
CHAPTER 40

Other Experiences with Computational
Performance Improvements

Kai Nagel

MATSim has always had the simulation of large regions as its goal, and as such was always
interested in high computational performance. The team had, when it started with the Java-based
MATSim (cf. 46.2.1.4), considerable experience in parallel computing (Nagel and Schleicher, 1994;
Rickert and Nagel, 2001; Nagel and Rickert, 2001; Cetin et al., 2003) as well as with more general
message-based approaches (Gloor and Nagel, 2005) that resemble today’s Protocol Bu�ers (Google
Developers, 2015). However, the move to Java (see Section 46.2.1.4), a decision for faster concep-
tual progress and reduced maintenance e�ort, also had the consequence that the MPI (Message
Passing Interface) approach to parallel computing could no longer be used and was thus given up.
See Section 46.2.1.4 for details.

The behavioral modules of MATSim, such as route (Section 4.5.1.2) or destination (Chapter 27)
innovation, are conceptually straightforward to parallelize by multi-threading, and that was
implemented in MATSim from early on (Balmer et al., 2009b, see Section 4.2.3 how to use this).
The remaining challenge then is to parallelize the mobsim, in which the parallel threads need to
interact closely. For example, assume that we compute 24 hours of tra�c in 120 seconds of com-
puting time (cf. Table 40.1). With the 1 second time steps used in the QSim this means 720 update
rounds per second, and thus 720 inter-thread interactions per second.

An attempt to use the CUDA (Compute Uni�ed Device Architecture, a parallel computing plat-
form and API by NVIDIA) for the C language (Strippgen and Nagel, 2009b,a; Strippgen, 2009)
ran into the same problems as the earlier parallel DEQSim also written in C/C++ (Charypar et al.,
2007a): The time necessary to transmit the necessary information back and forth between the Java-
based MATSim and the C/C++-based external package used up all the performance gains. In con-
sequence, the DEQSim was re-implemented as the so-called JDEQSim in Java (Waraich et al., 2015,
also see Section 4.3.2). Before parallelizing the JDEQSim, however, it was decided to �rst accelerate
the processing of the events since that was identi�ed as the main bottleneck. Section 4.2.3 describes

How to cite this book chapter:
Nagel, K. 2016. Other Experiences with Computational Performance Improvements. In: Horni, A, Nagel,

K and Axhausen, K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 267–268. London:
Ubiquity Press. DOI: http://dx.doi.org/10.5334/baw.40. License: CC-BY 4.0



268 The Multi-Agent Transport Simulation MATSim

how to use parallel events handling. The parallel version of the JDEQSim (Waraich et al., 2015)
never made it into the MATSim main repository.

At the same time, the standard QSim was improved by other people, for example by keeping
track of active links and not doing any computation on links without activity. Ch. Dobler made
the QSim multi-threaded. He reported (Dobler, 2013, Chapter 5) close-to-linear speed-ups with
large scenarios, but only small—if any—performance gains with small scenarios. That is, multi-
threading helped greatly with overall computing times for large scenarios on large shared-memory
computers, but little with with quick turn-around during experimentation. More recent hardware
seems to have improved the situation also for small scenarios (Table 40.1) so that it was eventually
decided to remove the single-threaded variant of the QSim and concentrate development on the
multi-threaded variant only.

Lämmel et al. (2016) experiments with using Protocol Bu�ers (Protocol Bu�ers web page,
accessed 2015) in order to couple two di�erent mobsims.

The PSim (Chapter 39) addresses the problem from a di�erent angle: Rather than accelerating
the QSim itself, it attempts to make use of the fact that (1) adding or removing a small number of
synthetic travelers does not change congestion patterns very much and thus alternative plans can
be evaluated in parallel, and (2) the congestion patterns generated by the mobsim do not vary that
much from one iteration to the next so that the mobsim does not have to be re-run every time a�er
some synthetic travelers have moved to di�erent alternatives.

Märki et al. (2014) and Dobler (2013) point out that the number of iterations to reach equilibrium
can be reduced when the synthetic travelers perform within-day re-routing – this points into the
same direction as Lu et al. (2015) who claim that equilibrium iterations will not be necessary at all
with well-calibrated behavioral models and a realistic starting point.

MATSim needs, at least for large scenarios, a large amount of RAM. One could say that within
the usual space-time tradeo� in computation,1 in most situations MATSim rather consumes more
memory in order to reduce the computation time. Memory-saving compressed routes are available
as an option in the <plans> section of the con�g �le. MATSim can be seen as an object-oriented
database in RAM; attempts to provide a backing by a relational database were not successful when
they were tried (Raney and Nagel, 2004, 2006, ; also see Section 46.2.1.3).

To summarize: (1) The behavioral parts of MATSim parallize easily; the main challenge is the
mobsim. (2) The main challenge with parallelizing the mobsim is not so much the pure perfor-
mance improvement, but to achieve this in a way that it remains integrated with the MATSim
main development, and at little or no additional maintenance e�ort.

Computer population size 1 thread 4 threads 6 threads 8 threads
laptop 2010 1%= 23 500 432 sec (X) (X) (X)
laptop 2014 1%= 23 500 110 sec 57 sec 55 sec
laptop 2014 10%= 235 000 200 sec
“(X)” means that the laptop was no longer useful for secondary tasks.

Table 40.1: Computing times of the mobsim for the Gauteng scenario (see Chapter 69) with
523 000 links for di�erent computers, di�erent population sizes, and di�erent numbers of
threads. “laptop 2010” refers to a high end Mac Pro laptop from 2010, “laptop 2014” refers to
a high end Mac Pro laptop from 2014. We can see a speed increase close to a factor of four from
2010 to 2014, and then in 2014 an additional factor of two with multi-threading. These results
were shown at several seminars, but never published elsewhere.

1 See https://en.wikipedia.org/wiki/Space-time tradeoff.




