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Deutsche Zusammenfassung  

 
In der vorliegenden Arbeit wird ein numerischer Strömungskanal mit der Gitter-Boltzmann-

Methode entwickelt und zur Untersuchung verschiedener stark gepfeilter Flügelgeometrien 

bei hohen Anstellwinkeln genutzt. Zu Beginn der Arbeit wird die Gitter-Boltzmann-

Methode zusammen mit anderen numerischen Methoden diskutiert und im Hinblick auf 

derzeitige Trends bei der Entwicklung von Mikroprozessoren eingeschätzt. Es wird betont, 

dass numerische Techniken wie die Gitter-Boltzmann-Methode, welche auf einfachen 

parallelisierbaren Operation im Raum zurückgreifen, von den derzeitigen Entwicklung von 

Mikroprozessoren profitieren werden. Anschließend wird der Aufbau des numerischen 

Experiments mit der Gitter-Boltzmann-Methode beschrieben. Ein besonderer Fokus dabei 

liegt auf den numerischen Details welche die maximale Reynoldszahl beeinflussen, die 

simuliert werden kann. Drei exemplarische Studien werden mit dem entwickelten Aufbau 

durchgeführt: Als erstes wird ein endlicher ungepfeilter Flügel bei verschiedenen 

Anstellwinkeln untersucht. Danach wird der Einfluss von Pfeilung auf einen Flügel mit 

geringem Seitenverhältnis bei hohen Anstellwinkeln untersucht. In einer dritten Studie wird 

eine hochaufgelöste Simulation an einer exemplarischen Flying V Geometrie durchgeführt 

um einen ersten Eindruck des Strömungsfeldes hinter der Konfiguration bei hohen 

Anstellwinkeln zu erlangen. Dieser Studie wird bei einer Reynoldszahl von Re = 4.6 ∙ 103 

und einem Anstellwinkel von 𝛼𝛼 = 30° durchgeführt. Resultate dabei sind unter anderem 

die Beobachtung von Instabilitäten in der Grenzschicht welche an der runden stark 

gepfeilten Vorderkante der Geometrie entstehen und sich nach innen hin zur Hinterkante 

des Flügels weiterbewegen, die Entdeckung von zwei charakteristischen freien 

Scherschichten auf der Oberseite des Flügels, die Beobachtung starker Interaktionen der 

Grundströmung und der zwei Scherschichten nahe der Flügelhinterkante, und die 

Entdeckung charakteristischer kohärenter Strukturen im Feld der Wirbelstärke nach einer 

starken Böe.  
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Abstract 

In this work, a numerical flow channel is developed with the Lattice Boltzmann method and 

applied to study various swept wing geometries. At first, the Lattice Boltzmann method is 

discussed in the light of other numerical tools, and in the light of current development trends 

of microprocessors. It is concluded that numerical tools which consist of simple parallel 

operations in the spatial domain like the Lattice Boltzmann method are likely to benefit 

strongly from current development trends of microprocessors in the future. It is then decided 

to use the Lattice Boltzmann method for the creation of the numerical flow channel. The 

setup of this numerical experiment is explained in rich detail with a particular focus on the 

numerical details which influence the maximum Reynolds number which can be achieved. 

Finally, three exemplary studies are conducted with the developed setup. First, a finite 

unswept wing is investigated at various angles of attack. After this, the influence of sweep 

of a low aspect ratio wing at high angles of attack is investigated. In the third study, a high 

resolution simulation of an exemplary Flying V geometry is conducted in order to obtain a 

first impression of the flow field behind the configuration at high angles of attack. The 

results of this study are obtained at a Reynolds number of Re = 4.6 ∙ 103 and an angle of 

attack of 𝛼𝛼 = 30°. Findings include the observation of instabilities in the boundary layer 

which form at the round highly swept leading edge and move inward towards the rear kink, 

the discovery of two characteristic free shear layers on the upper surface of the design, the 

observation of strong interactions of the main flow and the two shear layers close to the rear 

kink, and the discovery of turbulent coherent structures in the vorticity field after a strong 

initial gust. 
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1 Introduction and motivation 

It is a warm summer day at Faßberg Air Base in Germany on July 14, 2020. A light breeze 

of air is blowing over fields of grass. A thin strip of concrete lies in the middle of this 

landscape. At one end, a small team of researchers have assembled, all of them wearing 

yellow vests which stand out, even from a far distance away. They are all gathered around 

a curiously shaped object in bright blue colors. As one of them moves away, the shape 

becomes more visible. Glistening in the sunlight, a scale model of a highly swept flying wing 

is being prepared to take off. Minutes pass, the researchers are busy on the model and on 

their computers. A team of cameramen have set out and prepare their equipment along the 

runway. Suddenly, the sound of powerful electric engines cuts through the silence. The 

airplane begins to accelerate down the runway. It gets faster and faster, and then, it begins 

to rotate and is off the ground. It rises quickly and enters a smooth right turn. 

 

 

 

 

 

 

 

 

Figure 1: Take-off of a scale model of a Flying V aircraft configuration at Faßberg Air Base, Germany on July 14, 2020. 

 

The scenario above refers to a test flight of a scale model of a Flying V aircraft configuration 

at Faßberg airbase in Germany in 2020. The Flying V is a new concept for an efficient 

aircraft. In that configuration, the pressurized passenger and cargo sections are arranged in 



2 

the shape of a V and located within a highly swept wing. Transition and outer wings extend 

the span of this wing at a lower sweep angle, see Figure 2.  
 

                          
Figure 2: A Flying V aircraft configuration. Displayed here is an image from a recent study of a Flying V family concept 
(Oosterom 2021). A FV-1000 version is shown seating 378 passengers in a two class layout. 

 

The Flying V concept was introduced in (Benad 2014) and (Benad 2015, 1-3). A subscale 

flight model with a wingspan of 𝑏𝑏 = 1.4 m was built and flown demonstrating good 

handling qualities. In (Faggiano, Vos et al. 2017), a 25% higher lift to drag ratio was found 

for the Flying V when compared to the NASA common research model based on parametric 

optimization with Euler CFD. Estimation of structural weight in (Claeys 2018) showed a 

17% decrease in “FEM weight” compared to A350-like aircraft based on an automated 

structural sizing algorithm coupled to a FEM solver. In (Rubio Pascual and Vos 2020), a 

feasible region for engine location on the Flying V was identified based on Euler CFD 

computations to minimize adverse aerodynamic interference between wing and engine. 

Works on the interior design of the Flying V were performed in (Vink, Rotte et al. 2020). 

Wind tunnel experiments on a 4.6%-scale half model were conducted in (Palermo and Vos 

2020). The results showed that the aircraft can attain a maximum lift coefficient of  

𝐶𝐶𝐿𝐿,max = 1.02 at an angle of attack of 𝛼𝛼 = 35°. The pitching moment is negatively 

correlated to the angle of attack up to 𝛼𝛼 = 19°. After this, a strong pitch-break occurs, 

making the aircraft statically unstable. The effectiveness of the control surfaces was found 

to be almost uninfluenced by the angle of attack. An aerodynamic model based on the wind 
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tunnel experiments was identified in (Ruiz Garcia, Vos et al. 2020). In (Viet 2019), oil flow 

visualizations on a 4.6%-scale half model demonstrated vortex formation for angles of 

attack above 𝛼𝛼 = 10° with varying patterns for increasing angle of attack. Large-Eddy CFD 

simulations conducted at (mvAero 2019) by van Egmond showed vortex formation on a 

subscale model with a different pattern than in previous wind tunnel experiments. Analysis 

of a full scale model did not show vortex formation at angles of attack up to 𝛼𝛼 = 20°. 

Further studies on the Flying V have been conducted on the lateral handling qualities of the 

concept (Cappuyns 2019), and on the influence of the ground effect on the concept (Ankith 

John Santosh 2020). Further work on the engine integration of the Flying V has been 

performed in (Van Empelen and Vos 2021). Evacuation of the Flying V has been modelled 

in (Gebauer and Benad 2021) and (Hellmann 2020). A scale model of the Flying V with a 

span of 𝑏𝑏 = 3.06 m was built by Brown, Ruiz García and Atherstone and flown 

successfully in 2020 (see Figure 1). A three-member family design for the Flying V was 

investigated in (Oosterom 2021). Various further research projects on the configuration are 

currently ongoing in fields such as aerodynamics, structures and manufacturing, flight 

dynamics and control, the environmental impact of the design, aircraft integration and 

airport operation. 

 

The work in this particular thesis falls within the field of aerodynamic investigations of the 

unconventional Flying V shape at high angles of attack. On a conventional aircraft, high lift 

devices are used to change the shape of the wing at take-off and landing to generate the 

necessary lift at low speeds. The Flying V has a much larger wing area than a conventional 

aircraft of similar size. Therefore, increases in the angle of attack alone at low speeds may 

be sufficient to generate the necessary lift at low speeds.  
 

 
Figure 3: Characteristic geometry of a Flying V wing with a highly swept inner wing section, and an outer wing with 
lower sweep. The transition wing element in between has a leading edge sweep which follows the leading edge sweep of 
the inner wing, and a trailing edge sweep which follows the trailing edge sweep of the outer wing. 

 

Yet, the aerodynamics at high angles of attack on a highly swept cranked wing of the shape 

it is used on the Flying V are to a large extend uninvestigated. In the history of aerospace, 



4 

there are virtually no planform shapes similar to that of the Flying V. The closest may be 

shape of an Arado E.555, a design from World War II, see (Herwig and Rode 2002). This 

flying wing also has a swept center wing and outer wings with lower sweep. Yet, there is 

no transition wing element between these two wing elements, as is characteristic for the 

Flying V. Also, with a sweep of about 45°, the center wing is not highly swept on the Arado 

design. The center wing sweep of the Flying V exceeds 60°. The Arado design was never 

built, nor is there any research data available. Examples for intensively studied wing 

planforms from the history of aerospace which share certain design features with the 

geometry of the Flying V are displayed in Figure 4.  

 
Figure 4: Planform designs of examples for a) Blended wing body, b) Flying V, c) Delta wing, d) a highly swept wing. 

Delta wings (Figure 4c) share the high leading edge sweep of the Flying V. The first Delta 

wings were built by Alexander Lippisch around 1940 (Storck 2003). Numerous airplanes 

have been designed with this wing layout throughout the following years, an example is the  

Convair F-102A. Generally, Delta wings have a sharp leading edge. The flow around Delta 

wings at high angles of attack is well understood, see for example (Erickson 1995, 

Cummings, Forsythe et al. 2003, Anderson 2017). Most characteristic are the leading edge 

vortices which form at the highly swept and sharp leading edge of the design. This is often 

desired for the creation of additional lift at high angles of attack. Although the Flying V 

shares the high leading edge sweep with the Delta wing, the Flying V has a thick and round 

leading edge. This is a major difference of the Flying V to common Delta wing designs and 

it will lead to different flow phenomena. 
 

Blended wing bodies (Figure 4a) were intensively studied in (Liebeck, Page et al. 1998, 

Wakayama and Kroo 1998, Liebeck 2004, Qin, Vavalle et al. 2004). Aerodynamics at high 

angles of attack of the concept were investigated in (Vicroy 2009, Wisnoe, Nasir et al. 2009, 

Goldthorpe, Rossitto et al. 2010). Although the blended wing body shares some features 

with the Flying V, such as thicker profiles with a rounded leading edge in the middle section, 

the overall arrangement and planform still varies to a large extend, especially at the rear of 

a b c d 
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the design. Here again, different flow phenomena can be expected compared to the  

Flying V design. 

 

Results of studies on highly swept wings (Figure 4d) show similarities with results of recent 

studies on the aerodynamics of the Flying V. Lift to drag relations obtained in wind tunnel 

experiments conducted on a 4.6% scale model of the Flying V in (Van Empelen and Vos 

2021) are similar to experimental results obtained in (Cohen and Jones 1960) on a highly 

swept wing model as displayed in Figure 4d. 

 

None of the geometries shown above displays all of the features of the highly swept cranked 

wing shape of the Flying V and while studies exist on the aerodynamics of the Flying V at 

high angles of attack, the understanding of the entire flow field behind the Flying V is still 

imprecise. Especially the vortex patterns which occur require further investigations. Indeed, 

as mentioned above, Large-Eddy CFD simulations have shown different results for vortex 

patterns than were obtained in wind tunnel experiments. In order to develop a full 

understanding of the flow behind the Flying V at high angles of attack there is a need for 

various more wind tunnel experiments and various numerical simulations. In order to 

understand Reynolds number effects, simulations should be conducted at a wide range of 

Reynolds numbers. Various research projects in this field are currently ongoing. 

 

In this particular work, we model the flow around an exemplary highly swept cranked wing 

of a Flying V shape at a high angle of attack in a Lattice Boltzmann fluid. This investigation 

falls under the category of direct numerical simulations (DNS) at low Reynolds numbers. 

While this may help to develop an understanding of the flow field, let us emphasize strongly 

that further simulations with other models at high Reynolds numbers are required to assess 

the aerodynamics of the Flying V further.  

 

In the present approach with the Lattice Boltzmann method, one models the flow directly 

and there are no simplifications to the flow as they occur in the Reynolds averaged Navier 

Stokes equations (RANS) or Large Eddy simulations which are commonly used to simulate 

flows at higher Reynolds numbers (Ferziger, Perić et al. 2002). The direct formulation used 

in this work may help to develop an understanding of the flow field around a shape which 

is to a large extend uninvestigated. It may be possible to draw comparisons with results 
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from other studies currently ongoing. It is also interesting to note that the tool which is 

developed in this work is fully scalable and can be applied without any further modifications 

on larger computers than they were used in the present work. 

 

An additional thrust of this work, besides gaining further understanding of the Flying V, is 

to give an illustration of the simplicity and ease of use of the Lattice Boltzmann method. 

 

The Lattice Boltzmann method has become a vast field of research over the past 30 years. 

(He and Luo 1997, Chen and Doolen 1998, Kang, Zhang et al. 2002, Aidun and Clausen 

2010, Mohamad 2011, Guo and Shu 2013, Krüger, Kusumaatmaja et al. 2017). Researchers 

and engineers are drawn to this method due to its simplicity, and the way it allows for 

parallelization of computations. 

 

We devote the next chapter to the introduction of the Lattice Boltzmann method from a 

technical perspective. Thereby, it shall be illustrated that the tool has a simple framework 

which is well suited for parallelization. This is shown by reviewing some equally simple 

numerical tools and by comparison of these tools with the Lattice Boltzmann method. It is 

highlighted that the simple parallelization of the Lattice Boltzmann method is well-suited 

to the current development trends in microprocessors. Thereby, it shall be illustrated that 

interest in the Lattice Boltzmann method is likely to increase further in the future. 

 

After this first excursion, we return to our problem at hand and begin to develop the 

numerical flow channel to study highly swept wings at high angles of attack with the Lattice 

Boltzmann method. First, the setup of the numerical experiment is explained in detail with 

a particular focus on the numerical details which influence the maximum Reynolds number 

which can be achieved. The developed setup will be used to conduct three exemplary 

studies. First, a finite unswept wing is investigated at various angles of attack. Then, the 

influence of sweep of a low aspect ratio wing is investigated at high angles of attack. In the 

third study, a high resolution simulation of an exemplary Flying V geometry is conducted 

at a high angle of attack. 
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2 Numerical techniques with local interactions in 
the spatial domain – four exemplary models 

Before we begin our numerical investigation of flows around wings, we will first introduce 

four exemplary numerical techniques. What all of these techniques share, is that the degrees 

of freedom in the spatial domain are decoupled, or are at least only influenced linearly by 

their direct neighbors. In this work, we call this “local interaction in the spatial domain”. 

The Lattice Boltzmann method which is applied for the creation of the numerical wind 

tunnel in this work, is an example of such a technique. Indeed, its local formulation is one 

of the major advantages of the method. Therefore, it is important to understand numerical 

techniques with local interactions in the spatial domain. For that sake, we will begin this 

work by presenting four such techniques. All of them were studied, implemented, and 

applied by the author of this thesis as a researcher at the Berlin University of Technology 

Institute of Mechanics. 

 

The four exemplary models we will introduce are as follows: 

 

1. A single “discretization point” in the spatial domain. Example: Normal and sideways 

oscillation of a single spring element 

 

2. A line of independent degrees of freedom. Example: The Method of Dimensionality 

Reduction 

 

3. A 2D-array of degrees of freedom with local interactions. Example: An evacuation 

simulation with cellular automata 

 

4. A 3D-array of degrees of freedom with local interactions. Example: The Lattice 

Boltzmann method 

 

After we have introduced each technique, we will enter a short discussion about the model. 

This way, we will be able to appreciate how these techniques are connected and what their 

advantages are. The entire chapter leads up to the introduction of the Lattice Boltzmann 
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method in the fourth section. There, it will be discussed in light of the previous three models 

and in light of current development trends in microprocessors. 

2.1 A single degree of freedom 

Let us organize the collection of tools we are about to discuss by the number of degrees of 

freedom in the model and how they are arranged. From a technical point of view, we begin 

with the simplest model of a single degree of freedom.  

 

This is an almost trivial case, because there are no neighbors in the spatial domain to a 

single discretization point. Yet, we still include such a simple example at the beginning of 

this chapter. A discussion will follow afterwards. 

 

Any simple Euler integration along a single thread in time could be used. The example 

which will be used here is the numerical model for a single spring whose motion is 

controlled at one end, while the other end may stick, slip, or jump on a surface. This model 

was investigated in (Popov, Popov et al. 2017, Benad, Nakano et al. 2018, Benad, Popov et 

al. 2018). We follow along with (Benad, Popov et al. 2018) in the next section. 

2.1.1 Exemplary model 

Consider an elastic body that is brought into contact with a flat elastic substrate and then 

subjected to a horizontal sliding movement with constant velocity which is superimposed, 

in case (I), with normal oscillations, and in case (II), with sideways oscillations. For the 

sake of a first simple investigation, it is possible to model this setup  as a single spring with 

a normal stiffness 𝑘𝑘N and a tangential stiffness 𝑘𝑘T which is pressed onto a rigid plane. At 

the end of this section there will be a discussion about the implications of the simplification. 

The upper point P of the spring is subjected to a constant velocity 𝑣𝑣0 in a horizontal 

direction. For the two cases of the investigation, the motion of the upper point P is 

superimposed with either normal or sideways oscillations. Between the lower point Q of the 

spring and the plane we assume that there is a friction force described by the simplest form 

of Coulomb’s law with a constant coefficient of friction 𝜇𝜇0. 
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Figure 5: An elastic body modeled as a spring with a normal and tangential stiffness is forced into a controlled movement 
at the upper point 𝐏𝐏, while the contact point 𝐐𝐐 follows according to the equilibrium conditions. Left: Schematic 
representation of the considered system for the case of normal oscillations, right: schematic representation of the 
considered system for the case of sideways oscillations. Images: (Benad, Popov et al. 2018) 

 

A schematic view of the investigated system for the case (I) of normal oscillations is given 

in left image of Figure 5. The motion of the upper point of the spring P shall be given with 

 
𝑥𝑥P = 𝑣𝑣0𝑡𝑡, 

𝑧𝑧P = 𝑧𝑧N − 𝑧𝑧0cos𝜔𝜔𝑡𝑡. 
(1) 

As reference state, the unstressed state of the spring in the first moment of contact is chosen. 

In this state, the upper point P lies on the 𝑥𝑥-axis.  

 

The motion of the immediate contact point Q is fully determined by 𝑙𝑙, which is the spring 

length projected onto the sliding plane. It can be determined with the following relations: 

When the contact point is sticking, it is  

 𝑙𝑙 ̇ = 𝑣𝑣0. (2) 

This relation remains valid as long as it is 

 𝑙𝑙 < 𝜇𝜇0(𝑘𝑘N 𝑘𝑘T⁄ )(𝑧𝑧N − 𝑧𝑧0cos𝜔𝜔𝑡𝑡). (3) 

When (3) is violated, the contact point starts to slide and it is  

 𝑙𝑙 = 𝜇𝜇0(𝑘𝑘N 𝑘𝑘T⁄ )(𝑧𝑧N − 𝑧𝑧0cos𝜔𝜔𝑡𝑡). (4) 

This relation remains valid as long as it is  

 𝑙𝑙 ̇ < 𝑣𝑣0. (5) 

When (5) is violated a phase of sticking starts again. An exception to the scheme given with 

relations (2)–(5) is when the point Q is jumping and not in contact at all. These phases 

always occur at times when the condition 

 cos𝜔𝜔𝑡𝑡 < (𝑧𝑧N 𝑧𝑧0⁄ ) (6) 
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is violated. During such times it is 

 𝑙𝑙 = 0. (7) 

The equations (2)–(7) which fully determine the motion of the system can be simplified 

with the following dimensionless variables and operators. It shall be  

 𝜏𝜏 = 𝜔𝜔𝑡𝑡,   ′ =
d

d𝜏𝜏
 , �̃�𝑧0 =

𝑧𝑧0
𝑧𝑧N

 , 𝑙𝑙 =
𝑙𝑙
𝑙𝑙0

 , 𝑣𝑣�0 =
𝑣𝑣0
𝑙𝑙0𝜔𝜔

. (8) 

with 𝑙𝑙0 = 𝑧𝑧N𝜇𝜇0 𝑘𝑘N 𝑘𝑘T⁄ . The governing equations can now be rewritten: When the contact 

point is sticking, it is  

 𝑙𝑙′ = 𝑣𝑣�0. (9) 

This relation remains valid as long as it is  

 𝑙𝑙 < 1 − �̃�𝑧0 cos 𝜏𝜏. (10) 

When (10) is violated, the contact point starts to slide and it is 

 𝑙𝑙 = 1 − �̃�𝑧0 cos 𝜏𝜏. (11) 

This relation remains valid as long as it is  

 𝑙𝑙′ < 𝑣𝑣�0. (12) 

When (12) is violated, a phase of sticking starts again. The exception to this scheme of (9)–

(12) is the jumping case which always occurs at times when the condition  

 cos 𝜏𝜏 < (1 �̃�𝑧0⁄ ) (13) 

is violated. During such times it is 

 𝑙𝑙 = 0. (14) 

In the dimensionless governing equations (9)–(14) there are only two parameters, which are 

�̃�𝑧0 and 𝑣𝑣�0. Therefore, the motion of the system only depends on these two dimensionless 

variables.  

The macroscopic coefficient of friction is given by the average tangential force divided by 

the average normal force 𝜇𝜇macro = 〈𝑘𝑘T𝑙𝑙〉 〈𝐹𝐹N〉⁄ . Using the dimensionless variables from 

above, it can be written as  

 𝜇𝜇�macro =
𝜇𝜇macro
𝜇𝜇0

=
〈𝑙𝑙〉

〈(|1 − �̃�𝑧0 cos 𝜏𝜏| + 1 − �̃�𝑧0 cos 𝜏𝜏) 2⁄ 〉 
(15) 
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and is therefore only a function of the dimensionless amplitude and the dimensionless 

sliding velocity: 

 𝜇𝜇�macro = 𝑓𝑓(�̃�𝑧0,𝑣𝑣�0). (16) 

On the left side of Figure 6, this dependence is displayed as a contour plot and as a three-

dimensional diagram. 

 

Figure 6: The macroscopic coefficient of friction as influenced by normal oscillations (left) and sideways oscillations 
(right). The results for the macroscopic coefficient of friction are displayed over the two system parameters, the 
dimensionless sliding velocity 𝒗𝒗�𝟎𝟎 and the dimensionless oscillation amplitude (𝒛𝒛�𝟎𝟎 for normal, 𝒚𝒚�𝟎𝟎 for sideways 
oscillations). In the upper graphs this dependence is shown as a 2D diagram in which the macroscopic coefficient of 
friction is displayed with a color scale and level lines. Each corresponding graph below gives an additional illustration 
of the dependence with a 3D surface in which the macroscopic coefficient of friction is displayed on the vertical axis. In 
all graphs, the region above the bold borderline is the region of continuous sliding of the contact point, while in the 
region below this line the contact point undergoes a stick-slip motion. The additional dashed line in the left graphs 
separates the region of no jumping (left of the dashed line) from the region in which the contact point is jumping (region 
to the right of the dashed line) Images: (Benad, Popov et al. 2018) 

 

A schematic view of the investigated system for the case (II) of sideways oscillations is 

given on the right side of Figure 5. The motion of the upper point of the spring P shall be 

given with 

 
𝑥𝑥P = 𝑣𝑣0𝑡𝑡, 

𝑧𝑧P = 𝑧𝑧N − 𝑧𝑧0cos𝜔𝜔𝑡𝑡. 
(17) 

The derivation for the macroscopic coefficient of friction runs similar to the derivation for 

normal oscillations, for details, see (Benad, Popov et al. 2018). With  

 𝜏𝜏 = 𝜔𝜔𝑡𝑡,   ′ =
d

d𝜏𝜏
 , 𝑦𝑦�0 =

𝑦𝑦0
𝑙𝑙0

 , 𝑙𝑙 =
𝑙𝑙
𝑙𝑙0

 , 𝑣𝑣�0 =
𝑣𝑣0
𝑙𝑙0𝜔𝜔

. (18) 
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and 𝑙𝑙0 = 𝜇𝜇0𝐹𝐹N 𝑘𝑘T⁄  we find again that the macroscopic coefficient of friction 𝜇𝜇�macro =

𝜇𝜇macro/𝜇𝜇0  is only a function of the two system parameters: 

 𝜇𝜇�macro = 𝑓𝑓(𝑦𝑦�0, 𝑣𝑣�0). (19) 

This dependence is displayed as a contour plot and as a three-dimensional diagram on the 

right side of Figure 6. An additional schematic representation of the dependence is displayed 

in Figure 7. Here, dimensional quantities and relations are shown. Various results obtained 

for limiting cases in (Benad, Nakano et al. 2018) are displayed drawn into the parameter 

plane. Also, at four exemplary points, the sliding motion of the upper and lower point of the 

model are displayed. 

 

Figure 7: Schematic representation of the parameter plane for the case of sideways oscillations. Relations obtained in 
(Benad, Nakano et al. 2018) for limiting cases are drawn into the parameter plane.  

 

2.1.2 Discussion 

Let us now focus one several different aspects of the exemplary model which was just 

introduced.  

2.1.2.1 Simplicity 

Note first, that here we have a simple setup which contains just as much detail as necessary 

to include all parameters which are of interest. This should not be underestimated. 

Especially from a technical point of view the numerical model should be kept as simple as 

possible. Often, one may already see important trends and the risk of errors is low. Also, 

one already has a simple model to use as a starting point and for comparison with more 
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sophisticated models. For example, for the model above by author of this thesis, a more 

detailed follow up investigation was performed in (Pohrt 2020). In this study, the spatial 

resolution of the problem is increased from a single contact point, to an entire array of points 

which may either slide or stick on the surface. The investigation was carried out using a 

Boundary Element Method (Pohrt and Li 2014). This far more sophisticated tool confirmed 

the dependencies and trends of the present one-spring model with surprising accuracy, see 

for example Figure 8.  

 

Figure 8: Results of a refined model of sideways oscillations by (Pohrt 2020) obtained with an spatial resolution of 32 x 
32 contact points to include partial stick and slip. The limiting cases of the one-spring model are drawn into the diagram 
with red lines. The green line represents a more accurate estimation for small sliding velocities from the refined study. 
The red line on the right is approached for large oscillation amplitudes also in this more refined model. The gap in the 
diagram is only visible because the oscillation amplitudes are not displayed up to higher values in the diagram. 

 

2.1.2.2 Dimensionless formulation 

The second aspect we want to draw attention to is the dimensionless formulation of the tool 

above. In the dimensional governing equations in the model above there are eight 

parameters whose influence on the motion of the system we would have to investigate. The 

dimensionless formulations using (8) and (18) simplify this process. Note that the here 

found dimensionless style has been adopted in the follow up study by (Pohrt 2020). For 

such more sophisticated systems, the dimensionless style may not be immediately obvious 

without previous investigations such as the simplified one above. A formal procedure to 

find dimensionless formulations for more complicated systems is embodied in the 

Buckingham pi theorem which we will apply later for our investigation of flows around 

wings. 

2.1.2.3 Parallelization 

The third important aspect we want to highlight is parallelization. The model above is an 

example of a non-linear system. It can be solved numerically by integration in the time 
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domain. There is no explicit solution to the governing equations and the solution of the 

system in time can only be obtained by the knowledge of the status of the system in the 

past, which makes parallelization along the dimension of time impossible. All of the 

following numerical tools will have a higher spatial resolution than “one” and for them, 

parallelization will play an important role in the spatial domain. For the tool above, it was 

possible to make use of parallelization only in a more technical framework when conducting 

the parameter studies to obtain the parameter planes as they are displayed in Figure 6 and 

Figure 7. 

2.2 A line of independent degrees of freedom 

Let us now move on to a one-dimensional arrangement of independent degrees of freedom. 

In the exemplary model below this will be a Winkler foundation of independent spring 

elements. In examining this model, we will be able to highlight the benefits of 

parallelization through vectorization in the spatial domain. The exemplary model, to a 

certain extent, allows for this. Yet, the model will also offer us the opportunity to examine 

some cases where difficulties are encountered when the degrees of freedom cannot be 

treated independently. 

2.2.1 Exemplary model 

The exemplary model of this section will be the Method of Dimensionality Reduction 

(MDR). This is a simple tool for the calculation of contact forces between elastic and 

viscoelastic bodies. It is particularly easy to use for the simulation of axially symmetric 

contacts. Since it was first proposed in (Popov and Psakhie 2007) the MDR has been applied 

to a wide range of problems. The method maps a given three-dimensional contact problem 

to an equivalent contact problem of a transformed indentation profile with a one-

dimensional elastic or viscoelastic foundation of independent elements. From a numerical 

perspective, the solution of the contact problem in the transformed MDR domain is fast and 

convenient due to the independent degrees of freedom in this domain. 
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The advantage of independent degrees of freedom is that operation can be performed 

parallel in the spatial domain. For an example, consider a two-dimensional profile in contact 

with a Winkler foundation, as displayed in Figure 9. 

 

Operations which have to be performed to determine which points are in contact, or how 

high the indentation of each point is, are local operations which do not depend on each 

other. This allows for parallelization. Programming languages offer convenient ways to deal 

with such problems. In the present case, for example, the indentation of the individual points 

can be obtained using a variety of vectorized operations, which are simple operations for 

arrays implemented to run parallel on multiple CPU threads or on GPUs. In the present 

example, let g be the one-dimensional array which contains the shape of the profile in  

Figure 9. Let us also introduce the array gn = g-min(g). If we then denote the 

indentation of the lowest point of the profile gn with d, we find the indentation of all points 

of the profile which we save in the one-dimensional array w1d with 

 w1d = (abs(d-gn) + d-gn)/2. (20) 

Relation (20) contains only simple vectorized operations. This style can be adopted for all 

further operations in the spatial domain. Exemplary studies which apply this technique are 

(Benad 2012, Popov and Benad 2013, Benad 2018). For such simulations with many 

discretization points, it is essential that the core of the simulation can be vectorized in order 

to obtain results in an acceptable timeframe. For the Winkler foundation model, this is 

possible due to the decoupled degrees of freedom with techniques such as the one illustrated 

in (20). 
 

In 2018, a study was performed by the author of this thesis on some of the numerical details 

of the MDR when applied to rotationally symmetric geometries (Benad 2018). The full 

MDR algorithm for the application on rotational symmetric geometries is described in rich 

detail for example in (Willert 2020). In the method, three transformations occur: The 

transformation of the three-dimensional profile 𝑓𝑓(𝑟𝑟) to a one-dimensional profile is 

 𝑔𝑔(𝑥𝑥) = |𝑥𝑥|�
𝑓𝑓′(𝑟𝑟)

√𝑥𝑥2 − 𝑟𝑟2

|𝑥𝑥|

0

𝑑𝑑𝑟𝑟 , (21) 
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the transformation of the one-dimensional foundation displacement 𝑤𝑤1D(𝑥𝑥) to the three-

dimensional normal surface displacement 𝑤𝑤(𝑟𝑟) is  

 𝑤𝑤(𝑥𝑥) =
2
𝜋𝜋
�

𝑤𝑤1D(𝑥𝑥)

√𝑟𝑟2 − 𝑥𝑥2

𝑟𝑟

0

𝑑𝑑𝑥𝑥 , (22) 

and the transformation of the one-dimensional force density 𝑞𝑞(𝑥𝑥) to the three-dimensional 

pressure distribution p(r) is  

 𝑝𝑝(𝑟𝑟) = −
1
𝜋𝜋
�

𝑞𝑞′(𝑥𝑥)

√𝑥𝑥2 − 𝑟𝑟2

∞

𝑟𝑟

𝑑𝑑𝑥𝑥 . (23) 

Figure 9 shows results obtained in (Benad 2018) for a conic and parabolic indenter at an 

exemplary indentation depth 𝑑𝑑. It becomes apparent that already for as few as 𝑁𝑁 = 51 

discretization points a fairly good approximation of the analytical solutions can be achieved.  

 

 
Figure 9: Results of the MDR transformations carried out with a numerical procedure described in (Benad 2018) for 
𝑵𝑵 = 𝟓𝟓𝟓𝟓 discretization points, exemplary input parameters of 𝑳𝑳 = 𝟓𝟓, 𝑬𝑬∗ = 𝟓𝟓, 𝒅𝒅 = 𝟎𝟎.𝟑𝟑 and an exemplary conic indenter 
(left) given with 𝒇𝒇(𝒓𝒓) = 𝒓𝒓 𝐭𝐭𝐭𝐭𝐭𝐭(𝝅𝝅 𝟖𝟖⁄ ) and an exemplary parabolic indenter (right) given with 𝒇𝒇(𝒓𝒓) = 𝒓𝒓𝟐𝟐 𝟐𝟐⁄ . The pressure 
which is obtained at last discretization point within the contact area in this example is highlighted with a star. Image: 
(Benad 2018) 

Before we enter the discussion, let us draw attention to one important aspect of this model: 

After the initial transformation (21) to the equivalent problem was performed, vectorization 

is possible. As shown in Figure 9, 𝑔𝑔(𝑥𝑥) simply has to be brought into contact with a Winkler 

foundation of independent spring elements. In this domain, we are free to use techniques 

such as (20). Various problems can be solved directly this transformed domain. If this is the 

case, a transformation such as (21) has to be performed only once at the beginning of the 

investigation. After this, the degrees of freedom of the problem are fully independent. 

However, there are also various problems where the transformations (21) to (23) have to be 
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repeated many times. This class of problems can be regarded as one where the degrees of 

freedom do depend on each other because the integrals (21) to (23) cannot be obtained using 

independent local operations in the spatial domain. In this case, numerical difficulties may 

be encountered in the method. We will discuss this aspect in rich detail in the following 

section. 

2.2.2 Discussion 

Let us now discuss several aspects of the described method above. Once again, we thereby 

hope to draw conclusions which will turn out to be useful in the development of the 

numerical flow channel in the subsequent sections.  

2.2.2.1 Parallelization 

Let us highlight this model once again as an example for simple parallelization of operations 

through vectorization in the spatial domain. As described in detail in Section 2.2.1, 

vectorization in the spatial domain is easy to perform within the transformed MDR domain, 

when the profile is brought into contact with a Winkler foundation of independent spring 

elements. 

2.2.2.2 Simplicity 

As in Section 2.1.2.1, let us first discuss the simplicity of the model at hand. The framework 

given with transformations (21) to (23) makes elegant use of the rotational symmetry of the 

problem. This causes a reduction of the degrees of freedom. As described above, in the 

transformed MDR space, a line has to be brought into contact with a one-dimensional 

Winkler foundation. Symmetry considerations will play an important role later in this work 

to reduce the number of degrees of freedom of a given problem. 

 

As a further point, we should note that it is remarkable how well the simple MDR 

framework can be applied to practical problems, even if the contact problem under 

investigation is not fully rotationally symmetric. Fabricants approximation, as described in 

detail in (Barber 2018), makes it possible to approximate the solution of a non-rotationally 

symmetric contact with the solution of a rotationally symmetric problem. In two Master 

thesis projects supervised by the author of the present thesis in cooperation with  
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Rolls-Royce, results obtained with the MDR and Fabricants approximation are in very good 

agreement with results of finite element models and experiments: In (Diercks 2018), the 

MDR and Fabricants approximation returned the same results for the stress concentration 

in the contact region of turbine blade fir-tree connections as high fidelity finite element 

models, and in (Davison 2021), a wear model using Archard’s law, the MDR and Fabricants 

approximation was sufficient to explain trends obtained with an experimental test rig for 

labyrinth seals in aero engines. With this knowledge, we can only repeat our conclusion 

from Section 2.1.2.1, which calls for a numerical model which should be kept as simple as 

possible. This way, one may already see important trends and the risk of errors is low. Also, 

one already has a simple model to use as a starting point and for comparison with more 

sophisticated models. 

2.2.2.3 Problems 

Problems in the numerical procedure are caused the moment the degrees of freedom start 

to depend on each other. For the present model, this is the case when transformations (21) 

to (23) have to be repeated many times, for example due to a continuously changing 

indentation profile as it appears in wear simulations, see (Dimaki, Dmitriev et al. 2014, 

Dimaki, Dmitriev et al. 2016, Li, Forsbach et al. 2018). The MDR transformations are given 

by Abel-like integral equations, and it is well known that their numerical treatment is 

challenging (Hansen and Law 1985, Murio, Hinestroza et al. 1992). From a technical point 

of view, the transformations state that the acquisition of a single transformed value in the 

one-dimensional array requires the knowledge of, at most, all other untransformed values 

in the array. In this work, we will call this a problem with dependent degrees of freedom in 

the spatial domain which require non-local operations. 

 

We now follow along with (Benad 2018) to illustrate some of the difficulties which may be 

encountered with such problems. One technique for the implementation of the 

transformations (21) to (23) is a simple summation, as in  

 𝑔𝑔𝑘𝑘 = 𝑥𝑥𝑘𝑘ℎ �∑ � 𝑓𝑓𝑛𝑛′

�𝑥𝑥𝑘𝑘
2−𝑟𝑟𝑛𝑛2

� + 𝑓𝑓𝑘𝑘
′

√ℎ
𝑘𝑘−1
𝑛𝑛=1 � .  (24) 

The singularity at 𝑥𝑥 = 𝑟𝑟 is treated by the insertion of a single increment ℎ. In (36), we 

consider a uniform discretization of 𝑟𝑟 ∈ [0, 𝐿𝐿] and 𝑥𝑥 ∈ [0, 𝐿𝐿] as shown in Figure 9 with 𝑁𝑁 
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points each and the same step size ℎ = 𝐿𝐿
𝑁𝑁−1

, so that 𝑟𝑟𝑛𝑛 = ℎ(𝑛𝑛−1), 𝑥𝑥𝑘𝑘 = ℎ(𝑘𝑘−1), and 𝑛𝑛, 𝑘𝑘 ∈

{1, 2, … ,𝑁𝑁}. Derivatives of a discretized indentation profile 𝑓𝑓𝑛𝑛 = 𝑓𝑓(𝑟𝑟𝑛𝑛) can be obtained 

via central differences: 𝑓𝑓𝑛𝑛′ = (𝑓𝑓𝑛𝑛+1 − 𝑓𝑓𝑛𝑛−1) 2ℎ⁄ , and 𝑓𝑓𝑛𝑛′′ = (𝑓𝑓𝑛𝑛+1 − 2𝑓𝑓𝑛𝑛 + 𝑓𝑓𝑛𝑛−1) ℎ2⁄ . 

 

The method given with (36), however, delivers only very poor results when compared with 

other more sophisticated techniques. This can be seen in Figure 11, where the present 

technique is called “Method I”. 

 

A far better technique for the implementation of the transformations is the use of an 

antiderivative. For the transformation to 𝑔𝑔𝑘𝑘, this translates to 

 𝑔𝑔𝑘𝑘 = 𝑥𝑥𝑘𝑘ℎ ∑ �
atan 𝑟𝑟𝑛𝑛

�𝑥𝑥𝑘𝑘
2−𝑟𝑟𝑛𝑛

2
−atan 𝑟𝑟𝑛𝑛−1

�𝑥𝑥𝑘𝑘
2−𝑟𝑟𝑛𝑛−1

2

ℎ
𝑓𝑓𝑛𝑛′�𝑘𝑘

𝑛𝑛=1    (25) 

and for the transformation to 𝑝𝑝𝑛𝑛 , one can use  

 𝑝𝑝𝑛𝑛 = − 1
𝜋𝜋
ℎ∑ �

log��𝑥𝑥𝑘𝑘+1
2 −𝑟𝑟𝑛𝑛2+𝑥𝑥𝑘𝑘+1�−log��𝑥𝑥𝑘𝑘

2−𝑟𝑟𝑛𝑛2 + 𝑥𝑥𝑘𝑘�

ℎ
𝑞𝑞𝑘𝑘′ �𝑁𝑁

𝑘𝑘=𝑛𝑛    (26) 

The first derivatives can once more be obtained via central differences. As can be seen in 

Figure 11, this technique, referred to as “Method II” provides a much better accuracy than 

“Method I”.  

 

The third technique which shall be mentioned here and called “Method III” is introduced 

and described in great detail in (Benad 2018). Please refer to this document for more 

information on this technique. The main idea is to avoid the singularity at 𝑥𝑥 = 𝑟𝑟 through 

partial integration of the transformations (21) to (23). This leads to alternative formulations 

of the transformations in which the second derivative of the three-dimensional indentation 

profile and the deformed elastic foundation occur. Thus, singularities now occur at kinks of 

these profiles; however, they disappear in the numerical integration, similarly to “Method 

II” where the small increment ℎ cancels out in equations (37) and (38). We shall also note 

that the singularity which is overcome in “Method II” occurs in the kernel. “Method III”, 

however, overcomes singularities which may occur through the shape of the indentation 

profile or the deformed one-dimensional foundation. Also, the singularity in “Method II” 
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always influences the transformation values at all discretization points whereas in “Method 

III” the singularities through kinks may leave transformation values at some discretization 

points uninfluenced. In Figure 11, it can be seen that with “Method III” the number of 

discretization points can substantially be reduced to achieve the same accuracy as in 

“Method II”. However, it stands out that the maximum error in “Method III” is still fairly 

close to the maximum error in “Method II”. This relatively high maximum error of “Method 

III” is generally attained at the end of the contact area. 
 

The previously described relatively high maximum error of “Method III” can be reduced in 

“Method IV” which is also introduced in (Benad 2018). Here, an additional discretization 

point is inserted at the end of the contact area. Three more points in the near surrounding 

have to be added to allow the computation of the derivatives. In Figure 10, a detailed image 

of the additional points is displayed. In Figure 11, it can be seen that techniques such as 

“Method IV” can help to further increase the accuracy of the method. Note that the 

particular technique “Method IV” with one additional discretization point is only the first 

step towards a more general refinement of the discretization towards the end of the contact 

area with additional points to increase the accuracy of the method even further. 
 

 

Figure 10: Detailed view of the graph in Fig. 1b, here with additional discretization points at the end of the contact area 
which are marked with black crosses. Image: (Benad 2018) 
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Figure 11: Upper limits of the maximum absolute error of 𝒑𝒑𝒏𝒏 (left) and the mean absolute error of 𝒑𝒑𝒏𝒏 (right) compared 
for the different numerical methods: “Method I” – insertion of 𝒉𝒉 at singularity, “Method II” – implementation using 
the antiderivative, “Method III” – partial integration method, “Method IV” – partial integration method with small 
adjustment. As before, the curves are displayed for the exemplary inputs of 𝑳𝑳 = 𝟓𝟓, 𝑬𝑬∗ = 𝟓𝟓, 𝒅𝒅 = 𝟎𝟎.𝟑𝟑 for the exemplary 

parabolic indenter given with 𝒇𝒇(𝒓𝒓) = 𝒓𝒓𝟐𝟐

𝟐𝟐
. Image: (Benad 2018) 

 

In addition to the investigation of the accuracy of the transformation methods it is also to 

investigate how they perform if they are used multiple times, for instance during wear 

simulations. It is interesting to note, that “Method II” seem to yield a high oscillating error 

during such simulations which cannot be seen with the newly introduced “Method III” and 

“Method IV”. To illustrate this behavior the corresponding image from (Benad 2018) is 

included below in Figure 12. For more details on this simulation please also refer to the 

complete paper. 

 

Figure 12: Left graph: A heterogeneous cylinder composed of rings of different material having the same elastic 
properties but different wear coefficients 𝒌𝒌𝟓𝟓 and 𝒌𝒌𝟐𝟐 is pressed onto an elastic half-space with the normal force 𝑭𝑭𝐍𝐍 and 
moves tangentially with velocity 𝒗𝒗𝟎𝟎. Right graph: Simulation results for the limiting profile and pressure after a long 
enough running-in process as obtained with Method II (a thin grey jagged line), and the techniques “Method III” and 

“Method IV” (smooth bold line) with N = 201 discretization points and a ratio of wear coefficients of  𝒌𝒌𝟐𝟐
𝒌𝒌𝟓𝟓

= 𝟓𝟓𝟎𝟎. Image: 

(Benad 2018) 
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Let us now step back and examine the techniques which were just discussed. Although the 

problems which are encountered could be kept at bay, the numerical treatment was still 

somewhat challenging. Not only this, but also the computational effort is of course 

increased if the degrees of freedom depend on each other through transformations such as 

(21) to (23). This may not be challenging for a one-dimensional array such as in MDR 

simulations, but for more dimensional arrays as we will deal with in subsequent chapters 

such dependencies will indeed be difficult to handle. It is interesting to note, that although 

it is challenging, solutions may be found to mitigate such increases of computational effort. 

In a follow up study to the present model, see (Willert 2021), a way was found to apply the 

Fast Fourier Transformation to the transformations (21) to (23). This does not fully 

eliminate the rise in computational effort when compared operations with a single one-

dimensional array of independent degrees of freedom, but it is still a large improvement 

when compared to the straight forward implementation of summations, as in (37) and (38). 

 

As a closing statement of this discussion, let us emphasize that problems such as the one in 

this section with dependent degrees of freedom in the spatial domain requiring non-local 

operations seem to the author – although there may be ways to deal with them – to be 

extremely challenging and often difficult to implement. 

 

Therefore, for the numerical flow channel which will be developed in subsequent chapters, 

we will use a different approach. We will apply a powerful procedure with local interactions 

in the spatial domain. 

2.3 A 2D-array of degrees of freedom with local interactions 

The third exemplary study which we will first follow closely and then discuss, is a recent 

preprint about the emergency evacuation of the novel Flying V aircraft configuration. With 

passenger compartments arranged in the shape of a V, the cabin geometry of a Flying V 

airplane differs significantly from the cabin geometry of the conventional tube and wing 

configuration (see Figure 13). Certification regulations state that the evacuation time of a 

civil passenger aircraft must not exceed 90 seconds when half of all doors are closed (CS-
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25, (European Union Aviation Safety Agency 2020)). For flying wings in particular, this 

requirement has always been a topic of some concern (Martinez-Val 2007, Torenbeek 

2013). An evacuation study of the Flying V was conducted by Julia Gebauer at the time a 

Master student at the Berlin Institute of Mechanics (Gebauer and Benad 2021). The work 

was supervised by the author of this thesis.  

 

The inclusion of this study in the present will give us the opportunity to examine a simple 

model of a two-dimensional array of independent degrees of freedom. From a technical 

point of view, this is the next logical step after the previous two studies which we discussed.  

 

Let us introduce the numerical model to investigate the emergency evacuation of the  

Flying V which was used in (Gebauer and Benad 2021). We follow along with this study in 

the next section. A detailed discussion of the model and how it relates to the numerical flow 

channel which will be developed in subsequent chapters of this thesis will follow after this. 

2.3.1 Exemplary model 

There are various techniques to simulate emergency evacuations, among them are cellular 

automaton models (Burstedde, Klauck et al. 2001), or the continuous social force model 

(Helbing and Molnar 1995). An exemplary evacuation software is airExodus, see (Galea, 

Blake et al. 2001). For a first preliminary analysis of the evacuation of the Flying V, a 

simulation tool was developed in (Gebauer and Benad 2021), which is the study we follow 

along with in this section. The developed tool is based on the technique of cellular automata 

with a floor field model, see (Burstedde, Klauck et al. 2001). Therein, a discrete domain is 

introduced, where each cell state can be empty (“zero”) or occupied (“one”). A passenger 

decides where to go by a probability calculated by layering different fields. In the present 

model, a single parameter 𝑟𝑟 characterizing the level of random motion of the passengers 

during the evacuation process is introduced and calibrated to match evacuation times of 

existing airplane configurations. With the calibrated tool, multiple simulations are executed 

to compare the evacuation times of the Flying V and the Airbus A350-900 reference aircraft 

for different closed door configurations. 
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In order to create a simple simulation tool, cellular automatons are used. The observed 

domain is the passenger cabin that is modeled by a grid consisting of square cells. The 

dimension for one cell was chosen with 40 cm × 40 cm to model dimensions of seats and 

aisles as well as the space a pedestrian occupies, see (Torenbeek 1982, Weidmann 1993). 

The generated grids are shown in Figure 13.  

 

Figure 13: The cabin geometry of the Airbus A350-900 (left) and Flying V (right) modeled with a grid based on square 
cells. 

The walls and seats receive the cell state “one”, which is permanent over the course of the 

simulation. The cell state for passengers changes over time. Only the closest adjacent cells 

are assumed to have an impact on a passenger in the present simulation. A single cell can 

only be occupied by one passenger in one time step. When multiple passengers have the 

same target cell, one passenger is chosen randomly. This passenger is allowed to move to 

this target cell while the other passengers are prohibited from moving at all. In order to 

define when a passenger can be seen as evacuated, boundary conditions need to be set. 

When a passenger enters an exit door, this passenger is considered evacuated and is ignored 

in the next time step. In addition, the transition between the legs of the Flying V is crucial. 

In the present preliminary model, two separate latices are aligned with each leg of the V. 

Where both legs meet, transition conditions are applied. 

 

The movement of a passenger depends on a transition probability 𝑝𝑝. In accordance with the 

floor field model (Burstedde, Klauck et al. 2001), this probability is calculated by layering 

different fields. Three different fields are taken into account: a gradient, distance and 
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direction field. The gradient field presents the urge of each passenger to reach the exit doors 

with the shortest way possible. The distance field adds an entirely random motion to the 

passengers. In the present model, its influence decreases linearly with the distance to each 

exit. The overall influence of the distance field can be adjusted by the single parameter 𝑠𝑠. 

Therefore, in the present study, this single parameter 𝑟𝑟 is used to characterize the level of 

random motion of the passengers during the evacuation process. This parameter can be 

calibrated to match evacuation times of existing airplane configurations. Additionally, a 

correction field is applied to specific small areas with influence parameter 𝑞𝑞 to guarantee 

that no passengers are not stuck in a dead end. The transition probability used in this 

simulation is 

 𝑝𝑝𝑖𝑖𝑖𝑖 = ��𝑟𝑟 𝑝𝑝d𝑖𝑖𝑖𝑖 + (1 − 𝑟𝑟)𝑝𝑝g𝑖𝑖𝑖𝑖� 𝑞𝑞 + (1 − 𝑞𝑞)𝑝𝑝c𝑖𝑖𝑖𝑖� �1 − 𝑤𝑤𝑖𝑖𝑖𝑖� (27) 

with 𝑖𝑖, 𝑗𝑗 ∈ {1, 2, 3}, where 𝑝𝑝d𝑖𝑖𝑖𝑖 represents the distance field, 𝑝𝑝g𝑖𝑖𝑖𝑖 the gradient field, 𝑝𝑝c𝑖𝑖𝑖𝑖 the 

correction field, and 𝑤𝑤𝑖𝑖𝑖𝑖 the wall grid, where a movement is prohibited. The variables 𝑖𝑖 and 

𝑗𝑗 represent the adjacent cells that are considered for the calculation of the probability. In the 

preliminary model, all passengers will be moving with the same velocity of 𝑣𝑣 ≈ 1.3 m s⁄ , 

which is the average velocity for a pedestrian (Weidmann 1993). In the present simulation, 

where a passenger walks with one cell per time step, this translates to a time step of 

approximately 0.3 s. In order to calibrate the simulation tool for the Airbus A350-900, data 

from trials or other evacuation models was researched. No values were found for the 

reference aircraft, but due to similarity in exit door arrangements and seat capacity, values 

presented in (Choochart and Thipyopas 2020) obtained from a simulation with airExodus 

applied to the Boeing 767 were used to calibrate the present preliminary model. From this 

study, a target evacuation time of 60 s could be derived for a case where all doors on the 

right side of the aircraft are closed. This time excludes the response time of crew members. 

Multiple simulations were run for the calibration. Based on the outcome of these 

simulations, the parameter was set to 𝑟𝑟 = 10−2. Various closed door configurations were 

examined for the Flying V and the reference aircraft. They are displayed in Figure 14.  
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Figure 14: Average evacuation times for the Flying V and the reference aircraft displayed for various closed door 
configurations and a parameter r = 10-2. Note that the displayed times are only of the evacuation process and exclude 
crew reaction times at the beginning of the evacuation. Note further, that these are preliminary results obtained with 
an extremely simple tool. One should exercise great caution with these results, especially with the actual quantitative 
values. The results indicate that the V shaped cabin has some advantages over the tube cabin if evacuation must take 
place only towards the front or only towards the rear of the aircraft (cases 5 and 6). For example, the tool showed a 
reduction in evacuation time of 62% for the Flying V when compared to the reference when half of all doors in the front 
of the aircraft are closed (case 5). When half of all doors in the back of the aircraft are closed (case 6), a reduction of 
34% in evacuation time was obtained. This seems to indicate a similar trend as was obtained in a recent study (Isgrò 
2020) where boarding times of the Flying V and the A350-900 were simulated using agent based modelling. In this study, 
a reduction of 30% in boarding time was obtained for the Flying V where passengers can proceed from the front to the 
back of the aircraft using four available aisles as opposed to two aisles in the reference aircraft. Results of the present 
study obtained for case 2 indicate that disadvantages in the evacuation process may occur when the passengers in the 
V shaped cabin need to evacuate solely towards one side of the aircraft. In this case, an increase of 37% in evacuation 
time for the Flying V was obtained when compared to the reference with the preliminary tool.  

 

2.3.2 Discussion 

Let us discuss the model from a technical point of view. Note that in the development of 

the model, we have already used some of the insights from the previous two discussions.  

2.3.2.1 Simplicity 

First, let us draw attention to the simplicity of the tool. Certification regulations state, that 

there must be a certain percentage of male and female passengers, old and young, etc. None 

of these aspects are accurately considered in the tool. All of this handled with the single 

parameter 𝑟𝑟 which we use to calibrate the present simple model to match evacuation times 

obtained with more sophisticated models. Also, the cabin geometry is a far way from reality. 
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However, we have a first tool, which can serve as a first reference and as a starting point 

for more sophisticated studies. 

2.3.2.2 Parallelization 

Second, with regard to parallelization, let us note that the model at hand can be fully 

vectorized in the spatial domain as described in previous discussions. In practice, this means 

that large numbers of simulations can be conducted and parameter studies can be carried 

out, for example to investigate various geometries. Simple vectorization is possible, first, 

because the decision a passenger makes depends only on his or her immediate neighbors, 

and second, because we do not follow each individual passenger as he or she moves through 

the airplane: The probability calculated with (27) is obtained in the same way for all grid 

points. Therefore, the tool requires only simple additions, subtractions, and shifts of two 

dimensional arrays. All operations which have to be performed to obtain (27) are local and 

do not depend on each other in the spatial domain. Yet, precisely because of this, no 

individual tracking of passengers is possible with this model, and the radius a passenger 

considers to make a decision is limited to the immediate neighbors.  

2.3.2.3 Further developments 

Further developments of the evacuation tool which is discussed in this section exist. Major 

improvements to the tool were made by (Hellmann 2020). The main idea of this study is to 

increase the spatial resolution of the tool. A single passenger now occupies a lot more than 

one single cell, but many cells, all within a certain radius around a center cell. Around this 

area, there is an even larger radius which includes the cells used for he decision making 

process. Otherwise, the model runs the same way as the previously discussed preliminary 

tool. The model of Hellmann allows to consider far more detailed cabin geometries than the 

previous tool and the transition of the passengers through the airplane is a lot smoother than 

for the previous model. However, this comes at the cost of a much higher computational 

complexity. While for the model of Gebauer the complexity for operations in the spatial 

domain was simply 𝒪𝒪(𝑁𝑁 × 𝑁𝑁), where 𝑁𝑁 × 𝑁𝑁 is the number of grid points in the two-

dimensional array, the complexity rises to 𝒪𝒪(𝑁𝑁 × 𝑁𝑁 × 𝑅𝑅 × 𝑅𝑅) for the model of Hellmann, 

where 𝑅𝑅 is the radius around one passenger used for the decision making process. In the 

words of the previous two discussions: For the model of Hellmann, the degrees of freedom 

in the spatial domain depend on each other, at least within a certain radius around each cell. 
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The larger this radius gets, the more they depend on each other. If however 𝑅𝑅 is one, we 

have the model of Gebauer with degrees of freedom in the spatial domain which are not 

fully independent, but they are only influenced by their neighbors. We call this a model 

with local interactions in the spatial domain. 

 

                                                     

 

                          Model of Gebauer                                           Model of Hellmann 

 
Figure 15: Comparison of the model of Gebauer and the model of Hellmann. Results are shown for an exemplary time 
step during the evacuation simulation. The doors on the right of the aircraft are closed in both examples. 

2.4 A 3D-array of degrees of freedom with local interactions 

Let us now introduce the Lattice Boltzmann Method. It is this tool which we will use for the 

creation of the numerical flow channel in the next chapter.  

 

Throughout this section, and in the next chapters of this work, we will draw much of our 

knowledge about the numerical tool from the book “The Lattice Boltzmann Method – 

Principles and Practice” (Krüger, Kusumaatmaja et al. 2017). In this book, the authors state: 

“[…] Researchers around the world are attracted to the Lattice Boltzmann Method for 

reasons such as its simplicity, its scalability on parallel computers, its extensibility, and the 

ease with which it can handle complex geometries. […]” This echoes the impression the 

author of the present thesis has when regarding Lattice Boltzmann Method, especially in 

the light of the past three sections of this chapter. 
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The Lattice Boltzmann method is a tool which delivers second order accurate solutions of 

the compressible Navier-Stokes equation for low Mach numbers. The solution process for 

this is extremely simple: A three dimensional simulation is performed on a three 

dimensional lattice with equal spacing in each dimension. The numerical values on the 

lattice are stored in arrays. For example, the three dimensional field of the fluid density can 

be stored in a three dimensional array. In addition to a single value for the fluid density at 

each grid point, only 18 more values have to be stored at each discretization point for the 

simplest implementation of the Lattice Boltzmann method. Three of them represent the 

three components of the velocity field. The remaining 15 values represent particle 

distributions 𝑓𝑓𝑖𝑖 moving in 15 different directions of the lattice. Simple operations have to 

be performed with the numerical values directly at each gird point (collision). Afterwards, 

the arrays have to be shifted by a single index to their neighboring lattice nodes (streaming) 

which yields the updated values for velocity, density and particle distributions.  

 

We will describe the Lattice Boltzmann algorithm in rich detail in the following sections, 

particularly in Section 3.5. For now, let us simply emphasize that the technique is a perfect 

example for a numerical procedure with simple local interactions in the spatial domain. 

Shifting an array, or performing local additions and subtractions – such operations do not 

depend on each other in the spatial domain. These operations can be fully vectorized and 

run in parallel. It is this which justifies our high interest in the Lattice Boltzmann method, 

especially in light of the past sections of this work.  

 

This high interest is increased even more by current trends in the development of 

microprocessors. Examining Figure 16a (Rupp 2017), it becomes apparent that the number 

of transistors in a microprocessor increases exponentially over the past 50 years, a trend 

which is often described as Moor’s law, see (Schaller 1997). From what we can observe in 

Figure 16a, the number of transistors increases by a factor of 10 every 6 to 7 years. The very 

same trend can be observed for the computing power of microchips, often measured in 

floating point operation per second (FLOPS/sec). Trend data for this can be seen in Figure 

16b (Rupp 2016). Additional graphs can be found in (Sun, Agostini et al. 2019). If we 

examine the rise of computing power not of single microchips, but of large computer 

clusters, we also observe the same trend. Figure 16c displays the development of floating 

point operations per second of the world’s largest computers.  
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Figure 16: a) – 42 years of microprocessor trend data (Rupp 2017), b) – Development of theoretical peak performance 
of state-of-the-art CPUs and GPUs (Rupp 2016), c) – Devevelopment of computing power of the world’s largest 
supercomputers (Our World in Data 2020) 

What is most remarkable in these trends, is that the exponential growth rate for the 

computing power continues to this day, despite the fact, that the growth rate in single thread 

performance is decreasing. Examine Figure 16a again more closely. Around the year 2008 

the computing frequency of microchips stopped to grow. As a result, the growth rate for the 

speed of a single computational thread started to decrease. Yet, we can still observe that the 

overall computing power of microprocessors or large computer systems continues to follow 

the original exponential growth rate. This trend can only be explained by a large increase 

of parallel operations. If we expect this trend to continue for some years, numerical tools 

which consist of simple parallel operations in the spatial domain like the Lattice Boltzmann 

method, a likely to benefit strongly from this trend in the future. 

a) b) 

c) 
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3 Setup of the numerical flow channel 

In this section the setup of the numerical experiment will be explained. First, the high 

fidelity model for the flow will be introduced. We then ask which physical quantities 

determine the flow field around the wing. For this, we use again the procedure of 

dimensional analysis. Recall that this tool was also used in Section 2.1. In the present 

section, we follow a procedure described in detail in (Anderson 2017). In the framework of 

the present study, the flow field around the wing is governed only by a single dimensionless 

parameter, and the geometry of the problem. We continue to describe this geometry and 

how it is modelled in rich detail. Subsequently, the simulation algorithm will be introduced. 

Finally, the output of the numerical experiment will be described. 

3.1 High fidelity model 

 

The high fidelity model of this work is given by the continuity equation 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

+ div𝜕𝜕𝒗𝒗 = 0 , (28) 

and the compressible Navier-Stokes equation 

 𝜕𝜕 �
𝜕𝜕𝒗𝒗
𝜕𝜕𝑡𝑡

+ 𝒗𝒗 ∙ grad𝒗𝒗� = − grad𝑝𝑝 + 𝜂𝜂∆𝒗𝒗 + �𝜁𝜁 +
𝜂𝜂
3
� grad div𝒗𝒗 , (29) 

see (Landau and Lifschitz 1971). 𝜂𝜂 is the shear viscosity and 𝜁𝜁 is the bulk viscosity. Often, 

𝜂𝜂 is refered to as dynamic viscosity which is related to the kinematic viscosity 𝜈𝜈 as 

 𝜂𝜂 = 𝜈𝜈𝜕𝜕. (30) 

In its original form used in this work, the Lattice Boltzmann method solves (28) and (29) 

for weak compressibility, that is, errors will occur as the velocity of the fluid 𝑉𝑉 approaches 

the speed of sound 𝑎𝑎. The problems under investigation in this work are well below this 

limit, they are at Mach numbers of  Ma = 𝑉𝑉 𝑎𝑎⁄ ≈ 0.2. Usually, such problems are treated 

entirely incompressible, see (Raymer 2012, Torenbeek 2013). It is often assumed that 
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compressibility effects will begin to manifest themselves at around Ma ≈ 0.4, see for 

example (Schlichting and Truckenbrodt 1967, Schade and Kunz 2007). 

 

Compressibility, however weak, requires the introduction of an equation of state to our high 

fidelity model. An equation of state which is frequently applied with the Lattice Boltzmann 

method and also used in the present work is the isothermal equation of state 

 𝑝𝑝 = 𝜕𝜕𝑅𝑅𝑇𝑇0 . (31) 

The application of this relation with the Lattice Boltzmann method results in a bulk viscosity 

of 𝜁𝜁 = 2𝜂𝜂 3⁄  (Krüger, Kusumaatmaja et al. 2017). 

3.2 The Buckingham pi theorem 

If we expect the aerodynamic force 𝑅𝑅 on a wing to depend on the freestream density 𝜕𝜕∞, 

the freestream velocity 𝑉𝑉∞, the size of the wing characterized by the chord length 𝑐𝑐, the 

freestream kinematic viscosity 𝜈𝜈∞, the freestream speed of sound 𝑎𝑎∞, and the angle of attack 

𝛼𝛼, that is 

 𝑅𝑅 = 𝑓𝑓(𝜕𝜕∞,𝑉𝑉∞, 𝑐𝑐, 𝜈𝜈∞, 𝑎𝑎∞,𝛼𝛼), (32) 

then dimensional analysis yields that 𝑅𝑅 may be expressed in terms of a dimensionless force 

coefficient 

 𝐶𝐶𝑅𝑅 =
𝑅𝑅
𝑞𝑞∞𝑆𝑆

 (33) 

which only depends on the freestream Reynolds number 

 Re =
𝑉𝑉∞𝑐𝑐
𝜈𝜈∞

 , (34) 

the freestream Mach number 

 Ma =
𝑉𝑉∞
𝑎𝑎∞

 , (35) 

and the angle of attack: 
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 𝐶𝐶𝑅𝑅 = 𝑓𝑓(Re, Ma,𝛼𝛼). (36) 

In (33), 𝑆𝑆 is a reference area characterizing the size of the body (such as the wing area), and 

𝑞𝑞∞ = 𝜕𝜕∞𝑉𝑉∞2 2⁄  is the dynamic pressure.  

 

The above also holds true for components of 𝑅𝑅, such as lift 𝐿𝐿 and drag 𝐷𝐷. Both may be 

expressed in terms of dimensionless coefficients  

 𝐶𝐶𝐿𝐿 =
𝐿𝐿
𝑞𝑞∞𝑆𝑆

  ,   𝐶𝐶𝐷𝐷 =
𝐷𝐷
𝑞𝑞∞𝑆𝑆

  , (37) 

which only depend on Re, Ma, and 𝛼𝛼:  

 
𝐶𝐶𝐿𝐿 = 𝑓𝑓(Re, Ma,𝛼𝛼), 

𝐶𝐶𝐷𝐷 = 𝑓𝑓(Re, Ma,𝛼𝛼). 
(38) 

 

In fact, the above holds true not only for force coefficients but for all dimensionless field 

values ( 𝑉𝑉
𝑉𝑉∞

, 𝑝𝑝
𝑝𝑝∞

, …) of the flow.  

 

For full derivation of the statements above and further extensive and references on this topic 

see (Anderson 2017). 

 

For the present work, the above means that the entire flow which will be investigated 

depends only on the geometry of the problem, the Reynolds number, and the Mach number. 

Moreover, as was mentioned in Section 3.1, compressibility effects will be extremely low 

for problems under investigation in this work with Mach numbers as low as Ma ≈ 0.2. 

Therefore, we can conclude, that in the present work the flow under investigation for a given 

geometry only depends on a single dimensionless parameter, which is the Reynolds number. 
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3.3 Wind tunnels 

We have now discussed the differential equations which govern the flow, and applied 

dimensional analysis to determine which parameters govern their solutions. We have also 

decided for a numerical tool to solve these equations for the parameters which are of 

interest. It is now almost time to develop the numerical experiment. Let us however pause 

one last time and examine a real wind tunnel. 

 

The first flow channel for scientific investigations was built by Ludwig Prandtl  

(Prandtl 1905). This design inspired closed circuit wind tunnels, called Göttinger type wind 

tunnels. An exemplary wind tunnel of this type operational today is the Transonic Wind 

Tunnel Göttingen (see the colored image below). 

 

                 

 

     

Figure 17: The left picture shows Ludwig Prandtl with his water tunnel in Hannover, Germany, in 1904 (DLR 2021). 
The original drawing of the apparatus is shown on the right (Prandtl 1905). This design inspired closed circuit wind 
tunnels, called Göttinger type wind tunnels. An exemplary wind tunnel of this type operational today is the Transonic 
Wind Tunnel Göttingen (TWG) (see the large image in the middle). The length of this tunnel is 𝟒𝟒𝟒𝟒.𝟓𝟓 𝐦𝐦, the drive motor 
has a power of 𝟓𝟓𝟐𝟐 𝐌𝐌𝐌𝐌, and the maximum Reynolds number which can be achieved in the test section 
(𝟓𝟓𝐦𝐦 × 𝟓𝟓𝐦𝐦 × 𝟒𝟒.𝟓𝟓𝐦𝐦) is 𝐑𝐑𝐑𝐑 = 𝟓𝟓.𝟖𝟖 × 𝟓𝟓𝟎𝟎𝟒𝟒 for a reference length of 𝒍𝒍𝐫𝐫𝐑𝐑𝐫𝐫 = 𝟎𝟎.𝟓𝟓 𝐦𝐦. 
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3.4 Experimental setup 

Now it is time to build the numerical wind tunnel of this work. An image of the wind tunnel 

is displayed together with some annotations in Figure 18. The computations are performed 

on a workstation with an AMD Ryzen Threadripper processor with 24 cores capable of a 

maximum speed of 4.5 GHz. The available memory (RAM) for the computations is 256 

GB. The full specifications of the workstation are displayed in Table 1. 

 

 

 

  

Figure 18: Setup of the numerical windtunnel. Annotations are displayed in bold italic print.  
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Processor AMD Ryzen Threadripper 3960X 24-Core 3.80GHz 
(max: 4.5GHz) 

RAM 256 GB DDR4 3200MHz 

Mainboard ASRock TRX40 Creator Mainboard 

System Windows 10 Pro 

Matlab 
version R2021a 

Table 1: Workstation specifications                    Figure 19: Image of the workstation 

 

3.4.1 Dimensionless framework 

The setup which is displayed in Figure 18 makes use of a fully dimensionless framework. 

As we use this framework throughout this work, note that it is completely in line with the 

fundamental relations introduced in Section 3.2.  

 

Dimensionless variables are denoted with a star (*) throughout this work. The coordinate 

axes which are shown in Figure 18 are dimensionless spatial coordinates. The dimensional 

coordinates (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) relate to their dimensionless counterparts (𝑥𝑥∗, 𝑦𝑦∗, 𝑧𝑧∗) as 

 𝑥𝑥 = 𝑥𝑥∗𝜁𝜁𝑙𝑙 , 𝑦𝑦 = 𝑦𝑦∗𝜁𝜁𝑙𝑙  , 𝑧𝑧 = 𝑧𝑧∗𝜁𝜁𝑙𝑙  , (39) 

where we choose 

 𝜁𝜁𝑙𝑙 = ∆𝑥𝑥 = ∆𝑦𝑦 = ∆𝑧𝑧 . (40) 

This means that 

 ∆𝑥𝑥∗ = ∆𝑦𝑦∗ = ∆𝑧𝑧∗ = 1 . (41) 

We use the same technique for the time 𝑡𝑡. It relates to its dimensionless counterpart 𝑡𝑡∗ as   

 𝑡𝑡 = 𝑡𝑡∗𝜁𝜁𝑡𝑡  ,  (42) 

where we choose 

 𝜁𝜁𝑡𝑡 = ∆𝑡𝑡 , (43) 

which means that 
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 ∆𝑡𝑡∗ = 1 . (44) 

Units as they are given with (41) and (44) are called lattice units (Krüger, Kusumaatmaja 

et al. 2017). 

 

The dimensional fluid density 𝜕𝜕 relates to its dimensionless counterpart 𝜕𝜕∗ as 

 𝜕𝜕 = 𝜕𝜕∗𝜁𝜁𝜌𝜌 .  (45) 

We choose 

 𝜁𝜁𝜌𝜌 = 𝜕𝜕∞ ,  (46) 

which means that  

 𝜕𝜕∞∗ = 1 .  (47) 

 

In the present dimensionless framework, all other variables can now be related to their 

dimensionless counterparts though combinations of 𝜁𝜁𝑙𝑙, 𝜁𝜁𝑡𝑡 and 𝜁𝜁𝜌𝜌. For example, for the 

velocity field, we have  

 𝒗𝒗 = 𝒗𝒗∗ 𝜁𝜁𝑙𝑙 𝜁𝜁𝑡𝑡⁄  .  (48) 

For the pressure field, we have 

 𝑝𝑝 = 𝑝𝑝∗ 𝜁𝜁𝜌𝜌𝜁𝜁𝑙𝑙2 𝜁𝜁𝑡𝑡2⁄  ,  (49) 

for the kinematic viscosity, it is 

 𝜈𝜈 = 𝜈𝜈∗ 𝜁𝜁𝑙𝑙2 𝜁𝜁𝑡𝑡⁄  ,  (50) 

and for the speed of sound 

 𝑎𝑎 = 𝑎𝑎∗ 𝜁𝜁𝑙𝑙 𝜁𝜁𝑡𝑡⁄  .  (51) 

 

3.4.2 Geometry 

Let us position a half model of the wing we seek to investigate in our wind tunnel as shown 

in Figure 18. Half models are commonly used to investigate flows around symmetric wings, 

see for example (Van Empelen and Vos 2021). 
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The intersection of the trailing edge of the wing and its symmetry plane is shown in Figure 

18 with a black cross (+). The 𝑥𝑥∗ and 𝑦𝑦∗coordinates of this point position the wing inside 

the tunnel. The axis which runs through this point in 𝑧𝑧∗ direction is highlighted with a 

dashed line in Figure 18. The wing may be turned around this axis which sets the angle of 

attack 𝛼𝛼.  

 

We will go into detail about the boundary conditions of the numerical simulation in Section 

3.5. Here, let us only state briefly that at the inflow plane we set the inflow velocity 𝑉𝑉∞∗ and 

the inflow density 𝜕𝜕∞∗ . At the outflow plane, we assume that the field values of velocity, 

density and pressure change very little. The three boundary planes which are left will be 

modelled as solid but frictionless walls. The boundary condition we apply here is often 

referred to as free-slip boundary condition. We will also discuss this in Section 3.5. 

 

The entire numerical setup of the geometry is created with the software environment of 

Matlab R2021a. All necessary calculations and visualizations of the results are performed 

with this tool as well. 

 

Let us now discuss the wing geometry we place into our wind tunnel. A major operation 

before any calculations can be performed is to obtain the discretization points which lie 

within the geometry we seek to investigate. Airfoil sections used in this work are 

exclusively from the four digit NACA airfoil series. Wing elements are created as ruled 

surfaces between the airfoil sections. The creation of such a surface can be achieved using 

a simple alphaShape object within Matlab. In further developments of this work, it may 

be necessary to investigate methods to import geometry files from CAD programs. In the 

present work however, simple geometries were created directly within Matlab. Grid points 

which lie within an alphaShape can obtained with the inShape function in Matlab. 

This is by no means a trivial operation and can be very time consuming. In order to mitigate 

any time penalties encountered through the operation, we have limited the search region for 

points which lie within the wing geometry to a small box which encloses the wing, see 

Figure 20.  
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Figure 20: Discretization points which lie inside the wing are searched inside a small box which fully encloses the wing. 

 

Times for using the inShape function on this setup were found to be on the order of a 

single iteration step of the main algorithm for the grid sizes investigated in this work. RAM 

requirements were found to be on the order of 50% of the RAM required in the main 

algorithm for the grid sizes investigated in this work. With these benchmarks, and the notion 

that this function has to be run only a single time before the main algorithm is entered, it 

was deemed a viable technique for the scope of this work. 

 

Discretization points which lie inside an exemplary wing geometry are displayed in Figure 

21 for two different discretization  resolutions. The images are enlarged versions of Figure 

20 to show only the wing and its enclosing box, not the entire wind tunnel. The half model 

which is displayed in the images on the left side has a half span 𝑏𝑏∗ 2⁄ = 28 discretization 

points. This is half of the width of the entire simulation region, which was chosen with 𝐵𝐵∗ =

56 discretization points. The images on the right side show the same geometry, but a 

resolution which is ten times higher. Here we have a half model with a half span of  𝑏𝑏∗ 2⁄ =

280 discretization points lying inside an overall simulation area with a width of 𝐵𝐵∗ = 560 

discretization points.  
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Figure 21: Two different resolutions of the same wing geometry are shown. The images on the right side show a 
resolution which is ten times higher than the resolution shown on the left. Note that the images are enlarged versions of 
Figure 20 to show only the wing and its enclosing box, not the entire wind tunnel. The half model which is displayed in 
the images on the left side has a half span 𝒃𝒃∗ 𝟐𝟐⁄ = 𝟐𝟐𝟖𝟖 discretization points. This is half of the width of the entire 
simulation region, which was chosen with 𝑩𝑩∗ = 𝟓𝟓𝟒𝟒 discretization points. The images on the right side show a half model 
with a half span of  𝒃𝒃∗ 𝟐𝟐⁄ = 𝟐𝟐𝟖𝟖𝟎𝟎 discretization points lying inside an overall simulation area with a width of 𝑩𝑩∗ = 𝟓𝟓𝟒𝟒𝟎𝟎 
discretization points. 

 

Before we end our description of the experimental setup with comments on the general 

system size and the available RAM, let us go back one more time to the introductory image 

of the experimental setup, Figure 18. We have now discussed the axis and dimensions in 

this image, and we have discussed the geometry which is shown. We have yet to comment 

on the values which are shown in the header and the footer of this image, and will appear 

again in most images of the results of this work. On the top left, we see the two 

dimensionless governing parameters of the simulation, Re and Ma. We will only change Re 

in our simulations. Slight changes of the low Mach number Ma will have no influence on 

the results within the scope of this work as was explained in Section 3.2. Then, in the same 

upper left corner, we display the angle of attack 𝛼𝛼. It influences the geometry of the problem 

and thus, it certainly influences the results. Many results will be displayed as a dependence 
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on 𝛼𝛼. In the top right corner, one of the results of the simulation, the lift coefficient 𝐶𝐶L, is 

displayed (see more in Section 3.6.2). In the footer we show first the amount of calculated 

RAM for the simulation (see next section), second, the relaxation parameter 𝜏𝜏∗, and third, 

current timestep of the simulation 𝑡𝑡∗. 

3.4.3 Available RAM and maximum Reynolds number 

The available amount of RAM dictates the maximum Reynolds number which can be 

achieved with the present setup. As will be discussed later in this work, the maximum size 

investigated in this work was a wind tunnel with a length in 𝑥𝑥∗ direction of 𝑆𝑆∗ = 700 

discretization points, a height in 𝑦𝑦∗ direction of 𝐻𝐻∗ = 560 discretization points, and a width 

in 𝑧𝑧∗ direction of 𝐵𝐵∗ = 560 discretization points. This results in a maximum size of  

 𝑁𝑁max = 𝑆𝑆∗ × 𝐻𝐻∗ × 𝐵𝐵∗ = 700 × 560 × 560 = 220 × 106 (52) 

discretization points in the wind tunnel. For a D3G15 lattice, we have to store 15 

populations 𝑓𝑓 in each point (see next section). Furthermore, the computation of an 

equilibrium distribution 𝑓𝑓eq which is required for the simulation runs fully vectorized in 

each time step when an additional dimension with three entries is added for the computation 

of the term 𝒗𝒗∗(𝒙𝒙∗, 𝑡𝑡) ∙ 𝒄𝒄𝑖𝑖 . (This also, we will discuss in rich detail later in the next section 

of this work.) This gives a total amount of  

 𝑁𝑁max,store = 𝑁𝑁max × 15 × 3 = 220 × 106 = 1 × 1010 (53) 

elements which have to be stored in one time step. From this, we can obtain the calculated 

amount of maximum RAM with 

 RAMmax,calculated = 𝑁𝑁max,store × 8 B = 80 × 109 B = 80 GB (54) 

In numerous simulations of systems with various size, it was found that the actual amount 

of RAM which is needed by Matlab R2021a for a smooth execution of the developed code 

scales with three times the value obtained with the calculated value in equation (54), that 

is 

 RAMmax = RAMmax,calculated × 3 = 240 GB. (55) 

This value was found to be a sufficient margin below the available amount of 256 GB on 

the workstation to ensure an efficient and robust execution of the simulation. 
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We are now able to estimate the maximum Reynolds number which can be achieved with 

our experimental setup. Let us assume that the largest wing we will be able to place into the 

wind tunnel has a reference chord of 35% of the tunnel length 𝑆𝑆∗: 

 𝑙𝑙max∗ = 𝑆𝑆∗ × 0.35 = 252. (56) 

Let us also assume that the lowest relaxation parameter 𝜏𝜏∗ for which we are able to conduct 

stable and accurate simulations will be (see Section 3.5.3 for more details) 

 𝜏𝜏min∗ = 0.52 . (57) 

If we then choose a high Mach number, which is, however, still below the limit at which 

compressibility effects begin to matter (see Section 3.1), 

 Mamax = 0.21 , (58) 

we obtain our dimensionless inflow velocity with (compare (35) and (69)) 

 𝑉𝑉∞,max
∗ = Mamax𝑎𝑎∗ = 0.21 × �1

3� = 0.12 . (59) 

With 

 𝜈𝜈∗ = 𝑎𝑎∗2�𝜏𝜏∗ − 1
2� � . (60) 

for the viscosity (see Section 3.5.3), we then obtain a maximum Reynolds number of 

 Remax =
𝑉𝑉∞,max
∗ 𝑙𝑙max∗

𝜈𝜈min∗ =  
𝑉𝑉∞,max
∗ 𝑙𝑙max∗

𝑎𝑎∗2�𝜏𝜏min∗ − 1
2� �

=
0.12 × 252

1
3� × �0.52 − 1

2� �
= 4.6 × 103. (61) 

3.5 Algorithm 

In the last section, we have described the experimental setup of our wind tunnel. We 

introduced the dimensionless framework and we described the geometry of the problem. 

We have also gained a first understanding of how the Reynolds number scales with the 

available amount of memory. Let us now introduce the simulation procedure which is used 

to obtain the field values of the flow inside the wind tunnel. 
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3.5.1 Initialization 

At 𝑡𝑡∗ = 0, we set the velocity field to zero, that is, 

 𝒗𝒗∗(𝒙𝒙∗, 𝑡𝑡∗ = 0) = 0 .  (62) 
In practice, this means the creation of a four-dimensional array which consists entirely out 

of zeros. The first three dimensions of the array are the spatial dimensions of the wind 

tunnel. The fourth dimension is used to store the velocity components in 𝑥𝑥∗, 𝑦𝑦∗ and 𝑧𝑧∗ 

direction. In total, this array has 𝑆𝑆∗ × 𝐻𝐻∗ × 𝐵𝐵∗ × 3 entries. We further initialize the fluid 

density with 

 𝜕𝜕∗(𝒙𝒙∗, 𝑡𝑡∗ = 0) = 𝜕𝜕∞∗ = 1 ,  (63) 
compare (47). In practice, we create a three-dimensional array which consists entirely of 

ones. In total, the array has 𝑆𝑆∗ × 𝐻𝐻∗ × 𝐵𝐵∗ entries.  

 

Note that there are various ways to initialize the velocity and density field. For example, 

one could use a constant velocity in 𝑥𝑥∗-direction, that is, 𝒗𝒗∗(𝒙𝒙∗, 𝑡𝑡∗ = 0) = 𝑉𝑉∞∗𝐑𝐑𝑥𝑥 and again, 

𝜕𝜕∗(𝒙𝒙∗, 𝑡𝑡∗ = 0) = 1. Like (62) and (63), this solves our high fidelity model (28) and (29). 

However, it violates the no-slip boundary condition at the wing we place into our wind 

tunnel. With (62) and (63), we fulfill both our high fidelity model (28) and (29) and all the 

boundary conditions which we place upon our model. The author of the present thesis has 

observed that this zero-velocity initialization scheme allows for more stable simulations 

when compared to schemes with a constant non-zero initial velocity component in the entire 

flow field. The phrase “more stable simulations” translates to a lower possible relaxation 

parameter 𝜏𝜏∗ and thus, higher Reynolds numbers Re, as we will see in the following 

sections. 

 

In the Lattice Boltzmann method, 𝑓𝑓𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗) represents the density of particles moving in 

the various directions of the lattice. We require an initialization of this so-called particle 

distribution, and also of the equilibrium particle distribution 𝑓𝑓eq,𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗). The latter 

describes the particle distribution in a fluid without internal friction. We will come back to 

this in more detail later. At this stage, let us only note that in the main algorithm, through 

particle motions and collisions, the particle distributions undergo a continuous relaxation 

towards their equilibrium state where there is no friction. Indeed, a motion of a fluid with 

particle distributions which are always entirely equal to the equilibrium particle distribution, 
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𝑓𝑓𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗) = 𝑓𝑓eq,𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗), fulfills the Euler momentum equation, which is (29) without any 

viscous terms. 

 

In the Lattice Boltzmann Method, the equilibrium particle distribution is obtained with 

 𝑓𝑓eq,𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗) = 𝑤𝑤𝑖𝑖𝜕𝜕∗(1 + 2𝜗𝜗1𝛱𝛱c + 𝜗𝜗2𝛱𝛱c2 − 𝜗𝜗1𝛱𝛱) ,  (64) 

where it is 

 𝜗𝜗1 =
1

2𝑎𝑎∗2
 , 𝜗𝜗2 =

1
2𝑎𝑎∗4

 , (65) 

and 

 𝛱𝛱c = 𝒗𝒗∗ ∙ 𝒄𝒄𝑖𝑖 , 𝛱𝛱 = 𝒗𝒗∗ ∙ 𝒗𝒗∗ . (66) 
Therein, we have 

 𝑤𝑤𝑖𝑖 = [      8       8       8       8       8       8       1       1       1       1       1       1       1       1     16] 72⁄   (67) 
and 

 

𝑐𝑐𝑥𝑥∗,𝑖𝑖 = [      1  − 1       0       0       0       0       1  − 1       1  − 1       1  − 1  − 1       1       0] , 

𝑐𝑐𝑦𝑦∗,𝑖𝑖 = [      0       0       1  − 1       0       0       1  − 1       1  − 1  − 1       1       1  − 1       0] , 

𝑐𝑐𝑧𝑧∗,𝑖𝑖  = [      0       0       0       0       1  − 1       1  − 1  − 1       1       1  − 1       1  − 1       0] .   
(68) 

 

This is the D3Q15 velocity set. It is called like this because we have a three-dimensional 

lattice and 15 velocity vectors 𝒄𝒄𝑖𝑖 with corresponding values 𝑤𝑤𝑖𝑖. Other common three-

dimensional sets are the D3Q19 or D3Q27 velocity sets. In the present work, we will use 

the D3Q15 set given above, because it is the set with the smallest number of lattice vectors 

and thus, uses the least amount of memory. We will review this decision at various stages 

throughout this work. 

 

For the present isothermal model (see Section 3.1), it is 𝑎𝑎 = �1 3⁄ ∆𝑥𝑥 ∆𝑡𝑡⁄ . With (51), we 

then have 

 𝑎𝑎∗ = �1 3⁄  . (69) 

 

In order to obtain the equilibrium distribution at 𝑡𝑡∗ = 0, we can insert (62) and (63) into 

(64). This yields 

 𝑓𝑓eq,𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗ = 0) = 𝑤𝑤𝑖𝑖 .  (70) 
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In practice, we create a five-dimensional array. As before, the first three dimensions are the 

spatial coordinates. The fourth dimension is left open for the time being. We will need it 

later for an efficient computation. The fifth dimension is used to store 15 values at each 

grid point. For example, the first value at each grid point is 𝑤𝑤1 = 8
72

. In the initialized array, 

we have to store this same value 𝑆𝑆∗ × 𝐻𝐻∗ × 𝐵𝐵∗ -times, once at each grid point. Thus, the 

entire array for the equilibrium distribution with 15 values at each grid point has 

𝑆𝑆∗ × 𝐻𝐻∗ × 𝐵𝐵∗ × 1 × 15 entries in total. 

 

A resting fluid with zero-velocity fulfills both (29) and the Euler momentum equation, or 

in other words, the particle distribution is fully in equilibrium. Therefore, at 𝑡𝑡∗ = 0, we have  

 𝑓𝑓𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗ = 0) = 𝑓𝑓eq,𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗ = 0) = 𝑤𝑤𝑖𝑖 .  (71) 

The array we initialize this way to store the particle distributions has also 

𝑆𝑆∗ × 𝐻𝐻∗ × 𝐵𝐵∗ × 1 × 15 entries. 

3.5.2 Main algorithm 

We enter the main algorithm with the calculation of the dimensionless density and velocity 

field. As we just initialized both of these fields, we could indeed enter the main algorithm 

at a later stage and thus save a few steps in the very beginning. However, in order to be 

consistent with current literature, we begin with the density and velocity field. 

3.5.2.1 Dimensionless density and velocity field 

The particle distribution 𝑓𝑓𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗) represents the density of particles moving in the various 

directions given with the vectors 𝒄𝒄𝑖𝑖  Therefore, the overall density of the fluid is  

 𝜕𝜕∗(𝒙𝒙∗, 𝑡𝑡∗) = ∑ 𝑓𝑓𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗)𝑖𝑖  .  (72) 
Note that in the present framework laid out in Section 3.4.1, all of these quantities are 

dimensionless. In order to avoid confusion with notations from other authors however, we 

do not write out the star (*) together with 𝑓𝑓. It is common to simply write 𝑓𝑓, even if a 

framework is used where these values are dimensionless. 

 

In practice, (72) is a summation of all elements in the fifth dimension of the array we use to 

store 𝑓𝑓𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗). The resulting array has 𝑆𝑆∗ × 𝐻𝐻∗ × 𝐵𝐵∗ entries.  
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In addition to the dimensionless density field, we also obtain the dimensionless velocity 

field at the beginning of the main algorithm. Here, we simply have  

 𝒗𝒗∗(𝒙𝒙∗, 𝑡𝑡∗) =
∑ 𝒄𝒄𝑖𝑖𝑓𝑓𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗)𝑖𝑖

𝜕𝜕∗(𝒙𝒙∗, 𝑡𝑡∗)  . (73) 

using the vectors 𝒄𝒄𝑖𝑖 of the given velocity set. In practice, we predefine the vectors 𝒄𝒄𝑖𝑖 before 

we enter the main algorithm. We do so leaving the first three dimensions open. We use the 

fourth dimension to store the three velocity components in 𝑥𝑥∗, 𝑦𝑦∗ and 𝑧𝑧∗ direction. We use 

the fifth dimension to store all 15 vectors. In total, the predefined array to store 𝒄𝒄𝑖𝑖 has 

1 × 1 × 1 × 3 × 15 entries. For the computation of (73), we perform an element wise 

multiplication of this array with the array we use to store 𝑓𝑓𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗). This yields a temporary 

array with 𝑆𝑆∗ × 𝐻𝐻∗ × 𝐵𝐵∗ × 3 × 15 entries. A summation in the fifth dimension of this array 

is performed, and then an element wise division with the array we use to store 𝜕𝜕∗(𝒙𝒙∗, 𝑡𝑡∗). 

We then have our array for the fluid velocity field with 𝑆𝑆∗ × 𝐻𝐻∗ × 𝐵𝐵∗ × 3 entries. 

 

Let us note that the use of the large temporary array with 𝑆𝑆∗ × 𝐻𝐻∗ × 𝐵𝐵∗ × 3 × 15 entries is 

not required. One could also perform the operations for the three velocity components after 

each other which would yield a maximum array size of 𝑆𝑆∗ × 𝐻𝐻∗ × 𝐵𝐵∗ × 1 × 15 in the 

computation of (73). Depending on the framework used for the implementation, this may 

be a slower operation, because the three operation are independent from another and one 

should allow for parallelization of these operations. In the present work, we have therefore 

decided to use the implementation with the larger maximum array size of 𝑆𝑆∗ × 𝐻𝐻∗ × 𝐵𝐵∗ ×

3 × 15 elements in order to save computational time. However, if one has a restriction on 

RAM more then on computational time, one should consider the implementation with a 

smaller maximum array size. Further below, there will be another calculation step and the 

main algorithm when we will have to make this decision. We will point it out when it arises. 

3.5.2.2 Output 

Now that we have our dimensionless density and velocity field, we can proceed with the 

next step in the main algorithm. The next step is the output of these dimensionless field 

values (green box in Figure 22). They can be used in further calculations, plotted in some 

way, written to a hard drive, etc. We will describe this output in more detail in Section 3.6. 
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3.5.2.3 Equilibrium particle distribution 

After the output, the main algorithm continues with the computation of the equilibrium 

distribution (64). Both parameters 𝜗𝜗1 and 𝜗𝜗2 can be predefined before the main algorithm 

is entered. 𝛱𝛱c and 𝛱𝛱 are given with (66). Recall that the array we use to store the fluid 

velocity field 𝒗𝒗∗(𝒙𝒙∗, 𝑡𝑡∗) has 𝑆𝑆∗ × 𝐻𝐻∗ × 𝐵𝐵∗ × 3 entries.  For the computation of 𝛱𝛱 = 𝒗𝒗∗ ∙ 𝒗𝒗∗, 

we perform an element wise multiplication of this array with itself, and then take the sum 

of all elements in the fourth dimension. The resulting array for 𝛱𝛱 has 𝑆𝑆∗ × 𝐻𝐻∗ × 𝐵𝐵∗ entries.  

Let us now recall that the array we use to store 𝒄𝒄𝑖𝑖 has  1 × 1 × 1 × 3 × 15 entries. For the 

computation of  𝛱𝛱c = 𝒗𝒗∗ ∙ 𝒄𝒄𝑖𝑖 we perform an element wise multiplication of this array with 

the array for 𝒗𝒗∗(𝒙𝒙∗, 𝑡𝑡∗). This yields a temporary array with 𝑆𝑆∗ × 𝐻𝐻∗ × 𝐵𝐵∗ × 3 × 15 entries. 

After a summation in the fourth dimension of this array, we have our final array for 𝛱𝛱c with 

𝑆𝑆∗ × 𝐻𝐻∗ × 𝐵𝐵∗ × 1 × 15 entries. In this form, both arrays for 𝛱𝛱c and 𝛱𝛱 can then be used with 

element wise additions, subtractions and multiplications to obtain (64). In that calculation, 

𝑤𝑤𝑖𝑖 takes the shape of a predefined array with 1 × 1 × 1 × 1 × 15 entries. The resulting 

array for the equilibrium distribution 𝑓𝑓eq,𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗) has 𝑆𝑆∗ × 𝐻𝐻∗ × 𝐵𝐵∗ × 1 × 15 entries. 

 

Here again, let us note that the use of the large temporary array with 𝑆𝑆∗ × 𝐻𝐻∗ × 𝐵𝐵∗ × 3 × 15 

entries is not required. In order to obtain 𝛱𝛱c = 𝒗𝒗∗ ∙ 𝒄𝒄𝑖𝑖 with less RAM, one could perform 

operations after one another, thereby reducing the required memory but limiting 

possibilities for parallelization. In the present work we have decided to use the larger array 

in order to save computational time. 

 

 

3.5.2.4 Collision 

The next step in the Lattice Boltzmann algorithm is collision. For the particle distribution 

after the collision, 𝑓𝑓col,𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗), we have  

 𝑓𝑓col,𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗) = 𝜔𝜔p𝑓𝑓𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗) + 𝜔𝜔𝑓𝑓eq,𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗),  (74) 

where 

 𝜔𝜔 =
1
𝜏𝜏∗

 (75) 

and 
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 𝜔𝜔p = 1 − 𝜔𝜔 . (76) 

 

𝜏𝜏∗ is the dimensionless relaxation time. We discuss this simulation parameter in Section 

3.5.3. 𝜔𝜔 and 𝜔𝜔p are predefined before the main algorithm is entered. In relation (74), we 

use the BGK collision operator (Bhatnagar, Gross et al. 1954). This is the simplest collision 

operator in the Lattice Boltzmann method. Other more refined operators are the TRT or 

MRT model, see (Krüger, Kusumaatmaja et al. 2017). In the present work, we apply the 

BGK operator in this work because of its simplicity. We discuss this decision in more detail 

at various stages throughout the following work. 

 

In practice, (74) is an addition of two arrays after they were each multiplied by a scalar. The 

arrays in (74) have 𝑆𝑆∗ × 𝐻𝐻∗ × 𝐵𝐵∗ × 1 × 15 entries. 

3.5.2.5 Streaming 

After collision, the resulting distributions of particles are shifted to their neighboring grid 

points according to the direction given with 𝒄𝒄𝑖𝑖, that is 

 𝑓𝑓𝑖𝑖(𝒙𝒙∗ + 𝒄𝒄𝑖𝑖 , 𝑡𝑡∗ + 1) = 𝑓𝑓col,𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗). (77) 

In practice, this is performed by a change of indices of the array, which is a trivial operation 

orders of magnitude faster than any summation or multiplication with the array elements. 

3.5.2.6 Application of boundary conditions 

Before we can close the loop so that the algorithm can run over and over again, we have to 

include some boundary conditions. The step is performed at the end of the Lattice 

Boltzmann algorithm.  

 

It is worth noting, that with the initialization of a resting fluid given above, we could have 

entered the main algorithm at the present step. Nothing will have changed for the initialized 

distributions and dimensionless fields over the previous steps during the first iteration. Once 

we impose boundary conditions, this will change.  

 

3.5.2.6.1 Inflow 

At the opening of the wind tunnel, we impose a constant velocity in 𝑥𝑥∗ direction, that is 
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 𝒗𝒗∗(𝑥𝑥∗ = 1,𝑦𝑦∗, 𝑧𝑧∗, 𝑡𝑡∗) = 𝑉𝑉∞∗𝐑𝐑𝑥𝑥 . (78) 
In the present algorithm, this can be achieved by setting 

 𝑓𝑓𝚤𝚤̅(𝑥𝑥∗ = 1,𝑦𝑦∗, 𝑧𝑧∗, 𝑡𝑡∗ + 1) = 𝑓𝑓col,𝑖𝑖(𝑥𝑥∗ = 1, 𝑦𝑦∗, 𝑧𝑧∗, 𝑡𝑡∗) − 2𝑤𝑤𝑖𝑖𝜕𝜕∞∗
𝒄𝒄𝑖𝑖 ∙ 𝑉𝑉∞∗𝐑𝐑𝑥𝑥
𝑎𝑎∗2

 , (79) 

which translates to  

 
𝑓𝑓1(𝑥𝑥∗ = 1,𝑦𝑦∗, 𝑧𝑧∗, 𝑡𝑡∗ + 1) = 𝑓𝑓col,2(𝑥𝑥∗ = 1,𝑦𝑦∗, 𝑧𝑧∗, 𝑡𝑡∗) + 4𝑤𝑤2𝜕𝜕∞∗ 𝑉𝑉∞∗𝜗𝜗1 , 

𝑓𝑓𝑖𝑖𝑘𝑘(𝑥𝑥∗ = 1, 𝑦𝑦∗, 𝑧𝑧∗, 𝑡𝑡∗ + 1) = 𝑓𝑓col,𝑔𝑔𝑘𝑘(𝑥𝑥∗ = 1,𝑦𝑦∗, 𝑧𝑧∗, 𝑡𝑡∗) + 4𝑤𝑤8𝜕𝜕∞∗ 𝑉𝑉∞∗𝜗𝜗1 ,  
(80) 

where 𝑗𝑗𝑘𝑘 = [7 9 11 14] and 𝑔𝑔𝑘𝑘 = [8 10 12 13] (Ladd 1994, Ladd and Verberg 2001). 

 

3.5.2.6.2 Wing 

In the Lattice Boltzmann method, a resting solid surface, such as the surface of our wing, 

can be modelled by the application of the bounce back technique (Frisch, Hasslacher et al. 

1986, Cornubert, d'Humières et al. 1991, Ziegler 1993, Ginzbourg and Adler 1994, Ladd 

1994). In Section 3.4.2, we have described our technique for the selection of the 

discretization points of the lattice which lie within the wing geometry (see Figure 21). Let 

us denote the positions of grid points of the outside boundary to this selection with 𝒙𝒙b∗ . Here, 

“outside boundary” means all those grid points outside the geometry from which an internal 

grid point can be reached by a single step along one of the vectors 𝒄𝒄𝑖𝑖 . In the bounce back 

technique, distributions which leave the outside boundary 𝒙𝒙b∗  at a time 𝑡𝑡∗ during the 

streaming step for the inside of the geometry are reflected back in the direction 𝒄𝒄𝚤𝚤̅ = −𝒄𝒄𝑖𝑖 

and arrive at time 𝑡𝑡∗ + 1 at the node 𝒙𝒙b∗  from which they originally came. We have 

 𝑓𝑓𝚤𝚤̅(𝒙𝒙b∗ , 𝑡𝑡∗ + 1) = 𝑓𝑓col,𝑖𝑖(𝒙𝒙b∗ , 𝑡𝑡∗) . (81) 

In practice, we perform the standard streaming step given in Section 3.5.2.5 for all grid 

points. Afterwards, we replace the values we obtain with (81) for the grid points at the 

outside boundary 𝒙𝒙b∗ . Note that with this technique, we store the array with 

𝑆𝑆∗ × 𝐻𝐻∗ × 𝐵𝐵∗ × 1 × 15 entries for 𝑓𝑓col,𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗) and the array with 

𝑆𝑆∗ × 𝐻𝐻∗ × 𝐵𝐵∗ × 1 × 15 entries for 𝑓𝑓𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗ + 1) at the same time during one iteration. In 

theory, this is not necessary, because we only need values of 𝑓𝑓col,𝑖𝑖 directly at 𝒙𝒙b∗  to perform 

the collision step. We will encounter this in a similar manner at the tunnel walls and we 

have already seen it in the previous section where we needed some old values for 𝑓𝑓col,𝑖𝑖 at 

the tunnel inflow region. For simplicity and to reduce the risk of errors, in the present work, 
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we did indeed keep the entire array with 𝑆𝑆∗ × 𝐻𝐻∗ × 𝐵𝐵∗ × 1 × 15 entries for 𝑓𝑓col,𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗) in 

addition to the array for 𝑓𝑓𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗ + 1) with the same amount of elements. (Recall that we 

already decided for the storage of a large temporary array with 𝑆𝑆∗ × 𝐻𝐻∗ × 𝐵𝐵∗ × 3 × 15 

elements at an earlier stage in this work.) However, if one has a strong limit on RAM, one 

can avoid this large array. In that case, one should also consider only keeping copies of 

those fragments of 𝑓𝑓col,𝑖𝑖 which are necessary to apply boundary conditions in order keep 

the memory usage as low as possible. 

 

3.5.2.6.3 Tunnel walls 

At the tunnel walls, we apply a free-slip boundary condition. In the Lattice Boltzmann 

method, this technique is similar to the bounce back technique. Now, only the normal 

velocity component is reflected, that is 𝑐𝑐𝑖𝑖,n = −𝑐𝑐𝑖𝑖,n. The new distributions at 𝒙𝒙b∗  are given 

by 

 𝑓𝑓𝑖𝑖�𝒙𝒙b∗ + 𝒄𝒄𝑖𝑖,t, 𝑡𝑡∗ + 1� = 𝑓𝑓col,𝑖𝑖(𝒙𝒙b∗ , 𝑡𝑡∗) , (82) 

where 𝒄𝒄𝑖𝑖,t = 𝒄𝒄𝑖𝑖,t is the tangential velocity of the distributions. A symmetry boundary 

condition, as we apply on one of the walls of our wind tunnel (see Figure 18), can also be 

achieved using this technique (Succi 2001, Da Silva 2008, Falcucci, Aureli et al. 2011).  

 

Let us note, that it is well-known that walls in close proximity of the test object influence 

the aerodynamic forces on this object. The smaller the object compared to the tunnel cross 

section, the smaller are these interference effects. Simple rules exist to transform results 

such as lift or drag coefficient to the freestream case without any surrounding walls. An 

extensive analysis of this matter can be found here (Glauert 1933). 

 

3.5.2.6.4 Outflow 

At the outflow plane of our numerical windtunnel, we perform a simple operation. After 

streaming with relation (77), 𝑓𝑓𝑖𝑖(𝒙𝒙∗, 𝑡𝑡∗ + 1) remains undetermined at the outflow plane for 

some 𝑖𝑖 because there are no distributions to stream into the tunnel from the outside. We 

simply fill these distributions by copying all missing elements at 𝑓𝑓𝑖𝑖(max(𝑥𝑥∗), 𝑦𝑦∗, 𝑧𝑧∗, 𝑡𝑡∗ + 1) 

from their neighbors at 𝑓𝑓𝑖𝑖(max(𝑥𝑥∗) − 1,𝑦𝑦∗, 𝑧𝑧∗, 𝑡𝑡∗ + 1). We will discuss this technique in 

the next section.  
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3.5.3 Comments 

We have now introduced the entire simulation algorithm. Let us take a moment to examine 

it once more. A schematical representation of the algorithm can be seen below.  

 

                        
 
Figure 22: Simulation algorithm 
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With the experimental setup described in the previous section, and the simulation algorithm 

from this section, our numerical wind tunnel is now almost ready to be used and to be 

applied to various problems which are of interest. However, before we proceed to this, let 

us make a few more statements. 

 

 

First of all, please note again that all the calculation steps which have to be performed during 

an iteration in the simulation algorithm are simple local interactions in the spatial domain. 

Compare again with Section 2 and note, that such a framework allows for simple 

parallelization which is well-suited to current trends in the development of microprocessors. 

 

 

Second, it shall be emphasized here, that the algorithm which was just presented delivers 

second order accurate solutions for the high fidelity model given with (28) and (29). 

Validation of this has been performed by numerous authors in a variety of studies. Examples 

are (Ten Cate, Nieuwstad et al. 2002, Li, Shock et al. 2004). Works on the validations of 

the boundary conditions applied in this work are for example (Aharonov and Rothman 

1993, Chen, Martinez et al. 1996, Krüger, Kusumaatmaja et al. 2017). Two examples 

supervised by the author of the present thesis are (Beinlich 2021, Müller 2021). An example 

for validation with experimental data at high Reynolds numbers for turbulent flows is given 

in (Barad, Kocheemoolayil et al. 2017). In the following we will “use” this algorithm and 

expect results of a physical nature, both qualitatively and quantitatively. Wherever 

possibilities for comparisons with known behavior of fluids exist, this expectation is 

confirmed. Wherever we expect to reach limits for the application of the simulation 

technique, we point this out. 

 

 

Third, note again that we have used a completely dimensionless formulation of the 

algorithm. This framework is fully in line with the fundamental relations introduced in 

Section 3.2. This will allow us to present the results in a compact dimenionless form. In this 

form, the dimensionless field values for the flow only depend on the freestream Reynolds 

number. 
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As a fourth last point, let us devote some attention to the simulation parameter 𝜏𝜏∗. The 

solutions to our high fidelity model which are delivered by the presented algorithm, are for 

a fluid with a viscosity as given by 

 𝜈𝜈∗ = 𝑎𝑎∗2�𝜏𝜏∗ − 1
2� � . (83) 

Therein, 𝑎𝑎∗ is a constant given by (69). Thus, there is a direct connection of the viscosity of 

the fluid with the relaxation parameter. If we denote a dimensionless reference length in our 

windtunnel with 𝑙𝑙∗ (this could be the number of discretization points of the center wing 

chord), we have for the Reynolds number 

 Re =
𝑉𝑉∞∗𝑙𝑙∗

𝜈𝜈∗
 (84) 

Therein, 𝑉𝑉∞∗ = Ma 𝑎𝑎∗ is generally given through the choice of a Mach number as high as 

possible, but still well below the limit at which compressibility effects begin to matter (see 

Section 3.1). Therefore, in order to achieve a high Reynolds number for a given 

discretization of the wind tunnel, there is no option but to choose the relaxation time as low 

as possible. Yet, at some point when 𝜏𝜏∗ → 1 2 ⁄ , the Lattice Boltzmann method becomes 

unstable. A common low value for 𝜏𝜏∗ for which we still have stable simulations is 𝜏𝜏∗ =

0.52. How close 𝜏𝜏∗ can actually be to 0.5 for a given problem is slightly influenced by the 

choice of 𝑉𝑉∞∗. Other slight influences may be the choice of boundary conditions and the 

problem geometry, see (Krüger, Kusumaatmaja et al. 2017). Once we have found a 𝜏𝜏∗ as 

low as possible for our problem at hand, we have no option but to increase the resolution of 

our simulation in order to model flows with higher Reynolds numbers. With higher 

Reynolds numbers, fine turbulent structures begin to occur in the flow. As the Reynolds 

number increases even further, the smallest length scales of these structures become even 

smaller and smaller (Schlichting and Truckenbrodt 1967, Anderson 2017), see also 

(Oberleithner, Sieber et al. 2011). In a way, the Lattice Boltzmann method “demands” that 

we have a sufficient resolution of these fine details of the flow, otherwise the tool becomes 

unstable. To the author of this thesis, it seems remarkable that the tool is so well-connected 

to this nature of flows.    
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3.6 Output 

The numerical wind tunnel is now ready to be used. This section shows how the results will 

be displayed.  

3.6.1 Vorticity field 

We will display results for the flow field in terms of an iso-surface through the 

dimensionless vorticity field color coded by the local Mach number. We will explain this 

visualization in the following: 

 

After a simulation, we have full knowledge of the dimensionless velocity field 

𝒗𝒗∗(𝑥𝑥∗, 𝑦𝑦∗, 𝑧𝑧∗, 𝑡𝑡∗). The vorticity field can be obtained from this with 

 𝝃𝝃∗ = rot𝒗𝒗∗, (85) 
compare (Anderson 2017). We have remained within our dimensionless framework in (85). 

The dimensional vorticity 𝝃𝝃 = rot𝒗𝒗 can be recovered with 

 𝝃𝝃 = 𝝃𝝃∗ 𝜁𝜁𝑡𝑡⁄  .  (86) 

With the dimensionless vorticity field 𝝃𝝃∗(𝑥𝑥∗, 𝑦𝑦∗, 𝑧𝑧∗, 𝑡𝑡∗) at hand, we are now able to display 

an iso-surface at a constant absolute dimensionless vorticity through this field. In the present 

work, we choose  

 |𝝃𝝃∗| = 0.01 (87) 
for all visualizations. It was found that with this value all the features in the flow which are 

of interest become visible, and this over a remarkable range of Reynolds numbers from 101 

to 104. We will discuss this choice frequently throughout the following section. The 

resulting iso-surface, we color with the local Mach number Ma = |𝒗𝒗∗| 𝒂𝒂∗⁄ . We choose the 

code given below for all visualizations. 

 

 
 

Figure 23: An iso-surface through the dimensionless vorticity field is colored by the local Mach number in this work. 
The color code used for this throughout all visualizations of this work is displayed in this figure. 
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3.6.2 Aerodynamic coefficients 

The lift coefficient 𝐶𝐶𝐿𝐿 is obtained as follows. With (37), we have 

 𝐿𝐿 =
1
2
𝜕𝜕∞𝑉𝑉∞2𝐶𝐶𝐿𝐿𝑆𝑆 (88) 

for the lift 𝐿𝐿. In the present simulation, we will obtain the lift as a summation of the pressure 

distribution over the surface of our wing. For now, let us write this as 

 �𝑝𝑝∆𝑥𝑥∆𝑦𝑦 =
1
2
𝜕𝜕∞𝑉𝑉∞2𝐶𝐶𝐿𝐿𝑆𝑆. (89) 

In the dimensionless framework of the present work, we then have with (39), (45), (48), and 

(49) 

 ∑ 𝑝𝑝∗ 𝜁𝜁𝜌𝜌𝜁𝜁𝑙𝑙4 𝜁𝜁𝑡𝑡2⁄ =
1
2
𝜕𝜕∞∗ 𝜁𝜁𝜌𝜌𝑉𝑉∞∗

2 𝜁𝜁𝑙𝑙2 𝜁𝜁𝑡𝑡2⁄ 𝐶𝐶𝐿𝐿𝑆𝑆∗𝜁𝜁𝑙𝑙2 , (90) 

which is 

 ∑ 𝑝𝑝∗ =
1
2
𝜕𝜕∞∗ 𝑉𝑉∞∗

2𝐶𝐶𝐿𝐿𝑆𝑆∗ , (91) 

or 

 𝐶𝐶𝐿𝐿 =
∑𝑝𝑝b∗ − ∑𝑝𝑝t∗

1
2𝜕𝜕∞

∗ 𝑉𝑉∞∗
2𝑆𝑆∗

  (92) 

when displayed for the coefficient of lift. In (92), we have now displayed pressure 

distribution over the wing in terms of the pressure 𝑝𝑝b∗  on the bottom and the pressure 𝑝𝑝t∗ on 

the top of the wing. In the present isothermal Lattice Boltzmann model, pressure can be 

obtained via 

 𝑝𝑝∗ = 𝑝𝑝0∗ + 𝑎𝑎∗2𝜕𝜕′∗ , (93) 

where 𝑝𝑝0∗ is some constant reference pressure, such as the atmospheric pressure (Krüger, 

Kusumaatmaja et al. 2017). 𝑝𝑝0∗ is not relevant for our investigations as we will see in the 

following. 𝜕𝜕′∗ is given via 

 𝜕𝜕∗ = 𝜕𝜕0∗ + 𝜕𝜕′∗ (94) 

and describes the density fluctuations about some mean density 𝜕𝜕0∗ in the flow, for example 

the inflow density. Here again, the value of 𝜕𝜕0∗ is not relevant for our investigations, as we 

will see in the following. Inserting (93) into (92), we have 
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 𝐶𝐶𝐿𝐿 =
∑�𝑝𝑝0∗ + 𝑎𝑎∗2𝜕𝜕b′∗� − ∑�𝑝𝑝0∗ + 𝑎𝑎∗2𝜕𝜕t′∗�

1
2𝜕𝜕∞

∗ 𝑉𝑉∞∗
2𝑆𝑆∗

  , (95) 

which simplifies to 

 𝐶𝐶𝐿𝐿 =
𝑎𝑎∗2(∑𝜕𝜕b′∗ − ∑𝜕𝜕t′∗)

1
2𝜕𝜕∞

∗ 𝑉𝑉∞∗
2𝑆𝑆∗

  . (96) 

Inserting (94), we have 

 𝐶𝐶𝐿𝐿 =
𝑎𝑎∗2(∑𝜕𝜕b∗ − ∑𝜕𝜕t∗)

1
2𝜕𝜕∞

∗ 𝑉𝑉∞∗
2𝑆𝑆∗

  . (97) 

for the coefficient of lift. 

Note that here we have only computed the coefficient of lift due to pressure which acts on 

the wing, similar to experiments where the coefficient of lift is measured with the pressure 

measured through small holes in the wing. In the real world, there may be some influence 

of surface friction on the wing which influences the lift coefficient. It is often assumed that 

surface friction only influences the drag coefficient, however, there are, albeit small, 

influences on lift. It is possible to take this into account in the Lattice Boltzmann method. 

However, this topic is beyond the scope of the present work. Here, we only use the pressure 

lift coefficient as a measure to check convergence of simulations and to check the quality 

of the results. In future works however, the tool may be extended to include full lift-, drag- 

and moment coefficients in the output. 

In Section 3.2, we have seen that the lift coefficient only depends on the geometry of the 

problem, the freestream Reynolds number. This can be illustrated with (97). Even if we try 

to change 𝜕𝜕∞∗  for example (in this work we usually have set it to 1) we do not influence the 

Reynolds number and the results will remain exactly the same. 𝜕𝜕b∗  and 𝜕𝜕t∗ will just change 

accordingly. Indeed, 𝜕𝜕∞∗  is a mere numerical scaling parameter for the entire simulation and 

has no influence on the results. We will show this in more detail in the following section. 
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4 Results 

In the past section, the experimental setup of our numerical wind tunnel was developed. Let 

us now use this setup to investigate some wing geometries which are of interest.  

 

At first, a simple unswept wing with a symmetrical section will be investigated at a low 

Reynolds number. This will give us the opportunity to become familiar with the 

visualization and to observe some first results.  

 

Afterwards, we will investigate the influence of wing sweep on the flow field at a given 

high angle of attack and a slightly higher Reynolds number than in the previous example.  

 

The third exemplary study which we will perform is a single high resolution simulation on 

an exemplary Flying V geometry at a high angle of attack. This simulation took 20 days 

with the present setup. Ultimately, as mentioned in the introduction of this work, it will take 

a whole collection of numerical tools and quite a few real experiments to develop an 

understanding of the flow field around shapes as unconventional as the Flying V. The 

simulations in this work seek to add to this. 

 

4.1 Finite wing 

Let us first consider an unswept wing as shown in Figure 24. Consider an unswept, 

untapered wing with symmetrical NACA 0014 sections and an aspect ratio of Λ = 𝑏𝑏∗/𝑐𝑐∗ =

3.33, where 𝑏𝑏∗ is the span of the wing, and 𝑐𝑐∗ is the chord. The flow around this wing is 

investigated at angles of attack ranging from 𝛼𝛼 = 0° to 𝛼𝛼 = 60° and a Reynolds number of 

Re = 307. 
 



58 

 

Figure 24: Geometry of the first investigation 

 

Figure 25 shows exemplary results of this investigation at an angle of attack of 𝛼𝛼 = 25° 

after 𝑡𝑡∗ = 4000 times steps. Let us first examine the iso-surface which is now wrapped 

around the wing geometry. As explained in detail in Section 3.6.1, this is a surface at a 

constant vorticity of |𝝃𝝃∗| = 0.01 colored by the local Mach number as given in Figure 23. 

Prandtl’s boundary layer theory states, that friction is only relevant in a small layer close to 

the wing’s surface. The surrounding air behaves as potential flow. The visualization of the 

results in this work is inspired by this theory. Although we have, in the present example, a 

very low Reynolds number and Prandtl’s theory was originally created for wings at much 

higher Reynolds numbers, we can already see in the present example some aspects of this 

theory. Note that the iso-surface at constant vorticity follows the wing’s geometry very well. 

Vorticity is a measure for the level of friction within the fluid. For a potential flow for 

example, it is 𝝃𝝃∗ = rot𝒗𝒗 = 𝟎𝟎, that is, there is no friction among the fluid elements. In the 

boundary layer, we have much higher friction, or higher vorticity. In the creation of the 

present work, we have experimented with a few values |𝝃𝝃∗| for the creation of the iso-

surface. If we increases this value, the surface moves closer to the wing’s first slowly, then 

rapidly, until is vanishes. If we decrease this value, the surface moves away from the wing, 

first slowly, then rapidly. For very small values of  |𝝃𝝃∗| the wing geometry is not 

distinguishable anymore in the iso-surface. Although we have small Reynolds numbers, we 

can already observe these trends which are typical for a boundary layer. In a way, the 

displayed iso-surface encloses a significant amount of the boundary layer. Of course there 

can be no full enclosure, even at higher Reynolds numbers. There is always some amount 
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of friction among the fluid elements. However, this is highest in a layer close to the surface 

of the wing, even in the present example. This layer follows the geometry of the wing very 

well. As expected, behind the wing tip, we observe some increased vorticity due to the wing 

tip vortex which arises due to the creation of lift with the finite wing. 
 

         
Figure 25: Iso-surface of constant vorticity |𝝃𝝃∗| = 𝟎𝟎.𝟎𝟎𝟓𝟓 colored by the local Mach number displayed after 𝒕𝒕∗ = 𝟒𝟒𝟎𝟎𝟎𝟎𝟎𝟎 
timesteps for the first investigation of a finite wing with NACA 0014 sections and an aspect ratio 𝚲𝚲 = 𝟑𝟑.𝟑𝟑𝟑𝟑 at a Reynolds 
number of 𝐑𝐑𝐑𝐑 = 𝟑𝟑𝟎𝟎𝟑𝟑 for an angle of attack 𝜶𝜶 = 𝟐𝟐𝟓𝟓°. 

Note also, that the surface which encloses the wing is fairly smooth, as are the colors of the 

local Mach number displayed on this surface. This is a full laminar flow where the fluid 

elements move in well-ordered layers, as we would expect at such low Reynold numbers. 

 

We can further observe, that the local Mach numbers are highest at the nose of the wing and 

that we have a definite decrease in Mach number at the upper surface of the wing. At this 

stage one should note that with our iso-surface, we are still somewhat within the boundary 

layer, that is, fairly close to the wing, and here velocities are generally a bit smaller. 
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Let us now examine the time evolution of the lift coefficient in the present example. The 

result displayed in Figure 25 for an angle of attack 𝛼𝛼 = 25° is well-converged. No change 

in the iso-surface or colors could be observed from a time step of 𝑡𝑡∗ = 1500 onward. A 

way to measure this is the pressure lift coefficient we have introduced in Section 3.6.2. 

Below, in Figure 26, we show the pressure lift coefficient displayed over the simulation 

time for the present example at an angle of attack of 𝛼𝛼 = 25°.  

 

  
Figure 26: Pressure lift coefficient 𝑪𝑪𝑳𝑳 displayed over the simulation time for the first investigation of a finite wing with  
NACA 0014 sections and an aspect ratio 𝚲𝚲 = 𝟑𝟑.𝟑𝟑𝟑𝟑 at a Reynolds number of 𝐑𝐑𝐑𝐑 = 𝟑𝟑𝟎𝟎𝟑𝟑 for an angle of attack 𝜶𝜶 = 𝟐𝟐𝟓𝟓°. 
Three graphs are plotted in the figure, one for 𝝆𝝆∞∗ = 𝟓𝟓, one for 𝝆𝝆∞∗ = 𝟓𝟓𝟎𝟎 and another one for 𝝆𝝆∞∗ = 𝟓𝟓𝟎𝟎𝟎𝟎. As expected, 
the results do not depend on this parameter so that only a single line is visible. 

First, we observe no lift, as the incoming fluid takes its time to reach the wing geometry 

which thus far was surrounded by a resting fluid. At around 𝑡𝑡∗ = 400, we observe a gradual 

increase in the lift coefficient which becomes steep at around 𝑡𝑡∗ = 500. The maximum 

value of 𝐶𝐶𝐿𝐿 is reached at around 𝑡𝑡∗ = 820. At this time, the incoming flow reaches the 

trailing edge of the wing. A trailing edge vortex forms and dissolves again as the lift 

coefficient converges at around 𝑡𝑡∗ = 1500. Note that such an overshooting of the lift 

coefficient before a lower converged value is reached is typically encountered as an aircraft 

flies through a gust, see for example the experimental results in (Kramer 1932). 

 

Let us further note that the curve displayed in Figure 26 are actually three curves for three 

different densities 𝜕𝜕∞∗  displayed on top of each other. We have conducted one simulation 

with the standard value of our setup of 𝜕𝜕∞∗ = 1, and two more simulations with values of 
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𝜕𝜕∞∗ = 10 and 𝜕𝜕∞∗ = 100. As expected and explained in Section 3.6.2, the three curves lie 

exactly on top of each other. The dimensionless density in the Lattice Boltzmann method is 

a mere numerical scaling parameter. Also recall that we have found out with the 

fundamental relations in Section 3.2 that our results will only depend on the Reynolds 

number Re = 𝑉𝑉∞𝑐𝑐 𝜈𝜈∞⁄ . The density does not appear here, therefore, there is no dependence 

on it in the dimensionless results. This is reflected in the results above. 

 

A single simulation from above until time step 𝑡𝑡∗ = 4000 takes about six hours with the 

present setup. Several of these simulations were conducted at angles of attack ranging from 

𝛼𝛼 = 0° to 𝛼𝛼 = 60°. The results for the lift coefficients after 𝑡𝑡∗ = 4000 times steps are 

displayed in Figure 27. Each one of the simulations had long converged before the end of 

the simulation time. Let us now examine the results. We do not expect the constant lift slope 

𝐶𝐶𝐿𝐿,𝛼𝛼 = 2𝜋𝜋 (1 + 2 Λ⁄ )⁄  obtained in theoretical potential flow solutions (Anderson 2017). 

This would correspond to a case where Re ⟶∞. For lower Reynolds numbers, the lift 

slope is generally lower than that (Spedding and McArthur 2010), but we would still expect 

a linear dependence of the lift coefficient on the angle of attack, until at some point the 

maximum lift is reached and the lift coefficient begins to drop again, see for example the 

experimental results obtained in (Taira and Colonius 2009). For a thick profile such as the 

NACA0014 as chosen in this work, we would expect this stalling behavior at large angles 

of attack to be slow, rather than a sudden drop in the lift coefficient (Schlichting and 

Truckenbrodt 1967). With these expectations, we are not disappointed in the results below. 

We have highlighted the linear dependence at lower angles of attack, and we can observe a 

slow drop in the lift coefficients at higher angles of attack.  

 
Figure 27: Pressure lift coefficients after 𝒕𝒕∗ = 𝟒𝟒𝟎𝟎𝟎𝟎𝟎𝟎 timesteps for simulations at angles of attack ranging from 𝜶𝜶 = 𝟎𝟎° 
to 𝜶𝜶 = 𝟒𝟒𝟎𝟎° for the first investigation of a finite wing with NACA 0014 sections and an aspect ratio 𝚲𝚲 = 𝟑𝟑.𝟑𝟑𝟑𝟑 at a 
Reynolds number of 𝐑𝐑𝐑𝐑 = 𝟑𝟑𝟎𝟎𝟑𝟑. The dashed line is drawn into the figure to illustrate a linear dependence at low angles 
of attack. 
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4.2 Influence of sweep 

Let us now use the developed numerical wind tunnel for a second investigation. We 

consider a swept, untapered wing with symmetrical NACA 0014 sections and an aspect 

ratio of Λ = 𝑏𝑏∗/𝑐𝑐∗ = 2. The flow around this wing is investigated at an angle of attack 𝛼𝛼 =

30° and the Reynolds number is Re = 417. Eight different sweep angles 𝜙𝜙 are examined. 

In the present work, 𝜙𝜙 describes the sweep of the leading edge. 𝜙𝜙 = 0° corresponds to a 

straight leading edge such as in the previous investigation. In the following, we will also 

frequently make use of a parameter we call the sweep ratio ℛ. We introduce this parameter 

as 

 ℛ = tan𝜙𝜙 . (98) 

The eight sweep ratios we will investigate in the following range from ℛ = 0 to ℛ = 2.8, 

which corresponds to a range of sweep angles from 𝜙𝜙 = 0° to 𝜙𝜙 = 70.3°. While we set 

these various sweep ratios, parameters such as the span 𝑏𝑏∗, the chord 𝑐𝑐∗, and the wing area, 

here 𝑆𝑆∗ = 𝑏𝑏∗𝑐𝑐∗, remain the same. 

 

Let us fist examine exemplary results of a simulation with ℛ = 1.6. The converged flow 

field is displayed in Figure 28. A simulation such as this one takes one and a half days with 

the present setup. 

 

Note first, that we observe a laminar flow, that is, the flow particles move in well-ordered 

layers over the surface of the wing. 

 

Second, note that these results we show are indeed converged results. No changes in the lift 

coefficient and the vorticity field are visible from this moment onward, that is, we have a 

stationary solution for our flow field. At even larger angles of attack, we might expect 

unstationary behavior at some point, but for the present investigation the results remain 

stationary. 
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Figure 28: Iso-surface of constant vorticity |𝝃𝝃∗| = 𝟎𝟎.𝟎𝟎𝟓𝟓 colored by the local Mach number displayed after 𝒕𝒕∗ = 𝟑𝟑𝟎𝟎𝟎𝟎𝟎𝟎 
timesteps for a finite wing with NACA 0014 sections and an aspect ratio 𝚲𝚲 = 𝟐𝟐 at an angle of attack 𝜶𝜶 = 𝟑𝟑𝟎𝟎° and a 
Reynolds number of 𝐑𝐑𝐑𝐑 = 𝟒𝟒𝟓𝟓𝟑𝟑. The sweep ratio is 𝓡𝓡 = 𝟓𝟓.𝟒𝟒, the sweep angle is 𝝓𝝓 = 𝟓𝟓𝟖𝟖.𝟎𝟎°. 

 

Third, let us note that the surface of constant vorticity we use to visualize the flow field still 

aligns well with the surface of the wing. Although we observe a variety of different local 

velocities, the vorticity field is given to a large extend by the surface of the wing.  

 

Let us draw attention to two regions of the field where the vorticity field differs from the 

wings geometry.  

 

The first region is the tip region of the wing. As we have observed in the previous 

investigation, we have some concentrated vorticity in this area due the location of the tip 

vortex which arises from the creation of lift with the wing (Anderson 2017). On the swept 
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wing in the present example, even more shear surfaces arise in this tip region. For larger 

sweep angles, these shear surfaces grow more and more sophisticated and begin to merge 

with other shear surfaces of the wing. We will discuss this further below when we 

investigate other sweep angles. 

 

The second region where we observe a region of vorticity other than a mere boundary 

contour of the wing is the region at the trailing edge of the wing. This is the characteristic 

free shear layer which arises as the flows on the upper and lower surface of the wing which 

have different directions and speeds begin to intermingle after they have passed the trailing 

edge (Schlichting and Truckenbrodt 1967). 

 

Let us now observe this image from behind, that is, in the 𝑦𝑦∗- 𝑧𝑧∗ plane. And let us also not 

only examine a single sweep ratio, but all eight investigated sweep ratios. The converged 

flow fields are displayed in Figure 29. 

 

With this visualization we can observe in detail how the vorticity field is influenced by the 

geometry of the wing. Let us first examine the shear layers. It becomes apparent that the 

free shear layer on the trailing edge of the wing grows as the sweep is increased. For the 

unswept configuration, we have a very small shear layer at the trailing edge of the wing, 

see marker I. In fact, it is connected to the tip vortex II as we can see in the top image. In 

this first image, note also that above the tip vortex, the iso-surface around the wing edge is 

not smooth but features a distinct line III. As the sweep ratio is increased to ℛ = 0.8, we 

first note that we have actually two separate shear layers, the first one, marked with I, 
directly connected to the trailing edge of the wing, while the second one, here II, is 

connected to the original tip vortex which has moved slightly upwards. This distinction 

becomes more and more apparent as the wing sweep is increased further. One more feature 

to note in the third image is the occurrence of a region of low velocity in the boundary layer 

on the upper surface of the wing. In the fourth image, this region has become even more 

pronounced with a clear lower boundary at a line we denote with IV and another clear 

oblique boundary to the right which we denote with V. With even more sweep, ℛ = 1.6, 

the dark blue region of lower velocity begins to extend to the tip vortex where it meets with 

line III. Meanwhile the lower boundary IV of the region of low speed has become quite 

distinct and slowly moves upwards. We can only conclude that a vortex is induced by the 
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trailing edge which rotates counter clockwise. As the sweep is increased the influence of 

this vortex on the flow field of the upper surface becomes more and more pronounced. For 

ℛ = 2.0, IV moves up even further. Below this line, we have higher flow velocities due to 

the influence of this trailing edge vortex. Directly at line IV where the vortex meets the main 

flow around the wing, we can even witness the formation of another small free shear layer. 

The other previously discussed shear layers I and II are now visible more clearly than ever, 

with a clear gap between them at the wing tip. In fact, it becomes apparent that shear layer 

II is now the clear boundary between the trailing edge vortex, which rotates counter 

clockwise and the tip vortex, which rotates in clockwise direction. This phenomenon 

remains visible for all higher sweep angles and we will discuss it in more detail throughout 

this work. Already with the present simulation it is illustrated that for highly swept wings 

at high angles of attack we have these influences on the flow field: A trailing edge vortex 

which rotates in counter clockwise direction, and some sort of tip vortex which rotates in 

clockwise direction. In the present situation, where both meet we find shear layer II. When 

the sweep is increased even more to ℛ = 2.4, this shear layer connects with the shear layer 

along line IV, which is to say, the region of low velocity becomes the small footprint of 

those two influences. The influence of the trailing edge vortex over the wing intensifies for 

even larger sweep angles as can be seen for the case of ℛ = 2.8. Here we have also sketched 

the discussed phenomena for the flow using some rounded arrows to illustrate rotation 

directions of the flow. At this stage, we should note that the overall lift of the wing results 

in a clockwise rotation of the flow due to the downwash behind the wing. We observe the 

same here, yet we also observe the trailing edge vortex working against this at the given 

high angle of attack. This influence rises for higher sweep angles. It is interesting to note 

that we also observe a decrease in the pressure lift coefficient for higher sweep angles, see 

Figure 30. The trailing edge vortex may not be the only cause of this behavior, but it may 

well be of influence. 
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Figure 29: Setup from Figure 28 seen from behind. Converged results are shown after 𝒕𝒕∗ = 𝟑𝟑𝟎𝟎𝟎𝟎𝟎𝟎 timesteps for sweep 
ratios ranging from 𝓡𝓡 = 𝟎𝟎 to 𝓡𝓡 = 𝟐𝟐.𝟖𝟖. The annotations are explained in the text above. 
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Figure 30: Pressure lift coefficients after 𝒕𝒕∗ = 𝟑𝟑𝟎𝟎𝟎𝟎𝟎𝟎 timesteps for simulations with sweep ratios ranging from 𝓡𝓡 = 𝟎𝟎 to  
𝓡𝓡 = 𝟐𝟐.𝟖𝟖 of a finite wing with NACA 0014 sections and an aspect ratio 𝚲𝚲 = 𝟐𝟐 at an angle of attack 𝜶𝜶 = 𝟑𝟑𝟎𝟎° and a 
Reynolds number of 𝐑𝐑𝐑𝐑 = 𝟒𝟒𝟓𝟓𝟑𝟑. 

 

4.3 High resolution simulation 

Let us now conduct a single high resolution simulation. Therein, we will set the Reynolds 

number as high as possible with the given setup. As wing layout we will investigate an 

exemplary shape of the Flying V. The wing layout can be seen in Figure 31. The wing which 

is displayed consists out of three elements: A highly swept middle section, a transition 

section, and an outer wing element with lower sweep. The leading edge sweep of the 

transition section is equal to the leading edge sweep of the middle section, and the trailing 

edge sweep of the transition section is equal to the trailing edge sweep of the outer wing 

section. This design will be investigated at an angle of attack of 𝛼𝛼 = 30°.  

 

The setup for our high-resolution simulation can be seen in the image below. 
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Figure 31: Wing geometry for the high resolution investigation 

The span 𝑏𝑏∗ of the investigated model is chosen with 1.45 𝐵𝐵∗. The geometry is given by 

four profile sections. As profiles we choose symmetric four digit NACA sections. 

 

The intersection + of the trailing edge with the first profile section 1 in the symmetry plane 

is located at 𝑥𝑥∗ = 0.4 𝑆𝑆∗, 𝑦𝑦∗ = 0.48 𝐻𝐻∗. The first profile has a thickness of 13.5%. As local 

angle of incidence of the first profile we choose 𝛼𝛼𝑙𝑙 = 4°. The length of the chord of the first 

profile section is chosen with 0.31 𝑏𝑏∗. 

 

The trailing edge point of the second profile section 2 is located 0.35 𝑏𝑏∗ behind + in 𝑥𝑥∗ 

direction, and 0.01 𝑏𝑏∗ above it in negative 𝑦𝑦∗ direction. In negative 𝑧𝑧∗ direction, it is at a 

distance of 0.2 𝑏𝑏∗ from +. The second profile also has a thickness of 13.5%. As local angle 

of incidence, we choose 𝛼𝛼𝑙𝑙 = 1°. The length of the chord is chosen with 0.28 𝑏𝑏∗. 

 

1 

2 

3 

4 
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The trailing edge point of the third profile section 3 is located 0.36 𝑏𝑏∗ behind + in 𝑥𝑥∗ 

direction, and 0.02 𝑏𝑏∗ above it in negative 𝑦𝑦∗ direction. In negative 𝑧𝑧∗ direction, it is at a 

distance of 0.3 𝑏𝑏∗ from +. The profile has a thickness of 11%. As local angle of incidence, 

we choose 𝛼𝛼𝑙𝑙 = 1.1°. The length of the chord is chosen with 0.11 𝑏𝑏∗. 

 

The trailing edge point of the outermost profile section 4 is located 0.38 𝑏𝑏∗ behind + in 𝑥𝑥∗ 

direction, and 0.03 𝑏𝑏∗ above it in negative 𝑦𝑦∗ direction. In negative 𝑧𝑧∗ direction, it is at a 

distance of 0.5 𝑏𝑏∗ from + (half-span). The profile has a thickness of 10%. As local angle of 

incidence, we choose 𝛼𝛼𝑙𝑙 = 2°. The length of the chord is chosen with 0.02 𝑏𝑏∗. 

 

After the geometry was constructed this way, the entire wing is turned around + along the 

𝑧𝑧∗ axis by an angle of 𝛼𝛼 = 30°. 

 

Let us now investigate the results. Let us begin this by looking at the time evolution of the 

lift coefficient during the simulation, see Figure 32. 𝑡𝑡∗ = 20000 timesteps were simulated, 

this corresponds to a calculation time of roughly 20 days.  

 

 
Figure 32: Time evolution of the pressure lift coefficient for the high resolution simulation. Discretization points: 𝟐𝟐𝟐𝟐𝟎𝟎 
million, timesteps: 𝟐𝟐𝟎𝟎 thousand. The annotations are explained in the text above. 

 

The simulation begins with a resting fluid, that is, the pressure lift coefficient is zero at the 

beginning. As the incoming flow begins to sweep over the wing geometry, the lift 

A 

B 
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coefficient begins to rise. We have marked an exemplary positions during this stage with 

A. The corresponding iso-surface of the vorticity can be seen in Figure 33. Note already at 

this stage, that there are some waves in the iso-surface which form at the leading edge of 

the highly swept region of the wing. 
 

 
Figure 33: Iso-surface of constant vorticity |𝝃𝝃∗| = 𝟎𝟎.𝟎𝟎𝟓𝟓 colored by the local Mach number displayed after 𝒕𝒕∗ = 𝟓𝟓𝟏𝟏𝟐𝟐𝟎𝟎 
timesteps for the high-resolution simulation. 

As the flow continues, the lift coefficient rises even higher. It reaches its maximum value 

the moment the flow reaches the outer trailing edge. We mark this point with B. Right after 

this, a trailing edge vortex begins to form. This stage is displayed in Figure 34 below. 
 

 
Figure 34: Iso-surface of constant vorticity |𝝃𝝃∗| = 𝟎𝟎.𝟎𝟎𝟓𝟓 colored by the local Mach number displayed after 𝒕𝒕∗ = 𝟑𝟑𝟓𝟓𝟖𝟖𝟎𝟎 
timesteps for the high-resolution simulation. 
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Most remarkable in the coming timesteps is the growth of the small waves which now begin 

to appear everywhere on the wing geometry. They do not only originate from the leading 

edge but begin to appear all over of the wing’s surface. These waves slowly move to the 

back of the aircraft. After a while, no new waves originate In the front of the geometry and 

the flow in this region begins to calm. Everywhere else, the waves remain present for quite 

a while. We call this stage C. An exemplary snapshot from this stage at 𝑡𝑡∗ = 7450 is 

displayed in the image below. 

 

         
Figure 35: Iso-surface of constant vorticity |𝝃𝝃∗| = 𝟎𝟎.𝟎𝟎𝟓𝟓 colored by the local Mach number displayed after 𝒕𝒕∗ = 𝟑𝟑𝟒𝟒𝟓𝟓𝟎𝟎 
timesteps for the high-resolution simulation. 

 

Note also the coherent structures which begin to appear more to the rear of the aircraft. We 

have highlighted these structures with dashed black lines.  
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This flow field in Figure 35 is interesting, because through the abrupt start of the flow the 

level of turbulence is higher than one would expect at the present Reynolds number. The 

influence of the rough beginning starts to decrease as the simulation moves on and the flow 

begins to calm further in certain regions. In other regions, instabilities remain present and 

distinct features begin to show. At around 𝑡𝑡∗ = 14000 most of these features do not change 

anymore. Until now, the lift coefficient was steadily increasing, now this tendency begins 

to cease. The image displayed below at 𝑡𝑡∗ = 16450 is a typical snapshot of a flow where 

no features of the main flow change anymore. Naturally, there are oscillations, but these 

tend to repeat themselves in various ways. We call this stage D. Let us now discuss some 

of the features of this flow.  

 

 

 
Figure 36: Iso-surface of constant vorticity |𝝃𝝃∗| = 𝟎𝟎.𝟎𝟎𝟓𝟓 colored by the local Mach number displayed after 𝒕𝒕∗ = 𝟓𝟓𝟒𝟒𝟒𝟒𝟓𝟓𝟎𝟎 
timesteps for the high-resolution simulation. 
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Figure 37: Iso-surface of constant vorticity |𝝃𝝃∗| = 𝟎𝟎.𝟎𝟎𝟓𝟓 colored by the local Mach number displayed after 𝒕𝒕∗ = 𝟓𝟓𝟒𝟒𝟒𝟒𝟓𝟓𝟎𝟎 
timesteps for the high-resolution simulation, top view. 

 

First, note the free shear layer I at the highly swept trailing edge of the design. We already 

know this shear layer from our previous study with smaller Reynolds numbers. In the 

present study, waves appear in the shear layer. Further down the flow, the shear layer 

dissolves in some turbulent fashion. It induces a vortex quite similar to the previous study. 

The increased flow velocities due to the presence of this vortex can be seen best in Figure 

38 in yellow right above the beginning of the shear layer. We have sketched this motion 

with some rounded arrows. The flow in this yellow region on the becomes instable as well 

and begins to intermingle with the instable free shear layer further down the flow. Above 

this region, we find the familiar shear layer IV. This layer forms due to the counteracting 

influences of the trailing edge vortex we just described, and the main flow which sweeps 

over the wing as roughly sketched with the dashed line in Figure 38. Contrary to previous 
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investigations, this shear layer also becomes instable. The cause of this is visible quite nicely 

in the simulations. In the present setup, waves begin to form in the boundary layer at the 

leading edge of the design, see III. These waves remind of Tollmien–Schlichting waves 

which are a classical phenomenon in laminar turbulent transitions (Tollmien 1931, 

Schlichting 1933, Schlichting and Gersten 2006). Some of these waves form high up front 

on the wing. They move in small packages inward over the surface of the wing until they 

meet the beginning of the shear layer IV. This leads to the occurrence of characteristic 

coherent structures in the shear layer. Further down the flow, the shear layer intermingles 

strongly with the trailing edge vortex, the influence of the main flow, and with vortices 

which form more to the outside of the wing and follow the classical clockwise rotation. 
 

 
Figure 38: Iso-surface of constant vorticity |𝝃𝝃∗| = 𝟎𝟎.𝟎𝟎𝟓𝟓 colored by the local Mach number displayed after 𝒕𝒕∗ = 𝟓𝟓𝟑𝟑𝟓𝟓𝟏𝟏𝟎𝟎 
timesteps for the high-resolution simulation, rear view. 
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Further to the outside of the wing the free shear layer II at the trailing edge separates in some 

distinct vortices. Some of these vortices begin to form at the leading edge VI. The motion 

of these vortices was observed to be highly irregular. Their formation seems to originate at 

a region close to the king in the leading edge. From there, they move to the outside along 

the leading edge in a highly disordered fashion. Wind tunnel experiments at higher 

Reynolds number indicated the presence of a leading edge vortex which forms in this region 

and bursts at high angles of attack. The irregular fashion we observe here in the present 

study could be a forerunner of this. Right at the wing tip, we observe that the tip vortex 

forms as expected. There are a few oscillations, however the overall visibility of this feature 

remains quite steady. Furthermore, we observe small vortex fragments which separate from 

the wing at the trailing edge and are then caught by the downwash of air behind the wing. 

 

The present study is the beginning of further experiments which can now be conducted with 

the developed wind tunnel. Especially simulations with even higher resolutions will be of 

great interest to describe some of the features which were explained above in even more 

detail and to investigate how they change as the Reynolds number is increased even further. 

Also, various investigations of the present highly swept flying wing geometry are currently 

underway by other authors. It will be very interesting to compare the results and to thereby 

develop a full understanding of the flow field around the geometry at high angles of attack.  

 

The conclusion in the next section contains various aspects which will be interesting for 

future works on developed flow channel. As a closing argument at this stage, let us draw 

attention again to the simplicity of the tool at hand and the remarkable level of detail in the 

results which is visible above. 
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5 Conclusion and outlook 

In this work, a numerical flow channel was developed with the Lattice Boltzmann method 

and applied to study various swept wing geometries. At first, the Lattice Boltzmann  

method was discussed in the light of other numerical tools, and in the light of current 

development trends of microprocessors. It was then decided to use the Lattice Boltzmann 

method for the creation of the numerical flow channel. The setup of this numerical 

experiment was explained with a particular focus on the numerical details which influence 

the maximum Reynolds number which can be achieved. Finally, the developed setup was 

used to conduct three exemplary studies. First, a finite unswept wing was investigated at 

various angles of attack. Then, the influence of sweep of a low aspect ratio wing at high 

angles of attack was investigated. In the third study, a high resolution simulation of an 

exemplary Flying V geometry was conducted in order to obtain a first impression of the 

flow field behind the configuration at high angles of attack. 

 

The results of this effort are as follows: 

 

First, it was highlighted that numerical techniques with simple local numerical interactions 

in spatial domain allow for efficient computations. It was emphasized that such techniques 

are well-suited for parallelization. 

 

Second, it was highlighted that there is a strong trend of an increase of parallel operations 

in the development of microprocessors. It was made clear that if we expect this trend to 

continue for some years, numerical tools which consist of simple parallel operations in the 

spatial domain like the Lattice Boltzmann method, a likely to benefit from this in the future. 

 

Third, insights of how large arrays can be handled and arranged with the Lattice Boltzmann 

method where presented. Implications this has on the maximum amount of memory 

required by the method where discussed. For these details, please see Section 3.5. 

 

Fourth, the flow field behind a highly swept wing at low Reynolds numbers was described 

as a function of the sweep ratio. For these results, please see Section 4.2. 
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Fifth, a first description of the flow field behind a Flying V configuration at a high angle of 

attack was offered. The results of this study at Re = 4.6 ∙ 103 and an angle of attack of 𝛼𝛼 =

30° are, a) the observation of waves in the boundary layer which form at the leading edge 

and move inward towards the rear kink, see Figure 37, b) the discovery of two characteristic 

free shear layers I and IV, see Figure 36, c) the observation of strong interactions of the 

main flow and the two shear layers close to the rear kink, see Figure 38, refer to Section 4.3 

for a more detailed description, and d) the discovery of turbulent coherent structures in the 

vorticity field as seen in Figure 35 after a strong initial gust.  

 

Recommendations for future work on this particular last investigation include more studies 

with the present tool at other angles of attack, the investigation of higher resolutions, the 

investigation of geometry changes of the design, and the comparison of the results of the 

present study with wind tunnel experiments. It is interesting to note that the tool which is 

developed in this work is fully scalable and can be applied without any further modifications 

on larger computers than in the present work to model higher Reynolds numbers in future 

works. 

 

Recommendations for future work on the flow channel are the inclusion of other collision 

operators (TRT / MRT models). Such more refined operators may help to further reduce the 

relaxation time and thus may allow for the simulation of higher Reynolds numbers at a 

given amount of memory (Krüger, Kusumaatmaja et al. 2017). A further recommendation 

to extend the range of application of the flow channel is an investigation on how to include 

compressibility effects, see for example (Fares, Wessels et al. 2014). 
 

In closing, let us draw attention again to the simplicity of the tool at hand and the remarkable 

level of detail in the results which is visible above. 
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