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Abstract

These days data is collected any time and everywhere. The number of devices we
are using every day is steadily growing. Most of those devices collect data about
their usage and environment. That data is no longer gathered to answer a particular
hypothesis. Instead, it is gathered to find patterns that could build a hypothesis.
The collected data is often semi-structured, may stem from different sources, and is
probably cluttered. The term BigData emerged for this kind of information.

Parallel data processing systems are designed to handle BigData. They work on a
large number of parallel working nodes. The high number of nodes and the long
runtime of jobs lead to a high failure probability. Existing fault tolerance strategies
for parallel data processing systems usually handle faults with full restarts or work
in a blocking manner. Either the systems do not consider faults at all, and restart
the entire job if a fault occurs, or they save all intermediate data before they start
the next task.

This thesis proposes better approach to fault tolerance in parallel data processing
systems. The basis of the approach reduces restarts and works in a nonblocking
manner. The introduced ephemeral materialization points hold intermediate data
in memory while monitoring the running job. This monitoring enables the system
to choose the sweet spots for materialization. At the same time, the materialization
points allow the pipelining of data.

Based on this method the thesis introduces several continuous fault tolerance tech-
niques. On the one hand, it covers data and software faults, which are not included
by the typical retry methods. On the other hand, it covers further optimizations
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for jobs with stateless tasks. Stateless tasks do not have to reprocess all their input
to produce the same output, as they do not have to reach a certain state. The
possibility to run a task at any point of the input stream offers the opportunity for
further optimizations on the fault tolerance method. In this case it is possible to
add additional nodes to the system during recovery or to skip parts of the input
stream.

The evaluations of the approaches show that they offer a fast recovery with small
runtime and disc space overhead in a failure free case.
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Zusammenfassung

Heutzutage werden Daten überall und zu jeder Zeit gesammelt. Die Anzahl an
Geräten die wir im alltäglichen Leben verwenden steigt immer weiter. Diese Geräte
sammeln Daten über ihre Nutzung und Umgebung. Diese Daten werden nicht
gesammelt um eine bestimmte Hypothese zu untermauern, sondern um Muster zu
finden die eine Hypothese bilden können. Die gesammelten Daten sind oft semi-
strukturiert, können aus verschiedenen Quellen stammen und sind möglicherweise
mangelhaft. Der Begriff BigData hat sich für solche Informationen herausgebildet.

Parallele Datenverarbeitungs-Systeme wurden entwickelt um mit BigData zu ar-
beiten. Sie arbeiten mit einer Vielzahl von parallelen Arbeitsknoten. Die groSSe
Anzahl an Maschinen und die typischerweise lange Verarbeitungszeit führt zu einer
hohen Fehlerwahrscheinlichkeit. Existierende Fehlertoleranz Strategien für diese
Systeme nutzen normalerweise komplette Neustarts oder arbeiten blockierendernd.
Entweder können sie gar nicht mit Fehlern umgehen und starten den gesamten Job
neu, oder sie speichern alle Zwischenergebnisse bevor der nächste Schritt gestartet
wird.

Diese Dissertation hat die Absicht einen besseren Ansatz für Fehlertoleranz in paral-
lelen Datenverarbeitungs-Systemen zu finden. Die Grundlage des Ansatzes vermei-
det Neustarts und arbeitet in nicht blockierender Weise. Die vorgestellten ephemeral
materialization points (Flüchtige Materialisierungspunkte) halten Daten im Spe-
icher, während der Job untersucht wird. Diese Untersuchung ermöglicht es dem
System die besten Punkte für die Materialisierung zu finden. Diese Materialisierung
blockiert die Verarbeitung nicht.
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Aufbauend auf dieser Methode stellt die Dissertation verschiedene Fehlertoleranz
Mechanismen für parallele Datenverarbeitungs-Systeme vor. Auf der einen Seite
behandelt es verschiedene Fehlertypen die in den üblichen Neustart Methoden nicht
behandelt werden können, wie Daten- oder Software-Fehler.

Auf der anderen Seite betrachtet sie Optimierungen für Jobs mit zustandslosen
Teilschritten. Die Zustandslosen Teilschritte müssen nicht die gesamten hereinkom-
menden Daten wieder verarbeiten, da sie keinen Zustand wieder herstellen müssen.
Die Möglichkeit einen Teilschritt an jeder Stelle des hereinkommenden Datenstroms
neu zu starten eröffnet die Möglichkeit für weitere Optimierungen. Das System
kann während der Wiederherstellung zusätzliche Knoten zu dem Job hinzufügen
oder Teile der hereinkommenden Daten auslassen.

Die Evaluationen der vorgestellten Methoden zeigen, dass sie eine schnelle Wieder-
herstellung bieten und gleichzeitig geringe Zusatzkosten in Bezug auf die Laufzeit
und den Speicherverbrauch verursachen.
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CHAPTER 1

Motivation

We are living in a world of ever-growing data. On Twitter, users generate about 500
million tweets daily1, nearly 95 million pictures, and videos are uploaded to Insta-
gram each day. The web 2.0, the rising number of sensors and devices with internet
connections and mobile phones used by the bigger part of the world population,
lead to an enormous increase in data. They are part of the internet of things, a
network of objects which collect data 24/7. As sensors become cheaper over time,
one can find them almost everywhere. In smart home environments, they are built
into windows to detect rain and temperature, and into doors to detect their status.
Vendors build sensors into medical devices, cars, entertainments systems, and so
on. Those sensors collect data we are producing during our ordinary course of life.
Furthermore, our everyday life includes the online world. Social networks produce
and link information about people, events, things, and their relationships. Social
platforms develop special algorithms designed for the newly emerged use cases of
social networks.

However, data is not only generated in an automated manner. For example in
the medical sector, large clinical studies collect all possibly interesting data that is
related to the health and lifestyle of a patient. Modern studies even collect DNA
samples to learn more about common diseases. In January 2015, the United States
of America announced the collection of DNA samples from at least one million

1http://www.internetlivestats.com/twitter-statistics/
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CHAPTER 1. MOTIVATION

volunteers during the Precision Medicine Initiative [1]. At the Personal Genome
Project UK everybody can donate their own DNA to make it available to the public,
to enable researchers to widen the possibility of genetic testing.

The experiments that run on the Large Hadron Collider (LHC) in CERN are used
to collide proton beams. They produce one petabyte of data per second[2] and share
part of that data through the CERN OpenData project. This data is collected to see
“if the collisions have thrown up any interesting physics"2, not to answer a detailed
question.

In general, working with data has changed these days. Experiments and data col-
lection are typically used to confirm or deny a given hypotheses. Today, lots of data
is not accumulate and filtered for a particular purpose. Instead, the information
is gathered just because it is available. In science, this approach is called “discov-
ery science". In discovery science the hypotheses are no more the first step in the
process. The data is. The goal is no longer to approve a given theory, but to find
patterns or anomalies in a given large data set[3]. Data mining usually does this
pattern detection. Data mining includes anomaly detection, regression, classifica-
tion, association rule learning, clustering, and summarization. However, there are
other technologies to work with large datasets depending on the field, e.g., machine
learning, time series analysis, or social network analysis.

Moreover, as big data science evolved researchers found that some algorithms al-
though designed for other purposes, like graph retrieval or sampling, can be used
in big data analysis fields too. Joel Dudley et al. just published work in which
they found three subgroups of type 2 diabetes using a patient network considering
high-dimensional electronic medical records[4]. This too included a large data set
and a hypothesis-free analysis of the given data.

Additionally to the size of the data, the structure of the data is a new problem. Data
produced in the ways described above range from structured over semi-structured
up to unstructured data. Unstructured data is not pre-defined by a data model. As
data is collected whenever possible, even if it is unsure whether it contains interesting
information, it can be complicated or even unfavorable to define a data model. Data
can come from different sources with different specifications, like sensors of various
vendors or different patient questioning forms in different medical institutes.

Log files, for example, typically collect semi-structured data sets that, without a
predefined question to answer. The running system that uses the logging mechanism,
saves much information about states and outputs in a semi-structured way. That
information is unimportant as long as the system runs smoothly. If any problems
emerge, those log files contain valuable information about the issue and how the

2https://home.cern/about/computing
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1.1. PROCESSING

system was behaving at the time it was running correctly. Log files of user actions,
for instance, collecting every click in a program, are used to analyze user behavior
to direct development and payment strategies.

1.1 Processing

With the increase of data a new research field emerged and the buzzword Big Data
came up to summarize the issues above. Big Data is still a challenge and has a
lot of open questions to be answered. Those questions include the collection, pre-
computation/filtering and availability of data, the evaluation of the data, how to
combine different data sets and even the question what questions all the data can
answer[5].

Once there is an idea how to use the data its size leads to the question of how to
assess it. As described, the data is usually not entirely structured and cleaned up in
a database, but consists of a lot of semi-structured or unstructured elements which
might only contain a small portion of valid information.

The size and the structure of the data ask for new ways of programming. It is no
longer possible to evaluate the data on a single commodity personal computer, and
high-end servers are expensive. It is necessary to run programs in a parallel manner.
However parallel computing is a complex issue and had been usually used with spe-
cialized computers and by specialized programmers. Race conditions, dependencies,
and manual synchronization are just a few problems that a parallel programmer has
to solve. Creating a parallel program is not suitable for unknown and versatile data.
Moreover, the evaluation of data sets is no more limited to big companies with spe-
cialized personnel. Everyone can get millions of data sets3 and find out what they
want to know.

This situation asks for a new way of programming parallel evaluation programs. As
the demand of users working on big data sets is raising, there is a need for a more
comfortable solution. Google did the first step in this direction with the Google
MapReduce Framework. In 2004 Jeffrey Dean and Sanjay Ghemawat published a
very well known paper about Google’s MapReduce[6]. They introduce a parallel
execution environment that raises the pressure of parallelization from the user’s
shoulders and enables the user of the environment to run parallel data processing
engines on many machines. The main idea leans on the map and reduce concept
known from functional programming. The user has to implement two functions, a
map function that executes the user code to each record of the input data, and a
reduce function, which combines records with a similar key with some user-defined

3https://github.com/caesar0301/awesome-public-datasets
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CHAPTER 1. MOTIVATION

functions (UDF). The user does not need to worry about data exchange or depen-
dencies. The execution engine takes care of this.

MapReduce is based on two user-defined functions map() and reduce(). Those
functions are adapted from functional programming. MapReduce uses and outputs
key-value pairs. The map function applies the user-defined code to every key-value
pair of the input. The reduce function sums up its input by performing is func-
tionality to a list of records with a similar key. Between the map and the reduce
function, the system performs a re-partitioning step. The output keys of the map
function have to be assigned to a reducer, this is done in a load balancing way,
usually by a hash function. Then the data is sorted and distributed between the
reducers. Apache invented an open source version of MapReduce called Hadoop[7].
Hadoop is used among others by Facebook, Twitter or Spotify.

Hadoop as an OpenSource project offers anyone the possibility to write jobs that
run on a lot of nodes. But there are some drawbacks for MapReduce systems. First
of all, not every parallel job can be easily written in one MapReduce job. Use
cases may need several connected MapReduce jobs. Hadoop or MapReduce do not
provide the possibility to chain jobs automatically. The fact that MapReduce jobs
allow only one input makes tasks like joins, that combine every tuple with similar
key of two inputs complicated to program. From this drawbacks, other systems
and programming tools emerged. Apache introduced Pig[8] that creates Hadoop
MapReduce jobs that are described in an SQL-Like language called PigLatin[9].
Apache Hive[10] also offers an SQL-Like language that converts the statements into
MapReduce jobs. Apache Spark[11] uses so-called Resilient Distributed Datasets
(RDDs), a portion of the data that can be manipulated parallel. Spark leaves the
two-staged MapReduce idea for a multi-stage paradigm. Of course, not only Apache
created systems that try to make the drawbacks of MapReduce better. Systems like
Hyracks[12], Dryad[13], or Nephele[14] go beyond the subscribed the strict Map and
Reduce concept.

As a consequence, everyone can write programs that run on many machines, without
knowledge of the parallelization and data exchange details. However, although the
programs exist, the limitation of computing power may be the next problem. For
example, the CERN decided in 2002 to use grid computing to spread the herculean
task of data processing to other computing centers. Additionally, CERN provides a
volunteer computing platform LHC@home[15] that enables everyone to donor unused
computing time of their private personnel computer to the LHC data processing.
However, not only CERN but a lot of other research organizations and universities
offer @home projects to increase their computing power, including the probably
most widely known SETI@home4[16]. Which are just two example to use external
computing power to solves the worlds big questions.

4http://setiathome.berkeley.edu/
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1.2. AVAILABILITY

Nevertheless, for a single company, who may have a big data analysis issue from
time to time, it is not possible to build up a grid or an @home project. Further-
more, there might be several occasions when small businesses or end users need
additional computing power for a limited time frame (like additional web servers
after an advertisement campaign). Investing in hardware for those peaks would
lead to under-utilization of servers. On the other hand, just the number of servers
covering the usual business will not be able to handle the mentioned peaks.

A solution to this issue is services like Amazon EC2[17] or Open TelekomCloud[18],
which offer on-demand computing resources. They are part of the Cloud comput-
ing idea, “ubiquitous, convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management ef-
fort or service provider interaction." [19]. Cloud computing includes several Service
models like System as a Service (SaaS), Platform as a Service (PaaS) and Infrastruc-
ture as a Service (IaaS). IaaS clouds are large data centers with a high number of
shared-nothing commodity hardware that run virtualized servers which costumers
can book on demand. In the shared nothing architecture, the individual nodes run
independently and do not share disk space or memory. The nodes do not have to
compete with each other for the resources.

The on-demand booking gives a high amount of freedom to the user. It is possible
to get as many CPUs for a big task as needed to solve it quickly, without the needs
to maintain a big data center in the own basement. Shortly booked cloud nodes
can easily carry slight increases in the usage of a service, e.g., clicks on a shop
website. Cloud machines can expand existing data centers, combining the private
server architecture with a public cloud environment.

1.2 Availability

Nevertheless, cloud vendors do not promise perfect performance and uptime of a
machine. The booked machines in a cloud system are virtual machines, usually
with several virtual instances on one physical computer. As those machines share
the physical hardware of the host system, hardware that is not designed to be
highly available, and as they communicate over the network, failures are likely to
occur. Vendors of cloud computing services give their guarantees of availability of the
services with Service Level Agreements (SLA). Those agreements cover the expected
service behavior, the measurements for the level of service, and the consequences of
violations of the contracts.

For example, Amazon guarantees a monthly uptime percentage of 99.95% measured
in 1 minute periods. That means to calculate a risk that during one of 20 one-minute
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slots all machines will be unavailable within more than one region, or in average
once every 33 hours. Here “unavailable" is defined as “when all of your running
instances have no external connectivity."[20]. The above calculation does not cover
breakdowns of single instances. If the downtime increases above that 99.95%, the
user is entitled to financial rewards. Other vendors have similar SLAs, usually their
advertise a monthly 99.95% uptime with similar exclusions. This means the systems
running on IaaS Clouds will most likely have to deal with breakdowns.

Those uptime promises may be sufficient for running web servers where downtimes
only reduce profit, and backup servers can start up quickly. However, they are pretty
much useless for parallel processing, as even a failure of one single machine can break
the entire job. It is therefore necessary to build these systems in a failure tolerant
manner to use them efficiently in the cloud. A system needs to handle breakdown or
temporarily unavailability of machines. Irrespective of the breakdown of machines,
there are other failure causes in the context of parallel data processing systems. As
discussed above, these systems are designed for parallel execution of Big Data input.
The very definition of Big Data includes that the data may be flawed. Flawed data
can cause failures in the user-defined function if the programmer made the wrong
assumptions about the data. Those failures can cause the system to crash or just
produce wrong output.

Both cases will lead to a re-execution of the job, which takes up additional resources,
adding monetary cost to the user. At the same time, it adds stress to the environ-
ment, since the resources that could be idling and potentially shut down[21, 22]
have to run on high workload once more. Consuming energy directly and for cooling
systems, that are also usually not emission-free.

It is thus with good cause desirable that a system does not crash because of one
fault, but recover from the fault and finishes its work with as less additional resource
usage as possible. For the budget of the person running the system, as well as for
the overall environment.

1.3 Problem Definition

The high number of hardware in a cloud system tends to result in a high possibility
of failure. Especially with the use of commodity hardware that is not particularly
resistant or secured against malfunction. Failures do occur, and will cause parallel
execution jobs to fail, if no fault tolerance mechanisms are applied. This would mean
to the re-execution of the entire job, even if just parts of the job failed. This leads
to unnecessary usage of resources, which will cost the user money.

This fact asks for the systems that run in cloud environments to be fault tolerant.
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Those systems have to be able to deal with all kinds of failures: Flaws in the network
or memory, machines that are not reacting anymore or the breakdown of machines
including loss of data. Ideally, the system would recognize those failures and handle
them in a way the user does not even see. The perfect fault tolerant system would
be able to reduce the time of failure recovery in a way that the runtime of the job
does not increase memorably. At the same time, it should be not recognizable in
case of a non-failure situation, regarding disk space usage and increase of runtime.
Of course, it is impossible to have all of this; a fault tolerant system will always be
a trade-off between those wishes.

The main question this thesis is trying to answer is:

“ Given the restrains of parallel data flow systems in IaaS Clouds,
how can fault tolerance be achieved in a transparent, fast and space-
saving manner for several types of faults? ”

As IaaS clouds are designed for the customer to pay for any service he is using, one
primary interest for the user is to keep the costs of a computation low. This adds
to the general efficiency demand that the computation will finish in the shortest
processing time possible. An efficient fault tolerant system thus has to add as few
additional processing time as possible and take up as less disk space as possible, as
the customer will be shared for permanent storage as well.

In summary, there are three requirements:

• Fault tolerance The system should be able to react properly to various kinds
of failures. That means noticing the failure and recovering from it.

• Little supplementary costs The fault tolerance should be achieved with as
little additional costs as possible. Especially the runtime increase for saving
necessary recovery data and recovery has to be noticeably shorter than the
complete restart of the system. Additionally, it should use as little disk space
as possible.

• Transparency Ideally the user does not even notice the fact that a failure
occurred. The entire failure recognition and recovery should be as transparent
to the user as possible. And the user should be able to run the same jobs he
used to run on the system before it implemented fault tolerance.

7



CHAPTER 1. MOTIVATION

1.4 Research Method

Denning et al. state three main paradigms for the computer science discipline:
design, abstraction, and theory. Even though the authors state themselves that the
three processes are inseparable, the three paradigms have different focuses and steps
of work[23]. The theory paradigm is a mathematical approach beginning with a
definition, followed by a theorem based on this definitions, an attempt to proof the
theorem and the interpretation of the results. The abstraction is a experimental
approach and starts with a hypothesis, followed by a model and a prediction. The
next step is to build an experiment with available data, and then check whether the
experiments confirm the model. The design paradigm is an engineering approach
which starts with the collection of requirements and specification, the next step is
the implementation followed by testing.

This thesis has its focus in the design paradigm. Each approach for fault tolerance
is designed and implemented in an existing data flow system, and the hypotheses
tested using example jobs, to show if the requirements and predictions are fulfilled.
Even though the jobs are implemented for the particular execution engine, they are
based on real world scenarios of parallel execution and adapted from other real world
jobs. As can be seen, using hypothesis and predictions also show that each approach
is based on an abstraction step.

The main hypothesis of this thesis is that it is possible to achieve fault tolerance in
data flow systems, transparently and faster than state of the art approaches, using
intermediate data. It is based on the processing model described in section 2.2.
Each presented approach is based on an hypothesis how it will be useful to achieve
the fault tolerance requirements. However, the design and experiments that aim to
prove the hypothesis are made in an existing real world data flow execution engine,
which shift this part of the work directly to the design paradigm.

1.5 Outline

The remainder of this thesis is structured as follows:

In Chapter 2 the basis of used techniques an the environment of implementa-
tion is given.

In Chapter 3 the technique of ephemeral Materialization points and their posi-
tioning in the data flow is introduced. The chapter includes the general idea of
ephemeral materialization points, the implementation details, and an approach for
optimization.
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The Chapter 4 discusses persistent faults types, namely data and software faults,
and the fault tolerance possibilities.

Chapter 5 covers optimization for the recovery process for stateless tasks. The
approaches covered in this chapter aim to speed up the recovery process.

The conclusion is covered in Chapter 6. The chapters provides a recapitulation of
the thesis and discusses how it answers the introduced question.
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This chapter covers the basic concepts and environments this thesis is placed in. It
describes the idea of IaaS Clouds and the implementation details of the data flow
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System Nephele. Additionally, the chapter gives an overview of the fundamentals of
fault tolerance concepts in general and checkpointing and logging in particular.

Cloud computing has emerged to the state of the art computing infrastructure. It
allows the use of shared resources over the internet. The user is no more the owner
of the resources like machines, software, or networks. Instead, vendors offer those
resources and charge the user in a pay-as-you-go concept. The resources are usually
comfortable and fast to provision. The consumer, may it be a private person or
an enterprise, does not have to invest in the infrastructure or provide it himself.
Especially for small businesses, investments in such computing infrastructures can
be a risk factor.

The NIST definition[19] of cloud computing differentiates between three types of
service models: Software as a Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service.

The SaaS model delivers centralized hosted software to the customer. The user of
the software can access it typically over a web browser and can use it on demand.
The service provider fees the customer for the subscription to the service, usually
monthly and per user license. Thus the customers avoid a high initial setup cost, for
the software and potentially needed hardware. At the same time, the customer has
to accept that any data handled with the software reside with the service provider.

The PaaS model offers a platform to run and develop web applications on. The
costumer does not have to setup and administrate the infrastructure himself; the
service provider takes care of it. In a public PaaS environment, the user can manage
the software deployment typically via a web browser. Similarly to the SaaS model,
the vendors usually fee the user on a monthly basis.

However, next to these three big service models there are several other possible
variations. In cloud computing everything can be offered as a service[24]. Those
services can often still somehow fit into the three service models. But there are also
other services that are provided under the aaS name, without fitting into the XaaS
stack. One example is Humans as a Service (HuaaS), that offers human intelligence
as a service to solve issues like image recognition that is easy to solve for humans,
broadly known as crowd-sourcing.

As the model of Infrastructure as a Service (IaaS) is the basis of the programming
model, it will be discussed in more detail in the following section.
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2.1 Concept of IaaS Clouds

There are several vendors of IaaS Clouds these days, for example Amazon EC2 [17],
Microsoft Azure[25], Rackspace[26], and GoGrid[27]. The main concept of those
IaaS clouds is similar. The vendor offers the user the possibility to obtain a virtual
machine (VM) on demand within a few minutes. The user can typically choose
between different types of machines, which run in different regions of the world.
This regioning can be very important for geographical aware load balancing and
replication. Once the customer chooses a machine type, the machine can be started
using an API and accessed via a web front-end and per SSH. All details of the
provided services, the quality, availability, and responsibilities of client and vendor
are defined in Service Level Agreements (SLA). In the SLAs, the service provider
and consumer agree on the definition of the service and its degree. They include
technical definitions for the service including the mean time between failure and the
mean time to recover. The SLA should also describe how the customer can monitor
the service quality, how a customer has to report issues, and the appointment of
penalties if the vendor could not provide the defined service level[28].

The VMs are generated from prepared disk images with the guest operating system.
Those disk images can be provided by the vendor, but could also be build customly
by the user. This enables the user to build templates that fulfill his needs for the
virtual machine, which includes all necessary software and configuration on startup.
One could, for example, have a custom web server pre-configured to be able to run a
failover instance fast, which can also be called provisioning an instance. One could
also have an image with pre-installed parallel execution engine, to bring new nodes
into the system quickly.

A running virtual machine in this context is called an instance. Running several
instances of with the same disk image is possible. Running several identical machines
can be necessary for load balancing or parallel execution frameworks. It also offers
the possibility to react to usage peeks or lows. The consumer can provision identical
machines or un-provision instances fast, and thus reduce the cost for idling machines,
or the loss of unhappy users.

The customer pays for the machine per hour of usage. Usually, there are different
machine types with different prices. The instance types differ, among other aspects,
in the number of CPUs, and the size of RAM and disk space. This way, the user
can book the virtual machine that suits his needs best with the lowest price. The
user chooses the necessary image and the instance type he wants and starts up
the machines. The vendor then bills every started hour the machines are assigned.
Moreover, the region in which the machines are running has an impact on the price
as well.
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Additionally to the service of the virtual machines some cloud vendors offer cloud
space for persistent storage of data. The disks of the virtual machines are not
persistent after the machine is unassigned. With the persistent storage, the vendor
offers the user a possibility to save data beyond the assignment period of the instance.
Any data saved in the local file system will be inaccessible, once the machine is
switched off. Therefore data that is needed beyond the lifetime of the virtual machine
has to be saved outside of the VM. The pricing for this persistent storage is usually
by used gigabytes. It raises the needs to reduce the amount of data that a VM
saves in this storage. Furthermore, vendors often price up- and downstream to the
persistent storage as well, thus getting the data out of the vendor’s storage might
be costly too.

Amazon, for example, offers three storage solutions: The Amazon Elastic Block
Store (Amazon EBS), Amazon Elastic File System (Amazon EFS), and the Amazon
Simple Storage Service (Amazon S3). The EBS and the EFS are designed to work
with the EC2 nodes. EBS is a block storage and needs to be formatted by the user.
It thus offers the possibility to decide on the file system type. EFS is a network
file system formatted in the NTFS format. The S3 Service is an object storage that
is independent from EC2 instances. All file storage solutions have their assets and
drawbacks, including pricing, availability, and latency. S3, for instance, is publicly
accessible, whereas EBS is only accessible via the linked virtual machine, and EFS
is only available form AWS services and virtual machines. S3 is the slowest storage
service, EBS the fastest and EFS is in between. In contrast to S3 and EFS, the
EBS storage is not scalable. The customer has to choose the best fit for the usage
purpose. The pricing of that storage is typically per GB and month, depending on
the region. Considering the region EU (Ireland) the standerd storage version of S3
costs 0.023$ per GB/month (for the first 50TB), EBS 0.11$ per GB/month and EFS
0.33$ per GB/month, at the time of writing this thesis.

2.1.1 Pricing

Besides the described model, Amazon offers another alternative to using virtual
machines, so-called spot instances. Those instances are often available at a lower
price than the usual virtual machine instances. But the user bids a price he is willing
to pay for an hour of machine time. The price of the machines varies based on supply
and demand.

Once the price of spot instances reaches or falls under the bid price, the instances are
made available to the user. The machines are then usable until the spot price raises
over the bid price. If the spot price is higher than the bid price, the spot instance
will be terminated. Amazon sends a warning two minutes before the termination,
to enable the user to save data or handle other necessary configuration changes.
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But still, the machine will be terminated without the user being able to change
anything about it. In a way, s spot instance is not a “computing-power-on-demand"
but “computing-power-at-availability".

These instances offer a new a way of scaling out big data analytics on lower cost.
In more detail, the user will be able to set a price he is willing to pay for faster
completion of the job if the analytic system can handle new incoming and leaving
nodes. Moreover, the system does not only have to be able to un-provision nodes on
demand but has to manage nodes, which are suddenly unavailable. To make sensible
use of those instances, it is therefore essential to build a fault-tolerant application.

2.2 Data Flow Systems

The fault tolerance techniques are implemented in Nephele[14], a fork of the exe-
cution engine of the Apache Flink system[29]. Nevertheless, the main ideas of the
approaches are transferable to other data flow systems in this area. There are plenty
of data flow systems, each with slightly different focus. Those systems include for
example Asterix[30], Dryad[13], and Flink[29].

Those systems are running on clusters or IaaS clouds. The main idea is to have
hundreds of -typically virtual- machines and spread the work between them. The
user writes Jobs for the data flow system, that consist of several tasks that have to
exchange data between them. Each task will be spread to several parallel instances if
possible. The system takes care of the deployment and the data exchange between
the tasks. Figure 2.1 shows a possible distribution of tasks to virtual machines.
Although the implementation differ in detail, they have several general structures
in common.

A data flow system usually works in a master/worker pattern and controls several
kinds of instances. The typically running black box user code, which causes the
processing engine to run code without the information about its internal state. The
user code is usually assumed to be deterministic, i.e., it produces the same output if
it receives the same input. That is a common assumption; nevertheless, some parallel
data processing engines cannot guarantee that the receiving tasks consume the data
from the producer tasks in the same order at every execution of the job. This non-
determinsm in overall execution comes from the fact that the engine decides based on
the data availability which task’s output is read next. Thus, the tasks are expected
to be deterministic, but the system may not be deterministic at every point.

Like in the MapReduce framework, the user does not have to take care of parallelism
or data distribution. Instead, he programs jobs, usually given as a directed acyclic
graph (DAG). The DAG is the representation of the data flow. The vertices are
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Figure 2.1: Task distribution on VMs
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representing the subtasks of the job, and the data flows along the edges. The tasks
are written in a sequential user-defined function. The system then uses the graph
for deployment of the subtasks to nodes of the cloud or cluster. As mentioned before
the general architecture of those data flow systems is based on the master/worker
pattern. The master is responsible for deployment and monitoring of the worker
nodes. The user-defined function that is given by the user will take a record, do
some computation on it and will output a -possibly empty- set of records[31].

The system assumed in this thesis receives jobs described as a directed acyclic graph
G = (V,E) where V the vertices are the tasks written by the user and the Edges E
are the communication connections between the tasks, implemented as FIFO queues.
Each vertex v ∈ V in the DAG will be split into one or more parallel instances of the
task v1 − vn . A parallel instance will receive a set of records I during its runtime
and will output a set of records O. The task receives it’s records over a set of
input channels Pvx and will output the records to a set of output channels Svx . The
channels are the parallel instances of the edges E in the DAG. The internal state of
the task may change after the processing of a record. Thus, a UDF can be described
as udft : st, r → ⟨s′t, D⟩. Where D is a set of output records.

Even though this definition is based on the state of the task, it is possible to have
stateless UDFs where the state s′t is equivalent to the previous state st. A stateless
task does not trace any previous information about other records. In contrast to
that, a stateful task remembers information about the previously processed records.

2.2.1 Example

The figure 2.2 shows an exemplary job for a data flow system. It consists of an input
task LineReader, which takes a directory in a distributed file system that consists
text files, and reads each file line by line. Each line is put into a record with the line
number and document path. The first task tasks the line and split it into words,
producing an output record for each word, including the line number and document
path. Those records build the input for the IndexBuilder, which produces a list
for each word, consisting the documents and their line number the word appears in.
It will then hand those lists to the IndexOutWriter, which writes the index to the
distributed file system.

Considering the example given above the user-defined function are the LineReader,
WordSplit, IndexBuilder, and IndexOutWriter. The LineReader, for example,
takes files as records and outputs records containing line number, file path, and the
actual line. The LineReader is a stateless task. The state after the processing of
a record is equal to the state before. The IndexBuilder, on the other hand, has to
combine the list of documents with equal words. It holds a list for each word, and
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Figure 2.2: Inverted Index Dataflow Job

add the document path of the next record to a list. This means the internal state
of the IndexBuilder depends on the previously processed records.

2.3 Nephele

As mentioned above the prototypical implementation of all concepts of this thesis
are made in the execution engine Nephele that was designed and implemented at the
research group CIT at the TU Berlin under the lead of Odej Kao. The Execution
engine was part of a DFN research group called stratosphere that combined it with
an entire programming stack, including the PACT programming interface. To give
an overview of the concepts of Nephele this subsection describes its characteristics in
more detail. Nephele is written in Java and offers a Java API for the programming
of jobs.

Nephele as aforesaid is designed in a master/worker pattern. In Nephele this master
is called JobManager and the workers are called TaskManager. Given a number of
IP-addresses or a connection to a cloud API the engine will start up a JobManager
on one machine and one TaskManager on every other machine. The user is then
able to start a job client, that connects to the JobManager. The user can send a
job via this local job client to the JobManager, which will take over the work of
parallelization and deployment of the job. The client polls progress updates form
the master periodically and presents them to the user.

The programmer writes jobs as a DAG which is called JobGraph. Every vertex in
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Task
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Channel

Figure 2.3: JobGraph and ExecutionGraph

the DAG describes a task of the job and is defined by a UDF that is programmed
according to the API. The edges of the DAG represent the connections between
these tasks and therefore the data stream. The user can give a particular degree of
parallelization for each task. It is also possible to define the maximum number of
tasks per instance and which tasks should share an instance. There are three types
of communication between tasks: Data can be exchanged over a network, a file, or
within memory. The latter two types require the two tasks to share an instance.
This sharing is ensured by the engine; the user does not have to define it explicitly.

The system translates the JobGraph into a graph that is a close representation of the
final execution pattern, which includes the actual degree of parallelization and the
particular communication pattern between the parallel instances of each task. The
resulting ExecutionGraph consists of a vertex for each parallel instance of a task
and the tangible connections between them. The vertices in this ExecutionGraph
are organized in two layers. One layer is called the GroupVertex and represents the
tasks of the job. It contains all parallel instances of this task. An instance of a task
is represented by an ExecutionVertex in the ExcutionGraph.

With this graph, the JobManager assigns all task instances to a virtual machine
and deploys the user code to them for execution. It is responsible for building up
the communication pattern and starts the job. The TaskManagers are reporting
their progress to the JobManager and send heartbeats periodically. A non-reacting
TaskManager can be noticed by the missing heartbeats and any exception caught
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during execution will be reported to the master.

The tasks (i.e., the UDFs) executed by the workers are black box code to the system.
The system does not know the behavior of the code. Effectively a task could, for
example, write files, use random numbers, or hold data in its data structure. This
task cannot be guaranteed to be deterministic or stateless. Nevertheless, for most
of the fault tolerance mechanism described in this thesis, it will be necessary to rely
on those assumptions. If so, the assumptions made will be emphasized.

2.3.1 Pipelines and States

As the programmer has any freedom to write his code, it is possible to hold state or
write data to disk within the code out of control of the Nephele engine. Thus UDF
can be stateful or stateless. This state property of a task has a direct impact on the
possible fault tolerance mechanism. A stateless task can be restarted at any position
of the input stream, without an effect on the output that would be produced. It is
also possible to skip parts of the input data for a stateless task and it would still
provide the same output for the rest of the input data.

A stateful task, in contrast, depends on all input data to build up its internal state.
Skipping parts of the input changes the output of the task, as the internal state of
the task will be different after consuming it. Unless the system saves the internal
state of the task, the only possibility to restart it correctly is to reprocess the entire
input.

Unfortunately, it is impossible to determine the state property of a task. The
Nephele system is not able to inspect the state from the black box code given to
the JobManager. Therefore any task in the Nephele system is deemed to be stateful
by default. However, there is an opportunity to the user or some upper layer to
indicate a task as stateless using annotations. A stateless task can offer a broader
opportunity for fault tolerance and optimization.

For example, scaling is a typical optimization action to change the system to handle
the current workload. A scalable system can handle the increase and decrease of
resources. Cloud scalability differentiates between horizontal and vertical scaling.
Vertical scaling (scale up/down) is done by adding (or removing) computing power
to the existing nodes, e.g., migrate it to a computing instance with more CPU or
RAM. Horizontal scaling (scale out/in) means to add or remove more nodes with
less powerful computing instances.

Scaling tasks during runtime is only possible with stateless tasks. If data within
tasks is saved, for example to group data and send entire groups to the next task, it
is impossible to destroy one task to scale-in. On the other hand, if the distribution
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Figure 2.4: Spanning Record over two TransferEnvelopes

of output data for a task depends on the number of consuming tasks, it will not be
suitable to scale out the producing task.

Nevertheless, the system does not expect tasks necessarily to be stateless, but it
always expects tasks to be deterministic. Given the same sequence of input records,
a task is supposed to produce the same sequence of output records.

Data flow systems like Nephele are designed to be pipelined. Each task is processing
the incoming data directly without saving it to disk (aside from File-Channels) or
waiting for the entire output. Naturally, pipelined execution is only possible if the
user code is following this requirement. Unfortunately, not all operations can be
executed in a pipelined manner. Tasks like joins or sorts need all input data to work
correctly and have to be handled in a non-pipelined fashion. In the remainder of
this thesis, those tasks are called pipeline breaker.

In the pipelined case, however, the producer sends data directly to the consumer,
the moment it is produced. This data exchange happens over network or in-memory,
depending on the location of the tasks. To the system, the exchanged data is just
a stream of bytes. However, as this data exchange is an important basis for the
upcoming work, it is necessary to look into it in more detail.

2.3.2 Data Exchange

For the tasks, a portion of data is called a record. The user can define a record
using the Record interface, which requires the programmer to define serialization
and deserialization of the record. Apart from that, the programmer can define his
own records depending on the needs of the job. Records thus can be anything from a
single integer to a key-value pair, an entire file, or a combination of complex objects.
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The execution engine is not aware of the character of the record. Once it receives a
record to send it to the designated consumer, it calls the serialization method, sends
the bytes to the necessary instance and calls the deserialization method.

However, the records are not sent individually over the network. Records are se-
rialized in ByteBuffers, which size can be configured. Once a ByteBuffer is filled
with the serialized data it is wrapped into a so-called TransferEnvelope before it
is sent to the consumer. The TransferEnvelope (TE) contains the data, information
about the source of the data and a sequence number. These ByteBuffers with pre-
configured fixed size are analogous to the block size in the HDFS, where data is also
split into chunks to handle data distribution efficiently.

Depending on the size of a record, a TE may contain one single record, several small
records or just a part of a record. Records are not guaranteed to fit into one TE. If a
record does not fit into the free portion of the buffer, it spans over several envelopes.
The deserialization of the record then requires all the envelopes that contain parts
of the record. The TransferEnvelopes are sent to the consumer. The connection
between the producer and consumer is called a channel.

Each edge of the JobGraph will be translated into two channels between two task
instances. Depending on the character of the connection those Channels are ei-
ther InMemory-, File- or Network-Channels. A link between two task instances is
build up by one output channel at the producer side and an input channel on the
consumer’s side. Note, that InMemory and File connections are always between
only one consumer instance and one producer instance. However, with network con-
nections, the number of output channels from the producer matches the number
of consumer task instances. Similarly, the consumer’s number of input channels
matches the number of producers from which it gets its data. The data in network
channels are exchanged over a TCP connection.

For each of these output channels, there are distinct output buffers. Thus the
sequence numbers within the TransferEnvelope are counted for one particular con-
nection between task instances. Records can be defined by the programmer and
have to implement a write and read method for serialization and deserialization. A
user-defined function receives a stream (iterator) of records that can be processed
and can output some records to its output channels. There is no 1:1 relation be-
tween the number of records that go into a UDF and the number of records that are
coming out. A UDF can generate several, one, or even no output record for a given
input record. For example, sentences can be split into words, or filtered for nouns,
or combined into paragraphs.

The same relation goes for the size of the records. In the first case above, the size of
an output record (a word) is noticeably smaller than an input record (a sentence).
The size of the input and output records is not equal, and records of one sequence
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of input records can vary in size drastically. As the user is able to define records
and has to implement the serialization and deserialization, the engine does not know
the size of a record before deserializing it. It is therefore impossible to make any
predictions about the shape of the data. The data is a black box to the system too.

2.3.3 Example

Listing 2.1 shows an example Job description of a Nephele Job with four tasks. One
input and one output task and two worker task. Each task vertex is defined by a Java
class, in this example LineReader, WordSplit, IndexBuilder and IndexOutWriter.
These vertices are connected using a NETWORK channel. This way Nephele users
can write a job directly for the Nephele engine and submit it to the JobManager.
The Java source code can be found in the Appendix at section B

23



CHAPTER 2. INTRODUCTION

public class InvertedIndex {

public static void main(String [] args) {
JobGraph jobGraph = new JobGraph("Inverted␣Index␣Job")

;
JobFileInputVertex fileReader = new JobFileInputVertex

("Line␣Reader", jobGraph);
fileReader.setFileInputClass(LineReader.class);
fileReader.setFilePath(new Path(args [0]));
fileReader.setNumberOfSubtasks (3);

JobTaskVertex wordSplit = new JobTaskVertex("WordSplit
", jobGraph);

wordSplit.setTaskClass(WordSplit.class);
wordSplit.setNumberOfSubtasks (3);

JobTaskVertex indexBuilder = new JobTaskVertex("
IndexBuilder", jobGraph);

indexBuilder.setTaskClass(IndexBuilder.class);
indexBuilder.setNumberOfSubtasks (1);

JobFileOutputVertex indexWriter = new
JobFileOutputVertex("Index␣Writer", jobGraph);

indexWriter.setFileOutputClass(IndexOutWriter.class);
indexWriter.setFilePath(new Path(args [1]));

try {
fileReader.connectTo(wordSplit , ChannelType.

NETWORK , null);
wordSplit.connectTo(indexBuilder , ChannelType.

NETWORK , null);
indexBuilder.connectTo(indexWriter ,

ChannelType.NETWORK , null);
} catch (JobGraphDefinitionException e) {

e.printStackTrace ();
return;

}
Configuration clientConf = new Configuration ();
clientConf.setString("jobmanager.rpc.address",args [2])

;
clientConf.setString("jobmanager.rpc.port", args [3]);
JobClient jobClient;
try {

jobClient = new JobClient(jobGraph , clientConf
);

jobClient.submitJobAndWait ();
} catch (Exception e) {

e.printStackTrace ();
System.exit(-1);

}
}

}

Listing 2.1: Example Nephele Job
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LineReader

WordSplit

IndexBuilder

IndexOutWriter

JobGraph ExecutionGraph

Figure 2.6: Job- and Execution Graph for InvertedIndex Job

2.3.4 The PACT Layer

In the stratosphere stack, the programming of a job is usually done using PACT.
PACT is a programming interface that allows writing jobs using Parallelization
Contracts (PACTs) and a key/value data model. The PACT programming model
is mainly based on an InputContract which is a second-order function and takes a
UDF and data as input.

The PACT programming model is closer to the MapReduce paradigm, and actually
the Map and Reduce functions are examples of PACT contracts. Additionally to
Map and Reduce, PACT also provides the Cross, CoGroup, and Match contracts.
Cross builds a Cartesian product of its inputs, CoGroup partitions input by keys,
and Match matches key/value pairs of its multiple input sources.

Once a PACT job is written, the PACT compiler translates it into a Nephele DAG.
The PACT programming model has a declarative character and allows the compiler
to potentially translate a PACT program into different execution plans, and thus
aim for an optimal setup of the job. During translation, the compiler gives infor-
mation about the considered channel types and the degree of parallelization using
annotations. With these annotations, Nephele builds a fitting ExecutionGraph.
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Once the system chose an execution plan, it transforms it into a Nephele DAG that
consists of vertices running PACT code that wraps the UDF. Wrapping the UDF
means the task will not only consist of the original UDF but have added PACT
runtime code. That code will be used to pre-process the incoming data to fulfill the
given guarantees about the input data that are provided by the input contract. From
the viewpoint of the Nephele system, this runtime code runs like regular user code.
Therefore the Nephele engine does not know the behavior of the PACT runtime code
or the way the original UDF is invoked by PACT, which typically differs from the
invocation in Nephele. In Nephele a UDF is invoked once and fed with its portion
of the input data. In PACT a UDF is typically invoked repeatedly with portions of
the data, for example, data with one particular key. The consequence is that most
of the Nephele tasks that are compiled from a PACT program are stateful tasks,
even though PACT asks for the UDF to be stateless between invocations, the input
contract usually has some state to group the input data.

However, the information about the state property of a task could come right from
the PACT layer, and it could annotate it to the task. This annotation gives the
opportunity to use proper optimization and fault tolerance strategies for these tasks.
This feature is possible, but not implemented in the initial system.

2.4 Fault Tolerance

The ideal goal of fault tolerance is to have the system recover from a failure com-
pletely transparently to the user and to be not noticeable in case of flawless execu-
tion. This is, of course, impossible to achieve. Every achievement in fault tolerance
leads to a drawback somewhere else; the system will be slower, take more disk space,
utilize more machines or increase other costs. Therefore fault tolerance is always a
trade-off between the cost and the degree of fault tolerance.

The way to achieve fault tolerance in this context is typically a form of rollback
recovery. In case of a failure, the system is reset/rolled back to a previous consistent
state. The most straightforward fault tolerance technique for a data flow system is
to restart the entire system automatically once a failure occurs, as the initial state
of the system is a consistent state. This method is easy to program, and it is not
noticeable if no failure occurs. In case of a failure, it leads to a significantly longer
job run and thus longer leases time for the computing instances. If the system shall
not roll back entirely, it is necessary to save consistent states of the system.

The other extreme is to save all intermediate data between tasks to non-volatile
memory before giving it to the consuming task. Saving all intermediate data is
equivalent to saving the system state after the execution of each task, and then to
restart the failed task. This routine is fast during recovery, as only the failed task
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has to be reset, but slows down the system significantly in case of a failure-free run.
In principle, MapReduce follows this schema as it stores all data after the map task
before the reduce tasks start.

The sweet spot for fault tolerance is somewhere in between those two extremes:
Saving states occasionally, not after every step. This intuitive solution leads to
several demands to the user-defined functions and the nature of the saved state.

This section first covers the terminology in the context of fault tolerance. In sub-
section 2.4.2 it discusses the failure model, that the fault tolerance approaches are
based on. Subsection 2.4.3 describes the fault tolerance techniques of checkpointing
and logging in message passing systems, which are the base of the presented fault
tolerance approaches for data flow systems.

2.4.1 Terminology

In the context of fault tolerance, there is a clear distinction between faults, failures,
and errors. This terminology is described in several sources [32, 33, 34] and analog
to those descriptions this section covers the used vocabularies in fault tolerance.

If a system differs from the expected behavior, this is a failure of the system. To
see that deviation the normal functioning of the system has to be specified. Unless
there is a description of what the system is expected to behave like, there can be
no failure. If the system conducts in any other way, than the specification asks for,
there is a failure. A failure might involve the system being unreachable or producing
incorrect output.

Failures can be consistent or inconsistent, where inconsistent or byzantine failures in
contrast to consistent failures, do not appear equally to every user of the system. If
a failure manifests differently to different users or viewpoints, it is inconsistent[32].

An error is an incorrectness of the system that may lead to a failure. Errors do not
necessarily cause failures. Errors can be detected in the system before they even
produce a failure. At this point, fault tolerance mechanisms can prevent the system
to run into a failure under an error.

Errors, however, occur because of a fault in the system. A fault is an incorrectness
in the system. For user code, that might be code which deviates from the correct
syntax, missing null checks or even just working code that does not fulfill the require-
ments. Every system is suspected to have faults, but not every fault will manifest
into an error. This could, for example, be a fault in user code that the system never
reaches during the runtime. Those faults are called latent. Once a fault causes an
error the fault is active. On the other hand, every error that occurs is caused by a
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fault in the system. Several different faults can lead to the same error.

Faults can be either transient or permanent. The transient fault will only occur for
a period, and therefore just cause errors temporarily. Whereas permanent faults, do
not disappear over time. Due to the time component of transients faults, they are
complicated to detect[33].

Coming from these definitions, fault tolerance is the ability to prevent failures of the
system even though faults exist in the system and parts of the systems fails. This
means the system should be working according to its specification even if components
of the overall systems fail.

Fault tolerance is usually running through several phases: error detection, damage
confinement, error recovery, fault treatment. First of all, an error has to be detected,
to do the right things to avoid failure caused by this error. Once the system detects
the error, it must prevent that the error spreads through other components. After
that, the error must be removed. Otherwise, the system would run into failure. In
case of permanent faults, it is not enough to handle the error, as the error will always
occur again if the fault is not removed.

As mentioned above the fault tolerance techniques in this thesis aim to provide fault
tolerances for Hardware-, Software- and Data-faults. Hardware-faults are caused by
errors or the breakdown of hardware. This can be, for example, disk failures, engine
failures, or breakdowns of switches. Hardware faults can be permanent or transient.

Software-faults are emerging from programming errors in the user code or third-
party libraries. A software error might not cause a fault for every record, but if it
occurs for a record once, it will happen every time that record is processed.

Data-faults are flaws in the Input data that cause the tasks to fail. Note that
Software-faults and Data-faults go hand in hand if deficiencies in the data cause
a UDF to crash, it is because the code made assumptions about the data without
handling possible deviation.

2.4.2 Failure Model

This thesis separates failures according to two categories: transient and detectable.
A failure is either transient or not, and it might be detectable or not. Transient
failures are those, which only occur for an amount of time and will not happen again
afterward. In contrast, permanent faults will always occur in the same manner. A
detectable failure is one that the system recognizes either through exceptions, or
missing heartbeats. A non-detectable failure is a failure, that is no identifiable by
the system. Such a failure can only be recognized by the user.
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1. Transient faults, which are detectable
In this thesis those faults are covered under Hardware-faults, as the hardware
is the typical cause of this fault type. As the fault is transient, it will not occur
again after a restart. They are covered in chapter 3.

2. Non-transient faults, which are detectable
Those failures will occur at every run of the job equally. The system will detect
some kind of error, e.g., an exception, and can, therefore, handle the failure.
They are covered in chapter 4.1.

3. Non-transient faults, that are non-detectable (by the system)
Obviously the no system is able to recover automatically from non-detectable
failures. However, these failures may be detectable by the user. As they are
not transient, the user may be able to handle the error. A possible solution,
on how the system can support the user in cases of these failures is discussed
in 4.2

4. Transient faults, that are not detectable (by the system)
This type of failure, may be detectable by the user (e.g., a flawed output of the
job), but as it is transient, the only solution is to restart the job. The system
is not able to handle those faults.

In data flow systems, there are generally three types of faults. Either the hardware
has flaws, this could range from an energy break down, which causes machines to
fail, over connectivity problems to flaws in network communication. Sahoo et al.
presented an analysis of a 400 node cluster with different workloads and found 664
permanent and 143841 temporary hardware related errors in a year[35]. This shows
that those errors are fairly common in distributed environments and have to be
addressed.

Software-faults are usually called bugs and are mistakes in programming or config-
uration, for example a missing null check on Objects. Data-faults are flaws in the
input data, missing values in data sets are typical problem, that would lead to a
fault if it is not addressed by the user code. Sahoo et al. found 1000 software re-
lated faults in their year of observation which let to 123 faults[35]. Another example
would be type conversion problems. Consider a field that is expected to contain a
Integer represented as a String containing some string that cannot be parsed to an
Integer. Data flaws should be handled by the user code, however if it does not, one
flawed record will cause the entire job to fail permanently.
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Simulating Faults

In the supposition failure model, Hardware-faults are transient faults, which occur
randomly. They are not bound to a particular job or input. Hardware faults can
happen at any time, and will not necessarily occur in the same manner again. In
order to simulate hardware faults for evaluation purposes, the hardware must of
course not be actually damaged. Instead, hardware faults will be represented by
either killing the running processes of the worker node or killing the user-defined
function. The first simulation is from the recovery point of view equal to the crash of
a virtual machine, the physical machine, or the operating system, as the connection
to the worker processes is no longer been given in any case. Those faults are typically
detected by missing heartbeats or failing connections. The second simulation (killing
the UDF) is equivalent to hardware faults that do not cause the machine to crash.
Those are transient faults, which are detectable.

Data-faults and Software-faults go hand in hand. It is not always possible to distin-
guish between both kinds of failures. A record which has, for example, unexpected
empty fields may cause a crash of the UDF. However, it can only do so if the pos-
sibility of an empty field was not considered during programming. This behavior
could be a bug and therefore a Software-fault. Data-faults are permanent faults.
A record, that causes a breakdown of the UDF will do this every time the UDF is
invoked with this record. In the failure model, a Data-fault is expected to cause
an unhandled exception in the UDF. For evaluation purposes, Data-faults are simu-
lated, by changing a UDF so that it will throw an exception for a particular record.
Those are non-transient faults, which are detectable.

Software-faults which are not Data-faults are not detectable by the engine. A
Software-fault or bug, may not crash the system at all, it may only produce the
wrong output data. It may, for example, only output the results of the first in-
coming record for every other record, or it might never terminate due to an infinite
loop. An UDF that runs smoothly will not appear faulty to the system. Therefore
Software-faults can only be detected by the user. He can identify that the final
output is not correct, or that the UDF runs longer than expected.

As a Software-fault is not detectable by the system, the requirement of transparency
is not achievable in this case. In fact, the entire fault tolerance approach is a different
one in this case. As the system cannot detect these faults, it can naturally not recover
from them. The question that raises with these kinds of faults is: Can the system
be built so that it can support the user in the recovery process?
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Master Failures

As mentioned above the fault tolerances mechanisms described in this thesis are sup-
posed to handle worker failures. However, the master node is, of course, a possible
point of failure as well. If the master (JobManager in Nephele) fails or is not reach-
able during execution, the job completion will fail. In Nephele status updates and
heartbeats are sent to the JobManager using an RPC call. Sending RPC requests
will fail if the JobManager is not reachable, and therefore cause an IOException at
the TaskManagers. Thus the master is a single point of failure.

Even though a master failure will fail the complete system, there is plenty of research
and solutions to fault tolerance in the case of master failures. The most common
solution for this issue is the preparation of secondary master nodes that will take
over the work of the original master. Typically, the secondary master will run in
parallel to avoid delays because of the startup time. To be able to take over for the
failed primary master, the secondary master has to keep up with the state of the
primary. This can be done in different ways, by doing periodic checkpoints that can
be replayed on the secondary, or status updates from the primary to the secondary
node. This way, the secondary node will provide enough state information to take
over the work quickly. The granularity of information updates and checkpoints
usually depends on the consistency guarantee that has to be achieved.

Googles MapReduce checkpoints the master state to GFS and will start a backup
master from this checkpoint.[36]

However, since master failures and backup nodes are a well-known solution, master
failures will not be the focus of this thesis. Known solutions can be implemented in
Nephele similarly to other systems and will offer fault tolerance to the JobManager.
The presented fault tolerance mechanisms are based on intermediate data and focus
on failures of the other components in the system.

2.4.3 Checkpointing and Logging

In recovery, the saved state of a process is called a checkpoint. The checkpoint
includes all necessary information to roll back the process to a consistent state and
restart processing from this saved state. Any operation which was done after the
writing of the checkpoint is not represented in the state of the checkpoint and is
either lost or has to be re-executed.

However, in distributed systems, it is not as simple as rolling back one process
that has failed. The states of processes depend on each other, rolling back just
one process would mean that the states of other processes are no more consistent
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with the rolled-back process. The failed process might have sent messages after the
checkpoint was written. If it rolls back individually, the system would consist of
messages that a process has received without a process that has sent them. This
issue can be adapted to data flow systems. Records flowing through the DAG can be
considered to be messages, and the tasks are the processes in a distributed system.
Even though message exchange patterns are very restricted (only sending records
from the producer to the consumer) at any failure, the states of the tasks have to
be reproduced so that a consistent state is reached.

Thus the main challenge in a data flow system is to define the sum of information,
which are essential to rollback the complete system to a consistent state. As tasks
exchange information between each other, every task may have dependencies upon
others. Rolling back the failed task may hence cause other tasks to rollback. This
effect is called rollback propagation and can cause the system to roll back to its initial
state[37].

One solution to this problem is to let tasks create their checkpoints coordinated by
a master. This coordination must ensure that the checkpoints represent a consistent
state of the overall system. A consistent state is qualified by the fact, that for
each received message in that state the sending of the message is contained in the
checkpoint of the sending process.

The data flow system is a special case of a message passing system. As the jobs are
described by directed acyclic graphs, one task instance can only depend on some of
the other processes, namely its predecessors and its successors. Significant message
exchange for the rollback of this task instance happens merely between itself and its
pre-/successors. Thus a consistent state does not have to consider checkpoints for
every task of the job.

The other specialty in the data flow system is that a state of tasks can only be
described by the data it has already processed. This has two implications: Saving
the output-data of a task qualifies as saving its state. Second, it is necessary to
save all data from the first produced tasks to the last. It may be possible to discard
records if all outputs based on this record is saved to another checkpoint, but it
would mean to monitor each record over the entire job.

In detail, for the given situation, a set of checkpoints that covers a consistent system
state is a set of checkpoints that includes a checkpoint for every path from the failed
task to the input nodes. This consistent checkpoint coverage is covered in detail in
chapter 3 which describes the approach of ephemeral materialization points.

Fault tolerance techniques typically add logging to the checkpointing technique,
where all message passing between two checkpoints is saved to a local log file. With
the log file, the process can reprocess its state, from the checkpointed state to the
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pre-failure state. A checkpoint can be seen as a compressed version of the log repro-
cessing up to that point. Every time the state of the processes is checkpointed it can
start a new log, as all entries of the current log are represented in the checkpointed
state.

2.5 Detailed Design Goals and Scope

There are three goals that the design of the fault tolerant system and the prototype
should reach. First of all, to be transparent to the user, the fault tolerant system
has to run with the same jobs, that would work in the system without the fault
tolerance approach. The user should not change anything in the job.

Second, the fault tolerance mechanism should work without additional information
from the user or the upper layer. It can be beneficial for the fault tolerance per-
formance to get information. However, the general mechanism should work without
additional input.

The third goal is that the fault tolerance implementation should use the existing
mechanisms of the system whenever possible and change the internals of the system
as little as possible. The goal is to achieve fault tolerance in the Nephele system,
not to optimize the system itself.

As described before, the work focuses on worker or tasks faults, not on faults for
the master node. The fault tolerance strategies are designed for pipelined batch
processing systems; they do not consider stream processing or iterative processing.

2.6 Contribution

This thesis introduces a technique of materializing and saving intermediate data in
dataflow systems, that adapts from checkpointing and logging techniques. Using
this method, the system can recover from various failures and achieve Hardware-,
Software- and Data-fault tolerance.

By using intermediate data, the engine can detect and recover from the first two
types of faults, at least in a restricted environment. The first part of the implemen-
tation covers the idea of Ephemeral Materialization points which introduces
intermediate data as a first-class citizen. It includes an approach to save interme-
diate data efficiently, for jobs of black box UDFs. Additionally, it offers an efficient
recovery process. The ephemeral materialization points are a general approach to
cover any transient and detectable fault.
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The second part of the implementation focuses on the non-transient faults, and how
the materialization points can be used to achieve fault tolerance in those cases or the
case of non-detectable non-transient faults. It discusses the opportunity to support
the user during the manual error detection and recovery.

Third, the work takes a look at additional optimization techniques that can be
adapted given some restrains to the tasks, and offer an opportunity to speed up the
recovery. If the system can rely upon particular task characteristics, it is possible to
step away from the general recovery process and use optimization techniques. The
details of the approaches including the requirements to the task will be described in
chapter 4

The techniques described, are evaluated considering the requirements described
above. The first question to ask is if the system is able to detect and recover
from a simulated failure. In order to answer this question, faults will be generated
in running jobs, and the recovery processes monitored. The transparency of the
approaches is discussed, as transparency is not a measurable value. Does the user
of the system have to give additional information or input to the system, or does he
have to engage in the recovery process?

The third requirement is a measurable value. The supplementary cost includes
additional runtime and disk space usage. The question to answer here is whether
an approach adds additional cost and if this cost is acceptable as the benefits of the
fault tolerance outweigh the cost. This is done by runtime measurements for test
jobs that run on a private cloud environment.

All approaches have been implemented in Nephele, a massively parallel execution
engine, which started as a research prototype and developed into the execution
engine of Apache Flink and will be described in detail in section 2.3. All experimental
evaluations are presented in the corresponding chapters.
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This chapter introduces the idea of ephemeral materialization points. That is, a
unique logging strategy in the scope of parallel data processing engines. With
ephemeral materialization points it is possible to monitor the behavior of a job
during runtime to make a well-grounded decision about saving the task’s output
data or not. This approach is a fault tolerance technique with a small overhead
and without the needs of comprehensive statistical information about the job. This
approach is designed and implemented in the Nephele system, which is described in
section 2.3. And offers a new approach besides the usual fault tolerance approaches
in data-flow systems

There are two possible approaches, either to save intermediate data or to make
snapshots of the entire task or VM. For the ephemeral materialization points, the
key is to save intermediate data. Data flow systems usually do not keep intermediate
data; they hand the data over to the consumer right after production. Thus, unless
directly forced by the user (like using FileChannels in Nephele), the data will be
fugacious and only exist as long as the consumer does not process it. Once the
consumer used a portion of data only the result coming from this data exists in the
system. The only persistent data are the input source of the job and the result,
which the job usually reads from and writes to a persistent file system.

As there are no persistent data in the system during execution, it can only reproduce
lost data from the job’s input. As a task is a black box to the system and might have
an internal state, it is necessary to restart it and reprocess its entire input to enter
the same state it was in before the failure. This means the system has to reproduce
the task’s full input. The system is not aware which output is coming from which
input data, the only solution of reproducing the input of a failed task is to restart
the predecessors. This predecessor restarting leads to a rollback propagation and
causes all tasks upwards the data stream up to the input to restart.

Additionally to that the data distribution in those data flow systems is not deter-
ministic: One record may run over another connection at any other job execution.
Unfortunately, this also applies to partial restarts of a job. Therefore the order and
the location of the data may change after the restart of the tasks. Considering an
exactly-once consistency model, that asks for each record to be processed exactly
once, this causes all followers of the failed task to restart as well. That is because
the successors cannot decide whether the data they receive is new unseen data or
data they have already processed. That means, one failed task in the pipeline will
lead to a restart of the entire job.
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3.1 Idea

Saving intermediate data is a form of log-based rollback recovery. Usually check-
pointing means to save the state of the processes to disk. In addition to that, it is
possible to log all events between two checkpointing events. Thus it is possible to
rollback to the state of the checkpoint and replay all logged events.

In opposition, with materialization points there are no states saved during execution.
The system only knows about two states of the task: The current and the initial
state. The recovery logic uses the initial state as the last saved state, and the
materialization points as logged events. Events in this context are the sent messages
containing the data. Recording the events means to write the messages to disk.
They already include all information that the recovery process needs.

If intermediate data is stored on disk or in a distributed file system, it is possible
to use this data to reduce the number of tasks that have to restart. The naive
solution is to save the output data of each task to disk. That would enable the
failed task to read directly from the saved data of its predecessors, without the
needs of restarting any other task. Unfortunately saving data to disk causes a high
overhead and increases the runtime of a job. Some tasks in the job may blow up the
data volume drastically and cost a lot to be saved. It is important not to save all
data to provide fault tolerance and an acceptable runtime in case of a failure-free
job run.

This automatically raises the question, where to position materialization points.
Setting a materialization point at every third task may hit precisely the tasks that
produce a high amount of data and are expensive to materialize. The materialization
points should position themselves at those tasks, which are cheap to store to disk.
Meaning those tasks that produce a small amount of data, and the tasks that are
expensive to rerun.

The issue with this requirements is that the described data flow system does not have
that information. The execution engine runs black-box user code. Before runtime, it
does not have any data on the behavior of the job and its tasks. It is thus impossible
to make a proper decision before the job is running.

The crux is, when the job is running, it already produces data. And as the system
is supposed to behave in a pipelined manner, the producer sends its data directly
to the consumer. Intermediate data in data flow systems are highly fugacious. This
fact asks for a solution, which enables the possibility to monitor the job during
runtime and still preserve the pipelined character of the system. This solution is
called ephemeral materialization points.
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Task 1

Channel a

Channel b

Ephemeral
Materialization Point

Task 2a

Task 2b

Figure 3.1: Saving envelopes in the materialization point

With ephemeral materialization, a copy of the pipelined data is held in main mem-
ory during the beginning of a task run. Data that is produced by the task runs
over the network to the consuming task; simultaneously, it stays in memory. Dur-
ing this time the task is monitored to retrieve information of its characteristics and
behavior. If the limitation of the assigned memory is exceeded, a decision is trig-
gered. Based on the collected task information, the ephemeral materialization point
decides whether the data held in memory is saved to disk or discarded. Every task
is considered as a candidate for keeping intermediate data. During runtime, it will
be determined whether the ephemeral materialization point will discard the data or
the materialization point is made permanent. This is discussed in detail in 3.3.

In the used system data is not exchanged as single records but, wrapped together into
one transport container that includes besides the data, information about sender-
receiver, and a sequence number. The container is called TransferEnvelope. There-
fore the materialization point does not write data to disk with every produced record.
Instead, it writes the data to disk every time a TransferEnevlope is filled and ready
for network transfer. The materialization point writes the envelope to disk and
hands it to the network connection afterwards. The consumer receives the data al-
most at the same speed as without materialization, just delayed by the time it takes
the producer to write the envelope to disk.

Materialization points can have different states. They can either be complete or
partial. The Materialization point is complete if it has written all data of the
producing task to disk. This is naturally the point after a task has finished its
execution, and it sends the last TransferEnvelope. As long as the task still produces
data and writes it into the materialization point, it is partial. The recovery is not
only possible from a complete materialization point, but also when it is still partial,
and writes data to disk. As the recovery mechanism does not have to wait for a
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materialization point to be complete, the system will not block during recovery.

3.2 Recovery

The recovery from ephemeral materialization points relies on a log-based rollback
recovery. If a failure occurs, the failed task rolls back to the initial state. The
logged events are replayed. Replaying the events means that the recovery logic has
to resend all TransferEnvelopes that the materialization point has written. Thus
the rolled back task receives all its input data again.

As mentioned in section 2.3.1, all tasks have to be considered to be stateful, as it is
not possible to find out about the state property of a task unless the user provides
that information. At this point of the fault tolerance approach it must be suitable
for any job that is given to the system, may it be stateful or stateless. Thus, in
the initial implementation of the rollback recovery, all tasks are considered to be
stateful.

The materialization points do not save tasks states but the intermediate data. Thus
the only opportunity to bring a task back into the same state it was before the
failure occurred is to roll it back to the last known state, which is the initial state,
and from here use the intermediate data to reproduce the state the task was in
before the failure. Accordingly, the materialization point is similar to a log, that
keeps all necessary information to achieve a state from the last saved state.

For a task t in a state sxt the corresponding materialization point is a set of record
R = (r1, r2, ...rn) that create the state switches, which bring the task from the initial
state sinitt to the state sxt .

sinitt , r1 → ⟨sit, D1⟩

sit, r2 → ⟨si+1
t , D2⟩

...

sx−1
t , rn → ⟨sxt , Dn⟩

This can lead to rollback propagation, as the system does not ensure that all tasks
log their events. If the failed task needs its input again, but the producing tasks
do not have written a materialization point, they have to rollback themselves to
reproduce all output, and so on. Additionally to that, all followers of a rolled back
task have to be restarted.

If a task rolls back, it reproduces all output again from the first record on. As the
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Materialization Materialization

Materialization Materialization

Figure 3.2: Rollback propagation

distribution pattern of the data is not necessarily fixed, the successor tasks probably
do not receive the same data again. They therefore have to restart execution and
discard all produced data. This rollback propagates further to the successors. The
rollback propagation will lead to a lot of restarts and may even lead to the domino
effect[37] and cause a complete restart of the job for one failed vertex.

Figure 3.2 shows a rollback propagation for one failed vertex, that causes the entire
job to restart, even though the predecessor of the failed task has materialized inter-
mediate data. The failed task has to restart, therefore the followers have to restart.
As the restarted tasks need the input again, the predecessors have to restart, and
their predecessors have to restart, and thus any of their followers have to restart. In
this case the materializing task has to restart as well, and the materialization point
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is discarded.

The recovery logic can reduce those restarts if the output stream of a task is forced
to be equal after a task restarts. If a task replays its input, it will receive its input
from the first record and therefore produce its output data from the first record.
Thus the consuming task will receive its input data from the first record and so on.
Unfortunately, the order of the records after a recovery process cannot always be
assured to be the same order as in the original job run. This is because a job will be
deterministic, but not determined. Meaning that a job will always produce the same
output for an equal input, but it may do so with different internal states during the
various runs. The output of the job will still be the same, but it is not necessarily
guaranteed, that a task instance will receive the exact data. Note that every task is
considered to have deterministic behavior.

a b c

Channel

Figure 3.3: Reading from several Channels

One record and its resulting records do not necessarily flow over the exact same path
through the graph; this is because of the reading behavior of tasks. To optimize the
performance an being able to handle different speeds of tasks, a task is not reading
envelopes in a round robin fashion. Instead, it reads all available envelopes of a
channel, and then switches to the next channel that has data available. If envelopes
are available, all are read, if not, the task checks the next channel.

Figure 3.3 shows a possible input for a task. The task has three input channel a, b,
and c. At the channel a there is one envelope available, at channel b it could read
2 envelopes, and the channel c has 3 envelopes available. The task will read the
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envelope from channel a, then it switches to channel b. At channel b both available
envelopes are read, before the task switches to the third channel, where it reads all
three available envelopes.

This way the reading of data is pretty efficient. The system does not block if one
producer is slower then the other. If one producer lags, the consumer takes the data
of the other producers first. And reading all available data at once reduces switches.
However, this technique gives the possibility that the task reads data in different
order between two job runs if for any reason the speed of the data production varies.
Especially in the recovery case, this is the point. During recovery, all input data is
available immediately, as the replaying threads read it from the checkpoint. Thus
all available data from the first producer would be read at once, before the others.
This ordering most likely differs from the original one.

3.2.1 Enforcing Deterministic Data Flow

In order to enforce a deterministic behavior, it is necessary to force the same reading
order for the already-processed data. That makes it essential to save the reading
order during the job runtime. The execution engine achieves this saving with a
technique called consumption logging. With consumption logging, the order in which
the tasks consumes the data is written to disk and is therefore available after a restart
of a task, allowing to follow that same order after a restart. The logging mechanism
is pretty straightforward. A list is saved, with the channelIDs of the envelope that
the consumer read at this position. During restart of the system, envelopes are saved
in a list at the position equal to the list with the channelIDs. If the head of the list
is filled the envelope will be used as input until an empty space is reached and the
task has to wait for the next envelope in order.

Consider a task with four predecessors that produces its input data, as shown in
figure 3.4. The task has four input channels, A, B, C, and D. The first producer
processes data and outputs a large record that spans over three envelopes. The
second producer fills one envelope. The task then first reads all three envelopes
from the first producer before it checks for the next channel. It then reads the
one envelope from the second producer. The third producer might be slower and
might not have yet filled any envelopes. Then the fourth producer sends an envelope
which the consumer reads, In this case followed by the second producer again. The
Consumption log would look like this: (A,A,A,B,D,B)

After a restart, the producers three and four may be faster and send their first
envelope. Both envelopes are saved, but not yet forwarded to the User Defined
Function (UDF). The first three envelopes of the channel A are received. These
three envelopes can be sent directly to the UDF, as they are the first on the list.
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Task 1a

Task 1b

Task 1c

Task 1d

Channel a

Channel b

Channel c

Channel d

Task 2
a, a, a, b, d, b, . . .
Consumption Log

Figure 3.4: Consumption log

However, the saved Envelopes from C and D are still not forwarded as the envelope
from channel B is still outstanding. Once an envelope from Channel B arrives the
envelope from B and D can be handed to the UDF. The envelope from channel C
however, has still to be saved until the second envelope from channel B was received.
The consumption log saves any incoming envelopes during that period. After the
second envelope from B has arrived, all saved envelopes are free to be processed in
the order of their arrival. Note that the order between the different channels is not
important at that point anymore, as the data in those envelopes is new data.

This mechanism could raise a deadlock. Each task has only a limited number of
memory buffers and thus a limited number of buffers it can save before it blocks.
Thus if all available memory buffers have filled up before the envelopes at the head
of the list arrive, the task would block and stop accepting new envelopes, which it
would need to free the buffers. Therefore, during the consumption logging replay,
the buffers are saved to disk to keep the memory free for upcoming envelopes.
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Preventing Restarts

With this approach, all restarted tasks are replayed in the exact same way as in the
previous run until they are are in the pre-failure state. This part of the execution,
the replay from the initial state to the pre-failure state, is now not only determined
but deterministic. Note that the tasks are not forced to any order once they produce
data beyond the failing state. From this moment on, the arriving data is new to
the tasks and thus new to the successors and thus can be read and processed in any
order. Of course, the consumption logging is still going on, and the order of the
reading is still logged, to be prepared for any other failure in the system.

Depending on the position the failing task has in the graph and the positioning
of the materialization point, the consumption logging technique can prevent a high
number of restarts while being a lightweight solution with a negligibly small overhead
during a nonfailure run. As this method is preventing restarts of tasks that have
their position behind the failed task, it will naturally have the most benefit the
earlier in the job the failure occurs, as it has the more following tasks.

Additionally, the consumption logging gives the opportunity to cover another kind
of failure and skip flawed records. This possibility and technique is described in the
following chapter 4.1

3.2.2 Global Consistent Materialization Point

As the decisions where materialization points materialize is made more or less un-
coordinated (section 3.3 covers the details of the decision-making process), it is
necessary to find the suitable materialization points for recovery in case of a failure.
This set of materialization points is called a global consistent materialization point.
This global consistent materialization point is the set of materialization points that
includes all inputs for the failed task and the tasks that have to rollback due to
rollback propagation.

Definition

A global consistent materialization point is defined as follows:

A global consistent materialization point in a DAG G(E, V ) is a set of local mate-
rialization points, which cover all paths from the failed Task (f ∈ V ) to the data
sources (S = {s ∈ V |∀v ∈ V : ∄e ∈ E : e = (v, s)}).

A recovery-path p is defined as
p = (v1, ..., vf ) : v1, ..., vf ∈ V, v1 ∈ S ∧ ∀i ∈ {1, ..., f − 1} : (vi, vi+1) ∈ E
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Param Description
G(E,V) Job graph as directed acyclic graph with edges E and vertices V
f Failed Task
S Datasources. The vertices reading the input for the overall job

p Recovery-path in the DAG.
Any connection between a Datasource and the failed Task

M Set of Materialization points. Tasks writing outputs to disk
K Global consistent materialization point
P̄ Set of all Paths containing f

Table 3.1: Parameters

As we can define a partial order (V,≤) (according to the direction) we have the
following requirements for the global consistent materialization point K ⊆ M with
M ⊆ V as the set of all materialization points, and P the set of all recovery-paths.

Correctness {∄k ∈ K : f < k ∧ f = k} ∧
Completeness {∀p ∈ P, ∃k ∈ K : k ∈ p} ∧

Correctness:

To find that global consistent materialization point, it is necessary to prove that it
does not include a failed task. A failed task is not able to replay and is thus, not
suitable for recovery. A global consistent materialization point must not contain the
failed task, or any follower of the failed task.

Completeness:

Secondly, all input of the failed task has to replay, and the materialization point has
to include a local materialization point for every path that contains the failed task.
If a path exists, that includes the failed task, but does not provide a materialzation
point, the replaying will miss part of the input.

Search

Finding a global consistent materialization point is done by breadth-first search
upwards the graph, starting at the data source. In this search, the recovery logic
marks all tasks without materialization points to be restarted, and keeps every
materialization point for recovery.

An ephemeral materialization point can have one of four states: UNDECIDED if
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it has not yet made the decision NONE if the decision was not to write data,
PARTIAL if the decision is to write the data, but the task is still producing data,
and COMPLETE if the materialization point materializes the data entirely

Ephemeral materialization points that have not been decided yet, that are found
by the search are triggered to make their decision. The materialization point makes
this decision based on the profiling information collected so far. This method avoids
restarts of tasks that would decide to materialize their data.

3.2.3 Task and Machine Failures

The recovery mechanism described above focuses on task failures. The system de-
tects task failures by caught exceptions. The engine catches the exception in the
thread that started the UDF, marks the task as failed, and starts the recovery
process.

If the task fails before it has received any data, it will restart without any other
rollback propagation. As the task did not produce any data, it is not necessary to
restart any other task.

In all other cases, the recovery logic has to find a global consistent materialization
point. Afterwards, the rollback has to propagate to all tasks between the failed task
and the found global consistent materialization point. All those tasks have to set
themselves to their initial states. The restart has to be propagated to all followers
of the failed task as well, because the tasks may not read the data in a deterministic
way, and thus may not produce the data in the same order as in the first run.

Machine failures are special cases of a task failure, where all tasks from one machine
fail simultaneously. A machine failure is detected by a missing heartbeat. Every
worker periodically sends a heartbeat to the master. If a heartbeat is missing,
the master marks the worker and all tasks that where running on that worker as
failed. The master removes the worker from the list of available worker nodes, until
it receives a heartbeat from the machine again. The recovery process, for this, is
similar to single task failure. The recovery logic has to calculate the restarts and
replays for every failed task. The restarted tasks are deployed to a free machine if
one is available. If no machine is available it marks the job failed.

Additionally, the system has to deal with the fact that every locally written material-
ization point from this machines becomes unavailable. However, this is just an issue
if a materialization point was complete. As all tasks from this machine are failed,
they are not suitable for replay, and the system would discard the materialization
points anyway.
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The recovery can, however, use complete materialization points for recovery in case of
a machine failure. It is therefore sensible to transfer locally written materialization
points to a distributed file system once the task has finished and completed the
materialization point.

3.3 Materialization Decision

As described above, the decision whether to make an ephemeral materialization
point permanent is made locally based on the task’s and job’s characteristics. The
primary challenge is to make a proper decision, whether to write a materialization
point or not. As the engine does not know the tasks before they are running, it
is necessary to observe the task during execution. The tasks characteristics are
monitored during the execution of the task until no more data can be kept in main
memory.

3.3.1 Monitoring

There are several possible characteristics of a task that the system can monitor.
The Usage of Memory and CPU, and the I/O operations to disk to name just two.
However, not all monitoring results may be suitable information for a decision about
materialization points. The central question at this point is which characteristics of
a job are essential to optimize the positioning of the materialization points.

Materialization points are supposed to be at positions that are particularly helpful
during recovery. A materialization point covers previous executions and prevents
those to be re-executed. It will prevent all tasks before the materialization point from
restarting if it participates in the recovery. A materialization point decision is always
made for one particular task. Therefore a materialization point is especially valuable
if it covers tasks that are hard or expensive to re-execute. Thus a materialization
point decision should take into account the cost of re-execution of a task in some
way.

The other aspect of materialization points is that they ideally should themselves be
inexpensive, both during writing and during recovery. The cost of a materialization
point is dominated by its size, as the cost of writing and reading the materialization
point defines its cost. Thus, the size of data that the materialization point writes to
disk is an important factor in the decision. However, as the task is monitored during
runtime and there is no information of the amount of data that will run through a
task at this point it is not possible to make a decision based on the absolute size of
the data that would be written in the MP. Therefore the size of the materialization
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point has to be estimated in some way. The estimation at this point is made by the
ratio of input and output of a task. The idea behind this estimation is that a task
decides to materialize its output if it reduces the data noticeably.

Thus the monitoring concentrates on the data input and output of a task and the
CPU usage. Even though the information about network and memory usage is
collected to present it to the user of the system, these factors do not influence the
decision. The characteristics that affect the decision are the user-CPU time, the
number of received bytes, the number of bytes sent and the distance to the last
materialization point.

3.3.2 Decision

Data should be materialized if

• materialization of the data is inexpensive ⇒ rate of In-/Output is high

• reprocessing is costly ⇒ high CPU usage
If both are undecidable, the default decision is not to materialize, unless:

• the task is part of more than one path in the graph

In general, there are two types of tasks to consider. One is the pipelined task that
streams at least one input through the processing. The task processes every record
of the input on its arrival, produces the output immediately, and pipelines it to the
consumer of the output. The other task type is the pipeline-breaking task. This
task has to receive its entire input before it can start its execution.

The pipelined task allows an assumption about the multiplicity of a task. The ratio
of input and output size indicates the increase or decrease of the overall amount
of data at the task. In contrast, the pipeline breaking task makes it impossible to
make such an assumption. As it consumes all input data before it produces the first
amount of output data, it is not possible to translate that ratio to a multiplicity. In
case of a pipeline breaker, the average size of the input and output records is used.
If the record size decreases drastically after processing it is assumed that the size of
the entire output will be comparably small.

For the decision, the system uses thresholds that the user can configure. The user
can define a lower and an upper bound for the CPU usage and the input/output
ratio. An ephemeral materialization point will change its state to permanent if the
rate of input and output is higher than the upper bound and discarded if it is smaller
than the lower bound. If the ratio lays between the given bound the CPU usage is
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used for decision making, and the materialization point will be made permanent if
the CPU usage is higher than the configured CPU boundaries.

If the CPU usage is under this value, the decision logic checks the position in the
graph. If the task covers more then one output path (i.e., it has more output gates
than input gates), the materialization point writes its data to disk. Because this
task can be a global consistent materialization point for faults in both paths. Thus,
it is beneficent to write a materialization point if the cost boundaries do not disallow
it.

Additional Hints

The user or upper processing layer can additionally give some hints to the fault
tolerance mechanism.

• The materialization decision for a task can be switch to true or false

• Materialization can be switched off completely

• Materialization can be forced for all tasks.

• The size of input and output records can be propagated to the system

If the user forces a decision, the execution engine applies it without checking other
conditions in the profiling. The hint described in the last point offers the possibility
to make measurements more accurate. The user can pass the size of each consumed
and produced record to the materialization system. This information provides a
better base for the decision, especially for stream-breaking tasks.

To avoid the domino effect, there is a coordinated component in the decision-making
process. Each task does its own profiling and may come to a decision. As a typical
distributed pattern in job graphs is the n : n distribution it would be beneficial if all
tasks in one group came to the same conclusion. One task that comes to a negative
decision may make the other materialization points useless for recovery. Therefore
the first task deciding it materialization will force this decision to all other tasks in
the group, even though it may be the only task coming to this conclusion.

Enforcing the decision onto other group members has the benefit that it avoids the
case where a few tasks would not materialize and thus make all additional materi-
alization overhead useless. However, one could argue, that it may also lead to the
case where one task would decide to materialize even though all other tasks, would
determine that this is too expensive and thus increase the overhead. Although this
is theoretically possible, it does not occur as the task would come to this conclusion
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because of its high selectivity. If only one task in the group is highly selective, it
will not produce as much output as the other tasks. As a task comes to its decision
once it is not able to hold any more data in memory, the less selective ones would
come to a decision first.

3.4 Implementation

The implementation of the general approach of ephemeral materialization points is
prototypically implemented in the Nephele execution engine described in section 2.3.
Even though this implementation is done in one particular system, the general idea
can be adapted to other systems and be implemented similarly.

As described above, the materialization of intermediate data has to start from the
first record. Therefore all produced data is kept in memory until the space is ex-
hausted. Nephele sees data as records. Records can be anything from a single integer
to complex types combining several objects. A record can be implemented by the
user if he implements the given record interface. The interface includes a read and a
write method for serialization purposes. This write method serializes the produced
records into ByteBuffers. Those buffers are sent to the next task. To send a byte
buffer it is wrapped in a TransferEnvelope which includes additional information
about the sender and receiver, and a sequence number.

Each computing node has a fixed number of buffers used for serialization. During
the execution, each task requests an empty buffer every time one is needed. At the
beginning of the execution of the task, the filled byte buffers are not sent to the
consuming task immediately but held in memory until all buffers fill up. This is not
only used for fault tolerance purposes but also for lazy deployment and optimization.
During this time the tasks behavior is profiled. Once the task has filled all buffers,
the profiling information suits as input for the decision making process.

If the decision is to discard the ephemeral materialization point all filled buffers are
freed, and the task sends upcoming buffers to the consuming tasks without further
actions.

If the decision is to change the materialization point from ephemeral to permanent,
the system writes the buffers that are still in the memory to disk. It starts a write
thread, which receives the TransferEnvelopes and writes them to a file in the local
or in a distributed file system. The user can configure the directory, in which the
system should save the materialization points. For every materialization point, the
writing thread creates a metadata file and a file that contains the data. Each file
is named with the prefix “cp_" indicating it as a materialization point, followed
by the vertexID and a suffix. The metadata file is an empty file, which has a
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suffix that indicates the status of the materialization point and is either “_partial"
for an unfinished materialization point or “_final" for a completed materialization
point. The system saves data for a materialization point in one or more files with an
incrementing suffix “_0" - “_n". These files contain all TransferEnvelopes from
all output channels.

3.4.1 Consumption Logging

The logger that writes the consumption log takes action every time the task receives
an envelope. Any InputChannel that receives a TransferEnvelope will report this
to the EnvelopeConsumptionLog. The ConsumptionLog stores the gateIndex, the
channelIndex within the gate, in an integer. If the task receives several inputs,
the inputs are received over different gates. The gates collect the input from several
parallel instances from the input channels. The integer holds the gate index in the
first 7 bit and the channel index in the following 24 bit. Additionally, it stores a
boolean, that indicates whether the data of that envelope is available. The logger
does not use this boolean while it writes the consumption log. The recovery logic
will use it when it replays the consumption log. The logger writes the integers into a
fixed size IntBuffer, and writes the buffer to disk every time it is filled. It writes the
file into the given temporary directory, and each file is named with the “cl_" prefix,
indicating that it is a consumption log, followed by the vertexID of the writing
vertex. The naming of the log file enables a restarted vertex to find a consumption
log of a previous run. After the logger has stored the needed data in the buffer, it
announces the availability of data to the input gate.

If a task restarts, it searches the temporary directory for a consumption log file
with its vertexID. If it finds the file, the order of the read envelopes are replayed
according to the log. Therefore the logging mechanism loads the first buffer from
the file. After the restart, equal to the initial run, the channels announce any
received envelope to the consumption log. However, in contrast to the initial run of
the task, the consumption log replay saves envelopes in the InputChannel without
reporting to the input gate that data is available. Usually the InputChannel informs
the InputGate that it has data available once it receives an envelope. During the
consumption log replay it is necessary to replay the order in which the channels
announce the availability according to the initial order. Therefore the InputChannel
saves the received envelopes, and only announces data availability when it is it’s turn.

The consumption log checks whether the announced envelope is the first in the list
of the log. If so, it announces the availability of data from that channel to the input
gate. Otherwise, the logger only marks the entry in the log as available. It will
set the mentioned bit in the corresponding integer. Once the first envelope in the
list arrives, the logger can report the availability of it immediately. Afterwards it
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checks the next entry in the list. If it is marked available it can be announced and
the next entry is checked until a entry is not available, and no further envelopes
can be announced until it arrives. If the last envelope in the log is announced, the
other saved envelopes are announced corresponding to the order of their arrival.
Note that the order between the channels is not important at that point as, those
envelopes contain new data, that was never seen by the succeeding tasks. However,
the consumption log will go on logging the next envelopes as described above, in case
another failure occurs. The log, only containing integers, is a lightweight solution
for consumption logging.

Algorithm 1 Consumption logging algorithm
1: procedure reportEnvelopeAvailability(inputChannel)
2: ▷ The inputChannel that received an Envelope
3: outstEnv ← loadOutstandingEnvelopes
4: if outstEnv ̸ empty then ▷ Still Envelopes to handle from log
5: for IntEntry candidate : outstEnv do
6: if candidate.getChannel() == inputChannel then

candidate.setDataAvailable();
7: end if
8: end for
9: for IntEntry envelope : outstEnv do

10: if envelope.hasDataAvaiable() then
envelope.getChannel().announceAvailability();

11: else
break

12: end if
13: end for
14: else

inputChannel.announceAvailability();
announcedEnvelopes.put(IntEntry(inputChannel);

15: end if
16: end procedure

3.4.2 Materialization Decision

As described in 3.3.1 the decision whether to materialize data or not depends on
different profiled data and thresholds. The system implements the statistics about
the size of input and output in three different ways. First, the reporting of the data
ratio from the upper PACT-Layer, which collects the size of each record given to
and the size of each record emitted by the user code and computes the rate.

If this information is not available the Nephele framework collects the statistics using
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Figure 3.5: Decision process

monitoring data. Therefore the system collects the number of bytes received and
sent over the network by each task. It sums the number of bytes contained in each
ByteBuffer the task sent and each ByteBuffer the task receives during processing
and build the arithmetic ratio.

That approach works well for tasks that stream data. If a task is a pipeline breaker
and has to collect all its input data before it starts, this mechanism is not suitable.
In this case, the ratio would be between the total input size and the first portion of
processed output and thus misleadingly indicate a decrease of the data size.

To handle those cases correctly, the system checks whether the task already received
all input data, i.e., if the task has closed all incoming channels. To be able to
make an assumption about data size, in this case we compare the average size of
the incoming and outgoing records, by collecting the number of records which have
been serialized or deserialized from or to the ByteBuffers.

For the decision the collected ratio will be compared to the thresholds, a material-
ization point writes its data to disk if the ratio is smaller than the lower bound. If
the ratio is higher than the the upper bound it discards the data. In between these
bounds we use the CPU usage for the decision. The ThreadMXBean[38] interface
provides information about the amount of CPU used by the user-code. We consider
a task to be a CPU bottleneck if the CPU-user-time is over 90% of the overall CPU
usage and write a materialization point in this case.
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3.4.3 Rollback

Two possible scenarios trigger the recovery logic. One failure is a missing heartbeat
of an instance. The instance manager checks periodically if it has received heartbeats
from all instances. If it misses a heartbeat, it reports the corresponding instance
as dead to the scheduler. If the vertex was writing a materialization point, the
scheduler sets the status of the vertex to NONE, as the checkpoint is not usable for
recovery. Afterwards, it marks the vertex as failed.

The other possibility is that the user defined function throws an exception. In
that case, the RuntimeEnvironment which is responsible for the execution of the
UDF catches this exception and reports the failure to the master. In both cases,
the corresponding state listener starts the recovery logic. As described before, the
recovery searches for the last global consistent materialization point. It begins at the
failed task and explores a breadth-first search against the stream direction. If the
preceding task has written a materialization point, it will replay its data, and if it is
undecided, the recovery logic demands the decision immediately. If the predecessors
have decided not to write a materialization point, they have to restart.

After the breadth-first search, the recovery logic holds a set of vertices, which form a
global consistent materialization point and a set of all vertices between those vertices
and the failed one. The latter ones restart. Therefore each of those tasks need to
be canceled first. All canceled tasks, the failed task, and the tasks that will replay
their materialization points are then deployed again. During the deployment, the
TaskManager checks whether a task with the same ID is already running. If so
the task is wrapped by a ReplayTask, which takes care of the replaying while the
original task keeps running. If it finds no original task running, it checks whether a
completed checkpoint is available. If it finds a complete materialization point, the
system starts the task as ReplayTask, if not, the system deploys the task as usual.

At this point not only that task has to restart, but any task down the stream from
the materialization point. This step is the rollback of the processing to the last
consistent state, and replay all events, that the materialization point saved.

Reading from Materialization Points

During recovery, the system reads the materialization points. It can recover with
both complete and partial materialization points. To be able to read from partial
materialization points, i.e., materialization points that currently receive and write
data to disk. materialization points are split into several files. Each finished file can
be read during replay. If all available files are read, the reader waits for the next file
to be finished.
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As a materialization point contains the TransferEnvelopes that are usually routed
to the corresponding channel and send over the network, reading a materialization
point means to deserialize the TEs, find the correct channel, and sent it over the
network. Recovering a materialization point that has not yet finished writing means
that the producer task that is writing the checkpoint still produces new TEs. As the
replaying is active, the recovery logic has to keep newly produced envelopes from
being sent over the network. Otherwise, the task would send them twice, and the
receiving task would discard them anyway as they have too high sequence numbers.

The writing and sending of TEs in Nephele are done with a so-called Forward-
ingChain; this chain is a modular sequence of processing steps that the envelope
goes through. In the normal run case, an envelope enters the chain; the first step
is to write the envelope into the materialization point on the disk. Afterwards, it is
forwarded to the next part of the chain, which sends the envelope to the network.
The final step of the chain recycles the buffers. In case of recovery, the recovery logic
removes the network sending step from the forwarding chain, and envelopes only go
into the materialization point and are recycled afterward. The replay functionality
is the only process doing network transfer in case of a replay.

3.5 Evaluation of Ephemeral Materialization Points

In order to evaluate the functionally of materialization points, there are two main
questions to be answered.

1. Will the dynamic materialization decision find the “right" tasks to materialize?

2. Will it perform better or equal to other materialization approaches?

The first question is not too easy to answer because “right" is not directly measurable.
However, assuming the programmer knows the job and its characteristic complexity
and selectivity of tasks, and that he would make a suitable decision, the example
tasks are analyzed and the best-assumed positions from the programmers view are
compared with the actual choice of the system.

The evaluation answers the second question by comparing different versions of mate-
rialization; one is to materialize at every task in the job, the second not to materialize
only if the data flows over the network, and the third to make the decision dynam-
ically as described here. Note that in contrast to MapReduce materialization, the
Nephele system still pipelines all the data during materialization. This pipelining is
already expected to have a significantly smaller overhead.
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These materialization approaches compare four different failure scenarios, each with
errors at different times in various tasks. The errors will be triggered at the first
quarter, the half, and after three-quarters of the failure-free runtime. Additionally to
that, the runtime without failure compares to the three variations and the runtime
without writing any intermediate data at all.

As examples serve two different jobs, the TPCH-Query3 and a triangle enumeration
job, written in PACT described in the following.

3.5.1 Triangle Enumeration

Enumeration of triangles is a typical job for social networks. It is used to indicate
indirect connections between users or cumulative interactions in the network. The
algorithm finds those connections by finding triangles in a connection graph. In
order to do so, two steps are necessary: Finding those edge pairs that have one node
in common, and from that checking if the edge between the other two nodes exists
in the task[39]. The job is written in PACT and runs on sample data from the 2009
Billion-Triple-Challenge 1 which was converted to integers.

The PACT job for the enumeration of triangles has nine individual tasks. After
reading data from a file, each row in the file will be a record that represents an edge
in the graph. Then all edges ([a,b]) are projected to two edges for each direction of
the edge ([a,b][b,a]) and handed to a reduce task which counts the edges for each
node and appends the node to the record.

The next reduce step joins those counts and then on one side a task removes the
counts from the records. This is necessary to get just the edges in the record for
the final match operation. On the other side, the task sorts the edges, so the node
with the smaller degree is first in the record and therefore the grouping-key for the
following reduce, which builds triangle-candidates from the given edges.

In particular, for each tuple of edges [x,y][y,z] the job processes a tuple [x,z] as
a possible existing edge to close a triangle. In the last match step, these edge-
candidates are matched with the existing edges of the graph to find the existing
triangles.

The interesting part of this job is that the task, which builds the triad candidates
highly increases the data size and a user would never choose it for materialization.
Therefore it should not be materialized by our approach as well. Instead, the ma-
terialization should be made at the task after the BuildTriads task, Close Triads,
where the output is relatively small, and the work that was done by the expensive

1http://vmlion25.deri.ie/
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BuildTriad task is saved.

The test runs show, that the dynamic decision approach sets materialization points
at the tasks JoinCountsAndUniquify and CloseTriads. The materialization of the
JoinCountsAndUniquify output is the optimal materialization point at a predecessor
of the BuildTriads tasks because it covers both parallel execution paths (ProjectOut-
Counts and ToLowerDegreeVertex/BuildTriads). This is the decision reason for the
algorithm, as well. The data did not grow over the threshold, and the task covers
two paths. The decision for the CloseTriads is based on the data ratio. The task
reduces the data, as it filters the actual triads from all triad candidates.

3.5.2 TPCH-Query3

Another test job to evaluate the overall performance of the ephemeral materialization
is the Query3 of the TPCH-Benchmark[40]. The project source code contains the
PACT implementation of the TPCH-Query3 as a PACT example.

The job consists of two map tasks selecting and projecting the input, followed by a
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matching task executing the join and a reduce task for the aggregation. In the TPCH
Query3 for PACT the join is implemented as a one-sided stream, e.g., the orders
input is fully read from disk, hashed, and afterwards matched with the streaming
input from line items. Therefore the Orders input is distributed to all nodes over
the network. The output of the join task is distributed over the network as well.
For data generation, the generator provided by the TPCH benchmark suite was run
with a scale factor of 100.

The test shows that the dynamic decision approach positions the materialization
points after the Filter of the LineItems input and at the aggregation step AggLiO.
Both tasks reduce the data relative to their input data which brings the ephemeral
materialization point decision to materialize the output data.

3.5.3 Measurements

The evaluation runs where started on our private cluster. Each machine is running a
Quadcore Intel Xeon CPU E3-1230 V2 3.30GHz with 16 GB RAM running CentOS
and devices are connected via 1 GBit Ethernet. An HDFS is spanned over the
nodes and contains the input data; tasks write all temporary data (including the
consumption logs) on local storage. The job was run exclusively on these machines,
but not exclusive in the cluster.

To compare the efficiency of the ephemeral materialization points technique, the
evaluation has to compare the behavior in case of failure.The main question is:
Do the ephemeral materialization points reduce the runtime in case of a failure in
comparison to other materialization techniques? The measurements shown in this
evaluation compare three types of materialization: ephemeral, which is making a dy-
namic decision described above, always which fill force materialization at every task
in the job and network, which will only force materialization on network channels.
As the benefits of the techniques are highly dependent on the position and the time
of the fault occurrence, runtime measurements are made for different tasks failing
and at different times in a non-failure runtime.

Triangle Enumeration

All measurements were made with failures once at BuildTriads task, at the Clos-
eTriades task, or the TriangleOutput. This makes it possible to see the difference
in efficiency depending on the position of the failure in the job graph. The failures
were triggered at on quarter, half and three-quarter of the failure-free runtime.

The runtime measurements in figures for the Triangle Enumeration in figure 3.8
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Figure 3.8: Runtime measurements for Triangle Enumeration
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Figure 3.9: Fault free runtime measurements for Triangle Enumeration

show that the total runtime in case of a failure is significantly smaller than the
other two materialization strategies. The dynamic approach ranges between 59%
and 91% of the corresponding runtime without materializing, whereas the runtime
for always materializing ranges between 135% and 271%, and the network approach
between 113% and 223% of the runtime without materialization in case of a failure.
The results show that the difference is way smaller if a task fails that is writing a
materialization point itself. This is because the recovery logic discards the written
materialization point and the restarted tasks will come to the same decision whether
to write the materialization point, in this case the CloseTriades task. The overhead
of the first part of writing adds to the overall cost. As assumed the materialization
of data is especially beneficial if a fault occurs late in the processing.

Figure 3.9 shows the average runtime for job runs without failure. The measur-
ments show that the dynamic materialization approach adds minimal runtime. The
runtime is 102% of the non-materialization job runs. The other two materializing
strategies have significantly higher overhead, always with 243% and network with
170% of the runtime without materialization.

TPCH

Similar to the evaluation for the first job, the evaluation for the TPCH job consists of
job runs, for different materialization strategies, with failures at the LineItems task
and the JoinLIO task. Again the failure occurred at one quarter, half, and three
quarters of the fault-free runtime. The measurements also include the comparison,

63



CHAPTER 3. EPHEMERAL MATERIALIZATION POINTS

of job runs without a failure.

The runtime measurements for the TPCH job show similar results. The tasks that
where killed are the LineItems task, and the Join task. Again the tasks where killed
after a quarter, half and three-quarter of the runtime.

The runtime measurements show that the total runtime in case of a failure is still
smaller than the other two materialization strategies, although the difference to the
“network" approach is not as significant as in the other Testjob. With these and
other Test jobs we found that the advantage of our approach is higher the more tasks
are in the tested job, the longer the job is running and the bigger the intermediate
data is.

This is because the main advantage of the given approach is not to write every
task’s data and, therefore, reduce the writing overhead. More tasks in a job lead to
a higher probability of tasks that are not chosen to write their output. On the other
hand, a job containing only tasks which produce much bigger output data relative
to the input may cause no intermediate data writing at all.

The measurements without failure show the same small overhead for the ephemeral
technique. The runtime of the ephemeral approach is 101% of the runtime without
materialization. In contrast to that, the overhead for the always strategy is 160%.

The evaluation shows that the ephemeral materialization point can reduce the run-
time in case of a failure compared to the runtime without materialization. In compar-
ison to other materialization techniques both the failure and the fault-free runtime
are reduced. At the same time, the runtime gain in the fault-free case are shown to
be negligibly small.

3.5.4 Evaluation of Consumption Logging

In this evaluation, the runtime of a job run with consumption logging is compared
with the runtime without consumption logging in a failure-free case. This should
give an indication for the over the runtime overhead of the consumption logging
technique.

To measure the overhead of the technique, the evaluation compares the runtime of
a fault-free job run once with consumption logging and once without. The job is
an easy optical character recognition job, that takes pictures, executes a OCR, and
builds a PDF from the recognized text. Figure 3.12 shows the job graph of the
OCR job. The job reads picture files hand those to the optical recognition task that
extracted the text from the pictures and hands them to the PDFCreator. The text
is also split into words and sent to the Inverted Index task. As the names indicate
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Figure 3.10: Runtime measurements for TPC-H
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Figure 3.11: Fault free runtime measurements for TPC-H
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Figure 3.13: Runtime OCR Job with and without Consumption logging

the PDFCreator task creates a PDF file from the given text and the inverted index
builds an inverted index over the entire input.

It is analog to the archiving job Derek Gottfrid wrote for the New York Times
archiving2. The job generates searchable PDFs for articles from 18511922 given in
a TIFF format. He wrote a Hadoop job which reads the 11 million articles data
from storage and generates the PDFs. Gottfrid deployed the job to an Amazon
EC2 Cluster. This job is interesting, because of the real world issue it solves. The
archiving of data that is not available digitally is a common task these days.

The input was 477MB of data, in 515 .bmp files. The job was executed with different
degree of parallelism and input sizes as indicated in the measurements.

Figure 3.13 shows the average runtime with and without consumption logging of
failure-free job runs, for parallelism of 24 OCR tasks, 6 PDFCreator tasks, and 2
InvertedIndex task. The average overhead of the consumption logging method was
235 ms which is 0.26% of the average runtime without consumption logging. As can
be seen in the graph, the variation of runtime between the usage of consumption
logging and the job run without consumption logging is way smaller than the vari-
ation between individual job runs. The difference between identical job runs could
come from the variation in network traffic due to other usages of the cluster.

In Figure 3.14 the DoP is changed to 3 OCR Tasks, 2 PDF Creator Tasks and one
InvertedIndex Task. The difference in runtime was 468 ms in this case, which is
0.24% of the runtime without consumption logging.

2open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/
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Figure 3.14: Runtime OCR Job with and without Consumption logging

The OCR job also runs with a larger data-set of Wikipedia articles. The data-set
contains 16000+ random Wikipedia articles that were converted from HTML to
BMP files. The size of the files ranges from 136KB to 30.6 MB, with a total of 4GB.

All measurements show that the consumption logging has a negligible small overhead
and is thus an efficient approach to increase fault tolerance.

Additionally to the overhead from writing the consumption log there may be over-
head for the recovery phase. As the engine is no more free in the distribution of
data, it is forced to use the same pattern as before. During a failure-free run, the
order in which the task reads data depends on data availability. Using consumption
logging, the tasks are forced to read a fixed number of TransferEnvelopes from
one channel at a time. This could cause the task to block even though other data
in other channels are available. To avoid this, the incoming envelopes are written to
disk during consumption log replay. This behavior could slow down the execution if
the envelope that has to be read is not available.

However,this is unlikely to happen in practice. In contrast to a normal job run, the
data of the restarted intermediate tasks are immediately available. The input is read
from materialization points and is thus immediately available, and the task can pro-
cess it directly. Nevertheless, network flaws or other outside events may cause such
a slow down anyways. Unfortunately, this possible overhead is hard to measure. It
highly depends on the job and the environment and is thus not comparable between
different jobs. Therefore we are not able to quantify this possible overhead.

The evaluation shows that the consumption log technique has a small overhead,
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while avoiding a possibly high number of restarts. Naturally the advantage of
the consumption log approach is the higher the more tasks are behind the failed
tasks. Without consumption logging all tasks that follow the failed task have to
be restarted. The consumption log avoids those restarts. The measurements show
that the overhead is negligibly small, this makes the consumption log a beneficial
optimization for ephemeral materialization points.

3.6 Related Work

Rollback recovery with checkpoints is a standard technique to increase fault tolerance
in distributed and database systems and is an often discussed topic[37, 41, 42, 43].
In massive parallel processing like MapReduce[6], Dryad[13], or Nephele[14] these
techniques are inapplicable as they do not take into account issues encountered in
this type of system, like vast amounts of intermediate data and the network as the
scarce resource.

MapReduce[6] With the widely cited paper MapReduce: simplified data processing
on large clusters Dean and Ghemawat introduced Googles MapReduce: A paral-
lelization framework that hides the complexity of parallelization and fault tolerance.
The MapReduce framework operates on a master-worker pattern, with the worker
nodes executing either a map task or a reduce task. The map and reduce functions
are written by the user, the framework expects them to be deterministic. The map
tasks write their output to the local file system. The reducer workers can remotely
read their input from the local file system of the mappers.

The fault tolerance mechanisms of MapReduce handle two cases: worker failures
and bad records. Worker failures are detected as the master node pings each worker
frequently. These worker failures have to be separated between map-workers and
reduce-workers. A failed map worker has to be re-executed entirely, as the interme-
diate data is stored in the local filesystem and not available anymore. The reduce
task will be informed about the change so that any reduce worker that did not read
its input from the failed mapper can now read it from the alternative mapper that
was re-executed.

As reducers will store their data in the global file system, it is not necessary to re-
executed a finished reducer. However, a reducer that has not completed its work has
to be re-executed. Reducers write their output in temporary private files and will
rename the file to the final output file once they finish. If a reducer is re-executed
even though it was struggling but not actually failed would not change the result
of the job, as the renaming would be done on the similar file. This fault-tolerance
method is based on the fact, that all intermediate data is saved to disk, even with
several MapReduce jobs in a row. This prevents the system from restarting more
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than one task, but it also has a high overhead. In contrast to that, the ephemeral
materialization points, work with pipelined jobs.

Additionally, to worker failures, MapReduce can skip bad records. If a map or
reduce task fails, it sends the sequence number of the current record to the master.
If the master receives a failure for the same record a number of times it tells the
next worker to skip this record. This will be discussed in detail in chapter 4.1

RAFT[44] introduces an advanced checkpointing technique for MapReduce. RAFT
uses the intermediate data produced by MapReduce anyway and uses it to react to
task and worker failures more efficiently. On the one hand, the RAFT concept
pushes intermediate results to worker nodes, and on the other hand, keeps track of
the offsets of input key-value to intermediate data. Thus the system can partially
recompute data if necessary (in case of multiple node failures) and thus reduce the
recovery overhead. Nevertheless, the RAFT paradigm relies on the intermediate
data produced by MapReduce which already is a high-overhead method.

ISS[45] Ko et al. introduce an Intermediate Storage System (ISS) that aims to min-
imize the runtime overhead of MapReduce jobs, by optimizing the usage of interme-
diate data. ISS is implemented as an extension to HDFS which uses asynchronous
replication, rack awareness, and selective replication.

However the described approaches aim to optimize the MapReduce materialization
techniques, that materializes data after every task. The ephemeral materialization
points try to avoid to save all intermediate data. The listed optimization could
possibly adapted to ephemeral materialization points too.

SGurad[46] is a fault tolerant Stream Processing Engine(SPE), which uses rollback
recovery as fault-tolerance mechanism. For that end, the SGuard system uses passive
standby and checkpoints the state of the nodes in a distributed file system. In
contrast to other passive standby techniques, SGurad avoids a full suspend of the
operator during the checkpointing of the state. To copy the state of the operator to
disk while it is still running, it takes control of the memory belonging to the stream
operator. It partitions the memory into pages and copies those pages to disk using
an application level copy of write. Pages are marked as read-only, and if an operator
touches a not yet copied page, this pages is copied first. Thus the suspension time
of the operator is reduced.

PPA[47] Li Su and Yongluan Zhou introduce a Passive and Partially Active (PPA)
approach for Massive parallel SPE. They use passive checkpoints and backup nodes
for all nodes of the parallel stream processing and active checkpointing for a subset.

In “Storm @ Twitter" Toshniwal et al. introduce Storm a real-time resilient
distributed stream processing engine[48]. Storm can use an “at most once" or an “at
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least once" semantic using acknowledgment of tuples. Despite the fact that storm is
also a non-deterministic data flow, they introduce something similar to a sequence
number. Each tuple is getting an initial number. After flowing through one task,
each record produced from one record will get a sequence number, which computes
from the parent records sequence number.

The authors compare their approach with handwritten java code. For comparison,
they used storm once with and another time without message reliability mechanism.
Although the authors argue that their approach without message reliability does not
have significant overhead to native java code, the numbers show that the message
reliability in their system adds three times more CPU utilization and need two more
machines for the same message passing speed.

The last three approaches focus on streaming environments, which are out of scope
for the work in this thesis.

3.7 Summary

This chapter introduced ephemeral materialization points as a low overhead mate-
rialization strategy, according to both runtime as well as to disk space usage. The
system decides whether to materialize a task or not, based on the profiling of a task
and predefined boundaries. The results show that the presented approach for ma-
terialization points finds the same tasks to materialize which a programmer would
prefer for materialization. The approach is working without any knowledge of the
user code or the input data before the job starts running.

The materialization and the recovery in case of failure are working in a nonblocking
manner and allow therefore pipelining, seeing results incrementally, and continuous
queries. A materialization point writes the data to disk or in a distributed file
system. Afterwards, the engine sends it over the network to the consuming task.
This way, the materialization point technique, ensures that the following tasks do
not wait until the materialization point is ready. The experimental results show
that this materialization method reduces the runtime during failure significantly
compared to other materialization techniques that save data after every task.

This chapter also introduces the idea of consumption logging, which reduces the
number of restarts during recovery. Consumption logging forces a deterministic
input of data for a task even after a restart. This deterministic data stream enables
a task to skip previously processed chunks of data and leads to the fact that tasks
succeeding the failed and therefore restarted task do not have to restart themselves.

Evaluations show that this consumption logging does not increase the processing
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time of a job noticeably, in case of a failure-free run. Still, it offers a significant
reduction of restarts and thus reduces the recovery time in case of a failure.
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As described in section 2.4.2 the ephemeral materialization points described in the
previous chapter offer fault tolerance for transient and system-detectable failures. It
is possible to recover from transient faults, by restarting a job or parts of the job.
This is not possible for persistent faults. A fault that occurs on every run of a task
causes the system to fail eventually, to show a failure in the output, or to run the
recovery process in an infinite loop. To avoid the latter, recovery processes usually
have a defined number of retries, after which the job finally fails, and the recovery
re-tries end.

As described before, the transient faults can also be subdivided into system-detectable
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and non-system-detectable faults. Even if a failure is persistent and appears at every
job run it is not necessarily detectable. A UDF that produces a wrong output for a
particular record, and will, therefore, spoil the job’s output, may still run properly
without any exception rising. The system is unable to detect the wrongdoing of
the UDF in this case. And as the system is not able to detect it, it is impossible
to recover from it automatically. The system must rely on the user or upper layer
system to erase the failure. However, it may still be able to support the user in the
recovery process.

The upcoming sections present solutions for data- and software faults. Where data
faults are permanent faults that are detectable, and software faults are permanent
but not detectable. Note that both fault tolerance techniques request a veer away
from some of the desired design goals described in 2.5.

4.1 Data Fault Tolerance for Flawed Records

Massive parallel data processing engines are designed to handle a massive amount
of data. One key aspect of BigData is that it can be flawed, and it is not easily
possible to oversee the structure of the entire data altogether. Execution Engines and
programmers can not rely on the assumption that data is typically well- structured
and quality-controlled as they might have been in databases. Working with BigData
means to accept data that is inconsistent and dirty. Even though the programmer
of a job should keep that in mind, it is not always possible to foresee the flaws.
Especially working with third-party libraries may cause unexpected errors.

Jobs that must handle data with some flawed records would usually fail entirely,
using the typical re-execution attempt. Even after restart attempts, the job would
still fail at the exact same record every time. Furthermore, the simple restart of a
task would not even lead to the information that a particular record caused the fail-
ure. In a worst-case scenario, a job will fail after several restart attempts, probably
giving the user or programmer nothing more than an exception coming from a third
party library, with no knowledge about the structure of the flawed record.

4.1.1 Skipping flawed Records

Considering an exactly once consistency model, there would not be a chance to
change this behavior. The job will ultimately fail at any given run until the negative
record is changed or removed from the input. Still, optimization of this behavior
would be to give the user information about the record that caused the fault. This
would ask for the engine to identify and log the record. This would still result in
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a failed job, but would probably give the programmer the necessary information
to improve the UDF. However, if the job allows twisting the consistency model to
a more open "at most once" consistency, it would be possible to recover from this
failure and skip this record at the point of failure. This way the job would finish, at
least with a part of the input data.

Therefore, the engine must be able to identify a record. What might sound trivial,
can usually just be achieved with a high amount of overhead. As data can flow
through the graph over any path, it is not possible to identify a record by its position
in the stream. A task would not be able to decide that it is continuously failing at
its input record number x as the record it receives at position x might be a different
record on each run. The records would have to be identifiable by themselves.

Identifying Records

The most intuitive approach would be to give each record a unique ID. This ID,
however, must be recomputable, as is needs to be the same between two computa-
tions of the record. A random unique ID would not be suitable for this application,
as it would change between runs. A record would not be identifiable after the par-
tial restart during recovery. As the identifiers have to be unique but equal on every
occasion, it must depend on the records data itself. The data the record holds is the
only part that identifies it uniquely. In practice, of course, it would be possible to
have records holding the same data. However, this would be beneficial in this case,
as records containing the same data will cause the same error. Nevertheless, creat-
ing an ID that depends on the records data gives just one possibility: computing
checksums.

That means to compute a checksum for each produced record which will lead to
high overhead. Depending on the record size, calculating a checksum can be very
cost-intensive. That approach would add runtime for every single record in the
system. Still, this method is a possible solution to the given issue and may be a
suitable solution for some cases, especially if the job deals with a lot of data-identical
records.

Note that the overhead for jobs that do have those failures is negligible. That is
because the job would never finish without this method. Trying to compare an
overhead increase of a checksum implementation to a failing job is impossible. The
comparison of runtime can thus only be made by comparing the nonfailure cases.
The question is: How much additional runtime do we have to accept if no failure
occurs?

But fortunately, there is another possible solution, using the benefits of consumption
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logging. As described in chapter 3.2.1 it is possible to force the data stream to be
identical after a restart of a task. The consumption logging guarantees that each
task receives the same data stream, with the same records in the same order on
every restart attempts. That guarantee enabled the engine to skip the head of a
reproduced stream if the task has already processed the data.

Additionally, to that the consumption logging technique offers the opportunity to
skip records depending on their position in the stream. A task that fails because
of one particular record restarts during the recovery. After the restart, the replay
reproduces its input data either be reading it directly from a materialization point
or by its predecessors which read their input from the materialization point. Using
consumption logging, the input is reproduced identically to the original input. This
means the task would fail, after the same number of records, and would again trigger
the restarts and recovery.

Unfortunately, this is only possible for pipelined tasks. A pipline breaker as described
in section 2.3.1 consumes all its input before it starts the processing of the data. Even
though it might fail at the same record every time, the engine is unable to detect the
record, as it has no access to the internal state of the UDF. Using record skipping
for pipeline breakers would only be possible if the UDF hands the information of
the currently processed record to the engine.

Recovery

As the inputs are identical, it is thus possible to identify a record by its position in
the stream. The task can now count the number of records it has consumed and
report the number of the record that caused a failure (if the system can recognize
and handle the failure, of course). If a task reports the failure with the same record
number several times, it can be notified to skip this record at the next try. The
engine saves the record for a detailed failure report, which will give the programmer
all he needs to figure out the problem.

This mechanism is not possible for all kinds of tasks. As described in section 2.3.1
tasks can be either pipelined or pipeline breakers. The characteristic of pipelined
tasks are that they consume one record and output the results of the records im-
mediately. Pipeline breaker, in contrast, consume all the input data before actually
starting the processing. In case of pipeline breakers, the engine cannot link the fail-
ure to a specific record. From the viewpoint of the execution engine, the task fails
after it has read its entire input. As pipeline breakers can be easily spotted during
runtime, the records skipping is only be done if a task is pipelined. A data flaw that
will cause a pipeline breaker to fail will, unfortunately, cause the job to fail.
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After all, this mechanism would cause an extended recovery time. To be sure, that
failure is caused by the record the system has to restart and recover at least three
times. The first time the suspicious record can be reported, the failure, however,
could have occurred for any other reason that has nothing to do with the record.
For example, a flaw in memory, that might even occur regularly but not necessarily
on the same record or might not even occur again. Skipping a record after the first
occurrence of failure could mean to change the consistency model unnecessarily. If a
task fails two times at the same record, is a good hint, that the record is the culprit.
Still, the number of tries until a record is marked as flawed, can be left by the user.

Depending on the position and the number of failures, this might lead to a re-
markably higher runtime than the original run. Notwithstanding, that this is a
cost-intensive fault tolerance mechanism, it enables the system to finish a job that
would otherwise fail entirely and not produce any output data.

Datastream After Skipping

Note that even though the record skipping changes the data stream after restarts, it
does not go against the consumption logging. The consumption logging guarantees
an identical stream after recovery restarts. However, the engine can only give this
guarantee for data that has been seen previous to a failure. As a flawed record will
create a failure at the exact same position in the stream, and the task does not
produce any output for the flawed record, the skipping of a flawed record will indeed
change the overall stream. However, it will not change the stream that has already
been sent to the successors of the failing task. As any data that the task produces
after the skipped record was not received by the successors of the task previously.

Thus, even though the overall stream of data is changed, compared to a fault-free
implementation of the job, it just changes parts of the stream that are not affecting
the consumption logging. Nevertheless, if an error occurs after the skipping of the
record, and the stream must be reprocessed, the record obviously hos to be skipped
again. On the one hand, because it would cause an error again, on the other hand,
because the task has to reproduce its changed output stream.

Fault Treatment

The fault that causes an error that is masked with record skipping is a permanent
fault. It will occur on every run of the job, at the same state. Using record skipping
prevents system failure, i.e., the crash of the job. However, it does not prevent the
system from failure at any other run of the job. To this end the user must remove
the fault. This means to filter the flawed data from the stream or to change the
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UDF to handle the flawed data in a suitable manner.

As the engine is handling black box user code, it is impossible to do this automat-
ically. The user must change the UDF, add filtering tasks, or remove the flawed
records from the original input. To enable the user to take up the correct actions it
is important to give all information possible about the error that occurs. Thus, it
is not enough to skip records. The system must save the skipped record to present
it to the user. Additionally, of course, the detectable error has to be presented to
the user. In this case, this will be most likely some Java exception, that includes a
stack trace and probably a hint on the code line that cause the error and might be
faulty.

However, the fault treatment should usually get even further by indicating the flawed
part of the jobs input, and from there indicate the source of the flawed data. This
could be one particular data producer, as input data for Big Data applications could
come from different producers. Or it might be a fault in the data collection already.

Especially if a task has to skip not one but several records, the saved records can
give important information about the structure of a record that is flawed. However,
it is only possible to save the input record of the failing task. As there is no 1:1
ratio between records, an input record of a task cannot directly be linked to an input
record of the overall job. Giving the user the opportunity to observe the records that
activated the fault, can give him the ability to indicate the corresponding record in
the original input and probably remove faults that initially lead to the input data.

If every skipped record contains the same value for one field, it can be an indicator
that this value is not properly handled in the user code. This could for example
be a converter that returns a null value for an unknown format. The fault may be
a missing null-value handling. But for the quality of the jobs output it would be
necessary not only to fix the null value handling, but to add a proper conversion for
the format.

4.1.2 Implementation

The implementation of the record skipping technique relies on the previously intro-
duced consumption logging. The introduction of the consumption logging ensures
the that the input TransferEnvelopes (TE) received from all channels are always in
the same order even after several restarts of a task. The system deserializes records
included in each TransfereEnvelope in the same order. Hence the consumption log-
ging naturally guarantees an identical stream of records. With this identical record
stream, it is possible to identify the records by their position in the stream.

In the Nephele system, the InputGate deserializes the records. It receives TEs from
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Figure 4.1: InputGate deserialization

the different InputChannels. In the first run, the TEs are consumed depending on
the availability. After a restart the order of the consumption is replayed, as described
before in chapter 2.4.3. The gate deserializes all fully contained records of a TE and
passes them on to the UDF. At this stage, the records are counted. If the UDF
crashes after it has received a record, this record’s number is saved and reported to
the JobManager in a failure report. This way, the JobManager can keep track of the
number of crashes for a particular record. After the second time a UDF fails at the
same record, the JobManager will advise the InputGate to skip the record. To do
so, the JobManager passes a list of record numbers to skip to the input gate. During
counting, the InputGate checks whether the record number is on the skip list and
if so it discards the record and deserializes the next record.

4.2 Software Fault Tolerance

Jobs written for Big Data analytics may run very often on different kinds of data.
However, they may not be sturdy forever. The data input may change, adding
sources of data with a slightly different schema. Changed APIs of third-party li-
braries, bugs in the code, all this can lead to the additional development of jobs.
However, these changes may only have an effect on single tasks in the overall job,
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Algorithm 2 Record skipping algorithm
1: procedure ReadRecord(target)
2: record← deserializeNextRecord()
3: num← num+ 1
4: skipList
5: if skipList contains num then
6: ▷ do not return record, get the next
7: record← deserializeNextRecord()
8: num← num+ 1
9: end if

return record
10: end procedure

and may not change any behavior of other tasks. For this, it can be beneficial to use
materialization points between two job runs. Especially if it is unclear what part of
the data exactly caused an error; it is helpful to start the job with the same data.
If the beginning of the job is still unchanged, this could easily be skipped by using
materialization points of a previous run and thus start the job partially.

We call this technique memoization of materialization points. This is analogous to
the memoization in programming which caches previous execution results in order
to speed up execution. In memoization, results of function calls are cached and
returned if a call with the same input occurs. The name memoization is coming
from the Latin term “memorandum" and should not be confused with the similar
word memorization as memoization covers a specialized technique in programming.
In some programming languages, is called memoization tabling.

4.2.1 Memoization of Intermediate Data

Similiar to the memoization in programming, the written materialization points
from one finished job run could be cached and reused for another run of a job
with similar parts and the same input. A job which is identical from the input up
to a materialization point can start from the materialization point instead of the
input. This can save the recomputation of parts of the job. This technique can be
a beneficial tool in the development of a data analytics program. As programming
faults, updates in third-party libraries, or faulty assumption about the data may ask
for changes in parts of a job. In those cases, just single tasks have to be changed
while the rest of the job and the input data stay the same. Then it is possible to
use previous materialization points as the input of parts of the updated job.

In order to achieve the possibility to memoize materialization points two things are
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necessary:

• The system must save materialization points beyond the lifetime of the job.

• The system must identify the job and its changes

The first point, saving materialization points after a job finishes is obvious. However,
materialization points are typically written to the local file system, and removed after
the job has finished. This applies to successful and failed job runs likewise. This
is done to keep writing the materialization points fast and the usage of disk space
low. Furthermore, writing materialization points to a local file system means it is
not available once the virtual machine is terminated. To use the materialized data
after a job run, the mechanism that saves intermediate data has to change. The
intermediate data must be saved to persistent storage and not removed after the job
ended. The engine can either achieve that by writing the materialization points to
a distributed file system directly or by copying it to persistent storage once a job
ended. However, this should not be the solution of a regular job run. Instead of
saving intermediate data after a job has finished, it should be kept in development
mode only.

Finding Job Similarities

The second point is far from trivial. Identifying a job as similar would automatically
mean to ensure the input data is identical, the UDFs are identical and which UDFs
have changed.

To ensure that the input is identical, we would have to compare the input of the new
job to the input of the job with the memoized materialization points. Even though
the basic idea sounds simple, it is unfortunately not. Obviously, the same path of
the input does not guarantee that it is equal to a previous version of the file or the
directory. A solution would thus be to compare both inputs directly. That would
mean to keep not only the intermediate data but also a copy of the input data of the
job to compare against. Fortunately, there are other solutions than just a byte-wise
comparison of data. It is possible to calculate checksums for the data to assure it is
unchanged. However, as we are dealing with BigData, checksum calculation might
be a costly solution.

The same issue applies to the identification of the job. The user sends a job to the
system as a jar file. It contains one or more class files that implement the job and
all necessary classes. In the best-case scenario, the programmer writes each task in
an individual file. In this case, it may be possible to compare each class and mark
a task as updated, if a class differs from the previous job jar file.
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It is possible to execute a simple diff of the two Java class files, but this method
leads to some problems:

• First this does not cover dependencies of classes. As the task is associated with
a UDF (i.e., an invokable class), changes of a class that the UDF depends on
would not mark the task to be changed. The dependency analysis of java
classes is a, ongoing field of research. Tools as classcycle1, Class Dependency
Analyzer2 or Dependency Finder3 work on this field.

• Second, it will not consider external libraries. There may still be third party
libraries that may have changed, and thus change the output of a task.

• Third, the possibility to write inner classes in Java. Writing inner classes in
Java will cause changed class files for all declared inner classes of a class even if
only one inner class changed. This would lead to false-positives when searching
for changed classes.

• Fourth, even with distinct class files, it can lead to false positives: Changes
that do not change the behavior of a task may mark it as updated. Note that
the last two issues do not change the correctness of the approach but may
reduce the benefit noticeably.

Given all those stumbling blocks, it is evident that the identification of similarities
and changes within a job are far from trivial. Therefore, the responsibility to identify
changes and give the info about the reference job is moved to the programmer. Any
changes made must be declared by marking the changed UDF or changed classes
the task’s UDF depends on. If a job is claimed to be a modified version of a
previous job, any task that does not have the “updated" mark and executes the
same class (identified by its name) will be considered to be equal. With the usage
of the memoization technique and the indication of a reference job, the system also
expects the user to guarantee that the input data is unchanged.

Note that the input of the user makes this fault-tolerance technique violates the
transparency requirement. However, the technique may be useful for upper layers
in the programming stack. If an upper layer like PACT for the Nephele framework
runs the job, it may be able to provide the required information without knowledge
of the user. The development mode might then be useful in the context of trying
different execution plans. The upper layer can change the execution plan without
losing the work done before the changes.

1http://classycle.sourceforge.net/index.html
2http://www.dependency-analyzer.org/
3http://depfind.sourceforge.net/
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Using saved Materialization Points

Once an updated job is sent to the system and the updated tasks are identified,
it can reuse all intermediate data from predecessor tasks. The system cannot use
any intermediate data that a changed task has produced, as the intermediate data
that the updated task will produce is not equal. Reusing the materialization points
from the reference job is similar to the recovery of the new job considering the first
updated task as failed. During recovery, the recovery logic searches for the last global
consistent materialization point upwards the stream and replays it. The failed task
instance receives its entire input from its predecessors or directly from the found
materialization point.

After the engine received an updated job, it will also search for a global consis-
tent materialization point. However, in this case, the search only allows completed
materialization points. If the search finds a suitable materialization point, the cor-
responding task will replay. All predecessors of the replaying task will be initially
marked as finished and thus will not start processing at all.

Note that this approach does not work with partial materialization points as the
system cannot predict which parts of the input are already present in the material-
ization point. As the states of the task are not saved, the new task has no knowledge
which envelopes have been completely processed by the previous task and must pro-
cess all envelopes again, discarding the already written data. Even with a previous
consumption log, the task could replay the input envelopes it has processed, but it
cannot ensure that the materialization point contains all resulting data of the last
received envelope. Moreover, this would most likely not gain much benefit, as the
tasks preceding the partial materialization point would have to be restarted anyway.
Given these issues, partial materialization points are not used for the memoization.

4.2.2 Implementation in Nephele

To reuse the recovery logic that is used in case of a failure, there are some tweaks
necessary to the new job. Materialization points are found by the IDs used in the
ExecutionGraph of the job. The deployment of the new job must use the same
IDs for those parts of that job, that are marked to be identical. Additionally, the
materialization points contain TransferEnvelopes which will be routed using the
source ChannelID stored in the TE.

The system compares the updated Job then to the saved data for the given JobID,
i.e., it identifies the updated vertices, and marks all followers as updated too. During
the construction of the ExecutionGraph all non-updated vertices are compared,
checking whether they execute the same class and whether they have the same

83



CHAPTER 4. DATA- AND SOFTWARE-FAULTS

Updated

Figure 4.2: Given Job

Finished

Updated

Updated

Materialization

Figure 4.3: Reconstructed

number of subtasks and connections. Otherwise the memoized materialization points
cannot be used.

In order to use the recovery logic and materialization points, it is necessary to use the
identical IDs for vertices and connections. This is because materialization points are
sets of TransferEnvelopes, which store the source of the data using the ChannelID.
Materialization points themselves are files for each vertex named after the VertexID.
To reuse the IDs the initial job must save them after it failed. When the user sends
an updated job, the system reuses the IDs for all vertices, which it did not mark as
updated.

As mentioned above, the system marks the updated tasks and their successors as
updated. From the updated tasks a breadth-first search for a completed materializa-
tion point is done against the stream. If COMPLETE materialization points exist,
all predecessors of the corresponding vertices are switched to the state FINISHED.
Figure 4.2 and figure 4.3 show a given updated job example and the reconstructed
Job after comparison.

The task that has written the materialization point changes to the state FINISHED
after it has replayed the materialization point. For any submitted task of a newly
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submitted job, the framework searches for materialization points in case the task is
re-submitted during recovery. Therefore, the materialization points for an updated
job are found automatically.

4.2.3 Evaluation

In order to evaluate the memoization of materialization points, it is interesting to
compare the runtime of a job using memoization vs. the runtime for a complete
restart of the job. As the submission of a job using memoization includes reading
and applying the job information of a previous run, the setup time is an important
value to monitor. It is expectable that the runtime decreases with the use of memo-
ization. The decrease is expected to be the smaller the earlier the changes are in the
JobGraph. However, the approach itself has an overhead, caused by the rewriting
of the ExecutionGraph and the reading of the materialization points. The runtime
measurement can show whether and when the memoization is profitable.

Optical Character Recognition

The OCR job described in section 3.5.4 serves as test job. It shows the advantage of
memoization very well because it begins with the most time and resources consuming
task, the OCR. All following tasks are comparably lightweight, especially the index-
creating task. Therefore, one would expect that changes of the PDFCreator or the
index-creating task would be considerably faster to recompute using the memoization
approach. For the job’s input we used pictures of the pages of a PDF Version of
the King James Bible4. The OCR task parallelizes to 24 instances, and the PDF
generator parallelizes to 6 instances.

For the test runs one task was marked updated, but the code was left unchanged, to
make the run times comparable. The tests ran with the OCR; the PDFCreator and
the Index task were marked as updated respectively. The test covers two measure-
ments: the runtime and the setup time. The runtime is measured after the job has
scheduled until all tasks finished. The setup time is the time between the submission
of the JobGraph and the scheduling of the job, including the reconstruction of the
graph.

The setup times are an average from all runs, with updated tasks and the same
number of runs without updates. As shown in figure 4.4 the setup time using
the updated mode is slightly longer than in regular mode. The mean extension
for the setup amounts to 47 milliseconds, about 8% of the regular runtime. The

4http://www.davince.com/content/blogcategory/14/33/

85

http://www.davince.com/content/blogcategory/14/33/


CHAPTER 4. DATA- AND SOFTWARE-FAULTS

 0

 100

 200

 300

 400

 500

 600

Avg updated Regular

Se
tu

p 
tim

e 
in

 m
illi

se
co

nd
s

Mode

Setup-Times

Figure 4.4: Setuptimes

 0

 50000

 100000

 150000

 200000

Index PDF OCR Regular

Ru
nt

im
e 

in
 m

illi
se

co
nd

s

UpdatedTasks

Run-Times
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difference between the longest updated runtime and the shortest regular runtime
is 84 milliseconds, which is an increase of 15%. This increase is of no consequence
compared to the gain of runtime.

Figure 4.5 shows the average run times for the test runs with the updated tasks and
the regular restarts runtime. The measurements are from 10 runs for each updated
task and 30 regular restarts. As one can see, depending on the updated task, the
decrease of runtime can be huge. Memoization for the updated Index task leads to a
runtime of only 15% of the restarted task. Updates in the PDFCreator task reduce
the runtime to 81% and updates in the OCR task still lead to 95% of the restart
runtime.

This is because the main time-consuming work is in the OCR and the PDFCreator
task. The Index task is fast, as long as all data is available. Updates in the OCR task
lead almost to a complete restart and thus do not benefit much of the memoization
approach.

Triangle Enumeration

We also tested a triangle enumeration job written in PACT. This job is used to
observe the runtime behavior in a worst-case scenario. The triangle enumeration
job is a worst-case job because the main time-consuming work is in the last tasks
in the pipeline. Updates on the job will therefore only skip the less time-consuming
tasks in the pipeline. In this case, it may be possible, that the overhead is higher
than the decrease of runtime. The job is described in detail in section 3.5.1.

As expected, the test runs for the triangle enumeration job did not show the signif-
icant runtime decreases as for the OCR job. However, the updated runtimes where
in average still between 85% and 97% of the restart runtime as shown in figure 4.6.

Nevertheless, the gains of memoization can be huge, and as the runtime decrease
outweighs the increase in setup time it is a useful technique, especially in a job’s
development phase.

4.3 Related Work

MapReduce itself has a record skipping mode. In this mode, the failed task sends the
sequence numbers of the records to the master. If the master has seen more than one
failure for a particular record, it will demand the task to skip the record. In contrast
to the MapReduce system, our record skipping techniques cover systems that do
not require strict input schema and contain more than two steps of execution. As
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described in section 2.2 the data flow is by default not deterministic. It is therefore
not trivially possible to introduce sequence numbers to records as described above.

In “Storm @ Twitter" Toshniwal et al. introduce Storm a real-time resilient dis-
tributed stream processing engine[48]. Storm can use an ”at most once" or an “at
least once" semantic using acknowledgement of tuples. Despite the fact that storm
is also a nondeterministic data flow, they introduce something similar to a sequence
number. Each tuple is getting an initial number. After flowing through one task,
each record produced from one record, gets a sequence number computed from the
sequence number of the source record.

The authors compare their approach with handwritten java code. For comparison,
they use storm once with and another time without the message reliability mecha-
nism. Although the authors argue that their approach without message reliability
does not have significant overhead to native java code, the numbers show, that the
message reliability in their system adds three times more CPU utilization and need
two more machines for the same message-passing speed.

Memoization

As briefly mentioned, memoization or functional caching is a well-known technique to
avoid re-execution of functions or incremental computation by caching results[49, 50].
In contrast to the classic memoization our technique does not cache single results of
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a task’s function evaluation, but the complete output of a task.

Elghandour and Aboulnaga introduc ReStore, a system to reuse intermediate data
of single MapReduce Jobs within a workflow of MapReduce jobs[51]. The imple-
mentation is an extension to Pig[8]. It rewrites the MapReduce jobs compiled by
Pig and stores intermediate data for reuse in similar jobs. Unlike the Pig extension
the approach described in this thesis is independent from the higher-layer language.

Popa et al. describe DryadInc an incremental computation for append-only data
sets. It has two functionalities: either the user has to give a merge function for
previously and newly computed data, or the system fully automated reuses previous
results for a new computation. The automatic so-called IdenticalComputation is
a form of memoization and similar to the approach described in this thesis. In
contrast, it is only based on additional data input to avoid re-execution of the
previously executed data[52].

Nectar is an approach to manage automatic caching for computations to improve
data center management and resource utilization, which also includes the reuse of
sub-computations, by rewriting programs to be able to use cached data for sub-
expressions[53]. As distinguished from this idea, our approach does not consider
resource management but runtime optimization.

4.4 Summary

This chapter introduces data fault-tolerance using the record-skipping technique.
The main challenge in record skipping is to identify the bad record between sev-
eral recovery restarts. This can be a resource consuming issue, considering the
non-deterministic data exchange between the producing task instances and the con-
suming task.

The technique described here relies on the consumption logging technique that en-
sures a deterministic data stream for each task, on every recovery restart. With this
assurance the identification of a record can simply be done by counting the input
records of an individual task and use this count to detect the flawed record detected
by previous faults.

The chapter also covers the idea of memoization of materialization points. This
technique enables the user to reuse materialization points of a previous job run, if
only parts of the job have changed. With the information about the changed tasks,
the system can find a suitable materialization point to use. The job is then restarted
from this materialization point. The predecessors of the materialization point can
be skipped.
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As mentioned before, all tasks must be considered stateful, unless the user or upper
layer of the system indicates it differently. The engine has no knowledge of the
internals of the UDF and can therefore not predict the state property of a task.
However, if the system gets the information that a task is indeed stateless, it can
use additional optimizations in the recovery process. The engine can scale a stateless
task freely without changing the results, and it does not have to roll it back entirely,
as the results of one input record do not depend on the other inputs.
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The previously described fault tolerance mechanism, has one major drawback: Some
tasks have to redo work that is discarded by their followers. Considering the case
when the failed task is a successor of a materialization point, it rolls back to it’s
initial state and redoes all work from the first record on. The successors of the
failed task informs the failed task about the data they expect next, and the failed
task throws away any produced output until it reaches data that is unseen by it’s
followers. During this time, the task is working to produce data, that is not needed
and is not able to work on the data that it should have worked on in a failure free
case.

In case of a stateless task, there are opportunities for optimization. The upcoming
sections cover two optimization approaches. One is an adaptive recovery process.
The idea is to survey the possibility to add additional resources during the recovery
process to speed it up. It focuses on additional resources for a failed vertex that
work on the data that should have been processed by the failed vertex. The second
approach is to stop the failed task from reprocessing the head of the stream in the
first place. It is not necessary to reprocess the entire input of a stateless task, as
it does not have to reach an internal state again. Due to the n:m relation between
input and output records, and the data distribution patterns this approach must
tackle the challenge to put the output data into relation to the input data.

5.1 Adaptive Recovery

While the optimization discussed in the previous chapters, allows the system to
recover from several failure types, there is still room for an optimization of the
recovery time. The main issues with the restart recovery approach is the fact that
other nodes may have to wait for new data while the restarted nodes process the
previous data until they are in the pre failing state again.

As the consumption logging approach reduces the number of restarts drastically the
recovery time is reduced already. However, the tasks that do not have to restart may
now wait for new data and do no work at all. As described in chapter 3.2.1 restarts
can be prevented because the stream is forced to be identical after a recovery restart.
Thus, the tasks succeeding the failed task can keep on running, and just discard the
data portions they have already consumed. Moreover, when a still running task
receives a data package that it has already seen it informs the predecessor about the
next expected envelope. Doing so, the producer of the envelopes can discard them
right after production without sending them over the network if necessary. This way
the data producer still computes the entire stream from the first record on, but only
starts to send data over the network once it has produced data that has not been
seen by the consumer.
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Even though this approach reduces unnecessary network usage, it still includes re-
computing output that the consuming tasks have already processed. Furthermore,
the consuming tasks, which gave the information about the next expected envelope
may have to idle if all their predecessors had to restart. Additionally, the failed task
is now redoing work it has already done and which is thrown away, and the work it
should be doing is left undone. Both cases slow down the completion of the job.

As described in chapter 3 ephemeral materialization points can be PARTIAL or
COMPLETE. (In a strict sense a materialization point could still be undecided.
However, during recovery and the search for a global consistent materialization point,
any undecided materialization point is forced and thus immediately changes the state
to PARTIAL.) The adaptive recovery approach described in this chapter only works
with partial materialization points, as it presumes that additional resources can take
up work that the failed task was not yet able to do. With a materialization point in
the state COMPLETE, the failed vertex has at least almost all data processed and
needs to process it again to produce the initial data stream once more.

5.1.1 Adding vertices during recovery

Therefore it seems to be beneficial to allocate additional resources to speed up the
job, that is now slowed down due to the recovery process. However, the benefits
of scaling-out are limited in the context of systems that handle many tasks and
communicate over the network. Scaling-out a task to speed up the computation
at that point can cause a bottleneck somewhere else in the job or cause the new
machines to idle most of the time.

Adding resources to a task is only beneficial if the producing task can offer more data
in the same time, otherwise the additional resources only steal hand able work form
other workers. Additionally, if the scale-out is reasonable, because the producer can
offer more data at the same speed, the successors of the scaled-out task might not
be able to handle the additional amount of data, and thus become a bottleneck. In
fact, there is an implementation of a bottleneck detection for the Nephele system
which offers the user the possibility to detect bottlenecks for a job configuration.
This enables the user to adapt the degree of parallelization (DoP) for another run
of the job. Even if this approach can offer information about the bottlenecks in the
system, it cannot assume the best DoP for a task itself[54]. Furthermore, adding
resources can change the stream, as the output of a task is distributed in a round-
robin fashion between all output channels. If the system adds a consumer for a task,
the distribution of data changes and a consuming task does not get the same records
as it would have before the restart of the failed vertex.

This issue was discussed in detail for the Nephele system in Detecting bottlenecks
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in parallel DAG-based data flow programs[54]. The authors show an algorithm that
indicates bottlenecks and offers this information to the user. They distinguish be-
tween CPU- and I/O-bottlenecks. CPU-bottlenecks are those, where the limited
CPU causes a task to slowly output records and I/O-bottlenecks are those where
the limit of the communication channels are not capable of processing all records in
a time unit that a task tries to send. However, the user still has to adapt the DoP
manually, and the detection algorithm does not give hints about the best DoP. The
user has to adapt the job with a trial and error method. This is obviously not a
solution for the recovery process.

Lohrmann et. al[55] use life scale out in streaming environments to guarantee latency
constrains. This technique could be adapted for the elimination of bottlenecks at
this point too. However, as mentioned in section 2.5, the optimization of the Nephele
system itself is out of scope of this work. Thus the adaptive recovery process only
focuses on counterbalancing the drawbacks of the recovery process.

When the user has already run the sample runs, detected the bottlenecks of the
system, and found the sweet spot in degree of parallelization, adding resources is
only sensible as far as they take up the work that would otherwise be neglected during
the recovery of the failed task. The failed task replays its input and thus processes
all input records, even though it discards some of the corresponding output, because
the output data was already processed by the consuming tasks. During that time
interval, from the processing of the first record, up to the record that produces the
next portion of new data, the work, that should have been done by the failed task
at this point is postponed. Adding a resource, that does that work, while the failed
vertex recovers, is beneficial regardless of the bottleneck issue. That is because
the added task only consumes and outputs the same amount of data as the now
recovering task would have done.

As mentioned in section 2.3.1 it is not trivial up to impossible to scale out stateful
tasks as they may depend on a particular data distribution pattern. Therefore in
order to adapt the job during recovery, the tasks are considered to be stateless for
this recovery optimization approach. Another assumption is that the system recovers
from partial materialization points. In particular, not all tasks of a job have to be
stateless for the adaptive recovery to work properly. As the distribution changes at
the predecessor and the successor of the scaled-out task but not with other tasks, it
is only necessary to have those three stateless. If any of the other tasks in the job
is stateful it does not affect the correctness of the approach.

Scaling out a task can be split in two cases: one where the failing task is a direct
successor of a materialization point and the other where predecessors of the failed
task must be restarted.
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Figure 5.1: Materialization points for each channel

Failing Task Behind Materialization Point

The first scenario is the simpler scenario. In this case it is possible to start a duplicate
vertex for the failed vertex itself if it and its successors are stateless. This duplicate
vertex receives data from the part of the stream that has not been processed by any
other vertex yet and thus takes up work that should be done by the failed vertex.
For this to work the materialization points are no longer written to one file per
vertex, but must be split in separate files for each output channel. Figure 5.1 shows
the writing of individual materialization points for each channel, in contrast to the
single file materialization points shown in figure 3.1.

As described in chapter 3, materialization points contain all data produced by a task
independently over which channel it was sent. This also means a materialization
point can only be read for all channels together. Recovering from a materialization
point is done by reading all contained envelopes one after the other. This is a
major disadvantage for adaptive recovery. For adaptive recovery the added vertex
has to process data that was not yet processed by any other vertex. It cannot
process other data, as this would run contrary to the consumption logging technique.
Processing data that has already been processed by another task, would change the
stream and raise the need to somehow rebuild the stream equal to the previous
stream. Additionally, trying to adapt the degree of parallelization with one single
materialization point would necessitate to rewrite the serialized envelopes, as they
contain the routing information.

Providing the duplicate task with new data is not possible in parallel to the reex-
ecution of the failed task. Adding another consumer to a producing task spreads
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the output data that is not yet written to the materialization point between all
consumers. A vertex that is replayed, stops to send data over the channel directly.
Instead all produced data is only written to the materialization point. The sending
of data over the network is suppressed, once the has replay started. The replay
mechanism is reading it from disk and sends it to the consuming task. If a task only
uses one materialization point for all its successors, data for the newly added vertex
is written behind the data that was produced until the failure occurred. Following
this, as reading from the materialization point is done one envelope at a time, the
newly added vertex receives its first portion of data just when the recovery of the
failed vertex has finished. This would not give any benefit to the system and instead
add another idling vertex.

Thus, the writing of materialization points must be changed from one single materi-
alization point for a task to several individual materialization points for each output
channel of the task. Then it is possible to read data independently for each output
channel that has to be replayed.

As the writing of materialization points is changed to a materialization point for
each output channel, the reading of materialization points is now also changed to be
individual for each channel. The additional task can receive its data immediately.

Restarting Predecessors of the Failed Task

The other case with predecessors that have not written a materialization point and
therefore must be restarted, is a different issue. In this case it is not possible to
duplicate the failed task and keep on with consumption logging. As the predecessor
receives its entire input again to produce the necessary output for the replay, it
produces its entire output again. Using consumption logging the head of the stream
can be ignored as it is equal, to the previous data stream. Adding an additional
vertex to the consumer of the restarted task changes the data distribution. This
has the consequence that streams are no more identical. Without identical streams
every task after the materialization point must restart.

Thus, adding vertices while also using consumption logging is only possible for the
tasks directly after the materialization point. It would thus be possible to add
another vertex that works on data that the now restarted vertices cannot process,
and therefore give input data to the tasks that skip the head of the stream while it
is reprocessed. However, the benefit of the scenario is expected to be smaller than
a failure of a direct materialization point successor.

If more than one task lays between he failed task and the materialization point,
adding additional tasks does not give any benefit to the system. As the additional
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Materialization

Figure 5.2: Additional vertex at predecessor

task can only be added as a successor of the materialization point, the predecessors
of the failed task may produce data faster with an additional vertex. But at least
the failed task has to reprocess the data of the other tasks first to reproduce its
output stream and cannot process the data of the additional vertex until then.

Note that adding extra vertices to the direct successor of a partial materialization
point does not influence the consumption logging. Even though an additional pro-
ducer is added to a task it does not change the previously produced stream, as the
new vertex only receives new data that has not yet been processed by any other
producer. The consumers are not restarted and skip any envelopes of the other
channels that they have already seen. Any data read from there on is new unseen
data and therefore does not change any part of the stream that has already been
processed. Any scaling other than the one described here changes the stream and
data distribution and does therefore not allow the usage of consumption logging.

Materialization Point Splitting

If the materialization points are written into different files, they can be read inde-
pendently. For every output channel a file is produced once data for this channel
arrives, and can be read then. This means in case of a duplicate vertex a successor
is added for the replaying vertex. As the replaying vertex is still running it produces
data and eventually writes those data to the materialization point of the output
channel which is connected to the duplicate vertex. This happens while the failed
vertex is receiving its original data from its materialization points.

Usually a task that is writing a materialization point produces data and puts this
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data into a buffer, which is wrapped into TransfereEnvelopes. These TEs are
designated to a particular source channel, which is paired to a particular input
channel of the consumer. The data is written to the channels in a round-robin
fashion. A TE which is ready to be send runs through a processing chain. It starts
with the writing of the materialization point, and is then handed over to the next
step, which sends it to the network and afterwards frees the buffer so it can be filled
with data again. During replay of a materialization point, the second step of the
chain is removed. The TE is written to the materialization point and afterwards the
buffer is freed directly.

Splitting the materialization points does not affect this behavior at all, it is just a
tweak in the writing process. Instead of writing everything to the same destination
file, each envelope is written to a destination based on its corresponding source
channel. Changing the number of output channels adds another option in the round-
robin choice and thus spreads any new data between the new number of consumers.
However even this newly enabled connection is replayed from disk instead of sending
over the network directly.

5.1.2 Cost Analysis

Making it possible to add vertices to the system during the recovery process can give
an opportunity to speed up recovery time. However, it also increases costs. Using
additional resources in a cloud environment does directly cause additional cost.
Setting up an additional node, including starting up a task manager, takes time.
Furthermore, adding another node causes additional usage of network bandwidth
and could cause a bottleneck.

Due to these issues it is important to consider the cost when deciding whether to scale
out and how many additional nodes should be used. In general, additional vertices
are beneficial when the covered vertices must reprocess a considerable amount of
input but there is still enough input left, so that the startup time does not exceed
the time the duplicate vertex is running, and the duplicate vertex is not idling the
major amount of lease time. Leasing an instance for an entire hour and only using
it to speed some seconds may not be efficient.

However, this would make it necessary to get an idea about the progress of a task,
which is not possible in the initial implementation of Nephele. The Nephele engine
has no functionality to give information of the progress of a job. This is mainly
because it is not a trivial task: A running job consists of black-box user code. It is
not possible to predict the behavior or the running time of such a black box before
it is running. And even during runtime, the behavior can only be considered for the
part of input that has been processed so far.
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Nevertheless, information about the progress of one task are necessary to make a
suitable decision regarding the provisioning of extra machines. Therefore in addi-
tion to the adaptive recovery mechanism the fault tolerance mechanism includes an
approach of progress estimation in Nephele.

Progress Estimation

Progress estimation is not only suitable to be used from the fault tolerance mecha-
nism. It is also a possibility for the user to see unwanted behavior in the system and
thus, spot mistakes in the user code, even if they do not cause detectable failures. A
programmer of a job might have made false assumptions about the data or the be-
havior of third party libraries, that cause an expected long running task to skip over
lots of records or -the other way around- work on single records unexpectedly long.
Progress estimation itself gives the user of the system the ability to spot failures
early.

Progress estimation is not trivial in a system with black-box user code and black-box
data, and unknown data selectivity of tasks. There are too many unknowns for a
clear and accurate progress estimation. Before a job is running the system has no
clues about an average processing time per record for a task. Furthermore there is
no 1:1 relation between input and output records of a task. Even if there was an
indicator for the average processing time per record, it would still be impossible to
make assumptions as the number of records that have to be processed is not yet
known.

Because of theses drawbacks, progress estimation in those systems is usually done
using previous runs of the same job, with either previous productive runs, if the job
is a recurring job, or with sample runs, done with only a part of the actual input.
Obviously the first approach does not work for the first (and probably only) run
of the job, and is therefore not an option in every scenario. The second approach
raises another problem: Finding suitable samples of the input. Choosing sample
data is not as easy as taking the first x MB from the input, as this first part of
the data might not be representative. Finding good samples is an ongoing research
problem[56, 57, 58, 59].

To avoid this issue sample-run based progress estimation approaches often expect
the user to come up with a representative portion of data. This is a convenient
approach for the system designer, but expects the user to be able to oversee the
characteristics of the input data. Considering the context of BigData this is quite
unrealistic, instead the user does most likely give a sample of data that he already
used as example for the programming of a job. In terms of fault tolerance this is a
huge problem, as a fault in the user code does usually occurs because the programmer
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makes false assumptions about the data. The benefit of seeing unexpected behavior
early because of a hint in the programming progress is completely lost in this case.

Another issue with samples is to define their size. The minimum size is usually given
in terms of representatives of the productive input. The main question is: Is the
smallest amount of data enough to do a meaningful sample run. The point here is:
If the data portion or the intermediate data portions are to small, they might be
kept entirely in main memory, and thus give a false assumption about processing
speed. On the other hand, running sample runs with large amounts of data may
take almost as long as a productive job run and not be beneficial. Furthermore, one
single sample run might not be enough to make an estimation, as complex operators
like cross join do not increase linearly with input data size. Unfortunately, it is not
possible to see a non-linear increase with just one job run, it takes several runs to
recognize this behavior.

In order to be able to make an estimation of the progress with the first run of an
unknown job, one must find another solution. A first step to a progress estimation
during the first job run is input-split based progress estimation, which uses the
known size of the input and propagation of progress information in order to make
assumptions of the progress of each individual task.

Before the runtime of a job, the only fix and measurable value is the input of the job.
As the system has to handle black box user code, there is no other information left.
The input of a Nephele job can either be a single file, or multiple input files. However
the size of the entire input is always known before the job runs. The Nephele system
reads the input for a job in so called splits. A split might be a part of or an entire
file of the input. Each individual task instance of the input task is initially assigned
a split of the overall input. Once it has finished processing this split of the input it
requests another split, which is assigned to the task from the remaining splits. Split
assignment is done in a topology aware manner using the topology benefits of the
underlying HDFS system.

This behavior offers great flexibility if some splits are more time consuming to pro-
cess, and other splits are faster to handle. If that situation occurs, the faster task
probably works on more input splits during the job’s runtime. And it can be used
for a new progress estimation technique during runtime, which we call progress
forwarding.

The main idea of progress estimation during runtime is based on the percentage of
input splits processed. The main assumption is: Once a new split is requested, the
already read splits can be considered to be processed. This is of course a simplifica-
tion, as the other tasks might still be working some time on their input splits. The
calculation of the progress reading the input is pushed through the graph, and gives
a hint of the overall progress for an individual task. Once the progress information
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Figure 5.3: Estimated progress

has reached the output tasks, this information can be considered to be the progress
of the overall job.

This progress information is added to the TransferEnvelopes at the input tasks.
Every time an input task requests a new split, it considers all assigned splits to be
processed and calculates the progress as the percentage of the processed data to the
overall input size. Then it receives its next split. While processing the split, it adds
the calculated progress information to the outgoing data at each output channel. A
consuming task that receives a TE with progress information takes this information
to calculate its own assumed progress. As every instance of the input tasks adds
progress information to their output, every consumer receives progress information
over each input channel. All progress updates from a tasks input channel are saved,
and an average of all received input channel progresses is calculated. The resulting
average is considered to be the progress of this task.

Imagine a task with three predecessors. Initially all progresses are seen as 0%. If
it receives a progress information of 25% from one predecessor. The task now has
25% of one of its three inputs processed, and its overall progress is estimated to be
about 8,3%. If it receives a 25% progress information of all channels, its progress
is estimated as 25%. If it then receives 50% from one of the channels its progress
calculates to 33%. The estimated progress is then added to outgoing data and
sent to the consuming task, which also calculates its progress and propagates the
information further. Figure 5.3 shows this scenario in an execution graph.

Note that because of the reading behavior (A task first reads all available data from
one channel before it chooses the next channel that has data available.) it is possible
that a task has a progress of 100% at one channel but 0% at the other channels.
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Also, taking the progress of all predecessors and calculating the average considers
slower paths in the graph into the progress estimation. Furthermore, it may be
possible, that due to calculation of average, the progress is calculated as 0% even
though data has already been received. These 0% progress events are ignored and
not propagated to the consuming tasks.

The main assumption of this approach is that if the output task receives the infor-
mation that they have received a percentage of their input this percentage is equal
to the progress of the job. However, it is not safe to translate this information
directly to processing time, as the processing time between two records can vary
drastically. If the first amount of data does not come through a filtering function,
processing time of the first amount of data is notably shorter than for the rest of
the data. Nevertheless, the progress propagation approach is self-regulating. If the
next progress update is received later or indicates a smaller progress for a similar
time interval, the estimated time is adapted.

But independable of the overall runtime of a job, this approach has the benefit, that
it works from the first run, and that it leaves progress information at every single
task in the job. During the adaptive recovery, it is unimportant how long the overall
job runs, but important to have a hint of the considered progress or to be more
accurate the amount of work that needs still to be done.

Evaluation of Progress Estimation

The evaluation was done on a sample-run-based approach and on the progress for-
warding described above. The sample-run-based approach expects the user to come
up with a suitable sample of the input data. For the evaluation we used the first
500 Files as a sample. For the OCR job that was about 462,31 MB from the overall
2,60 GB of input. During the sample, information about the average runtime of
each task per record were collected.

To estimate the job runtime the system detects the critical path in the job. A job
path is a path through the DAG from the input vertex to the output vertex. One
job can have multiple paths, if it splits the data flow somewhere. For the runtime
estimation it is necessary to consider only the longest running path. The algorithm
for the detection of the critical path using a breadth-first search. The search starts
at the jobs output vertices and checks for the vertex with the latest finishing time.
Form the specified vertex, all predecessors are checked for the one with the latest
finishing time and so on.

During the runtime of the job only the critical path is considered for estimation. The
runtime is then estimated with the average runtime of the sample run in ratio to the
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input data. The input and runtime ratio are expected to be straight proportional.
The estimated runtime is update with the actual runtime of a task if it is finished.

Figure 5.4 shows the calculated remaining runtime compared to the actual remaining
runtime at particular points of the job runtime for the OCR Task.

For comparison the runtime estimation for a sample run with the ideal data set i.e.
the complete input is given in figure 5.5.

Two things are noticeable: First the difference in the estimation, depending on the
input sample. This shows the importance of the quality of the sample. The second
conspicuous thing in the results is the distribution of the estimation points. One
estimation is done during job start, the next just shortly before the end of the job.
This is because the sample run contemplates one pipeline of the critical path and
can therefore only update its estimation if one pipeline is finished. As the OCR job
consists of one pipeline the estimation is just updated at the end of the runtime.

The deviation of the estimated runtime was about 13% for the sample of about half
of the actual input.

The main benefit of the sample run based approach is that it is suitable for jobs
that contain pipeline breakers. That is why we added tests for sample runs with
pipeline breaking jobs.

As the files have roughly the same size, the number of processed records is a good
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indicator of the progress of a task. In order to compare the calculated progress to
the actual progress we look at the processed records for each calculated percentage.
The graph 5.6 shows the calculated progress compared to the actual progress. The
calculated progress at each task differs only up to 4% from the actual progress.
Based on the percentage of the output task we calculated the remaining runtime of
the job.

Figure 5.7 shows the calculated remaining runtime compared to the actual remaining
runtime at particular points of the job runtime. The points of the calculated runtime
graph describe measurements the moment the writer task announces the progress,
starting with 5% in 5% increments. The calculated remaining runtime differs only
up to 23 seconds. The first information about the jobs progress is received 92 seconds
after the job started. Within the first quarter of the job, the system is able to make
an estimation about the remaining runtime, which is accurate up to about 5%.

Cost Model

Assuming there is a more or less precise progress estimation at a failing node the
adaptive recovery can use this information to decide whether to use a backup node for
the failing node. As mentioned above, adding another node to the job needs startup
time and may add additional network usage. In the specific recovery scenario the
network bandwith is only an issue as long as the original and the backup node are
both sending data. With consumption logging and the possibility of a forwarding
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barrier, the recovering node does not send anything over the network until the
recovery is finished. Using a backup node only during that time shutting it down
once the failed node is back at work would not change the bottlenecks of the system.1
Therefore, the start up time is the lower bound. If the failed task has only to redo
work that is equal to or smaller than to the startup time of a node, it is not beneficial
to add another node.

The other question is, where the additional nodes are coming from. In a fixed cluster
with idling nodes this is not an issue. However, in a cloud environment, where the
system might have to provision another machine and add cost, to the job processing
cost, it can be.

Even in an IaaS Cloud environment it is possible to have idling machines available.
As the payment is usually done hourly, a task finishing before the payed hour is
reached, gives the opportunity to use this extra spare time to speed up the recovery
process, and to unprovision it when the time slot ends.

For any other scenario the user has to provide the information about the money he
is willing to put into the faster completion of the job. If the cost boundary is not
reached, it is possible to provision additional nodes for this task, probably using a
cost efficient solution like Amazon Spot instances. The system would then only use
additional machines if they are under a specific price at the point of failure.

5.1.3 Implementation

The implementation of the adaptive recovery concept is linked into the recovery logic.
The recovery for a failed vertex can duplicate the failed vertex during its restart, if
it is a direct follower of a materialization point. The evaluation of the number of
additional vertices was based on a configuration value for the number of duplicates.
This expects the availability of the number of instances, that was configured. If the
same number of instances is not available, the system just duplicates to the number
of available instances. In the cluster mode of Nephele the available instances are
a fixed set of nodes that have to be set in the configuration. The Cloud mode of
Nephele, that offers support for Amazon EC2, can however lease additional resources
using the EC2 API2. In this case it is necessary to differ between two scenarios: The
system still has nodes available, that idle but did not extend the lease time yet, and
the system does not have any free instances.

In the first case, the EC2Manager of Nephele has a list of so called FloatingInstances.

1Note that this is of course always with the assumption, that the job is configured in the most
efficient DoP regarding to network and CPU bottlenecks.

2http://docs.aws.amazon.com/AWSEC2/latest/APIReference/Welcome.htm
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These instances are allocated instances that idle and are not assigned to any task.
It is possible to use these instances for tasks until terminated. Every instance has
a lease period that can be configured by the user. The default is one hour as this
is the charging period for EC2. The instances are used as long as they are assigned
to a task. Once the work is finished and an instance is no more assigned to a task
it is converted to a floating instance if the lease period is not yet exceeded. If the
instance is leased for the lease period it is terminated.

If the Cloud manager has floating instances, they can be used for duplication. It is
the perfect opportunity to use the idling computation power for the speed-up of the
recovery process. If no idling instance is available at the manager, the Cloud manager
has the possibility to allocate new resources from the EC2 Cloud. Allocating the
new instances causes additional fees to the user. In order to avoid that the instance
idles most of the time, the duplication is only done if the estimated remaining work
time of the failed vertex is longer than the half lease period.

The recovery process checks therefore if the system is running in Cloud mode. If so,
it checks if any suitable floating instances are available for the duplication. If not,
it checks for the estimated remaining runtime of the failed task. If the remaining
runtime is at least half as long as the configured lease period it starts a duplicate
vertex. Starting the new vertex automatically triggers the allocation process in the
Cloud manager. The Cloud manager requests a new instance from the Cloud.

Each duplicate vertex is created in the same way, as a vertex would usually be
started up in the initial start. It is created and added to the group vertex. The
difference is that the connections of the vertex have to be set up during starting. In
the initial start of a job, the execution graph is constructed all at once. It contains a
group vertex for each task, and an execution vertex for each parallel instance of the
task. The connections between those tasks are set up during creation. The duplicate
vertex must add those connections during duplication. This consists of two steps:
One is to add these connections in the execution graph, to construct the abstraction
of those connections and enable the system to iterate through the graph using the
edges. The second part is to register the connections to the routing service. The
routing service needs the information about the newly triggered connections to be
able to route the data over the network as needed.

During recovery the ExecutionGraph is updated and all necessary edges are added
to the graph. This includes adding the channels to the input and output gates of
the successors and predecessors. Adding a channel to the OutputGate of the data
produced, i.e. the task that replays from the materialization point causes any newly
arriving data to be distributed between the new number of channels. The writing
to the channels is done in round robin manner, and now includes the new channel.

As the data is written to the materialization point before it is sent over the network,
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no data is lost, even though the consuming task is not yet running. As the task now
distributes the data between all channels, it creates a new materialization point for
the new channel and writes the data into the new files. Once the replay task for
the task is started, it replays all materialization points and the newly duplicated
task receives its input. The registration at the routing service is updated during the
start of the replay task. The successors of the failed and duplicate task, wait for
any channel to provide data. Once the new vertex is started, it sends data to the
follower where it can be read.

Each vertex is only duplicated once. If it fails another time the duplicating algorithm
is not triggered again. The same goes for duplicated vertices. A failed duplicated
vertex does not duplicate. This could otherwise lead to a huge growth in resources as
an already duplicated vertex has a vertex that takes up work. It does not make sense
to duplicate it again. Think of a persistent fault that occurs on the same record over
and over again. Duplicating the vertex more than once would not add performance
to the system, instead it might cause bottlenecks. And as a duplicated vertex is
just running for boosting the performance of another vertex it is not beneficial to
duplicate it, even in case of a failure.

Once a vertex is duplicated it runs until the job is finished, to avoid additional
overhead and possible data loss. However, for the sake of recovery performance
boosting, it would be sufficient if the duplicate task is only running as long as it
takes the failed vertex to finish recovery and rollback to its pre-failure state.

5.1.4 Evaluation

For the evaluation the first question to answer is, how beneficial is it to use one or
more duplicates for a failed task, considering a well-balanced job. The job used was
the OCR-Job described in section 3.5.4. To find the right degree of parallelization
the job was run with different DoP settings a number of times to compare the
runtime. Figure 5.8 shows the results of the experiment, it started with 16 OCR
tasks and 4 PDFCreator tasks. The number of PDFCreator tasks was increased by
one step by step. It shows the lowest runtime at 16 OCR tasks and 7 PDFCreator
tasks. Thus, this degree of parallelization was used for the next evaluations.

For the next step of evaluation, the job was run and a PDFCreator task was killed
shortly after it started running. The system was configured to use different numbers
of duplicates for the failed vertex. Figure 5.9 show the results for runtime of the
setups.

The results show that adding a duplicate on recovery, reduces the runtime com-
pared to the recovery scenario without a duplicate. The average runtime with one
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duplicate vertex is 92% of the non-duplicate runtime. However, adding more than
one duplicate does not improve the runtime, the runtimes stays at 92% of the run-
time without duplicate. That confirms the hypothesis discussed in the beginning of
the section. As can be seen, adding a duplicate vertex reduces the runtime. Adding
more than one additional vertex does not reduce the runtime of the job further. The
measurements also show, that the runtime in case of a recovery, is still noticeably
longer then in a fail-free run. The recovery process and the re-execution of the input
of the failed vertex add overhead to the job runtime, even with an additional vertex.

5.2 Offset Logging

Instead of using additional resources to optimize the recovery process further, the
most intuitive approach would be to avoid the reprocessing of data that has already
been sent to the consumers. As described before any task has to be considered to
be stateful if not otherwise indicated. The only state to which a task can be rolled
back is its initial state, and any restarted task has to be re-executed from the first
record, to ensure it reaches the same inner state. Nevertheless, this is unnecessary
for stateless tasks.

If a task is indicated to be stateless, it could go on to process the data not yet sent
to the consumers and thus ignore any previously treated data. This method requires
the matching of the output to the input.

After a restart of a failed task, the successors of the task can inform the task about
the next expected envelope. With consumption logging, the failed task can avoid to
send any data over the network that the successors have already received. Neverthe-
less, it still reproduces the data. In order to avoid replicating that data unnecessarily,
it would be necessary to know the position in the input stream to start processing
to produce the next needed envelope. As there is no 1:1 relation between records or
the in- and output envelopes it is not as easy as skipping the same amount of input
envelopes. Instead, the processing must restart at the record after the last record
fitting entirely in the previously filled envelope.

This record or a part of it is the first amount of data that was not processed by the
following tasks. There are two scenarios to differentiate: The last processed record’s
output could fit entirely in the previously sent envelope, or it did split into several
envelopes. In the first case, the skipping would be relatively easy if the task keeps
track of the last record processed: As the envelope fills up, it can go on handling
the record after this, and it is not necessary to think of any order, as no task has
ever received the reproduced data.
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5.2.1 Channel state

If the output data did not fit entirely into one envelope, skipping is not as simple.
If the output of a record splits between envelopes, the output channels have a state.
The channel keeps the output in the serialization buffer until it is able to write it into
a buffer of an envelope. The recovery process has to reproduce that state. It must
guarantee that the remaining data is in the next envelope that the task sends to the
corresponding consumer. The consuming task’s input channel has already started
the deserialization with the first bytes that contained in the last envelope. The
deserialization only works correctly if the missing bytes are the next bytes received.

The state of the channels depends on the record that the task had processed as it
has sent the last envelope. Therefore, this record has to be processed once more.
The recovery logic must discard all output bytes that the task has already sent over
the network previously to the crash. It is thus not enough to log the input record
number to skip the head of the stream correctly. The log must also contain the offset
of the output that the channel could fit in the last envelope. Note that the recovery
has to take care of each channel individually. Each of the multiple output channels
could have contained data during the crash. During recovery, the task thus has to
reprocess any record, that produced an output which stayed in the channel buffers.
The recovery can, however, skip any record in between.

If the log holds all this information, it is possible for a stateless task to skip the
previously processed data after a restart. This skipping may lead to a significantly
reduced recovery time, as the failed task does not have to reprocess the head of
the input stream. Furthermore, this offset logging method opens the door for using
ephemeral materialization points in stream processing. One main assumption for the
materialization points so far is that the engine does batch processing. The system
gets a finite input. If the engine processes an infinite stream of data, this would have
the consequence that the materialization points grow infinitely. This is, of course
unacceptable.

With the offset logging technique, it is possible to develop a sliding window mate-
rialization point. As each task has a translation table of its output envelopes to a
record number, an additional log with translation between record number and input
envelope would enable a task to push acknowledgments up the stream. A task that
writes a materialization point could acknowledge all input records which have their
output fully represented in the materialization point. This acknowledgment can
then be translated to input records at the next task and so on. A materialization
point up the stream, which get acknowledgments for an entire envelope, can remove
it from the materialization point.
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Figure 5.10: Expected Envelope Interaction

5.2.2 Implementation

As described above, the offset logging requires a stateless UDF. However, the system
has a state even with stateless UDFs. For one task, The necessary information to
log is

• The sequence number of the outgoing envelope

• The ChannelID of the log

• The byte offset of a spanning record

• The record offset for multiple output record for one input

• The input record that is currently processed

• The InputGateID for the input

The sequence number of the envelope is provided by the OutputChannelBroker,
which creates new envelopes. The byte offset of a record is necessary in case a record
spans over envelopes. If a record does not fit entirely into one envelope it is split.
The consumer receives the first part of the record in one envelope and waits for the
next envelope to contain the second part of the record. To create the next expected
envelope correctly, the recovery must ensure that the next envelope contains exactly
the second part of the record. Therefore, the log has to save the number of bytes that
have already been shipped in the previous envelope. This information is received
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from the serializer. The Nephele system provides a SpanningRecordSerializer
that takes care of serialization of the record and writes it into the envelope’s buffer.
If a record does not fit entirely into the buffer of the envelope the offset is logged,
when a new buffer is requested.

The record offset for the number of output records is fetched from the OutputGate,
it counts the number of records that are emitted. The InputGate resets the counter
every time it pushes a new record into the UDF. For each log entry, the current
counter at the output gate is saved. The InputGate provides the information about
the currently processed record and the GateID.

A new log entry is created every time the serialization requests a new buffer. Re-
questing a new buffer is equivalent to creating a new envelope, as each envelope
contains exactly one buffer. At the creation of a new envelope, all described in-
formation about the previously filled envelope are available and can be logged. To
do so a log entry is created as described above. The entry is passed to a writing
thread, that has a log file opened for each execution vertex, and appends each newly
incoming entry.

With this information it is possible to set up the failed vertex and its environment
in the same state as it was before the failure without the necessity to re-execute the
entire input. Instead the recovery logic is able to skip all input that is not needed
for the creation of the next expected TransferEnvelopes.

As each output channel creates envelopes independently, based on the amount of
data to transmit, each successor of the failed vertex could have received a different
number of envelopes. Consider an input stream with records that produce drastically
different output sizes. An output for one record might have to span over several
output envelopes, whereas for another channel the output for several records may
fit in one envelope. The first channel will then have a higher sequence number, but
the output of the second channel depends on input data that comes in the stream
before the big record. Recovering the state of the vertex is thus not as easy as using
the log entry with the highest sequence number. Instead, the last log entries of all
output channels have to be checked for the input record number. And the stream
can only be skipped up to the smallest input record number in the logs.

Reading the Log

After the failed vertex has restarted, it tries to find an output log file. If a log
file exists the data is loaded. The vertex, then asks its successors for the sequence
number of the next envelope it is expecting from the vertex. The successors then
answer the request with an UnexpectedEnvelopeEvent. This event would usually
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Figure 5.11: Record offset

be triggered during restart, to skip the output envelopes, as described above. With
the offset logging, the event is used to hand the information about the next expected
envelope to the offset logging functionality. The logger then finds the input record
number, which indicates the first record that is needed to recover the previous state.
This record is the first one fed to the UDF. To ensure that the output data is
distributed in the same manner as before, the ChannelSelector has to be set to
the channel that received the first output record produced by the input record, in
the first run. Afterwards the channel selector runs in the same manner, as before,
which is a round robin selection of output channels.

The recovery of the state is achieved by just running the UDF from the found record.
The consumer may have already received parts of the record’s outputs or even the
entire output of some records. Therefore, the records have to be processed, but the
recovery logic must keep only the parts of output that are necessary to rebuild the
state.

For case that the UDF produces several output records for one input record, the
RecordOffsetTotal keeps the information if some of the output records have to be
skipped. After the vertex skipped not needed input records the output gate skips
the number of output records that the log entry saved to be skipped. The output
channels then receive the output records, and may skip parts of the received output
record if it has sent parts of the record to the consumer before failing. Figure 5.11
shows the discarding of records for a record offset of 3. The first three records of the
output for record R1 are discarded, the task starts sending records from the fourth
record on.

After all channels have finished the recovery according to their log entries, the re-
covery is finished and the processing of data continues normally.
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5.2.3 Evaluation

The evaluation of the offset-logging is based on runtime measuring. It is supposed
to show that the logging is functioning correctly, and whether it yields performance
increase in case of a failure. On the other hand the evaluation has to prove the
overhead of the logging technique in case of a failure free run. This is supposed
to answer the question whether it is beneficial to use the offset-logging. Similar
to the other evaluations it tries to answer the question: Does the technique gain a
runtime reduction in the failure case that is big enough to compensate for possible
runtime increases during non-failure runs? This evaluation is run with a job that
uses integers, to create fixed-size records. This allows to fine tune the position of
failure and recovery within the stream.

To be able to test the different scenarios described above the evaluation used a simple
job that processes integers and lists of integers. The job uses a file of random integers
as input. The integer values are stored in lists of 2048 integers, and sent to the
consuming vertex. The ListFilter vertex takes an integer list, sorts it and removes
every integer that is bigger than 750000 from the list. This removal of integers
creates output records of different sizes. This is necessary to test the behavior of
the output channels described above.

The next task takes a list and splits it into single integer records. This covers
the case that one input record produces several output records. Note that the
number of output records for one input record is not fixed either, as the filtering
of the list causes lists with different numbers of output records. The successor of
the ListSplitting task takes the integer records, doubles the integer and sends the
result as an integer record to the OutputWriter which writes all integers to a file in
persistent storage.

In contrast to previous evaluations, the failure for the evaluations are triggered from
the tasks. This is necessary to produce the different described scenarios reliably.
Instead of killing a task after a number of milliseconds of runtime, the tasks count
the number of records they have received, and if they are marked to fail after a
particular record, the tasks throw a runtime exception. This allows to produce
all scenarios that have to be tested. Each marked task only fails once during one
runtime of a job, to allow the recovery logic to recover.

The size of an envelope determines the number of envelopes that are produced for
a given input data size and thus the number of offset logs that have to be written.
In the job described above that mostly exchanges integer records that have a fixed
size of 8 bytes the size of the envelope also decides, how often records have to be
split between two different envelopes. Any envelope size that is a multiple of 8
bytes, eliminates record splitting at channels that exchange pure integer records.
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Figure 5.12: Runtimes for crashes before logging

As described above, the system must replay the state of the channels in case of
split records, a lot of split records could therefore increase the recovery runtime
noticeably. Thus, the size of the envelopes is also a factor that the evaluation has
to cover.

Job Runtime

For the comparison, the evaluation runs with two test setups. In the first setup, the
system crashes directly after writing a log entry. In the second configuration, the
system crashes just before it writes the log entry. These two setups are supposed
to observe the difference in runtime decrease for a recovery for the last processed
envelope and the fast-forward only up to the previous envelope. Both scenarios are
compared with the runtime of the initial roll-back recovery.

Additionally, the evaluation has to cover the overhead of the method. The runtime
of a job run without failure is compared to one with the logging and without. An
increase in runtime for the logging method indicates the overhead of the offset log-
ging. The logging approach aims to be a lightweight solution and the prediction is
that the logging overhead is negligible in comparison.

Figure 5.12 shows the arithmetical mean of job runtimes for the job runs for a
crash before logging. The “No crash" bars show the difference in job runtime if
no failure occurs. These bars are, on the one hand, an indicator for the overhead
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Figure 5.13: Runtimes for crashes after logging

of the logging technique in general, and a reference value for the increased runtime
during recovery. As one can see the average runtimes for non-failure runtimes do not
differ. The overhead for the offset logging is negligibly small. The next bars show
the different runtimes for a fault at ListSplittingTask after the stated number of
records. The measurements show that a crash in the earlier stage of the processing,
in this case after 1000 records, cannot be faster recovered with the offset logging.
However, it also shows that the approach does not add additional runtime. As
expected the fast-forwarding with offset logging is especially beneficial if the fault
occurs late in the execution. The recovery without offset logging has a constant
increase in recovery time with each step. The recovery time for offset logging is
almost constant, no matter when the failure occurs. The offset logging shows a
speedup of 82% compared to the classic rollback recovery.

Figure 5.13 shows the measurements for a worst-case crash, right before the system
writes the log entry. As the result of the reprocessing of an entire envelope, the
runtime for the offset logging has now increased in comparison to the previous test.
However, the runtimes are also constant between the first steps. The offset-logging
runtime for the crash at the last record is slightly smaller; this is because the last
envelope is only partially filled, and the system does not reprocess a full envelope.
Considering the crash at record 73000, the offset logging shows a runtime decrease
of 43% compared to the classic rollback recovery, even though the fault occurred
right before the log entry was written.

As mentioned before, the size of the TransferEnvelopes may have a significant
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impact on the overhead of the logging technique. The smaller the user defines the
buffer size, the more log entries the system has to write. More I/O operations
can slow down the logging and add additional runtime. To see the effect of the
TransferEnvelope size, the test runs without a crash run with significantly smaller
buffers of 128 bytes. Figure 5.14 shows the arithmetic mean of 150 executions,
including failure bars. The measurements show that the slow down, caused by the
offset logging is about 0.1%. However, the deviation between single runs is much
higher with offset logging. This is most likely caused by the I/O operations, and
inconsistent hardware access time.

5.3 Related Work

There is some related work in the context of elastic scaling, that tries to find the
sweet spot in the degree of parallelization. This work is usually placed in the scenario
with changing workload over time and scaling during runtime. Even though they
aim to optimize the DoP during runtime not during failure they head in a similar
direction.

As described earlier, Warneke et al. implemented a bottleneck detection algorithm
for parallel data flow system. It is based on measurements of the network throughput
and the CPU usage. They differentiate between CPU and Network I/O bottlenecks
and adapt the degree of parallelization manually to find the sweet spot with the
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lowest number of bottlenecks. They also show that adding resources beyond that
sweet spot is not beneficial.

There are several approaches for elastic scaling in stream processing environments,
where the degree of parallelization is adapted based on the workload. Gedik et al[60]
introduce a dynamic scaling of the number of channels depending on the workload
and the availability of resources. They handle stateful tasks using state migration.

Lohrmann et al[61] use elastic scaling and scale out to enforce latency guarantees
in stream processing engines. However, those techniques are run to optimize the
engine during runtime, based on the workload. They could be used for optimization
of the engine, which is out of the scope of this thesis. The changing workload, due
to the recovery of a node is described above and does not have to be calculated
dynamically.

5.4 Summary

This chapter introduces two methods for recovery optimization in case of stateless
tasks. If the system consists of stateless tasks, it is possible to use optimization
techniques that reduce the job runtime in case of recovery. If all tasks have to be
considered to be stateful, the fault tolerance technique of ephemeral materialization
points includes rolling back the task to the last known state and reading all necessary
input to come back to the state in which the fault occurred. It is not possible to
change the degree of parallelization or to skip input data. This is different for
stateless tasks.

The degree of parallelization of a stateless task can be changed without problems.
This fact leads to the idea of adaptive recovery. Adding resources during recovery can
reduce the runtime. However, the results in section 5.1 show that it is only beneficial
to add one additional resource during recovery (considering a well-balanced degree
of parallelization for the tasks).

Another optimization technique is the introduced offset logging. Offset logging en-
ables the system to fast-forward the stream during recovery, avoiding the recompu-
tation of unneeded records. The reprocessing of the entire input stream is necessary
for stateful tasks, as the task has to reach the same state again. A stateless task
can continue processing anywhere in the stream and produce the same output data.
It is thus beneficial to skip the head of the stream, if the successors of a failed task
have already seen the output.

To be able to skip the right amount of input data, it is necessary for the task to know
which of its input data is already represented in the data that its successors have
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received. The task has to save information about the input records and which output
they produce. The offset logging mechanism takes care of this. It logs the outgoing
transfer envelopes and the input record that is processed when a new envelope is
created. This way, the system does not write log entries for every record, but for
a transfer envelope that may include several records. A failed task can then ask
its successors for the next expected envelope and skip an input that is not needed
to process the expected data. The evaluation shows that this lightweight logging
solution offers a great decrease in recovery time.
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This thesis covers fault tolerance mechanisms in parallel data flow execution engines.
The main focus of this thesis is to use intermediate data that the system has to
produce during runtime to achieve a fast recovery rollback in case of failure.

Failures are especially common in cloud environments, as they consist of many com-
ponents that may fail. Faults lead to the re-execution of jobs, with additional cost
for the user and additional stress to the environment for using additional com-
puting resources. A fault tolerant data flow system should be able to reduce the
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reprocessing to a minimum to avoid those extra costs. This thesis introduces three
main challenges for the fault tolerance: Covering multiple failure types, low cost,
and transparency. The following sections recapitulate the mechanisms, introduces
future work and discusses how they approach reaches the defined goals.

6.1 Recapitulation

This section recapitulates all described methods for fault tolerance in parallel data
flow systems. The fault tolerance mechanism in this thesis aims to offer a broad fault
tolerance with small overhead, and high transparency to the user. Each subsection
covers a previous chapter and summarizes the idea and findings of the approaches.

6.1.1 Hardware-Faults

The term Hardware-fault stands for faults that are transient. A transient fault
occurs just for an endless period of time. This makes these faults hard to detect
but easy to recover from. A system can recover from a transient fault by restarting
the system on the same or on different hardware. As the fault does not persist over
time, the restart can enable the system to run smoothly afterwards.

In the context of data flow processing, a restart of a component of a system causes the
entire running job to restart, because all other components in the system depend
directly or indirectly on data of the restarted node. In the data flow processing
system, where the nodes pipeline data between them and not saved to persistent
storage, all data has to be reprocessed once one node has to restart. Unless the
system runs in an at-least-once semantic any node that has received data from the
failed node has to restart to avoid duplicates. This leads to a rollback propagation,
where one failing node causes all other nodes to restart. Obviously, this is not
an ideal behavior for fault tolerance. Even though the system might be able to
restart a failed job automatically, it is a poor fault tolerance mechanism regarding
transparency and supplementary cost.

Therefore chapter 3 introduces the idea of ephemeral materialization points. Those
ephemeral materialization points take advantage of the intermediate data the tasks
in the job produce. They can save the intermediate data to persistent storage, to
use it for recovery in case of a failure. The intermediate data serves as input for
the inner task of the job and can thus avoid the restart of the entire job. However,
there is a reason why data flow systems usually do not save intermediate data, as
it slows down the system and takes up disk space. Saving all intermediate data
for a job is insufficient. The key to economic fault tolerance is to decide where to

122



6.1. RECAPITULATION

save intermediate data, and where to avoid it. This means to create materialization
points at a spot, where the amount of data is small or at tasks that are important
for recovery (e.g., for a task that splits the data flow).

One main challenge is to find those spots, without any knowledge of the job before
it is running. As the tasks of the job are black boxes for the engine, it is not possible
to make assumptions about the behavior before the job is actually running. Instead
of using a sample run to detect the tasks that should materialize data (which would
add runtime), the ephemeral materialization points hold the output data in memory
and monitor the task during the production of this output. Once the memory is full,
the materialization point decides either to write all data from memory to persistent
storage and materialize all upcoming output or discards the data and does not
materialize anything else. During materialization and the monitoring phase, the
task still pipelines data to the data consumer. The materialization point writes
data and afterward sends it over the network immediately.

This ephemeral materialization point technique offers a fault tolerance approach
that is fast in failure-free case, as the tasks still pipeline the data and materialization
points do not occur at all positions in the graph. As the algorithm aims to save data
only at locations where the intermediate data is small, the approach is also space
saving compared to another method, where the system would collect all intermediate
data.

Ephemeral materialization points enable the system to recover from hardware fail-
ures without restarting the entire job, while being fast and space-saving. The eval-
uation shows that the usage of ephemeral materialization points does add runtime
overhead in a neglectable amount while enabling a fast recovery in case of a failure.

6.1.2 Software- and Data-Faults

After the introduction of a fault tolerance mechanism for Hardware-faults, the next
chapter covered software and Data-faults. Software- and Data-faults are persistent
faults, in contrast to the previously described Hardware-faults. A persistent fault
does not vanish over time, it occurs every time the job is started in the same config-
uration. It is therefore not suitable to just restart the whole or parts of the system,
in the manner described before. The restarted job runs into the same fault every
time it is restarted. This only leads to additional runtime, while the system tries
several restarts, until the job finally fails.

The two types of faults deeply associate with each other. A Data-fault is a caused by
a flaw in the data, which causes the user-defined function to fail. These faults occur
apparently because the programmer made assumptions about the data. Accordingly,
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the user code does not handle exceptions in the data that do not comply with
those assumptions. This is indeed a bug, which is the definition of a Software-fault.
However, the two types of faults appear differently to the system.

A Software-fault is a fault that the system is not able to detect. A Software-fault
does not crash the UDF or machine and does not lead to an exception. From
the viewpoint of the system, a job with a Software-fault runs smoothly and it can
thus not mark the job as faulty. The user, however, may detect the fault in the job,
based on wrong output data. In contrast to that, the Data-faults do cause exceptions
and are therefore detectable by the system. Nevertheless, the Data-faults are still
persistent. The system cannot recover from a Data-fault by a simple restart.

If the system wants to avoid the failure caused by a Data-fault, it can only make
sure that the UDF does not get the deficient data in its input. If the data contains
only a few flawed data sets, it may be possible to run the job, even though on a
reduced input. Section 4.1 introduces the record skipping technique. This approach
identifies the record that the UDF processed during a failure. If the UDF fails at
the same record after the restart, the system skips the record on the next restart.
This changes the output, and this technique might not be appropriate for any job.
It is, however, an input checking, which the programmer of the UDF may have
implemented the same way if he anticipated the possible flaws in the data. With the
record skipping method, it can be possible to finish a job run that would otherwise
fail. As mentioned, it is not a suitable technique for any job, and the user has to
explicitly configure that the system is allowed to use the record skipping method.

For Software-faults, it is impossible to offer classic fault tolerance. As the system
is not aware of the fault, it can naturally not recover from it. Only the user can
correct the error in the code send an updated job to the system, that does not
contain the error anymore and leads to a fault-free job run, with the correct output.
The system is not able to provide fault tolerance in this scenario, but it may speed
up the re-execution. Section 4.2 introduces a possibility to re-use materialization
points of previous job runs, if the user indicates the similarities of two jobs. If the
programmer updates parts of a previously executed job, and give the information
that the new job is an updated version, the system may use materialization points
from previous job runs.

This permits to speed up execution time. If the execution engine reuses material-
ization point, it is equal to skipping any execution previous to the materialization
point. The job may not have to execute every task, but the task after the mate-
rialization point the system found to be suitable for memoization. This technique
can also be useful in a nonfailure case, where the job changed programmatically.
It might even be helpful for upper layer optimizations if different job versions are
committed.
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The evaluations show that the approach can enable the system to recover from
faults, that would otherwise cause a fault of the entire job. The overhead of the
memoization technique is negligibly small. The overhead of the record skipping
approach however cannot be measured, as the job would not finish without the
technique.

6.1.3 Recovery Optimization

The introduced ephemeral materialization points offer a fast fault tolerance for tran-
sient faults. It is fast in comparison to a complete restart of a job, and it is faster
than saving all intermediate data. However, it is still slower than a job run with-
out failure. This is because the restarted tasks must reprocess all input data, even
though the successors might have already received the outputs of the head of the in-
put stream. This reprocessing is necessary because the system allows stateful tasks.
If a UDF has an internal state, it is required to reprocess the entire input to reach
the same inner state again, before processing the next portion of input data.

If a job contains stateless task, it may be possible to speed up the recovery process.
Chapter 5 introduces two techniques that can reduce the time the system needs to
recover from a failure: Adaptive Recovery and Offset Logging. The former introduces
new resources to the execution, which take up work, that would pile up during
recovery. The latter keeps track of what parts of the input a task has already
processed and send to the consumer.

Chapter 5.1 discusses the adaptive recovery technique. Assuming the job consists
of stateless tasks it is possible to add additional resources and spread the work of a
task to another task instance. As described before, the recovery always restarts the
failed task (and if necessary, its predecessors that did not materialize) from the first
record of the stream. The failed task has to reprocess all its input data even if its
successors have already seen the corresponding output. It processes the data, and
discards every output that the successors have already seen. This is even necessary
if the task is stateless because the task cannot set the output into proportion to
the input, the consuming task may be able to tell the failed task, which output it
expects next, but the task cannot decide which part of the input it can skip from
this.

Therefore, the failed task redoes previous work, during recovery. At the same time,
the new work piles up in the materialization point. Adding additional resources
during recovery, that steal the work form the recovering task can speed up the job’s
recovery time. If the system adds another task instance, it does work which the
failed task should do but cannot because it is busy recovering. The measurements
show that the adaptive recovery method is only suitable for one additional vertex. If
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the system adds more than one vertex, it does not speed up recovery more, because
it exceeds the optimal degree of parallelization.

The recovery logic adds resources if it has an idling resource available. If the user in-
dicates the system is allowed to provision additional resources, it provisions resources
if the estimated work the additional vertex takes at least one lease period. This es-
timation is done with a technique called progress forwarding, that is introduced in
section 5.1.2.

Even though the adaptive recover technique can reduce the recovery time for state-
less tasks, it is dissatisfactory that the failed task has to reprocess data, just to
discard the output afterwards. Section 5.2 introduces a method that aims to handle
this drawback.

Considering the failed task is stateless, it is per se not necessary to redo previous
work. The task does not hold an internal state, and must not reproduce it with the
reprocessing of all input data. However, as described above the task cannot set the
output in relation to the input. If a successor informs the task, that it expects the
120th envelope next, the task does not know which input records it can skip.

With the offset logging technique, this becomes possible. It logs the current input
record, for every sent output envelope. Additionally, it has to save information
about the state of the output connections. Even though the task may be stateless,
the wrapping environment does have a state. With this information, a task that
restarts is able to calculate which parts of the input it can skip. Then the restarted
task can jump over the input without reprocessing it.

This technique is a lightweight recovery optimization for stateless tasks. The mea-
surements show that the offset logging adds a low overhead to the system. At the
same time it provides a great opportunity for a fast recovery.

6.2 Future Work

The work presented in this thesis provides a lightweight fault tolerance technique
for pipelined data flow systems. However, there is still room for improvement and
future work. Two open issues are stateful tasks and stream processing.

Even though the general ephemeral materialization point fault tolerance works for
stateful tasks, some key features are not usable for them. The system cannot monitor
them like stateless tasks, it cannot scale unconditionally, and it always has to rollback
entirely to reproduce their internal state. Stateful tasks are a major challenge for
further optimization of the recovery process.
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One solution for stateful tasks is for the upper layer or programmer to provide ad-
ditional information about the internals of the task. The PACT layer could provide
information about the estimated projection or selection ratio; or the type of task
(Map, Join, etc.) This can help during the materialization decision process. Infor-
mation about the current record could enable the system to use record skipping for
stateful tasks.

Another approach to handle stateful tasks could be to change the materialization
technique in general for those tasks. To avoid rolling back a stateful task to its initial
state, the system would have to save the state of the task, with the materialized data.
Unfortunately saving the state of the task is not a trivial thing. As the programmer
can do whatever he wants in the UDF Java code, the state could, for example,
include files written to disk, and the Nephele engine could not just make a snapshot
of the JVM. Thus, writing the state of a stateful task would either mean to make a
snapshot of the virtual machine it runs on, or to force the programmer to provide a
method that does the snapshot and includes all necessary information.

The second issue, stream processing, depends on this partial rollback for a stateless
task, if a stream processing job contains one. To provide fault tolerance for stream
processing, the system must ensure the materialization points do not grow infinitely.
With the current ephemeral materialization points, the materialization point files
would grow endlessly as long as the system receives stream data. Furthermore,
any task that restarts would reprocess the entire stream. To adapt the ephemeral
materialization point technique for stream processing, the materialization points
have to change from a materialization of the entire output to a sliding window. A
materialization point should only contain the data, that is necessary to reproduce
any unsaved data down the stream. If a succeeding materialization point contains
all data that come from a portion of data in the first materialization point, the first
one can discard it.

The first step in this direction is already done with the offset logging. It enables the
task to set output data in ratio to input data. If it writes its output to disk, it could
be able to acknowledge the input that produced this output. The task receiving the
acknowledgment for output, can ack the corresponding input and so on. Another
materializing task can then remove acknowledged data from its materialization point.
If a job, however, contains a stateful task, it can only work with that sliding window
if it can rollback to a state other than the initial state.

Additionally to that this acknowledgment technique could probably also be used to
indicate a flawed job input record, for a record that causes an inner task to fail. Or
at least curtail the candidate input records.
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6.3 Discussion

The thesis aims to answer one central question.

“ Given the restrains of parallel data flow systems in IaaS Clouds,
how can fault tolerance be achieved in a transparent, fast and space-
saving manner for several types of faults? ”

This section discusses how this question was addressed in the thesis, and if the
provided techniques can fulfill the requirements that the initial problem raises. It
starts with the design decisions that build the basis of the implementations and
discusses each of the three requirements, fault tolerance, transparency, and cost for
each provided approach in this work.

6.3.1 Design decisions

The goal for the design of the fault tolerance approaches was to avoid changes in
the internals of the general system design wherever possible. If the fault tolerance
mechanisms are not enabled, the Nepehele execution engine works in the same way
as it used to before the fault tolerance technique was implemented.

The implementation of the approaches focuses on the fault tolerance aspects. It
does not cover optimizations or improvement of the system itself.

6.3.2 Fault tolerance

The requirement of fault tolerance for a system was indicate as the ability of the
system to react properly to various kinds of failures. That means noticing the failure
and recovering from it.

The basic idea of ephemeral materialization points enables the system to notice task
and machine failures and to recover from the failure if it is a transient fault. If the
fault is transient, the system can finish the job after the recovery. The ephemeral
materialization points do not offer recovery for permanent faults. As the recovery
with ephemeral materialization is based on a partial restart, it fails the job finally
at some point if the fault is permanent.
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The record skipping technique offers an extension to the materialization points,
which enables the system to recover from permanent faults if a particular record
causes it. The job, however, does not run on the entire input if the record skipping
technique is used.

As discussed before, the memoization technique does not provide classical fault
tolerance. In fact, it does not fulfill the requirement, as the system is not able to
notice the faults, that the memoization technique tries to tackle.

6.3.3 Transparency

The transparency requirement was summarized as: Ideally the user does not even
notice the fact that a failure occurred. The entire failure recognition and recovery
should be as transparent to the user as possible. And the user should be able to run
the same jobs, he used to run on the system before it implemented fault tolerance.

The initial ephemeral materialization points fulfill this requirement. The user runs
the same job on the system with ephemeral materialization points, as he would in the
basic system. It produces the same output data for the same inputs. In a nonfailure
case, the user does not even recognize an additional runtime. In case of a failure,
the system detects and recovers from the failure without input from the user. The
entire recovery process is transparent to the user. He recognizes additional runtime
at most.

Memoization and record skipping do not comply to transparency fully. For Memo-
ization, the usage of materialization points is transparent to the user, but the user
has to change the job to use the memoization technique. For record skipping the
user does not have to change the job, and the recovery process is transparent to the
user. It runs without interaction or input from the user. However, the job does not
run on the entire input. The system informs the user, about the failure and the
output may not include all expected output data.

The optimization techniques, which include consumption logging, adaptive recov-
ery and offset logging increase the transparency regarding runtime. The lower the
additional runtime for a recovery process, the less recognizable it is to the user.

6.3.4 Cost

The cost requirement includes two central cost factors, disk space, and runtime:
The fault tolerance should be achieved with as little additional costs as possible.
Especially the runtime increase for saving necessary recovery data and recovery must
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be noticeably shorter than the complete restart of the system. Additionally, it should
use as less disk space as possible.

The main focus of the ephemeral materialization point implementation is to reduce
the disk space usage and recovery runtime. They are a hybrid option, between the
two extremes: To write no data to disk, which is fast during nonfailure case, but
slow during recovery. Or to write all data to disk, which is slow during nonfailure
start, but has fast recovery time. However, writing all data to the disk can also
be slower as not writing any data, if the writing overhead exceeds the runtime gain
during recovery.

The optimization techniques reduce the supplementary cost even further. They focus
on the runtime optimization and aim to reduce the time to recover. Consumption
logging reduces the number of restarted nodes, and the offset logging reduces the
recovery time for the failed vertex.

The supplementary cost of the adaptive recovery approach depends on the situation.
If the system can use spare idle nodes, the approach can decrease the recovery time
without additional cost. However, if the system has to allocate more resources or
allocate them longer as previously planned, the adaptive recovery technique adds
monetary cost for the reduction of runtime cost.

The memoization technique reduces the cost of an updated job run if previous ma-
terialization points can be used. At the same time, the system must write the
materialization points to persistent storage which might add monetary cost for the
rental of the storage space.

The record skipping does not directly reduce cost. The job runs longer with the
record skipping technique, as it has to be partially related several times. However,
as the job would fail without the record skipping approach, at least the time and
resources of the execution previous to the fault are saved. Nevertheless, the record
skipping technique adds runtime compared to the nonfailure case and does not fulfill
the cost requirement.

6.4 Conclusion

If the system has to handle a transient fault in a job with stateless tasks, it can
recover from it transparently with almost no additional runtime and low disk space
usage. If the system has to handle permanent faults it may be able to recover from
it, but with drawbacks to the stated optimal requirements. If the job consists of
stateless tasks, the additional runtime can be decreased even further with offset
logging. This technique also provides the first step towards adaption of ephemeral

130



6.4. CONCLUSION

materialization points to streaming environments.

It is possible to provide fault tolerance for multiple fault types that is transparent
at low cost. However, the more advanced the fault tolerance technique is, the more
kinds of faults it is trying to cover, and the lower it tries to bring the cost, the
decreasingly it fulfills every requirement. Fault tolerance will always be a tradeoff
between different competing goals.
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Supplementary Information

A.1 Tables

property default value
checkpoint.mode never
checkpoint.upperbound 1.0
checkpoint.lowerbound 0.2
checkpoint.useCL true
checkpoint.useDuplicat false
checkpoint.numberDuplicats 1

A.1.1 Percentages for evaluation from chapter 3.8

Triangle Enumeration

One quarter of runtime

I
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Build Triads Close Triads Triangle Output
never 100 100 100
dynamic 86 91 71
always 204 271 235
network 167 212 223

Half of runtime
Build Triads Close Triads Triangle Output

never 100 100 100
dynamic 87 89 60
always 224 196 163
network 138 164 152

Three quarter of runtime
Build Triads Close Triads Triangle Output

never 100 100 100
dynamic 86 88 59
always 225 174 135
network 135 113 129

No failure
never 100
dynamic 101
always 243
network 170

TPCH

One quarter of runtime
LineItems Join

never 100 100
dynamic 86 73
always 136 120
network 92 78

Half of runtime
LineItems Join

never 100 100
dynamic 87 73
always 136 114
network 91 81
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Three quarter of runtime
LineItems Join

never 100 100
dynamic 81 69
always 97 97
network 86 75

No failure
never 100
dynamic 101
always 160
network 110

A.2 List of Abbreviations

SQL Structured Query Language

VM virtual machine

UDF User Defined Function

TE TransferEnvelope

IaaS Infrastructure as a Service

DoP Degree of Parallelization
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Example Code

public class LineReader extends AbstractFileInputTask {

private RecordWriter <StringPathRecord > output;

@Override
public void registerInputOutput () {

this.output = new RecordWriter <StringPathRecord >(this)
;

}

@Override
public void invoke () throws Exception {

final Iterator <FileInputSplit > inputSplits =
getFileInputSplits ();

while(inputSplits.hasNext ()) {
FileRecord fileRecord;
FileInputSplit split = inputSplits.next();
fileRecord = FileRecord.fromSplit(split);
BufferedReader br = new BufferedReader(new

InputStreamReader(fileRecord.
getInputStream ()));

String line = null;
int lineNumber =1;
while ((line = br.readLine ()) != null) {

System.out.println(line);
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this.output.emit(new StringPathRecord(
line , lineNumber , fileRecord.
getPath ()));

}

br.close ();
}

}
}

Listing B.1: The LineReader Task

package examples;

import eu.stratosphere.nephele.io.RecordReader;
import eu.stratosphere.nephele.io.RecordWriter;
import eu.stratosphere.nephele.template.AbstractTask;

public class WordSplit extends AbstractTask {

private RecordReader <StringPathRecord > input;
private RecordWriter <StringPathRecord > output;

@Override
public void registerInputOutput () {

this.output = new RecordWriter <StringPathRecord >(this)
;

this.input = new RecordReader <StringPathRecord >(this ,
StringPathRecord.class);

}

@Override
public void invoke () throws Exception {

while (this.input.hasNext ()) {
StringPathRecord record = input.next();
String line = record.getString ();
String [] words = line.split("␣");
for (int i = 0; i < words.length; i++) {

this.output.emit(new StringPathRecord(
words[i], record.getLineNumber (),
record.getPath ()));

}
}

}

}

Listing B.2: WordSplit Task
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public class IndexBuilder extends AbstractTask{
private Map <String , IndexRecord > hashmap = new HashMap <String ,

IndexRecord >();
private RecordReader <StringPathRecord > input;
private RecordWriter <IndexRecord > output;

@Override
public void invoke () throws Exception {

while (input.hasNext ()) {
StringPathRecord record = input.next();
insertIntoInvertedIndex(record.getString (),

record.getPath ());
}
Iterator <String > keyIter = hashmap.keySet ().iterator ()

;
while(keyIter.hasNext ()) {

final String key = keyIter.next();
final IndexRecord record = hashmap.get(key);
this.output.emit(record);

}
}

private void insertIntoInvertedIndex(String keyword , Path
document) {

IndexRecord record = hashmap.get(keyword);
if (record == null) {

record = new IndexRecord ();
record.key = keyword;
hashmap.put(keyword , record);

}
if (! record.documents.contains(document)) {

record.documents.add(document);
}

}

@Override
public void registerInputOutput () {

this.input = new RecordReader <StringPathRecord >(this ,
StringPathRecord.class);

this.output = new RecordWriter <IndexRecord >(this ,new
DefaultChannelSelector <IndexRecord >());

}

}

Listing B.3: Index Builder Task

private static Path path;
private byte[] buffer = null;
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private class FileRecordInputStream extends InputStream {
private final FileRecord fileRecord;
private int bytesReadFromStream ;;
public FileRecordInputStream(FileRecord fileRecord) {

this.fileRecord = fileRecord;
this.bytesReadFromStream = 0;

}

@Override
public int read() throws IOException {

if (this.bytesReadFromStream >= this.
fileRecord.buffer.length) {

return -1;
}
return this.fileRecord.buffer[this.

bytesReadFromStream ++];
}

@Override
public int read(byte[] b, int off , int len) throws

IOException {
if (this.bytesReadFromStream >= this.

fileRecord.buffer.length) {
return -1;

}
len = Math.min(len , (this.fileRecord.buffer.

length - this.bytesReadFromStream));
System.arraycopy(this.fileRecord.buffer , this.

bytesReadFromStream , b, off , len);
this.bytesReadFromStream += len;
return len;

}

@Override
public int read(byte[] b) throws IOException {

return read(b, 0, b.length);
}

@Override
public void reset() {

this.bytesReadFromStream = 0;
}

@Override
public void close() {

reset();
}

@Override
public long skip(long n) {

final int bytesToSkip = (int) Math.min(n, (
this.fileRecord.buffer.length - this.
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bytesReadFromStream));
this.bytesReadFromStream += bytesToSkip;
return bytesToSkip;

}

@Override
public int available () {

return (this.fileRecord.buffer.length - this.
bytesReadFromStream);

}}

private class FileRecordOutputStream extends OutputStream {

private final FileRecord fileRecord;
public FileRecordOutputStream(FileRecord fileRecord) {

this.fileRecord = fileRecord;
}

@Override
public void write(int b) throws IOException {

increaseBuffer (1);
this.fileRecord.buffer[this.fileRecord.buffer.

length - 1] = (byte) b;
}

@Override
public void write(byte[] b) {

write(b, 0, b.length);
}

@Override
public void write(byte[] b, int off , int len) {

increaseBuffer(len);
System.arraycopy(b, off , this.fileRecord.

buffer , this.fileRecord.buffer.length -
len , len);

}

private void increaseBuffer(int size) {
if (this.fileRecord.buffer == null) {

this.fileRecord.buffer = new byte[size
];

} else {
byte[] oldBuf = this.fileRecord.buffer

;
this.fileRecord.buffer = new byte[

oldBuf.length + size];
System.arraycopy(oldBuf , 0, this.

fileRecord.buffer , 0, oldBuf.
length);

}}}
public static FileRecord fromSplit(FileInputSplit

fileInputSplit) throws IOException {
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if (fileInputSplit.getLength () > SIZE_THRESHOLD) {
throw new IOException(fileInputSplit.getPath ()

+ "␣is␣too␣large␣to␣be␣processed␣␣"
+ fileInputSplit.getLength () +

"␣<>␣" + SIZE_THRESHOLD);
}
setPath(fileInputSplit.getPath ());
final FileSystem fs = FileSystem.get(fileInputSplit.

getPath ().toUri ());
final FSDataInputStream fdis = fs.open(fileInputSplit.

getPath ());
final int length = (int) fileInputSplit.getLength ();
final FileRecord fileRecord = new FileRecord(length);
int totalBytesRead = 0;
fdis.seek (0);
int bytesRead = fdis.read(fileRecord.buffer ,

totalBytesRead , (int) length - totalBytesRead);
while (bytesRead != -1) {

totalBytesRead += bytesRead;
bytesRead = fdis.read(fileRecord.buffer ,

totalBytesRead ,
(int) Math.min(READ_SIZE ,

length - totalBytesRead));
if (( length - totalBytesRead) == 0) {

break;
}

}
fdis.close ();
return fileRecord; }

public static FileRecord fromFile(File file) throws
IOException {

if (!file.exists ()) {
throw new IOException("File␣does␣not␣exist");

}
if (file.length () > SIZE_THRESHOLD) {

throw new IOException(file + "␣is␣too␣large␣to
␣be␣processed");

}
final FileInputStream fis = new FileInputStream(file);
final FileRecord fileRecord = new FileRecord(file.

length ());
int totalBytesRead = 0;
int bytesRead;
while (true) {

bytesRead = fis.read(fileRecord.buffer ,
totalBytesRead , (fileRecord.buffer.length
- totalBytesRead));

if (bytesRead == -1) {
break;

}
totalBytesRead += bytesRead;
if (totalBytesRead >= fileRecord.buffer.length

X



) {
break;

}
}
fis.close ();
return fileRecord ;}

private FileRecord(int size) {
this.buffer = new byte[size];

}

public FileRecord () {
}

@Override
public void read(DataInput in) throws IOException {

final int bufferSize = in.readInt ();
this.buffer = new byte[bufferSize ];
in.readFully(this.buffer);

}

@Override
public void write(DataOutput out) throws IOException {

out.writeInt(this.buffer.length);
out.write(this.buffer);

}

public InputStream getInputStream () {
return new FileRecordInputStream(this);

}

public OutputStream getOutputStream () {
return new FileRecordOutputStream(this);

}

public byte[] getBuffer () {
return this.buffer;

}

public Path getPath () {
return path;

}

public static void setPath(Path path) {
FileRecord.path = path;

}}

Listing B.4: File Record
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private int lineNumber = 0;
private Path path;
public StringPathRecord(String string , int lineNumber ,

Path path) {
if(string != null){

this.string = string ;}
this.setLineNumber(lineNumber);
if(path != null){

this.path= path;
} }

public StringPathRecord () {
}

public String getString () {
return string;

}

public void setString(String string) {
this.string = string;

}

public int getLineNumber () {
return lineNumber;

}

public void setLineNumber(int lineNumber) {
this.lineNumber = lineNumber;

}

public Path getPath () {
return path;

}

public void setPath(Path path) {
this.path = path;

}
@Override
public void read(DataInput in) throws IOException {

string = StringRecord.readString(in);
lineNumber = in.readInt ();
path= new Path(StringRecord.readString(in));

}
@Override
public void write(DataOutput out) throws IOException {

StringRecord.writeString(out , string);
out.writeInt(lineNumber);
StringRecord.writeString(out , path.toString ())

;
}}

Listing B.5: StringPath Record
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