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As far as the laws of mathematics refer to reality,
they are not certain, as far as they are certain, they
do not refer to reality.

Albert Einstein, 1921





Abstract

Bayesian probability theory as a general framework for scientific modelling and
inference is introduced and applied to nuclear fusion experiments in order to
provide consistent inference solutions given multiple heterogeneous data sets.
Fusion plasmas are complex physical systems, in which charged particles are
confined by the electromagnetic force. The physics parameters of the plasmas
involve various independent measurements from sophisticated scientific instru-
ments. Owing to the complexity of the experiments and the fusion plasmas,
so far, no physics model can predict major physical phenomena, like trans-
port, sufficiently well. Hence, generic, non-parametric Gaussian processes are
used to model physics parameters such as plasma current density and pres-
sure. Multiple predictive models of scientific instruments have been developed
individually, and they have been combined into a joint model with Gaussian
process priors in order to perform robust and consistent inference. The joint
model provides the joint posterior probability distribution of the physics para-
meters, hyperparameters and other unknown parameters, such as calibration
factors. This thesis theoretically and experimentally shows that the joint pos-
terior distribution intrinsically embodies Bayesian Occam’s razor. Therefore, by
exploring the joint posterior distribution, inference solutions can be found with op-
timal values of all the model parameters, based on the principle of Occam’s razor.
In other words, we can apply Bayesian Occam’s razor to real-world problems
without calculation of the model evidence, typically requiring marginalisation
over a high-dimensional parameter space, which is one of the major obstacles to
Bayesian model selection. Based on this foundation, several applications have
been developed for consistent inference of the physics parameters of the fusion
plasmas at two major fusion experiments, the Joint European Torus (JET) and
Wendelstein 7-X (W7-X). The first application has been developed by modelling
emission spectra and relevant atomic physics for the lithium beam emission
spectroscopy system at JET to provide the edge plasma electron density pro-
files and their posterior uncertainties. Additionally, interferometers, Thomson
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Abstract

scattering and spectroscopy systems have been combined, improving the con-
sistency of the inference solutions. These joint inference applications have been
developed for JET and W7-X to provide the marginal posterior distribution of
the plasma density and temperature profiles. Furthermore, the full joint pos-
terior distribution of axisymmetric plasma equilibria, given magnetic field and
plasma pressure measurements, has been explored for the first time at JET.
These equilibrium solutions suggest two different possible plasma equilibrium
current distributions for high-confinement mode fusion plasmas: either a strong
toroidal current density or a poloidal current flux hole in the edge region. The
principles and methods developed in this thesis are general and applicable to all
kinds of scientific problems. This new approach to model selection by explor-
ing the joint posterior distribution contributes to the general automatisation of
scientific discovery.
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Zusammenfassung

Die Bayes’sche Wahrscheinlichkeitstheorie wird als allgemeines Framework
für wissenschaftliche Modellierung und Inferenz eingeführt und auf Kernfu-
sionsexperimente angewandt, um konsistente Inferenzlösungen bei mehreren
heterogenen Datensätzen zu ermöglichen. Fusionsplasmen sind komplexe phy-
sikalische Systeme, in denen geladene Teilchen durch die elektromagnetische
Kraft eingeschlossen sind. Die physikalischen Parameter der Plasmen umfassen
verschiedene unabhängige Messungen mit hochentwickelten wissenschaftli-
chen Instrumenten. Aufgrund der Komplexität der Experimente und der Fu-
sionsplasmen kann bisher kein physikalisches Modell wichtige physikalische
Phänomene, wie den Transport, ausreichend gut vorhersagen. Daher werden ge-
nerische, nichtparametrische Gauß’sche Prozesse verwendet, um physikalische
Parameter wie die Plasmastromdichte und den Druck zu modellieren. Mehrere
prädiktive Modelle wissenschaftlicher Instrumente wurden einzeln entwickelt
und in einem gemeinsamenModell mit Gauß’schen Prozess-Prioren kombiniert,
um robuste und konsistente Schlussfolgerungen zu ermöglichen. Das kombi-
nierte Modell liefert die gemeinsame posteriore Wahrscheinlichkeitsverteilung
der physikalischen Parameter, Hyperparameter und anderer unbekannter Para-
meter, wie zum Beispiel Kalibrierfaktoren. Diese Arbeit zeigt theoretisch und
experimentell, dass die gemeinsame Posteriorverteilung inhärent Ockhams Ra-
siermesser verkörpert. Daher können durch die Untersuchung der gemeinsamen
Posteriorverteilung Inferenzlösungen mit optimalen Werten aller Modellparame-
ter gefunden werden, die auf dem Prinzip von Ockhams Rasiermesser basieren.
Mit anderen Worten: Wir können Ockhams Rasiermesser mittels Bayes’scher
Wahrscheinlichkeitstheorie auf Probleme der realen Welt anwenden, ohne die
Evidenz des Modells zu berechnen, was typischerweise eine Marginalisierung
über einen hochdimensionalen Parameterraum erfordert, was eines der Haupt-
hindernisse für die Bayes’sche Modellauswahl darstellt. Auf dieser Grundlage
wurden mehrere Anwendungen zur konsistenten Inferenz der physikalischen
Parameter der Fusionsplasmen bei zwei großen Fusionsexperimenten, dem
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Zusammenfassung

Joint European Torus (JET) und Wendelstein 7-X (W7-X), entwickelt. Die erste
Anwendungwurde durch dieModellierung von Emissionsspektren und relevan-
ter Atomphysik für das Lithiumstrahl-Emissionsspektroskopiesystem bei JET
entwickelt, um die Randplasma-Elektronendichteprofile und ihre Posteriorunsi-
cherheiten zu ermitteln. Zusätzlich wurden Interferometer, Thomson-Streuung
und Spektroskopiesysteme kombiniert, um die Konsistenz der Inferenzlösungen
zu verbessern. Diese gemeinsamen Inferenzanwendungen wurden für JET und
W7-X entwickelt, um die marginale Posteriorverteilung der Plasmadichte- und
Temperaturprofile zu liefern. Darüber hinaus wurde bei JET zum ersten Mal die
volle gemeinsame Posteriorverteilung der achsensymmetrischen Plasmagleich-
gewichte bei gegebenen Magnetfeld- und Plasmadruckmessungen untersucht.
Diese Gleichgewichtslösungen schlagen zwei verschiedene mögliche Plasma-
gleichgewichtsstromverteilungen fürHigh-Confinement-Mode-Fusionsplasmen
vor: Entweder eine starke toroidale Stromdichte oder ein poloidales Strom-
flussloch im Randbereich. Die in dieser Arbeit entwickelten Prinzipien und
Methoden sind universell nutzbar und auf alle Arten von wissenschaftlichen
Problemen anwendbar. Dieser neue Ansatz zur automatischen Modellauswahl
durch Untersuchung der gemeinsamen Posteriorverteilung trägt zur allgemei-
nen Automatisierung der wissenschaftlichen Entdeckung bei.
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Preface

When I conducted a free fall experiment in a physics lab course in science
high school similar to what Galileo did from the Leaning Tower of Pisa, I did
wonder, why should we select a second order polynomial equation as a model
to explain the law of free fall? Or, more precisely, how could we know a priori
a second order polynomial equation is the law of free fall? It was very obscure
for me, but, on the other hand, it looked like it was very obvious for everyone
in the class, that we should use the second order polynomial function as if it
was given by God. Nevertheless, I did not raise this question to my physics
teacher there at that time, because I could expect the answer that the law of
free fall can be derived from Newton’s laws of motion, F = ma. However, what
if we would have been born before Newton, like Galileo was? Even though we
know Newton’s laws of motion, why should we not try other models instead
of believing this model since we have some experimental data? Since then, this
enigmatic question had stayed in my mind for over seven years until I finally
got to know Bayesian Occam’s razor, which is one of the deepest and most
profound principles that I have ever seen in my entire life.

Many people often regard the principle of Occam’s razor, complexity should
not be posited without necessity, as a philosophical or an ad hoc principle, not
a scientific one. However, in probability theory, this principle is one of the most
fundamental logical nature of probability. In short, since a complex model can
generate a greater variety of output than a simple model does, the probability
that we would observe a specific value of the output from the complex model
is intrinsically lower than the one of the simple model. Based on the lecture
notes [1] where these probabilities were calculated for Galileo’s free fall experi-
ment, I made the calculations by myself and confirmed that the probability of
the second order polynomial equation was the highest. That was one of the
most enlightening moments; the answer to the enigmatic question was brought
to light in the light of the data. I did completely understand that this is one of
the most important keys to achieve the automation of science that is one of my
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dreams and at the same time, one of mankind’s most ambitious missions. The
principle of Occam’s razor should be now rewritten like this: complexity is not
probable without evidence.

This is just the beginning of our journey to the automation of science, and we
do still have many unsolved problems and unanswered questions. Nevertheless,
my story starts here. Before we move onto the first page, I would very much like
to express my deepest gratitude to a number of people: Prof Dr Thomas Klinger
for accepting me into his division and for continuous support. Dr Young-Mu
Jeon, Dr Mathias Brix, Dr Joanne Flanagan, Dr Alexandru Boboc, Dr Gabor
Szepesi, Dr Jon Hillesheim, Dr Elena de la Luna, Dr Humberto Trimiño Mora,
Dr Sergey Bozchenkov, Dr Daihong Zhang and Dr Maciej Krychowiak for crit-
ical discussions in different experimental topics relating to my work. Dr Henri
Weisen, Dr Marco Sertoli and Dr David Terranova for organising scientific
collaborations at JET. Udo Höfel, Andrea Pavone, Jonathan Schilling, Robert
Hofstetter, Jaewook Kim, Semin Jeong, Tae-suk Oh and Bin Ahn for insightful,
thought-provoking and interesting conversations. Hyeonyeong Kim, Yeona Jin,
Sehoon An, Marco Krause, Sandra Corinna Hauck, Dave Rose, Olga Siddons,
Andreas Werner, Per Helander and his family and other PhD students at the
IPP and KAIST for delightful company with their kind minds. Dr Hyun-tae
Kim for sharing his enthusiasm and inspiration for fusion energy. Dr Lynton
Appel and Dr Oliver Ford for deepening my understanding of this subject. Prof
Dr Robert Wolf and Prof Dr Dieter Breitschwerdt for giving me the very op-
portunity to complete my work at TU Berlin. Special thanks to my supervisor
Professor Young-chul Ghim, one of the most high-minded classical physicists,
for continuous support, mentorship and concern in good and bad times. Many
thanks to Dr Jakob Svensson, my right honourable supervisor, without whose
imagination, intuition and the deepest intelligence, this work would have never
been possible. Finally, I genuinely appreciate my dear families and friends.

Sehyun Kwak
Greifswald, March 2020
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1
Introduction: Do a-machines
dream of artificial scientists?

When I had finished most of my university studies in chemistry and chemical/-
biomolecular engineering, and after I had executed chemical experiments for
five years, I ended up having one of my dreams. In a lab course, typically all
students were supposed to execute a series of recipes as precisely as possible,
for example, to stir a solution while keeping its temperature of 50 °C for three
hours. Please keep in mind that there are plenty of recipes, requiring much
more sophisticated and complicated techniques in chemical experiments. Nev-
ertheless, the point is that what scientists have been doing in a laboratory is a
series of operations which in principle a machine would be able to execute. One
might ask, as many people are fond of saying, ‘No one will ever make a machine
to replace the human mind that does many things that no machine could ever
do.’ An insightful answer to this question given by John von Neumann in his
lecture on computers given in Princeton in 1948, ‘You insist that there is some-
thing a machine cannot do. If you will tell me precisely what it is that a machine
cannot do, then I can always make a machine which will do just that!’ [2] In
principle, the only operations that a machine cannot execute for us are those
which cannot be precisely described in detail or which cannot be definitely
completed in a finite number of operations [3, 4]. Fortunately, every science, by
definition, that has thriven has thriven upon its own experiments that can be
precisely described in detail and at the same time definitely completed in a finite
number of operations. In other words, science is one of the very fields in which
a-machines [4] are eager to be employed. Unlike other fields of study such as
language or music, every piece of work in science has been done by mankind so
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Chapter 1 Introduction: Do a-machines dream of artificial scientists?

far is repeatable by a reasonable mind of either a man or a machine.1 Here, one
might argue that a machine can only do what it does, but not think. In recent
years, we have been seeing that, in many fields, machines started to recognise
patterns and, in some context, even better than humans. If this is the case, why
can they not recognise such patterns throughout the history of science or in the
context of thinking? I imagine that, given a chronological pattern of scientific
discovery, we train a machine to autonomously derive physics formulas, which
consist of a combination of mathematical symbols. I would claim that we are
capable of creating a machine that understands such a pattern like a scientist.
Moreover, I believe that a-machines will be able to think in a way like or even
better than another one, which exists inside everyone’s head, does.

The reason why I introduced my dream of artificial scientists here is that the
work presented in this thesis does primarily intend to contribute a step towards
the quest of the automation of science. In order to create a machine, who can
reason things out like a scientist, will make scientific discoveries autonomously
in the future, we have to explain two important concepts to the machine as
precisely as possible: knowledge and causality. Fortunately, we have a number
of great minds who have been developing the language of knowledge and caus-
ality over the last few centuries in probability theory. The key abstraction in
this context is that, in probability theory, knowledge can be represented by a
probability, and causality can be seen as a unidirectional, counterfactual condi-
tional dependency.2 Obviously, this abstraction has been founded throughout
all the philosophical discussions that might go deep down to the meaning of
probability as well as knowledge and causality [1, 2, 9–20], but I will not dwell
here on this but rather make a point that we have a formal framework for sci-
entific inference in which knowledge can be represented in a quantitative way,
as described in the following chapter. This formal framework has been eleg-
antly realised in the form of a software framework, Minerva [21, 22], for general

1The modern artificial intelligence systems become more and more capable of working in
such fields of study, for example language [5] and music [6], and at the same time achieving
a certain goal in a specific environment [7, 8]. Surprisingly, they figure out, by themselves,
what to do, by learning patterns based on observations given to them or made by them.

2David Hume made the first explicit definition of causation in terms of counterfactuals, as he
wrote in this book [9], ‘We may define a cause to be an object followed by another, and where
all the objects, similar to the first, are followed by objects similar to the second. Or, in other
words,where, if the first object had not been, the second never had existed.’ This counterfactual
interpretation of causation has been formalised in the language of probability theory, which
a machine in principle would be able to understand [10].

2



scientific modelling and inference in which all the applications in this thesis
have been developed. When I started this work, I did immediately understand
that one of the missions that Minerva was designed to eventually undertake is
the automation of science. It might not be apparent in the thesis articles that
describe applications because they tend to focus on practical and technical is-
sues. Nevertheless, one of the main missions in this thesis is to show that this
framework for scientific inference is applicable to a complex system in order
to provide consistent inference solutions based on quantitative knowledge in a
systematic way, in which a-machines will make scientific discoveries autonom-
ously in the future. A nuclear fusion experiment is an excellent example since it
is itself, undoubtedly, one of the greatest challenges of our time to provide safe,
clean and unlimited sources of energy, and it is at the same time an extraordin-
arily complex system where we could explore the feasibility of this framework.
In a nuclear fusion experiment, the fuel is in a state of hot, ionised, collectively
behaving gas, also known as a plasma, which is a very complex physical system.
The fusion plasma can be quantified by a number of physics parameters, which
involve multiple heterogeneous data sets from sophisticated and complicated
scientific instruments. Owing to the high complexity of the experiment and the
fusion plasma, so far, no physics model can predict major physical phenomena,
like transport, sufficiently well. Hence, generic, non-parametric Gaussian pro-
cesses are used to model physics parameters such as plasma current density
and pressure. Moreover, the system parameters of these scientific instruments,
for example, their calibration factors, are often unknown. For these reasons as
well as for the mission that I mentioned, I did intentionally let a machine (an
optimisation algorithm on a number of computers) decide the complexity of
physics models and calibrate the scientific instruments based on the principle
of Bayesian Occam’s razor [14, 19, 20], which is one of the key solutions to
the automation of science. The principle of Occam’s razor allows any human
or machine mind to find an optimal model of a system with an appropriate
complexity in the light of the data.

This thesis suggests a novel approach of applying Bayesian Occam’s razor
to real-world problems: representing the inference solution as the joint posterior
probability distribution of the parameters and models which intrinsically embod-
ies the principle of Occam’s razor. Every sample drawn from the joint posterior
distribution is a possible solution for the model and its parameters which is auto-
matically found with an appropriate complexity based on the principle of Occam’s
razor. In other words, By exploring the joint posterior distribution, we can find
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Chapter 1 Introduction: Do a-machines dream of artificial scientists?

an optimal solution not only for the model of a system but also for its parameters
given observations. This approach can be more practical and effective than the
conventional one based on exploring the marginal probability distribution of
observations, also known as the model evidence. I view this as a contribution
to the automation of science. We only let a machine have the observations but
nothing else, and as we see in an example of Galileo’s free fall experiment [13]
shown in Figure 1.1, the machine autonomously reveals that the law of free fall
is a second order polynomial equation h = 1

2
gt2 and at the same time its para-

meter, the gravitational acceleration, g = 9.810m/s2. This inference solution is
close to 9.807m/s2, the underlying value of the gravitational acceleration used
to generate the observations by physics model. Here, the model space is a set
of different polynomial models, but in principle, we can explore an arbitrary
model space which includes any parametric/non-parametric model.

This theoretical foundation is applied to all the applications, which have
been developed to obtain consistent inference of the physics parameters of the
fusion plasmas given multiple heterogeneous data sets at two major fusion ex-
periments, the Joint European Torus (JET) and Wendelstein 7-X (W7-X). The
first application described in Article I and Article II has been developed by
modelling emission spectra and relevant atomic physics for the lithium beam
emission spectroscopy system at JET to provide the edge plasma electron dens-
ity profiles and their posterior uncertainties. Article III and Article IV describe
that consistent inference of the plasma density and temperature profiles based
on joint models of various scientific instruments such as interferometers, Thom-
son scattering and spectroscopy systems at JET andW7-X. Furthermore, the full
joint posterior distribution of axisymmetric plasma equilibria given magnetic
field and electron pressure measurements has been explored for the first time
at the JET experiments as described in Article V. By exploring the joint pos-
terior distribution, these applications obtain optimal inference solutions for the
physics parameters as well as hyperparameters and other unknown paramet-
ers, such as calibration factor, based on the principle of Occam’s razor. Further
explanation of the theoretical foundation and the applications will be provided
in the following chapters.

Although we have made some efforts towards the automation of science, we
undoubtedly have many unsolved problems and unanswered questions. Never-
theless, I believe that we will achieve the automation of science, and that the
solution will be built on probability theory. Finally, if someone would ask me

4



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
The gravitational acceleration, H

0

1

2

3

4

Th
e 

or
de

r o
f p

ol
yn

om
ia

l m
od

el
, M

g = 9.810 m/s2 at maximum P(H, M|D)

0.00

0.01

0.02

0.03

P(
H

,M
|D

)

0.0 0.5
P(M|D)

Figure 1.1: An optimal solution (in cyan) for the model M for the law of free
fall (the second order polynomial model, M = 2) and its parameter, the gravit-
ational acceleration H (H = 9.810m/s2) can be found given the observations
from Galileo’s free fall experiment by exploring the joint posterior probability
distribution P (H ,M|D). The green and red lines shown in the top plot are the
joint posterior probability densities P (H ,M = 2|D) and P (H ,M = 3|D). The
green and red bars shown in the right plot are the marginal posterior probabil-
ities P (M = 2|D) and P (M = 3|D). The underlying value of the gravitational
acceleration used to generate the observations by simulating Galileo’s free
fall experiment was 9.807m/s2.
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Chapter 1 Introduction: Do a-machines dream of artificial scientists?

a question, ‘Do a-machines dream of artificial scientists?’ My answer to this
will be, ‘Yes, I do dream of artificial scientists, who have mind over data, like
human scientists.’
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2
Scientific Modelling

The actual science of logic is conversant at present only with
things either certain, impossible, or entirely doubtful, none of
which (fortunately) we have to reason on. Therefore the true
logic for this world is the calculus of probabilities, which takes
account of the magnitude of the probability which is, or ought
to be, in a reasonable man’s mind.

(James C. Maxwell)

Throughout history, mankind has been facingmore andmore complex problems
in science and technology which require solutions based on scientific methods.
Scientific methods involve making conjectures, modelling systems, deriving
predictions, conducting experiments and updating knowledge based on obser-
vations as logical consequences [9, 11–13, 15]. Bayesian methods for scientific
inference have been developed over the last few centuries by Reverend Thomas
Bayes [23], Pierre-Simon Laplace [24], John Maynard Keynes [25], Sir Harold
Jeffreys [14, 17], Richard Threlkeld Cox [16], Edwin Thompson Jaynes [2] and
few others. Since then, the usage of Bayesian methods has been steadily grow-
ing in many fields of study, especially physics [26–28], machine learning [20,
29, 30], artificial intelligence [18, 31], causality [10] and nuclear fusion [21, 32–
39]. Nevertheless, Bayesian methods have often been used as one of many stat-
istical tools, not as a framework for scientific inference, even to most of the
scientists who use the Bayesian methods. We will therefore briefly introduce
the framework for scientific inference and its constituents which this thesis is
based on, especially for the readers who are not familiar with this perspective.
These constituents are: (i) to assign a probability to a hypothesis, (ii) to model

7



Chapter 2 Scientific Modelling

a system as a joint probability, (iii) to compare alternative models of differing
complexities by Bayesian Occam’s razor and (iv) to impose physics/empirical
knowledge in a prior probability.

2.1 Hypothesis and probability

When we try to solve complex problems in science, we always have a lim-
ited data set and an incomplete understanding of a system, thus it is virtually
impossible to give an exact answer without uncertainties. We can propose a
number of possible hypotheses which can explain how the system works in the
real world, but most of the times, we can not know whether these hypotheses
are true or false with absolute certainty, like logic. For example, when we start
out for a walk, we can not know that our hypothesis that it is going to be raining
in ten minutes is either certainly true or false (perhaps our expectation of rain
might be less likely than not) [25]. Even a weather forecast model, which has
been developed by thousands of scientists and simulated on supercomputers,
would not be able to tell you, at least on some occasions, whether it is going
to be raining in ten minutes or not with absolute certainty. Instead, we would
assign a probability to our hypothesis, for example, our probability of raining
in ten minutes is 0.7. Intuitively, it would be very reasonable to assign not only
true or false but also a probability to propositions. We have been already doing
this intuitively in daily life, but in science, we need to have a quantitative rule
so that even a machine can reason things out like a thinker.

Since Reverend Thomas Bayes made the first attempt to assign a probability
to his hypothesis for a non-trivial problem of data analysis in his work [23],
Pierre-Simon Laplace pioneered classical probability theory [24] and used it to
solve problems in celestial mechanics. Edwin Thompson Jaynes developed a
formal system, known as probability theory as the logic of science [2], which
influences the framework for scientific inference in this thesis to a large extent.1

In this interpretation of probability theory, the probability is defined based on
Cox’s desiderata [16]: (i) Representation of degrees of plausibility by real num-
bers, (ii) Qualitative correspondence with common sense and (iii) consistency.

1I would like to remark that this logic of science [2] is influenced by the work of Sir Harold
Jeffreys [17].

8



2.1 Hypothesis and probability

Jaynes proved that this epistemic interpretation of probability does not contra-
dict modern probability theory, which is based on the Kolmogorov axioms [40].2

Unlike logic, in which every proposition is either true or false, in probability
theory, a probability is assigned to every proposition. A certainty is represented
by a probability 0.0 or 1.0 (for being false or true) whereas uncertainties are
represented by a probability in a range from 0.0 to 1.0. When the probability of
proposition A is higher than the one of proposition B, then A is more probable
than B, and vice versa.

Based on the epistemic interpretation of probability, we will now assign a
probability or a probability function P (H ) to a hypothesis or a set of hypotheses
H , for example our expectation of rain. Any human or machine whose probab-
ility of rain is small might start out for a walk. Unlike the conventional theory
of probability, also known as Frequentism, in which a probability is associated
with a physical system, in Bayesianism, a probability is epistemic knowledge
of hypothetical propositions in a system such as a human or a machine mind.
As one might imagine, these probabilities can be different in different observ-
ers for the same hypothesis, depending on the observations and models that
they rely on. For example, your expectation of rain can be different from those
of other people or weather forecast machines. However, this does not mean
that these probabilities are inconsistent. Everyone would have exactly the same
probability of rain if they had the same observations and models.

We have now a quantitative formal system to reflect our knowledge to any
hypothesis. We can now compare more than two hypotheses quantitatively in
probability theory. However, probability theory is not ready yet to be used to
solve problems in the real world. Before wemake full use of it, we have to define
all the necessary apparatus: hypothesis space, prior probability, predictive dis-
tribution and model.

2Kolmogorov developed the mathematical foundation of probability theory in the language of
set theory and measure theory which modern probability theory is based on. Jaynes claimed
that the Kolmogorov axioms are, for all practical purposes, derivable from Cox desiderata
of rationality and consistency, therefore his perspective on probability does not contradict
the Kolmogorov axioms [2].
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Chapter 2 Scientific Modelling

2.2 Model, prediction and inference

The foundation of scientific methods is that we acquire our knowledge of reality
through refinement or elimination of hypotheses and models based on observa-
tions in the real world [9, 11–13, 15]. Hypotheses are conjectures which derive
predictions through models of a system, and the purpose of experiments is to
make observations in the real world from which we carry out inference via a
logical connection between the observations and hypotheses. In other words,
we update our epistemic knowledge of hypotheses based on these observations
and models as logical consequences.

Let us suppose that we have a set of hypotheses, known as a hypothesis
space H . For example, it is going to be raining in ten minutes which can be
true or false H = {true, false}, or the mass of Saturn [24] which can be any
positive real number H = {h ∈ ℝ|h > 0}. We can assign either a discrete or
a continuous probability function to these hypothesis spaces. For example, a
discrete probability function can be assigned to the former hypothesis space
(weather forecast), and a continuous probability function can be assigned to the
latter hypothesis space (the mass of Saturn). We start with our prior knowledge
and assumptions over these hypothesis spaces before we make observations by
an experiment which can be quantitatively represented by an initial probability,
also known as a prior probability P (H ). For example, we can assign 50-50 to
a prior probability of our expectation of rain (it is going to be raining in ten
minutes) or a uniform distribution to the mass of Saturn greater than zero to
some maximum, for instance, the total mass of the universe. These example
prior distributions express that our prior knowledge is not in favour of any
particular hypothesis.

From a hypothesis, we derive a prediction as a conditional probability of
the observations P (D|H ). This conditional probability can be seen as a model
which associates each hypothesis with a predictive distribution over the observa-
tions to which the model reflect predictive uncertainties, thus we call P (D|H )

a predictive model. This probability distribution function and its parameters
form one part of the model specification. A typical way to construct this part is
to define the mean of P (D|H ) by a function, which encapsulates the physical
processes happening during an experiment, to derive underlying quantities dir-
ectly related to the observations from a hypothesis, known as a forward model:

10
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f = f (H ) . (2.1)

For example, we can formulate a predictivemodel of an experiment, in whichwe
obtain the observation with Gaussian noise, as a Gaussian distribution whose
mean is given by a forward model of the experiment, which can be written as:

P (D|H ) = 𝒩�μ = f (H ) , σ2� . (2.2)

This predictive model makes a prediction as the Gaussian distribution given a
hypothetical value of H over the observation from the experiment. The stand-
ard deviation σ here specifies a predictive uncertainty of the model [1]. This
epistemic interpretation of an error bar as a model predictive uncertainty rather
than as a given observational error, is a deviation from the view exposed above
by Jaynes [2] and others, but is the interpretation used in this framework.

As one might notice, this predictive model does not encapsulate our prior
knowledge and assumptions which are the other important part of the model
specification. The prior distribution together with the predictive model, there-
fore, constitutes a scientific model as a joint probability of the hypotheses and
observations P (D,H ), also known as a generative model [41], which is:

P (D,H ) = P (D|H ) P (H ) . (2.3)

This model is a mathematical representation of a system which embodies the
full relationship between the hypotheses and observations and can give a prob-
ability of an arbitrary combination of the hypotheses and observations in the
joint space (Figure 2.1). Therefore, in this regard, the model is indeed the land-
scape of a system.

Now given a certain hypothesis, we can make a prediction as a predictive dis-
tribution over the observations P (D|H ) from the joint distribution (Figure 2.1).
On the other hand, we can also calculate our inference solution as a condi-
tional distribution of the hypotheses if we make actual observations D in the
real world, also known as the posterior distribution P (H |D), given by Bayes
formula:

P (H |D) =
P (D,H )

P (D)
=

P (D|H ) P (H )

P (D)
, (2.4)
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Figure 2.1: An example of a model of a system. The contour plot shows the
joint probability distribution P (D,H ) (darker regionsmean higher probability
density). The model prediction can be made, for instance, at H = 10.0 as a
predictive distribution P (D|H ), as shown in the top plot with the blue line.
On the other hand, the inference solution can also be calculated, for example,
at D = 3.5 as a posterior distribution P (H |D), as shown in the right plot with
the green line.
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where the denominator is a marginal probability of the observations P (D), also
known as the model evidence, which is a normalisation constant in this context.
We remark that the posterior distribution is the inference solution. In other
words, in Bayesian probability theory, the solution is not a single value such as
an estimation at the maximum of the likelihood function in the conventional
theory of probability, but the posterior distribution. All possible hypotheses can
be drawn from this posterior distribution as a set of posterior samples which
can explain the observations in the real world, and this means that we can
assign preferences to alternative hypotheses. If we need a single value solution,
we can find the most probable hypothesis at the maximum of the posterior
probability, known as a maximum a posteriori (MAP) solution. For example, if
our posterior probability of rain is 0.3, we might start for a walk (perhaps we
might take an umbrella when we leave the house). If we draw posterior samples
of the mass of Saturn given the observations, we can calculate all possible
trajectories of a spaceship with respect to all possible values of the mass of
Saturn and check them out to ensure secure travel for our astronauts in the
space ship. Our epistemic knowledge of the hypothesis given the observations
is quantitatively expressed by the posterior distribution, which is calculated
through the inference process.

Moreover, the posterior distribution is very important to determine whether
a hypothesis space is meaningful or not in scientific methods. If the posterior
distribution given observations is (substantially) different from the prior distri-
bution, epistemic knowledge over the hypothesis space can be updated a pos-
teriori given the observations. We can measure this difference between the two
pieces of knowledge before and after any experiment (the posterior and prior
distributions) with the relative entropy, also known as the Kullback-Leibler di-
vergence [42]. If we can find a notable difference between the posterior and
prior distributions over a hypothesis space, implying that it is updatable a pos-
teriori, then the hypothesis space is meaningful in this framework.

The hypothesis space can be seen as a parameter space of amodel inwhichwe
can fit the parameters to the observations. For example, let us suppose that our
problem is to infer the gravitational acceleration near Earth’s surface from Ga-
lileo’s free fall experiment [13]. In this case, we can define a hypothesis space by
a set of possible values of the coefficients of a second order polynomial equation,
and the coefficient of the quadratic termwould be the gravitational acceleration.
Given a set of observations of the time of free fall from the experiment, we can
calculate the posterior distribution of the gravitational acceleration. To find a
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MAP solution for the gravitational acceleration by an optimisation algorithm
is equivalent to fit the parameter of the model to the data.

We have reviewed the basic apparatus (hypothesis space, prior probability,
predictive distribution andmodel) to quantitatively express our epistemic know-
ledge over a hypothesis space after we make observations in the real world by
an experiment. Based on our inference solutions, we can decide our actions, for
example, whether we go out for a walk or not, or organise a safe space journey.
However, all we have done so far can be done when we have a single model of a
system. What if we have many alternative models? How can we compare these
models and find a model with an appropriate complexity which is capable of
generalising the underlying principles of a system in an optimal way? As one
might notice, to compare the models is not as straightforward as to compare
their parameters, since a complex model can always predict the observations
better than a simple model does. Nevertheless, we would expect that a complex
model can be too specialised to specific observations and poorly generalise the
underlying principles of a system. Intuitively, it would be very reasonable to
follow the principle of Occam’s razor: complexity should not be posited without
necessity [43]. Remarkably, in this framework, model complexity is represented
by the posterior probability of the models P (M|D) which intrinsically embod-
ies Occam’s razor [14, 19, 20]. In the following section, we will briefly introduce
the principle of Bayesian Occam’s razor and review how to compare alternative
models of differing complexities given the observations.

2.3 Model complexity and Occam’s razor
The central task in science is to generalise the relationship between hypotheses
and observations by developing and comparing the models of differing complex-
ities which are capable of generalising the underlying principles of a system
in an optimal way. As soon as we find the optimal model of a system, we have
the full relationship between the hypotheses and observations so that we can
extrapolate our epistemic knowledge of the hypotheses beyond our boundaries
of previous observations. With the model, we can predict and even trigger un-
foreseen physical phenomena in the real world by manipulating the parameters
of a system.

Let us suppose that we would like to compare alternative candidates to the
model of a system given observations. As we discussed in the previous section,
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to compare these models is not as straightforward as to compare their para-
meters. When we compare alternative values of the parameters of the model,
we calculate the posterior distribution over the parameter space and find a
MAP solution or posterior samples which can explain the observations better
than the other parameters. However, when we compare alternative models of
differing complexities, we can not compare these models with their optimal
parameters which can explain the observations better than the other models,
since a complex model can always predict the observations better than a simple
model does. A complex model can adapt its parameters to explain not only
major phenomena of a system, which we want the model to generalise but also
minor phenomena specific to an experiment such as electronics noise which we
do not want the model to learn. For example, a hundredth or thousandth order
polynomial model can always adapt to the observations better than a first or
second order polynomial model does. The principle of Occam’s razor, therefore,
is not optional but essential to compare these models in science. Surprisingly,
the principle of Occam’s razor is intrinsically implemented in a predictive dis-
tribution over observations given models, also known as the model evidence
P (D|M), and we will discuss how this is possible.

Let us suppose that we have a set of alternative models which might be able
to generalise the underlying principles of a system appropriately. Such cases, a
hypothesis space would not be a set of their parameters but a set of thesemodels,
thus we call it a model space M . In a model space, we have all the alternative
models. Each of them is a joint probability P (D,H ) with a different model
specification which can be defined over an entirely different parameter space
or have a different value of its model parameters, which does not belong to
the parameters of the model, for example, the parameters of prior distributions,
also known as hyperparameters. A discrete probability function can be assigned
to a model space, which contains a finite number of alternative models, for
example, a set of ten polynomial models with different orders, and a continuous
probability function can be assigned to amodel space, which contains an infinite
number of alternative models, for example, a set of non-parametric models with
different values of hyperparameters. We can start with a prior probability of
the models P (M), in which we can quantitatively reflect prior knowledge and
assumptions to every alternative model with a different model specification. In
general, we can assign a uniform distribution to this prior probability in order
to express an equal preference to every alternative model.

Given amodel, we can derive a prediction as a predictive distribution over the
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observations P (D|M) by marginalising out the parameter space of the model,
which can be written:

P (D|M) = � P (D,H |M) dH . (2.5)

This predictive distribution can be seen as a predictive function which associ-
ates each model with a predictive distribution over the observations by taking
into account all possible values of the parameters, also known as the model
evidence. The model evidence is the denominator in Bayes formula, given by
Equation (2.4), for the inference process in the previous section.

As mentioned previously, the model evidence embodies the principle of Oc-
cam’s razor. Let us imagine that we try to explain a set of observations in the
output space with respect to a set of input parameters in the input space. A
simple model can generate a small variety of observations, while a complex
model can generate a great variety of observations. For example, a first order
polynomial model can only generate a set of observations which can be repres-
ented by a linear function. In contrast, a second order polynomial model can
generate a set of observations which can be represented by a parabolic function
and at the same time by a linear function. Thus, a second order polynomial
model can generate a greater variety of observations than a first order polyno-
mial model. In the same way, a higher order polynomial model, which is a more
complex model, can generate a greater variety of observations than a lower
order polynomial model, which is a simpler model. In other words, a predictive
distribution over the observations given a complex model is broader than one
given a simple model, but the sum of these predictive distributions must be
equal to one. Hence, a probability of a particular set of observations given a com-
plex model is generally lower than one given a simple model. Nevertheless, if a
model does not have an appropriate complexity which is capable of explaining
the observations to which the underlying principles of a system are reflected, a
predictive probability of the observations given that model would be small. For
example, a first order polynomial model cannot explain a set of observations
which have been generated from a parabolic function or a cubic function.

Here an example of the model evidence given a first, second and third order
polynomial model denoted as P (D|M1), P (D|M2) and P (D|M3) with respect
to a set of observations generated by a first, second, third and fourth order
polynomial function denoted as D1, D2, D3 and D4 is shown in Figure 2.2. Each
of these polynomial functions generates a thousand sets of observations with
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a randomly chosen set of their parameters and with a predictive uncertainty
σ = 1.0 which are shown in a different region shaded in a different colour.
The predictive distribution given a first order polynomial model P (M1|D) (the
blue line) is narrowly distributed over the sets of observations generated by
a first order polynomial equation D1 (the blue region) but with a high prob-
ability. On the other hand, the predictive distributions given second or third
polynomial models P (M2|D) (the green line) and P (M3|D) (the red line) are
broadly distributed over the sets of observations generated not only by the first
order polynomial function but also by the second and their order polynomial
functions D2 (the green region) and D3 (the red region). For example, we ob-
served a set of data generated by the underlying principles of a system which
follow a second order polynomial function (the green region) by an experiment,
the model evidence given a second order polynomial model will be the highest.
An overly simple model which is not capable of generalising the underlying
principle, for instance, a first order polynomial model, would not be able to
explain the data set. On the other hand, an over-complex model which poorly
generalise the underlying principle and can be too specialised to the data set, for
example, a third order polynomial model, would be penalised by the principle of
Occam’s razor. Therefore, the model evidence quantitatively represents a model
complexity, which intrinsically embodies the principle of Occam’s razor [14, 19,
20].

The model evidence together with the prior distribution of the models con-
stitutes the posterior distribution P (M|D), given by Bayes formula:

P (M|D) =
P (D,M)

P (D)
=

P (D|M) P (M)

P (D)
, (2.6)

where the denominator is the marginal model evidence P (D), which is a norm-
alisation constant in this context. Here, again the inference solution for model
comparison is the posterior distribution. If necessary, we can draw all possible
models from this posterior distribution which can explain the underlying prin-
ciples with an appropriate complexity.We can also find themost probablemodel
at the maximum of the posterior probability (a MAP solution) which does have
an optimal complexity to generalise a system. For example, if we have a set
of observations from Galileo’s free fall experiment which is somewhere in the
green region in Figure 2.2, we will infer that a second order polynomial model
is the optimal model for the law of free fall.
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Figure 2.2: An example of the model evidence given a first, second and third
order polynomial model M1, M2 and M3 with respect to a set of observations
generated by a first, second, third and fourth order polynomial functionD1,D2,
D3 and D4. The blue, green and red lines are P (D|M1), P (D|M2) and P (D|M3)

over the observation sets generated by a first, second, third and fourth order
polynomial function D1, D2, D3 and D4 in the blue, green, red and purple
regions.

As one might already notice, calculation of the model evidence is unfortu-
nately often computationally challenging, since we have to integrate over the
parameter space, which can be high-dimensional. If the dimension of the para-
meter space is more than twenty or thirty, which is often the case in real-world
problems, it is virtually impossible to calculate the model evidence unless we
have an analytic formula. This is the major obstacle to applying Bayesian Oc-
cam’s razor to real-world problems.

Remarkably, this obstacle can be completely avoided by taking into account
the joint posterior distribution of the parameters andmodels P (H ,M|D), which
as well intrinsically embodies the principle of Occam’s razor, which can be
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written as:

P (H ,M|D) = P (H |M ,D) P (M|D) , (2.7)

where P (H |M ,D) is the posterior distribution of the parameters of a specific
model and P (M|D) is the posterior distribution of the models, which, as we
discussed previously, embodies Occam’s razor. In other words, the principle of
Occam’s razor is as well intrinsically implemented in the joint posterior dis-
tribution. This is indeed very important, because the calculation of the joint
posterior probability is often much easier than the one of the model evidence,
especially if the models have a high-dimensional parameter space. This means
that we can apply Bayesian Occam’s razor to any problem in the real world
without worrying about themajor obstacle, integration over a high-dimensional
space. One might argue that the posterior distribution of the models is different
from the joint posterior distribution of the parameters and models. However,
we have to pay attention to the meaning of the joint posterior distribution. The
joint posterior distribution of the parameters and models is, by definition, the infer-
ence solution for the parameters and models at the same time. For example, if we
calculate the joint posterior distribution given the observations from Galileo’s
free fall experiment, a MAP solution will be an optimal solution not only for the
model for the law of free fall but also for the gravitational acceleration simul-
taneously, as shown in Figure 1.1. This means that we can find an optimal model
and at the same time its optimal parameters by exploring the joint posterior
distribution, which intrinsically embodies Bayesian Occam’s razor, without any
heavy calculation such as marginalisation over a high-dimensional space. This
is one of the important contributions to the automation of science, made in
this thesis. If we let a machine (an optimisation algorithm) explore the joint
posterior distribution, the machine will autonomously find an optimal solution
for the model and its parameters given the observations. Furthermore, we can
draw a set of posterior samples from the joint posterior distribution which are
all possible solutions for the parameters and models which can explain the ob-
servations. Therefore, we have explored the joint posterior distribution of the
parameters and models in most of the applications in this thesis.

We have reviewed the model complexity and the principle of Occam’s razor
to quantitatively express our epistemic knowledge over a model space after
we make observations in the real world. Since we have a quantitative rule for
model comparison, any human or machine can compare alternative models of
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differing complexities and find an optimal model of a system with an appro-
priate complexity like a scientist. At this moment, we might already be able to
automatise science in principle. However, before we have a further discussion
on the automation of science, we have one more thing which still remains in
the veil: prior knowledge.

2.4 Prior knowledge
As we have already discussed in the previous sections, we encode prior know-
ledge and assumptions to the prior probability. We can formulate a prior distri-
bution of hypotheses or models as a uniform distribution, in which we express
an equal preference to every hypothesis or model. We can also take the pos-
terior distribution given previous observations and use it as a prior distribution
for the next observations. In any case, all our knowledge of reality starts from
our prior knowledge and assumptions, and it is indeed very important to as-
sign an appropriate prior distribution according to them. Therefore here we
are back to the prior probability. There is a number of methods to formulate
prior distributions in order to encode different types of prior knowledge and
assumptions. In this thesis, we mainly make use of three different priors: (i)
uninformative priors (maximum entropy priors, mostly uniform and Gaussian
priors), (ii) Gaussian process priors and (iii) physics/empirical priors based on
virtual observations.

2.4.1 Uninformative prior
When we have very little knowledge of parameters and models, for example, if
we only know that temperature is a positive real number to some maximum,
then we can reflect our ignorance in a prior probability. In such cases, one of the
most reasonable priors is an uninformative prior [2, 14, 19]. The uninformative
prior can be derived from the principle of maximum entropy [2], stating that
the probability distribution with the largest information entropy [44] encodes
maximum uninformativeness.3 The maximum entropy priors would be one of

3In most practical cases, prior distributions might be able to be derived by a set of conserved
quantities which associate to the distributions in inference problems, for example, first and
second moments (mean and variance). These quantities are often assumed to be invariants
in a physical system, thus we might be able to justify the maximum entropy principle, in
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the best choices for our prior distribution when we have very little knowledge.
We typically use two uninformative priors in this thesis: one is a uniform prior
and the other one is a Gaussian prior. A uniform prior is the maximum entropy
distribution when we only know that the parameters are real numbers in a
certain range, for example, temperature is a real number from zero to some
maximum. A Gaussian prior is the maximum entropy distribution when we
only know that the variance of the parameters, for example, we often measure
the variance of electronics signals for which the maximum entropy distribution
would be a Gaussian distribution.

2.4.2 Gaussian process prior
One of the common problems with expressing physical quantities such as tem-
perature or density over space and time is that the parametric model (analytic
formula) of physical quantities is often unknown. If we already know the para-
metric model, we can use it to express these physical quantities and formulate
an uninformative prior of parameters of the formula. Otherwise, any choice of a
parametric model would exclude a great variety of possible behaviours of phys-
ical quantities over space and time thus severely limit the inference solutions
for these physical quantities. Therefore, if the parametric model is not known,
it would be good to use a non-parametric model such as Gaussian processes to
avoid such limitations.

A Gaussian process [29, 45, 46] is a probabilistic function that associates each
element of a domain with a single element of a multivariate random variable
following a Gaussian distribution. The Gaussian process defines the function
space by a multivariate Gaussian distribution whose mean and covariance are
given by a mean function μ (x) and a covariance function Σ (x , x ′):

f (x) ∼ 𝒩�μ (x) ,Σ (x , x ′)� , (2.8)

where x contains every point of the domain and f (x) is the output of the
Gaussian process. The Gaussian process represents the relationship between the
input and output of the function through the mean and covariance function of
the Gaussian distribution. Thus, the function is not constrained by any specific

which we maximise the entropy given these invariants to formulate uninformative priors
for some inference problems, for instance, some problems in statistical thermodynamics.
Nevertheless, the maximum entropy principle might not be valid for some other problems.
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parameterisation. Rather, the mean and covariance functions determine the
properties of the Gaussian process. For example, the correlation between any
two points will be given by the covariance function. The parameters of themean
and covariance function are also known as hyperparameters of the Gaussian
process.

One of the most common specifications of Gaussian processes is zero mean
and squared exponential covariance function, which can be written as:

μ (x) = 0 (2.9)

Σ �xi , xj� = σ2
f exp�−

�xi − xj�
2

2σ2
x

� + σ2
yδij , (2.10)

where x is a point in the domain and the superscripts i and j mean ith point and
jth point. The hyperparameters of the covariance function are overall scale σf ,
length scale σx and noise scale σy . The smoothness of the Gaussian process is
determined by σf and σx . Typically, we set σy as a relatively small number with
respect to σf , for instance, σy/σf = 10−3, to avoid any numerical instability.4

δij is the Kronecker delta function. We show two examples of the Gaussian
processes in Figure 2.3. The Gaussian process with a large length scale (σx = 1.0)
is smoother (higher correlation values between two arbitrary points) than one
with a small length scale (σx = 0.2).

As soon as observations are available, we can adapt these two Gaussian
processes to the observations as much as possible within their smoothness. Fig-
ure 2.4 shows examples of the two Gaussian processes which learn the features
of the underlying function. Since the Gaussian process with a smaller length
scale (σx = 0.2) has a lower correlation between two points, it is capable of
adapting to the observations better than the one with a larger length scale
(σx = 1.0). We remark that these hyperparameters, here in this example the
length scale, determine the model complexity of Gaussian processes which is
corresponding to the order of polynomial models. As we can see in Figure 2.3,
the Gaussian process with a smaller length scale would be able to be adapted
to a greater variety of the data sets, which means that it has higher complexity.

4By definition, the covariance matrix Σ is positive semi-definite (x⊺Σx ≥ 0, ∀x ∈ ℝn), which
allows us to perform Cholesky decomposition [47]. In practice, due to a possible numerical
instability, for example floating-point error [48], on some occasions, Σ may not be positive
semi-definite. To ensure positive semi-definiteness of the covariance matrix, we can add ϵI
(ϵ is a small positive number) to Σ.
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Figure 2.3: Examples of Gaussian processes with zero mean and squared ex-
ponential covariance function. The black lines and shaded regions are the
mean and two standard deviation uncertainty of the Gaussian processes, re-
spectively. The coloured lines are ten samples of the Gaussian processes. The
Gaussian process with a large length scale (σx = 1.0) is smoother (higher
correlation between two arbitrary points) than one with a small length scale
(σx = 0.2).

These hyperparameters of Gaussian processes can be optimised by Bayesian
Occam’s razor. In nuclear fusion research, no parametric model can describe
spatial distributions or profiles of physical parameters of fusion plasmas suf-
ficiently well. Therefore, Gaussian processes are used to model these physics
parameters, such as plasma current density and pressure, in all the applications
developed in this thesis. Gaussian processes were first used in nuclear fusion
research in [38], followed by a number of applications [39, 49–51].

2.4.3 Physics and empirical prior
When we perform experiments, we sometimes have prior physics or empirical
knowledge that we would like to impose in order to exclude physically or em-
pirically improbable solutions. We do often have some physics laws such as the
Grad-Shafranov equation [52, 53] which our model can prescribe at a certain
point in space and time without explicit observations on the relevant physical
quantities. For example, let us suppose that we have a metal plate, which can
move upwards and downwards freely (in z direction), inside a vertical support-
ing tube and induce a current in x direction through the plate perpendicular
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Figure 2.4: Examples of Gaussian processes with zero mean function and
squared exponential covariance function which adapt to the observations
(black dots).

to a magnetic field in y direction from magnets inside the tube. This metal
plate can ascend or descend by the Lorentz force (the J ×B force) depending on
the current and magnetic field (a Lorentz elevator). When the plate does move
neither upwards nor downwards and stays in a certain level, it is physically
reasonable to introduce the force balance between the Lorentz force and the
gravitational force on the metal plate to our model. On the other hand, we do
also often have some empirical laws which our model can implement. For ex-
ample, let us suppose that we have empirical knowledge that the flames on a gas
stove have never made any iron pot meltdown. In such cases, when we measure
flame temperatures, it would be empirically reasonable to assume that the flame
temperatures should not be much higher than the melting temperature of iron.

These physics/empirical knowledge can be imposed by virtual observations
at any point in space and time as if we make such observations [35, 37]. For
example, when we perform the Lorentz elevator experiment, we would like
to introduce the force balance to our model. The force balance between the
Lorentz force and the gravitational force can be written as:

J × B = mg, (2.11)

where J is the current through the plate, B the perpendicular magnetic field, m
the mass of the plate and g the gravitational acceleration. Now we can make
a virtual observation on the force balance at a spatial location of the centre of
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mass of the plate when it does not move either upwards or downwards (in z
direction) as a Gaussian distribution, which is:

P (Dv|H ) = 𝒩��J × B −mg� ⋅ k, σ2
v� , (2.12)

where k is the standard unit vector in z direction. Here, if we set Dv = 0.0,
then we prescribe the force balance. We can also prescribe the force balance at
multiple positions in space and time by making multiple virtual observations,
for example, we can make virtual observations at several spatial locations over
the entire plate. The standard deviation σv is the virtual observation uncertainty
to which we reflect our epistemic uncertainty of the force balance to our model.
For example, we can set σv as a large number to express our epistemic uncer-
tainty that the force balance between the Lorentz force and the gravitational
force might not be fulfilled since we have substantial friction between the plate
and supporting tube. On the other hand, we can set σv as a small number since
the plate and tube are almost frictionless. In the same way, we can implement
constraints on physical quantities at any point in space and time. For example,
we can introduce the temperature constraints (the temperature should not be
much higher than the melting temperature of iron) at spatial locations over the
surface of the iron pot, when we measure the flame temperatures on a gas stove.
These virtual observations P (Dv|H ) can be seen as a part of a prior probability
in Bayes formula:

P (H |D,Dv) =
P (D|H ) P (Dv|H ) P (H )

P (D) P (Dv)
=

P (D|H ) P (H |Dv)

P (D)
(2.13)

where P (H |Dv) is the physics/empirical prior that prescribes our physics/em-
pirical knowledge by using the virtual observations. Article IV and Article V
make use of virtual observations to impose empirical prior knowledge that the
plasma density and temperature should be low at plasma facing components
(PFCs). In addition, Article V prescribes the Grad-Shafranov force balance by
using the equilibrium prior based on virtual observations.

2.5 Outlook
We have reviewed every constituent of the framework for scientific inference in
this thesis. We define our hypothesis space and start with our prior knowledge
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before experiments. After the experiments, we update our knowledge given
observations. We define our model as a joint probability which represents the
full relationship between the hypotheses and observations. We compare altern-
ative models of differing complexities by Bayesian Occam’s razor. We impose
our physics/empirical constraints by introducing virtual observations. We have
established the framework for scientific inference in which we have defined our
epistemic knowledge (probability) as the cost function of scientific problems. In
this framework, any human or machine can carry out scientific inference like
a scientist, and perhaps we will be able to create a-machine capable of making
scientific discoveries autonomously.

2.6 Minerva framework

All the apparatus and constituents of the framework for scientific inference
described in this chapter have been elegantly implemented in a software frame-
work, Minerva [21, 22]. Minerva provides a standardised format for model com-
ponents, for example, prior probabilities and forwardmodels, and a standardised
interface for component dependencies, a set of input parameters, which can be
connected from output of other components. These connections are mathemat-
ically represented by conditional dependencies, and all thesemodel components
and connections together constitute a scientific model as a joint probability
P (D,H ), which can be represented by a Bayesian graphical model [18]. Min-
erva automatically manages all the components and connections in the model.
The modular structure, graphical representation and automatic model adminis-
tration allow us to handle a complex model and keep track of a large number of
parameters, prior knowledge, predictive models and observations in a system-
atic way. Once we declare the model, Minerva can provide MAP solutions and
posterior samples automatically by different inversion methods, for example,
the linear Gaussian inversion [37, 54], pattern search [55], and Markov chain
Monte Carlo (MCMC) algorithms [56–58].

Minerva is designed to work for all kinds of scientific problems with arbitrary
complexity. Minerva has been used for a number of scientific applications [37,
38, 49, 51, 54, 59–62] in nuclear fusion research, and it is the main inference
framework at one of the world’s largest advanced fusion experiments, Wendel-
stein 7-X (W7-X). All the applications in this thesis have been developed in
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Minerva. These scientific models in Minerva can be accelerated by a field-
programmable gate array (FPGA) [63] and an artificial neural network [64,
65] for real-time applications.
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3
Nuclear Fusion

I sought the fount of fire in hollow reed
Hid privily, a measureless resource
For man, and mighty teacher of all arts.

(Aeschylus, Prometheus Bound)

One of the greatest challenges of our time is to earn safe, clean and inexhaustible
sources of energy. Fusion energy, mankind’s ambitious mission of stealing the
fire of the Sun and giving it to humanity, might be a solution to the quest for a
form of energy production that is capable of meeting the steadily growing global
energy demand and possibly opening up virtually limitless energy supplies for
generations. Fusion energy is generated as the manifestation of mass-energy
equivalence [66] by a fusion reaction in which two lighter atomic nuclei (lighter
than iron-56) fuse into heavier nuclei. Unlike fission power, fusion can avoid
producing a considerable amount of long term radioactivity and nuclear waste.
In addition, fusion is safe and has ample fuel supplies [67]. For this reason,
fusion energy would be one of the best alternatives to fossil fuel and fission.

The Sun, which is a natural fusion reactor, like other stars, fuses hydrogen
into helium. In spite of a very small probability of the fusion reaction, the Sun
creates an environment with sufficiently high density by its gravity, in which
it produces enough fusion energy to light up the entire solar system [68]. On
Earth, we have been trying to build fusion reactors capable of sustaining an
environment for fusion reactions in which they produce enough energy to light
up our civilisation. To undergo the fusion reaction, two reactant nuclei have to
be given enough kinetic energy to overcome the repulsive electrostatic force
by their positive charge and get close enough to each other so that the nuclear
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force becomes active. This can be achieved by heating up the fuel (increasing
the kinetic energy of the reactants) to the astounding temperature of the order
of 108 °C, hotter than the core of the Sun.1 The fusion reaction rates at these
temperatures are high enough to be considered for fusion energy. Since the
deuterium-tritium (D-T) fusion reaction rate is substantially higher than other
reaction rates (Figure 3.1), we mainly consider D-T fusion, which is:

2
1D + 3

1T −−−−→ 4
2He (3.5MeV) + 1

0n (14.1MeV). (3.1)

At such temperatures, the fuel is fully ionised becoming a plasma, in which
electrons and ions move independently and behave collectively by the electro-
magnetic force. Once the fuel is heated up, we must have a method to hold the
plasma together despite its large thermal energy, which makes the plasma con-
finement extremely difficult. Ideally, a fusion reactor should allow the plasma
to have sufficient thermal energy (density and temperature) for long enough,
so that it produces enough fusion energy that can maintain the plasma confine-
ment and at the same time can be harnessed. One of the two major approaches
is to make use of (superconducting) magnets to create a magnetic cage capable
of confining the charged particles of the plasma by the electromagnetic force,
also known as magnetic confinement fusion [67].2

In order to build such a fusion reactor, we have to investigate the conditions
in which it produces enough fusion energy that can sustain the plasma confine-
ment and generate electricity simultaneously. The energy of plasma particles
can be lost through radiation, conduction and convection and replenished by
fusion energy. In magnetic confinement fusion, when the fusion reactions pro-
duce charged particles, for example alpha particles from D-T fusion, they can be
confined by the electromagnetic force and heat up the plasma through collisions.
On the other hand, neutral particles, for example neutrons, will escape from
the magnetic cage, and their kinetic energy can be used to generate electricity.
If the plasma can have sufficient thermal energy for long enough, it can pro-
duce sufficient fusion energy to sustain itself. Plasma density, temperature and
confinement time are the critical quantities to set up the conditions to ignite a
self-sustaining plasma. The ignition conditions for D-T fusion can be derived by
assuming that the fusion alpha particle heating is sufficiently large to balance

1The temperature at the core of the Sun is approximately 2.0 × 107 °C [68].
2The other approach is inertial confinement fusion which attempts to compress the fuel by
using high energy lasers to produce fusion energy [69].
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Figure 3.1: Fusion reaction rates of deuterium and tritium (D-T), deuterium
and deuterium (D-D) and deuterium and helium-3 (D-3He) fusion. At the
temperature of the order of 108 °C or 10 keV, the D-T fusion reaction rate is
substantially higher than other reaction rates so that commonly considered
for fusion energy [70].

out the power loss, also known as the triple product [71]:

nTτE ≥ 3 × 1021 keV s/m3, (3.2)

where n is the plasma density, T is the plasma temperature and τE is the energy
confinement time, which can be written as:

τE =
W
Ploss

, (3.3)

whereW is the plasma energy and Ploss is the power loss, which can be balanced
by externally supplied heating power in steady state. In short, we have been
trying to maximise this triple product to ignite the self-sustaining plasma and
harness the fusion energy. This thesis is concerned with the inference of these
parameters.

The triple product nTτE can be separated into two important parts. The first
part is the energy confinement time τE that is determined by energy transport

31



Chapter 3 Nuclear Fusion

induced by amicroscopic behaviour of the plasma: collisions andmicroinstabilit-
ies. This energy transport distinguishes classical [72–74] and anomalous [73–78]
processes. The classical transport is caused by the Coulomb collision between
the plasma particles orbiting around the magnetic field. The anomalous trans-
port, on the other hand, might be driven by microinstabilities and turbulence,
for example, temperature gradient instabilities. This anomalous transport often
exceeds the classical transport prediction by an order of magnitude or more.
Since these phenomena involve individual particle motions on the short length
and fast time scales, we make use of kinetic models [79, 80] to predict the trans-
port. However, because of the complexity of the problem, transport has not
been fully understood so far in fusion research.

The second part is the plasma pressure p = nT that is a part of the force
balance between the pressure gradient and the magnetic force, also known as
plasma equilibrium [52, 53, 81–85]. Since the force balance involves particle be-
haviours on the relatively large spatial length and long time scales compared to
kinetic behaviours, we make use of fluid models to describe these phenomena.
The most basic and well-developed fluid model is the ideal magnetohydro-
dynamic (MHD) model [85], which describes how the plasma pressure gradient
and magnetic forces interact within an ideal plasma (a perfect conductor) in an
arbitrary magnetic field geometry. The MHD model describes the macroscopic
equilibrium and magnetic field geometry of the plasma which are crucial for
understanding macroscopic instabilities and for plasma control. Moreover, the
plasma equilibrium provides a magnetic coordinate system through which we
can map the physics parameters to the magnetic field geometry of the plasma.
Thus, the plasma equilibrium is fundamental to all the other physics studies in
fusion research. This thesis develops a novel approach to plasma equilibrium
inference based on previous work.

3.1 Plasma equilibrium
The foundation of magnetic confinement fusion is to confine the plasma hav-
ing large thermal energy by the magnetic force. This magnetic force is the
Lorentz force of the plasma current J and the magnetic field B that balances out
the plasma pressure gradient ∇p. The Lorentz force can hold the plasma in a
stable, macroscopic equilibrium thereby allowing fusion reactions to take place.
This macroscopic plasma equilibrium can be well predicted by a single fluid
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model capable of describing macroscopic behaviours of the plasma particles,
also known as the magnetohydrodynamic (MHD) model [85].

In order to derive the force balance of the plasma equilibrium, we can start
with the MHD momentum equation, which is given by:

mn �
∂v
∂t

+ (v ⋅ ∇) v� = J × B − ∇p, (3.4)

where m is the total mass of the plasma particles, v is the fluid velocity of the
plasma and p is the isotropic pressure. If the plasma is in steady state the con-
vective derivative is assumed to be zero. Under these assumptions, the MHD
momentum equation reduces to implying the force balance between the pres-
sure gradient and the Lorentz force, which is:

∇p = J × B. (3.5)

From this force balance, we can deduce two important general properties of
the plasma equilibrium. The first property can be derived by forming the dot
product of the force balance equation with the magnetic field B:

B ⋅ ∇p = 0. (3.6)

This equation implies that the magnetic field is perpendicular to the pressure
gradient. Similarly, the other property can be derived by forming the dot product
of the force balance equation with the current J:

J ⋅ ∇p = 0. (3.7)

This equation implies that there is no current parallel to the pressure gradient.
In macroscopic plasma equilibria, physics parameters can be given as a func-

tion of the poloidal magnetic flux ψ (R,Z), which can be defined as the integral
of the poloidal magnetic field through a lateral surface of a truncated cone de-
termined by an arbitrary fixed reference point to the point (R,Z) in the poloidal
plane. Equation (3.6) and Equation (3.7) imply that the magnetic field B and the
current J lie on poloidal magnetic flux surfaces on which the pressure p is con-
stant. Therefore, we use the magnetic flux surfaces as a coordinate system to
map these physics parameters, for example, the plasma pressure as a function
of ψ , like p �ψ�. These magnetic flux surfaces are often normalised to 0.0 at the
plasma centre, also known as the magnetic axis, and to 1.0 at the plasma edge
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boundary, which is the outermost closed surface, also known as the last closed
flux surface (LCFS). The magnetic axis and the LCFS determine the spatial loc-
ation and shape of the confined plasma, thus they are crucial to plasma control.
In the ideal MHD model, no magnetic reconnection can occur, therefore the
magnetic flux surface topology has to be preserved during any macroscopic
motion which constraints macroscopic instabilities. For this reason, the mag-
netic field geometry of the plasma is essential to the macroscopic instabilities,
plasma control and inference of physics parameters.

We have reviewed the macroscopic plasma equilibrium and its general prop-
erties based on the MHDmodel. Nowwe will briefly review twomajor concepts
of magnetic confinement fusion: the tokamak and the stellarator.

3.2 Fusion experiments
There are various concepts of magnetic confinement fusion under considera-
tion, and each of these concepts is designed primarily to confine the plasma in
order to generate fusion energy. The tokamak (Figure 3.2a) and the stellarator
(Figure 3.2b) are the two major concepts, which have achieved the best overall
performance so far [86–93]. Both have toroidal magnetic field geometry but
differing from each other in the way that they generate the Lorentz force and
produce the rotational transform to compensate the drift motions [67, 94, 95].
In the tokamak [95], the external coils drive the toroidal plasma current, which
generates the poloidal magnetic field, along the toroidal magnetic field. The
Lorentz force of the plasma current and the magnetic field confines the plasma,
and the superposition of the toroidal and poloidal field produces the rotational
transform which compensates the drift motions and keeps the plasma stable.
On the other hand, in the stellarator [94], the external coils generate the helic-
ally twisted magnetic field, which intrinsically produces the required rotational
transform.

Applications in this thesis have been developed for the largest fusion exper-
iments for these two major concepts: one is the Joint European Torus (JET)
which is the world’s largest operational tokamak experiment located at Cul-
ham Centre for Fusion Energy in Oxfordshire, the United Kingdom, and the
other one is Wendelstein 7-X (W7-X), the world’s largest advanced stellarator
experiment located at the Max-Planck-Institut für Plasmaphysik in Greifswald,
Germany. We will now briefly introduce these two fusion experiments.
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(a) Tokamak

(b) Stellarator

Figure 3.2: Schematic structures of the tokamak and the stellarator. The toka-
mak drives the toroidal plasma current along the toroidal magnetic field by
the external coils and confines the plasma by the Lorentz force of the plasma
current and the magnetic field. The superposition of the toroidal and poloidal
field (black arrows) produces the rotational transform, which compensates
the drift motions and keeps the plasma stable. On the other hand, the stellar-
ator creates the helically twisted external magnetic field, which intrinsically
produces the required rotational transform. © IPP
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3.2.1 Joint European Torus (JET)

The Joint European Torus (JET) [87, 96, 97] is the world’s largest tokamak in
operation and designed for D-T fusion. JET has the current world record for
the highest fusion power of 15.8MW produced by an input heating power of
25.6MW, which means that the ratio of output fusion power to input heating
power Q is approximately 0.64 [88, 98]. JET has a major radius of 2.96m and
a minor radius of 0.9m. JET currently makes use of the poloidal field coils to
create a diverted plasma with the total plasma volume of approximately 90m3.
The divertor configuration reduces the impurities, which otherwise could dra-
matically increase the radiation power loss, entering the plasma and aids high
performance mode (H-mode) operations [99]. JET is one of the major references
to the International Thermonuclear Experimental Reactor (ITER), which will
be the world’s largest international fusion experiment. The goal of ITER is to
produce a fusion power of 500MW produced by an input heating power of
50MW (Q = 10) [100]. The typical ranges of the major parameters of JET are
shown in Table 3.1. The applications in this thesis provide the consistent infer-
ence of important physics parameters from a number of JET plasma diagnostic
data which have been thoroughly modelled in Article I, Article II and Article III.
Furthermore, the plasma equilibrium inference has been achieved based on the
consistent inference of physics parameters and the force balance prescribed by
the virtual observations in Article V.

3.2.2 Wendelstein 7-X (W7-X)

TheWendelstein 7-X (W7-X) [90–93] is the world’s largest advanced stellarator
for accomplishing a steady state operation under reactor-like conditions in
order to demonstrate the suitability of stellarator as a fusion reactor. It is based
on five-fold symmetry of the magnetic field, which was optimised to overcome
the disadvantages of classical stellarators [101]. It has a major radius of 5.5m and
a minor radius of 0.53m, and the total plasma volume is approximately 30m3.
So far the first limiter [90, 91] and island divertor [92, 93] operation phases
have been successfully completed and achieved the highest triple product in
stellarators or other helical devices in relevant collisionality regimes. W7-X is
currently preparing the actively cooled divertor operation phase in order to
achieve higher performance with a heating power of up to 10MW and a plasma
duration of 1800 s. Table 3.1 gives the typical ranges of major parameters of
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Table 3.1: Typical ranges of major parameters of Joint European Torus and
Wendelstein 7-X.

Symbol Parameter JET W7-X

R0 Major radius 2.96m 5.5m
a Minor radius 0.9m 0.53m
Vplasma Plasma volume 90m3 30m3

B0 Vacuum magnetic field 3.5 T 2.5 T
Iplasma Plasma current 5MA -
Ptotal Total heating power 38MW 10MW
ne Electron density ≤ 2.0 × 1020/m3 ≤ 2.0 × 1020/m3

Te Electron temperature ≤ 20 keV ≤ 20 keV
Ti Ion temperature < 50 keV < 5 keV

W7-X during the latest operation phases. The application in this thesis for
W7-X provides the consistent inference of important physics parameters from
a number of W7-X plasma diagnostic data, as described in Article IV.

3.3 Plasma diagnostics
A large-scale fusion experiment has a number of plasma diagnostics to meas-
ure physics parameters of the plasma: magnetic field, pressure (density and
temperature), radiation and other quantities. Magnetic field and pressure meas-
urements are essential to infer the plasma equilibrium and energy transport in
fusion research. The density and temperature can be different for each species,
and we usually have two different temperatures for electrons and ions of the
plasma. Each of the plasma diagnostics is sophisticated and complex, therefore
we have to model each of them thoroughly. Now we will briefly introduce the
diagnostics relevant to this thesis.

3.3.1 Active beam diagnostics
Active beam diagnostics typically measure the density and temperature of the
electrons and ions. These diagnostics inject particle beams into the plasma and
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collect spectral emission as a result of interactions of the beam atoms and plasma
particles, for example excitation, de-excitation, charge exchange, spontaneous
emission, etc. The spectral emission depends on the density and temperature
of electrons and ions, and typically the intensity and width of spectra are de-
termined by the density and temperature, respectively. In this thesis, the JET
lithium beam and W7-X helium beam diagnostic systems have been modelled.
The JET lithium beam system [102, 103] provides 26 local measurements of
the electron density ne in edge regions from lithium line emission along the
vertically injected beam from the top of the machine with a spatial resolution
of approximately 1.0 cm and a temporal resolution of 10ms to 20ms. Article I
and Article II provide inference solutions of edge electron density profiles from
the raw data of the JET lithium beam system, and the edge density profiles are
used in Article V. TheW7-X helium beam system [104, 105] provides eight local
measurements of the electron density ne and temperature Te in edge regions
from helium line ratios near the divertor with a spatial resolution of 1.0 cm
and a temporal resolution of 25ms. The edge electron density and temperature
measurements from the W7-X helium beam system is combined with other
diagnostic data in Article IV, whose application provides consistent inference
solutions of overall density and temperature profiles.

3.3.2 Thomson scattering diagnostics

Thomson scattering diagnostics, which is one of the main methods to obtain
local electron density ne and temperature Te measurements, inject laser pulses
into the plasma and collect photons scattered by the electrons via Thomson
scattering processes [106]. The intensity and width of Thomson scattered spec-
tra are determined by the electron density and temperature, respectively. In this
thesis, the JET high-resolution Thomson scattering (HRTS) andW7-X Thomson
scattering systems have been modelled. The JET HRTS system [107] provides
63 local measurements of the electron density and temperature along the ver-
tical laser path with a spatial resolution of 0.8 cm to 1.6 cm and a temporal
resolution of 20Hz. Article III combines the HRTS data with the interferometer
data to provide consistent inference solutions of overall electron density and
temperature profiles. The W7-X Thomson scattering system [60] provides 16
local measurements of the electron density and temperature along the laser
path with a spatial resolution of 1.5 cm and a temporal resolution of 10Hz. The
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electron density and temperature information from the W7-X Thomson scat-
tering system is combined with other diagnostic data for overall density and
temperature profiles in Article IV.

3.3.3 Interferometer

Interferometers, which provide line integrated measurements of the electron
density ∫ ne dℓ along the lines of sight, launch electromagnetic waves into the
plasma and detect interference patterns with reference waves due to optical
path differences between the twowaves. The optical path differences are related
to the electron density of the plasma through its refractive index. In this thesis,
the JET far infrared (FIR) interferometer and W7-X dispersion interferometer
data have been used. The JET FIR interferometer system [108–110] provides
eight line integrated measurements of the electron density along four vertical
and four lateral lines of sight. The JET interferometer data can be used to in-
fer electron density profiles through tomographic inversion [38] as well as to
calibrate the HRTS system automatically as described in Article III. The W7-X
dispersion interferometer system [111] provides a single line integrated meas-
urement of the electron density along a line of sight which is approximately the
same path of the laser of the Thomson scattering system. Again, theW7-X inter-
ferometer data is used to calibrate the Thomson scattering system automatically
as described in Article IV.

3.3.4 X-ray imaging crystal spectroscopy (XICS)

The X-ray imaging crystal spectroscopy (XICS) is designed to measure the dens-
ity and temperature of the electrons and impurity ions, for example, argon or
iron ions, by collecting their X-ray emission, which is spatially and spectrally
resolved by the crystal. The measurements of the X-ray emission are line integ-
rated spectra along the lines of sight. Since the local X-ray emission depends
on the density and temperature for the electrons and impurities, they can be
inferred through tomography from the line integrated spectra. In this thesis,
theW7-X XICS data has been used. The XICS system [51] provides 20 line integ-
rated X-ray spectra covering more than half of the poloidal cross section. The
XICS data is combined with the interferometer, Thomson scattering, and helium
beam data in Article IV. This joint inference solutions of the four diagnostics
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provide the most probable profiles of the electron density and temperature in
addition to the ion temperature consistent with all the measurements.

3.3.5 Magnetic diagnostics
Magnetic diagnostics measure the magnetic field B by quantifying voltage in-
duced in coils by the magnetic flux through the surfaces spanning the coils
outside the plasma. These magnetic diagnostics can have different configura-
tions of the coils, for example, pickup coils (local magnetic field measurements)
or Rogowski coils (plasma current measurements), depending on the measure-
ment surface geometry. In this thesis, the JET magnetic data have been used.
The magnetic data consists of 230 local measurements of the magnetic field by
pickup coils, 88 local magnetic flux measurements by saddle coils, and six total
magnetic flux measurements by flux loops [54]. Article V makes use of the mag-
netic field measurements from these JET magnetic diagnostics and polarimeters
as well as the density and temperature (pressure) measurements provided by
other applications, described in Article I, Article II and Article III, to carry out
consistent inference solutions of plasma equilibria.

3.3.6 Polarimeter
Polarimeters provides line integrated measurements of the electron density ne
and magnetic field B by measuring the polarisation angle rotations of electro-
magnetic waves injected into the plasma. These polarisation angle rotations can
be represented by two quantities: the Faraday rotation Δϕ and ellipticity angle
χ , which are proportional to ∫ neB∥ dℓ and ∫ neB2

⊥ dℓ, respectively. Typically,
polarimeters share the electromagnetic waves launched by interferometers. In
this thesis, the JET polarimetermodel [59] has been used. Article V combines the
JET polarimeter data with the magnetic and profile diagnostic data to provide
consistent inference solutions of plasma equilibria.

3.4 Bayesian inference in nuclear fusion
research

All the applications based on the framework for scientific inference described
in the previous chapter have been developed in the context of nuclear fusion
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research in the Minerva framework. I would like to remark that this framework
can be used for all kinds of scientific problems with arbitrary complexity. Nev-
ertheless, a large-scale nuclear fusion experiment is an excellent example for
its applications based on the following observations: (i) each of the scientific
instruments, which are often very sophisticated and complex in fusion research,
involves a large number of physics parameters and model assumptions, (ii) a
large-scale fusion experiment employs several tens of such scientific instru-
ments which makes consistent inference extremely difficult and (iii) the fusion
plasma in such an experiment is extraordinarily complex, so far, no physics
model can predict major physical phenomena, like transport, sufficiently well.

Of the five articles in this thesis, Article I and Article II present how to deal
with such sophisticated scientific instruments in a systematic way concerning
the observation (i), and Article III, Article IV and Article V provide consistent
inference solutions for all the physics parameters given multiple heterogeneous
data sets with respect to the observations (ii) and (iii). All these applications
make use of Bayesian Occam’s razor to compare the models of physics para-
meters of the fusion plasma which is one of the key strength of this framework
regarding the observation (iii). Article V demonstrates the usage of the physics
prior knowledge introduced by virtual observations and provides all possible
inference solutions for the fusion plasma in a stable, macroscopic equilibrium
state given all the measurements from the major plasma diagnostics in such a
complex system.
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Thesis Articles

In this chapter, I will introduce the articles which constitute themain outcome of
this thesis. I, together with the other authors and contributors, have developed
applications based on the principles and methods in order to improve scientific
modelling and inference in nuclear fusion research. These articles are mostly
concerned with solutions to practical and technical issues that arise in inference
problems in a complex nuclear fusion experiment. I would like to emphasise that
the principles and methods are generally applicable to any scientific problem,
and the reader, who is interested in the principles andmethods, is recommended
to read the previous chapters.
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The main articles
Authors contributions to the main articles:
I am the original author of all the text and content in all the main articles in
this chapter as well as the person who specifically developed and implemented
all the scientific models and applications.

Bayesian modelling of atomic physics and spectroscopy
systems
Article I

‘Bayesianmodelling of the emission spectrumof the Joint European
Torus Lithium Beam Emission Spectroscopy system’
S. Kwak, J. Svensson, M. Brix and Y.-c. Ghim
Review of Scientific Instruments, Vol. 87.2 (2nd Feb. 2016), doi: 10.1063/
1.4940925
This article describes a Bayesian approach to model arbitrary instru-
ment functions and emission spectra by using Gaussian processes. This
approach has been applied to the lithium beam emission spectroscopy sys-
tem at Joint European Torus (JET). The instrument functions of the JET
lithium beam system which consists of interference filters and spectral
response functions are modelled by non-parametric Gaussian processes,
which is capable of representing an arbitrary shape of these functions.
The posterior distributions of these instrument functions are calculated
given a set of spectral observations separately collected during calibration
procedures with the optimal smoothness (hyperparameters) of the Gaus-
sian processes which are found by exploring the model evidence through
linear Gaussian inversion. Given these inferred instrument functions all
the lithium line and plasma background emissions in the emission spec-
tra are inferred given each of measurements during a plasma discharge.
This approach provides all possible inference solutions for the lithium
line and plasma background emissions with their associated uncertain-
ties which can be used to infer the electron density and the effective ion
charge in the edge region of the plasma. Furthermore, this approach does
not require separate measurements of the plasma background emissions
by a beam modulation. During the beam-off frame measurements, the
lithium line emissions cannot be collected due to lack of the lithium beam
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atoms, which means that during the beam modulation, the electron dens-
ity cannot be measured. This approach, therefore, improved the quality
and quantity of the inference at the same time. Article II employs this
application in order to infer the electron density in the edge region of the
plasma.

Article II
‘Bayesian electron density inference from JET lithium beam emis-
sion spectra using Gaussian processes’
S. Kwak, J. Svensson, M. Brix and Y.-c. Ghim
Nuclear Fusion, Vol. 57.3 (11th Jan. 2017), doi: 10.1088/1741-4326/
aa5072
This article describes Bayesian modelling of a spectroscopy system based
on a general atomic physics model which takes into account interactions
between different atomic species such as excitation, de-excitation, charge
exchange, ionisation, spontaneous emission, etc. This physics model, also
known as the collisional-radiative model, which has been implemented in
the Minerva framework in a generic way, can simulate populations of all
the relevant excited states of any atomic species. The application to the
lithium beam emission spectroscopy system at the Joint European Torus
(JET) has been developed for inference of the electron density in the edge
region of the plasma given the intensity of lithium line emission, which
is obtained by the spectral model developed in Article I. The Bayesian
model of the lithium beam emission spectroscopy system provides the
posterior distribution of the edge electron density profiles by fully taking
into account atomic physics, lithium line emissions, instrument functions
and their associated uncertainties. Unlike the conventional approach, this
approach provides the full uncertainties of the edge electron density pro-
files. The edge electron density profiles are modelled by non-parametric
Gaussian processes, and due to the usage of them, the quality and quantity
of inference solutions have been improved. Furthermore, this approach
does not require an unreasonable assumption such as a monotonicity
condition which has been used in the conventional Bayesian approach.
In other words, the inference solutions for the edge electron density pro-
files are physically more reasonable and at the same time available with
their uncertainties in a wider range. Moreover, this Bayesian approach
can automatically infer the calibration factor of the lithium beam system
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without additional preconditions which are essential to the conventional
approach. In addition, the beam modulation, which is necessary for the
conventional approach, is not any more needed in this application since
the results of Article I has been used here.

Bayesian joint modelling of multiple scientific
instruments

Article III
‘Bayesian modelling of Thomson scattering and multichannel in-
terferometer diagnostics using Gaussian processes’
S. Kwak, J. Svensson, S. Bozhenkov, J. Flanagan, M. Kempenaars,
A. Boboc and Y.-c. Ghim
Nuclear Fusion, Vol. 60.4 (26th Feb. 2020), doi: 10.1088/1741-4326/
ab686e
This article describes Bayesian joint modelling of the high-resolution
Thomson scattering (HRTS) and multichannel far infrared (FIR) interfer-
ometer systems at Joint European Torus (JET). Each of the predictive
models of both systems has been individually developed and combined
into a single joint model through Bayes formula. The full electron density
and temperature profiles are modelled by Gaussian processes with a non-
stationary covariance function which can reproduce different gradient
in the core and edge regions of the plasma. The calibration factor of the
HRTS system is regarded as an additional unknown parameter since it
has not been fully identified so far. The full joint posterior distribution of
the electron density and temperature profiles as well as the hyperpara-
meters of the Gaussian processes and the calibration factor is explored
by an adaptive Metropolis-Hastings algorithm. The marginal posterior
solutions for the electron density and temperature profiles are obtained
by taking into account all possible values of the hyperparameters and the
calibration factor. For this reason, the inference solutions do not depend
on specific values of the hyperparameters and the calibration factor due
to marginalisation. Furthermore, this application automatically calibrates
the HRTS system and propagate the calibration uncertainties to the in-
ference solutions in a consistent way. This means that these marginal
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posterior solutions for all the unknown parameters are optimal given the
observations.

Article VI
‘Bayesian modelling of multiple diagnostics at Wendelstein 7-X’
S. Kwak, J. Svensson, S. Bozhenkov, H. T. Mora, U. Hoefel, A.
Pavone, M. Krychowiak, A. Langenberg and Y.-c. Ghim
Plasma Physics and Controlled Fusion, (2020), in preparation
This article describes Bayesian joint modelling of multiple scientific in-
struments at Wendelstein 7-X (W7-X). The application makes use of the
various measurements from the Thomson scattering, dispersion interfer-
ometer, helium beam emission spectroscopy and X-ray imaging crystal
spectroscopy (XICS) systems in order to provide consistent inference
solutions for the electron density and temperature and ion temperature
profiles. The predictive models of the beam emission spectroscopy and
Thomson scattering systems implemented in Article II and Article III
have been used in this application. The electron density and temperature
and ion temperature profiles are modelled by Gaussian processes with a
non-stationary covariance function which can reproduce different gradi-
ent in the core and edge regions of the plasma. These profiles are inferred
given different combinations of heterogeneous data as well as the prior
knowledge introduced by virtual observations which exclude physically
and empirically improbable solutions. Furthermore, this article theoretic-
ally and experimentally shows that the full joint posterior distributions
of the unknown parameters and hyperparameters intrinsically embody
Bayesian Occam’s razor. By exploring the full joint posterior distributions
inference solutions for the unknown parameters with the optimal hyper-
parameters can be found without calculation of the model evidence that
requires integration over the high-dimensional parameter space, which
is one of the major obstacles to Bayesian model selection.
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Bayesian inference of plasma equilibria
Article V

‘Bayesian equilibria of axisymmetric plasmas’
S. Kwak, J. Svensson, O. Ford, L. Appel and Y.-c. Ghim
Nuclear Fusion, (2020), in preparation
This article describes Bayesian equilibria of axisymmetric plasmas in a
magnetic confinement fusion experiment by making full use of all the
principles and methods which have been developed through the thesis.
This approach has been applied to the Joint European Torus (JET). The
Bayesian equilibrium models employ a large number of different hetero-
geneous data sets from the magnetic sensors (pickup coils, saddle coils
and flux loops), interferometers, polarimeters, high-resolution Thomson
scattering (HRTS), lithium beam emission spectroscopy systems. Since
inference of plasma equilibria is a complex tomographic problem, the
two different prior distributions have been introduced in order to exclude
physically unreasonable solutions: a Gaussian process prior and an equi-
librium prior. The Gaussian process prior constrains the plasma current
distributions by their covariance (smoothness) functionwhose hyperpara-
meters are optimally found by Bayesian Occam’s razor. The equilibrium
prior, on the other hand, imposes MHD force balance, given by the Grad-
Shafranov equation, by introducing virtual observations as if this force
balance has been observed over the plasma current distributions. These
Bayesian equilibrium models with the two priors provide consistent solu-
tions for all the physics parameters relevant to plasma equilibria for the
first time at JET. The full joint posterior distributions of plasma equilibria
are extraordinarily complex and high-dimensional, therefore exploring
them is computationally challenging. For this reason, a newmethod based
on the Gibbs sampling scheme has been developed to explore these full
joint posterior distributions of the plasma current distributions and pres-
sure profiles, the MAP solutions and posterior samples are presented.
Interestingly, these inference solutions propose two different possible
plasma equilibrium current distributions for an H-mode plasma: either
strong toroidal current densities or poloidal current flux holes in the edge
region.
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Main coauthor articles
Authors contributions to coauthor articles:
In this chapter, I have listed some of the coauthor articles to which I have made
critical contributions, which will be explicitly described below.

Artificial Neural network
Coauthor Article III

‘Neural network approximated Bayesian inference of edge elec-
tron density profiles at JET’
A. Pavone, J. Svensson, S. Kwak, M. Brix and R. C. Wolf
Plasma Physics and Controlled Fusion, Vol. 62.4 (Mar. 2020), doi: 10 .
1088/1361-6587/ab7732
This article describes a real-time application to providing approximated
Bayesian inference of electron density from the lithium beam emission
spectroscopy system at Joint European Torus (JET) by an artificial neural
network. The neural network maps the lithium beam emission spectra,
measurement positions and calibration factor of the lithium beam system
to the electron density profiles in the edge region of the plasma. The
training data set is automatically generated from the joint probability
distribution, which has been developed in Article II. The posterior distri-
bution of the neural network parameters is approximated with Bernoulli
distributions via variational inference. These approximated posterior dis-
tributions are calculated through Monte Carlo (MC) dropout method
during the training process. The posterior predictive mean and uncertain-
ties of the electron density profiles are provided as real-time inference
solutions. I am the original author of the Bayesian model of the lithium
beam system at JET which is approximated by the neural network in this
article. I also engaged in theoretical and technical discussions about the
neural network model and approximated uncertainties.

Coauthor Article IV
‘Deepneural networkGrad-Shafranov solver constrainedwithmeas-
ured magnetic signals’
S. Joung et al.
Nuclear Fusion, Vol. 60.1 (Jan. 2020), doi: 10 . 1088 / 1741 - 4326 /
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ab555f
This article describes a real-time application to providing a plasma equi-
librium solution consistent with magnetic field measurements by an
artificial neural network. The neural network maps the magnetic field
measurements to the plasma current distributions as well as the poloidal
magnetic flux surfaces. The training data, which contains the magnetic
field measurements and results of the equilibrium fitting (EFIT) code as
input and output, respectively, have been collected over a thousand of
plasma discharges at the Korea Superconducting Tokamak Advanced Re-
search (KSTAR) fusion experiment. This application can provide a plasma
equilibrium reconstruction in approximately 1ms and can be used for
real-time plasma control in principle. I am the original author of the
first version of the artificial neural network model which maps the mag-
netic field measurements to the poloidal magnetic flux surfaces in R,Z
coordinates [119, 120] and have been engaged in the further development
described in this article.

Bayesian modelling of microwave radiometer calibration

Coauthor Article XII
‘Bayesian modeling of microwave radiometer calibration on the
example of the Wendelstein 7-X electron cyclotron emission dia-
gnostic’
U. Hoefel et al.
Review of Scientific Instruments, Vol. 90.4 (Apr. 2019), doi: 10.1063/1.
5082542
This article describes Bayesian modelling of calibration experiments of
microwave radiometers and its application to the electron cyclotron emis-
sion (ECE) system developed at the W7-X experiment. This Bayesian
calibration model has been thoroughly developed, and this application
performs the first model-based calibration of a microwave radiometer
system. I have contributed to the concept and model of this model-based
calibration.
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Bayesian modelling of Thomson scattering system

Coauthor Article XV
‘Feasibility study of direct spectrameasurements forThomson scat-
tered signals for KSTAR fusion-grade plasmas’
K.-R. Park, K.-h. Kim, S. Kwak, J. Svensson, J. Lee and Y.-c. Ghim
Journal of Instrumentation, Vol. 12.11 (Nov. 2017), doi: 10.1088/1748-
0221/12/11/C11022
This article describes a feasibility study of direct measurements of Thom-
son scattering signals for the fusion plasma in the Korea Superconducting
Tokamak Advanced Research (KSTAR) experiment. The posterior distri-
bution of the electron density and temperature has been calculated given
different sets of the experimental setup of a spectrometer-based Thomson
scattering system. The bias errors, posteriors uncertainties and entropy
for the spectrometer-based system are quantified in order to investigate
its feasibility. I am the main author of the forward model for a Thomson
scattering system which is used in this article and extensively engaged
in theoretical and technical discussions.

Coauthor Article XVI
‘FPGA acceleration of Bayesian model based analysis for time-in-
dependent problems’
H. T. Mora et al.
(Nov. 2017), doi: 10.1109/GlobalSIP.2017.8309065
This article describes an acceleration of Bayesian inference by a field-
programmable gate array (FPGA) and its application to the Thomson
scattering and dispersion interferometer systems developed at Wendel-
stein 7-X (W7-X). This application dramatically accelerates the inference
process in order to obtain the posterior samples of the electron density
and temperature profiles in a second from the Bayesian joint model of the
Thomson scattering and interferometer systems. This means that the full
posterior uncertainties are available in a second, which is indeed close
to a real-time frame. I am the main author of the forward model for a
Thomson scattering system which is used in this article and extensively
engaged in theoretical and technical discussions.
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Bayesian inference of effective ion charge

Coauthor Article VIII
‘Measurements of visible bremsstrahlung and automatic Bayesian
inference of the effective plasma charge Z eff at W7-X’
A. Pavone et al.
Journal of Instrumentation, Vol. 14.10 (Oct. 2019), doi: 10.1088/1748-
0221/14/10/C10003
This article describes Bayesian inference of effective ion charge from a
visible Bremsstrahlung measurement at Wendelstein 7-X (W7-X). This
application provides inference solutions for effective ion charge automat-
ically and robustly given the visible Bremsstrahlung measurement from
a compact USB-spectrometer. The electron density and temperature pro-
files, which are necessary for the inference, are provided by the Thomson
scattering model with Gaussian processes. I am the main author of the
forward model for a Thomson scattering system and the Thomson scat-
tering model with Gaussian processes which are used in this article and
extensively engaged in theoretical and technical discussions.

Bayesian tomography of radiation power

Coauthor Article IX
‘First Observation of a Stable Highly Dissipative Divertor Plasma
Regime on the Wendelstein 7-X Stellarator’
D. Zhang et al.
Physical Review Letters, Vol. 123.2 (July 2019), doi: 10.1103/PhysRevL
ett.123.025002
This article describes the first observation of highly stable power dissip-
ation on the island divertors at the W7-X stellarator experiment. This
observation shows that the island divertor concept, which can be a poten-
tial promising candidate to exhaust option for a stellarator type reactor,
works as expected. I have provided the tomographic inversion of the ra-
diation power given line integrated measurements of radiative power
from the bolometer system, which is one of the major pieces of evidence
supporting this article. I have been continuously developing and main-
taining the Bayesian bolometer tomography model, which is originally
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developed by Dr Jakob Svensson, who is one of the coauthors of this
article.

Coauthor Article XI
‘Radiative edge cooling experiments in Wendelstein 7-X start-up
limiter campaign’
T. Barbui et al.
Nuclear Fusion, Vol. 59.7 (July 2019), doi: 10 . 1088 / 1741 - 4326 /
ab18c5
This article describes impurity seeding experiments related to the radi-
ation distribution and cooling effect in the edge region of the plasma at
the W7-X experiment. Nitrogen and neon impurities, which were seeded
into the plasma, affect the radiation distribution and cooling effect in the
edge region with a substantial electron temperature reduction at down-
stream limiter. I have provided the tomographic inversion of the radiation
power given line integrated measurements of radiative power from the
bolometer system, which is one of the major pieces of evidence support-
ing this article. I have been continuously developing and maintaining the
Bayesian bolometer tomography model, which is originally developed by
Dr Jakob Svensson, who is one of the coauthors of this article.
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4.1 Article I1

‘Bayesian modelling of the emission spectrum of the Joint European
Torus Lithium Beam Emission Spectroscopy system’
S. Kwak, J. Svensson, M. Brix and Y.-c. Ghim
Review of Scientific Instruments, Vol. 87.2 (2nd Feb. 2016), doi: 10.1063/1.
4940925

1Reproduced from S. Kwak et al. ‘Bayesian modelling of the emission spectrum of the Joint
European Torus Lithium Beam Emission Spectroscopy system’. In: Review of Scientific In-
struments, Vol. 87.2 (2nd Feb. 2016), page 023501. doi: 10.1063/1.4940925, with the
permission of AIP Publishing.
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Postprint

Abstract. A Bayesian model of the emission spectrum of the JET lithium beam has
been developed to infer the intensity of the Li I (2p-2s) line radiation and associated
uncertainties. The detected spectrum for each channel of the lithium beam emission
spectroscopy system is here modelled by a single Li line modified by an instrumental
function, Bremsstrahlung background, instrumental offset, and interference filter curve.
Both the instrumental function and the interference filter curve are modelled with non-
parametric Gaussian processes. All free parameters of the model, the intensities of the Li
line, Bremsstrahlung background, and instrumental offset, are inferred using Bayesian
probability theory with a Gaussian likelihood for photon statistics and electronic
background noise. The prior distributions of the free parameters are chosen as Gaussians.
Given these assumptions, the intensity of the Li line and corresponding uncertainties
are analytically available using a Bayesian linear inversion technique. The proposed
approach makes it possible to extract the intensity of Li line without doing a separate
background subtraction through modulation of the Li beam.

1. Introduction

In fusion research, lithium beam emission spectroscopy (Li-BES) is widely used to
measure edge electron density profiles in various machines such as TEXTOR [1, 2],

‡ See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference
2014, Saint Petersburg, Russia
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ASDEX Upgrade [3] and JET [4, 5, 6]. When the neutral lithium beam is injected into
the plasma both the beam attenuation and emission processes occur due to collisions
between lithium atoms and plasma particles. The JET Li-BES system measures the
emission spectrum from the spontaneous emission following those collisions. The intensity
of the measured Li line depends primarily on the electron density. The relationship
between the intensity of the Li line and the electron density can be expressed analytically
by a multi-state model [1, 7], which describes excitation and de-excitation reactions
caused by the particle impacts including electrons, protons, and impurity ions, and
spontaneous emissions.

The Li-BES system is used to infer edge electron density profiles based on intensity
profiles of Li line, hence the intensity profiles must be evaluated as precise as possible.
Currently, intensity profiles of Li line from JET Li-BES data are obtained via a fitting
procedure [5] with seven fitting parameters: a multiplication factor for background line
radiation as measured by beam modulation (one parameter), a quadratic polynomial
for the filtered background (three parameters) and a Gaussian function for lithium line
radiation with its width, position and intensity (three parameters).

In this paper we show that improved intensity profiles of Li line can be obtained
by modelling both the instrumental function and the interference filter curve for each
channel based on Gaussian processes. Bayesian probability theory is used to infer
the intensity of the Li line, Bremsstrahlung background, and instrumental offset with
associated uncertainties. The instrumental offset can be differentiated from the plasma
Bremsstrahlung level since the former is not influenced by the filter function. Thus, the
method allows for the separation of signal and background without performing a separate
background radiation measurement through a beam modulation procedure. In short, our
method allows one to (1) generalize the fitting procedure using non-parametric Gaussian
process by taking into account of instrumental effects, (2) estimate intensities and
uncertainties of Li line consistently and (3) make the separate background measurements
obsolete in case of no overlapping impurity lines. The usage of Gaussian processes to
model instrumental effects can be applied generally, as described in Section 3, to improve
spectral fitting also for other systems. A brief overview of the experimental setup of the
JET Li-BES system and a description of the measured emission spectrum are given in
Section 2. In Section 3 the Bayesian spectral model is described, including the modelling
of the instrumental effects with Gaussian processes. The section also shows results from
inference on line radiation, Bremsstrahlung background and instrumental effects using
these models. A summary is provided in Section 4.

2. Spectral modelling

The JET Li-BES system consists of 26 spatial channels along the neutral lithium beam,
with a typical energy of ∼ 55 keV vertically penetrating into the plasma as shown in
Figure 1. The 26 line of sights are not perpendicular to the beam direction, causing
Doppler shifts of the lithium beam emission. As each line of sight has a different angle
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Figure 1. Schematic image of the Li-BES system on JET. In the figure L stands for a
spherical lens, CL for a cylindrical lens, IF for an interference filter, M for a mirror
and grism for a high resolution transmission grating prism. Z is the coordinate of the
system where Z = 0 is at the midplane of JET.

to the beam line, the amount of the Doppler shifts are different for different channels.
This fact is used to calibrate the spatial positions of the 26 channels. The spectrometer
and charge coupled device (CCD) camera are thus required to obtain not only intensities
but spectra of the beam emission as well. A detailed description of the system can be
found elsewhere [5, 6].

The measured intensity at the mth channel denoted as sm in the CCD camera as a
function of x can be expressed as

sm (x) = dm (x) [cm (x) am + bm] + zm, (1)

where x is the pixel number, corresponding to wavelength, cm (x) the instrumental
function, dm (x) the interference filter curve, am the intensity of Li line, bm Bremsstrahlung
background, and zm instrumental offset. We treat Bremsstrahlung radiation as a constant
within a channel because it is almost constant within a narrow wavelength range of
∼ 5 nm set by the interference filter. Note that we measure sm (x), and based on
this measurement we wish to estimate am, bm and zm among which am being the most
important quantity, allowing us to infer the local electron density.

Since the spectral width of the Li line is below the resolving capacity of the
instrument, the shape of the line on the CCD chip is determined solely by instrumental



4

effects. The filter curve of the system can be independently measured (see in Section 3.1),
and so we separate the instrumental effects into an instrument function cm (x), the shape
of an infinitely narrow line on the detector, and the interference filter curve dm (x).

3. Bayesian inference with Gaussian processes

In order to fit the whole spectrum, the instrumental function cm (x) and the interference
filter curve dm (x) must be known. The functional shape of these are not known a priori,
so we here use non-parametric Gaussian processes to model them.

A Gaussian process [8], defined on a one dimensional domain, is defined by a
covariance function and a mean function, where the covariance function specifies the
covariance between any two points in the domain. This restricts the variability of
the function to be inferred and can be used instead of a parameterization. Gaussian
processes were introduced in the fusion community in reference [9] and is the default
way of representing profile quantities in the Minerva framework [10]. It has been used
for modelling the current distribution [9, 11, 12], soft-x ray tomography [13], and for
representing profile quantities [9, 14, 15]. The covariance function of the Gaussian
process is usually defined through families of covariance functions where a few so called
hyperparameters, such as overall scale and length scale of the function, define the shape
of the covariance function and thus the variability of the function.

Denoting the instrumental function of the mth channel cm (x), and the interference
filter function dm (x), as a vector y∗ = [y∗i] where y∗i corresponds to cm (xi) or dm (xi),
the representation of these functions as Gaussian processes corresponds to the y∗i having
a multivariate normal distribution

y∗ ∼ N (0,K(x,x)), (2)

so

p (y∗) =
1√

(2π)N |K|
×

exp

[
−1

2
(y∗ − 0)T K−1 (x,x) (y∗ − 0)

]
. (3)

Here, p (y∗) is the probability density function of y∗, N is the number of elements in
y∗ which is the total number of pixels within each channel. K is a N ×N covariance
matrix whose ijth component is determined as

Kij = σ2
f exp

(
− 1

2l2
|xi − xj|2

)
+ σ2

nδij, (4)

where σ2
f is the signal variance which regulates the overall scale, σ2

n is the noise variance
controlling the noise level of the signal, and l is the length scale governing how fast the
function can change significantly. σf , σn and l together are the hyperparameters. δij is the
Kronecker delta. To determine the instrumental function, we use Bayesian probability
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theory with Equation (3) as the prior, where the hyperparameters are determined
based on the measured data by maximizing the evidence as described in Appendix A.
Maximization of the evidence has previously been done in references [9, 11, 16], all
implemented in the Minerva framework.

The prior distribution Equation (3) is then used in Bayes formula

p (y∗|y) =
p (y|y∗) p (y∗)

p (y)
, (5)

to find the posterior Gaussian process p (y∗|y) where y is the measured data. The
likelihood, p (y|y∗), is a probabilistic model of the observations, and includes the noise
characteristics.

In the following section, we provide a detailed description of how the likelihood and
the prior are applied for emission spectrum modelling of the JET Li-BES system.

3.1. Instrumental function and interference filter curve inference

We infer the instrumental function and filter curve y∗, i.e., cm (x) or dm (x) in Equation (1),
by maximizing the posterior in Equation (5) where the prior is defined using Gaussian
processes as described above. The instrumental function cm (x), can be derived from
the emission spectrum data during the beam-into-gas calibration measurements, using
separate interference filter curve measurements for dm (x). During the beam-into-gas
calibration measurement, neutral lithium is injected into the D2 gas. The lack of
Bremsstrahlung background, makes the Li line dominant, and so the instrumental
function can be inferred directly for each channel. The interference filter curve is
measured separately by putting a uniform intensity light emission diode (LED) in front
of the spectrometer. Both the instrumental function and the interference filter curve
must be determined for each channel since they can be different for different channels
due to fiber geometry, lens contamination, etc.

For constructing the likelihood, we need to model the uncertainties in the system.
There are two major sources of uncertainties: (1) Poisson noise σph =

√
nph from the

photon statistics and (2) the electronic noise σe. For Poisson noise the number of
measured photons, nph, is calculated from the number of photoelectrons in the signal
using the CCD camera’s photons to photoelectron ratio. When the number of photons is
sufficiently large the Poisson noise can be approximated by a Gaussian distribution. The
variance of the Gaussian distributed electronic noise is estimated from measurements
without exposure, i.e., the fluctuation level of the background signal. This gives the
following likelihood

p (y|y∗) =
1√

(2π)N |Σ|
exp

(
−1

2
(y − y∗)

T Σ−1 (y − y∗)

)
, (6)

where the N ×N diagonal matrix Σ provides the associated uncertainties for N pixels
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in a channel defined as Σ = Σph +Σe. Σph and Σe are

Σph =


σ2
ph1

σ2
ph2

. . .

σ2
phN

 ,

Σe =


σ2
e1

σ2
e2

. . .

σ2
eN

 , (7)

where the subscript {1, 2, . . . , N} corresponds to the pixel index of a channel in the CCD
camera. Notice that the only unknown in Equation (6) is y∗.

The prior p (y∗), defined in Equation (3) contains the three hyperparameters σf ,
σn and l. Since the noise of the signal is captured by the likelihood, we do not need
to include the noise variance σn in the prior Equation (4). However, for the sake of
numerical stability we choose σn such that σn/σf � 1, i.e., σ2

n/σ
2
f = 10−2 for both the

instrumental function and the interference filter curve. The hyperparameters, both the
overall scale σf and the length scale l, are determined by maximizing the evidence p (y)

in the denominator of Bayes formula Equation (5). We choose the hyperparameters such
that p (y|σf , l) is maximized, where p (y|σf , l) can be found from the marginalization of
the joint distribution of data and free parameters

p (y|σf , l) =

∫
p (y|y∗, σf , l) p (y∗|σf , l) dy∗. (8)

Appendix A discusses the rationale behind choosing hyperparameters that maximizes
the evidence. Note that the right hand side of Equation (8) contains the likelihood and
the prior for which we have well defined expressions, Equation (6) and Equation (3),
respectively. Figure 2 and Figure 3 show the p (y|σf , l) of interference filter curves and
instrumental function, respectively, as a function of the scale length l and the overall
scale σf for the spatial channel of (a) m = 4, (b) 8, (c) 12 and (d) 16.

Since both the prior and the likelihood are multivariate Gaussian, and the forward
model is linear, the posterior distribution is also a multivariate Gaussian distribution over
y∗. The posterior mean and covariance can thus be calculated explicitly via a Bayesian
linear Gaussian inversion [17]. Figure 4 shows (a) the measured (blue) and the best
Gaussian process estimation (red) of interference filter curve dm (x) for channel number 5,
i.e., m = 5, and (b) normalized best Gaussian process estimation of the interference filter
curve for all channels as a function of pixel (x) of the CCD camera. The best Gaussian
process estimation is in good agreement with the measured data. In addition, Figure 4
shows (c) the measured (blue), a simple Gaussian fit (yellow) and the best Gaussian
process estimation (red) of instrumental function cm (x) for channel number 18, i.e.,
m = 18, and (d) the best Gaussian process estimation of the instrumental functions for
all channels. Each pixel (x) corresponds to a specific wavelength where the wavelength
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Figure 2. Contour of the evidence probability density for the interference filter curve
calculated by Equation (8) as a function of the length scale l and the overall scale σf

for the spatial channel of (a) m = 4, (b) 8, (c) 12 and (d) 16. Both the overall scale
and the length scale of the corresponding spatial channel of the interference filter curve
in Equation (4) are the values that maximize the evidence.

calibration is performed with neon and xenon lamps [5]. Note that typical values of Σe

are 100− 200; while Σph ∼ O (104) and ∼ O (102)−O (103) for interference filter curve
and instrumental function measurements, respectively.

3.2. Intensity profile inference

In this part, we obtain the intensities in Equation (1), i.e., the intensity of Li line am,
Bremsstrahlung background bm and instrumental offset zm from the JET Li-BES data
of each channel. Again, Bayesian probability theory is utilized to determine these three
quantities:

p (Im|Dm) ∝ p (Dm|Im) p (Im) , (9)

where Im = [am, bm, zm] is a vector of the free parameters for the mth channel, and Dm

is the measured data.
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Figure 3. Same as Figure 2 for the instrumental function.

As priors for am, bm and zm we use

p (am) =
1

σam

√
2π

exp

[
−(am − 0)2

2σ2
am

]

p (bm) =
1

σbm

√
2π

exp

[
−(bm − 0)2

2σ2
bm

]

p (zm) =
1

σzm

√
2π

exp

[
−(zm − 0)2

2σ2
zm

]
, (10)

giving p (Im) = p (am) p (bm) p (zm). We choose very large prior standard deviations
106, making the Gaussians effective flat. Although am and bm need to be restricted to
non-negative values, we use full Gaussian priors (rather than truncated ones) because
(1) it makes the computation much simpler, (2) our measured data are good enough to
make sure that they are positive numbers even with such inimical priors and (3) we set
them to be zero if they turn out to be negative numbers. The likelihood p (Dm|Im) is
multivariate Gaussian

p (Dm|Im) =
1√

(2π)N |Σ|
× (11)

exp

(
−1

2
(Dm − sm)

T Σ−1 (Dm − sm)

)
,



9

0 100 200

In
te

ns
ity

 [A
.U

]
×104

0
0.5

1
1.5

2
2.5

(a) filter fit

Data
GP fit

0 100 200
0

0.5

1

(b) Interference filter curves

Pixel
0 20 40 60

In
te

ns
ity

 [A
.U

]

0

1000

2000

3000

4000
(c) function fit

Data
GP fit
Gaussian fit

Pixel
-20 0 20

0

2000

4000

(d) Instrumental functions

Figure 4. The best Gaussian process estimation (red) of (a) interference filter curve
for channel number 5 and (c) instrumental function for channel number 18 and the
measured data (blue). A simple Gaussian fit for the instrumental function (yellow) in
(c) shows that Gaussian process is better than a simple Gaussian fit. The best Gaussian
process estimation of (b) normalized interference filter curves and (d) instrumental
functions for all channels are shown with different colors. The pixel can be converted
to wavelength, the dispersion being approximately 0.04 nm/pixel.

where the covariance matrix Σ is given by Equation (7) and sm by Equation (1) which
is a function of Im.

Having a well defined prior and likelihood, the posterior distribution is obtained
by a Bayesian linear Gaussian inversion. Figure 5 shows the intensity of lithium line
radiation am, profile as a function of Z, the distance of the channel location from the
midplane (Figure 1). Here we only have 25 channels since the interference filter curve
of one channel could not be measured due to a technical problem. The numbers in the
figure are the channel numbers of the JET Li-BES system. Note that this intensity
profile is subsequently used to reconstruct the electron density profile at the plasma edge.
We do not include inference of the electron density profile since it is outside the scope of
this paper.

Having determined all the quantities on the right hand side of Equation (1) in a
consistent way based on Bayesian inference and Gaussian processes, in Figure 6(a)-(d)
shows the estimated spectra sm (x) (red) and the measured data (blue) for channel
numbers m = 4, 8, 12 and 16. They show that the lithium line shape and its
absolute intensity, background radiation and electronic offsets are well reconstructed. In
Figure 6(c), we illustrate the intensity of lithium line radiation a12, background radiation
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Figure 5. The intensity of lithium line radiation am, profile as a function of Z (distance
from the midplane) with channel numbers. Circles are the intensities at their maximum
posterior, and vertical bars represent 3σ ranges.

b12 and offset z12 for m = 12. For the case of channel m = 16, i.e., Figure 6(d), there
exists an extra peak in the measurement caused by impurity line radiation [5]. The
estimated sm does not capture the impurity lines as they are not included in our model.
As a simple consistency check on estimated uncertainties of am in Figure 5, we can see
that the larger the signal-to-noise ratio, the higher the intensity of lithium line radiation
am as shown in Figure 6(e).

We have mentioned earlier that our newly developed method allows one to remove the
required separate measurement of Bremsstrahlung background radiation. Figure 7 shows
the measured data with Li-beam on (yellow) and with Li-beam off (blue) corresponding to
the background signal. The inferred background spectrum (red) based on the measured
data during the Li-beam-on time frame agrees well with the measured background signal
attesting that our method can capture background signal without performing separate
background measurements. Note that the measured background signal is obtained during
the nearest Li-beam-off time frame from the Li-beam-on time frame. Furthermore, as
the model can provide the background signal level which is likely to be proportional to
Bremsstrahlung radiation and its uncertainty for every channel, it conceivably could
be used to infer the profile of effective charge Zeff . Having stated this, we point out
that if certain, i.e., neon (Ne) or nitrogen (N), impurities have large densities as are
the cases for Ne or N seeded plasmas [5], the impurity line radiation may overlap with
lithium line radiation for some channels with comparable intensities resulting in possible
overestimation of the intensity of lithium line radiation. For this case, we need to either
perform the separate background measurement or develop more sophisticated analysis
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inferred, i.e., model predicted, background spectrum (red) based on the measured data
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technique which is left as a future work.

4. Summary

As Li-BES systems are widely used to reconstruct the electron density profile at the
edge of plasmas based on the intensity of Li line, being able to resolve the measured
spectrum data into the intensity of Li line, Bremsstrahlung background and instrumental
offset is a substantial improvement on the conventional method of using background
subtraction through beam modulation, and a Gaussian fit of the line shape. To obtain
these parameters, we also need to know the instrumental function and interference filter
curve.

The instrumental function and interference filter curve are both modelled with
Gaussian processes, separately for each channel. The length scales and overall scales of
the curves have been determined directly from the data through maximization of the
evidence. The reconstructed spectra agree well with the measured spectra. In addition,
the associated uncertainties of the data are also obtained consistently.

Apart from the improvement in fitting quality, another major advantage of this
approach is that independent measurements of the background signals do not need to be
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done. The method of background measurements is done by modulating the beam with
an electrostatic deflection plate which increases hardware complexity and loses some
temporal information. The Bremsstrahlung background signal that is simultaneously
inferred could give additional information on for example effective charge Zeff .
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Appendix A. Rationale behind maximizing the evidence probability

The posterior for the instrumental function or interference filter curve can be written as

p (y∗|y) ∝ exp

[
−1

2
(y − y∗)

TΣ−1(y − y∗)

]
×

exp

[
−1

2
(y∗ − 0)T K−1 (y∗ − 0)

]
, (A.1)

using Equation (6) and Equation (3). In addition to our main unknown y∗, note that K

is a function of the hyperparameters σf and l, which are also not known. This suggests
that we should integrate out these hyperparameters to get the marginal posterior:

p (y∗|y) =

∫ ∫
p (y∗, σf , l|y) dσfd

=

∫ ∫
p (y∗|σf , l,y) p (σf , l|y) dσfdl

≈ p (y∗|σf0, l0,y) , (A.2)

where the approximation is realized by setting p (σf , l|y) = δ (σf − σf0) δ (l − l0), which
is valid if the posterior distribution over the hyperparameters is narrowly centered around
their most probable values.

The posterior for the hyperparameters σf0 and l0 is given by

p (σf , l|y) ∝ p (y|σf , l) p (σf , l) , (A.3)

where p (σf , l|y) is given by Equation (8). Using a uniform prior over σf and l,
the maximum posterior corresponds to the maximum of the marginal likelihood
(Equation (8)).
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Abstract. A Bayesian model to infer edge electron density profiles is developed
for the JET lithium beam emission spectroscopy (Li-BES) system, measuring Li I
(2p-2s) line radiation using 26 channels with ∼ 1 cm spatial resolution and 10 ∼ 20

ms temporal resolution. The density profile is modelled using a Gaussian process
prior, and the uncertainty of the density profile is calculated by a Markov Chain
Monte Carlo (MCMC) scheme. From the spectra measured by the transmission grating
spectrometer, the Li I line intensities are extracted, and modelled as a function of the
plasma density by a multi-state model which describes the relevant processes between
neutral lithium beam atoms and plasma particles. The spectral model fully takes
into account interference filter and instrument effects, that are separately estimated,
again using Gaussian processes. The line intensities are inferred based on a spectral
model consistent with the measured spectra within their uncertainties, which includes
photon statistics and electronic noise. Our newly developed method to infer JET edge
electron density profiles has the following advantages in comparison to the conventional
method: (i) providing full posterior distributions of edge density profiles, including their
associated uncertainties, (ii) the available radial range for density profiles is increased to
the full observation range (∼ 26 cm), (iii) an assumption of monotonic electron density
profile is not necessary, (iv) the absolute calibration factor of the diagnostic system is
automatically estimated overcoming the limitation of the conventional technique and
allowing us to infer the electron density profiles for all pulses without preprocessing
the data or an additional boundary condition, and (v) since the full spectrum is
modelled, the procedure of modulating the beam to measure the background signal is
only necessary for the case of overlapping of the Li I line with impurity lines.

‡ See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference
2014, Saint Petersburg, Russia
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1. Introduction

Edge electron density profiles have been recognised as one of the key physical quantities in
magnetic confinement devices for controlling and understanding edge plasma phenomena,
such as edge localised modes (ELMs) [1], L-H transitions [2] and turbulence transport [3].
Lithium beam emission spectroscopy (Li-BES) systems, capable of providing the profiles
of edge electron density, have thus been widely used at various devices (TEXTOR [4, 5],
ASDEX Upgrade [6, 7], W7-AS [6], and JET [8, 9, 10]). Li-BES system is a type of
beam diagnostics that injects neutral lithium atoms into the plasma and measures Li I
(2p-2s) line radiation caused by spontaneous emission processes from the first excited
state (1s2 2p1) to the ground state (1s2 2s1) of the neutral lithium beam atoms. The Li
I line intensity can be expressed as a function of the plasma density by a multi-state
model [11] which describes the relevant processes between lithium atoms and plasma
particles. The profiles of edge electron density can be inferred from the measured profiles
of the Li I line intensity.

The integral expression of the multi-state model which calculates a profile of electron
density [4] from the measured Li-BES data has been used conventionally at many devices
[5, 6, 8, 9]. This method, however, has a limitation that profiles of absolute electron
density (based on the absolute calibration factor) can be obtained only if either a singular
point§ is found or an additional boundary condition is provided in the data. Consequently,
this method involves some weaknesses: (i) preprocessing of the data is usually required
to find the singular point, (ii) the singular point cannot be found accurately, (iii) a
small change of the location of the singular point can cause a large difference of the
density profile and iv) an additional boundary condition, which is required if the singular
point does not exist, cannot be properly fixed because of the difficulty of obtaining all
the populations of the different states of the neutral Li beam atoms. Another method
utilising Bayesian probability theory to analyse the Li-BES data was reported at ASDEX
Upgrade [7], using non-spectral APD (Avalanche Photo Diode) detectors and made
impressive progress. Our method fits the full Li beam emission spectrum and uses
Gaussian processes to model and regularise the electron density profiles, rather than
using the non-spectral data and the combination of splines with a regularising weak
monotonicity constraint used in [7]. Our proposed method requires neither preprocessing
of the data, inner boundary information nor a profile monotonicity regulariser.

The method comprises two parts. The first part is obtaining the profile of the Li
I line intensity. The JET Li beam emission spectrum is here modelled as a single Li I
emission line and a background signal, convolved with an instrument function and filtered
through an interference filter. The interference filter and instrument function need to be

§ This is a specific spatial point where both the numerator and the denominator of the integral expression
of the multi-state model (see Eq.(4) in [4]) for the electron density become zero.
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separately estimated and the uncertainties on the spectra are modelled by taking into
account photon statistics and electronic noise. We infer interference filter and instrument
functions based on separate measurements (which are required only once in a while as
they do not vary much shot-to-shot base) using Gaussian processes. We use Gaussian
processes because we do not know the parametric form, i.e., analytical expression of
these functions. Having the interference filter and instrument functions, we then infer
intensities of the Li I line radiation, background and the offset simultaneously. This
provides the advantage of removing the necessity of beam modulations to obtain separate
background measurements within a plasma shot. Furthermore, as the fitted background
intensity is likely to be dominated by Bremsstrahlung radiation, our method opens a
possibility to obtain the effective charge Zeff . The second part of our method infers
the profile of edge electron density based on the intensity profile of Li I line radiation
using the multi-state model. During this second part, the absolute calibration factor
of the system is inferred directly from the measurements, removing the need for the
singular-point method mentioned above. All modelling and analyses are performed using
a Bayesian scheme within the Minerva framework [12].

Section 2 describes the models we use: the multi-state model describing how to
obtain electron density information from the Li I line radiation intensity and the spectral
model of the raw data, forming together the forward model of the JET Li-BES system.
Section 3 explains how the interference filter and instrument functions are inferred and
the procedure for obtaining the intensity of the Li I line radiation and electron density
profile. Conclusions are presented in Section 4.

2. Models

2.1. Multi-state model

Li-BES system measures the intensities of the Li I (2p-2s) line radiation from the neutral
lithium beam penetrating into the plasma. The Li I line radiation is produced by
spontaneous emission processes from the first excited state (1s2 2p1) to the ground state
(1s2 2s1) of the neutral lithium beam atoms. The Li I line intensity is a function of a
population of the first excited state which can be expressed in terms of a plasma density
via a multi-state model.

The change of relative populations in time using the multi-state (collisional-radiative)
model [4] is

dNi (t)

dt
=

MLi∑
j=1

[∑
s

nsa
s
ij (v

s
r) + bij

]
Nj, (1)

which describes population and de-population of states of the neutral lithium atoms
caused by processes between lithium beam atoms and plasma particles in addition to
spontaneous emissions. Ni is a relative population of the ith state with respect to the
total number of the neutral lithium beam atoms at the position where the lithium beam
enters the vacuum vessel. For instance, N1 = 0.7 and N2 = 0.1 mean that 70 % and 10
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% of the initial neutral lithium beam atoms are in the ground and first excited states,
respectively. MLi is the number of states of the neutral lithium atoms, and we consider
nine different states in this paper; thus, MLi = 9. ns is a plasma density of species s
where s = e and s = p denote electron and proton, respectively. asij (i 6= j) > 0 is a net
population rate coefficient by the plasma species s from the jth state to the ith state
increasing the relative population of the ith state, while asii < 0 is a net de-population
rate coefficients including excitation, de-excitation and ionisation effects leaving the ith
state. All population and de-population rate coefficients caused by plasma species s
depend on the relative speed between the neutral lithium beam atoms and plasma species
s which is denoted as vsr . bij is the spontaneous emission rate coefficient or Einstein
coefficient.

It becomes easier to solve Equation (1) if it is expressed in terms of the beam
coordinate z: d/dt = d/dz · dz/dt. Realising that dz/dt is the velocity of the neutral
lithium beam atoms vLi, we obtain

dNi (z)

dz
=

1

vLi

MLi∑
j=1

[∑
s

ns (z) a
s
ij (v

s
r (z)) + bij

]
Nj (z) . (2)

Here, we assume that vLi is constant over the penetration range of the beam into plasmas.
The relative speed vsr (z) is not directly measured but can be approximated using

other quantities. The relative speed between the neutral lithium beam atoms and
electrons ver (z) is dominated by the electron temperature Te since the typical (thermal)
speed of electrons is much faster than that of the neutral lithium beam atoms. The
relative speed between the neutral lithium beam atoms and protons vpr (z) can be
approximated to the lithium beam velocity in case of JET Li-BES since the lithium
beam energy is ∼ 55 keV which is much higher than the ion temperature. Other species
are not considered in this work. Thus, the multi-state model becomes

dNi (z)

dz
=

1

vLi

MLi∑
j=1

[
ne (z) a

e
ij (Te (z)) + np (z) a

p
ij (vLi) + bij

]
Nj (z) , (3)

Ni (z = 0) = δ1i, (4)

with the initial condition Equation (4) where we assume that all the lithium beam atoms
are neutral and in the ground state (i = 1) at the initial position where the beam enters
the tokamak vacuum vessel corresponding to z = 0, i.e., N1 (z = 0) = 1.‖ The rate
coefficients have been obtained from the Atomic Data Analysis Structure (ADAS) [13]
and the reference [14]. Figure 1 shows an example of steady-state relative populations
for the first excited state N2 as a function of electron density and temperature with a
beam energy of 50 keV.

‖ As discussed in [7] where a sensitivity of the reconstructed density profile on the initial condition has
been examined, less than 2% discrepancy on the initial condition does not significantly alter the density
profile, i.e., changes are within the uncertainties of the profile. Furthermore, larger discrepancies on the
initial condition cannot explain the observed data [7]; thereby providing us a mean to reject a certain
initial condition.
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Figure 1. Steady-state relative populations of the first excited state (N2) of the
neutral lithium beam atoms as a function of the electron density and temperature
with a beam energy of 50 keV in the range of (a) 0.1× 1019 < ne < 1.0× 1019 and (b)
1.0× 1019 < ne < 10.0× 1019.

Note that this multi-state model does not consider the population of ionised lithium
atoms, which leave the beam due to a strong magnetic field of JET. Therefore, electron loss
processes such as ionisation and charge-exchange simply attenuate the total population

of the neutral lithium beam atoms, i.e.,
MLi∑
j=1

Nj (z > 0) < 1.

2.2. Spectral model

The JET Li-BES system measures spectra, including the Doppler shifted Li I line
radiation from the 26 different spatial positions, covering a few nanometres in wavelength
using the transmission grating spectrometer (dual entrance slit with interference filter for
preselection of passband, details in [10]). A charge coupled device (CCD) camera detects
the photons for integration time of approximately 10 ms. More detailed description of
the JET Li-BES system can be found elsewhere [9, 10].

A spectrum from each spatial position contains four types of signals (in addition to
noise): (i) Li I line, (ii) a background dominated by Bremsstrahlung radiation, (iii) an
offset and (iv) impurity lines. Doppler broadening of the Li I line radiation is negligible
since the lithium beam is a mono-energetic beam (∼ 0.02 nm broadening occurs for the
beam temperature of ∼ 10 eV, and the dispersion of the CCD pixel is ∼ 0.04nm/pixel),
therefore we treat the Li I line as a delta function in the spectrum. A measured spectrum
S (λ) from each spatial position can be expressed as

S (λ) = F (λ) [C (λ)A+B] + Z, (5)

where A is the intensity of Li I line radiation, B the background level and Z the offset,
which are all inferred together with their uncertainties through Bayesian inference. The
instrument function C (λ) and interference filter function F (λ) are inferred through a
Bayesian scheme using Gaussian processes from separate measurements [15]. Here, λ is
the wavelength corresponding to a CCD pixel index [9].

Gaussian processes are probabilistic functions defined by a multivariate Gaussian
distribution, generalization of a multivariate normal distribution to function space, whose
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mean and covariance function specify the expected values and relationship between any
two points on the domain [16]. This constrains the variability of the function without any
analytic specification, i.e., in a non-parametric way. Gaussian processes were introduced
in the fusion community in [17] and are implemented as a standard representation of
profile quantities in the Minerva framework [12]. It has been used for current tomography
[17, 18], soft x-ray tomography [19], and representing profile quantities [17, 20, 21]. The
covariance function of a Gaussian process is defined as a parametrised function whose
parameters, so called hyperparameters, determine aspects of the function such as overall
scale and length scale. The hyperparameters are selected based on the measurements by
maximising the evidence through Bayesian model selection. A detailed description of
the Bayesian inference and modelling of the JET Li-BES data with Gaussian process
can be found elsewhere [15].

2.3. Forward model

Our goal is to find all possible profiles of the edge electron density ne consistent with the
spectral observations. For this, we consider the forward model as shown in Figure 2. The
edge electron density profile ne is modelled as a set of values at given positions, with a prior
given by a Gaussian process with given overall scale and length scale hyperparameters,
discussed in more detail in Section 3.3. Edge ne profiles are mapped onto flux surface
coordinates ψ calculated by the EFIT equilibrium code [22]. Electron temperature
Te, required for the rate coefficients asij, is measured by the High Resolution Thomson
Scattering (HRTS) system [23] and mapped onto the same flux surface coordinates.
This will allow us to calculate a relative population of the first excited state of the
neutral lithium beam atoms, i.e., N2, based on the multi-state model Equation (3) with
a quasi-neutrality condition, i.e., ne = np. Here, we assume that impurity densities are
low enough to be ignored¶.

Once we have N2, we can predict the Li I line radiation intensity, A in Equation (5),
where the detailed procedure is provided in Section 2.3.1. This model provides a
prediction of the measured Li I line radiation A∗, given the free parameters of an electron
density ne and an absolute calibration factor α, by

p (A∗|ne, α) =
1√
2πσ

exp

[
−(A∗ − A (ne, α))

2

2σ2

]
, (6)

where A (ne, α) is a model prediction with specific values of the free parameters, ne and
α. σ is the uncertainty associated with the observation A∗. This is our basic form of the
forward model in this paper and is the likelihood in Bayes formula (Equation (16)). We
assume that deviations of the observation from predictions have a Gaussian distribution.
We discuss how we estimate σ and rationale to form Gaussian distributed deviations in
Section 2.3.2.
¶ If impurities are non-negligible, then our measured spectra may show strong impurity line radiation
in which case our assumption is not valid.
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Figure 2. A simplified graphical representation of the JET Li-BES forward model as
implemented in the Minerva Bayesian modelling framework [12]. The free parameters
are shown with red circles and observations as a blue circle. The rectangular boxes
represent operations or constants. The electron density ne and temperature Te are
mapped onto the EFIT estimated flux surfaces. The relative populations of the neutral
lithium beam atoms are calculated from the multi-state model, and profiles of the Li I
line radiation intensities are predicted given edge ne profiles and an absolute calibration
factor, alpha (α). All the possible edge ne profiles whose predicted Li I line intensity
profile agree with the observation (blue circle) within their uncertainties are found
through a MCMC scheme.

2.3.1. Detected number of photons The Li I line intensity, A in Equation (5), is
proportional to the relative population of the first excited state N2, i.e., A ∝ b12N2

where b12 is the spontaneous emission rate coefficient from the first state to the ground
state. Change of the relative population of the first excited state due to the spontaneous
emission as the beam travels a distance of ∆z denoted as |∆N2| is

|∆N2 (z)| =
|b12|
vLi

∆z N2 (z) , (7)

where ∆z can be considered as the observation length. Since one spontaneous emission
produces one photon, the total number of emitted photons N em

ph corresponding to Li I
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line radiation over the integration time ∆t with the lithium beam current ILi is

N em
ph (z) = ILi∆t |∆N2 (z)| = ILi∆t

|b12|
vLi

∆z N2 (z) . (8)

The emitted photons falling into the solid angle of the collection optics pass through
various mirrors, lens and grism before being detected by the CCD camera. We denote
all these effects of optics including the solid angle as an effective transmittance of the
system, T . Then, the number of photons detected by (or arrived to) the CCD camera
Ndet

ph (z) is

Ndet
ph (z) = TN em

ph (z) = TILi∆t
|b12|
vLi

∆z N2 (z) . (9)

Also, we define Q as the count per photon of the CCD camera. Q describes the number
of counts produced by the CCD camera when one photon arrives at the CCD detector.
Then, the CCD output count due to the Li I line radiation NLi

CCD which we measure is

NLi
CCD (z) = QNdet

ph (z) = QTILi∆t
|b12|
vLi

∆zN2 (z)

= A (z)

∫
F (λ)C (λ) dλ, (10)

and this is, by definition, equal to the Li I line intensity A multiplied by the spectrally
integrated signal of the instrument function C (λ) and the interference filter function
F (λ) in Equation (5).

We finally obtain

A (z) =
QTILi∆t

|b12|
vLi

∆z∫
F (λ)C (λ) dλ︸ ︷︷ ︸

≡α

N2 (z) = αN2 (z) , (11)

where α is the absolute calibration factor which is taken as a free parameter in our
forward model in addition to the ne profile as shown in Figure 2. Note that we have
included the magnitude of the relative calibration factors in the instrument function
C (λ).

2.3.2. Uncertainties The main measurement error is due to the Poisson distributed
photon statistics. On top of that, there is an additional electronic noise which is measured
before a pulse starts and is here taken as a Gaussian distribution.

To be able to determine a level of photon noise, it is necessary to find the value of
Q in Equation (10) so that the measured NLi

CCD can be converted to the detected number
of photons Ndet

ph which is the quantity following a Poisson distribution. With an aim
of determining the value of Q, we shine a uniform intensity light-emitting diode (LED)
to the CCD camera while varying the intensity of the LED with all other conditions
fixed as if it were actual measurements of the Li-BES during plasma discharges. The
arithmetic mean of CCD output counts N̄CCD and its associated variance σ2

CCD are
N̄CCD = QN̄ph + N̄DC

CCD + Z̄CCD, (12)
σ2
CCD = Q2σ2

ph + σ2
e (13)
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Figure 3. (a) The variance σ2
CCD vs. the mean counts N̄CCD of the CCD output

with varying LED intensities. The slope of the fitted linear line is the value of Q which
is 1.247± 0.005. (b) Measurements of the CCD output counts as a function of the CCD
pixel with all the electronics switched on and no input photons to the CCD, and (c)
the histogram of the CCD output counts from (b). The histogram shows that (i) the
variance is 160, i.e., σ2

e ≈ 160, with the mean value of 4342 and (ii) it has a Gaussian
shape.

where N̄ph is the mean of the number of photons detected by (arrived to) the CCD
camera and N̄DC

CCD the mean CCD output counts due to the dark current of the CCD.
Here, Z̄CCD is the mean CCD offset. σ2

ph and σ2
e are the variances due to photon statistics

and electronic noises, respectively. Note that we treat fluctuations in the dark current as
a part of the electronic noise because they exist in the absence of detected photons.

With N̄ph =
(
N̄CCD − N̄DC

CCD − Z̄CCD

)
/Q from Equation (12) and N̄ph = σ2

ph owing
to a Poisson distribution, recasting Equation (13), we get

σ2
CCD = QN̄CCD − (QN̄DC

CCD +QZ̄CCD − σ2
e ). (14)

Notice that N̄CCD and σ2
CCD can be directly measured with the LED on, and by varying

the intensity of the LED we can determine the value of Q. Figure 3(a) shows a graph of the
measured σ2

CCD vs. N̄CCD, using a total of 4,175 (167 pixels from 25 channels) independent
data points, the variances and the means which are estimated using 332 independent
time points. The slope is the value of Q we seek, and we find that Q = 1.247± 0.005.

To find the electronic noise level σ2
e , we switch on all the electronics and measure

fluctuations in NCCD without any photons to the CCD, i.e., Nph = 0. Here, NCCD

and Nph are individual measurements rather than their means. Figure 3(b) shows
such measurements for all 26 spatial channels (different colours). Figure 3(c) is the
histogram of the NCCD. The variance is estimated to be 160 with a mean of 4342.
Therefore, σ2

e ≈ 160. As can be seen from the histogram, the dark current fluctuations
are approximately Gaussian shaped. Furthermore, as we find the mean value of the
offset, i.e., 4342, appears constantly for all channels, we always subtract this offset value
from the measured signal before performing any analyses on the data. Any residual
offset is captured by Z in Equation (5).

When the number of counts is large a Poisson distribution can be approximated
with a Gaussian distribution. Since the detected number of photons Ndet

ph is larger than
100, we take the photon statistics to follow a Gaussian distribution as well. Therefore,
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Expression style Example Meaning
Boldface y, S Column vector

Boldface with a check accent Ǩ, Σ̌ Matrix
Plain S, x Scalar

Superscript index yi, xi Quantity of the ith channel out
of the total 26 spatial positions
(channels) of the JET Li-BES
system

Subscript index yi, xi Quantity at the ith wavelength in
the CCD camera

Table 1. Notations used in Section 3.

the variance σ2 in Equation (6) is

σ2 = σ2
ph + σ2

e . (15)

3. Bayesian inference

For our case, we have a spectrum S (λ) described by three free parameters: the Li I
line radiation intensity A, the background B dominated by Bremsstrahlung radiation,
and the offset Z. The instrument function C (λ) and the interference filter F (λ) in
Equation (5) are inferred separately using Gaussian processes.

In the Bayesian scheme, we calculate the probability distribution of a free parameter
W given observation D known as the posterior p (W|D). The posterior is given by Bayes
formula

p (W|D) =
p (D|W) p (W)

p (D)
, (16)

where p (D|W), p (W) and p (D) are the likelihood, prior and evidence, respectively. The
likelihood is a model for observations given free parameters as described in Equation (6).
The prior quantifies our assumptions on the free parameters before we have observations.
The evidence is typically used for a model selection and is irrelevant if one is only
interested in estimating the free parameters. A detailed description of Bayesian inference
can be found elsewhere [24].

To minimise possible confusion, we define our notations used in this section in Table 1.
As the JET Li-BES system obtains spectra from 26 different spatial positions, the channel
index corresponds to the spatial position and the pixel index to the wavelength. The
predicted signal at the ith channel and jth pixel is denoted as Si

j, and Di
j represents the

observed signal.
Using these notations, we will find the most probable prediction of the line intensity,

background and offset at ith channel by calculating the posterior p (Ai, Bi, Z i|Di) where
the predicted signal at the ith channel and jth pixel is

Si
j = F i

j

(
C i

jA
i +Bi

)
+ Zi. (17)
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In the following subsections, we describe how to infer two unknown functions, the
interference filter and instrument functions (Fi,Ci), and the free parameters (Ai, Bi, Z i).

3.1. Interference filter and instrument functions

To infer the ith channel interference filter function Fi, we illuminate uniform LED light
to the fibres. Since there is no Li I line radiation (Ai) with a negligible offset (Zi) as
shown in Figure 4, the predicted signal is

Si
j = F i

j

(
C i

jA
i +Bi

)
+ Zi = F i

jB
i, (18)

where Bi is uniform LED light intensity. According to Bayes formula, the posterior is

p
(
Fi|Di

)
∝ p

(
Di|Fi

)
p
(
Fi
)
, (19)

where the likelihood is

p
(
Di|Fi

)
=

1√
(2π)Npixel

∣∣Σ̌∣∣ exp
[
−1

2

(
Di − Si

)T
Σ̌−1

(
Di − Si

)]
. (20)

Here, Si = FiBi as in Equation (18), and Npixel is the total number of CCD pixels for
the ith channel. Σ̌ is an Npixel ×Npixel square diagonal matrix containing variances of
the measured signal at each pixel of the CCD camera as in

Σ̌ =



σ2
1

σ2
2

. . .

σ2
j

. . .

σ2
Npixel


, (21)

where σ2
j = σ2

ph,j + σ2
e,j at the jth pixel as Equation (15) is used in Equation (6). σ2

ph,j

and σ2
e,j can be estimated as described in Section 2.3.2. Note that Σ̌ is different for

different channels.
The prior p (Fi) in Equation (19) needs to be specified. Since we do not know the

parametric form, i.e., analytical form, describing the interference filter of the ith channel,
Fi, as a function of wavelength (pixel index), we use a Gaussian process prior for Fi:

p
(
Fi
)
=

1√
(2π)Npixel

∣∣Ǩ∣∣ exp
[
−1

2

(
Fi − 0

)T
Ǩ−1

(
Fi − 0

)]
. (22)

Here, 0 is a column vector whose entries are all zeros. The Npixel × Npixel matrix Ǩ,
which varies channel by channel, is defined as a squared exponential covariance function
with the value at the jth row and kth column of

Kjk = σ2
f exp

[
− 1

2`2
|xj − xk|2

]
+ σ2

nδjk. (23)

δjk is the Kronecker delta. x is a vector of the CCD pixel index, thus |xj − xk| is
the difference in pixel index between the jth and kth pixels. σ2

f is the signal variance
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Figure 4. (a) The observation (dots) and the MAP estimate of the filter function
(red line) for channel 18 using Bayes formula with the Gaussian process prior, showing
a good agreement between the two. (b) Normalised filter functions (MAP) for all
channels shown in different colours.

and ` the length scale. σ2
n is a small number for the numerical stability during matrix

inversion. The hyperparameters σ2
f and ` govern the characteristic of the Gaussian

process Equation (22), and we find their values by maximising the evidence p (Di), more
explicitly p (Di|σf , `). More detailed description can be found elsewhere [15].

Figure 4(a) shows the comparison between the observation Di and the maximum a
posteriori (MAP) estimate of Fi for channel 18. Figure 4(b) shows the MAP estimates
of the filter functions for all channels of the JET Li-BES system. Note that we normalise
all the filter functions to have the maximum value of one as what we need is the shape
of the filter functions in the wavelength (pixel index) domain. This does not create
any problems because relative sensitivities among the channels are captured by the
instrument functions as relative calibration factors, while α in Equation (11) takes care
of the absolute calibration factor.

To infer the ith channel instrument function Ci, we use beam-into-gas shots. During
the beam-into-gas shots, neutral lithium beam atoms are injected into the tokamak filled
with a neutral deuterium gas whose pressure is less than 10−4 mbar. Because there is no
plasma, there exists a negligible background signal caused by Bremsstrahlung (Bi = 0).
For this case, the posterior is p (Ci|Di) with

Si
j = F i

j

(
C i

jA
i +Bi

)
+ Zi = F i

jC
i
jA

i + Zi, (24)

where the interference filter function Fi is set to be the MAP estimation of p (Fi|Di)

in Equation (19). Due to the small deuterium pressure inside the tokamak during the
beam-into-gas experiments, a strong beam attenuation is not expected. According to
[9], there is no indication of any beam attenuation, so the emitted photons N em

ph should
not vary along the beam. The variation of the observed intensities must therefore be
due to differences in T , Q, and ∆z in Equation (11). Assuming the Li I line emission
is constant over the beam, Ci will give us these relative calibration factors. Since the
offset is not negligible for some channels as shown in Figure 5, i.e., a few channels have
maximum amplitudes of less than 500 with the offset level of approximately 20, we
calculate posterior of both instrument function and offset p (Ci, Z i|Di).

The likelihood p (Di|Ci, Z i) is taken as the Gaussian with the mean given by
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Figure 5. (a) The observation (dots) and the MAP estimate of the instrument function
(red line) for the channel 18. (b) The instrument functions (MAP) for all channels
shown in different colours. Note that the instrument functions are not normalised in
order to capture the relative sensitivities.

Equation (24). We let the prior p (Ci) to have the form of Equation (22) with the
covariance function Equation (23). Again, the hyperparameters are set such that the
evidence is maximised. The prior p (Z i) is a normal distribution with a zero mean
and a very large variance (106). Figure 5(a) compares the observation and instrument
function (MAP) for channel 18. Figure 5(b) shows the instrument functions (MAP) for
all channels, which also capture the relative calibration factors.

3.2. Line intensities

We inferred Fi and Ci from Section 3.1 and are left with three free parameters Ai, Bi

and Zi in Equation (17). The posterior p (Ai, Bi, Z i|Di) is calculated using a Gaussian
likelihood p (Di|Ai, Bi, Z i) with the mean of Si

j = F i
j

(
C i

jA
i +Bi

)
+ Zi. As we have

three independent free parameters, the prior p (Ai, Bi, Z i) is

p
(
Ai, Bi, Z i

)
= p

(
Ai

)
p
(
Bi

)
p
(
Zi

)
, (25)

where all three priors are Gaussian distributions with a zero mean and very large
variance (106) effectively making them flat priors (our status of complete ignorance
on these parameters) as much as possible while keeping a Gaussian form for a sake of
computing algorithm.

A comparison between the Li I line and background intensities (MAP) and
observation at 50.260 sec of the JET shot number 87861 for channel 8 is shown in
Figure 6(a). Figure 6(b) and (c) show the profiles of the Li I line and background
intensities with their uncertainties (the shortest 95 % confidence interval), respectively.
The edge ne profiles are directly inferred from the Li I line intensities. The profile
of background radiation in Figure 6(c) is most likely dominated by Bremsstrahlung
emission, so could be used for inferring the effective charge Zeff , since Bremsstrahlung
intensities are proportional to Zeff (IBrem ∝ Zeffn

2
eT

1/2
e ).
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Figure 6. (a) The measured spectrum (dots) and its MAP estimate at 50.260 sec of
the shot number 87861 for channel 8. The profile of (b) Li I line and (c) background
intensities (MAP) with their variances.

3.3. Edge electron density profiles

To infer the electron density profile, we take the MAP estimate of the Li I line intensities
with their variances (A± σA). The posterior is given by

p (ne, α|A, σA) ∝ p (A|σA,ne, α) p (ne, α) , (26)

where the absolute calibration factor α and the edge electron density profile ne are the
free parameters.

The likelihood p (A|σA,ne, α) is given by

p (A|σA,ne, α) =
1√

(2π)Nch
∣∣Σ̌A

∣∣ exp
[
−1

2
(A− αN2)

T Σ̌−1
A (A− αN2)

]
,

(27)

where Nch = 26 is the total number of the channels. Σ̌A is the Nch × Nch diagonal
matrix with the entry of (σi

A)
2 at the ith row and ith column. We calculate N2 using

the Runge-Kutta method (RK4) from the model Equation (3) with the initial condition
Equation (4).

We give ne and α independent priors, where p (α) is uniform between 1 and
1000.+ For p (ne), based on a large database of existing profiles, we can estimate the
hyperparameters for the Gaussian process prior. From this we set the hyperparameters
σf and ` for the covariance matrix Ǩ to be 20.0 and 0.025, respectively. We note that
these values for the hyperparameters are not rigorously obtained by maximising the
evidence due to the requirement of too much computation time. Nevertheless, these
values give good fit to the data. A possible improvement would be to marginalise over
these hyperparameters as in [17].

The posterior of ne and α is explored by a Markov Chain Monte Carlo (MCMC)
sampling scheme. Figure 7(a) and (c) show the MAP estimate of the edge electron
+ This range covers most, if not all, of cases. Note that we strictly choose a uniform distribution for
α as this is one of the key parameters to obtain absolute density profiles. Furthermore, being able to
infer α based on the observed data is one of the key features of our model. Therefore, we are being as
unbiased as possible by using a wide uniform distribution.
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Figure 7. (a) The MAP estimate of the edge electron density profile (red) and the
associated uncertainties (shortest 95% interval) together with the ne profiles from the
HRTS system (blue) and conventional Li-BES analysis (yellow). (b) the MAP estimate
of the Li I intensities (blue), i.e., A in Equation (26), and the prediction (red), i.e.,
αN2 (ne) for the shot #87879 at 56.017 sec. (b) and (d) are same as (a) and (c) for
the shot #87880 at 50.348 sec.

density profiles (red) with their associated uncertainties, which cover 95% of the samples
from posterior, i.e., the shortest 95% interval. For the sake of comparison, ne profiles
from the HRTS system (blue) and results from the conventional analysis of the JET
Li-BES system (yellow) [9, 10] are also shown in the same figures. Figure 7(b) and (d)
show the MAP estimates of the Li I line intensities from the previous section (blue), i.e.,
A in Equation (26), and prediction (red), i.e., αN2, for Figure 7(a) and (c), respectively.

It is clear from these results that we have inferred a proper absolute calibration
factor α even though we have not used the singular point method [4]. The range of the
density profile inference has been extended to the full observation range which was not
possible with the conventional data analysis method. We stress that we have not used a
separate background measurement via Li neutral beam modulations because our method
is capable of providing intensities of Li I line and background radiations simultaneously.
Finally, we also have not made an assumption of monotonic profile, either.

In some cases, we observe a difference between the profiles inferred from the Li-BES
and HRTS systems (Figure 8). Calibration of the spatial position for the Li-BES may be
questioned. However, this calibration is performed with relatively high reliability [9]. We
do suspect that it may have been caused by the EFIT reconstruction. The Li-BES system
injects neutral lithium beam atoms vertically from the top of the JET at major radius
R = 3.25 m and covering the vertical position Z = 1.67 ∼ 1.40 m approximately; whereas
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Figure 8. Same as Figure 7 for a different time and shot number, showing disagreement
between the Li-BES and HRTS analysis although the prediction of the Li line intensities
matches well with their MAP estimate.

the HRTS system observes electron density along the laser penetrating horizontally at
the midplane (R = 2.9 ∼ 3.9 m and Z = 0.06 ∼ 0.11 m). The flux coordinate mapping
provided through EFIT may well be inaccurate when comparing the midplane with the
top of the vessel. We leave further investigation of this issue to future work.

In Figure 7(a) and (c) and Figure 8(a) and (c) we can see that the uncertainties
of the electron densities in the inner region is larger than those of the outer region.
This result cannot be explained solely by the number of detected photons as attested
by Figure 7(b) and (d) and Figure 8(b) and (d). This trend of larger uncertainties
in the inner region is also observed in ASDEX Upgrade [7, 25]. Here, we provide two
qualitative reasons to explain this trend. As shown in Figure 1, the relative population
of the first excited state N2 becomes less sensitive to the change of ne as it increases.
Typically, ne is larger in the inner region than the outer region, therefore the similar
level of uncertainty in N2 corresponds to a larger uncertainty of ne in the inner region.
In addition, the neutral Li beam attenuation as it penetrates into the plasmas can
cause this trend of increasing uncertainties: consider two separate measurements of the
absolute number of the first excited state which both give the same value of 200± 20

where the total number of neutral beam atoms is 500 in one case and 1000 in another
case. Then, the relative population N2 is (200± 20)/500 = 0.4± 0.04 for the former case
and (200± 20)/1000 = 0.2± 0.02 for the latter case. It is evident that the former case
has the larger uncertainty than the latter case even if the absolute numbers of the first
excited state are the same for both cases. Therefore, the beam attenuation, i.e., decrease
of the total number of beam atoms, can cause the larger uncertainty of ne in the inner
region [25]. Finally, we note that there can be additional effects from the uncertainties
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of the absolute calibration factor [4, 8].

4. Conclusion

In this paper, we have presented a Bayesian model to obtain edge electron density
profiles based on the measured JET Li-BES spectra. The model has been implemented
in the Minerva Bayesian modelling framework. Our scheme includes uncertainties due to
photon statistics and electric noise estimated from the measured data obtained with the
transmission grating spectrometer. The instrument effects such as the interference filter
function and instrument function are inferred from separate measurements using Gaussian
processes whose hyperparameters are selected by evidence maximisation. Also the
electron density profiles are modelled using Gaussian processes, whose hyperparameters
are determined from the JET historical electron density profiles. Inference is done
through maximisation of the posterior (MAP) and Markov Chain Monte Carlo Method
(MCMC) sampling. The Li I line and background intensities are simultaneously inferred
as well as their associated uncertainties, thereby eliminating extra effort of measuring
background intensity via Li neutral beam modulations.
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Gaussian process

1. Introduction

Consistent inference on physics parameters is arguably one of the most important and
fundamental issues in any scientific field. Since large-scale magnetic confinement fusion
experiments such as Joint European Torus (JET) [1] and Wendelstein 7-X (W7-X) [2]
have multiple sophisticated diagnostics, it is inevitable to use a framework that is capable
of handling and keeping track of parameters, data, assumptions, forward models and
analysis codes in order to achieve consistent scientific inference. Resolving discrepancies
among various measurements, if they exist, is challenging at least for the following reasons:
i) forward models and analysis codes for a complex system, e.g., plasma diagnostics,
often contain many hidden assumptions and depend on various uncertain information
such as measurement positions, calibration factors and instrument effects as well as
our insufficient understanding of physics, and ii) even if an individual forward model,
for instance, is well managed, creating a joint model with other diagnostics or physics
models can be difficult due to lack of a standardised interface.

The Minerva framework [3, 4] allows us to perform a consistent data analysis for
complex experiments as it provides a standardised format (modularisation) for forward
models and analysis codes, so called Minerva models, and a standardised interface to
connect all of them in a systematic way. For instance, a Minerva (forward) model for
a Thomson scattering system is built as an independent module depending on lasers,
collecting optics, polychromators, data acquisition systems and physics parameters,
i.e., electron temperature and density. Once the Minerva model is created, the input,
e.g., laser energy and wavelength, polychromator details, electron temperature and
density, and the output, e.g., predicted Thomson scattered signals, can be connected
to/from other Minerva models and/or data sources. Minerva thus standardises scientific
modelling and represents such joint models as joint probabilities and provides their
graphical representation as shown in Figure 1. Some examples of implemented Minerva
models are interferometer [5], magnetic sensor [6, 7, 8], Thomson scattering [9], beam
emission spectroscopy [10, 11], soft X-ray [12], electron cyclotron emission [13], x-ray
imaging crystal spectroscopy [14] and effective ion charge [15] diagnostics. We also note
that data analysis based on Minerva models can be accelerated by field-programmable
gate arrays (FPGAs) [16] and neural networks [17].

The conventional analysis for the high resolution Thomson scattering (HRTS) and
the far infrared (FIR) interferometer diagnostics at JET are carried out individually. The
HRTS can provide electron temperature and density profiles with the spatial resolutions of
0.8−1.6 cm [20, 21]. It is well known that electron density measurements with Thomson
scattering systems require information on the calibration factors of the system [22].
The FIR interferometer diagnostic system provides line integrated electron densities,
i.e., no spatial resolution, without such calibration factors [23, 24, 25, 26]. Bayesian
analysis for Thomson scattering [9, 27, 28], interferometer [5, 29] systems and joint
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Figure 1. A simplified version of the Minerva graph representing the joint model of the
high resolution Thomson scattering (HRTS) and the far infrared (FIR) interferometer
systems at JET. The unknown parameters, i.e., the parameters we wish to determine,
and observations are shown as red and blue circles, respectively. Note that the
observations can be taken from previous inference, e.g., an observed Thomson scattered
amplitude DTS is taken from the inference results described in Section 3.1. The electron
temperature Te and density ne are given as a function of the normalised poloidal flux
ψN and mapped to Cartesian coordinates x, y, z in real space by using the equilibrium
fitting (EFIT) code [18, 19]. The predicted Thomson scattered amplitude ATS are
calculated by the Minerva model of the Thomson scattering system with the calibration
factor CTS treated as an unknown parameter, and they are compared with the observed
data. Line integrated electron densities are calculated by the lines of sight integration
model mimicking the FIR interferometer system and compared with the observed data.
Note that σf,Te

, σx,Te
, σf,ne

and σx,ne
are the hyperparameters of Gaussian processes

which are explained in Section 2.3.

analysis [30] have been previously reported. They made impressive progress, especially
evaluating uncertainties of electron temperature and density. This joint analysis [30] made
use of spline models for the electron temperature and density profiles with additional
monotonicity assumptions, which our method avoids. We use Gaussian processes, with a
smoothness determined by a marginalisation over different length scales, thus providing
an objective smoothness criterion.

In this work, we present a Bayesian joint model of the HRTS and the FIR
interferometer systems at JET to combine the advantages of each diagnostic system
while eliminating the disadvantages of them. We have developed Minerva (forward)
models for both diagnostics individually and combine them as one joint model with
an additional unknown parameter, the HRTS electron density calibration factor CTS,
as shown in Figure 1. The conventional analysis for the HRTS system uses a single
interferometer chord (channel 3) to calibrate electron density for each discharge, if the
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data from the chord 3 is available. It calculates an electron density correction factor (a
single value per discharge) for the HRTS system as the ratio of line integrated density
from the chord 3 to the predicted line integrated density from a linearly interpolated
HRTS density profile with the EFIT mapping. The method in this work infers CTS with
uncertainties, self consistently for each time slice. This means that we can automatically
and explicitly obtain the posterior distribution of CTS explaining all the HRTS and the
FIR interferometer data simultaneously, thereby getting rid of generally required extra
calibration procedures, e.g., Raman calibration, to measure CTS.

Electron temperature and density profiles are formulated by Gaussian processes
[5, 31], a non-parametric model that can adopt the complexity of profiles within a
Bayesian framework. Specifically, we use the hyperparameter model developed by
[32] (denoted as σf,Te , σx,Te , σf,ne and σx,ne in Figure 1) whose details are explained in
Section 2.3. Since we use a non-parametric model, our method does not depend on
any predefined parametric model [20, 21, 33, 34, 35, 36] such as a modified hyperbolic
tangent function [33] which often limit our knowledge on the profiles from measurements.
Moreover, Gaussian processes avoid imposing assumptions such as monotonicity [30, 37].

We explore the joint posterior distribution of the electron temperature and density
profiles, their hyperparameters and the HRTS electron density calibration factor by
using Markov chain Monte Carlo (MCMC) sampling, specifically, we use an adaptive
Metropolis-Hastings algorithm [38, 39, 40] implemented in Minerva. Finally, we obtain
electron temperature(density) profiles with the associated uncertainties by marginalising
out electron density(temperature) profiles, their hyperparameters and the calibration
factor. In other words, our final result on the temperature and density profile does not
depend on a specific set of values of all the other unknown parameters.

Section 2 describes the forward models of the HRTS and the FIR interferometer
systems, and explains Gaussian processes for the electron temperature and density
profile modelling. The details on Bayesian inference for electron temperature and density
profiles and their results are discussed in Section 3. Our conclusions are provided in
Section 4.

2. The forward model

2.1. JET high resolution Thomson scattering system

The HRTS diagnostic [20] measures the electron temperature and density from 63 spatial
locations along the laser beam across the low-field side of JET from the major radius
of R = 3.0m to 3.9m near the middle plane (Z ∼ 0.1m) with spatial resolutions of
0.8−1.6 cm. The laser wavelength of 1064 nm and typical energy level of 5.0 J with 20 ns

pulse duration and 20Hz repetition rate are used. The laser photons are scattered off of
electrons via Thomson scattering, and the Thomson scattered spectra are broadened by
the Doppler effect due to the thermal motions of the electrons. Electron temperature Te
and density ne determine the width and the area, respectively, of a Thomson scattered
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Figure 2. A schematic diagram of the HRTS system showing (a) the geometry of the
laser beam and collecting optics, (b) three spatial locations covered by a polychromator
with three sets of fibres (in this case, two optical fibres per location), (c) a polychromator
with four reflection/transmission interference filters and detectors, and (d) an example
of spectral response functions φ (λ). (e) Four filtered signals (cartoon drawings) detected
by a polychromator from three different spatial locations are distinguished by time
delays. External Raman scattered signals are originated from where the laser beam
crosses the optical path between the collecting optics and the fibres.

spectrum. The predicted Thomson scattered signal amplitude ATS is given as a function
of Te, ne and the HRTS electron density calibration factor CTS including the electronics,
optics and geometric effects:

ATS = CTS neElaser

∫
φ (λ)

φ1,1 (λN)

λ

hc
r2e
S (λ, θ, Te)

λlaser
dλ, (1)

where Elaser is the laser energy, φ (λ) are spectral response functions of the HRTS system,
φ1,1 (λN) is a normalisation factor for the spectral response functions (the value of the
spectral response function of the first spectral channel of the first spatial position at
the wavelength λN = 1020 nm), λ a scattered wavelength, h the Planck constant, c the
speed of light, re the classical electron radius, S (λ, θ, Te) the spectral density function
[41], θ a scattering angle and λlaser the laser wavelength. Further details of the Thomson
scattering model are described in Appendix A.

Each polychromator detects Thomson scattered signals from three spatial locations
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collected by three or six fibres, i.e., one or two fibres per location. The fibres for the
second and third locations are set to be 30m and 60m longer than the first location,
respectively, to separate these signals by time delays (Figure 2). This allows 63 spatial
locations to be addressed by 21 polychromators.

Thomson scattered signals from each spatial location are resolved over time by the
detectors as shown in Figure 2(e). The shape of the Thomson scattered signals depends
on the shape of the laser pulses and detector electronics. By assuming that the HRTS
system has Gaussian-shaped laser pulses and low-pass filter electronics [42], the Thomson
scattered signals as a function of time VTS (t) are formulated as

VTS (t) = ATS

∫ t

0

1√
2πτlaser

1

τelectronics
exp

[
−(t′ − tTS)

2

τ 2laser

]
exp

(
− t− t′

τelectronics

)
dt′, (2)

where ATS is the amplitude (see Equation (1)), τlaser is the width of Gaussian-shaped
laser pulses, τelectronics is the characteristic time of the electronics, and tTS is the time
when the laser energy is the maximum for Thomson scattered signals.

Raman scattered photons also get into the polychromators as the laser beam
crosses the optical path between the collecting optics and fibres outside of the JET
vacuum vessel (Figure 2(a)) in addition to stray light signals. These unintended external
Raman scattered and stray light signals, which we call parasitic signals, are occasionally
overlapping the Thomson scattered signals, therefore they must be separated out. The
parasitic signals can be measured separately by firing laser pulses into the vessel before
every JET discharge. While the temporal evolution of the parasitic signals is not changing,
the amplitudes of the signals may slightly change over plasma discharges due to the
changes of gas pressure and the laser energy. As the parasitic signals are collected by
the same polychromators and fibres we can use Equation (2) to express these signals as

VPS (t) = APS,R

∫ t

0

1√
2πτlaser

1

τelectronics
exp

[
−(t′ − tPS,R)

2

τ 2laser

]
exp

(
− t− t′

τelectronics

)
dt′

+ APS,S

∫ t

0

1√
2πτlaser

1

τelectronics
exp

[
−(t′ − tPS,S)

2

τ 2laser

]
exp

(
− t− t′

τelectronics

)
dt′, (3)

where APS = [APS,R, APS,S] is the amplitude, and tPS = [tPS,R, tPS,S] is the time when the
laser energy is the maximum for these parasitic signals (external Raman scattered and
stray light signals with the subscript R or S, respectively).

By taking account of the Thomson scattered signals VTS (t), the parasitic signals
VPS (t) and the constant background offset VB, we can express the predicted HRTS signals
VHRTS (t) as

VHRTS (t) = VTS (t) + VPS (t) + VB. (4)

Our method infers the Thomson scattered and parasitic signals simultaneously, and
results of the method are discussed in Section 3.1.
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Figure 3. The lines (dashed orange) of sight of the FIR interferometer (Interf) system
and the spatial positions of the HRTS system (green). The HRTS system measures
the electron temperature and density along the green line with spatial resolutions of
0.8−1.6 cm, and the FIR interferometer system measures line integrated densities along
the dashed orange lines. Red line indicates the plasma boundary of a typical JET
plasma discharge.

2.2. JET far infrared (FIR) interferometer system

The JET far infrared (FIR) interferometer [23, 24, 25, 26] diagnostic measures line
integrated electron densities along the eight lines of sight (four vertical and four lateral
directions as shown in Figure 3) with an approximately 10−200 µs temporal resolution
(depending on the channels). The 1st and 4th channels measure the line integrated
densities near the first wall, constraining the electron density at the edge, and the other
lines of sight cover the plasma core. Our forward model calculates the line integrated
electron density of the ith channel V i

interf as:

V i
interf =

∫
ne (x, y, z) d`, (5)

where the integration path
∫
d` is all the way along the lines of sight inside the vacuum

vessel.

2.3. Gaussian process prior

A Gaussian process [31] is a probabilistic function that associates each element of
a domain to a single element of a random vector following a multivariate Gaussian
distribution whose mean at every point and covariance between any two points within
the domain are defined. Thus, the function that is modelled by a Gaussian process is
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not constrained by any specific parametric representation, but properties given by their
mean and covariance functions.

Zero mean, which does not usually limit the inference solutions [31], and squared
exponential covariance functions are one of the most common specifications of a Gaussian
process, and they are given as

µ (x) = 0 (6)

Σ
(
xi, xj

)
= σ2

f exp

(
−(xi − xj)

2

2σ2
x

)
+ σ2

yδ
ij, (7)

where µ is the mean function, and x is a scalar or vector input, e.g., time or space. xi
and xj denote ith and jth elements of the input domain, respectively. Σ is the covariance
function with an overall scale σf , a length scale σx and a noise scale σy. These scales are
hyperparameters, and σf and σx determine the smoothness of the function. σy is chosen
to be a relatively small number with respect to the overall scale, i.e., σy/σf = 10−3 in
this work, to avoid any numerical instability [10]. δij is the Kronecker delta function.

We note that Gaussian processes have been introduced to the fusion community
with a non-parametric tomography for the JET FIR interferometer data [5] and used
for current tomography [6, 7, 43, 44], beam emission spectroscopy [10, 11], soft X-ray
spectroscopy [12], X-ray imaging crystal spectroscopy [14] and profile regressions [32].
In this work, Gaussian processes are used to model electron temperature and density
profiles to constrain their smoothness (gradient scale length) without imposing any
specific profile shapes or assumptions such as monotonicity.

Electron temperature and density profiles can have substantially different gradients
in the core and edge regions [45]. In order to represent such spatially varying gradients,
we choose non-stationary covariance functions [46], given as

Σ
(
xi, xj

)
= σ2

f

(
2σx (x

i) σx (x
j)

σx (xi)
2 + σx (xj)

2

) 1
2

exp

(
− (xi − xj)

2

σx (xi)
2 + σx (xj)

2

)
+ σ2

yδ
ij, (8)

where the length scale σx is an arbitrary function of the input x. The length scale
function σx specifies the smoothness at any point on the domain. We need a function
with different length scales in the core and edge regions and a smooth transition between
the two. For this reason, we choose a hyperbolic tangent function [32],

σx
(
xi
)
=
σcore
x + σedge

x

2
− σcore

x − σedge
x

2
tanh

(
xi − x0
σwidth
x

)
, (9)

where σcore
x and σedge

x are the core and edge length scales, respectively. x0 is the transition
position of the length scale, and σwidth

x determines how fast the transition occurs. With
this length scale function, the smoothness (gradient scale length) of the profiles is
changing gradually from the core to the edge.

The Gaussian processes of electron temperature and density profiles are set as a
function of the normalised poloidal flux, i.e., x = ψN, as shown in the Figure 1. By using
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the equilibrium fitting (EFIT) code [18, 19] with only the magnetic diagnostics, electron
temperature and density profiles are mapped onto Cartesian coordinates x, y, z in real
space. The forward models of the HRTS and the FIR interferometer systems access
values of Te and ne at their corresponding spatial positions and calculate the predictions,
ATS and V i

interf , given by Equation (1) and (5), respectively. These predictions are directly
compared to the observations for inference.

3. Bayesian inference

In Bayesian probability theory, we express a probability of generating (observing)
experimental data D given parameter values H as a conditional probability P (D|H),
a likelihood. Our state of knowledge on the parameters H before any observations are
taken into account is formulated as a prior probability P (H). For instance, P (Te) may
be a uniform distribution from zero to some maximum, e.g., 100 keV. Note that the
parameters H are what we wish to infer by conducting experiments. Bayes’ formula
states that our state of knowledge on the parameters H given the observed data D is
the posterior probability P (H|D), expressed as

P (H|D) =
P (D|H)P (H)

P (D)
, (10)

where the denominator is a normalisation factor P (D) (also called the model evidence).
A more detailed description of Bayesian inference can be found in [47, 48].

The posterior distribution is high dimensional if there exist many parameters of
interest. Thus, to calculate lower dimensional distributions of parameters of interest, a
marginalisation has to be carried out:

P (H1) =

∫
P (H1, H2) dH2. (11)

The marginal distributions provide full information of the parameters of interest by
taking into account all possible values of the other parameters. We can perform this
integration by collecting values of the parameters of interest H1 from joint samples
[H1, H2] of the joint distribution P (H1, H2). These collected values of H1 are equivalent
to samples drawn from the marginal distribution P (H1).

In this work, the parameters are electron temperature and density profiles at
50 normalised poloidal flux surfaces, Te = [Te (ψ

i=1
N ) , Te (ψ

i=2
N ) , · · · , Te (ψi=s

N )] and
ne = [ne (ψ

i=1
N ) , ne (ψ

i=2
N ) , · · · , ne (ψ

i=s
N )] with s = 50, the calibration factor CTS and the

hyperparameters MTe = [σf,Te , σx,Te ] and Mne = [σf,ne , σx,ne ] (the red circles in Figure 1).
σx,Te and σx,ne are given by Equation (9) with two sets of four parameters σcore

x , σedge
x ,

σwidth
x , and x0. The data are obtained by the HRTS and the FIR interferometer diagnostics.

With DTS denoting the amplitudes of Thomson scattered signals from all the spatial
locations and Dinterf standing for the line integrated electron densities from all the lines
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of sight, the posterior is expressed as

P (Te,ne, CTS,MTe ,Mne |DTS,Dinterf)

=
P (DTS,Dinterf |Te,ne, CTS,MTe ,Mne)P (Te,ne, CTS,MTe ,Mne)

P (DTS,Dinterf)

=
P (DTS|Te,ne, CTS)P (Dinterf |ne)P (Te|MTe)P (ne|Mne)P (MTe)P (Mne)P (CTS)

P (DTS)P (Dinterf)
.

(12)

Notice that Figure 1 exactly expresses Equation (12) which is automatically generated
by the Minerva framework such that conditional dependences among the parameters
and observations can be easily verified.

Raw data from the HRTS system contain the parasitic signals, i.e., the external
Raman scattered and stray light signals as explained in Section 2.1. In order to proceed
the profile inference, we have to first extract the Thomson scattered signals from the raw
HRTS data which is discussed in Section 3.1. Then, we present how electron temperature
and density profiles are inferred in Section 3.2.

3.1. Inference on the amplitudes of the Thomson scattered signals

We assume that the time series of raw HRTS data from the ith spatial position
(total of 63 spatial positions with 21 polychromators, i = 1, 2, . . . , 63) and the
jth spectral channel (four spectral channels for each polychromator j = 1, . . . , 4)
denoted as Di,j

HRTS§ is following a multivariate Gaussian distribution whose mean
is the HRTS predicted signals Vi,j

HRTS given by Equation (4) with the covariance
Σi,j

HRTS as a combination of the electronics and photon noises. Thus, the probability
P
(
Di,j

HRTS|A
i,j
TS, A

i,j
PS, V

i,j
B , ti,jTS, t

i,j
PS, τ

i,j
laser, τ

i,j
electronics

)
is written as

P
(
Di,j

HRTS|A
i,j
TS, A

i,j
PS, V

i,j
B , ti,jTS, t

i,j
PS, τ

i,j
laser, τ

i,j
electronics

)
=

1√
(2π)m

∣∣Σi,j
HRTS

∣∣ exp
(
−1

2

(
Di,j

HRTS −Vi,j
HRTS

)T
Σi,j

HRTS

−1 (
Di,j

HRTS −Vi,j
HRTS

))
. (13)

Di,j
HRTS and Vi,j

HRTS are time series vectors, e.g., Di,j
HRTS =

[
Di,j

HRTS (t = t1) , · · · , Di,j
HRTS (t = tm)

]
with m = 500 covering 500 ns. The covariance Σi,j

HRTS is given as a diagonal matrix
assuming no correlation with other time points, that is

Σi,j
HRTS =


(
σi,j
HRTS (t = t1)

)2
0 · · · 0

0
(
σi,j
HRTS (t = t2)

)2 · · · 0
... ... . . . ...
0 0 · · ·

(
σi,j
HRTS (t = tm)

)2

 , (14)

§ Note that DTS in Equation (12) are the amplitudes of the Thomson scattered signals extracted from
the raw HRTS data DHRTS.
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Figure 4. (a) An example of the parasitic signals obtained by firing the laser pulses
before a plasma discharge. Different signal levels from different laser pulses (different
colours) at a fixed time are dominated by the photon noise. (b) Poisson statistics are
calculated from the linear relation between the signal mean and variance from the
different parasitic signals, and we find that σ2

photon = aVHRTS with a = 2.01× 10−4 in
this example.

where
(
σi,j
HRTS (t)

)2
=
(
σi,j
electronics

)2
+
(
σi,j
photon (t)

)2 is the uncertainty of the raw HRTS
data.

The electronics noise σi,j
electronics is set as a zero mean Gaussian noise whose standard

deviation is estimated from the electronics noise signals measured before the laser pulses
and plasma discharges, i.e., without the laser pulses and plasmas, and assumed not to
vary over time.

The photon noise is estimated from the mean and variance of the parasitic signals.
Figure 4(a) shows an example of the parasitic signals obtained by firing many laser pulses
(different colours) before a single plasma discharge, and (b) shows the linear relation
between the signal mean and the variance over many laser pulses with the estimated slope
of a = 2.01× 10−4. Here, the photon noise is assumed to be the dominant contribution
to the signal fluctuation [36]. Once we have the value of a, then the photon noise can be
estimated as (

σi,j
photon (t)

)2
= aV i,j

HRTS (t) . (15)

More details on the method of the photon noise estimation can be found in [10].
Assuming that a prior probability of each parameter (Ai,j

TS, Ai,j
PS, V i,j

B , ti,jTS, ti,jPS, τ i,jlaser

and τ i,jelectronics) is given as a uniform distribution, the posterior probability is written as

P
(
Ai,j

TS, A
i,j
PS, V

i,j
B , ti,jTS, t

i,j
PS, τ

i,j
laser, τ

i,j
electronics|D

i,j
HRTS

)
=

P
(
Di,j

HRTS|A
i,j
TS, A

i,j
PS, V

i,j
B , ti,jTS, t

i,j
PS, τ

i,j
laser, τ

i,j
electronics

)
×

P
(
Ai,j

TS

)
P
(
Ai,j

PS

)
P
(
V i,j
B

)
P
(
ti,jTS

)
P
(
ti,jPS
)
P
(
τ i,jlaser

)
P
(
τ i,jelectronics

)
P
(
Di,j

HRTS

) . (16)

The posterior distribution of Ai,j
TS, A

i,j
PS, V

i,j
B , ti,jTS, t

i,j
PS, τ

i,j
laser and τ i,jelectronics is explored

by Markov chain Monte Carlo (MCMC) sampling, specifically, we use the adaptive



12

0 100 200 300 400 500
t [ns]

0.00

0.05

0.10

0.15

V

Polychromator 7, Spectral channel 4
HRTS data
PS signal prediction
TS signal prediction
HRTS data prediction

Figure 5. An example of the measured raw HRTS data Di,j
HRTS (orange dots) and

the mean of predicted HRTS signals Vi,j
HRTS (dark blue line) from the fourth spectral

channel (j = 4) of the seventh polychromator (corresponding to i = 19, 20 and 21)
during a plasma discharge over one laser pulse. The light blue lines show samples of
the posterior (Equation (16)) explored by the MCMC method. The red and green lines
are the predicted Thomson scattered signals Vi,j

TS and the predicted parasitic signals
Vi,j

PS calculated through Equations (2) and (3), respectively, given the posterior mean.
There are three peaks of Thomson scattered signals as one polychromator receives the
signals from three different spatial positions as described in Section 2.1

Metropolis-Hastings algorithm [38, 39, 40]. The mechanism of this algorithm is: i) to
propose a random sample x′ in parameter space from a proposal distribution Q (x′|xt)
given a previous sample xt and ii) to accept the candidate if P (x′) /P (xt) ≥ u, otherwise
reject it (P (x) is the posterior probability of x, and u is a random number from a
uniform distribution on [0, 1]). After some iterations, the algorithms will collect a set of
samples, which are drawn from the posterior distribution [38, 39]. We use an adaptive
rule [40] to modify the proposal distribution Q in every iteration to sample the posterior
distribution effectively.

The samples drawn from the posterior distribution given by Equation (16) are
shown in Figure 5. The orange dots are the measured raw HRTS data Di,j

HRTS (the fourth
spectral channel of the seventh polychromator in this example) during a plasma discharge
over one laser pulse. The dark blue line is the mean of predicted HRTS signals Vi,j

HRTS,
whereas the light blue lines are samples of the posterior. The red and green lines are
the predicted Thomson scattered signals Vi,j

TS and the predicted parasitic signals Vi,j
PS

calculated through Equations (2) and (3), respectively, given the posterior mean.
As electron temperature and density profiles are inferred based on the observed‖

‖ As a matter of fact, DTS is an inferred quantity (rather than being an observed quantity) from the
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Figure 6. Comparisons between the mean values of the Thomson scattered amplitudes
with one standard deviation error bars from the Bayesian approach and the conventional
method for (a) JET discharge #88630 at 8.024 s and (b) JET discharge #89380 at
11.776 s. The black line is: y = x.

amplitudes of the Thomson scattered signals DTS from all the spatial locations, we
need to obtain ATS given the measured raw HRTS data (see Equation (2)). Thus, we
marginalise out all the other parameters except Ai,j

TS from the posterior as

P
(
Ai,j

TS|D
i,j
HRTS

)
=∫

P
(
Ai,j

TS, A
i,j
PS, V

i,j
B , ti,jTS, t

i,j
PS, τ

i,j
laser, τ

i,j
electronics|D

i,j
HRTS

)
dAi,j

PSdV
i,j
B dti,jTSdt

i,j
PSdτ

i,j
laserdτ

i,j
electronics.

(17)

We perform the marginalisation by collecting the values of Ai,j
TS from sample vectors[

Ai,j
TS, A

i,j
PS, V

i,j
B , ti,jTS, t

i,j
PS, τ

i,j
laser, τ

i,j
electronics

]
of the posterior given by Equation (16). The

collected values of Ai,j
TS are equivalent to samples drawn from the marginal posterior

distribution P
(
Ai,j

TS|D
i,j
HRTS

)
given by Equation (17). Finally, we define the mean and

variance of the amplitudes of the Thomson scattered signal from the jth spectral channel
of the ith spatial position as Di,j

TS and
(
σi,j
TS

)2 for profile inference in the following section,
respectively, which are calculated as

Di,j
TS =

∫
Ai,j

TS P
(
Ai,j

TS|D
i,j
HRTS

)
dAi,j

TS, (18)(
σi,j
TS

)2
=

∫ (
Ai,j

TS −Di,j
TS

)2
P
(
Ai,j

TS|D
i,j
HRTS

)
dAi,j

TS. (19)

We emphasise that our method infers the amplitudes of the Thomson scattered
signals Ai,j

TS by taking into account all possible values of all the other parameters Ai,j
PS,

V i,j
B , ti,jTS, t

i,j
PS, τ

i,j
laser and τ i,jelectronics. As discussed in Section 2.1, the parasitic signals

measured raw data DHRTS. We treat the inferred DTS as an observed one for the profile inference.
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might change over laser pulses during plasma discharges, and our method takes that
into account by marginalisation, to arrive at a proper distribution of Ai,j

TS from the raw
HRTS measurements. In addition, our method uses a more realistic signal model for the
Thomson scattered and parasitic signals (Equations (2) and (3)) and uncertainty model
which takes into account electronics and Photon noises. In contrast, the conventional
method uses a Gaussian signal model and does not perform the marginalisation to
calculate Ai,j

TS. The mean values of the Thomson scattered amplitudes with one standard
deviation error bars from the Bayesian approach and the conventional method are
compared as shown in Figure 6. In general, the two results are comparable to each other,
but there are notable differences on the size of error bars, especially when the signal
level is low.

3.2. Inference on the electron temperature and density profiles

3.2.1. Likelihood. To obtain the posterior probability of electron temperature and
density profiles, Te and ne, the calibration factor CTS, and the hyperparameters, MTe

and Mne , given DTS and Dinterf , we need to model two likelihoods, i.e., one for the
Thomson scattered data P (DTS|Te,ne, CTS) and the other for the FIR interferometer
data P (Dinterf |ne) as described in Equation (12).

We assume that the conditional probability of the Thomson scattered data
P (DTS|Te,ne, CTS) is a multivariate Gaussian distribution whose mean is DTS ={
Di,j

TS|i = 1, 2, · · · , 63, j = 1, · · · , 4
}
=
[
D1,1

TS, D
1,2
TS, · · · , D

63,3
TS , D

63,4
TS

]
(63 spatial positions

and four spectral channels for each polychromator resulting in total of 63 × 4 = 252

amplitudes) with the covariance ΣTS as

ΣTS =



(
σ1,1
TS

)2
0 · · · 0 0

0
(
σ1,2
TS

)2 · · · 0 0
... ... . . . ... ...
0 0 · · ·

(
σ63,3
TS

)2
0

0 0 · · · 0
(
σ63,4
TS

)2

 . (20)

We have calculated Di,j
TS and

(
σi,j
TS

)2 in Section 3.1. Thus, we have

P (DTS|Te,ne, CTS) =
1√

(2π)k |ΣTS|
exp

(
−1

2
(DTS −ATS?)

T Σ−1
TS (DTS −ATS?)

)
,

(21)
where ATS? =

{
Ai,j

TS?|i = 1, 2, · · · , 63, j = 1, · · · , 4
}
=
[
A1,1

TS?, A
1,2
TS?, · · · , A

63,3
TS?, A

63,4
TS?

]
is a

predicted quantity (denoted with an additional subscript ?) calculated by Equation (1)
given the parameters of Te,ne and CTS. Notice the difference between ATS? and ATS,
where the latter is an observed quantity from the raw HRTS data. Here, k is the total
number of Thomson scattered amplitudes, i.e. k = 63 × 4 = 252. We formulate the
likelihood for the Thomson scattered data as a multivariate Gaussian distribution for
computational efficiency.
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With the same argument, the conditional probability of the FIR interferometer data
P (Dinterf |ne) is

P (Dinterf |ne) =
1√

(2π)l |Σinterf |
exp

(
−1

2
(Dinterf −Vinterf)

T Σ−1
interf (Dinterf −Vinterf)

)
,

(22)
where Vinterf = {V i

interf |i = 1, 2, · · · , 8} = [V i=1
interf , V

i=2
interf , · · · , V i=8

interf ] is a set of the
predicted line integrated densities calculated by Equation (5) given the parameter
of ne. Here, l = 8 representing the eight lines of sight. The covariance matrix Σinterf is
an l × l diagonal matrix, where the diagonal elements describe the uncertainties, i.e.,
variance, of the eight channels of the FIR interferometer system. Relevant measured
quantities Dinterf and Σinterf are retrieved from the data source [5, 29], i.e., JET database.

3.2.2. Prior. We now turn our attention to model the prior probabilities, which are
P (Te|MTe), P (ne|Mne), P (MTe), P (Mne) and P (CTS), in Equation (12).

The prior probabilities of Te and ne are modelled by using the Gaussian processes
with the zero mean function (Equation (6)) and the covariance function Σ

(
ψi
N, ψ

j
N

)
(Equation (8)). We form the Gaussian process priors as

P (Te|MTe) =
1√

(2π)s |ΣTe |
exp

(
−1

2
(Te − 0)T Σ−1

Te
(Te − 0)

)
, (23)

P (ne|Mne) =
1√

(2π)s |Σne |
exp

(
−1

2
(ne − 0)T Σ−1

ne
(ne − 0)

)
, (24)

where s = 50 denotes the number of flux surfaces we use to infer the profiles in this work.
0 is the zero vector, and the covariance matrix Σ⊕ (where the subscript ⊕ representing
either Te or ne) is defined as

Σ⊕ =


Σ⊕ (ψi=1

N , ψi=1
N ) Σ⊕ (ψi=1

N , ψi=2
N ) · · · Σ⊕ (ψi=1

N , ψi=s
N )

Σ⊕ (ψi=2
N , ψi=1

N ) Σ⊕ (ψi=2
N , ψi=2

N ) · · · Σ⊕ (ψi=2
N , ψi=s

N )
... ... . . . ...

Σ⊕ (ψi=s
N , ψi=1

N ) Σ⊕ (ψi=s
N , ψi=2

N ) · · · Σ⊕ (ψi=s
N , ψi=s

N )

 . (25)

We set the prior probabilities of the hyperparameters P (MTe) and P (Mne) to be
uniform distributions. Likewise, the prior of the calibration factor P (CTS) is set to be a
uniform distribution.

3.2.3. Posterior. Equation (12) provides us the joint posterior probability of Te, ne,
CTS, MTe and Mne with the likelihoods, i.e., Equations (21) and (22), and the prior
probabilities, i.e., Equations (23) and (24) together with the uniform distributions for CTS,
MTe and Mne . The joint posterior distribution of Te, ne, CTS, MTe and Mne is explored
by MCMC sampling with the adaptive Metropolis-Hastings algorithm [38, 39, 40]. The
inference results for JET discharge #88630 at 10.526 s (L-mode) are shown in Figure 7:
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Figure 7. Inference results for JET discharge #88630 at 10.526 s (L-mode): (a) Te
profiles, (b) Te gradient, (c) length scale of Te profiles, (d) ne profiles, (e) ne gradient
and (f) length scale of ne profiles. The thick and light blue lines are the mean and
samples, respectively, of the marginal joint posterior distributions. The blue dashed
lines are the lower and upper boundaries of two standard deviation (±2σ) marginal
posterior uncertainty bands. For comparison, the electron temperature and density
profiles (red dots with ±2σ error bars on a few points) and gradients (red lines) from
the conventional analysis of the HRTS system [20] are shown. The results (orange lines)
of a fitted modified hyperbolic tangent function [33] to the conventional analysis are
also presented here. The red vertical line in (d) indicates a large uncertainty of the
conventional analysis outside of the last closed flux surface due to a small signal-to-noise
ratio.

(a) Te profiles, (b) Te gradient, (c) length scale of Te profiles, (d) ne profiles, (e) ne

gradient and (f) length scale of ne profiles. The electron temperature(density) profiles are
obtained by marginalising over the electron density(temperature) profiles, the calibration
factor CTS and hyperparameters MTe and Mne . Similarly, the length scale profiles of Te
and ne are obtained by marginalising over all the other parameters. The gradient profiles
are calculated numerically from these marginalised Te and ne profiles. The thick and
light blue lines are the mean and samples, respectively, of the marginal joint posterior
distributions. The blue dashed lines are the lower and upper boundaries of two standard
deviation (±2σ) marginal posterior uncertainty bands.

For comparison, we show, in Figure 7, the electron temperature and density profiles
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Figure 8. The data (orange dots) and predictions (blue crosses with ±1σ error bars)
of (a) the HRTS and (c) the FIR interferometer systems for JET discharge #88630

at 10.526 s. The differences between the predictions P and data D divided by the
uncertainties σ are shown in (b) and (d). Note that the channels #1 and #2 of the
FIR interferometer system were not available for this discharge, hence no measured
line integrated densities for these channels.

(red dots with ±2σ error bars on a few points) and Te and ne gradient profiles (red lines)
from the conventional analysis of the HRTS system [20]. The gradient profiles from the
conventional analysis are calculated from two neighbouring points then smoothened by a
simple moving mean with five points. We also present the results (orange lines) of a fitted
modified hyperbolic tangent function [33] to the conventional analysis. The Bayesian
method reproduces the gradient profiles which agree with those from the conventional
method within the marginal posterior uncertainties.

The data (orange dots) and predictions (blue crosses with ±1σ error bar) of the
HRTS and the FIR interferometer systems are shown in Figure 8 (a) and (c). The
predictions are calculated through Equations (1) and (5) given the mean of the joint
posterior distribution. The differences between the predictions P and data D divided by
the uncertainties σ are also shown in Figure 8 (b) and (d). The data and predictions
agree within the uncertainties.

An example of the electron temperature and density profiles of a JET H-mode
discharge (#89380 at 11.776 s) is shown in Figure 9. The Gaussian processes infer the
pedestal gradients of the electron temperature and density profiles by taking account
of all possible hyperparameter values and marginalising them out. Note that we have
not included the spatial instrument response of the HRTS system because all the HRTS
data used in this work are obtained from the present HRTS configuration that affects
the pedestal gradient minimally [21].

We emphasise that our method inferring profiles of electron temperature and density
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Figure 9. Same as Figure 7 for a JET H-mode discharge (#89380 at 11.776 s).

do not depend on any parametrisation due to the usage of non-parametric Gaussian
processes with the hyperparameters. The choice of Gaussian process class will result in
different prior probabilities for different profile shapes. At the same time, the Gaussian
process is still a universal approximator, so given enough data the actual underlying
profile would be recovered. It is very hard to estimate, even define, the bias introduced
by the choice of Gaussian process family, but within a family the marginalisation over
hyperparameters should objectively choose proper smoothnesses. The choice of Gaussian
process family (in this case the hyperbolic tangent function) will in the end correspond
to a physics assumption, though a much weaker one than a strict parameterised function.
In no case though will the shape be related (not even weakly) to a hyperbolic tangent
curve. Thus, non-hyperbolic tangent profile shapes, e.g., hollow profiles, can be inferred
as shown in Figure 10 where the profile shapes are fully determined by the data, taking
account of all possible combinations of CTS, MTe and Mne .

This Gaussian process family well reproduces all profile shapes we have examined
including highly non-monotonic profiles. Nevertheless, there might be cases which are
not well represented by this Gaussian process family. Extensive usage of our method
will show how versatile this Gaussian process parameterisation is.
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Figure 10. Same as Figure 7 for ne inference results for (a), (b) and (c) JET discharge
#88680 at 11.776 s (H-mode plasma with 6MW neutral beam injection) and (d), (e)
and (f) #88400 at 11.076 s (H-mode plasma with pellet injection).

3.3. Discussion on the calibration factor CTS

The electron density calibration factor CTS for the HRTS system is set as a single
unknown parameter for all the spectral channels of all the polychromators and inferred
by sampling the joint posterior distribution, i.e., Equation (12), that can explain both
the measured HRTS and FIR interferometer data. Figure 11 shows the mean (thick
segmented blue lines) and the samples (light blue lines) from the marginalised CTS

posterior distribution over all the other parameters which are electron temperature,
density and their associated hyperparameters for multiple time points of several JET
discharges.

The inferred calibration factor may provide us useful information on the HRTS
system. For instance, relatively large variation of the calibration factor within a single
discharge, e.g., JET discharge #88380 in Figure 11, may be caused by: i) a fluctuation
of the laser energy, ii) a laser misalignment or iii) over/under-estimation of the plasma
volume via the EFIT code. The overall trend of the calibration factor over many discharges
may suggest us unforeseen slow aberration of the instruments such as contamination
on the collecting optics (by dust for example). Our method can handle the temporal
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Figure 11. Evolution of the electron density calibration factor CTS over multiple JET
discharges. The upper and lower labels on the abscissa are the time points and the
discharge numbers, respectively. The thick segmented blue lines show the mean of the
samples (light blue lines) from the marginalised CTS posterior distribution. Evolution of
CTS may provide us how the HRTS system vary over time. The blue dashed lines are the
lower and upper boundaries of one standard deviation marginal posterior uncertainty
bands.

variation of CTS as well as the uncertainties of CTS and its influence on the profile
quantities.

4. Conclusions

We have developed and presented a Bayesian inference scheme for electron temperature
and density profiles using non-parametric Gaussian processes consistent with the high
resolution Thomson scattering (HRTS) and the far infrared (FIR) interferometer data
from JET. The forward models of both systems are constructed within the Minerva
framework, individually and combined together. Our method consists of two steps:
i) extracting the amplitudes of the Thomson scattered signals from the raw HRTS
measurements, and ii) inferring the electron temperature and density profiles.

The raw HRTS measurements contain not only the Thomson scattered but also the
parasitic signals which are external Raman scattered and stray light signals. These signals
are carefully modelled by taking account of the instrument effects with the associated
uncertainties which are electronics and photon noises. The joint posterior distribution of
the Thomson scattered and the parasitic signals are explored by Markov chain Monte
Carlo (MCMC) sampling, and the amplitudes of the Thomson scattered signals are
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obtained by marginalising out all the other parameters. The mean and variance of the
amplitudes define the observed quantities for the profile inference.

The electron temperature and density profiles are modelled by non-parametric
Gaussian processes. The profiles are inferred from the observed amplitudes of the
Thomson scattered signals and the FIR interferometer data by exploring (with MCMC
sampling) the joint posterior distribution of the electron temperature and density profiles,
the electron density calibration factor of the HRTS system and the hyperparameters.
The electron temperature and density profiles are obtained by marginalising out all
the other parameters. Therefore, these profiles do not depend on a specific value of
hyperparameters nor any parametric regressions which may restrain the shape of the
profiles significantly. In addition, combining the HRTS and the FIR interferometer
data allows us to infer the calibration factor and its uncertainty, and it may provide us
knowledge on unforeseen aberration of the diagnostic systems over time.

These inference results, including the profile samples, can be used for further
advanced investigation such as transport analysis with TRANSP [49]. Samples of
gradient profiles can be fed to transport codes to extract uncertainty information on
calculated physics parameters.
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Appendix A. Details on the Thomson scattering model, i.e., Equation (1)

Thomson scattered energy E per unit solid angle Ω per unit wavelength λ that depends
on the electron temperature Te and density ne is given by Naito formula [41]

∂2E

∂Ω∂λ
= r2eneElaserL

S (λ, θ, Te)

λlaser
, (A.1)

where re is the classical electron radius, Elaser the energy of incident laser, L a scattering
length, S the spectral density function which depends on scattering wavelength λ and
angle θ in addition to the electron temperature Te. Since N = λ

hc
E where N is the

number of photons at the wavelength λ, Equation (A.1) can be rewritten as

∂2N

∂Ω∂λ
=

λ

hc

∂2E

∂Ω∂λ
, (A.2)

where h is the Planck constant and c the speed of light.
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Taking account of spectral response functions of Thomson scattering diagnostic
systems (in this case, the HRTS system) φ (λ), which include the transmittance of optics
and polychromator filter functions, the number of collected photons NTS is

NTS =

∫∫
φ (λ)

∂2N

∂Ω∂λ
dΩdλ

=

∫∫
φ (λ)

λ

hc
r2eneElaserL

S (λ, θ, Te)

λlaser
dΩdλ

≈ L∆Ω neElaser

∫
φ (λ)

λ

hc
r2e
S (λ, θ, Te)

λlaser
dλ, (A.3)

and the last line is obtained by approximating
∫
dΩ to ∆Ω.

Detectors convert the collected photons to an electronics signal ATS with their gain
factor G, thus we have

ATS = GL∆Ω φ1,1 (λN)neElaser

∫
φ (λ)

φ1,1 (λN)

λ

hc
r2e
S (λ, θ, Te)

λlaser
dλ, (A.4)

where φ1,1 (λN) is a normalisation factor for the spectral response functions (the value of
the spectral response function of the first spectral channel of the first spatial position at
the wavelength λN = 1020 nm in our case).

Equation (1) is obtained by letting the electron density calibration factor CTS =

GL∆Ω φ1,1 (λN), that is

ATS = CTS neElaser

∫
φ (λ)

φ1,1 (λN)
(λ)

λ

hc
r2e
S (λ, θ, Te)

λlaser
dλ. (A.5)

References

[1] Litaudon X et al. 2017 Nuclear Fusion 57 102001 ISSN 0029-5515 URL http://stacks.iop.org/
0029-5515/57/i=10/a=102001?key=crossref.17a0f33a13c4a2bbaaafb54b4eb7df30

[2] Wolf R et al. 2017 Nuclear Fusion 57 102020 URL https://doi.org/10.1088%2F1741-4326%
2Faa770d

[3] Seed eScience Research The Minerva framework URL https://seed-escience.org/
[4] Svensson J and Werner A 2007 Large Scale Bayesian Data Analysis for Nuclear Fusion Experiments

2007 IEEE International Symposium on Intelligent Signal Processing (IEEE) pp 1–6 ISBN
978-1-4244-0829-0 URL http://ieeexplore.ieee.org/document/4447579/

[5] Svensson J 2011 JET report, EFDA–JET–PR(11)24 URL http://www.euro-fusionscipub.org/
wp-content/uploads/eurofusion/EFDP11024.pdf

[6] Svensson J and Werner A 2008 Plasma Physics and Controlled Fusion 50 085002
ISSN 0741-3335 URL http://stacks.iop.org/0741-3335/50/i=8/a=085002?key=crossref.
8b9e7d2d10e66d8a740fcec9ab77227d

[7] von Nessi G T, Hole M J, Svensson J and Appel L 2012 Physics of Plasmas 19 012506 ISSN
1070-664X URL http://aip.scitation.org/doi/10.1063/1.3677362

[8] von Nessi G T and Hole M J 2014 Plasma Physics and Controlled Fusion 56 114011
ISSN 0741-3335 URL http://stacks.iop.org/0741-3335/56/i=11/a=114011?key=crossref.
d58e08b3c9223c89bab07f760e99229e



23

[9] Bozhenkov S, Beurskens M, Molin A D, Fuchert G, Pasch E, Stoneking M, Hirsch M, Höfel U,
Knauer J, Svensson J, Mora H T and Wolf R 2017 Journal of Instrumentation 12 P10004–P10004
ISSN 1748-0221 URL http://stacks.iop.org/1748-0221/12/i=10/a=P10004?key=crossref.
21c7d556bea6caf012906a098b133ef0

[10] Kwak S, Svensson J, Brix M and Ghim Y c 2016 Review of Scientific Instruments 87 023501 ISSN
0034-6748 URL http://aip.scitation.org/doi/10.1063/1.4940925

[11] Kwak S, Svensson J, Brix M and Ghim Y C 2017 Nuclear Fusion 57 036017
ISSN 0029-5515 URL http://stacks.iop.org/0029-5515/57/i=3/a=036017?key=crossref.
78317e8d5c69c0d93e4bfd4af120a500

[12] Li D, Svensson J, Thomsen H, Medina F, Werner A and Wolf R 2013 Review of Scientific Instruments
84 083506 ISSN 0034-6748 URL http://aip.scitation.org/doi/10.1063/1.4817591

[13] Schmuck S, Svensson J, De La Luna E, Figini L, Johnson T, Alper B, Beurskens M, Fessey J,
Gerbaud T and Sirinelli A 2011 Bayesian derivation of electron temperature profile using jet ece
diagnostics 38th EPS Conference on Plasma Physics 2011, EPS 2011 : Europhysics Conference
Abstracts (Europhysics Conference Abstracts no 35:2) pp 1512–1515 qC 20140828

[14] Langenberg A, Svensson J, Thomsen H, Marchuk O, Pablant N A, Burhenn R and Wolf R C 2016
Fusion Science and Technology 69 560–567 ISSN 15361055 URL https://www.tandfonline.
com/doi/full/10.13182/FST15-181

[15] Krychowiak M 2016 Review of Scientific Instruments 87 11D304 ISSN 10897623 URL http:
//scitation.aip.org/content/aip/journal/rsi/87/11/10.1063/1.4964376

[16] Mora H T, Bozhenkov S, Knauer J, Kornejew P, Kwak S, Ford O, Fuchert G, Pasch E,
Svensson J, Werner A, Wolf R and Timmermann D 2017 FPGA acceleration of Bayesian
model based analysis for time-independent problems 2017 IEEE Global Conference on Signal
and Information Processing (GlobalSIP) (IEEE) pp 774–778 ISBN 978-1-5090-5990-4 URL
http://ieeexplore.ieee.org/document/8309065/

[17] Pavone A, Svensson J, Langenberg A, Pablant N, Hoefel U, Kwak S, Wolf R C and Team W X
2018 Review of Scientific Instruments 89 10K102 ISSN 0034-6748 URL http://aip.scitation.
org/doi/10.1063/1.5039286

[18] Lao L, St John H, Stambaugh R, Kellman A and Pfeiffer W 1985 Nuclear Fusion 25
1611–1622 ISSN 0029-5515 URL http://stacks.iop.org/0029-5515/25/i=11/a=007?key=
crossref.382b4e7e430c8741af0f7248e9a56c09

[19] O'Brien D, Lao L, Solano E, Garribba M, Taylor T, Cordey J and Ellis J 1992 Nuclear Fusion 32
1351–1360 URL https://doi.org/10.1088%2F0029-5515%2F32%2F8%2Fi05

[20] Pasqualotto R, Nielsen P, Gowers C, Beurskens M, Kempenaars M, Carlstrom T and Johnson D 2004
Review of Scientific Instruments 75 3891–3893 ISSN 0034-6748 URL http://aip.scitation.
org/doi/10.1063/1.1787922

[21] Frassinetti L, Beurskens M N A, Scannell R, Osborne T H, Flanagan J, Kempenaars M, Maslov M,
Pasqualotto R and Walsh M 2012 Review of Scientific Instruments 83 013506 ISSN 0034-6748
URL http://aip.scitation.org/doi/10.1063/1.3673467

[22] Scannell R 2007 Investigation of H-mode edge profile behaviour on MAST using Thomson scattering
Ph.D. thesis University College Cork

[23] Braithwaite G, Gottardi N, Magyar G, O’Rourke J, Ryan J and Véron D 1989 Review of Scientific
Instruments 60 2825–2834 ISSN 0034-6748 URL http://aip.scitation.org/doi/10.1063/1.
1140666

[24] Boboc A, Gelfusa M, Murari A and Gaudio P 2010 Review of Scientific Instruments 81 10D538
ISSN 0034-6748 URL http://aip.scitation.org/doi/10.1063/1.3478146

[25] Boboc A, Gil C, Pastor P, Spuig P, Edlington T and Dorling S 2012 Review of Scientific Instruments
83 10E341 ISSN 0034-6748 URL http://aip.scitation.org/doi/10.1063/1.4737420

[26] Boboc A, Bieg B, Felton R, Dalley S and Kravtsov Y 2015 Review of Scientific Instruments 86
091301 ISSN 0034-6748 URL http://aip.scitation.org/doi/10.1063/1.4929443

[27] Fischer R, Wendland C, Dinklage A, Gori S, Dose V and Teams W A 2002 Plasma Physics and



24

Controlled Fusion 44 1501–1519 ISSN 07413335 URL http://stacks.iop.org/0741-3335/44/
i=8/a=306?key=crossref.90d7ee0715d647125b222b2bd64bea16

[28] Park K R, Kim K h, Kwak S, Svensson J, Lee J and Ghim Y c 2017 Journal of Instrumentation
12 C11022–C11022 ISSN 1748-0221 URL http://stacks.iop.org/1748-0221/12/i=11/a=
C11022?key=crossref.3a526848b7d41b2c69eed8b828346290

[29] Ford O P 2010 Tokamak plasma analysis through Bayesian diagnostic modelling Ph.D. thesis
Imperial College London

[30] Fischer R, Fuchs C J, Kurzan B, Suttrop W and Wolfrum E 2010 Fusion Science and
Technology 58 675–684 ISSN 1536-1055 URL https://www.tandfonline.com/doi/full/10.
13182/FST10-110

[31] Rasmussen C E and Williams C K I 2006 Gaussian Processes for Machine Learning (MIT Press)
[32] Chilenski M, Greenwald M, Marzouk Y, Howard N, White A, Rice J and Walk J 2015 Nuclear Fusion

55 023012 ISSN 0029-5515 URL http://stacks.iop.org/0029-5515/55/i=2/a=023012?key=
crossref.b22d32b1ac570adef0ea0869bc2c1789

[33] Groebner R J, Mahdavi M A, Leonard A W, Osborne T H and Porter G D 2002 Plasma Physics
and Controlled Fusion 44 326 ISSN 07413335 URL http://stacks.iop.org/0741-3335/44/
i=5A/a=326?key=crossref.ab9f87434e30708c202f3d17568e5cc5

[34] Carlstrom T, Burrell K, Groebner R, Leonard A, Osborne T and Thomas D 1999 Nuclear Fusion
39 1941–1947 URL https://doi.org/10.1088%2F0029-5515%2F39%2F11y%2F338

[35] Connor J W and Wilson H R 1999 Plasma Physics and Controlled Fusion 42 R1–R74 URL
https://doi.org/10.1088%2F0741-3335%2F42%2F1%2F201

[36] Leyland M J, Beurskens M N A, Flanagan J C, Frassinetti L, Gibson K J, Kempenaars M, Maslov
M and Scannell R 2016 Review of Scientific Instruments 87 013507 ISSN 0034-6748 URL
http://aip.scitation.org/doi/10.1063/1.4939855

[37] Fischer R, Wolfrum E and Schweinzer J 2008 Plasma Physics and Controlled Fusion 50 085009
ISSN 0741-3335 URL http://stacks.iop.org/0741-3335/50/i=8/a=085009?key=crossref.
66dc3a9cef01c87d8417ae7a2c0d3d6a

[38] Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H and Teller E 1953 The Journal
of Chemical Physics 21 1087–1092 ISSN 0021-9606 URL http://aip.scitation.org/doi/10.
1063/1.1699114

[39] Hastings W K 1970 Biometrika 57 97–109 ISSN 1464-3510 URL https://academic.oup.com/
biomet/article/57/1/97/284580

[40] Haario H, Saksman E and Tamminen J 2001 Bernoulli 7 223 ISSN 13507265 URL https:
//www.jstor.org/stable/3318737?origin=crossref

[41] Naito O, Yoshida H and Matoba T 1993 Physics of Fluids B: Plasma Physics 5 4256–4258 ISSN
0899-8221 URL http://aip.scitation.org/doi/10.1063/1.860593

[42] Kurzan B, Jakobi M, Murmann H and Team A U 2004 Plasma Physics and Controlled Fusion
46 299–317 ISSN 0741-3335 URL http://stacks.iop.org/0741-3335/46/i=1/a=019?key=
crossref.90ae7dc904113006bcfc986aa1ddac7a

[43] Romero J and Svensson J 2013 Nuclear Fusion 53 033009 ISSN 0029-5515 URL http://stacks.
iop.org/0029-5515/53/i=3/a=033009?key=crossref.e63bc2641d1ea5a6766bf4b0dc1db9ee

[44] Romero J A, Dettrick S A, Granstedt E, Roche T and Mok Y 2018 Nature Communications 9 691
ISSN 2041-1723 URL http://www.nature.com/articles/s41467-018-03110-5

[45] ASDEX Team 1989 Nuclear Fusion 29 1959–2040 ISSN 17414326 URL http://stacks.iop.org/
0029-5515/29/i=11/a=010?key=crossref.f8eff2d027380946fd88742ac88d929c

[46] Higdon D, Swall J and Kern J 1999 Non-stationary spatial modeling Bayesian Statistics 6 Proceedings
of the Sixth Valencia International Meeting pp 761–768

[47] Devinderjit Sivia J S 2006 Data Analysis: A Bayesian Tutorial (Oxford University Press) ISBN
0-198-56831-2

[48] Jaynes E T 2003 Probability Theory: The Logic of Science (Cambridge University Press) ISBN
0-521-59271-2



25

[49] Hawryluk R 1981 AN EMPIRICAL APPROACH TO TOKAMAK TRANSPORT Physics of
Plasmas Close to Thermonuclear Conditions (Elsevier) pp 19–46 URL https://linkinghub.
elsevier.com/retrieve/pii/B9781483283852500091



4.4 Article IV

4.4 Article IV
‘Bayesian modelling of multiple diagnostics at Wendelstein 7-X’
S. Kwak, J. Svensson, S. Bozhenkov, H. T. Mora, U. Hoefel, A. Pavone,
M. Krychowiak, A. Langenberg and Y.-c. Ghim
Plasma Physics and Controlled Fusion, (2020), in preparation

115



Bayesian modelling of multiple plasma diagnostics
at Wendelstein 7-X

Sehyun Kwak1,2, J. Svensson2, S. Bozhenkov2,
H. Trimino Mora2, U. Hoefel2, A. Pavone2, M. Krychowiak2,
A. Langenberg2, Y.-c. Ghim1 and W7-X Team
1Department of Nuclear and Quantum Engineering, KAIST, Daejeon 34141,
Korea, Republic of
2Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany

E-mail: sehyun.kwak@ipp.mpg.de

11 November 2020

Abstract. Consistent inference of the electron density and temperature has been
carried out with multiple heterogeneous plasma diagnostic data sets at Wendelstein
7-X. The predictive models of the interferometer, Thomson scattering and helium beam
emission spectroscopy systems have been developed in the Minerva framework and
combined to a single joint model. The electron density and temperature profiles are
modelled by Gaussian processes with their hyperparameters. The model parameters
such as the calibration factor of the Thomson scattering system and the model
predictive uncertainties are regarded as additional unknown parameters. The joint
posterior probability distribution of the electron density and temperature profiles,
hyperparameters of the Gaussian processes and model parameters is explored by
Markov chain Monte Carlo algorithms. The posterior samples drawn from the joint
posterior distribution are numerically marginalised over the hyperparameters and
model parameters to obtain the marginal posterior distributions of the electron density
and temperature profiles. The inference of these profiles is performed with different
combinations of the interferometer and Thomson scattering data as well as either
the empirical electron density and temperature constraints at the limiter/divertor
positions introduced by virtual observations or the edge density and temperature from
the helium beam emission data. Furthermore, the addition of the X-ray imaging crystal
spectrometers to the joint model for the ion temperature profiles is demonstrated. All
these profiles presented in this work are inferred with the optimal hyperparameters and
model parameters by exploring the full joint posterior distribution which intrinsically
embodies Bayesian Occam’s razor.
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1. Introduction

Consistent inference of physics parameters of fusion plasmas with their associated
uncertainties is crucial to understand and to control the underlying physical phenomena
in a large scale fusion experiment. Such an experiment as the Joint European Torus
(JET) [1] and Wendelstein 7-X (W7-X) [2] typically employs several tens of sophisticated
and complicated measurement techniques. The analysis of experimental data from each
of the measurement instruments is substantially complex, therefore, to make full use of
these heterogeneous data sets to refine physics parameters as rigorously as possible is
challenging. In order to make this possible and practical, it is advantageous to use a
framework that is capable of handling and keeping track of parameters, assumptions,
predictive models and observations.

The Minerva framework has been developed to achieve consistent inference for a
complex system by modularisation of models and standardisation of interfaces to connect
them in a systematic way [3]. For example, a Minerva Thomson scattering (forward)
model encapsulates physics and instrumental effects of a Thomson scattering system to
calculate Thomson scattering signals given the laser power and wavelength, scattering
angles, spectral response functions, data acquisition systems, physics parameters, i.e.,
electron density and temperature, and so on. These model dependencies can be fed
from either other Minerva models or data sources (interfaces to databases), and model
predictions such as predicted Thomson scattering signals can be directly compared to
the corresponding observations. The Minerva framework automatically manages such
integrations of Minerva models, and these Minerva models can be represented by a
Bayesian graphical model [4], which is a transparent way of unfolding and handling the
complexity of the models. These automatic model administration together with graphical
representation make the joint analysis of multiple heterogeneous data sets achievable
and practical. In nuclear fusion research, the Minerva framework has been used for a
number of scientific applications to magnetic sensors [5], interferometers [6, 7], Thomson
scattering systems [8, 9], soft X-ray spectroscopy [10], beam emission spectroscopy
[11, 12], X-ray imaging crystal spectrometers [13], electron cyclotron emission [14] and
effective ion charge diagnostics [15]. These Minerva models can be accelerated by a
field-programmable gate array (FPGA) [16] or an artificial neural network [17, 18].

In this work, the Bayesian joint analysis of the interferometer, Thomson scattering
and helium beam emission spectroscopy systems at W7-X has been carried out (followed
by the addition of the X-ray imaging crystal spectrometers [13]). The conventional
analysis of the interferometer [19], Thomson scattering [8] and helium beam emission
spectroscopy [20] systems is typically carried out individually. The Thomson scattering
system provides the local measurements of the electron density and temperature across
the plasma, and the interferometer system measures line integrated electron density
along the line of sight. When the calibration factor of the Thomson scattering system
has not been fully identified, the electron density profiles from Thomson scattering data
can be cross-calibrated with the interferometer data. For this reason, the line of sight of
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the W7-X interferometer system is set to be approximately identical to the laser path
of the Thomson scattering system. In order to perform the cross-calibration as precise
as possible, the electron density and temperature in the edge region should be known.
However, the Thomson scattering data does not typically provide a good quality of the
electron density and temperature measurements in the edge region, where the electronics
noise is much larger than the Thomson scattering signals. The conventional way of
dealing with this problem is to assume that the electron density and temperature is zero
outside the last closed magnetic flux surface (LCFS) given by the variational moments
equilibrium code (VMEC) [21, 22]. The method developed in this work makes use of
either the empirical electron density and temperature constraints at the limiter/divertor
positions based on physics knowledge a priori introduced by virtual observations or
the edge electron density and temperature measurements from the helium emission
spectroscopy system. Furthermore, the X-ray imaging crystal spectrometers (XICS) [13]
is integrated to the Bayesian joint model of the interferometer, Thomson scattering and
helium beam emission spectroscopy systems in order to infer the electron density and
temperature profiles as well as the ion temperature profiles consistent with all these
measurements.

2. The model

In Bayesian inference [4, 23, 24], the probability of a hypothetical value of unknown
parameters P (H) can be updated to the posterior probability of the unknown parameters
given observations P (H|D) through Bayes formula:

P (H|D) =
P (D|H)P (H)

P (D)
. (1)

The probability of the unknown parameters, also known as the prior probability P (H),
encodes the prior knowledge such as physics and empirical assumptions. For instance,
the temperature must be positive by definition, thus, the probability of any negative
temperature must be zero. The conditional probability of the observations P (D|H)

makes a predictive distribution over the observations given a hypothetical value of the
unknown parameters. In other words, this predictive distribution expresses all possible
values of the observations that can be measured given a hypothetical value of the
unknown parameters. Typically, the mean of the predictive distribution is given by a
function which encapsulates the processes happening during an experiment by taking
into account physical phenomena as well as the experimental setup, for example, the
instrument effects, calibrations, optics, electronics and so on, also known as a forward
model f (H). The marginal probability of the observations P (D), also known as the
model evidence, is a normalisation constant in this context.

When we have multiple heterogeneous data sets, which conditionally depend on the
unknown parameters, Bayes formula can be written as:

P (H|{Di }) =
(∏

i P (Di|H)
)
P (H)

P ({Di })
. (2)
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Each of the predictive distributions contains a forward model of the measurement
instruments, which are typically sophisticated and complicated. They may include
extra model parameters, for instance calibration factors, depending on the experimental
setup. The prior distribution encodes the prior knowledge of the unknown parameters
as well as hyperparameters (parameters of the prior distribution) and unknown model
parameters. These prior and predictive distributions together constitute the joint
probability distribution P (H,D) which embodies the full relationship between all the
unknown parameters and observations. This joint distribution is modelled in Minerva as
a Bayesian graphical model [4].

The Minerva graph of the Bayesian joint model of the interferometer, Thomson
scattering and helium beam emission spectroscopy systems is shown in Figure 1. Each
node represents either a deterministic calculation (white box) or a probability function,
a prior (blue circle) or a predictive probability (grey circle). Such deterministic nodes
include a simple operation (e.g. los, a function for line integration along a line of sight),
a physics model (e.g. Thomson model) and a data source (ds). The arrows indicate the
conditional dependencies of these nodes. This graph represents the joint distribution
of all the unknown parameters and observations which consists of all these prior and
predictive distributions.

In this work, the electron density ne and temperature Te profiles are given as a
function of the effective minor radius ρeff and modelled by Gaussian processes [25, 26, 27].
The Gaussian processes are non-parametric functions which associate any set of points
in the domain of the functions with a random vector following a multivariate Gaussian
distribution. The properties of the Gaussian processes are determined not by any
parametric form but by the covariance function of the Gaussian distribution. The
covariance function provides the covariance value between any two points, and the
smoothness of the Gaussian processes is determined by these covariance values. In
nuclear fusion research, Gaussian processes were first introduced by non-parametric
tomography of the electron density and current distribution [7], and has since been used
in a number of applications [9, 10, 11, 12, 13, 28].

The prior distribution of the electron temperature is given by a Gaussian process
with the zero mean and squared exponential covariance function, which is one of the
most common specifications of the Gaussian processes, which can be written as:

P (Te|σTe) = N (µTe ,ΣTe) , (3)
µTe (ρeff) = 0, (4)

ΣTe (ρeff,i, ρeff,j) = σ2
f,Te

exp

(
−(ρeff,i − ρeff,j)

2

2σ2
x,Te

)
+ σ2

y,Te
δij. (5)

All the hyperparameters are denoted as σTe = [σf,Te , σx,Te ], and σy,Te is set to be relatively
small number with respect to σf,Te , for example σy,Te/σf,Te = 10−3 to avoid numerical
instabilities. The electron density can have substantially different smoothness (gradient)
in the core and edge regions, and for this reason, the prior distribution of the electron
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density is modelled by a Gaussian process with the zero mean and non-stationary
covariance function [29] which can be written as:

P (ne|σne) = N (µne ,Σne) , (6)
µne (ρeff) = 0, (7)

Σne (ρeff,i, ρeff,j) = σ2
f,ne

(
2σx,ne (ρeff,i) σx,ne (ρeff,j)

σx,ne (ρeff,i)
2 + σx,ne (ρeff,j)

2

) 1
2

× exp

(
− (ρeff,i − ρeff,j)

2

σx,ne (ρeff,i)
2 + σx,ne (ρeff,j)

2

)
+ σ2

y,ne
δij. (8)

The length scale function σx,ne (ρeff) can be given by a hyperbolic tangent function,
developed in [28] and also applied in [9], which is:

σx,ne (ρeff) =
σcore
x,ne

+ σedge
x,ne

2
−

σcore
x,ne

− σedge
x,ne

2
tanh

ρeff − ρeff,0,ne

ρeff,w,ne

. (9)

Again, all the hyperparameters are denoted as σne =
[
σf,ne , σ

core
x,ne

, σedge
x,ne

, ρeff,0,ne , ρeff,w,ne

]
.

The electron density and temperature profiles can be mapped to x, y, z Cartesian
coordinates through the coordinate transformations provided by the VMEC node. Given
3D fields of the electron density and temperature in real space, each of predictive
distributions of the interferometer, Thomson scattering and helium beam emission
spectroscopy data can be calculated. The interferometer system [19] is a single chord
dispersion interferometer which measures the line integrated electron density along the
line of sight. The forward model of the interferometer system predicts the line integral
of the electron density, which is directly compared to the measurement stored in the
W7-X database. The Thomson scattering system [8] collects Thomson scattered spectra
from 10 to 79 spatial locations along the laser beam across the centre of the plasma.
The physics model of Thomson scattering processes [30] is implemented in the Thomson
scattering model [8, 9] which makes predictions of the Thomson scattered spectra given
the electron density and temperature. The calibration factor of the Thomson scattering
system has not been yet fully identified, thus the calibration factor is regarded as an
additional unknown parameter. The interferometer system is designed to cross-calibrate
the Thomson scattering system, and for this reason, the line of sight of the W7-X
interferometer is set to be approximately identical to the laser path of the Thomson
scattering system.

The joint posterior distribution of the Bayesian joint model of the interferometer
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and Thomson scattering systems can be written as:

P (ne, Te, σne , σTe , σDI, σTS, CTS|DDI, DTS)

=
P (DDI, DTS|ne, Te, σne , σTe , σDI, σTS, CTS)P (ne, Te, σne , σTe , σDI, σTS, CTS)

P (DDI, DTS)

=
P (DDI|ne, σDI)P (DTS|ne, Te, σTS, CTS)P (ne|σne)P (Te|σTe)P (σne)P (σTe)

P (DDI)P (DTS)

× P (σDI)P (σTS)P (CTS) , (10)

where σne and σTe are the hyperparameters of the Gaussian processes of the electron
density and temperature profiles. The predictive distributions P (DDI|ne, σDI) and
P (DTS|ne, Te, σTS) are modelled as Gaussian distributions whose mean and standard
deviation are the predictions of the forward models and predictive uncertainties, which are
proportional to the measurement uncertainties with scale factors σDI and σTS. These scale
factors are regarded as additional unknown parameters due to our incomplete knowledge
of measurement uncertainties. These model parameters and the hyperparameters of the
Gaussian processes can be optimised to maximise the posterior probability of the model,
which takes into account the principle of Occam’s razor [31, 32].

The calibration factor of the Thomson scattering system CTS is also treated as
an additional unknown parameter, therefore, the Thomson scattering system will be
automatically cross-calibrated with the interferometer data. Nevertheless, the electron
density and temperature in the edge region play an important role in this cross-calibration,
since the profile boundary depends on the observations in the edge region. Here, we
utilise our physics and empirical knowledge to impose such observations in the edge
region by assuming that the electron density and temperature are not significantly high
enough to melt down the limiter and divertor of the W7-X experiment [2]. These low
density and temperature constraints can be introduced by virtual observations at the
limiter/divertor positions a priori as a part of the prior distributions, which can be
written as:

P (Dv,ne |ne) = N
(
ne (xwall, ywall, zwall) , σ

2
v,ne

)
, (11)

P (Dv,Te |Te) = N
(
Te (xwall, ywall, zwall) , σ

2
v,Te

)
, (12)

where xwall, ywall, zwall are the spatial locations of the limiter/divertor. The density
and temperature constraints at the limiter/divertor are set to be reasonably low:
Dwall,ne = 1015 m−3, σwall,ne = 1015 m−3, Dwall,Te = 0.1 eV and σwall,Te = 0.1 eV. In the
same way, we also introduce the zero gradients of the electron density and temperature
profiles at the magnetic axis. Given these virtual observations, the joint posterior
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probability can be written as:

P (ne, Te, σne , σTe , σDI, σTS, CTS|DDI, DTS, Dv,ne , Dv,Te)

=
P (DDI, DTS, Dv,ne , Dv,Te |ne, Te, σne , σTe , σDI, σTS, CTS)P (ne, Te, σne , σTe , σDI, σTS, CTS)

P (DDI, DTS, Dv,ne , Dv,Te)

=
P (DDI|ne, σDI)P (DTS|ne, Te, σTS, CTS)P (Dv,ne |ne)P (Dv,Te |Te)P (ne|σne)P (Te|σTe)

P (DDI)P (DTS)P (Dv,ne)P (Dv,Te)

× P (σne)P (σTe)P (σDI)P (σTS)P (CTS)

=
P (DDI|ne, σDI)P (DTS|ne, Te, σTS, CTS)P (ne|Dv,ne , σne)P (Te|Dv,Te , σTe)

P (DDI)P (DTS)

× P (σne)P (σTe)P (σDI)P (σTS)P (CTS) , (13)

where P (ne|Dv,ne , σne) and P (Te|Dv,Te , σTe) are the Gaussian process priors with the edge
constraints introduced by these virtual observations. Remarkably, any physics/empirical
law can be introduced by virtual observations, for example the left-hand and right-hand
side of physics formula can be regarded as predictions and corresponding observations
at any space and time. These physics/empirical priors based on virtual observations
have been used for the Bayesian joint model at Wendelstein 7-AS [33] and the plasma
equilibria at JET [6].

On the other hand, we can provide local measurements of the electron density and
temperature in the edge region from the helium beam emission spectroscopy system.
The helium beam emission spectroscopy system [20] injects helium gas into the plasma
and collects three helium line emissions (667 nm, 706 nm and 728 nm lines). The electron
density and temperature can be inferred from three line intensity ratios of 667 nm to
728 nm, 706 nm to 667 nm and 706 nm to 728 nm helium lines by the pre-calculated
lookup tables based on the collisional-radiative model [12, 34]. The joint posterior
probability of the Bayesian joint model of the interferometer, Thomson scattering and
helium beam emission spectroscopy systems can be written as:

P (ne, Te, σne , σTe , σDI, σTS, CTS|DDI, DTS, DHe)

=
P (DDI, DTS, DHe|ne, Te, σne , σTe , σDI, σTS, CTS)P (ne, Te, σne , σTe , σDI, σTS, CTS)

P (DDI, DTS, DHe)

=
P (DDI|ne, σDI)P (DTS|ne, Te, σTS, CTS)P (DHe|ne, Te)P (ne|σne)P (Te|σTe)

P (DDI)P (DTS)P (DHe)

× P (σne)P (σTe)P (σDI)P (σTS)P (CTS) , (14)

where DHe is the helium beam emission data. Again, the predictive distribution
P (DHe|ne, Te) is modelled as a Gaussian distribution whose mean and variance are
the predictions of the lookup tables and the predictive uncertainties of these helium line
ratios.

All these joint posterior distributions are explored by Markov chain Monte Carlo
(MCMC) algorithms, specifically adaptive Metropolis-Hastings algorithms [35, 36, 37]
implemented in Minerva. All the hyperparameters of the Gaussian processes and the
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model parameters are marginalised out numerically in order to obtain the marginal
posterior distributions of the electron density and temperature profiles. This means
that these profiles are inferred by taking into account all the possible values of
the hyperparameters and model parameters consistent with all the measurements
simultaneously.

3. The inference

The electron density and temperature profiles are amongst the most important physics
parameters to understand magnetohydrodynamic equilibrium, transport and performance
of the fusion plasma. The Thomson scattering system provides the electron density
and temperature profiles across half of the plasma (upgraded to the full range in the
latest campaigns), and the dispersion interferometer system measures the line integrated
electron density which can be used to infer the calibration factor and to cross-calibrate the
Thomson scattering system since the calibration factor has not been yet fully identified.
Nevertheless, the profile boundary plays an important role in this cross-calibration.
Since the profile boundary can be determined by the information of the electron density
and temperature in the edge region, this information can be provided by either the
virtual observations at the limiter/divertor positions or the helium beam emission data.
In this work, profile inference has been carried out with different combinations of the
interferometer, Thomson scattering systems and helium beam emission data as well as
the edge virtual observations.

Figure 2 shows the electron density and temperature profiles with respect to the
effective minor radius ρeff inferred by exploring the joint posterior distribution given
the interferometer and Thomson scattering data which is given by Equation (10). The
blue and light blue lines are the marginal posterior mean and samples, respectively. The
marginal posterior samples calculated by numerically integrating the joint posterior
distribution over the hyperparameters and model parameters, which can be written as:

P (ne, Te|DDI, DTS)

=

∫ ∫ ∫ ∫ ∫
P (ne, Te, σne , σTe , σDI, σTS, CTS|DDI, DTS) dσnedσTedσDIdσTSdCTS.

(15)

The orange dots are the electron density and temperature with the error bars provided
by the Thomson scattering analysis implemented in Minerva [8]. The green dots are the
electron temperature from the electron cyclotron emission (ECE) analysis at the low
field side [38]. The calibration factor of the Thomson scattering system is uncertain due
to unknown factors during experiments such as laser misalignment, and the electron
density profiles of the Thomson scattering analysis, therefore, might not be consistent
with the line integrated electron density measurement from the interferometer. On the
other hand, the joint model automatically calibrates the Thomson scattering data with
the line integrated electron density measurement, thus the electron density profiles of
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Figure 2. Inference results of the Bayesian joint model of the interferometer and
Thomson scattering systems (experiment ID 20160309.013, t = 0.43 s): (a) the electron
density and (b) temperature profiles and (c) ne and (d) Te gradient profiles. The blue
and light blue lines are the marginal posterior mean and samples, respectively. The
orange dots are the electron density and temperature with the error bars provided
by the Bayesian Thomson scattering analysis [8]. The green dots are the electron
temperature from the electron cyclotron emission (ECE) analysis at the low field side
[38]. The Thomson scattering system is automatically cross-calibrated with the inferred
calibration factor CTS = 0.91 by the joint model. We note that, in this case, the
electron density provided by the Thomson scattering system alone (the orange dots)
is not consistent with the interferometer data due to some calibration uncertainties
[8], whereas the profiles from the joint model (the blue lines) are consistent with both
Thomson scattering and interferometer data.

the joint analysis are consistent with both Thomson scattering and interferometer data
(the inferred calibration factor CTS = 0.91). In other words, the Thomson scattering
analysis might underestimate the electron density profiles by approximately 9% with
respect to the interferometer data. The ne and Te gradient profiles are also presented in
Figure 2(c) and Figure 2(d). We note that there is no measurement available outside
the last closed magnetic flux surface (LCFS), i.e., ρeff > 1.0 so that the electron density
and temperature can be purely determined by the Gaussian process priors.

The electron density and temperature are not expected to be significantly high
at the limiter/divertor positions, and we can introduce this prior knowledge by
making the virtual observations, as described in Section 2. The electron density and
temperature profiles of the marginal posterior distribution given these virtual observations
P (ne, Te|DDI, DTS, Dv,ne , Dv,Te) are shown in Figure 3. We remark that the mean values
of the calibration factor of the Thomson scattering system with and without the virtual
observations are substantially different (CTS = 0.83 with the virtual observations and
CTS = 0.91 without the virtual observations). In other words, the calibration factor of
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Figure 3. Same as Figure 2 for inference results of the Bayesian joint model of
the interferometer and Thomson scattering systems with the electron density and
temperature constraints at the limiter/divertor positions introduced by the virtual
observations.
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Figure 4. Same as Figure 2 for inference results of the Bayesian joint model of the
interferometer, Thomson scattering, and helium beam emission spectroscopy systems.
The red dots are the electron density and temperature of the stand-alone analysis of
Bayesian helium beam model, developed in this work.

the Thomson scattering system can be substantially influenced by the information of
the electron density and temperature in the edge region.

In order to compare the inference solutions of the joint model given the virtual and
experimental observations in the edge region, the helium beam emission data is added to
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the joint model instead of the virtual observations. The electron density and temperature
profiles of the marginal posterior distribution given the helium beam emission data
P (ne, Te|DDI, DTS, DHe) are shown in Figure 4. The mean value of the calibration factor
with the helium beam emission data (CTS = 0.86) is slightly different from the one with
the virtual observations (CTS = 0.83). The predictions given these marginal posterior
mean and samples and the corresponding observations are compared in Figure 5. The
helium beam emission spectroscopy system provides not only the density and temperature
measurements but also their measurement uncertainties in the edge region which are
critical to determining the optimal hyperparameters (smoothness) by Bayesian Occam’s
razor [31, 32]. Unlike the inference results given the virtual observations, the joint
model of the interferometer, Thomson scattering and helium beam emission spectroscopy
systems provides reasonable electron density and temperature profiles in the edge region.
Nevertheless, the virtual observations could be another possible option to reinforce the
model and exclude physically/empirically improbable solutions when the observations
are not sufficiently available.

We emphasise that these profiles neither underfit nor overfit the data. Bayesian
methods penalise underfitted and overfitted models automatically and quantitatively.
Underfitted models, which propose over-simplified profiles, for example straight profiles,
are not able to predict the data within their predictive uncertainties. On the other
hand, overfitted model, which propose over-complex profiles, for example wiggly profiles,
are able to predict the data better than simpler models. However, overfitted models
can propose a greater variety of profiles than simpler models do, and each of them
is almost equally probable. The probability of each proposed profile hence is lower
than the probability of the profiles proposed by simpler models because the probability
over the entire profile space must be equal to one. For this reason, over-complex
models are automatically self-penalised by Bayesian Occam’s razor [31, 32]. In this
case, Gaussian processes with too small length scale (over-complex models) are able
to propose profiles which predict the data accurately, i.e., high predictive probabilities
P (DDI|ne, σDI), P (DTS|ne, Te, σTS, CTS) and P (DHe|ne, Te), but the prior probabilities
of these proposed profiles P (ne|σne) and P (Te|σTe) are low since the Gaussian processes
can propose many other candidates equally probable. Consequently, the joint posterior
probability associated with over-complex models is low. The models with too large
predictive uncertainties (over-complex models) are also self-penalised in the same way.
By exploring the joint posterior distribution of the electron density and temperature
profiles, hyperparameters and model parameters, we collect profiles with proper length
scale (smoothness) and predictive uncertainties. Furthermore, these inference solutions
provide marginal posterior samples and uncertainties which are obtained by taking into
account all possible values of the hyperparameters and model parameters. In other words,
these samples and uncertainties do not depend on specific values of hyperparameters
and model parameters.
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Figure 5. The predictions (in blue and light blue) and observations (in orange) of (a)
the Thomson scattering data and (b,c,d) the three helium line intensity ratios given
the posterior mean and samples shown in Figure 4. The Thomson scattering signals
consists of 50 data points from ten spatial locations (five integrated signals over five
different spectral ranges from each spatial location). The helium beam emission data
are the three line intensity ratios of (a) 667 nm to 728 nm, (b) 706 nm to 667 nm and
(c) 706 nm to 728 nm helium lines from eight spatial locations.

4. The addition of the X-ray Imaging Crystal Spectrometers

The X-ray imaging crystal spectrometers (XICS) [13] measure X-ray spectra of argon
and iron impurities in different charge states within a wide range of electron temperature,
from 0.3 keV to 6 keV. The XICS system collects line integrated spectra along 20 lines
of sight, covering more than half of the plasma on the poloidal cross section at a toroidal
angle of 159.09. The XICS forward model implemented previously in Minerva [13] is
added to the Bayesian joint model of the interferometer, Thomson scattering and helium
beam emission spectroscopy systems. The local X-ray spectra are calculated by taking
into account a number of atomic processes such as excitation, recombination, ionisation
and charge exchange and depend on the electron density and temperature as well as the
ion temperature. The forward model integrates these predicted local spectra given these
physics parameters along the lines of sight to calculate the line integrated X-ray spectra.
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The ion temperature prior distribution is modelled by a Gaussian process with the
zero mean and squared exponential covariance function. The joint posterior probability
given the interferometer, Thomson scattering, helium beam emission and XICS data can
be written as:

P (ne, Te, Ti, σne , σTe , σTi
, σDI, σTS, CTS|DDI, DTS, DHe, DXICS)

=
P (DXICS|ne, Te, Ti)P (Ti|σTi

)P (σTi
)P (ne, Te, σne , σTe , σDI, σTS, CTS|DDI, DTS, DHe)

P (DXICS)

(16)

where Ti is the ion temperature, σTi
all the hyperparameters of the Gaussian process

and DXICS the XICS data. The predictive distribution P (DXICS|ne, Te, Ti) is modelled
as a Gaussian distribution whose mean and variance are the predictions of the XICS
forward model. The predictive uncertainties of the line integrated X-ray spectra. The
electron density and temperature profiles as well as the ion temperature profiles are
inferred tomographically given the interferometer, Thomson scattering, helium beam
emission and XICS data.

The maximum a posteriori (MAP) solutions of the joint posterior probability of
the electron density and temperature, ion temperature profiles are found by the pattern
search algorithm [39] implemented in Minerva, as shown in Figure 6. The predictions and
observations of the helium beam emission and line integrated X-ray spectra are shown
in Figure 7. The XICS forward model is substantially complex and computationally
expensive, thus full sampling from the joint posterior distribution is left for future work.
This can be achieved by a neural network approximation of the XICS Minerva model
[17].

Remarkably, we infer these profiles with the optimal values of the hyperparameters
(smoothness) and model parameters by maximising the joint posterior probability. A
conventional approach to finding the optimal hyperparameters and model parameters is
to maximise the posterior probability of these hyperparameters and model parameters,
which is proportional to a marginal predictive distribution of the observations, also
known as the model evidence. Calculation of the model evidence is computationally
challenging because it requires integration over a high dimensional parameter space,
therefore this is a major obstacle to apply Bayesian Occam’s razor to applications in the
real world. On the other hand, calculation of the joint posterior probability does not
involve such integration. The joint posterior distribution can be seen as the product of
the conditional posterior distribution of the parameters and the posterior distribution of
the hyperparameters and model parameters, which can be written as:

P (ne, Te, Ti, σne , σTe , σTi
, σDI, σTS, CTS|DDI, DTS, DHe, DXICS)

= P (ne, Te, Ti|σne , σTe , σTi
, σDI, CTS, σTS, DDI, DTS, DHe, DXICS)

× P (σne , σTe , σTi
, σDI, σTS, CTS|DDI, DTS, DHe, DXICS) . (17)

The joint posterior distribution intrinsically embodies Bayesian Occam’s razor through
the posterior probability of the hyperparameters and model parameters, and the MAP
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Figure 6. Same as Figure 2 for the inference results of the Bayesian joint model of
the interferometer, Thomson scattering, helium beam emission spectroscopy and XICS
systems. The ion temperature and Ti gradient profiles are shown as the purple lines in
(c) and (d).

solution is therefore the optimal profiles with the optimal hyperparameters (smoothness)
and model parameters. This does explain the reason why the profiles are not wiggly but
optimally smooth in Figure 6.

5. Conclusions

The Bayesian joint model of the interferometer, Thomson scattering and helium beam
emission spectroscopy systems has been developed at Wendelstein 7-X (W7-X). Each of
the forward models has been implemented individually and combined together as a joint
model in the Minerva framework. The electron density and temperature profiles are
given as a function of the effective minor radius and modelled by Gaussian processes with
their hyperparameters. The model parameters, for example the calibration factor of the
Thomson scattering system, are regarded as additional unknown parameters. The joint
posterior distribution of the electron density and temperature profiles, hyperparameters
and model parameters is explored by Markov chain Monte Carlo (MCMC) algorithms.

The profile inference has been carried out with different combinations of the three
different heterogeneous data sets and virtual observations. The electron density and
temperature profiles are inferred with the Bayesian joint model of the interferometer
and Thomson scattering system, and the Thomson scattering data is automatically
cross-calibrated with the line integrated electron density from the interferometer. In
order to exclude physically and empirically improbable solutions, the electron density and
temperature are assumed to be not significantly high at the limiter/divertor positions
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Figure 7. The predictions (in blue) and observations (in orange) of the helium beam
spectra of the channel #3 (near to the divertor) and #8 (the innermost channel) and
the XICS spectra of the channel #6 (in the edge region) and 16 #(in the core region)
given the profiles shown in Figure 6.

by introducing the virtual observations as a part of the prior distributions. These
inferred profiles and calibration factor from the joint posterior distribution with the
virtual observations are physically and empirically reasonable and substantially different
from those of the joint posterior distribution without the virtual observations due
to lack of information of the electron density and temperature in the edge region.
Furthermore, in order to compare the inference solutions with the virtual and experimental
observations in the edge region, the helium beam emission data is added to the joint
model instead of the virtual observations. The profiles inferred with the joint model of
the interferometer, Thomson scattering system and helium beam emission spectroscopy
systems are reasonable because the helium beam emission data provides the electron
density and temperature measurements as well as their measurement uncertainties in
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the edge region which are crucial to finding the optimal smoothness of the profiles
by Bayesian Occam’s razor. Nevertheless, when the observations are not sufficiently
available, the virtual observations can be a good option to strengthen the model and
exclude physically/empirically improbable inference solutions.

We emphasise that these inference solutions have been found with the optimal
hyperparameters (smoothness) and model parameters by Bayesian Occam’s razor which
penalises over-complex models automatically and quantitatively. In other words, these
inference solutions neither underfit nor overfit all the measurements. Furthermore, the
marginal posterior samples are calculated to obtain the electron density and temperature
profiles by taking into account all possible values of the hyperparameters and model
parameters given the observations. Remarkably, the joint posterior distribution of the
unknown parameters, hyperparameters and model parameters intrinsically embodies
Bayesian Occam’s razor. The joint posterior probability can be calculated relatively
easier than the model evidence, therefore, Bayesian Occam’s razor can be applied
to the problems in the real world by exploring the joint posterior distribution easier
than the model evidence. As shown in this work, the MAP solution of the joint
posterior probability distribution given the interferometer, Thomson scattering, helium
beam emission spectroscopy and XICS systems provides the electron density and
temperature as well as the ion temperature profiles with appropriate model parameters
and hyperparameters. Therefore the MAP solution does not either underfit or overfit
the data.
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Abstract. Bayesian models of axisymmetric plasmas using Gaussian processes and
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such as plasma and magnetic field coil currents are modelled as a grid of toroidal current
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Inference of all these physics parameters is a tomographic problem, thus, in order to
exclude unreasonable solutions, two different prior distributions have been exploited: a
Gaussian process prior and an equilibrium prior. The Gaussian process prior constrains
the plasma current distributions by their covariance (smoothness) function whose
hyperparameters have been optimally selected by Bayesian Occam’s razor. On the
other hand, the equilibrium prior imposes the magnetohydrodynamic force balance
by introducing observations that the differences between the magnetic force and the
plasma pressure gradient are almost zero at every plasma current beam. These virtual
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1. Introduction

In magnetic confinement fusion research, inference of plasma current distributions is
critical to control and to understand the underlying physics and the plasma [1, 2, 3].
The plasma current distributions determine the magnetic field geometry of the plasma
that plays an important role in plasma control [4] and provide the canonical coordinate
system [1], in which to express physics parameters and models for further research, for
example energy transport. This magnetic field geometry can be represented as a set of
poloidal magnetic flux surfaces often normalised to zero at the plasma centre, known as
the magnetic axis, and to one at the plasma boundary, known as the last closed flux
surface (LCFS).

The conventional approach to infer the plasma current distributions is to find
a single solution to magnetohydrodynamic (MHD) force balance equations such as
the Grad-Shafranov equation [5, 6] consistent with magnetic field measurements [7].
This approach has been providing a plasma equilibrium solution, nevertheless, it has
the following limitations: typically it makes use of 1D parameterisations of the plasma
pressure and poloidal current flux with a handful of parameters, which are often incapable
of representing the shape of spatial profiles of them, and it usually takes into account
only the magnetic measurements, thus this equilibrium solution might be inconsistent
with plasma pressure and poloidal current measurements. Moreover, this approach finds
only a single solution, not all possible solutions given the force balance equations and
measurements. In other words, the conventional approach does not provide uncertainties
of either the magnetic field geometry or the physics parameters such as the plasma
current distributions or pressure profiles.

In this work, we will demonstrate Bayesian inference of axisymmetric plasma
current distributions and pressure profiles consistent with a number of measurements
from magnetic sensors and other plasma diagnostics in a large-scale fusion experiment.
This Bayesian approach makes use of an axisymmetric current beam model [8], which
represents all kind of toroidal currents, for example plasma and poloidal field coil currents,
as a grid of toroidal current carrying solid beams. These toroidal current distributions
determine the poloidal magnetic flux surface on which other physics parameters such
as the plasma pressure and poloidal current flux are often assumed to be constant [3],
thus they are given as a function of the magnetic flux surface. The plasma pressure
and poloidal current flux are modelled by Gaussian processes, which are capable of
representing a great variety of 1D spatial profiles of these physics parameters [9, 10]. Since
inference of all these physics parameters is a tomographic problem, in order to exclude
unreasonable solutions, we have introduced two different prior distributions: a Gaussian
process prior and an equilibrium prior. The Gaussian process prior constrains the plasma
current distributions by the covariance (smoothness) function which determines the
covariance (smoothness) between any two plasma current beams. The parameters of the
covariance function, also known as the hyperparameters of Gaussian processes, can be
optimised to maximise the posterior probability of the model, which takes into account
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the principle of Occam’s razor [11, 12, 13]. In other words, we can infer the plasma
current distributions with the optimal smoothness from the measurements. On the other
hand, the equilibrium prior imposes the force balance between the magnetic force and
the plasma pressure gradient, given by the Grad-Shafranov equation, by introducing
virtual observations that the differences between the two forces should be almost zero at
every plasma current beam. These virtual observations emphasise equilibrium solutions
as a part of the prior knowledge [14]. Here, the axisymmetric plasma model with the
Gaussian process prior and the one with the equilibrium prior are called the current
tomography model and the equilibrium model, respectively. In addition to these prior
distributions, both models employ predictive models of magnetic sensors (pickup coils,
saddle coils and flux loops) [8], polarimeters [14, 15], interferometers [14], lithium beam
emission spectroscopy [16, 17] and high-resolution Thomson scattering (HRTS) systems
[10] in order to find all possible plasma current distributions as well as pressure and
poloidal current flux profiles consistent with all their measurements simultaneously at
one of the large-scale fusion experiments, the Joint European Torus (JET) [18]. Since
these models involve a large number of unknown parameters and observations as well
as multiple predictive models of scientific instruments, it is, therefore, inevitable to
use a framework that is capable of handling and keeping track of all these parameters,
assumptions, predictive models and observations in such a complex model. For this
reason, these models have been implemented in the Minerva framework.

The Minerva framework [19, 20] has been developed to achieve consistent scientific
inference in a complex system by providing a standardised format for model components,
for example probability and forward functions, and a standardised interface for component
dependencies, input parameters, which can be connected from output of other model
components. Minerva automatically manages all the model components and connections
and represents them by a Bayesian graphical model [21], as shown in Figure 1. The
modular structure, graphical representation and automatic model administration allow
us to handle a complex model and to keep track of a large number of parameters,
assumptions, predictive models and observations in a systematic way. Furthermore, we
can easily build and compare models with different model specifications, for example
various prior distributions. In this work, we present the two axisymmetric plasma models
with different priors. The Minerva framework has been used for a number of scientific
applications to magnetic sensors [8], interferometers [10, 13, 14], Thomson scattering
systems [10, 22], soft X-ray spectroscopy [23], beam emission spectroscopy [16, 17],
X-ray imaging crystal spectroscopy [24], electron cyclotron emission diagnostics [25] and
effective ion charge diagnostics [26] in nuclear fusion research. These Bayesian models
implemented in Minerva can be accelerated by a field-programmable gate array (FPGA)
[27] and an artificial neural network [28, 29].

These Bayesian models of axisymmetric plasmas provide the full joint posterior
distributions over the plasma current distributions, poloidal current flux and pressure
profiles consistent with the magnetic field and pressure measurements simultaneously.
However, exploration of such complex, high dimensional posterior distributions is
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Figure 1. A simplified version of Minerva graph representing the Bayesian equilibrium
model of axisymmetric plasmas at Joint European Torus (JET). The unknown
parameters and observations are shown as the red and blue circles, respectively. The
toroidal currents of the plasma Jφ, iron core Jiron and magnetic field coils Jcoils are
modelled as a 2D grid of toroidal current carrying solid beams in R,Z coordinates
which determines the magnetic field B and the normalised poloidal magnetic flux
surface ψN. The poloidal current flux F and electron density ne and temperature Te
are modelled by Gaussian processes, whose hyperparameters are denoted as σf and σx.
All these physics parameters are provided as 3D fields in x, y, z Cartesian coordinates,
and given these 3D fields, the predictive models of the magnetic sensors, polarimeters,
interferometers, lithium beam emission spectroscopy and high-resolution Thomson
scattering (HRTS) systems make their predictions, which are directly compared to the
corresponding observations. In order to emphasise equilibrium solutions, the model
imposes the force balance between the magnetic force and the plasma pressure gradient,
given by the Grad-Shafranov equation, at every plasma current beam by introducing
the virtual observations that the differences between the two forces should be almost
zero. In the same way, the model introduces empirical constraints that all the physics
parameters should be almost zero at the first wall. The nodes in this graph represent
larger, collapsed, subgraphs that model the internals of the different functions.
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computationally challenging [14, 30, 31]. To overcome these problems, we have developed
a new method to explore these posterior distributions based on the Gibbs sampling
scheme [32]. In short, the method splits the full joint posterior distribution into several
low dimensional conditional posterior distributions and sample them consecutively. These
conditional posterior distributions are in general much simpler to sample, and some of
them can be expressed in analytic functions obtained by the linear Gaussian inversion
[8, 14]. The difficulty of sampling the full joint posterior distributions, therefore, can be
substantially reduced by this method.

2. The model

In Bayesian inference [21, 33, 34], the model can be defined by a joint probability of
unknown parameters and observations P (H,D). The joint probability consists of the
predictive probability P (D|H) and the prior probability P (H), which can be written
as:

P (H,D) = P (D|H)P (H) . (1)

The prior probability P (H) encodes the prior knowledge of the unknown parameters
such as physical/empirical assumptions. For example, density or temperature must
be positive, thus the probability of any negative density or temperature must be zero.
Given a hypothetical value of the unknown parameters, a prediction can be made as a
predictive distributions P (D|H) over the observations. Typically, the mean of predictive
distributions can be given as a function, which encapsulates the physical processes
happening during an experiment by taking into account physics phenomena as well as
experimental setup, known as a forward model f (H). The prior probability of unknown
parameters can be updated to the posterior probability P (H|D) through Bayes formula:

P (H|D) =
P (D,H)

P (D)
=
P (D|H)P (H)

P (D)
, (2)

where P (D) is a marginal probability of the observation, also known as the model
evidence, which is a normalisation constant in this context.

If the model contains a large number of unknown parameters and heterogeneous
data sets, the model can be written as a product of individual prior and predictive
distributions, conditional on their parent variables, also known as factorisation:

P ({Di }, {Hj }) =
(∏

i

P (Di|H)
)(∏

i

P (Hj)
)
. (3)

Each of the predictive distributions contains a forward model of the scientific instruments
which includes model parameters, for example calibration factors. The prior distributions
encode prior knowledge such as physics/empirical assumptions. The prior and predictive
distributions together constitute the model, the joint distributions P ({Di }, {Hj }). In
other words, the model specification consists of not only the predictive distributions
which make predictions over the observations but also the prior distributions in which
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we reflect the prior knowledge and assumptions. All these model components and their
conditional dependencies can be represented by a Bayesian graphical model, as shown in
Figure 1, which is a transparent way of unfolding the complexity of the model.

In this work, we have developed Bayesian models of axisymmetric plasmas, the
current tomography and equilibrium models, which involve a large number of unknown
parameters, assumptions, predictive models and observations, as shown in Figure 1. The
unknown parameters (the red circles) and observations (the blue circles) are connected
via the forward models and functions (the white boxes), and the arrows visualise their
dependencies. These two models share the following components: the axisymmetric
current beam model (Jφ, Jiron, Jcoils and Magnetic model), the Gaussian process priors
of the poloidal current flux and pressure profiles (F , ne and Te), the wall constraints
(Dwall) and the predictive distribution of all the plasma diagnostics (e.g. Thomson model).
Given all these model components, the current tomography and equilibrium models
employ the Gaussian process prior of the plasma current distributions and the equilibrium
prior, respectively. All these model components are briefly described in the following
subsections.

2.1. The axisymmetric current beam model

In an axisymmetric magnetic confinement fusion experiment, all kind of toroidal currents
such as plasma and magnetic field coil currents can be modelled as a grid of toroidal solid
beams with finite rectangular cross sections, each beam carrying a uniform current. This
current beam model, previously developed in [8], has been implemented in the current
tomography and equilibrium models. This current beam model takes into account the
toroidal currents of the plasma Jφ, iron core Jiron and magnetic field coils Jcoils of the
JET fusion experiment, as shown in Figure 2.

Given these toroidal current distributions, the magnetic vector potential A at a
spatial location r = [x, y, z] generated by the toroidal current density J is given by the
Biot-Savart law:

A (r) =
µ0

4π

∫∫∫
J (r′)

|r − r′|
d3r, (4)

where µ0 is the vacuum permeability. The magnetic field B can be derived from the
vector potential, which is:

B = ∇× A. (5)

The fast calculation of the magnetic vector potential and the magnetic field can be carried
out by multiplying current density by a unit current response factor for an arbitrary
fixed spatial location given the beam grids. These response factors are pre-calculated for
all spatial locations where the model needs to determine the magnetic vector potential
and the magnetic field, for instance the spatial locations of plasma current beams and
magnetic sensors. From the magnetic vector potential, the poloidal magnetic flux ψ is
given by:

ψ (x, y, z) =

∮
A · d`. (6)
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Figure 2. The JET toroidal current model. The beam grids of unknown toroidal
currents of the plasma Jφ and iron core Jiron are shown in thin black lines. The beam
grids of the poloidal magnetic field coil currents Jcoils, which are retrieved from the
JET database, are shown in thin purple lines. The equilibrium virtual observations
Dequi, which impose the force balance constraints, are introduced at every plasma
current beam. The wall virtual observations Dwall force the currents of the outermost
beams (with grey shade) whose cross sections are intersected by the first wall of the
JET machine (thick black line) to zero.

The poloidal magnetic flux can be represented as a set of flux surfaces, normalised to
zero at the centre of plasma or the magnetic axis and to one at the boundary or the
last closed flux surface (LCFS). These normalised poloidal magnetic flux surfaces ψN

are often considered as the canonical coordinates, which plays an important role in
diagnostic data analysis, physics studies and plasma control in nuclear fusion research.
The current tomography and equilibrium models make use of the normalised flux ψN

coordinates to express the other physics parameters, the poloidal current flux F and
electron density ne and temperature Te by using Gaussian processes.

2.2. The Gaussian process prior

A Gaussian process [35, 36, 37] is a non-parametric function which associates any set
of points of the domain of the function, for example space and time, with a random
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vector following a multivariate Gaussian distribution. The properties of Gaussian process
are specified by the mean and covariance function of the Gaussian distribution. The
covariance function determines the covariance of output values at any two points which can
be seen as smoothness of the Gaussian process. Unlike a parametric model, which might
severely constrain the posterior distribution, the Gaussian process, not depending on any
specific parameterisation, puts less constraints on the posterior distribution. In nuclear
fusion research, Gaussian processes were introduced by non-parametric tomography of
the electron density and current distribution [13], followed by a number of applications
[9, 10, 16, 17, 23, 24, 38]. Gaussian processes are also the standard way to model profiles
in Minerva.

The zero mean and squared exponential covariance function are one of the most
common specifications of a Gaussian process f (x), which can be given by:

f (x) ∼ N (µ (x) ,Σ (x, x)) , (7)
µ (x) = 0, (8)

Σ (xi, xj) = σ2
f exp

(
−(xi − xj)

2

2σx

)
+ σ2

yδij, (9)

where µ is the mean function and x is an arbitrary (scalar or vector) point in the domain.
The covariance function Σ (xi, xj) is defined between any two arbitrary points xi and xj .
The parameters of the covariance function σf , σx and σy are the hyperparameters of the
Gaussian process. The overall scale σf and the length scale σx determine smoothness
of the function, and σy is chosen to be relatively small number with respect to σf , for
example σy/σf = 10−3 to avoid numerical instabilities. The overall and length scale (the
smoothness) of this Gaussian process is constant over the domain. The prior distribution
of the plasma current distributions Jφ is modelled by this Gaussian process, which is:

P
(
Jφ|σf,Jφ , σx,Jφ

)
∼ N

(
µJφ (x) ,ΣJφ (x, x)

)
, (10)

where the mean µJφ and covariance function ΣJφ are given by Equation (8) and
Equation (9), respectively. The domain of these functions is given in R,Z coordinates
x = [R,Z], and the length scale contains two components for R and Z direction
σx,Jφ =

[
σR,Jφ , σZ,Jφ

]
. The prior distributions of the hyperparameters σf,Jφ and σx,Jφ are

given by uniform distributions. In a similar way, the prior distribution of the poloidal
current flux F can be modelled by this Gaussian process as well, which is:

P (F |σf,F , σx,F ) ∼ N (µF (ψN) ,ΣF (ψN, ψN)) , (11)

and the prior distributions of the hyperparameters σf,F and σx,F are given by uniform
distributions.

The electron density and temperature can have substantially different smoothness
(gradient) in the core and edge regions [39]. A non-stationary covariance function [40] is
able to represent such spatially varying smoothness, which is given by:

Σ (xi, xj) = σ2
f

(
2σx (xi) σx (xj)

σx (xi)
2 + σx (xj)

2

) 1
2

exp

(
− (xi − xj)

2

σx (xi)
2 + σx (xj)

2

)
+ σ2

yδij, (12)
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where the length scale σx (x) is given as an arbitrary function. We need a function with
different smoothness (gradient) in the core and edge regions and a smooth transition
between the two for the length scale, and for this reason, we choose a hyperbolic tangent
function [9, 10], which is:

σx (x) =
σcore
x + σedge

x

2
− σcore

x − σedge
x

2
tanh

(
x− x0
xw

)
, (13)

where σcore
x and σedge

x are the length scale value in the core and edge regions. The position
and width of the transition are denoted as x0 and xw. The prior distributions of the
electron density ne and temperature Te can be modelled by this Gaussian process, which
is:

P (ne|σf,ne , σx,ne) ∼ N (µne (ψN) ,Σne (ψN, ψN)) , (14)
P (Te|σf,Te , σx,Te) ∼ N (µTe (ψN) ,ΣTe (ψN, ψN)) , (15)

where their mean and covariance functions given by Equation (8) and Equation (12),
respectively. The length scale functions σx,ne and σx,Te contain the four parameters of
σcore
x , σedge

x , x0 and xw. Again, the prior distributions of all these hyperparameters are
given by uniform distributions.

All the physics parameters are modelled by either 2D beam grids in R,Z coordinates
(Jφ and Jiron) or 1D Gaussian processes in the ψN coordinates (F , ne and Te). These
physics parameters can be given by 3D fields in x, y, z coordinates through the coordinate
transformations. Since we have such 3D fields of all these physics parameters, the
predictions of observed quantities can be made at any point in space and time by the
predictive models. Furthermore, physics/empirical laws can be predicted, for example the
force balance equation. These predictions of the physics/empirical laws can be formally
introduced as a part of the prior distributions by making virtual observations [14, 41].§

2.3. The equilibrium prior

A magnetic confinement fusion device confines the plasma particles with high kinetic
energy by the magnetic force of the plasma currents and the magnetic field. This
magnetic force counteracts the kinetic force of the plasma particles due to the plasma
pressure gradient and keeps the plasma in a macroscopic equilibrium state, which can be
described by the MHD force balance equation:

J × B −∇p ' 0, (16)

where J is the plasma current density, B is the magnetic field and p is the isotropic
pressure of the plasma particles. For axisymmetric plasmas, this force balance can be

§ These observations are introduced to prescribe physics/empirical assumptions, not observed during
the experiments.
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given in term of the toroidal current density Jφ, poloidal current flux F and pressure p,
by the Grad-Shafranov equation [5, 6], which can be written as:

Jφ −Rp′ − µ0

R
FF ′ ' 0, (17)

where p′ = ∂p
∂ψ

and F ′ = ∂F
∂ψ

. In this work, the isotropic pressure of plasma particles are
assumed to be twice of the electron pressure p = 2neTe.

In order to impose the MHD force balance, the model evaluates the integral of the
Grad-Shafranov equation over cross section of every plasma current beam. These force
balance constraints are introduced by virtual observations [14], which are given by:

P (Dequi|Jφ, F, ne, Te) =
∏
i

N

(∫ Zmax,i

Zmin,i

∫ Rmax,i

Rmin,i

Jφ −Rp′ − µ0

R
FF ′ dR dZ, σequi

)
,

(18)
where Rmin,i, Rmax,i, Zmin,i and Zmin,i are the minimum and maximum values of R and Z
positions of the cross section of the ith plasma current beam. All virtual measurements
of the force balance constraints Dequi are set to be zero, which mean the force balance
should be fulfilled. The standard deviation of these virtual observations σequi, to which
we reflect the epistemic uncertainties of the force balance, is set to be 50 kAm−2, a
few per cent of the typical average plasma current density. These virtual observations
together with the prior distributions of Jφ, F , ne and Te constitute the equilibrium prior
[14], which can be written as:

P (Jφ, F, ne, Te|Dequi) =
P (Dequi|Jφ, F, ne, Te)P (Jφ)P (F )P (ne)P (Te)

P (Dequi)
. (19)

Here, the prior distribution of the toroidal current density P (Jφ) is not given by
Equation (10) but Gaussian distributions with large standard deviations, for instance
300× 106 kAm−2, which is much higher than typical average plasma current density of
the order of 103 kAm−2 at JET, thus these Gaussian priors are effectively uniform.

2.4. The wall constraints

The plasma current density Jφ and the electron density ne and temperature Te are
not expected to be significantly high on the material surface facing the plasma inside
the machine, also known as the first wall. These empirical expectations are taken into
account by another set of virtual observations Dwall on the first wall. These virtual
observations Dwall =

[
Dwall,Jφ , Dwall,ne , Dwall,Te

]
are introduced at either the outermost

plasma current beams whose cross section are intersected by the first wall (the beams
with grey shade in Figure 2) or some spatial locations on the first wall except the divertor
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regions (the black dots in Figure 3), which are given by:

P (Dwall|Jφ, ne, Te) = P
(
Dwall,Jφ |Jφ

)
P (Dwall,ne |ne)P (Dwall,Te |Te) , (20)

P
(
Dwall,Jφ |Jφ

)
=
∏
i

N
(
Jφ (Ri, Zi) , σwall,Jφ

)
, (21)

P (Dwall,ne |ne) =
∏
i

N (ne (xi, yi, zi) , σwall,ne) , (22)

P (Dwall,Te |Te) =
∏
i

N (Te (xi, yi, zi) , σwall,Te) , (23)

where Jφ (Ri, Zi) is the plasma current density of the ith outermost current beam
and ne (xi, yi, zi) and Te (xi, yi, zi) are the electron density and temperature at the ith
spatial location on the first wall. All the virtual observations and uncertainties at the
first wall are set to be reasonably low: Dwall,Jφ = 0.0 kAm−2, σwall,Jφ = 1.0 kAm−2,
Dwall,ne = 1015 m−3, σwall,ne = 1015 m−3, Dwall,Te = 0.1 eV and σwall,Te = 0.1 eV.

2.5. The plasma diagnostics

In order to find all possible plasma current distributions as well as the poloidal current
flux and pressure profiles consistent with magnetic field and pressure measurements
simultaneously, the current tomography and equilibrium models employ a number
of predictive models of the following plasma diagnostics: magnetic sensors (pickup
coils, saddle coils and flux loops) [8], polarimeters [15], interferometers [10, 13, 14],
lithium beam emission spectroscopy [16, 17] and high-resolution Thomson scattering
(HRTS) systems [10]. All the lines of sight and observation positions of all these plasma
diagnostics are shown in Figure 3. Each of these predictive models includes forward
models of measurement techniques which encapsulate the relevant physical phenomena
and experimental setup. These models make the predictions of these measurements
given the 3D fields of these physics parameters in x, y, z coordinates. These 3D fields of
the poloidal current flux F and electron density ne and temperature Te are transformed
from the ψN coordinates, thus all the measurements related to those parameters from the
polarimeters, interferometers, lithium beam emission spectroscopy and HRTS systems
depend on the toroidal current distributions Jφ and Jiron as well as the coil currents Jcoils,
which are known and taken from the JET database.

2.5.1. The magnetic sensors The JET magnetic sensors consist of the pickup coils,
saddle coils and flux loops (the red dots, lines and diamonds in Figure 3). These magnetic
sensors measure the magnetic flux through the surrounding coils. The pickup coils,
saddle coils and flux loops provide, respectively, local magnetic field measurements at
the coil positions (the red dots), flux differences between the two R,Z positions (the
two endpoints of the red lines) and poloidal magnetic flux through the toroidal loops
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Figure 3. The lines of sight and observation positions, projected into the poloidal
plane, of all the JET diagnostics in the model. The magnetic sensors (in red) consist
of pickup coils, saddle coils and flux loops, which measure the magnetic field strength.
The interferometers and polarimeters share the lines of sight (in yellow) and provide∫
ne d` and

∫
neB‖ d`, respectively. The HRTS system measures the electron density

and temperature at 63 spatial locations (in orange) along the horizontal injected laser
path. The lithium beam emission spectroscopy system provides edge electron density
at 26 spatial locations (in pink) along the vertically injected beam from the top of the
machine. The first wall and the wall constraints are shown in the black line and dots.

(the red diamonds). The predictive model of all these magnetic sensors [8] is given by:

P (Dmag|Jφ, Jiron) = P (Dpickup|Jφ, Jiron)P (Dsaddle|Jφ, Jiron)P (Dfluxloop|Jφ, Jiron) ,

(24)

P (Dpickup|Jφ, Jiron) =
∏
i

N (BR (Ri, Zi) cos θi +BZ (Ri, Zi) sin θi, σpickup,i) , (25)

P (Dsaddle|Jφ, Jiron) =
∏
i

N (Gsaddle,i (ψ (R2,i, Z2,i)− ψ (R1,i, Z1,i)) , σsaddle,i) , (26)

P (Dfluxloop|Jφ, Jiron) =
∏
i

N (ψ (Ri, Zi) , σfluxloop,i) , (27)
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where BR (Ri, Zi) and BZ (Ri, Zi) are the R and Z direction of the magnetic field at
the position of the ith pickup coil with the angle of the normal vector θi, ψ (R2,i, Z2,i)

and ψ (R1,i, Z1,i) are the poloidal magnetic flux at the two R,Z positions of the ith
saddle coil with the correction factor for the actual 3D coil geometry Gsaddle,i and
ψ (Ri, Zi) is the poloidal magnetic flux through the ith flux loop. All the observations
and uncertainties of all these magnetic sensors Dmag = [Dpickup, Dsaddle, Dfluxloop] and
σmag = [σpickup, σsaddle, σfluxloop] are retrieved from the JET database.

2.5.2. The interferometers and polarimeters The JET far-infrared (FIR) interferometer-
polarimeter system [42, 43, 44] launches electromagnetic waves into the plasma and
measures the phase differences and polarisation angles between these injected waves and
the reference wave. These phase differences and polarisation angles are proportional
to the line integrated quantities

∫
ne d` and

∫
neB‖ d`, respectively, along four lateral

and four vertical lines of sight (the yellow lines in Figure 3). These quantities are
pre-calculated and stored in the JET database with their uncertainties. The predictive
models of the JET interferometer-polarimeter system [14, 15] are given by:

P (Dint|ne (ψN)) =
∏
i

N
(∫

ne d`i, σint,i

)
, (28)

P (Dpol|Jφ, ne (ψN)) =
∏
i

N
(∫

neB‖ d`i, σpol,i

)
, (29)

where
∫
d`i is the line integral along the ith line of sight and B‖ is the magnetic field

strength parallel to the line of sight. All the observations and uncertainties of all these
line integrated quantities Dint, Dpol σint, σpol are retrieved from the JET database.

2.5.3. The high-resolution Thomson scattering (HRTS) system The JET high-resolution
Thomson scattering (HRTS) system [45] launches laser pulses into the plasma and collects
Thomson scattered photons [46] with polychromators with four spectral channels from
63 spatial locations (the orange dots in Figure 3) with a spatial resolution of 0.8 cm
to 1.6 cm and a temporal resolution of 20Hz. The intensity and width of Thomson
scattering spectra provide the electron density ne and temperature Te measurements.
Since the electron density calibration factor CTS and the position shift of all spatial
channels along the laser path STS of the HRTS system are cross-calibrated with other
plasma diagnostics, they are regards as additional unknown parameters. The predictive
model of the JET HRTS system [10] is given by:

P (DTS|ne (ψN) , Te (ψN) , CTS, STS)

=
∏
i

∏
j

N (ATS,i,j (ne (Ri, Zi, STS) , Te (Ri, Zi, STS) , CTS) , σTS,i,j) , (30)

where ATS,i,j (ne (Ri, Zi, STS) , Te (Ri, Zi, STS) , CTS) is the amplitude of the Thomson
scattering spectrum of the jth spectral channel of the ith spatial position and σTS,i,j is
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the corresponding uncertainty. The electron density and temperature at the shifted
position of the ith spatial channel are given by:

ne (Ri, Zi, STS) = ne (Ri + STS cos θTS, Zi + STS sin θTS) , (31)
Te (Ri, Zi, STS) = Te (Ri + STS cos θTS, Zi + STS sin θTS) , (32)

where Ri and Zi the R and Z position of the ith spatial channel and θTS is the angle of
the laser path. If the position shift STS is positive, the shifted positions will be closer to
the first wall than the original positions. The range of STS is set not to allow any shifted
position to be beyond the first wall. The amplitude of the Thomson scattering spectrum
can be written as:

ATS,i,j (ne, Te, CTS) = CTS neElaser

∫
φi,j (λ)

λ

hc
r2e
S (λ, θ, Te)

λlaser
dλ, (33)

where Elaser is the laser energy, φi,j (λ) spectral response function of the jth spectral
channel of the ith spatial position, λ the scattered wavelength, h the Planck constant, c
the speed of light, re the classical electron radius, S (λ, θ, Te) the spectral density function
[47], θ the scattering angle and λlaser the laser wavelength. The prior distributions of
CTS and STS are given by uniform distributions.

2.5.4. The lithium beam emission spectroscopy system The JET lithium beam emission
spectroscopy system [48, 49] injects lithium beam atoms into the plasma and collect line
emission at 26 spatial locations (the pink dots in Figure 3) with a spatial resolution of
approximately 1.0 cm and a temporal resolution of 10ms to 20ms. The lithium beam
atoms interact with the plasma electrons and ions via collisions and produce spontaneous
emission from the first excited state. The intensity of the line emission can provide the
electron density and temperature measurements, but the JET lithium beam emission
spectroscopy system is designed to provide only the electron density measurements in
the edge region at the top of the machine. The predictive model of the JET lithium
beam emission spectroscopy system [16, 17] is given by:

P (DLi|ne (ψN) , Te (ψN)) =
∏
i

N (ALi,i (ne (Ri, Zi) , Te (Ri, Zi)) , σLi,i) , (34)

where ALi,i (ne (Ri, Zi) , Te (Ri, Zi)) is the amplitude of the lithium line emission of the
ith spatial position and σLi,i is the corresponding uncertainty. The amplitude of the
line emission is predicted by the collisional-radiative model which takes into account
excitation and de-excitation, ionisation and spontaneous emission.

2.6. The joint distribution

All these prior and predictive distributions represent the prior knowledge of the unknown
parameters and the predictions of the observations and together constitute the joint
distribution which embodies the full relationship between the unknown parameters and
the observations. Therefore, the model is defined as the joint distribution.
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The axisymmetric plasma model with the Gaussian process prior of the plasma
current distributions, the current tomography model, is given by:

P
(
Jφ, σJφ , Jiron, ne, σne , Te, σTe , CTS, STS, Dmag, Dint, Dpol, DLi, DTS, Dwall

)
=P (Dmag|Jφ, Jiron)P (Dint|ne (ψN))P (Dpol|Jφ, ne (ψN))P (DLi|ne (ψN) , Te (ψN))

×P (DTS|ne (ψN) , Te (ψN) , CTS, STS)P (CTS)P (STS)P (Dwall|Jφ, ne (ψN) , Te (ψN))

×P
(
Jφ|σf,Jφ , σx,Jφ

)
P
(
σf,Jφ

)
P
(
σx,Jφ

)
P (Jiron)

×P (ne|σf,ne , σx,ne)P (σf,ne)P (σx,ne)P (Te|σf,Te , σx,Te)P (σf,Te)P (σx,Te) , (35)

where σJφ =
[
σf,Jφ , σx,Jφ

]
, σF = [σf,F , σx,F ], σne = [σf,ne , σx,ne ] and σTe = [σf,Te , σx,Te ].

The other model with the equilibrium prior shown in Figure 1, the equilibrium model, is
given by:

P (Jφ, Jiron, F, σF , ne, σne , Te, σTe , CTS, STS, Dmag, Dint, Dpol, DLi, DTS, Dequi, Dwall)

=P (Dmag|Jφ, Jiron)P (Dint|ne (ψN))P (Dpol|Jφ, ne (ψN))P (DLi|ne (ψN) , Te (ψN))

×P (DTS|ne (ψN) , Te (ψN) , CTS, STS)P (CTS)P (STS)P (Dwall|Jφ, ne (ψN) , Te (ψN))

×P (Dequi|Jφ, ne (ψN) , Te (ψN) , F (ψN))P (Jφ)P (Jiron)P (F |σf,F , σx,F )P (σf,F )P (σx,F )

×P (ne|σf,ne , σx,ne)P (σf,ne)P (σx,ne)P (Te|σf,Te , σx,Te)P (σf,Te)P (σx,Te) . (36)

We emphasise that the main difference between these two models is the choice of the
prior distribution to emphasise solutions based on either optimal hyperparameters based
on Bayesian Occam’s razor or the MHD force balance. The current tomography model
makes use of the Gaussian process prior of the plasma current distributions with the
optimal hyperparameters, and on the other hand, the equilibrium model imposes the
MHD force balance by the equilibrium prior.

3. The inference

Given the joint distributions, when observations are made by an experiment, the posterior
distributions can be calculated through Bayes formula, given by Equation (2). The full
joint posterior distribution of the current tomography model is:

P
(
Jφ, σJφ , Jiron, ne, σne , Te, σTe , CTS, STS, Dmag, Dint, Dpol, DLi, DTS, Dwall

)
=
P
(
Jφ, σJφ , Jiron, ne, σne , Te, σTe , CTS, STS|Dmag, Dint, Dpol, DLi, DTS, Dwall

)
P (Dmag, Dint, Dpol, DLi, DTS, Dwall)

, (37)

and the one of the equilibrium model is:

P (Jφ, Jiron, F, σF , ne, σne , Te, σTe , CTS, STS|Dmag, Dint, Dpol, DLi, DTS, Dequi, Dwall)

=
P (Jφ, Jiron, F, σF , ne, σne , Te, σTe , CTS, STS, Dmag, Dint, Dpol, DLi, DTS, Dequi, Dwall)

P (Dmag, Dint, Dpol, DLi, DTS, Dequi, Dwall)
,

(38)
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where the denominators are a normalisation constant in this context. These posterior
distributions can be explored by optimisation or sampling algorithms, for example pattern
search [50] and Markov chain Monte Carlo (MCMC) algorithms [51, 52, 53], in order to
find the optimal solution, which maximises the posterior probability, also known as the
maximum a posteriori (MAP) solution or all possible solutions, which are drawn from
the posterior distribution, also known as posterior samples. However, these posterior
distributions are high dimensional (more than 1000 dimensions) and highly correlated
through all these observations. In addition, these distributions involve all these forward
models, which often require a significant amount of computation time. For this reason,
exploration of such complex, high dimensional posterior distributions is computationally
challenging [14, 30, 31]. A number of numerical recipes and algorithms has been applied
to the equilibrium problem [14, 30, 31, 41, 54, 55], but, none of these algorithms manage
to sample from these complex joint posterior distributions for cases such as H-mode
plasmas.

In this work, we have developed a new method to explore these posterior
distributions. The main idea of the new method is to separate a high dimensional
target distribution P (X1, X2, · · · , Xn) into a number of low dimensional conditional
distributions P (Xi|X1, · · · , Xi−1, Xi+1, · · · , Xn) and to sample them consecutively based
on the Gibbs sampling scheme [32] as follow:

(i) Begin with initial values X(k)
1 , X

(k)
2 , · · · , X(k)

n .

(ii) Sample the first parameter X(k+1)
1 from P

(
X

(k+1)
1 |X(k)

2 , X
(k)
3 , · · · , X(k)

n

)
. Update

the first parameter to X
(k+1)
1 and sample the second parameter X

(k+1)
2 from

P
(
X

(k+1)
2 |X(k+1)

1 , X
(k)
3 , · · · , X(k)

n

)
. Update the second parameter to X

(k+1)
2 and

sample the third parameter X(k+1)
3 from P

(
X

(k+1)
3 |X(k+1)

1 , X
(k+1)
2 , X

(k)
4 , · · · , X(k)

n

)
.

Likewise, sample all the other parameters consecutively until to update all the
parameters to X(k+1)

1 , X
(k+1)
2 , · · · , X(k+1)

n , which will be the (k + 1)th sample.
(iii) Repeat the above.

The samples approximate the target distribution P (X1, X2, · · · , Xn). These conditional
distributions are in general much simpler to sample than the target distribution, and for
some of them, analytic expressions can be found. In this way, the difficulty of sampling
the high dimensional target distribution can be substantially reduced.

For this reason, the current tomography model is divided by the following parts:

P (Jφ, Jiron|ne, σne , Te, σTe , CTS, STS, Dmag, Dint, Dpol, DLi, DTS, Dwall) , (39)
P (ne, σne , Te, σTe , CTS, STS|Jφ, Jiron, Dmag, Dint, Dpol, DLi, DTS, Dwall) , (40)
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and the equilibrium model is divided by the following parts:

P (Jφ, Jiron|F, σF , ne, σne , Te, σTe , CTS, STS, Dmag, Dint, Dpol, DLi, DTS, Dequi, Dwall) ,

(41)
P (ne, σne , Te, σTe , CTS, STS|Jφ, Jiron, F, σF , Dmag, Dint, Dpol, DLi, DTS, Dequi, Dwall) ,

(42)
P (F, σF |Jφ, Jiron, ne, σne , Te, σTe , CTS, STS, Dmag, Dint, Dpol, DLi, DTS, Dequi, Dwall) .

(43)

In order to make analytic expressions available for the conditional posterior distributions
of electron density and temperature, given by Equation (40) and Equation (42), through
the linear Gaussian inversion [8, 14], the observations of the HRTS and lithium beam
spectroscopy systems are given as electron density and temperature, which are pre-
calculated from individual inference applications. In addition, the hyperparameters σF ,
σne and σTe and the HRTS model parameters CTS and STS are set to be the MAP solutions
which are found through the inversion procedures, described in the next paragraph.
These conditional posterior distributions of the current tomography model can be now
written as:

P (Jφ, Jiron|ne, Te, CTS, STS, Dmag, Dint, Dpol, DLi, DTS, Dwall) , (44)
P (ne, Te|Jφ, Jiron, σne , σTe , CTS, STS, Dint, Dpol, DLi, DTS, Dwall) , (45)

and those of the equilibrium model:

P (Jφ, Jiron|F, ne, Te, CTS, STS, Dmag, Dint, Dpol, DLi, DTS, Dequi, Dwall) , (46)
P (ne, Te|Jφ, Jiron, F, σne , σTe , CTS, STS, Dint, Dpol, DLi, DTS, Dequi, Dwall) , (47)
P (F |Jφ, Jiron, σF , ne, Te, Dequi) . (48)

Most of these conditional posterior distributions can be sampled from their analytic
expressions through the linear Gaussian inversion. The conditional posterior distribution
of the toroidal current distributions whose analytic forms are not available through the
linear Gaussian inversion can be explored by MCMC algorithm, specifically the adaptive
Metropolis–Hastings algorithm [51, 52, 53]. Still approximated analytic distribution
functions are available for these distributions, the MCMC algorithm can use these
approximated distribution functions as initial proposal distributions. The posterior
samples of the full joint posterior distributions will be drawn by sampling these conditional
posterior distributions consecutively.

The MAP solutions can be found by a set of optimisation steps to explore the
conditional posterior distributions based on the same scheme. Here, the procedure makes
use of the pattern search algorithm [50] and the linear Gaussian inversion as follow:

(i) Infer the toroidal current density Jφ and Jiron by the current tomography [8]
with Gaussian processes given the magnetic field measurements Dmag and the
wall constraints Dwall through the linear Gaussian inversion. The optimal
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hyperparameters are found through the pattern search algorithm that explores the
model evidence, which can be analytically calculated through the linear Gaussian
inversion.

(ii) Calculate the magnetic flux surface ψN given the toroidal current density.
(iii) Infer the electron density ne and temperature Te given the ψN coordinates as well

as the electron density and temperature measurements Dint, DLi, DTS and the wall
constraints Dwall through the linear Gaussian inversion. The hyperparameters σne

and σTe and the HRTS model parameters CTS and STS are optimised through the
pattern search algorithm with the linear Gaussian inversion to explore the model
evidence.

(iv) Infer the poloidal current flux F and the hyperparameters σF given all the other
unknown parameters from the previous steps and equilibrium prior Dequi if the
equilibrium model. Otherwise, skip this step.

(v) Infer the toroidal current density Jφ and Jiron given all the other unknown parameters
given the previous steps and the magnetic field measurements Dmag in addition to
the polarimeter measurements Dpol as well as the wall constraints Dwall.

(vi) Explore the full joint posterior distribution by the pattern search algorithm from
these initial guesses.

(vii) Repeat the above from (iii) until finding the (local) maximum.

The MAP solutions are relatively easier to be found than the posterior samples and
can be used as inference solutions or initial guesses for further exploration. The new
sampling method uses these MAP solutions as initial guesses in order to sample the full
joint posterior distribution. In the following subsections, the MAP solutions and the
posterior samples of the current tomography and equilibrium models found by these
inversion procedures will be presented.

3.1. The current tomography inference

The full joint posterior distribution of the current tomography model are explored to
find all possible plasma current distributions and electron pressure profiles, which are
modelled by the Gaussian process priors, given all the measurements simultaneously
through the new inversion procedures. The marginal posterior distributions of the
normalised poloidal magnetic flux surfaces, the electron density and temperature profiles
for typical JET L- and H-mode plasmas are shown in Figure 4 and Figure 5. The
blue and light blue lines are the marginal posterior mean and samples, respectively.
The blue dashed lines are the lower and upper boundaries of one standard deviation
(±1σ) marginal posterior uncertainty bands. The magnetic axis and the last closed
flux surface (LCFS) are depicted as big dots and thick lines, and three different sets of
thinner lines are the normalised flux surfaces which are corresponding to ψN = 0.25, 0.50,
0.75 in Figure 4(a) and Figure 5(a). For comparison, the normalised flux surfaces of
the conventional equilibrium fitting (EFIT) code [7, 56] (in green), the electron density
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Figure 4. The inference results of the current tomography model for JET discharge
#89709 at 8.0 s (an L-mode plasma): (a) the normalised poloidal magnetic flux surfaces,
(b) the electron density and (c) temperature profiles. For comparison, the results of
the conventional analysis of the equilibrium fitting (EFIT) code (in green), the HRTS
system (in orange) and the lithium beam spectroscopy (in pink) systems are shown
here. The orange and pink dots in (a) are the measurement positions of the HRTS and
lithium beam spectroscopy systems, respectively. The HRTS system is automatically
calibrated with the inferred HRTS model parameters CTS and STS given all the other
measurements, and the posterior mean of CTS and STS are presented. We note that
these inferred HRTS model parameters CTS and STS are also applied to the electron
density profiles of the conventional analysis of the HRTS system (the orange dots),
which means that the HRTS electron density profiles (the orange dots) are slightly
lower (in this case 0.967 times lower) than the original analysis results.

and temperature profiles of the conventional analysis of the HRTS (in orange) and the
lithium beam spectroscopy (in pink) systems are presented. The orange and pink dots
in Figure 4(a) and Figure 5(a) are the measurement positions of the HRTS and lithium
beam spectroscopy systems, respectively. The HRTS system is automatically calibrated
with the inferred electron density calibration factor CTS and the measurement position
shift STS given all the other measurements during the inversion procedures. The posterior
mean of CTS and STS are presented in Figure 4(b) and Figure 5(b). We note that these
inferred HRTS model parameters CTS and STS are also applied to calibrate the electron
density profiles of the conventional analysis of the HRTS system shown in Figure 4(b)
and Figure 5(b) in order to make reasonable comparison and avoid confusion. This
means that the HRTS electron density profiles (the orange dots) are 0.967 times lower
than the original analysis results.

The hyperparameters of Gaussian processes of the plasma current distributions and
electron density and temperature profiles are optimised by maximising the posterior
distributions of the hyperparameters during the inversion procedures, and the marginal
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Figure 5. Same as Figure 4 for an H-mode plasma (JET discharge #89709 at 13.5 s).
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Figure 6. The marginal posterior distributions of the hyperparameters explored during
the MAP inversion procedures: (a) the overall and length scale of the plasma current
distributions and (b) the position and width of the transition of the smoothness of the
electron density profiles.

posterior distributions of these hyperparameters are shown in Figure 6. These posterior
distributions are proportional to the model evidence which embodies Bayesian Occam’s
razor [11, 12], and over-complex Gaussian processes are quantitative and automatically
rejected. As shown in Figure 5, the Gaussian processes with the optimal hyperparameters
are able to represent the low and steep gradient of the electron density and temperature
profiles in the core and edge regions without problems of under- or over-fitting.

The comparison between the predictions and observations of the magnetic sensors,
polarimeters and interferometers are shown in Figure 7. The blue and light blue lines
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are the predictions given the posterior mean and samples, respectively. The valid and
invalid observations are shown as the red and orange dots. Some of the magnetic sensors
frequently suffer complete failure, for example systematic signal drift over time, the invalid
magnetic sensors have been automatically detected by the magnetic diagnostic rejection
procedure [14]. The normalised differences between the predictions and observations are
presented. As shown in Figure 7, the predictions given the posterior samples well agree
with the observations within their predictive uncertainties.

We emphasise that the inference results of the plasma current distributions and
pressure profiles are consistent with all the measurements. Typically, the conventional
analysis of the plasma diagnostics makes use of the normalised flux surfaces from the
EFIT code with the magnetic field measurements in order to map the physics parameters,
for example electron density profiles in the EFIT ψN coordinates. The results from the
conventional analysis might very well be inconsistent with each other, because of not only
the individual analysis but also the ψN coordinates. The inference solutions from the
HRTS and lithium beam spectroscopy analysis codes are not consistent with each other
in the EFIT ψN coordinates, as shown in Figure 8(c). In such cases, it would be very
difficult to figure out which electron density (temperature) profiles is correct and should
be used for further physics analysis. In contrast, the current tomography model takes
into account all the magnetic field and pressure measurements simultaneously in order
to find all possible consistent solutions, as shown in Figure 8(b). Furthermore, since the
electron density and temperature are assumed to be constant on the normalised flux
surfaces, thus they can give additional information on the normalised flux surfaces or
the plasma current distributions. As shown in Figure 8(a), the normalised flux surfaces
inferred with the current tomography model and the EFIT code are notably different,
especially the LCFS near the top of the machine where the lithium beam spectroscopy
system provides edge electron density profiles and the magnetic axis. The comparison
of the current tomography ne and conventional analysis ne in the current tomography
and EFIT ψN coordinates during a JET discharge are shown in Figure 9. The electron
density profiles are consistent with those of the conventional analysis of the HRTS and
lithium spectroscopy systems in the current tomography ψN coordinates, whereas not in
the EFIT ψN coordinates.

We remark that, unlike the conventional EFIT code, all these inference results
provide not only a single solution but also all possible solutions with their associated
uncertainties. The full uncertainties of all the unknown parameters are calculated from
the posterior samples, which can be used for quantification of uncertainties for further
physics analysis such as transport analysis with TRANSP [57].

3.2. The equilibrium inference

In the previous subsection, we have explored the full joint posterior distributions of the
current tomography model which does not take into account any further prior knowledge
such as the MHD force balance. On the other hand, the equilibrium model introduces the
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Figure 7. The predictions and observations of (a) the pickup coils, (c) saddle coils, (e)
polarimeters and (g) interferometers. The valid and invalid data points are shown as the
red and orange dots, respectively. The blue and light blue lines are the predictions given
the posterior mean and samples. The normalised differences between the predictions
and observations (P −D)/σ are presented for (b) the pickup coils, (d) saddle coils, (f)
polarimeters and (h) interferometers. We note that the line integrated electron density
measurements from the second channel of the interferometers do not exist for this case,
nevertheless, the model still makes the corresponding predictions.
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Figure 8. The comparison of the electron density profiles in the current tomography
and EFIT ψN coordinates for JET discharge #92398 at 5.0 s (an L-mode plasma): (a)
the normalised flux surfaces inferred with the current tomography model (in blue) and
the conventional EFIT code (in green), (b) the electron density profiles in the current
tomography ψN coordinates and (c) in the EFIT code ψN coordinates. The electron
density profiles inferred with the current tomography model are consistent with all the
measurements.
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Figure 9. The comparison of the current tomography ne and conventional analysis ne
in the current tomography and EFIT ψN coordinates during JET discharge #92398: (a)
the comparison of the current tomography ne and conventional analysis ne of the HRTS
(cross) and the lithium beam spectroscopy (dots) systems in the current tomography
(in blue) and EFIT (in green) ψN coordinates and (b) the time evolution of the electron
density profiles in the current tomography ψN coordinates and (c) in the EFIT ψN

coordinates. The black line is y = x in (a).
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Figure 10. The plasma and equilibrium current distributions of the MAP solution for
JET discharge #89709 at 8.0 s (an L-mode plasma): (a) the plasma and (b) equilibrium
current distributions and (c) the difference between the two.

virtual observations which impose the MHD force balance constraints at every plasma
current beam as a part of the prior. The full joint posterior distribution of the equilibrium
model are explored through the new inversion procedure. The plasma and equilibrium
current distributions of the MAP solution for typical JET L- and H-mode plasmas are
shown in Figure 10 and Figure 11. The equilibrium current distributions are calculated
given the poloidal current flux and pressure profiles (p = 2neTe), and the difference
between the two distributions are presented. The difference between these two current
distributions are in general less than a few per cent of the typical plasma current values,
therefore these solutions fulfil the MHD force balance.

The inference results of the equilibrium model propose a strong current in the
edge region for an H-mode plasma, as shown in Figure 11. The electron density and
temperature profiles of a typical H-mode plasma have a very steep gradient in the edge
region (ψN ∼ 0.95), as shown in Figure 12. The strong force due to the steep plasma
pressure gradient in the edge region has to be balanced out by strong magnetic force due
to high plasma currents. In other words, if the plasma in a stable, macroscopic MHD
equilibrium state has steep pressure gradient in the edge region, then it might very well
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Figure 11. Same as Figure 10 for an H-mode plasma (JET discharge #92398 at 7.0 s).

be that the plasma currents are strong in the edge region. Typically, this inferred edge
current density is around 5× 102 kA, which is approximately one-third of the inferred
core current density. The edge current density in the low field side is approximately
two times higher than the one in the high field side. Furthermore, the normalised flux
surfaces, especially near the X-point, are shrunk due to this strong edge current density,
as shown in Figure 12.

We emphasise that the electron density and temperature profiles in the equilibrium
ψN coordinates are consistent with all the measurements. For comparison, the electron
density and temperature profiles of the conventional analysis of the HRTS system (in
orange), the lithium beam spectroscopy (in pink) and reflectometer (in grey) systems are
shown in Figure 12. The electron density and temperature profiles are inferred given the
interferometer, HRTS and lithium beam spectroscopy measurements, nevertheless, these
electron density profiles are also consistent with the reflectometer measurements. As
explained in the previous subsection, the HRTS system is automatically calibrated with
the inferred model parameters CTS and STS given all the other measurements. In this
case, the posterior mean of the electron density calibration factor CTS is 0.897, which
means that the conventional analysis of the HRTS system overestimates the electron
density by around ten per cent. The electron density profiles of the HRTS measurements



26

2.0 2.5 3.0 3.5 4.0

2

1

0

1

2

Z 
[m

]

(a) EFIT
Minerva

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

2

4

6

n e
 [1

019
 m

3 ]

CTS = 0.897
STS = 0.001 [m]

(b)

Minerva
Reflec
Libeam
HRTS

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

2

4

6

8

T e
[k

eV
]

(c)
Minerva
HRTS

0.0 0.2 0.4 0.6 0.8 1.0 1.2
N

0
1
2
3
4
5

Sa
fe

ty
 fa

ct
or

 q

(d)
EFIT
Minerva

Figure 12. The inference results of the equilibrium model for JET discharge #92398
at 7.0 s (an H-mode plasma): (a) the normalised poloidal magnetic flux surfaces, (b)
the electron density, (c) temperature and (d) safety factor q profiles. For comparison,
the results of the conventional analysis of the equilibrium fitting (EFIT) code (in green),
the HRTS (in orange), the lithium beam spectroscopy (in pink) and the reflectometer
(grey) systems are shown here. The orange and pink dots in (a) are the measurement
positions of the HRTS and lithium beam spectroscopy systems. We note that the
reflectometer measurements are not included in the model, nevertheless, the electron
density profiles are consistent with the reflectometer measurements.

(the orange dots) shown in Figure 12(b) are calibrated with the inferred model parameters
CTS and STS in order to make reasonable comparison and avoid confusion, and these
HRTS profiles are lower than the original analysis results. Importantly, the electron
density profiles inferred with the equilibrium model are consistent with all the other
measurements in the model as well as with the reflectometer measurements. In other
words, the automatic calibration of the HRTS system has been carried out with all the
other measurements in the model and confirmed by the reflectometer measurements.
Furthermore, the equilibrium ψN coordinates map all these electron density profiles in a
consistent way.

The safety factor q, which is the number of poloidal winding per a single toroidal
winding of the magnetic field line, can be calculated given the poloidal current flux.
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The safety factor q can be used to check certain stabilities of the plasma, which can be
written as:

q =
rBφ

RBθ

, (49)

where Bφ and Bθ are the toroidal and poloidal magnetic field, respectively, and r is
the minor radius. The q profiles inferred with the equilibrium model are similar to the
one of the EFIT code. In the core region, q profiles and their posterior uncertainties
may be determined by the Gaussian process priors. Again, all these physics parameters
are provided with their associated uncertainties which can be used for further physics
analysis.

3.3. The equilibrium predictions given the current tomography solutions

The current tomography model does not impose further assumptions like the equilibrium
model, which prescribes the MHD force balance. In this work, we do not have any poloidal
current measurement technique such as motional Stark effect (MSE) diagnostics, thus
the current tomography model has no information on the poloidal current distributions.
Nevertheless, we can explore the joint posterior distribution of the poloidal current flux
profiles and the other physics parameters drawn from the current tomography posterior
distributions by using the equilibrium virtual observations:

P (F, Jφ, Jiron, ne, Te|σF , Dequi, DCT)

=
P (Dequi|F, Jφ, Jiron, ne, Te, σF , DCT)P (F, Jφ, Jiron, ne, Te|σF , DCT)

P (Dequi)

=
P (Dequi|F, Jφ, ne, Te)P (F |Jφ, Jiron, ne, Te, σF )P (Jφ, Jiron, ne, Te|DCT)

P (Dequi)

'P (Dequi|F, Jφ, ne, Te)P (F |σF )P (Jφ, Jiron, ne, Te|DCT)

P (Dequi)
, (50)

where P (Jφ, Jiron, ne, Te|DCT) is the conditional posterior distributions of the current
tomography model which has been already explored in Section 3.1 and all the
measurements, which are taken into account the current tomography model, are
denoted as DCT = [Dmag, Dint, Dpol, DLi, DTS, Dwall]. Given the pre-calculated current
tomography posterior samples, we can easily calculate Equation (50) and explore the
joint posterior distribution of the poloidal current flux profiles and the other physics
parameters. Here we make use of the same equilibrium virtual observations of the
equilibrium model. We note that this is a new way to explore equilibrium solutions given
the current tomography posterior samples.

The MHD force balance predictions given the current tomography posterior samples
are shown in Figure 13. The difference between the plasma and equilibrium current density
is small in general, but in the edge region, this difference can be notable. Interestingly,
the equilibrium solutions of the current tomography model propose reverse bumps of the
poloidal current flux profiles in the edge region, as shown in Figure 13(d), which attempt to
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cancel out the strong equilibrium current contributions due to the steep pressure gradient
(the brown reverse bumps) in the edge region as shown in Figure 13(a). These equilibrium
current contributions Jp′ = Rp′ can be seen as the toroidal current preconditions to
balance out the plasma pressure gradient by the magnetic force of the plasma currents
and the magnetic field. On the other hand, the equilibrium current contributions due
to the poloidal current flux profiles JFF ′ = µ0

R
FF ′ can cancel these toroidal current

preconditions. In this case, the inference results of the current tomography model explain
plasma equilibria without a strong current density in the edge region. In contrast, the
inference results of the equilibrium model propose a strong toroidal current density in
the edge region, approximately 4× 102 kA, as shown in Figure 14. The plasma and
equilibrium current distributions inferred with the equilibrium model are consistent with
each other better than those with the current tomography model, therefore equilibrium
model offers solutions consistent with the MHD force balance within small equilibrium
prior uncertainties. Nevertheless, the predictions of both models consistent with all the
measurements, therefore, the poloidal current measurement technique such as the MSE
diagnostics would be crucial to understand these equilibrium solutions further. These
current tomography and equilibrium models give different solutions for plasma equilibria
because of the different model priors.

4. Conclusions

The Bayesian models of axisymmetric plasmas using Gaussian processes and
magnetohydrodynamics force balance equations have been developed. These models give
the full joint posterior distributions of the plasma current distributions and pressure
profiles consistent with the magnetic field and pressure measurements from the following
plasma diagnostics: the magnetic sensors, polarimeters, interferometers, high-resolution
Thomson scattering and lithium beam emission spectroscopy systems. The plasma
current distributions are modelled as a grid of toroidal solid beams carrying a uniform
current, and the other physics parameters such as the plasma pressure and poloidal
current flux profiles are given as a function of the normalised poloidal magnetic flux
surfaces, determined by the toroidal currents. Since inference of all these physics
parameters is a tomographic problem, in order to exclude unreasonable solutions, we
have introduced two different prior distributions: the Gaussian process prior and the
equilibrium prior. The current tomography model makes use of the Gaussian process
prior with the optimal hyperparameters obtained by Bayesian Occam’s razor. On the
other hand, the equilibrium model imposes the Grad-Shafranov force balance constraints
as a part of the equilibrium prior by introducing the virtual observations. These complex,
high dimensional full joint posterior distributions have been explored by the new inversion
procedures based on the Gibbs sampling scheme.

Unlike the conventional approach such as the EFIT code and the analysis code
of each individual diagnostics, this approach provides the consistent solutions of the
plasma current distributions as well as the poloidal current flux and electron density and
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Figure 13. The MHD force balance predictions given the current tomography posterior
samples for JET discharge #89709 at 13.5 s (an H-mode plasma): (a) and (b) the
plasma and equilibrium current distributions across the plasma, (c) the pressure and
(d) poloidal current flux profiles and (e) the comparison between the plasma and
equilibrium current density. The blue and thick red lines in (a) and (b) are the plasma
and equilibrium current distributions, respectively. The brown and purple lines in (a)
and (b) are the equilibrium current contributions Jp′ = Rp′ and JFF ′ = µ0

R FF
′ due to

the pressure and poloidal current flux profiles shown in (c) and (d). For comparison,
the results of the EFIT code and the HRTS analysis are shown as the green lines and
orange dots in (c) and (d). The black line is y = x in (e).
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Figure 14. Same as Figure 10 for the inference results of the equilibrium model.

temperature profiles with all the magnetic field and pressure measurements simultaneously.
The plasma current distributions all the other physics parameters are optimally inferred
from all the measurements. As a result, the plasma current distributions and all the
other physics parameters such as the electron density and temperature expressed in the
normalised flux coordinates are self-consistent with all the measurements. For this reason,
these inference solutions provide extra information of the plasma current distributions
from the electron density and temperature measurements and vice versa. Furthermore,
the HRTS system is automatically calibrated with the inferred model parameters.

The equilibrium solutions inferred with the equilibrium model propose a strong
toroidal current density in the edge region due to the steep pressure gradient of H-mode
plasmas. This edge current density is approximately one-third of the core current density
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and provides a strong magnetic force which can balance out the steep pressure gradient
in a stable, macroscopic MHD equilibrium state. On the other hand, the equilibrium
solutions predicted given the current tomography posterior samples propose the poloidal
current flux hole (the reverse bumps) in the edge region which can strengthen the magnetic
force to balance out the steep gradient without a strong toroidal current in the edge region.
Nevertheless, the predictions of both models agree with all the measurements, therefore
the poloidal current measurements would be crucial to understand these equilibrium
solutions further.

All these solutions are provided with the optimal hyperparameters which are
optimally chosen by Bayesian Occam’s razor. Moreover, all these inferred physics
parameters are provided with the full uncertainties, which can be used to explore all
possible solutions of high-level physics parameters, for example the energy transport
coefficient, in further physics studies.
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5
A look ahead

If I have seen further, it is by standing upon
the shoulders of giants.

(Sir Isaac Newton)

As we are close to the end of this story, here again, I would like to emphasise
that the principles and methods are indeed general and applicable to all kinds of
scientific problems. As we have discussed previously, we have defined epistemic
knowledge as the cost function of scientific problems. Given a model space and
a parameter space, it is now straightforward for any human or machine to find
inference solutions for models and their parameters simultaneously. The infer-
ence process, in principle, can be carried out autonomously. The principle of
Occam’s razor will guide any human or machine to find the optimal solutions
for the model and the parameters with appropriate complexities given obser-
vations. Now, what could be the next step here? Perhaps, we can develop a
supermodel, which includes all the data and parameter sets of the entire exper-
iment and physical system. The supermodel of the W7-X experiment, which
is now under construction, will take into account all the scientific instruments
and physics models. By exploring the joint posterior distribution of the super-
model, we might be able to allow a-machines to find the ultimate consistent
inference solution and achieve scientific discoveries autonomously. Neverthe-
less, we still have a number of unsolved questions towards the automation of
science. How can we expand the model space or go beyond the model space? Or,
in other words, how exactly have we been asking a question of why? To answer
these questions, we have to find patterns of scientific inquiries and discoveries
throughout the history of science. I believe that, no matter how difficult it is,
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we will find a way to reveal patterns of the minds of giants in the light of the
data, and we will lead ourselves beyond our imagination.
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