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Abstract

The spectral behavior of regular Hermitian matrix pencils is examined under cer-
tain structure-preserving rank-1 and rank-2 perturbations. Since Hermitian pencils
have signs attached to real (and infinite) blocks in canonical form, it is not only the
Jordan structure but also this so-called sign characteristic that needs to be examined
under perturbation. The observed effects are as follows: Under a rank-1 or rank-2
perturbation, generically the largest one or two, respectively, Jordan blocks at each
eigenvalue λ are destroyed, and if λ is an eigenvalue of the perturbation, also one new
block of size one is created at λ. If λ is real (or infinite), additionally all signs at λ
but one or two, respectively, that correspond to the destroyed blocks, are preserved
under perturbation. Also, if the potential new block of size one is real, its sign is
in most cases prescribed to be the sign that is attached to the eigenvalue λ in the
perturbation.

Key words. Matrix pencil, Hermitian matrix pencil, sign characteristic, rank one perturba-
tion, rank two perturbation, generic perturbation.
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1 Introduction

It is well-established that when a matrix is subjected to a generic rank-1 perturbation, its
largest Jordan block at each eigenvalue is destroyed [10, 19, 20, 21, 22]. However, different
results were obtained for matrices that are structured with respect to some indefinite
inner product restricting the perturbations to structure-preserving ones in [5, 14, 15, 16,
17] for various classes of structured matrices. In particular, since H-selfadjoint matrices
have additional algebraic invariants to the sizes of their Jordan blocks called the sign
characteristic, this sign characteristic was studied under structured perturbations in [15].
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In this work, we will consider regular Hermitian matrix pencils under low-rank pertur-
bations, since it is well-known that they also have signs attached to their Jordan blocks.
In fact, any H-selfadjoint matrix A gives rise to the equivalent Hermitian matrix pencil
λH − HA, but the converse is in general false, since given an Hermitian matrix pencil
λE − A, the matrix E may well be singular.

In particular, we will tackle the following open problem: It was shown in [4] that when
regular matrix pencils are subjected to low-rank perturbations, generically not only the
largest Jordan blocks at each eigenvalue will be destroyed under perturbation, but also
new blocks of size one may be created at certain eigenvalues. Now, when the perturbed
pencil and the perturbation are both Hermitian, then in the case of real eigenvalues the
newly created blocks will have signs attached to them, but it is not known by what factors
these signs can be determined. This question (among others) will be answered in Section 3
in the case of rank-1 perturbations.

Analyzing the sign characteristic under perturbations is especially relevant as it relates
to the properties of control systems. Since enforcing the desired property of passivity on
a control system can be achieved by moving eigenvalues of a certain Hamiltonian matrix
off the imaginary axis, this question has been investigated in [18, 1] using Hamiltonian
perturbations with small norm. Interestingly, the norm of the required perturbation is
strongly linked to the sign characteristic of the corresponding eigenvalues, see also [8, 9].

From the canonical form of Hermitian matrix pencils [12], we extract that a Hermitian
matrix pencil of rank 1 is bound to have the form (λβ − α)uu∗, where β and α are real
parameters. Also, from the same canonical form, we read off that a Hermitian matrix
pencil of rank 2 (that cannot be decomposed into the sum of Hermitian rank-1 pencils)
either has the form [

u v w
]  0 0 λ

0 0 1
λ 1 0

 u∗

v∗

w∗

 , (1.1)

i.e., two paired singular blocks of minimal index one, or it has the form

[
u v

] [ 0 λ− µ
λ− µ 0

] [
u∗

v∗

]
, (1.2)

i.e., a pair of nonreal eigenvalues µ and µ. In our perturbation analysis, we will consider
rank-1 perturbations of the form (λβ − α)uu∗ and rank-2 perturbations of the form (1.2),
since the class of rank-2 perturbations (1.1) with nontrivial singular part will be more dif-
ficult to handle. A different approach that leads to these types of Hermitian perturbations
will be given in Section 2.3.

The next section will cover preliminaries as versions of the partial Brunovsky form
and results on the canonical form and the sign characteristic of Hermitian matrix pencils.
In Section 3, we will determine the generic Jordan structure and sign characteristic of
Hermitian regular matrix pencils under the above type of Hermitian rank-1 perturbations.
Then, in Section 4 we repeat these steps for Hermitian rank-2 perturbations and in the
final section, a brief conclusion will be presented.
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Throughout this paper, we will identify matrix pencils λE−A with matrix pairs (E,A)
using whichever notion is more convenient. Further, for square matrices X and Y (not
necessarily of the same dimension), define X⊕Y := diag(X, Y ) and let X⊕p := X⊕· · ·⊕X
(p times). Also, denote by ej,n the jth standard basis vector in Cn, where the second index
will be omitted whenever clear from the context. Finally, let us denote by Jn(λ) the n× n
Jordan block corresponding to the eigenvalue λ and denote by Rn the n×n reverse identity
matrix (i.e., the matrix with ones on the leftbottom-topright diagonal and zeros elsewhere).

2 Preliminaries

In this paper, the following notion of genericity will be employed, letting F = R or F = C.

Definition 2.1 1) A set A ⊆ Fn is called algebraic if there exist pj : Fn → F, j =
1, . . . , k, depending polynomially on (the real and imaginary parts of) its arguments
such that a ∈ A if and only if

pj(a) = 0 for j = 1, . . . , k.

2) An algebraic set A ⊆ Fn is called proper if A 6= Fn.

3) A set Ω ⊆ Fn is called generic if Fn \ Ω is contained in a proper algebraic set.

Then, the intersection of finitely many generic sets is again generic and for an invertible
matrix X ∈ Fn,n the set XΩ is generic if Ω ⊆ Fn is generic. Subsets of Fn,m or Fn,m×Fn,m
are called generic if they can be canonically identified with generic subsets of Fnm or F2nm,
respectively.

2.1 Low-rank perturbations and partial Brunovsky forms

In this section, we will recap condensed forms for matrix pencils under rank-1 and rank-2
perturbations. But first, let us review the canonical form of regular matrix pencils, i.e.,
matrix pencils (E,A) with det(λE −A) 6≡ 0, under equivalence: the Weierstraß canonical
form [6, Chapter 12].

Theorem 2.2 (Weierstraß canonical form) Let (E,A) ∈ Cn,n×Cn,n be a regular ma-
trix pencil. Then, there exist invertible matrices V,W ∈ Cn,n and an r ∈ N so that

V (E,A)W =
(
Ir ⊕N, J ⊕ In−r

)
,

where J ∈ Cr,r and N ∈ C(n−r),(n−r) are in Jordan canonical form and N is nilpotent.

Jordan chains of regular matrix pencils are defined as follows [8].
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Definition 2.3 Let (E,A) ∈ Cn,n × Cn,n be a regular matrix pencil. The ordered set
of vectors {x1, . . . , xp} ⊆ Cn is called a Jordan chain of length p corresponding to an

eigenvalue λ̂ ∈ C of (E,A) if x1 6= 0 and:

(λ̂E − A)x1 = 0 and (λ̂E − A)xj = −Exj−1, j = 2, . . . , p. (2.1)

Similarly, {x1, . . . , xp} is called a Jordan chain of length p corresponding to ∞ if x1 6= 0
and:

Ex1 = 0 and Exj = Axj−1, j = 2, . . . , p.

Then, the following theorem is crucial for characterizing regular matrix pencils under
rank-1 perturbations.

Theorem 2.4 (partial Brunovsky form [3, Theorem 2.7]) Let (E,A) ∈ Cn,n ×Cn,n

be regular and λ̂ ∈ C an eigenvalue of (E,A) with

E = In1 ⊕ · · · ⊕ Inm ⊕ Ẽ ∈ Cn,n, (2.2)

A = Jn1(λ̂)⊕ · · · ⊕ Jnm(λ̂)⊕ Ã ∈ Cn,n,

where n1 ≥ · · · ≥ nm > 0 such that λ̂ is not an eigenvalue of (Ẽ, Ã). Further, set
a := n1 + · · ·+ nm and let α, β ∈ C and u, v ∈ Cn with

vT =
[

(v(1))T , . . . , (v(m))T , ṽ T
]
, (v(j))T =

[
v
(j)
1 , . . . , v(j)nj

]
∈ C1,nj , j = 1, . . . ,m.

If we define

kj := max
{
k | v(j)1 = v

(j)
2 = · · · = v

(j)
k = 0

}
, j = 1, . . . ,m,

then the following statements hold:

1) There is an invertible matrix S ∈ Cn,n such that

S(E + βuvT , A+ αuvT )S−1 = (E + βweT , A+ αweT ) (2.3)

holds, where w = Su and

eT =
[
eTk1+1,n1

, . . . , eTkm+1,nm
, ẽ T

]
for a suitable ẽ ∈ Cn−a defining ekj+1,nj = 0 if kj = nj. A matrix pencil (2.3) with E
and A as in (2.2) and eT as above is said to be in partial Brunovsky form.

2) If (2.3) is regular, then it has at least m − 1 linearly independent Jordan chains of

lengths at least n2, . . . , nm corresponding to λ̂. If the (generic) condition that the first
component of v(j) is nonzero for j = 1, . . . ,m holds, then they are given by:

e1 − en1+1, e2 − en1+2, . . . , en2 − en1+n2 ;
e1 − en1+n2+1, e2 − en1+n2+2, . . . , en3 − en1+n2+n3 ;

...
...

. . .
...

e1 − en1+···+nm−1+1, e2 − en1+···+nm−1+2, . . . , enm − en1+···+nm .

(2.4)
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Remark 2.5 If the generic condition from 2) is satisfied (i.e., if v
(1)
1 , . . . , v

(m)
1 6= 0), then

the matrix S from 1) is given by

S := Toep(v(1))⊕ · · · ⊕ Toep(v(m))⊕ In−a,

where Toep(v(j)) is the upper triangular nj × nj Toeplitz matrix with the first row (v(j))T .

The following theorem is a generalization of Theorem 2.4 to rank-2 perturbations. We
point out that the notation (β, α) stands for the 1× 1 matrix pencil λβ − α.

Theorem 2.6 (rank-2 partial Brunovsky form) Let (E,A) ∈ Cn,n × Cn,n be regular

and λ̂ ∈ C an eigenvalue of (E,A) with

E = In1 ⊕ · · · ⊕ Inm ⊕ Ẽ ∈ Cn,n,

A = Jn1(λ̂)⊕ · · · ⊕ Jnm(λ̂)⊕ Ã ∈ Cn,n,

such that n1 ≥ · · · ≥ nm > 0 and λ̂ is not an eigenvalue of (Ẽ, Ã). Then, there is a generic
set Ω ⊆ Cn × Cn so that for all (v1, v2) ∈ Ω and αj, βj ∈ C; uj ∈ Cn and the rank-2
perturbation (∆E,∆A) = (β1, α1)u1v

T
1 + (β2, α2)u2v

T
2 , the following statements hold:

1) There exists an invertible matrix S ∈ Cn,n such that

S(E + ∆E,A+ ∆A)S−1 =
(
E +

[
β1w1 β2w2

]
L,A+

[
α1w1 α2w2

]
L
)
, (2.5)

where wj = Suj for j = 1, 2. Hereby, letting a := n1 + · · ·+ nm it is

L =

[
eT1,n1

0 eT1,n3
0 eT1,n5 . . .

σeT1,nm M
xT eT1,n2

0 eT1,n4
0 ρeT1,nm

]
,

for some x = [x1, . . . , xn1 ]
T ∈ Cn1 ;M ∈ C2,(n−a) where (σ, ρ) = (1, 0) if m is odd and

(σ, ρ) = (0, 1) otherwise. A matrix pencil of the form (2.5) with L as above is said
to be in rank-2 partial Brunovsky form. We highlight that the first n1 + · · · + nm
columns of the transformed perturbation S(∆E,∆A)S−1 are given by[

(β1,α1)w1eT1,n1
+(β2,α2)w2xT

(β2, α2)w2e
T
1,n2

(β1, α1)w1e
T
1,n3

. . .
σ(β1,α1)w1eT1,nm
+ρ(β2,α2)w2eT1,nm

]
. (2.6)

2) If S(E+∆E,A+∆A)S−1 is regular, it has at least m−2 linearly independent Jordan

chains corresponding to λ̂ that have at least the lengths n3, n4, . . . , nm. The chain of
length n3 is given by

ej − en1+n2+j −
[
en1+j . . . en1+1

] [
x1 . . . xj

]T
, j = 1, . . . , n3, (2.7)

whereas for k = 4, 6, . . . there are chains of length nk given by

en1+j − en1+···+nk−1+j, j = 1, . . . , nk, (2.8)

and for k = 5, 7, . . . there are chains of lengths nk given by

en1+n2+j − en1+···+nk−1+j, j = 1, . . . , nk. (2.9)
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Proof. We target for a transformation matrix S of the form

S :=



T1
[
T̃2
0

]
T2

[
T̃3
0

]
T3

. . .

. . .
[
T̃m
0

]
Tm


⊕ In−a, (2.10)

where T1 ∈ Cn1,n1 and T̃j, Tj ∈ Cnj ,nj for j = 2, . . . ,m are suitable upper triangular
Toeplitz matrices. Then, by [7, Chapter 8], a matrix S of this form commutes with both E
and A since their leading a×a diagonal blocks are in Jordan form and their partitioning is
conformal with that of S. It remains to show that under a generic condition on (v1, v2), this
S can be chosen to be invertible and such that [v1, v2]

TS−1 = L holds for some x ∈ Cn1 .
Partitioning vj as in

vTj =
[
(v

(1)
j )T . . . (v

(m)
j )T ṽ Tj

]
, v

(i)
j ∈ Cni , i = 1, . . . ,m, (2.11)

for j = 1, 2 and denoting by (v
(i)
j )` the `th component of v

(i)
j , then [v1, v2]

TS−1 = L is
equivalent to[

eT1,n1
T1 eT1,n1

[
T̃2
0

]
eT1,n3

T3 . . .
xTT1 xT

[
T̃2
0

]
+ eT1,n2

T2 eT1,n2

[
T̃3
0

] ]
=

[
(v

(1)
1 )T (v

(2)
1 )T (v

(3)
1 )T

. . .
(v

(1)
2 )T (v

(2)
2 )T (v

(3)
2 )T

]
. (2.12)

To satisfy this equation, consider that for an upper triangular Toeplitz matrix T , the
condition eT1 T = vT immediately implies T = Toep(v). Therefore, from the (1, 1) and the

(1, 2) block of (2.12) we obtain T1 = Toep(v
(1)
1 ) and T̃2 = Toep(v

(2)
1 ), respectively. Then,

assuming the generic condition (v
(1)
1 )1 6= 0 for invertibility of T1, from the (2, 1) block

of (2.12) we infer xT = (v
(1)
2 )TT−11 , where the first entry of x is given by x1 = (v

(1)
2 )1/(v

(1)
1 )1.

Now, the equation in the (2, 2) block reduces to T2 = Toep
(
v
(2)
2 − [T̃ T2 , 0]x

)
and all other

block equations are easily soluble as well.
Finally, S is invertible if and only if the diagonal entries of T1, . . . , Tm are nonzero.

Letting (v
(1)
1 )1 6= 0 as above, we require the diagonal entry of Tj to be nonzero, i.e.,

(v
(2)
2 )1 − (v

(2)
1 )1 x1 = (v

(2)
2 )1 −

(v
(2)
1 )1(v

(1)
2 )1

(v
(1)
1 )1

6= 0 (2.13)

in the case of T2 and otherwise(
v
(j)
((j−1)mod 2)+1

)
1
6= 0 for j = 3, . . . ,m. (2.14)

We observe that S being invertible is a generic condition on (v1, v2), i.e., the set Ω ⊆
Cn × Cn, such that for all (v1, v2) ∈ Ω the conditions (v

(1)
1 )1 6= 0, (2.13), and (2.14) hold,

is generic.
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Let us now consider 2). If (2.5) is regular, it can be confirmed by straightforward
computation that the vectors from (2.8) and (2.9) are Jordan chains of lengths n4, . . . , nm
corresponding to λ̂. Also, one validates that all vectors from (2.7)-(2.9) are linearly inde-
pendent; it remains to consider (2.7) denoting the jth given vector by cj. In order to verify

that {c1, . . . , cn3} is indeed a Jordan chain of (2.5) corresponding to λ̂, we will check that

the conditions in (2.1) are satisfied recalling the following: By hypothesis, λ̂E −A has the
form (

− Jn1(0)
)
⊕ · · · ⊕

(
− Jnm(0)

)
⊕
(
λ̂Ẽ − Ã

)
,

whereas the form of the transformed perturbation
[
(λ̂β1 − α1)w1, (λ̂β2 − α2)w2

]
L is given

by (2.6). Keeping this in mind, we compute that the first condition in (2.1) is satisfied:(
λ̂E − A+

[
(λ̂β1 − α1)w1, (λ̂β2 − α2)w2

]
L
)
c1

=
(
λ̂E − A+

[
(λ̂β1 − α1)w1, (λ̂β2 − α2)w2

]
L
) (
e1 − en1+n2+1 − x1en1+1

)
= (λ̂β1 − α1)w1 + x1(λ̂β2 − α2)w2 − (λ̂β1 − α1)w1 − x1(λ̂β2 − α2)w2 = 0.

Then, it remains to show that also the second condition in (2.1) is satisfied for j = 2, . . . , n3

using the same prerequisites as above:(
λ̂E − A+

[
(λ̂β1 − α1)w1, (λ̂β2 − α2)w2

]
L
)
cj

=
(
λ̂E−A+

[
(λ̂β1−α1)w1, (λ̂β2−α2)w2

]
L
)(

ej−en1+n2+j−
[
en1+j, ..., en1+1

][
x1, ..., xj

]T)
=− ej−1+xj(λ̂β2−α2)w2+en1+n2+j−1+

[
en1+j−1, ..., en1+1

][
x1, ..., xj−1

]T−xj(λ̂β2−α2)w2

=− ej−1 − xj−1β2w2 + en1+n2+j−1 +
[
en1+j−1, . . . , en1+1

][
x1, . . . , xj−1

]T
+ xj−1β2w2

=−
(
E + [β1w1, β2w2]L

) (
ej−1 − en1+n2+j−1 −

[
en1+j−1, . . . , en1+1

][
x1, . . . , xj−1

]T)
=−

(
E + [β1w1, β2w2]L

)
cj−1. �

To illustrate the above theorem, let us regard an example.

Example 2.7 Consider the matrix pencil (E,A) =
(
I9, J3(0) ⊕ J2(0) ⊕ J2(0) ⊕ J2(0)

)
,

i.e., we have λ̂ = 0 and (n1, n2, n3, n4) = (3, 2, 2, 2), and a perturbation (∆E,∆A) =
(u1v

T
1 , u2v

T
2 ), where

vT1 =
[

1 2 3 0 0 1 0 0 0
]

and vT2 =
[

1 −1 −2 1 0 0 0 1 0
]

and u1, u2 ∈ C9 are arbitrary. Then, the generic conditions on (v1, v2) from the proof of

Theorem 2.6 are satisfied. Thus, setting S =
[
1 2 3
1 2
1

]
⊕I6, the pencil S(E+∆E,A+∆A)S−1
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is in partial Brunovsky form as in Theorem 2.6 given by

(


w1+1 w1

w2 1 w2

w3 1 w3

w4 1 w4

w5 1 w5

w6 w6+1
w7 w7 1
w8 w8 1
w9 w9 1


,



z1 −3z1+1 z1 z1 z1
z2 −3z2 z2+1 z2 z2
z3 −3z3 z3 z3 z3
z4 −3z4 z4 z4 1 z4
z5 −3z5 z5 z5 0 z5
z6 −3z6 z6 z6 0 1 z6
z7 −3z7 z7 z7 0 z7
z8 −3z8 z8 z8 z8 1
z9 −3z9 z9 z9 z9 0



)
,

where w = Su1, z = Su2, and xT = [1,−3, 1]. The linearly independent chains of lengths
n3 and n4 constructed in (2.7) and (2.8) are given by e1 − e6 − e4, e2 − e7 + 3e4 − e5 and
e4 − e8, e5 − e9.

Before proceeding, we introduce the following phrase: A regular matrix pencil is said
to have partial multiplicities greater than or equal to a certain list of multiplicities, e.g.,
(n1, . . . , nk), at some eigenvalue λ̂ if it has at least k linearly independent Jordan chains

at λ̂ that have at least the lengths n1, . . . , nk. We continue with a remark.

Remark 2.8 For any regular matrix pencil (E,A) ∈ Cn,n×Cn,n with partial multiplicities

n1 ≥ · · · ≥ nm > 0 at some eigenvalue λ̂, there exist invertible V,W ∈ Cn,n such that
V (E,A)W is in Weierstraß canonical form as in Theorem 2.2 with the λ̂ blocks coming first
and ordered decreasingly with respect to their size. Then, if (∆E,∆A) is a perturbation
of rank 1 or 2 as in Theorem 2.4 or 2.6, the transformed perturbed pencil

V (E,A)W + V (∆E,∆A)W

can be transformed to partial Brunovsky form as in (2.3) or (2.5), depending on (∆E,∆A)
having rank 1 or 2. Thus, if (E+∆E,A+∆A) is regular, it generically has partial multiplic-

ities greater than or equal to (n2, . . . , nm) or (n3, . . . , nm), respectively, at λ̂. We note that
this lower bound on the block sizes of the perturbed pencil can also be obtained from [4,
Lemma 2.1], but that the Theorems 2.4 and 2.6 will still be essential for constructing the
desired Jordan chains.

We continue with the following Lemma.

Lemma 2.9 Let (E,A) ∈ Cn,n × Cn,n be regular and consider a perturbation of the form

(∆E,∆A) =
[
u1 . . . uk

] (
δE, δA

) [
u1 . . . uk

]∗
, (2.15)

where (δE, δA) is an arbitrary but fixed k× k pencil. Then, the following statements hold:

1) There exists a generic set Λ ⊆ (Cn)k, so that the perturbed pencil (E+ ∆E,A+ ∆A)
is regular for all (u1, . . . , uk) ∈ Λ.
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2) Let there exist a generic set Λ′ ⊆ (Cn)k such that (E + ∆E,A+ ∆A) has at least the

algebraic multiplicity a at some λ̂ ∈ C for all (u1, . . . , uk) ∈ Λ′. If (E+∆E,A+∆A) is

regular and has the algebraic multiplicity equal to a at λ̂ for one (u1, . . . , uk) ∈ (Cn)k,
this also holds on some generic subset of (Cn)k.

This Lemma is identical to [2, Lemma 2.4] except for the transpose ‘T ’ instead of the
conjugate transpose ‘∗’ in equation (2.15), but since the proof is analogous in both cases,
it will be omitted. Our final tool for examining the effects of perturbations is the following
set of inequalities. For all matrix pencils (E,A), (∆E,∆A) ∈ Cn,n × Cn,n we have by [4,
Section 1]:

rank(λ̂E − A)− rank(λ̂∆E −∆A) ≤ rank(λ̂(E + ∆E)− (A+ ∆A)) (2.16)

≤ rank(λ̂E − A) + rank(λ̂∆E −∆A)

for any λ̂ ∈ C. Therefore, if (E,A) and (E+ ∆E,A+ ∆A) are both regular, the geometric

multiplicity of (E,A) at an eigenvalue λ̂ cannot change by more than rank(λ̂∆E − ∆A)

under perturbation. Note that only the rank of the matrix λ̂∆E − ∆A matters for this
estimate and that this number can be zero even for nonzero perturbations.

2.2 Hermitian Kronecker canonical form and sign characteristic

The following Kronecker-like canonical form for Hermitian matrix pencils was deduced
in [12] for arbitrary Hermitian matrix pencils; even though we only consider the regular
case here. We remind the reader that Rn denotes the n× n reverse identity matrix.

Theorem 2.10 (Hermitian Kronecker form) Let (E,A) ∈ Cn,n × Cn,n be a regular
Hermitian matrix pencil. Then, there is a nonsingular matrix X ∈ Cn,n, such that

X(E,A)X∗ =

(
p⊕
i=1

σi
(
Rγi , RγiJγi(λi)

))
⊕

(
q⊕
j=1

ηj
(
RδjJδj(0), Rδj

))
⊕(

r⊕
k=1

( [ 0 Rφk

Rφk 0

]
,

[
0 RφkJφk(µk)

RφkJφk(µk) 0

] ))

where λi ∈ R for i = 1, . . . , p, µk ∈ C \R for k = 1, . . . , r, and all σi and ηj are signs, i.e.,
either −1 or +1.

Hereby, the entirety of the signs corresponding to Jordan blocks associated with some
real (or infinite) eigenvalue λ̂ is called the sign characteristic of (E,A) at λ̂. Based on
the above canonical form, we can characterize the sign characteristic of Hermitian pencils
analogously to the sign characteristic of H-selfadjoint matrices in [9]. We let λ̂ ∈ R be a

fixed eigenvalue of (E,A) and Ψ1 ⊆ Cn be its eigenspace at λ̂. For x ∈ Ψ1 \ {0}, denote by
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ν(x) the maximal length of a Jordan chain of (E,A) beginning with the eigenvector x and
define Ψs := {x ∈ Ψ1 | x = 0 or ν(x) ≥ s}. Setting γ := max{ν(x) | x ∈ Ψ1 \ {0}}, it is

Ker(λ̂E − A) = Ψ1 ⊇ Ψ2 ⊇ · · · ⊇ Ψγ ⊇ Ψγ+1 = {0}
and the following theorem is obtained parallel to [9, Theorem 5.8.1], to which we refer the
reader for the proof.

Theorem 2.11 Let (E,A) ∈ Cn,n × Cn,n be regular and Hermitian and λ̂ ∈ R an eigen-
value. For s = 1, . . . , γ let

fs(x, y) = x∗Ey(s); x ∈ Ψs, y ∈ Ψs \ {0},

where y = y(1), y(2), . . . , y(s) is a Jordan chain of (E,A) corresponding to λ̂ with eigenvector
y. Letting fs(x, 0) = 0, then:

(i) fs(x, y) does not depend on the choice of y(2), . . . , y(s).

(ii) There is a selfadjoint linear transformation Gs : Ψs → Ψs with

fs(x, y) = x∗Gsy; x, y ∈ Ψs.

(iii) For this Gs, we have KerGs = Ψs+1.

(iv) The number of positive (or negative) eigenvalues of Gs, counting multiplicities, coin-
cides with the number of positive (or negative, respectively) signs in the sign charac-

teristic of (E,A) associated with Jordan blocks of size s at λ̂.

By this theorem, the sign characteristic of a Hermitian matrix pencil can be described as
the number of positive and negative eigenvalue of some selfadjoint linear map. Therefore, it
will be cruicial how the number of positive and negative eigenvalues of an Hermitian matrix
is altered under rank-1 perturbations. The following lemma is obtained by applying well-
known results on the eigenvalues of Hermitian matrices and extracted from the proof of [15,
Theorem 3.3].

Lemma 2.12 Let A ∈ Cn,n be Hermitian and invertible with the eigenvalues λ1, . . . , λn.
Then, for any λn+1 ∈ R and u ∈ Cn, so that A + λn+1uu

∗ is invertible, the signs of its
eigenvalues are obtained by removing either exactly one sign −1 or exactly one sign +1
from the list {sgn(λ1), . . . , sgn(λn+1)}.
Proof. Let us assume that λ1 ≤ · · · ≤ λk < 0 < λk+1 ≤ · · · ≤ λn for some k ∈ {0, 1, . . . , n}
and that λn+1 > 0 (in the case λn+1 = 0 there is nothing to show). Further, letting

λ̃1 ≤ · · · ≤ λ̃n be the eigenvalues of A+ λn+1uu
∗, by [11, Corollary 4.3.3] we have λj ≤ λ̃j

for j = 1, . . . , n; in particular A + λn+1uu
∗ has at least n − k positive eigenvalues. Now,

from [11, Theorem 4.3.4] we obtain

λj ≤ λ̃j+1 ≤ λj+2, j = 1, 2, . . . , n− 2,

which in particular yields λ̃k−1 ≤ λk < 0, i.e, A + λn+1uu
∗ hat at least k − 1 negative

eigenvalues. Since A + λn+1uu
∗ is invertible, its kth eigenvalue can only have sign +1 =

sgn(λn+1) or sign −1 = sgn(λk).
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2.3 Properties of Hermitian perturbations

It is our motivation to consider Hermitian rank-k perturbations of the form[
ũ1 . . . ũk

] (
δE, δA

) [
ũ1 . . . ũk

]∗
, (2.17)

where (δE, δA) is a generic Hermitian k× k pencil and ũ1, . . . , ũk ∈ Cn are certain generic
vectors. Since the set of Hermitian k × k pencils

Hk := {(E,A) ∈ Ck,k × Ck,k | (E,A) is Hermitian}

is an R-vector space of dimension 2k2, we consider a subset of Hk to be generic if it can
canonically be identified with a generic subset of R2k2 . Hence, we denote with [(E,A)]B ∈
R2k2 the coordinates of the Hermitian matrix pencil (E,A) with respect to an R-basis B
of Hk. Then, the following lemma holds.

Lemma 2.13 The set Γ of regular Hermitian matrix pencils with distinct eigenvalues is a
generic subset of Hk.

Proof. We follow the procedure laid out in the proof of [3, Theorem 2.3]. Let (E,A) ∈ Hk

and consider its characteristic polynomial
∑k

j=0 cjλ
j := χ(E,A)(λ) = det(λE − A). We

observe that the coefficients cj = cj(E,A) for j = 0, 1, . . . , n depend polynomially on the
coordinates [(E,A)]B and that cj(E,A) 6= 0 for at least one j if (E,A) is regular.

Recall that the Sylvester resultant matrix of two polynomials s(λ) and t(λ), denoted
by S

(
s(λ), t(λ)

)
, is a square matrix of dimension deg(s) + deg(t). It is well-known that its

entries are coefficients of s(λ) and t(λ) and that the rank defect of S
(
s(λ), t(λ)

)
is exactly

the degree of the greatest common divisor of s(λ) and t(λ) (see, e.g., [13]). We define

p(E,A) := detS
(
χ(E,A)(λ),

∂χ(E,A)(λ)

∂λ

)
and q(E,A) := detS

(
χ(E,A)(λ),

∂χ(E,A)(λ)

∂λ

)
and observe that p(E,A) and q(E,A) both depend polynomially on the coordinates [(E,A)]B
and that the pencil (E,A) does not have multiple eigenvalues (neither finite nor infinite) if
and only if p(E,A)q(E,A) 6= 0. Clearly, p(E,A)q(E,A) is not constantly zero since there
exist regular Hermitian pencils with distinct eigenvalues, so that the set

Γ := {(E,A) ∈ Hk | p(E,A)q(E,A) 6= 0 and ∃j ∈ {0, 1, . . . , k} with cj(E,A) 6= 0}

of regular Hermitian matrix pencils with distinct eigenvalues is a generic subset of Hk.

Now, for (δE, δA) in (2.17) there exists an invertible X ∈ Ck,k such that X(δE, δA)X∗

is in Hermitian Kronecker form as in Theorem 2.10; thus (2.17) can be transformed to[
u1 . . . uk

]
X
(
δE, δA

)
X∗
[
u1 . . . uk

]∗
setting uj = ũjX

−1 for j = 1, . . . , k. Hereby, considering all [ũ1, . . . , ũk] that are elements
of some generic subset of Cn,k is equivalent to considering all [u1, . . . , uk] that are elements
of some generic subset of Cn,k, since the respective generic sets can be transformed into one
another by multiplication with an invertible matrix. Additionally, assuming (δE, δA) ∈ Γ
with Γ as in Lemma 2.13, then X(δE, δA)X∗ can only consist of the following types of
blocks:
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• [λβ − α] − a 1 × 1 block corresponding to the real eigenvalue α/β with the sign
sgn(β) (and corresponding to ∞ with sign sgn(α) if β = 0),

•
[

λ−µ
λ−µ

]
− two paired 1× 1 blocks corresponding to the eigenvalues µ, µ ∈ C \ R,

as all other regular blocks in Hermitian Kronecker form have multiple eigenvalues. There-
fore, the perturbation (2.17) is the sum of, on the one hand, rank-1 perturbations of the
form

(λβ − α)uu∗, (2.18)

that we study in Section 3, and on the other hand of rank-2 perturbations of the form

[
u v

] [ 0 λ− µ
λ− µ 0

] [
u∗

v∗

]
, (2.19)

subject of Section 4.

3 Hermitian rank-1 perturbations

We will now turn to our main results, remarking that since the potential infinite eigenvalue
of a Hermitian pencil (E,A) is the zero eigenvalue of the reverse pencil (A,E), it is sufficient
to state these theorems in terms of the finite eigenvalues of (E,A).

In this section, we consider rank-1 perturbations of the form (2.18) with α, β ∈ R,
since otherwise the perturbation were not Hermitian. In the next two theorems, we will
characterize the generic canonical form of regular Hermitian matrix pencils under rank-1
perturbation as follows: In Theorem 3.1 we will analyze the Jordan structure (i.e., the
sizes of the Jordan blocks) and in Theorem 3.3 the sign characteristic will be determined
under perturbation.

Theorem 3.1 Let (E,A) ∈ Cn,n × Cn,n be regular and Hermitian with the partial mul-

tiplicities n1 ≥ · · · ≥ nm > 0 associated with some eigenvalue λ̂ ∈ C. Then, for each
(α, β) ∈ (R × R) \ {0} there exists a generic set Ω′α,β ⊆ Cn, such that for all u ∈ Ω′α,β,

(E + βuu∗, A + αuu∗) is regular and has the partial multiplicities (n2, . . . , nm) if λ̂β 6= α

and (n2, . . . , nm, 1) otherwise at λ̂.

Proof. Because of Theorem 2.4 (cf. Remark 2.8) and (2.16), the perturbed pencil (E +
βuu∗, A + αuu∗) generically has partial multiplicities greater than or equal to the above
given multiplicities in each case. In view of Lemma 2.9, it will be sufficient to present one
particular perturbation in each case that creates these partial multiplicities to conclude
the proof. We assume that (E,A) is in Hermitian Kronecker form as in Theorem 2.10 and

that the blocks corresponding to λ̂ are coming first and in nonincreasing order with respect
to their size.
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Case λ̂ ∈ C \ R. Consider the first block of (E,A) corresponding to λ̂ (and the
paired complex conjugate block) and set u := e1 + en1+1. Then the first two blocks of
(E + βuu∗, A+ αuu∗) are given by[

(λβ − α)e1e
T
1 −Rn1Jn1(λ̂− λ) + (λβ − α)e1e

T
1

−Rn1Jn1(λ̂− λ) + (λβ − α)e1e
T
1 (λβ − α)e1e

T
1

]

clearly having full rank at λ̂. Since all other blocks are unchanged, this particular pertur-
bation clearly creates the partial multiplicities (n2, . . . , nm) at λ̂.

Case λ̂ ∈ R. Consider the first block of (E,A) at λ̂ having the sign ε ∈ {±1} and set
u := e1. Then, the first block of (E + βuu∗, A+ αuu∗) is given by

−εRn1Jn1(λ̂− λ) + (λβ − α)e1e
T
1

not having the eigenvalue λ̂ if βλ̂ 6= α and having the simple eigenvalue λ̂ if βλ̂ = α, which
creates the desired multiplicities as no other blocks are perturbed.

This theorem shows that the generic Jordan structure of regular Hermitian matrix
pencils under Hermitian rank-1 perturbations is the same as under unstructured rank-1
perturbations, cf. [3, Theorem 2.10] or [4, Theorem 3.3]. However, in the case of Hermitian
perturbations, the perturbed pencil still has a sign characteristic associated with its real
eigenvalues that we will analyze in the following. Let us first consider an example.

Example 3.2 The Hermitian 4× 4 matrix pencil

(E,A) =
(

0 1
1 0

0 −1
−1 0

 ,


0 0
0 1

0 0
0 −1

) ∈ C4,4 × C4,4

clearly consists of two Jordan blocks of size two corresponding to 0, where the first one has
sign +1 and the second one has sign −1. We consider a Hermitian rank-1 perturbation
of the form (βuu∗, 0), where β is a real parameter and u = [u1, u2, u3, u4]

T ∈ C4. By
Theorem 3.1 the perturbed pencil (E + βuu∗, A) is generically (with respect to u) regular
and has two linearly independent Jordan chains of lengths two and one at 0.

To extract the 2 signs of the perturbed pencil, we need to construct these Jordan
chains. Clearly, E(E,A) is in Weierstraß canonical form and whenever the generic condition
u1, u3 6= 0 is satisfied, the matrix S := Toep(u1, u2) ⊕ Toep(u3, u4) is invertible; hence
the pencil SE(E + βuu∗, A)S−1 is in partial Brunovsky form as in Theorem 2.4, i.e.,
u∗S−1 = [eT1,2, e

T
1,2]. Thus, its chain of length two is given by e1 − e3, e2 − e4 and also, the

linearly independent chain of length one is e1. Now, we consider the matrix pencil

S−∗(E + βuu∗, A)S−1, (3.1)

that has the Jordan chains given above (left-multiplication with an invertible matrix does
not change the Jordan chains of a matrix pencil) and also the sign characteristic of (E +
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βuu∗, A) since it is perserved under ∗-congruence transformations. To obtain the sign
characteristic of (3.1), the matrix

F := S−∗(E + βuu∗)S−1 =


β 1/ |u1|2 β 0

1/ |u1|2 ∗ 0 0

β 0 β −1/ |u3|2

0 0 −1 |u3|2 ∗


is crucial: By Theorem 2.11, the sign corresponding to the block of size one of (3.1) is
given by the sign of (the eigenvalue of) eT1 Fe1 = β, i.e., the sign that is attached to the
eigenvalue 0 in the perturbation (βuu∗, 0) and the sign attached to the block of size two
of (3.1) is the sign of

(e1 − e3)TF (e2 − e4) =
1

|u1|2
− 1

|u3|2
.

In particular, this sign cannot generically be determined to be +1 or −1.

Now, we turn to the general case employing similar methods. Thereby, let us group
together Jordan blocks of the same size, i.e.,

(n1, n2, . . . , nm) = (s1, . . . , s1︸ ︷︷ ︸
t1

, . . . , sν , . . . , sν︸ ︷︷ ︸
tν

), (3.2)

where s1 > s2 > · · · > sν > 0. Then, for s = 1, 2, . . . we denote by Ls the list of signs
associated with blocks of size s; if (E,A) does not have a block of size s, let Ls be the
empty list. Using this convention, we achieve a concise phrasing of the following theorem.
Recall that Ω′α,β denotes the generic set from Theorem 3.1.

Theorem 3.3 Let (E,A) ∈ Cn,n × Cn,n be regular and Hermitian with the partial multi-
plicities (3.2) and let the list of signs Ls be attached to its blocks of size s = 1, 2, . . . at

the eigenvalue λ̂ ∈ R. Then, for each (α, β) ∈ (R × R) \ {0} there exists a generic set
Ωα,β ⊆ Ω′α,β, such that for all u ∈ Ωα,β, the list of signs L′′s attached to the blocks of size s

of (E + βuu∗, A+ αuu∗) at λ̂ is obtained by subsequently executing the following steps:

• If s = 1 and λ̂β = α, then L′s is obtained from Ls by adding sgn(β), else L′s := Ls.

• If s = s1, then L′′s is obtained from L′s by removing either exactly one sign −1 or
exactly one sign +1, else L′′s := L′s.

Proof. We assume (E,A) to be in Hermitian Kronecker form as in Theorem 2.10 with the

λ̂ blocks coming first and ordered by their size. Left-multiplying this matrix pencil with
E, we obtain that the first blocks of E(E,A) are in Weierstraß canonical form. In order to

14



transform the pencil E(E+βuu∗, A+αuu∗) to partial Brunovsky form as in Theorem 2.4,
let us partition u as follows

u =


u(1)

...
u(ν)

ũ

 , u(i) =

u
(i,1)

...
u(i,ti)

 , u(i,j) =

u
(i,j)
1
...

u
(i,j)
si

 ∈ Csi , j = 1, . . . , ti, i = 1, . . . , ν.

Assuming the generic condition u
(i,j)
1 6= 0 to be satisfied for all i, j, the matrix S from

Remark 2.5 is invertible and given by

S :=

( ν⊕
i=1

ti⊕
j=1

Toep(u(i,j))

)
⊕ In−a,

where a := s1t1 + · · ·+ sνtν . Since for this S holds

u∗S−1 =
[
eT1,s1 . . . eT1,s1︸ ︷︷ ︸

t1

. . . eT1,sν . . . eT1,sν︸ ︷︷ ︸
tν

ũ∗
]

=: e∗, (3.3)

clearly SE(E + βuu∗, A + αuu∗)S−1 is in partial Brunovsky form as in Theorem 2.4 and

thus has the Jordan chains in (2.4) associated with its eigenvalue λ̂. Then, the matrix
pencil

S−∗(E + βuu∗, A+ αuu∗)S−1 (3.4)

also has these chains and additionally, it has the same sign characteristic as (E+βuu∗, A+
αuu∗). To extract this sign characteristic of (3.4), we proceed similarly to the proof of [15,
Theorem 3.3]. Of great importance will be the matrix

F := F1 + F2 := S−∗ES−1 + βS−∗uu∗S−1. (3.5)

Letting Lsi = {εi,1, . . . , εi,ti} for i = 1, . . . , ν, the topleft a× a block of F1 is given by

ν⊕
i=1

ti⊕
j=1

Ti,j, where Ti,j =


0

εi,j

|u(i,j)1 |2

. .
. ...

εi,j

|u(i,j)1 |2
. . . ∗

 ∈ Csi,si ,

and by (3.3), clearly F2 = βee∗. Now, by Theorem 2.11 the sign characteristic of (3.4) at

blocks of size s at λ̂ is given by the signs of the eigenvalues of some selfadjoint linear map
Gs : Ψs → Ψs, where we have

Ψs =
{
x ∈ Cn \ {0} | λ̂(E + βuu∗)x = (A+ αuu∗)x and x can be extended to

a chain of (E + βuu∗, A+ αuu∗) of at least length s
}
∪ {0}.
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We will obtain these signs by computing the inertia of a matrix representation of the map

fs : Ψs ×Ψs → C, (x, y) 7→ x∗Gsy = x∗Fy(s)

with respect to a suitable basis of Ψs. To construct this basis of Ψs, recall that of the
Jordan chains of (3.4) from (2.4), the following ones have length si:

x
(j)
i,k := ej − eκi+(k−1)si+j, j = 1, . . . , si,

k = 2, . . . , t1 if i = 1,
k = 1, . . . , ti else,

(3.6)

whereby κi := t1s1 + · · · + si−1ti−1, i.e., for each pair of indices (i, k) there is the Jordan

chain x
(1)
i,k , . . . , x

(si)
i,k . In the remainder of this paper, we will usually distinguish the vectors

of one chain by their superscript and for brevity omit the superscript if equal to one, e.g.,
xi,k := x

(1)
i,k in (3.6). Also, in the case βλ̂ = α, there exists one more chain of (3.4) that has

exactly length one (cf. Theorem 3.1) and is linearly independent from all chains in (3.6).
It is straightforward to verify that this chain always consists of the first standard basis
vector e1 (recall that in this case the perturbation (λβ − α)uu∗ is equal to 0 at λ̂).

Since under a rank-1 perturbation of the matrix pencil (E,A) by Theorem 3.1 gener-

ically one block of size s1 is destroyed and one block of size one is created if βλ̂ = α, we
consider the following (mutually exclusive) classes of Jordan blocks:

(i) blocks of size si < s1 if either si > 1 or βλ̂ 6= α,

(ii) blocks of size 1 < s1 if βλ̂ = α,

(iii) blocks of size s1 if either s1 > 1 or βλ̂ 6= α,

(iv) blocks of size 1 = s1 if βλ̂ = α.

Blocks of type (i): To extract the signs of the nonzero eigenvalues of a matrix repre-
sentation of fsi , we consider a basis of Ψsi , whose last dim(Ψsi+1) vectors form a basis of
Ψsi+1. Since by Theorem 3.1 the pencil (3.4) generically has ti linearly independent Jordan

chains of length si at λ̂, the first ti = dim(Ψsi+1) − dim(Ψsi) vectors of this basis can be
chosen as xi,1, . . . , xi,ti as in (3.6). Then, as basis vectors in Ψsi+1 lie in KerGsi , we do not
need to consider them since they correspond to the zero part of the matrix representation
of fsi .

Thus, it remains to compute fsi(xi,k, xi,`) = x∗i,kFx
(si)
i,` for k, ` = 1, . . . , ti. From (3.5)

we observe that the first needed term is x∗i,kF1x
(si)
i,` , which is given as follows:

e∗1F1esi︸ ︷︷ ︸
=0

− e∗1F1eκi+`si︸ ︷︷ ︸
=0

− e∗κi+(k−1)si+1F1esi︸ ︷︷ ︸
=0

+e∗κi+(k−1)si+1F1eκi+`si =

{
εi,k

|u(i,k)1 |2
if k = `,

0 if k 6= `,

where the first terms were simplified using si < s1. Then, the second term x∗i,kF2x
(si)
i,` is

given by

e∗1F2esi︸ ︷︷ ︸
=βδ1,si

− e∗1F2eκi+`si︸ ︷︷ ︸
=βδ1,si

− e∗κi+(k−1)si+1F2esi︸ ︷︷ ︸
=βδ1,si

+ e∗κi+(k−1)si+1F2eκi+`si︸ ︷︷ ︸
=βδ1,si

= 0,
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where δi,j denotes the Kronecker delta. In conclusion, the nonzero part of the matrix
representation of fsi with respect to the above constructed basis of Ψsi is given by

diag
( εi,1

|u(i,1)1 |2
, . . . ,

εi,ti

|u(i,ti)1 |2

)
.

Thus, the signs of the perturbed pencil associated with λ̂ at blocks of size si are given by
L′′si = {εi,1, . . . , εi,ti} by Theorem 2.11, i.e., the signs associated with blocks of size si are
unchanged under perturbation in this case.
Blocks of type (ii): We consider blocks of size 1 < s1 whenever βλ̂ = α, where we
distinguish between the subcases of sν being equal to one or not.

First, let sν = 1. We construct a basis of the subspace Ψ1 similar to (i). Since by
Theorem 3.1, the pencil (3.4) generically has tν + 1 linearly independent Jordan chains of

length 1 at λ̂, clearly xν,1, . . . , xν,tν , e1 as in (3.6) can be chosen as the first vectors of a
basis of Ψ1. (We obtain a basis of Ψ1 by adding a basis of Ψ2 that is ignored here since
Ker(G1) = Ψ2.) Similarly to (i), we compute that f1(xν,k, xν,`) is the sum of on the one
hand

x∗ν,kF1xν,` = e∗1F1e1︸ ︷︷ ︸
=0

− e∗1F1eκν+`︸ ︷︷ ︸
=0

− e∗κν+kF1e1︸ ︷︷ ︸
=0

+e∗κν+kF1eκν+` =

{
εν,k

|u(ν,k)1 |2
if k = `,

0 if k 6= `,

where we have made use of 1 < s1, and on the other hand

x∗ν,kF2xν,` = e∗1F2e1 − e∗1F2eκν+` − e∗κν+kF2e1 + e∗κν+kF2eκν+` = 2β − 2β = 0

for k, ` = 1, . . . , tν . Additionally, in this case we have

f1(xν,k, e1) = e∗1F1e1︸ ︷︷ ︸
=0

− e∗κν+kF1e1︸ ︷︷ ︸
=0

+ e∗1F2e1︸ ︷︷ ︸
=β

− e∗κν+kF2e1︸ ︷︷ ︸
=β

= 0

and similarly f1(e1, xν,`) = 0 for k, ` = 1, . . . , tν . Finally, with f1(e1, e1) = β we obtain that
the nonzero part of the matrix representation of f1 with respect to the above constructed
basis is given by

diag
( εν,1

|u(ν,1)1 |2
, . . . ,

εν,tν

|u(ν,tν)1 |2
, β
)
.

From this, we read off L′′1 = {εν,1, . . . , εν,tν , sgn(β)}, i.e., the new block of size one that is
created in this case (cf. Theorem 3.1) leads to the sign sgn(β) being added to the list of
signs at blocks of size one (recall that β 6= 0 is prescribed since (α, β) 6= 0).

Now, the subcase sν > 1 is similar: Using Theorem 3.1, a basis of Ψ1 can be constructed
by from the vector e1 by adding a basis of Ψ2. We compute the nonzero part of the matrix
representation to be given by [e∗1Fe1] = [β]; thus L′′1 = {sgn(β)}, i.e., the sign sgn(β) will
be attached to the new block of size one.
Blocks of type (iii): Generically, by Theorem 3.1 the pencil (3.4) has t1 − 1 linearly

independent Jordan chains of length s1 at λ̂ and thus {x1,2, . . . , x1,t1} is a basis of Ψs1
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(recall that Ψs1+1 = {0}). To compute the matrix representation of fs1 with respect to
this basis, consider for k, ` = 2, . . . , t1 that fs1(x1,k, x1,`) is the sum of on the one hand

x∗1,kF1x
(s1)
1,` given by

e∗1F1es1 − e∗1F1e`s1︸ ︷︷ ︸
=0

− e∗(k−1)s1+1F1es1︸ ︷︷ ︸
=0

+e∗(k−1)s1+1F1e`s1 =


ε1,k

|u(1,k)1 |2
+ ε1,1

|u(1,1)1 |2
if k = `,

ε1,1

|u(1,1)1 |2
if k 6= `,

and on the other hand x∗1,kF2x
(s1)
1,` equal to

e∗1F2es1 − e∗1F2e`s1 − e∗(k−1)s1+1F2es1 + e∗(k−1)s1+1F2e`s1 = 2βδ1,s1 − 2βδ1,s1 = 0.

Therefore, the matrix representation of fs1 with respect to the above basis is given by

Ms1 = diag
( ε1,2

|u(1,2)1 |2
, . . . ,

ε1,t1

|u(1,t1)1 |2

)
+

ε1,1

|u(1,1)1 |2

 1 . . . 1
...

. . .
...

1 . . . 1

 .
Clearly, the first term in Ms1 (i.e., the diagonal matrix) is invertible. Also, it is a generic
condition with respect to the entries of u to assume that also Ms1 itself is invertible.
Therefore, by Lemma 2.12 the signs of the eigenvalues of Ms1 , that are equal to the list of
signs of the perturbed pencil at blocks of size s1 (denoted by L′′s1) is generically given by
removing either exactly one sign −1 or one sign +1 from the list Ls1 = {ε1,1, . . . , ε1,t1}.
Blocks of type (iv): Generically, by Theorem 3.1 the pencil (3.4) has t1 linearly inde-

pendent eigenvectors at λ̂ and therefore {x1,2, . . . , x1,t1 , e1} is a basis of Ψ1 (recall that
Ψ2 = {0} in this case). We aim to compute the matrix representation of f1 with respect to
this basis as before. For k, ` = 2, . . . , t1, clearly f1(x1,k, x1,`) is the sum of on the one hand

x∗1,kF1x1,` = e∗1F1e1 − e∗1F1e`︸ ︷︷ ︸
=0

− e∗kF1e1︸ ︷︷ ︸
=0

+e∗kF1e` =


ε1,k

|u(1,k)1 |2
+ ε1,1

|u(1,1)1 |2
if k = `,

ε1,1

|u(1,1)1 |2
if k 6= `,

and on the other hand

x∗1,kF2x1,` = e∗1F2e1 − e∗1F2e` − e∗kF2e1 + e∗kF2e` = 2β − 2β = 0.

Additionally, we need to compute

f1(x1,k, e1) = e∗1F1e1 − e∗kF1e1︸ ︷︷ ︸
=0

+ e∗1F2e1︸ ︷︷ ︸
=β

− e∗kF2e1︸ ︷︷ ︸
=β

=
ε1,1

|u(1,1)1 |2

and similarly f1(e1, x1,`) = ε1,1/|u(1,1)1 |2 for k, ` = 2, . . . , t1. Finally, we have

f1(e1, e1) = e∗1F1e1 + e∗1F2e1 = ε1,1/|u(1,1)1 |2 + β
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and therefore the matrix representation of f1 with respect to the above basis is given by

M1 = diag
( ε1,2

|u(1,2)1 |2
, . . . ,

ε1,t1

|u(1,t1)1 |2
, β
)

+
ε1,1

|u(1,1)1 |2

 1 . . . 1
...

. . .
...

1 . . . 1

 .
Now, applying Lemma 2.12 as in the previous case (iii), the list of signs L′′1 of (3.4) at
blocks of size one is generically obtained by removing either exactly one sign −1 or exactly
one sign +1 from the list L′1 = {ε1,1, . . . , ε1,t1 , sgn(β)}.

Remark 3.4 We note that there are results hidden in the statement and proof of Theo-
rem 3.3 that are not at all obvious. First, consider blocks of type (ii): By Theorem 3.1 one
such block is generically created under perturbation, and by Theorem 3.3 the sign conse-
quently added to the list of signs L1 is generically sgn(β). But then, sgn(β) is exactly the

sign that is attached to the eigenvalue λ̂ in the perturbation (βλ− α)uu∗ in this case, i.e.
the sign added due to one new block being created is generically the sign that is attached
to λ̂ in the perturbation.

Then again, if blocks of type (iv) exist, by Theorem 3.1 the partial multiplicities of the
perturbed pencil are generically unchanged, since both effects, one block being destroyed
and a new block being created, neutralize one another. However, the list of signs L1 is
generically unchanged under perturbation if no sign sgn(−β) exists in L1, and otherwise,
generically either one sign sgn(−β) is replaced by sgn(β) or again L1 is unchanged. Con-
sequently, the perturbed pencil is not generically prescribed to have the sign attached to
λ̂ in the perturbation at one of its blocks in this case, which is again different from (ii).

To illustrate this remark, we consider the following example.

Example 3.5 The Hermitian 2× 2 matrix pencil

(E,A) =
([ 1 0

0 1

]
,

[
0 0
0 0

])
∈ C2,2 × C2,2

clearly consists of two Jordan blocks of size one with positive sign corresponding to 0. We
consider a Hermitian rank-1 perturbation of the form (βuu∗, 0), where u = [u1, u2]

T ∈ C2

and β ∈ R\{0}. By Theorem 3.1 the perturbed pencil (E+βuu∗, A) is generically regular
and has two linearly independent Jordan chains of length one at 0.

Clearly, a basis of the eigenspace of (E + βuu∗, A) at 0 is given by {e1, e2} and the
matrix representation of the map f1 with respect to that basis is given by

M1 =

[
1 + β |u1|2 β u1u2
β u1u2 1 + β |u2|2

]
.

Now, an elementary computation reveals that the eigenvalues of M1 are given by 1 and
1+β(|u1|2+ |u2|2). Thus, if either β ≥ 0 or β < 0 and −1/β > |u1|2+ |u2|2, the signs of the
perturbed pencil at 0 are given by {+1,+1} and if β < 0 and −1/β < |u1|2 + |u2|2, these
signs are given by {−1,+1}, which is in line with Theorem 3.3 and the above remark.
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4 Hermitian rank-2 perturbations

Before analyzing Hermitian rank-2 perturbations, we consider a further preliminary result.
The following lemma deals with a class of matrices that includes the transformation matrix
S from Theorem 2.6.

Lemma 4.1 Let n1 ≥ · · · ≥ nm > 0 be a series of integers and set a := n1 + · · · + nm.
Further, let S have the shape

S =


S1,1 S1,2 . . . S1,m

S2,2

. . .
...

. . . Sm−1,m
Sm,m

 ∈ Ca,a, (4.1)

whereby all Si,j ∈ Cnj ,nj are upper triangular Toeplitz matrices. Then, S−1 also has the
shape (4.1), i.e., it is upper triangular and its (i, j) block is an upper triangular Toeplitz
matrix of dimension ni × nj for all i and j.

This lemma is proven by straightforward computation using the well-known fact that the
product of two upper triangular Toeplitz matrices is again an upper triangular Toeplitz
matrix and that the inverse of an invertible upper triangular Toeplitz matrix is again one
itself [11, Chapter 3]; details are omitted here. We go on to prove our main theorems on
Hermitian rank-2 perturbations as in (2.19), i.e., ones of the form

(∆E,∆A) =
[
u v

] ( [ 0 1
1 0

]
,

[
0 µ
µ 0

]) [ u∗
v∗

]
. (4.2)

Hereby, we only consider the case µ ∈ C\R since in case µ ∈ R, then (4.2) were the sum of
two subsequent Hermitian rank-1 perturbations as covered in the previous section. We will
analyze the Jordan structure under perturbation in Theorem 4.2 and the sign characteristic
in Theorem 4.3.

Theorem 4.2 Let (E,A) ∈ Cn,n×Cn,n be regular and Hermitian with the partial multiplic-

ities n1 ≥ · · · ≥ nm > 0 associated with some eigenvalue λ̂ ∈ C. Then, for each µ ∈ C \ R
there exists a generic set Ω′µ ⊆ Cn × Cn, such that for all (u, v) ∈ Ω′µ, (E + ∆E,A+ ∆A)

as in (4.2) is regular and has the partial multiplicities (n3, . . . , nm) if λ̂ 6∈ {µ, µ} and

(n3, . . . , nm, 1) otherwise at λ̂.

Proof. We proceed similar to the proof of Theorem 3.1. Since by Theorem 2.6 and (2.16)
the partial multiplicities of the perturbed pencil are generically greater than or equal to the
ones given above, it again suffices to present one particular perturbation in each case that
creates these partial multiplicities by Lemma 2.9. Let (E,A) be in Hermitian Kronecker

form as in Theorem 2.10 with the blocks at λ̂ coming first and ordered by their size.
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Case λ̂ ∈ C\R. Consider the first two blocks of (E,A) associated with λ̂ (each of which
is paired to a block of the same size corresponding to the complex conjugate eigenvalue)
and set u := e1 + e2n1+n2+1 and v := en1+1 + e2n1+1. Then the first part of the perturbed
pencil is given by[

0 −Rn1Jn1(λ̂−λ)

−Rn1Jn1(λ̂−λ) 0

]
⊕

[
0 −Rn2Jn2(λ̂−λ)

−Rn2Jn2(λ̂−λ) 0

]
+(λ−µ)uv∗+(λ−µ)vu∗.

This matrix pencil can by permutations and multiplications with −1 of its rows be trans-
formed to a matrix pencil of the type from the appendix of this paper. In fact, setting

µ+ := λ̂−λ, µ− := λ− λ̂, ν+ := µ−λ, and ν− := λ−µ in the matrix T from the appendix,
its determinant is computed to be equal to[

(λ̂− λ)n1(λ− λ̂)n2 − (λ̂− λ)n1(µ− λ)− (−1)n1(λ− λ̂)n2(µ− λ)
]

·
[
(λ− λ̂)n1(λ̂− λ)n2 + (−1)n2(λ− λ̂)n1(λ− µ) + (λ̂− λ)n2(λ− µ)

]
.

This shows that in the above given blocks of the perturbed pencil, the eigenvalue λ̂ does
not occur if λ̂ 6∈ {µ, µ} and occurs with algebraic multiplicity one otherwise. Since no
other blocks of the perturbed pencil than these are perturbed, this particular perturbation
clearly creates the desired partial multiplicities at λ̂.

Case λ̂ ∈ R. Consider the first blocks of (E,A) associated with λ̂ of sizes n1, n2 with
signs ε1, ε2 ∈ {±1} and set u := e1 and v := en1+1. Then, the first blocks of the perturbed
pencil are given by

−
(
ε1Rn1Jn1(λ̂− λ)⊕ ε2Rn2Jn2(λ̂− λ)

)
+ (λ− µ)e1e

T
n1+1 + (λ− µ)en1+1e

T
1

clearly not having the eigenvalue λ̂. Again, as no other blocks are perturbed, this pertur-
bation creates the partial multiplicities (n3, . . . , nm) at λ̂.

In the following theorem concerning the sign characteristic of Hermitian matrix pencils
under rank-2 perturbations, we consider (E,A) to have Jordan blocks of the sizes (3.2) at

λ̂. Hereby, we will employ both notations, i.e., the nj’s and the si’s depending on which is
more convenient. Finally, let Ω′µ denote the generic set from Theorem 4.2.

Theorem 4.3 Let (E,A) ∈ Cn,n ×Cn,n be regular and Hermitian and at some eigenvalue

λ̂ ∈ R, let (E,A) have the partial multiplicities (3.2) and the list of signs Lsi attached
to blocks of size si for i = 1, . . . , ν. Then, for each µ ∈ C \ R there exists a generic
set Ωµ ⊆ Ω′µ, such that for all (u, v) ∈ Ωµ the list of signs L′′si at blocks of size si of
(E + ∆E,A+ ∆A) as in (4.2) is obtained by subsequently executing the following steps:

• If i = 1, then L′si is obtained from Lsi by removing either exactly one sign −1 or
exactly one sign +1, else L′si := Lsi.
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• If either i = 1 and t1 ≥ 2 or i = 2 and t1 = 1, then L′′si is obtained from L′si by
removing exactly one sign −1 or exactly one sign +1, else L′′si := L′si.

Proof. We proceed similar to the proof of Theorem 3.3. Assuming (E,A) to be in

Hermitian Kronecker form as in Theorem 2.10 with the λ̂ blocks coming first, these first
blocks of E(E,A) are in Weierstraß canonical form. Now, let the generic condition from
Theorem 2.6 on u, v be satisfied, so that there is an invertible matrix S ∈ Cn,n as in (2.10)
for which we have[

u∗

v∗

]
S−1 =

[
eT1,n1

0 eT1,n3
0 eT1,n5 . . .

σeT1,nm M
xT eT1,n2

0 eT1,n4
0 ρeT1,nm

]
(4.3)

for certain x = [x1, . . . , xn1 ]
T ∈ Cn1 andM of suitable size. Thus, SE(E+∆E,A+∆A)S−1

is in rank-2 partial Brunovsky form as in Theorem 2.6 and thus has the Jordan chains (2.7)-

(2.9) at λ̂. But also
S−∗(E + ∆E,A+ ∆A)S−1, (4.4)

has these chains at λ̂ and in addition, it has the same sign characteristic as (E + ∆E,A+
∆A). By Lemma 4.1, the matrix S−1 has the structure

S−1 =


S1,1 S1,2 . . . S1,m

S2,2

. . .
...

. . . Sm−1,m
Sm,m

⊕ In−a ∈ Cn,n,

whereby a = n1+· · ·+nm and each Si,j has dimension ni×nj but is still an upper triangular
Toeplitz matrix, i.e., if ni > nj then Si,j has ni − nj all-zero rows at the bottom. Also, let
us denote the (1, 1)-entry of each Si,j by si,j with si,i 6= 0 for i = 1, . . . ,m. Now, the sign
characteristic of (4.4) can be extracted from the following matrix

F := F1 + F2 := S−∗ES−1 + S−∗
[
u v

]
R2

[
u∗

v∗

]
S−1. (4.5)

In the remainder of this proof, we denote by ε1, . . . , εm the signs of (E,A) attached to its

blocks at λ̂, so that εj is the sign of the jth diagonal block of (E,A). Then, the topleft
a× a block of F1 is given by

ε1S
∗
1,1Rn1S1,1 ε1S

∗
1,1Rn1S1,2 ε1S

∗
1,1Rn1S1,3 . . . ε1S

∗
1,1Rn1S1,m

ε1S
∗
1,2Rn1S1,1

∑2
j=1 εjS

∗
j,2RnjSj,2

∑2
j=1 εjS

∗
j,2RnjSj,3 . . .

∑2
j=1 εjS

∗
j,2RnjSj,m

ε1S
∗
1,3Rn1S1,1

∑2
j=1 εjS

∗
j,3RnjSj,2

∑3
j=1 εjS

∗
j,3RnjSj,3

. . .
...

...
. . .

. . .
...

ε1S
∗
1,mRn1S1,1

∑2
j=1 εjS

∗
j,mRnjSj,2 . . .

∑m
j=1 εjS

∗
j,mRnjSj,m


.
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We note that for 1 ≤ j ≤ min(k, `), the jth summand of the (k, `) block of the above
matrix is given by

εjS
∗
j,kRnjSj,` = εj

[
0 0
0 Rd Toep(w)

]
∈ Cnk,n` (4.6)

for some w ∈ Cd setting d := nk + n` − nj. In particular, its (1, n`) entry is zero whenever
n` < nj and its (nk, 1) entry is zero whenever nk < nj. Also, by (4.3) it is clear that the
topleft a× a block of F2 is equal to

e1,n1x
∗ + xeT1,n1

e1,n1e
T
1,n2

xeT1,n3
e1,n1e

T
1,n4

xeT1,n5

. . .

e1,n2e
T
1,n1

0 e1,n2e
T
1,n3

0 e1,n2e
T
1,n5

. . .

e1,n3x
∗ e1,n3e

T
1,n2

0 e1,n3e
T
1,n4

. . .

e1,n4e
T
1,n1

0 e1,n4e
T
1,n3

. . .
...

e1,n5x
∗ e1,n5e

T
1,n2

. . . 0 e1,nm−1e
T
1,nm

. . .
. . . . . . e1,nme

T
1,nm−1

0


,

and that these topleft a×a blocks of F1 and F2 are conformably partitioned, i.e., the (k, `)
block of each matrix has dimension nk × n`.

Now, by Theorem 2.11 for each i = 1, . . . , ν the signs of (4.4) at blocks of size si are
equal to the signs in the inertia of the selfadjoint map Gsi : Ψsi → Ψsi , where we have

Ψsi =
{
x ∈ Cn \ {0} | λ̂(E + ∆E)x = (A+ ∆A)x and x can be extended to

a chain of (E + ∆E,A+ ∆A) of at least length si
}
∪ {0}.

This inertia shall be extracted by computing a matrix representation of

fsi : Ψsi ×Ψsi → C, (x, y) 7→ x∗Gsiy = x∗Fy(si)

with respect to a suitable basis of Ψsi . By Theorem 4.2, there generically exist blocks of

the following sizes in (4.4) at λ̂:

(i) blocks of size si with si < n3,

(ii) blocks of size n3.

Blocks of type (i): We consider the Jordan chains of length si of (4.4) from (2.8)-(2.9).
Letting κi = s1t1 + · · ·+ si−1ti−1 as before and also ηi := t1 + · · ·+ ti−1, we introduce the
following notation for these chains:

y
(j)
i,k :=

{
en1+j − eκi+(k−1)si+j, if k and ηi are both odd or both even,

en1+n2+j − eκi+(k−1)si+j, otherwise,
(4.7)
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for j = 1, . . . , si and k = 1, . . . , ti.
As in the previous section, we aim to extract the signs of a matrix representation of fsi

by considering a basis of Ψsi , whose last dim(Ψsi+1) vectors form a basis of Ψsi+1. Since
by Theorem 4.2 the pencil (4.4) generically has ti linearly independent Jordan chains of

length si at λ̂, the first ti = dim(Ψsi+1) − dim(Ψsi) vectors of this basis can be chosen as
yi,1, . . . , yi,ti as in (4.7) (omitting the superscript if equal to one). But as basis vectors in
Ψsi+1 lie in KerGsi , we ignore them when computing a matrix representation of fsi .

For simplicity, we assume in the following that ηi is odd but the other case is entirely
analogous. In order to compute fsi(yi,k, yi,`) for all k, ` ∈ {1, . . . , ti}, we may consider

the terms y∗i,kF1y
(si)
i,` and y∗i,kF2y

(si)
i,` separately because of (4.5). Recalling that the signs

of (E,A) associated with blocks of size si are given by Lsi = {εηi+1, εηi+2, . . . , εηi+ti}, we
compute in the following subcases:

Subcase k is odd and ` is even: We have that y∗i,k F1 y
(si)
i,` is given by

eTn1+1 F1 en1+n2+si︸ ︷︷ ︸
=0

− eTn1+1 F1 eκi+`si︸ ︷︷ ︸
=0

− eTκi+(k−1)si+1 F1 en1+n2+si︸ ︷︷ ︸
=0

+eTκi+(k−1)si+1 F1 eκi+`si

=

ηi+min(k,`)∑
j=ηi+1

εj sj,ηi+k sj,ηi+`.

Hereby, the first three terms were simplified using n3 > si and the last equality was
obtained by regarding the (1, si)-entry of the (ηi + k, ηi + `)-block of F1, which is the sum
of matrices of the form (4.6); the lower summation bound arises as the desired (1, si) entry
is 0 whenever si < nj (whereby j is the summation index). On the other hand, the term

y∗i,k F2 y
(si)
i,` from above is equal to

eTn1+1 F2 en1+n2+si︸ ︷︷ ︸
=δ1,si

− eTn1+1 F2 eκi+`si︸ ︷︷ ︸
=δ1,si

− eTκi+(k−1)si+1 F2 en1+n2+si︸ ︷︷ ︸
=δ1,si

+ eTκi+(k−1)si+1 F2 eκi+`si︸ ︷︷ ︸
=δ1,si

= 0,

where δi,j is the Kronecker delta and we used that ηi + k is even and ηi + ` is odd. Thus,
in the case that k is odd and ` is even, we obtain

fsi(yi,k, yi,`) =

ηi+min(k,`)∑
j=ηi+1

εj sj,ηi+k sj,ηi+`. (4.8)

Then again, if k is even and ` is odd, the same result is obtained since the map fsi is
Hermitian (recall that Gsi is self-adjoint). However, the remaining cases that k and ` are
both odd or both even are treated similarly:

Subcase k and ` are both odd : We obtain that y∗i,k F1 y
(si)
i,` is equal to

eTn1+1 F1 en1+si︸ ︷︷ ︸
=0

− eTn1+1 F1 eκi+`si︸ ︷︷ ︸
=0

− eTκi+(k−1)si+1 F1 en1+si︸ ︷︷ ︸
=0

+eTκi+(k−1)si+1 F1 eκi+`si

=

ηi+min(k,`)∑
j=ηi+1

εj sj,ηi+k sj,ηi+`,
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where the first three terms were simplified using n3 > si and the last equality was obtained
exactly as described in the above subcase. Then, the other term y∗i,k F2 y

(si)
i,` is equal to

eTn1+1 F2 en1+si − eTn1+1 F2 eκi+`si − eTκi+(k−1)si+1 F2 en1+si + eTκi+(k−1)si+1 F2 eκi+`si = 0,

since every one of the four terms is already zero (recall that ηi + k and ηi + ` are both
even). Thus, the equation (4.8) is obtained in this subcase as well.

Subcase k and ` are both even: Then, y∗i,k F1 y
(si)
i,` is computed to be

eTn1+n2+1 F1 en1+n2+si︸ ︷︷ ︸
=0

− eTn1+n2+1 F1 eκi+`si︸ ︷︷ ︸
=0

− eTκi+(k−1)si+1 F1 en1+n2+si︸ ︷︷ ︸
=0

+eTκi+(k−1)si+1 F1 eκi+`si

=

ηi+min(k,`)∑
j=ηi+1

εj sj,ηi+k sj,ηi+`

just as in the previous subcases. The remaining term y∗i,k F2 y
(si)
i,` is equal to

eTn1+n2+1 F2 en1+n2+si− eTn1+n2+1 F2 eκi+`si− eTκi+(k−1)si+1F2 en1+n2+si+ eTκi+(k−1)si+1F2 eκi+`si ,

which is equal to zero, since all of the four terms are already zero (recall that ηi + k and
ηi + ` are both odd). Hence, (4.8) also holds in this subcase.

Clearly, the nonzero part of the desired matrix representation of fsi is given by Msi =
[fsi(yi,k, yi,`)]k`. We apply a series of ∗-congruence transformations to Msi : First, add the
−(sηi+1,ηi+j)/(sηi+1,ηi+1)-multiple of the first row onto the jth row and the −(sηi+1,ηi+j)/
(sηi+1,ηi+1)-multiple of the first column onto the jth column for j = 1, 2, . . . , ti, then repeat
with the second row/column, then with the third, and so on, which yields the matrix

diag
(
εηi+1 |sηi+1,ηi+1|2 , εηi+2 |sηi+2,ηi+2|2 , . . . , εηi+ti |sηi+ti,ηi+ti |

2 ).
Since the signs of the perturbed pencil at blocks of size si are given by the signs of the
eigenvalues of Msi , they are read off to be equal to L′′si = {εηi+1, εηi+2, . . . , εηi+ti}, i.e., the
original signs.
Blocks of type (ii): To extract the signs at blocks of size n3, we employ a different set
of chains of length n3 than the ones from Theorem 2.6 given in (2.7)-(2.9). Letting τ be

the number of linearly independent chains of (E,A) at λ̂ with length at least n3, one can
verify as in the proof of Theorem 2.6 that for each k = 3, 4, . . . , τ the vectors

z
(j)
k :=

{
ej − en1+···+nk−1+j −

[
en1+j . . . en1+1

][
x1 . . . xj

]T
,
j = 1, . . . , n3,

if k is odd,
en1+j − en1+···+nk−1+j, if k is even

form a Jordan chain of (4.4) with length n3. Since by Theorem 4.2 there generically exist

τ − 2 linearly independent Jordan chains of length n3 of (4.4) at λ̂, the set {z3, . . . , zτ} is
a basis of Ψn3 (recall that Ψn3+1 = {0}). Thus, in the following we compute fn3(zk, z`) =

z∗kF1z
(n3)
` + z∗kF2z

(n3)
` for k, ` ∈ {3, . . . , τ} to obtain the signs of the perturbed pencil (4.4).
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First, let us compute the term z∗kF2z
(n3)
` , whereby we again consider the three subcases

depending on k and ` being odd or even. Setting ωk := n1 + · · ·+nk−1, in the first subcase

we assume that k and ` are both odd. Then, z∗kF2z
(n3)
` is given by

(eT1 − eTωk+1 − x1eTn1+1)F2 (en3 − eω`+n3 − x1en1+n3 − · · · − xn3en1+1)

= eT1 F2en3 − eT1 F2eω`+n3 − x1eT1 F2en1+n3 − · · · − xn3e
T
1 F2en1+1

− eTωk+1F2en3 + eTωk+1F2eω`+n3 + x1e
T
ωk+1F2en1+n3 + · · ·+ xn3e

T
ωk+1F2en1+1

− x1eTn1+1F2en3 + x1e
T
n1+1F2eω`+n3 + |x1|2 eTn1+1F2en1+n3 + · · ·+ x1xn3e

T
n1+1F2en1+1.

The nonzero terms occurring in this computation are the ones:

eT1 F2en3 = xn3 + x1δ1,n3 , −eT1 F2eω`+n3 = −x1δ1,n3 , −xn3e
T
1 F2en1+1 = −xn3 ,

−eTωk+1F2en3 = −xn3 , xn3e
T
ωk+1F2en1+1 = xn3 , −x1eTn1+1F2en3 = −x1δ1,n3 ,

x1e
T
n1+1F2eω`+n3 = x1δ1,n3 ,

so that clearly, we obtain z∗kF2z
(n3)
` = 0 in this subcase (recall that δi,j is the Kronecker

delta). Similarly, if k is odd and ` is even, z∗kF2z
(n3)
` is given by

(eT1 − eTωk+1 − x1eTn1+1)F2 (en1+n3 − eω`+n3) = eT1 F2en1+n3 − eT1 F2eω`+n3

− eTωk+1F2en1+n3 + eTωk+1F2eω`+n3 − x1eTn1+1F2en1+n3 + x1e
T
n1+1F2eω`+n3 = 0.

Hereby, the result z∗kF2z
(n3)
` = 0 is obtained since the last two terms above are zero (recall

that ` is even) and the first four terms are each equal to ±δ1,n3 so that they exactly cancel
out. (We remind that the case that k is even and ` is odd will later follow from this case

as fn3 is Hermitian.) Finally, whenever k and ` are both even, the term z∗kF2z
(n3)
` is equal

to

(eTn1+1 − eTωk+1)F2 (en1+n3 − eω`+n3) = eTn1+1F2en1+n3 − eTn1+1F2eω`+n3

− eTωk+1F2en1+n3 + eTωk+1F2eω`+n3 = 0,

where the sum is zero since each of the four terms above is zero itself.
It remains to compute the other term z∗kF1z

(n3)
` for all k, ` ∈ {3, . . . , τ}, but in addition

to the subcases from above, we have to account for another thing. Since the results depend
the list of signs of (E,A) attached to blocks of size n3, denoted by Ln3 , we distinguish
between the following cases:

case (a): n2 > n3, since then Ln3 = {ε3, . . . , ετ},
case (b): n1 > n2 = n3, since then Ln3 = {ε2, . . . , ετ},
case (c): n1 = n2 = n3, since then Ln3 = {ε1, . . . , ετ}.
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Case (a): For odd k and ` we obtain that z∗kF1z
(n3)
` is equal to

(eT1 − eTωk+1 − x1eTn1+1)F1 (en3 − eω`+n3 − x1en1+n3 − · · · − xn3en1+1)

= eT1 F1en3 − eT1 F1eω`+n3 − x1eT1 F1en1+n3 − · · · − xn3e
T
1 F1en1+1

− eTωk+1F1en3 + eTωk+1F1eω`+n3 + x1e
T
ωk+1F1en1+n3 + · · ·+ xn3e

T
ωk+1F1en1+1

− x1eTn1+1F1en3 + x1e
T
n1+1F1eω`+n3 + |x1|2 eTn1+1F1en1+n3 + · · ·+ x1xn3e

T
n1+1F1en1+1

=

min(k,`)∑
j=3

εj sj,k sj,`,

since all terms other than eTωk+1F1eω`+n3 are equal to zero. On the other hand, if k is odd

and ` is even, z∗kF1z
(n3)
` is equal to

(eT1 − eTωk+1 − x1eTn1+1)F1 (en1+n3 − eω`+n3) = eT1 F1en1+n3 − eT1 F1eω`+n3

− eTωk+1F1en1+n3 + eTωk+1F1eω`+n3 − x1eTn1+1F1en1+n3 + x1e
T
n1+1F1eω`+n3 =

min(k,`)∑
j=3

εj sj,k sj,`,

since again only the term eTωk+1F1eω`+n3 contributes to the result. Finally, if k and ` are

both even, then z∗kF1z
(n3)
` is given by

(eTn1+1 − eTωk+1)F1 (en1+n3 − eω`+n3)

= eTn1+1F1en1+n3 − eTn1+1F1eω`+n3 − eTωk+1F1en1+n3 + eTωk+1F1eω`+n3 =

min(k,`)∑
j=3

εj sj,k sj,`

for the same reason. Then, recalling (4.5) and that fn3 is Hermitian, we have determined
fn3(zk, z`) for all k and ` in this case. Thus, to extract the signs of (4.4) at blocks of size

n3, we consider that the matrix M :=
[∑min(k,`)

j=3 εj sj,k sj,`
]
k`

is ∗-congruent (employing the
same transformations that were described detail in the treatment of blocks of type (i)) to
the diagonal matrix

diag
(
ε3 |s3,3|2 , ε4 |s4,4|2 , . . . , ετ |sτ,τ |2

)
. (4.9)

Hence, since the matrix representation of fn3 is given by M , the signs of (4.4) at blocks of
size n3 are clearly given by L′′n3

= {ε3, . . . , ετ}, i.e. the original signs.
Case (b): Distinguishing as before, we start assuming that k and ` are both odd, then

z∗kF1z
(n3)
` is given by:

(eT1 − eTωk+1 − x1eTn1+1)F1 (en3 − eω`+n3 − x1en1+n3 − · · · − xn3en1+1)

= eT1 F1en3 − eT1 F1eω`+n3 − x1eT1 F1en1+n3 − · · · − xn3e
T
1 F1en1+1

− eTωk+1F1en3 + eTωk+1F1eω`+n3 + x1e
T
ωk+1F1en1+n3 + · · ·+ xn3e

T
ωk+1F1en1+1

− x1eTn1+1F1en3 + x1e
T
n1+1F1eω`+n3 + |x1|2 eTn1+1F1en1+n3 + · · ·+ x1xn3e

T
n1+1F1en1+1

=

min(k,`)∑
j=3

εj sj,k sj,` + ε2(s2,k + x1s2,2)(s2,` + x1s2,2).
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This result is obtained since

eTωk+1F1eω`+n3 =
∑min(k,`)

j=3 εj sj,k sj,` + ε2 s2,ks2,`, x1e
T
ωk+1F1en1+n3 = ε2 x1s2,ks2,2,

x1e
T
n1+1F1eω`+n3 = ε2 x1s2,2s2,`, |x1|2 eTn1+1F1en1+n3 = ε2 |x1s2,2|2 ,

and all other terms in the computation are equal to zero. Then again, if k is odd and ` is
even, z∗kF1z

(n3)
` is equal to

(eT1 − eTωk+1 − x1eTn1+1)F1 (en1+n3 − eω`+n3) = eT1 F1en1+n3 − eT1 F1eω`+n3

− eTωk+1F1en1+n3 + eTωk+1F1eω`+n3 − x1eTn1+1F1en1+n3 + x1e
T
n1+1F1eω`+n3

=

min(k,`)∑
j=3

εj sj,k sj,` + ε2(s2,k + x1s2,2)(s2,` − s2,2),

since

−eTωk+1F1en1+n3 = −ε2 s2,ks2,2, eTωk+1F1eω`+n3 =
∑min(k,`)

j=3 εj sj,k sj,` + ε2 s2,ks2,`,

−x1eTn1+1F1en1+n3 = −ε2 x1 |s2,2|2 , x1e
T
n1+1F1eω`+n3 = ε2 x1s2,2s2,`,

and all other terms are zero. At last, if k and ` are both even, then z∗kF1z
(n3)
` is given by

(eTn1+1 − eTωk+1)F1 (en1+n3 − eω`+n3) = eTn1+1F1en1+n3 − eTn1+1F1eω`+n3 − eTωk+1F1en1+n3

+ eTωk+1F1eω`+n3 = ε2 |s2,2|2 − ε2 s2,2s2,` − ε2 s2,ks2,2 +

min(k,`)∑
j=3

εj sj,k sj,` + ε2 s2,ks2,`

=

min(k,`)∑
j=3

εj sj,k sj,` + ε2(s2,k − s2,2)(s2,` − s2,2).

Again, as fn3 is Hermitian, this concludes the computation of fn3(zk, z`) for all k and ` in
this case. Now, let us define the matrix B such that the matrix representation of fn3 with
respect to the above basis is given by M+ε2B (where M is defined as in case (a)). Further,
we point out that B has the form ww∗ for a suitable w ∈ Cτ−2. Thus, assuming the matrix
representation M + ε2B to be invertible (which is a generic condition with respect to the
entries of u, v), we can apply Lemma 2.12. Recalling that the signs of the eigenvalues of X
can be read off from (4.9), by this lemma the desired list of signs L′′n3

attached to blocks
of size n3 is obtained by removing either exactly one sign −1 or exactly one sign +1 from
the list Ln3 = {ε2, . . . , ετ}.

Case (c): Whenever k and ` are both odd, z∗kF1z
(n3)
` is given by:

(eT1 − eTωk+1 − x1eTn1+1)F1 (en3 − eω`+n3 − x1en1+n3 − · · · − xn3en1+1)

= eT1 F1en3 − eT1 F1eω`+n3 − x1eT1 F1en1+n3 − · · · − xn3e
T
1 F1en1+1

− eTωk+1F1en3 + eTωk+1F1eω`+n3 + x1e
T
ωk+1F1en1+n3 + · · ·+ xn3e

T
ωk+1F1en1+1

− x1eTn1+1F1en3 + x1e
T
n1+1F1eω`+n3 + |x1|2 eTn1+1F1en1+n3 + · · ·+ x1xn3e

T
n1+1F1en1+1

=

min(k,`)∑
j=3

εj sj,k sj,` + ε2(s2,k + x1s2,2)(s2,` + x1s2,2) + ε1(s1,k− s1,1+ x1s1,2)(s1,`− s1,1+ x1s1,2).
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To obtain this, we have to consider all nonzero terms in the above computation, namely:

eT1 F1en3 = ε1 |s1,1|2 , −eT1 F1eω`+n3 = −ε1 s1,1s1,`, −x1eT1 F1en1+n3 = −ε1 x1s1,1s1,2,
−eTωk+1F1en3 = −ε1 s1,ks1,1, eTωk+1F1eω`+n3 =

∑min(k,`)
j=3 εj sj,k sj,` + ε2 s2,ks2,` + ε1 s1,ks1,`,

x1e
T
ωk+1F1en1+n3 = ε2 x1s2,ks2,2 + ε1 x1s1,ks1,2, −x1eTn1+1F1en3 = −ε1 x1s1,2s1,1,

x1e
T
n1+1F1eω`+n3 = ε2 x1s2,2s2,` + ε1 x1s1,2s1,`,

|x1|2 eTn1+1F1en1+n3 = ε2 |x1s2,2|2 + ε1 |x1s1,2|2 .

Similarly, if k is odd and ` is even, z∗kF1z
(n3)
` is equal to

(eT1 − eTωk+1 − x1eTn1+1)F1 (en1+n3 − eω`+n3) = eT1 F1en1+n3 − eT1 F1eω`+n3

− eTωk+1F1en1+n3 + eTωk+1F1eω`+n3 − x1eTn1+1F1en1+n3 + x1e
T
n1+1F1eω`+n3

= ε1 s1,1s1,2 − ε1 s1,1s1,` − ε2 s2,ks2,2 − ε1 s1,ks1,2 +

min(k,`)∑
j=1

εj sj,k sj,`

− ε2 x1 |s2,2|2 − ε1 x1 |s1,2|2 + ε2 x1s2,2s2,` + ε1 x1s1,2s1,`

=

min(k,`)∑
j=3

εj sj,k sj,` + ε2(s2,k + x1s2,2)(s2,` − s2,2) + ε1(s1,k − s1,1 + x1s1,2)(s1,` − s1,2).

Finally, if k and ` are both even, then z∗kF1z
(n3)
` is given by

(eTn1+1 − eTωk+1)F1 (en1+n3 − eω`+n3)

= eTn1+1F1en1+n3 − eTn1+1F1eω`+n3 − eTωk+1F1en1+n3 + eTωk+1F1eω`+n3

= ε2 |s2,2|2 + ε1 |s1,2|2 − ε2 s2,2s2,` − ε1 s1,2s1,` − ε2 s2,ks2,2 − ε1 s1,ks1,2 +

min(k,`)∑
j=1

εj sj,k sj,`

=

min(k,`)∑
j=3

εj sj,k sj,` + ε2(s2,k − s2,2)(s2,` − s2,2) + ε1(s1,k − s1,2)(s1,` − s1,2).

As in the previous cases, this concludes the computation of fn3(zk, z`) for all k and `. Now,
we define the matrix C such that the matrix representation of fn3 with respect to the above
basis is given by M + ε2B+ ε1C in this case (where M and B are defined as before). Then,
also C has the form ww∗ for some w ∈ Cτ−2. Clearly, assuming the generic condition that
both M + ε2B and M + ε2B+ ε1C are invertible, we may apply Lemma 2.12 twice, so that
the desired list of signs L′′n3

is obtained by removing either exactly two signs −1,−1 or
exactly two signs −1,+1 or exactly two signs +1,+1 from the list Ln3 = {ε1, . . . , ετ}.

5 Conclusion

The canonical form of regular Hermitian matrix pencils was investigated under generic
structure-preserving rank-1 and rank-2 perturbations. Hereby, regarding the sizes of the
Jordan blocks, a generic Hermitian rank-1 or rank-2 perturbation does not differ from
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a generic unstructured rank-1 or rank-2 perturbation: At each eigenvalue λ̂, the largest
one or two, respectively, Jordan blocks are destroyed and in addition, if λ̂ is a (simple)

eigenvalue of the perturbation, a new block of size one is created. In addition, if λ̂ is real
(or infinite), under a rank-1 or rank-2 perturbation, all but one or two, respectively, of the
signs at each eigenvalue are preserved, whereby the signs that are not preserved correspond
to blocks that have been destroyed.

Finally, the sign of the potential new block of size one at λ̂ can be determined as follows
(in case it is real or infinite): If there exist blocks of size greater than one in the unperturbed

pencil at λ̂, then generically the sign that is attached to λ̂ in the perturbation is added
to the list of signs at blocks of size one. On the other hand, if the largest blocks in the
unperturbed pencil at λ̂ have size one, then the list of signs at these blocks is generically
changed as follows: First, the sign that is attached to λ̂ in the perturbation is added, and
then exactly one sign −1 or +1 is removed from that list.
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Appendix

The following matrix is denoted by T and we want to compute its determinant:

µ+ 1
. . .

. . .

. . . 1
ν+ µ+ ν+

µ− −1
. . .

. . .

. . . −1
ν− µ− ν−

µ+ 1
. . .

. . .

. . . 1
−ν− −ν− µ+

µ− −1
. . .

. . .

. . . −1
−ν+ −ν+ µ−



.

n1 n1 n2 n2

Laplace expansion with respect to the first column gives

detT = µ+ detT1 + (−1)n1+1ν+ detT2 + ν+ detT3,

where

detT1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ+ 1
. . .

. . .

. . . 1
µ+ ν+

µ− −1
. . .

. . .

. . . −1
ν− µ− ν−

µ+ 1
. . .

. . .

. . . 1
−ν− −ν− µ+

µ− −1
. . .

. . .

. . . −1
−ν+ µ−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n1 − 1 n1 n2 n2
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= µn1−1
+

(
µn2
− − ν+

)
detTmid,

denoting by Tmid the middle (n1 + n2)× (n1 + n2) block of T . Moreover, we have

detT2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

µ+
. . .
. . .

. . .
µ+ 1

µ− −1
. . .

. . .

. . . −1
ν− µ− ν−

µ+ 1
. . .

. . .

. . . 1
−ν− −ν− µ+

µ− −1
. . .

. . .

. . . −1
−ν+ µ−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n1 − 1 n1 n2 n2

=
(
µn2
− − ν+

)
detTmid

and

detT3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

µ+
. . .
. . . 1

µ+ ν+
µ− −1

. . .
. . .
. . . −1

ν− µ− ν−
µ+ 1

. . .
. . .
. . . 1

−ν− −ν− µ+
µ− −1

. . .
. . .
µ− −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n1 − 1 n1 n2 n2

= (−1)n1+1ν+ detTmid.
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Putting these computations together, we obtain

detT =
[
µn1
+ (µn2

− − ν+) + (−1)n1+1ν+(µn2
− − ν+) + ν2+(−1)n1+1

]
detTmid

=
[
µn1
+ µ

n2
− − µn1

+ ν+ − (−1)n1µn2
− ν+

]
detTmid.

We continue with computing

detTmid =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ− −1
. . .

. . .

. . . −1
ν− µ− ν−

µ+ 1
. . .

. . .

. . . 1
−ν− −ν− µ+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

n1 n2

A Laplace expansion with respect to the first column yields

detTmid = µ− detT4 + (−1)n1+1ν− detT5 + (−1)n1+n2ν− detT6,

where

detT4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ− −1
. . .

. . .

. . . −1
µ− ν−

µ+ 1
. . .

. . .

. . . 1
−ν− µ+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= µn1−1

−

[
µn2
+ + (−1)n2ν−

]

n1 − 1 n2

and

detT5 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1

µ−
. . .
. . .

. . .
µ− −1

µ+ 1
. . .

. . .

. . . 1
−ν− µ+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n1−1

[
µn2
+ + (−1)n2ν−

]

n1 − 1 n2
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as well as

detT6 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1

µ−
. . .
. . . −1

µ− ν−
µ+ 1

. . .
. . .
µ+ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n1−1ν−.

n1 − 1 n2

Hence, we obtain

detTmid = µn1
− (µn2

+ + (−1)n2ν−) + ν−(µn2
+ + (−1)n2ν−) + (−1)n2+1ν2−

= µn1
− µ

n2
+ + (−1)n2µn1

− ν− + µn2
+ ν−,

which altogether yields

detT =
[
µn1
+ µ

n2
− − µn1

+ ν+ − (−1)n1µn2
− ν+

][
µn1
− µ

n2
+ + (−1)n2µn1

− ν− + µn2
+ ν−

]
.
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