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Abstract
SIMD extensions were added to microprocessors in the mid ’90s 
to speed-up data-parallel code by vectorization. Unfortunately, the 
SIMD programming model has barely evolved and the most effi-
cient utilization is still obtained with elaborate intrinsics coding. As 
a consequence, several approaches to write efficient and portable 
SIMD code have been proposed. In this work, we evaluate current 
programming models for the C++ language, which claim to sim-
plify SIMD programming while maintaining high performance.

The proposals were assessed by implementing two kernels: 
one standard floating-point benchmark and one real-world integer-
based application, both highly data parallel. Results show that 
the proposed solutions perform well for the floating p oint ker-
nel, achieving close to the maximum possible speed-up. For the 
real-world application, the programming models exhibit significant 
performance gaps due to data type issues, missing template support 
and other problems discussed in this paper.

Keywords SIMD, vectorization, C++, parallel programming, pro-
gramming model

Categories and Subject Descriptors CR-number [subcategory]: 
third-level

1. Introduction
Single Instruction Multiple Data (SIMD) extensions have their ori-
gin in the vector supercomputers of the early ’70s and were intro-
duced to desktop microprocessors around twenty years later, when 
the demand for more compute power grew due to increasingly pop-
ular gaming and video applications. They exploit Data Level Par-
allelism (DLP) by executing the same instruction on a set of data 
simultaneously, instead of repeating it multiple times on a single, 
scalar value. An example is the brightening of a digital image, 
where a constant value is added to each pixel. When using SIMD, a 
vector of pixels is created and the constant is added to each vector 
element with one instruction.

The number of bits that can be processed in parallel, the vec-
tor size, has been growing with each SIMD generation. A short 
overview of the evolution of the most common SIMD extensions 
can be found in [14, 15]. Along with the vector size, the number
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of available SIMD instructions has been increasing as well, adding
more advanced functions to the repertoire over the years.

In order to use these SIMD features, code has to be vectorized
to fit the underlying hardware. There are several ways to accom-
plish this. The least effort for the programmer is using the auto-
vectorization capabilities of modern compilers.

These compilers implement one or more automatic vectoriza-
tion passes, commonly applying loop vectorization and Super-word
Level Parallelism (SLP). Within such a pass, the compiler analyzes
the code by looking for instructions that profit from the scalar to
vector conversion, and then transforms it accordingly. For tradi-
tional automatic loop vectorization [6], this approach succeeds for
well-defined induction variables and statically analyzable inter- and
intra-loop predictions, but it fails to vectorize codes with complex
control flows or structured data-layouts. SLP vectorizers [5] typ-
ically work on straight-line code and scan for scalars that can be
grouped together into vectors; recent studies have shown, however,
that the average number of vector lanes that are occupied is merely
2 [9].

Significantly more effort has to be spent when a programmer
chooses to use intrinsic functions to vectorize code. Intrinsics are
low level functions that implement all SIMD instructions of a pro-
cessor architecture. Though they are at a higher level of abstrac-
tion than assembly programming, coding with them comes with its
own challenges, i.e. effort, portability and compatibility. Nonethe-
less, intrinsics coding is still considered state-of-the-art for maxi-
mum performance gain, as its low-level approach results in efficient
hardware utilization.

With these two options, SIMD programming presents itself as
a trade-off between effort and performance, where the program-
mer can only chose between the two extrema. This is illustrated
in Figure 1, where an HEVC (H.265) video decoder [16] was vec-
torized manually with intrinsics and compared to the results of the
most commonly used C++ compilers’ auto-vectorizers. It is appar-
ent that high programming effort results in high performance and
vice versa. To find a middle ground, researchers have worked on in-
venting more convenient programming models that still deliver suf-
ficient performance. In this paper, we provide an overview of such
programming models for current SIMD units and evaluate how well
they do in terms of speed-ups. For this purpose, two kernels were
assessed:

1. the Mandelbrot benchmark, which is highly data-parallel,
straight-forward to vectorize and works with 32bit floating
point numbers

2. an HEVC interpolation kernel, taken from a real-world HEVC
decoder, also highly data-parallel, based on function templates
and working with 8bit and 16bit integers.

This paper will discuss the challenges of intrinsics programming
in more detail in Section 2, as the common goal of all proposed
programming models is overcoming them while maintaining high
performance. It will then present an overview of all proposed ap-
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Figure 1. Speed-ups obtained with an auto-vectorized and an
intrinsics-based implementation of a real-world HEVC video de-
coder , shown for the most popular C++ compilers (4K resolution
video decoding, 8 threads on an Intel i7-4770 core with AVX2 )

proaches in Section 3, highlighting the different paths taken by each
of them. Afterwards, the kernel implementations are evaluated in
Section 4. Related work is briefly presented in section 5 and all
findings are summarized in Section 6.

2. Challenges of Intrinsics Programming
2.1 Effort
The biggest drawback of intrinsics coding is the significant pro-
gramming effort that is required. Due to their low level of abstrac-
tion, intrinsics do not offer advanced functions or data structures.
Instead, they work with elemental numeric types, such as int and
float, and most of their functionality is limited to basic arithmetic,
boolean and load/store operations. That is why code vectorization
with intrinsics is time-consuming, because all high level language
constructs, such as containers or functors, have to be mapped to this
low-complexity feature set.

2.2 Portability
Besides the significant effort of programming with intrinsics, porta-
bility of intrinsics code across compute platforms is another chal-
lenge. Typically, intrinsics are tied to a specific base ISA. For exam-
ple, it is not possible to run code written for Intel AVX2 on an ARM
machine that supports NEON. Therefore, it is crucial to maintain
several versions of a program in order to facilitate the most com-
mon processor architectures. Otherwise, only a limited set of intrin-
sics that is available across SIMD units can be used, ignoring each
hardware’s unique features and thus opportunities for performance
gain.

2.3 Forward Compatibility
In addition to the portability issue, there is compatibility. Since
SIMD extensions are backwards compatible in general, intrinsics
code will still work when a new SIMD ISA is released. Unfortu-
nately, it will not make use of the hardware’s innovations, unless
a new version using the latest intrinsic set is implemented. On the

other hand, when an application provider wants to ensure maximum
performance even (or especially) on older platforms, code versions
have to be provided for older SIMD ISAs along with current ones,
removing intrinsics added in later SIMD releases. In the end, sev-
eral code versions need to exist to ensure portability and compat-
ibility, each of them requiring time-consuming low-level coding
with intrinsics.

3. Programming Models for Code Vectorization
To address these challenges of intrinsics coding, new programming
models have been developed to facilitate a higher level of abstrac-
tion for code vectorization, while aiming for the same performance.
This section provides an overview of such programming models,
and categorizes them by their vectorization techniques. We make
the distinction between implicit and explicit approaches, where im-
plicit vectorization is performed by the compiler based on direc-
tives, and explicit vectorization requires manual code adjustments
by the programmer. In addition, there are hybrid forms that com-
bine the two concepts.

3.1 Implicit Vectorization
When using programming models based on implicit vectorization,
the programmer does not have to vectorize the code manually. In-
stead, directives, for example in the form of pragmas, are provided
to improve a compiler’s auto-vectorization passes. This approach
is based on Single-Program Multiple-Data (SPMD) programming
models, which are typically used for multi- and many-core plat-
forms to achieve thread-level parallelism.

When a new SIMD generation is published, this vectorization
technique does not require to adjust an application source code,
as parallel regions have not changed. Instead, the compiler, who
interprets the directives and performs the intrinsics mapping, will
have to be updated to support the new hardware features.

3.1.1 Auto-vectorization
Compiler-based automatic vectorization relies on two main tech-
niques: loop vectorization and SLP. For this work, we assessed the
vectorization capabilities of three widely used compilers.

The GCC vectorizer is automatically turned on with the -O3
compiler flag. It includes analyses for memory access patterns and
loop carried dependencies. Based on their findings, the vectorizer
performs a profitability estimation to decide if a loop should be
vectorized. In addition, SLP is implemented through basic block
optimizations.

LLVM contains two vectorizers for loop and SLP vectorization,
respectively; it is also able to detect special cases, such as unknown
trip counts, runtime checks for pointers, reductions and pointer
induction variables.

While ICC’s vectorization approach is not published, additional
documentation to help programmers with writing auto-vectorizable
code is available [1]. Vectorization is typically not performed for
non-contiguous memory accesses and data dependencies, though.

In addition, all three compilers offer pragma directives to pro-
vide hints for the vectorizers, for example

#pragma ivdep

in ICC. For the results in Figure 1, however, we did not apply
these to the scalar code, because our goal was to test the standard
automatic approach.

3.1.2 OpenMP 4.0
Open Multi-Processing [17] is an API that has been developed and
enhanced by a consortium of compiler and hardware companies
since the late ‘90s. It relies on pragmas to identify parallel regions
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within the source code, and is supported by the most popular C++
compilers. While originally designed to support multi-threading,
the pragma

#pragma omp simd

has been added with the latest standard version, version 4.0. It
identifies functions and loops as data-parallel, and can be used to
define linear memory access patterns and safe vector lengths using
clauses. Unfortunately, not all C++ compilers support the latest 4.0
standard yet.

3.1.3 Cilk Plus
Cilk Plus started out as a project at MIT (named Cilk then) and is
now owned and developed by Intel [18]. It is a general-purpose pro-
gramming language based on C/C++, and hence integrates seam-
lessly into respective program codes. It targets both, thread- and
data-level parallelism. Cilk Plus offers a pragma

#pragma simd

similar to OpenMP 4.0, as well as language features for code
vectorization, such as array range notations. It is possible to leave
original sources untouched, though, and just add pragmas that
are treated as comments by compilers other than the Intel C/C++
Compiler; this is critical as ICC is the only compiler that currently
supports Cilk Plus.

3.2 Explicit Vectorization
The programming models for explicit vectorization rely on the pro-
grammer to vectorize code manually, using application knowledge.
To simplify this process, a set of data-types and functions to facili-
tate a higher level of abstraction is provided by a language library.
The written code is then mapped to low-level intrinsics ”under the
hood”, i.e. the library takes care of selecting the correct intrinsic for
the target platform, while the compiler performs the registry allo-
cation. Instead of updating the application code when a new SIMD
ISA is available, only the library has to be updated once to make use
of the new features. With this approach, the portability and compat-
ibility issues are not eliminated, but reduced to the minimal effort
of a single code update.

The following programming models are currently available for
code explicit vectorization:

3.2.1 Intrinsics
As mentioned earlier, intrinsics programming is still the state-of-
the-art programming model for best SIMD performance. Though
providing a higher level of abstraction as assembly programming,
generating efficient code is time-consuming and comes with its own
challenges as described in Section 2. For more information, please
refer to the SIMD manufacturers’ manuals [25, 26].

3.2.2 C++ Data Types
Standard C++ offers two different data-types to vectorize code:

• std::vector and std::array

• std::valarray

std::vector and std::array are container classes that are tem-
plated to accomodate any data-type and size. They come with a
set of class member functions, such as iterators, size operators and
modifiers. Because this type of vector/array is not intended for
mathematical operations, element-wise arithmetic functions are not
provided and there is no straightforward mapping of these contain-
ers to SIMD intrinsics. As a consequence, the written code has to
solely rely on the compiler for auto-vectorization and there is no
performance gain when compared to strictly scalar code.

In contrast, the valarray class was introduced to standard C++
to provide an array notation for mathematical operations, trying to
port a concept from Fortran to C++. Development stalled, though,
when the Standard Template Library (STL) was added in the late
90s. Again, there is no direct connection between this class and
SIMD intrinsics, thus relying on auto-vectorization as well. When
using structured data, this class can actually cause a slow-down for
certain accessing schemes.

3.2.3 Macro Abstraction Layer
The Macro Abstraction Layer (MAL) [21] offers the lowest level of
abstraction of all the programming models evaluated in this work.
It was developed as a side project when vectorizing the PARSEC
benchmark suite, which was done at the Norwegian University of
Science and Technology (NTNU), and offers a set of macros to
use in lieu of intrinsic functions. For example, a single ADD macro
replaces the multiple intrinsic versions for SSE, AVX and NEON
platforms. MAL can be easily extended for more ISAs and intrinsic
functions by adding and extending macros, as the current version
only contains the functions needed for the PARSEC vectorization.
Unfortunately, macros that exist in a single ISA only cannot be ab-
stracted, when these might be critical to gain optimal performance.
Moreover, the programmer needs a good understanding of intrin-
sics programming, ideally starting from an intrinsics implementa-
tion with the goal to generalize it for a range of ISAs.

3.2.4 Vc
The Vc library, which was developed at Goethe Universitaet Frank-
furt in Germany, is based on the straight-forward approach to wrap
SIMD vectors and intrinsics in high-level functions with zero over-
head [22]. This approach is similar to the one taken by the Macro
Abstraction Layer, but targets a higher level of abstraction and
avoids dealing with macros.

Contrary to other library solutions, though, programmers do not
have control over the applied vector size when using Vc. Instead,
only generic vector data types, combined with a set of functions
and masking operations, have to be used. For example, when using
32bit floating point numbers in the form of a float v vector, the
library will determine how many operations the target hardware
can execute in parallel and size the vector accordingly. This has the
advantage that the programmer does not need to deal with hardware
specifics, but when an exact vector size is needed, like in the HEVC
kernel discussed in Section 4, additional masking operations have
to be applied to disable vector lanes. For example,

Vc::float_v my_vec(src);
my_vec &= 0xFF;

will ensure that only the lowest 8 entries of the vector are used,
although the hardware might be able to process more.

3.2.5 Boost.SIMD
Boost.SIMD [15] was developed at the Université Paris Sud in col-
laboration with the Université Blaise Pascal and is now hosted by
Numscale; though the name suggests otherwise, it is not part of the
official Boost library yet, but is incorporated into the NT2 project.
It was designed as an Embedded Design Specific Language, and
as such uses expression templates to capture the abstract syntax
tree and perform optimizations on it during the compilation stage.
Boost.SIMD is based on STL containers and the definition of func-
tors, and sources are distributed as a header-only library.

Along with an elaborate set of mathmatical functions and C++
standard components, it provides an abstraction of SIMD registers
called pack. For a given type T and a static integral value N
(N= 2x), a pack encapsulates the best type able to store a sequence
of N elements of type T. Such a vector is created by
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auto my_v = boost::simd::load<pack<T,N>>(ptr);

When both, T and N match the type of a SIMD register, my vwill be
mapped to that type; otherwise, Boost.SIMD will fall back on using
std::array<T,N>, whose drawbacks have been discussed earlier.
With this approach, it is possible to either define vector sizes when
an optimal solution is known, or to leave it up to the compiler to
find a mapping.

3.2.6 Generic SIMD Library
Another approach is pursued by the Generic SIMD (gSIMD) Li-
brary, developed at the University of Illinois at Urbana-Champaign
in collaboration with IBM Research [20]. Similar to the implicit
programming models, it applies the SPMD concept to SIMD pro-
gramming, i.e. it works with fixed-lane vectors instead of fixed-
width vectors. So rather than calculating how many operations of a
certain data type can be executed in parallel on a target hardware,
the programmer now only defines the number of execution lanes
that would best fit the kernel. The library then takes care of map-
ping these lanes to the underlying SIMD vector sizes and hardware.

At the current state of development, the Generic SIMD Library
supports Intel’s SSE4.2, as well as the VSX instructions for IBM’s
POWER7 processor. An implementation for AVX is not yet avail-
able, as well as support for vectors with more or less than 4 lanes.

3.2.7 Cyme
The Cyme library [19], developed at EPFL in Switzerland, ap-
proaches SIMD programming at the highest level of abstraction
out of all explicit programming models presented. It focuses on an
application’s native data structures, instead of fitting a kernel into
given vector data-types. Hence, a set of containers is offered that
implement Array of Structures (AoS) and Array of Structures of
Arrays (AoSoA) data layouts, where most other solutions support
Structure of Arrays (SoA) layouts only. Vector data-types are also
available.

With this approach, Cyme targets a class of applications that
is based on a large number of small but similar kernels, as often
used in high-performance computing. That is why the less common
QPX SIMD extension for IBM’s Blue Gene /Q is supported besides
Intel’s SSE and AVX. Furthermore, Cyme understands itself as
complimentary to other libraries, such as Boost.SIMD and VC, and
the authors see the opportunity of integrating with these, since its
mapping solution could be added as an enhancement for this special
class of application.

3.3 Hybrid Solutions
To get the best of both worlds, hybrid solutions use a combination
of implicit and explicit parallelization.

Basically, the programmer performs an explicit vectorization
first by writing functions with a specific language or language ex-
tension. Afterwards, the programming model’s compiler performs
an implicit vectorization during the compile stage of the program.

As these languages/language extensions are based on C/C++,
the code integrates seamlessly into an existing C/C++ project.

3.3.1 ispc
ispc is a research project by Intel and also pursues the idea of
porting the SPMD programming model to CPUs by utilizing their
SIMD capabilities [28]. So instead of running multiple program
instances on multiple processors, program instances are mapped
to individual SIMD lanes. Staying consistent with the SPMD ap-
proach, this allows for different conditionals and control flows for
each lane.

To use ispc, the programmer has to write the application’s data
parallel portions as functions in ispc’s own language. The remain-
ing project is then compiled with its standard compiler, while the

void Mandel ( f l o a t x1 , f l o a t y1 ,
f l o a t x2 , f l o a t y2 ,
i n t width , i n t h e i g h t ,
i n t m a x I t e r s , i n t ∗ image )

{
f l o a t dx = ( x2−x1 ) / wid th ;
f l o a t dy = ( y2−y1 ) / h e i g h t ;

f o r ( i n t j = 0 ; j < h e i g h t ; ++ j ){
f o r ( i n t i = 0 ; i < wid th ; ++ i ){

MyComplex<f l o a t> c ( x1+ i∗dx , y1+ j∗dy ) ;
MyComplex<f l o a t> z ( 0 , 0 ) ;
i n t c o u n t = −1;

whi le ( (++ count<m a x I t e r s ) && ( norm ( z ) <4.0))
z = z∗z+c ;

∗image++ = c o u n t ;
}
}
}

Figure 2. Scalar implementation of the Mandelbrot benchmark,
using a slimmed-down complex numbers class for performance
reasons

ispc functions are compiled with the specific ispc compiler, based
on LLVM. As ispc’s syntax and semantics are derived from C/C++,
the functions integrate seamlessly into a C/C++-based project dur-
ing the linking stage.

For this programming model, it is crucial that the parallelizable
regions of code can be separated from scalar code. Otherwise,
it is not possible to use the ispc compiler for the SIMD lane
mapping. Also, ispc does not support all C/C++ language features,
for example templated functions cannot be resolved due to the two
compilers used for scalar and parallel code.

3.3.2 Sierra
Sierra, developed at Saarland University, Germany, adds the new
type constructor varying(L) to the C++ language [27]. Acting as
a type qualifier syntatically, the programmer can define vectors of
different data-types and parameterizable size. A vector containing
four integers, for example, is created with

int varying(4) = {1,2,3,4};

In this programming model, it is the programmer’s responsbility
to ensure a vector size that matches the underlying hardware, for
example by examining pre-defined compiler macros.

Conveniently, Sierra provides automatic masking of vector
lanes when a vector conditional is evaluated. Thus, writing code
with Sierra is very close to writing scalar code, except for variable
declarations.

In order to build the vectorized sources, Sierra’s own compiler
is needed to resolve the new data type; the compiler is based on
Clang++/LLVM.

4. Performance Evaluation
4.1 Mandelbrot Set
4.1.1 Experimental Setup
The first kernel that is used to test the proposed programming
models is the Mandelbrot benchmark. This standard kernel cal-
culates the Mandelbrot set, a set of complex floating-point num-
bers, and is highly data-parallel. A scalar implementation is shown
in Figure 2, where each set member is calculated as a pixel of
a graphical representation. With each member being independent
from its neighbours, the inner for-loop can be fully vectorized.
Hence, it should be possible to achieve a compute platform’s max-
imum SIMD speed-up, given that the iteration count of the internal
while-loop is large enough to hide memory access times.
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In this work, an Intel i7-4770 processor supporting AVX2 was
used for all measurements. Thus, a speed-up of up to 8x should be
feasible, since AVX2 supports vector sizes of 8 x 32bit floating-
point numbers.

The Mandelbrot kernel was either provided with the program-
ming model’s sources as an example, or implemented by the au-
thors themselves, with the exception of the intrinsics version [23].
The Macro Abstraction Layer was left out of this evaluation, as the
provided functions were not sufficient to implement the kernel, and
enhancing the library would have been necessary before assessing
the prospective performance gain.

Speed-up was measured by comparing the number of execution
cycles to the auto-vectorized baseline from Figure 2. The execution
cycles were measured using the infrastructure delivered with the
ispc examples [29], which is based on standard rdtsc() functions.
All results — with the exception of Sierra — were generated
using ICC, but the GNU Compiler Collection and Clang++/LLVM
produced the same quality of results with similar execution times.

4.1.2 Results
Figure 4.1.2 depicts the speed-ups obtained by the different pro-
gramming models.

As expected, the proposed programming models perform well
and a significant speed-up is achieved by most. The only two ex-
ceptions are gSIMD, compiled for AVX2, and Cyme. For gSIMD,
it has to be taken into consideration that this library only supports
SSE4.2 with a maximum vector size of 128bit for floating point
numbers, i.e. a 4x maximum speed-up. When benchmarking all
programming models using SSE4.2, gSIMD is on the same level
as other programming models, achieving a 1.9x – 2.3x speed-up.

For Cyme, the data-layout in the Mandelbrot kernel does not
match the library’s AoS or AoSoA containers. What happens is
that the kernel has to be adapted to these data structures, and as
a consequence, performance goes down due to non-native data re-
ordering. In short, this library was not designed for this application
class. As the HEVC kernel is similar to the data layout in this
example, this library will not be evaluated for the next example.

All other programming models perform well, some even out-
performing the AVX intrinsics implementation. For Boost.SIMD
and Vc, the effort of explicitly vectorizing the code paid off, as
they achieve an even higher speed-up than the implicit proposals
Cilk Plus and OpenMP 4.0. It is also interesting to note that vec-
torization is beneficial even for a single or small numbers of loop
iterations.

4.2 HEVC-Kernel
4.2.1 Experimental Setup
The second kernel that was vectorized is part of the HEVC decoder
benchmarked in Figure 1. In this kernel, a filter is applied to a video
frame, meaning that for each pixel, the dot-product of the pixel’s
neighbours with a set of coefficients is calculated. Afterwards, the
result is clipped to fit into the [0, 255] interval and stored in a
separate array.

The kernel function is templated to work with unsigned 8bit or
16bit integer pixels, i.e. data-types uchar and short in C++, as
well as different configuration options. For example, a template pa-
rameter determines the number of neighbours used for calculating
the dot-product. A stride parameter for vector gathering is intro-
duced, too, to enable vertical and horizontal filtering. No further
control flow is added within the loops. The basic kernel code is
shown in Figure 4.

We implemented the interpolation kernel with the proposed pro-
gramming models, based on knowledge from published papers, ex-
amples and documentation. Results were measured with the same
system used for the Mandelbrot evaluation, an Intel i7-4770 pro-

template<typename Tsrc , bool s h i f t B a c k , . . . >
void i n t e r p o l ( c o n s t Tsrc∗ s r c , s h o r t ∗d s t , c o n s t s h o r t∗ c o e f f ,

i n t s r c S t r i d e , i n t d s t S t r i d e ,
i n t width , i n t h e i g h t , i n t s h i f t , . . . )

{
. . .
/ / some parame te r c a l c u l a t i o n
. . .

f o r ( i n t row = 0 ; row < h e i g h t ; row ++) {
f o r ( i n t c o l = 0 ; c o l < wid th ; c o l ++) {

i n t sum = 0 ;

f o r ( i n t i = 0 ; i < s i z e ; i ++){
sum += s r c [ c o l + s r c S t r i d e∗ i ] ∗ c o e f f [ i ] ;
}

i f ( s h i f t B a c k ){
d s t [ c o l ] = MyClip ( 0 , iMaxVal , ( sum + o f f s e t ) >> s h i f t ) ;

} e l s e {
s h o r t v a l = sum >> s h i f t ;
. . .
/ / more s t o r e o p t i o n s
/ / w i t h t e m p l a t e d c o n t r o l f l o w
. . .

}
}
s r c += s r c S t r i d e ;
d s t += d s t S t r i d e ;

}
}

Figure 4. Scalar source code of the HEVC interpolation kernel

cessor with AVX2. As the performance is workload dependent, i.e.
dependent on the video resolution, encoding scheme etc., a set of
104 standard test videos was benchmarked.

The kernel’s maximum theoretical speed-up depends on the
operand sizes of the dot product. As one of the vectors is always
of data type short and AVX2 supports integer vectors with up to
128bit, the speed-up is limited to 8x.

4.2.2 Results
Figure 4.2.2 shows the speed-ups obtained for the best and worst
test-video, referring to the videos achieving highest and lowest
speed-up when using the intrinsics implementation. Execution
times were measured by a built-in program timer.

As can be seen in this figure, the programming models could not
reach intrinsics performance by far, contrary to the results of the
Mandelbrot experiment. Even worse, some implementations were
slowing down the kernel.

At this point it must be mentioned, though, that the intrinsics
implementation also applies saturated arithmetics for clipping and
shifting operations that are performed before storing the data. That
is why a speed-up of more than the theoretical maximum of 8.6x
was achieved. Although programming models like ispc offer this
kind of arithmetic functions, they were not not applied to the
kernel implementations; the reason being that the vectorization
capabilities were to be tested, and the saturated arithmetics only
make up a small portion of the overall performance gain.

A shared problem among several programming models, i.e.
gSIMD, Cyme and ispc, was an issue with data-type promotion.
In the HEVC kernel, a multiplication of a short and a second
operand, either uchar or short, is performed as part of the dot
product. Although precautions were taken by the programmer and
the result was assigned to an int variable, overflows occurred,
whereas the scalar version yielded correct results in accordance
to the language standard. This is illustrated in Figure 6. As a
consequence, all vectors had to be promoted to int, reducing the
maximum possible speed-up factor by 2.

Boost.SIMD was not able to resolve the kernel to a faster imple-
mentation than scalar code, and neither a performance loss nor gain
was obtained. Apparently, the pack data types were resolved to
std::array instead of SIMD vector types. A possible contribut-
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Figure 3. Acceleration of a Mandelbrot kernel with SSE4.2 and AVX2 SIMD units, shown for varying iterations of the inner while-loop
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short op a = 0xFFFF;
short op b = 0x000F;
int prod = op a * op b;

prod = 0xEFFF1; prod = 0x0FFF1;

Standard C++ SIMD Libraries

Figure 6. Problem of data-type promotion in gSIMD, Cyme, and
ispc

ing factor were the manual gather implementations, as the ones pro-
vided with the library were either not implemented or documented
properly.

The gSIMD implementation was affected by the library’s level
of maturity, because the current version only supports vectors with
4 lanes. But, in the HEVC kernel, either 4 or 8 neighbors of a pixel
are accessed to calculate the dot product. When 8 neighbors are
needed, the calculation had to be looped twice to produce correct
results, so the inner for-loop was not eliminated.

The different number of neighbours also played a role in the
Vc implementation. Since Vc does not allow the programmer to
determine the vector size, masking precautions had to be put in
place. Nonetheless, performance is best for 8bit pixel depth out of
all explicit programming models. It drastically decreases for 16bit
pixel depths, though. The big difference here is the gathering of
vector data. For this kernel, two different versions had to be im-
plemented, as Vc does not support 8bit integers. When gathering
8bit source data into vectors, a built-in gather function could be
used for a stride of 2, otherwise a scalar implementation including
a type cast to short was used as a fall-back solution. In the 16bit
version, the built-in gather functions were used exclusively. Ap-
parently, this had a significant performance impact and the kernel
slows down significantly.

Besides the data type promotion issue, ispc faced a problem
due to the heavy templating of the original scalar function. Since
template parameters had to be handed to ispc as function argu-
ments, they could not be resolved at compile time and a constant
value could not be assumed by the compiler. For example, the shift
amount for the store operation caused performance warnings dur-
ing compilation, which was not an issue in the scalar function as
this parameter is always a power of two. When all template param-
eters were treated as constants in the ispc code and the failing data
type promotion was ignored, a speed-up of 50% could be achieved
in a small additional experiment.

For the Sierra implementation, the biggest problem was the
lack of appropriate constructors and gather operations. These had
to be hand-coded, because pointer support is not yet completed
in the current version and all vectors had to be created based
on pointers to pixel sources. Afterwards, code resembled a scalar
implementation and more overhead was added than the SIMD
acceleration could make up.

5. Related Work
Automatic vectorization Loop vectorization has been improved
with efficient run-time and static memory alignment [2, 3], reduc-
ing the data permutation [4] and other techniques including outer-
inter loop interchange and efficient data realignment [6]; however,
Maleki et al. [7] showed that state-of-the-art compilers can only

vectorize a small fraction of loops in standard benchmarks like Me-
dia Bench.

Recently, a number of publications addressed the vectorization
of straight-line code through Super-word Level Parallelism (SLP).
Those include SLP exploitation in the presence of control flow [10],
by using SLP tree [12] and throttled graph to stop vectorization pre-
maturely when it is not beneficial anymore [9]; an alternative ap-
proach implements SLP with a back-end vectorizer that is closer to
the code generation stage, therefore with more precise information
for the profitability estimation analysis [11].

OpenCL The Open Computing Language (OpenCL) [13] pro-
vides a standard interface for parallel computing using task-based
and data-based parallelism. It is an open standard maintained by
the Khronos Group and compliant implementations are available
from different vendors, such as Altera, AMD, Apple, ARM, Intel,
NVIDIA, Xilinx and others. OpenCL implementations may implic-
itly exploit vectorization on devices with such capability. For exam-
ple, the Intel SDK for OpenCL implements an implicit vectoriza-
tion module; it maps OpenCL work-items to hardware according to
SIMD elements, so that several work-items fit in one SIMD register
to run simultaneously.

Intel Array Building Blocks No longer maintained, Intel’s Array
Building Blocks (ArBB) [31] were proposed as a counterpart to
Intel’s Thread Building Blocks in 2011. In 2012, though, the effort
has been given up in favor of pursuing Cilk Plus, and sources are
no longer available [30].

The concept is based on providing an embedded, compiled lan-
guage whose syntax is implemented as an API. To the program-
mer, it presents itself as a language library, altough the API is lay-
ered on top of a virtual machine, which implements the compila-
tion and parallelization. Performance numbers published for Man-
delbrot speed-up were between 3x – 4x, thus compliant with the
numbers we show for SSE4.2 acceleration.

6. Conclusion
SIMD extensions have been introduced to microprocessors in the
late 1990s, with regular releases of new ISA extensions up to this
day. Nonetheless, using them efficiently still remains a problem due
to the lack of a sufficient programming model. The state-of-the-art
in terms of performance, i.e. intrinsics programming, comes with
its challenges of effort, portability and compatibility.

Consequently, new solutions to improve productivity and hard-
ware utilization have been proposed, focusing on abstracting code
vectorization while maintaining performance. In this work, we cat-
egorized these approaches into implicit and explicit vectorization
techniques; for implicit approaches, vectorization is taken care of
by the compiler, while for explicit approaches, vectorization is typ-
ically done by the programmer on a higher level of abstraction than
intrinsics coding.

We assessed a set of programming models by implementing two
different kernels and comparing the achieved speed-ups. The first
kernel calculates a graphic representation of the Mandelbrot set,
and is commonly used to showcase the power of SIMD extensions.
The kernel works with 32bit floating point numbers and vectoriza-
tion is straight-forward. Results show that most of the proposed
programming models achieve a speed-up close to the theoretical
maximum. In our measurement, the explicit programming models
fared slightly better than the implicit programming models.

As a second benchmark, we implemented an interpolation ker-
nel from a real-world HEVC decoder. It calculates the dot product
of each pixel’s neighbors with a set of coefficients, and works on
small integer data types, such as char and short. Results showed
that the intrinsics implementation is at least 2x-8x faster than all
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other programming models, not taking into consideration those ap-
proaches that slowed down the kernel. For this benchmark, the im-
plicit approaches beat the explicit approaches.

What can be seen from these results is that a single proposal
that improves performance, reduces implementation effort and fits
all types of applications does not yet exist. Each approach has its
unique advantages, and a programming model needs to be chosen
carefully, knowing the application’s structure and demands.

In this work, we focused on assessing highly data parallel ker-
nels. Nonetheless, a major obstacle for failing auto-vectorizers are
complex control flows and data structures within a kernel. Hence
the programming models’ capabilities to deal with such applica-
tions need to be investigated next in order to give a more thorough
analysis of the currently available programming models.
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