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Abstract

This thesis discusses the integrability properties of a class of bilinear discretizations
of integrable quadratic vector fields, the so called Hirota-Kimura type discretizations.
This method tends to produce integrable birational mappings. The integrability prop-
erties of these mappings are discussed in detail and - where possible - solved exactly in
terms of elliptic functions or their relatives. Integrability of the mappings under con-
sideration is typically characterized by conserved quantitites, invariant volume forms
and particular invariance relations, formulated in the language of so called HK bases.

After a short introduction into the theory of finite dimensional integrable systems
in the continuous and discrete setting, a general methodology for discovery and proof
of integrability of birational mappings is developed. This methodology is based on the
concept of HK bases. Having recalled the basics of the theory of elliptic functions, the
relations between HK bases and elliptic solutions of integrable birational mappings is
explored. This makes it possible to formulate a general approach to the explicit inte-
gration of integrable birational mappings, provided they are solvable in terms of elliptic
functions. The appealing feature of this approach is that it does not require knowledge
of additional structures typically characterizing integrability (e.g. Lax pairs).

Having discussed the general properties of the HK type discretizations, several ex-
amples are discussed with the help of the previously introduced methods. In particular,
discretizations of the following systems are considered: Euler top, Zhukovsky-Volterra
system, three and four dimensional periodic Volterra systems, Clebsch system, Kirch-
hoff System, and Lagrange top. HK bases, conserved quantities and invariant volume
forms are found for all examples. Furthermore, explicit solutions in terms of elliptic
functions or their relatives are obtained for the Volterra systems and the Kirchhoff
system.

Methodologically this work is based on the concept of experimental mathematics.
This means that discovery and proof of most of the presented results are based on
computer experiments and the usage of specialized symbolic computations.
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Introduction

The theory of integrable systems is a rich and old field of mathematics. In a sense
it is as old as the the subject of differential equations itself. Since Newton’s solution
of the Kepler problem, which might be considered as the first integrable system in
the history of mathematics, mathematicians and physicists have been trying to find
differential equations which could be “integrated”, that is solved exactly in terms of
previously known functions.

After Newton, Euler and Lagrange discovered two new integrable systems, which
are now known as the Euler Top and the Lagrange Top. The study of the functions
which characterized their solutions fueled the subsequent development of analysis,
leading to the systematic study of elliptic functions and their higher genus analogs by
Gauss, Abel, Jacobi and their contemporaries.

At this time there was, however, no precise notion of the term integrability. Back
then, integrability of a system of differential equation, would usually mean, that the
equations of motion could be reduced to simpler equations whose solutions were then
found by inversion of elliptic or hyperelliptic integrals. A precise notion of integrability
was first formulated by Liouville. He showed that Hamilton’s equations could be
transformed into a simple linear set of differential equations if the system of equations
possessed enough independent conserved quantities.

Soon, new integrable systems were discovered; among them were the so called
Kirchhoff case of rigid body motion in an ideal fluid, the related Clebsch system and
the celebrated Kovalevskaia top. While there was still the faint hope that all differen-
tial equations describing physical phenomena could be integrated, Poincare eventually
proved that this was not possible in the case of the three-body problem. From this
point on interest in integrable systems slowly faded, as they were more and more being
regarded as very remarkable yet isolated curiosities.

The big revival of integrable systems then began in the 1960’s with the discovery
of soliton solutions of the Korteweg-de Vries equation by Gardner, Kruskal, Green and
Miura. Quickly, the connection to the Lax formalism and the related inverse scatter-
ing transform were established. Soon after, an enormous amount of new integrable
systems were discovered, among them for instance the famous Toda lattice. Moreover,
it became evident, that almost all classical integrable systems could be cast into Lax
form.

With the advent of computers research has naturally shifted focus from the study of
differential equations to the study of difference equations. In the discrete realm one now
faces similar problems as Newton, Euler, Lagrange, Hamilton and their colleagues did.
There are numerous examples of discrete equations that admit conserved quantities,
Lax formulations and explicit solutions in terms of elliptic functions or their higher
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genus analogs. A general framework into which one could cast these discrete systems
has however not been found. Some of these new integrable equations can be understood
as discrete analogs to equations integrable in the sense of Liouville, yet there are classes
of equations which fit into other recently developed frameworks of discrete integrability.
In the near future there is hence the possibility for the appearance of a lot of intruiging
and fascinating results in the theory of discrete integrable systems.

A modern subfield of the theory of discrete integrability is the field integrable
discretizations. An integrable discretization of a continuous time integrable system is
a system of difference equations obtained via discretization (in the sense of numerical
analysis) which shares the original integrable structures of the continuous time system.
In this thesis we will study a particular class of integrable discretizations, the so called
Hirota-Kimura-type (HK type) discretizations.

The objective of this thesis is two-fold:

1. It will be shown that the HK type discretization scheme tends to produce inte-
grable mappings. Furthermore, we will study in detail the integrability properties
of the HK type discretizations in the case of several examples. The integrability
properties being studied are conserved quantities, invariant volume forms and
special invariance relations characterizing explicit solutions.

2. To accomplish the first goal, one is in need of suitable theoretical and algorithmic
tools to study possibly integrable birational maps. Hence, this thesis contains a
detailed exposition of these tools, which have only recently been developed by
the author of this thesis together with Yu. B. Suris and M. Petrera.

1.1 Methodological Remarks

Methodologically this thesis is based on the concept of experimental mathematics.
Bailey, et al. [11] define this particular brach of mathematics in the following way:

Experimental Mathematics is that branch of mathematics that concerns it-
self ultimately with the codification and transmission of insights within the
mathematical community through the use of experimental (in either the
Galilean, Baconian, Aristotelian or Kantian sense) exploration of conjec-
tures and more informal beliefs and a careful analysis of the data acquired
in this pursuit.

Practitioners of experimental mathematics heavily rely on computer experiments in
order to identify interesting mathematical structures and previously hidden patterns
with the aim of formulating conjectures and finding ideas about how to prove these
conjectures. The need for computer experiments in mathematical research mainly
originates from the immense complexity of modern mathematical problems. This is
even more true in the case of discrete integrable systems. Experimental methods have
therefore played a central role in this work. The discovery of most results and their
proofs originates from results of suitable computer experiments. Hence, this thesis will
contain an exposition of the mathematics behind the relevant computer experiments.
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Moreover, the inherently large complexity of many problems surrounding the inte-
grability of the HK type discretizations prevents one from doing most computations
by hand, especially in the case of higher dimensional systems (in our case N > 3).
Therefore, a large number of results in this thesis depend on computer-aided proofs,
performed using the software packages MAPLE, SINGULAR [24] and FORM [55]. It
will be mentioned at the relevant points when this was the case exactly. It would
certainly be desirable to find smarter methods for proving a large number of results
contained in this thesis. Yet, for the HK type discretizations the absence of the “usual”
integrability structures has so far prevented the discovery of such methods.

In the spirit of experimental mathematics this thesis also presents results which are
based on numerical computer experiments, but which have not been rigorously proven.
These results will be marked as such at the relevant points. Instead of “Proposition”
or “Theorem“ we will designate them with “Experimental Result”. Although one
might criticize the lack of a formal proof, one should note that the evidence supporting
these results is strong enough to clear any doubts one might have. Also, one should note
that these results will usually be used as intermediate steps towards the formulation
of a mathematical statement, which will then be proven rigorously.

This dissertation includes a CD-ROM which contains the MAPLE worksheets and
SINGULAR programs used for the computer assisted proof and discovery of those
results in this thesis which are not directly verifiable by hand.

1.2 Outline of the Thesis

This thesis is organized as follows: First, in Chapter 2 the neccessary theoretical foun-
dations behind the theory of integrable systems (in finite dimensions) in the continu-
ous and discrete setting will be established. Furthermore, several tools needed during
the study of possibly integrable birational mappings will be introduced and discussed.
Chapter 3 continues by recalling the basic facts of the theory of elliptic functions. They
will later appear in the explicit solutions of some of the integrable HK type discretiza-
tions. Also, we will see the implications that the existence of explicit solutions in terms
of elliptic functions has on the existence of HK-bases. We also discuss related com-
puter experiments which aid during the formulation of ansätze for explicit solutions.
In Chapter 4 we will then be introduced to the the Hirota-Kimura-type discretizations
and get to know them better by considering simple examples demonstrating their basic
features and relations to the methods outlined in Chapter 2. Finally, the remaining two
chapters present detailed expositions of more complicated cases of integrable Hirota-
Kimura type discretizations. There we will prove not only integrability of the systems
under consideration, but also derive explicit solutions. The central results of this thesis
are then summarized in the final chapter.

Except for Section 2.4 Chapters 1 to 3 consist mainly of a review of existing litera-
ture. The basic results and recipes pertaining to the theory of HK bases are based on
joint research with the author’s advisor Prof. Dr. Yuri Suris and also Dr. Matteo Pe-
trera, with some original extensions added by the author. These results have partially
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been published in [45]. Most statements in Chapter 3 are well known facts from the
theory of elliptic functions and are found in any standard textbook about this subject.
The research presented in Chapter 5 has been carried out together with Prof. Dr. Yuri
Suris, the results presented in Sections (4.1.1) and (4.2) are based on joint research
with Prof. Dr. Yuri Suris and Dr. Matteo Petrera and have been published in [43].
The results relevant to the HK type discretization of the Kirchhoff System represent
the author’s own research. The results for the HK type discretization of the Clebsch
System are also based on joint research with Prof. Dr. Yuri Suris and Dr. Matteo
Petrera and have been first published in [45].
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Integrability in the Continuous and Discrete

Realm

This chapter is meant to give a short overview of the theory of finite dimensional in-
tegrable systems in both the continuous and the discrete setting. In the continuous
setting our focus will be on the theory of completely integrable Hamiltonian systems.
In the discrete setting we will consider discretizations of completely integrable Hamil-
tonian systems and integrable birational maps. In the following sections we will briefly
introduce the following key notions:

1. Complete integrability in the sense of Liouville-Arnold.

2. Algebraic complete integrability.

3. Integrable discretizations.

4. Algebraic entropy, singularity confinement and Diophantine integrability.

Each of the above notions can be taken as one definition of the term integrability,
yet we will not adopt one single notion of them as the basis for this work, but rather
understand them as basic points of orientation. The most important one will be the
concept of integrable discretizations. This notion is well-defined and established in the
literature. It will serve as the basis of our discussions, yet we will leave aside the aspect
of Poissonicity and shift focus to particular invariance relations and invariant volume
forms. Both will typically characterize integrability of our examples. In practice we
will use the language of HK bases to describe the specific integrability aspects of our
examples.

In this thesis we will call a discrete dynamical system integrable, once we have found
enough integrals of motion and related invariance relations, such that this would in
principle enable us to derive explicit solutions in terms of known special functions. In
a sense, this approach should be seen analogous to the one taken by mathematicians
before the first historical formalization of integrability by Liouville and his contempo-
raries.

2.1 Hamiltonian Systems

We will now provide a brief overview of Hamiltonian systems on Poisson manifolds.
This provides the most direct way to one of the key notions underlying this work: the
concept of complete integrability in the sense of Liouville-Arnold. This presentation
will closely follow the expositions by Suris [52] and Perelomov [42].

10



2.1 Hamiltonian Systems 11

Definition 2.1. [52] Let M be a smooth manifold and let F(M) be the space of smooth
functions on M . A bilinear operation {·, ·} : F(M)×F(M)→ F(M) is called Poisson
bracket (or Poisson structure) if it satisfies the following conditions:

1. skew-symmetry:
{F,G} = −{G,F} (2.1)

2. Jacobi identity:

{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0 (2.2)

3. Leibniz rule:
{F,GH} = {F,G}H + {F,H}G (2.3)

The pair (M, {·, ·}) is called Poisson manifold.

Definition 2.2. [52] Let (M, {·, ·}) be a Poisson manifold and H ∈ F(M). The
unique vector field XH : M → TM satisfying

XH · F = {H,F} (2.4)

for all F ∈ F(M) is called Hamiltonian vector field of the Hamilton function H.
The flow φt : M →M of XH , that is the solution of the differential equation

ẋ(t) = XH(x(t)) x(t) ∈M (2.5)

is called Hamiltonian flow of the Hamilton function H. The expression XH ·F denotes
the Lie derivative of F along the vector field XH . If M is n-dimensional and xi are
local coordinates on M and Xi

H denotes the i-th component of Xi
H , then

XH · F =
n∑
i=1

Xi
H

∂F

∂xi
.

We may therefore write the differential equation governing the flow φt as

ẋ = {H,x} . (2.6)

Definition 2.3. [52] Let φt be Hamiltonian flow on a Poisson manifold (M, {·, ·}). A
function F ∈ F(M) is called integral of motion (first integral, conserved quantity)
for the flow φt, if

F ◦ φt = F. (2.7)

Definition 2.4. Let (M, {·, ·}) be a Poisson manifold. Two functions H,F ∈ F(M)
are said to be in involution if

{F,H} = 0 (2.8)

A function C, which is involution with every other function in F(M) is called Casimir
function.
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Proposition 2.1. [52] Let φt be a Hamiltonian flow on a Poisson manifold (M, {·, ·})
with Hamilton function H. Then H is an integral of motion for φt. Furthermore, a
function F ∈ F(M) is an integral of motion for φt if and only if {F,H} = 0. In
particular:

d

dt
(F ◦ φt) =

{
H,F ◦ φt

}
. (2.9)

Proposition 2.2. [52] Let (M, {·, ·}) be a a Poisson manifold and H,F ∈ F(M).
Also, let φt be the Hamiltonian flow of XH and ψs the Hamiltonian flow of XF . If
{F,H} = 0, then the flows φt and ψs commute:

φt ◦ ψs = ψs ◦ φt ∀s, t ∈ R. (2.10)

Definition 2.5. Let (M, {·, ·}M ) and (N, {·, ·}N ) be two Poisson manifolds and f :
M → N be a mapping between them. f is called Poisson mapping if it preserves the
Poisson brackets:

{F,G}N ◦ f = {F ◦ f,G ◦ f}M ∀F,G ∈ F(N). (2.11)

Definition 2.6. [52] [42] Let M be a manifold. A nondegenerate closed two-form ω
is called symplectic structure. The pair (M,ω) is called symplectic manifold.

Symplectic manifolds form an important subclass of Poisson manifolds, since there
exists a canonical way of defining a Poisson structure from a given symplectic one.
Hence every symplectic manifold is also a Poisson manifold [52] [42]. (However, the
converse statement is in general not true). We also accept the fact that the dimension
of a symplectic manifold always is an even number. A Hamiltonian system can also be
defined on a symplectic Manifold. However, this definition of a Hamiltonian system
then turns out to be compatible with definition 2.2: The definition of a Hamiltonian
system using a symplectic structure is equivalent to the definition a Hamiltonian sys-
tem on a symplectic manifold using the canonically obtained Poisson bracket on the
symplectic manifold [52] [42]. Hamiltonian flows on symplectic manifolds have the im-
portant property that they are symplectic maps, that is they preserve the symplectic
form. This fact [52] [42] corresponds to the preservation of some phase space volume
(See the next example).

Example Consider the canonical phase space R2n = R2n(p, q) with the Poisson
bracket

{F,G} =
n∑
i=1

∂F

∂pi

∂G

∂qi
− ∂G

∂pi

∂F

∂qi
. (2.12)

One easily verifies that (2.12) defines a Poisson-bracket turning R2n(p, q) into a Poisson
manifold. We take a function H ∈ F(R2n) and find the corresponding Hamiltonian
system to read

ẋ = (ṗ, q̇) = {H,x} =

(
−∂H
∂q

,
∂H

∂p

)
. (2.13)
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Hence we see that in this case we obtain Hamilton’ s classical equations:

ṗ = −∂H
∂q

, q̇ =
∂H

∂p
. (2.14)

R2n also is a symplectic manifold with the 2-form ω being

ω =
n∑
k=1

dpk ∧ dqk, (2.15)

which is preserved by the flow of (2.13).
The bracket (2.12) is the so called canonical bracket of R2n. In general, a Poisson

bracket on Rn = Rn(x1, x2, ..., xn) may be defined by its values on pairs of coordinate
functions:

{F,G} =
n∑
i=1

n∑
j=1

{xi, xj}
∂F

∂xi

∂G

∂xj
. (2.16)

Thus, we may write
{F,G} (x) = ∇F (x)TB(x)∇G(x),

where the entries of the matrix B are defined by Bij = {xi, xj}. B is called Poisson
matrix. Given a Hamilton function H, the corresponding Hamiltonian system takes
the form

ẋ = B(x)∇H(x).

A map ϕ : Rn → Rn is then Poisson with respect to the Bracket 2.16, iff

Dϕ(x)TB(x)Dϕ(x) = Dϕ(x).

Example [42] [40] The dynamics of a three dimensional rigid body may also be
described by a Hamiltonian system of equations. Let m = (m1,m2,m3) ∈ R3 denote
total angular momentum of the rigid body and p = (p1, p2, p3) ∈ R3 denote its total
linear momentum. The equations of motion then read

ṁi = {H,mi} , ṗi = {H, pi} , (2.17)

where H is the Hamilton function of the system and

{mi,mj} = εijkmk, {mi, pj} = εijkpk, {pi, pj} = 0. (2.18)

εijk denotes the Levi-Civita symbol:

εijk =


1 if (i, j, k) is an even permutation of (1, 2, 3),
−1 if (i, j, k) is an odd permutation of (1, 2, 3),
0 if i = j or j = k or i = k.

The bracket (6.2) is actually the Lie-Poisson bracket on the dual of the Lie-algebra
e(3) of the Lie-group E(3) of euclidean motions (see below). We will return to this
example when we will discuss the Kirchhoff-type systems.
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Lie-Poisson Brackets [42] [52] Important examples of Poisson brackets are the
Lie-Poisson brackets. They are defined on the dual space g∗ of a Lie algebra (g, [·, ·]).
For an element X ∈ g one associates a linear functional X∗ ∈ g∗ via

X∗ : g∗ → R, L 7→ L(X) =: 〈L,X〉.

The Lie-Poisson bracket on g∗ is then defined by

{F,G}(L) = 〈L, [∇F (L),∇G(L)]〉, ∀F,G ∈ F(g∗).

2.2 Complete Integrability

Definition 2.7. [52] [42] A Hamiltonian system on a 2N-dimensional symplectic
manifold (M, {·, ·}) with Hamilton function H ∈ F(M) is called completely inte-
grable (in the sense of Liouville-Arnold), if it possesses N first integrals F1,...,FN ∈
F(M) with H = G(F1, ..., FN ) such that

1. F1,...,FN are functionally independent, i.e. their gradients are linearly indepen-
dent;

2. F1,...,FN are in involution with each other:

{Fi, Fj} = 0 1 ≤ k, j ≤ N. (2.19)

Theorem 2.1. [42] [52] The solution of a completely integrable Hamiltonian system
on a 2N-dimensional symplectic manifold (M, {·, ·}) is obtained by ”quadrature”. More
specifically, the following holds:

1. Let F1,...,FN be the integrals of motion of a Hamiltonian system on the manifold
M and let T be a connected component of a common level set

{Q ∈M | Fk(Q) = ck, k = 1..N} . (2.20)

Then T is diffeomorphic to Td × RN−d with some 0 ≤ d ≤ N . If T is compact,
then it is diffeomorphic to TN . Here Td denotes the N dimensional Torus.

2. If T is compact, the in some neighborhood T × Ω of T , where Ω ∈ RN is an
open ball, there exist coordinates (so called action-angle coordinates) (I, θ) =
(Ik, θk)

N
k=1, where I ∈ Ω and θ ∈ TN with the following properties:

• The ”actions” Ik depend only on Fj’s:

Ik = Ik(F1, ..., FN ) k = 1, .., N. (2.21)

• The Poisson brackets between the coordinate functions are canonical:

{Ik, Ij} = {θk, θj} = 0, {Ik, θj} = δkj 1 ≤ k, j ≤ N. (2.22)



2.2 Complete Integrability 15

Therefore, for an arbitrary Hamilton function H = H(F1, ..., FN ) depending only
on Fj’s the Hamiltonian equations of motion have the form

İk = 0, θ̇k = ωk(I1, ..., IN ), k = 1, ..., N. (2.23)

Hence, in the action-angle coordinates the evolution of the Hamiltonian equations is
actually a linear motion on a torus.

Moreover, for an arbitrary symplectic map Φ : M → M admitting F1, ..., FN as
integrals of motion, the equations of motion in the coordinates (I, θ) take the form

Ĩk = Ik, θ̃k = θk + Ωk(I1, ..., IN ), k = 1, ..., N. (2.24)

If a Poisson bracket possesses Casimir functions, the conditions for complete inte-
grability slightly change. Suppose for instance that the Poisson structure a Hamilto-
nian system with N degrees of freedom (2N -dimensional phase space) has M Casimir
functions and P conserved quantities which are not Casimir functions. Then, if all
Casimir functions and other conserved quantities are in involution and functionally in-
dependent, we define the Hamiltonian system to be integrable if the following formula
holds:

2N − 2P = M. (2.25)

The reason for this is the fact that Casimir functions generate trivial Hamiltonian
equations creating what is called a Poisson submanifold. For further details the reader
is referred to [52].

Lax pairs [42] [62] [9] The above notions have in some form already been known
in the 19th century. The theory of integrable systems did, however, not develop any
further, until in the year 1967 Gardner, Green, Kruskal and Miura invented the inverse
scattering transform for the Korteveg-de Vries Equation leading to the discovery of
soliton solutions of several nonlinear PDE’s and lattice equations [22]. Nowadays, the
theory of integrable systems is therefore also called soliton theory. The main tool of
soliton theory is the notion of Lax pairs.

Suppose that a system of ordinary differential equations can equivalently be for-
mulated as

L̇(t) = [L(t),M(t)] = L(t)M(t)−M(t)L(t) (2.26)

where L and M are matrices of the same dimension depending on the time variable
t through phase variables. L and M are then called Lax pair. Eq. (2.26) admits a
solution of the form

L(t) = U(t)−1L(0)U(t), M = U̇(t)U(t)−1,

It follows that the eigenvalues of L remain constant as L evolves through time. It is
said that L has an isospectral evolution. An important consequence then is that the
original equations of motion equivalent to the Lax formulation (2.26) possess a number
of conserved quantities given by the eigenvalues of L. Hence trace and determinant
of L remain constant as well. In some cases, the Lax matrices L and M also depend
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analytically on a complex parameter λ, which is called spectral parameter. It is also
important to mention that a Lax pair is not unique. Two different Lax pairs may also
consist of matrices of different dimension.

Remarkably, almost all known integrable systems have a Lax formulation. The Lax
formulation gives rise to algebro-geometric integration which is an elegant method for
the explicit integration of an integrable system [10].

Algebraically Completely Integrable Systems In a lot of cases the integrals of
motion are rational functions in the phase variables and the torus in Theorem 2.1 on
which the motion takes place turns out to be the real part of a complex torus. This
complex torus is an abelian variety. The solutions of the original system of equations
can then be expressed by abelian functions which in turn can be expressed in terms of
multi-dimensional theta functions. We will call systems with this behavior algebraically
completely integrable or a.c.i. for short. All the discretizations that we will study in
this thesis are discretizations of a.c.i. systems.

2.3 Integrable Discretizations

The central mathematical tool used in all areas of science are differential equations.
Most of the fundamental systems of equations appearing in (mathematical) physics
constitute either integrable systems or possess special qualitative features which are
often analytically expressed by conserved quantities. The study of the behavior of such
systems is often only manageable using numerical computations. Therefore one needs
a way of discretizing differential equations such that they can approximately be solved
by a computer. Of course, there exist numerous approaches of discretizing a system
of differential equations, yet most of them fail to reproduce a discrete counterpart of
the qualitative features of the original system, i.e. the discretization does not preserve
some (or all) conserved quantities (or the corresponding symmetries). This usually
leads to a loss of qualitative features. These qualitative features are however crucial
for the study of the long term dynamics of a system of differential equations (for
instance in astrophysics). This motivation has lead to the development of the new
field of geometric integration [25].

A special problem related to this approach is the problem of integrable discretiza-
tion. It is easily stated: how to discretize one or several independent variables of a
given system of integrable differential equations while at the same time preserving the
integrability property of the original continuous system? Note that we are now also
requiring that the integrability property is preserved under discretization. Hence we
are interested in finding a discretization which can in some sense be solved explicitly,
i.e. we can express the n-th iterate explicitly as a function of the initial data and time.

As one might expect, there is no general answer to this question, yet there are
different frameworks in which to embed this problem. One possible way is to adopt a
”Hamiltonian point of view”: one views the Poisson structure of an integrable system
and its conserved quantities as the fundamental objects, for which one tries to find
discrete counterparts.
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An in-depth introduction to the problem of integrable discretization is found in [52].
There, one may also find some general remarks on the history of this subject and
references to already established approaches to the problem of integrable discretization.
Let us now continue and formally define what we mean by an integrable discretization.

Definition 2.8. A function h : Rn → R is called an integral, or a conserved
quantity, of the map f : Rn → Rn, if for every x0 ∈ Rn there holds

h(f(x0)) = h(x0), (2.27)

so that

h ◦ f i(x0) = h(x0) ∀i ∈ Z. (2.28)

Thus, each orbit of the map f lies on a certain level set of its integral h. As a
consequence, if one knows d functionally independent integrals h1, . . . , hd of f , one can
claim that each orbit of f is confined to an (n− d)-dimensional invariant set, which is
a common level set of the functions h1, . . . , hd.

Suppose now that we are given a completely integrable Hamiltonian flow on a
Poisson manifold (M, {·, ·})

ẋ = f(x) = {H,x} , (2.29)

possessing a number of independent conserved quantities Ik. We now formally define
what we mean by an integrable discretization:

Definition 2.9. [52] An integrable discretization of the flow (2.29) is a one pa-
rameter family of diffeomorphisms Ψε : M → M depending on the (small) parameter
ε which satisfies the following conditions:

1. The continuous flow is approximated in the following sense:

Ψε(x) = x+ εf(x) +O(ε2). (2.30)

2. The map Ψε is Poisson with respect to the bracket {·, ·} or a different bracket
{·, ·}ε = {·, ·}) +O(ε).

3. The map Ψε is an integrable map, i.e. possesses a sufficient number of discrete
integrals of motion Ik(x; ε) in involution which approximate the integrals of mo-
tion of the continuous system: Ik(x; ε) = Ik(x) +O(h).

In order to simplify the notation we write

x̃ = Ψε(x). (2.31)

Thus, for a fixed value of ε, we obtain a map x 7→ x̃.

This definition is, of course, justified by the last statement in Theorem 2.1.
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Remarks In the above definition one could of course require that the continuous
flow is approximated up to a higher order. As we are, however, mainly interested in
preserving the integrable structure during the discretization, we will be content even
with lower orders of approximation. The specific maps which we will later deal with
are described by implicit equations of motion which are of the type

x̃− x = Ψ(x, x̃, ε). (2.32)

In all cases which we will be discuss

Ψ(x, x, 0) = f(x) (2.33)

holds. The implicit function theorem then guarantees the local solvability of equations
of the type (2.32).

2.4 Detecting and Proving Integrability of Birational Maps

We now study the problem of integrability detection and the eventual proving of in-
tegrability in the case of birational maps. One may define birational maps in affine
space and also in projective space. In affine space one defines a birational map in the
following way:

Definition 2.10. Let pi, qi ∈ R[x1, . . . , xn], so that each pair pi and qi are coprime
polynomials. The rational map x 7→ f(x), where

f(x) = (p1(x)/q1(x), . . . , pn(x)/qn(x)),

is called birational, if f−1 exists everywhere except on some closed set U ⊂ Rn and is
also given by a rational map. Although f is not defined at zeros of the denominators
qi, we will still write f : Rn → Rn. If i ∈ {1, . . . , n} and f is of the above form, then
we further define

denif = qi, numif = pi.

Definition 2.11. For a birational map f : Rn → Rn, we define the following two sets:

SI = {x ∈ Rn | denif(x) = 0 for some i}.

SII = {x ∈ Rn | detDf(x) = 0}.

SI and SII are called singular sets of f . Elements of these sets are called singularities.

In this thesis, we will usually work in the affine setting when considering concrete ex-
amples. Yet, in order to explain the concept of algebraic entropy in the next subsection,
we will have to work in projective space.

Definition 2.12. A map f : RPn → RPn, defined by

z = [z0 : z1 : . . . , zn] 7→ [p0(z) : . . . : pn(z)],
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with homogeneous polynomials pi of the same degree is called birational if it is bijective
everywhere except on a Zariski closed set Σ ⊂ RPn. We define the singular set S of f
by

S = {z ∈ RPn | pi(z) = 0 ∀i = 0, .., n}.

Hence, S contains all points whose image under f would not be defined in RPn.

Given a birational map in affine space, one can obtain a projective version of f .
Assume that we are given a birational map in affine space by

f : Rn → Rn, x 7→ (p1(x)/q1(x), . . . , pn(x)/qn(x)).

Without loss of generality we may assume that all denominators qi are equal to one
and the same polynomial q. By setting xi = zi/z0 we introduce projective coordinates
and thus obtain a projective version of f :

f : RPn → RPn, [z0 : z1 : . . . , zn] 7→ [zN0 q(x) : zN0 p1(x) : . . . : zN0 p1(x)]

Here, N is the maximal degree of the polynomials pi and qi.
Studying the integrability of birational maps one faces the problem that there exists

no commonly accepted notion of the integrability of a birational map. For instance,
a birational map may be called integrable if it is a symplectic (Poisson) map with a
suitable number of conserved quantities. In light of the Liouville-Arnold theorem we
will hence call maps of this type Liouville-Arnold integrable. Alternatively, one might
also call the map integrable, if

1. its algebraic entropy is zero, that is degrees of the numerators and denominators
of the iterates of f grow polynomially,

2. its singularities are confined,

3. or if the heights of numerators and denominators grow polynomially (diophantine
integrability).

In this thesis we will study the integrability of birational maps with the notion of
Liouville-Arnold integrability as our main theoretical basis. Hence, to prove their inte-
grability, we will have to find a sufficiently large number of integrals of motion for the
maps in question. Yet, as mentioned in the introduction of this chapter, we will leave
aside the aspect of Poissonicity and shift focus to particular invariance relations and
invariant volume forms, both of which will characterize integrability of our examples.

The remaining three concepts mentioned above will also be useful for us. This is
due to the fact that they arise as necessary conditions of Liouville-Arnold integrability.
Together with them being relatively easy to detect using computer experiments they
may be used as integrability detectors of birational maps. In the following two sections
we will now show how to detect the integrability of birational maps using the algebraic
entropy and the Diophantine integrability approach. Then, we will introduce the
concept of Hirota-Kimura bases, which may be used for the detection, as well as the
eventual proving of integrability.
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We conclude this part by mentioning a prototypical family of integrable birational
mappings, the so called QRT maps (see for instance [46, 47] or the recent monograph
[19]). They were discovered by Quispel, Roberts and Thompson in 1988. The QRT
maps are an 18 parameter family of maps R2 → R2, (x, y) 7→ (x̃, ỹ) defined by

x̃ =
f1(y)− xf2(y)

f2(y)− xf3(y)
,

ỹ =
g1(x̃)− yg2(x̃)

g2(x̃)− yg3(x̃)
,

where

f(x) = (A1X)× (A2X),

g(y) = (AT1 X)× (AT1 X),

with

X = (x2, x, 1)T , A1, A2 ∈Mat3×3.

These mappings have a conserved quantity K defined by

K(x, y) =
〈X,A1Y 〉
〈X,A2Y 〉

,

where 〈·, ·〉 is the standard scalar product and again Y = (y2, y, 1)T . Moreoever, one
can show that each member of the QRT family has a one parameter family of invariant
curves

P (x, y) = q0x
2y2 + q1x

2y + q2xy
2 + q3x

2 + q4y
2 + q5xy + q6x+ q7y + q8 = 0, (2.34)

with the coefficients qi depending on the 18 parameters of the map and the conserved
quantity K. These curves can be parametrized by elliptic functions (see Chapter 3)
leading to explicit solutions of the QRT maps.

2.4.1 Algebraic Entropy and Diophantine Integrability

In this section we present three methods of integrability detection for birational maps
and explore their relations. The common idea behind these approaches is the study of
the so called complexity1 of a birational map and to use this complexity as a measure
of integrability, where low complexity would usually mean integrability of the map-
ping. The basic ideas behind this approach go back to the work of Arnold. In [3]
certain growth properties of mappings were studied and related to their integrability
properties. Veselov later applied this idea to polynomial mappings and was able to
demonstrate a relation between the growths of degrees of the iterations of polynomial
mappings and their integrability properties [57]. In particular, it was first shown,
that polynomial growth of degrees would usually mean that a mapping is integrable,

1In this general formulation this should not be understood as a well-defined notion.
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indeed. Eventually, this lead to the development of integrability detection methods
by Viallet, Bellon, Hietarinta and many others [8, 29, 58]. We will now discuss the
essential concepts and methods. As was mentioned before, the concepts on which the
following integrability detectors are based on can themselves be taken as definitions of
integrability in the discrete setting.

Algebraic Entropy. The algebraic entropy approach was pioneered by Viallet and
Hietarinta. It is based on the observation that the degrees of the numerators and
denominators of the iterates of f grow polynomially. We now define the notion of
algebraic entropy following [8]. For this aim we need to clarify what we mean by the
degree of the iterates of a birational map f set in projective space. When we calculate
the composition of f with itself, common factors in all components of f2 = f ◦f might
appear. So, we define the reduced second iterate f [2] of f by taking f2 and cancelling
all common factors. The reduced iterates f [k] are then defined inductively. Now we
may define the notion of algebraic entropy.

Definition 2.13. Let f : RPn → RPn be birational. The algebraic entropy of f is
defined as

ent(f) = lim
k→∞

1

k
log(dk),

where dk = maxi deg f
[k]
i .

The above limit always exists [8]. In general, the sequence dk grows exponentially,
so that ent(f) 6= 0. If dk grows polynomially, i.e. dk = O(kd), for some fixed d, then
ent(f) = 0. A remarkable result due to Bellon [7] is the following:

Fact 2.1. If f is a birational map, integrable in the sense of Liouville-Arnold, then
ent(f) = 0.

This remarkable behaviour of integrable maps now provides us with a simple
method of detecting integrability.

(AE) For a given birational map f : RPn → RPn consider the images of a line r(λ)
under successive iterations of f : choose

r(λ) = [1 : λr1 : . . . : λrn],

with some fixed rational values ri and consider for k ∈ N

dk = max
i

degλ f
[k]
i (r(λ)).

Randomly choose rational values ri and compute the first elements of the se-
quence dk. Repeat this procedure several times. If the sequence appears to grow
polynomially in all cases, then f is most likely integrable.
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Polynomial growth of dk is, of course, related to the appearance of common factors in
the components of fki (r(λ)). Usually, in the integrable case, one can observe that dk
first grows exponentially until some index k0, after which there appear common factors
in fki (r(λ)) for k ≥ k0. We note that the algebraic entropy method of integrability
detection has one drawback: when computing fki (r(λ)) one has to use a symbolic
manipulator like MAPLE. Clearly, in the process of iterating the map f with the
symbolic initial data r(λ), the expressions for fki (r(λ)) might swell up to considerable
lengths. Hence, in some situations it might happen that one is not able to compute
as many fki (r(λ)) as one would need in order to identify the critical index k0, where a
degree-drop occurs. In such situations it can prove useful to use other methods, such
as the Diophantine integrability test or the HK bases approach.

Before discussing the other concepts let us briefly explain the origin of the degree-
drop phenomenon. It is closely is related to the nature of the singularities of f . For a
birational map f : RPn → RPn we have

f ◦ f−1(x) = σ1(x) · id, f−1(x) ◦ f = σ2(x) · id,

so that

Σ = {x ∈ RPn | σ1(x) = 0} ∪ {x ∈ RPn | σ2(x) = 0}.

It may now happen for some index k that the image of a point p under fk lies in S,
so that fk+1(p) is not defined. This means, that for arbitary x

fk+1(x) = κ(x) · f [k+1](x),

with a polynomial κ, such that κ(p) = 0. We see that, in this situation, common
factors appear in all components of fk+1 and also that κ must consist of factors of σ1

and σ2.
At this point it seems worthwhile to consider an example illustrating the method

(AE). We investigate the birational map defined by

f : R3 → R3, (x1, x2, x3) 7→
(
x2, x3,

1 + x2 + x3

x1

)
, (2.35)

which is a member of the Lyness family of mappings. The inverse of f is easily found:

f−1 : R3 → R3, (x1, x2, x3) 7→
(

1 + x1 + x2

x3
, x1, x2

)
. (2.36)

We apply the method (AE) and obtain the following sequence for dk:

1, 2, 3, 3, 3, 3, 2, 1, 2, 3, 3, 3, 3, 3, 2, 1, 2, . . .

This clearly suggests that ent(f) = 0. We investigate this situation more closely. The
projectivization of f is given by

[x0 : x1 : x2 : x3] 7→ [x0x1 : x1x2 : x1x3, (x0 + x2 + x3)x0],
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while the projective version of f−1 reads as

[x0 : x1 : x2 : x3] 7→ [x0x3 : (x0 + x1 + x2)x0 : x1x3, x2x3].

By considering their composition we find that

σ1(x) = x0x1(x0 + x2 + x3), σ2(x) = x0x1(x0 + x1 + x2),

so that the singular set Σ is given by

Σ = {x0 = 0} ∪ {x1 = 0} ∪ {x0 + x1 + x2 = 0} ∪ {x0 + x2 + x3 = 0} .

The sequence of degrees found using (AE) suggests that a factorization will occur after
four iterations. Computing these first four iterates of f symbolically using MAPLE,
we find that each of the factors x0, x1, x0 +x1 +x2, and x0 +x2 +x3 appears in every
component of f4(x) thus explaining the degree-drop.

Singularity Confinement For the sake of completeness we briefly mention another
method of integrability detection. It is based on the notion of singularity confinement
which can be seen as a discrete analog of the Painlevé property. Following [39] we
define it in the affine setting in the following way:

Definition 2.14. Let f : Cn → Cn be birational and x0 ∈ SI ∪ SII . If there exists a
number k ∈ N, such that the two limits

lim
x→x0

fk(x), lim
x→x0

detD(fk)(x),

exist and detD(fk)(x0) 6= 0, then the singularity x0 is said to be confined.

In [39] it is shown that a birational map f : Rn → Rn with n−1 independent ratio-
nal conserved quantities must possess a sufficiently large set of confined singularities.
Testing for singularity confinement thus constitutes another method of integrability de-
tection. One should note that this concept may be extended to the projective setting
and is closely related to the algebraic entropy approach [8, 29,58].

Diophantine Integrability. The concept of Diophantine integrability, introduced
by Halburd [26], is very similar in spirit to the algebraic entropy approach. Here,
instead of looking at the sequence of degrees of iterates of the map f one iterates fixed
rational initial data p ∈ Qn and observes the so called heights of the iterates fk(p).

Definition 2.15. The height of the rational number r = p/q, such that p and q are
coprime integers, is defined as

h(r) = max{|p|, |q|}.

For R = (p1/q1, . . . , pn/qn) ∈ Qn, we define

h(R) = max
i
h(Ri), H(R) = log h(R).

h(r) is called th Archimedan height of r, H(R) logarithmic height of R.
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Definition 2.16. Let f : Rn → Rn be birational. For x0 ∈ Qn, we define

Hk(x0) = H(fk(x0)).

If

lim
k→∞

1

k
logHk(x0) = 0,

for all x0 ∈ Qn, such that fk(x0) is well-defined for all k, then f is said to possess the
Diophantine integrability property.

Fact 2.2. If the birational map f : Rn → Rn, where n = 2, 3, is Liouville-Arnold
integrable then it has the Diophantine integrability property [26].

Hence, we are now in the posssession of another integrability detector:

(DI) For a given map f , compute the first elements of the sequence Hk. If the points
(log(k), log(Hk)) asymptotically tend to a straight line, then f is most likely
integrable. If (log(k), log(Hk)) form an exponential shape, then f is most likely
not integrable.

At the time of writing there were no results relating the Diophantine integrability
property to Liouville-Arnold integrability, if n > 3. Hence, this is an obvious drawback
of the Diophantine integrability approach. Yet, preliminary numerical results indicate
that it is suitable as an integrability detector, even if n > 3. Further research in this
direction could hence prove useful.

We now conclude this section with an example application of the Diophantine
integrability test. As an example we consider the map

f : R2 → R2, (x1, x2) 7→
(
−x1 − x2 + 1 +

1

x1
, x1

)
, (2.37)

which can be found in [39]. We apply the method (DI) for several randomly chosen
initial data and create plots of the points (log(k), log(Hk)). In every case we obtain a
picture similar to Figure 2.1. This suggests that the map is in fact integrable. Indeed,
one easily verifies that it has a polynomial integral given by

H(x1, x2) = x1x2(x1 + x2)− x1x2 − x1 − x2.

It is an interesting and nontrivial problem to find integrals of motion for a possibly
integrable birational map. There is, however, an experimental approach which allows
for their discovery. This approach uses so called HK bases. They will be descibed in
the next section.

2.4.2 Hirota-Kimura Bases

Definition 2.17. A set of functions Φ = (ϕ1, . . . , ϕl), linearly independent over R, is
called a Hirota-Kimura basis (HK basis), if for every x ∈ Rn there exists a vector
c = (c1, . . . , cl) 6= 0 such that

c1ϕ1(f i(x)) + . . .+ clϕl(f
i(x)) = 0 (2.38)
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Figure 2.1: Plot of log(Hk) versus log(k) for the first 100 iterates of the map 2.37 with
initial data x1 = 13/4 and x2 = 3/11.

holds true for all i ∈ Z. For a given x ∈ Rn, the vector space consisting of all c ∈ Rl
with this property will be denoted by KΦ(x) and called the null-space of the basis Φ (at
the point x).

Thus, for a HK basis Φ and for c ∈ KΦ(x) the function h = c1ϕ1 + ...+clϕl vanishes
along the f -orbit of x. Let us stress that we cannot claim that h = c1ϕ1 + .....+ clϕl
is an integral of motion, since vectors c ∈ KΦ(x) do not have to belong to KΦ(y) for
initial points y not lying on the orbit of x. However, for any x the orbit {f i(x)} is
confined to the common zero level set of d functions

hj = c
(j)
1 ϕ1 + . . .+ c

(j)
l ϕl = 0, j = 1, . . . , d,

where the vectors c(j) =
(
c

(j)
1 , . . . , c

(j)
l

)
∈ Rl form a basis of KΦ(x). We will say that

the HK basis Φ is regular, if the differentials dh1, . . . , dhd are lineraly independent
along the the common zero level set of the functions h1, . . . , hd. Thus, knowledge of
a regular HK basis with a d-dimensional null-space leads to a similar conclusion as
knowledge of d independent integrals of f , namely to the conclusion that the orbits
lie on (n − d)-dimensional invariant sets. Note, however, that a HK basis gives no
immediate information on how these invariant sets foliate the phase space Rn, since
the vectors c(j), and therefore the functions hj , change from one initial point x to
another.

Although the notions of integrals and of HK bases cannot be immediately translated
into one another, they turn out to be closely related.

The simplest situation for a HK basis corresponds to l = 2, dimKΦ(x) = d = 1.
In this case we immediately see that h = ϕ1/ϕ2 is an integral of motion of the map
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f . Conversely, for any rational integral of motion h = ϕ1/ϕ2 its numerator and
denominator ϕ1, ϕ2 satisfy

c1ϕ1(f i(x)) + c2ϕ2(f i(x)) = 0, i ∈ Z,

with c1 = 1, c2 = −h(x), and thus build a HK basis with l = 2. Thus, the notion of
a HK basis generalizes (for l ≥ 3) the notion of integrals of motion. Another example
can for instance be found in the theory of QRT maps. Here, the invariant curves (2.34)
can also be interpreted as HK bases of the form

Φ = (x2y2, x2y, y2x, x2, y2, xy, x, y, 1),

with the one dimensional nullspace KΦ(x0) = [q0 : . . . : q8].
Knowing a HK basis Φ with dimKΦ(x) = d ≥ 1 allows one to find integrals of

motion for the map f . Indeed, from Definition 2.17 there follows immediately:

Proposition 2.1. If Φ is a HK basis for a map f , then

KΦ(f(x)) = KΦ(x).

Thus, the d-dimensional null-space KΦ(x) ∈ Gr(d, l), regarded as a function of the
initial point x ∈ Rn, is constant along trajectories of the map f , i.e., it is a Gr(d, l)-
valued integral. Its Plücker coordinates are then scalar integrals:

Corollary 2.1. Let Φ be a HK basis for f with dimKΦ(x) = d for all x ∈ Rn. Take
a basis of KΦ(x) consisting of d vectors c(i) ∈ Rl and put them into the columns of a
l × d matrix C(x). For any d-index α = (α1, . . . , αd) ⊂ {1, 2, . . . , n} let Cα = Cα1...αd

denote the d× d minor of the matrix C built from the rows α1, . . . , αd. Then for any
two d-indices α, β the function Cα/Cβ is an integral of f .

Especially simple is the situation when the null-space of a HK basis has dimension
d = 1.

Corollary 2.2. Let Φ be a HK basis for f with dimKΦ(x) = 1 for all x ∈ Rn. Let
KΦ(x) = [c1(x) : . . . : cl(x)] ∈ RPl−1. Then the functions cj/ck are integrals of motion
for f .

An interesting (and difficult) question is about the number of functionally indepen-
dent integrals obtained from a given HK basis according to Corollaries 2.1 and 2.2. It
is possible for a HK basis with a one-dimensional null-space to produce more than one
independent integral. The first examples of this mechanism (with d = 1) were found
in [35] and (somewhat implicitly) in [30].

It should also be mentioned that HK bases appeared in a disguised form in the
continuous time theory long ago. We consider here two relevant examples. Classically,
integration of a given system of ODEs in terms of elliptic functions started with the
derivation of an equation of the type ẏ2 = P4(y), where y is one of the components of
the solution, and P4(y) is a polynomial of degree 4 with constant coefficients (depending
on parameters of the system and on its integrals of motion), see examples in later
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chapters. This can be interpreted as the claim about Φ = (ẏ2, y4, y3, y2, y, 1) being
a HK basis with a one-dimensional null-space.

Moreover, according to [1, Sect. 7.6.6], for any algebraically integrable system, one
can choose projective coordinates y0, y1, . . . , yn so that quadratic Wronskian equations
are satisfied:

ẏiyj − yiẏj =
n∑

k,l=0

αklijykyl,

with coefficients αklij depending on integrals of motion of the original system. Again,
this admits an immediate interpretation in terms of HK bases consisting of the Wron-
skians and the quadratic monomials of the coordinate functions: Φij =

(
ẏiyj −

yiẏj , {ykyl}nk,l=0

)
. Thus, these HK bases consist not only of simple monomials, but

include also more complicated functions composed of the vector field of the system at
hand. We will encounter discrete counterparts of these HK bases, as well.

2.4.3 Algorithmic Detection of HK Bases

At the moment there exist no general theretical conditions implying the existence of
a HK basis. Hence, the only way to find them remains the experimental way. We
therefore present two experimental methods of finding candidates for HK-bases of a
birational map f . One will be called (N), the other one (V). Later on in this thesis, we
present statements supported purely by numerical evidence. These results are those
designated by “Experimental Result” and have been obtained either by (N) or (V).

Before we formulate the first method, we need to fix some notation. In particular,
for a given set of functions Φ = (ϕ1, . . . , ϕl) and for any interval [j, k] ⊂ Z we denote

X[j,k](x) =


ϕ1(f j(x)) .. ϕl(f

j(x))
ϕ1(f j+1(x)) .. ϕl(f

j+1(x))
... ...

ϕ1(fk(x)) .. ϕl(f
k(x))

 . (2.39)

In particular, X(−∞,∞)(x) will denote the double infinite matrix of the type (2.39).
Obviously,

kerX(−∞,∞)(x) = KΦ(x).

Theorem 2.2. Let

dim kerX[0,s−1](x) =

{
l − s for 1 ≤ s ≤ l − 1,

1 for s = l,
(2.40)

hold for all x ∈ Rn. Then for any x ∈ Rn there holds:

kerX(−∞,∞)(x) = kerX[0,l−2](x),

and, in particular,
dim kerX(−∞,∞)(x) = 1.

Hence, Φ = (ϕ1, . . . , ϕl) is a HK-basis with dimKΦ(x) = 1.
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These results lead us to formulate the following numerical algorithm for the esti-
mation of dimKΦ(x) for a hypothetic HK-basis Φ = (ϕ1, . . . , ϕl).

(N) For several randomly chosen initial points x ∈ Rn, compute dim kerX[0,s−1](x)
for 1 ≤ s ≤ l. If for every x the condition of the previous theorem is satisfied,
then Φ is likely to be a HK-basis for f , with dimKΦ(x) = 1

Finding a suitable candidate for a HK-basis could in some instances take up a con-
siderable amount of time. To counter this problem, we will now present an algorithm
which simplifies the search for potential polynomial HK-bases. Its main ideas are based
on the paper [32], where similar methods have been applied to the computation of in-
variants of group actions of algebraic groups. In what is to follow now, we will use the
concept of Gröbner-bases (for a simple introduction see for instance [18]) and related
notions from commutative algebra and algebraic geometry. Gröbner-bases, invented
by Buchberger in his Ph.D. thesis [12], can be thought of as canonical sets of generators
for a polynomial ideal, which may in particular be used to solve the ideal membership
problem. The following definition is just one of many ways to define Gröbner bases:

Definition 2.18. Let R be a polynomial ring together with a monomial order M and
I ⊂ R be an ideal. A set of polynomials G = {g1, . . . , gk}, such that I = 〈g1, . . . , gk〉
is called a Gröbner basis relative to M , if multivariate polynomial division of any
polynomial p ∈ I by G with respect to M gives zero. A Gröbner-basis is called reduced,
if the leading monomial of any gi is equal to one and no monomial in any element
of the basis is in the ideal generated by the leading terms of the other elements of the
basis.

Assume now that we are given an integrable birational map f : Cn → Cn with a
polynomial HK-basis Φ = (ϕ1, . . . , ϕl), such that dimKΦ(x0) = d. We choose a basis
of for all Φ(x0) given by the d vectors c1(x0),...,cd(x0). Then, for a fixed x0 we consider
the polynomial ideal

J(x0) = 〈cT1 (x0)Φ(X), . . . , cTd (x0)Φ(X)〉 ⊂ C[X] = C[X1, . . . , XN ].

Clearly, since Φ is a HK-basis, any polynomial p(X) ∈ J(x0) vanishes if X ∈ O(x0) =
{fk(x0) | k ∈ Z}. Consider now, for a fixed x0, the ideal

I(O(x0)) = {p ∈ C[X] | p(X) = 0 ∀X ∈ O(x0)}.

Since I(O(x0)) is radical, it follows from Hilbert’s Nullstellensatz that I(O(x0)) is the
ideal of functions vanishing on the variety O(x0)2. Hence, J(x0) ⊂ I(O(x0)). To find
a HK-basis, we can thus consider the ideal I(O(x0)) and try to find a set of generators
for it.

In principle, I(O(x0)) is completely defined by a finite subset of points in the orbit
of f going through x0. So, it is reasonable to try to find generators by taking a finite

2Here we mean, of course, the closure in the Zariski topology.



2.4 Detecting and Proving Integrability of Birational Maps 29

subset S of the orbit of f through x0 and compute the set I(S) of polynomials vanishing
on this set. Naively, one could construct generators of I(S) by simply assigning zeros
given by the elements of S. This would, however, lead to very large polynomials of high
degrees. A different approach to the construction of these polynomials is through the
computation of a canonical set of generators which are in a sense “small” with respect
to their size and degrees. This can be achieved using the so called Buchberger-Möller
algorithm or its variants [20,41]. Given a finite set of points S ⊂ Rn, algorithms of this
type compute a reduced Gröbner basis G of I(S) with respect to a chosen monomial
order.

A crucial observation is the following: If we have computed a (Gröbner-)basis G
of I(S) with S ⊂ O(x0) and there exists an element g ∈ G, such that the number of
terms of g is less than |S|, then the monomials of p are a suitable candidate for a HK
basis. Indeed, if g ∈ I(S), such that

g = c1(x0)ϕ1(X) + . . . cl(x0)ϕl(X),

where ϕi are monomials, then

c1(x0)ϕ1(X) + . . . cl(x0)ϕl(X) = 0,

for X ∈ S. Hence, if l < |S|, then one can conjecture that dimKΦ(x0) > 1, where
Φ = (ϕ1, . . . , ϕl). This observation is the basis of the following algorithm:

(V) 1. Choose x0 ∈ Qn, and a number m in N.

2. Using exact rational arithmetic, compute the first m iterates of x0: xk =
f (k)(x0).

3. Let S = {x0, .., xm}. Choose a monomial order3 and compute a Gröbner
basis G of I(S) using a variant of the Buchberger-Möller Algorithm [20,41].

4. Output the set V (x0) consisting of all g ∈ G, such that the number of terms
of g is less than m+ 1 = |S|.

If one repeats the algorithm (V) several times for different, randomly chosen initial
data and observes that all elements of all V (x0) are spanned by one and the same set
of monomials Φ, then one can for all practical considerations be sure that Φ is a HK
basis. The number of elements in V (x0) will be a first estimate for dimKΦ(x0). An
example of the concrete usage and typical output of (V) is given in Appendix A.

In general, the algorithm (V) will provide good insights into the structure of HK
bases for a given map f and should be the preferred tool when looking for HK bases.
Sometimes, however, when HK bases consist of a large number of monomials it can
prove useful to solely rely on the algorithm (N). In this case the computation of Gröbner
bases for the vanishing ideals can become very demanding.

To further justify the usage of the algorithm (V) we discuss properties of reduced
Gröbner-bases of I(O(x0)). In particular, we can show the following: If we have

3In practice a good choice has proven to be degree reverse lexicographic ordering.
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obtained a reduced Gröbner-basis G = {g1, . . . , gd} of I(O(x0)), the coefficients of
each gi will be integrals of motion for f . Hence, each gi gives a one-dimensional HK-
basis. To understand this, we consider an element element px0 ∈ I(O(x0)). It can be
written as

px0(X) =
∑
α∈A

cα(x0)Xα,

where A is a set of multindices of the form α = (α1, . . . , αn), Xα = xα1
1 · . . . · xαnn and

cα(x0) are rational functions of x0. It is easy to see that

pf(x0)(X) = 0, for X ∈ O(x0),

so that pf(x0) ∈ I(O(x0)) = I(O(x0)). Let G(x0) = {g1, . . . , gd} be a reduced Gröbner-

basis of I(O(x0)) with respect to some monomial order. Because G is reduced, the
coefficient at the leading monomial of any gi(x0) is equal to one:

gi(x0) = Xα +
∑
β∈B

cβ(x0)Xβ.

Moreover, from the previous considerations, it is clear that gi(f(x0)) ∈ I(O(x0)), so
that

gi(x0)− gi(f(x0)) =
∑
β∈B

(cβ(x0)− cβ(f(x0))Xβ ∈ I(O(x0)).

Since gi(x0) and gi(f(x0)) have the same leading monomial, their difference is in normal
form with respect to G. Since this difference belongs to I(O(x0)), it must hence be
zero. This implies that cβ(x0) = cβ(f(x0). It should be mentioned that the above
considerations are essentially the ideas behind the proofs of Lemma 2.13 and Theorem
2.14 in [32].

2.4.4 HK Bases and Symbolic Computation

When we will rely on experimentally obtained results in this thesis, we will usually be
in a situation where these results will be used as intermediate steps towards a final
mathematical statement, which will be proven rigorously (see for instance Chapter 5).
In this way the intermediate statements, which were a priori numerically supported
results, do not require additional proof. In some cases, however, we will be interested
in rigorous mathematical proofs. More concretely, we will be faced with the problem
of how to prove rigorously an experimental result stating the existence of a HK basis.
Because of the growing complexity of the iterates f i(x) this can be a highly nontrivial
task.

The typical situation is the following: Having found a a candidate for a HK-basis
Φ with dimKΦ(x0) = d numerically using (N) or (V), prove that Φ is a HK basis,
indeed. Recall that this means to prove that the system of equations (2.38) with
i = i0, i0 + 1, . . . , i0 + l − d admits (for some, and then for all i0 ∈ Z) a d-dimensional
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space of solutions. For the sake of clarity, we restrict our following discussion to the
most important case d = 1. Thus, one has to prove that the homogeneous system

(c1ϕ1 + c2ϕ2 + ...+ clϕl) ◦ f i(x) = 0, i = i0, i0 + 1, . . . , i0 + l − 1 (2.41)

admits for every x ∈ Rn a one-dimensional vector space of nontrivial solutions. The
main obstruction for a symbolic solution of the system (2.41) is the growing complexity
of the iterates f i(x). While the expression for f(x) is typically of a moderate size,
already the second iterate f2(x) becomes typically prohibitively big. In such a situation
a symbolic solution of the linear system (2.41) should be considered as impossible, as
soon as f2(x) is involved, for instance, if l ≥ 3 and one considers the linear system
with i = 0, 1, . . . , l − 1.

Therefore it becomes crucial to reduce the number of iterates involved in (2.41) as
far as possible. A reduction of this number by 1 becomes in many cases crucial. One
can imagine several ways to accomplish this.

(A) Take into account that, because of the reversibility f−1(x, ε) = f(x,−ε), the
negative iterates f−i are of the same complexity as f i. Therefore, one can reduce
the complexity of the functions involved in (2.41) by choosing i0 = −[l/2] instead
of the naive choice i0 = 0.

For instance, in the case l = 3 one should consider the system (2.41) with i = −1, 0, 1,
and not with i = 0, 1, 2. However, already in the case l = 4 this simple recipe does not
allow us to avoid considering f2. In this case, the following way of dealing with the
system (2.41) becomes useful.

(B) Set cl = −1 and consider instead of the homogeneous system (2.41) of l equations
the non-homogeneous system

(c1ϕ1+c2ϕ2+...+cl−1ϕl−1)◦f i(x) = ϕl◦f i(x), i = i0, i0+1, . . . , i0+l−2,
(2.42)

of l−1 equations. Having found the (unique) solution
(
c1(x), . . . , cl−1(x)

)
, prove

that these functions are integrals of motion, that is,

c1(f(x)) = c1(x), . . . , cl−1(f(x)) = cl−1(x). (2.43)

Thus, for instance, in the case l = 4 one has to deal with the non-homogeneous system
of equations (2.42) with i = −1, 0, 1. Unfortunately, even if one is able to solve this
system symbolically, the task of a symbolic verification of eq. (2.43) might become
very hard due to complexity of the solutions

(
c1(x), . . . , cl−1(x)

)
. When the map f is

given implicitly by a polynomial system of the type

gi(x̃, x) = 0, i = 1, . . . , n, (2.44)

which we may solve explicitly for x̃, then we may efficiently handle the above problem
using the following method:
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(G) In order to verify that a rational function c(x) = p(x)/q(x) is an integral of
motion of the map x̃ = f(x) coming from a system (2.44):

i) find a Gröbner basis G of the ideal I generated by the components of eq.
(2.44) considered as polynomials of 2n variables x, x̃.

ii) check, via polynomial division through elements of G, whether the polyno-
mial δ(x, x̃) = p(x̃)q(x)− p(x)q(x̃) belongs to the ideal I.

An advantage of this method is that neither of its two steps needs the complicated
explicit expressions for the map f . Nevertheless, both steps might be very demanding,
especially the second step in case of a complicated integral c(x). This method has been
used, for instance, in [35], where the task of verifying the equations of the type (2.43)
has been accomplished using the above method.

In some situations, a symbolic verification of eq. (2.43) can, however, be avoided
by means of the following tricks.

(C) Solve system (2.42) for two different but overlapping ranges i ∈ [i0, i0 + l−2] and
i ∈ [i1, i1 + l − 2]. If the solutions coincide, then eq. (2.43) holds automatically.

Indeed, in this situation the functions
(
c1(x), . . . , cl−1(x)

)
solve the system with i ∈

[i0, i0 + l − 2] ∪ [i1, i1 + l − 2] consisting of more than l − 1 equations.
A clever modification of this idea, which allows one to avoid solving the second

system, is as follows.

(D) Suppose that the index range i ∈ [i0, i0 + l − 2] in eq. (2.42) contains 0 but
is non-symmetric. If the solution of this system

(
c1(x, ε), . . . , cl−1(x, ε)

)
is even

with respect to ε, then eqs. (2.43) hold automatically.

Indeed, the reversibility of the map f−1(x, ε) = f(x,−ε) yields in this case that equa-
tions of the system (2.42) are satisfied for i ∈ [−(i0 + l − 2),−i0], as well, and the
intervals [i0, i0 + l − 2] and [−(i0 + l − 2),−i0] overlap but do not coincide, by condi-
tion.

The most powerful method of reducing the number of iterations to be considered
is as follows.

(E) Often, the solutions
(
c1(x), . . . , cl−1(x)

)
satisfy some linear relations with con-

stant coefficients. Find (observe) such relations numerically. Each such (still
hypothetic) relation can be used to replace one equation in the system (2.42).
Solve the resulting system symbolically, and proceed as in recipes (C) or (D) in
order to verify eqs. (2.43).

The detection and identification of linear relations among the solutions
(
c1(x), . . . , cl−1(x)

)
can in most instances be simplified using the PLSQ algorithm. This will for instance be
done in Chaper 6, where the above methods will be applied to the HK type discretiza-
tion of the Clebsch System. A concrete example of how to identify a linear relation
using the PSLQ algorithm is found in the appendix. Whenever we have explicit sym-
bolic expressions for ci(x) at our disposal, we will usually use different methods for the
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identification of linear relations. Examples for these kinds of situations are found in
Chapter 6, when we discuss the HK type discretizations of the Kirchhoff system and
the Lagrange top.

2.4.5 Invariant Volume Forms for Integrable Birational Maps

Having found a suitably large number of independent integrals for a birational map,
one can usually find an invariant volume form.

Definition 2.19. Let f : Rn → Rn be birational. The differential n−form

ω =
1

φ(x)
dx1 ∧ . . . ∧ dxn

with some polynomial φ is called an invariant volume form for f , if ω is invariant
under the pullback of f , i.e.

f∗ω = ω.

In other words:

detDf(x) =
φ(f(x))

φ(x)
.

If a map f : Rn → Rn has an invariant volume form and n− 2 integrals of motion,
one may construct a Poisson structure for the map and thus prove its Poissonicity [13].

Theorem 2.3. [13] Let f : M → M be a smooth mapping on the n-dimensional
manifold M and let ω be an invariant volume form for f . Let I1, . . . , In−2 be inde-
pendent integrals of motion for f , so that dI1 ∧ . . . ∧ dIn−2 6= 0. Define τ as the dual
n-vectorfield to ω, such that τcω = 1. Then, the bi-vectorfield σ = τcdI1c . . .cdIn−2 is
an invariant Poisson structure for f .

Let us consider the simplest case of this theorem when n = 3. If ω = 1/φ(x)dx1 ∧
dx2 ∧ dx3 is a three-form, so that f∗ω = ω, then its dual tri-vectorfield τ is given by

τ = φ(x)
∂

∂x1
∧ ∂

∂x2
∧ ∂

∂x3
.

Contracting τ with the exterior derivative of the integral I = I1 we obtain the invariant
Poisson structure

σ = τcdI = φ(x)

(
∂I

∂x3

∂

∂x1
∧ ∂

∂x2
+

∂I

∂x1

∂

∂x2
∧ ∂

∂x3
+

∂I

∂x2

∂

∂x3
∧ ∂

∂x1

)
.

In terms of coordinates, this means, that the map f is Poisson with respect to the
bracket

{x1, x2} = φ(x)
∂I

∂x3
, {x2, x3} = φ(x)

∂I

∂x1
, {x3, x1} = φ(x)

∂I

∂x2
.

In most examples that we will encounter in this thesis, an invariant volume form
for a map f with integrals h1 = pq/q1,..., hd = pd/qd can be constructed by taking φ
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as a power of one the numerators or denominators of the integrals hi (or powers of
factors of numeratos or denominators). This remarkable fact can in many examples
be explained by considering the singular set SII of f .

Let for instance f : Cn → Cn be birational with independent integrals h1 =
p1/q1,..., hn−1 = pn−1/qn−1. Following [39] the image of SII under f must in general
be contained in⋂

c∈Cn−1

{x ∈ Cn | p1(x)− c1q1(x) = 0, . . . , pn−1(x)− cn−1qn−1(x) = 0} (2.45)

= {x ∈ Cn | p1(x) = q1(x) = 0, . . . , pn−1(x) = qn−1(x) = 0}. (2.46)

Because hi are integrals, we have

pi(f(x)) = pi(x)Ri(x), qi(f(x)) = qi(x)Ri(x),

for some rational functions Ri. Hence, if x0 ∈ SII , then Ri(x0) = 0. Therefore, in
the numerator of Ri(x) there must appear a factor of the numerator of detDf(x). To
construct an invariant volume form given by φ, it needs to have the property

φ(f(x)) = detDf(x)φ(x).

Hence, it is reasonable to assume that one can obtain an invariant volume form for f
by taking a suitable rational combination of pi and qi. For instance, if we have found
d integrals for a map f where a polynomial q appears as a factor in all denominators
of these d integrals, then q or qk for some k > 1 typically is a suitable first ansatz for
the density φ of a possible invariant volume form. We will encounter such examples in
Chapters 4 and 6.

2.4.6 Summary

Concluding this section, we present a short summary of our findings regarding the
detection and eventual proving of integrability of birational maps. This summary will
be given in the form of a simple recipe. Let us hence assume that we are given some
birational map f and that we would like to

1. obtain a conjecture whether f is integrable or not and

2. find an appropriate ansatz to compute its integrals of motion and an invariant
Poisson structure.

These tasks may be accomplished by following this recipe:

1. Get a first estimate of the complexity of f . This can be accomplished by simply
computing a reasonably large number of exact (rational) iterates. If the com-
plexity of f is high, then computation times of higher iterates will most likely
increase exponentially in time (See Section 4.2.3 for an example).

2. Depending on the size of the symbolic expressions, apply either (AE) or (DI) in
order to confirm the first estimate.
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3. If f passed either (AE) or (DI), apply the algorithm (V) in order to get a candi-
date for a HK-Basis.

4. Compute the integrals of f symbolically using the ansatz obtained in the previous
step. This task may computation-wise be the most demanding part of this recipe.
Be aware of the recipes discussed in the previous section.

5. Having found a number integrals, try to find an invariant measure. This can
under certain circumstances be accomplished using the singular set approach
outlined in the previous section.

6. If possible, use the invariant volume form to construct a Poisson structure using
the contraction procedure from [13] outlined in the previous section.



3

Elements of the Theory of Elliptic Functions

As was mentioned earlier in Chapter 1, algebraically completely integrable systems
may be solved exactly in terms of abelian functions. In the simplest case, when the
genus of the spectral curve equals one, this means that solutions are given in terms of
elliptic functions (or their relatives). Hence, we will now recall some of the basic facts
from the theory of elliptic functions. Our focus will be on the Weierstrassian theory,
the reason for this being its formal simplicity and also some computational aspects.

As we will see later, elliptic functions also appear as solutions of the HK type
discretizations. Yet, the problem of how to determine elliptic solutions of discrete in-
tegrable systems is in general highly nontrivial. A possible way of how to approach this
problem will be presented in the last section of this chapter. There we will encounter
a general approach to the integration of birational maps having elliptic solutions. This
approach uses HK bases in conjunction with experimental methods. The mechanism
behind this approach is due to addition theorems and other relations satisfied by pairs
of two elliptic functions of the same periods. These relations will be studied in the
second section of this chapter.

3.1 Basic Theory

Definition 3.1. Let f : C → C be meromorphic and v1,v2 ∈ C, such that their ratio
is not a real number. f is called elliptic if for all u ∈ C it satisfies f(u+ v1) = f(u)
and f(u + v2) = f(u). An elliptic function hence is a doubly periodic meromorphic
function.

From this definition there follows immediately that for any elliptic function f there
holds

f(u+mv1 + nv2) = f(u),

for all u ∈ C and all integers m and n.
Any number w ∈ C, such that f(u+w) = f(w) for all u ∈ C, is called a period of f .

If there exist v1, v2 ∈ C such that any other period w can be written as w = mv1 +nv2

with two integers m and n, then v1 and v2 are called a fundamental pair of periods. Any
elliptic function has a a fundamental pair of periods. This pair is, however, not unique.
Given two fundamental periods v1 and v2, they form a parallelogram in the complex
plane. The complex plane can thus be tesselated by translating this parallelogram over
integer multiples of the two periods.

The fundamental properties of elliptic functions may be summarized in the follow-
ing theorem.

36
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Theorem 3.1. 1. Inside one fundamental parallelogram the number of zeros of an
elliptic function is always equal to the number of its poles (counting multiplici-
ties).

2. An elliptic function may be characterized up to a multiplicative constant by giving
its zeros, poles, and periods.

3. The sum of the residues with respect to all poles inside one fundamental paral-
lelogram is zero.

4. The sum of the all poles inside one fundamental parallelogram is equal to the sum
of all zeros inside the same parallelogram.

5. Every nonconstant elliptic function has at least two poles inside one fundamental
parallelogram.

Definition 3.2. The number of poles of an elliptic function (counting multiplicities)
is called the order of f and is denoted by ordf .

There are in principle two approaches with which one could construct concrete
examples of elliptic functions. The first (older) approach is due to Jacobi and makes
use of theta functions. The second approach goes back to Weierstrass. For our purposes
it will be useful to follow the Weierstrass approach.

For the remainder of this section we assume that we are given two complex numbers
ω1 and ω2 which are independent, that is their ratio has a non zero imaginary part.

Definition 3.3. The function

℘(z, ω1, ω2) =
1

z2
+

∑
(m,n)∈Z2

(m,n)6=0

{
1

(z − 2mω1 − 2nω2)2
− 1

(2mω1 + 2nω2)2

}

is called the Weierstrass ℘ function with half-periods ω1, ω2. We will usually supress
the dependence on the half-periods and simply write ℘(z).

Proposition 3.1. The function ℘ has the following properties:

1. It has a double pole at 2mω1 + 2nω2 with zero residues.

2. It is a second order elliptic function with fundamental periods 2ω1 and 2ω2.

3. It is an even function.

4. Its derivate ℘′ is an odd elliptic function of third order.

5. It satisfies the differential equation

℘′(z)2 = 4℘(z)− g2℘(z)− g3,
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where

g2 = 60
∑

(m,n)∈Z2

(m,n)6=0

1

(2mω1 + 2nω2)4
, g3 = 140

∑
(m,n)∈Z2

(m,n)6=0

1

(2mω1 + 2nω2)6
.

g2, g3 are called (Weierstrass) invariants.

6. The periods of ℘ may be obtained from g2 and g3, so that ℘ may be fully charac-
terized by giving g2 and g3.

7. The field of elliptic functions is generated by ℘ and ℘′. This means that any
elliptic function may be written as a rational function of ℘ and ℘′.

We define two more functions which may be used to construct elliptic functions,
given either their poles and residues, or their poles and zeros.

Definition 3.4. The function

σ(z, ω1, ω2) =
∏

(m,n)∈Z2

(m,n)6=0

(
1− z

(2mω1 + 2nω2)

)
exp

(
z

(2mω1 + 2nω2)
+

z2

2(2mω1 + 2nω2)2

)

is called the Weierstrass σ-function with half-periods ω1, ω2. We will usually supress
the dependence on the half-periods and simply write σ(z).

Definition 3.5. The function

ζ(z, ω1, ω2) =
1

z
+

∑
(m,n)∈Z2

(m,n)6=0

{
1

(z − 2mω1 − 2nω2)
+

1

(2mω1 + 2nω2)
+

z

(2mω1 + 2nω2)2

}

is called the Weierstrass ζ-function with half-periods ω1, ω2.

The fundamental properties of σ and ζ are summarized in the following two theo-
rems.

Theorem 3.2. For the function ζ the following statements hold:

1. It has simple poles at 2mω1 + 2nω2 with residues equal to one.

2. It is an odd function.

3. ζ ′(z) = −℘(z).

4. ζ(z + 2ωi) = ζ(z) + 2ζ(ωi).

Theorem 3.3. For the function σ the following statements hold:

1. It has simple zeros at 2mω1 + 2nω2.
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2. It is an odd function.

3. ζ(z) = σ′(z)/σ(z).

4. σ(z + 2ωi) = −σ(z) exp(2ηi(z + ωi)).

With the help of the σ-function we may construct an elliptic functions starting
from its zeros and poles.

Theorem 3.4. Suppose that f is an elliptic function with periods 2ω1, 2ω2. Let
z1,...,zn denote its zeros and p1,...,pn its poles (counting multiplicities), chosen such
that

z1 + . . .+ zn = p1 + . . .+ pn.

Up to a multiplicative constant C ∈ C, f is then given by

f(z) =
σ(z − z1) · . . . · σ(z − zn)

σ(z − p1) · . . . · σ(z − pn)
.

Similarly, one may use to the ζ-function to construct an elliptic function:

Theorem 3.5. Suppose that f is an elliptic function with periods 2ω1, 2ω2. Let
p1,...,pn denote its poles and assume that all pi are disctinct, so that f has simple
poles only. Up to an additive constant C ∈ C, f is then given by

f(z) = r1ζ(t− p1) + r1ζ(t− p1) . . .+ rnζ(t− pn),

where ri = respi(f).

Like all elliptic functions and their relatives the Weierstrass family of functions
satisfies an enormous amount of functional identities. The most fundamental identity
for the σ-function is the celebrated three-term identity:

σ(z + a)σ(z − a)σ(b+ c)σ(b− c) + σ(z + b)σ(z − b)σ(c+ a)σ(c− a)

+σ(z + c)σ(z − c)σ(a+ b)σ(a− b) = 0. (3.1)

Differentiating this identity we obtain the following formula for the ζ-function:

ζ(a) + ζ(b) + ζ(c)− ζ(a+ b+ c) =
σ(a+ b)σ(b+ c)σ(c+ a)

σ(a)σ(b)σ(c)σ(a+ b+ c)
. (3.2)

The ζ-function can be related to ℘ via

1

2

℘′(u)− ℘′(v)

℘(u)− ℘(v)
= ζ(u+ v)− ζ(u)− ζ(v). (3.3)

Furthermore, one may derive

℘(u+ ν) + ℘(u) + ℘(v) =
1

4

(
℘′(u)− ℘′(u)

℘(u)− ℘(v)

)2

, (3.4)
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which is the well known addition-formula for the ℘-function. Taking together the last
two identities, we obtain the so called Frobenius-Stickelberger formula,

(ζ(x) + ζ(y) + ζ(z))2 = ℘(x) + ℘(y) + ℘(z), (3.5)

which holds if x+ y + z = 0. Eventually, we mention the remarkable formula

℘(u)− ℘(v) =
σ(v − u)σ(v + u)

σ2(v)σ(u)
. (3.6)

The reason for the existence of the multitude of functional relations encountered in
the theory of elliptic functions stems from the fact that any elliptic function satisfies
an addition theorem. This behaviour and its implications for our work will discussed
in the following sections.

3.2 Relations Between Elliptic Functions And Addition Theorems

A well known classical result (see for instance section 20.54 in [61]) in the theory of
elliptic functions is the fact that any two elliptic functions with the same periods satisfy
an algebraic relation. Specifically, we have the following theorem.

Theorem 3.6. Let f and g be two elliptic functions with the same periods, such that
ord f = n and ord g = m. Then there exists an algebraic relation of the form

P (f, g) = 0,

with an irreducible bivariate polynomial P (X,Y ) satisfying

degX P ≤ m, degY P ≤ n, degP ≤ n+m.

The coefficients of P are unique up to multiplication with a scalar.

Proof. First, write f and g in terms of ℘ and ℘′, so that one obtains the three equations

f = R1(℘, ℘′), g = R2(℘, ℘′), ℘′2 = 4℘3 − g2℘− g3,

with some rational functions R1, R2. Eliminating ℘, ℘′ from these three equations,
leaves one polyomial equation for f and g. The first part of the theorem is thus proven.
For the second part, consider the following: For any value z = f(u) there correspond
n values ui of u and thus n values g(ui) = wi. Also, for any value w = g(u) there
correspond m values ui of u and thus m values g(ui) = zi. Hence, if we fix some value
z, then there exist n values wi, such that

P (z, wi) = 0, i = 1..n,

and if we fix some value w, then there exist m values zi such that

P (zi, w) = 0, i = 1..m.

Hence, P , considered as a univariate polynomial in w, has n roots and if we consider it
as a polynomial in z, it possesses m roots. Hence, degX P ≤ m and degY P ≤ n.
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Of course, the above relation may be of lower degree, as is for instance the case
for f = ℘ and g = ℘′ or f = ℘ and g = ℘2. This behavior is a common phenomenon
related to shared poles of f and g. If one imposes additional conditions on the poles
of f and g, we may obtain lower degree bounds for P , indeed. In particular, we have
the following theorem.

Theorem 3.7. Let f and g be two elliptic functions with the same periods, each of
them of of order n and having pairwise distinct simple poles. If f and g have k common
poles, then degP ≤ 2n− k.

Proof. We count the number of independent conditions on the coefficients of P which
are required to “kill” all poles of the nonconstant part of P (so that the Liouville theo-
rem applies). These conditions always form a linear homogeneous system of equations
satisfied by coefficients of P . We start by investigating the simplest case and proceed
inductively. Let k = 1 and denote the common pole of f and g by p1. The expression
P (f(u), g(u)) has exactly one term which has a singularity at u = p1 of order 2n. The
coefficient of P at this term must hence be zero. Hence, we have degP ≤ 2n−1. Now,
let k = 2 and denote the common pole of f and g by p1 and p2. Since f and g have at
least one common pole, we have that degP ≤ 2n−1. The expression P (f(u), g(u)) has
exactly two terms which have a singularity at u = p1 and u = p2 of order 2n−1. Hence
we get two independent homogeneous linear equations satisfied by the two coefficients.
Hence, they must be zero. Thus, degP ≤ 2n − 2. Since for arbitrary k, the maximal
number of monomials in P of total degree 2n − k is equal to k, we may repeat this
argument until k = n.

Since any two elliptic functions with the same periods satisfy some algebraic rela-
tion, it follows that any elliptic function satisfies an algebraic differential equation, i.e.
a polynomial relation between an elliptic function x and its derivative ẋ. A particular
example for this is the following theorem by Halphen [27].

Theorem 3.8. The general solution of the differential equation

ẏ2 = α0y
4 + 4α1y

3 + 6α2y
2 + 4α3y + α4 (3.7)

is given by the (time shifts of) the second order elliptic function

y(t) = −α1

α0
+ ζ(u+ v)− ζ(u)− ζ(v) = −α1

α0
+

1

2
· ℘
′(u)− ℘′(v)

℘(u)− ℘(v)
, u =

√
α0t. (3.8)

Here the invariants of the Weierstrass ℘-function are given by

g2 =
α0α4 − 4α1α3 + 3α2

2

α2
0

, g3 =
α0α2α4 + 2α1α2α3− α3

2 − α0α
2
3 − α2

1α4

α3
0

, (3.9)

while the point v of the corresponding elliptic curve is determined by the relations

℘(v) =
α2

1 − α0α2

α0
, ℘′(v) =

α3α
2
0 − 3α0α1α2 + 2α3

1

α3
0

. (3.10)
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If f is an elliptic function, then f̃(t) = f(t + h) for an arbitrary h ∈ C is also
elliptic with the same periods. Hence, f and f̃ are also connected by a polynomial
relation. We call such a relation an addition theorem. The situation, where ordf = 2,
is of particular interest.

Theorem 3.9. Let f be an elliptic function of order two. Then, for arbitrary h ∈ C,
f(t) and f̃(t) = f(t+ h) satisfy an an algebraic relation of the form

P (f, f̃) = 0,

where P is a symmetric, biquadratic polynomial.

A concrete example can be obtained when considering the ℘-function. If we take
Eq. (3.4) and eliminate all derivatives via ℘′2 = 4℘3−g2℘−g3, we obtain the equation(

XY + Y Z + ZX +
g2

4

)2
− 4(XY Z − g3)(X + Y + Z) = 0, (3.11)

where
X = ℘(x), Y = ℘(y), Z = ℘(z),

such that x+y+z = 0. Setting z = h we obtain the symmetric biquadratic relation for
℘. Similar results exist for the Jacobian elliptic function sn [6]. The following theorem
is the converse statement of the previous theorem.

Theorem 3.10. Let P (X,Y ) be a symmetric, biquadratic polynomial. Then, the curve

C =
{

(X,Y ) ∈ C2 | P (X,Y ) = 0
}

has genus one and may be parametrized by

X = f(t), Y = f(t+ h),

with some shift h ∈ C and a second order elliptic function f .

This result may be traced back to the work of Leonhard Euler. One of the first
known applications of these results to the theory of discrete integrable systems is due
to R. Baxter [6].

Suppose that we would like to determine invariants characterizing the elliptic curve
corresponding to the relation

P (y, ỹ) = α0y
2ỹ2 + α1yỹ(y + ỹ) + α2(y2 + ỹ2) + α3yỹ + α4(y + ỹ) + α5 = 0,

where ỹ(t) = y(t+ 2ε). We already know, that y and ỹ are up to time shifts given by
a second order elliptic function f . Now, we would like to determine the corresponding
Weierstrass invariants g2 and g3 in analogy to Theorem 3.8. For this aim we consider
the system of differential equations

ẏ =
∂P (y, ỹ)

∂ỹ
,

˙̃y = −∂P (y, ỹ)

∂y
,
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which is a Hamiltonian system with Hamilton function

H(y, ỹ) = α0y
2ỹ2 + α1yỹ(y + ỹ) + α2(y2 + ỹ2) + α3yỹ + α4(y + ỹ).

Using H we may eliminate either y or ỹ and obtain

ẏ2 = P4(y), ˙̃y
2

= P4(ỹ), (3.12)

where

P4(y) = (α2
1 − 4α0α2)y4 + (2α1α3 − 4α0α4 − 4α1α2)y3

+(4α0H − 4α2
2 + α2

3 − 2α1α4)u2 + (2α3α4 + 4α1H − 4α2α4) + 4α2H + α2
4.

At this point we may apply Theorem 3.8 to (3.12) and determine g2 and g3 in terms
of αi, once one has fixed the value of H = −α5. For a more extensive treatment of the
uniformization problem for biquadratic curves we refer to the monograph [19].

The genus of a a curve of higher degree, i.e. C =
{

(X,Y ) ∈ C2 | P (X,Y ) = 0
}

,
where degP > 3, is in general not equal to one, so that it may not be parametrized
by elliptic functions. Of course, there exist curves of higher degree which may be
parametrized by elliptic functions. We will in fact encounter such curves in later
chapters. For our purposes it will, however, not be necessary to know how one could
exactly parametrize these curves in terms of elliptic functions. Usually we will be
content with knowing that a particular curve has genus one. From the knowledge of
the curve’s degree we will then be able to deduce further information on the elliptic
functions which parametrize the particular curve in question. Regarding the general
problem of the parametrization of genus one curves the reader is referred to Clebsch’s
classical treatments [16] and [15].

3.3 Elliptic Functions, Experimental Mathematics And Discrete Integra-
bility

This section is meant to be a synthesis of the concepts introduced in this chapter and
the previous one. We will demonstrate how one can use the HK bases approach in
order to systematically obtain explicit solutions for discrete integrable systems given
by birational maps, provided solutions are given in terms of elliptic functions. The
appealing features of this approach are the following:

1. It is systematic: guessing ansätze for integrals of motion or explicit solutions can
be avoided to a large extent.

2. We do not look for or try to construct additional integrable structures (for in-
stance Lax pairs), a process which would usually also require large amounts of
guesswork and/or research experience.
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We sketch the essentials of this method. Concrete examples will be discussed in Chap-
ters 5 and 6. To better understand what is to follow, we recall the classical way of
integrating a system of ordinary differential equations

ẋ = g(x), (3.13)

which has a number of conserved quantities and whose solutions are elliptic functions.
In this situation we know that any component xi satisfies an algebraic differential
equation of the type

Pi(xi, ẋi) = 0, (3.14)

with some polynomial P whose degree depends on the order of x. Moreover, if all
components xi are elliptic with respect to the same period lattice, any two functions
xi and xj will satisfy a polynomial relation

Qij(xi, xj) = 0. (3.15)

The relations (3.15) can be obtained by considering the integrals of motion of (3.13)
followed by algebraic manipulations. With the help of these relations one would then
try to eliminate as many variables and their derivatives as possible to try to find the
relations (3.14). Eventually, one can then find explicit expressions by inversion of the
elliptic integrals appearing in (3.14) when solving for ẋi.

We try to adopt the classical approach to the case of integrable birational maps and
assume that we are given a birational map f on the phase space Rn with coordinates
xi. We want to test whether it is integrable and solvable in terms of elliptic functions.
Furthermore, we want to obtain an Ansatz for explicit solutions. This will be made
possible by trying to find invariance relations similar to (3.14) and (3.15). In principle,
this would be possible by direct algebraic manipulation of the equations defining f , yet
typically these expressions are much more complex (in terms of the size of the involved
expressions) when compared to the continuous setting. Hence, except for some very
simple examples, one is usually not able to perform all the neccessary computations
by hand or even by using a symbolic manipulator like MAPLE. Therefore, the only
feasible way to continue remains in most cases the experimental way. One should note
here that this is a typical situation in experimental mathematics.

As a first step we run the algorithm (V). Assume that this enables us to find a
HK-basis describing the invariant manifolds of f given by Φ = (φ1, . . . , φl), where φi
are polynomials in x and dimKΦ(x) = d. Assuming that d is the ”correct” dimension
of the invariant varieties of f , we now like to get an idea whether f can be solved in
terms of elliptic functions. From the previous section, we know that, if f can indeed
be solved in terms of elliptic functions, then (xi, x̃i) = (xi(t), xi(t + h)) considered as
functions of the discrete time t ∈ hZ will satisfy a polynomial relation. This relation
can be detected numerically by the algorithm (V). Hence, we now run the algorithm

(V), but this time apply it to the “map” (xi, x̃i) 7→ (x̃i, ˜̃xi). If the map f is solvable in
terms of elliptic functions, then this will give us for each coordinate xi a polynomial
relation of the type

P (xi, x̃i) = 0.
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The degree of P in xi and x̃i must be the same and is equal to the order of the
elliptic function xi. At this point one should find out whether all functions xi are
elliptic with the same periods. For this aim one should compute the invariants g2, g3

of all the curves given by the above relations. If the absolute invariants for all curves
coincide, then all xi are elliptic functions with the same periods. The computation of
the invariants g2, g3 may easily be accomplished using algorithms by van Hoeij1 [54].

Now we may assume that all xi are given by elliptic functions with the same
periods. Furthermore, for the sake of simplicity we suppose that their order is the
same for all xi. In order to characterize the elliptic functions xi further, we have to
gather information about their poles and zeros. This can be achieved by investigating
the relations among the elliptic functions xi. Let us assume that ord xi = k for all i.
From the HK-basis Φ we may derive the relations among the xi, in particular we can
obtain relations of the form

Q(xi, xj) = 0.

The degree of Q now tells us whether xi and xj have a number of common poles. In
particular, if degQ = 2k −m, then xi and xj must have m common poles. Similarly,
we may find information about possible common zeros of xi and xj . For this aim we
investigate the relations among 1/xi and 1/xj and proceed similarly. After successive
application of this method, that is by finding as many invariance relations as possible
and analyzing them in the light of information about zeros and poles of xi, we will
eventually obtain enough information about the solutions in order to fully characterize
poles and zeros of xi. As we have seen, xi are then fully characterized up to their
multiplicative constants. We will see later that a complete solution of f in terms of
elliptic functons is then relatively easy to find and verify using rigorous mathematical
analysis.

1Implementations of these algorithms are included in MAPLE’s algcurves package
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The Hirota-Kimura Type Discretizations

The discretization method studied in this thesis seems to be introduced in the geometric
integration literature by W. Kahan in the unpublished notes [34]. It is applicable to
any system of ordinary differential equations for x : R → Rn with a quadratic vector
field:

ẋ = g(x) = Q(x) +Bx+ c, (4.1)

where each component of Q : Rn → Rn is a quadratic form, while B ∈ Matn×n and
c ∈ Rn. Kahan’s discretization reads as

x̃− x
ε

= Q(x, x̃) +
1

2
B(x+ x̃) + c, (4.2)

where

Q(x, x̃) =
1

2
[Q(x+ x̃)−Q(x)−Q(x̃)]

is the symmetric bilinear form corresponding to the quadratic form Q. Here and below
we use the following notational convention which will allow us to omit a lot of indices:
for a sequence x : Z → R we write x for xk and x̃ for xk+1. Eq. (4.2) is linear
with respect to x̃ and therefore defines a rational map x̃ = f(x, ε). Clearly, this map
approximates the time-ε-shift along the solutions of the original differential system,
so that xk ≈ x(kε). (Sometimes it will be more convenient to use 2ε for the time
step, in order to avoid appearance of various powers of 2 in numerous formulas.) Since
eq. (4.2) remains invariant under the interchange x ↔ x̃ with the simultaneous sign
inversion ε 7→ −ε, one has the reversibility property

f−1(x, ε) = f(x,−ε). (4.3)

In particular, the map f is birational. Probably unaware of the work by Kahan, this
scheme was first applied to integrable systems, namely the Euler top and the Lagrange
top, by Hirota and Kimura [30, 35]. Since we will be studying Kahan’s scheme in an
”integrable” context , we hence adopt the name Hirota-Kimura type discretizations.

When Hirota and Kimura applied Kahan’s scheme to the Euler Top [30] and the
Lagrange Top [35] they obtained in both cases integrable maps. The derivation of
their results was, however, rather cryptic and almost incomprehensible. Hence, a lot
of researchers ignored these results. At the 2006 Oberwolfach Meeting ”Geometric
Numerical Integration” T. Ratiu [48] then presented the two claims that the Kahan
discretization of both the Clebsch System and the Kovalevskaia system were also in-
tegrable. While the second claim turned out to be wrong, the first claim turned out
to be correct. This lead to a greater interest in the Kahan discretizations of integrable
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systems. In particular, it turned out that in most cases Kahan’s scheme produced new
integrable mappings, when it was applied to algebraically integrable systems with a
quadratic vector field. At this point, however, it still remains a mystery, as to what
underlying structures are responsible for this behavior.

Before discussing the “integrable” aspects of the HK type scheme, we mention some
of its general properties, which follow directly from the definitions.

Proposition 4.1. 1. The scheme (4.2) is of order 2, i.e.

x̃ = x+ εg(x) +
1

2
ε2Dg(x)g(x) +O(ε3),

so that one time step of Kahan’s scheme coincides with the flow of (4.1) up to
the second order 1.

2. For linear systems, i.e. if Q = 0, the scheme (4.2) coincides with the implicit
midpoint rule applied to (4.1). Thus, if (4.1) is a canonical, linear Hamiltonian
system, then the map f : x 7→ x̃ obtained from (4.2) is symplectic. Moreover, if
a linear system of the form (4.1) has a quadratic conserved quantity, then this
quantity is preserved2 by f .

3. One time step of the scheme (4.2) can be interpreted as one Newton iteration
applied to both the implicit midpoint rule or the implicit trapezoidal rule [60].

Proposition 4.1. Any map x 7→ x̃ obtained from (4.2) with time step 2ε can be put
in matrix form as

x̃ = A−1(x, ε) (x+ εBx+ εc) , A(x, ε) = (I − εDg(x)) .

For the Jacobian of x 7→ x̃ there holds the formula

det
∂x̃

∂x
=

detA(x̃,−ε)
detA(x, ε)

. (4.4)

Proof. The first statement follows directly from (4.2) because of

Q(x, x̃) =
1

2

(
DQ(x)x̃+DQ(x̃)x

)
= DQ(x)x̃.

Differentiating (4.2) and considering that

∂

∂x
Q(x, x̃) =

∂

∂x
DQ(x)x̃ = DQ(x̃) +DQ(x)

∂x̃

∂x
,

one obtains
∂x̃

∂x
− I = εDQ(x̃) + εDQ(x)

∂x̃

∂x
+ εB + εB

∂x̃

∂x
.

Solving for ∂x̃/∂x then gives ∂x̃/∂x = A(x, ε)−1A(x̃,−ε), which implies (4.4).

1This is, of course, a direct consequence of the reversibility property (4.3).
2One may refer to [25] for more information about the structure preservation of the implicit midpoint

rule and related numerical integrators.
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Another interesting aspect is the following.

Proposition 4.2. Let B = 0 and c = 0.The map f : x 7→ x̃ obtained from (4.2) can
then be written as a product of two involutions: Let I1 : x 7→ x+ be defined by

x+ + x = εQ(x, x+) (4.5)

and I2(x) = −x. Then I1(I1(x)) = x and x̃ = I2(I1(x)).

Proof. The equation
x+ + x = εQ(x, x+)

is symmetric w.r.t the interchange x+ ↔ x and for fixed x uniquely solvable for x+,
thus I1 is an involution. The remaining statements follow directly from the definition
of x 7→ x̃.

This result is already implicitly present in the work of Jonas. In [33] an involution
of the type (4.5) is studied, which admits for a nice geometrical interpretation. In
particular, Jonas studied the involution

x+ + x+ yz+ + zy+ = 0, y+ + y + zx+ + xz+ = 0, z+ + z + xy+ + yx+ = 0,

where (x, y, z) and (x+, y+, z+) are the cosines of the side lengths of two spherical
triangles with complementary angles. Moreover, Jonas showed that this involution
could be “integrated” in terms of elliptic functions. One could hence consider this
involution as one of the first examples of an integrable mapping.

One of the first applications [35] of Kahan’s scheme was to the famous Lotka-
Volterra system modelling the interacton of two species, one being predators and the
other one their prey. The equations of motion in this case read

ẋ = x(1− y), ẏ = y(x− 1).

This system is Poisson with respect to the Poisson structure

{x, y} = xy, (4.6)

and possesses the conserved quantity

H(x, y) = x+ y − log(xy).

The scheme (4.2) applied to this system then gives

(x̃− x)/ε = (x̃+ x)− (x̃y + xỹ), (ỹ − y)/ε = (x̃y + xỹ)− (ỹ + y), (4.7)

and defines an explicit birational map (x, y) 7→ (x̃, ỹ). Plotting orbits of this map
suggests, that it has favorable numerical properties when being compared with more
standard methods. One should note here the nonspiralling solutions of Kahan’s scheme
which correspond to the existence of the conserved quantity H of the continuous equa-
tions of motion. This behavior can somewhat be explained by the fact that the Kahan’s
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Figure 4.1: Left: explicit Euler method, ε = 0.01 applied to the Lotka-Volterra equa-
tions. Right: Kahan’s discretization, ε = 0.1.

map is Poisson w.r.t. the Poisson structure (4.6) [50]. This can equivalently be formu-
lated by saying that the map 4.7 preserves the invariant measure form

ω =
1

xy
dx ∧ dy.

This statement can be generalized to two bigger classes of equations. The first class
reads:

ẋi =

N∑
j=1

aijx
2
j + ci, 1 ≤ i ≤ N, (4.8)

with a skew-symmetric matrix A = (aij)
N
i,j=1 = −AT. Kahan’s discretization reads:

x̃i − xi = ε
N∑
j=1

aijxj x̃j + εci, 1 ≤ i ≤ N. (4.9)

Proposition 4.2. The map x̃ = f(x, ε) defined by equations (4.9) has an invariant
volume form:

det
∂x̃

∂x
=
φ(x̃, ε)

φ(x, ε)
⇔ f∗ω = ω, ω =

dx1 ∧ . . . ∧ dxN
φ(x, ε)

, (4.10)

where φ(x, ε) = det(I − εAX) with X = diag(x1, . . . , xN ) is an even polynomial in ε.

Proof. Equations (4.9) can be put as

x̃ = A−1(x, ε)(x+ εc), A(x, ε) = I − εAX. (4.11)

Due to formula (4.4) it remains to notice that detA(x, ε) = detA(x,−ε). Indeed, due to
the skew-symmetry of A, we have: det(I−εAX) = det(I−εXTAT) = det(I+εXA) =
det(I + εAX).
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The second class consists of equations of the Lotka-Volterra type:

ẋi = xi

bi +
N∑
j=1

aijxj

 , 1 ≤ i ≤ N, (4.12)

with a skew-symmetric matrix A = (aij)
N
i,j=1 = −AT. The Kahan’s discretization

(with the stepsize 2ε) reads:

x̃i − xi = εbi(xi + x̃i) + ε
N∑
j=1

aij(xix̃j + x̃ixj), 1 ≤ i ≤ N, (4.13)

Proposition 4.3. The map x̃ = f(x, ε) defined by equations (4.13) has an invariant
volume form:

det
∂x̃

∂x
=
x̃1x̃2 · · · x̃N
x1x2 · · ·xN

⇔ f∗ω = ω, ω =
dx1 ∧ . . . ∧ dxN
x1x2 · · ·xN

. (4.14)

Proof. Equations (4.13) are equivalent to

x̃i

1 + εbi + ε
∑N

j=1 aij x̃j
=

xi

1− εbi − ε
∑N

j=1 aijxj
=: yi. (4.15)

We denote di(x, ε) = 1− εbi− ε
∑N

j=1 aijxj . In the matrix form equation (4.13) can be
put as

x̃ = A−1(x, ε)(I + εB)x, (4.16)

where the i-th diagonal entry of A(x, ε) equals di(x, ε), while the ij-th off-diagonal
entry equals −εxiaij . In other words, A(x, ε) = D(I − εY A), where D = D(x, ε) =
diag(d1, . . . , dN ) and Y = diag(y1, . . . yN ). Formula (4.4) holds true also in the present
case, and it implies:

det
∂x̃

∂x
=

detD(x̃,−ε)
detD(x, ε)

· det(I + εY A)

det(I − εY A)
.

The second factor equals 1 due to the skew-symmetry of A, while the first factor equals

d1(x̃,−ε) · · · dN (x̃,−ε)
d1(x, ε) · · · dN (x, ε)

=
x̃1 · · · x̃N
x1 · · ·xN

,

by virtue of (4.15).

4.1 First Integrable Examples

We will now discuss some first examples of integrable HK type discretizations, namely
the discrete Weierstrass system, the discrete Euler top and the discrete Zhukovsky
Volterra system. During this discussion we will encounter first examples of the inte-
grability properties of the Hirota-Kimura type discretizations. In particular, we will
see first examples of HK-bases. When discussing the discretization of the Zhukovsky
Volterra system we will also see, that not all of the HK type discretizations produce
integrable mappings.
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4.1.1 Weierstrass Differential Equation

Consider the second-order differential equation

ẍ = 6x2 − α. (4.17)

Its general solution is given by the Weierstrass elliptic function ℘(t) = ℘(t, g2, g3) with
the invariants g2 = 2α, g3 arbitrary, and by its time shifts. Actually, the parameter g3

can be interpreted as the value of an integral of motion (conserved quantity) of system
(4.17):

ẋ2 − 4x3 + 2αx = −g3.

Being re-written as a system of first-order equations with a quadratic vector field,{
ẋ = y,

ẏ = 6x2 − α,
(4.18)

equation (4.17) becomes suitable for an application of the HK type discretization
scheme:  x̃− x =

ε

2
(ỹ + y) ,

ỹ − y = ε (6xx̃− α) .
(4.19)

Eqs. (4.19), put as a linear system for (x̃, ỹ), reads:(
1 −ε/2
−6εx 1

)(
x̃
ỹ

)
=

(
x+ εy/2
y − εα

)
.

This can be immediately solved, yielding an explicit birational map (x̃, ỹ) = f(x, y, ε):
x̃ =

x+ εy − ε2α/2
1− 3ε2x

,

ỹ =
y + ε(6x2 − α) + 3ε2xy

1− 3ε2x
.

(4.20)

This map turns out to be integrable: it possesses an invariant two-form

ω =
dx ∧ dy
1− 3ε2x

, (4.21)

and an integral of motion (conserved quantity):

I(x, y, ε) =
y2 − 4x3 + 2αx+ ε2x(y2 − 2αx)− ε4α2x

1− 3ε2x
. (4.22)

Both these objects are O(ε2)-perturbations of the corresponding objects for the con-
tinuous time system (4.18). The statement about the invariant 2-form (4.21) is not
difficult to prove. In particular, using formula (4.4) we obtain

det
∂(x̃, ỹ)

∂(x, y)
=

1− 3ε2x̃

1− 3ε2x
,
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which is equivalent to the preservation of (4.21). The statement about the conserved
quantity is most simply verified with any computer system for symbolic manipulations.

System (4.19) is known in the literature on integrable maps, although in a somewhat
different form. Indeed, it is equivalent to the second order difference equation

x̃− 2x+ x˜ = ε2 [3x(x̃+ x˜)− α] ⇔ x̃− 2x+ x˜ =
ε2(6x2 − α)

1− 3ε2x
.

This equation belongs to the class of integrable QRT systems [46, 51]; in order to see
this, one should re-write it as

x̃− 2x+ x˜ =
ε2(6x2 − α)(1 + ε2x)

1− 2ε2x− 3ε4x2
.

This difference equation generates a map (x, x˜) 7→ (x̃, x) which is symplectic, that is,
preserves the two-form ω = dx ∧ dx̃, and possesses a biquadratic integral of motion

I(x, x̃, ε) = (x̃− x)2 − 2ε2xx̃(x+ x̃) + ε2α(x+ x̃)− ε4(3x2x̃2 − αxx̃).

Under the change of variables (x, x̃) 7→ (x, y) given by the first equation in (4.20),
these integrability attributes turn into the two-form (4.21) and the conserved quantity
(4.22) (up to an additive constant).

4.1.2 Euler Top

The differential equations of motion of the Euler top read
ẋ1 = α1x2x3,

ẋ2 = α2x3x1,

ẋ3 = α3x1x2,

(4.23)

with real parameters αi. This is one of the most famous integrable systems of the
classical mechanics, with a big literature devoted to it. It can be explicitly integrated
in terms of elliptic functions, and admits two functionally independent integrals of
motion. Actually, a quadratic function H(x) = γ1x

2
1 + γ2x

2
2 + γ3x

2
3 is an integral for

eqs. (4.23) as soon as γ1α1 + γ2α2 + γ2α2 = 0. In particular, the following three
functions are integrals of motion:

H1 = α2x
2
3 − α3x

2
2, H2 = α3x

2
1 − α1x

2
3, H3 = α1x

2
2 − α2x

2
1.

Clearly, only two of them are functionally independent because of α1H1 + α2H2 +
α3H3 = 0. These integrals appear also on the right-hand sides of the quadratic (in
this case even linear) expressions for the Wronskians of the coordinates xj :

ẋ2x3 − x2ẋ3 = H1x1,

ẋ3x1 − x3ẋ1 = H2x2,

ẋ1x2 − x1ẋ2 = H3x3.

(4.24)
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Moreover, one easily sees that the coordinates xj satisfy the following differential equa-
tions with the coefficients depending on the integrals of motion:

ẋ2
1 = (H3 + α2x

2
1)(α3x

2
1 −H2),

ẋ2
2 = (H1 + α3x

2
2)(α1x

2
2 −H3),

ẋ2
3 = (H2 + α1x

2
3)(α2x

2
3 −H1).

The fact that the polynomials on the right-hand sides of these equations are of degree
four implies that the solutions are given by elliptic functions.

The HK discretization of the Euler top [30] is:
x̃1 − x1 = εα1(x̃2x3 + x2x̃3),

x̃2 − x2 = εα2(x̃3x1 + x3x̃1),

x̃3 − x3 = εα3(x̃1x2 + x1x̃2).

(4.25)

The map f : x 7→ x̃ obtained by solving (4.25) for x̃ is given by:

x̃ = f(x, ε) = A−1(x, ε)x, A(x, ε) =

 1 −εα1x3 −εα1x2

−εα2x3 1 −εα2x1

−εα3x2 −εα3x1 1

 . (4.26)

It might be instructive to have a look at the explicit formulas for this map:

x̃1 =
x1 + 2εα1x2x3 + ε2x1(−α2α3x

2
1 + α3α1x

2
2 + α1α2x

2
3)

∆(x, ε)
,

x̃2 =
x2 + 2εα2x3x1 + ε2x2(α2α3x

2
1 − α3α1x

2
2 + α1α2x

2
3)

∆(x, ε)
,

x̃3 =
x3 + 2εα3x1x2 + ε2x3(α2α3x

2
1 + α3α1x

2
2 − α1α2x

2
3)

∆(x, ε)
,

(4.27)

where

∆(x, ε) = detA(x, ε) = 1− ε2(α2α3x
2
1 +α3α1x

2
2 +α1α2x

2
3)−2ε3α1α2α3x1x2x3. (4.28)

We will use the abbreviation dET for this map. As always the case for a HK dis-
cretization, dET is birational, with the reversibility property expressed as f−1(x, ε) =
f(x,−ε). We now summarize the known results regarding the integrability of dET.

Proposition 4.3. [30, 44] The quantities

F1 =
1− ε2α3α1x

2
2

1− ε2α1α2x2
3

, F2 =
1− ε2α1α2x

2
3

1− ε2α2α3x2
1

, F3 =
1− ε2α2α3x

2
1

1− ε2α3α1x2
2

are conserved quantities of dET. Of course, there are only two independent integrals
since F1F2F3 = 1.
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The relation between Fi and the integrals Hi of the continuous time Euler top is
straightforward: Fi = 1 + ε2αiHi + O(ε4). As a corollary of Proposition 4.3, we find
that, for any conserved quantity H of the Euler top which is a linear combination of the
integrals H1, H2, H3, the three functions H/(1− ε2αjαkx2

i ) are conserved quantities of
dET. Hereafter (i, j, k) are cyclic permutations of (1, 2, 3). In particular, the functions

Hi(ε) =
αjx

2
k − αkx2

j

1− ε2αjαkx2
i

(4.29)

are conserved quantities of dET. Again, only two of them are independent, since

α1H1(ε) + α2H2(ε) + α3H3(ε) + ε4α1α2α3H1(ε)H2(ε)H3(ε) = 0.

Proposition 4.4. [44] The map dET possesses an invariant volume form:

det
∂x̃

∂x
=
φ(x̃)

φ(x)
⇔ f∗ω = ω, ω =

dx1 ∧ dx2 ∧ dx3

φ(x)
,

where φ(x) is any of the functions

φ(x) = (1− ε2αiαjx2
k)(1− ε2αjαkx2

i ) or (1− ε2αiαjx2
k)

2.

(The ratio of any two functions φ(x) is an integral of motion, due to Proposition 4.3).

Proof. Direct computation.

A proper discretization of the Wronskian differential equations (4.24) is given by
the following statement.

Proposition 4.5. The following relations hold true for dET:
x̃2x3 − x2x̃3 = εH1(ε)(x̃1 + x1),

x̃3x1 − x3x̃1 = εH2(ε)(x̃3 + x3),

x̃1x2 − x1x̃2 = εH3(ε)(x̃3 + x3),

(4.30)

with the functions Hi(ε) from (4.29).

The proof is based on relations

x̃i + xi =
2(1− ε2αjαkx2

i )(xi + εαixjxk)

∆(x, ε)
, (4.31)

x̃jxk − xj x̃k =
2ε(αjx

2
k − αkx2

j )(xi + εαixjxk)

∆(x, ε)
, (4.32)

which follow easily from the explicit formulas (4.27). They should be compared with

x̃i − xi = εαi(x̃jxk + xj x̃k) =
2εαi(xj + εαjxkxi)(xk + εαkxixj)

∆(x, ε)
. (4.33)

A probable way to the discovery of the conserved quantities of dET in [30] was
through finding the HK bases for this map. In this respect, one has the following
results. All HK bases can easily detected with the algorithm (V) (see Appendix A).
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Proposition 4.4. [45]

(a) The set Φ = (x2
1, x

2
2, x

2
3, 1) is a HK basis for dET with dimKΦ(x) = 2. There-

fore, any orbit of dET lies on the intersection of two quadrics in R3.

(b) The set Φ0 = (x2
1, x

2
2, x

2
3) is a HK basis for dET with dimKΦ0(x) = 1. At each

point x ∈ R3 we have:

KΦ0(x) = [c1 : c2 : c3] = [α2x
2
3 − α3x

2
2 : α3x

2
1 − α1x

2
3 : α1x

2
2 − α2x

2
1 ].

Setting c3 = −1, the following functions are integrals of motion of dET:

c1(x) =
α3x

2
2 − α2x

2
3

α1x2
2 − α2x2

1

, c2(x) =
α1x

2
3 − α3x

2
1

α1x2
2 − α2x2

1

. (4.34)

(c) The set Φ12 = (x2
1, x

2
2, 1) is a further HK basis for dET with dimKΦ12(x) = 1.

At each point x ∈ R3 we have: KΦ12(x) = [d1 : d2 : −1], where

d1(x) = −α2(1− ε2α3α1x
2
2)

α1x2
2 − α2x2

1

, d2(x) =
α1(1− ε2α2α3x

2
1)

α1x2
2 − α2x2

1

. (4.35)

These functions are integrals of motion of dET independent on the integrals (4.34).
We have: KΦ(x) = KΦ0 ⊕KΦ12.

Proof. To prove statement b), we solve the system{
c1x

2
1 + c2x

2
2 = x2

3,

c1x̃
2
1 + c2x̃

2
2 = x̃2

3.

The solution is given, according to the Cramer’s rule, by ratios of determinants of the
type∣∣∣∣∣ x2

i x2
j

x̃2
i x̃2

j

∣∣∣∣∣ =
4ε(αjx

2
i − αix2

j )(x1 + εα1x2x3)(x2 + εα2x3x1)(x3 + εα3x1x2)

∆2(x, ε)
(4.36)

(here we used (4.32), (4.33)). In the ratios of such determinants everything cancels out,
except for the factors αjx

2
i − αix2

j , so we end up with (4.34). The cancelation of the

denominators ∆2(x, ε) is, of course, no wonder, but the cancelation of all the non-even
factors in the numerators is rather remarkable and miraculous and is not granted by
any well-understood mechanism. Since the components of the solution do not depend
on ε, we conclude that functions (4.34) are integrals of motion of dET.

To prove statement c), we solve the system{
d1x

2
1 + d2x

2
2 = 1,

d1x̃
2
1 + d2x̃

2
2 = 1.

The solution is given by eq. (4.35), due to eq. (4.36) and the similar formula∣∣∣∣∣ 1 x2
i

1 x̃2
i

∣∣∣∣∣ =
4εαi(1− ε2αjαkx2

i )(x1 + εα1x2x3)(x2 + εα2x3x1)(x3 + εα3x1x2)

∆2(x, ε)
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(which, in turn, follows from (4.31) and (4.32)). This time the solution does depend on
ε, but consists of manifestly even functions of ε. Everything non-even luckily cancels,
again. Therefore, functions (4.35) are integrals of motion of dET (recipe (D)).

Although each one of the HK bases Φ0, Φ1 delivers apparently two integrals of
motion (4.34), each pair turns out to be functionally dependent, as

α1c1(x) + α2c2(x) = α3, α1d1(x) + α2d2(x) = ε2α1α2α3.

However, functions c1, c2 are independent on d1, d2, since the former depend on x3,
while the latter do not.

Of course, permutational symmetry yields that each of the sets of monomials
Φ23 = (x2

2, x
2
3, 1) and Φ13 = (x2

1, x
2
3, 1) is a HK basis, as well, with dimKΦ23(x) =

dimKΦ13(x) = 1. But we do not obtain additional linearly independent null-spaces, as
any two of the four found one-dimensional null-spaces span the full null-space KΦ(x).

Summarizing, we have found a HK basis with a two-dimensional null-space, as well
as two functionally independent conserved quantities for the HK discretization of the
Euler top. Both results yield integrability of this discretization, in the sense that its
orbits are confined to closed curves in R3. Moreover, each such curve is an intersection
of two quadrics, which in the general position case is an elliptic curve.

Proposition 4.6. Each component xi of any solution of dET satisfies a relation of the
type Pi(xi, x̃i) = 0, where Pi is a biquadratic polynomial whose coefficients are integrals
of motion of dET:

Pi(xi, x̃i) = p
(3)
i x2

i x̃
2
i + p

(2)
i (x2

i + x̃2
i ) + p

(1)
i xix̃i + p

(0)
i = 0,

with

p
(3)
i = −4ε2αjαk, p

(2)
i = [1 + ε2αjHj(ε)][1− ε2αkHk(ε)],

p
(1)
i = −2[1− ε2αjHj(ε)][1 + ε2αkHk(ε)], p

(0)
i = 4ε2Hj(ε)Hk(ε).

Proof. From eqs. (4.25) and (4.30) there follows:

(x̃i − xi)2/(εαi)
2 + [εHi(ε)]

2(x̃i + xi)
2 = 2(x̃2

jx
2
k + x2

j x̃
2
k).

It remains to express x2
j and x2

k through x2
i and integrals Hj(ε), Hk(ε) given in eq.

(4.29).

It follows from Proposition 4.6 that solutions xi(t) as functions of the discrete time
t ∈ 2εZ are given by elliptic functions of order 2.

Note that that Propositions 4.5, 4.6 can be interpreted as existence of further HK
bases. For instance, according to Proposition 4.5, each pair (x̃jxk − xj x̃k, x̃i + xi) is a
HK basis with a 1-dimensional null-space. Similarly, Proposition 4.6 says that for each
i = 1, 2, 3, the set xpi x̃

q
i (0 ≤ p, q ≤ 2) is a HK basis with a 1-dimensional null-space.

Of course, due to the dependence on the shifted variables x̃, these HK bases consist
of complicated functions of x rather than of monomials. A further instance of HK
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bases of this sort is given in the following statement. Compared with Proposition 4.4,
it says that for dET, for each HK basis consisting of monomials quadratic in x, the
corresponding set of monomials bilinear in x, x̃ is a HK basis, as well. This seems to
be a quite general phenomenon, further issues of which will appear later several times.

Proposition 4.5.

(a) The set Ψ = (x̃1x1, x̃2x2, x̃3x3, 1) is a HK basis for dET with dimKΨ(x) = 2.

(b) The set Ψ0 = (x̃1x1, x̃2x2, x̃3x3) is a HK basis for dET with dimKΨ0(x) = 1.
At each point x ∈ R3, the homogeneous coordinates c̄i of the null-space KΨ0(x) = [c̄1 :
c̄2 : c̄3] are given by

c̄i = (αjx
2
k − αkx2

j )
[
1− ε2(αiαjx

2
k + αkαix

2
j − αjαkx2

i )
]
.

The quotients c̄i/c̄j are integrals of motion of dET.

(c) The set Ψ12 = (x̃1x1, x̃2x2, 1) is a further HK basis for dET with dimKΨ12(x) =
1. At each point x ∈ R3, there holds: KΨ12(x) = [d̄1 : d̄2 : −1], where

d̄1(x) = −α2(1− ε2α3α1x
2
2)

α1x2
2 − α2x2

1

1− ε2(α2α3x
2
1 − α3α1x

2
2 + α1α2x

2
3)

1− ε2(α2α3x2
1 + α3α1x2

2 − α1α2x2
3)
,

d̄2(x) =
α1(1− ε2α2α3x

2
1)

α1x2
2 − α2x2

1

1− ε2(α3α1x
2
2 − α2α3x

2
1 + α1α2x

2
3)

1− ε2(α3α1x2
2 + α2α3x2

1 − α1α2x2
3)
,

are integrals of dET. We have: KΨ(x) = KΨ0(x)⊕KΨ12(x).

Proof. This is easily checked with a symbolic manipulator like MAPLE.

Concluding this section we mention that a Poisson structure for dET may be found
using the contraction procedure outlined in Chapter 2, Section 2.4.5 [44].

4.2 A More Complicated Example: The Zhukovski-Volterra System

The gyroscopic Zhukovski-Volterra (ZV) system is a generalization of the Euler top. It
describes the free motion of a rigid body carrying an asymmetric rotor (gyrostat) [59].
Equations of motion of the ZV system read

ẋ1 = α1x2x3 + β3x2 − β2x3,

ẋ2 = α2x3x1 + β1x3 − β3x1,

ẋ3 = α3x1x2 + β2x1 − β1x2,

(4.37)

with αi, βi being real parameters of the system. For (β1, β2, β3) = (0, 0, 0), the flow
(4.37) reduces to the Euler top (4.23). The ZV system is (Liouville and algebraically)
integrable under the condition

α1 + α2 + α3 = 0. (4.38)
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It can be explicitly integrated in terms of elliptic functions, see [59] and also [5] for
a more recent exposition. The following quantities are integrals of motion of the ZV
system:

H1 = α2x
2
3 − α3x

2
2 − 2(β1x1 + β2x2 + β3x3),

H2 = α3x
2
1 − α1x

2
3 − 2(β1x1 + β2x2 + β3x3), (4.39)

H3 = α1x
2
2 − α2x

2
1 − 2(β1x1 + β2x2 + β3x3).

Clearly, only two of them are functionally independent because of α1H1 + α2H2 +
α3H3 = 0. Note that

H2 −H1 = α3C, H3 −H2 = α1C, H1 −H3 = α2C, (4.40)

with C = x2
1 + x2

2 + x2
3.

As in the Euler case, the Wronskians of the coordinates xj admit quadratic expres-
sions with coefficients dependent on the integrals of motion:

ẋ2x3 − x2ẋ3 = H1x1 + x1(β1x1 + β2x2 + β3x3) + β1C,

ẋ3x1 − x3ẋ1 = H2x2 + x2(β1x1 + β2x2 + β3x3) + β2C,

ẋ1x2 − x1ẋ2 = H3x3 + x3(β1x1 + β2x2 + β3x3) + β3C.

(4.41)

The HK discretization of the ZV system is:
x̃1 − x1 = ε [α1(x̃2x3 + x2x̃3) + β3(x̃2 + x2)− β2(x̃3 + x3)] ,

x̃2 − x2 = ε [α2(x̃3x1 + x3x̃1) + β1(x̃3 + x3)− β3(x̃1 + x1)] ,

x̃3 − x3 = ε [α3(x̃1x2 + x1x̃2) + β2(x̃1 + x1)− β1(x̃2 + x2)] .

(4.42)

The map f : x 7→ x̃ obtained by solving (4.42) for x̃ is given by:

x̃ = f(x, ε) = A−1(x, ε)(1 + εB)x,

with

A(x, ε) =

 1 −εα1x3 −εα1x2

−εα2x3 1 −εα2x1

−εα3x2 −εα3x1 1

− εB, B =

 0 β3 −β2

−β3 0 β1

β2 −β1 0

 .

We will call this map dZV.

4.2.1 ZV System with Two Vanishing βk’s

In the case when two out of three βk’s vanish, say β2 = β3 = 0, the condition (4.38) is
not necessary for integrability of the ZV system. The functions H2 and H3 as given in
(4.39) (with β2 = β3 = 0) are in this case conserved quantities without any condition
on αk’s, while their linear combinations H1 and C are given by

H1 = − 1

α1
(α2H2 + α3H3) = α2x

2
3 − α3x

2
2 + 2β1

α2 + α3

α1
x1,

C =
1

α1
(H3 −H2) = x2

2 + x2
3 −

α2 + α3

α1
x2

1.
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Wronskian relations (4.41) are replaced by
ẋ2x3 − x2ẋ3 = H1x1 − β1

α2 + α3

α1
x2

1 + β1C,

ẋ3x1 − x3ẋ1 = H2x2 + β1x1x2,

ẋ1x2 − x1ẋ2 = H3x3 + β1x1x3.

(4.43)

With the help of the algorithm (V) it is easy to find HK bases for this case of the
map dZV:

Proposition 4.6.

(a) The set Φ = (x2
1, x

2
2, x

2
3, x1, 1) is a HK basis for dZV with β2 = β3 = 0, with

dimKΦ(x) = 2. Any orbit of dZV with β2 = β3 = 0 is thus confined to the intersection
of two quadrics in R3.

(b) The set Φ0 = (x2
1, x

2
2, x

2
3, 1) is a HK basis for dZV with β2 = β3 = 0, with

dimKΦ0(x) = 1. At each point x ∈ R3 we have: KΦ0(x) = [−1 : d2 : d3 : d4], where

d2 =
α1

α2 + α3
[1− ε2β2

1 − ε2α3H2(ε)], d3 =
α1

α2 + α3
[1− ε2β2

1 + ε2α2H3(ε)],

d4 =
1

α2 + α3
[H2(ε)−H3(ε)].

(c) The set Φ23 = (x2
2, x

2
3, x1, 1) is a HK basis for dZV with β2 = β3 = 0, with

dimKΦ23(x) = 1. At each point x ∈ R3 we have: KΦ23(x) = [c1 : c2 : c3 : c4], where

c1 = α1[α3 + ε2β2
1α2 + ε2α2α3H2(ε)], c2 = −α1[α2 + ε2β2

1α3 − ε2α2α3H3(ε)],

c3 = −2β1(α2 + α3), c4 = −[α2H2(ε) + α3H3(ε)].

Here the functions

H2(ε) =
α3x

2
1 − α1x

2
3 − 2β1x1 + ε2β2

1α1x
2
2

1− ε2α3α1x2
2

,

H3(ε) =
α1x

2
2 − α2x

2
1 − 2β1x1 − ε2β2

1α1x
2
3

1− ε2α1α2x2
3

,

are conserved quantities for the map dZV with β2 = β3 = 0 .

Proof. Direct computation.

Unlike the case of dET, we see that here a HK basis with a one dimensional null-
space already provides more than one independent integral of motion.

“Bilinear” versions of the above HK bases also exist:

Proposition 4.7. The set Ψ = (x1x̃1, x2x̃2, x3x̃3, x1 + x̃1, 1) is a HK basis for dZV
with β2 = β3 = 0, with dimKΨ(x) = 2. The sets

Ψ0 = (x1x̃1, x2x̃2, x3x̃3, 1) and Ψ23 = (x2x̃2, x3x̃3, x1 + x̃1, 1)

are HK bases with one-dimensional null-spaces.



60 4 The Hirota-Kimura Type Discretizations

Proof. This is also easy to verify using a symbolic manipulator.

The following statement is a starting point towards an explicit integration of the
map dZV with β2 = β3 = 0 in terms of elliptic functions.

Proposition 4.7. The component x1 of the solution of the difference equations (4.42)
satisfies a relation of the type

P (x1, x̃1) = p0x
2
1x̃

2
1 + p1x1x̃1(x1 + x̃1) + p2(x2

1 + x̃2
1) + p3x1x̃1 + p4(x1 + x̃1) + p5 = 0,

coefficients of the biquadratic polynomial P being conserved quantities of dZV with
β2 = β3 = 0.

Proof. The proof is parallel to that of Proposition 4.6.

The conserved quantities of Proposition 4.6 appear on the right-hand sides of the
following relations which are the discrete versions of the Wronskian relations (4.43):

Proposition 4.8. The following relations hold true for dZV with β2 = β3 = 0:
x̃2x3 − x2x̃3 = ε [c1(x̃1 + x1) + 2c2x̃1x1 + 2c3] ,

x̃3x1 − x3x̃1 = ε [H2(ε)(x̃2 + x2) + β1(x̃1x2 + x1x̃2)] ,

x̃1x2 − x1x̃2 = ε [H3(ε)(x̃3 + x3) + β1(x̃1x3 + x1x̃3)] ,

with

c1 = −α2H2(ε) + α3H3(ε)

α1∆
, c2 = −β1(α2 + α3)

α1∆
, c3 =

β1(H3(ε)−H2(ε))

α1∆
,

∆ = 1 + ε4[α2H3(ε)− β2
1 ][α3H2(ε) + β2

1 ].

Proof. Direct verification using a symbolic manipulator.

Finally, the HK discretization of the ZV system with β2 = β3 = 0 turns out to
possess an invariant measure.

Proposition 4.9. The map dZV with β2 = β3 = 0 possesses an invariant volume
form:

det
∂x̃

∂x
=
φ(x̃)

φ(x)
⇔ f∗ω = ω, ω =

dx1 ∧ dx2 ∧ dx3

φ(x)
,

with φ(x) = (1− ε2α3α1x
2
2)(1− ε2α1α2x

2
3).

Again, at this point one could continue and construct an invariant Poisson structure
for the map dZV with β2 = β3 = 0.
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4.2.2 ZV System with One Vanishing βk

In the case β3 = 0 (say) and generic values of other parameters, the ZV system has
only one integral H3 and is therefore non-integrable. One of the Wronskian relations
holds true in this general situation:

ẋ1x2 − x1ẋ2 = H3x3 + β1x1x3 + β2x2x3, (4.44)

Under condition (4.38), the ZV system becomes integrable, with all the results formu-
lated in the general case.

Similarly, the map dZV with β3 = 0 and generic values of other parameters pos-
sesses one conserved quantity:

H3(ε) =
α1x

2
2 − α2x

2
1 − 2(β1x1 + β2x2)− ε2(β2

1α1 + β2
2α2)x2

3

1− ε2α1α2x2
3

.

Clearly, this fact can be re-formulated as the existence of a HK basis Φ = (x2
1, x

2
2, x

2
3, x1, x2, 1)

with dimKΦ = 1. The Wronskian relation (4.44) possesses a decent discretization:

(x̃1x2 − x1x̃2)/ε = H3(ε)(x3 + x̃3) + β1(x̃1x3 + x1x̃3) + β2(x̃2x3 + x2x̃3). (4.45)

However, it seems that the map dZV with β3 = 0 does not acquire an additional
integral of motion under condition (4.38). It might be conjectured that in order to
assure the integrability of the dZV map with β3 = 0, its other parameters have to
satisfy some relation which is an O(ε)-deformation of (4.38).

4.2.3 ZV System with All βk’s Non-Vanishing

Here we encounter again the phenomenon that not all HK type discretizations of
integrable systems are integrable. In particular, numerical experiments using (DI)
indicate non-integrability for the map (4.42) with non-vanishing βk’s (see Figure 4.3).
Furthermore, this claim is supported by the exponential growth of the computation
times for higher iterates (see Figure 4.2). It remains an open problem, as to how one
could rigorously prove non-integrability for this map.

Nevertheless, some other relation between the parameters might yield integrability.
In this connection we notice that the map dZV with (α1, α2, α3) = (α,−α, 0) admits
a polynomial conserved quantity

H = −αx2
3 − 2(β1x1 + β2x2 + β3x3) + ε2α(β2x1 − β1x2)2.

4.3 Integrability of the HK type Discretizations

As mentioned earlier, the HK type scheme tends to produce integrable discretizations.
In fact, the list of integrable HK type discretizations presented in [43] is rather im-
pressive. It includes the discretizations of the following systems:

1. Weierstrass differential equation,
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Figure 4.2: Left: computation time in seconds of k-th iterate vs. k for an orbit of
the map dZV with α = (1, 2, 3), β = (1, 2, 0) (integrable). Right: computation time
of k-th iterate vs. k for an orbit of the map dZV with α = (1, 2, 3), β = (1, 3, 0)
(nonintegrable). (See Sect. 4.2.3 for the definiton of dZV)

(a) (b)

Figure 4.3: Left: Plot of log hk versus log k for the first 11 iterations of the map (4.42)
with parameters α = (1, 2, 3), β = (2, 0, 0), ε = 1 and initial data x0 = (1, 2, 3). Right:
Plot of log hk versus log k for the first 11 iterations of the map (4.42) with parameters
α = (1, 2, 3), β = (2, 1, 3), ε = 1 and initial data x0 = (1, 2, 3)

(a) (b)
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2. Three-dimensional Suslov system [53],

3. Reduced Nahm equations [31],

4. Euler top,

5. Subcases of the Zhukosky-Volterra system [59],

6. The periodic Volterra chains with N = 3 and N = 4 particles,

7. The Dressing chain with N = 3 particles,

8. A system of coupled Euler tops,

9. Three wave system [2],

10. Lagrange top,

11. Kirchhoff case of the rigid body motion in an ideal fluid [34],

12. Clebsch case of the rigid body motion in an ideal fluid [17],

13. su(2) rational Gaudin system with N = 2 spins [23].

The large number of these examples originally lead to the conjecture that the HK
type discretization of any algebraically integrable system with a quadratic right hand
side is integrable. Yet, numerical experiments using the integrability detectors from
Chapter 2 do, however, indicate the non-integrability of the HK type discretizations
of the following systems:

1. General case of the Zhukosky-Volterra system,

2. Kovalevskaia top,

3. Periodic Volterra chain with N > 4 particles,

4. Dressing chain with N > 4 particles [56].

There is currently no explanation as to where this behavior of the HK type discretiza-
tions might originate from. This fact, together with the enormous number of positive
(i.e. integrable) examples makes the study of the HK type discretizations even more
intruiging and calls for further research.
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3D and 4D Volterra Lattices

Having been introduced to the basic features of some of the integrable HK type dis-
cretizations, we now discuss two examples where we will apply the methodology out-
lined in Chapter 3 in order to obtain explicit solutions in terms elliptic functions.
The two examples being studied are the three and four dimensional periodic Volterra
chains. In both cases we will first solve the continuous equations of motion and then
find explicit solutions for the discrete systems. Relevant computer experiments can be
found in the form of MAPLE worksheets on the attached CD-ROM.

5.1 Elliptic Solutions of the Infinite Volterra Chain

We consider the infinite Volterra chain (VC). Its equations of motion read

ẋn = xn(xn+1 − xn−1), n ∈ Z. (5.1)

This system has two families of elliptic solutions. The first family of elliptic solutions
is given by

xn(t) = ζ
(
t+ nv

)
− ζ
(
t+ (n− 1)v

)
+ ζ(v)− ζ(2v) (5.2)

=
σ
(
t+ (n+ 1)v

)
σ
(
t+ (n− 2)v

)
σ
(
t+ nv

)
σ
(
t+ (n− 1)v

)
σ(2v)

. (5.3)

The equivalence of these two representations is either easily checked by looking at poles
and zeroes of the both elliptic functions, or just by using the well known fundamental
formula (3.2).

The check that (5.2), (5.3) is indeed a solution of VC is now elementary: take the
logarithmic derivative of (5.3) and then use (5.2) with shifted indices:

ẋn
xn

= ζ
(
t+ (n+ 1)v

)
+ ζ
(
t+ (n− 2)v

)
− ζ
(
t+ nv

)
− ζ
(
t+ (n− 1)v

)
= xn+1 − xn−1.

The second family of elliptic solutions (reduces to the first one if v1 = v2 = v) is
given by

x2n−1(t) = ζ
(
t+ nv1 + (n− 1)v2

)
− ζ
(
t+ (n− 1)(v1 + v2)

)
+ ζ(v2)− ζ(v1 + v2)

=
σ
(
t+ n(v1 + v2)

)
σ
(
t+ (n− 1)v1 + (n− 2)v2

)
σ(v1)

σ
(
t+ nv1 + (n− 1)v2

)
σ
(
t+ (n− 1)(v1 + v2)

)
σ(v2)σ(v1 + v2)

, (5.4)

x2n(t) = ζ
(
t+ n(v1 + v2)

)
− ζ
(
t+ nv1 + (n− 1)v2

)
+ ζ(v1)− ζ(v1 + v2)

=
σ
(
t+ (n+ 1)v1 + nv2

)
σ
(
t+ (n− 1)(v1 + v2)

)
σ(v2)

σ
(
t+ n(v1 + v2)

)
σ
(
t+ nv1 + (n− 1)v2

)
σ(v1)σ(v1 + v2)

. (5.5)

64
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Again, the verification of equations of motion is straightforward:

ẋ2n−1

x2n−1
= ζ

(
t+ n(v1 + v2)

)
+ ζ
(
t+ (n− 1)v1 + (n− 2)v2

)
−ζ
(
t+ nv1 + (n− 1)v2

)
− ζ
(
t+ (n− 1)(v1 + v2)

)
= x2n − x2n−2,

ẋ2n

x2n
= ζ

(
t+ (n+ 1)v1 + nv2)

)
+ ζ
(
t+ (n− 1)(v1 + v2)

)
−ζ
(
t+ n(v1 + v2)

)
− ζ
(
t+ nv1 + (n− 1)v2

)
= x2n+1 − x2n−1.

The first family admits an N -periodic reduction (n ∈ Z/NZ), if Nv ≡ 0 modulo the
period lattice. The second family admits a (2N)-periodic reduction, if N(v1 + v2) ≡ 0
modulo the period lattice. We will show that for the 3-periodic and the 4-periodic VC,
these elliptic solutions are general solutions.

5.2 Three-periodic Volterra chain: Equations of Motion and Explicit So-
lution

The 3-periodic reduction of the Volterra chain (VC3) reads:
ẋ1 = x1(x2 − x3),

ẋ2 = x2(x3 − x1),

ẋ3 = x3(x1 − x2).

(5.6)

This system is completely integrable, with the following two independent integrals of
motion:

H1 = x1 + x2 + x3, H2 = x1x2x3. (5.7)

Theorem 5.1. The general solution of (5.6) is given by formulas (5.2) or (5.3) with
v being a one third of a period, i.e., 3v ≡ 0 modulo the period lattice: in terms of
ζ-functions,

x1 = ζ(t+ v)− ζ(t) + ζ(v)− ζ(2v),

x2 = ζ(t+ 2v)− ζ(t+ v) + ζ(v)− ζ(2v), (5.8)

x3 = ζ(t+ 3v)− ζ(t+ 2v) + ζ(v)− ζ(2v),

or, in terms of σ-functions,

x1 =
σ(t− v)σ(t+ 2v)

σ(t)σ(t+ v)σ(2v)
,

x2 =
σ(t)σ(t+ 3v)

σ(t+ v)σ(t+ 2v)σ(2v)
, (5.9)

x3 =
σ(t+ v)σ(t+ 4v)

σ(t+ 2v)σ(t+ 3v)σ(2v)
.
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Proof. Eliminating xj , xk from equation of motion for xi with the help of integrals of
motion, one arrives at

ẋ2
i = x2

i (xi −H1)2 − 4H2xi. (5.10)

This shows that the general solution is given by elliptic functions. To make this more
precise, we use Halphen’s method from Chapter 3 in order to integrate this equation.
We get

α0 = 1, α1 = −1

2
H1, α2 = − 1

12
H2

1 , α3 = −H2, α4 = 0.

Thus, we find:

℘(v) =
1

12
H2

1 , ℘′(v) = −H2, 3℘2(v)− g2 = − 1

16
H4

1 + 2H1H2.

The last formula can be brought with the help of the previous two ones into the form

H1H2 = 6℘2(v)− 1

2
g2 = ℘′′(v) ⇒ 12℘(v)(℘′(v))2 = (℘′′(v))2.

This has to be compared with the duplication formula for the Weierstrass function,

℘(2v) =
1

4

(
℘′′(v)

℘′(v)

)2

− 2℘(v).

As a result, we find ℘(2v) = ℘(v), so that 2v ≡ −v, or 3v ≡ 0. From the above
formulas there follows:

H1 = −℘
′′(v)

℘′(v)
= 4ζ(v)− 2ζ(2v).

(Note that setting u1 = u2 = v, u3 = −2v ≡ v in the Frobenius-Stickelberger formula,

℘(u1) + ℘(u2) + ℘(u3) =
(
ζ(u1) + ζ(u2) + ζ(u3)

)2
, u1 + u2 + u3 = 0,

leads to 3℘(v) =
(
2ζ(v)− ζ(2v)

)2
for 3v ≡ 0.) Finally, each of the coordinates xi is a

time shift of

x(t) = ζ(t+ v)− ζ(t)− ζ(v) +
1

2
H1 = ζ(t+ v)− ζ(t) + ζ(v)− ζ(2v).

We may eliminate any xk between equations (5.7), getting xixj(xi+xj)−H1xixj+H2 =
0. Hence, any pair of functions (xi, xj) satisfies a polynomial relation of degree 3, which
implies that any two functions xi and xj must have one common pole. Therefore, the
solutions of eqs. (5.6) must be as in (5.8).
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5.3 HK type Discretization of VC3

The HK discretization of system (5.6) (with the time step 2ε) is:
x̃1 − x1 = εx1(x̃2 − x̃3) + εx̃1(x2 − x3),

x̃2 − x2 = εx2(x̃3 − x̃1) + εx̃2(x3 − x1),

x̃3 − x3 = εx3(x̃1 − x̃2) + εx̃3(x1 − x2).

(5.11)

The map f : x 7→ x̃ obtained by solving (5.11) for x̃ is given by:

x̃ = f(x, ε) = A−1(x, ε)x,

with

A(x, ε) =

1 + ε(x3 − x2) −εx1 εx1

εx2 1 + ε(x1 − x3) −εx2

−εx3 εx3 1 + ε(x2 − x1)

 .

Explicitly:

x̃i = xi
1 + 2ε(xj − xk) + ε2

(
(xj + xk)

2 − x2
i

)
1− ε2(x2

1 + x2
2 + x2

3 − 2x1x2 − 2x2x3 − 2x3x1)
. (5.12)

This map will be called dVC3. The following form of equations of motion will be useful,
as well:

x̃1

1 + ε(x̃2 − x̃3)
=

x1

1− ε(x2 − x3)
,

x̃2

1 + ε(x̃3 − x̃1)
=

x2

1− ε(x3 − x1)
, (5.13)

x̃3

1 + ε(x̃1 − x̃2)
=

x3

1− ε(x1 − x2)
.

Proposition 5.1. The map dVC3 possesses an invariant volume form:

det
∂x̃

∂x
=
φ(x̃)

φ(x)
⇔ f∗ω = ω, ω =

dx1 ∧ dx2 ∧ dx3

φ(x)
,

with φ(x) = x1x2x3.

Proof. This follows directly from Proposition 4.3.

Concerning integrability of dVC3, we note first of all that H1 is an obvious con-
served quantity. The second one is most easily obtained from the following discrete
Wronskian relations.

Proposition 5.2. For the map dVC3, the following relations hold:

(x̃ixj − xix̃j)/ε = H1(x̃ixj + xix̃j)− 6H2(ε)(1− 1
3ε

2H2
1 ), (5.14)

where H2(ε) is a conserved quantity, given by

H2(ε) =
x1x2x3

1− ε2(x2
1 + x2

2 + x2
3 − 2x1x2 − 2x2x3 − 2x3x1)

. (5.15)

Proof. Define H2(ε) by equation (5.14). It is easily computed with explicit formulas
(5.12). The result given by (5.15) is a manifestly even function of ε and therefore an
integral of motion.
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5.4 Solution of the Discrete Equations of Motion

We show how one can approach the problem of solving the discrete equations of motion.
What follows is an application of the method outlined at the end of Chapter 3.

Experimental Result 5.1. The pairs (xi, x̃i) lie on a symmetric biquadratic curve

P (xi, x̃i) = p1x
2
i x̃

2
i + p2xix̃i(xi + x̃i) + p3(x2

i + x̃2
i ) + p4xix̃i + p5(xi + x̃i) + p6

with constant coefficients [p1 : . . . : p6] (which can be expressed through integrals of
motion).

Proposition 5.1. The pairs (xi, xj) lie on a biquadratic curve of degree 3,

Q(xi, xj) = q1xixj(xi + xj) + q2(x2
i + x2

j ) + q3xixj + q4(xi + xj) + q5,

with constant coefficients [q1 : . . . : q5] (which can be expressed through integrals of
motion).

Proof. Elimination of xk from (5.15) via xk = H1 − xi − xj .

The first statement yields that each variable xi as a function t is an elliptic function
of order two (i.e., with two poles within one parallelogram of periods). The second
statement yields that every pair of functions xi and xj has one common pole.

One can refine this information further. For instance, the biquadratic curves from
the first result coincide for all three components x1, x2, x3, therefore all three compo-
nents are time shifts of one and the same functions. For symmetry reasons, we may
assume that x2(t) = x1(t+ v) and x3(v) = x2(t+ v), where 3v ≡ 0. We may therefore
assume that the denominators of the functions x1(t), x2(t), x3(t) are

σ(t)σ(t+ v), σ(t+ v)σ(t+ 2v), σ(t+ 2v)σ(t+ 3v),

respectively, just as in the solution of VC3. The following observation is crucial.

Experimental Result 5.2. For any indices i, j, the pairs (xi, 1/x̃j) lie on a bi-
quadratic curve of degree 3, so that the functions xi, 1/x̃j have a common pole.

This yields that zeros of xi(t) are the (2ε)-shift and the (−2ε)-shift of the common
pole of xj(t) and xk(t). We arrive at the conclusion that

x1 = ρ
σ(t− v − 2ε)σ(t+ 2v + 2ε)

σ(t)σ(t+ v)
,

x2 = ρ
σ(t− 2ε)σ(t+ 3v + 2ε)

σ(t+ v)σ(t+ 2v)
, (5.16)

x3 = ρ
σ(t+ v − 2ε)σ(t+ 4v + 2ε)

σ(t+ 2v)σ(t+ 3v)
.

(The other choice of the signs of the time shifts leads to the same functions, up to
a constant factor.) The constant factor ρ can be determined with the help of the
following considerations. The functions participating in the representation (5.13) of
equation of motion of dVC3 have the following remarkable property.
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Experimental Result 5.3. For any cyclic permutation (i, j, k) of (1, 2, 3), the elliptic
functions

xi
1± ε(xj − xk)

are of order 2.

As a consequence of this proposition combined with (5.13), one easily sees that the
two zeros of x1/

(
1−ε(x2−x3)

)
must be v−2ε, v, while the two zeros of x1/

(
1+ε(x2−x3)

)
must be v, v + 2ε. In other words, the following relations must hold true:

1− ε(x2 − x3)|t=v+2ε = 0, 1 + ε(x2 − x3)|t=v−2ε = 0. (5.17)

Upon using formulas (5.16) and taking into account that 3v ≡ 0, both requirements in
(5.17) result in one and the same formula for the factor ρ, namely,

1

ερ
=
σ(2v + 4ε)σ(v)

σ(2ε)σ(v + 2ε)
+
σ(2v)σ(v + 4ε)

σ(v − 2ε)σ(2ε)
. (5.18)

To simplify this expression, we observe that

σ(2v+4ε)σ(v)σ(v−2ε)σ(2ε)+σ(2v)σ(v+4ε)σ(v+2ε)σ(2ε) = σ(2v+2ε)σ(v+2ε)σ(v)σ(4ε).

This follows from the famous three-term functional equation for the σ-function (3.1)
with the choice

z =
3v

2
+ 2ε, a =

v

2
+ 2ε, b =

v

2
− 2ε, c = −v

2
.

Thus, we get
1

ερ
=
σ(2v + 2ε)σ(v)σ(4ε)

σ(v − 2ε)σ2(2ε)
. (5.19)

We arrive at the following statement.

Theorem 5.2. The general solution of dVC3 is given by formulas (5.16) and (5.19)
with 3v ≡ 0. In terms of ζ-functions,

x1 = ρ1(ζ(t+ v)− ζ(t) + ζ(v + 2ε)− ζ(2v + 2ε)),

x2 = ρ1(ζ(t+ 2v)− ζ(t+ v) + ζ(v + 2ε)− ζ(2v + 2ε)), (5.20)

x3 = ρ1(ζ(t+ 3v)− ζ(t+ 2v) + ζ(v + 2ε)− ζ(2v + 2ε)),

with

1

ερ1
=

σ2(v)σ(4ε)

σ(v + 2ε)σ(v − 2ε)σ2(2ε)
= 2ζ(2ε)− ζ(v + 2ε) + ζ(v − 2ε). (5.21)

Proof. We will verify that formulas (5.16) and (5.19) with 3v ≡ 0 give solutions of
equations of motion (5.13), indeed.
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First verification. We have:

1

ερ
− 1

ρ
(x2 − x3) =

=
σ(2v)σ(v + 4ε)

σ(v − 2ε)σ(2ε)
+
σ(2v + 4ε)σ(v)

σ(v + 2ε)σ(2ε)
− σ(t− 2ε)σ(t+ 3v + 2ε)

σ(t+ v)σ(t+ 2v)
+
σ(t+ v − 2ε)σ(t+ 4v + 2ε)

σ(t+ 2v)σ(t+ 3v)

=
σ(t+ v)σ(t+ 2v)σ(2v)σ(v + 4ε)− σ(t− 2ε)σ(t+ 3v + 2ε)σ(v − 2ε)σ(2ε)

σ(t+ v)σ(t+ 2v)σ(v − 2ε)σ(2ε)

+
σ(t+ 2v)σ(t+ 3v)σ(2v + 4ε)σ(v) + σ(t+ v − 2ε)σ(t+ 4v + 2ε)σ(v + 2ε)σ(2ε)

σ(t+ 2v)σ(t+ 3v)σ(v + 2ε)σ(2ε)

Applying formula (3.1) twice, first with

z = t+
3v

2
, a =

v

2
, b =

3v

2
+ 2ε, c =

v

2
− 2ε,

and then with

z = t+
5v

2
, a =

v

2
, b =

3v

2
+ 2ε, c =

v

2
+ 2ε,

we obtain:

1

ερ
− 1

ρ
(x2 − x3) =

=
σ(t+ 2v − 2ε)σ(t+ v + 2ε)σ(2v + 2ε)σ(v + 2ε)

σ(t+ v)σ(t+ 2v)σ(v − 2ε)σ(2ε)

+
σ(t+ 3v + 2ε)σ(t+ 2v − 2ε)σ(2v + 2ε)σ(v + 2ε)

σ(t+ 2v)σ(t+ 3v)σ(v + 2ε)σ(2ε)

=
σ(t+ 2v − 2ε)σ(2v + 2ε)σ(v + 2ε)

σ(t+ 2v)σ(2ε)

(
σ(t+ v + 2ε)

σ(v − 2ε)σ(t+ v)
+

σ(t+ 3v + 2ε)

σ(v + 2ε)σ(t+ 3v)

)
. (5.22)

A similar computation:

1

ερ
+

1

ρ
(x2 − x3) =

=
σ(2v)σ(v + 4ε)

σ(v − 2ε)σ(2ε)
+
σ(2v + 4ε)σ(v)

σ(v + 2ε)σ(2ε)
+
σ(t− 2ε)σ(t+ 3v + 2ε)

σ(t+ v)σ(t+ 2v)
− σ(t+ v − 2ε)σ(t+ 4v + 2ε)

σ(t+ 2v)σ(t+ 3v)

=
σ(t+ v)σ(t+ 2v)σ(2v + 4ε)σ(v) + σ(t− 2ε)σ(t+ 3v + 2ε)σ(v + 2ε)σ(2ε)

σ(t+ v)σ(t+ 2v)σ(v + 2ε)σ(2ε)

+
σ(t+ 2v)σ(t+ 3v)σ(2v)σ(v + 4ε)− σ(t+ v − 2ε)σ(t+ 4v + 2ε)σ(v − 2ε)σ(2ε)

σ(t+ 2v)σ(t+ 3v)σ(v − 2ε)σ(2ε)

Applying formula (3.1) twice, first with

z = t+
3v

2
, a =

v

2
, b =

3v

2
+ 2ε, c =

v

2
+ 2ε,
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and then with

z = t+
5v

2
, a =

v

2
, b =

3v

2
+ 2ε, c =

v

2
− 2ε,

we obtain:

1

ερ
+

1

ρ
(x2 − x3) =

=
σ(t+ 2v + 2ε)σ(t+ v − 2ε)σ(2v + 2ε)σ(v + 2ε)

σ(t+ v)σ(t+ 2v)σ(v + 2ε)σ(2ε)

+
σ(t+ 3v − 2ε)σ(t+ 2v + 2ε)σ(2v + 2ε)σ(v + 2ε)

σ(t+ 2v)σ(t+ 3v)σ(v − 2ε)σ(2ε)

=
σ(t+ 2v + 2ε)σ(2v + 2ε)σ(v + 2ε)

σ(t+ 2v)σ(2ε)

(
σ(t+ v − 2ε)

σ(v + 2ε)σ(t+ v)
+

σ(t+ 3v − 2ε)

σ(v − 2ε)σ(t+ 3v)

)
. (5.23)

Now a simple computation shows that, up to a constant factor,

1− ε(x2 − x3)

x1
=

1 + ε(x̃2 − x̃3)

x̃1

' σ(t+ v + 2ε)σ(t+ 3v)σ(v + 2ε) + σ(t+ v)σ(t+ 3v + 2ε)σ(v − 2ε)

σ(t+ 2v)σ(t+ 2v + 2ε)
.

Indeed, the quantities in the first line are proportional to the quantity in the second
line with the factors

σ(t)σ(t+ 2v − 2ε)

σ(t− v − 2ε)σ(t+ 3v)
, resp.

σ(t+ 2ε)σ(t+ 2v)

σ(t− v)σ(t+ 3v + 2ε)
,

which are both constant (and equal), since they are elliptic functions without zeros
and poles, due to 3v ≡ 0.

Second verification. Applying formula (3.2) twice, one obtains

1

ερ1
− 1

ρ1
(x2 − x3) = 2ζ(2ε)− ζ(v + 2ε) + ζ(v − 2ε)− 2ζ(t+ 2v) + ζ(t+ v) + ζ(t+ 3v)

=
(
ζ(2ε)− ζ(v + 2ε)− ζ(t+ 2v) + ζ(t+ 3v)

)
+
(
ζ(2ε) + ζ(v − 2ε) + ζ(t+ v)− ζ(t+ 2v)

)
=
σ(v)σ(t+ 2v − 2ε)σ(t+ 3v + 2ε)

σ(2ε)σ(v + 2ε)σ(t+ 2v)σ(t+ 3v)
+
σ(v)σ(t+ v + 2ε)σ(t+ 2v − 2ε)

σ(2ε)σ(v − 2ε)σ(t+ v)σ(t+ 2v)

=
σ(v)σ(t+ 2v − 2ε)

σ(2ε)σ(t+ 2v)

(
σ(t+ 3v + 2ε)

σ(v + 2ε)σ(t+ 3v)
+

σ(t+ v + 2ε)

σ(v − 2ε)σ(t+ v)

)
. (5.24)
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Similarly:

1

ερ1
+

1

ρ1
(x̃2 − x̃3) =

= 2ζ(2ε)− ζ(v + 2ε) + ζ(v − 2ε) + 2ζ(t+ 2v + 2ε)− ζ(t+ v + 2ε)− ζ(t+ 3v + 2ε)

=
(
ζ(2ε)− ζ(v + 2ε)− ζ(t+ v + 2ε) + ζ(t+ 2v + 2ε)

)
+
(
ζ(2ε) + ζ(v − 2ε) + ζ(t+ 2v + 2ε)− ζ(t+ 3v + 2ε)

)
=

σ(v)σ(t+ v)σ(t+ 2v + 4ε)

σ(2ε)σ(v + 2ε)σ(t+ v + 2ε)σ(t+ 2v + 2ε)
+

σ(v)σ(t+ 3v)σ(t+ 2v + 4ε)

σ(2ε)σ(v − 2ε)σ(t+ 2v + 2ε)σ(t+ 3v + 2ε)

=
σ(v)σ(t+ 2v + 4ε)

σ(2ε)σ(t+ 2v + 2ε)

(
σ(t+ v)

σ(v + 2ε)σ(t+ v + 2ε)
+

σ(t+ 3v)

σ(v − 2ε)σ(t+ 3v + 2ε)

)
. (5.25)

From this point, the second verification proceeds literally as the first one.

It remains to express v and the invariants g2 and g3 in terms of the integrals of
motion. This can be achieved using the method described at the end of Chapter 3,
Section 3.2.

5.5 Periodic Volterra Chain with N = 4 Particles

Equations of motion of VC4 are:


ẋ1 = x1(x2 − x4),

ẋ2 = x2(x3 − x1),

ẋ3 = x3(x4 − x2),

ẋ4 = x4(x1 − x3).

(5.26)

This system possesses three obvious integrals of motion: H1 = x1 + x2 + x3 + x4,
H2 = x1x3, and H3 = x2x4.

Theorem 5.3. The general solution of VC4 is given by

x1 = ζ(t+ v1)− ζ(t) + ζ(v2)− ζ(v1 + v2),

x2 = ζ(t+ v1 + v2)− ζ(t+ v1) + ζ(v1)− ζ(v1 + v2),

x3 = ζ(t+ 2v1 + v2)− ζ(t+ v1 + v2) + ζ(v2)− ζ(v1 + v2),

x4 = ζ(t+ 2v1 + 2v2)− ζ(t+ 2v1 + v2) + ζ(v1)− ζ(v1 + v2),
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where 2(v1 + v2) ≡ 0. In terms of σ-functions:

x1 = ρ1
σ(t− v2)σ(t+ v1 + v2)

σ(t)σ(t+ v1)
, (5.27)

x2 = ρ2
σ(t)σ(t+ 2v1 + v2)

σ(t+ v1)σ(t+ v1 + v2)
, (5.28)

x3 = ρ1
σ(t+ v1)σ(t+ 2v1 + 2v2)

σ(t+ v1 + v2)σ(t+ 2v1 + v2)
, (5.29)

x4 = ρ2
σ(t+ v1 + v2)σ(t+ 3v1 + 2v2)

σ(t+ 2v1 + v2)σ(t+ 2v1 + 2v2)
, (5.30)

where

ρ1 =
σ(v1)

σ(v2)σ(v1 + v2)
, ρ2 =

σ(v2)

σ(v1)σ(v1 + v2)
. (5.31)

Proof. One easily finds that x1, x3 satisfy the differential equation

ẋ2
1 = (x2

1 −H1x1 +H2)2 − 4H3x
2
1,

while x2, x4 satisfy a similar equation with H2 ↔ H3. This immediately leads to solu-
tion in terms of elliptic functions. We apply Halphen’s method to the above equation
for x1 and obtain

α0 = 1, α1 = −1

2
H1, α2 =

1

6
H2

1 +
1

3
H2 −

2

3
H3, α3 =

1

2
H1H2, α4 = H2

2 ,

so that

g2 =
1

12
H1

4 − 2

3
H1

2H2 −
2

3
H1

2H3 +
4

3
H2

2 − 4

3
H2H3 +

4

3
H3

2

g3 = − 1

216
H1

6 +
1

18
H1

4H2 −
2

9
H1

2H2
2 +

1

18
H1

4H3

+
8

27
H2

3 − 4

9
H3H2

2 − 2

9
H3

2H1
2 − 1

9
H2H1

2H3 −
4

9
H2H3

2 +
8

27
H3

3.

g2 and g3 are symmetric with respect to the interchange H2 ↔ H3 (as they should
be), which implies that all functions xi are elliptic functions with respect to the same
period lattice.

We conclude that x1 and x3 are given by time shifts of the function

x1,3(t) = ζ(t+ v1)− ζ(t)− ζ(v1) +
1

2
H1,

where

℘(v1) =
1

12
H2

1 −
1

3
H2 +

2

3
H3, ℘′(v1) = −H3H1.

Similarly, x2 and x4 are time shifts of the function

x2,4(t) = ζ(t+ v2)− ζ(t)− ζ(v2) +
1

2
H1,
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with

℘(v2) =
1

12
H2

1 −
1

3
H3 +

2

3
H2, ℘′(v2) = −H2H1.

With the help of the addition formula

℘(v1) + ℘(v2) + ℘(v1 + v2) =
1

4

(
℘′(v1)− ℘′(v2)

℘(v1)− ℘(v2)

)2

we find

℘(v1 + v2) =
1

12
H2

1 −
1

3
H2 −

1

3
H3,

which gives
℘′(v1 + v2)2 = 4℘(v1 + v2)3 − g2℘(v1 + v2)− g3 = 0.

This implies that ℘(v1 + v2) is one of the roots of the Weierstrass cubic 4z3− g2z− g3,
which means that ℘(v1 + v2) = ℘(ωi), where ωi is one of the half periods of the period
lattice corresponding to g2 and g3. Hence, v1 + v2 must be equal to a half period
modulo the period lattice. Therefore, 2(v1 + v2) ≡ 0.

From the above formulas there also follows that

ζ(v1 + v2)− ζ(v1)− ζ(v2) =
1

2

℘′(v1)− ℘′(v2)

℘(v1)− ℘(v2)
= −1

2
H1.

Finally, since H1, H2 and H3 must be conserved quantities, it is easy to convince
oneself that xi must be of the form stated in the theorem.

5.6 HK type Discretization of VC4

The HK discretization (denoted by dVC4) of VC4 reads:
x̃1 − x1 = εx1(x̃2 − x̃4) + εx̃1(x2 − x4),

x̃2 − x2 = εx2(x̃3 − x̃1) + εx̃2(x3 − x1),

x̃3 − x3 = εx3(x̃4 − x̃2) + εx̃3(x4 − x2),

x̃4 − x4 = εx4(x̃1 − x̃3) + εx̃4(x1 − x4).

(5.32)

It possesses an obvious integral H1 = x1 + x2 + x3 + x4. Equations of motion can be
equivalently re-written as

x̃1

1 + ε(x̃2 − x̃4)
=

x1

1− ε(x2 − x4)
, (5.33)

x̃2

1 + ε(x̃3 − x̃1)
=

x2

1− ε(x3 − x1)
, (5.34)

x̃3

1 + ε(x̃4 − x̃2)
=

x3

1− ε(x4 − x2)
, (5.35)

x̃4

1 + ε(x̃1 − x̃3)
=

x2

1− ε(x1 − x3)
, (5.36)

which immediately leads to two further integrals of motion,

H2(ε) =
x1x3

1− ε2(x2 − x4)2
, H3(ε) =

x2x4

1− ε2(x1 − x3)2
. (5.37)
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5.7 Solution of the Discrete Equations of Motion

We now proceed and show how one can obtain elliptic solutions for dVC4.

Experimental Result 5.4. For the iterates of the map dVC4 the pairs (xi, x̃i) lie on
a biquartic curve of genus 1 with constant coefficients (which can be expressed through
integrals of motion). The biquartic curves coincide for x1 and x3, as well as for x2

and x4

This yields that xi as functions of t are elliptic functions of degree 4 (i.e., with four
poles within one parallelogram of periods). Moreover, x1 and x3 are time shifts of one
and the same function, and the same for x2 and x4.

Proposition 5.2. For the iterates of map dVC4:
a) The pairs (xi, xj) with i, j of different parity lie on a quartic curve whose coef-

ficients are constant (expressed through integrals of motion);
b) The pairs (xi, xj) with i, j of the same parity lie on a curve of degree 2 with

constant coefficients.

Proof. Statements a) and b) both follow by eliminating xk, x` from integralsH1, H2(ε), H3(ε).

Hence, all xi have the same poles.

Experimental Result 5.5. The pairs (x1 + x3, x̃1 + x̃3) lie on a biquadratic curve,
and the same holds true for the pairs (x2 + x4, x̃2 + x̃4).

Thus, functions x1 + x3 and x2 + x4 are of degree 2, which has the following
explanation: for any (2T )-periodic function f(t), the function g(t) = f(t) + f(t + T )
is T -periodic. Thus, the time shift relating x1 and x3 should be a half-period, and the
same for x2 and x4. Therefore, we always assume

x3(t) = x1(t+ v1 + v2), x4(t) = x2(t+ v1 + v2), 2(v1 + v2) ≡ 0. (5.38)

We denote the common poles of xi by 0, −v1, −(v1 + v2), −(2v1 + v2).
The next piece of information:

Experimental Result 5.6. The pairs (1/xi, 1/x̃i) lie on a biquartic curve of degree
6.

This means that xi(t) and x̃i(t) have two common zeros. We denote the zeros of
x1 by −a,−(a− 2ε),−b,−(b− 2ε), and the zeros of x2 by −c,−(c− 2ε),−d,−(d− 2ε).
Thus, we can finally write down the factorized expressions for x1, x2:

x1 = ρ1
σ(t+ a)σ(t+ a+ 2v1 + 2v2 − 2ε)σ(t+ b)σ(t+ b− 2ε)

σ(t)σ(t+ v1)σ(t+ v1 + v2)σ(t+ 2v1 + v2)
,

x2 = ρ2
σ(t+ c)σ(t+ c+ 2v1 + 2v2 − 2ε)σ(t+ d)σ(t+ d− 2ε)

σ(t+ v1)σ(t+ v1 + v2)σ(t+ 2v1 + v2)σ(t+ 2v1 + 2v2)
.
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This choice of the factorization is justified by the continuous limit ε → 0 to the ex-
pressions (5.27), (5.28) tells us that

a ≈ −v2, b ≈ v1 + v2, b+ a− 2ε = v1, (5.39)

c ≈ 0, d ≈ 2v1 + v2, c+ d− 2ε = 2v1 + v2. (5.40)

Eliminating b and d from the above expressions, we find:

x1 = ρ1
σ(t+ a)σ(t− a+ v1 + 2ε)σ(t− a+ v1)σ(t+ a+ 2v1 + 2v2 − 2ε)

σ(t)σ(t+ v1)σ(t+ v1 + v2)σ(t+ 2v1 + v2)
,

x2 = ρ2
σ(t+ c)σ(t− c+ 2v1 + v2)σ(t− c+ 2v1 + v2 + 2ε)σ(t+ c+ 2v1 + 2v2 − 2ε)

σ(t+ v1)σ(t+ v1 + v2)σ(t+ 2v1 + v2)σ(t+ 2v1 + 2v2)
.

Factorized expressions for x3, x4 follow by (5.38). However, it turns out to be con-
venient to have expressions for these variables with the same denominators as for x1,
x2, respectively. This is achieved by using the quasi-periodicity of the σ-function with
respect to the period 2(v1 + v2) ≡ 0:

x3 = ρ1
σ(t− a− v2 + 2ε)σ(t+ a+ v1 + v2)σ(t+ a+ v1 + v2 − 2ε)σ(t− a+ 2v1 + v2)

σ(t)σ(t+ v1)σ(t+ v1 + v2)σ(t+ 2v1 + v2)
,

x4 = ρ2
σ(t− c+ v1 + 2ε)σ(t+ c+ v1 + v2)σ(t+ c+ v1 + v2 − 2ε)σ(t− c+ 3v1 + 2v2)

σ(t+ v1)σ(t+ v1 + v2)σ(t+ 2v1 + v2)σ(t+ 2v1 + 2v2)
.

Next, we have to find the remaining unknowns a and c, as well as ρ1 and ρ2. This
can be achieved with the help of the further piece of information about the solutions
which is obtained in the computer-assisted manner.

Experimental Result 5.7. For each i = 1, 2, 3, 4, the pairs(
xi

1± ε(xj − xk)
,

x̃i
1± ε(x̃j − x̃k)

)
,

where j = i + 1 (mod 4), k = i − 1 (mod 4), lie on a symmetric biquadratic curve.
Thus, the elliptic functions

xi
1± ε(xj − xk)

are of order 2.

From (5.33) there follows that the two zeros of x1/(1−ε(x2−x4)) are −a,−b, while
the two zeros of x1/(1 + ε(x2 − x4)) are −(a− 2ε),−(b− 2ε). Therefore,

1− ε(x2 − x4)|t=−a+2ε = 0, 1− ε(x2 − x4)|t=−b+2ε = 0, (5.41)

1 + ε(x2 − x4)|t=−a = 0, 1 + ε(x2 − x4)|t=−b = 0. (5.42)

Similarly, from (5.34) there follows that the two zeros of x2/(1−ε(x3−x1)) are −c,−d,
while the two zeros of x2/(1 + ε(x3 − x1)) are −(c− 2ε),−(d− 2ε), so that

1− ε(x3 − x1)|t=−c+2ε = 0, 1− ε(x3 − x1)|t=−d+2ε = 0, (5.43)
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1 + ε(x3 − x1)|t=−c = 0, 1 + ε(x3 − x1)|t=−d = 0. (5.44)

From (5.35) we deduce that the two zeros of x3/(1− ε(x4−x2)) are −a+ v1 + v2,−b+
v1+v2, while the two zeros of x3/(1+ε(x4−x2)) are −(a−2ε)+v1+v2,−(b−2ε)+v1+v2,
so that

1− ε(x4 − x2)|t=−a+2ε+v1+v2
= 0, 1− ε(x4 − x2)|t=−b+2ε+v1+v2

= 0, (5.45)

1 + ε(x4 − x2)|t=−a+v1+v2
= 0, 1 + ε(x4 − x2)|t=−b+v1+v2

= 0. (5.46)

Finally, from (5.36) we conclude that the two zeros of x4/(1 − ε(x1 − x3)) are −c +
v1 + v2,−d+ v1 + v2, while the two zeros of x4/(1 + ε(x1 − x3)) are −(c− 2ε) + v1 +
v2,−(d− 2ε) + v1 + v2, so that

1− ε(x1 − x3)|t=−c+2ε+v1+v2
= 0, 1− ε(x1 − x3)|t=−d+2ε+v1+v2

= 0, (5.47)

1 + ε(x1 − x3)|t=−c+v1+v2
= 0, 1 + ε(x1 − x3)|t=−d+v1+v2

= 0. (5.48)

Let us first concentrate on equations (5.43), (5.44), (5.47), (5.48). They result in eight
conditions for a, c and ρ1. We show that actually almost all these conditions are
equivalent, so that we are actually left with one condition for c and one expression for
ρ1 through c and a. For this aim, we first apply the tree-term formula (3.1) to obtain

1

ρ1
(x1 − x3) =

=
σ(t+ a)σ(t− a+ v1)σ(t− a+ v1 + 2ε)σ(t+ a+ 2v1 + 2v2 − 2ε)

σ(t)σ(t+ v1)σ(t+ v1 + v2)σ(t+ 2v1 + v2)

−σ(t− a− v2 + 2ε)σ(t+ a+ v1 + v2 − 2ε)σ(t+ a+ v1 + v2)σ(t− a+ 2v1 + v2)

σ(t)σ(t+ v1)σ(t+ v1 + v2)σ(t+ 2v1 + v2)

= −σ(2t+ 2v1 + v2)σ(v1 + v2)σ(v1 + v2 − 2ε)σ(2a+ v2 − 2ε)

σ(t)σ(t+ v1)σ(t+ v1 + v2)σ(t+ 2v1 + v2)
,

where we have used the following values of the variables:

z = t+
v1

2
, a = a− v1

2
, b =

v1

2
+ v2 + a− 2ε, c = t+

3v1

2
+ v2.

This function changes its sign by the shift t 7→ t+ v1 + v2, therefore conditions (5.47),
(5.48) are equivalent to (5.43), (5.44). Similarly, this function changes it sign by
t 7→ −t− 2v1− v2, therefore conditions (5.43) and (5.44) are equivalent. Thus, we can
consider the first conditions in each of (5.43), (5.44) only. They result in two values
for ρ1:

ερ1 =
σ(−c)σ(−c+ v1)σ(−c+ v1 + v2)σ(−c+ 2v1 + v2)

σ(−2c+ 2v1 + v2)σ(v1 + v2)σ(v1 + v2 − 2ε)σ(2a+ v2 − 2ε)
(5.49)

= −σ(−c+ 2ε)σ(−c+ v1 + 2ε)σ(−c+ v1 + v2 + 2ε)σ(−c+ 2v1 + v2 + 2ε)

σ(−2c+ 2v1 + v2 + 4ε)σ(v1 + v2)σ(v1 + v2 − 2ε)σ(2a+ v2 − 2ε)
.
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The condition that these two expressions coincide reads:

σ(c)σ(v1 − c)σ(v1 + v2 − c)σ(2v1 + v2 − c)σ(2v1 + v2 + 4ε− 2c)

σ(2ε− c)σ(v1 + 2ε− c)σ(v1 + v2 + 2ε− c)σ(2v1 + v2 + 2ε− c)σ(2v1 + v2 − 2c)
= 1.

(5.50)
The second computation is absolutely similar:

1

ρ2
(x2 − x4) =

=
σ(t+ c)σ(t− c+ 2v1 + v2)σ(t− c+ 2v1 + v2 + 2ε)σ(t+ c+ 2v1 + 2v2 − 2ε)

σ(t+ v1)σ(t+ v1 + v2)σ(t+ 2v1 + v2)σ(t+ 2v − 1 + 2v2)

−σ(t− c+ v1 + 2ε)σ(t+ c+ v1 + v2 − 2ε)σ(t+ c+ v1 + v2)σ(t− c+ 3v1 + 2v2)

σ(t+ v1)σ(t+ v1 + v2)σ(t+ 2v1 + v2)σ(t+ 2v1 + 2v2)

=
σ(2t+ 3v1 + 2v2)σ(v1 + v2)σ(v1 + v2 − 2ε)σ(2c− v1 − 2ε)

σ(t+ v1)σ(t+ v1 + v2)σ(t+ 2v1 + v2)σ(t+ 2v1 + 2v2)
,

where we have used the three-term relation (3.1) with the following values of the
variables:

z = t+ v1 +
v2

2
, a = c− v1 −

v2

2
, b = −c− v2

2
+ 2ε, c = t+ 2v1 +

3v2

2
.

Also this function changes its sign by the shift t 7→ t + v1 + v2, therefore conditions
(5.45), (5.46) are equivalent to (5.41), (5.42). This function changes it sign also by
t 7→ −t−3v1−2v2, which, combined with the first shift performed twice, gives changing
the sign under t 7→ −t− v1. Therefore conditions (5.41) and (5.42) are equivalent. We
can consider the conditions corresponding to t = −a−v1−v2 and to t = −a−v1−v2+2ε
only. They result in two values for ρ2:

ερ2 =
σ(−a− v2)σ(−a)σ(−a+ v1)σ(−a+ v1 + v2)

σ(−2a+ v1)σ(v1 + v2)σ(v1 + v2 − 2ε)σ(2c− v1 − 2ε)
(5.51)

= −σ(−a− v2 + 2ε)σ(−a+ 2ε)σ(−a+ v1 + 2ε)σ(−a+ v1 + v2 + 2ε)

σ(−2a+ v1 + 4ε)σ(v1 + v2)σ(v1 + v2 − 2ε)σ(2c− v1 − 2ε)
.

Requiring that these two answers for ρ2 coincide, we obtain one condition for a:

σ(a+ v2)σ(−a)σ(−a+ v1)σ(−a+ v1 + v2)σ(−2a+ v1 + 4ε)

σ(2ε− a− v2)σ(−a+ 2ε)σ(−a+ v1 + 2ε)σ(−a+ v1 + v2 + 2ε)σ(−2a+ v1)
= 1.

(5.52)
It is easy to see that equation (5.50) for c and equation (5.52) for ā = a + v2 are
obtained from one another by the flip v1 ↔ v2 (as they should). We are now ready to
prove the final result of this section.
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Theorem 5.4. The general solution of dV C4 is given by

x1 = ρ1
σ(t+ a)σ(t− a+ v1 + 2ε)σ(t− a+ v1)σ(t+ a+ 2v1 + 2v2 − 2ε)

σ(t)σ(t+ v1)σ(t+ v1 + v2)σ(t+ 2v1 + v2)
,

x2 = ρ2
σ(t+ c)σ(t− c+ 2v1 + v2)σ(t− c+ 2v1 + v2 + 2ε)σ(t+ c+ 2v1 + 2v2 − 2ε)

σ(t+ v1)σ(t+ v1 + v2)σ(t+ 2v1 + v2)σ(t+ 2v1 + 2v2)
,

x3 = ρ1
σ(t− a− v2 + 2ε)σ(t+ a+ v1 + v2)σ(t+ a+ v1 + v2 − 2ε)σ(t− a+ 2v1 + v2)

σ(t)σ(t+ v1)σ(t+ v1 + v2)σ(t+ 2v1 + v2)

x4 = ρ2
σ(t− c+ v1 + 2ε)σ(t+ c+ v1 + v2)σ(t+ c+ v1 + v2 − 2ε)σ(t− c+ 3v1 + 2v2)

σ(t+ v1)σ(t+ v1 + v2)σ(t+ 2v1 + v2)σ(t+ 2v1 + 2v2)
,

where 2(v1 + v2) ≡ 0,

ρ1 =
σ(−c)σ(−c+ v1)σ(−c+ v1 + v2)σ(−c+ 2v1 + v2)

εσ(−2c+ 2v1 + v2)σ(v1 + v2)σ(v1 + v2 − 2ε)σ(2a+ v2 − 2ε)
,

ρ2 =
σ(−a− v2)σ(−a)σ(−a+ v1)σ(−a+ v1 + v2)

εσ(−2a+ v1)σ(v1 + v2)σ(v1 + v2 − 2ε)σ(2c− v1 − 2ε)
,

and the constants a, c are defined by Eqs. (5.52), (5.50).

Proof. We show how to verify Eq. (5.34). The remaining three equations may be dealt
with in completely the same way. Under conditions (5.52) and (5.50) 1 + ε(x3 − x1)
has the zeros −c, −d, −c − v1 − v2 + 2ε, −d − v1 − v2 + 2ε, while 1 − ε(x3 − x1) has
the zeros −c + 2ε, −d + 2ε,−c − v1 − v2, −d − v1 − v2. Hence, with the help of the
periodicity condition 2(v1 + v2) ≡ 0, it is easy to see that there holds

1 + ε(x3 − x1) = (5.53)

= C1
σ(t+ c)σ(t− c+ 2ε+ 2v1 + v2)σ(t+ c+ v1 + v2 − 2ε)σ(t− c+ 3v1 + 2v2)

σ(t+ v1)σ(t+ v1 + v2)σ(t+ 2v1 + v2)σ(t+ 2v1 + 2v2)
,

as well as

1− ε(x3 − x1) = (5.54)

= C2
σ(t+ c+ v1 + v2)σ(t+ 2ε− c+ 3v1 + 2v2)σ(t+ c− 2ε)σ(t− c+ 2v1 + v2)

σ(t+ v1)σ(t+ v1 + v2)σ(t+ 2v1 + v2)σ(t+ 2v1 + 2v2)
,

with some constants C1, C2. With the help of the three-term identity for the σ-function
we see that the difference x3−x1 has a zero at t = −v1−v2/2. We therefore determine
C1 and C2 by setting t = −v1 − v2/2 in (5.53) and (5.54), giving

C1 =
σ(−1/2v2)σ(1/2v2)σ(v1 + 1/2v2)σ(v1 + 3/2v2)

σ(−v1 − 1/2v2 + c)σ(v1 + 1/2v2 − c+ 2ε)σ(1/2v2 + c− 2ε)σ(2v1 + 3/2v2 − c)
,

C2 =
σ(−1/2v2)σ(1/2v2)σ(v1 + 1/2v2)σ(v1 + 3/2v2)

σ(1/2v2 + c)σ(2v1 + 3/2v2 + 2ε− c)σ(−v1 − 1/2v2 + c− 2ε)σ(v1 + 1/2v2 − c)
.

Hence,
C1

C2
=
σ(1/2v2 + c)σ(−2v1 − 3/2v2 − 2ε+ c)

σ(1/2v2 + c− 2ε)σ(−2v1 − 3/2v2 + c)
. (5.55)
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Now, by virtue of (5.53) and (5.54), the equation of motion (5.34) becomes

ρ2σ(t+ c+ 2v1 + 2v2)σ(t− c+ 2ε+ 2v1 + v2)

C1σ(t+ c+ v1 + v2)σ(t+ 2ε− c+ 3v1 + 2v2)

=
ρ2σ(t+ c)σ(t− c+ 2ε+ 2v1 + v2)σ(t+ c+ 2v1 + 2v2 − 2ε)

C2σ(t+ c+ v1 + v2)σ(t+ 2ε− c+ 3v1 + 2v2)σ(t+ c− 2ε)
,

which reduces to
C2

C1
=
σ(t+ c)σ(t+ c+ 2v1 + 2v2 − 2ε)

σ(t+ c+ 2v1 + 2v2)σ(t+ c− 2ε)
,

but this identity is easily verified using (5.55) and the quasi-periodicity of the σ-
function.
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Integrable Cases of the Euler Equations on e(3)

In this chapter we will study the HK type discretizations of integrable cases of the Euler
equations on e(3). In particular, we we will consider the Kirchoff system, the Lagrange
top and the Clebsch system. For the discrete versions of the latter two systems we
will describe their HK-bases, conserved quantities and invariant volume forms. In the
case of the Kirchhoff system we will also derive explicit solutions in terms of elliptic
and double-Bloch functions. As a first example we will, however, study the HK type
discretization of the Clebsch System. With this example we will see how one can apply
the various recipes described in Chapter 2. Moreover, it should become evident how
one may approach the study of more complicated birational maps.

The Euler equations on e(3) read:
ṁ = m× ∂H

∂m
+ p× ∂H

∂p
,

ṗ = p× ∂H

∂m
,

(6.1)

with m = (m1,m2,m3)T ∈ R3 and p = (p1, p2, p3)T ∈ R3. The physical meaning of
m is the total angular momentum, whereas p represents the total linear momentum of
the system. A detailed introduction to the general context of rigid body dynamics and
its mathematical foundations can be found in [40]. When H is a quadratic form in m
and p, eqs. (6.1) are called Kirchhoff equations. In this case they can be used to model
the motion of a rigid body submerged in an ideal fluid. Any system of the type (6.1)
is Hamiltonian with the Hamilton function H = H(m, p) with respect to the Poisson
bracket

{mi,mj} = εijkmk, {mi, pj} = εijkpk, {pi, pj} = 0 (6.2)

(the Lie-Poisson bracket on e(3)∗), and admits the Hamilton function H and the
Casimir functions

C1 = p2
1 + p2

2 + p2
3, C2 = m1p1 +m2p2 +m3p3 (6.3)

as integrals of motion. For complete integrability of a system of the type (6.1), it
should admit a fourth independent integral of motion. The following subcases of eqs.
(6.1) are known to be integrable [42]:

1. Lagrange top.

2. Motion of a rigid body in an ideal fluid - Kirchhoff’s case.

3. Motion of a rigid body in an ideal fluid - Clebsch’s case.

81
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4. Kovalevskaia top.

Each of these systems corresponds to a particular choice of the Hamiltonian H. Except
for the Kovalevskaia top more details will be presented later.

6.1 Clebsch System

A famous integrable case of the Kirchhoff equations was discovered by Clebsch [17]
and is characterized by the Hamilton function H = 1

2H1, where

H1 = 〈m,Am〉+ 〈p,Bp〉 =
1

2

3∑
k=1

(akm
2
k + bkp

2
k). (6.4)

The vectors A = diag(a1, a2, a3) and B = diag(b1, b2, b3) satisfy the condition

b1 − b2
a3

+
b2 − b3
a1

+
b3 − b1
a2

= 0. (6.5)

This condition is also equivalent to saying that the quantity

θ =
bj − bk

ai(aj − ak)
(6.6)

takes one and the same value for all permutations (i, j, k) of the indices (1,2,3).
For an embedding of this system into the modern theory of integrable systems

see [42,49]. Equations of motion of the Clebsch case read:{
ṁ = m×Am+ p×Bp ,

ṗ = p×Am.
(6.7)

In components:

ṁ1 = (a3 − a2)m2m3 + (b3 − b2)p2p3,

ṁ2 = (a1 − a3)m3m1 + (b1 − b3)p3p1,

ṁ3 = (a2 − a1)m1m2 + (b2 − b1)p1p2.

ṗ1 = a3m3p2 − a2m2p3,

ṗ2 = a1m1p3 − a3m3p1,

ṗ3 = a2m2p1 − a1m1p2. (6.8)

Condition (6.5) can be resolved for ai as

a1 =
b2 − b3
ω2 − ω3

, a2 =
b3 − b1
ω3 − ω1

, a3 =
b1 − b2
ω1 − ω2

. (6.9)

For fixed values of ωi and varying values of bi, equations of motion of the Clebsch case
share the integrals of motion: the Casimirs C1, C2, cf. eq. (6.3), and the Hamiltonians

Ii = p2
i +

m2
j

ωi − ωk
+

m2
k

ωi − ωj
, (i, j, k) = c.p.(1, 2, 3). (6.10)
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There are four independent functions among Ci, Ii, because of C1 = I1 + I2 + I3. Note
that H1 = b1I1+b2I2+b3I3. One can denote all models with the same ωi as a hierarchy,
single flows of which are characterized by the parameters bi. Usually, one denotes as
“the first flow” of this hierarchy the one corresponding to the choice bi = ωi, so that
ai = 1. Thus, the first flow is characterized by the value θ =∞ of the constant (6.6).

We will now study the first flow of the Clebsch hierarchy and its HK type dis-
cretization. This flow is generated by the Hamilton function H = 1

2H1, where

H1 = m2
1 +m2

2 +m2
3 + ω1p

2
1 + ω2p

2
2 + ω3p

2
3. (6.11)

The corresponding equations of motion read:{
ṁ = p× Ωp,
ṗ = p×m,

where Ω = diag(ω1, ω2, ω3) is the matrix of parameters. In components:

ṁ1 = (ω3 − ω2)p2p3,

ṁ2 = (ω1 − ω3)p3p1,

ṁ3 = (ω2 − ω1)p1p2,

ṗ1 = m3p2 −m2p3,

ṗ2 = m1p3 −m3p1,

ṗ3 = m2p1 −m1p2. (6.12)

The fourth independent quadratic integral can be chosen as

H2 = ω1m
2
1 + ω2m

2
2 + ω3m

2
3 − ω2ω3p

2
1 − ω3ω1p

2
2 − ω1ω2p

2
3. (6.13)

Note that H1 = ω1I1 + ω2I2 + ω3I3, H1 = −ω2ω3I1 − ω3ω1I2 − ω1ω2I3.
We mention the following Wronskian relation:

(ṁ1p1 −m1ṗ1) + (ṁ2p2 −m2ṗ2) + (ṁ3p3 −m3ṗ3) = 0, (6.14)

which holds true for the first Clebsch flow.
The Hirota-Kimura discretization of the first Clebsch flow (proposed in [48]) is:

m̃1 −m1 = ε(ω3 − ω2)(p̃2p3 + p2p̃3),

m̃2 −m2 = ε(ω1 − ω3)(p̃3p1 + p3p̃1),

m̃3 −m3 = ε(ω2 − ω1)(p̃1p2 + p1p̃2),

p̃1 − p1 = ε(m̃3p2 +m3p̃2)− ε(m̃2p3 +m2p̃3),

p̃2 − p2 = ε(m̃1p3 +m1p̃3)− ε(m̃3p1 +m3p̃1),

p̃3 − p3 = ε(m̃2p1 +m2p̃1)− ε(m̃1p2 +m1p̃2).
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As usual, it leads to a reversible birational map x̃ = f(x, ε), x = (m, p)T, given by
f(x, ε) = A−1(x, ε)x with

A(m, p, ε) =



1 0 0 0 εω23p3 εω23p2

0 1 0 εω31p3 0 εω31p1

0 0 1 εω12p2 εω12p1 0
0 εp3 −εp2 1 −εm3 εm2

−εp3 0 εp1 εm3 1 −εm1

εp2 −εp1 0 −εm2 εm1 1

 ,

where the abbreviation ωij = ωi − ωj is used. This map will be referred to as dC.
A remark on the complexity of the iterates of f is in order here. Each component of

(m̃, p̃) = f(m, p) is a rational function with the numerator and the denominator being
polynomials on mk, pk of total degree 6. The numerators of p̃k consist of 31 monomials,
the numerators of m̃k consist of 41 monomials, the common denominator consists
of 28 monomials. It should be taken into account that the coefficients of all these
polynomials depend, in turn, polynomially on ε and ωk, which additionally increases
their complexity for a symbolic manipulator. Expressions for the second iterate swell
to considerable length, thus prohibiting naive attempts to compute them symbolically.
Using the software FORM [55] together with MAPLE’s LargeExpressions package [14]
and an appropriate veiling strategy it is, however, possible to obtain f2(m, p) with a
reasonable amount of memory. Some impression on the complexity can be obtained
from Table 6.1. The resulting expressions are too big to be used in further symbolic
computations. Consider, for instance, the numerator of the p1-component of f2(m, p).
As a polynomial of mk, pk, it contains 64 056 monomials; their coefficients are, in turn,
polynomials of ε and ωk, and, considered as a polynomial of the phase variables and
the parameters, this expression contains 1 647 595 terms.

deg degp1 degp2 degp3 degm1
degm2

degm3

Common denominator of f2 27 24 24 24 12 12 12
Numerator of p1-comp. of f2 27 25 24 24 12 12 12
Numerator of p2-comp. of f2 27 24 25 24 12 12 12
Numerator of p3-comp. of f2 27 24 24 25 12 12 12
Numerator of m1-comp. of f2 33 28 28 28 15 14 14
Numerator of m2-comp. of f2 33 28 28 28 14 15 14
Numerator of m3-comp. of f2 33 28 28 28 14 14 15

Table 6.1: Degrees of the numerators and the denominator of the second iterate
f2(m, p)

With the help of the algorithms (V) and (N) we come to the following result:

Theorem 6.1. The set of functions

Φ = (p2
1, p

2
2, p

2
3,m

2
1,m

2
2,m

2
3,m1p1,m2p2,m3p3, 1)
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(a) m1,m2,m3 (b) p1, p2, p3

Figure 6.1: An orbit of the map dC with ω1 = 1, ω2 = 0.2, ω3 = 30 and ε = 1; initial
point (m0, p0) = (1, 1, 1, 1, 1, 1).

is a HK basis for the map dC, with dimKΦ(m, p) = 4. Thus, any orbit of the map dC
lies on an intersection of four quadrics in R6.

At this point Theorem 6.1 remains a numerical result, based on the algorithms (N)
and (V). A direct symbolical proof of this statement is impossible, since it requires
dealing with f i, i ∈ [−4, 4], and the fourth iterate f4 is a forbiddingly large expression.
In order to prove Theorem 6.1 and to extract from it four independent integrals of
motion, it is desirable to find HK-(sub)bases with a smaller number of monomials,
corresponding to some (preferably one-dimensional) subspaces of KΦ(m, p). A much
more detailed information on the HK-bases is provided by the following statement.

Theorem 6.2. The following four sets of functions are HK-bases for the map dC with
one-dimensional null-spaces:

Φ0 = (p2
1, p

2
2, p

2
3, 1), (6.15)

Φ1 = (p2
1, p

2
2, p

2
3,m

2
1,m

2
2,m

2
3,m1p1), (6.16)

Φ2 = (p2
1, p

2
2, p

2
3,m

2
1,m

2
2,m

2
3,m2p2), (6.17)

Φ3 = (p2
1, p

2
2, p

2
3,m

2
1,m

2
2,m

2
3,m3p3). (6.18)

If all the null-spaces are considered as subspaces of R10, so that

KΦ0 = [c1 : c2 : c3 : 0 : 0 : 0 : 0 : 0 : 0 : c10],
KΦ1 = [α1 : α2 : α3 : α4 : α5 : α6 : α7 : 0 : 0 : 0],
KΦ2 = [β1 : β2 : β3 : β4 : β5 : β6 : 0 : β8 : 0 : 0],
KΦ3 = [γ1 : γ2 : γ3 : γ4 : γ5 : γ6 : 0 : 0 : γ9 : 0],

then there holds:
KΦ = KΦ0 ⊕KΦ1 ⊕KΦ2 ⊕KΦ3 .
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(a) m1,m2,m3 (b) p1, p2, p3

Figure 6.2: An orbit of the map dC with ω1 = 0.1, ω2 = 0.2, ω3 = 0.3 and ε = 1;
initial point (m0, p0) = (1, 1, 1, 1, 1, 1).

Also this statement was first found with the help of numerical experiments based
on the algorithms (V) and (N). In what follows, we will discuss how these claims can
be given a rigorous (computer assisted) proof, and how much additional information
(for instance, about conserved quantities for the map dC) can be extracted from such
a proof. MAPLE worksheets used for the computer assisted proofs in the following
subsections are found on the attached CD-ROM.

6.1.1 First HK Basis

Theorem 6.3. The set (6.15) is a HK basis for the map dC with dimKΦ0(m, p) = 1.
At each point (m, p) ∈ R6 there holds:

KΦ0(m, p) = [c1 : c2 : c3 : c10]

=

[
1 + ε2(ω1 − ω2)p2

2 + ε2(ω1 − ω3)p2
3

p2
1 + p2

2 + p2
3

:
1 + ε2(ω2 − ω1)p2

1 + ε2(ω2 − ω3)p2
3

p2
1 + p2

2 + p2
3

:

1 + ε2(ω3 − ω1)p2
1 + ε2(ω3 − ω2)p2

2

p2
1 + p2

2 + p2
3

: −1

]
=

[
1

J
+ ε2ω1 :

1

J
+ ε2ω2 :

1

J
+ ε2ω3 : −1

]
, (6.19)

where

J(m, p, ε) =
p2

1 + p2
2 + p2

3

1− ε2(ω1p2
1 + ω2p2

2 + ω3p2
3)
. (6.20)

The function (6.20) is an integral of motion of the map dC.
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Proof. The statement of the theorem means that for every (m, p) ∈ R6 the space of
solutions of the homogeneous system

(c1p
2
1 + c2p

2
2 + c3p

2
3 + c10) ◦ f i(m, p) = 0, i = 0, . . . , 3,

is one-dimensional. This system involves the third iterate of f , therefore its symbolical
treatment is impossible. According to the strategy (B), we set c10 = −1 and consider
the non-homogeneous system

(c1p
2
1 + c2p

2
2 + c3p

2
3) ◦ f i(m, p) = 1, i = 0, 1, 2. (6.21)

This system involves the second iterate of f , which still precludes its symbolical treat-
ment. There are now several possibilities to proceed.

• First, we could follow the recipe (E) and find further information about the solu-
tions ci. For this aim, we plot the points (c1(m, p), c2(m, p), c3(m, p)) for different
initial data (m, p) ∈ R6. Figure 6.3 shows such a plot, with 300 initial data (m, p)
randomly chosen from the set [0, 1]6. The points (c1(m, p), c2(m, p), c3(m, p))

Figure 6.3: Plot of the coefficients c1, c2, c3

seem to lie on a line in R3, which means that there should be two linear de-
pendencies between the functions c1, c2 and c3. In order to identify these linear
dependencies, we run the PSLQ algorithm (See [4, 21] and the appendix) with
the vectors (c1, c2, 1) as input. On this way we obtain the conjecture

c1 − c2 = ε2(ω1 − ω2).

Similarly, running the PSLQ algorithm with the vectors (c2, c3, 1) as input leads
to the conjecture

c2 − c3 = ε2(ω2 − ω3).
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Having identified (numerically!) these two linear relations, we use them instead
of two equations in the system (6.21), say the equations for i = 1, 2. The resulting
system becomes extremely simple:

c1p
2
1 + c2p

2
2 + c3p

2
3 = 1,

c1 − c2 = ε2(ω1 − ω2),
c2 − c3 = ε2(ω2 − ω3).

It contains no iterates of f at all and can be solved immediately by hands, with
the result (6.19). It should be stressed that this result still remains conjectural,
and one has to prove a posteriori that the functions c1, c2, c3 are integrals of
motion.

• Alternatively, we can combine the above approach based on the prescription (E)
with the recipe (D). For this, we use just one of the linear dependencies found
above to replace the equation in (6.21) with i = 2, and then let MAPLE solve
the remaining system. The output is still as in (6.19), but arguing this way one
does not need to verify a posteriori that c1, c2, c3 are integrals of motion, because
they are manifestly even functions of ε, while the symmetry of the linear system
with respect to ε has been broken.

To finish the proof along the lines of the first of the possible arguments above, we show
how to verify the statement that the function J in (6.20) is an integral of motion, i.e.,
that

p2
1 + p2

2 + p2
3

1− ε2(ω1p2
1 + ω2p2

2 + ω3p2
3)

=
p̃2

1 + p̃2
2 + p̃2

3

1− ε2(ω1p̃2
1 + ω2p̃2

2 + ω3p̃2
3)
.

This is equivalent to

p̃2
1 − p2

1 + p̃2
2 − p2

2 + p̃2
3 − p2

3

= ε2
[
(ω2 − ω1)(p̃2

1p
2
2 − p̃2

2p
2
1) + (ω3 − ω2)(p̃2

2p
2
3 − p̃2

3p
2
2) + (ω1 − ω3)(p̃2

3p
2
1 − p̃2

1p
2
3)
]
.

On the left-hand side of this equation we replace p̃i − pi through the expressions
from the last three equations of motion (6.15. On the right-hand side we replace
ε(ωk − ωj)(p̃jpk + pj p̃k) by m̃i −mi, according to the first three equations of motion
(6.15). This brings the equation we want to prove into the form

(p̃1 + p1)(m̃3p2 +m3p̃2 − m̃2p3 −m2p̃3) +

(p̃2 + p2)(m̃1p3 +m1p̃3 − m̃3p1 −m3p̃1) +

(p̃3 + p3)(m̃2p1 +m2p̃1 − m̃1p2 −m1p̃2) =

= (p̃1p2 − p1p̃2)(m̃3 −m3) + (p̃2p3 − p2p̃3)(m̃1 −m1) + (p̃3p1 − p3p̃1)(m̃2 −m2).

The latter equation is an algebraic identity in twelve variables mk, pk, m̃k, p̃k. This
finishes the proof.

Remarkably, the “simple” conserved J quantity can also be found from the following
natural discretization of the Wronskian relation (6.14).
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Proposition 6.1. The set Γ = (m̃1p1 −m1p̃1, m̃2p2 −m2p̃2, m̃3p3 −m3p̃3) is a HK
basis for the map dC with dimKΓ(x) = 1. At each point x ∈ R6 we have: KΓ(x) =
[e1 : e2 : e3], where

ei = 1 + ε2(ωi − ωj)p2
j + ε2(ωi − ωk)p2

k, (i, j, k) = c.p.(1, 2, 3). (6.22)

The conserved quantities ei/ej can be put as

ei/ej = (1 + ε2ωiJ)/(1 + ε2ωjJ). (6.23)

6.1.2 Remaining HK Bases

We now consider the remaining HK-bases Φ1,Φ2 and Φ3. Here we are dealing with the
three linear systems

(α1p
2
1 + α2p

2
2 + α3p

2
3 + α4m

2
1 + α5m

2
2 + α6m

2
3) ◦ f i(m, p) = m1p1 ◦ f i(m, p),(6.24)

(β1p
2
1 + β2p

2
2 + β3p

2
3 + β4m

2
1 + β5m

2
2 + β6m

2
3) ◦ f i(m, p) = m2p2 ◦ f i(m, p),(6.25)

(γ1p
2
1 + γ2p

2
2 + γ3p

2
3 + γ4m

2
1 + γ5m

2
2 + γ6m

2
3) ◦ f i(m, p) = m3p3 ◦ f i(m, p),(6.26)

already made non-homogeneous by normalizing the last coefficient in each system, as in
recipe (B), with l = 7. The claim about each of the systems is that it admits a unique
solution for i ∈ Z. It is enough to solve each system for two different but intersecting
ranges of l − 1 = 6 consecutive indices i, such as i ∈ [−2, 3] and i ∈ [−3, 2], and to
show that solutions coincide for both ranges (recipe (C)). Actually, since the index
range i ∈ [−2, 3] is non-symmetric, it would be enough to consider the system for this
one range and to show that the solutions αj , βj , γj are even functions with respect to ε
(recipe (D)). However, symbolic manipulations with the iterates f i for i = ±2,±3 are
impossible. In what follows, we will gradually extend the available information about
the coefficients αj , βj , γj , which at the end will allow us to get the analytic expressions
for all of them and to prove that they are integrals, indeed.

6.1.3 First Additional HK Basis

Theorem 6.2 shows that, after finding the HK basis Φ0 with dimKΦ0(x) = 1 it is
enough to concentrate on (sub)-bases not containing the constant function ϕ10(m, p) =
1. It turns out to be possible to find a HK basis without ϕ10 and with a one-dimensional
null-space, which is more amenable to a symbolic treatment than Φ1,Φ2,Φ3. Numerical
algorithm (N) suggests that the following set of functions is a HK basis with d = 1:

Ψ = (p2
1, p

2
2, p

2
3,m1p1,m2p2,m3p3). (6.27)

Theorem 6.4. The set (6.27) is a HK basis for the map dC with dimKΨ(m, p) = 1.
At every point (m, p) ∈ R6 there holds:

KΨ(m, p) = [−1 : −1 : −1 : d7 : d8 : d9],

with

dk =
(p2

1 + p2
2 + p2

3)(1 + ε2d
(2)
k + ε4d

(4)
k + ε6d

(6)
k )

∆
, k = 7, 8, 9, (6.28)
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∆ = m1p1 +m2p2 +m3p3 + ε2∆(4) + ε4∆(6) + ε6∆(8), (6.29)

where d
(2q)
k and ∆(2q) are homogeneous polynomials of degree 2q in phase variables. In

particular,

d
(2)
7 = m2

1 +m2
2 +m2

3 + (ω2 + ω3 − 2ω1)p2
1 + (ω3 − ω2)p2

2 + (ω2 − ω3)p2
3,

d
(2)
8 = m2

1 +m2
2 +m2

3 + (ω3 − ω1)p2
1 + (ω3 + ω1 − 2ω2)p2

2 + (ω1 − ω3)p2
3,

d
(2)
9 = m2

1 +m2
2 +m2

3 + (ω2 − ω1)p2
1 + (ω1 − ω2)p2

2 + (ω1 + ω2 − 2ω3)p2
3,

and

∆(4) = m1p1d
(2)
7 +m2p2d

(2)
8 +m3p3d

(2)
9 .

(All other polynomials are too messy to be given here.) The functions d7, d8, d9 are
integrals of the map dC. They are dependent due to the linear relation

(ω2 − ω3)d7 + (ω3 − ω1)d8 + (ω1 − ω2)d9 = 0. (6.30)

Any two of them are functionally independent. Moreover, any two of them together
with J are still functionally independent.

Proof. As already mentioned, numerical experiments suggest that for any (m, p) ∈ R6

there exists a one-dimensional space of vectors (d1, d2, d3, d7, d8, d9) satisfying

(d1p
2
1 + d2p

2
2 + d3p

2
3 + d7m1p1 + d8m2p2 + d9m3p3) ◦ f i(m, p) = 0

for i = 0, 1, . . . , 5. According to recipe (A), one can equally well consider this system
for i = −2,−1, . . . , 3, which however still contains the third iterate of f and is therefore
not manageable. Therefore, we apply recipe (E) and look for linear relations between
the (numerical) solutions. Two such relations can be observed immediately, namely

d1 = d2 = d3. (6.31)

Accepting these (still hypothetical) relations and applying recipe (B), i.e., setting the
common value of (6.31) equal to −1, we arrive at the non-homogeneous system of only
3 linear relations

(d7m1p1 + d8m2p2 + d9m3p3) ◦ f i(m, p) = (p2
1 + p2

2 + p2
3) ◦ f i(m, p) (6.32)

for i = −1, 0, 1. Fortunately, it is possible to find one more linear relation between
d7, d8, d9. This was discovered numerically: we produced a three-dimensional plot of
the points (d7(m, p), d8(m, p), d9(m, p)) which can be seen in Fig. 6.4 in two different
projections. This figure suggests that all these points lie on a plane in R3, the second
picture bsubseing a “side view” along a direction parallel to this plane. Thus, it is
plausible that one more linear relation exists. With the help of the PSLQ algorithm
this hypothetic relation can then be identified as eq. (6.30). Now the ansatz (6.32) is
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(a) (b)

Figure 6.4: Plot of the points (d7, d8, d9) for 729 values of (m, p) from a six-dimensional
grid around the point (1, 1, 1, 1, 1, 1) with a grid size of 0.01 and the parameters ε = 0.1,
ω1 = 0.1, ω2 = 0.2, ω3 = 0.3.

reduced to the following system of three equations for (d7, d8, d9), which involves only
one iterate of the map f :{

(d7m1p1 + d8m2p2 + d9m3p3) ◦ f i(m, p) = (p2
1 + p2

2 + p2
3) ◦ f i(m, p), i = 0, 1,

(ω2 − ω3)d7 + (ω3 − ω1)d8 + (ω2 − ω2)d9 = 0.

(6.33)
This system can be solved by MAPLE, resulting in functions given in eqs. (6.28),
(6.29). They are manifestly even functions of ε, while the system has no symmetry
with respect to ε 7→ −ε. This proves that they are integrals of motion for the map
f . This argument slightly generalizes the recipes (D) and (E), and, since it is used
not only here but also on several further occasions in this chapter, we give here its
formalization.

Proposition 6.2. Consider a map f : R6 → R6 depending on a parameter ε, re-
versible in the sense of eq. (4.3). Let I(m, p, ε) be an integral of f , even in ε, and let
A1, A2, A3 ∈ R. Suppose that the set of functions Φ = (ϕ1, . . . , ϕ4) is such that the
system of three linear equations for (a1, a2, a3),{

(a1ϕ1 + a2ϕ2 + a3ϕ3) ◦ f i(m, p, ε) = ϕ4 ◦ f i(m, p, ε), i = 0, 1,

A1a1 +A2a2 +A3a3 = I(m, p, ε),
(6.34)

admits a unique solution which is even with respect to ε. Then this solution (a1, a2, a3)
consists of integrals of the map f , and Φ is a HK basis with dimKΦ(m, p) = 1.

Proof. Since (a1, a2, a3) are even functions of ε, they satisfy also the system (6.34) with
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ε 7→ −ε, which, due to the reversibility, can be represented as{
(a1ϕ1 + a2ϕ2 + a3ϕ3) ◦ f i(m, p, ε) = ϕ4 ◦ f i(m, p, ε), i = 0,−1,
A1a1 +A2a2 +A3a3 = I(m, p, ε).

(6.35)

Since the functions (a1, a2, a3) are uniquely determined by any of the systems (6.34) or
(6.35), we conclude that they remain invariant under the change (m, p) 7→ f(m, p, ε),
or, in other words, that they are integrals of motion. Finally, we can conclude that these
functions satisfy equation (a1ϕ1 + a2ϕ2 + a3ϕ3) ◦ f i = ϕ4 ◦ f i for all i ∈ Z (and can be
uniquely determined by this property), and that linear relation A1a1+A2a2+A3a3 = I
is satisfied, as well.

Application of Proposition 6.2 to system (6.33) shows that d7, d8, d9 are integrals
of motion, since they are even in ε. Note that here, as always in similar context,
the evenness of solutions is due to “miraculous cancellation” of the equal non-even
polynomials which factor out both in the numerators and denominators of the solutions.
In the present computation, these common non-even factors are of degree 2 in ε.

It remains to prove that any two of the integrals d7, d8, d9 together with the previ-
ously found integral J are functionally independent. For this aim, we show that from
such a triple of integrals one can construct another triple of integrals which yields in
the limit ε → 0 three independent conserved quantities H3, H4, H1 of the continuous
Clebsch system. Indeed:

J = p2
1 + p2

2 + p2
3 +O(ε2) = H3 +O(ε2),

J

dk+6
= m1p1 +m2p2 +m3p3 +O(ε2) = H4 +O(ε2).

On the other hand, it is easy to derive:

d7

d8
= 1 + ε2(d

(2)
7 − d

(2)
8 ) +O(ε4) = 1 + ε2(ω2 − ω1)(p2

1 + p2
2 + p2

3) +O(ε4),

and, taking this into account and computing the terms of order ε4, one finds:

d7

d8
− 1− ε2(ω2 − ω1)J = ε4(ω2 − ω1)(2H2

4 + ω2H
2
3 − 2H3H1) +O(ε6),

from which one easily extracts H1. This proves our claim.

Concluding this section, we mention that - with the help of the integrals di - we
may also find an invariant volume form for the map dC:

Experimental Result 6.1. The map dC possesses an invariant volume form:

det
∂x̃

∂x
=
φ(x̃)

φ(x)
⇔ f∗ω = ω, ω =

dm1 ∧ dm2 ∧ dm3 ∧ dp1 ∧ dp2 ∧ dp3

φ(x)

with φ(x) = ∆(x,ε)
p21+p22+p23

, where ∆ is defined in Theorem 6.4.

A possible proof of this statement would follow that of Proposition 6.9.
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6.1.4 Second Additional HK Basis

From the (still hypothetic) properties (6.24)–(6.26) of the bases Φ1,Φ2,Φ3 there follows
that for any (m, p) ∈ R6 the system of linear equations

(g1p
2
1 +g2p

2
2 +g3p

2
3 +g4m

2
1 +g5m

2
2 +g6m

2
3)◦f i(m, p) = (m1p1 +m2p2 +m3p3)◦f i(m, p)

(6.36)
has a unique solution (g1, g2, g3, g4, g5, g6). Indeed, the solution should be given by

gj = αj + βj + γj , j = 1, . . . , 6. (6.37)

As for the bases Φ1,Φ2,Φ3, the solution of (6.36) can be determined by solving these
equations for two different but intersecting ranges of 6 consecutive values of i, say for
i ∈ [−3, 2] and i ∈ [−2, 3]. However, it turns out that, due to the existence of several
linear relations between the solutions gj , system (6.36) is much easier to deal with
than systems (6.24)–(6.26), so that the functions gj can be determined and studied
independently of αj , βj , γj .

Theorem 6.5. The set of functions

Θ = (p2
1, p

2
2, p

2
3,m

2
1,m

2
2,m

2
3,m1p1 +m2p2 +m3p3)

is a HK basis for the map dCwith dimKΘ(m, p) = 1. At every point (m, p) ∈ R6 there
holds:

KΘ(m, p) = [g1 : g2 : g3 : g4 : g5 : g6 : −1].

Here g1, g2, g3 are integrals of the map dC given by

gk =
g

(4)
k + ε2g

(6)
k + ε4g

(8)
k + ε6g

(10)
k

2(p2
1 + p2

2 + p2
3)∆

, k = 1, 2, 3,

where g
(2q)
k are homogeneous polynomials of degree 2q in phase variables, and ∆ is

given in eq. (6.29). For instance,

g
(4)
k = 2H2

4 −H3H1 + ωkH
2
3 .

Integrals g4, g5, g6 are given by

g4 =
g2 − g3

ω2 − ω3
, g5 =

g3 − g1

ω3 − ω1
, g6 =

g1 − g2

ω1 − ω2
.

Proof. Since system (6.36) involves too many iterates of f for a symbolical treatment,
we look for linear relations between the (numerical) solutions of this system. Applica-
tion of the PSLQ algorithm allows us to identify three such relations, as given in eq.
(6.38). This reduces system (6.36) to the following one:[
g1

(
p2

1 +
m2

2

ω1 − ω3
+

m2
3

ω1 − ω2

)
+ g2

(
p2

2 +
m2

1

ω2 − ω3
+

m2
3

ω2 − ω1

)
+g3

(
p2

3 +
m2

1

ω3 − ω2
+

m2
2

ω3 − ω1

)]
◦ f i(m, p) = (m1p1 +m2p2 +m3p3) ◦ f i(m, p). (6.38)
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Thus, one can say that we are dealing with a reduced Hirota-Kimura basis consisting
of l = 4 functions

Θ̃ = (I1, I2, I3, C2),

see (6.10). Interestingly, this is a basis of integrals for the continuous-time Clebsch
system. System (6.38) has to be solved for two different but intersecting ranges of
l − 1 = 3 consecutive indices i. It would be enough to show that the solution for one
non-symmetric range, e.g., for i ∈ [0, 2], consists of even functions of ε. However, this
non-symmetric system involves with necessity the second iterate f2. To avoid dealing
with f2, one more linear relation for g1, g2, g3 would be needed. Such a relation has
been found with the help of PSLQ algorithm, it does not have constant coefficients
anymore but involves the previously found integrals d7, d8, d9:

(ω2 − ω3)g1 + (ω3 − ω1)g2 + (ω1 − ω2)g3 =
1

2
(ω2 − ω3)(ω3 − ω1)(d8 − d7). (6.39)

Of course, due to eq. (6.30), the right-hand side of eq. (6.39) can be equivalently put
as

1

2
(ω3 − ω1)(ω1 − ω2)(d9 − d8) =

1

2
(ω1 − ω2)(ω2 − ω3)(d7 − d9).

The linear system consisting of eq. (6.38) for i = 0, 1 and eq. (6.39) can be solved
by MAPLE with the result given in theorem. Since (d7, d8, d9) are already proven
to be integrals of motion, and since the solutions (g1, g2, g3) are manifestly even in ε,
Proposition 6.2 yields that (g1, g2, g3) are integrals of the map f .

Theorem 6.5 gives us the third HK basis with a one-dimensional null-space for the
discrete Clebsch system. Thus, it shows that every orbit lies in the intersection of
three quadrics in R6. What concerns the integrals of motion, it turns out that the
basis Θ does not provide us with additional ones: a numerical check with gradients
shows that integrals g1, g2, g3 are functionally dependent from the previously found
ones. At this point we are lacking one more HK basis with a one-dimensional null-
space, linearly independent from KΦ0 , KΨ, KΘ, and one more integral of motion,
functionally independent from J and d7, d8.

6.1.5 Proof for the Bases Φ1,Φ2,Φ3

Now we return to the bases Φ1,Φ2,Φ3 discussed in Sect. 6.1.2. In order to be able to
solve systems (6.24)–(6.26) symbolically and to prove that the solutions αj , βj , γj are
indeed integrals, we have to find additional linear relations for these quantities (recipe
(E)). Within each set of coefficients we were able to identify just one relation:

(ω1 − ω3)α5 = (ω1 − ω2)α6, (6.40)

(ω2 − ω3)β4 = (ω2 − ω1)β6, (6.41)

(ω3 − ω2)γ4 = (ω3 − ω1)γ5. (6.42)

This reduces the number of equations in each system by one, which however does not
resolve our problems. A way out consists in looking for linear relations among all the
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coefficients αj , βj , γj . Remarkably, six more independent linear relations of this kind
can be identified:

α4 = β5 = γ6, (6.43)

α2 − α3 − (ω2 − ω3)α4

ω2 − ω3
=
β2 − β3 − (ω2 − ω3)β4

ω3 − ω1
=
γ2 − γ3 − (ω2 − ω3)γ4

ω1 − ω2
, (6.44)

α3 − α1 − (ω3 − ω1)α5

ω2 − ω3
=
β3 − β1 − (ω3 − ω1)β5

ω3 − ω1
=
γ3 − γ1 − (ω3 − ω1)γ5

ω1 − ω2
. (6.45)

There are two more similar relations:

α1 − α2 − (ω1 − ω2)α6

ω2 − ω3
=
β1 − β2 − (ω1 − ω2)β6

ω3 − ω1
=
γ1 − γ2 − (ω1 − ω2)γ6

ω1 − ω2
,

but they follow from the already listed ones (6.40)–(6.45). We stress that all these
linear relations were identified numerically, with the help of the PSLQ algorithm, and
remain at this stage hypothetic.

With nine linear relations (6.40)–(6.45), we have to solve systems (6.24)–(6.26)
simultaneously for a range of 3 consecutive indices i. Taking this range as i = −1, 0, 1
we can avoid dealing with f2, which however would leave us with the problem of a
proof that the solutions are integrals. Alternatively, we can choose the range i = 0, 1, 2,
and then the solutions are automatically integrals, as soon as it is established that they
are even functions of ε.

A symbolic solution of the system consisting of 18 linear equations, namely eqs.
(6.24)–(6.26) with i = 0, 1, 2 along with nine simple equations (6.40)–(6.45), would
require astronomical amounts of memory, because of the complexity of f2. However,
this task becomes manageable and even simple for fixed (numerical) values of the
phase variables (m, p) and of the parameters ωi, while leaving ε a symbolic variable.
For rational values of mk, pk, ωk all computations can be done precisely (in rational
arithmetic). This means that αj , βj , and γj can be evaluated, as functions of ε, at
arbitrary points in Q9(m, p, ω1, ω2, ω3). A big number of such evaluations provides us
with a convincing evidence in favor of the claim that these functions are even in ε.

In order to obtain a rigorous proof without dealing with f2, further linear relations
would be necessary. Before introducing these, we present some preliminary consid-
erations. Assuming that Φ1,Φ2,Φ3 are HK-bases with one-dimensional null-spaces,
results of Theorem 6.4 on the HK basis Ψ tell us that the row vector (d7, d8, d9) is the
unique left null-vector for the matrix

M2 =

α4 α5 α6

β4 β5 β6

γ4 γ5 γ6

 ,

normalized so that

(d7, d8, d9)M1 = (1, 1, 1), where M1 =

α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

 .
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Note that due to eqs. (6.40)–(6.43) the matrix M2 has at most four (linearly) in-
dependent entries. Denoting the common values in these equations by A,B,C,D,
respectively, we find:

M2 =

α4 α5 α6

β4 β5 β6

γ4 γ5 γ6

 =

 D A/(ω1 − ω3) A/(ω1 − ω2)
B/(ω2 − ω3) D B/(ω2 − ω1)
C/(ω3 − ω2) C/(ω3 − ω1) D

 . (6.46)

The existence of the left null-vector (d7, d8, d9) shows that det(M2) = 0, or, equiva-
lently,

D2 − AB

(ω1 − ω3)(ω2 − ω3)
− BC

(ω2 − ω1)(ω3 − ω1)
− CA

(ω3 − ω2)(ω1 − ω2)
= 0. (6.47)

From eqs. (6.46) and (6.47) one easily derives that the row(
D − B

ω2 − ω3
− C

ω3 − ω2
, D − A

ω1 − ω3
− C

ω3 − ω1
, D − A

ω1 − ω2
− B

ω2 − ω1

)
= (α4 − β4 − γ4, −α5 + β5 − γ5, −α6 − β6 + γ6)

is a left null-vector of the matrix M2, and therefore (d7, d8, d9) is proportional to
this vector. The proportionality coefficient can be now determined with the help of
the PSLQ algorithm and turns out to be extremely simple. Namely, the following
relations hold:

α4 − β4 − γ4 = D − B − C
ω2 − ω3

=
1

2
d7, (6.48)

−α5 + β5 − γ5 = D − C −A
ω3 − ω1

=
1

2
d8, (6.49)

−α6 − β6 + γ6 = D − A−B
ω1 − ω2

=
1

2
d9. (6.50)

Only two of them are independent, because of eq. (6.30). We note also that, according
to eq. (6.37), one has

α4 + β4 + γ4 = D +
B − C
ω2 − ω3

= g4, (6.51)

α5 + β5 + γ5 = D +
C −A
ω3 − ω1

= g5, (6.52)

α6 + β6 + γ6 = D +
A−B
ω1 − ω2

= g6. (6.53)

Equations (6.48)–(6.53) and (6.47) are already enough to determine all four integrals
A,B,C,D, that is, all αj , βj , γj with j = 4, 5, 6, provided it is proven that they are
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indeed integrals. These (conditional) results read:

A =
1 + ε2A(2) + ε4A(4) + ε6A(6) + ε8A(8)

2ε2∆
, (6.54)

B =
1 + ε2B(2) + ε4B(4) + ε6B(6) + ε8B(8)

2ε2∆
, (6.55)

C =
1 + ε2C(2) + ε4C(4) + ε6C(6) + ε8C(8)

2ε2∆
, (6.56)

D =
p2

1 + p2
2 + p2

3 + ε2D(4) + ε4D(6) + ε6D(8)

2∆
, (6.57)

where A(2q), B(2q), C(2q), D(2q) are homogeneous polynomials of degree 2q in phase
variables, for instance,

A(2) = B(2) = C(2)

= m2
1 +m2

2 +m2
3 + (ω2 + ω3 − 2ω1)p2

1 + (ω3 + ω1 − 2ω2)p2
2 + (ω1 + ω2 − 2ω3)p2

3,

D(4) = (m1p1 +m2p2 +m3p3)2

+(p2
1 + p2

2 + p2
3)
(

(ω2 + ω3 − 2ω1)p2
1 + (ω3 + ω1 − 2ω2)p2

2 + (ω1 + ω2 − 2ω3)p2
3

)
.

We remark that eq. (6.47) tells us that no more than three of the functions A,B,C,D
are actually functionally independent. Computation with gradients shows that A,B,C
are functionally independent, indeed. Moreover, all other previously found integrals
J , d7, d8, d9, and g1, g2, g3 are functionally dependent on these ones.

Theorem 6.6. The sets (6.16)–(6.18) are HK-bases for the map dC with dimKΦ1(m, p) =
dimKΦ2(m, p) = dimKΦ3(m, p) = 1. At each point (m, p) ∈ R6 there holds:

KΦ1(m, p) = [α1 : α2 : α3 : α4 : α5 : α6 : −1],

KΦ2(m, p) = [β1 : β2 : β3 : β4 : β5 : β6 : −1],

KΦ3(m, p) = [γ1 : γ2 : γ3 : γ4 : γ5 : γ6 : −1],

where αj,βj, and γj are rational functions of (m, p), even with respect to ε. They
are integrals of motion for the map dC and satisfy linear relations (6.40)–(6.45). For
j = 4, 5, 6 they are given by eqs. (6.46), (6.56), (6.57). For j = 1, 2, 3 they are of the
form

h =
h(2) + ε2h(4) + ε4h(6) + ε6h(8) + ε8h(10) + ε10h(12)

2ε2(p2
1 + p2

2 + p2
3)∆

, (6.58)

where h stands for any of the functions αj , βj , γj, j = 1, 2, 3, and the corresponding
h(2q) are homogeneous polynomials in phase variables of degree 2q. For instance,

α
(2)
1 = C1 − I1, α

(2)
2 = −I1, α

(2)
3 = −I1,

β
(2)
1 = −I2, β

(2)
2 = C1 − I2, β

(2)
3 = −I2,

γ
(2)
1 = −I3, γ

(2)
2 = −I3, γ

(2)
3 = C1 − I3.

(6.59)

The four functions J , α1, β1 and γ1 are functionally independent.
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Proof. The proof consists of several steps.
Step 1. Consider the system for 18 unknowns αj , βj , γj , j = 1, . . . , 6, consisting

of 17 linear equations: eqs. (6.24)–(6.26) with i = 0, 1, eqs. (6.40)–(6.45), and eqs.
(6.48), (6.49). This system is underdetermined, so that in principle it admits a one-
parameter family of solutions. Remarkably, the symbolic MAPLE solution shows that
all variables αj , βj , γj with j = 4, 5, 6 are determined by this system uniquely, the
results coinciding with eqs. (6.46), (6.56)–(6.57). (Actually, the MAPLE answers are
much more complicated, and their simplification has been performed with SINGULAR,
which was used to cancel out common factors from the huge expressions in numera-
tors and denominators of these rational functions.) Since these uniquely determined
αj , βj , γj with j = 4, 5, 6 are even functions of ε, this proves that they (i.e., A,B,C,D)
are integrals of motion.

Step 2. Having determined αj , βj , γj with j = 4, 5, 6, we are in a position to
compute αj , βj , γj with j = 1, 2, 3. For instance, to obtain the values of αj with
j = 1, 2, 3, we consider the symmetric linear system (6.24) with i = −1, 0, 1 (and with
already found α4, α5, α6). This system has been solved by MAPLE. The solutions
are huge rational functions which however turn out to admit massive cancellations.
These cancellations have been performed with the help of SINGULAR. The resulting
expressions for α1, α2, α3 turn out to satisfy the ansatz (6.58) with the leading terms
given in the first line of eq. (6.59). However, this computation does not prove that
the functions so obtained are indeed integrals of motion. To prove this, one could, in
principle, either check directly the identities αj ◦ f = αj , j = 1, 2, 3, or verify equation
(6.24) with i = 2. Both ways are prohibitively expensive, so that we have to look for
an alternative one.

Step 3. The results of Step 2 yield an explicit expression for the function

F = (ω2 − ω3)α1 + (ω3 − ω1)α2 + (ω1 − ω2)α3, (6.60)

which is of the form

F =
(ω2 − ω3)(1 + ε2F (2) + ε4F (4) + ε6F (6) + ε8F (8))

2ε2∆
.

It is of a crucial importance for our purposes that it can be proven directly that F
is an integral of motion. We have proved this with the method (G) based on the
Gröbner basis for the ideal generated by discrete equations of motion. The application
of this method to F is more feasible that to any single of αj , j = 1, 2, 3, because of the
cancellation of the huge polynomial coefficient of ε10 in the numerator of F .

Step 4. The result of Step 3 allows us to proceed as follows. Consider the system
of three linear equations for α1, α2, α3, consisting of (6.24) with i = 0, 1, and of

(ω2 − ω3)α1 + (ω3 − ω1)α2 + (ω1 − ω2)α3 = F,

where F is the explicit expression obtained and proven to be an integral on Step 3. This
system can now be solved by MAPLE; the results, again simplified with SINGULAR,
are even functions of ε (actually, the same ones obtained on Step 1 from the symmetric
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system). Non-even polynomials in ε of degree 7 cancel in a miraculous way from the
numerators and the denominator. Now Proposition 6.2 assures that these solutions
are integrals of motion.

Step 5. Finally, in order to find β1, β2, β3 and γ1, γ2, γ3, we solve the two systems
consisting of (6.25), resp. (6.26) with i = 0, 1, and the first, resp. the second linear
relation in eq. (6.44). The results are even functions of ε, satisfying the ansatz (6.58)
with the leading terms given in eq. (6.59). Proposition 6.2 yields that also these
functions are integrals of motion.

6.2 General Flow of the Clebsch System

We conclude the discussion of the Clebsch System with some findings regarding the
general flow. Not all of the following results have been proven rigorously in the sense
of the previous section. This will be pointed out at the relevant points.

The HK discretization of the flow (6.7) reads as{
m̃−m = ε(m̃×Am+m×Am̃+ p̃×Bp+ p×Bp̃ ),

p̃− p = ε (p̃×Am+ p×Am̃) ,

or in components:

m̃1 −m1 = ε(a3 − a2)(m̃2m3 +m2m̃3) + ε(b3 − b2)(p̃2p3 + p2p̃3),

m̃2 −m2 = ε(a1 − a3)(m̃3m1 +m3m̃1) + ε(b1 − b3)(p̃3p1 + p3p̃1),

m̃3 −m3 = ε(a2 − a1)(m̃1m2 +m1m̃2) + ε(b2 − b1)(p̃1p2 + p1p̃2),

p̃1 − p1 = εa3(m̃3p2 +m3p̃2)− εa2(m̃2p3 +m2p̃3),

p̃2 − p2 = εa1(m̃1p3 +m1p̃3)− εa3(m̃3p1 +m3p̃1),

p̃3 − p3 = εa2(m̃2p1 +m2p̃1)− εa1(m̃1p2 +m1p̃2). (6.61)

In what follows, we will use the abbreviations bij = bi − bj and aij = ai − aj . The
linear system (6.61) defines an explicit, birational map f : R6 → R6,(

m̃
p̃

)
= f(m, p, ε) = M−1(m, p, ε)

(
m
p

)
, (6.62)

where

M(m, p, ε) =



1 εa23m3 εa23m2 0 εb23p3 εb23p2

εa31m3 1 εa31m1 εb31p3 0 εb31p1

εa12m2 εa12m1 1 εb12p2 εb12p1 0
0 εa2p3 −εa3p2 1 −εa3m3 εa2m2

−εa1p3 0 εa3p1 εa3m3 1 −εa1m1

εa1p2 −εa2p1 0 −εa2m2 εa1m1 1

 .

This map will be denoted dGC in what follows.
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A “simple” integral of the map dGC can be obtained by discretizing the following
Wronskian relation with constant coefficients, which holds for the general flow of the
Clebsch system (6.8):

A1(ṁ1p1 −m1ṗ1) +A2(ṁ2p2 −m2ṗ2) +A3(ṁ3p3 −m3ṗ3) = 0, (6.63)

with
Ai = aiaj + aiak − ajak, (i, j, k) = c.p.(1, 2, 3). (6.64)

Proposition 6.3. The set Γ = (m̃1p1 −m1p̃1, m̃2p2 −m2p̃2, m̃3p3 −m3p̃3) is a HK
basis for the map dGC with dimKΓ(x) = 1. At each point x ∈ R6 we have: KΓ(x) =
[e1 : e2 : e3], where, for (i, j, k) = c.p.(1, 2, 3),

ei = Ai + ε2ai(bi − bj)AkΘj + ε2ai(bi − bk)AjΘk, (6.65)

with
Θi = p2

i +
ai

θajak
m2
i (6.66)

(recall that θ is defined by equation (6.6); we assume here that θ 6=∞).

Proof. Direct verification using MAPLE.

As in the case of the first flow, the integrals ei/ej can be expressed through one
symmetric integral: ei/ej = (Ai − θaiL)/(Aj − θajL), where

L(m, p, ε) =
a2a3A1Θ1 + a3a1A2Θ2 + a1a2A3Θ3

1 + ε2θa1a2a3(Θ1 + Θ2 + Θ3)
.

The quantities ei and the integral L can be also obtained from a different (monomial)
HK basis, given in the following proposition.

Proposition 6.4. The set of functions Φ0 = (p2
1, p

2
2, p

2
3, m

2
1, m

2
2, m

2
3, 1) is a HK basis

for the map dGC with dimKΦ0(m, p) = 1. At each point (m, p) ∈ R6 there holds:

KΦ0(m, p) = [a2a3e1 : a3a1e2 : a1a2e3 : (a1/θ)e1 : (a2/θ)e2 : (a3/θ)e3 : −e0],

where
e0 = a2a3A1Θ1 + a3a1A2Θ2 + a1a2A3Θ3 (6.67)

is an integral of motion of the continuous time flow (6.8).

Proof. Direct verification using MAPLE.

Experimental Result 6.2. a) The set Φ = (p2
1, p

2
2, p

2
3, m

2
1, m

2
2, m

2
3, m1p1, m2p2, m3p3, 1)

is a HK basis for the map dGC with dimKΦ(m, p) = 4. Thus, any orbit of the map
dGC lies on an intersection of four quadrics in R6.

b) Each of the sets of functions Ψ0 = (p̃1p1, p̃2p2, p̃3p3, m̃1m1, m̃2m2, m̃3m3, 1)
and (6.16)–(6.18) are HK-bases for the maps dC and dGC with a one-dimensional
null-space.
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6.3 Kirchhoff System

The integrable case of this system found in the original paper by Kirchhoff [36] and
carrying his name is characterized by the Hamilton function H = 1

2H1, where

H1 = a1(m2
1 +m2

2) + a3m
2
3 + b1(p2

1 + p2
2) + b3p

2
3. (6.68)

The differential equations of the Kirchhoff case are:

ṁ1 = (a3 − a1)m2m3 + (b3 − b1)p2p3,

ṁ2 = (a1 − a3)m1m3 + (b1 − b3)p1p3,

ṁ3 = 0,

ṗ1 = a3p2m3 − a1p3m2,

ṗ2 = a1p3m1 − a3p1m3,

ṗ3 = a1(p1m2 − p2m1). (6.69)

Along with the Hamilton function H and the Casimir functions (6.3), it possesses the
obvious fourth integral, due to the rotational symmetry of the system:

H2 = m3. (6.70)

Note that the Kirchhoff case (a1 = a2 and b1 = b2) can be considered as a particular
case of the Clebsch case, but is special in many respects (the symmetry resulting in
the existence of the Noether integral m3, solvability in elliptic functions, in contrast to
the general Clebsch system being solvable in terms of theta-functions of genus g = 2,
etc.).

We mention also the following Wronskian relation which follows easily from equa-
tions of motion:

a1(ṁ1p1 −m1ṗ1) + a1(ṁ2p2 −m2ṗ2) + (2a3 − a1)(ṁ3p3 −m3ṗ3) = 0. (6.71)

Before discussing the HK type discretization of the Kirchhoff system we show how
one can integrate the Kirchhoff system. Again, we perform this task the “classical”
way. Our focus will be more on the general form of solutions and the steps necessary
to deduce them.

First, we introduce the following notation:

M1 = m1 + im2, M2 = m1 − im2, P1 = p1 + ip2, P2 = p1 − ip2.

System (6.69) then takes the following form:

Ṗ1 = −i (a1p3M1 − a3m3P1)

Ṗ2 = i (a1p3M2 − a3m3P2),

Ṁ1 = −i ((a3 − a1)m3M1 + (b3 − b1)p3P1),

Ṁ2 = i ((a3 − a1)m3M2 + (b3 − b1)p3P2),
ṗ3 = −1

2 ia1 (P1M2 − P2M1),
ṁ3 = 0.

(6.72)
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In this notation, the conserved quantities become

P1P2+p2
3 = I1,

1

2
(P1M2+P2M1)+m3p3 = I2, a1M1M2+b1P1P2+a3m

2
3+b3p

2
3 = I3.

We will now show how to solve system (6.72). Essentially, we reproduce the classical
work of Halphen [28].

Proposition 6.5. The component p3 of system (6.72) satisfies the differential equation

ṗ3
2 = a1A1(A2 − p2

3)(I1 − p2
3)− a2

1(I2 −m3p3)2, (6.73)

where A1,a3 depend on the constants ai, bi and the conserved quantities:

A1 = b3 − b1, A2 =
I3 − b1I1 − a3m

2
3

b3 − b1
.

Proof. From the equations of motion and the expressions of the integral I2 it follows
that

(M2P1 + P2M1) = 2(I2 −m3p3), (M2P1 − P2M1) = − 2i

a1
ṗ3. (6.74)

There holds:

(M2P1 + P2M1)2 − (M2P1 − P2M1)2 = 4M1M2P1P2.

Substituting expressions (6.74) into the left hand side and using integrals I1 and I3, it
follows that

ṗ3
2 = a1A1(A2 − p2

3)(I1 − p2
3)− a2

1(I2 −m3p3)2, (6.75)

with A1 and A2 as stated above.

Following the procedure by Halphen we thus find that p3 is given by time-shifts of

p3(t) = ζ(u+ ν)− ζ(u)− ζ(ν) =
1

2

℘′(u)− ℘′(ν)

℘(u)− ℘(ν)
, u =

√
a1A1t,

where the invariants g2, g3 and ν are defined according to Theorem 3.8. In what follows
we consider p3 as a function of u and denote differentiation w.r.t. u by ′.

Theorem 6.7. Any solution of (6.72) has the form

P1 = C1
σ(u+ α+ ν)σ(u+ β + ν)

σ(u)σ(u+ ν)
exp(Lu), (6.76)

P2 = C2
σ(u− α)σ(u− β)

σ(u)σ(u+ ν)
exp(−Lu), (6.77)

M1 = C3
σ(u+ α1 + ν)σ(u+ β1 + ν)

σ(u)σ(u+ ν)
exp(Lu), (6.78)

M2 = C4
σ(u− α1)σ(u− β1)

σ(u)σ(u+ ν)
exp(−Lu), (6.79)

p3 = ζ(u+ ν)− ζ(u)− ζ(ν), (6.80)
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where α, β, −α− ν, −β − ν are defined as the zeros of p2
3 − I1 and α1, β1, −α1 − ν,

−β1 − ν as those of p2
3 −A2. They satisfy the following two relations:

α+ β = α1 + β1,

σ(α1 + ν)σ(β1 + ν)σ(α)σ(β)

σ(α+ ν)σ(β + ν)σ(α1)σ(β1)
= −1.

Furthermore:

L =
1√
a1A1

(
ia3m3 −

1

2
D

)
, D =

2ia1m3√
a1A1

− ζ(α)− ζ(β) + ζ(β + ν) + ζ(α+ ν).

The constants C1 and C2 satisfy the relation

C1C2 =
σ(ν)2

σ(α)σ(α+ ν)σ(β)σ(β + ν)
,

while C3 and C4 depend on C1 and C2:

C3 = −
√
a1A1

ia1C2

σ(ν)2

σ(α)σ(β)σ(α1 + ν)σ(β1 + ν)
,

C4 =

√
a1A1

ia1C1

σ(ν)2

σ(α1)σ(β1)σ(α+ ν)σ(β + ν)
.

Proof. Considering the first equation in (6.72) and dividing both sides by P1, we obtain

d

dt
logP1 =

Ṗ1

P1
= −ia1p3

M1

P1
+ ia3m3. (6.81)

Utilizing integrals I1 and I2, we have

2(I2 −m3p3)

I1 − p2
3

=
P1M2 + P2M1

P1P2
=
M2

P2
+
M1

P1
. (6.82)

Taking the equation for p3 in eqs. of motion (6.72), it follows that

− 2i

a1

ṗ3

I1 − p2
3

=
P1M2 − P2M1

P1P2
=
M2

P2
− M1

P1
, (6.83)

leading to:

ia1p3
M1

P1
= ia1

p3(m3p3 − I2)

p2
3 − I1

+
p3ṗ3

p2
3 − I1

.

We will now express the right hand side in terms of ζ-functions. To simplify the first
part of the sum, we consider the function

φ(u) =
p3(m3p3 − I2)

p2
3 − I1

.



104 6 Integrable Cases of the Euler Equations on e(3)

The residue of φ at a singularity u is given by

R(u) := resuφ =
m3p3 − I2

2p′3
.

φ is a fourth order elliptic function of u and its four poles are the zeros of p2
3− I1. One

observes that, if p3 has a zero at α, then there must be another zero at −α−ν. Hence,
we may assume these four zeros inside one parallelogram of periods to be

α, β,−α− ν,−β − ν.

We determine the value of R at these zeros. For this aim we substitute each of them
into (6.73), which gives

ṗ3(u0)2 + a2
1(I2 −m3p3(u0)) = 0,

where u0 stands for one of the four zeros. Factoring the right hand side we obtain

(ṗ3(u0) + ia1(I2 −m3p3)) (ṗ3(u0)− ia1(I2 −m3p3)) = 0.

If u0 is a zero of one of these two factors, −u0 − ν must be a zero of the other factor,
since p3 remains invariant and ṗ3 changes sign under u→ −u− ν. Thus, we find

R(α) =

√
a1A1

2ia1
, R(−α−ν) = −

√
a1A1

2ia1
, R(β) =

√
a1A1

2ia1
, R(−β−ν) = −

√
a1A1

2ia1
.

Hence:

φ(u) =

√
a1A1

2ia1
(ζ(u− α) + ζ(u+ β)− ζ(u+ α+ ν)− ζ(u+ β + ν) +D),

with a constant D, which can be determined as

D =
2ia1m3√
a1A1

− ζ(α)− ζ(β) + ζ(β + ν) + ζ(α+ ν),

since φ(0) = m3.
We shift attention to the second part of the sum in (6.81). There we have

p2
3 − I1 = (p3 − p3(α)) (p3 − p3(β)) ,

which may written in terms of σ-functions using

ζ(u+ ν)− ζ(u)− ζ(a+ ν) + ζ(a) =
σ(ν)σ(u− a)σ(u+ a+ ν)

σ(u)σ(u+ ν)σ(a)σ(a+ ν)
, (6.84)

eventually leading to

p3p
′
3

p2
3 − I1

=
1

2
(ζ(u− α) + ζ(u+ α+ ν) + ζ(u− β) + ζ(u+ β + ν)− 2ζ(u)− 2ζ(u+ ν)) .

(6.85)
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Taking everything together and substituting into (6.81) we obtain

d

du
logP1 =

1√
a1A1

Ṗ1

P1
=

= ζ(u+ α+ ν) + ζ(u+ β + ν)− ζ(u)− ζ(u+ ν) +
1√
a1A1

(
ia3m3 −

1

2
D

)
,

which may now be integrated to

P1 = C1
σ(u+ α+ ν)σ(u+ β + ν)

σ(u)σ(u+ ν)
exp

(
1√
a1A1

(
ia3m3 −

1

2
D

)
u

)
. (6.86)

Repeating this procedure for P2 it is now easy to see that

P2 = C2
σ(u− α)σ(u− β)

σ(u)σ(u+ ν)
exp

(
− 1√

a1A1

(
ia3m3 −

1

2
D

)
u

)
. (6.87)

Since P1P2 = p2
3− I1 = (p3 − p3(α)) (p3 − p3(β)), one obtains with the help of formula

(6.84):

C1C2 =
σ(ν)2

σ(α)σ(α+ ν)σ(β)σ(β + ν)
.

Solutions for M1 and M2 are obtained in a different fashion. First, we consider the
zeros of A2 − p2

3. They can be set as

α1, β1,−α1 − ν,−β1 − ν,

and can be assumed to lie inside the same parallelogram of periods as α, β. From
(6.82), (6.83) there follows:

ia1P1M2 = ṗ3 + ia1(I2 −m3p3) =: Φ1, −ia1P2M1 = ṗ3 − ia1(I2 −m3p3) =: Φ2.

Two zeros of Φ1 must be −α−ν and −β−ν. Without loss of generality the remaining
two can, due to (6.75), be set as α1 and β1, because p3 remains invariant and ṗ3 changes
sign under u→ −u− ν. We use this information to write Φ1 in terms of σ-functions.
This yields

1√
a1A1

Φ1 =
σ(ν)2σ(u− α1)σ(u− β1)σ(u+ α+ ν)σ(u+ β + ν)

σ(α1)σ(β1)σ(α+ ν)σ(β + ν)σ(u)2σ(u+ ν)2
, (6.88)

because limu→0

(
u2Φ1

)
= 1/

√
a1A1. Similarly, we obtain:

1√
a1A1

Φ2 =
σ(ν)2σ(u− α)σ(u− β)σ(u+ α1 + ν)σ(u+ β1 + ν)

σ(α)σ(β)σ(α1 + ν)σ(β1 + ν)σ(u)2σ(u+ ν)2
. (6.89)

Since Φ1 and Φ2 are elliptic functions, there must hold

α+ β = α1 + β1.
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As we have limu→−ν
[
(u+ ν)2Φ1/2

]
= −
√
a1A1, we obtain one more condition:

σ(α1 + ν)σ(β1 + ν)σ(α)σ(β)

σ(α+ ν)σ(β + ν)σ(α1)σ(β1)
= −1.

Finally, using (6.89) and dividing by (6.87), we obtain

M1 = −
√
a1A1

ia1C2

σ(ν)2σ(u+ α1 + ν)σ(u+ β1 + ν)

σ(α)σ(β)σ(α1 + ν)σ(β1 + ν)σ(u)σ(u+ ν)
exp

(
1√
a1A1

(
ia3m3 −

1

2
D

)
u

)
,

and similarly:

M2 =

√
a1A1

ia1C1

σ(ν)2σ(u− α1)σ(u− β1)

σ(α1)σ(β1)σ(α+ ν)σ(β + ν)σ(u)σ(u+ ν)
exp

(
− 1√

a1A1

(
ia3m3 −

1

2
D

)
u

)
.

This concludes the proof.

6.4 HK type Discretization of the Kirchhoff System

6.4.1 Equations of Motion

Applying the Hirota-Kimura approach to (6.69), we obtain the following system of
equations:

m̃1 −m1 = ε(a3 − a1)(m̃2m3 +m2m̃3) + ε(b3 − b1)(p̃2p3 + p2p̃3),

m̃2 −m2 = ε(a1 − a3)(m̃1m3 +m1m̃3) + ε(b1 − b3)(p̃1p3 + p1p̃3),

m̃3 −m3 = 0,

p̃1 − p1 = εa3(p̃2m3 + p2m̃3)− εa1(p̃3m2 + p3m̃2),

p̃2 − p2 = εa1(p̃3m1 + p3m̃1)− εa3(p̃1m3 + p1m̃3),

p̃3 − p3 = εa1(p̃1m2 + p1m̃2)− εa1(p̃2m1 + p2m̃1). (6.90)

As usual, these equations define a birational map x̃ = f(x, ε), x = (m, p)T, reversible
the usual sense:

f−1(x, ε) = f(x,−ε).

We will refer to this map as dK. Obviously, m3 is a conserved quantity of dK.

6.4.2 HK Bases and Conserved Quantities

All HK bases presented in this section can easily be detected using (V). We start
their investigation by considering the following natural discretization of the Wronskian
relation (6.71) providing a “simple” conserved quantity.

Proposition 6.6. The set Γ = (m̃1p1 −m1p̃1, m̃2p2 −m2p̃2, m̃3p3 −m3p̃3) is a HK
basis for the map dK with dimKΓ(x) = 1. At each point x ∈ R6 we have: KΓ(x) =
[1 : 1 : −γ3], where γ3 is a conserved quantity of dK given by

γ3 =
∆0

a1∆1
, (6.91)



6.4 HK type Discretization of the Kirchhoff System 107

(a) m1,m2,m3 (b) p1, p2, p3

Figure 6.5: An orbit of the map dK with a1 = 1,a3 = 2,b1 = 2,b3 = 3 and ε = 1; initial
point (m0, p0) = (0.01, 0.02, 0.03, 0.04, 0.05, 0.06).

where

∆0 = a1 − 2a3 + ε2a2
1(a1 − a3)(m2

1 +m2
2) + ε2a1a3(b1 − b3)(p2

1 + p2
2), (6.92)

∆1 = 1 + ε2a3(a1 − a3)m2
3 + ε2a1(b1 − b3)p2

3. (6.93)

Proof. We let MAPLE compute the quantity

γ3 :=
(m̃1p1 −m1p̃1) + (m̃2p2 −m2p̃2)

(m̃3p3 −m3p̃3)
,

which results in (6.91) – an even function of ε and therefore a conserved quantity.

Interestingly enough, this same integral may also be obtained from another HK
basis:

Proposition 6.7. The set Φ0 = (m2
1 + m2

2, p
2
1 + p2

2, p
2
3, 1) is a HK Basis for the map

dK with dimKΦ0(x) = 1. The linear combination of these functions vanishing along
the orbits can be put as ∆0 − γ3a1∆1 = 0.

Proof. The statement of the proposition deals with the solution of a linear system of
equations consisting of

(c1(m2
1 +m2

2) + c2(p2
1 + p2

2) + c3p
2
3) ◦ f i(m, p, ε) = 1 (6.94)

for all i ∈ Z. We solve this system with i = −1, 0, 1 (numerically or symbolically), and
observe that the solutions satisfy a3(b1− b3)c1 = a1(a1− a3)c2. Then, we consider the
system of three equations for c1, c2, c3 consisting of the latter linear relation between
c1, c2, and of equations (6.94) for i = 0, 1. This system is easily solved symbolically
(by MAPLE), its unique solution can be put as in the proposition. Its components are
manifestly even functions of ε, thus conserved quantities.
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Proposition 6.8. a) The set Φ = (m2
1 + m2

2, p1m1 + p2m2, p
2
1 + p2

2, p
2
3, p3, 1) is a

HK basis for the map dK with dimKΦ(x) = 3.

b) The set Φ1 = (1, p3, p
2
3, m

2
1 + m2

2) is a HK basis for the map dK with a one-
dimensional null-space. At each point x ∈ R6 we have: KΦ1(x) = [c0 : c1 : c2 : −1].
The functions c0, c1, c2 are conserved quantities of the map dK, given by

c0 =
a1(m2

1 +m2
2)− (b1 − b3)p2

3 + ε2c
(4)
0 + ε4c

(6)
0 + ε6c

(8)
0 + ε8c

(10)
0

a1∆1∆2
,

c1 = −
2ε2a3(b1 − b3)m3

(
C2 + ε2c

(4)
1 + ε4c

(6)
1 + ε6c

(8)
1

)
∆1∆2

,

c2 =
(b1 − b3)

(
1 + ε2c

(2)
2 + ε4c

(4)
2 + ε6c

(6)
2 + ε8c

(8)
2

)
a1∆1∆2

,

where ∆1 is given in (6.93), and ∆2 = 1+ε2∆
(2)
2 +ε4∆

(4)
2 +ε6∆

(6)
2 ; coefficients c

(q)
k and

∆
(q)
2 are homogeneous polynomials of degree q in the phase variables. In particular:

c
(2)
2 = −2a2

1(m2
1 +m2

2)− (a2
1 − 2a1a3 + 3a2

3)m2
3 + a1(b1 − b3)(p2

1 + p2
2)− a1(b1 − b3)p2

3,

∆
(2)
2 = a2

1(m2
1 +m2

2) + (a2
1 − 3a1a3 + 3a2

3)m2
3 − a1(b1 − b3)(p2

1 + p2
2) + a1(b1 − b3)p2

3.

c) The set Φ2 = (1, p3, p
2
3,m1p1 + m2p2) is a HK basis for the map dK with a one-

dimensional null-space. At each point x ∈ R6 we have: KΦ2(x) = [d0 : d1 : d2 : −1].
The functions d0, d1, d2 are conserved quantities of the map dK, given by

d0 =
C2 + ε2d

(4)
0 + ε4d

(6)
0 + ε6d

(8)
0 + ε8d

(10)
0

∆1∆2
,

d1 =
m3

(
− 1 + ε2d

(2)
1 + ε4d

(4)
1 + ε6d

(6)
1 + ε8d

(8)
1

)
∆1∆2

,

d2 =
a1(b3 − b1)ε2

(
C2 + ε2c

(4)
1 + ε4c

(6)
1 + ε6c

(8)
1

)
∆1∆2

,

where d
(q)
k are homogeneous polynomials of degree q in the phase variables. In partic-

ular,

d
(2)
1 = −a1a3(m2

1+m2
2)−(a2

1−3a1a3+3a2
3)m2

3+(a1−a3)(b1−b3)(p2
1+p2

2)−3a1(b1−b3)p2
3.

d) The set Φ3 = (1, p3, p
2
3, p

2
1+p2

2) is a HK basis for the map dK with a one-dimensional

null-space. At each point x ∈ R6 we have: KΦ3(x) = [e0 : e1 : e2 : −1]. The functions
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e0, e1, e2 are conserved quantities of the map dK, given by

e0 =
C1 + ε2e

(4)
0 + ε4e

(6)
0 + ε6e

(8)
0 + ε8e

(10)
0

∆1∆2
,

e1 =
2ε2a1(a3 − a1)m3

(
C2 + ε2c

(4)
1 + ε4c

(6)
1 + ε6c

(8)
1

)
∆1∆2

,

e2 =
−1 + ε2e

(2)
2 + ε4e

(4)
2 + ε6e

(6)
6 + ε8e

(8)
8

∆1∆2
,

where e
(q)
k are polynomials of degree q in the phase variables. In particular,

e
(2)
2 = −a2

1(m2
1 +m2

2)− (2a2
1 − 4a1a3 + 3a2

3)m2
3 + 2a1(b1 − b3)(p2

1 + p2
2)− a1(b1 − b3)p2

3.

Proof. b) The statement deals with the solution of the linear system

(c0 + c1p3 + c2p
2
3) ◦ f i(m, p, ε) = (m2

1 +m2
2) ◦ f i(m, p, ε), (6.95)

for i ∈ Z. To prove the statement, we consider (6.95) for i = −1, 0, 1. This system is
solved symbolically using MAPLE giving explicit expressions for c0, c1, c2. With the
help of recipe (G) and SINGULAR we verify that c2 is a conserved quantity. Statement
b.) thus follows along the lines of Proposition 6.2.

c.) Again, we consider the linear system of equations

(d0 + d1p3 + d2p
2
3) ◦ f i(m, p, ε) = (m1p2 +m2p1) ◦ f i(m, p, ε) (6.96)

for i = −1, 0, 1. This system is solved symbolically using MAPLE for the unknowns
d0, d1, d2. One then observes that c1 and d2 satisfy the linear relation

2(a3 − a1)m3d2 = (b3 − b1)c1,

so that d2 must be a conserved quantity. Statement c.) thus follows from Proposition
6.2. Statement d.) is proven completely analogously with the help of the relation

a1(a3 − a3)c1 = a3(b3 − b1)e1.

For details regarding this computation the reader is referred to the MAPLE worksheets
on the attached CD-ROM.

Proposition 6.9. The map dK possesses an invariant volume form:

det
∂x̃

∂x
=
φ(x̃)

φ(x)
⇔ f∗ω = ω, ω =

dm1 ∧ dm2 ∧ dm3 ∧ dp1 ∧ dp2 ∧ dp3

φ(x)

with φ(x) = ∆2(x, ε).
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Proof. We write the map dK in matrix form:

f(m, p) = A−1(m, p, ε)(m, p)T .

Due to formula (4.4) we therefore have to show that

detA(m̃, p̃,−ε)φ(m, p) = detA(m, p, ε)φ(m̃, p̃)

holds. The size of the involved expressions excludes a simple minded direct computa-
tion. We therefore apply a Gröbner basis technique similar to the recipe (G). In par-
ticular, we reduce the polynomial P = detA(m̃, p̃,−ε)φ(m, p)− detA(m, p, ε)φ(m̃, p̃),
where p̃, m̃ have to be considered as independent variables, with respect to a Gröbner
basis generated by the equations defining the map dK. The result is that P indeed
reduces to zero. For details regarding this computation the reader is referred to the
MAPLE worksheets and SINGULAR programs on the attached CD-ROM.

As the map dK has an invariant volume form and n−2 independent first integrals,
it should hence be possible to construct a suitable Poisson structure using the known
contraction procedure outlined in Chapter 2, Section 2.4.5.

6.5 Solution of the Discrete Kirchhoff System

We now show how one can approach the explicit integration of a map of type dK.
Again, our focus will be more on the general layout of solutions and the methods
necessary for their discovery.

For this purpose we first apply the transformation

M1 = m1 + im2, M2 = m1 − im2, P1 = p1 + ip2, P2 = p1 − ip2,

to (6.90) and obtain the following system of difference equations:

P̃1 − P1 = −i ε
(
a1(p̃3M1 + p3M̃1)− a3m3(P1 + P̃1)

)
,

P̃2 − P2 = i ε
(
a1(p̃3M2 + p3M̃2)− a3m3(P2 + P̃2)

)
,

M̃1 −M1 = −i ε
(
(a3 − a1)m3(M1 + M̃1) + (b3 − b1)(p̃3P1 + p3P̃1)

)
,

M̃2 −M2 = i ε
(
(a3 − a1)m3(M2 + M̃2) + (b3 − b1)(p̃3P2 + p3P̃2)

)
,

p̃3 − p3 = −1
2 ia1ε

(
P̃1M2 + P1M̃2 − P̃2M1 − P2M̃1

)
,

m̃3 −m3 = 0.
(6.97)

The above system may be considered as an instance of the slightly more general system

P̃1 − P1 = α1ε(p̃3M1 + p3M̃1) + β1ε(P1 + P̃1),

P̃2 − P2 = −α1ε(p̃3M2 + p3M̃2)− β1ε(P2 + P̃2),

M̃1 −M1 = α2ε(p̃3P1 + p3P̃1) + β2ε(M1 + M̃1),

M̃2 −M2 = −α2ε(p̃3P2 + p3P̃2)− β2ε(M2 + M̃2),

p̃3 − p3 = αε(P̃1M2 + P1M̃2 − P̃2M1 − P2M̃1),

(6.98)
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by setting

α1 = −ia1, α2 = −i(b3 − b1), β1 = ia3m3, β2 = −i(a3 − a1)m3, 2α = −ia1.

For the sake of simplicity we restrict the following discussions to the treatment of sys-
tem (6.98) with α = 1. The birational map (P1,M1, P2,M2, p3) 7→ (P̃1, M̃1, P̃2, M̃2, p̃3)
obtained from solving eqs. (6.98) will be called dKC, where the letter C stands for
“complex”.

The known results regarding the integrability of the map dK carry over directly to
dKC. We summarize these facts in the following proposition:

Proposition 6.10. a) The set Φ = (M1M2, P1P2,M1P2 + P2M1, p
2
3, p3, 1) is a HK

basis for the map dK with dimKΦ(x) = 3.

b) The set Φ1 = (1, p3, p
2
3, P1P2) is a HK basis for the map dK with a one-

dimensional null-space. At each point x ∈ C5 we have: KΦ1(x) = [c0 : c1 : c2 : −1].
The functions c0, c1, c2 are independent conserved quantities of the map dKC.

c) The set Φ2 = (1, p3, p
2
3,M1M2) is a HK basis for the map dK with a one-

dimensional null-space. At each point x ∈ C5 we have: KΦ2(x) = [e0 : e1 : e2 : −1].
The functions e0, e1, e2 are conserved quantities of the map dKC.

d) The set Φ3 = (1, p3, p
2
3,M1P2 +P2M1) is a HK basis for the map dK with a one-

dimensional null-space. At each point x ∈ C5 we have: KΦ3(x) = [d0 : d1 : d2 : −1].
The functions d0, d1, d2 are conserved quantities of the map dKC.

e) The conserved quantities ci, ei and di satisfy the following relations:

β1α2c1 − β2α1e1 = 0, (6.99)

β1d2 − α1e1 = 0, (6.100)

(1− ε2β2β1)d2 + ε2α1α2d0 = 0, (6.101)

−1

2
α1α2 + α2c2 + (−α1α

2
2c0 + α1β

2
2e2)ε2 = 0 (6.102)

1

2
α1 + c2 +

1

2
(2α1α2c0 − α1β

2
2)ε2 + (β2

2α
2
1e0 − β2

2β
2
1c2)ε4 = 0, (6.103)

−2β1
3α2c2

2 − 2β1
3α2α1c2 + β1

2α1α2c2d1 + α1
3β1e1

2 (6.104)

+α2β1
2α1β2c2 − α1

3β2e1
2 + r

(2)
1 ε2 + r

(4)
2 ε4 = 0.

The polynomials r
(2q)
i read

r
(2)
1 = α2β1

4α1β2c2 − α1
3α2β1

2β2e0 + 2α1
2α2β1

3c2e0 + β1
2α1

3α2e0d1 − 2β1
5α2c2

2

−2α1
2α2β1

2β2c2e0 − β1
4α1α2c2d1 + 2β1

4α2β2c2
2,

r
(4)
2 = −4α1

2α2β1
4β2c2e0 + 2β1

6α2β2c2
2 + 2α1

4β2α2β1
2e0

2.

Proof. We consider the system of linear equations

(d0 + d1p3 + d2p
2
3) ◦ f i(m, p, ε) = (M1P2 + P2M1) ◦ f i(m, p, ε),
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with i = −1, 0, 1. It is easily solved using MAPLE giving the desired expressions for
d0, d1, d2. We observe that relation (6.101) holds. This proves statement d.) along the
lines of Proposition 6.2. Similarly, we let MAPLE compute the remaining conserved
quantities, considering the linear systems

(c0 + c1p3 + c2p
2
3) ◦ f i(m, p, ε) = (P1P2) ◦ f i(m, p, ε),

as well as
(e0 + e1p3 + e2p

2
3) ◦ f i(m, p, ε) = (M1M2) ◦ f i(m, p, ε),

for i = −1, 0, 1. We observe that relations (6.99) and (6.100) hold and verify using
exact evaluation of gradients that c0, c1, c2 are independent. Thus, statements b.)
and c.) follow again by Proposition 6.2. It remains to show that relations (6.102)-
(6.104) hold, but this is easily verified symbolically using MAPLE. The corresponding
worksheets relevant for this computation are found on the attached CD-ROM.

We briefly sketch how relations (6.102)-(6.104) have been discovered. Since we
have all explicit expressions at our disposal, we do not apply the PSLQ algorithm,
but rather rely on a two different methods. While relations (6.99)-(6.101) are easily
observed from their explicit expressions, identification of the remaining three relations
is more difficult. Relations (6.102) and (6.103) have been found by considering the
system of the five equations

A1c0(x0) +A2c2(x0) +A3e0(x0) +A4e2(x0) +A5 = 0, x0 ∈ S = {q1, q2, q3, q4, q5},

where qi are five randomly chosen points in Q6, which all lie on different orbits. Solving
this linear system for Ai symbolically using MAPLE, one finds that it admits a two
dimensional space of solutions. From this space one extracts two independent elements
giving (6.102) and (6.103).

Relation (6.104) is found using a different approach. One considers the integral
d1 = d1(M1,M2, P1, P2, p3) and observes that one can write it in terms of P1P2, M1M2

and M1P2 + P2M1, so that

d1 = R(P1P2,M1M2,M1P2 + P2M1),

where R is a rational function R. The arguments P1P2, M1M2, and M1P2 +P2M1 are
in turn expressed using integrals and p3:

P1P2 = c0 + c1p3 + c2p
2
3, (6.105)

M1M2 = e0 + e1p3 + e2p
2
3, (6.106)

M1P2 + P1M2 = d0 + d1p3 + d2p
2
3. (6.107)

This gives
d1 = R(c0, c1, c2, e0, e1, e2, d0, d1, d2, p3). (6.108)

Using (6.99)-(6.103) one can then eliminate five of the nine variables ci, ei, di from
(6.108). Solving (6.108) system for d1, all terms containing p3 cancel:

d1 = Q(c0, c1, c2, d1).
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This equation gives (6.104). Of course, all of the above computations should (and have
been) performed with MAPLE. For more details the reader is referred to the MAPLE
worksheets on the attached CD-ROM.

Recall that we were able to reduce the continuous Kirchhoff equations to a quadra-
ture of the form

ṗ2
3 = P4(p3), (6.109)

with a quartic polynomial P4 whose coefficients are expressed through integrals of
motion. In the discrete setting there holds an analogous statement.

Proposition 6.11. The component p3 of the solution of difference equations (6.98)
satisfies a relation of the type

P (p3, p̃3) = q0p
2
3p̃

2
3+q1p3p̃3(p3+p̃3)+q2(p2

3+p̃2
3)+q3p3p̃3+q4(p3+p̃3)+q5 = 0, (6.110)

coefficients of the biquadratic polynomial P being conserved quantities of dKC. In par-
ticular, there holds

q1 = 0.

Proof. Using eqs. of motion (6.98) we express the difference p̃3−p3 explicitly in terms
of the phase variables. One observes that the resulting expressions can in turn be
written in terms of P1P2, M1M2, M1P2 + P2M1, and M1P2 − P2M1:

p̃3 − p3 = R(p3, P1P2,M1M2,M1P2 + P1M2,M1P2 − P2M1),

where R is a rational function with numerator and denominator being linear in M1P2−
P2M1 (explicit expressions are too messy to be given here). The arguments P1P2,
M1M2, and M1P2 + P2M1 of R are in turn expressed using integrals and p3 by virtue
of (6.105)-(6.107), so that

p̃3 − p3 = R(c0, c1, c2, d0, d1, d2, e0, e1, e2, p3,M1P2 − P2M1).

We solve for M1P2 − P2M1 and obtain

M1P2 − P2M1 = Q(c0, c1, c2, d0, d1, d2, e0, e1, e2, p3, p̃3), (6.111)

with a suitable rational function Q. Since

Q2 = (M1P2 − P2M1)2 = (M1P2 + P2M1)2 − 4P1P2M1M2,

we obtain
Q2 − (M1P2 + P2M1)2 + 4P1P2M1M2 = 0, (6.112)

which only depends on integrals of motion and p3, p̃3 due to (6.111) and (6.105)-
(6.107). Using (6.99)-(6.104) one can then eliminate the six variables di, and ei from
(6.112). Remarkably, the remaining expression on the right hand side factors into two
terms, one depending on p3 only and the other one being the sought after symmetric
biquadratic relation among p3 and p̃3. These computations should be performed with
MAPLE. For details regarding this computation the reader is referred to the MAPLE
worksheets on the attached CD-ROM.
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From this theorem we can thus claim that p3 is a second order elliptic function
with two poles, which we may assume to be 0 and −ν. Hence,

p3(u) = ρ(ζ(u)− ζ(u+ ν) +A1), (6.113)

with constants ρ and A1. The corresponding invariants may be determined according
to the method outlined at the end of Chapter 3, Section (3.2). We continue with the
integration of the map dKC.

Theorem 6.8. Any solution of the map dKC has the form

P1(u) = C1
σ(u+ α+ ν)σ(u+ β + ν)

σ(u)σ(u+ ν)
K

1
2ε
u, (6.114)

P2(u) = C2
σ(u− α)σ(u− β)

σ(u)σ(u+ ν)
K−

1
2ε
u, (6.115)

M1(u) = C3
σ(u+ α1 + ν)σ(u+ β1 + ν)

σ(u)σ(u+ ν)
K

1
2ε
u, (6.116)

M2(u) = C4
σ(u− α1)σ(u− β1)

σ(u)σ(u+ ν)
K−

1
2ε
u, (6.117)

p3(u) = ρ

(
ζ(u)− ζ(u+ ν) +

1

2
ζ(ν − 2ε) +

1

2
ζ(ν + 2ε)

)
, (6.118)

where ρ and K are constants and α, β, −α − ν, −β − ν are defined as the zeros of
c0 + c1p3 + c2p

2
3, and α1, β1, −α1 − ν, −β1 − ν as those of d0 + d1p3 + d2p

2
3. The

constants Ci satisfy the relations (6.128), (6.129), (6.130), and (6.131). Furthermore,
there holds:

α+ β = α1 + β1.

The rest of this section is devoted to the proof of this theorem. Recall that the
crucial step during the integration of the continuous equations was to express the loga-
rithmic derivatives of Pi, Mi in terms of p3. For the discrete equations this corresponds
to expressing ratios of the type P̃i/Pi in terms of p3 and p̃3. Hence, we now investi-
gate the existence of bilinear HK-Bases. They are easily detected with the help of the
algorithms (N) and (V).

Proposition 6.12. a) The set Φ1 = (1, p3 + p̃3, p3p̃3, P1P̃2 + P̃1P2) is a HK basis
for the map dK with a one-dimensional null-space. At each point x ∈ C5 we have:
KΦ1(x) = [γ0 : γ1 : γ2 : −1]. The functions γ0, γ1, γ2 are conserved quantities of the
map dKC.

b) The set Φ2 = (1, p3 + p̃3, p3p̃3, P1P̃2− P̃1P2) is a HK basis for the map dK with a
one-dimensional null-space. At each point x ∈ C5 we have: KΦ2(x) = [δ0 : δ1 : δ2 : −1].
The functions δ0, δ1, δ2 are conserved quantities of the map dKC.

c) The set Φ3 = (1, p3 + p̃3, p3p̃3,M1M̃2 + M̃1M2) is a HK basis for the map dK
with a one-dimensional null-space. At each point x ∈ C5 we have: KΦ3(x) = [κ0 : κ1 :
κ2 : −1]. The functions κ0, κ1, κ2 are conserved quantities of the map dKC.
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d) The set Φ3 = (1, p3 + p̃3, p3p̃3,M1M̃2 − M̃1M2) is a HK basis for the map dK
with a one-dimensional null-space. At each point x ∈ C5 we have: KΦ3(x) = [λ0 : λ1 :
λ2 : −1]. The functions λ0, λ1, λ2 are conserved quantities of the map dKC.

Proof. To prove statement a.) we employ the technique used in the proof of Propo-
sition 6.11. We consider P1P̃2 + P̃1P2 and write it explicitly in terms of the phase
variables using eqs. of motion (6.98). One observes that the resulting expression can
be expressed in terms of P1P2, M1M2, M1P2 + P2M1, and M1P2 − P2M1. We write
the first three in terms of the conserved quantities and substitute M1P2 − P2M1 with
(6.111) as obtained in Proposition 6.11. After expressing di and ei through ci all terms
that are non-symmetric w.r.t. to the interchange p3 ↔ p̃3 cancel, so that we are left
with the eq.

γ0 + γ1(p3 + p̃3) + γ2p3p̃3 = P1P̃2 + P̃1P2,

where the coefficients γi are conserved quantities which are expressed in terms of ci.
Statements b.) through d.) are proven completely analogously. Again, we note that
these computations should be performed with MAPLE. Relevant worksheets can be
found on the attached CD-ROM.

Since there holds

γ0 + γ1(p3 + p̃3) + γ2p3p̃3 = P1P̃2 + P̃1P2,

as well as
δ0 + δ1(p3 + p̃3) + δ2p3p̃3 = P1P̃2 − P̃1P2,

we obtain by subtraction of these two equations and subsequent division by P1P2 the
following relation:

P̃1

P1
=
V0 + V1(p3 + p̃3) + V2p3p̃3

c0 + c1p3 + c2p2
3

, (6.119)

Similarly, we obtain
P̃2

P2
=
V 0 + V 1(p3 + p̃3) + V 2p3p̃3

c0 + c1p3 + c2p2
3

, (6.120)

with constants Vi,V i depending on integrals of motion. From (6.119) we see that

P̃1

P1˜ =
V0 + V1(p3 + p̃3) + V2p3p̃3

V0 + V1(p3 + p3˜ ) + V2p3 p3˜ . (6.121)

We have thus shown that P̃1/P1˜ is an elliptic function. We now deduce the order of
this function.

Proposition 6.13. The functions P̃i/Pi˜ and M̃i/Mi˜ are elliptic functions of order 4.

Proof. We show using MAPLE that, for some generically chosen rational initial data,

the pairs ( ˜̃Pi/Pi, P̃i/Pi˜ ) do not lie on a curve of bidegree (2, 2) or (3, 3). This proves

that the order of P̃1/P1˜ is at least four. The same holds for M̃i/Mi˜ .



116 6 Integrable Cases of the Euler Equations on e(3)

Furthermore, it follows from (6.121) that the maximal order of ˜̃Pi/Pi is 6. To show

that the only possible order of ˜̃Pi/Pi is 4, we write

P̃1

P1˜ =
P̃1P̃2

P1˜ P2˜
P2˜̃
P2

= F (p3, p̃3)
P2˜̃
P2

,

where F is an elliptic function of order 8, since P1P2 = c0 + c1p3 + c2p
2
3 is an elliptic

function of order 4, as p3 is an elliptic function of order 2. If the order of P̃1/P1˜ was 6,

then P2˜ /P̃2 would be an elliptic function of order two. This possibility can be excluded,

as we have previously shown that P2˜ /P̃2 must have at least order 4. Analogously, one

excludes the possibility that P̃1/P1˜ has order 5. Hence, P̃1/P1˜ is an elliptic function
of order 4. The same arguments hold for the remaining variables.

Before proceeding to the last step of the integration we observe that under the
transformation ε → −ε, we have P̃1/P1˜ = W → 1/W , so that poles and zeros of W
are exchanged under the change of sign of ε. This implies

P̃1

P1˜ = K1
σ(u− v1 − 2ε)σ(u− v2 − 2ε)σ(u− 2ε)σ(u+ ν − 2ε)

σ(u− v1 + 2ε)σ(u− v2 + 2ε)σ(u+ 2ε)σ(u+ ν + 2ε)
,

with some complex numbers v1, v2, K1 depending on integrals of motion. One may
assume that the solutions of dKC are meromorphic, quasiperiodic functions. Under
these analyticity assumptions on P1, the above equation functional equation has the
solution

P1 = C1
σ(u− v1)σ(u− v2)

σ(u)σ(u+ ν)
exp(Lu),

where C1 is an arbitrary constant and L is determined as L = 1
2ε logK1 (see [37, 38]).

This solution is unique up to a multiplication by an entire periodic function φ which
we may simply assume to be constant, as this would merely effect a rescaling of the
parameters in the equations of motion. Our solution for P1 is hence of the form

P1 = C1
σ(u− v1)σ(u− v2)

σ(u)σ(u+ ν)
K

1
2ε
u

1 .

Functions of this form are called double Bloch functions in [37]. Similarly, one obtains
explicit solutions for the remaining variables. In total, this gives

P1(u) = C1
σ(u− v1)σ(u− v2)

σ(u)σ(u+ ν)
K

1
2ε
u

1 , (6.122)

P2(u) = C2
σ(u− v3)σ(u− v4)

σ(u)σ(u+ ν)
K

1
2ε
u

2 , (6.123)

M1(u) = C3
σ(u− w1)σ(u− w2)

σ(u)σ(u+ ν)
K

1
2ε
u

3 , (6.124)

M2(u) = C4
σ(u− w3)σ(u− w4)

σ(u)σ(u+ ν)
K

1
2ε
u

4 , (6.125)

p3(u) = ρ(ζ(u)− ζ(u+ ν) +A1), (6.126)
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with suitable zeros vi, wi and constants Ci, Ki. In particular, due to the relations
(6.119) and (6.120), one can define vi as the four zeros of the function elliptic function
c0 + c1p3 + c2p

2
3, such that v1 and v2 are not zeros of V0 + V1(p3 + p̃3) + V2p3p̃3.

Completely analogously, wi are defined as the four zeros of d0 + d1p3 + d2p
2
3.

We now characterize the remaining constants appearing in these solutions and also
deduce further relations satisfied by vi and wi. From relations (6.105)-(6.107) it follows
that P1P2, M1M2, and M1P2 + M2P1 must be elliptic functions. Hence, there must
hold

K1 = 1/K2, K3 = 1/K4.

From (6.111) it follows together with (6.107) that M1P2 and M2P1 must be elliptic
functions as well. This implies that K2 = 1/K3, so that

K1 = K, K2 = 1/K, K3 = K, K4 = 1/K.

To find A1, we consider the symmetric biquadratic relation satisfied by p3:

p2
3p̃

2
3 +

q2

q0
(p2

3 + p̃2
3) +

q3

q0
p3p̃3 +

q4

q0
(p3 + p̃3) +

q5

q0
= 0.

We compute the Laurent expansions of this relation around the poles 0, −2ε, −ν, and
−ν − 2ε. Here, we get we get(

ρ4 (ζ(ν + 2ε)−A1 − ζ(2ε))2 + q2
q0
ρ2
)

u2
+ ... = 0,(

ρ4 (ζ(ν − 2ε)−A1 + ζ(2ε))2 + q2
q0
ρ2
)

(u+ 2ε)2
+ ... = 0,(

ρ4 (ζ(ν − 2ε)−A1 + ζ(2ε))2 − q2
q0
ρ2
)

(u+ ν)2
+ ... = 0,(

ρ4 (ζ(ν + 2ε)−A1 − ζ(2ε))2 + q2
q0
ρ2
)

(u+ ν + 2ε)2
+ ... = 0,

so that

A1 =
1

2
ζ(ν − 2ε) +

1

2
ζ(ν + 2ε). (6.127)

Zeros vi of P1P2 = c0 + c1p3 + c2p
2
3 may again1 be taken as

v1 = −α− ν, v2 = −β − ν, v3 = α, v4 = β.

Similarly, zeros wi of M1M2 = d0 + d1p3 + d2p
2
3 can be assumed as

w1 = −α1 − ν, w2 = −β1 − ν, w3 = α1, v4 = β1,

1This should be compared to the solution of the continuous equations.
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such that they lie in the same parallelogram of periods as the previous ones. The
ellipticity M1P2 and M2P1 then implies that

α+ β = α1 + β1.

As we have

P1P2 = c0 + c1p3 + c2p
2
3 = c2(p3 − p3(α))(p3 − p3(β)),

as well as

M1M2 = d0 + d1p3 + d2p
2
3 = d2(p3 − p3(α1))(p3 − p3(β1)),

we obtain with the help of formula (6.84) the following two conditions:

c2ρ
2 =

C1C2

σ(ν)2
σ(α)σ(β)σ(α+ ν)σ(β + ν), (6.128)

d2ρ
2 =

C3C4

σ(ν)2
σ(α1)σ(β1)σ(α1 + ν)σ(β1 + ν), . (6.129)

Finally, we consider the principal parts of P1M2 +P2M1 = e0 +e1p3 +e2p
2
3. Computing

the Laurent expansion around the poles u = 0 and u = −ν and comparing the terms
at 1/u2 and 1/(u+ ν)2, we get two more conditions:

e2ρ
2 =

C1C4

σ(ν)2
σ(α)σ(β)σ(α1 + ν)σ(β1 + ν) (6.130)

+
C2C3

σ(ν)2
σ(α+ ν)σ(β + ν)σ(α1)σ(β1),

e2ρ
2 =

C1C4

σ(ν)2
σ(α+ ν)σ(β + ν)σ(α1)σ(β1) (6.131)

+
C2C3

σ(ν)2
σ(α)σ(β)σ(α1 + ν)σ(β1 + ν).

This concludes the proof of Theorem 6.8.

6.6 Lagrange Top

The Lagrange top was the second integrable system, after Euler top, to which the
Hirota-Kimura discretization was successfully applied [35]. To complete the discussion
of the HK type discretizations of the Kirchhoff Equations, we now reproduce and
re-derive here the results of that paper, and also add some new results.

The equations of motion of the Lagrange top are also of Kirchhoff type. The
Hamilton function of the Lagrange top is given by H = 1

2H1, where

H1 = m2
1 +m2

2 + αm2
3 + 2γp3. (6.132)
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Thus, equations of motion of LT read

ṁ1 = (α− 1)m2m3 + γp2,

ṁ2 = (1− α)m1m3 − γp1,

ṁ3 = 0,

ṗ1 = αp2m3 − p3m2,

ṗ2 = p3m1 − αp1m3,

ṗ3 = p1m2 − p2m1. (6.133)

It follows immediately that the fourth integral of motion is simply

H2 = m3. (6.134)

Traditionally, the explicit integration of the LT in terms of elliptic functions starts with
the following observation: the component p3 of the solution satisfies the differential
equation

ṗ2
3 = P3(p3) (6.135)

with a cubic polynomial P3 whose coefficients are expressed through integrals of mo-
tion:

P3(p3) = (H1 − αm2
3 − 2γp3)(C1 − p2

3)− (C2 −m3p3)2.

We mention also the following Wronskian relation which follows easily from equa-
tions of motion:

(ṁ1p1 −m1ṗ1) + (ṁ2p2 −m2ṗ2) + (2α− 1)(ṁ3p3 −m3ṗ3) = 0. (6.136)

Applying the Hirota-Kimura discretization scheme to equations (6.133), we obtain
the following discrete system:

m̃1 −m1 = ε(α− 1)(m̃2m3 +m2m̃3) + εγ(p2 + p̃2)

m̃2 −m2 = ε(1− α)(m̃1m3 +m1m̃3)− εγ(p1 + p̃1)

m̃3 −m3 = 0

p̃1 − p1 = εα(p2m̃3 + p̃2m3)− ε(p3m̃2 + p̃3m2)

p̃2 − p2 = ε(p3m̃1 + p̃3m1)− εα(p1m̃3 + p̃1m3)

p̃3 − p3 = ε(p1m̃2 + p̃1m2 − p2m̃1 − p̃2m1) (6.137)

As usual, this can be solved for (m̃, p̃), thus yielding the reversible and birational map
x 7→ x̃ = f(x, ε) = A−1(x, ε)(I + εB)x, where x = (m1,m2,m3, p1, p2, p3)T, and

A(x, ε) =



1 ε(1− α)m3 ε(1− α)m2 0 0 0
−ε(1− α)m3 1 −ε(1− α)m1 0 0 0

0 0 1 0 0 0
0 εp3 −εαp2 1 −εαm3 εm2

−εp3 0 εαp1 εαm3 1 −εm1

εp2 −εp1 0 −εm2 εm1 1

− εB,
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B =



0 0 0 0 γ 0
0 0 0 −γ 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

This map will be called dLT in the sequel. Obviously, m3 serves as a conserved
quantity for dLT. The remaining three conserved quantities can be found with the
help of the HK bases approach. A simple conserved quantity can be found from the
following statement which serves as a natural discretization of the Wronskian relation
(6.136).

Proposition 6.14. The set Γ = (m̃1p1 − m1p̃1, m̃2p2 − m2p̃2, m̃3p3 − m3p̃3) is a
HK basis for the map dLT with dimKΓ(x) = 1. At each point x ∈ R6 we have:
KΓ(x) = [1 : 1 : b3], where b3 is a conserved quantity of dLT given by

b3 =
(2α− 1)m3 + ε2(α− 1)m3(m2

1 +m2
2) + ε2γ(m1p1 +m2p2)

m3∆1
, (6.138)

where
∆1 = 1 + ε2α(1− α)m2

3 − ε2γp3. (6.139)

Proof. A straightforward computation with MAPLE of the quantity

b3 := −(m̃1p1 −m1p̃1) + (m̃2p2 −m2p̃2)

(m̃3p3 −m3p̃3)

leads to the value (6.138). It is an even function of ε and therefore a conserved quantity.

Further integrals of motion were found by Hirota and Kimura. We reproduce here
their results with new simplified proofs.

Proposition 6.15. [35]
a) The set Φ = (m2

1 + m2
2, p1m1 + p2m2, p

2
1 + p2

2, p
2
3, p3, 1) is a HK basis for the

map dLT with dimKΦ(x) = 3.

b) The set Φ1 = (1, p3, p
2
3, m

2
1 + m2

2) is a HK basis for the map dLT with a one-
dimensional null-space. At each point x ∈ R6 we have: KΦ1(x) = [c0 : c1 : c2 : −1].
The functions c0, c1, c2 are conserved quantities of the map dLT, given by

c0 =
m2

1 +m2
2 + 2γp3 + ε2c

(4)
0 + ε4c

(6)
0 + ε6c

(8)
0 + ε8c

(10)
0

∆1∆2
,

c1 = −
2γ
(

1− ε2α(1− α)m2
3

)(
1 + ε2c

(2)
2 + ε4c

(4)
2 + ε6c

(6)
2

)
∆1∆2

,

c2 = −
ε2γ2

(
1 + ε2c

(2)
2 + ε4c

(4)
2 + ε6c

(6)
2

)
∆1∆2

.
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Here ∆1 is given in (6.139), and ∆2 = 1 + ε2∆
(2)
2 + ε4∆

(4)
2 + ε6∆

(6)
2 ; coefficients ∆(q)

and c
(q)
k are polynomials of degree q in the phase variables. In particular:

c
(2)
2 = m2

1 +m2
2 + (1− 2α+ 2α2)m2

3 − 2γp3,

∆
(2)
2 = m2

1 +m2
2 + (1− 3α+ 3α2)m2

3 − γp3.

c) The set Φ2 = (1, p3, p
2
3, m1p1 +m2p2) is a HK basis for the map dLT with a one-

dimensional null-space. At each point x ∈ R6 we have: KΦ2(x) = [d0 : d1 : d2 : −1].
The functions d0, d1, d2 are conserved quantities of the map dLT, given by

d0 =
m1p1 +m2p2 +m3p3 + ε2d

(4)
0 + ε4d

(6)
0 + ε6d

(8)
0 + ε8d

(10)
0

∆1∆2
,

d1 = −m3 + ε2d
(3)
1 + ε4d

(5)
1 + ε6d

(7)
1 + ε8d

(9)
1

∆1∆2
,

d2 = −
ε2γ(1− α)m3

(
1 + ε2c

(2)
2 + ε4c

(4)
2 + ε6c

(6)
2

)
∆1∆2

,

where d
(q)
k are polynomials of degree q in the phase variables. In particular,

d
(3)
1 = γ(m1p1 +m2p2)− γ(3− 2α)m3p3 + αm3(m2

1 +m2
2) + (1− 3α+ 3α2)m3

3.

d) The set Φ3 = (1, p3, p
2
3, p

2
1 + p2

2) is a HK basis for the map dLT with a one-
dimensional null-space. At each point x ∈ R6 we have: KΦ3(x) = [e0 : e1 : e2 : −1].
The functions e0, e1, e2 are conserved quantities of the map dLT, given by

e0 =
p2

1 + p2
2 + p2

3 + ε2e
(4)
0 + ε4e

(6)
0 + ε6e

(8)
0 + ε8e

(10)
0

∆1∆2
,

e1 = −
2ε2
(
e

(3)
1 + ε2e

(5)
1 + ε4e

(7)
1 + ε6e

(9)
1

)
∆1∆2

,

e2 = −

(
1 + ε2(1− α)2m2

3

)(
1 + ε2c

(2)
2 + ε4c

(4)
2 + ε6c

(6)
2

)
∆1∆2

,

where e
(q)
k are polynomials of degree q in the phase variables. In particular,

e
(3)
1 = γ(p2

1 + p2
2 + p2

3)− (1− α)m3(m1p1 +m2p2 +m3p3).

Proof. The proof is parallel to that of Proposition 6.8. All statements follow by Propo-
sition 6.2 with the help of the three linear relations

1

2
γε2c1 =

(
1− ε2α(1− α)m2

3

)
c2, (6.140)

γd2 = (1− α)m3c2, (6.141)

ε2γ2e2 =
(

1 + ε2(1− α)2m2
3

)
c2. (6.142)



122 6 Integrable Cases of the Euler Equations on e(3)

We note that for α = 1 the integrals d0, d1, d2 simplify to

d0 =
m1p1 +m2p2 +m3p3

1− ε2γp3
, d1 = −m3 + ε2γ(m1p1 +m2p2)

1− ε2γp3
, d2 = 0. (6.143)

It is possible to find a further simple, in fact polynomial, integral for the map dLT.

Proposition 6.16. [35] The function

F = m2
1 +m2

2 + 2γp3 − ε2
(
(1− α)m3m1 + γp1

)2 − ε2((1− α)m3m2 + γp2

)2
.

is a conserved quantity for the map dLT.

Proof. Setting

C = 1− ε2(1− α)2m2
3, D = −2ε2γ(1− α)m3, E = −ε2γ2,

one can check that Cc1+Dd1+Ee1 = 0 and Cc2+Dd2+Ee2 = −2γ. This yields for the
conserved quantity F = Cc0 +Dd0 +Ee0 the expression given in the proposition.

Considering the leading terms of the power expansions in ε, one sees immediately
that the integrals c0, d0, e0, and m3 are functionally independent. Using exact evalua-
tion of gradients we can also verify independence of other sets of integrals. It turns out
that for α 6= 1 each one of the quadruples {d0, d1, d2,m3} and {e0, e1, e2,m3} consists
of independent integrals.

A direct “bilinearization” of the HK bases of Proposition 6.15 provides us with an
alternative source of integrals of motion:

Experimental Result 6.3. The set

Ψ = (m1m̃1 +m2m̃2, p1m̃1 + p̃1m1 + p2m̃2 + p̃2m2, p1p̃1 + p2p̃2, p3p̃3, p3 + p̃3, 1)

is a HK basis for the map dLT with dimKΨ(x) = 3. Each of the following subsets of
Ψ,

Ψ1 = (1, p3 + p̃3, p3p̃3, m1m̃1 +m2m̃2),

Ψ2 = (1, p3 + p̃3, p3p̃3, m1p̃1 + m̃1p1 +m2p̃2 + m̃2p2),

Ψ3 = (1, p3 + p̃3, p3p̃3, p1p̃1 + p2p̃2),

is a HK basis with a one-dimensional null-space.

Concerning solutions of dLT as functions of the (discrete) time t, the crucial result is
given in the following statement which should be considered as the proper discretization
of the differential equation (6.135).

Proposition 6.17. [35] The component p3 of the solution of difference equations
(6.137) satisfies a relation of the type

Q(p3, p̃3) = q0p
2
3p̃

2
3 + q1p3p̃3(p3 + p̃3) + q2(p2

3 + p̃2
3) + q3p3p̃3 + q4(p3 + p̃3) + q5 = 0,

coefficients of the biquadratic polynomial Q being conserved quantities of dLT. Hence,
p3(t) is an elliptic function of order 2.
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Proof. Completely analogous to the proof of Proposition 6.11.

Also, the map dLT admits an invariant Poisson structure, we have the following
statement.

Proposition 6.18. The map dLT possesses an invariant volume form:

det
∂x̃

∂x
=
φ(x̃)

φ(x)
⇔ f∗ω = ω, ω =

dm1 ∧ dm2 ∧ dm3 ∧ dp1 ∧ dp2 ∧ dp3

φ(x)

with φ(x) = ∆2(x, ε).

Proof. The proof is parallel to that of Proposition 6.9.

Again, we note that one could use this result in order to construct an invariant
Poisson structure for dLT.
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Conclusion and Future Perspectives

We now conclude this thesis by summarizing its main results. First, we describe the
findings of this thesis from a more general point of view:

1. The HK type discretization scheme produces an impressive number of new in-
tegrable birational maps. Integrability for these maps is characterized by the
existence of a sufficient number of conserved quantities, invariant volume forms,
and HK bases which serve as discrete counterparts to the known invariance re-
lations of the continuous time systems.

2. We have developed a set of experimental tools together with a systematic ap-
proach which allows for efficient integrability detection of birational maps, as
well as discovery of their conserved quantities and more general invariance re-
lations formulated in the general framework of HK bases. The most important
tools are the algorithms (N) and (V). Usage of these algorithms simplifies the
discovery of HK bases and conserved quantities and also the derivation of explicit
solutions.

3. It has been developed a novel methodology for finding explicit solutions for bira-
tional maps, provided solutions are expressed in terms of elliptic functions. This
approach does not require the knowledge of additional features (attributes) of
integrable systems like Lax pairs, bi-Hamiltonian structures or similar.This can
be seen as modern analog to the classical approach of solving integrable systems
in terms of elliptic functions.

4. Furthermore, in the form of the recipes described in Chapter 2, there now exists
a methodology based on specialized symbolic computational techniques which
allow for rigorous proofs of integrability, originally found via (N) and (V). It
is thus possible to tackle the inherent complexity of discrete integrable systems
using clever application of symbolic computation.

The more concrete results of this thesis are the following:

1. The HK type discretizations of the three and four-dimensional periodic Volterra
chains are integrable in the sense that they admit N − 1 independent conserved
quantities, possess invariant volume forms and may be integrated exactly in terms
of elliptic functions.

2. The HK type discretizations of the Lagrange Top, the Kirchhoff System and
the Clebsch System are integrable in the sense that they admit 4 independent
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conserved quantities and possess invariant volume forms. In the case of the
Clebsch system, the rigorous proof of this result required heavy usage of the
techniques outlined in Chapter 2.

3. Moreover, for the HK type discretization of the Kirchhoff System, it has been
possible to derive explicit solutions in terms of double-Bloch functions.

4. The original results by Hirota and Kimura regarding the Lagrange Top [35] have
been rederived and proven rigorously.

5. Using numerical computation we have obtained evidence that several of the HK
type discretizations are most likely not integrable.

Since it has become evident, that not all of the HK type discretizations are inte-
grable, one wonders as to where this behavior originates from. Currently there exists
no satisfying solution to this problem. Of course, one might argue that the form of the
difference equations obtained via the HK bilinear approach simply resembles addition
theorems of elliptic or hyperelliptic functions. Yet, the sheer number of integrable
example of the HK type discretizations shows that this answer is unsatisfactory and
suggests that there exist undiscovered structures which could help explaining this be-
havior. This work should hence be seen as a first step towards a demystification of
this situation.

Although we have encountered a number of new and interesting results in this
work, there is the need for further study of the integrability properties of the HK type
discretizations. Future research could for instance follow some of the following paths:

1. One possible path could be to adapt the methods from Kowalewski-Painlevè
Analysis. By studying suitable series expansions of the solutions of the equations
of the type

x̃− x = εQ(x̃, x) + εB(x̃+ x) + εC

it might be possible to deduce neccessary conditions for the integrability of the
HK type discretizations.

2. The study of the singular sets of birational mappings obtained via the HK type
discretization scheme has already given insight into the existence of invariant
volume forms. A more general study of the geometry of these sets could also
prove useful during the uncovering of other integrable structures.

3. Also, it appears worthwhile to study the question of how the method of obtaining
explicit solutions in terms of elliptic functions for some HK type discretizations
could be adopted to the case where solutions are most likely given by hyperel-
liptic functions. The continuous time Clebsch System is, for instance, explicitly
solvable in terms of genus 2 theta functions. The findings of this thesis suggest
that this is also true for the HK type discretization of the Clebsch System.
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4. More generally, the success of the application of the algorithm (V) shows that
there might be the opportunity to further refine the methods of computing in-
variants of discrete dynamical systems given by birational maps by considering
more links to commutative algebra and invariant theory.

In conclusion, it seems apt to claim that the HK type discretizations are interesting
mathematical objects which deserve further study and attention by experts acquainted
with the many mathematical subjects involved in the study of integrable systems.



Appendix A

MAPLE Session Illustrating the Application of

the Algorithm (V)

The following MAPLE session demonstrates the usage of the algorithm (V) in the
case of the HK-type discretization of the Euler top. The computation of the Gröbner
bases is done using algorithms described in [41] and [20]. MAPLE already includes all
necessary implementations starting from version 11.

First, we load the required packages.
> restart:
> with(LinearAlgebra):
> with(PolynomialIdeals):

Set the dimension of phase space:

> N:=3;

Define the continuous equations:

> f_q := (x,alpha) -> Vector([ (alpha[3]-alpha[2])*x[2]*x[3],
> (alpha[1]-alpha[3])*x[3]*x[1],
> (alpha[2]-alpha[1])*x[1]*x[2] ]):
> f_b := (x,beta) -> Vector([ 0,0,0]):

Set up the corresponding Hirota-Kimura map:

> F_HK:=proc(x,alpha,beta,epsilon) local eq,xx,X,f_,i,sol;global N;
> eq:={};
> xx:=’xx’;
> X:=Vector(N,symbol=xx);
> f_:=f_q(X+x,alpha)-f_q(x,alpha)-f_q(X,alpha)+f_b(X+x,beta);
> for i from 1 to N do
> eq := eq union {X[i]-x[i] = epsilon*(f_[i])};
> end;
> sol:=solve(eq,{seq(xx[i],i=1..N)});
> assign(sol);
> return Vector([seq(xx[i],i=1..N)]);
> end proc:

N := 3

Use m = 10 iterates.

> m:=10:

Set the initial data and parameters.

i



ii A MAPLE Session Illustrating the Application of the Algorithm (V)

> alpha:=[1,7,6]:
> beta:=[]:
> f:=[]:
> x:=Vector([1,2,3]):

Iterate the map.
> for i from 1 to m do
> f := [op(f), [seq(x[i],i=1..3)]];
> x:=F_HK(x,alpha,beta,1);;
> end:

Compute the vanishing ideal and inspect the number of terms of its generators.
The resulting list is a candidate for a basis of I(O(x0)), where x0 = (1, 2, 3).

> vars:=[X1,X2,X3]:
> V:=VanishingIdeal(f[1..m)],vars,tdeg(seq(vars[i],i=1..nops(vars))),5,0):
> g:=Generators(V):
> hk:=[]:
> for i from 1 to nops(g) do
> if ( nops(g[i]) < m ) then hk:=[op(hk),g[i]]; end;
> end:
> hk;

[−3 + 372 X1 2 − 41 X3 2,−39 + 372 X2 2 − 161 X3 2]

Similarly, we can look for other invariance relations. In particular, we now look
for the symmetric biquadratic curves for the pairs (x1, x̃1).

> m:=10:
> alpha:=[1,7,6]:
> beta:=[]:
> f:=[]:
> x:=Vector([1,2,3]):
> for i from 1 to m do
> F:=F_HK(x,alpha,beta,1);
> f := [op(f), [x[1],F[1]]];
> x:=F;
> end:
> vars:=[X1,F1]:
> V:=VanishingIdeal(f[1..m)],vars,tdeg(seq(vars[i],i=1..nops(vars))),5,0):
> g:=Generators(V):
> hk:=[]:
> for i from 1 to nops(g) do
> if ( nops(g[i]) < m ) then hk:=[op(hk),g[i]]; end;
> end:
> hk;

[−9 + 59892 X1 2F1 2 + 80 X1 F1 − 484 X1 2 − 484 F1 2]



Appendix B

The PSLQ Algorithm

Another tool which we have used in this thesis and which belongs to the standard
”tools of the trade” in experimental mathematics is the PSLQ algorithm [4,21]. It was
invented by Bailey and Ferguson and has successfully been used for the discovery of a
lot of beautiful results. One of these results for instance is the BPP formula

π =

∞∑
n=0

1

16n

(
4

8n+ 1
− 2

8n+ 4
− 1

8n+ 5
− 1

8n+ 6

)
which spawns an algorithm for the computation of the n-th hexadecimal digit of π
without knowing the n− 1 digits before [11].

Let us shortly sketch the main features of the PSLQ algorithm. Given a set of
n real numbers xi we are interested in the question whether there exists an integer
relation among the xi, that is we want to know whether there exist n numbers ai ∈ Z
such that

n∑
i=0

aixi = 0

holds. The PSLQ Algorithm can be used to find such numbers ai. It requires as input
a vector of n high precision (usually around several hundred digits) floating point
numbers xi. The algorithm always terminates after a number of steps bounded by
a polynomial in n. Its output is a vector of n integer numbers ai which either are
a candidate for an integer relation or an ”upper bound” for the existence of a linear
relation, i.e. the meaning of the output ai is that there are no integer relations with
numbers whose absolute value is less than those in the output. Since the algorithm is
based on computations which are not exact, the user has to confirm using a rigorous
proof that the output is an integer relation for the numbers xi indeed.

As mentioned, the above formula for π was discovered with the help of the PSLQ
algorithm. Here, the PSLQ algorithm was run with the input being the vector

[π, x1, x2, x3, x4, x5, x6, x7],

where

xi =

∞∑
n=0

1

16n(8n+ j)
,

which, together with π, were evaluated numerically up to several hundred digits. The
output of the PSLQ algorithm then read

[1,−4, 0, 0, 2, 1, 1, 0],

iii
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which suggested the above formula. This result was later proven rigorously by Bailey,
Borwein and Plouffe [11].

In the following we now show, how one can use MAPLE and the PSLQ algorithm
in order to identify a linear relation between two functions. As a concrete example we
take the integrals of motion c1 and c2 from Theorem 6.3.

First, we load the required package.

> restart;
> with(IntegerRelations):

We set up the two functions c1 and c2:

> c1:=(1+epsilon^2*(omega_1-omega_2)*p_2^2+
> epsilon^2*(omega_1-omega_3)*p_3^2)/(p_1^2+p_2^2+p_3^2);
> c2:=(1+epsilon^2*(omega_2-omega_1)*p_1^2+
> epsilon^2*(omega_2-omega_3)*p_3^2)/(p_1^2+p_2^2+p_3^2);

c1 :=
1 + ε2 (omega1 − omega2 ) p 2 2 + ε2 (omega1 − omega3 ) p 3 2

p 1 2 + p 2 2 + p 3 2

c2 :=
1 + ε2 (omega2 − omega1 ) p 1 2 + ε2 (omega2 − omega3 ) p 3 2

p 1 2 + p 2 2 + p 3 2

Now, we choose some numerical values for the parameters ωi and ε.

> omega_1:=1;omega_2:=20;omega_3:=13;
> epsilon:=7;
> roll:=rand(1..10)/100000:

omega1 := 1

omega2 := 20

omega3 := 13

ε := 7

We now run the PSLQ algorithm five times using different, randomly chosen
values for pi.

> for i from 1 to 5 do
> p_1:=roll();p_2:=roll();p_3:=roll();
> print(PSLQ([c1,c2,1]));
> end:

[1,−1, 931]

[1,−1, 931]

[1,−1, 931]

[1,−1, 931]

[1,−1, 931]



v

This output suggests, that c1(x0) − c2(x0) = −931 = 72(1 − 20). Hence, we can
conjecture, that there holds c1(x0)− c2(x0) = ε2(ω1 − ω2).
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