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Abstract 

We study algorithmic aspects of bending wires and sheet metal into a specified structure. 

Problems of this type are closely related to the question of deciding whether a simple non-self- 

intersecting wire structure (a “carpenter’s ruler”) can be straightened, a problem that was open 

for several years and has only recently been solved in the affirmative. 

If we impose some of the constraints that are present in industrial manufacturing, we get 

quite different results. In particular, we show that it is NP-complete (in the weak sense) to decide 

if a final configuration (simple chain in the plane, or simple polyhedral surface) is obtainable 

from a straight wire or flat sheet, using “all-or-nothing” folds, while keeping the structure simple 

(non-self-intersecting). (Each bend along a crease is made once, from the initial (flat) state to 
the final desired angle.) We also show that it is NP-complete to determine if a polygonal chain 

can be straightened, if the chain is allowed to have a vertex degeneracy, and only one joint can 

be opened at a time (allowing partial openings). 

If we are required to make bends sequentially from one or both ends of the wire, as is often 

the realistic situation in wire forming manufacturing, we show that the problem becomes easier. 

We give efficient algorithms for these cases. 

1 Introduction 

The following is an algorithmic problem that arises in the study of the manufacturability of sheet 

metal parts: Given a flat piece, F', of sheet metal (or cardboard, or other bendable “stiff” sheet 

material), can a desired final polyhedral part, P, be made from it? The 2-dimensional version is 

the wire-bending (“paperclip”) problem: Given a straight piece, F, of wire, can a desired simple 

polygonal chain, P, be made from it? This problem also arises in the fabrication of hydraulic tubes, 

e.g., in airplane manufacturing.’ In either version of the problem, we require that any intermediate 

configuration during the manufacture of the part be feasible — it should not be self-intersecting. In 

particular, the “paperclips” that we manufacture are not allowed to be “pretzels” — we assume that 

the wire must stay within the plane, and not cross over itself. See Figure 1 for an illustration. We 

acknowledge that some real paperclips are designed to cross over themselves, such as the “butterfly” 

style of clip shown in the figure. 
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Our problem is one of automated process planning: Determine a sequence (if one exists) for 

performing the bend operations in sheet metal manufacturing. We take a somewhat idealized 

approach in this paper, in that we do not attempt to model here the important aspects of tool 

setup, grasp positions, robot motion plans, or specific sheet metal material properties which may 

affect the process. Instead, we focus on the precise algorithmic problem of determining a sequence 

for bend operations, on a given sheet of material with given bend lines, assuming that the only 

constraint to performing a bend along a given bend line is whether or not the structure intersects 

itself at any time during the bend operation. To our knowledge, no prior algorithmic study of these 

problems has been done. 

Motivation. Our foldability problem is motivated from process planning in manufacturing of 

structures from wire, tubing, sheet metal, and cardboard; see the prior work cited below. It is also 

motivated by the mathematical study of origami, which has received considerable attention in recent 

years (again, see below). Finally, we are motivated by the study of linkage problems; in fact, in the 

time since this paper was first drafted, the “carpenter’s ruler conjecture” (of Lenhart-Whitesides, 

Mitchell, and others) has been resolved. Our hardness results are particularly interesting and rele- 

vant in light of these new developments, since we show that even slight changes in the assumptions 

about the model or the allowed input results in linkages that cannot be opened, and it is NP-hard 

to decide if they can be opened.” 

Related Work. The CAD/CAM scientific community has studied extensively the problem of 

manufacturability of sheet metal structures; see the thesis of Wang [33] for a survey. Systems have 

been built (e.g., PART-S [11] and BendCad [16]) to do computer-aided process planning in the 

context of sheet metal manufacturing; see also [3, 18, 35, 9, 34]. See [23] for a motion planning 

approach to the problem of computing folding sequences for folding three-dimensional cardboard 

cartons. Considerable effort has gone into the design of good heuristics for determining a bend 

sequence; however, the known algorithms are based on heuristic search (e.g., A*) in large state 

spaces; they are known to be worst-case exponential. (Wang [33] cites the known complexity as 

O(n!2").) 
Recently, [10] and [31] have obtained proofs of the carpenter’s ruler conjecture of Lenhart- 

Whitesides and Mitchell: Any polygonal linkage with fixed length links and hinged joints, can be 

straightened while maintaining simplicity (i.e., without the linkage crossing or touching itself). In 

fact, Streinu [31] gives an algorithmic solution that bounds the complexity of the unfolding and is 

somewhat more general than the slightly earlier results of [10]. (Note that these results also imply 

a positive answer if only the joints of the linkage can only be changed one at a time, but as often 

as necessary.) Earlier and related work on linkages includes [6, 7, 21, 22, 28, 29, 32]. 

In mathematics of origami, Bern and Hayes [5] have studied the algorithmic complexity of 

deciding if a given crease pattern can be folded flat; they give an NP-hardness proof. Lang [19, 

20] gives algorithms for computing crease patterns in order to achieve desired shapes in three 

dimensions. Other work on computational origami includes [1, 12, 13, 14, 17, 26, 27, 30]. 

A closely related problem is that of flat foldings of polyhedra. It is a classic open question 

whether or not every convex polytope in three dimensions can be cut open along its edges so 

that it unfolds flat, without overlaps. Other variants and special cases have been studied; see 

[2, 4, 8, 24, 25]. 

?Note that the problem of determining if a bend sequence exists that allows a structure to unfold is equivalent to 

that of determining if a bend sequence exists that allows one to fold a flat (or straight) input into the desired final 

structure: the bending operations can simply be reversed.



Summary of Results. 

(1) We show that the problem of sequencing bend operations is (weakly) NP-complete, even in the 

special case in which the desired structure is a rectilinear polygonal chain. (This immediately 

implies that the sheet metal bending problem is hard as well, even in the case of parallel bend 

lines and an orthohedral structure P.) Here we assume that each bend is a “complete” bend 

operation. 

(2) We prove that it is (weakly) NP-hard to determine if a polygonal linkage can be straightened, 

if there is a vertex degeneracy (two vertices coincide). Here we assume that a bend operation 

consists of rotating at a single joint, by any angle. (The bends need not be “complete.” ) 

(3) We also give an efficient (O(nlog? n)) algorithm for deciding whether the bends in a wire- 
bending problem can be done sequentially in order from one end along the wire (as is required 

in many automated wire-bending machines). We show that one can test in time O(n? log n) if 

any particular bend sequence is feasible. Further, we give efficient polynomial-time algorithms 

for deciding whether there is a feasible sequence for wire bending from one of two special 

sequence classes arising in practice (i.e., manufacturing “from” or “towards” both ends). 

2 Preliminaries 

We let F denote the input flat material. 

In the 3-dimensional sheet metal folding problem, we assume that F is a polygon (possibly with 

holes) having m edges, with n bend lines (segments), B = {b),...,b,}, lying interior to it. We 

distinguish between the top and bottom sides of F'. The set of segments B forms a planar graph 

that partitions F into a set of polygonal facets. Each bend line b; € B has an associated bend 

angle, 0; € (0,27), which gives the desired dihedral angle at b;, measured between the tops of the 

two facets incident on b;. We let P denote the desired polyhedral surface structure for the final 

part. The facets of P are precisely the faces in the bend line decomposition of F’, with the dihedral 

angle at each edge given by the associated bend angles. 

In the 2-dimensional wire folding problem, we assume that F is an (oriented) straight line 

segment (having a left and right side), with n bend points (or joints), B = (bi, be,...,bn), in order 

along F' = boby+1, having bend angles 6; € (0,27) (measured between the right sides of F’). We let 
P denote the desired (oriented) polygonal chain (of the same length as F’, of course). The edges 

of P have lengths |bob,|, |b1b2|, ..., |bnbn+i], and the vertices (also denoted bo, bi, ..., bn+1) have 
associated angles 0;, fori =1,...,n. 

For S C B, we let P(S), denote the structure (polyhedral surface or polygonal chain) that is 

the result of performing exactly the bends b; € S on the input material F. (So, P(B) = P.) We 

let P(S;7,0), for 1 <i <n withi ¢ S, denote the structure that is the result of performing exactly 

the bends b; € S and bending b; to be at angle @ (between the top/right sides of F’). We say that 

structure P(S) or P(S;%,9) is feasible if it has no self-intersections (more precisely, no two facets 
intersect unless they share a common vertex/edge in F’, in which case they intersect only at that 

common vertex/edge). 
We say that bend 0; is foldable (or is a feasible fold) for structure P(S) if P(S;7,0) is feasible 

for all # in the range between z and 0; (more precisely, for all 6; < 6 < 1, if 0; < 7, or for all 

m<0< 6;, if 0; > 2). We say that a permutation o = (t1,%2,...,in) of the indices {1,2,...,n} 

is foldable for P if, for 7 = 1,2,...,n, joint 6;, is foldable for P({bj,,...,bi;_,}), ie. if P can be 

manufactured from F using the bend sequence oa.



The problems of WIRE BEND SEQUENCING and of SHEET METAL BEND SEQUENCING can both 

be formally stated as: Determine a foldable permutation o, if one exists, for a given wire/sheet- 

metal structure P. 

We give an example in Figure 1 of some common paperclip shapes, (a)—(c). We also show 

an example, (d), of a 5-link paperclip that cannot be manufactured using complete bends, for any 

permutation o of the bends. Finally, we show an example of a 6-link paperclip for which the foldable 

permutations are {(2,3, 4,5, 1), (3,2,4,5,1)}; we show the sequence of bends, with the intermediate 

structures, for the permutation o = (2,3,4,5,1). 

oy 
(a) (b) (c) (d) (e) 

  

  

  

Figure 1: Examples of paperclips: (a) and (b) are standard versions, which are readily constructed. 

(c) is a “butterfly” paperclip, which is not a planar structure and is not among the wire structures 

considered in our two-dimensional model. (d) shows a 5-link paperclip that cannot be manufactured 

using complete folds in the plane. (e) shows a 6-link structure that can be manufactured, e.g., using 

the bend sequence animated below it for the bend sequence o = (2,3,4,5,1).



3 Hardness Results 

In this section, we describe two results illustrating that a positive answer to the carpenter’s ruler 

conjecture is strongly dependent on both using more than one link at a time, and not allowing the 

wire to touch itself along the way. 

3.1 Complete Folding 

The first result shows that the practical requirement of only being allowed to bend the wire once 

at each joint (in order to avoid breaking it) makes the problem quite hard, even if we are limited 

to a fixed number of monotone subsequences of folding. We call this variant “complete folding”, 

since each individual angle has to be achieved completely in one move. 

Theorem 3.1 The WIRE BEND SEQUENCING problem is (weakly) NP-complete, even if P is rec- 

tilinear and we restrict ourselves to making only four monotone passes of complete foldings. 

Proof: Our reduction is from PARTITION: Given a set S of n integers, a;, which sum to A = 5°; aj, 

determine if there exists a partition of the set into two subsets each of which sums to A/2. 
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Figure 2: NP-hardness of complete folding for rectilinear chains: Frame and key. 

The key idea of our construction uses two components, as shown in Figure 2, where L > A/3: 

One is a rigid “frame” that can only be unfolded if one end of the chain can be removed from 

within this frame. The other component is a “key” that has to be collapsed to a small length 

in order to be removable. Collapsing the key is possible if and only if there is a partition of the



integers into two sets of equal sum. The total number of segments will be 2 = 26 + 4n; we write }; 

(¢ = 0,1,...,26+ 4n) for the vertices, and s; = (bj-1,};) for the segments. 
Note that we have two types of joints in the figure: the “ordinary” ones (indicated by solid black 

dots) form the frame and can only be accessed once. The “quadruple” ones (indicated by hollow 

dots in Figure 2) are found along the key and consist of four ordinary joints that are connected 

by short segments of length ¢, making it possible to simulate opening and closing such a joint a 

limited number of times. (In the following, all lengths are adjusted with small changes of size 

O(e) to O(ne), such that coordinates vary by O(ne). We choose ¢ sufficiently small and note that 
all other lengths are integers; for clarity of presentation, we do not discuss these small variations 

explicitly.) 

  
b26+4n 

Figure 3: Turning the key into a stair. 

In order to see that the key can be removed from the frame if there is a partition S = S$ U So, 

such that )i¢5,@i = A/2, we first convert it into the “stair” configuration shown in Figure 3: 

We make one monotone pass over the chain from the key end, and straighten one ordinary joint



per quadruple joint whenever this joint separates two segments from different S;. Thus, segments 

corresponding to numbers in $} will be horizontal, while those for numbers in S2 will be vertical. 

Making a similar monotone pass from the other end, we can convert the stair into a “flat harmonica”, 

with segments from S$; pointing “down”, while those in Sp pointing “up”. By assumption about the 

partition, the endpoints b)5 and bg_2 will be at the same vertical position, 2L/3 below 6,3. Therefore, 

the last segment sg = by_ by of length L in the chain will be placed in the same vertical position 

as the segment 6)36,4, with all other segments strictly in-between. This collapsed arrangement can 

be rotated about 6,3 without colliding with any frame segments. Then it is easy to open up the 

remaining frame (by straightening bi2, b11, bio, bg, b7, b6, 65, 64, 63, bg as One monotone pass). 

Finally, the resulting monotone chain can be straightened in one last monotone pass. 

Conversely, assume now that the chain can be straightened. It is clear that 6;3 must be straight- 

ened before any other joint in the set {b2,...,b12}. In order to avoid hitting vertex b, during this 

motion, the endpoint 62g44,, must be strictly within the circle of radius L around 613. s¢ is an 

axis-parallel segment, and the distance of bo5447, is strictly less than LZ. Furthermore, the rigid 

frame ensures that segment s,4 cannot lie to the left of s13, and it follows that s, can only lie 

within the quarter circle below and to the right of bj3. Therefore, sg must be vertical, at the same 

horizontal position as the segment s ;3. This implies that the total length of the segments between 

$15 and sg_9 that point “up” is equal to the segments in that set that point “down”. This induces 

a partition of the desired form, completing the proof. 0   

3.2 Incomplete Folding 

Now we consider the case where each link may be changed an arbitrary number of times before 

achieving a desired angle. In analogy to the previous scenario, we call this “incomplete folding”. 

This case is even more closely related to the carpenter’s ruler problem, which was solved in the 

affirmative by [10, 31]. In fact, we observe the following: 

Theorem 3.2 Any simple (not self-intersecting and not self-touching) polygonal chain P can be 

opened (and thus manufactured from a straight wire) by a sequence of moves that bends only one 

joint at any one time. 

Proof: Consider the feasible set S of points in state space, where moving individual joints corre- 

sponds to axis-parallel motion. If self-touching is prohibited, S$ is an open bounded set. By Streinu’s 

result [31], there is an opening motion of the chain that consists of a bounded number of individual 

moves. For this motion, let « be the (positive) infimum distance of a feasible position from the 

boundary of S. Then we can replace each part of the feasible path by a series of axis-parallel moves 

of size ¢/2, yielding a feasible path with the required property. Oo   

We will refer to a sequence of small individual moves that mimics an overall large-scale motion 

of several joints as “wiggly”, since the overall motion may be achieved through back-and-forth 

motions of individual segments that gradually changes individual angles. 

The following results show that allowing even a single point of self-incidence along the wire 

changes the overall situation quite drastically. 

Lemma 3.1 There are polygonal chains P with a single vertez-to-vertez incidence that cannot be 

manufactured by arbitrary (noncomplete) single-joint bends. 

Proof: See Figure 4. The chain has eight joints (labeled bo,...,67) and seven segments (of the 
form s; = (bj-1, b;)). The end point bo coincides with joint bs. It is easily checked that none of the



joints 6,,...,64 can be changed without causing a self-intersection: Assume that there is a feasible 

motion of a joint b; with 0 < i < 5. Then the points bg and b5 would move away from each other 

along a circle around b;. Without loss of generality, assume that b5 remains in place, while bo is 

moving. Now consider the first such rotation that starts with bo and 65 coinciding, and that avoids 

a crossing of s; with both s5 and sg. If b) moves clockwise around 6, it is easy to see that the angle 

between s; and s;3 must be at least 1/2 when starting the motion, or s; and s13 intersect. If bo 

moves counterclockwise around b;, the same follows for the angle between s; and s 4. Therefore, 

the center of rotation must lie within the shaded region shown in the figure. However, none of the 

joints b,,...,b4 lies inside of this feasible region. It follows that bo,...,65 form a rigid frame, as 

long as the angle at bs stays smaller than 7/2. 

On the other hand, it is easy to see that 67 cannot be removed from the pocket formed by 61, 

bg, and 63 if only the two remaining “free” joints 65 and bg can be changed. The claim follows. O   

  

  possible locations for 
centers of feasible rotations      

Figure 4: A polygonal chain that cannot be opened with single-joint moves. 

Using the frame as a gadget, we can show the following: 

Theorem 3.3 I[t is NP-hard to decide if a polygonal chain P with a single vertex-to-vertex incidence 

can be manufactured by arbitrary (noncomplete) single-joint bends. 

Proof: The basic idea is similar to the one in Theorem 3.1 and also establishes a reduction 

of PARTITION. (Refer to Figure 5 for an overview.) As before, we write b; for the joints, and 

8; = (bj_1,};) for the segments. We use the idea of the construction from Lemma 3.1 to construct



a rigid frame, with the key corresponding to the free end of that chain. The frame has one end, 

bo, of the polygonal chain wedged into the corner b13, which has angle y < 7/2. Because of the 

degeneracy at 6,3, none of the joints 6),..., 612 can be moved individually without causing a self- 

intersection between bg and the chain in the neighborhood of b)3. Again, the “key” consisting of 

the n segments s1g,..., $1847 of integral lengths a1,...,a, encodes an instance of PARTITION, as in 

the previous proof. As before, let S denote the set of integers for the PARTITION instance. Again, 

we use “long” auxiliary segments of length L/2 and L, here they are segments sig, Si9+n, $20+4n; 

and all sizes are subject to small adjustments of size O(c), for sufficiently small «. The critical 

dimensions of the frame are chosen such that the key can just be removed from the frame through 

the narrow bottleneck formed by the segments s3 and sg by extending the “spring” at 614, and b15, 

if and only if the key can be collapsed to a critical length L. The latter is possible if and only if 

there is a feasible partition. 

In order to establish this equivalence, we only have to prove two facts: 

1. As long as y remains below 7/2, no joint in the frame can be moved in a feasible way; i.e., 

the frame is rigid. 

2. The key can be removed from the lock if and only if there is a feasible solution for the 

PARTITION instance. 

The first claim follows just like in Lemma 3.1. Therefore, we must be able to open y to at 

least 1/2 before being able to change the frame. Clearly, this requires moving the key through the 

bottleneck indicated in the figure. 

It is not hard to check that by choosing an appropriately narrow layout for the bottleneck, this 

can be achieved if and only if the we can move b;g down by a vertical distance of LZ + € without 

causing any collisions between key and frame. (For this purpose, assume that the links bo, b3, bs, 

bg form a narrow rectangle, i.e., the “horizontal” distance between b3 and bg and between by and bg 

is smaller by a factor of ¢/Z than the “vertical” length of the segments s3 and sg.) Since the edge 

$15 has length L/2 +, performing a “wiggly” sequence of small individual moves has this desired 

effect, provided that the key can be placed within a narrow channel extending the bottleneck. 

This is possible if there is a partition of S: Perform a “wiggly” sequence that folds the segments 

for the set S like a harmonica until we get a sufficiently flat arrangement, leaving the segments for 

the set S, pointing “upwards”, the segments for Sz pointing “downwards”; then 6i3,, is within 

€ of big, bigtn within € of bi7, and the final segment s294,, is in (almost) vertical position. Then 

extend the spring by another wiggly sequence, such that the key is moved through the bottleneck. 

Now y can be opened, and the whole frame can be straightened by a straightforward sequence of 

moves. 

To see the converse, assume that segment ej9;,, can be moved through the bottleneck. Because 

of the narrow dimensions of the bottleneck, the possible slopes of e194, are quite restricted: bo94n 

can move a distance of « below the connection between b3 and bg, if and only if bi94, is within a 

distance of ¢ from 617. By construction, this is only possible if there is a feasible partition of S. 

Oo   

4 Algorithms 

In this section, we turn our attention to positive algorithmic results, giving efficient algorithms for 

deciding if particular bend sequences are feasible. We consider here only the case of complete folds.



  

key of 
vertical size 

L 

degeneracy 

by = 4 

        

   

partition 
instance 

spring of Sf | 

length b 
14 

L/2+€ 

big 

Figure 5: Illustration of the proof of Theorem 3.3.



Consider an arbitrary permutation, 0 = (i1,...,%,), of the bends along a wire. In order for 

a to be a foldable sequence, it is necessary and sufficient that for each 7 = 1,..., the bend 8, 

is foldable. Recall that in our notation P({t1,...,%;-1}) denotes the partially bent chain after 
the bends at ;,,...,0;;_, have been completed. The point };, splits P({i,...,7j;-1}) into two 

subchains; let Po (resp., Pn+1) denote the subchain containing the endpoint bo (resp., bp+41). Now, 

joint 6;, is foldable if the bend at 6;, can be executed without causing a collision to occur between 

Po and P,+1 at any time during the rotation about b;,. We can assume, without loss of generality, 

that Po is fixed and that P,+41 is pivoted about 6;,. During the bend at };,, each vertex, u, of P41 

moves along a circular arc, A,, subtending an angle 6;,, centered on 6;,. Let A denote the set of 

all such circular arcs defined by the vertices of P,+1. See Figure 6. 

    

Figure 6: Foldability of the joint b;: The subchain P,,41 is shown with thicker lines (two dotted 

copies show it after different stages of rotation about b;). Each vertex of P,41 moves along a circular 

arc, shown in dashed. In this case, the rotation shown is not feasible, as it fails both conditions (1) 

and (2) of the lemma. 

Lemma 4.1 Joint bj; is foldable if and only if (1) no are of A intersects Po, and (2) after the 

bend, no segment of Pn4i intersects a segment of Po. 

Proof: If joint 6;, is foldable then, by definition, there can be no intersection of P,41 with P 

during its rotation about b;,. This implies conditions (1) and (2). 

If conditions (1) and (2) hold, then we claim that there can be no intersection of P,41 with 
Po during the rotation. Consider a segment, s, of P,41. During the rotation, it sweeps a region 

Rs that is bounded by two circular arcs centered at 6;,, corresponding to the trajectories of its 

endpoints during the rotation, and two line segments, corresponding to the positions of s before 

and after the rotation. Our claim follows from the fact that Po is a simple (connected) chain: It 

11



cannot intersect s at some intermediate stage of the rotation unless it intersects the boundary of 

the region Rs. Such an intersection is exactly what is being checked with conditions (1) and (2). O   

Lemma 4.2 For any S C B, and any b; ¢ S, one can decide in O(nlogn) time if joint bj is 

foldable for the chain P(S). 

Proof: Using standard plane sweep methods, adapted to include circular arcs, we can check in 

O(nlogn) time both conditions ((1) and (2)) of Lemma 4.1. Oo   

Remark. Of course, condition (2) can be tested in linear time, by Chazelle’s triangulation al- 

gorithm. We believe that condition (1) can also be tested in linear time. It involves testing for 

rotational separability of two simple chains about a fixed center point (b;), which is essentially a 

polar coordinate variant of translational separability (which is easily tested for simple chains using 

linear-time visibility (lower envelope) calculation). The issue that must be addressed for our prob- 

lem, though, is the “wrap-around” effect of the rotation; we believe that this can be resolved and 

that this idea should lead to a reduction in running time of a factor of log n. 

Corollary 4.1 The foldability of a permutation o can be tested in O(n? logn) time. 

We obtain improved time bounds for testing the feasibility of a particularly important folding 

sequence: the identity permutation. Many real tube-bending and wire-bending machines operate in 

this way, making bends sequentially along the wire/tube. (Such is the case for the hydraulic tube- 

bending machines at Boeing’s factory, where this problem was first suggested to us.) Of course, 

there are chains P that can be manufactured using an appropriate folding sequence but cannot be 

manufactured using an identity permutation folding sequence; see Figure 1(e). However, for this 

special case of identity permutations, we obtain an algorithm for determining feasibility that runs 

in nearly linear time: 

Theorem 4.1 In time O(nlog? n) one can verify if the identity permutation (o = (1,2,...,n)) is 
a foldable permutation for P. 

Proof: Consider executing the bends in the order given by the identity permutation (b,,bo,..., bn), 

and consider the moment when we are testing the foldability of b;. The subchain P,,+ 1 is a single 

line segment, bjbn41. Thus, verifying the foldability of bend 6; amounts to testing if the segment 

bjbp41 can be rotated about b; by the desired amount, without colliding with any other parts of the 

structure Po (which consists of the polygonal chain from bo to b;, after the bends at b1,...,bj-1 have 

been completed). In other words, we must do a wedge emptiness query with respect to Po, defined 

by 6;, segment 6;b,41, and the angle 6;. Since Pp is connected, emptiness can be tested by verifying 

that the boundary of the wedge does not intersect Po. (See Figure 7.) Thus, we could perform this 

query by using (straight) ray shooting and circular-arc ray shooting in Po; the important issue is 

that Po is dynamically changing as we proceed with more bends. However, in order to avoid the 

development of potentially complex dynamic circular-arc ray shooting data structures, we devise 

a simple and efficient method that “walks” along portions of Po, testing for intersection with the 

circular arc, y, from b,+1 to 0},,,, where 0j,,, is the location of b;41 after the bend at b; has been 

performed. 

In particular, we keep track of a “painted” portion of Po, which corresponds to the subset of Po 

that has been “walked over.” We consider the chain Py to be a degenerate simple polygon, having 

two sides which form a counterclockwise loop around Po. We consider the case in which the bend at 

12



Figure 7: Foldability of the joint b; when 6j41,...,5, have not yet been folded. 

b; is a rotation of the segment bjbn+1 clockwise to the segment 0,by, +1; the case of a counterclockwise 

bend at b; is handled similarly. When we perform a bend at b;, we walk (counterclockwise) along 

the unpainted portions of Py, between two points, a and a’, on the boundary of Po, where a and a! 

are defined according to cases that depend on the outcomes of two ray-shooting queries: 

  

Figure 8: Case (a): Both of the rays bjb,41 and bjb),,, miss Po and go off to infinity. + n+l 

— ——> 
(a) If both of the rays bjb,z41 and 6;},,, miss Pp (and go off to infinity), then there is nothing 

more to check: the rotation at 6; can be done without interference with Pp, since Po is a 

(connected) polygonal chain lying in the complement of the wedge defined by 6;b,41 and 

bjbi,41- See Figure 8. 
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Figure 9: Case (b): Both of the rays bjb,41 and 6;b/,,, hit Po. The walk extends from a to a’ over 

the gray highlighted portion of Po, painting any previously unpainted portion of it. 

+ ——> 
(b) If both of the rays bjb, +1 and b:b,,, hit Po, then we let a and a’ (respectively) be the points 

on the boundary of Py where they hit Py. See Figure 9. 

  

Figure 10: Case (c): Exactly one of the rays bjbp)41 and 6,b/,,, hits Py. The walk extends from a 

to a’ over the gray highlighted portion of Py, painting any previously unpainted portion of it. 

(c) If exactly one of the rays Bibnat and bibs, hits Po while the other misses Po (and goes off to 

infinity), then we define a and a’ as follows. Assume that the ray biPnat hits Po (and the 

ray bjb},, misses Po); the other case is handled similarly. We define a to be the point on the 

boundary of Po where the ray BiPnat hits Pp and we define a’ to be the point on the boundary 

of Po where a ray from infinity in the direction b,+16; (towards b;) hits Py. See Figure 10. 
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During the walk from a to a’ along the boundary of Po, we test each segment for intersection 

with the circular arc y in time O(1). Whenever we reach a portion of the boundary that is 

already painted, we skip over that portion, going immediately to its end. As we walk, we mark the 

corresponding portions over which we walk as “painted.” By continuity, it is easy to verify that 

the painted portion of any one segment of Po is connected (is a single subsegment). During a walk, 

we charge the tests that we do for intersection with y off to the segments that are being painted. 

The remainder of the justification of the algorithm is based on two simple claims: 

Claim 1 There is no need to walk back over a painted portion in order to check for intersections 

with an arc y at some later stage. 

Proof: The fact that we need not walk over a painted portion testing again for intersections with 

y follows from the fact that with each bend in the sequence, the length of the segment bjb,+41 that 

we are rotating goes down (by the length of the last link). (In other words, if the motion of the tip, 

bn+1, Sweeps an arc y that does not reach a portion y of the boundary of Po when the link bjbp41 

is straight, it cannot later be that a link 6jb,+41 (j > 4) can permit the tip b,41 to reach the same 

portion 4 when pivoting is done about b;; this is a consequence of the triangle inequality.) Oo   

Claim 2 In testing for intersection with y, we check enough of the chain Po: if any part of it 

intersects y, then it must lie on the portion between a and a! over which we walk. 

Proof: In case (a), there is nothing to check. In case (b), the closed Jordan curve from }; to a 
(along a straight segment), then along the boundary of the simple polygon Pp to a’, then back to 

b; (along a straight segment) forms the boundary of a region whose only intersection with Po is 

along the shared boundary from a to a’; thus, if 7 lies within this region (i.e., does not intersect 

the boundary of Po from a to a’), then y does not intersect any other portion of Po. In case (c) we 

argue similarly, but we use the Jordan region defined by the segment from b; to a, the boundary of 

Po from a to a’, the ray from a’ to infinity (in the direction of bjb,,41), then the reverse of the ray 

bid, back to 6;. Oo 

The total time for walking along the chain Po can be charged off to the vertices of P, resulting 

in time O(n) for tests of intersection with arcs y, exclusive of the ray shooting time. The final 

time bound is then dominated by the time to perform n straight ray shooting queries in a dynamic 

data structure for the changing polygonal chain Po; these ray shooting queries are utilized both in 

testing for intersection with the segment b;b},,, and in determining the points a and a’ that define 

the walk. These ray-shooting queries and updates are done in time O(log? n) each, using existing 

techniques ([15]), leading to the claimed overall time bound. Oo 

  

  

Next, we turn to two other important classes of permutations. We say that a permutation is an 

outwards folding sequence (resp., inwards folding sequence) if at any stage of the folding, the set of 

bends that have been completed is a subinterval, 6;, bj41,..., 6; (resp., a pair of intervals 6), bz, ... , bj 

and b;,bj41,.--,bn); thus, the next bend to be performed is either b;_; or bj41 (resp., bj41 or bj—1). 

Inwards and outwards folding sequences model the case in which the bending operations must be 

done sequentially along the wire; this is a constraint with some forming machines. See Figure 11. 

The identity permutation is a folding sequence that is a special case of both an inwards and an 

outwards folding sequence. 

We show that one can efficiently search for a folding sequence that is inwards or outwards. Our 

algorithms are based on dynamic programming. 

First, consider the case of outwards folding sequences. We keep track of the state as the pair 

(i,j) representing the interval of bends (0;,6;41,...,6;) already completed. We construct a graph 
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Figure 11: An intermediate state (7,7) in the folding of an outwards (left) and an inwards (right) 

folding sequence. For the outwards folding sequence on the left, the next bend is either b;_; or 

b;41; the new positions of the chain are shown dashed. For the inwards folding sequence on the 

right, the next bend is either 6:41 or 6;—1. 

G whose O(n”) nodes are the states (i, 7) (with 1 < i < j <n) and whose edges link states that 
correspond to the action of completing a bend at 6;_1 or b;+, (if the starting state is (i, 7)). Thus, 
each node has constant degree. Our goal is to determine if there is a path in this graph from some 

(i,7) to (1,n). This is done in O(n?) time once we have the graph constructed. (Alternatively, 
we can construct the graph as we search the graph for a path.) In order to construct the graph, 

we need to test whether bend };_; or 6;41 can be performed without intersecting the folded chain, 

P', linking 6;-1 to bj41. This is done in a manner very similar to that we described above for the 

case of identity permutations: we perform ray-shooting queries in time O(log? n) and then use a 

“painting” procedure to keep track of the states of 2n — 2 “walks” that determine circular-arc ray 

shooting queries. In particular, there is a separate painting procedure corresponding to each of 

the n — 1 choices of ¢ and to each of the n — 1 choices of j. For example, for a fixed choice of 2, 

the painting procedure will consider each of the possible bends 6;41,..., 5, in order, allowing us to 

amortize the cost of checking for intersections with the circular arc y associated with each bend. 

In total, the cost of the walks is O(n”), while there may also be O(n”) ray shooting queries (in 
a dynamically changing polygon). Thus, the total cost is dominated by the ray shooting queries, 

giving an overall time bound of O(n? logn). 
For the case of an inwards folding sequence, we build a similar state graph and search it. 

However, the cost of testing if a bend is feasible is somewhat higher, as we do not yet have an 

efficient procedure for testing the foldability of a polygonal chain. (Our painting procedures exploit 

the fact that the link being folded is straight.) Thus, we apply the relatively naive method of 

testing feasibility given in Lemma 4.2, at a cost of O(n logn) per test (which potentially improves 

to O(n) time, if our conjecture mentioned in the remark after the Lemma is true). Thus, the overall 
cost of the algorithm is dominated by the O(n?) feasibility tests, at a total cost of O(n? logn). In 

summary, we have: 
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Theorem 4.2 In time O(n? log? n) one can determine if there is an outwards folding sequence; in 

time O(n? logn) one can determine if there is an inwards folding sequence. 

5 Conclusion 

We conclude with some open problems that are suggested by our work: 

(1) Is the bend sequencing problem for wire folding strongly NP-complete, or is there a pseudopo- 

lynomial-time algorithm? If not in wire bending, is it strongly NP-complete for the 3-dimen- 

sional sheet metal folding problem? 

(2) Is it NP-hard to decide if a polygonal chain in three dimensions can be straightened? In [6] 

simple examples of locked chains in three dimensions are shown; can these be extended to a 

hardness proof for the decision problem? 

(3) If we consider only structures that are manufacturable using a punch and die on a press 

brake (which significantly limits the set of foldable bends, since the punch and die must be 

accessible), what is the complexity of the bend sequencing problem? The wire-bending version 

of this question may be modeled as requiring that each joint that we bend must lie on a line 

that crosses the part at the joint, reaching to infinity in both directions without intersecting 

the current structure. (This models the need for the punch and die to be accessible at the 

bend point.) 

(4) Can the foldability of a permutation be decided in subquadratic time for wire bending? At 

issue is designing a dynamic data structure that will permit efficient (sublinear) queries for 

the foldability of a vertex; this seems to be an interesting question in its own right. 
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