chapters, and lists 
the spatial data on which the methodological developments are based on. 

3.1 Study Area 

Natural Setting and Landslide Situation 
Kyrgyzstan is located in Central Asia, a region of high tectonic activity (Reigber et al. 2001; Zubo-
vich et al. 2010). Central Asia is part of the Indian-Eurasian collision zone, leading to the high 
mountain ranges of the Himalaya, Pamir and Tien Shan. Kyrgyzstan is almost completely covered 
by the W-E trending Tien Shan mountain ranges, whereas 90% of the country is located above 
1000 m.a.s.l with peak elevations above 7000 m.a.s.l. This active mountain building frequently 
causes extreme natural events such as earthquakes, landslides, avalanches and floods. Due to the 
scarce living space in this mountainous country, the local population and infrastructure are often 
exposed to these extreme natural processes. 

In this context, landslides represent one of the major natural hazards. For Kyrgyzstan more than 
4500 landslide failures have been recorded, whereas the vast majority is concentrated in Southwest 
Kyrgyzstan along the eastern rim of the Fergana Basin (Ibatulin 2011). Between 1990 and 2009, 
landslides caused 421 fatalities and resulted in an annual average of economic loss of USD 2.5 mil-
lion (Torgoev et al. 2008). 

Landslides mainly occur in weakly consolidated sediments of the foothills of the high mountain 
ranges in elevations from 700 to 2000 m.a.s.l. A wide range of different landslide types are com-
mon in Southern Kyrgyzstan, whereas most of them occur in form of deep-seated rotational and 
translational slides in Quaternary and Tertiary sediments consisting of loess, sand- and siltstones, 
clays, loams and carbonates. Often, they also occur as complex landslides combining different 
types within an individual failure. Their size varies between several hundred and several million 
square meters, whereas large events of more than one million cubic meters of displaced material 
are a frequent phenomenon. The peak of landslide occurrence is observed in spring and early 
summer, however the annual landslide rates vary greatly. Most landslides are not directly caused by 
distinct major triggering events, but represent a result of complex interactions between geological, 
tectonic, seismic and hydrogeological factors, which are not well understood yet. Because of the 
high complexity of the landslide phenomena and their spatiotemporally sporadic occurrence over 
large areas, government agencies are very interested in the development of efficient and objective 
methods for improved landslide hazard and risk assessment in order to minimize casualties and 
economic loss (Golovko et al. 2015; Ibatulin 2011; Roessner et al. 2005; Wetzel et al. 2000). 
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Landslide Mapping in Kyrgyzstan 
Up to now, the assessment of landslide hazard in Kyrgyzstan has relied on landslide inventories 
that have been manually prepared by local authorities. Starting in the 1950s, comprehensive field 
surveys have been undertaken to investigate landslides in most hazardous areas such as the 
Mailuu-Suu valley, which has been used for uranium mining and processing for the Soviet nuclear 
program and thus involves a great risk to the local population in case of landslide failures (Haven-
ith et al. 2006). From the 1970s on, these field-based surveys have been accompanied by a more 
systematic landslide mapping based on the visual interpretation of aerial photographs (Yerokhin 
1998). However, since the independence in 1991, Kyrgyz landslide investigations have been reduced 
to the vicinity of larger settlements due to a shortage of funding (Golovko et al. 2015). After 2002, 
even those efforts have further diminished and the landslide mapping basically relies on landslide 
reports from the local population. Moreover, most existing landslide information is available as 
point-based coordinates of limited geographical accuracy (Section I-3.2), which further constrains 
their use for subsequent analyses (Golovko et al. 2015). 

Thus, Kyrgyzstan lacks a systematic landslide database, especially since its independence. Howev-
er, such a database is indispensable for landslide hazard and risk assessment, since it provides 
information about the spatial and temporal variations of past landslide activity, on which such as-
sessments are built on (Section I-2.1). Hence, this region could particularly benefit from 
methodological developments that allow a systematic assessment of spatiotemporal landslide ac-
tivity, especially for the last two to three decades. 

Case Areas 
Figure I-3 gives an overview of the study area and the case areas this thesis is based on. The study 
area is located at the eastern rim of the Fergana Basin and is approximately 12000 km2 in size. The 
figure also depicts known landslide failures (see Section I-3.2). The black dots represent landslides 
recorded by the systematic visual interpretation of aerial photographs with latest acquisitions in 
1986, and the pink dots the landslide points available through field surveys and population reports 
since 1986. 

The chapters of this thesis address different parts of the study area. In Chapter II a geometric pre-
processing strategy is developed and applied to the remote sensing database (Section I-3.2) availa-
ble for the complete study area. Chapter III and IV focus on the methodological developments 
towards a multi-temporal landslide mapping procedure enabling monitoring of recent landslide 
occurrence (Chapter III) and retrospective analysis of long-term spatiotemporal landslide activity 
(Chapter IV). For this purpose, these chapters address different subsets of the study area, which 
have been selected in respect of data availability and past landslide activity. This way, the methods 
of the thesis are developed, validated and applied to different parts of the study area and different 
remote sensing data allowing a comprehensive evaluation of the developed approach and achieved 
results of the thesis. 
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Figure I-3. Study area and case areas of individual Chapters II-IV. 
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33.2 Spatial Database 

Remote Sensing Data 
A multi-temporal database of optical remote sensing data has been established for the time period 
between 1986 and 2013. To achieve highest temporal resolution during these 27 years, the database 
combines images of seven optical sensors, i.e. SPOT 1 & 5, IRS1-C LISSIII, Landsat TM & ETM+, 
ASTER and RapidEye. These sensors vary in spatial resolution, ranging from 30 m for Landsat and 
5 m for RapidEye data. They also cover different spectral ranges by varying spectral bands and res-
olutions, whereas all of them comprise the green, red and near-infrared bands as the lowest 
common spectral denominator. The imagery is obtained from the data providers as standard data 
products, which are radiometrically calibrated (at-sensor radiance) and geometrically registered 
(band-to-band co-registered and orthorectified3). In general, the datasets represent imagery from 
existing data archives. However, for the RapidEye data since 2011, the RESA (RapidEye Science Ar-
chive) data grant (project ID: 424) has allowed a pre-defined tasking of data acquisition during the 
landslide affected season, which resulted in a large amount of spatially and temporally high resolu-
tion data for the studied region (Sections II-2.2, III-2.2). Table I-1 provides an overview of the 
sensors used in this thesis and lists their sensor-specific characteristics and the amount of data 
available for the thesis. 

In total, the database consists of 729 datasets. The temporal resolution varies between six years at 
the beginning and two weeks at the end of the time series, whereas since 1996 at least annual data 
coverage could be achieved with a small data gap in 2006. Due to the large study area and the 
mostly smaller swath of the remote sensing data (Table I-1), the temporal resolution varies also 
throughout the study area. Further details about the spatiotemporal data availability are given for 
the respective databases used in Chapters II-IV. 

This multi-sensor time series database of irregular temporal and spatial resolution as well as spa-
tially inconsistent data coverage builds the framework for the methodological developments 
towards a multi-temporal landslide mapping approach. In such a database, landslides appear high-
ly variable depending on the data acquisition characteristics: 

· time of data acquisition (season of acquisition, time passed after failure), and 
· sensor properties (spatial, spectral and radiometric properties of the sensors) 

as well as on the natural variability of the landslide phenomena throughout the large study area: 

· landslide activity (fresh or reactivated failure), and 
· natural setting (land cover, lithology and relief). 

The challenges arising from the heterogeneity of the database and from the variability of landslide 
appearance are described comprehensively in the database sections of the Chapters II-IV. 

  

                                                           
3 The data of the sensors SPOT 1 and SPOT 5 are obtained as radiometrically corrected only (product level 1A). They are 
automatically orthorectified based on orbital position parameters and a digital elevation model (Section II-2.2). 
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Table I-1. Optical satellite remote sensing database. 

Sensor Resolution 
(m) 

Swath Width, 
Extent (km) 

Spectral 
Range (nm) 

No. of 
Bands 

Time 
Period 

Acquisition 
Dates 

Datasets Product 
Level 

Provider 

RapidEye 5 77, 25 × 25 440–850 5 2009–201  65 6  3A BlackBridge 
SPOT 5 10 60, 60 × 60 500–1750 4 2006–2010 5 9 1A SPOT IMAGE 
ASTER 15–90 60, 60 × 60 520–2430 14 2000–2008 21 36 3A 01 ASTER GDS 
SPOT 1 20 60, 60 × 60 500–890 3 1986 2 3 1A SPOT IMAGE 
IRS1C-LISS-III 23.6 141, 141 x 141 520-1700 4 1997 1 1 L1 Eurimage 

Landsat TM 30 185,  
185 × 170 450–2350 7 1989–1999 

2009–201  14 25 1T USGS GLS 

Landsat ETM+ 30 185,  
185 × 170 450–2350 8 1999–2003 13 24 1T USGS GLS 

Terrain Data 
The study uses a digital elevation model (DEM) derived from the X-band data of the Shuttle Radar 
Topography Mission in February 2000 (Rabus et al. 2003). The DEM was obtained from the Ger-
man Aerospace Center (DLR) in a spike-removed form. It is used to include landslide-related 
geomorphological information (e.g. angle and aspect of slopes) as contextual information for more 
reliable object-oriented landslide mapping. 

Landslide Data 
The most extensive and systematic source of landslide information is the report by Yerokhin 
(1998). This report represents the cumulative landslide mapping effort until 1986. It consists of 1532 
landslides visually interpreted based on aerial photographs without specifying the sizes and dates 
of the documented slope failures. A more recent source is the report by Ibatulin (2011) containing 
descriptions of 67 selected major landslide failures that occurred between the 1970s and 2004 in 
the vicinity of settlements. These descriptions comprise precise temporal information of the date 
of occurrence, but do not include spatially explicit information on the location of the slope fail-
ures. Instead, verbal descriptions of topographic characteristics are given to convey locations. A 
third source is provided by the Kyrgyz Ministry of Emergency Situations (MCHS). Since 2002, 
employees of the MCHS visited 73 selected landslides in the vicinity of settlements and document-
ed date of the visit, activity state of the landslide, and point-based coordinates of the landslide 
location. 

In close cooperation, the MCHS and the Remote Sensing Section of the German Research Centre 
for Geosciences (GFZ) have been conducting field work in Southern Kyrgyzstan since 1998. Al-
most annually, sub-parts of the study area are visited and GPS-waypoints and field-photographs of 
selected landslides are documented. Moreover, these field surveys also include differential GPS 
measurements for selected topographic features and spatial reference points, which have been used 
for validation of the geometric pre-processing of Chapter II. 

To allow the validation of the developed landslide mapping approach in Chapters III and IV, refer-
ence maps of spatiotemporal landslide occurrence are prepared for four selected validation sites 
(Figure I-3). The preparation of the reference maps is based on the available landslide data, the 
field-based surveys and the visual interpretation of the optical satellite remote sensing database. 
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44 Research Objectives and Research Questions 

The main objective of the thesis is the development of an automated remote sensing-based ap-
proach that allows an efficient and robust derivation of a long-term and large area multi-temporal 
landslide inventory in order to derive spatiotemporal landslide frequencies as an important re-
quirement for systematic landslide hazard and risk assessment. For this purpose, the large amount 
of multi-sensor time series data has to be efficiently pre-processed to serve as a basis for the meth-
odological developments towards an automated multi-temporal landslide identification approach. 
This landslide identification approach is required for obtaining spatially explicit landslide objects 
with a precise as possible determination of their date of occurrence. A second objective is the ap-
plication of the approach aiming at the precise assessment of the recent and long-term 
spatiotemporal landslide activity for large landslide-affected areas in Southern Kyrgyzstan. 

Based on the objectives the following research questions will be addressed in this thesis: 

Method perspective: 
 What are efficient and robust methods to utilize an optical multi-sensor satellite time series 

for large area and long-term multi-temporal landslide identification? What are the advances 
of the developed methods and the key differences to existing approaches? 

Application perspective: 
 What are essential applications of the developed approach and how can they contribute to an 

improved regional landslide process understanding? Which specific results can be achieved for 
Southern Kyrgyzstan and how can this region benefit from them? 

Specific Objectives per Chapter: 
The stand-alone manuscripts of Chapters II-IV contribute to the overall objectives and deal with 
the main research questions. The synthesis in V provides overarching conclusions based  Chapter 
on the research questions, considering the specific aspects of the individual manuscripts. 

The stand-alone manuscripts of Chapters II-IV are published or submitted in international peer-
reviewed scientific journals. For this purpose, each of these chapters is subdivided into the sections 
research background (introduction), research framework (study area and database), method, re-
sults, discussion, and conclusions. Consequently, recurring material cannot be avoided completely. 

Neglecting adjustments in formatting, the three manuscripts are presented in the thesis un-
changed. They were written originally by the first author. The co-authors contributed to 
discussions and revisions to clarify and improve the manuscripts. Further publications in the 
realm of the dissertation are listed in the appendix (Appendix E). 

The next paragraphs briefly introduce the individual manuscripts in the overall context of the the-
sis by providing their objectives and main contributions (cf. Figure I-1). For each chapter, the 
publication information, the overall objective, the relations to the other manuscripts as well as its 
specific method and application objectives are given. 
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Chapter II: Database Generation for Multi-Temporal Landslide Analyses – Geometric Nor-
malization 

published as: 
Behling, R., Roessner, S., Segl, K., Kleinschmit, B. & Kaufmann, H., (2014). Robust Automated 

Image Co-Registration of Optical Multi-Sensor Time Series Data: Database Generation for 
Multi-Temporal Landslide Detection. Remote Sens., 6(3), pp.2572–2600. 

The overall objective of this chapter is the development and application of a method for automated 
geometric co-registration in order to create a remote sensing database that is suitable for long-term 
automated landslide detection. 

Method objectives: 
· Development of a robust and efficient geometric normalization approach that allows: 

· the relative image-to-image co-registration of a large number of orthorectified standard 
data products acquired by different sensors and characterized by seasonal and long-term 
acquisition variations and 

· an absolute spatial fit of the co-registered remote sensing database, enabling the combined 
analysis with other spatial data (e.g. administrative data, geomorphology, geology, etc.). 

Application objectives: 
· Co-registration of the complete multi-sensor time series database. 
· Determination of sensor-specific image-to-image location accuracies of the standard remote 

sensing data products. 
· Evaluation of the co-registered database in regard to its suitability for the spatial delineation 

of landslide failures. 

Chapter III: Monitoring of Recent Landslide Activity – RapidEye-Based Time Series Analysis 

published as: 
Behling, R., Roessner, S., Kaufmann, H. & Kleinschmit, B., (2014). Automated Spatiotemporal 

Landslide Mapping over Large Areas Using RapidEye Time Series Data. Remote Sens., 
6(9), pp.8026–8055. 

This chapter aims at the development of an automated approach for the spatiotemporally precise 
mapping of recent landslide activity using RapidEye time series data of high temporal resolution. 

Chapter III is based on the co-registered RapidEye data of Chapter II. 

Method objectives: 
· Development of a multi-temporal landslide mapping approach that allows: 

· landslide recognition by efficiently utilizing a high temporal resolution RapidEye time se-
ries, 

· object-oriented landslide identification, 
· precise determination of the time period of landslide occurrence, and 
· the possibility for regular updates (monitoring). 

http://www.mdpi.com/2072-4292/6/3/2572
http://www.mdpi.com/2072-4292/6/9/8026
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Application objectives: 
· Derivation of a multi-temporal inventory of recent landslide activity (2009-2013) for an area 

of 7500 km2. 
· Precise and quantified evaluation of the landslide mapping quality. 

Chapter IV: Retrospective Assessment of Long-Term Landslide Activity – Multi-Sensor Time 
Series Analysis 

submitted as: 
Behling, R., Roessner, S., Golovko, D. & Kleinschmit, B., (submitted on 02 September 2015). 

Derivation of Long-Term Spatiotemporal Landslide Activity–An Automated Multi-Sensor 
Time Series Approach. Remote Sens. Environ. 

This chapter addresses the automated mapping and evaluation of long-term multi-temporal land-
slide activity. 

Chapter IV is based on the co-registered multi-sensor database of Chapter II and on the methodo-
logical principles developed in Chapter III. 

Method objectives: 
· Comprehensive extension of the RapidEye-based multi-temporal landslide mapping ap-

proach into a multi-sensor approach, additionally allowing: 
· the extension of the time span of landslide identification to the beginning of suitable opti-

cal multi-spectral satellite data availability in the 1980s, 
· landslide identification in remote sensing data of different spectral and spatial sensor 

characteristics, 
· landslide object-specific image integration for most precise determination of the time pe-

riod of landslide occurrence, and 
· landslide identification in a highly irregular remote sensing time series of variable data 

intervals (few weeks to several years) as well as seasonally differing acquisitions. 

Application objectives: 
· Derivation of a multi-temporal landslide inventory covering 27 years (1986-2013) for an area 

of 2500 km2. 
· Evaluation and exemplary demonstration of the potential of the derived inventory to serve as 

a basis for systematic hazard assessment, including: 
· the derivation of spatial and temporal variations in past landslide activity (landslide den-

sity, landslide occurrence rates, temporal evolution of landslides, etc.) and 
· the evaluation against morphological settings and against temporal variations of the trig-

gering factor precipitation. 
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AAbstract 

Reliable multi-temporal landslide detection over longer periods of time requires multi-sensor time 
series data characterized by high internal geometric stability, as well as high relative and absolute 
accuracy. For this purpose, a new methodology for fully automated co-registration has been devel-
oped allowing efficient and robust spatial alignment of standard orthorectified data products 
originating from a multitude of optical satellite remote sensing data of varying spatial resolution. 
Correlation-based co-registration uses world-wide available terrain corrected Landsat Level 1T 
time series data as the spatial reference, ensuring global applicability. The developed approach has 
been applied to a multi-sensor time series of 592 remote sensing datasets covering an approximate-
ly 12000 km2 area in Southern Kyrgyzstan (Central Asia) strongly affected by landslides. The 
database contains images acquired during the last 26 years by Landsat (E)TM, ASTER, SPOT and 
RapidEye sensors. Analysis of the spatial shifts obtained from co-registration has revealed sensor-
specific alignments ranging between 5 m and more than 400 m. Overall accuracy assessment of 
these alignments has resulted in a high relative image-to-image accuracy of 17 m (RMSE) and a 
high absolute accuracy of 23 m (RMSE) for the whole co-registered database, making it suitable for 
multi-temporal landslide detection at a regional scale in Southern Kyrgyzstan. 

1 Introduction 

Landslides are a world-wide occurring natural hazard leading to severe loss of life and infrastruc-
ture. A global tendency towards steadily increasing landslide risk can be observed, because of the 
spreading of settlements in unfavorable regions and the consequences of climate change (Petley 
2010; Petley 2012). Against this background, improved understanding of landslide processes in 
space and time is of great importance, requiring multi-temporal landslide inventories (Cascini 
2008; Guzzetti et al. 2012; van Westen et al. 2008). So far, they have been largely missing for most 
parts of the world, because of their time and labor intense preparation using conventional mapping 
methods (Fiorucci et al. 2011; Guzzetti et al. 2012; Saba et al. 2010). In this context, the increasing 
availability of optical satellite remote sensing data has opened up new opportunities for spatiotem-
poral analysis of landslide occurrence covering large areas (Guzzetti et al. 2012; Metternicht et al. 
2005; Othman & Gloaguen 2013; Roessner et al. 2005). 

The completeness and quality of remote sensing-based landslide inventories depend on the used 
multi-temporal image database, whereas a high temporal repetition rate over the longest possible 
time period of data availability is required in order to perform longer term analysis of landslide 
occurrence, which is necessary for objective landslide hazard assessment (Cascini 2008; Guzzetti et 
al. 2012; van Westen et al. 2008). For this purpose, the global Landsat archive is of key importance, 
providing free access to the longest available time series of medium-resolution optical satellite re-
mote sensing data (Wulder et al. 2012). However, in order to achieve the best possible temporal 
data coverage, multi-sensor data have to be used, resulting in a heterogeneous database of varying 
spatial and temporal resolution. 

Despite this variability, precise image-to-image co-registration has to be ensured for all multi-
temporal and multi-sensor datasets, because insufficient spatial fit leads to various ambiguities, 
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resulting in the detection of artifact changes (Sundaresan et al. 2007; Townshend et al. 1992), as 
well as incorrect spatial delineation of landslides. The creation of longer term inventories requires 
maintaining the geometric stability of the image database over several decades, taking into account 
seasonal and inter-annual landscape changes. Furthermore, the resulting multi-temporal remote 
sensing database has to be of sufficient absolute positional accuracy related to an external spatial 
reference system, allowing the combination of information derived from remote sensing analysis 
with other spatial data, such as GPS-based field measurements within a GIS environment in order 
to perform subsequent process and hazard analysis.  

The overall goal of the presented study has been the development and application of a methodolo-
gy for automated image-to-image co-registration in order to create an image database that is 
suitable for longer term automated landslide detection within a 12000 km2 study area in Southern 
Kyrgyzstan (Central Asia) strongly affected by landslides (Roessner et al. 2005). The original image 
database for this area comprises almost 600 datasets acquired by the multispectral Landsat-(E)TM, 
SPOT, ASTER and RapidEye satellite systems during the last 26 years. Most of these images were 
obtained in the form of orthorectified standard data products from the respective satellite data 
providers. Initial evaluation of the relative spatial fit between these higher-level data products has 
revealed that significant spatial offsets occur between most of them, including data acquired by the 
same sensor. 

Against this background, the objective has been the development of a co-registration methodology 
that is suitable to correct for the spatial offsets between large amounts of orthorectified standard 
data products comprising longer term multi-sensor time series. Thus, the approach has to be able 
to handle various multi-sensor effects, such as differences between the spatial, spectral and radio-
metric properties of the image data, as well as multi-temporal effects, such as varying atmospheric, 
solar and land cover conditions, resulting from seasonal and long-term variability between the im-
age datasets (Le Moigne et al. 2011b; Gao et al. 2009; Gianinetto 2012). Despite the large number of 
existing methods for automated co-registration, which are comprehensively discussed in Le 
Moigne et al., 2011 (Le Moigne et al. 2011b), Dawn et al., 2010 (Dawn et al. 2010) and Zitova and 
Flusser, 2003 (Zitova & Flusser 2003), only a few of these methods are capable of dealing with mul-
ti-sensor and multi-temporal effects at the same time. 

In general, the existing co-registration methods are classified into two main categories comprising 
feature-based and area-based techniques (Zitova & Flusser 2003). For accommodating multi-
sensor effects during co-registration, feature-based techniques, such as scale-invariant feature 
transform (SIFT) (Lowe 2004) and speeded-up robust features (SURF) (Bay et al. 2008), are con-
sidered to be more suitable, because these techniques use salient features, such as edges, corners, 
intersections of linear structures and centroids of distinct geometric objects. These features are 
expected to be geometrically stable despite the sensor-related variability of the image data (Huang 
& Li 2010; Cao et al. 2013; Brook & Ben-Dor 2011; Bouchiha & Besbes 2013). However, in rural 
mountainous areas, like Southern Kyrgyzstan, such distinct time-invariant features are often scarce 
and unevenly distributed, which largely increases the likelihood for significant co-registration er-
rors (Chen et al. 2003; Huang & Li 2010). For such environments, area-based methods are 
considered to be more suitable, because co-registration is based on identifying distinctive proper-
ties for image matching using intensity information rather than local features (Chen et al. 2003; 
Huang & Li 2010). Hence, area-based methods aim at identifying image areas that are similar in 
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intensity, whereas the commonly used similarity measures are cross-correlation and sequential 
similarity detection (Fonseca & Manjunath 1996; Zitova & Flusser 2003). 

Independent of the used co-registration method, most of the already existing approaches have not 
been developed for fully automated and efficient processing of big amounts of multi-sensor and 
multi-temporal image data covering large areas over longer periods of time. Therefore, the practi-
cal usability of these methods is often limited, because of the high methodological complexity, the 
big computational effort, as well as additional requirements specific to the analyzed datasets (Cao 
et al. 2013; Dawn et al. 2010; Gao et al. 2009). The presented study aims at the development of a 
robust and globally applicable methodology for automated co-registration, which is suitable for 
efficient correction of spatial offsets between orthorectified standard data products representing 
multi-sensor time series. 

In this context, a spatially and temporally consistent spatial reference system is required, allowing 
spatial alignment of all datasets with sufficient relative and absolute accuracy. For this purpose, 
globally available Landsat Level 1T time series data have been selected as a common spatial refer-
ence. They are characterized by sub-pixel image-to-image co-registration accuracy throughout the 
whole time series (Kennedy et al. 2010; Lee et al. 2004; Storey et al. 2008), whereas the absolute 
accuracy of the global Landsat Level 1T database has been estimated to 15 m (Storey et al. 2008). 
Both accuracies are considered to be sufficient for landslide detection at a regional scale. Moreo-
ver, Landsat data represent the only source of spatial reference information consistently and 
repeatedly covering the whole study area, allowing consistent spatial alignment of all time-series 
datasets, which, in part, are irregularly and patchily distributed over the large study area. 

The developed co-registration approach is described in Section 3. The results of spatial alignment 
are presented in Section 4, comprising sensor-specific analysis for the complete database. In Sec-
tion 5, the relative and absolute accuracy of the achieved co-registration is analyzed for the whole 
database, including its influence on the multi-temporal delineation of landslides. The developed 
methodology is comprehensively discussed in Section 6, focusing on achievable accuracy and 
overall applicability. 

22 Study Area and Spatial Database 

2.1 Study Area in Southern Kyrgyzstan (Central Asia) 
The study area is located in Southern Kyrgyzstan in Central Asia and covers approximately 
12000 km2 (Figure 1), whereas landslide occurrence is especially concentrated along the Eastern 
rim of the Fergana Basin in the foothills of the surrounding Tien Shan and Pamir mountain rang-
es. In this area of high tectonic activity and pronounced topographic relief, landslides are a 
widespread phenomenon, representing one of the most severe natural hazards to the local popula-
tion. Landslides vary widely in their sizes, ranging between a few hundred square meters for small 
events and several hundred thousands or even millions of square meters for large failures (Roess-
ner et al. 2005; Schlögel et al. 2011). 
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Figure II-1. Study area in Southern Kyrgyzstan. (Inset) The location within Kyrgyzstan (depicted as a red dashed line). (Main figure) 
The location of known landslides and reference information for accuracy assessment in Section 5 (check points (CPs), differential GPS 
(DGPS) points and analyzed landslides) within the study area, depicted as a transparent polygon overlay. 

Since most of these landslides belong to the rotational and translational types, they cause wide-
spread destruction of the mostly vegetated surface cover and, thus, are well detectable in optical 
imagery in general (Lacroix et al. 2013; Roessner et al. 2005). Most of these landslides are caused by 
complex interactions between geological, tectonic, seismic and hydrogeological factors, which 
have not been well understood, yet. As a result, landslides occur frequently, but at the same time, 



 Study Area and Spatial Database 25 
 

irregularly throughout the whole study area and cannot be related to distinct triggering events, 
such as earthquakes and intense rainstorms (Roessner et al. 2005). 

In this region, landslides have been investigated since the 1950s, whereas approximately 3000 landslides 
have been documented (Figure 1). However, regular monitoring has been limited to the time period 
between 1968 and 1992, focusing on larger settlements and their surroundings, whereas for most of the 
landslides, coordinate-based geographic locations are missing. Against this background, there is a great 
need for creating a spatiotemporal landslide inventory covering the whole area (Figure 1). 

22.2 Satellite Remote Sensing Database 
A multi-temporal database of optical remote sensing data has been created for the study area in 
Southern Kyrgyzstan. This multi-temporal database consists of 592 multispectral mid- and high-
resolution satellite remote sensing images acquired by the Landsat-TM and ETM+, SPOT 1 and -5, 
ASTER and RapidEye sensors during the last 26 years (Table 1). The spatial resolutions of the con-
tributing sensors range between 30 m for Landsat and 5 m for RapidEye data. They also cover 
different spectral ranges by varying spectral bands and resolutions. However, all of these sensors 
represent multispectral instruments comprising the green, red and near-infrared (NIR) spectral 
bands as the lowest common spectral denominator, allowing comprehensive multi-sensor analysis 
of landslide-related surface changes. 

Almost all of the remote sensing datasets were obtained from the respective satellite data providers 
in the form of orthorectified standard data products (Table 1) in order to minimize geometric pre-
processing efforts and to facilitate the applicability of the developed methodology independent of 
local ground-truth information, such as GCPs. In the case of SPOT, radiometrically-calibrated 
Level 1A data were automatically orthorectified using standard orthorectification routines of the 
ENVI software, which are based on orbital position parameters and a digital elevation model 
(SRTM). As a result, the established multi-temporal and multi-sensor satellite remote sensing da-
tabase solely contains orthorectified datasets. 

Table II-1. Optical satellite remote sensing database. 

Sensor Resolution 
(m) 

Swath Width, 
Extent (km) 

Spectral 
Range (nm) 

No. of 
Bands 

Time  
Period 

Acquisition 
Dates 

Datasets Product 
Level 

Provider 

RapidEye 5 77, 25 × 25 440–850 5 2009–2012 51 503 3A BlackBridge 
SPOT-5 10 60, 60 × 60 500–1750 4 2006–2010 5 9 1A SPOT IMAGE 
ASTER 15–90 60, 60 × 60 520–2430 14 2000–2008 20 30 3A 01 ASTER GDS 
SPOT-1 20 60, 60 × 60 500–890 3 1986 2 3 1A SPOT IMAGE 

Landsat TM 30 185,  
185 × 170 450–2350 7 1989–1999 

2009–2012 14 25 1T USGS GLS 

Landsat ETM+ 30 185,  
185 × 170 450–2350 8 1999–2003 13 24 1T USGS GLS 

Except for RapidEye, all other datasets have been contained in satellite remote sensing data ar-
chives. RapidEye data have been acquired in the frame of the RESA (RapidEye Science Archive) 
program, allowing customized tasking of data acquisition during pre-defined time periods. Due to 
the five independent satellites of the RapidEye system (Chander et al. 2013), a database of high spa-
tial and temporal resolution could be created for the whole region of interest. In total, the database 
comprises 503 Level 3A standard orthorectified data products characterized by a 5-m pixel size, 
resulting from cubic convolution resampling of the original 6.5-m RapidEye data. Each of these 
datasets belongs to one of the fixed 21 RapidEye tiles (Blackbridge 2014) covering the study area 
(Figure 2). 
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Datasets acquired by different sensors vary in their spatial extent between 185 × 170 km2 for Land-
sat and 25 × 25 km2 for a single RapidEye tile. Therefore, for each sensor, varying numbers of 
datasets are required to cover the whole region of interest. Figure 2 illustrates the spatiotemporal 
coverage for the different sensors, whereas the numbers of temporal repetitions are color-coded. 
The diagrams at the bottom show the number of temporal repetition and their areal coverage of 
the study area, with maximum and minimum values depicted in grey. 

In the case of Landsat, the database contains 49 scenes covering 100% of the study area at least for 23 
different acquisition dates, whereas the maximum temporal repetition of 27 acquisition dates could 
be achieved for 80% of the area during the time period between 1989 and 2012. ASTER (30 scenes) 
and SPOT (10 scenes) have significantly lower temporal repetitions, with spatial coverage of the study 
area of 91% and 77%, respectively. RapidEye comprises the highest number of datasets, due to the 
high temporal repetition and the orthorectified datasets of a relatively small size (25 × 25 km2), re-
sulting in a high number of datasets for a single acquisition date. Temporal repetition varies between 
13 and 28 coverages for the different parts of the study area and is almost as high as for Landsat, de-
spite the much shorter acquisition period (4 versus 19 years). Overall, spatial and temporal coverage 
differs within the study area, because of its large size and the variety of used sensors, representing a 
challenge to co-registration, since the whole image database has to be transferred into one consistent 
spatial system. For this purpose, the Landsat Level 1T database has been selected, because it repeated-
ly covers the whole study area in a spatially consistent way (Section 2.3). 

 
Figure II-2. Sensor-specific spatiotemporal coverage of the study area. Diagrams show the number of temporal repetitions and the re-
lated areal coverage of the study area. 

The multi-temporal database is characterized by high seasonal and inter-annual variability of land 
cover, comprising additional challenges to co-registration. In Figure 3, this variability is exemplari-
ly illustrated for a 6.8 × 7.2 km2 subset of the study area showing color infrared (CIR) 
visualizations of the image data of all sensors contained in the database acquired during different 
seasons between 1986 and 2011. Seasonal variability mainly originates from differences in vegeta-
tion cover, whereas the period of most intense vegetation development lasts from May until early 
August, peaking in June. Another seasonal change is the decline of discharge in the river bed dur-
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ing the depicted time span (April–September). Besides these regularly occurring changes, episodic 
changes can be observed, which are caused by agricultural land use and landslide occurrence. Dur-
ing the depicted period of time, the highest landslide activity can be observed between 2002 and 
2004, resulting in a significant increase of landslide affected slopes (yellow ellipses in Figure 3), 
comparing the datasets acquired in 2004 and 1986. 

 
Figure II-3. Exemplary representation of multi-temporal time series (1986–2011). (A–F) Color infrared (CIR) visualization of season-
al differing multi-sensor datasets; selected landslide prone areas are depicted by yellow dashed ellipses. (a–f) The geometric offsets 
within the time series. 

The small subsets (Figure 3a–f) depicted at the bottom of Figure 3 illustrate the initial spatial off-
sets occurring between standard orthorectified datasets. The black cross hairs represent the center 
coordinates of the subsets, whereas the circle-shaped markers indicate an identical point repre-
sented by a road crossing. In Figure 3a, the cross hair and the marked point have the same 
position, whereas for all other subsets, a relative offset can be observed, amounting to a maximum 
of almost 400 m in the case of SPOT 1 (Figure 3d). This maximum geometric offset is caused by 
the applied orthorectification procedure that is solely based on orbital position parameters, which 
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have been less accurate for SPOT 1 than for the later SPOT 5. Although, in the case of the other 
sensors, these offsets are less pronounced, they still amount to up to 60 m and need to be corrected 
in the process of automated co-registration. 

22.3 Spatial Reference Information 

2.3.1 Spatial Reference for Co-Registration 
In this study, terrain corrected Landsat Level 1T data are used as the spatial reference, while at the 
same time, they are part of the satellite remote sensing database (Section 2.2). They have been se-
lected because they are freely and widely available and because they represent the only spatially 
consistent reference information for the whole study area. In contrast, datasets acquired by other 
sensors either do not cover the complete study area or require many datasets of different acquisi-
tion dates and swaths (Figure 2). Such multiple acquisitions result in a spatially and temporally 
inconsistent data coverage, which is not suitable as the spatial reference. However, since the Land-
sat reference represents the lowest spatial resolution of the whole database, the co-registration 
procedure needs to support sub-pixel alignment in order to enable precise co-registration of high-
er resolution images (Section 3.2). 

The Landsat Level 1T data are characterized by sub-pixel image-to-image registration accuracy 
(Kennedy et al. 2010; Lee et al. 2004; Storey et al. 2008), enabling the introduction of multiple ref-
erence scenes in the co-registration process. Using the reference scenes of different acquisition 
dates is advantageous, because it accommodates the multi-temporal variability caused by seasonal 
and long-term land cover changes, which often reduces the accuracy of co-registration (Gao et al. 
2009). Moreover, Landsat Level 1T data are characterized by an absolute geolocation accuracy of 
15 m (Storey et al. 2008) and, thus, are suitable as the external spatial reference. 

Out of all 49 Landsat Level 1T datasets contained in the database, six scenes of three seasonally 
differing acquisition dates have been selected as the spatial reference. They comprise three mosaics 
of Landsat ETM+ scenes (path 151; row 31 and 32), which have been acquired on 24 August 2000, 
26 May 2002, and 27 April 2003 comprising the main seasonal contrast between abundant green 
vegetation in spring and mostly dry vegetation in late summer. The Landsat scenes of 24 August 
2000, have been identified as the primary spatial reference, which is used as the default. If co-
registration to these scenes fails, one of the two other mosaics is selected. 

2.3.2 Image-Based Check Points for Relative Accuracy Assessment 
The relative accuracy of the co-registration approach is determined by assessing image-to-image 
accuracy between the single datasets of the remote sensing database. For this purpose, time invari-
ant check points (CPs) were digitized in the Landsat reference. Because of its low spatial resolution 
of 30 m, only 21 CPs could be identified throughout the mountainous study area. To overcome this 
limitation, high resolution (5 m and 2.5 m) panchromatic orthorectified SPOT datasets, which are 
not part of the multi-temporal database, have been manually co-registered to the Landsat reference 
using the 21 CPs as tie points. Based on these co-registered SPOT images, an additional 65 CPs 
could be identified in areas of insufficient CP coverage, resulting in a total of 86 CPs. They are 
mostly represented by streets, intersections and corners of buildings, which were identified in set-
tlements throughout the whole study area (Figure 1). Based on these CPs, the spatial offset of a 
dataset in relation to Landsat is determined before and after co-registration (Section 5.1).  
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22.3.3 Differential GPS Points for Absolute Accuracy Assessment 
The absolute accuracy of the co-registered remote sensing database is assessed using high accuracy 
differential GPS (DGPS) points, which were measured in the field in the years 2011 and 2012 with a 
geolocation accuracy of a few centimeters by a Topcon GB-1000 receiver. This way, the spatial fit of 
the co-registered image database with spatial information from other sources, such as the results 
from GPS-based field mapping, can be evaluated. The measured 46 DGPS points (Figure 1) repre-
sent corners of buildings and road crossings. However, due to the dominating rural character of 
the study area, these structures are rather small and, thus, can only be precisely identified in re-
mote sensing data of higher spatial resolution. Therefore, absolute accuracy assessment is only 
carried out for the co-registered SPOT 5 and RapidEye datasets with a spatial resolution of 10 m 
and 5 m, respectively (Section 5.2). 

2.3.4 Time Series of Digitized Landslides 
In order to evaluate the influence of co-registration accuracy on the multi-temporal spatial deline-
ation of landslides, three landslides have been selected, which have not changed their extent since 
initial failure. These stationary landslides are situated far apart from each other in different parts of 
the study area (Figure 1). They have been manually digitized in all available multi-temporal da-
tasets before and after co-registration. First, each landslide was digitized in a high-resolution 
RapidEye dataset. The resulting polygons were used as spatial templates, which, in a second step, 
have been manually overlaid on the landslide representations in all of the other datasets. This way, 
errors introduced by multiple manual digitization in datasets of varying spatial resolutions have 
been omitted, which otherwise would have influenced accuracy assessment (Section 5.3). The 
number of datasets that were available for multi-temporal digitization differs between the land-
slides depending on temporal data coverage after failure. Landslides A and B (Figure 1) occurred in 
2009. Landslide A could be identified in 25 datasets acquired by three sensors (RapidEye, Landsat, 
SPOT 5) and Landslide B in 24 datasets acquired by two sensors (RapidEye, Landsat). Landslide C 
failed in 1999, resulting in its presence in 39 datasets acquired by the Landsat, ASTER, SPOT and 
RapidEye sensors. 

3 Co-Registration of Multi-Temporal and Multi-Sensor Optical Satellite Data 

3.1 Overall Approach 
Image-to-image co-registration aims at the spatial alignment of the whole database (Section 2.2) to 
a common spatial reference represented by the Landsat Level 1T data (Section 2.3.1). The devel-
oped co-registration approach (Section 3.2) is based on the assumption that the orthorectified 
standard data products of the various sensors only differ by constant spatial offsets, which can be 
corrected by applying image-specific shifts. Checking the fulfillment of this condition for each da-
taset is an integral part of the co-registration approach, which is depicted in its overall structure in 
Figure 4. 

In order to accommodate the needs originating from the diversity of datasets contained in the 
comprehensive satellite remote sensing database, two modes have been implemented. The first one 
enables co-registration of single datasets to the Landsat reference representing the standard case. 
This mode gets applied if datasets of the same sensor have very small or non-existing spatial over-
laps and, thus, cannot be reliably co-registered to each other before aligning them to the Landsat 
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reference. The second mode is applied to data stacks of high temporal and spatial resolution ac-
quired by the same sensor. This two-step mode starts with sensor-internal co-registration of the 
datasets before they are co-registered en bloc to the Landsat reference using the average of all shifts 
calculated for the single images of the sensor-internal data stack by the same procedure as in Mode 
1. This way, high-accuracy spatial fit between datasets of the same sensor can be achieved or main-
tained avoiding the uncertainties that get introduced by the co-registration of individual images to 
a spatial reference of a largely differing spatial resolution. In this study, the second mode has been 
applied to the RapidEye data, since they are characterized by much higher temporal and spatial 
resolutions than the Landsat reference and the other medium-resolution satellite remote sensing 
data, which are co-registered using the first mode. 

 
Figure II-4. Overall structure of the developed co-registration approach. 
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33.2 Co-Registration to Landsat Reference 
Co-registration builds on area-based cross-correlation (Dawn et al. 2010; Fonseca & Manjunath 
1996; Zitova & Flusser 2003) that requires the same spatial resolution for the reference image and 
the warp image. Thus, spatial resampling is a critical step for the performance of the correlation 
process. In order to get comparable results, downsampling the higher resolution dataset to the 
lower resolution one is applied, since upsampling of the lower resolution image to the higher reso-
lution one does not allow the reconstruction of spectral details, which are only present in the 
higher resolution image and, thus, not suitable for correlation purposes. In contrast, downsam-
pling enables the simulation of the spectral signatures of lower resolution data by mixing the 
spectral information of the higher resolution image. In this study, the warp images of higher spa-
tial resolution are resampled to realistic Landsat pixels by applying a Gaussian filter kernel, which 
takes into account the spatial resolution of both sensors (Mueller & Segl 1999). The used approach 
defines the full width at half maximum (FWHM) of the Gaussian kernel as the ratio between the 
pixel size of the Landsat reference and the pixel size of the warp image. Once both images have the 
same spatial resolution, the warp image is shifted to the spatial grid of the Landsat reference as a 
basis for the following correlation. 

Using the cross-correlation method, the warp image is co-registered to the reference image by cor-
relating the intensity values within corresponding subsets of the images defined by a moving 
window. The subset of maximum correlation corresponds to the displacement that is stored in a tie 
point. In the presented approach, the red and the near infrared (NIR) bands of the input images 
are used simultaneously, providing a combined overall correlation value. The selection of these 
bands is performed in an automated way, as long as respective wavelength information is con-
tained in the header files of the warp and reference images. Since the combination of these two 
bands reacts very sensitively to changes in vegetation cover, high correlation values can only be 
obtained for temporarily stable vegetated and non-vegetated areas. Moreover, for the correlation 
window, a relatively large size (51 × 51 pixels) is selected in order to minimize local ambiguities and 
further increase the robustness of the approach. 

The tie point generation process iteratively selects random pixel positions for centering the corre-
lation windows. The correlation coefficient is calculated for each pixel position within a predefined 
search range, which, by default, is constrained to five pixels, making the approach more robust and 
computationally less intense. However, this range can be changed depending on the expected off-
set. If a correlation coefficient is higher than the empirically determined threshold of 0.93, the 
offset value is stored as the tie point. This process is repeated, until 100 tie points are identified per 
image pair or 10% of all image pixels have been checked. 

In order to validate the identified tie points and to exclude potential outliers, an affine transfor-
mation (translation, rotation, scaling) between both images is assumed, because global translation 
cannot be introduced as an a priori hypothesis. The biggest outliers in regard to the affine model 
are excluded in an iterative process, until the RMSE is less than one pixel. In the next step, the ob-
tained optimized affine model allows for validating the initial assumption of a global translation. If 
the scaling or rotation factors of the affine model are negligibly small, i.e. additional offsets at the 
image corners are less than 1.5 pixels, the global translation transformation is used for co-
registration. 
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If the validation process fails (e.g. due to an unfavorable tie point constellation) or less than 10 tie 
points per scene remain after the removal of outliers, one of the two other Landsat reference mosa-
ics (Section 2.3) is selected, starting with the one that is seasonally closer to the warp image 
acquisition date (Figure 4). If none of the reference images meets these quality criteria, the warp 
image is excluded from the automated processing chain and has to be checked by the user with the 
option of interactively choosing an affine transformation for image wrapping based on the selected 
tie points. 

In the case of a successful correlation, a final sub-pixel optimization is performed for images of 
significantly higher spatial resolution than the Landsat reference. In the initial simulation of the 
30-m warp image, only one possible centering of the Gaussian filter kernel has been used for 
resampling to the 30-m resolution warp image. However, in principle, the number of possibilities 
amounts to the number of original warp image pixels fitting within a single reference pixel, e.g. a 
10-m resolution SPOT image results in nine different possibilities for centering the Gaussian filter 
kernel. Hence, the Gaussian filter kernel is moved in single pixel steps over the original warp im-
age grid around the first centering position of the initial resampling step in order to derive all 
spatial variations of the 30-m warp image. Then, the correlation process is repeated for all of the 
resampled 30-m warp images at the position of the already identified tie points. The image charac-
terized by maximized overall correlation represents the sub-pixel optimized co-registered warp 
image at 30-m resolution. 

The final shift comprises the sum of the shifts used to align the warp image grid to the Landsat 
grid, the 30-m pixel shift resulting from the initial correlation and the original resolution pixel 
shift originating from the sub-pixel optimization. In the last step, this shift is used to co-register 
the warp image using a global translation. As a result, two co-registered warp images are produced: 
one in the spatial resolution of the Landsat reference (the best correlation result) and one in the 
spatial resolution of the original image data. In the case of the original resolution warp image, the 
shift is used to update the coordinate reference point, and thus, the image is corrected without any 
resampling, which maintains the original spectral information of the image after co-registration. 
Both images are aligned to the Landsat reference grid. The simulated 30-m warp image has exactly 
the same spatial grid as the reference, whereas in the case of the original warp image, the upper left 
coordinate is aligned to the reference grid. The achievable accuracy of the approach is determined 
by the spatial resolution of the original data. If the original datasets have the same spatial resolu-
tion as the reference, the steps for simulating the reference resolution and sub-pixel optimization 
are omitted. 

33.3 Sensor-Internal Co-Registration  
In Mode 2 of the developed approach, sensor-internal co-registration is performed as the first step 
before the whole data stack is co-registered en bloc to the Landsat reference. For this purpose, a 
single dataset is selected from the data stack representing the sensor-internal spatial reference. All 
of the remaining images of the data stack are co-registered to this reference using the image-to-
image area-based correlation algorithm implemented in the first mode without performing the 
simulation of 30-m data and the following sub-pixel optimization. If a dataset cannot be co-
registered (due to a failed validation process or less than 10 identified tie points), it is iteratively 
correlated with already co-registered images of former iterations, until a good co-registration re-
sult can be achieved (Figure 4). This iterative approach allows the co-registration of seasonally 
differing datasets, resulting in a sensor-internal geometrically-consistent data stack, which is then 



 Sensor-Specific Results of the Estimated Shifts 33 
 

co-registered en bloc to the Landsat reference. For this purpose, the procedure of Mode 1 is applied 
to each of the datasets contained in the stack in order to determine the average values for all shifts, 
which then are used for the en bloc co-registration of the whole data stack. 

44 Sensor-Specific Results of the Estimated Shifts 

The developed co-registration approach has been applied to all of the 592 image datasets. All of 
them have passed the validation step, which means that the original orthorectified images have a 
consistent internal image geometry, which is free of significant distortions. In the following, the 
shifts obtained by automated co-registration are analyzed separately for each sensor. 

4.1 Landsat Datasets 
Applying the developed approach to the remaining 43 Landsat Level 1T datasets has resulted in no 
need for integer pixel shifts, confirming the sub-pixel image-to-image registration accuracy known 
from the literature (Kennedy et al. 2010; Lee et al. 2004; Storey et al. 2008). Co-registration was 
performed in the standard way (Section 3.2) for all of the datasets, which shows that the datasets 
are free of internal distortions. This also proves the robustness of the developed approach, accom-
modating the variability of the image data caused by the presence of clouds and snow, as well as 
inter-annual and seasonal changes introduced by the time series between 1989 and 2012 and long 
annual acquisition periods ranging from February to November. 

4.2 ASTER and SPOT Datasets 

 
Figure II-5. Shifts applied during co-registration to Landsat reference (in rounded meters), X: east-west; Y: north-south. (a) The scat-
terplot of the shifts contains all individual datasets; (b) The sensor-specific statistics of applied shifts. 

In this study, 42 datasets of ASTER and SPOT have been co-registered to the Landsat reference 
using Mode 1 of the developed approach. It was possible to co-register all datasets in the standard 
way, whereas the applied global shifts range between −62 m and +126 m in the east-west direction 
(X) and between −434 m and +29 m in the north-south direction (Y) (Figure 5). The largest shifts 
have been obtained for the SPOT 1 images, reflecting the limited accuracy of the standard or-
thorectification process (Section 2.2). For visualization purposes, these maximum shifts have not 
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been included in Figure 5a, showing all other individual shifts applied to the ASTER and SPOT 5 
images. 

From the depicted data points, it can be seen that only westward shifts have been applied. Thus, all 
of the images were originally located east of the Landsat reference with maximum offsets of 48 m 
for SPOT 5 and 62 m for ASTER datasets (Figure 5b). Furthermore, the analysis of the applied 
shifts allows for assessing the sensor-internal spatial fit before co-registration. The range of the 
applied shifts represents the largest spatial difference before co-registration and amounts to ap-
proximately three pixels of the original resolution (SPOT 5 (10 m resolution): X: 35 m, Y: 29 m; 
ASTER (15 m resolution): X: 54 m, Y: 39 m). The standard deviation of the applied shifts for co-
registering the images to the Landsat reference can be interpreted as the standard deviation be-
tween the orthorectified data products of each sensor before co-registration. It amounts to 
approximately one original pixel (SPOT 5: X: 13 m, Y: 9 m; ASTER: X: 17 m, Y: 9 m). These results 
show that for both sensors, the original sensor-internal spatial fit is better in the Y direction than 
in the X direction. 

44.3 RapidEye Datasets 
Co-registration of the RapidEye datasets has been performed by applying Mode 2 of the developed 
approach (Section 3.3). In the first step, sensor-internal co-registration has been carried out. For 
this purpose, for each of the 21 tiles, one RapidEye dataset was selected as the spatial reference. All 
of these reference datasets were acquired in May 2011. In the second step, each of the 21 sensor-
internal co-registered data stacks were co-registered en bloc to the Landsat reference. 

Figure 6 depicts the obtained sensor-internal shifts for all of the 482 co-registered images related 
to their respective acquisition years (Figure 6a–d), whereas (X) represents shifts in the east-west 
and (Y) in north-south direction. Part e of Figure 6 summarizes the statistics for all of the applied 
shifts. Since the original orthorectified RapidEye standard data products are located in a fixed pixel 
reference grid, only integer pixel shifts have been applied in order to fit the warp image to the sen-
sor-internal RapidEye reference image. The number of datasets with the same applied shift is 
coded by color and the size of the circle symbols. 

Figure 6 shows that the sensor-internal spatial fit between the orthorectified data products was less 
accurate in 2009 at the beginning of the operational RapidEye mission than in the following years. 
Maximum shift values amount up to 65 m (13 RapidEye pixels), and large ranges are observed in 
the X (40 m) and Y (75 m) directions with a strong systematic component in the Y direction. For 
the datasets acquired in 2010, these ranges are significantly smaller (X: 25 m, Y: 30 m) and less sys-
tematic. For most of the datasets acquired during the years of 2011 and 2012 (80% and 66%, 
respectively), no shift or a maximum shift of one pixel (5 m) has been applied, indicating a greatly 
improved sensor-internal spatial fit for these years, whereas in Figure 6c and d, hardly any system-
atic component can be observed. In the diagrams of Figure 6, all datasets with maximum shifts of 
one pixel are depicted within the black rectangles centered at the origin of the diagrams. Moreover, 
for the years 2011 and 2012, low standard deviation values of approximately 5 m confirm the high 
geometric stability of the standard orthorectified data products. Figure 6e also shows that during 
the whole acquisition period, the spatial fit in the X direction has been more accurate than in the Y 
direction, which is the opposite of the results obtained for the datasets acquired by the ASTER and 
SPOT sensors. 
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Figure II-6. Applied shifts for sensor-internal co-registration of RapidEye. (a–d) The obtained shifts are related to the acquisition 
year. The number of images with the same shift is indicated by the color and size of the circle symbols. All symbols falling within the 
black rectangles represent datasets shifted by one pixel or less. (e) The table of statistics. 

Figure 7a summarizes the shifts that have been applied to the 21 sensor-internally co-registered 
data stacks during the second step; en bloc co-registration to the Landsat reference. In Figure 7b, 
these shifts are depicted as scaled arrows for each of the 21 tiles. For six data stacks comprising 154 
images, the applied shifts amount to 10 m in the western direction and 15 m in the northern direc-
tion. The mean shift for all data stacks amounts to 9 m in the western direction and 20 m in the 
northern direction. Figure 7b shows that all of the applied shifts have a northwestern orientation, 
indicating that the selected RapidEye reference datasets used for sensor-internal co-registration in 
Step 1 are systematically offset from the Landsat reference. However, all of the applied shifts are 
smaller than the spatial resolution of the Landsat reference, and most of the tiles are characterized 
by rather similar shifts, reflecting the high geometric stability of the selected RapidEye sensor-
internal reference datasets throughout the whole study area. 
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Figure II-7. En bloc shifts applied to RapidEye data stacks represented by Level-3A tiles: (a) The number of data stacks (tiles) and re-
lated images with that particular shift; (b) The direction and amount of shift for each data stack depicted by scaled arrows (tile size: 
25 × 25 km2). 

55 Accuracy Assessment 

5.1 Relative Image-to-Image Accuracy of the Database 
The relative accuracy of the co-registered database is assessed at 86 time invariant check points 
(CPs) representing the location of the Landsat reference (Figure 1, Section 2.3.2). By using at least 6 
CPs per image, the mean spatial offsets (ΔxIM, ΔyIM), the position error (PEIM) and the root-mean-
square error (RMSEIM) is determined before and after co-registration. The position error amounts 
to the mean of the Euclidean distances between the image and the Landsat reference at the loca-
tions of the digitized CPs (Equation 3). The RMSEIM is represented by the square root of the mean 
of the squares of the position errors at each CP (Equation 4). 
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For evaluating the relative accuracy of the whole database, a representative subset of images has 
been selected. It comprises images of all sensors, which are characterized by varying offsets and are 
located in different parts of the study area. In total, three SPOT 5 images, three ASTER images and 
two SPOT 1 images have been selected. In the case of RapidEye, the representative datasets com-
prise 12 images, four images per data stack, for three out of the 21 RapidEye tiles. 

20m

Tiles Images        X [m] Y [m] Color
6 154 -10 15
4 82 -10 20
3 77 -5 20
3 65 -15 25
2 55 -10 25
2 39 -5 25
1 31 -5 15

21 503

Range of shifts 10 10
Mean shift -9 20

Y
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The data points depicted in Figure 8 represent the mean spatial offsets of the selected images to the 
Landsat reference in the X and Y direction (ΔxIM, ΔyIM) before co-registration (Figure 8a) and after 
co-registration (Figure 8b). For visualization purposes, the datasets of SPOT 1 have not been in-
cluded in Figure 8a, because of their large offsets of more than 400 m (Section 4.2). Statistics of the 
analyzed distance parameters (ΔxIM, ΔyIM, PEIM, RMSEIM) are shown in the table below (Figure 8c). 
Before co-registration (Figure 8a), the analyzed datasets are characterized by significantly larger 
offsets compared to the ones that have remained after co-registration (Figure 8b). After co-
registration, all datasets are located closely to the Landsat reference, resulting in a mean PEIM of 
16 m, a mean RMSEIM of 17 m and absolute maximum offsets of approximately 20 m in the X and 
Y directions (ΔxIM: −21 m, ΔyIM: 19 m). 

 
Figure II-8. Relative accuracy: the relative location of datasets to the Landsat reference (represented as the point of origin) (a) before 
co-registration and (b) after co-registration; (c) statistics of the offsets (in meters).  

All of these values are smaller than the spatial resolution of the used Landsat reference (30 m), in-
dicating an overall sub-pixel accuracy. The achieved significant improvement in relative accuracy 
for the whole database is also revealed by comparing the after co-registration mean offset values 
with the ones obtained before co-registration (mean PEIM: 72 m; mean RMSEIM: 74 m; maximum 
offsets: ΔxIM: 52 m, ΔyIM: 440 m). Moreover, the offsets remaining after co-registration include a 
slight systematic error (mean values of ΔxIM: −8 m, ΔyIM: 12 m), which is also deducible from the 
scatterplot in Figure 8b. However, this distribution also shows high sensor-internal geometric sta-
bility as a result of co-registration, especially for the SPOT 5 and RapidEye datasets. 

In order to evaluate the relative accuracy, which has been achieved by applying Mode 2, the results 
obtained for the RapidEye images have been analyzed in more detail. In Figure 8a, each data stack 
contains four images of different acquisition dates, including one image of early data acquisitions 
(2009) with offsets of up to 60 m in the Y direction. All other images are characterized by relatively 
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small before co-registration offsets in comparison with the SPOT 5 and ASTER datasets depicted 
in Figure 8a. After co-registration, the images belonging to the same data stack form clusters with 
internal offsets of approximately 5 m or less (Figure 8b), representing sub-pixel relative image-to-
image registration accuracy, which has been achieved within the same data stack during the first 
step of co-registration. However, the cluster formed by images of Stack 1 differs in its offset from 
the offsets of the clusters representing Stacks 2 and 3, which are very similar to each other (Fig-
ure 8b). These results show the possibility for slight differences in relative accuracy between data 
stacks originating from the second step—en bloc co-registration. These differences could be relat-
ed to the position of the data stack in the study area, which might lead to different land cover 
conditions influencing co-registration. 

55.2 Absolute Accuracy of the Database 
The absolute geolocation accuracy achievable by the developed approach is primarily determined 
by the absolute geolocation accuracy of the Landsat Level 1T reference, amounting to 15 m (RMSE) 
for Landsat Level 1T products located in areas of flat terrain with optimal ground-truth availability 
for the standard orthorectification process (Storey et al. 2008). For independent assessment of the 
absolute accuracy of the co-registered database, high accuracy differential GPS (DGPS) points 
have been used (Section 2.3.3). In 19 co-registered images acquired by the high spatial resolution 
RapidEye and SPOT 5 sensors, the offsets between DGPS points and their corresponding locations 
in the co-registered images have been manually determined.  

 
Figure II-9. Absolute accuracy: the location of the co-registered datasets in relation to the DGPS points (represented as the point of 
origin). 

The results of 52 measurements are depicted in Figure 9a, whereas the point of origin represents 
the location of the DGPS point reference. Statistical analysis of the obtained offsets is shown in 
Figure 9b. The obtained RMSE of 23 m and the maximum absolute offsets (ΔxDGPS: 27 m, ΔyDGPS: 
16 m, PEDGPS: 29 m) reveal overall absolute accuracy in the sub-pixel range compared to the spatial 
resolution of the Landsat reference (30 m). The low standard deviations of 3 m (X) and 5 m (Y) 
reflect the high absolute geometric stability of the whole database. Furthermore, the results shown 
in Figure 9 depict a systematic error of 22 m in the western and 5 m in the northern direction, 
which implies that the Landsat reference is systematically offset in relation to the measured DGPS 
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points. Due to the high relative accuracy between the Landsat datasets (Section 4.1), this systemat-
ic error is assumed to be constant for the whole study area. Therefore, it can be corrected by 
applying a spatial shift to the whole database resulting from the inversion of the identified average 
offsets; in this case, 22 m towards the east and 5 m towards the south. As a result, maximum abso-
lute offsets are reduced to approximately 6 m in the X and 10 m in the Y direction (Figure 9b), 
representing the remaining uncertainty resulting from the relative differences between the da-
tasets. 

55.3 Influence of Co-Registration on Spatial Delineation of Landslides 
Reliable multi-temporal landslide delineation depends on the quality of the relative spatial fit be-
tween the datasets contained in the multi-temporal and multi-sensor database. In order to 
quantify the influence of the spatial fit on the delineation of landslides, multi-temporal digitization 
has been performed for three exemplary stationary landslides based on the available datasets be-
fore and after co-registration (Section 2.3.4). Figure 10 comprises the analysis of the spatial overlay 
of the multi-temporal digitized landslides in the form of the number of spatial overlaps between 
the digitized polygons. Figure 10b,c show the number of these overlaps by a color-coding scheme, 
where red depicts the area of overlap between all of the digitized landslide polygons and blue the 
area that is covered by only one of the digitized landslide polygons. 

Moreover, a comparison between the spatial extents of the area of overlap between all landslide 
polygons (area intersect (AI)) and the whole area that is covered by all of the landslide polygons 
(area union (AU)) has been performed. The results are shown in Figure 10e and f and are quanti-
fied in the accompanying table. The AI area depicted in dark grey (10e,f) and red (10b,c) represents 
the area that is delineated as landslide in all of the multi-temporal datasets. For a stationary land-
slide, the ideal case of multi-temporal landslide delineation results in a seamless object, indicating 
spatial identity between AI and AU. A bigger spatial shift between the image data results in a larger 
AU, shown in light grey and blue colors. 

Such an improved spatial fit can be observed for all three landslides depicted in Figure 10, implying 
that these findings are valid for the whole database. The significance of the achieved improvements 
mainly depends on the size of the landslide in relation to the offsets occurring between the multi-
temporal datasets, whereas the bigger the size of a landslide, the lesser the influence of the spatial 
offset. In the case of Landslide B, with a length of 1.5 km and an area of approximately 250000 m2, 
the offsets of the original datasets result in an AI that is considerably higher (69%) than for Land-
slide A (19%) and Landslide C (26%). Therefore, in the case of Landslide B, the relative 
improvement after co-registration only amounts to 26% and is significantly smaller compared to 
improvements of 65% and 62% for Landslides A and C, respectively. 

Furthermore, the uncertainty in landslide delineation resulting from the quality of the spatial fit 
between datasets can be quantified by the maximum distance of AU (dashed line) to the original 
polygon shown in Figure 10c. This distance (Max_dist) represents the size of a landslide failure or 
the enlargement of a landslide that can reliably be detected within the multi-temporal database. In 
the case of the three analyzed landslides, the uncertainty remaining after co-registration ranges 
between 6 m and 9 m, representing a significant improvement compared to the uncertainty con-
tained in the original database comprising values between 43 m and 59 m. The remaining 
uncertainty reflects the relative accuracy of co-registration, which has been achieved for the da-
tasets used for multi-temporal landslide delineation. 
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Figure II-10. Influence of co-registration on multi-temporal landslide delineation for three stationary landslides before and after co-
registration. (a) Field photo; (d) Digitized landslide; (b,c) The number of overlapping datasets; (e,f) Overlapping area of all datasets 
(area intersect (AI)); area covered by all landslide polygons (area union (AU)). Image: RapidEye 2 May 2011. 
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66 Discussion 

6.1 Applicability of Approach 
Validation as part of the co-registration approach has revealed that the developed procedure of 
image-to-image co-registration using image-specific global shifts in the X and Y directions could 
be applied to all of the 592 datasets contained in the database, showing the high internal geometric 
stability of the orthorectified standard data products. The application of the global shift method 
results in the preservation of the original spectral properties of the standard data products, since 
there is no need for performing another resampling step. 

Automated spatial alignment has mostly resulted in shifts of several tens of meters, whereas maxi-
mum offsets have been obtained in the case of SPOT 1, amounting to more than 400 m. These 
results show that the developed approach is capable of handling a wide range of offsets occurring 
in images of various spatial resolutions ranging between 5 m for RapidEye and 30 m for Landsat 
data. The successful application of the approach to all datasets also proves its robustness against 
the variability of image data caused by different multi-sensor and multi-temporal effects, which 
have the potential for impeding the applicability of co-registration, as well as reducing the achieva-
ble accuracy (Le Moigne et al. 2011b; Gao et al. 2009; Gianinetto 2012). 

Sensor-specific analysis of the applied shifts (Section 4) allows for evaluating the sensor-internal 
spatial fit between standard data products generated by external providers. In the case of Landsat 
data, no integer pixel shifts have been applied (Section 4.1), confirming the sub-pixel image-to-
image accuracy stated in the literature (Kennedy et al. 2010; Lee et al. 2004; Storey et al. 2008). For 
ASTER and SPOT 5 data, the standard deviations of the applied shifts are less than the respective 
pixel sizes, and the largest spatial offsets amount to approximately three pixels of the original reso-
lutions (Section 4.2). Sensor-internal RapidEye co-registration (Figure 6) has revealed a steadily 
improving spatial fit between the datasets since the start of operational data acquisition in 2009, 
cumulating in offsets of one pixel or less for most of the images acquired in 2011 and 2012. These 
results are in accordance with the findings of a study assessing the geometric accuracy of the 
RapidEye constellation (Chander et al. 2013). 

6.2 Accuracy Assessment 
Assessment of the relative image-to-image co-registration accuracy based on time-invariant check 
points (CPs) has resulted in an overall accuracy of 17 m (RMSE) and the maximum remaining off-
sets to the Landsat reference amounting to 20 m (Section 5.1). Taking into account the 30-m 
resolution of the Landsat reference, these results indicate the sub-pixel relative accuracy of the 
whole multi-sensor database. Sensor-specific analysis of the achieved relative accuracy shows high 
sensor-internal spatial fit for the SPOT 5 and RapidEye datasets, which exceeds the accuracy ob-
tained in relation to the Landsat reference. In the case of RapidEye, the results show that 
implementation of Mode 2 allows for generating (Step 1) and maintaining (Step 2) high image-to-
image accuracies within sensor-internal data stacks during multi-sensor co-registration. 

Moreover, it is noticeable that after co-registration, the majority of images still show a small 
northwestern shift in regard to the Landsat reference (Figure 8b), implying a systematic offset, 
which is of a significantly lesser amount than one Landsat pixel (mean values of ΔxIM: –8 m, 
ΔyIM: 12 m). Such a bias could not be observed for the co-registration of the Landsat time series 
(Section 4.1) and also not for sensor-internal RapidEye co-registration using Step 1 of Mode 2 
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(Figure 6). Therefore, it is assumed that this small bias is caused by a systematic offset between the 
Landsat reference and the CPs digitized in panchromatic SPOT 5 datasets, which have been manu-
ally co-registered to the Landsat reference (Section 2.3.2). In this case, the detected bias most likely 
originates from the manual co-registration step and, thus, is not a result of the co-registration ap-
proach itself. Direct determination of this offset has not been possible, because of the big 
difference in spatial resolution between the Landsat reference (30 m) and the panchromatic 
SPOT 5 datasets (2.5 m and 5 m). 

Overall, the achieved relative image-to-image accuracies are comparable or, in parts, even better 
than the accuracies obtained by other studies dealing with the co-registration of optical time series 
data. The approach proposed by Gianinetto for automatic co-registration of Level 1A ASTER time 
series data (Gianinetto 2012) has resulted in RMSE values of less than two pixels. Liu and Chen 
(Liu & Chen 2009) have co-registered multi-temporal Formosat-2 Level 1A images (8-m resolu-
tion), achieving a RMSE of approximately 1.5 pixels in flat terrain and 2.2 pixels in mountainous 
areas. Barazetti et al. (Barazzetti et al. 2014) automatically co-registered 13 Landsat TM datasets 
acquired over a 30-year period mainly by correcting sub-pixel translation errors, resulting in a rel-
ative accuracy of sub-pixel RMSE values. Although, accuracy requirements for co-registration 
depend on the targets and methods used for change detection (Bruzzone et al. 2007; Sundaresan et 
al. 2007), in general, accuracies (RMSE) of less than one pixel are considered suitable for subse-
quent change detection (Jianya et al. 2008).  

The absolute accuracy of the whole co-registered database, which has been assessed based on 
DGPS point measurements (Section 2.3.3), amounts to an RMSE of 23 m and a maximum position 
error of 29 m, whereas a clear systematic error of 22 m in the western and 5 m in the northern di-
rection could be observed. These results indicate that the Landsat reference is systematically offset 
to the high accuracy DGPS points. This assumption is further supported by the low standard devi-
ation of the derived absolute offsets (X: 3 m, Y: 5 m), implying a high relative accuracy between 
images, which is of primary importance for subsequent multi-temporal landslide detection. 

Due to the availability of the field measured DGPS points and the high geometric stability of the 
multi-temporal Landsat reference, it is possible to correct for this systematic offset by applying a 
constant spatial shift. This procedure has resulted in remaining maximum absolute errors of ap-
proximately 6 m in the X and 10 m in the Y direction (Section 5.2). However, even the uncorrected 
absolute offsets are considered to be negligibly small, taking into account the near global availabil-
ity of the Landsat reference, allowing for the world-wide application of the developed approach 
without requiring any ground control information. This is especially the case for large area analy-
sis, such as landslide detection at a regional scale. 

66.3 Accuracy of Multi-Temporal Landslide Delineation 
Multi-temporal digitization of three stationary landslides within all datasets covering the land-
slides before and after co-registration (Section 5.3) has revealed a significant improvement in the 
relative spatial fit of landslide delineation, reducing the maximum offset from 59 m before co-
registration to 9 m after co-registration (Figure 10). These relative accuracies correspond to the 
maximum absolute offsets, which can be derived for the whole database after correcting for the 
systematic error introduced by the Landsat reference. These findings indicate that the relative ac-
curacy improvements, which can be observed for all three landslides after co-registration are valid 
for the whole study area. The remaining relative uncertainty of about 10 m forms a suitable basis 
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for reliable multi-temporal landslide detection, as well as the identification of changes within al-
ready existing landslides. 

Besides the discussed relative accuracy of landslide delineation, sufficient absolute accuracy is also 
important for the integration of information derived from remote sensing analysis into a GIS envi-
ronment for further landslide hazard and risk analysis. Comparing the achieved absolute accuracy 
of 23 m (RMSE) with the United States National Map Accuracy Standards (USGS 1947) has shown 
that the approach meets the requirements for a mapping scale of 1:50000 and smaller, which is 
suitable for landslide analysis at a regional scale. 

66.4 Methodological Aspects 
It could be shown that the developed co-registration approach is suitable for the efficient spatial 
alignment of a large database containing numerous multi-temporal and multi-sensor standard da-
ta products. Incorporation of three seasonally differing Landsat reference datasets has allowed for 
successful matching of images characterized by high multi-temporal variability. The implementa-
tion of a special resampling procedure (Mueller & Segl 1999) transforming the spatial resolution of 
the warp image to the one of the Landsat reference enables the application of area-based cross-
correlation to images of varying spatial resolution acquired by different optical sensors. 

The methodological constraints of the developed co-registration approach are related to the ap-
plied area-based cross-correlation, which is restricted to matching images of only slight affine 
distortions (Zitova & Flusser 2003), as well as by the implemented geometric transformation only 
supporting co-registration based on image-specific two-dimensional shifts. These constraints are 
attributed to the goal of developing a robust and efficient co-registration approach that can be ap-
plied in a fully automatic way to a large number of higher level standard data products, which, in 
general, are characterized by high internal geometric stability. This assumption could be con-
firmed for all of the 592 analyzed datasets by an initial validation procedure as part of the co-
registration approach. The automatically detected tie points forming the basis for calculating the 
two-dimensional shifts could also be used in the frame of higher-degree transformation methods, 
which would allow for correcting more complex local distortions. However, it also needs to be tak-
en into account that higher-degree transformations tend to produce local errors, depending on the 
spatial distribution and the number of tie points, which has to be larger in order to solve these 
transformation functions. Furthermore, the use of the two-dimensional shift transformation is 
more robust against localization errors related to the detected tie points. 

In order to preserve the spectral information of the original image datasets for subsequent spectral 
image analysis, the co-registration approach aligns the original images to the Landsat pixel grid 
without any further resampling. Thus, the achievable accuracy of the approach is determined by 
the spatial resolution of the original warp image, allowing for sub-pixel accuracy related to the spa-
tial resolution of the Landsat reference (e.g. 0.16 pixels for 5-m RapidEye data). The 
implementation of sub-pixel image matching techniques would result in the need for resampling 
the spectral information of the original warp images and lead to much longer processing times, 
which would impede the efficient usability of the approach for larger amounts of data. 

Compared to other approaches, such as AROP (Gao et al. 2009), TARA (Le Moigne et al. 2011a) 
and COSI-CORR (Leprince et al. 2007) aiming at the precise correction of complex geometric dis-
tortions, the developed co-registration approach represents a less sophisticated, yet robust and 
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efficient, methodology, which can be applied in a fully automated way to large amounts of multi-
sensor time series data, resulting in high relative and absolute accuracy. 

77 Conclusions and Outlook 

In this study, a new methodology for fully automated co-registration of optical satellite remote 
sensing data has been developed, allowing for the efficient and robust spatial alignment of big 
amounts of orthorectified standard data products acquired during the last 26 years for Southern 
Kyrgyzstan. The co-registration approach is capable of accommodating high image data variability 
resulting from varying spatial resolutions, as well as seasonal and inter-annual land cover variabil-
ity. Applying co-registration to the whole database of 592 datasets from five different sensors has 
resulted in image-specific shifts ranging between 5 m and more than 400 m, showing the robust-
ness of the approach and its suitability for the evaluation of relative spatial fit between standard 
data products. Moreover, spatial alignment is performed without any further resampling of the 
initial datasets, maintaining their original spectral information, which is advantageous for subse-
quent automated image analysis. 

Due to the use of freely and globally available Landsat Level 1T data as the spatial reference, the 
developed methodology is independent of local geometric reference information and can be used 
in any part of the world covered by suitable Landsat Level 1T data. In this context, the launch of the 
Landsat-8 Operational Land Imager (OLI) on 11 February 2013, as well as the future Sentinel-2 
mission (Drusch et al. 2012) will ensure its future applicability. The overall relative accuracy of 
17 m, as well as the absolute accuracy of 23 m (RMSE) represent sub-pixel accuracy in regard to the 
30-m resolution of the Landsat reference. These achieved accuracies make the co-registered data-
base suitable for subsequent multi-temporal change detection and for combination with other 
spatial data within a GIS environment. 

The analysis of co-registration accuracy in relation to multi-temporal landslide delineation has 
revealed maximum relative spatial offsets of six to 9 m between the otherwise unchanged land-
slides within the multi-temporal database. These offsets correspond to the minimal size of 
detectable landslide-related changes. However, since this size is also determined by the coarsest 
resolution of the used datasets, amounting to 30 m, only changes with an extent of more than 
900 m2 can reliably be detected. This is more than sufficient for a region dominated by medium-
sized to large failures, such as Southern Kyrgyzstan. Achievable relative image-to-image accuracies 
of the developed co-registration approach could be further improved by using only higher resolu-
tion data (e.g. SPOT 5: 10 m and RapidEye: 5 m). Hence, it would be possible to reliably analyze 
even smaller changes mostly related to the reactivation of already existing landslides. 

Altogether, these findings show that the developed methodology is suitable for robust and efficient 
co-registration of multi-sensor standard orthorectified data products acquired during longer peri-
ods of time. The resulting co-registered datasets of high and medium spatial resolution allow for 
automated landslide detection at a regional scale. Thus, they have the potential for being used for 
long-term spatiotemporal analysis, as well as for the monitoring of ongoing landslide activity, both 
contributing to more complete landslide inventories. However, the developed approach cannot 
only be used for database generation for landslide detection, but also for spatial alignment of any 
suitable satellite remote sensing time series data in order to perform subsequent analysis of long-
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term land cover changes in many parts of the world. This way, the developed co-registration 
methodology supports remote sensing-based analysis of Earth surface processes, which is im-
portant for many applied tasks, such as hazard assessment, environmental monitoring and land-
use management. 
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AAbstract 

In the past, different approaches for automated landslide identification based on multispectral sat-
ellite remote sensing were developed to focus on the analysis of the spatial distribution of landslide 
occurrences related to distinct triggering events. However, many regions, including southern Kyr-
gyzstan, experience ongoing process activity requiring continual multi-temporal analysis. For this 
purpose, an automated object-oriented landslide mapping approach has been developed based on 
RapidEye time series data complemented by relief information. The approach builds on analyzing 
temporal NDVI-trajectories for the separation between landslide-related surface changes and oth-
er land cover changes. To accommodate the variety of landslide phenomena occurring in the 7500 
km2 study area, a combination of pixel-based multiple thresholds and object-oriented analysis has 
been implemented including the discrimination of uncertainty-related landslide likelihood classes. 
Applying the approach to the whole study area for the time period between 2009 and 2013 has re-
sulted in the multi-temporal identification of 471 landslide objects. A quantitative accuracy 
assessment for two independent validation sites has revealed overall high mapping accuracy 
(Quality Percentage: 80%), proving the suitability of the developed approach for efficient spatio-
temporal landslide mapping over large areas, representing an important prerequisite for objective 
landslide hazard and risk assessment at the regional scale. 

1 Introduction 

Landslides are a major natural hazard causing serious damage to buildings and technical infra-
structure, as well as severe loss of life in many mountainous regions worldwide (Kjekstad & 
Highland 2009; Nadim et al. 2006; Petley 2012). Against this background, landslide hazard and risk 
assessment is of great importance requiring the assessment of past process activity in the form of 
landslide inventories containing spatiotemporal information about occurrence and characteristics 
of landslides (Cascini 2008; Guzzetti et al. 2012; Nefeslioglu et al. 2011; Pradhan & Lee 2010a; van 
Westen et al. 2008). Since such inventories have to be as complete and precise as possible in time 
and space, multi-temporal inventories are needed, especially in regions of frequently occurring 
landslides (Guzzetti et al. 2012). The generation of these multi-temporal inventories requires effi-
cient methods for landslide mapping which allow analyzing large areas with high temporal 
resolution over long periods of time. Traditional mapping methods, such as field surveys support-
ed by visual interpretation of remote sensing data (Casson et al. 2003; Guzzetti et al. 2000), are 
time consuming and resource intensive. As a result, for many regions of the world, comprehensive 
landslide inventories are missing or the existing ones are limited in their spatial extent and tem-
poral resolution (Fiorucci et al. 2011; Guzzetti et al. 2012; Saba et al. 2010). In this context, the use of 
multi-temporal satellite remote sensing data opens up the opportunity for the development of effi-
cient methods for systematic spatiotemporal mapping of landslides over large areas. For the 
purpose of post-failure mapping, mainly optical remote sensing data have been used, as most of 
the landslide processes lead to disturbance of the Earth’s surface resulting in significant changes in 
the reflectance characteristics of these surfaces(Guzzetti et al. 2012; Metternicht et al. 2005; Roess-
ner et al. 2005). 
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Southern Kyrgyzstan represents such a region of high landslide activity where large events fre-
quently cause damage to human settlements and infrastructure and also lead to loss of human 
lives. Past landslide investigations in this area have resulted in a comprehensive principle process 
understanding, thereby revealing that most of the landslides are caused by complex interactions 
between tectonic, geological, geomorphological and hydro-meteorological factors(Roessner et al. 
2005), whereas the highest process activity can be observed in spring with large variations between 
the years. Most of these landslides cannot be related to major triggering events, such as intense 
rainstorms or strong earthquakes. Thus, an improvement of the spatiotemporal understanding of 
landslide processes in this region requires a systematic assessment of landslide events in the form 
of multi-temporal landslide inventories forming the basis for objective and spatially differentiated 
analyses of landslide hazard and risk (Fiorucci et al. 2011; Klimeš 2013; Rossi et al. 2010; Weng et al. 
2011; Wu & Chen 2013). 

In this context, the goal of this study has been the development of an automated approach for 
landslide mapping over large areas based on optical satellite remote sensing data which allows the 
establishment of multi-temporal landslide inventories, including the possibility for regular up-
dates. This goal requires the availability of optical remote sensing data with high temporal and 
spatial resolution for the whole area of interest (Figure 1). Moreover, the approach needs to enable 
object-oriented and efficient automated mapping of landslide events using the available time series 
database. This includes the identification of landslides of different types and spatial extents occur-
ring in varying land cover surroundings, lithological conditions and relief positions that are 
frequently changing throughout a large mountainous region. Furthermore, the generation of mul-
ti-temporal landslide inventories requires mapping results in an object-based form for subsequent 
GIS-based derivation of landslide characteristics. 

 
Figure III-1. Overview of study area. (a) Extent of study area represented by true color RapidEye mosaic acquired in June 2013; (b) 
Topographic relief overlaid by previously known Landslide events; (c) RapidEye spatiotemporal data coverage between 2009 and 
2013. 
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Most of the existing automated methods using optical remote sensing data have been developed 
for one-time landslide mapping after a single major triggering event. These methods are based on 
either a single post-event classification (e.g. Aksoy & Ercanoglu 2012; Barlow et al. 2006; Borghuis 
et al. 2007; Mondini et al. 2013; Othman & Gloaguen 2013) or a bi-temporal change detection be-
tween an image pair acquired before and after the triggering event (e.g. Cheng et al. 2004; Nichol 
& Wong 2005; Rosin & Hervas 2005). Single post-event classification approaches assume that all of 
the mapped landslides have been caused by the analyzed triggering event without further specify-
ing the time period of landslide occurrence. Bi-temporal approaches allow the derivation of the 
time period of landslide occurrence determined by the acquisition dates of the analyzed image 
pair. Thus far, only Martha et al. (2012, 2013) have proposed a semi-automated approach for gener-
ating a multi-temporal landslide inventory of annual temporal resolution for the time period 
between 1998 and 2009 for a 81 km2 region in India. However, this approach had been initially de-
veloped for event-based one-time analysis and therefore does not use efficiently the full temporal 
information content of the available time series data. Furthermore, in most of the published stud-
ies, the methods have been applied to rather small test sites of 100 km2 or less. In only two recent 
studies (Lacroix et al. 2013; Tsai et al. 2010) have the proposed methods been developed for study 
areas of more than 1000 km2. During the last years, an increasing number of studies has proposed 
methods for object-oriented landslide mapping (e.g. Barlow et al. 2006; Kurtz et al. 2014; Lu et al. 
2011; Martha et al. 2010; Park & Chi 2008; Stumpf et al. 2014; Stumpf & Kerle 2011), which is re-
quired for landslide inventories and also for the integration of additional contextual information in 
order to further improve the mapping reliability (Martha et al. 2010). However, there is still a lack 
of approaches allowing object-oriented landslide analysis over large areas, while making efficient 
use of time series data for multi-temporal landslide mapping with best possible temporal resolu-
tion. 

Against this background, the methodological goal of this study is the development of an automat-
ed approach for object-oriented landslide mapping of large areas which is suitable for generating 
multi-temporal landslide inventories, including the possibility for regular monitoring of spatio-
temporal landslide activity. For this purpose, a multi-temporal RapidEye (Chander et al. 2013) 
remote sensing database of 5 m spatial resolution has been established for a 7500 km2 landslide-
affected area in southern Kyrgyzstan for the time period between 2009 and 2013 with up to six 
multi-temporal acquisitions per year between April and July (Figure 1c). The database contains 
standard orthorectified Level-3A data products to enable operational applicability of the approach 
requiring efficient analysis of large amounts of data independent from the availability of ground 
truth information. The landslide situation in the study area and the spatial database are described 
in more detail in Section 2, also showing the multi-temporal appearance of different landslide 
types occurring in the study area. Section 3 describes the developed approach for object-oriented 
multi-temporal landslide mapping based on temporal NDVI-trajectories covering the whole avail-
able time series. Section 4 presents the results obtained by applying this approach to the whole 
study area. Subsequent systematic accuracy assessment is performed for two independent valida-
tion sites that differ in landslide activity and natural conditions (Section 5). In Section 6, the 
developed approach is discussed in regards to its methodological specifics, achievable accuracy 
and principle applicability. These are followed by the concluding remarks of Section 7. 
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22 Study Area and Database 

2.1 Study Area and Landslide Situation 
In southern Kyrgyzstan, landslides are especially concentrated in the foothills of the high moun-
tain ranges along the eastern rim of the Fergana Basin in an elevation range between 700 and 2000 
m (Figure 1b). Most of these landslides occur in form of rotational and translational slides in weak-
ly consolidated Quaternary and Tertiary sediments (Roessner et al. 2005). They represent complex 
failures and vary greatly in their size, ranging between several hundred and several million square 
meters, whereas large events of more than one million cubic meters of displaced material have 
been frequently occurring. Since the beginning of landslide investigations in the 1950s, about 3000 
landslides have been reported by local authorities (Ibatulin 2011; Kalmetieva et al. 2009). However, 
these investigations have been mostly limited to areas in the vicinity of populated places and fo-
cused on major events with high destructive potential (Darya Golovko et al. 2014). Thus, the 
existing spatiotemporal knowledge on landslide events is incomplete and leaves the need for a sys-
tematic multi-temporal landslide inventory as a main prerequisite for objective hazard assessment. 

The 7500 km2 study area covered by 12 RapidEye tiles (Figure 1c) is strongly affected by landslides. 
This region experiences above-average precipitation due to its orographic position west of the 
topographically rising eastern rim of the Fergana Basin, thus forming a barrier against the prevail-
ing westerlies. The resulting increased precipitation level represents the main factor for the 
mobilization of landslides in this region. However, this process takes place over longer periods of 
time and is not related to single triggering events, such as short-term intense rainstorms. The rela-
tively high availability of water leads to a largely developed vegetation cover dominated by 
grasslands. Therefore, landslide failures cause significant vegetation removal resulting in a distinct 
contrast between landslides and their surroundings that is easily detectable in optical imagery. 
Figure 2 illustrates this situation in an exemplary way based on four landslides typical of the whole 
study area using four multi-temporal RapidEye images contained in the database. All of these 
landslides occurred in spring 2010 between the depicted RapidEye acquisitions of 26 May 2009 and 
2 May 2011. All of them have caused major disturbance of the Earth’s surface and large displace-
ment of material consisting of top soil, as well as underlying weakly consolidated sediments. The 
resulting destruction of the original vegetated surface cover is clearly visible and largely preserved 
during the whole depicted post-failure time period. 

Field work carried out in the entire study area has revealed that the degree of vegetation destruc-
tion and the rate of post-failure revegetation are variable and depend on a number of factors, such 
as initial vegetation cover, degree of soil disturbance, hydrometeorological conditions, lithology, 
and state of activity of the landslide. Fresh failures (LS1a,b and LS2) are characterized by a high 
degree of vegetation destruction due to an undisturbed dense initial vegetation coverage shown by 
the pre-event image of 26 May 2009. Conversely, reactivations (LS3) are associated with less vege-
tation destruction because they are typically characterized by sparse and patchy initial vegetation 
coverage as a result of a former landslide at this position. For all landslides, the post-failure revege-
tation is typically very slow, as the landslide masses are susceptible to erosion and reactivation 
processes. In the case of the depicted deep-seated landslide examples (LS1a,b and LS3), hardly any 
revegetation can be seen in the image acquired three years after the failure (18 May 2013), whereas 
the shallow landslide LS2 is characterized by faster revegetation. 
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Figure III-2. Multi-temporal development of landslides that occurred in spring 2010. Top: Field photos (September 2012). Bottom: 
RapidEye true color RGB images overlaid by outlines of landslides (Black: landslide occurred before acquisition date. White: landslide 
occurred after acquisition date). LS1a—deep-seated fresh failure of reddish sandstone; no revegetation; LS1b—deep-seated fresh fail-
ure of loess; slight revegetation; LS2—shallow fresh failure of loess; fast revegetation; LS3—deep-seated second reactivation of loess 
which occurred in 2012; no revegetation. (Red arrows: view direction of the field photos.) 

22.2 Remote Sensing Database 
The multi-temporal optical remote sensing database consists of 216 orthorectified Level-3A 
RapidEye datasets delivered in the form of 25 × 25 km2 tiles with 5 m pixel size. They have been 
provided by the RapidEye Science Archive (RESA) data grant program which has allowed custom-
ized data acquisition in pre-defined time periods of high landslide activity. As a result, a high 
temporal resolution of up to six acquisitions during the growing season between April and July 
could be achieved. Together with archive data acquired in 2009, there was a result of up to 20 ac-
quisition dates between the years of 2009 and 2013, whereas no acquisitions were performed in 
2010 (Figure 1c). The resulting high temporal resolution allows the determination of the time peri-
od of landslide occurrence up to several days and weeks, which is important for spatiotemporal 
analysis of landslide activity in respect to triggering and predisposing factors. Besides the multi-
spectral remote sensing data, the developed landslide mapping approach is also based on a digital 
elevation model (DEM) of 30 m spatial resolution derived from the X-band data of the Shuttle Ra-
dar Topography Mission in February 2000 (Rabus et al. 2003). The DEM is used to derive 
landslide-related geomorphological information for the study area as contextual information for 
more reliable object-oriented landslide mapping (Section 3.2.3). 

2.3 Pre-Processing of Remote Sensing Data 
Pre-processing aims at the reduction of artifact changes in subsequent time series analysis. Such 
artifact changes are introduced by geometric mismatches and radiometric differences between the 
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image datasets, as well as pseudo-surface cover changes introduced by the temporary presence of 
clouds and snow (Coppin et al. 2004; Lu et al. 2010). To foster the potential for operational use and 
taking into account the high number of datasets, pre-processing has to be performed in an auto-
mated, robust and efficient way. For geometric adjustment, an image-to-image co-registration 
approach has been developed that allows automated spatial alignment of time series data compris-
ing orthorectified standard data products (Behling et al. 2014b). As a result, geometric offsets of up 
to 60 m between the multi-temporal image data have been corrected and a relative image-to-image 
co-registration accuracy of less than one 5 m RapidEye pixel could be achieved for the complete 
multi-temporal database. To reduce the effects of radiometric differences between the images for 
subsequent change detection analysis, the developed landslide mapping approach (Section 3) is 
based on the temporal comparison of the normalized difference vegetation index (NDVI) derived 
from the standard corrected top-of-atmosphere radiance data. The remaining variability in NDVI 
values between the multi-temporal datasets needs to be compensated by the developed approach 
(Section 3.2). For masking clouds and snow, a threshold has been applied to the blue band of the 
RapidEye images (Band1BLUE > 1050 W∙m−2∙sr−1∙μm−1). This threshold based approach has been ex-
tended by analyzing the whole time series in order to separate between permanent bright objects 
(e.g. sand and urban objects) and temporary ones (clouds and snow). In this context, it is assumed 
that a permanent bright object is present in all images of the time series, whereas clouds and snow 
are only temporarily present. This way even less thick cloud cover could be identified. 

22.4 Reference Mapping for Validation Sites 
To quantitatively assess the accuracy of object-oriented landslide mapping resulting from the de-
veloped approach, reference mapping has been carried out for two spatially independent validation 
sites which have been affected by recent multi-temporal landslide activity. They are outlined in Fig-
ure 1 and represent contrasting environments which are representative for the whole study area. The 
size of these validation sites amounts to approximately 14 × 11 km2 for the site Uchkun (Figure 3a) and 14 
× 8 km2 for the site Papan (Figure 3b). The land use in these two sites is dominated by pastures and 
grassland. However, they also comprise several non-vegetated areas which could be mistaken for 
landslides, because of their similar appearance in optical remote sensing data. Both validation sites 
contain small settlements along the valleys close to the river beds. The Uchkun site further covers a 
bigger village in the southeastern part and an area of crop cultivation (western part), temporally 
without vegetation cover due to harvesting. The Papan site comprises a high percentage of perma-
nently non-vegetated steep outcrops appearing as bright areas mainly in the center of the 
validation site. Furthermore, the two sites also differ in available remote sensing data, due to their 
location in different Level-3A RapidEye tiles (Figure 1c). 

For both validation sites, a reference landslide inventory has been created by visual interpretation 
of the available RapidEye data acquired between 2009 and 2013, whereas the time period of occur-
rence of a mapped landslide is determined by the time period between the pre- and post-event 
RapidEye image. In Figure 3, these time periods are classified into full years, whereas the acquisi-
tion date of the post-event image defines the depicted year of occurrence. An exception is caused 
by the missing RapidEye acquisitions in 2010 resulting in a class of landslide occurrence between 
2009 and 2011. Manual reference mapping has also been supported by spatially very high resolu-
tion satellite remote sensing data contained in the Google Earth™ archive with most recent images 
acquired in June 2013 for both validation sites. Furthermore, these inventories were validated dur-
ing a field survey in September 2012. In total, 67 landslides were mapped—36 in the Uchkun and 31 
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in the Papan site. The size of these landslides ranges between 500 and 250000 m2, whereas the total 
area affected by landslides amounts to approx. 1 km2. Both sites are characterized by spatial and 
temporal concentrations in landslide occurrence, as well as areas and time periods without land-
slide activity. The Uchkun site is most strongly affected between the years 2009 and 2011, whereas 
for the Papan site highest landslide activity could be observed for 2012. Thus, the two selected val-
idation sites differ in spatiotemporal landslide occurrence as well as in natural conditions and 
available RapidEye data coverage, thereby making them suitable for representative accuracy assess-
ment of the developed approach. 

 
Figure III-3. Reference mapping of landslide activity. (a) Validation site Uchkun including the subset illustrating the methodological 
descriptions of Section 3 (black dashed line). LS1-3: landslides shown in Figure 2; (b) Validation site Papan. 

33 Automated Approach for Multi-Temporal Landslide Mapping 

The methodological developments aim at the automated multi-temporal mapping of landslides 
based on satellite remote sensing time series data. Thus, the approach needs to be able to identify 
landslide activations occurring at different times during the analyzed time span, whereas the de-
termination of the time of landslide occurrence depends on the length of the time period between 
two subsequent images contained in the remote sensing time series database. To meet the goal of 
generating a multi-temporal landslide inventory, the approach is required to derive the occurring 
landslides as single objects for each of these time periods. In this context, the approach needs to 
take into account the natural variability of landslide phenomena occurring within the large study 
area. 

To fulfill these requirements, the developed approach builds on a pixel- and object-oriented analy-
sis of temporal NDVI-trajectories enabling the incorporation of rule-based knowledge about 
landslide-related surface cover changes. Furthermore, the approach comprises the possibility for 
the discrimination between uncertainty-related landslide likelihood classes to enable expert-aided 
evaluation of the results suitable for different applied tasks related to landslide investigations. For 
clarity, the descriptions of the basic idea (Section 3.1) and of the knowledge-based system (Sec-
tion 3.2) are based on the exemplary analysis of the two subsequent RapidEye acquisitions (26 May 
2009 and 2 May 2011) within the 8 × 4.5 km2 subset depicted as dashed line in Figure 3a. In Sec-
tion 3.3, the developed approach is extended to the whole time series available for this exemplary 
subset to demonstrate the derivation of the final results of multi-temporal landslide mapping. All 
methodological developments are realized using the open source programming language python. 
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33.1 Temporal NDVI-Trajectories for Landslide Identification 
Temporal NDVI-trajectories represent specific temporal footprints of vegetation changes which 
are obtained for every pixel across the time span of the analyzed multi-temporal data stack. Fig-
ure 4 illustrates how these NDVI-trajectories can be used to distinguish between landslide-related 
vegetation changes (Figure 4(1)) and five other land cover changes (Figure 4(2–6)). In the case of 
the depicted landslide example LS1b, which occurred in the spring of 2010 (Figure 2(LS1b)), the 
failure caused a severe vegetation cover disturbance that is reflected in the abrupt decrease of the 
NDVI values between the RapidEye acquisitions of 26 May 2009 and 2 May 2011. These low post-
failure NDVI values have been maintained for the following two years, indicating a slow revegeta-
tion rate in the area of the displaced landslide masses (Section 2.1). Based on the resulting distinct 
temporal NDVI-trajectory, landslides can be distinguished from permanently non-vegetated areas 
(Figure 4, bottom) characterized by permanent low NDVI values, as well as from temporally vege-
tated areas (Figure 4, top) characterized by a less distinct NDVI decrease and/or faster revegetation 
rates. 

 
Figure III-4. Temporal NDVI-trajectories used for differentiating landslides to other land cover changes. Images: NDVI illustrations 
(A'–C') of exemplary RapidEye acquisitions (A–C) containing the position for the derived NDVI-trajectories 1–6. Diagrams: Compar-
ison of the landslide trajectory (1) with vegetated surfaces (2,3) and with continually non-vegetated surfaces (4–6). Grey bars mark 
time periods of data availability focusing on the growing season. 
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Compared to the ideal case of the fresh failure LS1b, other landslides may result in less distinct veg-
etation changes. Figure 5a illustrates such less-pronounced differences by depicting one 
characteristic NDVI-trajectory for each of the four landslide examples shown in Figure 2. If mass 
movements represent reactivations, which are typically occurring in areas of already existing land-
slides (Figure 2(LS3)), a smaller decrease of the NDVI values can be observed because of the 
sparser vegetation cover before failure. In the case of small shallow landslides (Figure 2(LS2)), the 
revegetation rate is often faster, because of the less severe soil disturbance. In the case of the deep-
seated landslides (LS1a and LS1b), the NDVI-trajectories are very similar, showing their independ-
ence from the lithological properties of the material involved in the landslide failures. Besides the 
differences between the respective landslides, the temporal vegetation change characteristics also 
differ within a single landslide. Figure 5b depicts NDVI-trajectories for 20 pixels within landslide 
LS1b showing differences in the bi-temporal NDVI decrease and rate of post-failure revegetation. 
However, despite all of the described differences, the typical shape of a landslide-specific NDVI-
trajectory is still maintained. 

 
Figure III-5. Variety of landslide-related NDVI-trajectories. (a) Differences between landslide types shown in Figure 2; (b) Differences 
within a single landslide event demonstrated by 20 NDVI-trajectories derived at various pixel positions within Landslide LS1b. 

33.2 Processing System for Knowledge-Based Landslide Identification 
Based on the temporal NDVI-trajectories, a combined pixel- and object-oriented approach has 
been developed for the automated identification of landslide occurrence for subsequent image 
pairs, taking into account the entire available time series. For this purpose, the approach analyzes 
the degree of bi-temporal vegetation changes serving as the basis for the segmentation of landslide 
candidate objects for each time period (Section 3.2.1). In the following, these landslide candidate 
objects are evaluated regarding their plausibility in terms of post-event multi-temporal revegeta-
tion (Section 3.2.2) and relief-oriented parameters (Section 3.2.3). Figure 6 exemplarily illustrates 
the derivation of parameters that are used in the temporal NDVI-trajectory analysis. Figure 7 
shows the overall processing scheme of the developed approach subdividing these three major 
parts into the processing steps A–F. The description in Section 3.2 follows steps A–F, whereas the 
empirically determined thresholds for each step are listed at the right of Figure 7. Figure 8 illus-
trates the results of each processing step based on the subset area shown in Figure 4. In the final 
step of the approach (Section 3.2.4), the object-oriented results are evaluated by the introduction 
of a reliability classification in the form of the overall landslide likelihood. 
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Figure III-6. Trajectory parameters for an exemplary landslide-related NDVI-trajectory. 

 
Figure III-7. Multi-temporal landslide identification approach based on temporal NDVI-trajectories and relief oriented analysis. 
(Left) Processing scheme; (Right) Implemented thresholds for steps A to F. 
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Figure III-8. Landslide mapping approach for two subsequent RapidEye data acquisitions within the multi-temporal data stack. (A–
F) Processing steps with zoom ins, (a–f) which are indicated by yellow rectangles, w,z: exemplarily described objects. 

33.2.1 Derivation of Landslide Candidate Objects Based on Bi-Temporal Vegetation Change Analysis 

A: Pixel-Oriented Bi-Temporal Change Detection 
To classify the bi-temporal vegetation disturbance for each pixel (CDIST) in regards to the possibility 
of landslide occurrence, the NDVI values after an expected landslide (post) and the normalized 
index of the NDVI values of the pre-event and post-event image (index) are used in combination 
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(Figures 6 and 7). As shown in Figure 4, landslides usually cause the total loss of previously exist-
ing vegetation, which results in high index values and post values of less than zero representing 
bare soil. However, to accommodate the variety of landslide processes (Figure 5), the bi-temporal 
analysis of vegetation disturbance (CDIST) is performed on a scale of 9 classes (Figure 7). The main 
idea of this multiple threshold-based analysis is adapted from the robust differencing approach 
developed by Castilla et al. (2009). The usage of multiple thresholds also enables the identification 
of less-pronounced surface cover changes related to landslide occurrence, e.g. if the vegetation 
cover is already less dense before the landslide event (e.g. Figure 2(LS3)). Figure 8A illustrates the 
results of this classification. The pixels representing deep-seated landslides (Figure 8(1)) have been 
classified with the highest CDIST class of 9 and the landslide pixels characterized by less distinct bi-
temporal vegetation changes (Figure 8(2,3)) have been assigned to lower CDIST classes. However, 
the classification has also led to a high percentage of false-positive pixels that are introduced by 
slight vegetation changes in sparsely vegetated areas mainly in the northeastern part and by a dis-
tinct vegetation loss in the area of harvested fields in the western part of the subset shown in 
Figure 8. The exemplary NDVI-trajectory for harvested fields (Figure 8(4)) shows bi-temporal 
changes that are very similar to the ones of the deep-seated landslides (Figure 8(1)) and thus results 
in the same CDIST classes. 

B: Object-Oriented Classification of Bi-Temporal Landslide Likelihood 
Based on the pixel-oriented results of the first step, a subsequent segmentation is performed that 
extracts individual segments from all of the spatially 8-connected pixels which have been assigned 
to a vegetation disturbance class (CDIST > 0). The segments are classified regarding their bi-
temporal landslide likelihood (CBITEMP) by analyzing the frequency of the CDIST classes for all pixels 
contained in the segment. If the segments do not meet any of the landslide likelihood criteria 
shown in Figure 7 (CBITEMP = 0), they represent segments containing an excessively high percentage 
of pixels characterized by vegetation changes not typical for landslide occurrence; they are there-
fore eliminated. All other segments are kept as landslide candidate objects characterized by a 
three-step bi-temporal landslide likelihood (CBITEMP = 1–3) of ascending order (Figure 8B). This 
procedure ensures the derivation of landslides as single objects even if in part they do not repre-
sent the optimal case of a significant vegetation disturbance. At the same time, this procedure 
reduces the high number of pixels with slight vegetation changes that can be considered as noise. 
Figure 8B shows that the deep-seated landslides (Figure 8(1,w)) are classified with the highest bi-
temporal landslide likelihood (CBITEMP = 3) because their segments consist of more than 30% of 
pixels with the highest bi-temporal vegetation disturbance class (CDIST = 9). The reactivated land-
slide (Figure 8(2,x)) and the shallow landslide (Figure 8(3,y)) are classified with lower bi-temporal 
likelihood values (CBITEMP = 2). Furthermore, Figure 8B shows the reduction of false-positive pixels, 
especially in the northeastern part of the subset. 

33.2.2 Multi-Temporal Revegetation Analysis 

C: Pixel-Oriented Multi-Temporal Change Detection 
For each pixel contained in the identified objects, the revegetation is analyzed within a user-
defined time span allowing the differentiation between landslide-related slow revegetation and 
other vegetation cover changes. In this study, this time span is limited to a maximum of three 
years, because the vegetation usually starts to recover in most parts of the landslides after these 
three years. Based on all post-event images available in this time span, the degree of revegetation is 
classified into four rates of revegetation (CREVEG). They are based on the maximum (postMAX) and 
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mean NDVI values (postMEAN) derived from the NDVI-trajectory (Figure 6). The combination of 
postMAX and postMEAN allows a robust determination of the revegetation rate (Figure 7). In contrast, 
the single use of postMAX would be susceptible to co-registration errors, which could result in high 
NDVI values at the edge of landslide objects if the landslide is surrounded by vegetation. The sin-
gle use of postMEAN would be more susceptible to the date of the image acquisitions and could result 
in rather low NDVI values for fields if the field is harvested in the majority of the acquired da-
tasets. Figure 8C shows a reliable differentiation between landslide-related surface changes and 
fields resulting from the revegetation rate classification. The pixels of the fields are characterized 
by revegetation rates higher (CREVEG = 0) than the landslide pixels (CREVEG = 2 or 3). 

D: Object-Oriented Classification of Multi-Temporal Landslide Likelihood 
Based on the frequency of the pixel-oriented revegetation rate classes (CREVEG), the landslide candi-
date objects are further characterized in regards to their multi-temporal landslide likelihood 
(CMULTITEMP). Following the procedure described in (B), all landslide candidates are eliminated that 
do not meet any of the criteria shown in Figure 7 (CMULTITEMP = 0) and the remaining objects are 
classified into three likelihood classes (CMULTITEMP = 1–3). Thus, fields are eliminated from the land-
slide candidates, whereas landslides are maintained (Figure 8D). This way, landslides of low 
revegetation rates (Figure 8((1,w),(2,x))) and also landslides of faster natural revegetation (Fig-
ure 8(3,y)) could be distinguished from fields, whereas the shallow landslide (Figure 8(3,y)) is 
characterized by slightly lower multi-temporal landslide likelihood (CMULTITEMP = 2). 

33.2.3 Relief-Oriented Analysis 

E, F: Pixel- and Object-Oriented Analysis of Relief Parameters 
Landslide candidate objects are further evaluated in regards to relief-based plausibility based on 
the two parameters: slope and parallelism to streams (Figure 7). The first parameter slope has al-
ready been widely used for this purpose (Barlow et al. 2006; Borghuis et al. 2007; Cheng et al. 
2004; Lacroix et al. 2013; Lu et al. 2011; Martha et al. 2012). It takes into account the fact that land-
slides require a certain initial relief contrast to allow the downward movement of material as a 
result of the onset of a slope failure. In this study, landslide objects are required to be characterized 
by an average slope (slopeMEAN), ranging between 7° and 30°. However, this range is only applicable 
to the source area of a landslide, since the accumulation zone can also comprise flatter parts result-
ing in slope values below the thresholds implemented for slopeMEAN. Therefore, the approach also 
analyzes the proportions of the slope values (slopeHIST) within the landslide object. If at least 50% of 
the slope values are larger than 8°, the object is still considered a landslide. Both parameters (slope-
MEAN, slopeHIST) are combined to a slope-oriented parameter (CSLOPE) for the evaluation of each 
landslide candidate object. 

The second parameter, parallelism to streams, aims at eliminating false positives which occur if a 
river has flooded a formerly vegetated area or if local co-registration errors between the pre- and 
post-event images result in changes which have the same appearance as the ones in the flooded 
areas. An example is shown in the lower right part of Figure 8e. Analysis of a landslide object being 
parallel to streams is based on the distance and orientation of that object in regards to the stream 
network (Figure 7) derived from a DEM using the stream order by Strahler (1952). The orientation 
of the landslide object and the corresponding part of the adjacent stream is calculated by using the 
major axis of the ellipse, which is defined by the second central moment of the analyzed region 
(Burger & Burge 2009). First-order streams are excluded from this analysis because landslides are 
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often occurring alongside these topographically less pronounced valleys. For all other streams be-
longing to higher orders, the objects are evaluated in three steps (Figure 7) according to the degree 
of parallelism (CSO), whereas CSO = 2 represents the highest degree of being parallel. Both object 
parameters (CSLOPE, CSO) are combined into the relief-oriented landslide likelihood (CRELIEF). If the 
landslide candidates are either clearly parallel to a stream (CSO = 2) or do not meet any of the slope 
criteria (CSLOPE = 0), they are classified as false positives. Applying this procedure, the object in the 
southeastern part of the enlarged zoom area of Figure 8e, which is parallel to a fourth-order 
stream, is eliminated from the identified landslide candidates shown in Figure 8f. The remaining 
landslide candidates are characterized by the three-step relief-oriented landslide likelihood param-
eter (CRELIEF) illustrated in Figure 8F. 

33.2.4 Classification of Overall Landslide Likelihood 
To obtain meaningful results in the process of automated landslide identification—comprising the 
existing variability of landslide phenomena and the possibility for subsequent evaluation of the 
results by landslide experts—the identified landslide objects are classified into four (I-IV) classes 
representing different degrees of overall landslide likelihood (Figure 9). These classes are an ex-
pression of the level of uncertainty related to the automated identification of this particular 
landslide object using the three previously described parameters CBITEMP, CMULTITEMP and CRELIEF. 
Class I represents the ideal case of a deep-seated fresh failure which is characterized by high bi-
temporal vegetation loss (CBITEMP = 3), very low revegetation rates (CMULTITEMP = 3) and very high 
relief oriented landslide likelihood (CRELIEF = 3). Both deep-seated fresh landslides LS1a and LS1b 
(object w in Figures 8 and 9) are characterized by the highest overall landslide likelihood. The re-
activated landslide LS3 (object: x) is characterized by less distinct vegetation loss (CBITEMP = 2), but 
it still performs to an ideal in terms of the other two parameters and is thus classified into the 
overall landslide likelihood class II. Additionally to the non-ideal bi-temporal vegetation changes 
of class II, class III comprises also non-ideal revegetation rates. The small shallow landslide LS2 
(object: y) represents an example for this case, which is characterized by likelihood parameter val-
ues of 2 for both CBITEMP and CMULTITEMP. In the case of the lowest landslide likelihood class IV, 
objects are characterized by non-ideal values (<3) for all three parameters. The object z in Fig-
ures 8 and 9 represents an example for such cases. Overall, this demonstrates that these landslide 
likelihood classes represent the level of uncertainty as well as, to a certain degree, the type of land-
slide activation. 

 
Figure III-9. Overall landslide likelihood derived for identified objects (cf. Figure 8F). 

Furthermore, these overall landslide likelihood classes enable the separation of the automatically 
derived landslide mapping results into four selection categories (I'–IV') representing a selection of 
the results of varying levels of strictness. In this context, the selection category IV' represents the 



 Automated Approach for Multi-Temporal Landslide Mapping 63 
 

least strict selection and comprises all automatically mapped objects independent from the as-
signed overall landslide likelihood class. In contrast, category I' solely comprises the objects 
belonging to the highest landslide likelihood class representing the most strict selection. In Sec-
tion 5, the results of these selection categories are evaluated in regards to mapping accuracy, 
thereby showing how these categories influence the approach in terms of automated or semi-
automated usage. 

33.3 Multi-Temporal Landslide Mapping for Whole Time Series 
The application of the approach to the whole RapidEye time series has resulted in the identifica-
tion of landslide events in four out of the 15 subsequent image pairs (Figure 10). The length of the 
identifiable time period of landslide occurrence depends on the temporal resolution of the availa-
ble RapidEye time series data. In the case of the methodological subset, it varies between nine days 
(17 May 2009–26 May 2009) and two years (26 May 2009–2 May 2011). The results reveal the suit-
ability of the approach for the identification of landslides representing fresh failures and 
reactivations (Section 2.1). In Figure 10, fresh failures are represented by the landslides LS1a, LS1b, 
and by the green polygon. Reactivations are shown by the polygons within the yellow ellipse and 
the landslide LS3. In the case of landslide LS3, two reactivations could be identified that both re-
sulted in an enlargement of the crown area of the landslide and caused a further downward 
displacement of the already accumulated material. Moreover, Figure 10 also shows that the auto-
mated identification is independent from the lithology of the affected slopes, whereas the majority 
of the identified landslides occurred within loess (bright areas) and some within weakly consoli-
dated reddish sedimentary rocks (e.g. LS1a). 

 
Figure III-10. Mapping results for the entire time period 2009–2013. Identified landslide objects are depicted according to their time 
period of occurrence and overlaid on a perspective view, together with a RapidEye image acquired at 4 June 2012. LS1–3: landslides 
shown in Figure 2; I–IV: overall landslide likelihood classes. 
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The exemplary results show that the approach is capable of reliable identification of landslides oc-
curring during the analyzed time span (2009–2013) and distinguish them from older landslides 
that were already present. Furthermore, Figure 10 also confirms the suitability of analyzing tem-
poral NDVI-trajectories for the separation between landslide objects and other non-vegetated 
areas, such as buildings, streets, outcrops and river beds. However, the purple ellipses shown in 
Figure 10 indicate two falsely identified landslide objects representing false positives (FP) in the 
specific form of small erosion features at a riverbank. To evaluate the influence of such identifica-
tion errors on the overall quality of the automated landslide mapping result, a quantitative 
accuracy assessment was performed and is outlined in Section 5. 

44 Application of Approach to Whole Study Area 

Automated multi-temporal landslide mapping has been performed for the whole study area, which 
is characterized by variations in natural conditions and temporal RapidEye data coverage (Sec-
tion 2). The complete mapping result, which includes objects of all overall landslide likelihood 
classes, has been visually validated by landslide experts to remove obvious false positives. All au-
tomatically identified landslides could therefore be included in the overall evaluation of the 
spatiotemporal landslide activity. As a result, 471 landslides have been identified, whose location, 
classified size, and time period of occurrence is depicted in Figure 11. During field investigations in 
September 2012, 120 of these identified landslides were visited, only revealing four false identifica-
tions. Each of these cases represented a manmade removal of construction material in the lower 
part of a slope. 

 
Figure III-11. Results of landslide mapping for the whole study area between 2009 and 2013. Landslide objects are depicted according 
to size and time period of occurrence. Background: color shaded relief (cf. Figure 1b). 

The size of the identified landslides ranges between 125 and 750000 m2, and the total area affected 
by these landslides amounts to 6.1 km2 (Table 1). Table 1 also shows the distribution of the temporal 
landslide activity in respect to the classified time periods. The longest analyzed time period be-
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tween 2009 and 2011 comprises 55% of all identified landslide objects. Landslide activity is less in-
tense in the other analyzed years, varying between 6% of occurred landslide events in 2009 and 
18% in 2012. These findings reveal a constantly ongoing landslide activity independent from major 
triggering events, such as intense rainstorms or larger earthquakes that did not happen in this re-
gion during the analyzed time period between 2009 and 2013. Moreover, the spatial distribution of 
the landslide objects depicted in Figure 11 shows clear spatial variations in landslide activity, in-
cluding areas of distinct concentrations, whereas most landslides occurred at elevations between 
900 and 2300 m. For this region, the obtained results comprise the first systematic assessment of 
spatiotemporal landslide activity, thus representing a main prerequisite for objective hazard and 
risk assessment. 

Table III-1. Summary statistics of the landslide mapping results. 

Time Period N N (%) Area (m2) Area (%) Min (m2) Max (m2) Mean (m2) 
2009 27 6 84,775 1 125 12,950 3140 

2009–2011 260 55 3,732,712 61 400 242,900 14,357 
2011 66 14 642,874 11 325 55,000 9741 
2012 83 18 667,749 11 400 53,575 8045 
2013 35 7 962,372 16 250 775,192 27,496 

2009–2013 471 100 6,090,482 100 125 775,192 12,931 

55 Accuracy Assessment 

The systematic accuracy assessment of the developed approach is performed for two independent 
validation sites (Section 2.4). Section 5.1 assesses the influence of the landslide likelihood-based 
selection categories on the quantitative accuracy of the landslide mapping results. In Section 5.2, 
the accuracy assessment is complemented by the evaluation of the geometric quality of the auto-
matically identified landslide objects. 

5.1 Quantitative Landslide Mapping Accuracy 
To obtain a comprehensive quantitative evaluation of the approach, the conformity between auto-
mated identification and reference mapping is analyzed for both validation sites and for each 
selection category (I'–IV') in regards to the number of landslides and the area affected by these 
landslides. This comparison results in one of three relevant identification categories: true positive 
(TP), false negative (FN), and false positive (FP). TPs comprise the correctly mapped landslides, 
whereas the other two identification categories represent two types of identification errors. FNs 
correspond to reference landslides that have not been identified by the approach, and FPs are iden-
tified landslide objects which have not been mapped in the reference inventory. The fourth 
identification category of true negatives (TN) does not apply in the case of object-based single-
target classifications (Martha et al. 2012). 

To evaluate the performance of the landslide mapping approach the three relevant identification 
categories have to be considered in relation to each other. The best result is characterized by 100% 
TP and absent identification errors (0% FP and 0% FN). Based on this relation, the four accuracy 
metrics, Detection Percentage, Omission Error, Commission Error and Quality Percentage (Lee et al. 
2003; Martha et al. 2012; Rau et al. 2014), are selected for the comprehensive accuracy assessment: 
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The Detection Percentage—also called True Positive Rate or Producer Accuracy—represents the per-
centage of landslides which have been correctly identified by the automated approach. The 
Commission Error and the Omission Error describe separately the influence of the two possible 
identification errors FP and FN, respectively. The Quality Percentage represents an integrative in-
dicator and relates the correctly mapped landslides to both possible identification errors, 
indicating how likely a landslide is correctly identified.  

Figure 12 illustrates in a spatially explicit way the results of the four different selection categories 
for both validation sites in comparison to the reference mapping. At the bottom of Figure 12, the 
performance of each selection category is shown in terms of the four accuracy metrics (Equa-
tions 1–4), which are calculated based on the accuracy statistics shown in Table 2. The less strict 
selection categories result in higher Detection Percentages with a maximum of up to 95% correct 
identification of the landslide-affected area and more than 80% of the number of landslides 
achieved by selection category IV'. Thus, category IV' is most suitable to minimize missing identi-
fications (FN) and to obtain results that comprise most of the landslide occurrences, including 
landslides that are characterized by very slight vegetation cover changes, represented by reactiva-
tions of already existing landslides or very small and shallow landslides. However, applying less 
strict selection categories, the number of FPs increases, which is expressed by the higher Commis-
sion Errors. Therefore, the mapping results of category IV' are most suitable for subsequent 
evaluation by a landslide expert who can interactively eliminate the FPs. This way, the least strict 
selection category minimizes the likelihood that potentially dangerous landslide objects are not 
included in the automated mapping result. In contrast, category I' results in the complete absence 
of FP for the Papan site and only a single FP object of 900 m2 size for the Uchkun site. Thus, cate-
gory I minimizes the number of FPs and limits the automated identification results to correctly 
identified landslide objects (TP) that are most likely to represent fresh landslide failures. Hence, if 
only landslide objects that represent most recently occurred new landslides are of interest, the se-
lection category I' can be used. 

Table III-2. Accuracy statistics according to the three different identification categories (TP, FN, FP) in regards to number of land-
slides (N) and landslide-affected area (given in m2). 

Validation Site Identification Cate-
gory 

I' II' III' IV' 

N Area N Area N Area N Area 
 TP 3 272,590 30 533,552 31 535,046 33 540,184 

Uchkun FN 33 284,751 6 23,790 5 22,296 3 17,158 
 FP 1 900 32 71,854 32 71,854 85 143,807 
 TP 2 206,297 18 393,908 18 393,908 25 420,228 

Papan FN 29 234,227 13 46,613 13 46,613 6 20,293 
 FP 0 0 21 34,525 25 38,450 55 117,550 
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However, to apply the approach to large areas in a fully automated way, the approach needs to 
counterbalance the influence of the two identification errors (FP, FN). The integrative Quality Per-
centage takes this into account and shows the highest values for categories II' and III' in both validation 
sites. As a result, the application of these categories results in correct landslide identification for more 
than 90% of the landslide area, accompanied by Omission and Commission Errors of around 10%. 

 
Figure III-12. Mapping results and accuracy for the four landslide likelihood selection categories (I'–IV') of varying strictness (Time of 
landslide occurrence depicted by color—Legend: Figure 3). 
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Furthermore, the findings of the accuracy assessment show that the quality of the results is higher 
regarding the landslide-affected area than compared to the number of landslides. In the case of 
selection category II', the Quality Percentage amounts to approx. 80% for the area and approx. 40% 
for the number of landslides. This difference reveals that the approach identifies larger landslides 
with higher reliability and that both identification errors (FN, FP) are mostly caused by objects of 
smaller spatial extents. 

55.2. Evaluation of the Geometric Quality of the Landslide Object Delineation 
The correct spatial delineation of the automatically identified objects is important for the genera-
tion of high-quality multi-temporal landslide inventories which are required for subsequent 
objective hazard analysis. For this purpose, all of the 58 landslide objects which were correctly 
identified for the two validation sites have been individually compared to the reference mapping 
objects in regards to the degree of their spatial overlap (Figures 13 and 14). As a result, spatially ex-
plicit representations of the true positive (TP), false negative (FN) and false positive (FP) areas 
have been obtained for each object comparison (Figure 14). Their normalization by the size of the 
respective reference objects (sum of TP and FN) results in percentages for all of these three param-
eters. As such, the ideal spatial overlap between two objects is represented by 100% TP and 0% FP 
indicated by the star in the diagram of Figure 14 depicting the individual objects regarding their 
percentages of TP and FP. Based on this optimum situated at the origin of the diagram, three typi-
cal object delineation errors could be identified. Along the y-axis, the percentage of the correctly 
mapped landslide area is further reduced, thereby corresponding to a progressing underestimation 
of the size of the automatically derived objects compared to the size of the reference objects. Along 
the x-axis, the percentage of the FP area increases and results in an overestimation compared to 
the reference mapping. Along the line depicted in the diagram, the automatically mapped object 
corresponds in size to the reference object but differs either in shape or in position compared to 
the reference object. 

Overall, the results depicted in Figure 14 show that most of the analyzed objects are located in the 
upper left part of the diagram close to the optimum point. The examples a and b in Figure 14 rep-
resent two cases of almost ideal object delineations. Another concentration can be seen along the 
depicted line of the diagram. It can be explained by the fact that automatically pixel-based object 
delineation always slightly differs from the manually digitized objects. This is especially evident in 
the case of small objects paradigmatically shown by the examples c and d of Figure 14. The exam-
ples e and f represent outliers of less exact object delineation for underestimation and 
overestimation, respectively. However, the diagram shows that for the vast majority of the analyzed 
landslide objects, the spatial overlap corresponds to at least 50% in regards to the original object 
contained in the reference mapping. 
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Figure III-13. Schematic view of TP, FN and FP areas resulting from comparing the spatial overlap between automatically and man-
ually (reference) derived landslide objects. 

 
Figure III-14. Comparison of automatically identified landslide objects with manually derived reference objects (cf. Figure 13). (Left) 
Diagram of the TP and FP percentages of each object comparison. (Right) Results depicted for six examples (same legend as for Fig-
ure 13). 

66 Discussion 

The developed automated approach for spatiotemporal landslide mapping enables comprehensive 
assessment of landslide activity over longer periods of time. It is based on the analysis of landslide-
specific vegetation changes using temporal NDVI-trajectories derived from optical remote sensing 
time series data complemented by relief parameters. To perform robustly over large areas, the ap-
proach considers the existing variability of vegetation change characteristics related to different 
types of landslides (Figure 5a) and to different parts within a single landslide (Figure 5b). This al-
lows the identification of fresh and reactivated landslide occurrences including their separation 
from other surface changes not related to landslide processes (Figure 4). In this context, the ap-
proach differentiates the identified landslide objects by their overall landslide likelihood, enabling 
landslide experts to incorporate the level of uncertainty in the subsequent interpretation and eval-
uation of the results obtained by the automated analysis. 
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To meet the goal of assessing the multi-temporal landslide activity, the approach derives objects of 
landslide activations which occurred at different times during the time span of analysis. For this 
purpose, the segmentation of landslide candidate objects builds on the result of a specific multi-
threshold-based change detection analysis considering distinct and less pronounced landslide-
related vegetation cover changes between each subsequent image pair contained in the remote 
sensing time series database. In contrast, the existing object-oriented landslide mapping approach-
es use mono-temporal information for the segmentation procedure (Barlow et al. 2006; Kurtz et al. 
2014; Lu et al. 2011; Martha et al. 2010; Stumpf et al. 2014; Stumpf & Kerle 2011) and thus are not 
designed to delineate active parts of a landslide. To evaluate the plausibility of the landslide candi-
date objects of the developed approach, they are further analyzed in regard to relief parameters 
and post-event rates of temporal revegetation. Analyzing landslides in regards to their relief posi-
tion has long been a standard part of remote sensing-based landslide recognition (Barlow et al. 
2003; Cheng et al. 2004). However, the incorporation of revegation rates, derived by the analysis of 
the temporal NDVI-trajectories, has firstly been applied and allows separation of slower revegeta-
tion rates typical for areas affected by landslides from other areas characterized by faster 
revegetation, as in the case of agricultural fields. 

The application of the developed approach to the whole study area (Section 4) has confirmed its 
suitability for supporting the generation of multi-temporal landslide inventories for large areas. In 
this context, the approach enables the analysis of backdated landslide occurrence as well as the 
monitoring of ongoing landslide activity making it widely applicable in the frame of different ap-
plied tasks related to landslide investigations. However, the profound understanding of landslide 
processes also requires the assessment of information not derivable by the developed approach, 
such as landslide type, depth of sliding surface and volume of displaced material. They are mostly 
assessed during field investigations that are time- and resource-consuming and therefore often 
carried out less frequently than needed. The developed approach can thus facilitate a more effi-
cient and systematic way of conducting such field work by providing reliable spatiotemporal 
information on landslide occurrence allowing more focused field investigations. This is especially 
important for regions like the study area in southern Kyrgyzstan, where large areas are affected by 
frequent, albeit sporadic, occurrences of landslides (Section 2.1). 

Comprehensive accuracy assessment (Section 5) has been performed for two independent valida-
tion sites (Section 2.4) in order to assess the methodological performance of the approach 
including different parameterizations represented by the landslide likelihood-based selection cate-
gories. The highest accuracies have been obtained by applying the selection category II', which 
comprises the landslide objects of very high and high landslide likelihood (I and II). For both vali-
dation sites, this category has resulted in a 90% correctly identified landslide-affected area 
(Detection Percentage), whereas Omission and Commission Errors of approximately 10% and Quali-
ty Percentages of 80% could be achieved (Figure 12II). These accuracies show that most of the 
automatically detected landslides are characterized by a high landslide likelihood, which reveals 
that the developed automated approach is able to reliably distinguish landslide-related surface cov-
er changes from other land cover changes. This means that the approach robustly accommodates 
the variability of landslide phenomena occurring within the large study area, as well as the remain-
ing geometric mismatches and the radiometric variability contained in the multi-temporal 
RapidEye database. The fact that the results are comparable for both validation sites, differing in 
temporal landslide activity patterns (Section 2.4), further indicates a reliable landslide identifica-
tion independent from the time of landslide occurrence. 
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However, considering the number of identified landslides that have been obtained for the selection 
category II', the results are less accurate (Quality Percentage: ≈ 40%) than for the areal extent of the 
landslides (Figure 12II). This difference indicates that mainly smaller objects are the source for 
both identification errors—not identified landslides (FN) and incorrectly identified landslides 
(FP). To further improve the automatically derived identification accuracies of selection category 
II', the developed approach also allows for a semi-automated procedure. For this purpose, the se-
lection category IV' has to be applied, thereby resulting in the consideration of all automatically 
identified landslide objects independent of their landslide likelihood. As a result, almost all of the 
reference landslides (30 out of 33 for the Uchkun and 25 out 31 for the Papan validation site) have 
been automatically identified (Table 2). However, at the same time, this category contains a higher 
number of FPs that could mostly be eliminated by subsequent expert-aided evaluation (Section 4). 
This way, even very small landslide occurrences, often characterized by less pronounced surface 
changes, have been contained by the landslide mapping result. The knowledge about such small 
activations can be very advantageous because they often represent precursors of subsequent large 
hazardous landslides. 

For comparing these accuracies to accuracies that have been obtained by other automated ap-
proaches for object-oriented landslide mapping, a number of recent studies has been selected 
which use the same accuracy metrics. Rau et al. (2014) achieved Detection Percentages between 
64.8% and 92.7% and Quality Percentages between 58% and 81.7% for three test sites by post-event 
classification of images acquired by different sensors of very high spatial resolution. Martha et al. 
(2012) used a bi-temporal approach for eight image pairs and reported for each time period indi-
vidual accuracies ranging from 71.5% to 96.7% for the Detection Percentage and approx. from 50% 
to 90% for the Quality Percentage. These accuracy statistics are based on the areal extent of the 
identified landslides and are of comparable or in part lesser accuracy than the results that were 
achieved in this study for the automated usage of selection category II' (Detection Percentages of 
88%–93% and Quality Percentages of 82.9%–84.8%). Martha et al. (2012) have also assessed the 
accuracy for the number of identified landslides resulting in Quality Percentages between approx. 
20% and 70%, which are also comparable to the results of this study in showing lower accuracies 
for the identified number of landslides (Quality Percentages of 34.6%–44.1%). 

Overall, the knowledge-based parameterization of the NDVI thresholds and the relief properties 
enabled a high mapping quality for both validation sites despite their differences in natural and 
land use conditions, RapidEye data coverage, and spatiotemporal landslide activity. This opens up 
the principle opportunity for applying the approach to other landslide-affected areas characterized 
by the presence of landslide-related changes in vegetation cover. In this context, the wider applica-
bility of the developed approach also depends on the availability of suitable satellite remote sensing 
data. The RapidEye time series data used in this study represent an ideal database characterized by 
high spatial and temporal resolution. However, the approach also comprises the potential for the 
extension to data acquired by other satellite-based remote sensing systems, as it is primarily based 
on the NDVI representing a robust spectral index which can be calculated from most available 
multispectral satellite remote sensing data. 
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77 Conclusions 

The developed automated approach is capable of object-oriented automated mapping of spatio-
temporal landslide activity using optical satellite time series data and a digital elevation model. The 
approach builds on temporal NDVI-trajectories that represent pixel-based temporal footprints 
incorporating a variable number of multi-temporal data acquisitions. They enable the continual 
analysis of landslide-related surface cover changes over longer periods of time allowing their sepa-
ration from other land cover changes based on differences in temporal evolution of the vegetation 
cover. To enable a meaningful evaluation of the automatically mapped landslide objects, they are 
characterized by uncertainty-related landslide likelihood classes. Based on these classes, the ap-
proach can be performed in a fully automated way if only objects of higher landslide likelihood are 
included or, in a semi-automated manner, if all identified landslide objects are considered inde-
pendent from their landslide likelihood. This way, the knowledge-based approach accommodates 
different user needs and allows for efficient object-oriented automated landslide mapping. 

The accuracy assessment of the presented approach has proven its suitability for multi-temporal 
mapping of landslides of different sizes, shapes, types, and activity styles under varying natural and 
land use conditions with a high mapping accuracy of a Quality Percentage of 80%. Thus, the ap-
proach enables detailed spatiotemporal assessment of landslide activity over large areas during 
longer periods of time. Its application to the 7500 km2 study area in southern Kyrgyzstan has re-
vealed a perpetual process activity in this area between 2009 and 2013 which could not be assessed 
by the local authorities solely relying on field-based landslide reporting and mapping. Consequent-
ly, the approach has enabled the monitoring of the recent spatiotemporal landslide activity, thereby 
contributing to the objective and reproducible generation of multi-temporal landslide inventories, 
which have been thus far largely missing for the analyzed region in southern Kyrgyzstan and many 
other parts of the world (Guzzetti et al. 2012; Petley 2012). The results of the spatiotemporal land-
slide mapping can also be further analyzed in relation to landslide triggering and predisposing 
factors in order to improve the regional process understanding as an important prerequisite for a 
spatially and temporally differentiated hazard assessment. 

Since the approach is solely based on the NDVI, in principle it can be extended to a wide range of 
multispectral satellite remote sensing data comprising the required spectral bands. Taking into 
account the average size of approximately 13000 m2 of the landslides that are identified in the study 
area in southern Kyrgyzstan, sensors with up to 30 m spatial resolution are considered to be suita-
ble for automated landslide mapping in this region. Thus, the RapidEye time series database has 
been extended further into the past based on archived data of various multispectral systems, such 
as Landsat, SPOT and ASTER (Behling et al. 2014b). In this context new opportunities will open 
up with the upcoming launch of the Sentintel-2 system (Drusch et al. 2012). Its envisaged revisiting 
time of up to five days, the spatial resolution of 10 m, and the large swath width of 290 km will 
make the data of Sentinel-2 especially suitable for spatiotemporal monitoring of landslide activity 
in global hotspots (Nadim et al. 2006), such as South America (e.g. Brazil, Colombia) and South-
east Asia (e.g. Taiwan, Thailand, Philippines). However, the global transferability of the developed 
approach will require further methodological development in order to adapt it for regions where 
the natural environments largely differ from the conditions in Central Asia. 
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AAbstract 

The main principle in landslide hazard and risk assessment is that conditions of past landslide ac-
tivity indicate future landslide occurrence. To allow the analysis of past long-term spatiotemporal 
landslide frequencies, this paper presents an automated method for the derivation of multi-
temporal landslide inventories, which have been the bottleneck in regional landslide hazard and 
risk assessment. The developed method uses globally archived satellite remote sensing data for a 
retrospective systematic assessment of past multi-temporal landslide activity. Landslides are auto-
matically identified as spatially explicit objects based on landslide-specific vegetation cover 
changes using temporal NDVI-trajectories and complementary relief-oriented parameters. To en-
able long-term analysis of large areas with highest possible temporal resolution, the developed 
method facilitates the use of a large amount of optical multi-sensor time series data characterized 
by highly irregular temporal resolution. The database of this study consists of 212 datasets com-
prising the freely available Landsat TM & ETM+ data as well as SPOT 1 & 5, IRS1-C LISSIII, 
ASTER and RapidEye data. They have been acquired between 1986 and 2013 and cover a landslide-
prone area of 2500 km2 in Southern Kyrgyzstan. The application of the developed approach to this 
database led to the identification of 1583 landslide objects ranging in size between 50 m2 and 
2.8 km2. Accuracy assessment of two independent validation sites resulted in Detection Percent-
ages exceeding 90% and Quality Percentages of up to 80%. Spatiotemporal analysis of the 
landslides detected during these 27 years revealed constantly ongoing landslide activity of varying 
intensity. The highest overall landslide rates occurred in 2003 and 2004 exceeding the long-term 
annual average rate of 57 landslides per year by more than five times. The results of automated 
landslide detection also enabled the determination of areas of highest landslide activity, whereas 
most of them are persistent over time. Moreover, first statistical analyses of the spatiotemporal 
landslide frequencies revealed distinct dependencies to specific morphological settings as well as a 
moderate correlation with the triggering factor precipitation. Altogether, the developed automated 
approach has proven to be suitable for deriving multi-temporal landslide inventories in an efficient 
and reproducible way with a high degree of completeness, allowing the retrospective analysis of 
spatiotemporal landslide activity as an important prerequisite for probabilistic landslide hazard 
assessments at a regional scale. 

1 Introduction 

“The past and present are keys to the future,” (Varnes 1984) is a long-standing principle in land-
slide hazard and risk assessment indicating that future landslides are more likely to occur under 
the same or similar conditions of past landslides (Corominas & Moya 2008; Fell et al. 2008; 
Guzzetti et al. 2012). To allow profound spatiotemporal analysis of past landslide activity, systemat-
ic and area-wide landslide inventories need to be established, which contain the location, extent 
and date of past landslides as well as other qualitative and quantitative parameters (Malamud et al. 
2004; van Westen et al. 2008). Landslide inventories can be differentiated into historical, event-
based, seasonal and multi-temporal inventories (Guzzetti et al. 2012). A historical inventory com-
prises landslides with very limited knowledge about the date and place of their occurrence. Event-
based and seasonal inventories contain landslides that have been mapped related to either a single 
or multiple triggering events occurring within one season of landslide activation. Thereby, the date 
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of landslide occurrence is assigned to the date of the triggering event, such as earthquakes or in-
tense rainstorms. In contrast, multi-temporal inventories are created by a repeated documentation 
of landslides independently of specific triggering events during a longer period of time, whereas 
the dates of occurrence are either precisely known or assigned to the time period between repeated 
documentation. Thus, multi-temporal landslide inventories represent an important requirement 
for probabilistic landslide hazard assessment, since their systematic spatiotemporal landslide doc-
umentation allows the determination of spatiotemporal variations of landslide frequencies 
(Guzzetti et al. 2005; van Westen et al. 2008). However, due to the very high mapping effort of such 
multi-temporal inventories, they are largely unavailable for most parts of the world (Guzzetti et al. 
2012). The existing ones have mostly been prepared for relatively small areas (several tens of square 
kilometers) by combining field investigations, analysis of archival data and visual interpretation of 
optical remote sensing imagery, such as aerial photographs and high-resolution satellite data (Galli 
et al. 2008; Klimeš 2013; Ghosh et al. 2012; Fiorucci et al. 2011; Saba et al. 2010). In general, the 
temporal update rate of the existing inventories is often limited to several years or even decades. To 
improve the spatial and temporal completeness of such multi-temporal inventories, the develop-
ment of efficient landslide mapping strategies is of utmost importance. 

So far, several studies have demonstrated the potential of optical remote sensing for (semi-)auto-
mated mapping of landslide occurrence. They mostly aimed at the systematic assessment of spatial 
variations in landslide activity related to an individual well-known triggering event, such as earth-
quakes (Lacroix et al. 2013; Lodhi 2011; Parker et al. 2011; Yang & Chen 2010) and 
hydrometeorological extreme events (Borghuis et al. 2007; Mondini et al. 2011b; Tsai et al. 2010). 
For this purpose, either mono-temporal classification techniques have been applied to imagery of 
a single acquisition date after the triggering event (Barlow et al. 2006; Othman & Gloaguen 2013) 
or various change detection techniques have been used to identify landslide-related surface chang-
es that occurred between pre-event and post-event data acquisitions (Hölbling et al. 2015; Lu et al. 
2011; Nichol & Wong 2005; Stumpf & Kerle 2011). 

Although optical remote sensing data have been widely used for identifying the spatial variability 
of event-based landslide activity, little attention has been paid to the systematic analysis of tem-
poral variations in landslide activity over longer periods of time. To do so, efficient strategies are 
required that allow the automatic derivation of multi-temporal landslide inventories. By now, Mar-
tha et al. (2012, 2013) have presented a study for the semi-automatic derivation of a multi-temporal 
inventory. They applied an approach that had been initially designed for event-based mapping to a 
multi-temporal database of annual data coverage from 1998 to 2009 for an area of 81k m2 in the 
Indian Himalaya. However, the evaluation of spatiotemporal landslide activity requires the analysis 
of larger areas with high temporal resolution. In the result, suitable image databases contain a large 
amount of data with variable image characteristics, originating from seasonal variations in data 
acquisition and the natural variability of the land surface and landslide phenomena throughout a 
larger natural environment. At the same time, such time series databases open up new opportuni-
ties to design landslide identification approaches taking into account the multi-temporal 
representation of landslide processes. We developed such an approach allowing automated detec-
tion of landslide objects based on the analysis of temporal trajectories of landslide-related 
vegetation changes using optical time series data in combination with relief-based parameters 
(Behling et al., 2014a). The approach enabled automated multi-temporal mapping of landslides for 
an area of 7500 km2 in Southern Kyrgyzstan based on high temporal resolution RapidEye data of 
up to six acquisitions per year between 2009 and 2013. However, due to the availability of the 
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RapidEye data this analysis was limited to a time span of four years. Hence, it needs to be extended 
for the derivation of past landslide activity in a more comprehensive way to serve as suitable input 
information for subsequent probabilistic landslide hazard assessment. 

Against this background, the objectives of this study are  

· the development of an automated remote sensing based approach for retrospective long-term 
multi-temporal landslide mapping and  

· the derivation of a large area multi-temporal landslide inventory including the evaluation of 
past spatiotemporal landslide activity in order to demonstrate its potential use for further 
systematic hazard assessment. 

The objective of long-term multi-temporal landslide mapping requires the extension of the exist-
ing RapidEye based-approach into a multi-sensor approach that allows the analysis of longest 
possible time series using all available optical satellite imagery acquired by different sensors. In this 
study, we combine the freely available Landsat TM & ETM+ data with data acquired by the SPOT 1 
& 5, IRS1-C LISSIII, ASTER, and RapidEye sensors. The Landsat archive provides the longest ex-
isting time series and therefore serves as a crucial data backbone in remote sensing data scarce 
regions including many global landslide hotspots, such as Central Asia, South America and South-
east Asia (Nadim et al. 2006). Since in many of these regions reliable spatial reference information 
is missing, we also used the terrain corrected multi-temporal datasets from the Landsat archive as 
the topographic reference for the development of an automated co-registration procedure between 
satellite remote sensing datasets of variable spatial resolution and origin (Behling et al. 2014b). For 
this study, the co-registration procedure is applied to a multi-sensor database of high temporal 
resolution for a 2500 km2 area in Southern Kyrgyzstan, forming the basis for the development of 
the multi-sensor landslide mapping approach presented in this study. The required methodologi-
cal developments deal with the challenges arising from irregular temporal resolutions inherent in 
the long-term time series data, the variability introduced by the implementation of multiple sen-
sors, the high amount of variable datasets, and the irregular and patchy spatial availability of 
remote sensing data throughout the study area. Moreover, the presented study also includes the 
application of the developed approach to the complete database in order to derive an area-wide 
long-term multi-temporal landslide inventory. This inventory is analyzed regarding spatial and 
temporal variations in past landslide activity, whereas the derived spatiotemporal variability of 
landslide occurrence is further evaluated against the morphological setting and the temporal varia-
tions of precipitation as a triggering factor in order to demonstrate the potential of the developed 
approach to facilitate probabilistic and spatially differentiated landslide hazard assessment. 
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22 Study Area and Database 

2.1 Study Area 
The study area (Figure 1A) of 2500 km2 is located in Southern Kyrgyzstan at the eastern rim of the 
Fergana Basin, where the foothills of the Tien Shan mountain ranges are largely affected by a high 
landslide activity (Golovko et al. 2015; Havenith et al. 2015; Roessner et al. 2005). Since this region 
is an important human living space in the mountainous country, landslides represent a major nat-
ural hazard causing fatalities and severe economic losses. Large mass movements mostly occur in 
form of deep-seated landslides within weakly consolidated Mesozoic and Cenozoic sediments, 
which have been subjected to ongoing tectonic deformation (Roessner et al. 2005). Observations of 
landslide activity in Southern Kyrgyzstan have been carried out by local organizations since the 
1950s focusing on areas in the vicinity of settlements, whereas these efforts have largely decreased 
after the independence of Kyrgyzstan in 1991 (Ibatulin 2011; Kalmetieva et al. 2009). 

2.2 Remote Sensing Database 

 
Figure IV-1. Time series database of optical multi-sensor data. A-D: Spatiotemporal distribution of the data within the study area. A: 
Length of time period. B: Number of repeated acquisitions. C: Number of years with available data coverage; location of validation 
sites. D: Number of years with data acquired in the growing season (May-July). E,F: Areal data coverage for the study area per year. 
Number of datasets: All: 212, May-July: 105. 

To facilitate a comprehensive landslide mapping, a multi-temporal satellite remote sensing data-
base has been established comprising data of seven optical sensors, i.e. SPOT 1 & 5, IRS1-C LISSIII, 
Landsat TM & ETM+, ASTER, and RapidEye. All datasets have been obtained in form of orthorec-
tified standard data products in order to reduce preprocessing efforts (Behling et al. 2014b). The 
spatial resolution of the datasets ranges between 30 m for the Landsat and 5 m for the RapidEye 
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sensors (Figures 1E,F). A comprehensive overview of the used data including sensor characteristics 
can be found in Behling et al. (2014b). The database consists of 212 datasets covering a time span 
from 1986 to 2013. Since the first datasets, acquired by the SPOT 1 sensor (Figure 1E), cover only 
subsets of the study area, the analyzed time span starts in 1990 for the remaining parts (Figure 1A). 
In total, the database contains data acquisitions for at least 18 different years (Figure 1C), whereas 
the temporal resolution is variable in different parts of the study area and in different periods of 
the covered time span. The number of acquisitions varies between 50 and 70 datasets (Figure 1B), 
depending on the location within the study area. The time intervals between subsequent acquisi-
tions range from six years (1990-1996) in the beginning of the time series (Figure 1E) to two weeks 
between the high temporal resolution data of the RapidEye sensor acquired between 2009 and 
2013. Besides the multispectral remote sensing data, the study used a digital elevation model 
(DEM) of 30 m spatial resolution derived from the X-band data of the Shuttle Radar Topography 
Mission in February 2000 (Rabus et al. 2003). 

22.3 Appearance of Landslides in the Multi-Sensor Time Series Database 
In the existing multi-sensor database, landslide appearance is highly variable depending on the 
temporal acquisition characteristics and the spatial resolution of the data. In terms of temporal 
acquisition characteristics, two main aspects have to be considered, i.e. the season of data acquisi-
tion and the temporal gap between the failure and the first available data acquisition after the 
failure. In Figure 2A differences in landslide appearance between images acquired in the growing 
season and in the dry season are shown in an exemplary way. During the growing season, the re-
moval of vegetation cover caused by landslide occurrence results in a much higher spectral 
contrast to the undisturbed vegetated surroundings than in case of the dry season. In the study 
area, the growing season usually spans from May to July. Towards the end of July, the amount of 
rainfall significantly decreases, and in combination with high temperatures, the vegetation cover 
experiences an increasing drought stress. Thus, the period between May and July is the most suita-
ble one to identify landslide failures in optical satellite data acquisitions. Figure 1F shows the 
annual areal coverage of such ideal data acquisitions, whereas Figure 1D shows the number of years 
for which such coverage could be achieved. However, the database also comprises data acquisitions 
outside this optimal period (Figures 1C,E). They represent a valuable extension due to temporal 
and spatial shifts of the phenology between the years as well as time-independent spatial variations 
in the vegetation cover characteristics. They also reduce the length of the interval between subse-
quent data acquisitions within which a landslide could be automatically identified. 

Figure 2B shows that a landslide is most evident right after the failure, whereas in the following 
years its appearance becomes less distinct because of the onset of revegetation. However, due to the 
typically rather deep disturbance of the affected Earth’s surface and its increased susceptibility to 
erosion processes, most parts of the landslide stay largely unvegetated for several years. These re-
vegetation processes show spatiotemporal variations caused by multiple factors, such as the type 
and size of the landslide, the depths of the active sliding plane and the intensity of subsequent reac-
tivations. Deep-seated landslides often lead to a complete removal of the top soil and thus 
experience a slow subsequent revegetation and a long preservation of the largely unvegetated land 
surface, whereas shallow landslides and flows are characterized by less severe soil disturbance and 
thus a faster revegetation (Behling et al. 2014a). 
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Figure IV-2. Comparison of landslide appearance in selected optical satellite remote sensing data of different characteristics. 

Figure 2C shows the influence of the spatial resolution of the imagery on the landslide appearance 
by comparing the highest (5 m) and lowest (30 m) spatial resolution dataset contained in the data-
base. The subset of Figure 2C shows a set of two landslides that are representative for the study 
area. The left one represents a rotational slide and the right one a combination of a slide and a flow. 
Both landslides are clearly visible in both spatial resolutions, whereas their spatial delineation is 
less precise in the lower resolution image. Moreover, Figure 2C shows that the lengthy shape of the 
flow reduces its detectability in the lower resolution data, whereas the compact shape of the rota-
tional slide is better preserved in the lower resolution image. In general, the reliability of landslide 
detection is determined by the pixel size in relation to the landslide dimension, whereas the pixel 
size should not exceed the minimum dimension (length or width) of the landslide. Thus, the most 
common landslides of the study area (Figure 2C) are detectable in all available spatial resolutions, 
whereas the very small activations and narrow flows are better detectable in the datasets with spa-
tial resolutions of 15 m or better (i.e. ASTER, SPOT 5, RapidEye). Since these small activations play 
a minor role in regional hazard assessment, the database is suitable for reliable spatiotemporal 
landslide detection in Southern Kyrgyzstan in terms of spatial resolution. 

Overall, data acquisitions of high spatial resolution acquired in the growing season right after fail-
ure are most suitable for detecting the different types of landslide failures occurring in the study 
area. Furthermore, the interval between subsequent acquisitions needs to be as short as possible in 
order to achieve data acquisitions right after the landslide failures and to maximize the precision in 
determining the period of landslide occurrence. These different requirements result in a highly 
diverse database in terms of (i) spatial and spectral characteristics of the used data, (ii) variable 
time intervals between subsequent acquisitions, and (iii) differences in seasonal data acquisition, 
which all have to be considered in the method development (Section 3). 
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33 Method 

The goal is the development of a methodology for automated multi-temporal mapping of land-
slides using a comprehensive and highly diverse multi-sensor time series database. For this 
purpose, the already developed multi-temporal landslide mapping approach (Behling et al. 2014a) 
needs to be extended to meet the requirements originating from the multi-sensor time series data-
base covering several decades of data acquisitions in variable seasons with a highly irregular 
temporal and spatial resolution (Section 2). Thus, the approach needs to enable a robust and effi-
cient identification of landslide objects independent from the spatial and spectral properties of the 
sensor as well as the year and season of data acquisition.  

The methodology automatically identifies landslides by analyzing characteristic temporal vegeta-
tion cover changes that are related to the process of a landslide failure. Typically, landslides are 
represented by an abrupt disturbance of the vegetation cover due to the actual failure and by less 
distinct changes due to revegetation after the failure. This focus on vegetation changes allows for a 
cross-sensor comparison, since common multispectral satellite sensors comprise the spectral range 
of visual and near infrared, which is very suitable for vegetation-related issues. Thus, the temporal 
variations of the NDVI are used to separate landslide-specific vegetation changes from other tem-
poral variations of the vegetation cover (e.g. changes in natural vegetation or in agricultural areas) 
as well as from permanently non-vegetated areas (e.g. urban structures, water bodies, outcrops). 

Figure 3 depicts the overall approach for automated multi-temporal landslide mapping using long-
term multi-sensor optical time series data. All of the methodological developments have been real-
ized using the open source programming language Python. The developed system consists of three 
major parts. For each part, Figure 3 lists the specific processing steps in a dashed box and schemat-
ically shows the main features of the NDVI-based temporal analysis. Part 1 comprises the pre-
processing procedures aiming at data homogenization as a prerequisite for subsequent multi-
temporal change detection (Section 3.1). Part 2 deals with the construction of the NDVI time series 
data cubes (Section 3.2) forming the input data for the automated identification of landslide ob-
jects performed in part 3, which builds on the derived temporal NDVI-trajectories and relief-
based properties (Section 3.3). In the following, these three parts are described in more detail fo-
cusing on the extensions that were made in order to accommodate the needs for automated multi-
sensor analysis of longer time periods. The output of the extended approach is presented in an ex-
emplary way in Section 3.4. 
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Figure IV-3. Schematic overview of the overall approach. For each part (1-3), the specific processing steps are listed in a dashed box. 
Main features and parameters of the processing steps are illustrated schematically. The specific values of the parameters are listed in 
Table 1. (important developed extensions compared to Behling et al. (2014a): 1a,c, 2a,b,c and 3a,e,f) 
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Table IV-1. Parameters implemented in the automated landslide mapping approach. (The gradient indicates landslide possibility. 
The higher the saturation the higher the landslide probability of the specific parameter.) 

 
*  Default threshold values of post and index. (might change due to a preceding bi-temporal calibration step.) 
**  Landslide phenomena typically associated to specific overall landslide likelihood class (I-IV) 

33.1 Pre-Processing 
In time series analysis, pre-processing aims at minimizing artifact changes that are induced by ge-
ometric mismatches and radiometric differences between the images, as well as the temporary 
presence of clouds and snow (Coppin et al. 2004; Hussain et al. 2013). In terms of efficiency, the 
approach requires automated and robust pre-processing procedures that are suitable for handling 
such a large and heterogeneous database. For this purpose, the approach comprises customized 
automated routines for data import and metadata homogenization in order to deal with the differ-
ent data structures of the standard data products. For geometric adjustment, an automated 
correlation-based image-to-image co-registration approach has been developed (Behling et al. 
2014b). This approach aligns orthorectified standard data products of different optical sensors and 
of different seasonal and annual acquisition dates. This alignment is performed by determining 
and correcting for the spatial offsets between the datasets and a common spatial reference repre-
sented by the globally available terrain-corrected Landsat (L1T) time series data. An accuracy 
assessment of the aligned database has revealed an overall relative accuracy of 17 m and an abso-
lute accuracy of 23 m (RMSE), which is considered to be sufficient for multi-temporal landslide 
detection and subsequent GIS-based analysis of the results in combination with other geospatial 
data (Behling et al. 2014b). 

To reduce the radiometric differences between the images, a conversion of DN to TOA-reflectance 
is carried out. This conversion adjusts for radiometric scene variations caused by solar illumina-
tion differences, sensor specific gains and offsets as well as differences in seasonality (Earth-Sun 
distance). The influence of the remaining radiometric variability mainly caused by differences in 
atmospheric conditions is further reduced by using the normalized difference vegetation index 
(NDVI) as the basis for time series analysis. 

The masking of clouds and snow is carried out by a threshold-based approach classifying pixels of 
clear or possible cloud/snow coverage in the green spectral bands of all the images contained in the 
time series database. If the classified pixels are spatially connected, they are segmented to objects. 
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The decision whether such an object is included in the mask is based on specific object character-
istics, i.e. proportion of clear pixels within the segment, the size of the segment, as well as the 
temporal stability of the segment (presence throughout the time series). This way the approach is 
able to separate between permanent bright objects (e.g. sand and urban objects) that are defined by 
high temporal stability and a relatively small size, and temporary ones (e.g. clouds and snow). 

33.2 Construction of Temporal NDVI Data Cubes 
The spatially and temporally inhomogeneous database of masked NDVI images are compiled to 
NDVI data cubes forming the basis for efficient landslide identification. In a first step, the study 
area is divided in a user-defined number of sub-parts (1…N), which on the one hand reduces the 
required main storage for data processing and, more important, allows the adaption of the land-
slide identification approach to large variations of natural conditions within the study area. This 
adaption is done by calibrating the bi-temporal change detection procedure (Section 3.3.1) to the 
vegetation cover characteristics of this sub-part. In this study, we divided the study area in six tiles, 
based on the RapidEye tile structure (25x25 km2 tiles). The next step is the construction of the 
complete NDVI time series data cube for each sub-part (TS1,N). For this purpose, the datasets avail-
able for each sub-part are resampled to a common spatial resolution and stacked to a TS. In this 
study, the common spatial resolution is defined by the highest spatial resolution available in the 
multi-sensor database, i.e. 5 m pixel size of the RapidEye data. 

After the construction of the TS, the approach yields the opportunity to preselect data acquisitions 
from the complete time series that are most suitable in terms of identifying landslide-related land 
surface changes. As stated in Section 2, suitable datasets are those, which have been acquired in the 
growing season and are characterized by a higher spatial resolution. The selected images define the 
subsequent bi-temporal image pairs (Bi) forming the basis for the identification of potential land-
slide objects. One of the selected images serves as a calibration dataset representing the typical 
vegetation cover characteristics during the growing season for the area covered by the respective 
TS. The unselected images are used for a subsequent refinement of the time period of landslide 
occurrences (Section 3.3.1). In case of the database at hand, high-resolution data acquisitions dur-
ing the growing season are available since 2009 (5 m resolution RapidEye data). For the 2000s, 
datasets of the ASTER and the SPOT 5 sensors form a suitable time series with spatial resolutions 
of 15 m and 10 m, respectively. For the years before, data of lower resolution and in part acquired 
outside of the main growing season (e.g. Landsat image of 11 Aug. 1998) had to be selected in order 
to maintain a high temporal resolution throughout the complete time series. The calibration imag-
es of the NDVI time series data cubes (TS) are defined by RapidEye datasets that have been 
acquired in May 2011. Overall, the decision which datasets are selected varies for each TS due to 
the differing spatial availability of individual image datasets throughout the study area. 

3.3 Automated Landslide Identification 
The resulting temporal NDVI data cubes with their preselected datasets are the basis for the 
NDVI-trajectory-based identification of multi-temporal landslide occurrence. The preselected 
datasets represent bi-temporal data pairs (Bi) in which landslide occurrence can be identified. For 
each data pair the approach analyzes the degree of landslide-related bi-temporal vegetation chang-
es serving as the basis for the segmentation of landslide candidate objects. Afterwards, the 
remaining datasets that have been acquired in between the dates of the initial bi-temporal data pair 
are included to refine the time period of landslide occurrence. The resulting landslide candidate 



 Method 87 
 

objects (Section 3.3.1) are further evaluated in regard to their plausibility considering multi-
temporal revegetation and relief-oriented parameters (Section 3.3.2) to reduce the likelihood of 
false identifications. For this purpose, we developed a rule-based landslide identification approach, 
which builds on multiple pixel- and object-based parameters to analyze the landslide-related vege-
tation changes and relief properties (Table 1). This parameterization is based on multiple 
thresholds, in order to allow for uncertainty-related analysis (adapted from Castilla et al., 2009) 
facilitating the approach to accommodate the natural variability of the landslide phenomena evi-
dent within a single landslide object as well as between different landslide types, which is in detail 
described in Behling et al. 2014a. 

33.3.1 Identification of Landslide Candidate Objects 
In our previously developed approach (Behling et al. 2014a), the identification and segmentation of 
landslide candidate objects is based on change detection algorithms using multiple thresholds to 
analyze the landslide-related vegetation disturbances (CDIST) between a bi-temporal image pair (Bi) 
that has been acquired during the growing season. Since the long-term data archive also comprises 
images acquired outside the growing season, the images of a bi-temporal image pair may strongly 
differ in their vegetation conditions. Therefore, we implemented a calibration procedure that pre-
calibrates the default threshold values of the index and post parameter (Figure 3, Table 1) used for 
classifying the landslide-related vegetation disturbances (CDIST) occurring between a bi-temporal 
image pair (Bi). The index parameter describes the landslide-related NDVI decrease between the 
pre- and post-event image. The post parameter specifies typical NDVI values of a disturbed vegeta-
tion cover or bare soil, which are present in the post-event image after landslide failure. The 
calibration procedure is expressed by the following equations, 

POSTPRE

POSTPRE

VEGVEG
VEGVEG

ndex i  ndexi '
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CALPOST VEGVEG post  post '  (2) 

whereas VEG represents the average NDVI value of the possibly vegetated pixels (pixels of NDVI > 
0.17), which are contained in the pre-event (PRE), the post-event image (POST), and the calibra-
tion image (CAL). This way, the parameters are calibrated by taking into account the vegetation 
cover characteristics inherent in the analyzed image datasets. The adaption of the index parameter 
corrects for the influence resulting from seasonal differences between the pre- and post-event im-
age. The adaption of the post parameter corrects for seasonal differences between the post-event 
image and the calibration dataset of a NDVI data cube, which represents the typical vegetation 
cover characteristics for the growing season. This way the differentiation between the landslide-
related disturbed vegetation cover and the surrounding vegetation is adapted to the actual vegeta-
tion conditions in the post-event image. 

Figure 4 exemplarily demonstrates the calibration procedure. It compares the default and calibrated 
bi-temporal identification of pixels that are affected by landslide related vegetation disturbance 
(CDIST) and their subsequent segmentation to landslide candidate objects. Figure 4A represents the 
comparison of two images that have been acquired during the growing season. In this standard 
case, the default and calibrated thresholds perform very similarly, resulting in a reliable pixel-based 
identification of landslide-related bi-temporal vegetation change (CDIST). This enables a robust seg-
mentation of the spatially connected CDIST pixels to landslide candidate objects. These candidate 
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objects are further classified regarding their bi-temporal landslide likelihood (CBITEMP) based on the 
proportions of the CDIST pixels within each object (Table 1). In case an object meets none of the crite-
ria described in Table 1, it is classified as false positive (e.g. background noise) and will be removed 
from the selection of landslide candidate objects. Applying this procedure to the bi-temporal image 
pair of Figure 4A enables the identification and delineation of the three landslides that have oc-
curred during the given time period. In Figures 4B,C the bi-temporal comparison includes an 
acquisition outside of the growing season, when the vegetation had already experienced a high 
drought stress. In Figure 4B, the dataset acquired under dryer conditions (represented by the Land-
sat TM image from 11 August 1998) serves as the post-event image and in Figure 4C as the pre-event 
image within the bi-temporal image pair (Bi). In case B, the dryer post-conditions result in an area-
wide NDVI decrease for the bi-temporal image comparison. The default thresholds result in an 
overestimation of CDIST pixels, because dried vegetation tends to be mistaken as landslide-related 
slight vegetation disturbances. In case C, the default values result in an underestimation of CDIST

pixels, because a landslide is characterized by a much lower NDVI decrease, due to the lower NDVI 
values of the dry pre-event condition. However, the application of the calibration procedure elimi-
nates to a large degree these over and underestimations, and thus significantly improves the 
subsequent segmentation of landslide candidate objects and their classification regarding bi-
temporal likelihood. As a result, the calibration allows for the correct identification and delineation 
of the single landslide depicted in Figure 4B as well as the two landslides shown in Figure 4C. 

 
Figure IV-4. Bi-temporal calibration procedure. Comparison of calibrated thresholds to the default thresholds of Behling et al. (2014a) 
for three test cases (A-C). A: Pre- and post-event image are acquired in the growing season ranging from May and July (standard 
case). B: Pre-event = growing season, post-event = dry season. C: Pre-event = dry season, post-event = growing season. Red ellipses 
represent landslide occurrences during the time-period of the bi-temporal image pair. 

The time period of occurrence for the resulting landslide candidate objects is determined by the 
acquisition dates of the analyzed image pair (Bi). However, the approach enables further temporal 
refinement for each landslide object by the subsequent selection of the bi-temporal sub-pair (Bix,x) 
that shows the first distinct evidence of that landslide. The procedure solely considers datasets with 
a significant vegetation cover surrounding the landslide object in order to ensure a correct refine-
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ment. A dataset meets this criterion if the average NDVI in the surroundings of the object – de-
fined by a 300 m buffer – is higher than the lowest default threshold of the post parameter (i.e. 
0.26). After defining the image sub-pairs Bix,x for each object, the bi-temporal change detection 
(CDIST), is performed iteratively between the pre-event image of Bi1 and the images of the sub-pairs 
(Bi1,1…n). The first pair that shows a distinct landslide-related vegetation disturbance for the ana-
lyzed object, defined by an average CDIST value of more than 1, determines the refined time period 
of landslide occurrence. Figure 5 illustrates the these steps of the refinement procedure in an ex-
emplary way for a landslide that has been identified in a bi-temporal image pair (Bi) of two 
RapidEye datasets acquired 17 May 2009 and 14 May 2011. Between these RapidEye acquisitions, 
three further acquisitions are available, whereas two of them meet the criterion of significant vege-
tation cover around the identified object. Compared to the RapidEye acquisitions these datasets 
are characterized by a lower spatial resolution and/or less developed vegetation cover. Neverthe-
less, the refinement procedure allows the identification of the first evidence of the landslide in the 
Landsat image of 27 July 2010, resulting in a refined time period between 21 April 2010 and 27 July 
2010. Thus, the approach uses the most comparable datasets to segment the landslide candidate 
objects and includes lower resolution images and/or images far outside the growing season for the 
refinement procedure without altering the shape of the identified object. 

 
Figure IV-5. Refinement of the time period of landslide occurrence. 1: Bi-temporal vegetation analysis between bi-temporal image 
pairs (Bi) and subsequent segmentation to the landslide candidate object (black border). 1a)–1 c): Identification of Bi1,x that shows 
the first distinct evidence of that landslide. 
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33.3.2 Plausibility Check of the Landslide Candidate Objects in Respect to Revegetation Rates and 
Relief Position 
The identified landslide candidate objects resulting from the bi-temporal change detection are fur-
ther evaluated regarding their plausibility in terms of their revegetation characteristics and their 
relief position. The analysis of revegetation characteristics aims at the differentiation between 
landslides and similar bi-temporal vegetation changes, such as the ones caused by harvested fields. 
After landslide failure, the disturbed or removed material exposed to the surface experiences slow 
revegetation, whereas harvested fields are characterized by much higher revegetation rates. The 
approach evaluates the revegetation for the subsequent three years after the failure by classifying 
each pixel of the identified objects into four revegetation classes (CREVEG) based on the combined 
use of the NDVI parameters postMAX and postMEAN (Figure 3, Table 1). For this purpose, an object-
specific selection of datasets is carried out that follows the same procedure as described for the 
date refinement step (Section 3.3.1, Figure 5). This way, revegetation can be analyzed for each land-
slide object separately, allowing to include as many as possible datasets that are suitable for 
temporal vegetation change analysis and are available for the specific landslide object within three 
years after the failure. This object-specific data selection for pixel-based revegetation analysis 
(CREVEG) represents an important extension of the approach compared to Behling et al. (2014a) in 
order to accommodate the seasonal and spatial variability of vegetation cover characteristics inher-
ent in the multi-sensor database. Based on the proportions of the pixel-based CREVEG classes, the 
landslide candidate objects are evaluated as a whole in respect to their revegetation status. As a 
result, objects with a very high revegetation rate are excluded from the landslide candidate objects 
and the remaining ones are classified into three classes of multi-temporal landslide likelihood 
(CMULTITEMP) described in Table 1. 

Furthermore, the landslide candidate objects are evaluated in respect to their relief position, which 
is characterized by statistics of the slope (CSLOPE) and parallelism of the objects related to streams 
(CSO). This way, the approach follows earlier developments of Behling et al. (2014a). This relief-
based analysis aims at the elimination of false positives that are similar to landslide-related changes 
in terms of bi- and multi-temporal vegetation characteristics. The procedure allows for excluding 
false positives that are located on flat terrain and that are caused by flooded rivers or local co-
registration errors mostly occurring in steep valleys. The remaining landslide candidate objects are 
classified into three classes of relief-oriented landslide likelihood (CRELIEF) described in Table 1. 

3.4 Output 
After applying the landslide identification approach (Section 3.3) to all subsequent bi-temporal 
image pairs (Bi) included in the time series data cubes (TS), the results in form of the identified 
landslide objects are stored in a shapefile. For each object, several quantitative and qualitative 
characteristics are derived comprising the time period of landslide occurrence and the main land-
slide likelihood classes resulting from the automated identification process, i.e. CBITEMP, CMULTITEMP, 
CRELIEF. Based on these three classes, each object is further characterized by an overall landslide 
likelihood (LL), describing the probability of that object being a landslide in respect to the auto-
mated identification process. This overall landslide likelihood is differentiated into the four classes 
I-IV (Table 1) and enables an uncertainty-related discrimination of the results in subsequent ex-
pert-based evaluations. Moreover, these classes also allow to a certain degree an interpretation of 
the landslide phenomena. For example, a landslide object of the highest overall landslide likeli-
hood class I is characterized by high bi-temporal vegetation loss (CBITEMP = 3), low revegetation 
rates (CMULTITEMP = 3) and high relief-oriented landslide likelihood (CRELIEF = 3), and therefore most 
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likely represents a deep-seated landslide failure of severe and long-lasting land surface disturb-
ances. Table 1 lists these landslide-related interpretations for all of the four classes I-IV (further 
details can be found in Behling et al. (2014a)). 

 
Figure IV-6. Exemplary output of the automated multi-temporal landslide mapping approach. Color of landslide objects represents 
the time period of occurrence. Bottom: Spatial subset of identified landslide objects with a selection of related attributes. 

Additionally, the identified objects are characterized by quantitative landslide attributes, such as 
the size and the average slope of an object as well as by several object shape-oriented parameters 
such as length, compactness, entropy, etc. Figure 6 exemplarily shows the multi-temporal mapping 
results comprising landslides of different sizes, shapes and time periods of occurrence. The ap-
proach also allows the identification of reoccurring landslide activity resulting in spatially 
overlapping landslide objects originating from different time periods. 

44 Accuracy Assessment 

Systematic accuracy assessment is carried out for two spatially independent validation sites (out-
lined in Figures 1, 8) named Uzgen (12x14 km2) and Kainama (5.5x7.5 km2). They have been 
subject to long-term landslide activity and represent contrasting natural environments that are 
representative for the whole study area. Both sites are dominated by pastures and grassland, but are 
also covered by different types of non-vegetated areas, which are likely to be confused with land-
slides in optical remote sensing data. These non-vegetated areas comprise settlement areas (e.g. 
streets, buildings), rock outcrops, harvested fields, and water bodies. The specific spatial locations 
of the validation sites result in different multi-temporal remote sensing data coverages, which are 
available in the process of the automated landslide identification (Figure 1). 

For both validation sites, landslide reference maps were produced by visual interpretation of the 
available remote sensing data complemented by comprehensive field surveys that have been car-
ried out since 1998 by the GFZ Potsdam in cooperation with the Kyrgyz Ministry of Emergency 

12
29

33

34

ID Date LL Size …
12 2002-05 -26_2003-06-14 I 137000
29 2009-07 -17_2010-04-21 II 3125
33 2011-05 -14_2011-05-31 III 25600
34 2011-05 -14_2011-05-31 IV 825
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Situations. In total, 124 landslides were mapped in Uzgen and 94 in Kainama. The Uzgen site is 
characterized by constant landslide activity with peaks in 1990, 2003/04 and 2009/10. For the 
Kainama site, main peaks have been observed in 1998 and 2002-2004. The sizes of the landslides 
vary from 455 m2 to 2.9 km2 and 216 m2 to 0.3k m2 for Uzgen and Kainama, respectively. 

The automatically identified landslide objects are validated against the landslide objects of the ref-
erence maps to derive a quantitative accuracy assessment. For each of the analyzed time periods, 
this comparison results in one of the three validation categories true positive (TP), false negative 
(FN) and false positive (FP). TPs represent spatially and temporally correct identifications, FNs are 
reference landslide objects that are missing in the automatic identification and FPs represent iden-
tified objects that are not present in the reference map. Based on the relation between these 
validation categories, the mapping accuracy of the approach is determined by the four accuracy 
metrics relevant for object-based single target classifications, i.e. Detection Percentage, Omission 
Error, Commission Error and Quality Percentage. The Detection Percentage represents the percent-
age of spatially and temporally correct landslide identifications, Commission and Omission Error 
provide information about the influence of the two possible identification errors FP and FN, and 
the Quality Percentage represents an integrative indicator, expressing how likely a landslide is to be 
correctly identified (Behling et al. 2014a; Lee et al. 2003; Martha et al. 2012; Rau et al. 2014). 

 
Figure IV-7. Results of accuracy assessment. A: Spatially explicit comparison of the automated mapping and the reference mapping 
for the two validation sites Uzgen and Kainama independent from the overall landslide likelihood LL. B: Accuracy metrics according 
to LL. (I-IV represents the complete mapping result of the approach, including all identified objects independent from LL; I-III: ig-
nores objects of class IV; I-II: ignores objects of classes III and IV; I: ignores objects of classes II-IV.) Accuracy metrics are based on the 
validation categories TP, FN, FP (Table 2). 
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Figure 7A illustrates the spatially explicit comparison of the reference map and all automatically 
identified landslide objects regardless of the overall landslide likelihood (LL). Figure 7B shows 
graphs of the accuracy metrics for the area and number of the identified landslide objects. These 
accuracy metrics are derived for four different classes (I,I-II,I-III,I-IV)4, whereas class I-IV corre-
sponds to the complete mapping result and the other three to a sub-selection of the identified 
landslide results according to LL. For the complete mapping result (I-IV), high Detection Percent-
ages of more than 90% for the landslide area and 70-80% for the number of landslides could be 
achieved. Missed landslides (FN) are mainly represented by small shallow landslides of longish 
shape and fast revegetation. The average size of the FN amounts to 20700 m2, which is smaller 
than the average size of the reference landslides of 55400 m2 (Table 2). The largest FN exist at the 
beginning of the analyzed time series during the long remote sensing data gaps from 1986 to 1990 
and from 1990 to 1996. In these time periods, the approach missed eight landslides (FN) with sizes 
ranging from 12000 m2 to 167000 m2 with an average size of 84500 m2. These rather large FN arise, 
because landslide failures at the beginning of such long time periods have already experienced a 
substantial revegetation before the acquisition of the post-event image (Figure 2B). Ignoring the 
landslide occurrences of these two long time periods reduces the average size of the FN to 7800 m2 
(Table 2). 

Table IV-2. Statistics of the three validation categories (TP, FN, FP) in regard to number of landslides (N) and landslide-affected area 
(given in m2). 

Validation Site Validation Category 
I I-II I-III I-IV 

N Area N Area N Area N Area 
 TP 6 194,884 74 4,607,660 93 8,397,504 101 8,570,824 

Uzgen FN 118 9,247,139 50 4,834,362 31 1,044,519 23 871,199 
 FP 5 24,350 167 704,800 266 943,672 348 1,506,072 
 TP 7 878,148 42 1,882,493 64 2,383,482 68 2,508,373 

Kainama FN 87 1,757,583 52 753,237 30 252,249 26 145,358 
 FP 0 0 159 172,057 273 324,407 373 582,355 

These high Detection Percentages are accompanied by low commission errors (<20%) for the areal 
statistics. However in case of landslide number statistics the commission errors are much higher 
(ca. 80%), which reveals a high influence of small FP. The average size of the FP of 2900 m2 (Ta-
ble 2) is much smaller than the average size of the landslide failures (55400 m2). Hence, the 
approach provides higher identification reliability for larger landslides, and both identification er-
rors (FN, FP) are mostly related to objects of smaller spatial extents. For a fully automated usage, 
the approach needs to counterbalance the influence of these two identification errors. The integra-
tive Quality Percentage takes this into account by relating the correctly identified landslides (TP) to 
both FN and FP. To achieve highest performance the approach allows to refine the multi-temporal 
mapping results by removing objects of lower landslide likelihood, which are more likely to be FP 
and therefore decreasing the overall mapping quality. In doing so, highest Quality Percentages 
could be achieved by reducing the landslide mapping results to the objects of the three highest 
overall landslide likelihood classes (I-III), amounting to 81% for the landslide-affected area and 
30% for the landslide number for both validation sites. This comparable mapping accuracy be-
tween the validation sites is also apparent for the other result-subsets and accuracy metrics, 
indicating a mapping quality that is largely independent from the environmental setting, landslide 
characteristics and available remote sensing database of these sites. 

                                                           
4 These four classes (I,I-II,I-III,I-IV) correspond to the selection categories (I',II',III',IV') of Chapter III (not in the manu-
script). 
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55 Results 

The developed approach has been applied to the whole study area and time period (1986-2013) 
using the complete multi-sensor database (Section 2). After an expert-based validation of the re-
sults, including the elimination of remaining false positives, the multi-temporal landslide 
inventory has been created (Section 5.1). This multi-temporal inventory is the basis for the analysis 
of spatiotemporal variations of the past landslide activity in Section 5.2. Furthermore, the potential 
of this multi-temporal inventory is analyzed in an exemplary way for the evaluation of the ob-
tained spatiotemporal landslide activity in respect to predisposing (Section 5.3) and triggering 
factors (Section 5.4). 

5.1 Multi-Temporal Landslide Inventory 
In total, 1583 landslides were identified. Their sizes range from 50 m2 to 2.8 km2 and the total area 
affected by landslides amounts to 33.2 km2 (Figure 8C). Figure 8A depicts the location of the indi-
vidual landslides in combination with their size and temporal occurrence. The highest spatial 
concentration could be found at the lower parts of the slopes situated adjacent to the river valleys. 
In Figure 8B, the temporal statistics of the mapped landslides show the by far highest activity in 
2003 and 2004. Compared to the long-term average the observed landslide rate of these years is up 
to 5.7 times higher for the number of landslides and 7.1 times higher for the landslide-affected area 
(Figure 8C). The years 1990, 1998, 2010 and 2011 are also characterized by significantly increased 
landslide number or area, at least twice the long-term average. 

 
Figure IV-8. Automatically derived multi-temporal landslide inventory. Figure shows the spatiotemporal distribution of landslide ob-
jects related to size, location and year of occurrence. Year of occurrence corresponds to the year in which the first post-event image 
was acquired (for more detail on time determination see Section 3.3.1 and Figure 5). White dashed line indicates the area of the per-
spective view of Figure 9. 

In Figure 9, the object-based multi-temporal landslide inventory is presented in more detail for the 
north-facing slopes of the Budalyk river valley. In this area, landslides of different sizes, shapes and 
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temporal occurrence could be identified (Figure 9A). The largest ones are represented by deep-
seated failures affecting the uppermost loess cover and the underlying weakly consolidated Meso-
zoic sediments. Due to the large amount of initially displaced material they mostly transform into 
flows characterized by long runout zones (Danneels et al. 2008; Roessner et al. 2005). The resulting 
complex failures are often subject to multiple reactivations over time (Figure 9A-1), whereas the 
large hazardous displacements of material are often pre-dated by precursors in form of smaller 
failures (Figure 9A-1a). Figure 9B presents the development of the most disastrous slope failure of 
the analyzed time period - the “Kainama-landslide”. In this case, the approach identified two small 
landslides occurred in 2003 (3700 m2 and 5800 m2) as precursors of the subsequent catastrophic 
failure from 26 April 2004. According to the remote sensing analysis, the displaced masses reached 
a maximum travel distance of 1360 m, and in parts covered and crossed the Budalyk River. They 
also destroyed 12 houses of the Kainama village located on the opposite side of the river causing 33 
fatalities (Havenith et al. 2015; Ibatulin 2011; Kalmetieva et al. 2009). Ibatulin (2011) estimated the 
volume of the landslide to be 0.5x106 m3 and Danneels et al. (2008) reported a volume of 
0.4x106 m3 and a size of 220000 m2. The automated mapping approach precisely delineated this 
landslide object resulting in a size of 212000 m2. Figure 9Bc shows the overlay of the derived land-
slide polygon on a very high-resolution image of GoogleEarthTM clearly revealing the houses that 
have been buried by the landslide masses. During the time period after the catastrophic failure, the 
approach detected a single reactivation in 2012 (22100 m2) in the upper part of the slope close to 
the main scarp indicating that future larger failures might still occur. 

 
Figure IV-9. Object-based multi-temporal inventory for landslide-prone slopes along the Budalyk river valley (subset indicated in 
Figure 8). A: Perspective view of the object-based mapping results. B: Perspective view of Kainama landslide overlaid by automated 
mapping result (Ba). Field photo taken by GFZ Potsdam (Bb). Part of automatically detected landslide masses overlaid on 
GoogleEarthTM pre-vent image (Bc). 

Figure 10 exemplarily illustrates the stepwise identification of such complex failures of multiple 
reactivations. Based on the multi-temporal satellite remote sensing database the approach identi-
fies two single landslides in 2002, a reactivation of the western landslide in 2004, and a reactivation 
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of the eastern landslide in 2010. In contrast to the achieved spatiotemporal reconstruction of land-
slide evolution, commonly performed one-time landslide mapping based on mono-temporal high 
resolution images (Figure 10B) or field investigations (Figure 10C) are often not able to identify 
such evolutions, because the youngest failures have often already covered the older ones. 

 
Figure IV-10. Temporal evolution of a complex landslide failure. A: CIR images (top) and the automatically identified landslide ob-
jects (bottom). B: Final situation (2013); top: true color RapidEye image of June 2013; bottom: multi-temporal overlay of all identified 
landslide objects. C: Field photo (Sept 2012) overlaid by the outlines of landslide objects. 

The analysis of the derived landslide inventory has revealed that 670 out of 1583 landslide objects 
(42%) spatially overlap in at least one part with another landslide object. The largest frequency of 
overlaps amounts to four reoccurring landslide events during the analyzed time span (1986-2013). 
Table 3 lists the areal coverage of these overlapping landslides, differentiated according to the 
number of overlaps. It shows that 70.5% (23.38 km2) of the landslide area has been affected once 
and 29.5% (9.79 km2) twice or more. In case of a one-time mapping these repeatedly affected areas 
would be delineated only once, which would underestimate the landslide-affected area by 5.28 km2 
(LsAreaMULT: 33.16 km2; LsAreaMONO: 27.88 km2). 

Table IV-3. Statistics of spatially overlapping landslide areas 

Overlaps LsAreaMULT [km²]a [%] LsAreaMONO [km²]b [%] 
--- 23.38 70.5 23.38 83.9 
2 7.54 22.7 3.77 13.5 
3 2.01 6.1 0.67 2.4 
4 0.24 0.7 0.06 0.2 

Sum  33.16  27.88  
a LsAreaMULT: Landslide-affected area identified by the multi-temporal mapping approach.b LsAreaMONO: Landslide-affected area of 
a one-time mapping, assuming a mapping of the same landslides (LsAreaMULT / Overlaps) 

55.2 Spatiotemporal Variations of Past Landslide Activity 
The derived multi-temporal inventory showed that landslides in Southern Kyrgyzstan occur al-
most to a third repeatedly in the same areas, often representing reactivations of older landslides. 
This situation also becomes evident in the analysis of the relative landslide density and its changes 
over time. Figure 11 depicts landslide density maps for the complete time span (1986-2013) and for 
five-year intervals starting from 1990 (year of first available post-event image). These landslide 
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density maps reveal quite persistent spatial patterns of landslide occurrence. The interval of 1990 
to 1994 (Figure 11B) represents the only exception showing a different spatial distribution of the 
landslide density. However, this difference is mainly caused by the incomplete satellite data cover-
age for that time period, largely missing pre-event imagery from 1986 (Figure 1). Overall, the 
spatiotemporal variations in landslide density reflect the repeated landslide activity, especially in 
areas of high landslide activity. 

 
Figure IV-11. Spatiotemporal landslide density. Sum of landslide area for a moving quadratic-weighted Kernel of 2 km size for the 
complete time span (A) and for five-year intervals (B-F). Plotted in ten classes (decile for each time interval). 

To perform a spatially more detailed analysis of landslide activity, the study area is subdivided into 
mapping units. Such mapping units represent spatial units that are characterized by specific ground 
conditions differing from the adjacent units. They form the basis for subsequent hazard analysis and 
can comprise administrative units, slope units, regular grid cells etc. (Erener & Düzgün 2012; Guzzet-
ti et al. 1999; Van Den Eeckhaut et al. 2009). In this study, morphologically-based slope units, derived 
by Golovko et al. (2015), have been used as landslide mapping units. Figure 12 depicts the spatiotem-
poral variations in landslide activity related to these mapping units in respect to the areal coverage of 
landslides (Figure 12A), the number of landslides (Figure 12B) and number of years with landslide 
occurrence (Figure 12C). Three regions of particularly high landslide activity become evident: (i) the 
slope south of Uzgen, (ii) the eastern part of the study area south of Kara Kulja, and (iii) the southern 
region around and south east of Gulcha. These three spatial hotspots of landslide occurrence also 
correspond to the areas of highest landslide density shown in Figure 11A. Furthermore, Figure 12 also 
allows the characterization of different types of the landslide activity. For example, the mapping units 
east of Gulcha are largely affected (Figure 12A) by a relatively low number of landslides (Figure 12B), 
which occurred in only a few years (Figure 12C), indicating the presence of a few large landslides 
dominating that area. However, in most parts of the study area, the affected area, the number of land-
slides and the years of landslide occurrence are highly correlated. Besides the described areas of high 
landslide activity, a fairly large number of mapping units has not been affected by landslides at all 
corresponding to 51% of the analyzed area. 
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Figure IV-12. Spatiotemporal statistics of landslide occurrence based on mapping units. A: Percentage of mapping unit affected by 
landslides. B: Number of Landslides. C: Number of years with landslide occurrence. Plotted in six classes (sextile) 

55.3 Morphological Landslide Susceptibility 
Precise knowledge about the spatial distribution of landslide activity plays an essential role in the 
analysis of landslide susceptibility. For this purpose, the spatial variations of landslide occurrence 
are related to the spatial distribution of predisposing factors such as the morphological, geological 
and lithological setting (Van Den Eeckhaut et al. 2009). Most existing susceptibility studies base on 
a one-time landslide mapping to derive the spatial distribution of the landslide activity. In contrast, 
multi-temporal landslide inventories enable the analysis of the spatial landslide distribution over 
time and thus the consideration of reoccurring landslide activations. Since such reactivations fre-
quently occur in the analyzed study area (Section 5.1), their omission would definitely influence 
the evaluation of the landslide susceptibility. In this study, we used the derived multi-temporal in-
ventory for an exemplary assessment of the landslide susceptibility related to the morphological 
parameters elevation, slope and aspect. Figure 13 compares the frequency distributions of these 
three parameters (gray) with the corresponding landslide frequency (red). This reveals a particu-
larly high landslide susceptibility of slopes that are characterized by an elevation range between 
1700 and 2200 m.a.s.l., a slope between 16 and 32°, and an aspect in approx. northeastern direction. 
Besides these regions with above-average susceptibility it is also notable that landslide occurrence 
is not limited to a certain morphological setting. The identified landslides occur at all aspects and 
almost all inclinations and elevations. The most stable parts of the study area are regions with an 
elevation above 2800 m, very gentle slopes and slopes of southern aspect (SE-SW). 
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Figure IV-13. Landslide susceptibility according to the morphological predisposing factors elevation (A), slope (B), and aspect (C). 
Red: Frequency of landslides per class (%). Gray: Frequency of morphological factor per class (%). *landslide frequency class of largest 
difference to the factor frequency. 

55.4 Investigation of Precipitation as a Potential Landslide Trigger 
Whereas the predisposing factors determine the spatial susceptibility of landslide occurrence, the 
temporal occurrence of the actual failures is determined by the temporal variations of triggering 
factors such as hydrometeorological conditions and seismicity (Corominas & Moya 2008; Pe-
ruccacci et al. 2012; van Westen et al. 2008). For a better understanding of the role of the triggering 
factors at a regional scale, the relationship between the temporal variations of landslide activity 
and triggering factors has to be investigated. In this study, the triggering factor precipitation is ana-
lyzed in an exemplary way. For this purpose, we used the modeled precipitation estimates of 
Duethmann et al. (2013), which were derived from downscaled reanalysis and station gauge data. 
These estimates were available for the whole study area in form of daily precipitation data of 1 km 
spatial resolution for the years between 1998 and 2009. Figure 14 shows the seasonal variations in 
precipitation for this time span. The highest monthly rates have been observed for the months 
March through June (Figure 14A), whereas the maximum intensity of daily precipitation is more 
constant throughout the year (Figure 14B). Figure 15 shows the temporal variations of the daily 
precipitation for the whole time span of data availability (1998-2009). The annual sum of precipita-
tion ranges between 450 mm and 1000 mm with peaks in the years 1998, 2002-2004 and 2009, 
whereas all of them correspond to years of increased landslide activity. Furthermore, the seasonali-
ty of precipitation varies between the years. In 1998, 2002, 2003 and 2009 a distinct peak of 
precipitation is apparent during the time period of highest landslide activity from March to July. In 
contrast, the peaks in 2000 and 2001 occur during the winter months. All of the remaining years 
are characterized by a more even distribution of precipitation throughout the year. 

 
Figure IV-14. Seasonal variations of precipitation from 1998 to 2009. Left: Monthly sums. Right: Maximum daily amount of precipi-
tation per month. 

0

5

10

15

1000 1500 2000 2500 3000
0

5

10

15

2 8 14 20 26 32 38 44 50

*

*

0
5

1 0
1 5
2 0

N

N E

E

S E

S

S W

W

N W *

fre
qu

en
cy

 [%
]

elevation slope aspect

landslides morphological factor
[m] [degrees]



100 Chapter IV    Long-Term Landslide Activity (Multi-Sensor Approach) 

Figure IV-15. Temporal distribution of precipitation. Top: Smoothed daily data, SG – Savitzky-Golay filter (2nd order polynomial, 90 
days window), mA –moving average (90 days); Arrows indicate maximum precipitation during the months of most landslide activity 
(March to July). Bottom: Sum of annual precipitation for the hydrological years (September through August). 

Due to the different temporal characteristics of the precipitation data and the derived landslide 
data – daily information versus variable time periods – the comparison of precipitation and tem-
poral landslide activity is performed on an annual basis. For landslides the year is assigned to the 
end of the identified time period (Figure 8) and for the precipitation data to the hydrological year 
spanning from September through August (e.g. September 2007 through August 2008 represents 
the year 2008). The hydrological year comprises the rainfall during the active landslide season as 
well as the snowfall in the preceding winter, which both are assumed to have an influence of land-
slide activity. 

Figure 16 depicts the Pearson correlation between the temporal variations of four different precipi-
tation parameters and the annual landslide area and number. Three of these four parameter 
(A,C,D) show a positive correlation. In general, they are stronger correlated to the number of land-
slides than to the area of landslides, implying that smaller landslides are more directly influenced 
by precipitation than larger ones. Accepting a p-value (permutation test) of less than 0.1, three of 
the correlations can be considered as statistically significant (highlighted in red). The correlation 
coefficient (R) of these significant correlations ranges between 0.52 and 0.57, which reveals a mod-
erate positive correlation of landslide activity and precipitation statistics. To investigate the 
influence of seasonal variations in precipitation on landslide activity, the hydrological year has 
been sub-divided into a mainly snow-influenced winter period (October-February) and a mainly 
rain-influenced spring period (March-July). Table 4 compares the correlation of the four precipita-
tion parameters for the complete hydrological year, the winter period, the spring period and the 
combined winter and spring period. This comparison shows highest correlations for the complete 
hydrological year, indicating that the landslide activity is more influenced by a combination of rain 
and snow fall/melt rather than by the individual influence of winter or spring precipitation. The 
precipitation parameter with highest correlations and lowest p-values is represented by the aver-
aged daily precipitation (C). The fact that the average in daily precipitation is stronger correlated 
than the 95th percentile (D) implies that the landslide activity in Southern Kyrgyzstan is more likely 
to be triggered by longer periods of moderate rainfall than by a few days of intense precipitation. 
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Figure IV-16. Pearson correlations of annual landslide number/area with four parameters of annual precipitation. A: Annual precipi-
tation; B: Number of precipitation days; C: Average precipitation for precipitation days; D: 95th percentile of precipitation for 
precipitation days 

Table IV-4. Pearson correlations of annual landslide number/area with four precipitation parameters (A-D). A-D are derived for the 
hydrological year (Year), the mainly snow-influenced winter period (Oct-Feb), the mainly rain-influenced spring period (Mar-Jul), 
and the combination of both periods (Oct-Jul). 

 Area Number  Area Number 
 R p R p  R p R p 

A  Year 0.47 0.15 0.52 0.10 A  Oct-Feb 0.29 0.38 0.33 0.33 
B  Year -0.19 0.58 -0.14 0.68 B  Oct-Feb -0.24 0.48 -0.20 0.56 
C  Year 0.50 0.11 0.54 0.09 C  Oct-Feb 0.29 0.38 0.28 0.40 
D  Year 0.48 0.13 0.57 0.07 D  Oct-Feb 0.33 0.32 0.37 0.26 
A  Mar-Jul 0.34 0.31 0.39 0.23 A  Oct-Jul 0.41 0.21 0.47 0.14 
B  Mar-Jul -0.09 0.78 -0.09 0.79 B  Oct-Jul -0.22 0.51 -0.19 0.57 
C  Mar-Jul 0.48 0.14 0.54 0.08 C  Oct-Jul 0.51 0.11 0.55 0.08 
D  Mar-Jul 0.44 0.17 0.48 0.14 D  Oct-Jul 0.42 0.20 0.49 0.13 

66 Discussion 

We developed an approach for an automated derivation of a multi-temporal landslide inventory, 
allowing the retrospective assessment of spatiotemporal variations of landslide frequencies, which 
so far often represents the bottleneck in systematic regional landslide hazard and risk assessment 
(Guzzetti et al. 2012). Based on a multi-sensor time series database and a digital elevation model 
the approach derives objects of landslide occurrences during the time span of optical satellite re-
mote sensing data availability, whereas the repeat rate of data acquisition determines the temporal 
precision of landslide identification. 

6.1 Method 
For best possible landslide identification in space and time, the whole variety of available multi-
spectral sensors needs to be taken into account. Therefore, the NDVI as the least common spectral 
denominator is used to derive landslide-related vegetation changes representing diagnostic tem-
poral features used in the identification of landslide failures. Focusing on the NDVI ensures a 
broad methodological transferability to most common multispectral optical satellite sensors, since 
they usually comprise the required bands in the red and near infrared (NIR) parts of the spectrum. 
However, due to sensor-specific spectral response functions for the red and NIR bands the NDVI 
slightly differs among the different sensors (Goetz 1997; Huang et al. 2013; Martinez-Beltran et al. 
2009). Nevertheless, the application of the approach revealed that such cross-sensor NDVI varia-
tions could be neglected in the context of NDVI-based landslide identification, since they are 
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marginal in comparison to the distinct NDVI changes caused by landslide-related vegetation dis-
turbances. 

The capability to integrate multiple sensors in the methodological framework allows to establish 
optical time series databases of best temporal resolution, and thus to be most precise in the deter-
mination of the temporal occurrence of landslide failures. To benefit fully from the high temporal 
resolution the methodological developments comprise strategies to accommodate uncertainties 
arising from the highly variable multi-sensor time series database. A multiple threshold-based pix-
el- and object-oriented analysis generally reduces the sensitivity to small variations of the analyzed 
parameters throughout the whole identification process of bi-temporal detection of landslide-
related vegetation disturbances, multi-temporal analysis of post-failure revegetation rates as well as 
relief-based evaluation. A calibration procedure specifically deals with the adaption of the NDVI-
thresholds in respect to the vegetation cover conditions of a specific bi-temporal image pair, in 
order to identify areas of landslide-related vegetation disturbances serving as a basis for landslide 
object generation. A refinement procedure ensures reliable bi-temporal change detection and ob-
ject segmentation by selecting suitable bi-temporal image pairs (i.e. images of comparable 
vegetation cover characteristics, similar spatial resolution, similar acquisition parameters such as 
the roll angle of the sensor) and a subsequent object-specific refinement of the time period of tem-
poral landslide occurrence by involving less suitable images acquired in between. Overall, to the 
best knowledge of the authors, the approach is the first landslide identification approach, which 
allows multi-temporal landslide mapping in a large amount of data with irregular temporal resolu-
tion, different spatial resolution and irregular areal coverage. 

Moreover, the developed approach assigns to each identified object an overall landslide likelihood 
of four classes (I-IV), enabling landslide experts to incorporate the level of uncertainty in their 
subsequent interpretation and evaluation of the results obtained by the automated analysis. The 
accuracy assessment of the automated analysis revealed correct identifications of more than 90% 
of the landslide-affected areas with Omission and Commission Errors below 20%. Highest accuracy 
is achieved by considering objects of likelihood classes I-III, which lowers the false positive rate 
and results in a Quality Percentage of approx. 80%. This way the developed approach is comparable 
to recently published studies for object-based landslide mapping showing Quality Percentages of 
58% to 81.7% for event-based mapping (Rau et al. 2014) and 71.5% to 96.7% for different time peri-
ods of the multi-temporal mapping of Martha et al. (2012). These achieved accuracies reveal a 
suitability of the approach for automated application for the analysis of the spatiotemporal varia-
tions of landslide-affected area. In respect to the landslide number, the approach achieved lower 
Quality Percentages of approx. 30%, conforming with the lower Quality Percentages of Martha et al. 
(2012) ranging between approx. 20% and 70%. The lowered mapping accuracy of this study for the 
landslide number is mainly caused by the high repeat rate of the multi-temporal data coverage 
(Figure 1) and the relatively low number of landslide reference objects (approx. 100 for each valida-
tion site). Thus, even a small number of false positives in each analyzed bi-temporal image pair 
had a strong influence on the Commission Error and thus also on the Quality Percentage. However, 
the likelihood characterizations of the identified objects support a subsequent expert-based elimi-
nation of FP, resulting in a valuable database of multi-temporal landslide occurrence of spatially 
precise landslide delineation of high temporal precision. 
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66.2 Results 
The application of the approach resulted in a regional multi-temporal landslide inventory for 
Southern Kyrgyzstan, containing 1583 landslide occurrences between 1986 and 2013 in an area of 
2500 km2. The temporal resolution of the obtained inventory ranges between six years (1990–1986) 
and two weeks during the RapidEye data acquisition (2012–2013), and provides at least annual cov-
erage since 1996 with a gap in 2006. This exceeds the repeat rate at which most manual mapped 
multi-temporal inventories are updated. Typical update rates of existing multi-temporal invento-
ries are several years to decades. Galli et al. (2008) mapped landslides in Italy at five dates between 
1941 and 1997, Klimeš (2013) at eight dates between 1949 and 2009 in Peru. Since optical satellite 
data of high spatial resolution became available in the 2000s a few manually mapped multi-
temporal landslide inventories are prepared that provide annual coverage (e.g. Saba et al. (2010): 
five data acquisitions between 2004 and 2008) or even intra-annual coverage (e.g. Weng et al. 
(2011): 16 data acquisitions between 2005 and 2009). However, due to the high manual mapping 
effort, these multi-temporal inventories cover very limited areas of several tens of square kilome-
ters. In this context, the developed approach represents a substantial improvement since it allows 
for systematic landslide mapping at high temporal resolution for larger areas of several thousands 
of square kilometers. 

For the study area, the number of automatically mapped landslides (1583) largely exceeds the 
number of landslides that have been reported by the Kyrgyz authorities (<100) in the same time 
period from 1986 to 2013 (Golovko et al. 2015). This demonstrates the potential contribution of the 
developed approach to the systematic spatiotemporal landslide investigations in Kyrgyzstan, which 
became especially important since the means for regular landslide monitoring have significantly 
decreased after the breakup of the Soviet Union in 1991. Before that, large efforts had been under-
taken between 1956 and 1986 in the systematic investigation of landslide-prone areas in the vicinity 
of settlements (Yerokhin 1998). The report (as of 1986) compiled by Yerokhin (1998) contains 453 
undated landslides for the study area, comprising those that occurred between 1956 and 1986 as 
well as historical slope failures. In comparison, the remote sensing based approach results in more 
than thrice as many landslide occurrences, providing landslide objects of known temporal occur-
rence throughout the complete study area. Moreover, the high temporal resolution of the achieved 
results enables the analysis of the evolution of reoccurring landslides, which is impossible by one-
time mapping, such as the previously compiled field-based landslide documentation (Golovko et 
al., 2015). The results have shown that a substantial part of the landslide area (30%) is affected 
twice or more, confirming the importance of compiling multi-temporal landslide inventories as 
main prerequisite for the subsequent evaluation of landslide susceptibility and hazard. 

Thus, this paper exemplarily analyzed the morphological landslide susceptibility for the study area 
of Southern Kyrgyzstan. The results indicated highest susceptibility in moderate slopes in N-NE 
direction within an elevation range of 1700 and 2200 m.a.s.l. Such moderate slopes are typical for 
weakly consolidated materials, which according to Roessner et al. (2005) are the main source of 
deep-seated landslides in Southern Kyrgyzstan. 

The derived multi-temporal inventory also allows the analysis of the temporal variations in land-
slide activity. This knowledge represents a key factor in understanding the regional dynamics of 
landslide processes in Southern Kyrgyzstan which has been largely missing in the past (Havenith et 
al. 2015). The results have revealed a permanently ongoing landslide activity during the analyzed 
time period with main activity peaks in 2003 and 2004. It is notable that this continuous landslide 
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activity exists without the presence of major triggering events. According to the USGS earthquake 
catalog (USGS Earthquake Hazard Program, 2015) no severe earthquakes have been recorded in 
the analyzed time span. Moreover, Southern Kyrgyzstan represents an area of moderate precipita-
tion (450-1000m m/a), where strong rainstorms which could serve as triggering events are largely 
missing. First investigations towards the relationship between the amount of precipitation and the 
observed landslide frequency have revealed that precipitation has a positive but moderate influ-
ence on the onset of slope failures in Southern Kyrgyzstan. This influence is less distinct compared 
to areas where landslide occurrence is primarily related to intense rainstorms, such as Southeast 
Asia (Mathew et al. 2014; Weng et al. 2011; Wu & Chen 2013). Thus, landslide occurrence in South-
ern Kyrgyzstan can only be in part explained by the derived precipitation characteristics, 
indicating that in this region landslide occurrence is most likely the result of a complex interplay 
between geological and geomorphological composition of the relief and the spatiotemporal char-
acteristics of triggering factors (Havenith et al. 2015; Roessner et al. 2005).  

These analyses of the spatiotemporal landslide frequencies to the morphological setting and the 
triggering factor precipitation revealed the suitability of the developed approach to provide a sys-
tematic long-term landslide information base, which is required for landslide hazard and risk 
assessment. Hence, the derived results open up the opportunity to perform multivariate analysis 
considering further pre-disposing factors (e.g. lithology and structural geology) and triggering 
factors (e.g. seismicity), in order to improve the regional landslide process understanding. 

77 Conclusions and Outlook 

This paper presented the methodological developments for an automated remote sensing-based 
approach for generating long-term multi-temporal landslide inventories using an optical multi-
sensor satellite time series database and a digital elevation model. The developed approach is based 
on the analysis of landslide-related vegetation cover changes, which has been proven suitable for 
multi-temporal landslide identification using temporal irregular time series of remote sensing data 
comprising seasonal differing data acquisitions of various sensors. 

Applied to a landslide-affected area of 2500 km2 in Southern Kyrgyzstan, the approach allowed a 
retrospective systematic assessment of past spatiotemporal landslide occurrence for the time peri-
od of satellite data availability from 1986 to 2013. The resulting multi-temporal inventory contains 
spatially explicit landslide objects of high spatiotemporal consistency and completeness, represent-
ing a valuable database for analyzing variations long-term landslide frequencies at a regional scale. 
The obtained spatiotemporal landslide frequencies have been related to morphological parameters 
and to the triggering factor precipitation, demonstrating that the approach is capable of contrib-
uting to an improved understanding of landslide process at a regional scale and thus to the 
realization of subsequent probabilistic landslide hazard and risk assessment. 

The developed approach, with its capability of integrating different optical sensors enables its prin-
ciple transferability to other areas where landslide occurrence also leads to changes of the surface 
vegetation cover, which is the case for many other global landslide hotspots (Nadim et al. 2006) in 
South America (e.g. Brazil, Colombia) and Southeast Asia (e.g. Taiwan, Thailand, Philippines). 
Moreover, new opportunities for automated global landslide mapping using optical satellite remote 
sensing data have opened up with the launch of the Sentinel-2A system in June 2015 (2B is planned 
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for 2016). With revisiting times of up to five days, a spatial resolution of 10 m, a large swath of 
290 km, and the free of charge data availability (Drusch et al. 2012) this system will be especially 
suitable for monitoring landslide occurrence over large areas with high temporal resolution ena-
bling a more precise determination of the time period during which the landslide failure occurred. 

AAcknowledgments 

The authors thank the German Aerospace Agency (DLR) for providing RapidEye data by the 
RESA (RapidEye Science Archive) program and Doris Duethmann for providing the daily precipi-
tation data. This work was funded by the German Federal Ministry of Research and Technology 
(BMBF) within the framework of PROGRESS (Potsdam Research Cluster for Georisk Analysis, 
Environmental Change and Sustainability). 





107 
 

VV  Synthesis  





 Conclusions 109 
 

11 Conclusions 

The overarching goal of the thesis is the development and application of an automated multi-
temporal landslide mapping approach to enable the spatiotemporal analysis of past landslide activ-
ity over large areas, which is a prerequisite for subsequent regional landslide hazard and risk 
assessments. This chapter discusses the results of the thesis in respect to the major research ques-
tions and research objectives described in Section I-4. 

1.1 Method 
Research Questions: What are efficient and robust methods to utilize an optical multi-sensor satellite 
time series for large area and long-term multi-temporal landslide identification? What are the ad-
vances of the developed methods and the key differences to existing approaches? 

For evaluating the methodological developments, the individual aspects of Chapters II-IV are con-
sidered as a whole, jointly culminating in the multi-temporal and multi-sensor landslide mapping 
approach of Chapter IV. In general, the developed approach is based on the analysis of landslide-
specific vegetation cover changes and relief-oriented parameters, allowing for automated mapping 
of spatiotemporal landslide activity over large areas and long time periods. Table App-1 compares 
the existing landslide mapping approaches (see also Section I-2.2.3) and the developed approach of 
this thesis in respect to methodological properties and scope of application. Figure V-1 illustrates 
this comparison by depicting the landslide mapping approaches against size of study area and 
number of temporal data acquisitions as well as methodological characteristics. 

 
Figure V-1. Overview of remote sensing based landslide mapping approaches. Comparison of the developed automated approach (la-
beled with “thesis”) with (semi-)automated approaches existing in the literature. The four labeled approaches are those that are 
applied to different scenarios (either multiple study areas or multi-temporal datasets). See also Table App-1 for further information. 
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The vast majority of the existing approaches are applied to one or two image acquisitions, providing 
a one-time landslide mapping (Figure V-1). Generally, these one-time mapping approaches also have 
the potential to be applied to multiple datasets and therefore serve as a tool for multi-temporal land-
slide mapping. However, most of them have only proved the applicability to a single test case 
(specific area and datasets) and thus miss the affirmation that their one-time characterization of the 
landslide-diagnostic parameters is transferable for different scenarios. Exceptions are Stumpf & Kerle 
(2011) and Stumpf et al. (2014) which tested their one-time mapping approach in different study areas 
and Martha et al. (2012, 2013) which applied their approach to 13 different data acquisitions of a time 
series database. However, they are of very limited areal coverage (Table App-1) and thus still remain 
test cases. In contrast, the developed approach has proved its applicability to rather large areas of 
2500 km2 (Chapter IV) and 7500 km2 (Chapter III) as well as many time series data acquisitions (up 
to 70). For such an extensive analysis the landslide mapping approach has to be applicable for many 
different scenarios. Therefore, the thesis includes several methodological developments to accom-
modate the challenges originating from the comprehensive and variable multi-sensor time series 
database used for the long-term and large area analysis (Section I-3.2, II-2.2, III-2.2, IV-2.2). 

One fundamental methodological innovation is the implementation of multi-temporal infor-
mation within the landslide identification procedure, which goes beyond the existing mono- and 
bi-temporal approaches to date. This way, the landslide-specific vegetation characteristics, often 
representing the main diagnostic feature for landslide detection in optical remote sensing data 
(Section I-2.2.2), are considered over time instead of limiting the analysis to the absence of vegeta-
tion in mono-temporal approaches or to the loss of vegetation in bi-temporal approaches. The 
developed approach addresses the multi-temporal aspect by using temporal NDVI-trajectories 
allowing the analysis of bi-temporal vegetation disturbance and subsequent revegetation rates as 
landslide diagnostic parameters (Section III-3.1). Thus, landslide-related vegetation changes can be 
distinguished from permanently non-vegetated areas such as water, artificial surfaces, and out-
crops as well as from other temporally non-vegetated areas such as harvested fields (Figure III-4). 
In the existing mono- and bi-temporal approaches these differentiations are usually assisted by 
various additional parameters, which can be broadly grouped into spectral, textural, morphomet-
ric, and contextual measures. However, most of the parameters are highly sensitive to differences 
in sensor characteristics and season of data acquisition, e.g. texture characterization is sensitive to 
the spatial resolution of the analyzed data (Benson & Mackenzie 1995; Ojala et al. 2002; Puissant et 
al. 2005). In this context, the introduction of multi-temporal information in the landslide identifi-
cation process is advantageous, because it opens up the opportunity to reduce the use of required 
parameters and to focus on the analysis of the vegetation surface cover changes as a main landslide 
diagnostic property. Moreover, due to this focus on vegetation analysis, it is possible to integrate 
different optical sensors, since the NDVI (used for the vegetation analysis) can be derived for all 
common multispectral satellite sensors. 

With the use of NDVI-trajectory analysis, the developed approach adopts the basic principle of 
time series analysis, analyzing the progression of specific information over time. In remote sens-
ing, several trajectory-based algorithms have been published: BFAST (Verbesselt et al. 2010), 
TIMESAT (Jonsson & Eklundh 2004), DBEST (Jamali et al. 2015), LandTrendr (Kennedy et al. 
2010), and TimeStats (Udelhoven 2011). They usually aim at the determination of short- and long-
term vegetation trends as well as seasonality parameters (e.g. start and end of season). The tem-
poral pattern of a landslide is described as short-term vegetation disturbance and long-term 
vegetation regrowth (Section III-3.1). However, for different parts of a landslide this temporal pat-
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tern can vary greatly (Figure III-5B), e.g. revegetation rates are faster at the usually gentle slopes of 
the landslide deposits than at the upper more steeper parts, which are more susceptible to subse-
quent erosion processes. These differences of the temporal patterns within a single landslide failure 
hinder the existing pixel-oriented trajectory algorithms to derive homogenous results for an indi-
vidual landslide failure and thus are inconvenient to obtain landslide-related objects. However, 
landslide hazard and risk assessments require object-oriented results for the statistical analysis of 
spatiotemporal landslide probabilities (Section I-2.1). For this purpose, the object segmentation 
procedure of the developed landslide identification approach focuses on the bi-temporal vegeta-
tion disturbance, which represents the most discernable landslide-related information in optical 
remote sensing data. Moreover, the applicability of the existing trajectory-based algorithms is fur-
ther impeded by the irregular temporal resolution of the multi-sensor time series of the thesis 
(between six years and two weeks), because they are designed for regular and dense time series 
only. Thus, the developed hybrid approach of bi-temporal analysis of vegetation disturbances 
(used for object segmentation) and subsequent multi-temporal analysis of revegetation rates (plau-
sibility control) represents an adaption of trajectory-based algorithms to the needs of object-
oriented landslide mapping using irregular time series data. 

The developed approach builds on a multi-threshold-based analysis to reduce its sensitivity to 
small variations of the implemented pixel- and object-based parameters for NDVI- and relief-
oriented analysis (Table IV-1, Figures III-6, III-7, IV-3). The findings of the thesis reveal that this 
multi-threshold parametrization is very suitable to facilitate the detection and delineation of land-
slides despite their natural variability. Thus, the approach is able to identify deep-seated fresh 
failures as well as landslides that result in less pronounced vegetation changes such as reactivations 
and shallow landslides (Figures III-2, III-5A). Furthermore, the landslide object delineation could 
be achieved in high geometric quality regarding the shape and size of landslides (Figure III-14, Sec-
tion III-5.2) although the vegetation change characteristics can vary greatly within an individual 
landslide failure (Figure III-5B). Overall, Chapters III and IV show that the approach is able to 
identify landslides of different sizes, shapes, activity state, and lithological properties of the in-
volved material. 

Based on the multi-threshold rules, the object-based results of the landslide identification are 
characterized by landslide likelihood parameters (i.e. CBITEMP, CMULTITEMP, CRELIEF, and LL), describ-
ing the probability of that object being a landslide in respect to the automated identification 
process (Table IV-1, Sections III-3, IV-3). These likelihood classes enable an uncertainty-related 
discrimination of the results (Section III-3.2.4) and partly reflect the activation type of the land-
slide (Table IV-1), both advantageous in subsequent expert-aided interpretation and evaluation of 
the automatically derived spatiotemporal landslide occurrence. 

A further substantial strength of the approach is the integration of a refinement and calibration 
procedure to fully benefit from the temporal resolution inherent in the complete time series data-
base despite the data’s sensor variability and temporal irregularity (Section IV-3.3.1). The 
refinement procedure comprises (i) the preselection of image data pairs, between which the land-
slide occurrence is identified and (ii) the refinement of that time period of landslide occurrence by 
subsequently analyzing all acquired images in between. Thus, landslide identification and landslide 
object segmentation can be performed most reliably on the basis of image pairs suitable for bi-
temporal image change detection without losing temporal precision in the determination of the 
time period of landslide occurrence (Figure IV-5). Suitable image pairs are characterized by com-
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parable vegetation cover (e.g. data acquisitions of the same season), similar sensor characteristics 
(e.g. spatial resolution), similar acquisition parameters (e.g. viewing angle of the sensor), minimal 
cloud and snow cover, and a short interval between data acquisitions. Since for most parts of the 
world archive data is usually less available before the late 1990s, the selection of suitable image data 
pairs before that is impeded by the lack of alternatives. However, to enable landslide identification 
nonetheless, a calibration procedure is introduced that allows improved change detection between 
image data pairs of less comparable data acquisitions. Said calibration procedure adapts the NDVI-
thresholds with respect to the vegetation cover characteristics of a specific bi-temporal image pair. 
This threshold adaptation enables the approach to achieve robust identification of landslide-
related vegetation disturbances and thus more reliable object segmentation for landslide failures 
that have occurred between image pairs of differing seasonal acquisitions (Figure IV-4). 

The approach also comprises automated pre-processing strategies, which allow the efficient applica-
tion of the developed landslide recognition and segmentation algorithms to a large multi-sensor 
remote sensing database. Generally, in time series analysis, the purpose of pre-processing is the ho-
mogenization of the database to the needs of the envisaged change detection methods (Coppin et al. 
2004; Hussain et al. 2013). In this thesis, the priority has been the development of robust techniques 
suitable for operational use. For the spectral normalization, the datasets are converted to TOA-
reflectance values before deriving the analyzed NDVI values (Section IV-3.1). Thus, the pre-
processing neglects the variability introduced by differences in atmospheric conditions and the vari-
able spectral response functions of the different sensors. However, the severe disturbance or loss of 
vegetation in case of a landslide causes strong changes in the NDVI, usually much stronger than 
those by the neglected factors. Moreover, the use of the spectral index NDVI as the basic landslide 
diagnostic parameter also reduces the atmospheric influences in the multi-temporal data compari-
son. Consequently, the signal-to-noise ratio can be considered sufficient to enable a robust mapping 
of landslide occurrence, especially in combination with the implemented uncertainty-related multi-
threshold rules, which help in case of lower landslide signals to discriminate between landslides and 
background noise (Section III-3.2, Figure III-8). For the geometric normalization, an automated cor-
relation-based image-to-image co-registration approach has been developed (Chapter II). It allows 
efficient and robust spatial alignment of orthorectified standard data products of varying spatial 
resolutions and of seasonal and inter-annual land cover differences. The usage of the multi-temporal 
terrain-corrected Landsat Level 1T data as spatial reference ensures a spatially consistent and widely 
available topographic reference for the alignment of the datasets of the multi-sensor time series data-
base, irregularly and patchily distributed over the study area. The application of the co-registration 
approach allowed a multi-sensor relative image-to-image alignment (RMSE of 17 m) required for the 
subsequent NDVI-trajectory-based change detection as well as an absolute positional accuracy 
(RMSE: 23 m) that is sufficient for the mapping scale of 1:50000 and enables the subsequent analysis 
of the landslide identification results in combination with other spatial data within a GIS environ-
ment (Sections II-5, II-6.3). Apart from the spectral and geometric homogenization, the pre-
processing facilitates the robust usage of the approach by further automatic routines for data input, 
metadata reading and homogenization, and masking of clouds and snow (Section IV-3.1). 

Altogether, the thesis comprises the developments of automated pre-processing strategies and 
knowledge-based, uncertainty-related, and database-adaptable algorithms for landslide identifica-
tion and delineation, in order to allow an optimized multi-temporal mapping of varying landslide 
phenomena within an irregular multi-sensor time series database covering large areas and long 
time periods. 
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11.2 Applications and Results 
Research Questions: What are essential applications of the developed approach and how can they con-
tribute to an improved regional landslide process understanding? Which specific results can be 
achieved for Southern Kyrgyzstan and how can this region benefit from them? 

The developed landslide mapping approach allows the derivation of the spatiotemporal landslide 
activity based on available multi-temporal remote sensing data of various optical satellite-based 
sensors. The applications of the approach for long-term landslide investigations and for recent 
monitoring are discussed in the following. Then, the specific results, which have been achieved for 
Kyrgyzstan, are presented. 

1.2.1 Retrospective Analysis of Long-Term Spatiotemporal Landslide Activity 
For several decades, optical satellite remote sensing data have been acquired to monitor the Earth’s 
surface. With the launch of Landsat 5 and SPOT 1 in the 1980s, data of spatial resolution of 30 m 
and higher are available. This is sufficient for the mapping of large and medium sized landslides 
representing system-relevant landslides in the context of regional hazard and risk assessment (Sec-
tion II-7). In combination with the increased availability of high spatial resolution data since the 
2000s, long and sufficiently dense time series databases can be established for large areas, such as 
the one of the thesis (Sections I-4.2, II-2.2, IV-2.2). With the developed landslide mapping ap-
proach at hand, it is now possible to utilize such time series to achieve comprehensive multi-
temporal landslide inventories in retrospect for the complete time span of suitable satellite data 
availability.  

Chapter IV shows the application of the approach to a time series between 1986 and 2013 covering 
an area of 2500 km2. The derived multi-temporal landslide inventory contains the location, extent, 
and temporal occurrence of the landslide failures that happened during the analyzed 27-year peri-
od. Section IV-5 demonstrates that such remote sensing-based multi-temporal landslide 
inventories are suitable to obtain profound knowledge about spatiotemporal variations of past 
landslide activity (Figure IV-8). One important aspect is the analysis of the spatial landslide distri-
bution in regard to the predisposing factors, which allows the derivation of spatial landslide 
probabilities required for the assessment of landslide susceptibility (Section I-2.1). In this context, 
the object-based nature of the results is advantageous, because it allows focusing on specific parts 
of a landslide such as its source area (Section IV-5.3), and thus the determination of process-
relevant information of landslide occurrence, which cannot be achieved by point-based landslide 
inventories. Moreover, susceptibility analysis also benefits from the long-term multi-temporal 
analysis, enabling the identification of recurring landslides (Figure IV-10). So far, most susceptibil-
ity assessments are based on one-time landslide mappings (e.g. Erener & Düzgün 2012; Lee et al. 
2007; Pourghasemi et al. 2013; Pradhan 2013; Pradhan & Lee 2010; Van Den Eeckhaut et al. 2009), 
by which such recurring landslide failures can usually not be identified, and thus have to be ne-
glected within the landslide susceptibility analysis (Section IV-5.3). 

A vital aspect in landslide hazard and risk investigations is the knowledge about temporal varia-
tions in past landslide activity (Section I-2.1). In this context, the derived long-term multi-
temporal inventory forms a crucial information base, allowing the retrospective derivation of past 
landslide frequencies (Figure IV-8). In regions of incomplete or missing landslide records, such as 
the studied Southern Kyrgyzstan, the analysis of multi-temporal satellite archive data represents 
the only way to achieve such information in retrospect. With presently performed field- or imagery 
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based landslide mappings the reconstruction of past landslide failure dates is impossible or impre-
cise at best (e.g. recent, old or historic). For landslide hazard assessments such landslide frequency 
rates are analyzed in regard to the temporal variations of the triggering factors to determine the 
temporal probability of landslide occurrence (Figure I-2). With the derived multi-temporal land-
slide inventory, annual rates of landslide number and their affected area are achieved for the years 
since 1996, which allows a correlation of high temporal resolution with different parameters of the 
triggering factor precipitation (Section IV-5.4). Apart from the holistic area-wide analysis, the 
multi-temporal inventory also enables the examination of spatially differentiated landslide fre-
quencies, such as the analysis based on landslide mapping units (Figure IV-12) and the derivation 
of temporal variations of landslide density (Figure IV-11). Furthermore, the analysis of the spatial 
and temporal landslide probability could be combined in such mapping units, which would facili-
tate a spatially differentiated landslide hazard assessment based on the achieved landslide mapping 
results (Cascini 2008; Corominas et al. 2014; Guzzetti et al. 2005). 

11.2.2 Monitoring Recent Landslide Activity 
With the opportunity of the customized tasking of RapidEye data acquisition within the RESA 
program (Sections I-4.2, II-2.2, III-2.2), the creation of a dense time series database between 2009 
and 2013 has been possible. The application of the developed approach to this time series database 
shows its potential to create multi-temporal landslide inventories of high spatiotemporal com-
pleteness and precision (Chapter III). Hence, the approach can be used as part of a monitoring 
system allowing a systematic and continuous update of recent landslide inventories for large areas 
with repeat intervals of up to several days (Figure III-10). With the developed refinement proce-
dure (Section IV-3.3.1), the temporal resolution can be further improved by closing possibly 
existing data gaps in the RapidEye time series with data of other sensors, even if they are charac-
terized by lower spatial resolution (Figure IV-5). Thus, the multi-temporal landslide identifications 
have a great potential to contribute to the regional process understanding of current landslide ac-
tivity over large areas. Putting this knowledge about current landslide activity into the context of 
long-term landslide variations facilitates an up to date assessment of landslide hazard and risk. 

The spatiotemporal information about recent landslide activity could also help to organize land-
slide field surveys in a more systematic and focused way. This is particularly important in regions 
where landslides occur frequently, yet sporadically over large areas as is the case for the study area 
of Southern Kyrgyzstan. Hence, on-site investigations could be performed more efficiently, allow-
ing to attain deeper insights into the local failure mechanisms of selected landslides, e.g. type of 
movement, involved material, and potential causes. Moreover, the RapidEye database with its high 
spatial and temporal resolution has proved to be suitable for the identification of small landslide 
activations that often represent precursors for larger and more hazardous landslides (Fig-
ure App-1). In practice, the detection of such small precursors could allow field investigations to 
take place before the potential onsets of hazardous landslides in order to conduct local risk as-
sessments and, if needed, the realization of on-site landslide mitigation activities. Thus, provided 
that suitable high resolution remote sensing data are continuously available, the landslide mapping 
approach could be part of a landslide early warning system, especially in remote regions that are 
difficult to access. 
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11.2.3 Outcomes for Kyrgyzstan 
Since the end of the 1980s, the landslide records in Southern Kyrgyzstan are very incomplete in 
time and space (Section I-3.1). Hence, this region particularly benefits from the multi-temporal 
landslide mapping, which is feasible since the first satellite data availability in 1986. The multi-
sensor long-term analysis between 1986 and 2013 has revealed 1583 landslide failures in a 2500 km2 
large area (Figure IV-8). This number of identified landslides is more than fifteen times higher 
than the approx. 100 landslides that have been reported by the Kyrgyz authorities for this area over 
the same period of time. For the RapidEye-based analysis between 2009 and 2013 (Chapter III), 
similar discrepancies could be observed. In the analyzed 7500 km2 large area the approach identi-
fied 471 landslides (Section III-4), whereas only 40 landslides are contained in the official reports. 

This substantial increase in recorded landslides demonstrates the great potential of the developed 
approach to improve the knowledge about past landslide occurrence. Thereby, it has to be consid-
ered that the precision of the time period of landslide occurrence varies over time and space. With 
the database available for Southern Kyrgyzstan, the landslide activity can be analyzed at least an-
nually since 1996 (with a data gap in 2006), whereas before that, less frequent repeat rates of 
remote sensing data acquisition could be achieved. Due to these longer repeat intervals, the com-
pleteness of the landslide inventory before 1996 might be reduced for two reasons. Firstly, 
landslides that have occurred at the beginning of such long intervals have usually already experi-
enced vegetation regrowth, and thus show less disturbance signs in the post-event image, which 
greatly impedes their identifiability (Figure IV-2B). Secondly, recurrent landslide activations dur-
ing such time periods cannot be identified. However, the influence of these effects could not be 
reliably quantified, due to the lack of external landslide reference information (Section IV-4). In 
absence of such external information, the manual reference mapping for the accuracy assessment 
had to be based on the same images as the automatic identification (Section III-2.4, IV-4). Thus, 
the manual landslide mapping underlies the same restrictions. This shows that limited data availa-
bility is a general constraint of retrospective landslide analysis and not specific to the developed 
landslide mapping approach. Nevertheless, the performed quantitative accuracy assessment (Sec-
tion IV-4) showed that the automatic identification approach detected most manually mapped 
landslides (Detection Percentages up to more than 90% (Section III-5, IV-4)), revealing the suitabil-
ity of the approach to perform reliable and consistent retrospective landslide mapping on the 
available remote sensing image data. 

Since the independence of Kyrgyzstan in 1991, the existing landslide investigations have been con-
centrated on the vicinity of larger settlements, whereas most information is available as point-
based coordinates only (Section I-4.1). In contrast, the derived multi-temporal landslide inventory 
provides area-wide and spatially explicit object-oriented information, allowing systematic and 
quantified analysis of past landslide activity. Additionally to the derivation of the multi-temporal 
inventory, the obtained landslide results are analyzed in respect to their spatiotemporal variations 
in order to demonstrate their suitability for achieving an improved process understanding of the 
regional landslide activity in Southern Kyrgyzstan. 

For this purpose, the recent analysis based on RapidEye (Chapter III) has further been extended to 
the complete study area of 12000 km2 (Figure App-2-7). In total, 625 landslides have been mapped 
between 2009 and 2013 with sizes ranging between 50 m2 and 0.75 km2, and an overall affected 
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area of 8.2 km2. Most landslides have occurred in the time period between 2009 and 20115 (65%), 
which corresponds to the previous results of the 7500 km2 studied region of Chapter III (Ta-
ble III-1). In general, these four years of investigation showed a constantly ongoing landslide 
activity along the foothills of the Tien Shan mountain ranges throughout the complete study area, 
whereas the northern part of the study area has been less active than the south (Figures App-2-7). 
In detail, the distribution of the identified landslides reveals clear spatial patterns in landslide ac-
tivity, including areas of distinct concentrations and non-affected areas. The most affected areas 
are located along the mountain ranges southeast of Uzgen and west and northwest of Gulcha (Fig-
ure App-6, 7).  

The long-term analysis between 1986 and 2013 has been carried out for this recently most active 
region between Uzgen and Gulcha (Chapter IV). The 1583 identified landslides affected a total area 
of 33.2 km2, whereas large landslides of up to 2.8 km2 occurred in the 2500 km2 area during the 
analyzed 27 year period (Figure IV-8). Spatiotemporal analysis of the detected landslides revealed 
constantly ongoing landslide activity of varying intensity. The long-term annual average rate 
amounts to 57 landslides and an affected area of 1.2 km2 per year. The peak of activity has been 
recorded for the years 2003 and 2004, in which the observed landslide rates exceed the average 
rates by more than five times for the landslide number and up to seven times for the area that has 
been affected by landslides (Figure IV-8). Spatially, the landslide occurrence shows activity pat-
terns that have been fairly persistent during the analyzed 27 years (Figure IV-11), whereas 30% of 
the landslide area has been affected even twice or more (Table IV-3). Such a spatial persistency 
indicates clear relations of landslide occurrence and local geological and morphological settings. 
This has been exemplarily evaluated by the analysis of the detected landslide objects in regard to 
three morphological parameters (Section IV-5.3), representing a selection of predisposing factors 
for landslide failures (Section I-2). This analysis unveiled highest susceptibility to landslides on 
slopes facing N-NE direction with an inclination of 16° to 32° at an elevation ranging from 1700 
m.a.s.l. to 2200 m.a.s.l. (Figure IV-13). Moreover, it has been analyzed how temporal variations of 
landslide activity can be explained by variations of the triggering factor precipitation. Since the 
precipitation records, derived from downscaled reanalysis and station gauge data, have been avail-
able from 1998 to 2009 (Section IV-5.4), the multi-temporal landslide results allowed an annual 
correlation analysis between landslide occurrence and precipitation. The correlations show a posi-
tive but moderately significant trend (Figure IV-16, Table IV-4), indicating that the direct 
influence of precipitation only partly explains the onset of landslide occurrence. More likely, it is 
the result of a complex interrelation of different triggering factors and the local geological and ge-
omorphological conditions, whereas the influence of precipitation could also be delayed in time. 

Overall, these results demonstrate that the developed landslide mapping approach is able to derive 
a multi-temporal landslide inventory, which is suitable in spatial and temporal completeness, pre-
cision, and consistency to improve the regional landslide process understanding in Southern 
Kyrgyzstan and thus to facilitate the realization of subsequent hazard and risk assessments. 

                                                           
5 The customized tasking of RapidEye data acquisition started in 2011 and allowed up to six acquisitions per year. Before 
that, RapidEye archive data of 2009 have been used (Section III-2.2), which caused a data gap in 2010 resulting in the 
two-year time period between 2009 and 2011.  
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22 Outlook 

The thesis comprises the methodological development of the automated multi-temporal landslide 
mapping approach, its application to comprehensive time series remote sensing databases in 
Southern Kyrgyzstan, and the demonstration of its suitability for spatiotemporal landslide anal-
yses. Naturally, there are numerous aspects worth researching beyond the objectives of this thesis. 
Out of these aspects, this section discusses prospective landslide investigations in Southern Kyr-
gyzstan, future potential methodological developments and the transferability of the approach to 
different sensors, natural environments, and applications. 

2.1 Prospective Landslide Investigations in Southern Kyrgyzstan 
By enabling the derivation and evaluation of long-term spatiotemporal landslide activity, the devel-
oped approach has proved its suitability to serve as valuable contribution to landslide hazard and risk 
assessments. However, to realize profound probabilistic analysis of landslide hazard, the exemplary 
analysis of the landslide occurrence relations to the morphological setting (Section IV-5.3) and to the 
temporal variations of the precipitation (Section IV-5.4) has to be extended to additional predispos-
ing and triggering factors. Commonly used predisposing factors are morphological, geological, 
lithological, land use, and land cover properties (Corominas et al. 2014; Guzzetti et al. 2005; Van Den 
Eeckhaut et al. 2009). Landslide triggers are rainfall, snowmelt, seismicity, and volcanic activity 
(Corominas et al. 2014; van Westen et al. 2008), whereas in Kyrgyzstan the effect of active volcanism 
does not exist. To get a deeper insight which factors or combination of factors have an influence on 
the spatial and temporal variations of landslide occurrence, several univariate and multivariate 
methods exist (a recent review of such methods is given by Corominas et al. (2014)). Applying these 
methods on the basis of spatial mapping units (like those introduced in Section IV-5.2) to the identi-
fied multi-temporal landslide activity will allow achieving a quantified and spatially differentiated 
landslide hazard assessment for Southern Kyrgyzstan. 

Until now, the long-term multi-temporal landslide mapping, as basis for such a probabilistic hazard 
assessment, could be achieved for a landslide active region of 2500 km2 (Chapter IV). To broaden 
the analysis to the complete landslide prone area in Southern Kyrgyzstan, the application of the ap-
proach has to be extended to the remote sensing database of the whole study area of 12000 km2. The 
proof that the approach is applicable for such large areas has already been given by the RapidEye-
based analysis of recent landslide activity shown in Section V-1.2.3 (Figures App-2-7). 

The remote sensing-based multi-temporal analysis allows the area-wide and systematic derivation 
of locations, extents, and temporal occurrence of landslides. This provides a comprehensive land-
slide database that would be unfeasible to derive with local field-based investigations. However, 
such field-based investigations often allow a more detailed characterization of the local failure 
mechanisms. In Kyrgyzstan, authorities have visited some major destructive landslides during the 
last decades (Section I-4.1) and recorded the caused damage, the movement type as well as other 
landslide-related descriptions, e.g. if the landslide deposit had formed a dam. Furthermore, infor-
mation exists about landslides that occurred before the start of the satellite-based analysis in 1986 
(Yerokhin 1998). Although the failure date of these landslides is unknown, these landslide records 
provide valuable information about the spatial distribution of historic landslide activity. Thus, the 
combination of the remote sensing-based results and the landslide information of local authorities 
could further improve the understanding of the regional landslide processes in Kyrgyzstan. To uti-
lize these heterogeneous landslide data for quantitative analysis requires their homogenization and 
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integration in a combined multi-source landslide inventory. Such a multi-source inventory could 
be accomplished by Golovko et al. (2015), which combine the automatically derived RapidEye-
based landslide mapping results with the locally available landslide information base for Southern 
Kyrgyzstan. 

The RapidEye science archive (RESA) data grant, which has allowed pre-defined tasking of RapidEye 
data acquisition during the period between 2011 and 2013 (Section I-3.2), could be continued beyond 
2013. Since 2014, the study area of the thesis could be established as a priority tasking area within the 
RESA program. The current tasking aims at a bi-monthly coverage during the active landslide season 
ranging from April to July. Thus, the RapidEye-based spatiotemporally precise analysis of the land-
slide activity, performed for the years 2009-2013 (Chapter III), can be pursued for the years 2014 and 
2015. Moreover, the ongoing tasking ensures adequate remote sensing data availability for the area-
wide landslide monitoring for upcoming years as long as the current data acquisition scheme can be 
continued6. 

22.2 Methodological Developments and Potential Synergies 
The proposed landslide mapping approach is extensively automated, yet the preselection of bi-
temporal image pairs remains a manual task (Section IV-3.2). This preselection step is implement-
ed to utilize highly irregular time series of seasonally varying data acquisitions. It allows the 
approach to focus the landslide detection on datasets that are most comparable and to use the re-
maining datasets subsequently in the multi-temporal revegetation analysis as well as in a date 
refinement step (Section IV-3.3). Thus, the efficiency of the approach for operational use would 
benefit from the development of an optimization routine that automatically identifies most com-
parable datasets within the time series at hand. Said routine needs to consider the seasonality, 
spectral characteristics, spatial resolution, temporal intervals between acquisitions, and viewing 
angles of the different datasets, whereas comparable seasons and similar viewing angles are partic-
ularly important in mountainous regions that are characterized by short vegetation periods and 
rough terrain. Nevertheless, if the approach is applied to a time series of comparable datasets, it 
can be performed fully automated. 

Some landslide identification studies (Barlow et al. 2006; Martha et al. 2010) aim at the classifica-
tion of landslide types, which, depending on the achieved accuracy, enables type differentiated 
landslide hazard assessment (Corominas et al. 2014). For the discrimination of landslide types, 
they analyze shape, relief, and textural characteristics of detected landslide objects. Their landslide 
detection and classification is based on optical remote sensing data of high spatial resolution (6 m 
and better) and precise digital elevation models (DEM) derived from local topographic maps (Bar-
low et al. 2006) or from a stereo pair of the high resolution images (Martha et al. 2010). With less 
resolution data available (optical imagery or elevation data), the discrimination of the landslide 
types is less satisfactory (Barlow et al. 2003; Martin & Franklin 2005). Thus, the implementation of 
type classification routines into the multi-temporal landslide mapping approach of the thesis is 
hampered by the absence of a high-resolution DEM in Kyrgyzstan as well as by the lower resolu-
tion of the imagery available for the long-term analysis. However, the currently ongoing generation 
of the global WorldDEMTM (Riegler et al. 2015) will open up new opportunities in Kyrgyzstan for 
improved relief-based analysis. This new global DEM will exceed the spatial resolution and verti-
cal accuracy of the currently available global DEMs (Avtar et al. 2015), i.e. ASTER GDEM V2 

                                                           
6 The continuation of the RESA program is currently under discussion (as of 5 November 2015)  
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(Tachikawa et al. 2011) and the SRTM (Rabus et al. 2003). Thus, the WorldDEMTM facilitates a fu-
ture extension of the landslide mapping approach towards the discrimination of landslide types at 
least for the recent analysis, e.g. based on RapidEye imagery. 

A further promising field of investigation is the synergy between data of optical and radar sensors. 
As this thesis shows, optical remote sensing enables an efficient retrospective derivation of long-
term multi-temporal landslide inventories. In contrast, radar contributes to the identification and 
quantification of slow moving parts of landslides (Section I-2.2.1). Put differently, optical remote 
sensing data enable the spatially explicit delineation of the landslide extent and the determination 
of the landslide failure date, whereas radar data provide information of how long and how much a 
landslide has moved before or after the onset of the failure. Thus, an efficient combination of these 
two complementing results has a great potential to further improve the landslide process under-
standing of a given region. In Southern Kyrgyzstan, recent studies of Motagh et al. (2013) and 
Teshebaeva et al. (2015) measured displacement rates of active slow-moving landslides for subsets 
of the study area using radar times series from 2009 to 2010 and from 2007 to 2010, respectively. 
Hence, future research could focus on the development of strategies to merge the existing results of 
optical and radar analysis and to extend the combined analysis to large areas and longer time spans 
(e.g. by a synergetic use of Sentinel-1 & 2). 

In view of other time series applications (besides landslide mapping) it might be worthwhile to 
implement or develop further pre-processing strategies, e.g. spectral resampling and atmospheric 
correction routines (Bodart et al. 2011; Richter & Schlapfer 2002; Song et al. 2001; Tan et al. 2012). 
The realization of such routines is one objective of the currently ongoing project “GeoMultiSens” 
(GMS 2015)7. This project aims at an efficient homogenization and analysis of multi-sensor time 
series data in the petabyte range to enable monitoring of spatiotemporal Earth surface changes for 
large areas (GMS 2015). The imagery and partly the integrated pre-processing algorithms of this 
thesis are used within “GeoMultiSens” for the methodological developments towards a homoge-
nized time series data cube as basis for time series analyses for various fields of application. 

22.3 Transferability 
The developed multi-temporal landslide identification procedure concentrates on landslide-related 
vegetation change characteristics, i.e. the vegetation disturbance due to the landslide failure and 
the slow revegetation rate after failure (Chapters III, IV). Thus, it enables general transferability to 
areas where landslide occurrence is also associated with changes to the surface vegetation cover. 
Most landslides are highly dependent on the existence of weakly consolidated material and sub-
stantial water supply, both factors facilitating vegetation growth. Hence, areas of high landslide 
activity very often correspond to vegetated areas, such as the global landslide hotspots (Nadim et 
al. 2006) in South America (e.g. Brazil, Colombia) and Southeast Asia (e.g. Taiwan, Thailand, Phil-
ippines). Landslides not or only barely associated with vegetation change occur in arid regions 
(Cardinali 1990), in very high mountain ranges (Stolle et al. 2015), and in extraterrestrial land-
scapes (Brunetti et al. 2014). However, in comparison to the usually vegetated global landslide 
hotspots such regions are less subject to hazardous landslides, due to sparse population and lower 
landslide rates. Thus, in general, the approach is widely applicable, especially for regions where the 
local population and infrastructure is most endangered by landslides. 

                                                           
7 Project is funded by the Federal Ministry of Education and Research (BMBF) from September 2014 to August 2017. 
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The actual transfer of the approach requires the complete processing chain (pre-processing and land-
slide mapping) to be applicable to new datasets and new environmental conditions. The pre-
processing is designed to perform robustly based on standard data products of common multi-
spectral satellite sensors, without the need of external reference information such as reference spectra 
or GPS measurements (Chapter II, Section III-2.3, IV-3.1). Thus, it has the potential to work in other 
areas as well, without collecting reference data in advance. In fact, the geometric co-registration pro-
cedure has already shown its applicability in other studies, which analyzed multi-temporal RapidEye 
data stacks in Northern Germany for the derivation of agricultural soil patterns (Blasch et al. 2015) 
and for the reconstruction of lake level changes (Heine et al. 2015). The application of the landslide 
identification procedure to other areas may require the adaption of the implemented thresholds to 
possibly differing environmental conditions. For example, climatic conditions influence the rate of 
vegetation regrowth after a landslide failure, e.g. landslides in tropical environments are usually sub-
ject to faster revegetation than in Kyrgyzstan. Furthermore, the local relief might be different from 
the foothills of the Tien Shan mountain ranges and thus landslides may occur on steeper or gentler 
slopes. However, in principle the complete processing chain could be transferred to other areas with-
out the need of any external data input or new methodological developments. 

A further requirement for the application of the approach to other areas is the local availability of 
suitable remote sensing data. The data of the sensors used in this thesis (Section I-3.2) are usually 
widely available for most parts of the world and thus promote broad transferability of the ap-
proach. However, in some areas other remote sensing data might be more feasible to use. In 
Southeast Asia, landslide investigations are often based on the high-temporal resolution data of the 
multi-spectral Formosat-2 sensor (Mondini et al. 2011a; Mondini et al. 2013; Rau et al. 2014; Tsai et 
al. 2010; Weng et al. 2011). The potential to integrate such multi-spectral sensors in the multi-
temporal landslide mapping procedure represents a substantial strength of the developed ap-
proach. In general, the focus on the NDVI-based analysis allows the approach to perform on all 
common multi-spectral sensors, since they usually comprise the required bands in the red and 
near infrared parts of the spectrum, which is also true for the Formosat-2 sensor. Furthermore, the 
successful application of the approach to seven sensors in Chapter IV could already show its suita-
bility to accommodate for slight sensor-specific NDVI variations, which may exist between the 
sensors (Goetz 1997; Huang et al. 2013; Martinez-Beltran et al. 2009). This multi-sensor applicabil-
ity also allows future extensions of the approach to upcoming sensors. In this context the freely 
available Sentinel-28 data with a temporal resolution of up to five days, a spatial resolution of 10 m 
and a swath of 290 km (Drusch et al. 2012) will open up new opportunities for automated large 
area landslide mapping using optical satellite remote sensing. 

Besides monitoring and long-term spatiotemporal analysis, the event-based analysis is another 
important field of application for landslide mapping approaches. In case of major landslide trigger-
ing events such as large earthquakes or tropical rainstorms, rapid disaster response and 
coordination needs fast identification of the most affected areas. This requires landslide mapping 
approaches to perform on the first available satellite data acquired right after the event. For such a 
scenario, most landslide mapping approaches have been designed, using either a mono-temporal 
post-event image or a bi-temporal image pair consisting of a pre- and post-event image (Ta-
ble App-1). Although the landslide mapping approach of this thesis is primarily developed to 

                                                           
8 Sentinel-2 will be a system of two sensors in the same orbit with a phase delay of 180°. Sentinel-2A is launched on 23 
June 2015 and Sentinel-2B is planned in 2016. 
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identify landslides within a time series database, it can also be applied to a bi-temporal image pair 
only, due to its sub-division in bi-temporal landslide identification and subsequent multi-temporal 
plausibility control (Section IV-3.3). Limiting the approach to the bi-temporal landslide identifica-
tion step might increase the number of false positives, but has no influence on the landslide 
detection success. Moreover, the capability of the developed approach to perform on different sen-
sors is advantageous in the context of rapid response mapping, because often the sensors of the 
data that are available before and after an event do not match and if large areas are affected, data of 
different sensors have to be used to cover the complete area. 

A recent example of such a major landslide triggering event is the Nepal earthquake (also called 
Gorkha earthquake) on 25 April 2015 and the aftershock on 12 May 2015 with magnitudes of 
7.8 Mw and 7.3 Mw, respectively (Gupta 2015). The earthquake killed almost 9000 people and de-
stroyed more than half a million houses (OCHA 2015). According to the EWF (2015) the 
earthquake triggered approximately 5600 landslides and caused a widespread destabilization of 
slopes and building of cracks, which most likely lead to landslides during the subsequent summer 
monsoons (NEAU 2015a; NEAU 2015b). As a part of an international network of scientists, a GFZ 
funded and coordinated HART (“Hazard and Risk Team”) initiative9 investigates the aftereffects of 
the disastrous earthquakes in Nepal (Andermann et al. 2015). Based on this initiative, a RESA pro-
posal could be realized (project ID: 165), allowing to achieve RapidEye data coverages after the two 
main shocks as well as before and after the summer monsoon in the upcoming two years. In this 
context, the landslide mapping approach has been tested within the earthquake-affected area for 
two scenarios. Firstly, the approach has been applied to a multi-sensor image pair consisting of a 
Landsat-OLI pre-event image and a RapidEye post-event image (Figures App-10,11). Secondly, a 
mono-sensor image pair of RapidEye data has been used (Figures App-8,9). In both test cases the 
approach resulted in reliable identification of the landslide-affected areas, however a quantitative 
accuracy assessment could not be performed yet. These first results demonstrate the general trans-
ferability of the approach to other natural environments, the successful transfer of the processing 
chain to other areas and other available data, and its suitability to operate within a rapid response 
application using mono- and multi-sensor analysis. Among others, future applications of the land-
slide mapping approach will focus on the investigation of the immediate landslide response to the 
earthquake (identification of co-seismically triggered landslides), and the monitoring of landslide 
rates in upcoming monsoon seasons, in order to evaluate the still not-well understood interrela-
tion of earthquake-induced slope destabilization and intensity of increased landslide risk after 
earthquakes (Marc et al. 2015; NEAU 2015b). 

Overall, the developed approach provides a great potential to be applied to different landslide-
affected regions, optical sensors, and fields of application (e.g. long-term spatiotemporal landslide 
analysis, monitoring of recent landslide activity, event-related rapid response mapping, and as a 
part of early-warning systems by identifying precursors of hazardous landslides). Prerequisites are 
sufficient optical remote sensing data availability, a potentially required calibration of the imple-
mented thresholds in case of naturally differing environments, and that landslide occurrence in the 
studied region corresponds to vegetation disturbance. 

                                                           
9 The international network of the HART initiative includes scientists from Potsdam, Nancy, Zurich, Cambridge, Edin-
burgh, Utrecht and partners from Nepal. (https://idw-online.de/en/news631843, accessed 21 October 2015) 
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AA - (Semi-)Automated Landslide Mapping Approaches – An Extensive Overview 

Table App-1. Overview of (semi-)automated approaches for the derivation of landslide inventory maps. 
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historical inventory                     
(Othman & Gloaguen 2013)           Iraq 220        Quickbird 
(Wan et al. 2012)           Taiwan 750        SPOT 4 
(Danneels et al. 2007)           Kyrgyzstan 135        ASTER 
(Moine et al. 2009)           France 200      b  SPOT 5, aerial 
(Barlow et al. 2006)           Canada 440        SPOT 5 
(Aksoy & Ercanoglu 2012)           Turkey 300        Landsat ETM+ 
(Hölbling et al. 2012)           Italy 70        SPOT 5 
(Blaschke et al. 2014)           Iran 100        SPOT 5, IRS-ID P6 (pan) 
(Dou et al. 2015)           China N/A        Quickbird 
(Martha et al. 2010)           India 81        IRS Resourcesat-1 LISS IV 
                     
event-based inventory                     

                     
(Wan et al. 2015)           Taiwan 9        SPOT 4 
(Borghuis et al. 2007)           Taiwan 115        SPOT 5 
(Mondini et al. 2013)  c         Taiwan 117        Formosat-2 
(Rau et al. 2014)           Taiwan 81, 64, 13      b  Formosat-2, aerial (ZI/DMC) 
(Lahousse et al. 2011)           Taiwan 40        SPOT 5 
(Mondini et al. 2011a)  1/2         Taiwan 31.8, 760        Formosat-2 
(Mondini et al. 2011b)  1         Italy 9.4        Quickbird 
(Nichol & Wong 2005)  2         Hong Kong 36        SPOT 2/3 
(Tsai et al. 2010)  1         Taiwan 2500        Formosat-2 
(Cheng et al. 2004)  1         Taiwan 333        SPOT (N/A) 
(  et al. 201 )  1         Italy 1.8, 8.1        Quickbird 

)  1         Korea 10        IKONOS, Quickbird 
(  et al. 201 )  1         Taiwan 16        SPOT 5 
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hydrometeorological trigger



 

  
( )  -         China 13000        EO-1 ALI (pan), SPOT 5 
(  2011)  2         Pakistan N/A        ASTER 
( )  1         China 400        Landsat-TM, ASTER 
(  et al. 201 )  1         Peru 27000        SPOT 5 
                     
both                     
(Stumpf et al. 2014)  -         Brazil, China 10, 36      b  Landsat-TM,SPOT 5,GeoEye-1, IKONOS 
(Stumpf & Kerle 2011)  1         Haiti, China, 

Italy, France 
ca. 1 (per 
test site) 

     b  IKONOS, Quickbird, Geoeye-1, aerial 

                     
multi-temporal inventory                     
(Martha et al. 2012)  1         India 81        IRS-1D (pan), Cartosat-1 (pan) 
(Martha et al. 2013)  1         India 81        IRS-1D  (pan), Cartosat-1 (pan) 

Resourcesat-1 LISS-IV 
thesis e  1         Kyrgyzstan 2500,7500, 

12000 
       Landsat-(E)TM, SPOT 1 & 5, IRS-1C 

(LISS3), ASTER, RapidEye 
 
a 1 – statistical bi-temporal change detection or 2 – post-classification comparison (two mono-temporal image classifications and subsequent comparison) 
b monotemporal classification approach tested on different sensors 
c compared post-event results to an existing pre-event inventory 
d after Cascini (2008): detailed (< 10km²); large (10-1000km²); medium (1000-10000km²); small (>10000km²) 
e landslide mapping approach presented in this thesis 
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BB - Identification of Pre-Cursors of Hazardous Landslides – An Example 

 
Figure App-1. Evolution of a landslide. Automatic identification of a small precursor and of a subsequent hazardous landslide that 
crossed the valley and for a short time blocked the river and the road on the other side of the valley. 



 

CC - RapidEye-Based Landslide Mapping Results – Complete Study Area 
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Figure App-2. Identified landslide objects for the complete study area based on RapidEye data coverage
between 2009 and 2013. 

Figure App-3. Percentage of landslide-affected area per mapping unit. 
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Figure App-4. Number of landslide failures per mapping unit. Figure App 5. Number of years with detected landslide activity per mapping unit. 
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Figure App-6. Spatiotemporal landslide density. Figure represents sum of landslide failures for a moving
quadratic-weighted kernel of 5km size. 

Figure App-7. Spatiotemporal landslide density weighted by landslide size. Figure represents sum of
landslide area for a moving quadratic-weighted kernel of 5km size. 
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DD - Application of the Landslide Mapping Approach to Nepal – First Results 

 

Figure App-8. RapidEye-based application of the landslide mapping approach (example 1). 
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Figure App-9. RapidEye-based application of the landslide mapping approach (example 2). 
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Figure App-10. Application of the landslide mapping approach to multi-sensor scenario (Landsat & RapidEye) (example 1). 
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Figure App-11. Application of the landslide mapping approach to multi-sensor scenario (Landsat & RapidEye) (example 2). 
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