

Technische Universitat Berlin

FAKULTAT II
MATHEMATIK UND
NATURWISSENSCHAFTEN

Institut fur Mathematik

ALGORITHMS FOR MANUFACTURING

PAPERCLIPS AND SHEET METAL

STRUCTURES

by

ESTHER M. ARKIN SANDOR P. FEKETE

JOSEPH S. B. MITCHELL

No. 710/2001

Algorithms for Manufacturing Paperclips and Sheet Metal

Structures *

Esther M. Arkint Sandor P. Fekete? Joseph S. B. Mitchell*

Abstract

We study algorithmic aspects of bending wires and sheet metal into a specified structure.

Problems of this type are closely related to the question of deciding whether a simple non-self-

intersecting wire structure (a “carpenter’s ruler”) can be straightened, a problem that was open

for several years and has only recently been solved in the affirmative.

If we impose some of the constraints that are present in industrial manufacturing, we get

quite different results. In particular, we show that it is NP-complete (in the weak sense) to decide

if a final configuration (simple chain in the plane, or simple polyhedral surface) is obtainable

from a straight wire or flat sheet, using “all-or-nothing” folds, while keeping the structure simple

(non-self-intersecting). (Each bend along a crease is made once, from the initial (flat) state to
the final desired angle.) We also show that it is NP-complete to determine if a polygonal chain

can be straightened, if the chain is allowed to have a vertex degeneracy, and only one joint can

be opened at a time (allowing partial openings).

If we are required to make bends sequentially from one or both ends of the wire, as is often

the realistic situation in wire forming manufacturing, we show that the problem becomes easier.

We give efficient algorithms for these cases.

1 Introduction

The following is an algorithmic problem that arises in the study of the manufacturability of sheet

metal parts: Given a flat piece, F', of sheet metal (or cardboard, or other bendable “stiff” sheet

material), can a desired final polyhedral part, P, be made from it? The 2-dimensional version is

the wire-bending (“paperclip”) problem: Given a straight piece, F, of wire, can a desired simple

polygonal chain, P, be made from it? This problem also arises in the fabrication of hydraulic tubes,

e.g., in airplane manufacturing.’ In either version of the problem, we require that any intermediate

configuration during the manufacture of the part be feasible — it should not be self-intersecting. In

particular, the “paperclips” that we manufacture are not allowed to be “pretzels” — we assume that

the wire must stay within the plane, and not cross over itself. See Figure 1 for an illustration. We

acknowledge that some real paperclips are designed to cross over themselves, such as the “butterfly”

style of clip shown in the figure.

“A preliminary version of this work was presented at the 17th European Workshop on Computational Geometry,

March 26-28, 2001, Berlin.

‘Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, NY 11794-3600,

USA. email: {estie, jsbm}@ams.sunysb. edu.

+Department of Mathematical Optimization TU Braunschweig, Pockelsstr. 14, D-38106 Braunschweig, Germany.

email: sandor.fekete@tu-bs. de.

‘We thank Karel Zikan for introducing to us the hydraulic tube bending problem at Boeing’s factory.

Our problem is one of automated process planning: Determine a sequence (if one exists) for

performing the bend operations in sheet metal manufacturing. We take a somewhat idealized

approach in this paper, in that we do not attempt to model here the important aspects of tool

setup, grasp positions, robot motion plans, or specific sheet metal material properties which may

affect the process. Instead, we focus on the precise algorithmic problem of determining a sequence

for bend operations, on a given sheet of material with given bend lines, assuming that the only

constraint to performing a bend along a given bend line is whether or not the structure intersects

itself at any time during the bend operation. To our knowledge, no prior algorithmic study of these

problems has been done.

Motivation. Our foldability problem is motivated from process planning in manufacturing of

structures from wire, tubing, sheet metal, and cardboard; see the prior work cited below. It is also

motivated by the mathematical study of origami, which has received considerable attention in recent

years (again, see below). Finally, we are motivated by the study of linkage problems; in fact, in the

time since this paper was first drafted, the “carpenter’s ruler conjecture” (of Lenhart-Whitesides,

Mitchell, and others) has been resolved. Our hardness results are particularly interesting and rele-

vant in light of these new developments, since we show that even slight changes in the assumptions

about the model or the allowed input results in linkages that cannot be opened, and it is NP-hard

to decide if they can be opened.”

Related Work. The CAD/CAM scientific community has studied extensively the problem of

manufacturability of sheet metal structures; see the thesis of Wang [33] for a survey. Systems have

been built (e.g., PART-S [11] and BendCad [16]) to do computer-aided process planning in the

context of sheet metal manufacturing; see also [3, 18, 35, 9, 34]. See [23] for a motion planning

approach to the problem of computing folding sequences for folding three-dimensional cardboard

cartons. Considerable effort has gone into the design of good heuristics for determining a bend

sequence; however, the known algorithms are based on heuristic search (e.g., A*) in large state

spaces; they are known to be worst-case exponential. (Wang [33] cites the known complexity as

O(n!2").)
Recently, [10] and [31] have obtained proofs of the carpenter’s ruler conjecture of Lenhart-

Whitesides and Mitchell: Any polygonal linkage with fixed length links and hinged joints, can be

straightened while maintaining simplicity (i.e., without the linkage crossing or touching itself). In

fact, Streinu [31] gives an algorithmic solution that bounds the complexity of the unfolding and is

somewhat more general than the slightly earlier results of [10]. (Note that these results also imply

a positive answer if only the joints of the linkage can only be changed one at a time, but as often

as necessary.) Earlier and related work on linkages includes [6, 7, 21, 22, 28, 29, 32].

In mathematics of origami, Bern and Hayes [5] have studied the algorithmic complexity of

deciding if a given crease pattern can be folded flat; they give an NP-hardness proof. Lang [19,

20] gives algorithms for computing crease patterns in order to achieve desired shapes in three

dimensions. Other work on computational origami includes [1, 12, 13, 14, 17, 26, 27, 30].

A closely related problem is that of flat foldings of polyhedra. It is a classic open question

whether or not every convex polytope in three dimensions can be cut open along its edges so

that it unfolds flat, without overlaps. Other variants and special cases have been studied; see

[2, 4, 8, 24, 25].

?Note that the problem of determining if a bend sequence exists that allows a structure to unfold is equivalent to

that of determining if a bend sequence exists that allows one to fold a flat (or straight) input into the desired final

structure: the bending operations can simply be reversed.

Summary of Results.

(1) We show that the problem of sequencing bend operations is (weakly) NP-complete, even in the

special case in which the desired structure is a rectilinear polygonal chain. (This immediately

implies that the sheet metal bending problem is hard as well, even in the case of parallel bend

lines and an orthohedral structure P.) Here we assume that each bend is a “complete” bend

operation.

(2) We prove that it is (weakly) NP-hard to determine if a polygonal linkage can be straightened,

if there is a vertex degeneracy (two vertices coincide). Here we assume that a bend operation

consists of rotating at a single joint, by any angle. (The bends need not be “complete.”)

(3) We also give an efficient (O(nlog? n)) algorithm for deciding whether the bends in a wire-
bending problem can be done sequentially in order from one end along the wire (as is required

in many automated wire-bending machines). We show that one can test in time O(n? log n) if

any particular bend sequence is feasible. Further, we give efficient polynomial-time algorithms

for deciding whether there is a feasible sequence for wire bending from one of two special

sequence classes arising in practice (i.e., manufacturing “from” or “towards” both ends).

2 Preliminaries

We let F denote the input flat material.

In the 3-dimensional sheet metal folding problem, we assume that F is a polygon (possibly with

holes) having m edges, with n bend lines (segments), B = {b),...,b,}, lying interior to it. We

distinguish between the top and bottom sides of F'. The set of segments B forms a planar graph

that partitions F into a set of polygonal facets. Each bend line b; € B has an associated bend

angle, 0; € (0,27), which gives the desired dihedral angle at b;, measured between the tops of the

two facets incident on b;. We let P denote the desired polyhedral surface structure for the final

part. The facets of P are precisely the faces in the bend line decomposition of F’, with the dihedral

angle at each edge given by the associated bend angles.

In the 2-dimensional wire folding problem, we assume that F is an (oriented) straight line

segment (having a left and right side), with n bend points (or joints), B = (bi, be,...,bn), in order

along F' = boby+1, having bend angles 6; € (0,27) (measured between the right sides of F’). We let
P denote the desired (oriented) polygonal chain (of the same length as F’, of course). The edges

of P have lengths |bob,|, |b1b2|, ..., |bnbn+i], and the vertices (also denoted bo, bi, ..., bn+1) have
associated angles 0;, fori =1,...,n.

For S C B, we let P(S), denote the structure (polyhedral surface or polygonal chain) that is

the result of performing exactly the bends b; € S on the input material F. (So, P(B) = P.) We

let P(S;7,0), for 1 <i <n withi ¢ S, denote the structure that is the result of performing exactly

the bends b; € S and bending b; to be at angle @ (between the top/right sides of F’). We say that

structure P(S) or P(S;%,9) is feasible if it has no self-intersections (more precisely, no two facets
intersect unless they share a common vertex/edge in F’, in which case they intersect only at that

common vertex/edge).
We say that bend 0; is foldable (or is a feasible fold) for structure P(S) if P(S;7,0) is feasible

for all # in the range between z and 0; (more precisely, for all 6; < 6 < 1, if 0; < 7, or for all

m<0< 6;, if 0; > 2). We say that a permutation o = (t1,%2,...,in) of the indices {1,2,...,n}

is foldable for P if, for 7 = 1,2,...,n, joint 6;, is foldable for P({bj,,...,bi;_,}), ie. if P can be

manufactured from F using the bend sequence oa.

The problems of WIRE BEND SEQUENCING and of SHEET METAL BEND SEQUENCING can both

be formally stated as: Determine a foldable permutation o, if one exists, for a given wire/sheet-

metal structure P.

We give an example in Figure 1 of some common paperclip shapes, (a)—(c). We also show

an example, (d), of a 5-link paperclip that cannot be manufactured using complete bends, for any

permutation o of the bends. Finally, we show an example of a 6-link paperclip for which the foldable

permutations are {(2,3, 4,5, 1), (3,2,4,5,1)}; we show the sequence of bends, with the intermediate

structures, for the permutation o = (2,3,4,5,1).

oy
(a) (b) (c) (d) (e)

Figure 1: Examples of paperclips: (a) and (b) are standard versions, which are readily constructed.

(c) is a “butterfly” paperclip, which is not a planar structure and is not among the wire structures

considered in our two-dimensional model. (d) shows a 5-link paperclip that cannot be manufactured

using complete folds in the plane. (e) shows a 6-link structure that can be manufactured, e.g., using

the bend sequence animated below it for the bend sequence o = (2,3,4,5,1).

3 Hardness Results

In this section, we describe two results illustrating that a positive answer to the carpenter’s ruler

conjecture is strongly dependent on both using more than one link at a time, and not allowing the

wire to touch itself along the way.

3.1 Complete Folding

The first result shows that the practical requirement of only being allowed to bend the wire once

at each joint (in order to avoid breaking it) makes the problem quite hard, even if we are limited

to a fixed number of monotone subsequences of folding. We call this variant “complete folding”,

since each individual angle has to be achieved completely in one move.

Theorem 3.1 The WIRE BEND SEQUENCING problem is (weakly) NP-complete, even if P is rec-

tilinear and we restrict ourselves to making only four monotone passes of complete foldings.

Proof: Our reduction is from PARTITION: Given a set S of n integers, a;, which sum to A = 5°; aj,

determine if there exists a partition of the set into two subsets each of which sums to A/2.

b b
13 b 6 b

b 1

partition

elements key

es '
b2644n

b 3 b>

b 10 b,

Figure 2: NP-hardness of complete folding for rectilinear chains: Frame and key.

The key idea of our construction uses two components, as shown in Figure 2, where L > A/3:

One is a rigid “frame” that can only be unfolded if one end of the chain can be removed from

within this frame. The other component is a “key” that has to be collapsed to a small length

in order to be removable. Collapsing the key is possible if and only if there is a partition of the

integers into two sets of equal sum. The total number of segments will be 2 = 26 + 4n; we write };

(¢ = 0,1,...,26+ 4n) for the vertices, and s; = (bj-1,};) for the segments.
Note that we have two types of joints in the figure: the “ordinary” ones (indicated by solid black

dots) form the frame and can only be accessed once. The “quadruple” ones (indicated by hollow

dots in Figure 2) are found along the key and consist of four ordinary joints that are connected

by short segments of length ¢, making it possible to simulate opening and closing such a joint a

limited number of times. (In the following, all lengths are adjusted with small changes of size

O(e) to O(ne), such that coordinates vary by O(ne). We choose ¢ sufficiently small and note that
all other lengths are integers; for clarity of presentation, we do not discuss these small variations

explicitly.)

b26+4n

Figure 3: Turning the key into a stair.

In order to see that the key can be removed from the frame if there is a partition S = S$ U So,

such that)i¢5,@i = A/2, we first convert it into the “stair” configuration shown in Figure 3:

We make one monotone pass over the chain from the key end, and straighten one ordinary joint

per quadruple joint whenever this joint separates two segments from different S;. Thus, segments

corresponding to numbers in $} will be horizontal, while those for numbers in S2 will be vertical.

Making a similar monotone pass from the other end, we can convert the stair into a “flat harmonica”,

with segments from S$; pointing “down”, while those in Sp pointing “up”. By assumption about the

partition, the endpoints b)5 and bg_2 will be at the same vertical position, 2L/3 below 6,3. Therefore,

the last segment sg = by_ by of length L in the chain will be placed in the same vertical position

as the segment 6)36,4, with all other segments strictly in-between. This collapsed arrangement can

be rotated about 6,3 without colliding with any frame segments. Then it is easy to open up the

remaining frame (by straightening bi2, b11, bio, bg, b7, b6, 65, 64, 63, bg as One monotone pass).

Finally, the resulting monotone chain can be straightened in one last monotone pass.

Conversely, assume now that the chain can be straightened. It is clear that 6;3 must be straight-

ened before any other joint in the set {b2,...,b12}. In order to avoid hitting vertex b, during this

motion, the endpoint 62g44,, must be strictly within the circle of radius L around 613. s¢ is an

axis-parallel segment, and the distance of bo5447, is strictly less than LZ. Furthermore, the rigid

frame ensures that segment s,4 cannot lie to the left of s13, and it follows that s, can only lie

within the quarter circle below and to the right of bj3. Therefore, sg must be vertical, at the same

horizontal position as the segment s ;3. This implies that the total length of the segments between

$15 and sg_9 that point “up” is equal to the segments in that set that point “down”. This induces

a partition of the desired form, completing the proof. 0

3.2 Incomplete Folding

Now we consider the case where each link may be changed an arbitrary number of times before

achieving a desired angle. In analogy to the previous scenario, we call this “incomplete folding”.

This case is even more closely related to the carpenter’s ruler problem, which was solved in the

affirmative by [10, 31]. In fact, we observe the following:

Theorem 3.2 Any simple (not self-intersecting and not self-touching) polygonal chain P can be

opened (and thus manufactured from a straight wire) by a sequence of moves that bends only one

joint at any one time.

Proof: Consider the feasible set S of points in state space, where moving individual joints corre-

sponds to axis-parallel motion. If self-touching is prohibited, S$ is an open bounded set. By Streinu’s

result [31], there is an opening motion of the chain that consists of a bounded number of individual

moves. For this motion, let « be the (positive) infimum distance of a feasible position from the

boundary of S. Then we can replace each part of the feasible path by a series of axis-parallel moves

of size ¢/2, yielding a feasible path with the required property. Oo

We will refer to a sequence of small individual moves that mimics an overall large-scale motion

of several joints as “wiggly”, since the overall motion may be achieved through back-and-forth

motions of individual segments that gradually changes individual angles.

The following results show that allowing even a single point of self-incidence along the wire

changes the overall situation quite drastically.

Lemma 3.1 There are polygonal chains P with a single vertez-to-vertez incidence that cannot be

manufactured by arbitrary (noncomplete) single-joint bends.

Proof: See Figure 4. The chain has eight joints (labeled bo,...,67) and seven segments (of the
form s; = (bj-1, b;)). The end point bo coincides with joint bs. It is easily checked that none of the

joints 6,,...,64 can be changed without causing a self-intersection: Assume that there is a feasible

motion of a joint b; with 0 < i < 5. Then the points bg and b5 would move away from each other

along a circle around b;. Without loss of generality, assume that b5 remains in place, while bo is

moving. Now consider the first such rotation that starts with bo and 65 coinciding, and that avoids

a crossing of s; with both s5 and sg. If b) moves clockwise around 6, it is easy to see that the angle

between s; and s;3 must be at least 1/2 when starting the motion, or s; and s13 intersect. If bo

moves counterclockwise around b;, the same follows for the angle between s; and s 4. Therefore,

the center of rotation must lie within the shaded region shown in the figure. However, none of the

joints b,,...,b4 lies inside of this feasible region. It follows that bo,...,65 form a rigid frame, as

long as the angle at bs stays smaller than 7/2.

On the other hand, it is easy to see that 67 cannot be removed from the pocket formed by 61,

bg, and 63 if only the two remaining “free” joints 65 and bg can be changed. The claim follows. O

 possible locations for
centers of feasible rotations

Figure 4: A polygonal chain that cannot be opened with single-joint moves.

Using the frame as a gadget, we can show the following:

Theorem 3.3 I[t is NP-hard to decide if a polygonal chain P with a single vertex-to-vertex incidence

can be manufactured by arbitrary (noncomplete) single-joint bends.

Proof: The basic idea is similar to the one in Theorem 3.1 and also establishes a reduction

of PARTITION. (Refer to Figure 5 for an overview.) As before, we write b; for the joints, and

8; = (bj_1,};) for the segments. We use the idea of the construction from Lemma 3.1 to construct

a rigid frame, with the key corresponding to the free end of that chain. The frame has one end,

bo, of the polygonal chain wedged into the corner b13, which has angle y < 7/2. Because of the

degeneracy at 6,3, none of the joints 6),..., 612 can be moved individually without causing a self-

intersection between bg and the chain in the neighborhood of b)3. Again, the “key” consisting of

the n segments s1g,..., $1847 of integral lengths a1,...,a, encodes an instance of PARTITION, as in

the previous proof. As before, let S denote the set of integers for the PARTITION instance. Again,

we use “long” auxiliary segments of length L/2 and L, here they are segments sig, Si9+n, $20+4n;

and all sizes are subject to small adjustments of size O(c), for sufficiently small «. The critical

dimensions of the frame are chosen such that the key can just be removed from the frame through

the narrow bottleneck formed by the segments s3 and sg by extending the “spring” at 614, and b15,

if and only if the key can be collapsed to a critical length L. The latter is possible if and only if

there is a feasible partition.

In order to establish this equivalence, we only have to prove two facts:

1. As long as y remains below 7/2, no joint in the frame can be moved in a feasible way; i.e.,

the frame is rigid.

2. The key can be removed from the lock if and only if there is a feasible solution for the

PARTITION instance.

The first claim follows just like in Lemma 3.1. Therefore, we must be able to open y to at

least 1/2 before being able to change the frame. Clearly, this requires moving the key through the

bottleneck indicated in the figure.

It is not hard to check that by choosing an appropriately narrow layout for the bottleneck, this

can be achieved if and only if the we can move b;g down by a vertical distance of LZ + € without

causing any collisions between key and frame. (For this purpose, assume that the links bo, b3, bs,

bg form a narrow rectangle, i.e., the “horizontal” distance between b3 and bg and between by and bg

is smaller by a factor of ¢/Z than the “vertical” length of the segments s3 and sg.) Since the edge

$15 has length L/2 +, performing a “wiggly” sequence of small individual moves has this desired

effect, provided that the key can be placed within a narrow channel extending the bottleneck.

This is possible if there is a partition of S: Perform a “wiggly” sequence that folds the segments

for the set S like a harmonica until we get a sufficiently flat arrangement, leaving the segments for

the set S, pointing “upwards”, the segments for Sz pointing “downwards”; then 6i3,, is within

€ of big, bigtn within € of bi7, and the final segment s294,, is in (almost) vertical position. Then

extend the spring by another wiggly sequence, such that the key is moved through the bottleneck.

Now y can be opened, and the whole frame can be straightened by a straightforward sequence of

moves.

To see the converse, assume that segment ej9;,, can be moved through the bottleneck. Because

of the narrow dimensions of the bottleneck, the possible slopes of e194, are quite restricted: bo94n

can move a distance of « below the connection between b3 and bg, if and only if bi94, is within a

distance of ¢ from 617. By construction, this is only possible if there is a feasible partition of S.

Oo

4 Algorithms

In this section, we turn our attention to positive algorithmic results, giving efficient algorithms for

deciding if particular bend sequences are feasible. We consider here only the case of complete folds.

key of
vertical size

L

degeneracy

by = 4

partition
instance

spring of Sf |

length b
14

L/2+€

big

Figure 5: Illustration of the proof of Theorem 3.3.

Consider an arbitrary permutation, 0 = (i1,...,%,), of the bends along a wire. In order for

a to be a foldable sequence, it is necessary and sufficient that for each 7 = 1,..., the bend 8,

is foldable. Recall that in our notation P({t1,...,%;-1}) denotes the partially bent chain after
the bends at ;,,...,0;;_, have been completed. The point };, splits P({i,...,7j;-1}) into two

subchains; let Po (resp., Pn+1) denote the subchain containing the endpoint bo (resp., bp+41). Now,

joint 6;, is foldable if the bend at 6;, can be executed without causing a collision to occur between

Po and P,+1 at any time during the rotation about b;,. We can assume, without loss of generality,

that Po is fixed and that P,+41 is pivoted about 6;,. During the bend at };,, each vertex, u, of P41

moves along a circular arc, A,, subtending an angle 6;,, centered on 6;,. Let A denote the set of

all such circular arcs defined by the vertices of P,+1. See Figure 6.

Figure 6: Foldability of the joint b;: The subchain P,,41 is shown with thicker lines (two dotted

copies show it after different stages of rotation about b;). Each vertex of P,41 moves along a circular

arc, shown in dashed. In this case, the rotation shown is not feasible, as it fails both conditions (1)

and (2) of the lemma.

Lemma 4.1 Joint bj; is foldable if and only if (1) no are of A intersects Po, and (2) after the

bend, no segment of Pn4i intersects a segment of Po.

Proof: If joint 6;, is foldable then, by definition, there can be no intersection of P,41 with P

during its rotation about b;,. This implies conditions (1) and (2).

If conditions (1) and (2) hold, then we claim that there can be no intersection of P,41 with
Po during the rotation. Consider a segment, s, of P,41. During the rotation, it sweeps a region

Rs that is bounded by two circular arcs centered at 6;,, corresponding to the trajectories of its

endpoints during the rotation, and two line segments, corresponding to the positions of s before

and after the rotation. Our claim follows from the fact that Po is a simple (connected) chain: It

11

cannot intersect s at some intermediate stage of the rotation unless it intersects the boundary of

the region Rs. Such an intersection is exactly what is being checked with conditions (1) and (2). O

Lemma 4.2 For any S C B, and any b; ¢ S, one can decide in O(nlogn) time if joint bj is

foldable for the chain P(S).

Proof: Using standard plane sweep methods, adapted to include circular arcs, we can check in

O(nlogn) time both conditions ((1) and (2)) of Lemma 4.1. Oo

Remark. Of course, condition (2) can be tested in linear time, by Chazelle’s triangulation al-

gorithm. We believe that condition (1) can also be tested in linear time. It involves testing for

rotational separability of two simple chains about a fixed center point (b;), which is essentially a

polar coordinate variant of translational separability (which is easily tested for simple chains using

linear-time visibility (lower envelope) calculation). The issue that must be addressed for our prob-

lem, though, is the “wrap-around” effect of the rotation; we believe that this can be resolved and

that this idea should lead to a reduction in running time of a factor of log n.

Corollary 4.1 The foldability of a permutation o can be tested in O(n? logn) time.

We obtain improved time bounds for testing the feasibility of a particularly important folding

sequence: the identity permutation. Many real tube-bending and wire-bending machines operate in

this way, making bends sequentially along the wire/tube. (Such is the case for the hydraulic tube-

bending machines at Boeing’s factory, where this problem was first suggested to us.) Of course,

there are chains P that can be manufactured using an appropriate folding sequence but cannot be

manufactured using an identity permutation folding sequence; see Figure 1(e). However, for this

special case of identity permutations, we obtain an algorithm for determining feasibility that runs

in nearly linear time:

Theorem 4.1 In time O(nlog? n) one can verify if the identity permutation (o = (1,2,...,n)) is
a foldable permutation for P.

Proof: Consider executing the bends in the order given by the identity permutation (b,,bo,..., bn),

and consider the moment when we are testing the foldability of b;. The subchain P,,+ 1 is a single

line segment, bjbn41. Thus, verifying the foldability of bend 6; amounts to testing if the segment

bjbp41 can be rotated about b; by the desired amount, without colliding with any other parts of the

structure Po (which consists of the polygonal chain from bo to b;, after the bends at b1,...,bj-1 have

been completed). In other words, we must do a wedge emptiness query with respect to Po, defined

by 6;, segment 6;b,41, and the angle 6;. Since Pp is connected, emptiness can be tested by verifying

that the boundary of the wedge does not intersect Po. (See Figure 7.) Thus, we could perform this

query by using (straight) ray shooting and circular-arc ray shooting in Po; the important issue is

that Po is dynamically changing as we proceed with more bends. However, in order to avoid the

development of potentially complex dynamic circular-arc ray shooting data structures, we devise

a simple and efficient method that “walks” along portions of Po, testing for intersection with the

circular arc, y, from b,+1 to 0},,,, where 0j,,, is the location of b;41 after the bend at b; has been

performed.

In particular, we keep track of a “painted” portion of Po, which corresponds to the subset of Po

that has been “walked over.” We consider the chain Py to be a degenerate simple polygon, having

two sides which form a counterclockwise loop around Po. We consider the case in which the bend at

12

Figure 7: Foldability of the joint b; when 6j41,...,5, have not yet been folded.

b; is a rotation of the segment bjbn+1 clockwise to the segment 0,by, +1; the case of a counterclockwise

bend at b; is handled similarly. When we perform a bend at b;, we walk (counterclockwise) along

the unpainted portions of Py, between two points, a and a’, on the boundary of Po, where a and a!

are defined according to cases that depend on the outcomes of two ray-shooting queries:

Figure 8: Case (a): Both of the rays bjb,41 and bjb),,, miss Po and go off to infinity. + n+l

— ——>
(a) If both of the rays bjb,z41 and 6;},,, miss Pp (and go off to infinity), then there is nothing

more to check: the rotation at 6; can be done without interference with Pp, since Po is a

(connected) polygonal chain lying in the complement of the wedge defined by 6;b,41 and

bjbi,41- See Figure 8.

13

Figure 9: Case (b): Both of the rays bjb,41 and 6;b/,,, hit Po. The walk extends from a to a’ over

the gray highlighted portion of Po, painting any previously unpainted portion of it.

+ ——>
(b) If both of the rays bjb, +1 and b:b,,, hit Po, then we let a and a’ (respectively) be the points

on the boundary of Py where they hit Py. See Figure 9.

Figure 10: Case (c): Exactly one of the rays bjbp)41 and 6,b/,,, hits Py. The walk extends from a

to a’ over the gray highlighted portion of Py, painting any previously unpainted portion of it.

(c) If exactly one of the rays Bibnat and bibs, hits Po while the other misses Po (and goes off to

infinity), then we define a and a’ as follows. Assume that the ray biPnat hits Po (and the

ray bjb},, misses Po); the other case is handled similarly. We define a to be the point on the

boundary of Po where the ray BiPnat hits Pp and we define a’ to be the point on the boundary

of Po where a ray from infinity in the direction b,+16; (towards b;) hits Py. See Figure 10.

14

During the walk from a to a’ along the boundary of Po, we test each segment for intersection

with the circular arc y in time O(1). Whenever we reach a portion of the boundary that is

already painted, we skip over that portion, going immediately to its end. As we walk, we mark the

corresponding portions over which we walk as “painted.” By continuity, it is easy to verify that

the painted portion of any one segment of Po is connected (is a single subsegment). During a walk,

we charge the tests that we do for intersection with y off to the segments that are being painted.

The remainder of the justification of the algorithm is based on two simple claims:

Claim 1 There is no need to walk back over a painted portion in order to check for intersections

with an arc y at some later stage.

Proof: The fact that we need not walk over a painted portion testing again for intersections with

y follows from the fact that with each bend in the sequence, the length of the segment bjb,+41 that

we are rotating goes down (by the length of the last link). (In other words, if the motion of the tip,

bn+1, Sweeps an arc y that does not reach a portion y of the boundary of Po when the link bjbp41

is straight, it cannot later be that a link 6jb,+41 (j > 4) can permit the tip b,41 to reach the same

portion 4 when pivoting is done about b;; this is a consequence of the triangle inequality.) Oo

Claim 2 In testing for intersection with y, we check enough of the chain Po: if any part of it

intersects y, then it must lie on the portion between a and a! over which we walk.

Proof: In case (a), there is nothing to check. In case (b), the closed Jordan curve from }; to a
(along a straight segment), then along the boundary of the simple polygon Pp to a’, then back to

b; (along a straight segment) forms the boundary of a region whose only intersection with Po is

along the shared boundary from a to a’; thus, if 7 lies within this region (i.e., does not intersect

the boundary of Po from a to a’), then y does not intersect any other portion of Po. In case (c) we

argue similarly, but we use the Jordan region defined by the segment from b; to a, the boundary of

Po from a to a’, the ray from a’ to infinity (in the direction of bjb,,41), then the reverse of the ray

bid, back to 6;. Oo

The total time for walking along the chain Po can be charged off to the vertices of P, resulting

in time O(n) for tests of intersection with arcs y, exclusive of the ray shooting time. The final

time bound is then dominated by the time to perform n straight ray shooting queries in a dynamic

data structure for the changing polygonal chain Po; these ray shooting queries are utilized both in

testing for intersection with the segment b;b},,, and in determining the points a and a’ that define

the walk. These ray-shooting queries and updates are done in time O(log? n) each, using existing

techniques ([15]), leading to the claimed overall time bound. Oo

Next, we turn to two other important classes of permutations. We say that a permutation is an

outwards folding sequence (resp., inwards folding sequence) if at any stage of the folding, the set of

bends that have been completed is a subinterval, 6;, bj41,..., 6; (resp., a pair of intervals 6), bz, ... , bj

and b;,bj41,.--,bn); thus, the next bend to be performed is either b;_; or bj41 (resp., bj41 or bj—1).

Inwards and outwards folding sequences model the case in which the bending operations must be

done sequentially along the wire; this is a constraint with some forming machines. See Figure 11.

The identity permutation is a folding sequence that is a special case of both an inwards and an

outwards folding sequence.

We show that one can efficiently search for a folding sequence that is inwards or outwards. Our

algorithms are based on dynamic programming.

First, consider the case of outwards folding sequences. We keep track of the state as the pair

(i,j) representing the interval of bends (0;,6;41,...,6;) already completed. We construct a graph

15

Figure 11: An intermediate state (7,7) in the folding of an outwards (left) and an inwards (right)

folding sequence. For the outwards folding sequence on the left, the next bend is either b;_; or

b;41; the new positions of the chain are shown dashed. For the inwards folding sequence on the

right, the next bend is either 6:41 or 6;—1.

G whose O(n”) nodes are the states (i, 7) (with 1 < i < j <n) and whose edges link states that
correspond to the action of completing a bend at 6;_1 or b;+, (if the starting state is (i, 7)). Thus,
each node has constant degree. Our goal is to determine if there is a path in this graph from some

(i,7) to (1,n). This is done in O(n?) time once we have the graph constructed. (Alternatively,
we can construct the graph as we search the graph for a path.) In order to construct the graph,

we need to test whether bend };_; or 6;41 can be performed without intersecting the folded chain,

P', linking 6;-1 to bj41. This is done in a manner very similar to that we described above for the

case of identity permutations: we perform ray-shooting queries in time O(log? n) and then use a

“painting” procedure to keep track of the states of 2n — 2 “walks” that determine circular-arc ray

shooting queries. In particular, there is a separate painting procedure corresponding to each of

the n — 1 choices of ¢ and to each of the n — 1 choices of j. For example, for a fixed choice of 2,

the painting procedure will consider each of the possible bends 6;41,..., 5, in order, allowing us to

amortize the cost of checking for intersections with the circular arc y associated with each bend.

In total, the cost of the walks is O(n”), while there may also be O(n”) ray shooting queries (in
a dynamically changing polygon). Thus, the total cost is dominated by the ray shooting queries,

giving an overall time bound of O(n? logn).
For the case of an inwards folding sequence, we build a similar state graph and search it.

However, the cost of testing if a bend is feasible is somewhat higher, as we do not yet have an

efficient procedure for testing the foldability of a polygonal chain. (Our painting procedures exploit

the fact that the link being folded is straight.) Thus, we apply the relatively naive method of

testing feasibility given in Lemma 4.2, at a cost of O(n logn) per test (which potentially improves

to O(n) time, if our conjecture mentioned in the remark after the Lemma is true). Thus, the overall
cost of the algorithm is dominated by the O(n?) feasibility tests, at a total cost of O(n? logn). In

summary, we have:

16

Theorem 4.2 In time O(n? log? n) one can determine if there is an outwards folding sequence; in

time O(n? logn) one can determine if there is an inwards folding sequence.

5 Conclusion

We conclude with some open problems that are suggested by our work:

(1) Is the bend sequencing problem for wire folding strongly NP-complete, or is there a pseudopo-

lynomial-time algorithm? If not in wire bending, is it strongly NP-complete for the 3-dimen-

sional sheet metal folding problem?

(2) Is it NP-hard to decide if a polygonal chain in three dimensions can be straightened? In [6]

simple examples of locked chains in three dimensions are shown; can these be extended to a

hardness proof for the decision problem?

(3) If we consider only structures that are manufacturable using a punch and die on a press

brake (which significantly limits the set of foldable bends, since the punch and die must be

accessible), what is the complexity of the bend sequencing problem? The wire-bending version

of this question may be modeled as requiring that each joint that we bend must lie on a line

that crosses the part at the joint, reaching to infinity in both directions without intersecting

the current structure. (This models the need for the punch and die to be accessible at the

bend point.)

(4) Can the foldability of a permutation be decided in subquadratic time for wire bending? At

issue is designing a dynamic data structure that will permit efficient (sublinear) queries for

the foldability of a vertex; this seems to be an interesting question in its own right.

Acknowledgments

We thank S. Skiena for valuable input in the early stages of this research and, in particular, for

contributing ideas to the hardness proof of Theorem 3.1. E. Arkin acknowledges support from

the National Science Foundation (CCR-9732221) and HRL Laboratories. S$. Fekete acknowledges
support from the National Science Foundation (ECSE-8857642,CCR-9204585) during his time at

Stony Brook (1992-93), when this research was initiated. J. Mitchell acknowledges support from

HRL Laboratories, the National Science Foundation (CCR-9732221), NASA Ames Research Center,

Northrop-Grumman Corporation, Sandia National Labs, Seagull Technology, and Sun Microsys-

tems.

References

[1] E. M. Arkin, M. A. Bender, E. D. Demaine, M. L. Demaine, J. S. Mitchell, S. Sethia, and S. S.

Skiena. Recognizing simply foldable origami. Manuscript (submitted), University at Stony
Brook, 2000.

[2] B. Aronov and J. O’Rourke. Nonoverlap of the star unfolding. Discrete Comput. Geom.,

8:219-250, 1992.

[3] V. Ayyadevara, D. Bourne, K. Shimada, and R. H. Sturges. Determining near optimal

interference-free polyhedral configurations for stacking. Proceedings of IEEE International

Symposium on Assembly and Task Planning, pages 286-293, July 1999.

17

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. Bern, E. D. Demaine, D. Eppstein, and E. Kuo. Ununfoldable polyhedra. In Proc. 11th

Canad. Conf. Comput. Geom., pages 13-16, 1999. Full version: LANL archive paper number

cs.CG/9908003.

M. Bern and B. Hayes. The complexity of flat origami. In Proc. 7th ACM-SIAM Sympos.

Discrete Algorithms, pages 175-183, 1996.

T. Biedl, E. Demaine, M. Demaine, 5S. Lazard, A. Lubiw, J. O’Rourke, M. Overmars, 5. Rob-

bins, I. Streinu, G. Toussaint, and 5. Whitesides. Locked and unlocked polygonal chains in

3D. In Proc. 10th ACM-SIAM Sympos. Discrete Algorithms, pages 866-867, Jan. 1999.

T. Biedl, E. Demaine, M. Demaine, A. Lubiw, J. O’Rourke, M. Overmars, S$. Robbins,

I. Streinu, and §. Whitesides. On reconfiguring tree linkages: Trees can lock. In Proc. 10th

Canad. Conf. Comput. Geom., pages 4-5, 1998.

T. Biedl, E. Demaine, M. Demaine, A. Lubiw, J. O’Rourke, M. Overmars, $. Rob-

bins, and §. Whitesides. Unfolding some classes of orthogonal polyhedra. In Proc.

10th Canad. Conf. Comput. Geom., pages 70-71, 1998. Fuller version in Elec. Proc.

http://cgm.cs.mcgill.ca/cccg98 /proceedings/welcome.hml.

D. Bourne and C.-H. Wang. Design and manufacturing of sheet metal parts: Using features to

resolve manufacturability problems. In A. Busnaina, editor, Computer in Engineering 1995,

pages 745-753. ASME, New York, 1995.

R. Connelly, E. Demaine, and G. Rote. Every polygon can be untangled. In Proc. 41st Annu.

IEEE Sympos. Found. Comput. Sci., pages 432-442, 2000.

L. J. de Vin, J. de Vries, A. H. Streppel, and H. J. J. Kals. PART-S, a CAPP system for small

batch manufacturing of sheet metal components. In Proc. of the 24th CIRP International

Seminar on Manufacturing Systems, pages 171-182, 1992.

E. D. Demaine, M. L. Demaine, and A. Lubiw. Folding and cutting paper. In Proc. Japan

Conf. Discrete Comput. Geom., Lecture Notes Comput. Sci. Springer-Verlag, 1998.

BE. D. Demaine, M. L. Demaine, and A. Lubiw. Folding and one straight cut suffice. In Proc.

10th Annu. ACM-SIAM Sympos. Discrete Alg., pages 891-892, Jan. 1999.

EK. D. Demaine, M. L. Demaine, and J. 5S. B. Mitchell. Folding flat silhouettes and wrapping

polyhedral packages: New results in computational origami. Comput. Geom. Theory Appl.,

16(1):3-21, 2000.

M. T. Goodrich and R. Tamassia. Dynamic ray shooting and shortest paths in planar subdi-

visions via balanced geodesic triangulations. J. Algorithms, 23:51—73, 1997.

5. K. Gupta, D. A. Bourne, K. H. Kim, and 5. $. Krishnan. Automated process planning for

sheet metal bending operations. J. Manufacturing Systems, 17(5):338-360, 1998.

T. Hull. On the mathematics of flat origamis. Congr. Numer., 100:215—-224, 1994.

K. K. Kim, D. Bourne, 5. Gupta, and S$. $. Krishnan. Automated process planning for robotic

sheet metal bending operations. Journal of Manufacturing Systems, 17(5):338-360, September

1998.

18

[19

[20

[21

[22 [23

[24]

[25]

[26]

[27]

[28

[29

[30

[31

[32

[33

[34 [35

R. J. Lang. Mathematical algorithms for origami design. Symmetry: Culture and Science,

5(2):115-152, 1994.

R. J. Lang. A computational algorithm for origami design. In Proc. 12th Annu. ACM Sympos.

Comput. Geom., pages 98-105, 1996.

W. J. Lenhart and §. H. Whitesides. Turning a polygon inside-out. In Proc. 3rd Canad. Conf.

Comput. Geom., pages 66-69, Aug. 1991.

W. J. Lenhart and $. H. Whitesides. Reconfiguring closed polygonal chains in Euclidean

d-space. Discrete Comput. Geom., 13:123-140, 1995.

L. Lu and §S. Akella. Folding cartons with fixtures: A motion planning approach. In Proc. 1999

IEEE International Conference on Robotics and Automation, Detroit, MI, pages 1570-1576,

1999.

A. Lubiw and J. O’Rourke. When can a polygon fold to a polytope? Technical Report 048,

Dept. Comput. Sci., Smith College, June 1996. Presented at AMS Conf., 5 Oct. 1996.

M. Namiki and K. Fukuda. Unfolding 3-dimensional convex polytopes: A package for Mathe-

matica 1.2 or 2.0. Mathematica Notebook, Univ. of Tokyo, 1993.

J. O’Rourke. Computational geometry column 33. Internat. J. Comput. Geom. Appl., 8:381-

384, 1999. Also in SIGACT News, 29(2):12-16 (1998), Issue 107.

J. O’Rourke. Folding and unfolding in computational geometry. In J. Akiyama, M. Kano, and

M. Urabe, editors, Proc. Japan Conf. Discrete & Computational Geometry, Tokyo, Japan,

December 9-12, 1998, number 1763 in Lecture Notes in Computer Science, pages 258-266.

Springer-Verlag, 2000.

N. Pei and §. Whitesides. On the reachable regions of chains. In Proc. 8th Canad. Conf.

Comput. Geom., pages 161-166, 1996.

N. Pei and §. Whitesides. On folding rulers in regular polygons. In Proc. 9th Canad. Conf.

Comput. Geom., pages 11-16, 1997.

C. Schevon and J. O’Rourke. A conjecture on random unfoldings. Technical Report JHU-

87/20, Johns Hopkins Univ., Baltimore, MD, July 1987.

I. Streinu. A combinatorial approach to planar non-colliding robot arm motion planning. In

Proc. 41st Annu. IEEE Sympos. Found. Comput. Sci., pages 443-453, 2000.

M. van Kreveld, J. Snoeyink, and $. Whitesides. Folding rulers inside triangles. Discrete

Comput. Geom., 15:265-285, 1996.

C.-H. Wang. Manufacturability-driven decomposition of sheet metal products. PhD thesis,

Carnegie Mellon University, The Robotics Institute, 1997.

C.-H. Wang and D. Bourne. Concurrent decomposition for sheet metal products. In ASME

Design Engineering Technical Conference, Sacramento, September 14-17 1997.

C.-H. Wang and R. H. Sturges. Bendcad: a design system for concurrent multiple representa-

tions of parts. Journal of Intelligent Manufacturing, 7:133-144, 1996.

19

Reports from the group

“Combinatorial Optimization and Graph Algorithms”

of the Department of Mathematics, TU Berlin

711/2001 Esther M. Arkin, Michael A. Bender, Séndor P. Fekete, Joseph S. B. Mitchell, and Martin

Skutella: The Freeze-Tag Problem: How to Wake Up a Swarm of Robots

710/2000 Esther M. Arkin, Sdndor P. Fekete, and Joseph S. B. Mitchell: Algorithms for Manufacturing

Paperclips and Sheet Metal Structures

705/2000 Ekkehard Kohler: Recognizing Graphs without Asteroidal Triples

704/2000 Ekkehard Kohler: AT-free, coAT-free Graphs and AT-free Posets

702/2000 Frederik Stork: Branch-and-Bound Algorithms for Stochastic Resource-Constrained Project
Scheduling

700/2000 Rolf H. Méhring: Scheduling under uncertainty: Bounding the makespan distribution

698/2000 Sdndor P. Fekete, Ekkehard Kéhler, and Jtirgen Teich: More-dimensional packing with order

constraints

697/2000 Sdndor P. Fekete, Ekkehard Kohler, and Jiirgen Teich: Extending partial suborders and impli-

cation classes

696/2000 Sdndor P. Fekete, Ekkehard K6hler, and Jiirgen Teich: Optimal FPGA module placement with

temporal precedence constraints

695/2000 Sdndor P. Fekete, Henk Meijer, André Rohe, and Walter Tietze: Solving a “hard” problem to

approximate an “easy” one: heuristics for maximum matchings and maximum Traveling Salesman

Problems

694/2000 Esther M. Arkin, Séndor P. Fekete, Ferran Hurtado, Joseph S. B. Mitchell, Marc Noy, Vera

Sacristénm and Saurabh Sethia: On the reflexivity of point sets

693/2000 Frederik Stork and Marc Uetz: On the representation of resource constraints in project scheduling

691/2000 Martin Skutella and Marc Uetz: Scheduling precedence constrained jobs with stochastic process-

ing times on parallel machines

689/2000 Rolf H. Méhring, Martin Skutella, and Frederik Stork: Scheduling with AND/OR precedence

constraints

685/2000 Martin Skutella: Approximating the single source unsplittable min-cost flow problem

684/2000 Han Hoogeveen, Martin Skutella, and Gerhard J. Woeginger: Preemptive scheduling with rejec-

tion

683/2000 Martin Skutella: Convex quadratic and semidefinite programming relaxations in Scheduling

682/2000 Rolf H. Méhring and Marc Uetz: Scheduling scarce resources in chemical engineering

681/2000 Rolf H. Méhring: Scheduling under uncertainty: optimizing against a randomizing adversary

680/2000 Rolf H. Méhring, Andreas S. Schulz, Frederik Stork, and Marc Uetz: Solving project scheduling

problems by minimum cut computations (Journal version for the previous Reports 620 and 661)

674/2000 Esther M. Arkin, Michael A. Bender, Erik D. Demaine, Séndor P. Fekete, Joseph S. B. Mitchell,

and Saurabh Sethia: Optimal covering tours with turn costs

669/2000 Michael Naatz: A note on a question of C. D. Savage

667/2000 Sdndor P. Fekete and Henk Meijer: On geometric maximum weight cliques

666/2000 Sdndor P. Fekete, Joseph S. B. Mitchell, and Karin Weinbrecht: On the continuous Weber and

k-median problems

664/2000 Rolf H. Méhring, Andreas S. Schulz, Frederik Stork, and Marc Uetz: On project scheduling with

irregular starting time costs

661/2000 Frederik Stork and Marc Uetz: Resource-constrained project scheduling: from a Lagrangian

relaxation to competitive solutions

Reports may be requested from: Hannelore Vogt-Moller

Fachbereich Mathematik, MA 6-1

TU Berlin

StraGe des 17. Juni 136

D-10623 Berlin — Germany

e-mail: moeller@math.TU-Berlin.DE

Reports are also available in various formats from

http://www.math.tu-berlin.de/coga/publications/techreports/

and via anonymous ftp as

ftp://ftp.math.tu-berlin.de/pub/Preprints/combi/Report-number- year .ps

