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Abstract

The spectral behavior of regular Hermitian matrix pencils is examined under cer-
tain structure-preserving rank-1 and rank-2 perturbations. Since Hermitian pencils
have signs attached to real (and infinite) blocks in canonical form, it is not only the
Jordan structure but also this so-called sign characteristic that needs to be examined
under perturbation. The observed effects are as follows: Under a rank-1 or rank-2
perturbation, generically the largest one or two, respectively, Jordan blocks at each
eigenvalue A are destroyed, and if X is an eigenvalue of the perturbation, also one new
block of size one is created at A. If X is real (or infinite), additionally all signs at A
but one or two, respectively, that correspond to the destroyed blocks, are preserved
under perturbation. Also, if the potential new block of size one is real, its sign is
in most cases prescribed to be the sign that is attached to the eigenvalue A in the
perturbation.

Key words. Matrix pencil, Hermitian matrix pencil, sign characteristic, rank one perturba-
tion, rank two perturbation, generic perturbation.
AMS subject classification. 15A18, 15A21, 15A22, 15B57, 47A55.

1 Introduction

It is well-established that when a matrix is subjected to a generic rank-1 perturbation, its
largest Jordan block at each eigenvalue is destroyed [10, 19, 20, 21, 22]. However, different
results were obtained for matrices that are structured with respect to some indefinite
inner product restricting the perturbations to structure-preserving ones in [5, 14, 15, 16,
17] for various classes of structured matrices. In particular, since H-selfadjoint matrices
have additional algebraic invariants to the sizes of their Jordan blocks called the sign
characteristic, this sign characteristic was studied under structured perturbations in [15].
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In this work, we will consider regular Hermitian matrix pencils under low-rank pertur-
bations, since it is well-known that they also have signs attached to their Jordan blocks.
In fact, any H-selfadjoint matrix A gives rise to the equivalent Hermitian matrix pencil
AH — HA, but the converse is in general false, since given an Hermitian matrix pencil
AE — A, the matrix £ may well be singular.

In particular, we will tackle the following open problem: It was shown in [4] that when
regular matrix pencils are subjected to low-rank perturbations, generically not only the
largest Jordan blocks at each eigenvalue will be destroyed under perturbation, but also
new blocks of size one may be created at certain eigenvalues. Now, when the perturbed
pencil and the perturbation are both Hermitian, then in the case of real eigenvalues the
newly created blocks will have signs attached to them, but it is not known by what factors
these signs can be determined. This question (among others) will be answered in Section 3
in the case of rank-1 perturbations.

Analyzing the sign characteristic under perturbations is especially relevant as it relates
to the properties of control systems. Since enforcing the desired property of passivity on
a control system can be achieved by moving eigenvalues of a certain Hamiltonian matrix
off the imaginary axis, this question has been investigated in [18, 1] using Hamiltonian
perturbations with small norm. Interestingly, the norm of the required perturbation is
strongly linked to the sign characteristic of the corresponding eigenvalues, see also [8; 9].

From the canonical form of Hermitian matrix pencils [12], we extract that a Hermitian
matrix pencil of rank 1 is bound to have the form (A5 — a)uu®, where 5 and « are real
parameters. Also, from the same canonical form, we read off that a Hermitian matrix
pencil of rank 2 (that cannot be decomposed into the sum of Hermitian rank-1 pencils)
either has the form

0 0 A u*
[u v w]|0 0 1 vt (1.1)
A1 0 w*

i.e., two paired singular blocks of minimal index one, or it has the form

[u v]bgﬁ AB”H:}L] (1.2)

i.e., a pair of nonreal eigenvalues p and 7. In our perturbation analysis, we will consider
rank-1 perturbations of the form (A3 — a)uu* and rank-2 perturbations of the form (1.2),
since the class of rank-2 perturbations (1.1) with nontrivial singular part will be more dif-
ficult to handle. A different approach that leads to these types of Hermitian perturbations
will be given in Section 2.3.

The next section will cover preliminaries as versions of the partial Brunovsky form
and results on the canonical form and the sign characteristic of Hermitian matrix pencils.
In Section 3, we will determine the generic Jordan structure and sign characteristic of
Hermitian regular matrix pencils under the above type of Hermitian rank-1 perturbations.
Then, in Section 4 we repeat these steps for Hermitian rank-2 perturbations and in the
final section, a brief conclusion will be presented.



Throughout this paper, we will identify matrix pencils AE — A with matrix pairs (F, A)
using whichever notion is more convenient. Further, for square matrices X and Y (not
necessarily of the same dimension), define X ®Y := diag(X,Y) and let X7 := X&®-.-®& X
(p times). Also, denote by e;,, the jth standard basis vector in C", where the second index
will be omitted whenever clear from the context. Finally, let us denote by J, () the n x n
Jordan block corresponding to the eigenvalue A and denote by R,, the n X n reverse identity
matrix (i.e., the matrix with ones on the leftbottom-topright diagonal and zeros elsewhere).

2 Preliminaries
In this paper, the following notion of genericity will be employed, letting F =R or F = C.

Definition 2.1 1) A set A C F" is called algebraic if there exist p; : F* — F, j =
1,...,k, depending polynomially on (the real and imaginary parts of) its arguments
such that a € A if and only if

pjla) =0 for j=1... k.

2) An algebraic set A CF" is called proper if A # F™.
3) A set Q CTF" is called generic if F™ \ Q is contained in a proper algebraic set.

Then, the intersection of finitely many generic sets is again generic and for an invertible
matrix X € F™" the set X(2 is generic if (2 C F™ is generic. Subsets of F"™™ or F™™ x ™™
are called generic if they can be canonically identified with generic subsets of F*™ or F?mm
respectively.

2.1 Low-rank perturbations and partial Brunovsky forms

In this section, we will recap condensed forms for matrix pencils under rank-1 and rank-2
perturbations. But first, let us review the canonical form of regular matrix pencils, i.e.,
matrix pencils (F, A) with det(AE — A) # 0, under equivalence: the Weierstraf§ canonical
form [6, Chapter 12].

Theorem 2.2 (Weierstrafl canonical form) Let (E, A) € C*" x C™" be a reqular ma-
trix pencil. Then, there exist invertible matrices V,W &€ C™" and an r € N so that

V(E,A)\W = (]T &N, In_r),
where J € C™" and N € C):0=") qre in Jordan canonical form and N is nilpotent.

Jordan chains of regular matrix pencils are defined as follows [§].



Definition 2.3 Let (E,A) € C™" x C™" be a regular matriz pencil. The ordered set
of vectors {x1,...,x,} C C" is called a Jordan chain of length p corresponding to an

eigenvalue NeC of (E,A) if x1 # 0 and:
AE—A)zy =0 and (AE—A)z;=—FEx;_1, j=2...,p. (2.1)

Similarly, {z1,...,2,} is called a Jordan chain of length p corresponding to oo if x1 # 0
and:
Exy =0 and Fx;=Ax;, j=2,...,p.

Then, the following theorem is crucial for characterizing regular matrix pencils under
rank-1 perturbations.

Theorem 2.4 (partial Brunovsky form [3, Theorem 2.7]) Let (E,A) € C*" x C™"
be reqular and A € C an eigenvalue of (E, A) with

E=1I,® &I, ®FEecC"", (2.2)
A=J, N & @ J,, (N ®AeCm,
where ny > --- > n,, > 0 such that X is not an eigenvalue of (E,g) Further, set
a:=ny+---+n, andlet o, € C and u,v € C" with
ol = [ (v(l))T7 - (v(m))T, ot ], (v(j))T = [v%j), e U%_) } eChmi, j=1,....,m.
If we define
k; ::max{k]vy) :véj) :--~:v,gj) :O}, j=1,....m,

then the following statements hold:

1) There is an invertible matriz S € C™" such that

S(E + puv”, A+ auv™)S™! = (E + pwe”, A + awe’) (2.3)
holds, where w = Su and
eT = |: e£1+1,n17 Tt e£m+1ynm7 gT j|

for a suitable € € C"~* defining ey, 41, = 0 if k; = n;. A matriz pencil (2.3) with E
and A as in (2.2) and €T as above is said to be in partial Brunovsky form.

2) If (2.3) is regular, then it has at least m — 1 linearly independent Jordan chains of
lengths at least no, . . ., n,, corresponding to A. If the (generic) condition that the first

component of v9) is nonzero for j =1,...,m holds, then they are given by:
€1 — 6711-1—17 €2 — en1+27 DRI 6n2 - €n1+n2;
€1 — 6n1+n2+1a €y — 6n1+n2+2a ey 6n3 - en1+n2+n3;
: : : (2.4)
€1 = Cnyttnmo1+ly €2 T Cngtedng, 142y - -5 Cngy T Cngdedng, -



Remark 2.5 If the generic condition from 2) is satisfied (i.e., if v§1), . ,vﬁm) # 0), then
the matrix S from 1) is given by

S := Toep(vM) @ - - - @ Toep(v'™) ® I,,_,,
where Toep(v")) is the upper triangular n; x n; Toeplitz matrix with the first row (v\))7.

The following theorem is a generalization of Theorem 2.4 to rank-2 perturbations. We
point out that the notation (8, ) stands for the 1 x 1 matrix pencil A\g — a.

Theorem 2.6 (rank-2 partial Brunovsky form) Let (E, A) € C™" x C™" be regular
and X € C an eigenvalue of (E, A) with

E = I,® &, &FEecC",
A= J,N& &, NeAeC,

such thatny > -+ >n,, >0 and X is not an eigenvalue of (E, ﬁ) Then, there is a generic
set @ C C" x C" so that for all (vi,v2) € Q and a;,B; € C; u; € C* and the rank-2
perturbation (AE,AA) = (B1, an)uiv] + (Ba, az)ugvd , the following statements hold:

1) There exists an invertible matriz S € C*™ such that
S(E + AE, A + AA)S_l == (E + [6111)1 ﬁ2w2:| L, A -+ [alwl Oégwg:| L), (25)
where w; = Su; for j = 1,2. Hereby, letting a :=ny + -+ - 4 ny, it is

T T T T
I = el,nl 0 6l,ng 0 61,715 Uel,nm M
- T T T T T )
x 61,n2 0 61,n4 O pel,nm

for some x = [x1,...,2,,]" € C; M € C>"=%) where (o, p) = (1,0) if m is odd and
(o,p) = (0,1) otherwise. A matrixz pencil of the form (2.5) with L as above is said
to be in rank-2 partial Brunovsky form. We highlight that the first ni + -+ + n,y,
columns of the transformed perturbation S(AE, AA)S™1 are given by

[ (Br,a1)wref

+(B2,02)waz”

U(ﬁlym)wlefnm

+p(B2,a2)waef ,,

(B2, ag)wael,,, | (Br, ar)wie],; (2.6)
2) If S(E+AE, A+ AA)S™! is regular, it has at least m—2 linearly independent Jordan
chains corresponding to X that have at least the lengths ns,nyg, ..., n,,. The chain of

length n3 1s given by

T .
€ — €nytnotj — [enﬁ_j en1+1} [xl xj} , j=1,...,ns, (2.7)

whereas for k = 4,6, ... there are chains of length n; given by
€n1+j — en1+...+nk71+j, j = 1’ o, N, (28)

and for k =5,7,... there are chains of lengths ny given by

Cni4+not+j — Eni4Ang_1+4> ] = 1, ey N (29)



Proof. We target for a transformation matrix S of the form

no[f]
T [o]
S = T . D Ih_q, (2.10)
5]
T,

where 77 € C™™ and T},T] e C%m™ for 7 = 2,...,m are suitable upper triangular
Toeplitz matrices. Then, by [7, Chapter 8], a matrix S of this form commutes with both E
and A since their leading a x a diagonal blocks are in Jordan form and their partitioning is
conformal with that of S. It remains to show that under a generic condition on (vy, v4), this
S can be chosen to be invertible and such that [vy,v5]7S™' = L holds for some z € C™.
Partitioning v; as in

=@ e Er] e i=loam @1
for j = 1,2 and denoting by (’U](-i))g the ¢th component of v](-i), then [vy,v5)TS™! = L is
equivalent to

T 1 2 3
SR R I I G O L WA IS
T TG el T e, [ ()" (") (v”)"

To satisfy this equation, consider that for an upper triangular Toeplitz matrix 7', the
condition €T = v immediately implies T' = Toep(v). Therefore, from the (1,1) and the
(1,2) block of (2.12) we obtain T} = Toep(vg)) and Ty = Toep(vf)), respectively. Then,

assuming the generic condition (vf))l # 0 for invertibility of 77, from the (2,1) block

of (2.12) we infer z7 = (vS")TT ", where the first entry of z is given by 21 = (05”1 /(v!);.
Now, the equation in the (2,2) block reduces to T, = Toep (v§2) — [T, 0] z) and all other
block equations are easily soluble as well.

Finally, S is invertible if and only if the diagonal entries of Ti,...,T},, are nonzero.

Letting (v§1))1 # 0 as above, we require the diagonal entry of T} to be nonzero, i.e.,

(2)y (1)
) P = (o), - LD (2.13)
(01
in the case of T and otherwise
(7) .

(U(gj—l)mod2)+1)1 # 0 for j=3,...,m. (2.14)

We observe that S being invertible is a generic condition on (vy,vs), i.e., the set Q C
C" x C™, such that for all (vy,vy) € Q the conditions (v%l))l # 0, (2.13), and (2.14) hold,
is generic.



Let us now consider 2). If (2.5) is regular, it can be confirmed by straightforward
computation that the vectors from (2.8) and (2.9) are Jordan chains of lengths ny, ..., ny,

corresponding to . Also, one validates that all vectors from (2.7)-(2.9) are linearly inde-
pendent; it remains to consider (2.7) denoting the jth given vector by ¢;. In order to verify

that {ci1,...,cn,} is indeed a Jordan chain of (2.5) corresponding to A, we will check that
the conditions in (2.1) are satisfied recalling the following: By hypothesis, AE' — A has the
form

(= Ju(0) @@ (= Jo,(0)) & (AE - A),

whereas the form of the transformed perturbation [(/)\\51 — aq)wy, (}\\62 — Oég)UJQ} L is given
by (2.6). Keeping this in mind, we compute that the first condition in (2.1) is satisfied:

(XE —A+ [(X@ — on)wy, (ABa — vg)ws ] L) c1
= (XE —A+ [(X@ — ap)wy, (X52 - CY2)wz] L) (61 = Cnitng+l T $16n1+1)
= (/):61 - a1)w1 + Il(:\\62 - a2)w2 - (X/31 - Oél)w1 - 951@52 - a2)w2 =0.

Then, it remains to show that also the second condition in (2.1) is satisfied for j = 2,...,ng
using the same prerequisites as above:

(XE — A+ [(\81 — an)wr, (A3 — ag)ws] L) ¢
— (AE= A+ (381 = an)wr, (M= 2)ws] L) (€= enpsnats = [ensigs o €] [21, 5] )
= — ;12 (ABa— Qo) Wa+Cnytmy o1+ [ gty eoes €mpt] [21, oy 1] — 25N —az)w
— — e 1 — T 10w+ e tmyjt + [Emtjts o Ems] [T1r w5 1] T+ 351 By
== (B+ [Brw, BrwalL) (€01 = ennars1 = [emrit oo mit] [0, 254] ")
=— (E+ [frwy, fowo] L) cj—y. O

To illustrate the above theorem, let us regard an example.

Example 2.7 Consider the matrix pencil (E, A) = (I, J3(0) @ J5(0) & J2(0) @ J2(0)),
i.e., we have A = 0 and (n1,n2,n3,n4) = (3,2,2,2), and a perturbation (AFE, AA) =

(upvl ugvd), where

vf=[123/0 0|1 0/0 0] and wvwy=[1 -1 —2|1 0|0 0|1 O]

and uy,us € C° are arbitrary. Then, the generic conditions on (vi,v;) from the proof of
Theorem 2.6 are satisfied. Thus, setting S = [1 i ﬂ @I, the pencil S(E+AE, A+AA)S™!



is in partial Brunovsky form as in Theorem 2.6 given by

I w1+1 w1 21 —321+1 zZ1 Z1 Z1
Wao 1 Wo 22 —325 zo+1 | 29 22
ws 1 w3 Z3 —32:3 z3 z3 z3
(1o 1 Wy Z4 —324 Z4 Z4 1 Z4

( Ws 1 Ws s Zs5 —325 z5 z5 0 z5 > s

We We +1 26 —326 26 26 0 1 26
wy wry 1 27 —3z7 27 27 0] 27
ws ws 1 z8 —328 z8 z8 z8 1

L W9 Wy 1 | L <9 —32’9 Z9 zZ9 Z9 0 i

where w = Suy, 2 = Sus, and 27 = [1, -3, 1]. The linearly independent chains of lengths
ns and ny constructed in (2.7) and (2.8) are given by e; — eg — ey, €2 — e7 + 3e4 — e5 and
€4 — €8,€5 — €E9. 0

Before proceeding, we introduce the following phrase: A regular matrix pencil is said
to have partial multiplicities greater than or equal to a certain list of multiplicities, e.g.,
(n1,...,ng), at some eigenvalue \ if it has at least k linearly independent Jordan chains
at A that have at least the lengths nq,...,ni. We continue with a remark.

Remark 2.8 For any regular matrix pencil (E, A) € C™" x C™" with partial multiplicities
ny > --- > n,, > 0 at some eigenvalue /):, there exist invertible V, W € C™™ such that
V(E, A)W is in Weierstrafl canonical form as in Theorem 2.2 with the A blocks coming first
and ordered decreasingly with respect to their size. Then, if (AE, AA) is a perturbation
of rank 1 or 2 as in Theorem 2.4 or 2.6, the transformed perturbed pencil

V(E, AW + V(AE, AAW

can be transformed to partial Brunovsky form as in (2.3) or (2.5), depending on (AE, AA)
having rank 1 or 2. Thus, if (F4+AFE, A+AA) is regular, it generically has partial multiplic-
ities greater than or equal to (ng,...,n,,) or (ng,...,ny,), respectively, at . We note that
this lower bound on the block sizes of the perturbed pencil can also be obtained from [4,
Lemma 2.1], but that the Theorems 2.4 and 2.6 will still be essential for constructing the
desired Jordan chains.

We continue with the following Lemma.
Lemma 2.9 Let (E, A) € C™™ x C™" be regular and consider a perturbation of the form
(AE,AA) =[w ... w | (0B, 6A) [w ... w ], (2.15)
where (§F,0A) is an arbitrary but fized k X k pencil. Then, the following statements hold:

1) There exists a generic set A C (C™)*, so that the perturbed pencil (E+ AE, A+ AA)
is regular for all (uy, ..., ux) € A.



2) Let there exist a generic set N C (C™)* such that (E+ AE, A+ AA) has at least the
algebraic multiplicity a at some NeC forall (uy,...,ux) € N. If (E+AE, A+AA) is
reqular and has the algebraic multiplicity equal to a at A for one (ug,...,u) € (CVE,
this also holds on some generic subset of (C)k.

This Lemma is identical to [2, Lemma 2.4] except for the transpose ‘7" instead of the
conjugate transpose ‘*’ in equation (2.15), but since the proof is analogous in both cases,
it will be omitted. Our final tool for examining the effects of perturbations is the following
set of inequalities. For all matrix pencils (E, A), (AE,AA) € C*" x C™" we have by [4,
Section 1]:

rank(A\E — A) — rank(AAE — AA) < rank(ME + AE) — (A+ AA))  (2.16)
A

<
< rank(\E — A) + rank(AAE — AA)

for any A € C. Therefore, if (E,A) and (E+ AFE, A+ AA) are both regular, the geometric
multiplicity of (F, A) at an eigenvalue \ cannot change by more than rank(/\AE AA)

under perturbation. Note that only the rank of the matrix MAFE — AA matters for this
estimate and that this number can be zero even for nonzero perturbations.

2.2 Hermitian Kronecker canonical form and sign characteristic

The following Kronecker-like canonical form for Hermitian matrix pencils was deduced
in [12] for arbitrary Hermitian matrix pencils; even though we only consider the regular
case here. We remind the reader that R,, denotes the n x n reverse identity matrix.

Theorem 2.10 (Hermitian Kronecker form) Let (E,A) € C™™ x C™™ be a regular
Hermitian matrixz pencil. Then, there is a nonsingular matriz X € C™", such that

X(E,A)X* = (@ al-(R%.,R%J%()\i))) ® (@ nj(joJ(;j(O),jo)> &

i=1 j=1

(@ % ] Lok ™5*))

k=1

where \; € R fori=1,...,p, u, € C\R fork=1,...,r, and all o; and n; are signs, i.e.,
either —1 or +1.

Hereby, the entirety of the signs corresponding to Jordan blocks associated with some
real (or infinite) eigenvalue A is called the sign characteristic of (E, A) at A. Based on
the above canonical form, we can characterize the sign characteristic of Hermitian pencils
analogously to the sign characteristic of H-selfadjoint matrices in [9]. We let A € R be a
fixed eigenvalue of (E, A) and ¥; C C" be its eigenspace at A. For z € ¥, \ {0}, denote by



v(x) the maximal length of a Jordan chain of (E, A) beginning with the eigenvector x and
define Uy := {x € ¥; | x =0 or v(x) > s}. Setting v := max{v(z) | z € ¥, \ {0}}, it is

Ker(\E — A)=0; 2 ¥y 2 --- D W, DU, = {0}

and the following theorem is obtained parallel to [9, Theorem 5.8.1], to which we refer the
reader for the proof.

Theorem 2.11 Let (E, A) € C"" x C™™ be reqular and Hermitian and X €R an eigen-
value. For s =1,...,7 let

fs(z,y) = x*Ey(S) re Wy, ye U\ {0},

where y =y, y@ ... y®) is a Jordan chain of (E, A) corresponding to X with eigenvector
y. Letting fs(x,0) =0, then:

(i) fo(z,y) does not depend on the choice of y, ..., y®.
(ii) There is a selfadjoint linear transformation G4 : Wy — W with
fs(z,y) =2"Gy; wy € Vs
(iii) For this G, we have Ker Gy = Wy,

(iv) The number of positive (or negative) eigenvalues of G, counting multiplicities, coin-
cides with the number of positive (or negative, respectively) signs in the sign charac-
teristic of (E, A) associated with Jordan blocks of size s at \.

By this theorem, the sign characteristic of a Hermitian matrix pencil can be described as
the number of positive and negative eigenvalue of some selfadjoint linear map. Therefore, it
will be cruicial how the number of positive and negative eigenvalues of an Hermitian matrix
is altered under rank-1 perturbations. The following lemma is obtained by applying well-
known results on the eigenvalues of Hermitian matrices and extracted from the proof of [15,
Theorem 3.3].

Lemma 2.12 Let A € C™" be Hermitian and invertible with the eigenvalues Ay, ..., \,.
Then, for any \,y1 € R and u € C", so that A 4+ A\, 1uu® is invertible, the signs of its
eigenvalues are obtained by removing either exactly one sign —1 or exactly one sign +1
from the list {sgn(A1),...,sgn(A,u1)}-

Proof. Let us assume that A\; < -+ <\, <0< Ay <-+- <\, forsome k € {0,1,...,n}
and that A,41 > 0 (in the case )\nﬂ = 0 there is nothmg to show). Further, letting
N << )\ be the eigenvalues of A + A\, +uu®, by [11, Corollary 4.3.3] we have \; < /\
for j = 1,...,n; in particular A 4+ A\, uu* has at least n — k positive eigenvalues. NOW
from [11, Theorem 4.3.4] we obtain

)\jng+1§)\j+27 j:1727"'7n_27

which in particular yields Xk_l < A\ < 0, ie;, A+ A\ quu® hat at least k£ — 1 negative
eigenvalues. Since A + A, juu* is invertible, its kth eigenvalue can only have sign +1 =
sgn(A,41) or sign —1 =sgn(A;). O

10



2.3 Properties of Hermitian perturbations

It is our motivation to consider Hermitian rank-k perturbations of the form

(% ... @ (GEA) [T ... @], (2.17)
where (0F,0A) is a generic Hermitian & x k pencil and @y, ..., u; € C™ are certain generic
vectors. Since the set of Hermitian k x k pencils

Hy. = {(E,A) € CH* x C** | (E, A) is Hermitian}

is an R-vector space of dimension 2k2, we consider a subset of Hj, to be generic if it can
canonically be identified with a generic subset of R?*". Hence, we denote with [(E, A)]z €
R2* the coordinates of the Hermitian matrix pencil (E, A) with respect to an R-basis B
of Hy. Then, the following lemma holds.

Lemma 2.13 The set I' of reqgular Hermitian matriz pencils with distinct eigenvalues is a
generic subset of Hy,.

Proof. We follow the procedure laid out in the proof of [3, Theorem 2.3]. Let (E, A) € Hy
and consider its characteristic polynomial Z?:o N = xEa(\) = det(AE — A). We
observe that the coefficients ¢; = ¢;(E, A) for j = 0,1,...,n depend polynomially on the
coordinates [(E, A)|p and that ¢;(E, A) # 0 for at least one j if (E, A) is regular.

Recall that the Sylvester resultant matrix of two polynomials s(A) and ¢()\), denoted
by S(s(A), t())), is a square matrix of dimension deg(s) + deg(t). It is well-known that its
entries are coefficients of s(\) and ¢()\) and that the rank defect of S(s()),())) is exactly
the degree of the greatest common divisor of s(\) and t(\) (see, e.g., [13]). We define
(. 4) 1= et 5 (x(e.0 (0. 2EANY ang (8, 4) = det 5y (), XELA)
and observe that p(E, A) and ¢(E, A) both depend polynomially on the coordinates [(E, A)|5
and that the pencil (E, A) does not have multiple eigenvalues (neither finite nor infinite) if
and only if p(E, A)q(E, A) # 0. Clearly, p(E, A)q(E, A) is not constantly zero since there
exist regular Hermitian pencils with distinct eigenvalues, so that the set

I''={(E,A) e Hy, | p(E,A)q(E,A) # 0 and 35 € {0,1,...,k} with ¢;(E, A) # 0}
of regular Hermitian matrix pencils with distinct eigenvalues is a generic subset of Hy. O

Now, for (6F,5A) in (2.17) there exists an invertible X € C** such that X (6E,5A)X*
is in Hermitian Kronecker form as in Theorem 2.10; thus (2.17) can be transformed to

[ Uy ... U }X(dE,(SA)X* [ Uy ... U }*
setting u; = w; X! for j = 1,..., k. Hereby, considering all [u1, ..., ux] that are elements
of some generic subset of C™* is equivalent to considering all [uy, ..., u;] that are elements

of some generic subset of C™*, since the respective generic sets can be transformed into one
another by multiplication with an invertible matrix. Additionally, assuming (§F,0A) € I’
with I' as in Lemma 2.13, then X (JF,0A)X* can only consist of the following types of
blocks:
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e [\ —a] — a1l x 1 block corresponding to the real eigenvalue o/ with the sign
sgn(f) (and corresponding to oo with sign sgn(a) if g = 0),

° [ N A’“} — two paired 1 x 1 blocks corresponding to the eigenvalues p, i € C \ R,

as all other regular blocks in Hermitian Kronecker form have multiple eigenvalues. There-
fore, the perturbation (2.17) is the sum of, on the one hand, rank-1 perturbations of the
form

(A8 — ), (2.18)

that we study in Section 3, and on the other hand of rank-2 perturbations of the form

[uv]bo_ AB“H?} (2.19)

— i

subject of Section 4.

3 Hermitian rank-1 perturbations

We will now turn to our main results, remarking that since the potential infinite eigenvalue
of a Hermitian pencil (£, A) is the zero eigenvalue of the reverse pencil (A, F), it is sufficient
to state these theorems in terms of the finite eigenvalues of (E, A).

In this section, we consider rank-1 perturbations of the form (2.18) with «, 5 € R,
since otherwise the perturbation were not Hermitian. In the next two theorems, we will
characterize the generic canonical form of regular Hermitian matrix pencils under rank-1
perturbation as follows: In Theorem 3.1 we will analyze the Jordan structure (i.e., the
sizes of the Jordan blocks) and in Theorem 3.3 the sign characteristic will be determined
under perturbation.

Theorem 3.1 Let (E,A) € C™™ x C™™" be regular and Hermitian with the partial mul-

tiplicities ny > --- > n,,, > 0 associated with some eigenvalue A € C. Then, for each
(o, B) € (R x R)\ {0} there exists a generic set S, 5 € C", such that for all u € 4,

(E + puu*, A+ auu®) is reqular and has the partial multiplicities (ng, ..., ny,) if /):5 #+ «
and (ng,...,nm, 1) otherwise at \.

Proof. Because of Theorem 2.4 (cf. Remark 2.8) and (2.16), the perturbed pencil (E +
puu*; A + auu*) generically has partial multiplicities greater than or equal to the above
given multiplicities in each case. In view of Lemma 2.9, it will be sufficient to present one
particular perturbation in each case that creates these partial multiplicities to conclude
the proof. We assume that (F, A/)\ is in Hermitian Kronecker form as in Theorem 2.10 and

that the blocks corresponding to A are coming first and in nonincreasing order with respect
to their size.

12



Case A € C \ R. Consider the first block of (E,A) corresponding to A (and the
paired complex conjugate block) and set w := e; + e,,41. Then the first two blocks of
(E + puu*, A + auu*) are given by

(_)\5 —a)erel —R,, I, (/)\\ — A+ (A8 —a)eel
N\ —

—Ry oy A=) + (A8 — a)erel (A3 — a)erel
clearly having full rank at \. Since all other blocks are unchanged, this particular pertur-
bation clearly creates the partial multiplicities (ng, ..., n,,) at A.

Case A € R. Consider the first block of (E, A) at A having the sign € € {1} and set
u := ey. Then, the first block of (£ + Suu*, A + cuu*) is given by

—€eRp, I, (A= A) + (A8 — a)esel

not having the eigenvalue \if B/)\\ # « and having the simple eigenvalue \if ﬁ/): = «, which
creates the desired multiplicities as no other blocks are perturbed. [

This theorem shows that the generic Jordan structure of regular Hermitian matrix
pencils under Hermitian rank-1 perturbations is the same as under unstructured rank-1
perturbations, cf. [3, Theorem 2.10] or [4, Theorem 3.3]. However, in the case of Hermitian
perturbations, the perturbed pencil still has a sign characteristic associated with its real
eigenvalues that we will analyze in the following. Let us first consider an example.

Example 3.2 The Hermitian 4 x 4 matrix pencil

0 1 0 0
B 10 01 4,4 44
-1 0 0 —1

clearly consists of two Jordan blocks of size two corresponding to 0, where the first one has
sign +1 and the second one has sign —1. We consider a Hermitian rank-1 perturbation
of the form (Buu*,0), where (3 is a real parameter and u = [uy, u, us, ug)’ € CL By
Theorem 3.1 the perturbed pencil (£ + fuu®, A) is generically (with respect to u) regular
and has two linearly independent Jordan chains of lengths two and one at 0.

To extract the 2 signs of the perturbed pencil, we need to construct these Jordan
chains. Clearly, E(E, A) is in Weierstraf canonical form and whenever the generic condition
uy,uz # 0 is satisfied, the matrix S := Toep(uy,us) ® Toep(us,uy) is invertible; hence
the pencil SE(E + Buu*, A)S™! is in partial Brunovsky form as in Theorem 2.4, i.e.,
u*S™! = [elTQ, e{Q]. Thus, its chain of length two is given by e; — e3, es — e4 and also, the
linearly independent chain of length one is e;. Now, we consider the matrix pencil

S™(E + Buu*, A)S™", (3.1)

that has the Jordan chains given above (left-multiplication with an invertible matrix does
not change the Jordan chains of a matrix pencil) and also the sign characteristic of (E +
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Puu*, A) since it is perserved under x-congruence transformations. To obtain the sign
characteristic of (3.1), the matrix

8 , 1 |wml*| 8 0
_ _ 1/ |uq] * 0 0
F:=S8*(E + fuu*)S~ ! =
(B fuus) R R R R y AL
0 0 | —1|us)? *

is crucial: By Theorem 2.11, the sign corresponding to the block of size one of (3.1) is
given by the sign of (the eigenvalue of) el Fe; = 3, i.e., the sign that is attached to the
eigenvalue 0 in the perturbation (fuu*,0) and the sign attached to the block of size two

of (3.1) is the sign of

1 1
(e1 — 63)TF(62 —ey) = — .
|U1| |U3|

In particular, this sign cannot generically be determined to be +1 or —1. O

Now, we turn to the general case employing similar methods. Thereby, let us group
together Jordan blocks of the same size, i.e.,

(n1,m2y oo M) = (S1ye ooy STy ey Suye vy Su), (3.2)

t1 ty

where s; > so > --- > s, > 0. Then, for s = 1,2,... we denote by L, the list of signs
associated with blocks of size s; if (E, A) does not have a block of size s, let L, be the
empty list. Using this convention, we achieve a concise phrasing of the following theorem.
Recall that €2, 5 denotes the generic set from Theorem 3.1.

Theorem 3.3 Let (E,A) € C"" x C™" be regular and Hermitian with the partial multi-
plicities (3.2) and let the list of signs Ls be attached to its blocks of size s = 1,2,... at

the eigenvalue N € R. Then, for each (o, ) € (R x R) \ {0} there exists a generic set
Qo C €, 5, such that for all u € Qo p, the list of signs L attached to the blocks of size s

of (K + Buu*, A+ auu*) at \ is obtained by subsequently executing the following steps:
e [fs=1 and /):B = «, then L. is obtained from Ly by adding sgn(p), else L. = L.

o [fs = sy, then LY is obtained from L. by removing either exactly one sign —1 or
exactly one sign +1, else L := L',

Proof. We assume (F, A) to be in Hermitian Kronecker form as in Theorem 2.10 with the
A blocks coming first and ordered by their size. Left-multiplying this matrix pencil with
E, we obtain that the first blocks of F(F, A) are in Weierstrafl canonical form. In order to
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transform the pencil E(E + fuu*, A+ auu®) to partial Brunovsky form as in Theorem 2.4,
let us partition u as follows

. (i) i)
u = () 3 'u,(l): ) u(l’]): ECsi’ j:l,...,ti’ ’]::1’__.7V_
v u(bti) )
u i

Assuming the generic condition ugi’j) # 0 to be satisfied for all 7,7, the matrix S from

Remark 2.5 is invertible and given by
v t;
S = (@ @ Toep(u(ivj))) D I_a,
i=1 j=1
where a := s1t; + - -+ + s,t,. Since for this S holds

*o—1 T T T T ~x% Lk
STt =1 el ... o€l .. Cls, o Cls, U | =€, (3.3)
vV

t1 ty

clearly SE(E + Buu*, A + auu*)S™! is in partial Brunovsky form as in Theorem 2.4 and
thus has the Jordan chains in (2.4) associated with its eigenvalue . Then, the matrix
pencil

S™T(E + Buu*, A+ auu*)S™! (3.4)

also has these chains and additionally, it has the same sign characteristic as (E + puu*, A+
auu*). To extract this sign characteristic of (3.4), we proceed similarly to the proof of [15,
Theorem 3.3|. Of great importance will be the matrix

F:=F +F:=8"ES™ + 35 uu*S™. (3.5)

Letting L, = {€i1,..., €4} for i =1,... v, the topleft a x a block of F} is given by

0 ci
vt fuf™? 2
_ . . Si,Si
PP, whee T,,;= . : e
i=1 j=1 €ij
B ’

and by (3.3), clearly Fy = fee*. Now, by Theorem 2.11 the sign characteristic of (3.4) at
blocks of size s at A is given by the signs of the eigenvalues of some selfadjoint linear map
Gy : ¥V, — U, where we have

U, ={zeC"\{0} | ME + Buu®)z = (A + auu*)z and z can be extended to
a chain of (E + fuu®, A + auu®) of at least length s} U {0}.
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We will obtain these signs by computing the inertia of a matrix representation of the map
fo U x U, 5 C, (x,y)— 2*Gy = 2" Fy®

with respect to a suitable basis of Wy. To construct this basis of Wy, recall that of the
Jordan chains of (3.4) from (2.4), the following ones have length s;:

G . ' 1 ' k=2,...,t1 ifi=1,
Lig = € = Crit(k—1)si+js J=1...,8; k=1... .t eclse

(3.6)

whereby k; := t181 + -+ + s;_1t;_1, i.e., for each pair of indices (i, k) there is the Jordan
chain wglk) yee ,x,fsk) In the remainder of this paper, we will usually distinguish the vectors
of one chain by their superscript and for brevity omit the superscript if equal to one, e.g.,
Tig = xflk) in (3.6). Also, in the case S\ = «, there exists one more chain of (3.4) that has
exactly length one (cf. Theorem 3.1) and is linearly independent from all chains in (3.6).
It is straightforward to verify that this chain always consists of the first standard basis
vector e; (recall that in this case the perturbation (A3 — a)uu® is equal to 0 at \).

Since under a rank-1 perturbation of the matrix pencil (F, A) by Theorem 3.1 gener-
ically one block of size s; is destroyed and one block of size one is created if ﬁ/)\\ =, we

consider the following (mutually exclusive) classes of Jordan blocks:

(i) blocks of size s; < s if either s; > 1 or 5X # q,
(ii) blocks of size 1 < sy if BA = a,
(iii) blocks of size s if either s; > 1 or A\ # a,
(iv) blocks of size 1 = s if SA = a.

Blocks of type (i): To extract the signs of the nonzero eigenvalues of a matrix repre-
sentation of f,, we consider a basis of Wy , whose last dim(W¥s, 1) vectors form a basis of
W, +1. Since by Theorem 3.1 the pencil (3.4) generically has ¢; linearly independent Jordan
chains of length s; at X, the first ¢; = dim(W¥y, 1) — dim(Wy,) vectors of this basis can be
chosen as x;1, ..., 2y, as in (3.6). Then, as basis vectors in W, 1 lie in Ker Gy,, we do not
need to consider them since they correspond to the zero part of the matrix representation
of fs,.

Thus, it remains to compute fs, (T, Tip) = xkoxESg) for k, ¢ =1,...,t;. From (3.5)

we observe that the first needed term is x;kleZ(»sg), which is given as follows:

. . , , oy k=1,
erles, —ejFieg, 1os, — emi+(k—1)si+1FleS¢ +€m+(k—1)si+1Flem+53i =4 .
N N—— v 0 if k 7§ g’

-~
=0

=0 =0
where the first terms were simplified using s; < s;. Then, the second term ZE;kFQ.TESZ) is
given by

* * * * _
elFQGSi - 61F26Hi+€81' - fni—l—(k—l)si—&—lFQeSi_{-f/@ri—(k—l)si—&-lFQeﬁﬁ-fsi =0,

=B1,s; =B01s; =P01,s; =p51,s,
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where ¢;; denotes the Kronecker delta. In conclusion, the nonzero part of the matrix
representation of f,, with respect to the above constructed basis of W, is given by

: €i,1 €it;
m%< , i
i) 97 "7 it ’
L S

Thus, the signs of the perturbed pencil associated with X at blocks of size s; are given by
E;’i = {€i1,..., €4} by Theorem 2.11, i.e., the signs associated with blocks of size s; are
unchanged under perturbation in this case. R

Blocks of type (ii): We consider blocks of size 1 < s; whenever S\ = «, where we
distinguish between the subcases of s, being equal to one or not.

First, let s, = 1. We construct a basis of the subspace ¥; similar to (i). Since by
Theorem 3.1, the pencil (3.4) generically has ¢, + 1 linearly independent Jordan chains of
length 1 at X, clearly x,1,...,2,4,,€1 as in (3.6) can be chosen as the first vectors of a
basis of ¥;. (We obtain a basis of W; by adding a basis of ¥y that is ignored here since
Ker(Gy) = WUy.) Similarly to (i), we compute that fi(x,x,x,,) is the sum of on the one
hand

€v.k 3 I
* * * * * ‘u(”’k>|2 if k= e’
xy,klel/,Z = €1F1€1 — 61F1€HV+€— GHVJrkFlel +€/€V+kFleRu+f = 1 ]
: e 0 it kAL
= = -0

where we have made use of 1 < s;, and on the other hand
v, Fox, e = el Fhey — eFhes, o — e fher +ep pFhes, 0 =28-28=0
for k,/ =1,...,t,. Additionally, in this case we have

fi(zyp, e1) = elFier —ey. Fiei+ejFye; —ey 1 Fae; =0
_ Y——
=0 =0 =B =B
and similarly fi(ey,2,0) =0for k, ¢ =1,...,t,. Finally, with fi(e;, e;) = 8 we obtain that

the nonzero part of the matrix representation of f; with respect to the above constructed
basis is given by

. €1 €Evt,
s (e e )
From this, we read off £ = {e,1,...,€4,,88n(0)}, i.e., the new block of size one that is

created in this case (cf. Theorem 3.1) leads to the sign sgn(/5) being added to the list of
signs at blocks of size one (recall that 5 # 0 is prescribed since (a, §) # 0).

Now, the subcase s, > 1 is similar: Using Theorem 3.1, a basis of ¥; can be constructed
by from the vector e; by adding a basis of ¥5. We compute the nonzero part of the matrix
representation to be given by [ejFe;| = [f]; thus L] = {sgn(B)}, i.e., the sign sgn(3) will
be attached to the new block of size one.

Blocks of type (iii): Generically, by Theorem 3.1 the pencil (3.4) has ¢; — 1 linearly
independent Jordan chains of length s; at X and thus {12,..., 214} is a basis of Uy,
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(recall that Uy, 1y = {0}). To compute the matrix representation of f;, with respect to

this basis, consider for k, ¢ = 2,... ¢, that f (z1x, 21,) is the sum of on the one hand
xikFla:fl}) given by
€1,k €1,1 . _
* * * * |ugl’k)|2 T \ugl’l)\Q if b = g’
erFies, — e1Fiess, — e(kfl)lerlFleSl +e(k71)31+1F16581 = €11 Ty
W—O W2 1 # L,
= =0 1

(

and on the other hand ff’kFﬂfé)

equal to
erbhes, — e1Fhens, — € _1)s, 415265, + €(k_1ys, 112605, = 208015, — 28015, = 0.
Therefore, the matrix representation of fs, with respect to the above basis is given by

1 ... 1

Mszdiag< .. )+ S
1 N e O e

Clearly, the first term in My, (i.e., the diagonal matrix) is invertible. Also, it is a generic
condition with respect to the entries of u to assume that also Mj, itself is invertible.
Therefore, by Lemma 2.12 the signs of the eigenvalues of M, that are equal to the list of
signs of the perturbed pencil at blocks of size s; (denoted by LY ) is generically given by
removing either exactly one sign —1 or one sign +1 from the list £y, = {€11,..., €14 }-

Blocks of type (iv): Generically, by Theorem 3.1 the pencil (3.4) has ¢; linearly inde-
pendent eigenvectors at X and therefore {Z12,...,214,,€1} is a basis of Uy (recall that
U, = {0} in this case). We aim to compute the matrix representation of f; with respect to
this basis as before. For k,¢ = 2,... 1y, clearly fi(z14,21,) is the sum of on the one hand

R Y T

Lk T.1
|u§ )|2 |u§ )|2

L1 if k£ 0,

1,1
|u§ )|2

* * * * *
£L'17kF1.1'1’g =ej ey —ejFles — e Fiey +eFiep =

=0 =0

and on the other hand
IT’kF}%LK = e Fhey — el Fhep — e Fhey +ep Foep =23 — 25 = 0.

Additionally, we need to compute

* " * * €1,1
fi(z1, e1) = el Fie; — epFres + el Fhey — e Freq = ™
——  N—— |u( ) )|2
=0 =8 =5 !
and similarly fi(e1,z1,) = elyl/lugl’l)P for k,¢ =2,...,t;. Finally, we have

filer,e1) = eiFrer + efFser = e /|u"V | + 8
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and therefore the matrix representation of f; with respect to the above basis is given by

1 ... 1
e (2 G N @
Ml—dlag<| (172)|2,..., | (1,t1)2’6> + | (171)|2 oo
n un “ 1.1
Now, applying Lemma 2.12 as in the previous case (iii), the list of signs £} of (3.4) at
blocks of size one is generically obtained by removing either exactly one sign —1 or exactly
one sign +1 from the list £] = {€11,...,€14,,8en(B)}. 0O

Remark 3.4 We note that there are results hidden in the statement and proof of Theo-
rem 3.3 that are not at all obvious. First, consider blocks of type (ii): By Theorem 3.1 one
such block is generically created under perturbation, and by Theorem 3.3 the sign conse-
quently added to the list of signs £; is generically sgn(/3). But then, sgn(fg) is exactly the
sign that is attached to the eigenvalue X in the perturbation (A — a)uu* in this case, i.e.
the sign added due to one new block being created is generically the sign that is attached
to A in the perturbation.

Then again, if blocks of type (iv) exist, by Theorem 3.1 the partial multiplicities of the
perturbed pencil are generically unchanged, since both effects, one block being destroyed
and a new block being created, neutralize one another. However, the list of signs £, is
generically unchanged under perturbation if no sign sgn(—/4) exists in £;, and otherwise,
generically either one sign sgn(—/f) is replaced by sgn(3) or again £; is unchanged. Con-
sequently, the perturbed pencil is not generically prescribed to have the sign attached to
A in the perturbation at one of its blocks in this case, which is again different from (ii).

To illustrate this remark, we consider the following example.

Example 3.5 The Hermitian 2 x 2 matrix pencil

(E7A):(H H[g 8])6@2’2XC2’2

clearly consists of two Jordan blocks of size one with positive sign corresponding to 0. We
consider a Hermitian rank-1 perturbation of the form (Buu*,0), where u = [uy, us]’ € C?
and 8 € R\ {0}. By Theorem 3.1 the perturbed pencil (F + fuu*, A) is generically regular
and has two linearly independent Jordan chains of length one at 0.

Clearly, a basis of the eigenspace of (E + fuu*, A) at 0 is given by {ej,es} and the
matrix representation of the map f; with respect to that basis is given by

M, — 1"‘5|U1|2 B urus
! Btz 1+ Blusl® |

Now, an elementary computation reveals that the eigenvalues of M; are given by 1 and
14 B(Jur|* + |ug|?). Thus, if either 3> 0 or 8 < 0 and —1/8 > |uy|*+|us|?, the signs of the
perturbed pencil at 0 are given by {+1,+1} and if 8 < 0 and —1/8 < |uy|* + |us|?, these
signs are given by {—1, 41}, which is in line with Theorem 3.3 and the above remark. 0
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4 Hermitian rank-2 perturbations

Before analyzing Hermitian rank-2 perturbations, we consider a further preliminary result.
The following lemma deals with a class of matrices that includes the transformation matrix
S from Theorem 2.6.

Lemma 4.1 Let ny > -+ > n,, > 0 be a series of integers and set a := ny + -+ + Ny
Further, let S have the shape

51’1 SLQ e Sl,m
S = S22 T € Coe, (4.1)
B Sm—l,m
Sm,m

whereby all S;; € C"™ are upper triangular Toeplitz matrices. Then, S™' also has the
shape (4.1), i.e., it is upper triangular and its (i,7) block is an upper triangular Toeplitz
matriz of dimension n; x n; for all t and j.

This lemma is proven by straightforward computation using the well-known fact that the
product of two upper triangular Toeplitz matrices is again an upper triangular Toeplitz
matrix and that the inverse of an invertible upper triangular Toeplitz matrix is again one
itself [11, Chapter 3]; details are omitted here. We go on to prove our main theorems on
Hermitian rank-2 perturbations as in (2.19), i.e., ones of the form

(AE,AA):[uUM[?é],{ggb“ﬂ. (4.2)

Hereby, we only consider the case p € C\R since in case p € R, then (4.2) were the sum of
two subsequent Hermitian rank-1 perturbations as covered in the previous section. We will
analyze the Jordan structure under perturbation in Theorem 4.2 and the sign characteristic
in Theorem 4.3.

Theorem 4.2 Let (E, A) € C™"xC™" be regular and Hermitian with the partial multiplic-
ities ny > - -+ > Ny, > 0 associated with some eigenvalue ) eC. Then, for each p € C\ R
there exists a generic set 0, C C" x C", such that for all (u,v) € ), (E+ AE, A+ AA)
as in (4.2) is reqular and has the partial multiplicities (ng,...,nm) if \ ¢ {p, 1} and
(N3, ..., Nm, 1) otherwise at X

Proof. We proceed similar to the proof of Theorem 3.1. Since by Theorem 2.6 and (2.16)
the partial multiplicities of the perturbed pencil are generically greater than or equal to the
ones given above, it again suffices to present one particular perturbation in each case that
creates these partial multiplicities by Lemma 2.9. Let (F, A) be in Hermitian Kronecker
form as in Theorem 2.10 with the blocks at A coming first and ordered by their size.
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Case \ € C\R. Consider the first two blocks of (E, A) associated with h) (each of which
is paired to a block of the same size corresponding to the complex conjugate eigenvalue)
and set u := e; + €9y, yny+1 and U := €,,41 + €2,,+1. Then the first part of the perturbed
pencil is given by

0 — Ry Jp,(A=))

= + (A= +(\N—1)vu
RO . (A=) (A—7)

0 —RuJu,(A-X)
—Ru Jy, =X 0

This matrix pencil can by permutations and multiplications with —1 of its rows be trans-
formed to a matrix pencil of the type from the appendix of this paper. In fact, setting
fhy = A— A = )\—X, vy :=n—A,and v_ := A — p in the matrix 7" from the appendix,
its determinant is computed to be equal to

(= =R = A= (= ) = (1™ (3= 3 (7 - )]
SR = (1= A= )+ = )= )]

This shows that in the above given blocks of the perturbed pencil, the eigenvalue X does
not occur if A ¢ {u, i} and occurs with algebraic multiplicity one otherwise. Since no
other blocks of the perturbed pencil than these are perturbed, this particular perturbation
clearly creates the desired partial multiplicities at .

Case A € R. Consider the first blocks of (E, A) associated with X of sizes ny, ne with
signs €, €3 € {1} and set u := e; and v := e,, 1. Then, the first blocks of the perturbed
pencil are given by

(@B Js RN = ) © R Jus (A= ) + (A = perel .+ (A = Wenael

clearly not having the eigenvalue . Again, as no other blocks are perturbed, this pertur-
bation creates the partial multiplicities (ns,...,n,) at A. O

In the following theorem concerning the sign characteristic of Hermitian matrix pencils
under rank-2 perturbations, we consider (F, A) to have Jordan blocks of the sizes (3.2) at
N Hereby, we will employ both notations, i.e., the n;’s and the s;’s depending on which is
more convenient. Finally, let €2, denote the generic set from Theorem 4.2.

Theorem 4.3 Let (E, A) € C™™ x C™" be reqular and Hermitian and at some eigenvalue
)€ R, let (E,A) have the partial multiplicities (3.2) and the list of signs L, attached
to blocks of size s; for i = 1,...,v. Then, for each u € C\ R there exists a generic
set Q, C Q,, such that for all (u,v) € €, the list of signs LY, at blocks of size s; of
(E+ AE, A+ AA) as in (4.2) is obtained by subsequently executing the following steps:

o Ifi =1, then L 1is obtained from L, by removing either evactly one sign —1 or
ezactly one sign +1, else L, = L,,.
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o Ifeitheri=1andt, > 2 ori =2 andt; = 1, then L] is obtained from L by
removing exactly one sign —1 or evactly one sign +1, else LY := L .

Proof. We proceed similar to the proof of Theorem 3.3. Assuming (F,A) to be in
Hermitian Kronecker form as in Theorem 2.10 with the A blocks coming first, these first
blocks of E(E, A) are in Weierstra3 canonical form. Now, let the generic condition from
Theorem 2.6 on u, v be satisfied, so that there is an invertible matrix S € C™" as in (2.10)
for which we have

* T T T T

U Sfl _ el,nl 0 el,ng 0 61,n5 Uel,nm M (4 3)
* - T T 0 T 0 ce T .

v x el,nz €14 pelv”m

for certain z = [z1, ..., z,,]7 € C™ and M of suitable size. Thus, SE(E+AE, A+AA)S™1
is in rank-2 partial Brunovsky form as in Theorem 2.6 and thus has the Jordan chains (2.7)-
(2.9) at X. But also

S™E+AE, A+ AA)S™, (4.4)

has these chains at A and in addition, it has the same sign characteristic as (£ + AFE, A+
AA). By Lemma 4.1, the matrix S~! has the structure

Sii Sz oo Sim
S—l — S2,2 D ]n—a c (:n,n7
Smfl,m
Sm,m

whereby a = n;+- - -+n,, and each S; ; has dimension n; xn; but is still an upper triangular
Toeplitz matrix, i.e., if n; > n; then S; ; has n; — n; all-zero rows at the bottom. Also, let
us denote the (1,1)-entry of each S;; by s;; with s;; # 0 for i = 1,...,m. Now, the sign
characteristic of (4.4) can be extracted from the following matrix

F=F+F:=S"ES7"+5"[u v]|R, { :j } S (4.5)
In the remainder of this proof, we denote by €1, ..., €, the signs of (E, A) attached to its

blocks at X, so that €; is the sign of the jth diagonal block of (£, A). Then, the topleft
a X a block of Fj is given by

61Sianl Sl,l 61Sflen1 SLQ €1Sik7anl Sl’g e €1SianISLm
* 2 * 2 * 2 *
€157 5 R, S1y 305 €550 R0, S D51 €550 R Sis o 305 €655 20, Siam
* 2 * 3 *
€157 3 Rn S11 D51 €553 R Sjo D0 €557 30 S)s
2 m
| ST RS D0 65 Ry S e 21 €55 m B S|
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We note that for 1 < j < min(k,¢), the jth summand of the (k,¢) block of the above
matrix is given by

0 0

Gijkaanjf =€ |: 0 Ry Toep(w)

} € Crene (4.6)

for some w € C? setting d := ny + n, — n;. In particular, its (1,n,) entry is zero whenever
ne < n; and its (ng, 1) entry is zero whenever n; < n;. Also, by (4.3) it is clear that the
topleft a x a block of F; is equal to

* T T T T T
elvnll‘ + xel,’nl 617”161,712 xel,ng 617”161,n4 xel,n5
T T T
617”261,711 0 6177’7«261,713 0 617"1261,77,5
* T T
€1,nsT €1,n3€1 n, 0 €1,n3€1,ny
)
T T
617”461,7“ 0 61,”461,n3
* T . T
€15 T 61,n5el,n2 : 0 el»nmflel,nm
T
L €1>nm€1,nm_1 O .

and that these topleft a x a blocks of F} and Fy are conformably partitioned, i.e., the (k, ¢)
block of each matrix has dimension n; X ny.

Now, by Theorem 2.11 for each i = 1,...,v the signs of (4.4) at blocks of size s; are
equal to the signs in the inertia of the selfadjoint map G, : ¥, — V¥, , where we have

U, ={zeC"\ {0} ME + AE)z = (A+ AA)z and z can be extended to
a chain of (E + AE, A+ AA) of at least length s; } U {0}.

This inertia shall be extracted by computing a matrix representation of
fo U, x U, = C, (z,y)— "Gy =z Fy)

with respect to a suitable basis of W,,. By Theorem 4.2, there generically exist blocks of
the following sizes in (4.4) at A:

(i) blocks of size s; with s; < ng,
(ii) blocks of size ns.

Blocks of type (i): We consider the Jordan chains of length s; of (4.4) from (2.8)-(2.9).
Letting x; = s1t1 + - -+ + s;_1t;_1 as before and also n; :=t; + --- 4+ t;_1, we introduce the
following notation for these chains:

(4.7)

) {6n1+j — Cpayp (k—1)si+j> if £ and n; are both odd or both even,
Yik =

Cnytnati — Crit(k—1)s;+j, Otherwise,
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forj=1,....s; and k=1,.... t,.

As in the previous section, we aim to extract the signs of a matrix representation of f;,
by considering a basis of W, whose last dim(W¥y, 1) vectors form a basis of W, ;. Since
by Theorem 4.2 the pencil (4.4) generically has ¢; linearly independent Jordan chains of
length s; at A, the first t; = dim(¥y, 1) — dim(Wy,) vectors of this basis can be chosen as
Yits---,Yit, as in (4.7) (omitting the superscript if equal to one). But as basis vectors in
U, 11 lie in Ker G, we ignore them when computing a matrix representation of f,.

For simplicity, we assume in the following that n; is odd but the other case is entirely
analogous. In order to compute fs,(yix,yir) for all k,¢ € {1,...,t;}, we may consider
the terms y; kFlyZ(fZ) and y; kngE’sZ) separately because of (4.5). Recalling that the signs
of (E, A) associated with blocks of size s; are given by L,, = {€,,41, €42, - €ntt, }, W
compute in the following subcases:

Subcase k is odd and € is even: We have that y;; F} yz(sz) is given by

T T T T
€nit1 L1 €nytnots; — €nyin B €, — Crit(k—1)s;+1 Fienytnyts; F et (h—1)si+1 Fi eyits,
N\ J N\ J N ,
VvV NV

=0 =0 -0 ns +min(k,£)

= § : €5 Sjmi+k Sjmi+e-
J=ni+1

Hereby, the first three terms were simplified using n3 > s; and the last equality was
obtained by regarding the (1, s;)-entry of the (n; + k, n; + £)-block of Fy, which is the sum
of matrices of the form (4.6); the lower summation bound arises as the desired (1, s;) entry
is 0 whenever s; < n; (whereby j is the summation index). On the other hand, the term

yiy Fo yl(sz) from above is equal to

T T T T _
€ny+1 Fy Cnitno+s; — Cpyt1 Fy Critls; — Cprit(k—1)s;+1 Fy €nitnots; T Crit(k—1)s;+1 Fy Crit+ls; — 0,
N 7 7 (. A

TV TV I a vV
:61751' :51,81‘ :51,52- :61731‘

where 6; ; is the Kronecker delta and we used that 7; + £ is even and n; + ¢ is odd. Thus,
in the case that k is odd and ¢ is even, we obtain

n;+min(k,0)
fsi Wik, Vi) = Z €5 Simitk Simi+L- (4.8)

J=ni+1

Then again, if k£ is even and ¢ is odd, the same result is obtained since the map f;, is
Hermitian (recall that Gy, is self-adjoint). However, the remaining cases that k and ¢ are
both odd or both even are treated similarly:

Subcase k and € are both odd: We obtain that y;; F1 yﬁ") is equal to

T T T T

€ny1 F1 Enirs; = €ny B Cnites; = € (e 1ysi1 B €nits T (em1ysi01 F1 €t

~ TV - ~ TV - ~
=0 =0 =0

n;+min(k,0)

= E €5 Sjmit+k Sjmi+es
J=ni+1
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where the first three terms were simplified using ns > s; and the last equality was obtained
exactly as described in the above subcase. Then, the other term y;, F> yfsj) is equal to

T T T T _
Cnit1 L2 €nyts; — €5y Fo s, — Crit(k—1)s;+1 Fyen ts; + Crit(k—1)s;+1 Fyep0s, =0,

since every one of the four terms is already zero (recall that n; + k and 7; + ¢ are both

even). Thus, the equation (4.8) is obtained in this subcase as well.

(s4)

Subcase k and { are both even: Then, y;, Fy yz.j is computed to be

T T T T
Eni4not1 Fy Enitnatsi = Enitnot1 Fy Critls; ~ Crit(k—1)s+1 Fy €nyngts; et (h—1)si+1 Fyewis,

VvV vV
=0 =0 =0 nimin(k,£)
= E : €5 Sjmi+k Sjmi+e
J=ni+1

)

just as in the previous subcases. The remaining term y;; Fo yz(sZ is equal to

T T T T
€y tnot1 F2 Eniinots; = €y g1 12 €xies, — eni+(k—1)si+1F2 Cnytnots; T eni+(k—1)si+1F2 Critlsis

which is equal to zero, since all of the four terms are already zero (recall that n; + k and
n; + ¢ are both odd). Hence, (4.8) also holds in this subcase.

Clearly, the nonzero part of the desired matrix representation of fs, is given by M, =
[fs: (Yiksvie)ke- We apply a series of *-congruence transformations to M,,: First, add the
—(Sosimias)/ Smitim+1)-multiple of the first row onto the jth row and the —(s,,41.,+;)/
(Sp;+1,m+1)-multiple of the first column onto the jth column for j = 1,2,...,¢;, then repeat
with the second row/column, then with the third, and so on, which yields the matrix

. 2 2 2
diag (677z‘+1 |37h‘+1ﬂ7z’+1| ) Eni+2 |5m+27m+2| e Enitty |87h‘+tia7h'+ti| )

Since the signs of the perturbed pencil at blocks of size s; are given by the signs of the
eigenvalues of M,,, they are read off to be equal to L] = {11, €42, .., €p41, ), i-€., the
original signs.

Blocks of type (ii): To extract the signs at blocks of size ng, we employ a different set
of chains of length ns than the ones from Theorem 2.6 given in (2.7)-(2.9). Letting 7 be
the number of linearly independent chains of (E, A) at X with length at least n3, one can
verify as in the proof of Theorem 2.6 that for each k = 3,4, ..., 7 the vectors

() ._ € = Cnytdnyp_1+j [en1+j s 6erl} |:~1'1 B mj] ) ] -1 ns if £ is Odda
Cniti = Coytetng 14j5 it kis even

form a Jordan chain of (4.4) with length n3. Since by Theorem 4.2 there generically exist

7 — 2 linearly independent Jordan chains of length n3 of (4.4) at ), the set {z3,...,2:} is
a basis of ¥,,, (recall that V,,,; = {0}). Thus, in the following we compute f,,(zx, z¢) =

zZFlzénB) + ZZng§n3) for k,¢ € {3,...,7} to obtain the signs of the perturbed pencil (4.4).
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First, let us compute the term ZZngén3), whereby we again consider the three subcases

depending on k£ and ¢ being odd or even. Setting wy := ny +-- -+ ni_1, in the first subcase
we assume that k£ and ¢ are both odd. Then, Z;FQZénS) is given by

T T — T
(61 €1 T $1€n1+1) Fy <€n3 — Cuptng — L1lni4ng — " T .’L’n36n1+1)

T T T T
=e) Faen, — €1 Fhey,ing — x1€] Folpypng — -+ — Tpgeg Fhen, 11

T T T T
- ewk-i-lFQenB + ewk+1F2€WZ+n3 + xlewk+1F2€nl+n3 et xn36wk+1F26n1+1
— T — T 2T — T
— T, 11 F26ns + T10, 1 FoCuping + |T1]7 €y 1 Folny 1y + 0+ T1Zns€5, 1 Fony 41
The nonzero terms occurring in this computation are the ones:

T o T _ T _
61 Fang, - xng + ‘rlél,’n37 _61 Fc;%ewZ+n3 - _x1517n37 _xnz;zel F2€n1+1 - _:CTL37
_Tewk+1F26n3 — _xnga In3ewk+1F2€1’L1+1 - xn37 _$1€n1+1F26n3 — _xlél,nga
xlenl-f—lF?ewe-l—na = ‘Tlél,na?

so that clearly, we obtain zZngtSM) = 0 in this subcase (recall that ¢;; is the Kronecker

delta). Similarly, if & is odd and ¢ is even, z;;ngé"B) is given by

T T T T T
(61 €1 T Ilenl—i-l) Fy (en1+n3 - ewz—l-ng) = €1 Faen 1ny — €1 Fabuying

- egk+1F2€n1+n3 + e£k+1F2ewz+n3 - x_16£1+1F26n1+n3 + 17_1€£1+1F26w£+n3 = 0.
Hereby, the result ZZngénS) = ( is obtained since the last two terms above are zero (recall
that ¢ is even) and the first four terms are each equal to £0; ,, so that they exactly cancel
out. (We remind that the case that k is even and £ is odd will later follow from this case
as fn, is Hermitian.) Finally, whenever k and ¢ are both even, the term ZZF22§"3) is equal
to

T T T T
(6n1+1 - 6wk+1) Fy (€ny4ng = Cuping) = €n1+1F2€n1+n3 - 6n1+1F26wz+n3

T T _
- ewk+1F26n1+n3 + ewk-&-lF?ew-&-m - 07

where the sum is zero since each of the four terms above is zero itself.

It remains to compute the other term z,’gFlzé"?’) for all k, ¢ € {3,...,7}, but in addition
to the subcases from above, we have to account for another thing. Since the results depend
the list of signs of (F, A) attached to blocks of size n3, denoted by L,,, we distinguish
between the following cases:

case (a): ny > ng, since then £,, = {e3,..., €},
case (b): my > ng = ng, since then L,, = {es,..., €},
case (c): my = ng = ng, since then L,,, = {e1,..., €}
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Case (a): For odd k and ¢ we obtain that ZZFlzlS%) is equal to

T T — T
(61 - ewarl - $16n1+1) Fl (ens — Cuptng — T1€py4ng — 10 T :Cn3€n1+1)
T T T T
=ey Fien, — € Fieyiny, — 2167 Fiénpng — -+ — Tpgey Fiep, 1

T T T T
— €y1Fiens ey 1 1€ ing + 216, (1 Fren 1ng + o+ Tngey, L Fren, 11

— T — T 2. T — T
— Tiey, 1 Freng +Tre, 1 Fléy ing + |21 Cnit1F1€n 40y + -+ T1Tn e, 1 Fr€n, 11
min(k,?)

=3

since all terms other than egk 1 Fiey,4n, are equal to zero. On the other hand, if & is odd

and ¢ is even, z;;Flzéng) is equal to

T _ T — T _ T T
(e1 — Coptl — zlenyﬁ-l) Fy (€nyyng — 6w+n3) = ey Fien, yns — €1 F1€u,4n; min(k.0)
T T — T — T _ —
- ewk+1F1€n1+n3 + ewk+1F1€we+n3 — Ty, 1 F1€n 40 + T, 1 FrCupng = E , €5 Sj,k S50,
=3
. . T . . .
since again only the term e, ,;F1€y,n, contributes to the result. Finally, if £ and ¢ are

both even, then z;;FlzéM) is given by
T T

(en1+1 - ewk—i-l) F (€n1+n3 - ewz—l—na) min(k.0)

- €Z1+1F1€n1+”3 o 67::1-&—1F1€wé+n3 - egk-i-lFleerns + €£k+1F1€wz+n3 = Z €5 ik Sjt

=3

for the same reason. Then, recalling (4.5) and that f,, is Hermitian, we have determined
fns (2K, z¢) for all k and ¢ in this case. Thus, to extract the signs of (4.4) at blocks of size
ns, we consider that the matrix M := [Z?:lg(k’g) € Sik 5] ¢ 18 *-congruent (employing the
same transformations that were described detail in the treatment of blocks of type (i)) to

the diagonal matrix
dla‘g (63 ‘83,3‘2 y €4 |S4,4|2 yeeo 6 |ST,T 2)- (49)

Hence, since the matrix representation of f,,, is given by M, the signs of (4.4) at blocks of
size ng are clearly given by L) = {e3,... €.}, i.e. the original signs.
Case (b): Distinguishing as before, we start assuming that k& and ¢ are both odd, then

n . .
zZFlzé 3) s given by:
T T T
(61 €1 T ng167:,1-1—1) F (ens — Cwptng — T1Cny4ng — T T $n3€n1+1)

T T T T
=e) Flen, — e Fiey,in, — 216 Fién 4ng — -+ — Tpge; Fren, 11

T T T T
- ewk—i-lFlenS + ewk+1F1€we+n3 + xlewk+1Flen1+n3 +ooee xnsewk—i-lFleerl

—T — T 2T i
— T1en, 1 P10y + Trey 1 FiCuping + |1]7 €n) 1 Fi€nng + 0+ T1Tngep, 1 Fi€n, 41

min(k,£)

= Z €55k Sj0 + €252k + 21522)(S2,0 + T152,2).
=3
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This result is obtained since

T _ yomin(kf) | — — T _ —_—

€wk+1F1€w+n3 = E :j:3 €5 Sjk Sje + €282 1S2.0, xlewk+1Flen1+n3 = €2T152k52,2,
— T _ - 2 T _ 2
Tre) 11 Fi€u,iny = €2T152252,40, |21|” €5, 11 F1€ny 4ns = €2 [T1522]7,

and all other terms in the computation are equal to zero. Then again, if £ is odd and ¢ is
even, z,’;Flzé":”) is equal to
T T — T _ T T
(el - ewarl - x1€n1+1) Fl <€n1+n3 - eweJrns) =€ Flem+n3 — € Flewe+n3

T T — T — T
- ewk+1F16n1+n3 + ewarlFleweJrns - x16n1+1F16m+n3 + xlem+1F1€we+n3

min(k,?)
= E € SjkSju + €2(Sak + T1522)(S20 — S2.2),
Jj=3
since

T R _ — T _ ~—min(k,)  ——
_eL%_H 1€ni4ny = —€2 52522, ewk+1 1€wp+nz = Zj::% €5 SjkSje + €9 $2.k52,¢5
— T _ — 2 — T _ [

—$1€n1+1F1€n1+n3 = —€21 |=5‘2,2| s $16n1+1F16w,_1+n3 = €2X152252.¢,

and all other terms are zero. At last, if k£ and ¢ are both even, then z,’;Flzém) is given by

T T T T T
(€n1+1 - ewarl) F (en1+n3 - ewz—l-ns) = €n1+1F16n1+n3 - €n1+1F1€wz+n3 - ewk+1F16n1+n3
min(k,¢)
T 2 _ _ _ _
+ ey 1F1€u4ns = €2 |s2.2|” — €2522520 — €2 525522 + E €5 Sjk Sje + €282 1S2p
min(k,?) J=3
= D € Snsi+ €a(sak — 522) (520 — 522).
Jj=3

Again, as f,,, is Hermitian, this concludes the computation of f,, (zx, z¢) for all k and ¢ in
this case. Now, let us define the matrix B such that the matrix representation of f,, with
respect to the above basis is given by M + e, B (where M is defined as in case (a)). Further,
we point out that B has the form ww* for a suitable w € C™2. Thus, assuming the matrix
representation M + e B to be invertible (which is a generic condition with respect to the
entries of u,v), we can apply Lemma 2.12. Recalling that the signs of the eigenvalues of X
can be read off from (4.9), by this lemma the desired list of signs £,  attached to blocks
of size n3 is obtained by removing either exactly one sign —1 or exactly one sign +1 from
the list £,,, = {€2,..., €6}
Case (c¢): Whenever k and ¢ are both odd, zZFlzén3) is given by:

T T — T
(61 — Cupt+l T ‘Tlem—&-l) F (6713 — Cuptng — T1€ni4ng — T T xn3€n1+1)

T T T T
=e) Flen, — e Fiey,1ny — 2167 Fi€n1ng — -+ — Tpgey Fren, 11

T T T T
- €wk+1F1€n3 + ewk.—i-lFleweJrns + xlewk—&-lFleerns +oee xnsewk+1F1€n1+1

T

T o 2 —_— T
— T1en, 1 P10y + Trey 1 FrlCuping + (1] €n) 1 Fi€nng + 0+ T1ngep, 1 Fren, 41

min(k,¢)

= Z €5k Sj0 + €2(S2k + T1522)(S20 + T1522) + €1(S1,6— S11+ T151,2) (51,0— 51,1+ T151,2).
=3
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To obtain this, we have to consider all nonzero terms in the above computation, namely:

T _ 2 T _ _— T _ _—
e1 Fien, = €1 ]s11|, —ej Fleyqyn, = —€1511510, —T16] F1€n 1y = —€1 1511512,

T _ _— T _ min(k,l) —— J— N
€1 F1Eng = —€1515811, €1 F1€0ing = D055 €5 Sk Sj0 + €252 552,0 + €1 S1ES1,

T _ — — =T _ —
T1€y, 11 F1€n 10y = €2 X183 kS22 + €1 X151 k512, —Ti€n, 1 F1en; = —€1 71812811,

—_— T _ [ [

$1€{L1+1F1€wg+n3 = €2 3?152,252,z2+ €1 93151,231,g>
T _

|21 | €n1+1F16n1+n3 = €2 |$132,2| + € |$1S1,2| .

Similarly, if k£ is odd and ¢ is even, zZFlzé":”) is equal to

T T — T T T
(61 — Cuptl T xlenﬁ-l) Fy (en1+n3 - ewe-i-ns) = €1 F1eny1n; — €1 F1€u 4,

T T — T — T
- 6wk+1Fl@?"u-i-ns, + ewk-i-lFlew-i-na - x1€n1+1F16n1+n3 + xlenl—s-lFlewe-&-m

min(k,£)
=€181,151,2 — €1 51,151, — €2 S2 kS22 — €1 S1 kS1,2 + E €5 SikSje
Jj=1
_ 2 — 2 e _
— €21 |S2,2| — €I |81,2| + €2X1822S2¢ + €1 T151251¢
min(k,?)
= g €5k Sje+ €2(Sak + T1522)(S20 — S2.2) + €1(S1.6 — S11 + T1512)(S10 — S1.2).
Jj=3

Finally, if k£ and ¢ are both even, then z,’;Flzéng) is given by

(egl—i-l - egk-s-l) Fy (€ny4ns — Cuwgtng)

_.T T T T
=€y 116010y — €51 P10 png — ewk+1Flen1+n3 + ewk+1F1€wz+n3 min(,0)

2 2 S _ _ _ _
=€ [Soo|” + €1[512]" — €2522520 — €1 512510 — €253 5522 — €1 S1£51,2 + g €5 Sjk Sje
min(k,£) j=1

= Z €55k S0 T €2(526 — 522) (82,0 — 522) +€1(S1,6 — 51,2) (51,6 — 51,2)-
=3

As in the previous cases, this concludes the computation of f,, (2, z¢) for all £ and ¢. Now,
we define the matrix C' such that the matrix representation of f,,, with respect to the above
basis is given by M + e B + ¢, C' in this case (where M and B are defined as before). Then,
also C has the form ww* for some w € C™2. Clearly, assuming the generic condition that
both M + €;B and M + €, B + ¢,;C' are invertible, we may apply Lemma 2.12 twice, so that
the desired list of signs £ is obtained by removing either exactly two signs —1,—1 or
exactly two signs —1, 41 or exactly two signs +1, +1 from the list £,,, = {€e1,...,€6,}. O

5 Conclusion

The canonical form of regular Hermitian matrix pencils was investigated under generic
structure-preserving rank-1 and rank-2 perturbations. Hereby, regarding the sizes of the
Jordan blocks, a generic Hermitian rank-1 or rank-2 perturbation does not differ from
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a generic unstructured rank-1 or rank-2 perturbation: At each eigenvalueAX, the largest
one or two, respectively, Jordan blocks are destroyed and in addition, if A is a (simple)
eigenvalue of the perturbation, a new block of size one is created. In addition, if \ is real
(or infinite), under a rank-1 or rank-2 perturbation, all but one or two, respectively, of the
signs at each eigenvalue are preserved, whereby the signs that are not preserved correspond
to blocks that have been destroyed. R

Finally, the sign of the potential new block of size one at A can be determined as follows
(in case it is real or infinite): If there exist blocks of size greater than one in the unperturbed
pencil at /):, then generically the sign that is attached to \ in the perturbation is added
to the list of signs at blocks of size one. On the other hand, if the largest blocks in the
unperturbed pencil at A have size one, then the list of signs at these blocks is generically
changed as follows: First, the sign that is attached to A in the perturbation is added, and
then exactly one sign —1 or +1 is removed from that list.
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Appendix

The following matrix is denoted by T" and we want to compute its determinant:

[ ot 1 -
1
Vi Hi Vi
w— =1
-1
V_ | v_
pg 1
1
—v_ —v_ fi+
w— =1
-1
L —V+ —Vi H—
ni ni n2 n2
Laplace expansion with respect to the first column gives
det T = py det Ty + (—=1)" ", det Ty + v det Ty,
where
py 1
1
M Vi
p— =1
-1
v_ p_ | v_
det Ty =
! py 1
1
—v- —v_ i
w— =1
-1
—V+ H—
ny—1 ny no ng
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= Iuil_l (/LCQ — V+> det Tonid,
denoting by T4 the middle (ny 4+ ng) X (ny + ng) block of T'. Moreover, we have
1
i+
Ky
pw—  —1
-1
v_ po | v_
det Ty =
2 py 1

1

—v_ —v_ [y
p—  —1
—1
—UV4 H—
ny—1 ni n2 n2
= (1" —vy) det Thig
and
1
Hy-
1
H+ vy
p— =1
-1
det T3 = vV_ M— v_
py 1

1

—v_ —v_ [y
p— —1
,u,' —1
ny —1 n1 ng n2

(—1)"1+1V+ det Thiq-
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Putting these computations together, we obtain

detT =
_ [IMT "

We continue with computing

det Th0 =

[NT ("™ —vy) + (=) My (u™ —vy) + Vi(_l)nlﬂ] det Trnia

— vy — (—1)n1M22V+] det Thnia-

pw—  —1
-1
v_ h_ | v_
py 1
1
—v- v it
ny n2

A Laplace expansion with respect to the first column yields

det Thpig = p_ det Ty + (=1 v det Ty + (—1)"T"2v_ det Ty,

where
p— —1
-1
H— V_ ni—1
detTy = =
4 e 1 H
1
V- M+
ny —1 ng
and
—1
j-
o
det T5 = f
Ha-
1
V- H+
ny —1 ng

ph? 4 (—1)"2 v

= (—=1)m~1 ph? 4 (—1)"2 v



as well as

detTﬁ = ) e | v_ — (_1)711—11/_'

py 1
ny—1 n9

Hence, we obtain

det Tpig = p (W2 + (=1)"v2) + v (u? + (=1)"v) + (=12
= MTNT+(—1)n2MTV—+MTV_,

which altogether yields

det T = |piy' pu™ — plvy — (—1)"1u’12V+] [Wiluﬁz + (=DM .
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