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Abstract

Within the area of applied harmonic analysis, various multiscale systems such as wavelets, ridgelets,
curvelets, and shearlets have been introduced and successfully applied. The key property of each of
those systems are their (optimal) approximation properties in terms of the decay of the L

2-error of
the best N-term approximation for a certain class of functions. In this paper, we introduce the gen-
eral framework of α-molecules, which encompasses most multiscale systems from applied harmonic
analysis, in particular, wavelets, ridgelets, curvelets, and shearlets as well as extensions of such with
α being a parameter measuring the degree of anisotropy, as a means to allow a unified treatment
of approximation results within this area. Based on an α-scaled index distance, we first prove that
two systems of α-molecules are almost orthogonal. This leads to a general methodology to transfer
approximation results within this framework, provided that certain consistency and time-frequency
localization conditions of the involved systems of α-molecules are satisfied. We finally utilize these
results to enable the derivation of optimal sparse approximation results for a specific class of cartoon-
like functions by sufficient conditions on the ‘control’ parameters of a system of α-molecules.

Keywords: Anisotropic Scaling, Curvelets, Nonlinear Approximation, Ridgelets, Shearlets, Sparsity
Equivalence, Wavelets

1 Introduction

Applied Harmonic Analysis is by now one of the most thriving areas within applied mathematics. This
success is mainly due to the range of efficient multiscale systems it provides, which are today employed
for a variety of real-world applications. Just think of the first and hence ‘oldest’ in this list, which are
wavelet systems [10]. In the world of imaging science, these systems are today utilized, for instance, for
image restoration tasks [1] and in the world of partial differential equations, they were key to developing
provably optimal solvers for elliptic equations [8], to name a few. Their crucial property is to optimally
sparsely approximate functions governed by point singularities – in the sense of the decay rate of the
L2-error of the best N -term approximation.

Following this grand opening, next came ridgelets, introduced by Candès in his PhD thesis [2] and
further developed jointly with Donoho [3], which are perfectly suited for encoding ridge-like singularities
appearing, for instance, in tomography. Since it is today a general belief that images – as well as, for
instance, solutions to transport equations – are governed by curvilinear singularities such as edges, Candès
and Donoho then introduced curvelets [5], which were the first system to provide provably optimally
sparse approximations of a suitable model situation, thus justifiably called the second breakthrough
after wavelets. Some years later, shearlets were introduced mainly by Guo, Labate, and one of the
authors [23] as a system capable of providing the same approximation behavior as curvelets, but having
the advantage of providing a unified treatment of the continuum and digital realm; nowdays used, for
instance, for imaging applications (see, e.g., [16]) or for solvers of transport equations [9]. And these are
just a selection of multiscale systems being developed in the area of applied harmonic analysis.

As one can see, each of those multiscale systems in L2(R2) satisfies distinct optimal sparse approxima-
tion properties for a particular class of functions. Some of those such as curvelets and shearlets even for
the same class. Besides the aforementioned applications, such sparse approximation properties are also
key to the novel area of compressed sensing [6, 15], which requires a sparsifying system for the considered
data. And indeed, systems from applied harmonic analysis have already been extensively utilized for this
task, see, for instance, [12, 18].
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Analyzing the different constructions of such systems, one cannot fail to observe certain similarities,
which appear due to the fact that a guiding principle in applied harmonic analysis is to develop multiscale
systems based on their partition of Fourier domain as well as by utilizing certain operators (scaling-,
translation-, etc.) to generating functions. A careful observer also does not fail to notice that certain
proofs such as for sparse approximation properties of band-limited curvelets and shearlets are quite
resembling from a structural viewpoint.

Thus, one has to ask whether a general framework is acting in the background of all those results.
Bringing this to light would for the first time enable a common treatment of multiscale systems in
applied harmonic analysis, in particular, with respect to their approximation behavior, thereby enabling,
for instance, transfer of known results from one system to another or categorization of multiscale systems
with respect to their sparsity behavior. In this paper, we will introduce such a general framework which
we coin α-molecules for reasons to be explained in the sequel.

1.1 Towards a General Framework

Introducing a general framework, the first step shall always be to pause and contemplate which list of
desiderata we expect this framework to satisfy. In our case the introduced framework shall foremost
satisfy the following properties:

(D1) Encompass most known multiscale systems within the area of applied harmonic analysis.

(D2) Allow the construction of novel multiscale systems.

(D3) Allow a categorization of systems with respect to their approximation behavior.

(D4) Enable a transfer of (sparse approximation) results between the systems within this framework.

(D5) Enable the derivation of approximation results by easy-to-verify conditions on certain parameters
associated with a system.

Let us start by considering the two representation systems of curvelets and shearlets, which exhibit
similar approximation properties in the sense that they both exhibit an optimal decay rate of the L2-
error of best N -term approximation for the class of so-called cartoon-like functions, which are roughly
speaking compactly supported functions that are C2 apart from a C2-discontinuity curve. The com-
mon bracket in the construction of curvelets and shearlets is parabolic scaling, i.e., a scaling matrix of
the type diag(s, s1/2), s > 0 which leaves the parabola invariant. In fact, this type of scaling, which
produces functions with essential support width ≈ length2, is specifically adapted to the fact that the
model is based on a C2-discontinuity curve; a heuristic argument can be easily derived by expanding the
curve parametrized by (E(x2), x2) with E(0) = 0 = E′(0) in a Taylor series in x2 = 0 and using that
E(length of generator) = width of generator, when centering the generating function in the origin. Those
considerations eventually led to the framework of parabolic molecules [22].

In this paper, we however aim much higher, envisioning to develop a framework which, for instance,
also includes wavelets and ridgelets. Key to our work and also the reason of the term ‘α-molecule’ is the
observation that a distinct property of all multiscale systems is the degree of anisotropy of their scaling
operators. Whereas wavelet systems rely on isotropic scaling, i.e., the scaling matrix diag(s, s), ridgelets
are based on the most aniostropic scaling imaginable, which is diag(s, 1). Thus, a system within the
proposed framework has to be associated with a particular (α-)scaling of the type

(
s 0
0 sα

)
, s > 0,

the parameter α ranging from α = 1 (wavelets) over α = 1
2 (curvelets and shearlets) to α = 0 (ridgelets).

The fact that, in addition, the expression ‘molecule’ is to some extent standard in the literature of
harmonic analysis (see, for instance, [17]), explains the terminology framework of α-molecules.

1.2 The Framework of α-Molecules

Aiming to satisfy (D1)–(D5), the introduced systems of α-molecules in Definition 2.9 comprise the fol-
lowing ingredients:
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• Each system can have a different indexing set, which is then – for the sake of a unified definition
and to enable a comparison of systems of α-molecules – mapped to a common parameter space.

• α-Scaling, translation, and rotation operators are applied to a set of generating functions which
provides maximal flexibility by allowing a different generator for each index.

• Certain control parameters determine the time-frequency localization as well as the (almost) van-
ishing moment conditions of the generating functions.

Those ingredients ensure (D1) to be fulfilled as well as (D2).
A key property of systems of α-molecules is the almost orthogonality of each pair, made precise in

Theorem 4.2; or in other terms, the almost diagonality of the associated cross-Gramian matrix. Using
an extension of the concept of sparsity equivalence introduced in [22], which provides a notion for two
systems of α-molecules to possess a similar sparsity behavior, the almost orthogonality yields sufficient
conditions for two systems to be sparsity equivalent in Theorem 5.6; thereby deriving (D3). We note that
this is no true equivalence relation, but serves our purposes for the analysis.

Desideratum (D4), i.e., the transfer of sparse approximation properties from one system of α-molecules
to another, is closely related to this notion of sparsity equivalence whose effectiveness will exemplarily
be demonstrated by deriving a novel sparse approximation result for band-limited α-shearlet systems,
formulated in Theorem 5.13. In fact, it is a corollary of the more general Theorem 5.12 in connection
with Theorem 5.7.

The derivation of approximation results by conditions on certain parameters associated with a system
of α-molecules, i.e., Desideratum (D5), can in general be derived by transferring known approximation
results from one ‘anchor’ system to all other α-molecules. One possibility, which we will present in detail,
is the transfer of optimal sparse approximation results of so-called α-curvelets [21] for a certain extended
class of cartoon-like functions, yielding sufficient conditions on the ‘control parameters’ of a system of
α-molecules to exhibit the same optimal approximation behavior (cf. Theorem 5.11).

1.3 Expected Impact

We anticipate our results to have the following impacts:

• Approximation Theory: The framework of α-molecules now provides a common platform for studies
of approximation behavior of multiscale systems within the area of applied harmonic analysis. It
is flexible enough to enable a transfer of approximation results from one system to another and
to categorize systems by their approximation behavior. It allows a deep insight into the relation
between time-frequency localization and approximation properties, and we expect it to significantly
ease the construction of multiscale systems for function classes, arising from future technologies.

• Theory of Function Spaces: Smoothness spaces associated with a multiscale system, characterized
by the decay of expansion coefficients, are in a natural way related to the study of approximation
properties. And, in fact, a deep understanding of their structure is crucial, in particular, for
applications in numerical analysis of partial differential equations. In [22], a first approach to a
unified theory for systems based on parabolic scaling was undertaken. We strongly expect the
framework of α-molecules to eventually lead to a unified structural treatment of smoothness spaces
associated with all encompassed multiscale systems.

• Compressed Sensing: Compressed Sensing relies on the existence of optimally sparsifying systems
for given data. Systems from applied harmonic analysis have the advantage of coming with a fast
transform and known functional analytic properties, in contrast to systems being generated by
dictionary learning algorithms. Thus, one might envision the general framework of α-molecules to
provide a wide range of flexible multiscale systems allowing an adaption to the data at hand by
learning certain control parameters, but still preserving their advantageous functional analytic and
numerical properties.

1.4 Outline

The paper is organized as follows. Section 2 is devoted to the introduction of the framework of α-
molecules. More precisely, based on the most prominent multiscale systems whose definitions are briefly

3



recalled in Subsection 2.1, the notion of a system of α-molecules is introduced in Subsection 2.2. It is
then shown in Section 3 that various versions of wavelets, curvelets, ridgelets, and shearlets (in this order)
are indeed instances of α-molecules. The analysis of the cross-Gramian of two systems of α-molecules
showing their almost orthogonality based on an α-scaled index distance is presented in Section 4. This
fact is utilized in Section 5 to introduce the notion of sparsity equivalence for systems of α-molecules,
analyze the ability of the framework to transfer sparse approximation results from one system to another,
and at last, provide results on the optimal sparse approximation behavior of α-molecules with respect
to a certain class of cartoon-like functions depending on their control parameters. Finally, several highly
technical and lengthy proofs are outsourced to Section 6.

2 A General Framework for Applied Harmonic Analysis

Aiming to introduce a general framework, which encompasses most multiscale representation systems
developed within the area of applied harmonic analysis, we start by reviewing some of the most prominent
systems, namely wavelets [10], ridgelets [3], curvelets [5], and shearlets [23]. If the framework shall be
meaningful, those systems should undoubtedly be included; serving us as intuition and guideline for the
definition of α-molecules.

2.1 Prominent Multiscale Representation Systems

Historically correct, we will start with recalling the definition of wavelets. Since the notion of α-curvelets
from [21] allows us to unify the notions of ridgelets and curvelets, we will then introduce those, followed
by the definitions of (second generation) curvelets, and then ridgelets. We conclude this subsection by
stating the definition of shearlets. Throughout, we will use the version ϕ̂(ξ) = Fϕ(ξ) =

∫
R
ϕ(x)e−2πixξ dx

for the Fourier transform of f ∈ L1(Rd), and extend it in the usual way to tempered distributions.

2.1.1 Wavelets

Of the various wavelet constructions for L2(R2), the tensor product construction (cf. [32]) is the most
widely utilized one. Starting with a given multi-resolution analysis of L2(R) with scaling function φ0 ∈
L2(R) and wavelet φ1 ∈ L2(R), the functions ψe ∈ L2(R2) are defined for every index e = (e1, e2) ∈ E,
where E = {0, 1}2, as the tensor products

ψe = φe1 ⊗ φe2 . (1)

These functions serve as the generators for the wavelet system defined below. The corresponding tiling
of the frequency plane is illustrated in Figure 1.

Definition 2.1. Let φ0, φ1 ∈ L2(R) and ψe ∈ L2(R2), e ∈ E, be defined as above. Further, let σ > 1,
τ > 0 be fixed sampling parameters. The associated wavelet system W

(
φ0, φ1;σ, τ

)
is then defined by

W
(
φ0, φ1;σ, τ

)
=
{
ψ(0,0)(· − τk) : k ∈ Z

2
}
∪
{
σjψe(σj · −τk) : e ∈ E\{(0, 0)}, j ∈ N0, k ∈ Z

2
}
.

Figure 1: Partition of Fourier domain induced by tensor wavelets.
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2.1.2 (α-)Curvelets

In 2002 Candès and Donoho [5] introduced the second generation of curvelets, nowadays simply refered
to as curvelets, the construction of which is based on a parabolic scaling law. The idea to allow more
general α-scaling with α ∈ [0, 1] advocated in [21], yields a whole scale of representation systems, which
interpolates between wavelets for α = 1 and ridgelets for α = 0. As already discussed in the introduction,
such a general scaling-viewpoint is associated with the scaling matrix

Aα,s =

(
s 0
0 sα

)
, s > 0. (2)

We start by defining the radial and angular components separately. For the construction of the radial
functions W (j), j ∈ N0, let W̃

(0) : R+ → [0, 1] and W̃ : R+ → [0, 1] be C∞-functions with the following
properties:

supp W̃ (0) ⊂ [0, 2), W̃ (0)(r) = 1 for all r ∈ [0, 32 ],

supp W̃ ⊂ (12 , 2), W̃ (r) = 1 for all r ∈ [ 34 ,
3
2 ].

Then, for j ∈ N and r ∈ R+, set

W̃ (j)(r) := W̃ (2−jr).

In a final step, for every j ∈ N0, we rescale

W (j)(r) := W̃ (j)(8πr) , r ∈ R+,

in order to obtain an integer grid later. Notice, that 2 ≥
∑

j W
(j) ≥ 1.

Next, we define the angular functions V (j,ℓ) : S1 → [0, 1], where S1 ⊂ R2 denotes the unit circle, j ∈ N

and the index ℓ runs through 0, . . . , Lj − 1 with

Lj = 2⌊j(1−α)⌋, j ∈ N.

We start with a C∞-function V : R → [0, 1], living on R and satisfying

supp V ⊂ [− 3
4π,

3
4π] and V (t) = 1 for all t ∈ [−π

2 ,
π
2 ].

For every j ∈ N, we let Ṽ (j,0) : S1 → [0, 1] be the restriction of the scaled version V (2⌊j(1−α)⌋ ·) of the
function V to the interval [−π, π]. Since [−π, π] can be identified with S

1 via ϕ : t 7→ eit, this yields a

function Ṽ (j,0) on S
1, which is C∞.

In order to obtain real-valued curvelets, we symmetrize by

V (j,0)(ξ) := Ṽ (j,0)(ξ) + Ṽ (j,0)(−ξ) for ξ ∈ S
1.

Then, for each scale j ∈ N, we define the angles ωj = π2−⌊j(1−α)⌋. We next use the notation

Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, θ ∈ [0, 2π], (3)

for the rotation matrix and put Rj,ℓ := Rℓωj . By rotating V (j,0), for each ℓ = 0, 1, . . . , Lj − 1, we finally

define V (j,ℓ) : S1 → [0, 1] by
V (j,ℓ)(ξ) := V (j,0)(Rj,ℓξ) for ξ ∈ S

1.

In order to secure the tightness of the frame we utilize the function

Φ(ξ) :=W (0)(|ξ|)2 +
∑

j,ℓ

W (j)(|ξ|)2V (j,ℓ)
( ξ
|ξ|
)2
.

Notice, that 1 ≤ Φ(ξ) ≤ 8 for all ξ ∈ R2. Next, we combine the radial and angular components together
and define the functions ψ0 and ψj,ℓ on the Fourier side by

ψ̂0(ξ) :=
W (0)(|ξ|)√

Φ(ξ)
and ψ̂j,ℓ(ξ) =

W (j)(|ξ|)V (j,ℓ)
(

ξ
|ξ|

)

√
Φ(ξ)

. (4)

Observe that ψ̂0, ψ̂j,ℓ ∈ C∞(R2), and that these functions are real-valued, non-negative, compactly
supported and L∞-bounded by 1.
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Definition 2.2. Let α ∈ [0, 1], and let ψ0 and ψj,ℓ be defined as in (4). Then the associated α-curvelet
system Cα(W

(0),W, V ) is defined by

Cα(W
(0),W, V ) =

{
ψ0,k : k ∈ Z

2
}
∪
{
ψj,ℓ,k : j ∈ N, k ∈ Z

2, ℓ ∈ {0, 1, . . . , Lj − 1}
}
,

where, for j ∈ N, ℓ ∈ {0, 1, . . . , Lj − 1}, k ∈ Z
2,

ψ0,k := ψ0(· − k) and ψj,ℓ,k := 2−j(1+α)/2 · ψj,ℓ(· − xj,ℓ,k) with xj,ℓ,k = R−1
j,ℓA

−1
α,2jk.

It was shown in [21] that Cα(W
(0),W, V ) constitutes a tight frame for L2(R2). The induced frequency

tiling for different α ∈ [0, 1] is depicted in Figure 2.

(a) (b) (c)

Figure 2: Partition of the Fourier domain induced by α-curvelets for (a): α = 1, (b): α = 1/2, and (c):
α = 0.

Remark 2.3. The definition of α-curvelets given in Definition 2.2 is closely related to and inspired by the
classical (second generation) curvelets from [5]. The original system is obtained by a slight modification
of the angular tiling of the construction in the case α = 1

2 . In contrast to 1
2 -curvelets, the resolution of

the angular tiling is doubled at every other scale and remains fixed in between, as depicted in Figure 3. In
addition, the orientations of the single functions at every scale are chosen in a slightly different manner.
The reader might want to compare this to the frequency tiling of 1

2 -curvelets, Figure 2(b). However, the
underlying construction principle is the same.

Figure 3: Partition of the Fourier domain induced by second generation curvelets.

2.1.3 Ridgelets

The earliest version of the ridgelet transform was introduced by Candès [2] in 1998. It uses a univariate
wavelet φ ∈ L2(R) to map a function f ∈ L2(Rd) to its transform coefficients

〈f,
√
sφ(〈sν, ·〉 − t), ν ∈ S

d−1, t ∈ R, s ∈ R+.

The function x 7→ √
sφ(〈sν, x〉 − t) is a ridge function (hence the name ridgelet) which only varies in

the direction ν. Unfortunately, since this function is not in L2(Rd), the definition, as it stands, does not
make sense for every f ∈ L2(Rd). Similar to the continuous Fourier transform, however, the continuous
version of this transform can be well-defined [2].
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In order to avoid the problems associated with the lack of integrability of ridge functions, Donoho [13]
slightly relaxed the definition of a ridgelet, allowing them a slow decay in the other directions. In the
spirit of this more general approach, as pointed out by Grohs [20], one might define a ridgelet system as
a system of functions of the form

x 7→
√
sψ(DsRνx− t),

obtained by applying dilations Ds = diag(s, 1, . . . , 1) ∈ R
d×d for s ∈ R+ and rotations Rν , ν ∈ S

d−1

to some generator ψ ∈ L2(Rd), which needs to be oscillatory in one coordinate direction. The resulting
system can again be shown to form a (tight) frame. This more general definition can be stated in the
case d = 2 as follows.

Definition 2.4. The frame C0(W
(0),W (1), V ) from Definition 2.2 is called ridgelet system.

The associated partition of Fourier domain is pictured in Figure 2(c).

2.1.4 Shearlets

Shearlets were introduced in [23]. The basic idea is to obtain a directional representation system from
a fixed function by applying shears, translations and parabolic dilations. The choice of shears instead
of rotations for the change of orientation makes shearlets more adapted to a digital grid than curvelets,
thereby enabling faithful implementations. To allow a more uniform treatment of the different directions,
usually two generators with orthogonal orientations are used. Moreover, a distinct generator is utilized
for the coarse-scale elements. Such shearlet systems are called cone-adapted, since one can picture the
Fourier plane as divided into a horizontal and a vertical cone, as well as a coarse-scale box, associated
with the respective generators. This as well as a typical Fourier domain tiling induced by a cone-adapted
shearlet system can be viewed in Figure 4. For more information on shearlets, we refer to the survey
chapter [28].

(a) (b)

Figure 4: (a): The Fourier domain is partitioned into a horizontal and vertical double cone and a low-
frequency box. (b): Partition of the Fourier domain induced by a cone-adapted shearlet system.

For the definition of cone-adapted shearlets, we need in addition to the scaling matrix Aα,s from (2)
its rotated version

Ãα,s =

(
sα 0
0 s

)
, s > 0, (5)

as well as the shear matrix

Sh =

(
1 h
0 1

)
, h ∈ R. (6)

The cone-adapted (discrete) shearlet system is then defined as follows.

Definition 2.5. For c ∈ R+, the cone-adapted shearlet system SH
(
φ, ψ, ψ̃; c

)
generated by φ, ψ, ψ̃ ∈

L2(R2) is defined by
SH

(
φ, ψ, ψ̃; c

)
= Φ(φ; c) ∪Ψ(ψ; c) ∪ Ψ̃(ψ̃; c),
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where

Φ(φ; c) = {φk = φ(· − k) : k ∈ cZ2},
Ψ(ψ; c) =

{
ψj,ℓ,k = 23j/4ψ(SℓA 1

2 ,2
j · −k) : j ≥ 0, |ℓ| ≤ ⌈2j/2⌉, k ∈ cZ2

}
,

Ψ̃(ψ̃; c) =
{
ψ̃j,ℓ,k = 23j/4ψ̃(ST

ℓ Ã 1
2 ,2

j · −k) : j ≥ 0, |ℓ| ≤ ⌈2j/2⌉, k ∈ cZ2
}
.

Remark 2.6. Utilizing two parameters (c1, c2) ∈ R2
+ instead of c ∈ R+ would allow more flexible rect-

angular sampling grids [27]. For simplicity of notation, we chose to restrict our considerations to equal
sampling in both spatial directions, i.e., a square sampling grid. We want to remark however, that without
much additional effort it is possible to also include the more general case in the discussion.

2.2 Definition of α-Molecules

Aiming for a framework which encompasses the previously introduced multiscale systems, we first realize
that their parameter sets differ significantly. Thus a common parameter space has to be selected. Whereas
wavelets only depend on scale and position, ridgelets, curvelets as well as shearlets are all based on scale,
orientation, and position. Hence it seems appropriate to choose the common parameter space as a phase
space with an additional scale parameter.

Definition 2.7. We define the parameter space P by

P := R+ × T× R
2,

where R+ = (0,∞) and T = [−π
2 ,

π
2 ] denotes the torus with endpoints identified.

Thus a point p = (s, θ, x) in the parameter space P describes a scale s ∈ R+, an orientation θ ∈ T,
and a location x ∈ R2.

To allow arbitrary index sets – the necessity being discussed above – we require mappings of those
into the just defined common parameter space P. This leads us to the following definition.

Definition 2.8. A parametrization consists of a pair (Λ,ΦΛ), where Λ is an index set and ΦΛ is a
mapping

ΦΛ :

{
Λ → P,

λ ∈ Λ 7→ (sλ, θλ, xλ) ,

which associates with each λ ∈ Λ a scale sλ ∈ R+, a direction θλ ∈ T, and a location xλ ∈ R
2.

Similar to all multiscale systems in applied harmonic analysis, also α-molecules should follow the
construction principle of applying certain operators to generating functions. (α−)Scaling and translation
operators are an obvious choice. As an operator associated with the orientation index, two possibilities
stand at attention, namely rotation and shearing. In preference of a more convenient choice – recall that
the shearing operator required us to utilize two different generators in Subsection 2.1.4 – and since we
merely seek to introduce a theoretical framework, we choose the rotation operator. Intriguingly, shearlets
are still included in the framework of α-molecules as we will prove later, thereby showing its generality.

Our next decision concerns the generating functions. To ensure maximal flexibility, we allow those to
change with each index λ ∈ Λ, i.e., we employ a family of variable generators (g(λ))λ ⊆ L2(R2). Certainly,
to derive a meaningful family, the generators have to satisfy certain time-frequency localization properties,
which are governed by a set of control parameters. Those are chosen as a quadruple (L,M,N1, N2), where
L describes the spatial localization,M the number of directional (almost) vanishing moments, and N1, N2

the smoothness of the generators.
After this preparation, we are now ready to face the definition of α-molecules. For this, recall the

notions Aα,s for α-scaling and Rθ for rotation from (2) and (3), respectively. Also, we will use the so-

called analyst’s brackets 〈x〉 = (1 + x2)
1
2 , x ∈ R. In this section as well as in the sequel, the notation

a . b shall indicate that the entities a, b, possibly depending on some context dependent parameters,
satisfy a ≤ C · b for a positive constant C > 0, which is independent of the parameters. If both a . b and
b . a, we denote this by a ≍ b.
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Definition 2.9. Let α ∈ [0, 1], let L,M,N1, N2 ∈ N0 ∪ {∞}, and let (Λ,ΦΛ) be a parametrization.
A family (mλ)λ∈Λ of functions mλ ∈ L2(R2) is called a system of α-molecules with respect to the
parametrization (Λ,ΦΛ) of order (L,M,N1, N2), if it can be written as

mλ(x) = s
(1+α)/2
λ g(λ) (Aα,sλRθλ (x− xλ))

such that, for all |ρ| ≤ L,

∣∣∣∂ρĝ(λ)(ξ)
∣∣∣ . min

{
1, s−1

λ + |ξ1|+ s
−(1−α)
λ |ξ2|

}M

· 〈|ξ|〉−N1 · 〈ξ2〉−N2 (7)

The implicit constants shall be uniform over λ ∈ Λ, and in case that one or several control parameters
equal infinity, the respective quantity can be arbitrarily large.

The condition on the generators g(λ) in (7) ensures that the Fourier transforms of α-molecules have
essential frequency support in a pair of opposite wedges associated to a certain orientation, and essential
spatial support in a rectangle with scale-dependent side lengths. This can perhaps be more conveniently
deduced from the corresponding version of (7) in polar coordinates, which can be easily computed to be

|m̂λ(ξ)| . s
−(1+α)/2
λ ·min

{
1, s−1

λ (1 + r)
}M ·

〈
min{s−α

λ , s−1
λ }r

〉−N1 · 〈s−α
λ r sin(ϕ+ θλ)〉−N2 . (8)

(a) (b) (c) (d)

Figure 5: Frequency support of α-molecules (N1 = 2, N2 = 1, M = 3, θ = π/4) with (a): s = 1 and
independent of α, (b): s = 6 and α = 1, (c): s = 6 and α = 1/2, and (d): s = 6 and α = 0.

To illustrate this behavior, several possibilities for such α-molecules are shown in Figure 5, also
demonstrating the inclusion of different anisotropies as well as different partitions of Fourier domain. The
reader might want to compare those with the partitions given by wavelets (Figure 1 and Figure 2(a)),
curvelets (Figure 2 and Figure 3), ridgelets (Figure 2(c)), and shearlets (Figure 4). These figures in fact
already visually indicate that those systems as well as a variety of novel partitions of Fourier domain are
included such as, for instance, the partition illustrated in Figure 6.

Figure 6: Novel partition of the Fourier domain.

3 Examples of α-Molecules

Having stated and discussed the novel notion of a system of α-molecules, the immediate question arises
whether the prominent representation systems presented in Subsection 2.1 are included, and if so, with
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respect to which parametrizations (Λ,ΦΛ) and of which orders (L,M,N1, N2). For this investigation, we
follow the same ordering as in Subsection 2.1, i.e., first wavelets, then curvelets, followed by ridgelets,
and finally shearlets.

3.1 Wavelets

For this exposition, we focus on bandlimited wavelets with infinitely many vanishing moments. Therefore,
we additionally assume that the functions φ0, φ1 ∈ L2(R) used for the construction of W (φ0, φ1;σ, τ)
satisfy

φ̂0, φ̂1 ∈ CL(R) for some L ∈ N0 ∪ {∞}, (9)

and that there exist 0 < a and 0 < b < c such that

supp φ̂0 ⊂ [−a, a] =: J (0) and supp φ̂1 ⊂ [−c, c]\[−b, b] =: J (1). (10)

These conditions are fulfilled, if, for instance, φ0, φ1 ∈ L2(R) are the generators of a Lemarié-Meyer
wavelet system.

The following result now shows that these wavelet systems are instances of α-molecules of arbitrarily
large order.

Proposition 3.1. Let σ > 1, τ > 0 be fixed, and assume that the functions φ0, φ1 satisfy the assump-
tions (9) and (10). Then the wavelet system W (φ0, φ1;σ, τ) constitutes a system of 1-molecules of order
(L,∞,∞,∞) with respect to the parametrization (Λw,Φw) given by

Λw =
{
((0, 0), 0, k) : k ∈ Z

2
}
∪
{
(e, j, k) : e ∈ E\{(0, 0)}, j ∈ N0, k ∈ Z

2
}

and
Φw : Λw → P, (e, j, k) 7→ (σj , 0, τσ−jk).

Proof. For (e, j, k) ∈ Λw we define the functions g(e,j,k) := ψe, with ψe being the functions given in (1).

Since ĝ(e,j,k) = ψ̂e, we have ĝ(e,j,k) ∈ CL(R2) by (9). Further, (10) implies that

supp ψ̂e ⊂ Se := J (e1) × J (e2) for all e ∈ E.

Hence supp (∂ρĝ(e,j,k)) ⊂ Se for every |ρ| ≤ L and for all (e, j, k) ∈ Λw. This proves that the functions
g(e,j,k) satisfy condition (7). Since the wavelets can be written in the form

ψe
j,k := σjψe(σj(x − τσ−jk)) = σjg(e,j,k)(σj(x− τσ−jk)),

the proof is finished.

We remark that the framework of α-molecules can be shown to also comprise other constructions such
as systems of compactly supported wavelets or bandlimited radial wavelets.

3.2 Curvelets

In Subsection 2.1.2, we introduced α-curvelets, which are a generalization of second generation curvelets
to different types of scalings. In [4] the authors introduced the notion of curvelet molecules, which
are closely related to curvelets. To also include those in our consideration – which will turn out to be
beneficial later –, we start by introducing yet a further extension, which we coin α-curvelet molecules.

Interestingly, we can employ the general framework of α-molecules for this, defining α-curvelet
molecules as those systems with a particular parametrization. Those will then be shown to encom-
pass both α-curvelets and curvelet molecules, which immediately implies that those systems are in fact
instances of α-molecules.
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Definition 3.2. Let α ∈ [0, 1] and τ > 0, σ > 1 be some fixed parameters. Further, let (ωj)j∈N0 be a
sequence of positive real numbers with ωj ≍ σ−j(1−α). An α-curvelet parametrization (Λc,Φc) is given
by an index set Λc of the form

Λc :=
{
(j, ℓ, k) : j ∈ N0, ℓ ∈ Z with |ℓ| ≤ Lj for some Lj ∈ N0 ∪ {∞}, k ∈ Z

2
}
,

and a mapping Φc defined by

Φc : Λc → P, (j, ℓ, k) 7→ (sλ, θλ, xλ) := (σj , ℓωj, τR
−1
ℓωj
A−1

α,σjk).

A family of α-curvelet molecules is a family of α-molecules with respect to an α-curvelet parametrization.

Notice that the parameters σ > 1 and τ > 0 are sampling constants, which determine the fineness
of the sampling grid, σ for the scale parameters and τ for the space parameters. The values (ωj)j∈N0

prescribe the step size of the angular sampling at each scale j ∈ N0.

Proposition 3.3. The following statements hold.

(i) Curvelet molecules of regularity R ∈ N0, as defined in [4], are 1
2 -curvelet molecules of order

(∞,∞, R/2, R/2).

(ii) Second generation curvelets are 1
2 -curvelet molecules of order (∞,∞,∞,∞) with parameters σ = 2

and τ = 1.

(iii) For each α ∈ [0, 1], the α-curvelet frame Cα(W
(0),W, V ) is a system of α-curvelet molecules of

order (∞,∞,∞,∞) with parameters σ = 2 and τ = 1.

Proof. (i) and (ii) were proved in [22].
(ii) Due to rotation invariance, it suffices to show that the generators

gj,0,0 := 2−j(1+α)ψj,0,0(A
−1
α,2j ·), j ∈ N0,

satisfy (7). On the Fourier side they take the form

ĝj,0,0 = ψ̂j,0,0(Aα,2j ·).

From supp ψ̂0,0,0 ⊂ [− 1
2 ,

1
2 ]

2 =: Ξ0 and

supp ψ̂j,0,0 ⊂ [−2j−1, 2j−1]× [−2jα−1, 2jα−1], j ∈ N,

it follows that
supp ĝj,0,0 ⊂ Ξ0 for all j ∈ N0.

Next, for j ∈ N we observe that the functions ψ̂j,0,0 vanish on the squares [−2j−7, 2j−7]2, which implies
that ĝj,0,0 is equal to zero on [−2−7, 2−7]2 if j ∈ N.

Clearly, we have g ∈ C∞(R2) and the derivatives ∂ρg are subject to the same support conditions as
the function g. Thus, condition (7) follows for arbitrary order (L,M,N1, N2).

We obtain immediately the following corollary.

Corollary 3.4. For each α ∈ [0, 1], the α-curvelet frame Cα(W
(0),W, V ) is a system of α-molecules of

order (∞,∞,∞,∞) with respect to the parametrization (Λc,Φc).

3.3 Ridgelets

The ridgelet frame C0(W
(0),W (1), V ) (cf. Definition 2.4) is a special case of α-molecules as a direct

consequence of Corollary 3.4.

Proposition 3.5. The ridgelet frame C0(W
(0),W (1), V ) is a system of 0-molecules of order (∞,∞,∞,∞)

with respect to the parametrization (Λc,Φc).

One might go even one step further, and – based on considerations and extensions undertaken in
[20] – also introduce a system of ridgelet molecules by the following definition.

Definition 3.6. A system of 0-curvelet molecules is called a system of ridgelet molecules.

Thus, with Proposition 3.3, also ridgelet molecules are immediately instances of α-molecules.
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3.4 Shearlets

Based on the definition of cone-adapted shearlet systems as stated in Definition 2.5, two extensions can
be witnessed in the literature: shearlet molecules [25] with a subsequent generalization in [22] as well as
α-shearlets (also called hybrid shearlets) in [29, 26]. Thus, in a similar fashion as in the curvelet case (cf.
Subsection 3.2), we will introduce α-shearlet molecules and first prove that they are indeed instances of
α-molecules. This is significantly more difficult than for curvelets due to the form of the parametrization
which arises from the utilization of shearing instead of rotation. This result can then be used to analyze
shearlet molecules in the sense of [25] and α-shearlets with regard to their membership in the framework
of α-molecules.

For the definition of α-shearlet molecules, it is convenient to resort to the following notation. Recalling
(2), (5), and (6), we put A0

α,s := Aα,s = diag(s, sα) andA1
α,s := Ãα,s = diag(sα, s) for the scaling matrices,

and denote the shearing matrices by S0
ℓ,j := Sℓηj and S1

ℓ,j := ST
ℓηj

.

Definition 3.7. Let α ∈ [0, 1] and τ > 0, σ > 1 be some fixed parameters. Further, let (ηj)j∈N0 be a
sequence of positive real numbers with ηj ≍ σ−j(1−α) and put η−1 = 0. We define the index set

Λs := Λs
0 ∪
{
(ε, j, ℓ, k) : ε ∈ {0, 1}, j ∈ N0, ℓ ∈ Z with |ℓ| ≤ Lj, and Lj . σj(1−α), k ∈ Z

2
}

(11)

with Λs
0 :=

{
(0,−1, 0, k) : k ∈ Z2

}
and call a system Σ := {ψλ : λ ∈ Λs} defined by

ψ(ε,j,ℓ,k)(·) := σ(1+α)j/2γεj,ℓ,k

(
Aε

α,σjSε
ℓ,j · −τk

)
for some γεj,ℓ,k ∈ L2(R2)

a system of α-shearlet molecules of order (L,M,N1, N2), if, for every ρ ∈ N2
0 with |ρ| ≤ L,

|∂ργ̂εj,ℓ,k(ξ1, ξ2)| . min
{
1, σ−j + |ξ1+ε|+ σ−j(1−α)|ξ2−ε|

}M

· 〈|ξ|〉−N1 · 〈ξ2−ε〉−N2 (12)

with an implicit constant independent of the indices (ε, j, ℓ, k) ∈ Λs.

Notice that the indices Λs
0 at scale j = −1 correspond to the coarse scale elements.

We will next see, that although α-shearlet molecules are based on shearing rather than rotation, they
are still instances of α-molecules. For this, we utilize a special parametrization.

Definition 3.8. With parameters given as in Definition 3.7, an α-shearlet parametrization (Λs,Φs)
consists of an index set Λs of the form (11) together with a mapping Φs defined by

Φs : Λs → P, (ε, j, ℓ, k) 7→ (sλ, θλ, xλ) :=
(
σj , επ/2 + arctan(−ℓηj),

(
Sε
ℓ,j

)−1
Aε

α,σ−jk
)
.

Now we are ready to state the essential result, that α-shearlet molecules are indeed α-molecules. Since
the proof is rather long and technical, we outsource it to Subsection 6.1.1.

Proposition 3.9. A system of α-shearlet molecules of order (L,M,N1, N2) constitutes a system of α-
molecules of the same order with respect to the associated α-shearlet parametrization.

We now return to the question of whether shearlet molecules in the sense of [25] and α-shearlets are
instances of α-molecules. For this, we first recall the definition of α-shearlets, which can be regarded as
a version of Definition 2.5 with flexible scaling, thereby providing like α-curvelets a parametrized family
of systems ranging from wavelets to ridgelets. To not confuse this parameter with the parameter α from
α-molecules, we rename it β.

Definition 3.10. For c ∈ R+ and β ∈ (1,∞), the cone-adapted β-shearlet system SH
(
φ, ψ, ψ̃; c, β

)

generated by φ, ψ, ψ̃ ∈ L2(R2) is defined by

SH
(
φ, ψ, ψ̃; c, β

)
= Φ(φ; c, β) ∪Ψ(ψ; c, β) ∪ Ψ̃(ψ̃; c, β),

where

Φ(φ; c, β) = {φk = φ(· − k) : k ∈ cZ2},
Ψ(ψ; c, β) =

{
ψj,ℓ,k = 2j(β+1)/4ψ(SℓAβ−1,2jβ/2 · −k) : j ≥ 0, |ℓ| ≤ ⌈2j(β−1)/2⌉, k ∈ cZ2

}
,

Ψ̃(ψ̃; c, β) =
{
ψ̃j,ℓ,k = 2j(β+1)/4ψ̃(ST

ℓ Ãβ−1,2jβ/2 · −k) : j ≥ 0, |ℓ| ≤ ⌈2j(β−1)/2⌉, k ∈ cZ2
}
.
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The following result shows that shearlet molecules as well as cone-adapted β-shearlet systems – with
either band-limited or compactly supported generators – are instances of α-molecules.

In the band-limited case, we require the generators φ, ψ, ψ̃ ∈ L2(R2) to have support of the form

supp φ ⊂ Q, supψ ⊂W, sup ψ̃ ⊂ W̃ ,

where Q ⊂ R2 is a cube centered at the origin and W, W̃ ⊂ R2 satisfy

W ⊂ [−a, a]× ([−c,−b] ∪ [b, c]), W̃ ⊂ ([−c,−b] ∪ [b, c])× [−a, a]
for some 0 < b < c and 0 < a.

In the compact case, the coarse-scale generator φ shall satisfy

φ ∈ CN1+N2
0 (R2).

Furthermore, we assume the separability of ψ ∈ L2(R2), i.e. ψ(x1, x2) = ψ1(x1)ψ2(x2), and let ψ̃ be its
rotation by π/2. Finally, the functions ψ1, ψ2 shall satisfy

ψ1 ∈ CN1
0 (R) and ψ2 ∈ CN1+N2

0 (R),

and for ψ1 we assume M ∈ N0 vanishing moments.
We wish to emphasize that there is a distinct difference between band-limited and compactly supported

generators, as can also be read below from the different orders of the α-molecules they induce.

Proposition 3.11. The following statements hold.

(i) Shearlet molecules of regularity R ∈ N0, as defined in [25], are 1
2 -molecules of order (∞,∞, R/2, R/2).

(ii) For each β ∈ (1,∞), c ∈ R+, and band-limited generators φ, ψ, and ψ̃ subject to the conditions
above, the cone-adapted β-shearlet system SH

(
φ, ψ, ψ̃; c, β

)
is a system of β−1-molecules of order

(∞,∞,∞,∞) with respect to the parametrization (Λs,Φs) with τ = c, σ = 2β/2, ηj = σ−j(1−α) and
Lj = ⌈σj(1−α)⌉.

(iii) For each β ∈ (1,∞), c ∈ R+, and compactly supported generators φ, ψ, and ψ̃ subject to the
conditions above, the cone-adapted β-shearlet system SH

(
φ, ψ, ψ̃; c, β

)
is a system of β−1-molecules

of order (L,M − L,N1, N2), where L ∈ {0, . . . ,M} arbitrary, with respect to the parametrization
(Λs,Φs) with τ = c, σ = 2β/2, ηj = σ−j(1−α) and Lj = ⌈σj(1−α)⌉.

Part (i) was proved in [22]. Part (ii) uses similar arguments as the proof of Proposition 3.3(ii). Thus
the only interesting part is part (iii). Its proof shows that those cone-adapted β-shearlet systems are in
fact instances of α-shearlet molecules, and thus by Proposition 3.9 also instances of α-molecules. Since
this part is rather technical, we placed it in Subsection 6.1.2.

Thus, even various versions of shearlet systems are united under the roof of α-molecules. From the
discussed examples, this is maybe the most notable special case due to the already mentioned difficulty
with the seemingly not consistent (shear-based) parametrization.

4 Analysis of the Cross-Gramian

One main goal of the theory of α-molecules is the unified treatment of sparse approximation properties
of multiscale systems within the area of applied harmonic analysis. Thus, it is crucial to be able to
compare such properties of two different systems. This in turn requires us to consider and analyze the
cross-Gramian matrix of two systems of α-molecules.

We now see the benefit of having a common parameter space for all systems of α-molecules. Utilizing
parametrizations will enable a comparison of different systems despite possibly incompatible index sets.
Still, we require a notion of distance on the parameter space. Recalling the definition P := R+ ×T×R2,
we observe that the parameter space is a composition of a scaling space R+ and what is typically termed
phase space T × R2. For the phase space, a pseudodistance was introduced by Smith in [31], which
was later tailored to curvelet analysis by Candès and Demanet in [4], who extended it to also include
the scaling space. This scaled version was subsequently used (with slight adaptions) in [25] for shearlet
molecules and in [22] for parabolic molecules.

We though now require an α-scaled version, which can be defined in the following way.
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Definition 4.1. Let α ∈ [0, 1], and let (Λ,ΦΛ) and (∆,Φ∆) be two parametrizations. We then define the
associated α-scaled index distance ωα : Λ×∆ → [1,∞) as follows. For two indices λ ∈ Λ and µ ∈ ∆ and
associated images in P denoted by

(sλ, θλ, xλ) := ΦΛ(λ) and (sµ, θµ, xµ) := Φ∆(µ),

we set
ωα (λ, µ) := max

{sλ
sµ
,
sµ
sλ

}
(1 + dα (λ, µ)) ,

with dα (λ, µ) being defined by

dα (λ, µ) := s
2(1−α)
0 |θλ − θµ|2 + s2α0 |xλ − xµ|2 +

s20

1 + s
2(1−α)
0 |θλ − θµ|2

|〈eλ, xλ − xµ〉|2,

where s0 = min(sλ, sµ) and eλ = (cos(θλ),− sin(θλ))
T
= R−θλe1 is the co-direction.

We emphasize that ωα certainly depends on the parametrizations (Λ,ΦΛ) and (∆,Φ∆). However, in
order not to overload the notation, we did not explicitly specify those, since it should always be clear
from the context.

We now come to one of the main results of this paper, which essentially states that two systems of
α-molecules are almost orthogonal with respect to the α-scaled index distance in the sense of a strong off-
diagonal decay of the associated cross-Gramian matrix. Due to this result a higher α-scaled index distance
can be interpreted as a lower cross-correlation of associated α-molecules. It should be noted that we only
compare α-molecules with the same α, since we aim to, for instance, transfer sparse approximation
properties among those classes. It might though be very interesting for future research to also let α-
molecules for different α’s interact.

Let us now state the anticipated theorem on the cross-Gramian of two systems of α-molecules. Its
proof is technically very involved and lengthy, wherefore we postpone it to Section 6.2.

Theorem 4.2. Let α ∈ [0, 1], and let (mλ)λ∈Λ and (pµ)µ∈∆ be two systems of α-molecules of order
(L,M,N1, N2). Further assume that there exists some constant c > 0 such that

sλ ≥ c and sµ ≥ c for all λ ∈ Λ, µ ∈ ∆ with (sλ, θλ, xλ) := ΦΛ(λ), (sµ, θµ, xµ) := Φ∆(µ),

and that there exists some constant N ∈ N such that

L ≥ 2N, M > 3N − 3− α

2
, N1 ≥ N +

1 + α

2
, and N2 ≥ 2N.

Then
|〈mλ, pµ〉| . ωα(λ, µ)

−N for all λ ∈ Λ, µ ∈ ∆.

This result provides us with a fundamental property of α-molecules, which can be explored in various
ways. Perhaps one of the most notable applications is the classification and analysis of α-molecules with
respect to their (sparse) approximation properties, which we will present in the following section.

5 Sparse Approximations

One main goal of introducing the framework of α-molecules was to unify the treatment and analysis of
sparse approximation properties of multiscale systems constructed by applied harmonic analysis method-
ologies. In this section we will now show that

(I) α-molecules can be categorized by their approximation behavior,

(II) sparse approximation results can be transferred from one system of α-molecules to another,

(III) sparse approximation results can be concluded from the order of a system of α-molecules.
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Goal (I) will be discussed in Subsection 5.1 and resolved by utilizing the notion of sparsity equivalence
from [22] and the novel notion of consistency of parameterizations. Goal (II) will be analyzed in Subsection
5.2 and we focus in particular on transferring sparse approximation results from α-curvelet and shearlet
molecules. But the developed mechanisms can also be employed for other systems. Finally, Goal (III)
is studied in the case of optimally sparse approximation of specific so-called cartoon-like functions in
Subsection 5.3. The basic idea in this part will be that certain sparse approximation results known for
α-curvelets can be transferred to sparsity equivalent systems leading, roughly speaking, to stand-alone
conditions for the order of a system of α-molecules. Again, this approach can also be applied to other
scenarios and shall also show the power of this new framework.

Prior to this endeavour, we briefly recall some necessary aspects of approximation theory focussing on
the Hilbert space L2(R2), in which also α-molecules are defined. Given some system (mλ)λ∈Λ ⊆ L2(R2),
one typically aims to efficiently represent/encode functions f ∈ L2(R2) by the coefficients cλ ∈ R of the
expansion

f =
∑

λ∈Λ

cλmλ. (13)

Often efficiency can be improved by allowing the system (mλ)λ∈Λ to be redundant. This leads to the
notion of a frame, which adds stability to redundancy (see, e.g., [7]). A system of functions (mλ)λ∈Λ in
L2(R2) forms a frame, if there exist constants A,B > 0, called the frame bounds, such that

A‖f‖2 ≤
∑

λ∈Λ

|〈f,mλ〉|2 ≤ B‖f‖2 for all f ∈ L2(R2).

If A and B can be chosen equal the frame is called tight. In case A = B = 1 one speaks of a Parseval
frame. The associated frame operator S : L2(R2) → L2(R2) is given by Sf =

∑
λ∈Λ〈f,mλ〉mλ. Since S

is always invertible, the system (S−1mλ)λ is also a frame, referred to as the canonical dual frame. It can
be used to compute a particular sequence of coefficients in the expansion (13) via

cλ = 〈f, S−1mλ〉, λ ∈ Λ.

This sequence however is usually not the only one possible. Unlike the expansion in a basis, a represen-
tation with respect to a frame needs certainly not be unique. The canonical dual frame can also be used
to express f in terms of the frame coefficients (〈f,mλ〉)λ by

f =
∑

λ∈Λ

〈f,mλ〉S−1mλ.

In general, any system (m̃λ)λ∈Λ satisfying this reconstruction formula for all f ∈ L2(R2) is called an
associated dual frame.

Let us now turn to the question of efficient encoding. In practice we have to restrict to finite expansions
(13), which usually leads to an approximation error. Given a positive integer N , the best N -term
approximation fN of some function f ∈ L2(R2) with respect to the system (mλ)λ is defined by

fN = argmin
∥∥∥f −

∑

λ∈ΛN

cλmλ

∥∥∥
2

2
s.t. #ΛN ≤ N.

One can now analyze the rate at which the approximation error ‖f − fN‖2 decays as N → ∞. If we
restrict the set of data f to a class C ⊆ L2(R2), we can say that a system (mλ)λ provides optimally sparse
approximations, if this decay is the fastest among all systems in L2(R2) for each member f of C.

The computation of the best N -term approximation by frames is not yet fully understood, even in the
special case of Parseval frames. Therefore, it is common to consider as a handier substitute the N -term
approximation, obtained by keeping the N largest coefficients. Obviously, this approximation provides a
bound for the best N -term approximation error.

5.1 Categorization by Sparsity Equivalence

In this subsection, we aim to categorize α-molecules with respect to their approximation behavior. This
will be achieved by the notion of sparsity equivalence from [22] and the novel notion of (α, k)-consistency,
which will provide sufficient conditions for two systems of α-molecules to be sparsity equivalent.
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To build up intuition, we start by noticing that the N -term approximation rate achieved by a frame,
is closely related to the decay of the corresponding frame coefficients. Usually, the decay of a sequence
– sometimes also called its sparsity – is measured by a strong or weak ℓp-(quasi)-norm, for small p > 0.
Recall that the weak ℓp-(quasi-)norm is defined by

‖(cλ)λ‖ωℓp :=
(
sup
ε>0

εp ·#{λ : |cλ| > ε}
)1/p

.

Every non-increasing rearrangement (c∗n)n∈N of (cλ)λ ∈ ωℓp satisfies supn>0 n
1/p|c∗n| ≍ ‖(cλ)λ‖ωℓp .

‖(cλ)λ‖ℓp . One result showing that membership of the coefficient sequence of f in an ℓp space for small p
implies good N -term approximation rates whenever the given representation system constitutes a frame
is as follows. The respective proof can be found in [30, 11]), but for the convenience of the reader we also
included it in Subsection 6.3.1.

Lemma 5.1. Let (mλ)λ∈Λ be a frame in L2(R2) and f =
∑
cλmλ an expansion of f ∈ L2(R2) with

respect to this frame. If (cλ)λ ∈ ωℓ2/(p+1)(Λ) for some p > 0, then the N -term approximation rate for f
achieved by keeping the N largest coefficients is at least of order N−p/2, i.e.

‖f − fN‖22 . N−p.

As illustrated by Lemma 5.1 the decay rate of the frame coefficients determines the N -term approxi-
mation rate. In particular, if the sequence (〈f,mλ〉)λ∈Λ of frame coefficients lies in an ℓp space for p < 1,

then the best approximation rate of the dual frame (m̃λ)λ∈Λ is at least of order N−(1/p−1/2). In terms
of signal compression this is exactly what one hopes for: from simply keeping the N largest frame coeffi-
cients (which can be encoded by order N bits) we can reconstruct the original signal f up to a precision
of order N−(1/p−1/2). Let us assume that we have two systems (mλ)λ∈Λ and (pµ)µ∈∆ in L2(R2) and
expansion coefficients for f ∈ L2(R2) with respect to these two systems. Then these systems provide the
same N -term approximation rate for f if the corresponding expansion coefficients have similar decay, e.g.
if they belong to the same ℓp-space.

Proposition 5.2. Let 0 < p ≤ 1, let f ∈ L2(R2), and let (mλ)λ∈Λ and (pµ)µ∈∆ be frames such that
∥∥∥(〈mλ, pµ〉)λ∈Λ,µ∈∆

∥∥∥
ℓp→ℓp

<∞.

Moreover, let (m̃λ)λ∈Λ be a dual frame for (mλ)λ∈Λ. Then (〈f, m̃λ〉)λ ∈ ℓp(Λ) implies (〈f, pµ〉)µ ∈ ℓp(∆).
In particular, f can be encoded by the N largest frame coefficients from (〈f, pµ〉)µ up to accuracy .

N−(1/p−1/2).

Proof. For fixed µ ∈ ∆, we have

〈f, pµ〉 =
〈∑

λ∈Λ

〈f, m̃λ〉mλ, pµ

〉
=
∑

λ∈Λ

〈f, m̃λ〉 〈mλ, pµ〉 .

Thus (〈f, m̃λ〉)λ ∈ ℓp(Λ) and ‖ (〈mλ, pµ〉)λ∈Λ,µ∈∆ ‖ℓp→ℓp <∞ imply (〈f, pµ〉)µ ∈ ℓp(∆).

This result motivates the following notion of sparsity equivalence initially introduced in [22] for
parabolic molecules.

Definition 5.3. Let 0 < p ≤ 1, and let (mλ)λ∈Λ and (pµ)µ∈∆ be frames. Then (mλ)λ∈Λ and (pµ)µ∈∆

are sparsity equivalent in ℓp, if ∥∥∥(〈mλ, pµ〉)λ∈Λ,µ∈∆

∥∥∥
ℓp→ℓp

<∞.

The concept of sparsity equivalence allows to extend approximation properties from one anchor system
to other systems, if the coefficient decay of the anchor system is known. This notion however, does not
provide an equivalence relation. We further emphasize that sparsity equivalence depends sensitively on
the regularity parameter 0 < p ≤ 1.

Having introduced sparsity equivalence for frames, we now require sufficient conditions for two systems
of α-molecules to be sparsity equivalent. We expect this to depend on the one hand on the respective
orders of those systems. On the other hand, now the relation of the parametrizations becomes crucial
leading to the notion of (α, k)-consistency. To motivate this novel concept, we first recall a simple estimate
for the operator norm of a matrix on discrete ℓp spaces from [22].
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Lemma 5.4 ([22]). Let Λ,∆ be two discrete index sets, and let A : ℓp(Λ) → ℓp(∆), p > 0 be a linear
mapping defined by its matrix representation A = (Aλ,µ)λ∈Λ, µ∈∆. Then we have the bound

‖A‖ℓp(Λ)→ℓp(∆) ≤ max



sup

λ∈Λ

∑

µ∈∆

|Aλ,µ|q, sup
µ∈∆

∑

λ∈Λ

|Aλ,µ|q




1/q

,

where q := min{1, p}.
Aiming for sufficient conditions for the right hand side – in the situation of A being the Gramian of

two systems of α-molecules – to be finite, also taking the estimate provided in Theorem 4.2 into account,
it seems appropriate to introduce the following notion.

Definition 5.5. Let α ∈ [0, 1] and k > 0. Two parametrizations (Λ,ΦΛ) and (∆,Φ∆) are called (α, k)-
consistent, if

sup
λ∈Λ

∑

µ∈∆

ωα (λ, µ)
−k

<∞ and sup
µ∈∆

∑

λ∈Λ

ωα (λ, µ)
−k

<∞.

As expected, this notion leads to a convenient sufficient condition for sparsity equivalence of α-
molecules.

Theorem 5.6. Let α ∈ [0, 1], k > 0, and 0 < p ≤ 1. Let (mλ)λ∈Λ and (pµ)µ∈∆ be two frames of α-
molecules of order (L,M,N1, N2) with (α, k)-consistent parametrizations (Λ,ΦΛ) and (∆,Φ∆) satisfying

L ≥ 2
k

p
, M > 3

k

p
− 3− α

2
, N1 ≥ k

p
+

1 + α

2
, and N2 ≥ 2

k

p
.

Then (mλ)λ∈Λ and (pµ)µ∈∆ are sparsity equivalent in ℓp.

Proof. By Lemma 5.4, it suffices to prove that

max



sup

λ∈Λ

∑

µ∈∆

|〈mλ, pµ〉|p, sup
µ∈∆

∑

λ∈Λ

|〈mλ, pµ〉|p




1/p

<∞.

Since, by Theorem 4.2, we have

|〈mλ, pµ〉| . ωα(λ, µ)
− k

p ,

we can conclude that

max



sup

λ∈Λ

∑

µ∈∆

|〈mλ, pµ〉|p, sup
µ∈∆

∑

λ∈Λ

|〈mλ, pµ〉|p


 . max



sup

λ∈Λ

∑

µ∈∆

ωα(λ, µ)
−k, sup

µ∈∆

∑

λ∈Λ

ωα(λ, µ)
−k





with the expression on the right hand side being finite due to the (α, k)-consistency of the parametrizations
(Λ,ΦΛ) and (∆,Φ∆). The proof is completed.

Thus, as long as the parametrizations are consistent, the sparsity equivalence can be controlled by
the order of the molecules. Recall that higher order means better time-frequency localization and higher
moments. Hence, intuitively, the smaller p is (i.e., the more sparsity is promoted) and the less consistent
the two frames of α-molecules are, the better their time-frequency localization and the higher their
moments need to be in order for them to be sparsity equivalent.

5.2 Transfer of Sparse Approximation Results

We next aim to investigate situations in which we can actually transfer sparse approximation results
based on Theorem 5.6. In Section 3, we provided a range of prominent multiscale systems which are
encompassed by the framework of α-molecules. It became apparent that most of such can be regarded
as instances of either α-curvelet or α-shearlet molecules. Thus, it seems natural to first analyze those
systems with respect to (α, k)-consistency.

For this, we recall that α-curvelet and α-shearlet molecules are associated with α-curvelet and α-
shearlet parametrizations (cf. Definitions 3.2 and 3.8). The following result shows that indeed those
parametrizations satisfy the consistency requirement for any k > 2.
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Theorem 5.7. Let α ∈ [0, 1] and (Λ,ΦΛ) and (∆,Φ∆) be either α-curvelet or α-shearlet parametrizations.
Then (Λ,ΦΛ) and (∆,Φ∆) are (α, k)-consistent for all k > 2.

The proof of this result relies on the following technical lemma, whose proof we outsource to Subsection
6.3.2.

Lemma 5.8. Let α ∈ [0, 1], let N > 2, and let µ = (sµ, θµ, xµ) ∈ P be an arbitrary fixed point of the
parameter space P.

(i) For (Λc,Φc) being an α-curvelet parametrization, there exists a constant C > 0 independent of µ
and sλ such that ∑

λ∈Λc

sλ fixed

(1 + dα(λ, µ))
−N ≤ C ·max

{sλ
sµ
, 1
}2

.

(ii) For (Λs,Φs) being an α-shearlet parametrization, there exists a constant C > 0 independent of µ
and sλ such that ∑

λ∈Λs

sλ fixed

(1 + dα(λ, µ))
−N ≤ C ·max

{sλ
sµ
, 1
}2

.

Since the main technical difficulties are contained in the proof of this lemma, the actual proof of
Theorem 5.7 now just takes a few lines.

Proof of Theorem 5.7. We aim to prove that

sup
µ∈∆

∑

λ∈Λ

ωα (µ, λ)−k <∞.

By the definition of ωα (µ, λ), for every µ ∈ ∆, we need to consider

∑

j∈N0

∑

λ∈Λ
sλ=σj

max
{sλ
sµ
,
sµ
sλ

}−k

(1 + dα(µ, λ))
−k . (14)

According to Lemma 5.8, for each fixed j ∈ N0 and k > 2,

∑

λ∈Λ,sλ=σj

(1 + dα(µ, λ))
−k . max

{sλ
sµ
, 1
}2

.

Let now j′ ∈ N0 be such that sµ = σj′ . Then (14) can be estimated by

∑

j∈N0

max
{sλ
sµ
, 1
}2

max
{sλ
sµ
,
sµ
sλ

}−k

≤
∑

j∈N0

max
{sλ
sµ
,
sµ
sλ

}2−k

=
∑

j∈N0

σ|j−j′|(2−k) ≤ 2
∑

j∈N0

σj(2−k) = C <∞,

where C is independent of j′, and thus of µ. This finishes the proof.

This now allows us to actually derive novel results by a simple transfer using Theorem 5.6 and
Proposition 5.2. In fact, we will demonstrate how to derive the much more general Theorems 5.11 and
5.12 from one particular result, namely Theorem 5.10, by using the machinery developed here. As we
shall see below in Subsection 5.3, this will lead to a number of novel results concerning best N -term
approximations for cartoon-like images, also defined at this point.

5.3 Sparse Approximation of Cartoon-like Functions

We finally show how the framework of α-molecules allows to prove approximation results in a more
systematic way. It provides, for instance, an explanation for similar approximation rates observed for
different systems. From the viewpoint of α-molecules this is a natural consequence of the time-frequency
localization of the systems.
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The general strategy is as follows. If an approximation result of a specific system of α-molecules is
known – in the sequel α-curvelets and the class of cartoon-like functions are considered –, and it can be
shown that a class of α-molecules with certain conditions on the control parameters (the parametrization
and the order) satisfies the hypotheses of Theorem 5.6, i.e., they are all sparsity equivalent to this specific
system, they automatically inherit its known approximation behavior.

To present one application of this general concept, we start by introducing the model situation we
will consider, followed by recalling the known sparse approximation result we aim to transfer. Finally,
we will obtain novel stand-alone sparse approximation results for a class of α-molecules with sufficiently
large order and certain consistency conditions on their parametrization.

5.3.1 Model Situation

The general continuum model for image data is the space L2(R2). However, for real-life images like photos
for example, such a general model is usually not needed and seems to be a too broad approach. Based
on the observation that natural images typically consist of piecewise smooth patches – and taking into
account that the neurons in the visual cortex are highly directional sensitive, thereby making anisotropic
features always predominant – it can be further refined, giving rise to the class of so-called cartoon-like
functions.

The first such model E2(R2) was introduced in [14]. It postulates that natural images consist of
C2-regions separated by piecewise smooth C2-curves. Since then several extensions of the original model
have been made and studied, starting with the work in [29]. By now cartoon-like functions have been
established as a widely used standard model, in particular for natural images.

In the sequel, we consider an extension of the original model, first considered in [29], which are images
consisting of two smooth Cβ-regions, β ∈ (1, 2], separated by a piecewise smooth Cβ-curve. The formal
definition is as follows.

Definition 5.9. For β ∈ (1, 2], the model class Eβ(R2) of cartoon-like functions is given by

Eβ(R2) = {f ∈ L2(R2) : f = f0 + f1 · χB},

where f0, f1 ∈ Cβ
0 ([0, 1]

2) and B ⊂ [0, 1]2 is a Jordan domain with a regular closed piecewise smooth
Cβ-curve as boundary.

Beginning with [14] it was established in a series of papers [29, 26, 21], that the optimally achievable
decay rate of the N -term approximation error for f ∈ Eβ(R2) with β ∈ (1, 2], in any dictionary under
the natural assumption of polynomial depth search, is

‖f − fN‖22 ≍ N−β, as N → ∞.

Furthermore, it was proven in [5, 21, 24, 26, 30] that α-curvelet and α-shearlet systems attain this rate
up to a log-factor, provided that α = β−1. Thus, these systems behave similarly concerning their sparse
approximation properties, and the framework of α-molecules will not only provide us with an explanation,
but also enable us to derive similar results for a much wider class of multiscale systems.

5.3.2 Sparse Approximation with α-Curvelets

Next, we require a concrete system of α-molecules, which establishes the optimal N -term approximation
rate with respect to the class Eβ(R2).

A suitable choice for the reference system is the tight frame of α-curvelets Cα(W
(0),W, V ) given

by Definition 2.2. By Proposition 3.3, it constitutes a system of α-molecules of order (∞,∞,∞,∞).
Moreover, it was shown in [21] that it provides (up to a log-factor) optimal N -term approximation for
the class of cartoon-like functions Eβ(R2) for β = α−1.

Theorem 5.10 ([21]). Let α ∈ [ 12 , 1) and β = α−1. The tight frame of α-curvelets Cα(W
(0),W, V )

provides almost optimal sparse approximations for cartoon-like functions in Eβ(R2). More precisely,
there exists some constant C > 0 such that for every f ∈ Eβ(R2)

‖f − fN‖22 ≤ CN−β · (log2N)
β+1

as N → ∞.

where fN denotes the N -term approximation of f obtained by choosing the N largest coefficients.
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More precisely, it was proved in [21] that the curvelet coefficients belong to ωℓp(Λc) for every p > 2
1+β ,

Λc being the curvelet index set.
We mention that this type of optimal sparse approximation focuses on the cases of α ∈ [ 12 , 1). Cer-

tainly, once approximation results are established for a reference system for some α ∈ [0, 12 ), the general
machinery can be applied as well.

5.3.3 Optimality Result

Via Theorem 5.6 and the notion of sparsity equivalence, it is now possible to transfer the approximation
rate established in Theorem 5.10 to more general systems of α-molecules. For this, let (Λc,Φc) denote
the parametrization of the tight frame of α-curvelets Cα(W

(0),W, V ).
Finally, we can formulate and prove our main result concerning the approximation properties of

α-molecules, which identifies a large class of multiscale systems with (almost) optimal approximation
performance for the class of cartoon-like functions Eβ(R2). By Theorem 5.7, the required condition (i)
holds in particular for the curvelet and shearlet parametrizations, for k > 2. Thus, this result allows a
simple and systematic derivation not only of the results in [5, 21, 24, 26, 30], but for a much larger class
of α-molecules.

Theorem 5.11. Let α ∈ [ 12 , 1) and β = α−1. Assume that, for some k > 0, a tight frame (mλ)λ∈Λ of
α-molecules satisfies the following two conditions:

(i) its parametrization (Λ,ΦΛ) and (Λc,Φc) are (α, k)-consistent,

(ii) its order (L,M,N1, N2) satisfies

L ≥ k(1 + β), M ≥ 3k

2
(1 + β) +

α− 3

2
, N1 ≥ k

2
(1 + β) +

1 + α

2
, and N2 ≥ k(1 + β).

Then (mλ)λ∈Λ possesses an almost optimal N -term approximation rate for the class of cartoon-like func-
tions Eβ(R2), i.e., for all f ∈ Eβ(R2),

‖f − fN‖22 . N−β+ε, ε > 0 arbitrary,

where fN denotes the N -term approximation obtained from the N largest frame coefficients.

This result can also be extended to general frames, which then provides this approximation behavior
for any associated dual frame. Certainly, it suffices to prove only this theorem, which includes Theorem
5.11 as a special case.

Theorem 5.12. Let α ∈ [ 12 , 1) and β = α−1. Assume that, for some k > 0, a frame (mλ)λ∈Λ of
α-molecules satisfies the following two conditions:

(i) its parametrization (Λ,ΦΛ) and (Λc,Φc) are (α, k)-consistent,

(ii) its order (L,M,N1, N2) satisfies

L ≥ k(1 + β), M ≥ 3k

2
(1 + β) +

α− 3

2
, N1 ≥ k

2
(1 + β) +

1 + α

2
, and N2 ≥ k(1 + β).

Then each dual frame (m̃λ)λ∈Λ possesses an almost optimal N -term approximation rate for the class of
cartoon-like functions Eβ(R2), i.e., for all f ∈ Eβ(R2),

‖f − fN‖22 . N−β+ε, ε > 0 arbitrary,

where fN denotes the N -term approximation obtained from the N largest frame coefficients.

Proof. Let Cα(W
(0),W, V ) = (ψµ)µ∈Λc be the tight frame of α-curvelets defined in Definition 2.2, and let

f ∈ Eβ(R2). By [21, Thm. 4.2], the sequence of curvelet coefficients (θµ)µ given by θµ = 〈f, ψµ〉 belongs
to ωℓp(Λc) for every p > 2

1+β . Since ωℓp →֒ ℓp+ε for arbitrary ε > 0, this further implies (θµ)µ ∈ ℓp(Λc)

for every p > 2
1+β .
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Let now
f =

∑

λ∈Λ

cλm̃λ

be the canonical expansion of f with respect to the dual frame (m̃λ)λ, with frame coefficients (cλ)λ given
by

cλ = 〈f,mλ〉 =
∑

µ

〈ψµ,mλ〉θµ.

Thus, they are related to the curvelet coefficients (θµ)µ by the cross-Gramian (〈ψµ,mλ〉)µ,λ. By Theo-
rem 5.6, conditions (i) and (ii) guarantee that the frame (mλ)λ∈Λ is sparsity equivalent to (ψµ)µ∈Λc in
ℓp for every p > 2

1+β . This implies that the cross-Gramian is a bounded operator ℓp(Λc) → ℓp(Λ), which

maps (θµ)µ to (cλ)λ. Hence, (cλ)λ ∈ ℓp(Λ) for every p > 2
1+β . The embedding ℓp →֒ ωℓp then proves

(cλ)λ ∈ ωℓp(Λ) for every p > 2
1+β . Finally, for arbitrary ε > 0, the application of Lemma 5.1 yields

‖f − fN‖22 . N−β+ε,

where fN denotes the N -term approximation with respect to the system (m̃λ)λ obtained by choosing the
N largest coefficients.

Taking into account Proposition 3.11 and Theorem 5.7, the statement of Theorem 5.11, for instance,
implies the following novel result concerning cartoon approximation with band-limited β-shearlet systems.

Theorem 5.13. Let β ∈ (1, 2], and let SH
(
φ, ψ, ψ̃; c, β

)
be a frame of cone-adapted β-shearlets obtained

from band-limited generators as in Definition 3.10. Then each dual frame possesses an almost optimal
N -term approximation rate for the class of cartoon-like functions Eβ(R2), i.e., for all f ∈ Eβ(R2), we
have

‖f − fN‖22 . N−β+ε, ε > 0 arbitrary,

where fN denotes the N -term approximation obtained from the N largest frame coefficients.

6 Proofs

6.1 Proofs of Subsection 3.4

6.1.1 Proof of Proposition 3.9

We confine the discussion to ε = 0, the other case being analogous, and suppress the superscript ε in our
notation. It is sufficient to show that, for each λ = (ε, ℓ, j, k) ∈ Λs, the function

g(λ)(·) := ψλ

(
Aα,σjSℓ,jR

−1
θλ
A−1

α,sλ
·
)

satisfies (7).
For this, first note that the Fourier transform of g(λ) is given by

ĝ(λ)(·) = ψ̂λ

(
Aα,σ−jS−T

ℓ,j R
T
θλAα,sλ ·

)
.

Let us now examine the ‘transfer matrix’ T := Rθλ(Sℓ,j)
−1. Since θλ = arctan(−ℓηj), we have

Sℓ,j =

(
1 ℓηj
0 1

)
=

(
1 − tan(θλ)
0 1

)
.

Using 0 = tan(θλ) cos(θλ)− sin(θλ), we obtain

T =

(
cos θλ 0
sin θλ tan(θλ) sin(θλ) + cos(θλ)

)
=

(
cos θλ 0
sin θλ cos(θλ)

−1

)
=:

(
a 0
b c

)
,

where the quantities a, b, c depend on the index λ ∈ Λs.
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Next we recall that |ℓ| . σj(1−α) and ηj ≍ σ−j(1−α), which yields |ℓηj| . 1. This implies the existence
of 0 < δ < π

2 such that |θλ| = | arctan(−ℓηj)| ≤ δ for all λ ∈ Λs. As a consequence, we have

0 < cos(δ) ≤ a ≤ 1, 1 ≤ c ≤ cos(δ)−1 <∞, |b| ≤ sin(δ). (15)

Thus, the quantities a, b, c are uniformly bounded in modulus. Furthermore, a and c are strictly positive
and bounded uniformly from below by cos(δ).

Next, observe that the matrix Aα,σ−jS−T
ℓ,j R

T
θλ
Aα,sλ = Aα,σ−jT TAα,σj has the form

(
a σ−j(1−α)b
0 c

)
.

Note that |σ−j(1−α)| ≤ 1 for every j ∈ N0. Thus, using the uniform boundedness of |a|, |b|, |c| and the
chain rule, we can estimate for any |ρ| ≤ L:

|∂ρĝ(λ)(ξ)| . sup
|γ|≤L

∣∣∣∣∂
γψ̂λ

((
a σ−j(1−α)b
0 c

)
ξ

)∣∣∣∣ . (16)

Then we utilize the moment estimate (12) for ψ̂. This gives us the moment property required in (7),

|∂ρĝ(λ)(ξ)| .
(
σ−j + |ξ1|+ 2 · σ−j(1−α)|ξ2|

)M
.
(
s−1
λ + |ξ1|+ s

−(1−α)
λ |ξ2|

)M
.

It remains to show the decay of ∂ρĝ(λ) for large frequencies ξ. We obtain from (16) and the decay
estimate in (12),

|∂ρĝ(λ)(ξ)| .
〈∣∣∣∣
(
a s

−(1−α)
λ b

0 c

)
ξ

∣∣∣∣
〉−N1

〈cξ2〉−N2 . 〈|ξ|〉−N1 〈ξ2〉−N2 .

The last estimate is a consequence of (15). To verify this we write

(
a σ−j(1−α)b
0 c

)
=

(
a 0
0 c

)(
1 h
0 1

)
=: diag(a, c) · Sh

with h = σ−j(1−α)b/a. Due to (15) the shear parameter h is bounded in modulus, which implies |Shξ| ≍ |ξ|
for ξ ∈ R2. Finally, |diag(a, c)ξ| ≍ |ξ| and |cξ2| ≍ |ξ2| also by (15).

6.1.2 Proof of Proposition 3.11(iii)

It suffices to prove that SH(φ, ψ, ψ̃; c, β) is a system of α-shearlet molecules for α = β−1 of order
(L,M − L,N1, N2), where L ∈ {0, . . . ,M}, with the parameters of the α-shearlet parametrization being
given by τ = c, σ = 2β/2, ηj = σ−j(1−α) and Lj = ⌈σj(1−α)⌉.

First, we name and index the functions of the system SH(φ, ψ, ψ̃; c, β) in the following way. For j ≥ 0,
ℓ ∈ Z with |ℓ| ≤ ⌈2j(β−1)/2⌉ and k ∈ Z2 we let

ψ(0,j,ℓ,k) := ψj,ℓ,ck = 2j(β+1)/4ψ(SℓAβ−1,2jβ/2 · −ck),
ψ(1,j,ℓ,k) := ψ̃j,ℓ,ck = 2j(β+1)/4ψ̃(ST

ℓ Ãβ−1,2jβ/2 · −ck).

At the coarse scale we put ψ(0,−1,0,k) := φck = φ(· − ck) for k ∈ Z
2.

Since α = β−1 and σ = 2β/2 the scaling matrix Aβ−1,2jβ/2 can be rewritten in the form

Aβ−1,2jβ/2 =

(
2jβ/2 0

0 2j/2

)
=

(
(2β/2)j 0

0 (2β/2)j/β

)
=

(
σj 0
0 σjα

)
= A0

α,σj ,

and analogously Ãβ−1,2jβ/2 = A1
α,σj . Furthermore, using 2j(β±1)/2 = σj(1±α), we obtain

SℓAβ−1,2jβ/2 = Aβ−1,2jβ/2Sℓ2(j(1−β))/2 = Aβ−1,2jβ/2Sℓσ−j(1−α) = A0
α,σjSℓηj = A0

α,σjS0
ℓ,j
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and
ST
ℓ Ãβ−1,2jβ/2 = Ãβ−1,2jβ/2ST

ℓ2(j(1−β))/2 = Ãβ−1,2jβ/2ST
ℓσ−j(1−α) = A1

α,σjST
ℓηj

= A1
α,σjS1

ℓ,j .

Taking into account τ = c and 2j(β+1)/4 = σj(1+α)/2, we obtain the following representation

ψ(0,j,ℓ,k) = σj(1+α)/2ψ(A0
α,σjS0

ℓ,j · −τk),
ψ(1,j,ℓ,k) = σj(1+α)/2ψ̃(A1

α,σjS1
ℓ,j · −τk).

Therefore the system SH(φ, ψ, ψ̃; c, β) = (ψλ)λ∈Λs has the desired form with respect to the generators
given by γ0j,ℓ,k := ψ, γ1j,ℓ,k := ψ̃, and γ0−1,0,k := σ(1+α)/2φ(A0

α,σ·) for j ≥ 0, ℓ ∈ Z with |ℓ| ≤ ⌈2j(β−1)/2⌉,
and k ∈ Z2.

It remains to prove that these generators satisfy (12). We restrict our considerations to the functions

γ0j,ℓ,k = ψ. The inverse Fourier transform of ∂ρψ̂, where ρ ∈ N2
0, is up to a constant given by x 7→ xρψ(x).

By smoothness and compact support of ψ1, ψ2, we find that for any |ρ| ≤ L the functions

x 7→ ∂(N1,N1+N2)
(
xρψ(x)

)
and x 7→ xρψ(x)

belong to L1(R2). Hence, the Fourier transforms

ξ 7→ ξN1
1 ξN1+N2

2 ∂ρψ̂(ξ) and ξ 7→ ∂ρψ̂(ξ)

are continuous and contained in L∞(R2). It follows that

〈ξ1〉N1〈ξ2〉N1+N2∂ρψ̂(ξ)

is bounded. Using 〈x〉〈y〉 ≥ 〈
√
x2 + y2〉 we get the decay estimate for large frequencies

|∂ρψ̂(ξ)| . 〈|ξ|〉−N1〈ξ2〉−N2 .

Let us turn to the moment conditions. Let ρ = (ρ1, ρ2) ∈ N
2
0 with |ρ1| ≤ L for some L = 0, . . . ,M .

Then
xρψ(x) = xρ1

1 ψ1(x1)x
ρ2

2 ψ2(x2)

restricted to the variable x1 possesses at least M −L vanishing moments, since ψ1 is assumed to possess
M vanishing moments. This yields a decay of order min{1, |ξ1|M−L} for the derivatives up to order L of

ψ̂ by the following lemma, whose proof can be found, e.g., in [22].

Lemma 6.1 ([22]). Suppose that g : R → C is continuous, compactly supported and possessesM vanishing
moments. Then

|ĝ(ξ)| . min{1, |ξ|}M .

The proof is finished.

6.2 Proof of Theorem 4.2

We start by collecting some useful lemmata in Subsections 6.2.1, 6.2.2, and 6.2.3, followed by the actual
proof of Theorem 4.2 in Subsection 6.2.4.

6.2.1 General Estimates

The following lemma can be found in [19, Appendix K.1].

Lemma 6.2. For N > 1 and a, a′ ∈ R+, we have the inequality

∫

R

(1 + a|x|)−N
(1 + a′|x− y|)−N

dx . max{a, a′}−1(1 + min{a, a′}|y|)−N .

The following result can be regarded as a corollary from the previous lemma.
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Lemma 6.3. Assume that |θ| ≤ π
2 and N > 1. Then we have for a, a′ > 0 the inequality

∫

T

(1 + a| sin(ϕ)|)−N
(1 + a′| sin(ϕ+ θ)|)−N

dϕ . max{a, a′}−1(1 + min{a, a′}|θ|)−N . (17)

Proof. For ϕ ∈ T, we have the estimate

| sin(ϕ)| ≤





|ϕ| ϕ ∈ I1 :=
[
−π

2 ,
π
2

]
,

|ϕ− π| ϕ ∈ I2 :=
[
π
2 , π

]
,

|ϕ+ π| ϕ ∈ I3 :=
[
−π,−π

2

]
.

In order to use Lemma 6.2 we now split T into nine intervals depending on ϕ+ θ, ϕ ∈ I1, I2, I3. Then the
left-hand side of (17) can be estimated by nine terms of the form

∫

R

(1 + a|ϕ|)−N (1 + a′|ϕ+ ϑ+ θ|)−N
dϕ,

where ϑ ∈ {0,±π,±2π}. By Lemma 6.2, this expression can be bounded by a constant times

max{a, a′}−1(1 + min{a, a′}|θ + ϑ|)−N .

Now it remains to note that for ϑ ∈ {±π,±2π} and |θ| ≤ π
2 we have |θ + ϑ| ≥ |θ|. This proves the

lemma.

6.2.2 Basic Estimates of Sλ,M,N1,N2

We now consider the function Sλ,M,N1,N2 : R+
0 × [0, 2π) → R for λ ∈ Λ and M,N1, N2 ∈ N0 which is

defined in polar coordinates by

Sλ,M,N1,N2(r, ϕ) := min
{
1, s−1

λ (1 + r)
}M (

1 + s
(1−α)
λ | sin(ϕ+ θλ)|

)−N2 (
1 + s−1

λ r
)−N1

.

The reader might want to compare this definition with (8).
The following lemma will be used in order to decouple the angular and the radial variables of this

function.

Lemma 6.4. For every 0 ≤ K ≤ N2,

min
{
1, s−1

λ (1 + r)
}M (

1 + s−1
λ r
)−N1

(
1 + s−α

λ r| sin(ϕ+ θλ)|
)−N2

. Sλ,M−K,N1,K(r, ϕ).

Proof. After choosing K, we can estimate the quantity on the left hand side by

min
{
1, s−1

λ (1 + r)
}M−K (

1 + s−1
λ r
)−N1

(
min

{
1, s−1

λ (1 + r)
}

1 + s−α
λ r| sin(ϕ+ θλ)|

)K

.

We need to show that

min
{
1, s−1

λ (1 + r)
}

1 + s−α
λ r| sin(ϕ+ θλ)|

.
(
1 + s

(1−α)
λ | sin(ϕ+ θλ)|

)−1

. (18)

In order to prove (18), we distinguish three cases:

• r ≤ 1: For r ≤ 1 we have

min
{
1, s−1

λ (1 + r)
}

1 + s−α
λ r| sin(ϕ+ θλ)|

. min
{
1, s−1

λ

}
.
(
1 + s

(1−α)
λ | sin(ϕ+ θλ)|

)−1

.

• sλ ≤ r: In this case we derive

min
{
1, s−1

λ (1 + r)
}

1 + s−α
λ r| sin(ϕ+ θλ)|

=
1

1 + s−α
λ r| sin(ϕ+ θλ)|

≤ 1

1 + s−α
λ sλ| sin(ϕ+ θλ)|

=
(
1 + s

(1−α)
λ | sin(ϕ+ θλ)|

)−1

.
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If sλ > 1 we have to examine a third case.

• 1 < r < sλ: In this case we have

min
{
1, s−1

λ (1 + r)
}

1 + s−α
λ r| sin(ϕ+ θλ)|

≤ s−1
λ (1 + r)

1 + s−α
λ r| sin(ϕ+ θλ)|

≤ 1 + r

r

1
sλ
r + s

(1−α)
λ | sin(ϕ+ θλ)|

.

Since r > 1, we have 1+r
r < 2, and since r < sλ, also

sλ
r > 1 holds.

This proves the statement.

The next lemma provides estimates for the inner product of two functions of the form Sλ,M,N1,N2 .

Lemma 6.5. We assume sλ, sµ ≥ c > 0 for all λ ∈ Λ and µ ∈ ∆. For A,B ≥ 1 and

N1 ≥ A+
1 + α

2
, N2 ≥ B, M > N1 − 2,

we have

(sλsµ)
− 1+α

2

∫

R+

∫

T

Sλ,M,N1,N2(r, ϕ)Sµ,M,N1,N2(r, ϕ)rdrdϕ

. max
{sλ
sµ
,
sµ
sλ

}−A (
1 + min{sλ, sµ}(1−α)|θλ − θµ|

)−B

.

Proof. We assume that sµ ≥ sλ and start by proving the angular decay. By Lemma 6.3 and N2 ≥ B ≥ 1,

(sλsµ)
− 1+α

2

∫

R+

∫

T

Sλ,M,N1,N2(r, ϕ)Sµ,M,N1,N2(r, ϕ)rdrdϕ . S · (sµ
sλ

)
1+α
2

(
1 + s

(1−α)
λ |θλ − θµ|

)−B

,

where

S := s−2
µ

∫

R+

min
{
1, s−1

λ (1 + r)
}M

min
{
1, s−1

µ (1 + r)
}M (

1 + s−1
λ r
)−N1

(
1 + s−1

µ r
)−N1

rdr.

The remaining estimate

S . (sµ/sλ)
−(A+ 1+α

2 ) (19)

is proved by splitting up the integral into the three parts Si, i = 1, 2, 3, where the integration ranges over
0 < r < 1, 1 ≤ r ≤ max{1, sµ} and max{1, sµ} < r, respectively.

Case 1 (r < 1): For S1 we integrate over 0 < r < 1. Here we use the moment property and sλ ≥ c > 0
to estimate

S1 . s−2
µ

∫ 1

0

s−M
λ s−M

µ dr

= s−(2+M)
µ s−M

λ

. s−(2+M)
µ sM+2

λ

= (sµ/sλ)
−(M+2)

≤ (sµ/sλ)
−(A+ 1+α

2 ).

Case 2 (1 ≤ r ≤ max{1, sµ}): If sµ ≤ 1 then S2 = 0. For sµ > 1 we estimate

S2 . s−2
µ

∫ sµ

1

(
s−1
µ r
)M (

s−1
λ r
)−N1

rdr

≤ s−(2+M)
µ sN1

λ

∫ sµ

0

rM+1−N1dr

. s−(2+M)
µ sN1

λ s(M+2−N1)
µ

= (sµ/sλ)
−N1

≤ (sµ/sλ)
−(A+ 1+α

2 ).
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Case 3 (max{1, sµ} < r): For S3 we estimate

S3 . s−2
µ

∫ ∞

sµ

(
s−1
λ r
)−N1

(
s−1
µ r
)−N1

rdr

= s−2
µ sN1

µ sN1

λ

∫ ∞

sµ

r−2N1+1dr

. s−2
µ sN1

µ sN1

λ s(−2N1+2)
µ

= (sµ/sλ)
−N1

≤ (sµ/sλ)
−(A+ 1+α

2 ).

Altogether, this establishes (19).

6.2.3 Estimates with Differential Operator

Finally, we require some estimates of the symmetric differential operator L (acting on the frequency
variable ξ) defined by

L := I − s2α0 ∆ξ −
s20

1 + s
2(1−α)
0 |δθ|2

∂2

∂ξ21
,

which will be given by the second lemma. The first lemma will be required within its proof.

Lemma 6.6. Given two functions a(λ), b(µ) satisfying (7) for L,M,N1, N2, the expression

L
(
â(λ)

(
Aα,s−1

λ
Rθλξ

)
b̂(µ)

(
Aα,s−1

µ
Rθµξ

))

can be written as a finite linear combination of terms of the form

ĉ(λ)
(
Aα,s−1

λ
Rθλξ

)
d̂(µ)

(
Aα,s−1

µ
Rθµξ

)

with c, d satisfying (7) for L− 2,M,N1, N2.

Proof. To prove the claim we treat the three summands of the operator L separately. The first part is
the identity, and therefore the statement is trivial. To handle the second part, the frequency Laplacian
s2α0 ∆, we use the product rule

∆(fg) = 2
(
∂(1,0)f∂(1,0)g + ∂(0,1)f∂(0,1)g

)
+ (∆f)g + f(∆g).

Therefore we need to estimate the derivatives of degree 1 and the Laplacians of the two factors in the
product

â(λ)
(
Aα,s−1

λ
Rθλξ

)
b̂(µ)

(
Aα,s−1

µ
Rθµξ

)
=: A(ξ)B(ξ).

For this, we start with the first factor,

A(ξ) = â(λ)
(
s−1
λ cos(θλ)ξ1 − s−1

λ sin(θλ)ξ2, s
−α
λ sin(θλ)ξ1 + s−α

λ cos(θλ)ξ2
)
.

Set
A1(ξ) := ∂(1,0)â(λ)

(
Aα,s−1

λ
Rθλξ

)
and A2(ξ) := ∂(0,1)â(λ)

(
Aα,s−1

λ
Rθλξ

)
.

By definition, the functions A1, A2 satisfy (7) with L replaced by L− 1. An application of the chain rule
shows that

∂(1,0)A(ξ) = s−1
λ cos(θλ)A1(ξ) + s−α

λ sin(θλ)A2(ξ).

Analogously, one can compute

∂(0,1)A(ξ) = −s−1
λ sin(θλ)A1(ξ) + s−α

λ cos(θλ)A2(ξ),
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and the exact same expressions for B using the obvious definitions for B1 and B2. We get

∂(1,0)A∂(1,0)B = (sλsµ)
−1 cos(θλ) cos(θµ)A1B1 + s−α

λ s−1
µ sin(θλ) cos(θµ)A2B1

+s−α
µ s−1

λ sin(θµ) cos(θλ)A1B2 + (sλsµ)
−α sin(θλ) sin(θµ)A2B2.

It follows that s2α0 ∂(1,0)A∂(1,0)B can be written as a linear combination as claimed (recall that s0 =
min{sλ, sµ}). The same argument applies to the product s2α0 ∂(0,1)A∂(0,1)B.

It remains to consider the factor
(∆A)B +A(∆B),

where, for symmetry reasons, we only treat the summand (∆A)B. In fact, it suffices to only consider

(∂(2,0)A)B =
(
s−2
λ cos(θλ)

2A11 + 2s
−(1+α)
λ sin(θλ) cos(θλ)A12 − s−2α

λ sin(θλ)
2A22

)
B

with Aij defined in an obvious way, satisfying (7) with L replaced by L − 2. The term (∂(0,2)A)B, and
hence (∆A)B, can be handled in the same way, as can A(∆B). This takes care of the term s2α0 ∆ in the
definition of L.

Finally, we need to handle the last term in the definition of L, namely

s20

1 + s
2(1−α)
0 |θµ|2

∂2

∂ξ21

for θλ = 0 (otherwise the second order derivative would be in the direction of the unit vector with angle
θλ with obvious modifications in the proof). With our notation and using the product rule we need to
consider terms of the form

(
∂(2,0)A

)
B,

(
∂(1,0)A

)(
∂(1,0)B

)
, A

(
∂(2,0)B

)
,

and show that each of them, multiplied by the factor s20/(1+ s
2(1−α)
0 |θµ|2), satisfies the desired represen-

tation.
Let us start with

(
∂(2,0)A

)
B, which, using the fact that sin(θλ) = 0, can be written as

(
∂(2,0)A

)
B = s−2

λ A11B,

and which clearly satisfies the desired assertion.
Now consider the expression

(
∂(1,0)A

) (
∂(1,0)B

)
, which can be written as

(
∂(1,0)A

)(
∂(1,0)B

)
= s−1

λ s−1
µ cos(θµ)A1B1 + s−1

λ s−α
µ sin(θµ)A1B2.

The first summand in this expression clearly causes no problems. To handle the second term we need to
show that

s20

1 + s
2(1−α)
0 |θµ|2

s−1
λ s−α

µ sin(θµ) . 1. (20)

Here we have to distinguish two cases. First, assume that |θµ| ≤ s
−(1−α)
0 . Then we can estimate

sin(θµ) . s
−(1−α)
0 , which readily yields the desired bound for (20). For the case |θµ| ≥ s

−(1−α)
0 we

estimate

s20

1 + s
2(1−α)
0 |θµ|2

s−1
λ s−α

µ sin(θµ) .
s20

1 + s
(1−α)
0 |θµ|

s−1
0 s−α

0 |θµ| ≤
s20

s
(1−α)
0 |θµ|

s−1
0 s−α

0 |θµ| = 1

which proves (20) also for this case.
We are left with estimating the term A

(
∂(2,0)B

)
, which can be written as

s−2
µ cos(θµ)

2AB11 + 2s−(1+α)
µ sin(θµ) cos(θµ)AB12 + s−2α

µ sin(θµ)
2AB22.

The first two terms are of a form already treated, and the last term can be handled using the fact that
sin(θµ)

2 ≤ θ2µ.
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Lemma 6.7. Assume that the assumptions of Theorem 4.2 hold for two systems of α-molecules of order
(L,M,N1, N2) with respective generating functions (a(λ))λ and (b(µ))µ. Then we have

Lk

(
â(λ)

(
Aα,s−1

λ
Rθλξ

)
b̂(µ)

(
Aα,s−1

µ
Rθµξ

))
. Sλ,M−N2,N1,N2(ξ)Sµ,M−N2,N1,N2(ξ)

for all k ≤ L/2.

Proof. We show that

∣∣∣∣L
k

(
â(λ)

(
Aα,s−1

λ
Rθλξ

)
b̂(µ)

(
Aα,s−1

µ
Rθµξ

))∣∣∣∣

. min
{
1, s−1

λ (1 + r)
}M (

1 + s−1
λ r
)−N1

(
1 + s−α

λ r| sin(ϕ+ θλ)|
)−N2

·min
{
1, s−1

µ (1 + r)
}M (

1 + s−1
µ r
)−N1

(
1 + s−α

µ r| sin(ϕ+ θµ)|
)−N2

(21)

which, using Lemma 6.4 with K = N2, implies the desired statement.
To prove (21), we use induction in k, namely we show that if we have two functions a(λ), b(µ) satisfying

(7) for L,M,N1, N2, then the expression

L
(
â(λ)

(
Aα,s−1

λ
Rθλξ

)
b̂(µ)

(
Aα,s−1

µ
Rθµξ

))

can be written as a finite linear combination of terms of the form

ĉ(λ)
(
Aα,s−1

λ
Rθλξ

)
d̂(µ)

(
Aα,s−1

µ
Rθµξ

)

with c, d satisfying (7) and L replaced by L− 2, see Lemma 6.6. Iterating this argument we can establish
that for k ≤ L/2

Lk

(
â(λ)

(
Aα,s−1

λ
Rθλξ

)
b̂(µ)

(
Aα,s−1

µ
Rθµξ

))
(22)

can be expressed as a finite linear combination of terms of the form

ĉ(λ)
(
Aα,s−1

λ
Rθλξ

)
d̂(µ)

(
Aα,s−1

µ
Rθµξ

)
(23)

with ∣∣∣ĉ(λ)(ξ)
∣∣∣ . min

{
1, s−1

λ + |ξ1|+ s
−(1−α)
λ |ξ2|

}M

〈|ξ|〉−N1 〈ξ2〉−N2 , (24)

and an analogous estimate for d(µ). Combining (23) and (24), we obtain that |(22)| can – up to a
constant – be upperbounded by the product of

min
{
1, s−1

λ +
∣∣∣
(
Aα,s−1

λ
Rθλξ

)
1

∣∣∣+ s
−(1−α)
λ

∣∣∣
(
Aα,s−1

λ
Rθλξ

)
2

∣∣∣
}M 〈∣∣∣Aα,s−1

λ
Rθλξ

∣∣∣
〉−N1

〈(
Aα,s−1

λ
Rθλξ

)
2

〉−N2

and

min
{
1, s−1

µ +
∣∣∣
(
Aα,s−1

µ
Rθµξ

)
1

∣∣∣+ s−(1−α)
µ

∣∣∣
(
Aα,s−1

µ
Rθµξ

)
2

∣∣∣
}M 〈∣∣∣Aα,s−1

µ
Rθµξ

∣∣∣
〉−N1

〈(
Aα,s−1

µ
Rθµξ

)
2

〉−N2

.

Transforming this inequality into polar coordinates as in (8) yields (21). This finishes the proof.

6.2.4 Actual Proof

We now have all the ingredients to prove Theorem 4.2. By our assumptions on (L,M,N1, N2), there

exist Ñ1 and Ñ2 such that N1 ≥ Ñ1 ≥ N + 1+α
2 and N2 ≥ Ñ2 ≥ N + 1+α

2 and M > Ñ1 + Ñ2 − 2. The

systems (mλ)λ and (pµ)µ are also α-molecules of order (L,M, Ñ1, Ñ2), satisfying the assumptions of the
Theorem. Thus, we can without loss of generality assume the additional condition M > N1 +N2 − 2.
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To keep the notation simple, we assume that θλ = 0 and define s0 := min{sλ, sµ}. Further, we set

δx := xλ − xµ, δθ := θλ − θµ.

By definition, we can write

mλ(·) = s
1+α
2

λ a(λ) (Aα,sλRθλ(· − xλ)) , pµ(·) = s
1+α
2

µ b(µ)
(
Aα,sµRθµ(· − xµ)

)
,

where both a(λ) and b(µ) satisfy (7). We have the equality

〈mλ, pµ〉 = 〈m̂λ, p̂µ〉

= (sλsµ)
− 1+α

2

∫

R2

â(λ)
(
Aα,s−1

λ
Rθλξ

)
b̂(µ)

(
Aα,s−1

µ
Rθµξ

)
exp (−2πiξ · δx) dξ

= (sλsµ)
− 1+α

2

∫

R2

Lk

(
â(λ)

(
Aα,s−1

λ
Rθλξ

)
b̂(µ)

(
Aα,s−1

µ
Rθµξ

))
L−k (exp (−2πiξ · δx)) dξ,(25)

where L is the symmetric differential operator (acting on the frequency variable) defined by

L := I − s2α0 ∆ξ −
s20

1 + s
2(1−α)
0 |δθ|2

∂2

∂ξ21
.

We have

L−k (exp (−2πiξ · δx)) =
(
1 + s2α0 |δx|2 + s20

1 + s
2(1−α)
0 |δθ|

〈eλ, δx〉2
)−k

exp (−2πiξ · δx) , (26)

where eλ denotes the unit vector pointing in the direction described by the angle θλ. By Lemma 6.7 and
for k ≤ L

2 , we have the inequality

Lk

(
â(λ)

(
Aα,s−1

λ
Rθλξ

)
b̂(µ)

(
Aα,s−1

µ
Rθµξ

))
. Sλ,M−N2,N1,N2(ξ)Sµ,M−N2,N1,N2(ξ).

Then, by (25) and (26) it follows that

|〈mλ, pµ〉|

. (sλsµ)
− 1+α

2

∫

R2

Sλ,M−N2,N1,N2(ξ)Sµ,M−N2,N1,N2(ξ)dξ

(
1 + s2α0 |δx|2 + s20

1 + s
2(1−α)
0 |δθ|

〈eλ, δx〉2
)−k

for all k ≤ L
2 . Now we can use Lemma 6.5 and the fact that L ≥ 2N to establish that

|〈mλ, pµ〉| . max
{sλ
sµ
,
sλ
sµ

}−N (
1 + s

2(1−α)
0 |δθ|2

)−N
(
1 + s2α0 |δx|2 + s20

1 + s
2(1−α)
0 |δθ|

〈eλ, δx〉2
)−N

≤ max
{sλ
sµ
,
sλ
sµ

}−N
(
1 + s

2(1−α)
0 |δθ|2 + s2α0 |δx|2 + s20

1 + s
2(1−α)
0 |δθ|

〈eλ, δx〉2
)−N

= ωα(λ, µ)
−N .

This proves the desired statement.

6.3 Proofs of Section 5

6.3.1 Proof of Lemma 5.1

Let (c∗n)n∈N be a non-increasing rearrangement of the expansion coefficients (cλ)λ ∈ ωℓ2/(p+1)(Λ) and let
(m∗

n)n∈N be the accordingly reordered frame. Then because of

sup
n>0

n
1
p |c∗n| ≤ ‖(cλ)λ‖ωℓp ,
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we have |c∗n| . n− p+1
2 , or equivalently |c∗n|2 . n−p−1, for n ∈ N. Summation yields

∞∑

n=N+1

|c∗n|2 .

∞∑

n=N+1

n−p−1 ≤
∫ ∞

N

x−p−1 dx =
1

p
N−p . N−p.

Using the frame properties of (mλ)λ∈Λ, we conclude for the N -term approximation fN obtained by
keeping the N largest coefficients

‖f − fN‖22 =
∥∥∥

∞∑

n=N+1

c∗nm
∗
n

∥∥∥
2

2
.

∞∑

n=N+1

|c∗n|2 . N−p.

6.3.2 Proof of Lemma 5.8

(i): We start with part (i). For this, let σ > 1, τ > 0, (ωj)j and (Lj)j be the parameters associated with
the parametrization (Λc,Φc). Further, let us put s0 = min{sλ, sµ} to simplify the notation in the proof.
We now need to estimate the sum

S =
∑

λ∈Λc

sλ fixed

(1 + dα(λ, µ))
−N ,

taken over all curvelet indices (j, ℓ, k) ∈ Λc at scale sλ = σj , where j ∈ N0 is fixed.
We begin with the estimate

(1 + dα(λ, µ))
−N =

(
1 + s

2(1−α)
0 |θλ − θµ|2 + s2α0 |xλ − xµ|2 +

s20|〈eλ, xλ − xµ〉|2

1 + s
2(1−α)
0 |θλ − θµ|2

)−N

= 2N
(
2 + 2s

2(1−α)
0 |θλ − θµ|2 + 2s2α0 |xλ − xµ|2 + 2

s20|〈eλ, xλ − xµ〉|2

1 + s
2(1−α)
0 |θλ − θµ|2

)−N

≤ 2N
(
2 + 2s

2(1−α)
0 |θλ − θµ|2 + s2α0 |xλ − xµ|2 +

s20|〈eλ, xλ − xµ〉|2

1 + s
2(1−α)
0 |θλ − θµ|2

)−N

≤ 2N
(
1 + s

2(1−α)
0 |θλ − θµ|2 + s2α0 |xλ − xµ|2 + 2s0|〈eλ, xλ − xµ〉|

)−N

≤ 2N
(
1 + s

2(1−α)
0 |θλ − θµ|2 + s2α0 |xλ − xµ|2 + s0|〈eλ, xλ − xµ〉|

)−N
,

where we used the inequality between the arithmetic and the geometric mean

(
1 + s

2(1−α)
0 |θλ − θµ|2

)
+

s20

1 + s
2(1−α)
0 |θλ − θµ|2

|〈eλ, xλ − xµ〉|2 ≥ 2 · s0|〈eλ, xλ − xµ〉|.

Denoting the components of a vector z ∈ R2 by [z]1 and [z]2, respectively, we further obtain

|〈eλ, xλ − xµ〉| = |〈R−θλe1, R−θλA
−1
α,sλk − xµ〉| = |〈e1, A−1

α,sλk −Rθλxµ〉| = |s−1
λ k1 − [Rθλxµ]1|, (27)

where e1 is the first unit vector of R2, and

|xλ − xµ| = |R−θλA
−1
α,sλk − xµ| = |A−1

α,sλk −Rθλxµ| ≥ |s−α
λ k2 − [Rθλxµ]2|.

By assumption the angles ωj satisfy ωj ≍ σ−j(1−α) = s
−(1−α)
λ . It follows

|θλ − θµ| = |ℓωj − θµ| = |ωj ||ℓ− θµ/ωj| ≍ s
−(1−α)
λ |ℓ− θµ/ωj |. (28)

Altogether we deduce from ωj ≍ s
−(1−α)
λ and (27)-(28)

S .
∑

k∈Z2

Lj∑

ℓ=−Lj

(
1 + s

2(1−α)
0 |θλ − θµ|2 + s2α0 |xλ − xµ|2 + s0|〈eλ, xλ − xµ〉|

)−N
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.
∑

k∈Z2

Lj∑

ℓ=−Lj

(
1 + (sλ/s0)

−2(1−α)|ℓ− θµ/ωj|2 + s2α0 |s−α
λ k2 − [Rθλxµ]2|2 + s0|s−1

λ k1 − [Rθλxµ]1|
)−N

.
∑

k∈Z2

∑

ℓ∈Z

(
1 + |ℓ · (sλ/s0)−(1−α) − a1|2 + |(sλ/s0)−αk2 − a2(ℓ)|2 + |(sλ/s0)−1k1 − a3(ℓ)|

)−N
(29)

where θλ = ℓωj, sλ = σj , and the quantities

a1 := s
(1−α)
0 θµ, a2(ℓ) := sα0 [Rθλxµ]2, a3(ℓ) := s0[Rθλxµ]1

depend on j and µ, and a2 and a3 also on ℓ as indicated by the notation.
To proceed, we distinguish the cases sλ ≥ sµ and sλ < sµ. If sλ < sµ then s0 = sλ and the sum

becomes

∑

k∈Z2

∑

ℓ∈Z

(
1 + |ℓ− a1|2 + |k2 − a2(ℓ)|2 + |k1 − a3(ℓ)|

)−N
.

Since N > 2, this expression is bounded by the constant

C := 8
∑

k∈N2
0

∑

ℓ∈N0

(
1 + |ℓ|2 + |k2|2 + |k1|

)−N
<∞.

In the other case, if sλ ≥ sµ, we have s0 = sµ and the sum can be interpreted as a Riemann sum, which
is bounded up to a multiplicative constant by the corresponding integral

S .
∑

k∈Z2

∑

ℓ∈Z

(
1 + |ℓ · (sλ/sµ)−(1−α) − a1|2 + |(sλ/sµ)−αk2 − a2(ℓ)|2 + |(sλ/sµ)−1k1 − a3(ℓ)|

)−N

= (sλ/sµ)
2 ·
∑

ℓ∈Z

(sλ/sµ)
−(1−α)

∑

k1∈Z

(sλ/sµ)
−1
∑

k2∈Z

(sλ/sµ)
−α
(
1 + |ℓ · (sλ/sµ)−(1−α) − a1|2

+|(sλ/sµ)−αk2 − a2(ℓ)|2 + |(sλ/sµ)−1k1 − a3(ℓ)|
)−N

. max
{sλ
sµ
, 1
}2

·
∫

R

dy

∫

R2

dx
(
1 + |y|2 + |x2|2 + |x1|

)−N
.

Precisely for N > 2 the integral is finite. Further, the implicit constant ist independent of sλ and
µ = (xµ, θµ, sµ). This finishes the proof of part (i).

(ii): We now turn to part (ii). Some arguments will be similar to part (i), which we will point out in
the sequel. However, often the utilization of shearing instead of rotation will require a different technical
treatment, in particular, due to the splitting into two parameter sets depending on the parameter ε.

Similar to the curvelet parametrization, the shearlet parametrization (Λs,Φs) is specified by a set of
parameters σ > 1, τ > 0, (ηj)j and (Lj)j . Further, we set s0 = min{sλ, sµ} and let j ∈ N0 be the fixed
number with sλ = σj . The sum ∑

λ∈Λs

sλ fixed

(1 + dα(λ, µ))
−N

can be split into two parts for ε = 0 and ε = 1. For symmetry reasons, both partial sums can be treated
in the same fashion and it therefore suffices to give the estimate for the part where ε = 0.

We know from the proof of part (i) that

(1 + dα(λ, µ))
−N .

(
1 + s

2(1−α)
0 |θλ − θµ|2 + s2α0 |xλ − xµ|2 + s0|〈eλ, xλ − xµ〉|

)−N
.

Since |ℓ| . σj(1−α) and ηj ≍ σ−j(1−α) we have |ℓηj | . 1. Hence, there is a bound B > 0 such that

|ℓηj | ≤ B for all j ∈ N0, |ℓ| ≤ Lj. (30)
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In the proof of Proposition 3.9 we have shown that the ‘transfer matrix’ T = Rθλ(Sℓ,j)
−1 with θλ =

arctan(−ℓηj) has the form

T =

(
cos θλ 0
sin θλ cos(θλ)

−1

)
. (31)

Since |ℓηj | ≤ B, there exists 0 < δ < π
2 such that |θλ| = | arctan(−ℓηj)| ≤ δ. It follows that the diagonal

entries are bounded by positive constants from above and below. Furthermore, the off-diagonal entry is
bounded from above in absolute value. This leads to

|〈eλ, xλ − xµ〉| = |〈R−θλe1, (Sℓ,j)
−1Aα,σ−jk − xµ〉| = |〈e1, TAα,σ−jk −Rθλxµ〉|

= |σ−jk1 cos θλ − [Rθλxµ]1| ≍ |σ−jk1 − cos(θλ)
−1[Rθλxµ]1|. (32)

It holds

|xλ − xµ| = |S−1
ℓ,jAα,σ−jk − xµ| = |T̃ (R−1

θλ
Aα,σ−jk − T̃−1xµ)|

where

T̃ = S−1
ℓ,jRθλ =

(
cos(θλ)

−1 0
sin θλ cos(θλ)

)

is a ‘transfer matrix’ similar to (31). We can conclude

|xλ − xµ| ≍ |Aα,σ−jk −Rθλ T̃
−1xµ| ≥ |s−α

λ k2 − [Rθλ T̃
−1xµ]2|.

Now we distinguish between points µ ∈ P with |θµ| ≤ 2 arctan(B) and |θµ| > 2 arctan(B), where B is
the bound from (30). We next require a simple result, which is as follows.

Lemma 6.8. For all x, y ∈ R absolutely bounded by some fixed bound B ≥ 0, i.e. |x|, |y| ≤ B, we have

| arctanx− arctany| ≍ |x− y|.
Proof. For x 6= y we have for some ξ between x and y by the mean value theorem

| arctanx− arctan y|
|x− y| = arctan′(ξ) =

1

1 + ξ2
.

This yields
1

1 +B2
|x− y| ≤ | arctanx− arctan y| ≤ |x− y|.

The case x = y is trivial.

As a consequence of this lemma, for |θµ| ≤ 2 arctan(B), we obtain

|arctan (−ℓηj)− θµ| ≍ |−ℓηj − tan θµ| . (33)

Since θλ = arctan(−ℓηj) and |ℓηj| ≤ B, for |θµ| > 2 arctan(B), we have |θµ| > 2|θλ|. Thus, we obtain

|arctan (−ℓηj)− θµ| = |θλ − θµ| ≥ |θλ| ≍ |ℓηj| . (34)

In view of the estimates (32)-(33), if |θµ| ≤ 2 arctan(B), we obtain

∑

λ∈Λs

sλ=σj ,ε=0

(1 + dα(λ, µ))
−N .

∑

k∈Z2

Lj∑

ℓ=−Lj

(
1 + s

2(1−α)
0 | arctan(−ℓηj)− θµ|2

+s2α0 |(Sℓ,j)
−1Aα,σ−jk − xµ|2 + s0|〈eλ, (S−1

ℓ,j )Aα,σ−jk − xµ〉|
)−N

.
∑

k∈Z2

Lj∑

ℓ=−Lj

(
1 + s

2(1−α)
0 | − ℓηj − tan θµ|2 + s2α0 |σ−jαk2 − [RθλT̃

−1xµ]2|2

+s0|σ−jk1 − [Rθλxµ]1/ cos(θλ)|
)−N

.
∑

k∈Z2

∑

ℓ∈Z

(
1 + |ℓ · (sλ/s0)−(1−α) − a1|2 + |(sλ/s0)−αk2 − a2(ℓ)|2

+|(sλ/s0)−1k1 − a3(ℓ)|
)−N
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with the quantities

a1 = −s(1−α)
0 tan θµ, a2(ℓ) = sα0 [Rθλ T̃

−1xµ]2, a3(ℓ) = s0[Rθλxµ]1/ cos(θλ),

depending on j, ℓ and µ. This expression is similar to (29). Therefore from here we can proceed as in
the proof of part (i).

In case |θµ| > 2 arctan(B) we argue analogously, but we use (34) instead of (33). We obtain

∑

λ∈Λs

sλ=σj ,ε=0

(1 + dα(λ, µ))
−N .

∑

k∈Z2

Lj∑

ℓ=−Lj

(
1 + s

2(1−α)
0 |ℓηj |2 + s2α0 |(Sℓ,j)

−1Aα,σ−jk − xµ|2

+s0|〈eλ, (S−1
ℓ,j )Aα,σ−jk − xµ〉|

)−N

.
∑

k∈Z2

∑

ℓ∈Z

(
1 + |ℓ · (sλ/s0)−(1−α)|2 + |(sλ/s0)−αk2 − a2(ℓ)|2

+|(sλ/s0)−1k1 − a3(ℓ)|
)−N

From here the proof again proceeds along the same lines as the proof of part (i).
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