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Zusammenfassung

Eine Mehrphasenströmung bezeichnet eine simultane Strömung von verschiedenen Phasen,
wie zum Beispiel: Flüssigkeiten, Gasen und Festkörpern. Sie ist Bestandteil verschiedenster
Prozesse in der Industrie und Umwelt. Mehrphasenströmungen stellen aufgrund ihrer
Komplexität hohe Anforderungen an den Entwurf und Betrieb von industriellen Anlagen und
Rohrsystemen, weshalb sie einen Schwerpunkt in Wissenschaft und Forschung bilden. Dies gilt
in besonderem Maße für zweiphasige Rohrströmungen von Gasen und Flüssigkeiten, bei denen
sich verschiedene Strömungsmuster (flow patterns) ausgeprägen können. Diese Strömungsmuster
stellen Kategorien dar, welche die zeitliche und räumliche Verteilung der verschiedenen Phasen
innerhalb der Strömung beschreiben. Sie entstehen in der Regel in Abhängigkeit von den Fluidei-
genschaften, der Rohrgeometrie und den Strömungsbedingungen. Bei zweiphasigen Strömungen
in horizontalen Rohren wird typischerweise zwischen den folgenden sieben Strömungsmustern
unterschieden: Schichtströmung (stratified flow), Wellenströmung (wavy flow), Pfropenströmung
(plug flow), Schwallströmung (slug flow), Tröpfen-Ringströmung (annular flow), Sprühströmung
(mist flow) und Blasenströmung (bubbly flow). Aufgrund ihrer intermittierenden Abfolge von
großen Gasblasen und rohrquerschnittsfüllenden Flüssigkeitsansammlungen führen vor allem
Schwall- und Pfropfenströmungen zu diversen Nachteilen, wie zum Beispiel: hohen Fehlern
bei Durchflussmessungen, großen Druckverlusten, unerwünschten Schwankungen bei Druck
und Volumenstrom sowie induzierten Vibrationen und einer damit verbundenen erhöhten
Materialermüdung der durchströmten Rohre. Dies gilt insbesondere für den Stofftransport in der
Öl- und Gasindustrie mit ihren weitreichenden Pipeline-Systemen. Aus diesen Gründen werden
die Strömungsmuster schon bei der Planung solcher Anlagen mit einbezogen. Dafür werden unter
anderem verschiedene Vorhersage-Modelle, numerische Strömungssimulationen oder empirische
Korrelationen verwendet. Aufgrund der Komplexität der Strömungsmuster und der vielen
verschiedenen Einflüsse bei ihrer Entstehung sind Verfahren, welche die Strömungsmuster
und ihre zeitlichen und räumlichen Charakterisierungen für gegebene Fluideigenschaften,
Strömungsbedingungen und Rohrdurchmesser zuverlässig und präzise vorhersagen, Gegenstand
aktueller Forschung. Für die Entwicklung und Validierung solcher Modelle, Simulationen und
Korrelation sind akkurate Quantifizierungen der betrachteten Strömungen erforderlich. Dies
gilt nicht nur für die intermittierenden Strömungsmuster, wie Schwallströmung, sondern auch
für die separierten Strömungsmuster, wie Schicht- und Wellenströmung, da diese oft den
Ausgangszustand in der Entwicklung komplexerer Strömungsmuster darstellen. In diesem
Zusammenhang werden quantitative Verfahren und neuartige Ansätze zur zeitlichen und
räumlichen Charakterisierung von intermittierenden und separierten Zweiphasenströmungen
in dieser Arbeit vorgestellt und diskutiert. Für diese Untersuchungen wurden zeitlich und
räumlich aufgelöste Video- und Phasenvolumenanteilsdaten verwendet. Der Fokus lag dabei



auf den Schwallströmungen, da dieses komplexe Strömungsmuster eine große Ähnlichkeit zur
vergleichsweise geordneteren Pfropfenströmung aufweist und auch Elemente der Schicht- und
Wellenströmung beinhaltet.

Zu Beginn wird ein neuartiger Ansatz zur Quantifizierung von horizontalen Schwallströmun-
gen mit dem Verfahren Snapshot Proper Orthogonal Decomposition (Snapshot-POD) vorgestellt.
Dies beinhaltet Untersuchungen zur Repräsentation der Schwallstrukturen in den POD-Moden,
die Ableitung räumlicher und zeitlicher Charakterisierungen von Schwallströmungen aus den
POD-Moden, sowie die Anforderungen an die Ausgangsdaten für diese Anwendung. Für die
verwendeten Datensätze wurde gezeigt, dass die Schwallstrukturen im dominanten Modenpaar
einer Snapshot-POD-Analyse repräsentiert sind. Dabei bildet die räumliche Mode eine
mittlere Schwallstruktur und der zugehörige zeitliche Koeffizient die zeitliche Veränderung der
Phasengrenze ab. Im Weiteren wurde für diese Analysen gezeigt, dass sich die konventionellen
Zeit- und Längenskalen zur Charakterisierung von horizontalen Schwallströmungen von den
räumlichen und zeitlichen Informationen des dominanten Modenpaares ableiten lassen. Somit
ermöglicht die Snapshot POD eine detaillierte zeitliche und räumlich Charakterisierung der
Schwallströmungen. Darüber hinaus konnte ein Zusammenhang zwischen der Genauigkeit
der abgeleiteten Charakterisierung und der Länge des betrachteten Rohrsegments festgestellt
werden.

Für diese Untersuchungen wurden Approximationen der Zeitserie der Flüssigkeitshöhe an
festen Positionen im Rohr (Liquid level - Zeitserie), sowie Zeitskalen der Schwallstrukturen
aus Videoaufzeichnungen von Schwallströmungen abgeleitet. Diese videobasierten zeitlichen
Quantifizierungen horizontaler Schwallströmungen werden im zweiten Teil dieser Arbeit
mithilfe von konventionellen Tomographie-Messungen validiert. Dabei wurde eine systematische
Überschätzung bei der Approximation der Liquid level - Zeitserie aus den Videodaten im
Vergleich zur Tomographie-Messung festgestellt. Die aus der videobasierten Liquid level-
Approximation abgeleiteten Zeitskalen ermöglichen hingegen eine zuverlässige Charakterisie-
rung der Schwallstrukturen.

In diesem Zusammenhang kann sich ein Verfahren, welches schnell und zuverlässig die
Liquid level - Zeitserie aus Videodaten approximiert, zur Analyse von Schwallströmungen, aber
auch anderen separierten und intermittierenden Zweiphasenströmungen, in wissenschaftlichen
und industriellen Anwendungen eignen. Aus diesem Grund wird im letzten Teil dieser
Arbeit ein neues Deep Learning - basiertes Bildverarbeitungsverfahren zur Approximation
der Liquid level - Zeitserie aus Videoaufzeichnungen von separierten und intermittierenden
Zweiphasenströmungen vorgestellt und diskutiert. Dabei konnte gezeigt werden, dass das
Verfahren die Liquid level - Zeitserie akkurat und konsistent aus den Videodaten extrahiert.
Dabei liefert es auch bei heterogenen, untrainierten und verrauschten Videodatensätzen
zuverlässige Ergebnisse. Nach dem erfolgreichen Training des Deep-Learning-Modells benötigt
eine Segmentierung der verwendeten Videodaten nur sehr wenig Rechenzeit, sodass das
vorgestellte Verfahren eine schnelle und exakte Approximation der Liquid level - Zeitserie
ermöglicht.
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Abstract

Multiphase flow is defined as the simultaneous flow of different phases, such as liquids, gases or
solids, and occurs in a variety of industrial and environmental processes. This type of flow poses
special challenges for the operators and engineers due to the complex behavior of the phases,
which is still subject to intensive research efforts. This applies in particular to gas-liquid pipe
flows with its different flow patterns, i.e., categories of spatio-temporal phase distributions.
The formation of these flow patterns depend on the fluid properties, the geometry of the
pipes and the operating conditions. Several flow patterns with different properties have been
identified in horizontal pipes, namely stratified flow, wavy flow, plug flow, slug flow, annular
flow, bubbly flow, and mist flow. Due to their intermittent sequence of liquid blocks and large
gas bubbles, the slug and plug flow pattern cause various disadvantages for the operating
facilities, including higher measurement errors, larger pressure drops, undesired fluctuations
in pressure and flow rates, as well as induced vibrations and the associated fatigue of the
piping. These flows are encountered especially in the deep sea oil and gas production with its
long transportation pipelines. Because of this, it is important to take these intermittent flow
patterns into account for the design of multiphase transportation pipeline systems. Therefore,
predictive models, numerical simulations, and empirical correlations have widely been used as
a starting point for engineering designs. However, due to the complexity of these flow patterns,
it is still subject to intensive research to find models, which reliably and accurately predict
the flow patterns and their temporal and spatial characteristics for given flow rates, fluid
properties, pipe diameters, and inclinations. For the development, calibration and validation of
such predictive models, correlations and simulations, methods that provide precise descriptions
of these flows are of special interest. This includes the complex intermittent flow patterns, such
as slug flow, but also the separated flow patterns, such as stratified or wavy flow, since they
often constitute an initial state in the development of the other, more complex flow patterns.

In this thesis, quantitative methods and novel approaches are presented and discussed,
which enable a precise temporal and spatial characterization of separated and intermittent
flow patterns from spatio-temporal flow data, such as raw video data or snapshot sequences of
phase fraction fields. The focus for these investigations is on the slug flow pattern, since it is
similar but more complex compared to the plug flow pattern and also contains stratified and
wavy elements.

At first, a novel approach for the quantification of horizontal slug flow with snapshot Proper
Orthogonal Decomposition (snapshot POD) is investigated in this thesis. This includes the
aspect of the representation of the slugs in the POD -modes, the derivation of the spatial
and temporal characteristics of slug flow from the POD -modes and the data requirements
for this application. It was found that the slugs are represented in the dominant mode pair



of snapshot POD analysis for the considered data sets. This includes a description of the
gas-liquid interface dynamics in the temporal coefficients as well as the representation of the
averaged slug in the spatial modes. It is shown that the conventional length and time scale
for a characterization of the considered slug flows can be derived from the temporal and
spatial information of the dominant mode pair. Hence, the snapshot POD allows a detailed
temporal and spatial characterization of the slugs. Moreover, it was found that, the length of
the observed pipe segment (region of interest) affects the accuracy of the derived temporal
and spatial characterization.

In the course of these investigations, an approximation of the liquid level time series as
well as time scales of slug flow have been derived from video recordings. In a second step, this
video-based temporal quantification of horizontal slug flow is assessed in a further examination,
where parameters from an established tomography measurement technique are used as a
reference. It was found that the approximation of liquid level time series from the video data
shows a systematic overestimation compared to the tomography measurements. In contrast to
this, the derived temporal characteristics of the liquid slugs from this approximation provide a
reasonable and consistent temporal characterization of slug flow.

In this context, a fast and reliable method for the approximation of the liquid level time
series from video data can serve as a useful tool in industrial and academic operations, where a
temporal quantification of separated and intermittent flow patterns, such as wavy or slug flow,
is needed. In a third step, the accurate and efficient extraction of the liquid level time series
from video observations of separated and intermittent flow patterns with a novel deep learning
based image processing technique is investigated. It is shown that the presented method
accurately extracts the liquid level time series from the considered video data. It can handle
different types of data, even unseen data sets. Furthermore, it can overcome various noise
effects, which are generally included in such image or video data. Once, the net is successfully
trained, it predicts highly accurate segmentation maps in very short time. Hence, the liquid
level time series can be extracted accurately and efficiently from the raw video data.
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1
Introduction

1.1 Multiphase flow

Multiphase flow is a simultaneous flow of several different phases, such as liquids, gases or
solids [1]. In this context, a phase refers to the definition of the thermodynamic state of
matter, i.e., a thermodynamic system or a region within the system, throughout which all of
the (specific) properties, such as density, are uniform [1, 2, 3, 4]. Thus, liquids of different
densities, such as oil and water, are often considered as separate phases [5].

Multiphase flows occur in a variety of industrial and environmental processes [6]. Examples
of this are transportation pipelines in oil and gas production [7, 8], cooling of nuclear reactors
[9], sediment transport in waterways [10], boiling and combustion [11, 12] as well as multiphase
reactors in chemical industry and biotechnology [13].

A general categorization of multiphase flow is according to the different states of phases or
components of the flow, e.g., solid, liquid and gas [14]. A common example of this is two-phase
gas-liquid flow in a pipe. Further distinctions of multiphase flows are made according to the
direction of the flow; horizontal, inclined and vertical. This becomes important for larger
differences in the densities of the phases, due to the influence of gravity. In addition to that,
also the flow directions of the phases with respect to each other are considered. The flow is
called counter-current when the phases flow in opposite directions and it is called co-current
or parallel when they flow in the same direction [1].

There is a need for a phenomenological understanding of the complex behavior of multiphase
flows for engineering designs since they appear in various industrial processes [6]. This has
already been the subject of intensive research efforts [15]. However, the central issue in
developing scientific approaches to gas-liquid pipe flows is the understanding of the spatio-
temporal distribution of the different phases, also called flow patterns or flow regimes [6].
Based on the fluid properties, the geometry of the pipes and the operating conditions, different
flow patterns can form [16]. These flow patterns are used to classify gas-liquid flows.

The present work is mainly concerned with multiphase flows of one category, namely co-
current gas-liquid two phase flows in horizontal pipes, which especially occur in transportation
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1. Introduction

pipelines of the oil and gas industry. The flow patterns that can form for this category of
multiphase flows are introduced in Section 1.2.

1.2 Gas-liquid flow patterns

In this section, the different flow patterns for co-current gas-liquid flows in horizontal pipes
are introduced. Typically, they are classified into seven different flow patterns, namely bubbly
flow, plug flow, stratified flow, wavy flow, slug flow, annular flow, and mist flow, which were
identified mostly by observations of air-water and air-oil flows, see [17, 18, 19, 6, 16]. They are
illustrated in Figure 1.1 and briefly described in the following.

• Bubbly flow consists of a continuous liquid phase with dispersed gas bubbles, which
are moving in the upper part of the pipe at approximately the same velocity as the liquid
[17].

• Plug flow consists of a continuous liquid phase with elongated gas bubbles, which move
in the upper part of the pipe and alternate with plugs of liquid [17]. Due to the shape of
the gas bubbles, this flow pattern is also known as elongated bubble flow [20].

• Stratified flow consists of continuous phases of liquid and gas, whereas the liquid flows
along the bottom of the pipe and the gas flows above, over a smooth gas-liquid interface
[17]. This flow pattern is also named, stratified smooth flow [21].

• Wavy flow is similar to a stratified flow, except that the interface is disturbed by waves,
which are traveling in flow direction [17]. This flow pattern is also named, stratified wavy
flow [21].

• Slug flow consists of a continuous liquid phase with coherent blocks of aerated liquid,
which are separated by volumes of gas. These aerated blocks of liquid are called slugs
and move along the pipe on top of a slowly flowing liquid layer at approximately the
same velocity as the gas [6, 22, 23].

• Annular flow consists of a liquid film, that forms around the inside wall of the pipe
with gas flowing at the central core, where some of the liquid is entrained as droplets [6,
17].

• Mist flow consists of liquid that is entrained as spray by the gas [17].

In Figure 1.1, the sequence of flow patterns are given for a fixed liquid flow rate and an
increasing gas flow rate, according to [17, 18, 19]. For this, a horizontal pipe flow with a fixed
liquid flow rate is considered, such that the observed pipe segment is completely filled with
liquid. Then the gas flow is added in increasing amounts to form the different flow patterns
[17]. At low gas flow rates, the gas is dispersed in bubbles and the bubble pattern forms. With
increasing gas flow rates, the bubbles become larger and coalesce to form long bubbles resulting
in the plug flow regime. For further increase in gas flow rate, the elongated gas bubbles join
to form a continuous gas layer in the upper part of the pipe, resulting in the stratified flow
regime. Due to the lower viscosity and lower density of the gas, it will flow faster than the
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Figure 1.1: Illustration of horizontal gas liquid flow pattern in a longitudinal section of a pipe
segment (left) and in a cross-section of the pipe (right).

liquid. As the gas flow rate is increased further, the interfacial shear stress becomes sufficient
to generate waves on the surface of the liquid, producing the wavy flow regime. As the gas
flow rate continues to rise, the waves, which travel in the direction of the flow, grow until
their crests approach the top of the pipe, and block the gas flow to form a slug, which is then
accelerated by the faster gas flow. This is known as slug flow pattern. At higher gas flow rates,
the gas flow breaks through the waves and slugs, and the liquid is distributed over the inner
wall of the pipe to form the annular regime. At very high gas flow rates, the liquid is being
dispersed as droplets by the gas flow, resulting in the mist flow pattern. This description of
the flow pattern sequence was taken from [19]. Further details on the different flow patterns
and their transition can be found in [1, 6].

Since stratified and wavy flow consists of two continuous phases, separated by a (continuous)
gas-liquid interface, these two flow patterns are grouped into separated flows. Due to their
dispersed liquid or gaseous phases, bubbly and mist flow are grouped into dispersed flows [14].
For plug and slug flow, the liquid structures (plugs and slugs) appear intermittently. Because

3



1. Introduction

of this, they are grouped into intermittent flows [6]. Due to their similar appearance, slug and
plug flow are often not differentiated, see for example [21]. However, a differentiation between
plug and slug flow was given in [24] and [6] by considering whether the liquid blockage contains
gas bubbles or how fast the liquid blockage propagates relative to the liquid layer below, see
[25, 26, 6].

In this work, only separated and intermittent flow patterns are considered, since the phase
distribution with the gas-liquid interface needs to be visible from the side for the proposed
methods and analyses. Due to its complexity and industrial relevance, the focus is on the slug
flow pattern, which is described in further detail in Section 1.2.1.

1.2.1 Slug flow pattern

The slug flow pattern is one of the most common gas-liquid flow patterns in multiphase
transportation pipelines, particularly in the oil and gas production [27]. As mentioned before
in Section 1.2, it is characterized by a continuous liquid phase with coherent blocks of aerated
liquid, which appear intermittently, and are separated by volumes of gas. These aerated liquid
blocks moving on top of a slowly flowing liquid layer downstream the pipe at approximately
the same velocity as the gas. They are called slugs [6, 22, 23]. Based on the slug initiation
mechanism, the slug flow pattern in pipes can be classified into different categories, including
terrain-induced slugging, operationally induced slugging as well as hydrodynamic slugging, see
[16, 23].

Depending on the topography of the terrain, the geometry of the pipeline and local flow
conditions, the liquid phase can accumulate in the low points of the pipeline, forming long
blocks of liquid, which can be blown out from one pipeline section to the next by the gas
pressure, see [28]. This phenomenon is called terrain-induced slugging. A severe form of this
type of slugging occurs in pipeline systems with vertical riser segments, which are typically
used in the subsea oil and gas production [29].

Operationally induced slugging is caused by transient operating conditions. These transient
conditions include start-ups, operational upsets, such as changes in flow rates and pressure
[28], and pigging procedures in pipelines [30]. Due to these transients, the liquid in the pipe
can accumulate locally and form slugs [16].

Hydrodynamic slugging is caused by instabilities at the stratified gas-liquid interface. These
instabilities evolve into waves, which can grow to fill the complete pipe cross-section with
liquid, block the gas flow and form a slug [6].

The slug initiation mechanism of hydrodynamic slugging is still subject to research since the
detailed behavior of the phases and the complex phenomena that occur in the development of
slugs are not fully understood, see e.g., [23, 31]. However, in the following, a short description
based on the dominant phenomena is given, which provides a basic understanding of this
process.

Often the slug initiation mechanism of hydrodynamic slugging is described as a pattern
transition along a horizontal pipe, starting with stratified flow close to the inlet for a given gas
and liquid flow rate, for which slug flow can be observed downstream the pipe [23]. This is
illustrated in Figure 1.2.
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Figure 1.2: Illustration of slug initiation for hydrodynamic slugging in horizontal pipes, according
to [6, 22, 32].

Initially, the two phases are separated by a smooth gas-liquid interface, where short-
wavelength capillary waves can already be observed [33]. These short-wavelength waves grow
to long-wavelength waves with small amplitudes further downstream the pipe [33], see Figure
1.2. Moreover, the liquid layer at the bottom of the pipe experiences larger shear forces from
the pipe walls compared to the gas phase, due to the higher viscosity of the liquid. This
causes the liquid layer to decelerate and the liquid level rises downstream [16, 21, 34, 33,
35]. Due to that, the cross-sectional area occupied by the gas decreases, and the gas flow
accelerates [6, 23]. The pressure in the gas phase decreases, especially over the waves owing to
the Bernoulli-effect resulting in a suction force acting on the interface and causes the wave
to grow [21]. This effect is enhanced by the proximity of the upper wall [36] and additional
irregular short-wavelength waves are superimposed on the long-wavelength waves. These can
grow in amplitude and coalesce, as they propagate downstream and eventually touch the top
of the pipe, fill the complete pipe cross-section with liquid, and block the gas flow [33, 6], see
Figure 1.2. These liquid blockages are called pseudo-slugs or slug precursors [6, 16]. They
can collapse or be accelerated by the faster gas flow and grow to form a slug [6, 33]. At the
position, where such a (pseudo-)slug is formed and swept away, the pressure builds up behind
the slug, the waves disappear and the liquid level drops [22]. The slug accelerates downstream
the pipe to approximately the same velocity as the gas flow. When a slug moves along the
pipe, it picks up the liquid from the slowly flowing liquid layer in front and sheds it in the
liquid layer behind. For (pseudo-)slugs that grow in volume, the pick-up rate of liquid exceeds
the shedding rate of liquid. They grow until a stable, fully-developed state is reached, where
the pick-up rate of the slug is equal to its shedding rate [6]. Furthermore, gas is entrained into
the slug as bubbles by a mixing eddy located at the front of the slug [35], see Figure 1.2. The
entrained gas bubbles can rise to the top of the slug due to buoyancy, exit at the tail of the
slug, or get shed along with the liquid in the liquid layer behind the slug [16].

Slug flow exists over a wide range of operational conditions for many different pipe diameters
[35] and has several initiation mechanisms. Therefore, it is encountered particularly in the deep
sea oil and gas production, where long transportation pipelines and risers from great depths
are used, and the pressure in the oil and gas reservoirs, the ratio as well as the composition of
the phases, such as gas, oil and brine water, and their flow rates vary over time [37].

The slug flow pattern can cause severe problems for industrial processes [38]. Field
measurements of this type of flow are subject to larger measurement errors, see e.g., [39,
40, 41, 42]. The pressure drop due to the slug flow pattern can be an order of magnitude
larger compared to other gas-liquid flow patterns, such as stratified or wavy flow [22]. The
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sequence of liquid slugs causes undesired fluctuations in pressure and liquid or gas flow rates
[43]. Furthermore, the slugs can grow to large structures, moving at high velocities. Thus, they
can have large momenta and can induce vibrations and stresses when they impact on surfaces
of the piping [6]. This can pose a serious threat to oil and gas production facilities. Because of
this, it is important to take the slug flow pattern into account for the design of multiphase
transportation pipeline systems. Therefore, predictive models, numerical simulations, and
empirical correlations have widely been used as a starting point for engineering designs, see e.g.,
[6, 35, 44, 45, 46]. However, the slug flow pattern is inherently unsteady with large temporal
variation of pressure, velocity and mass flow rate at any cross section, which leads also to
unsteady processes of heat and mass transfer with substantial fluctuations in temperature and
concentration [35]. This poses special and difficult problems for the modeling of the flow and
it is still subject to intensive research to find models, which reliably and accurately predict the
flow pattern and the slug characteristics for given flow rates, fluid properties, pipe diameters,
and inclinations [35, 27, 47]. For the development, calibration and validation of such predictive
models, correlations and simulations, methods that provide precise descriptions of slug flows
are of special interest. Consequently, quantitative methods for such purpose are investigated
in this thesis.

Slug flow is typically quantified by the length and time scales of the slugs as well as their
translational velocities [48, 49]. This mainly includes the slug body length Lb and the slug
unit length Lu, i.e. the distance between the slug front and slug rear or two consecutive slug
fronts, respectively, their corresponding time scales, the slug unit times Tu and the slug body
time Tb, i.e. the time a slug body or a slug unit needs to pass by at a fixed position, as well as
the mean slug frequency, defined as

fs̄ = 1
T̄ u

with Tū = 1
Ns

Ns∑︂
i=1

Tui , (1.1)

where Ns denotes the number of slug units in the considered time interval, see [49, 23, 27, 50].
These length and time scales are illustrated in Figure 1.3.
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Figure 1.3: Illustration of length and time scales of slug flow with the liquid level time series
from the vertical centerline of the pipe and the liquid holdup time series from the cross-section of
the pipe at a streamwise position x.
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The slug characteristics are often derived from time series that reveal the dynamics of the
phase-distribution at a certain position in the pipe, such as liquid holdup and liquid level, see
Figure 1.3.

The liquid holdup is a volumetric parameter and defined as the fraction of the volume
of a considered pipe segment, which is occupied by the liquid phase at a time t [51]. It is
denoted as αL(t) and has a range of [0, 1]. Typically, for gas-liquid flows in horizontal pipes,
the liquid holdup is measured in a pipe cross-section [6, 52], as illustrated in Figure 1.3. It
can be measured either with intrusive techniques (instrumentation employed internal to the
flow field), such as conductivity based wire-mesh sensors [53], or non-intrusive techniques
(external to the flow field) [52], such as cross-sectional electrical capacitance tomography [40],
cross-sectional X-ray tomography [54] or cross-sectional optical measurements [55].

The liquid level is a one-dimensional parameter and represents the local height of the liquid
layer relative to the inner pipe diameter. It is defined as the vertical position of the gas-liquid
interface relative to the inner pipe diameter in the vertical centerline of the pipe cross-section
for a given streamwise position at a time t, as illustrated in Figure 1.3, see [36, 56, 57, 58]. It
is denoted as hL(t) and has a range of [0, 1]. Typically, for gas-liquid flows in horizontal pipes,
the liquid level is measured at the vertical centerline of the pipe, for instance with intrusive
wire-sensors and needle-contact probes [36, 56, 57, 59] or non-intrusive narrow-beam gamma
densiometers [60]. Other approaches are based on an approximations of the liquid level from
cross-sectional liquid holdup measurements, see [61], and video data, as presented in an earlier
work, see [62].

There are also other techniques for the measurement of slug characteristics in horizontal
pipes, such as LED-triggering mechanisms for the local detection of slugs [63], video-analysis
techniques for the measurement of length scales, geometrical properties and translational
velocities of the slugs and bubbles [64, 65, 66], as well as simple visual observations of the slug
frequency [67].

In this thesis, quantitative methods are presented and discussed, which enable not only an
extraction of the slug characteristics, but also an approximation of the liquid level time series
or its dynamic behavior from raw spatio-temporal flow data, such as videos or measured phase
fractions. The basic concepts of these methods are introduced in the following section.

1.3 Methods

In this section, a brief introduction into the two main methodologies is given, which were
used in this thesis. First, the snapshot Proper Orthogonal Decomposition is described. This
quantitative method provides an energy-ranked mode basis of the coherent structures in the
flow data and reveals their spatial and temporal features. Due to that capability, this method
is employed to enable an extraction of the slug characteristics as well as an approximation of
the liquid level dynamics from raw spatio-temporal slug flow data. Second, the concept of the
U-net, a specific convolutional neural network architecture, is briefly introduced. This network
constitutes the major component of an image-processing technique presented in this thesis
that provides an approximation of the liquid level time series from raw spatio-temporal two-
and three-phase flow data.
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Detailed descriptions of the two methodologies can be found in the individual publications
in Chapter 2.

1.3.1 Snapshot Proper Orthogonal Decomposition

The snapshot Proper Orthogonal Decomposition (snapshot POD) is a modal decomposition,
which extracts an energy-ranked mode basis of the coherent structures from the flow data
[68, 69]. This orthonormal basis captures the dominant components from high dimensional
data sets with only few modes [70]. The snapshot POD is based on the more general Proper
Orthogonal Decomposition (POD) technique introduced by Lumley [71] in the context of
turbulence and was proposed by Sirovich [72] as an efficient approach to determine the POD
modes from high dimensional fluid flow data. For a snapshot POD of a flow field of interest g,
spatially and temporally resolved data is required. In this context, let (g(x, tk))k=1,...,N be a
snapshot sequence of a scalar or vector field on a discrete domain with M spatial points and
N < M . Then, the data is decomposed as follows

g(x, tk) = ḡ(x, tk) + g′(x, tk) = ḡ(x, tk) +
N∑︂

i=1
ai(tk)ϕi(x), (1.2)

for all times tk and spatial points x, where ḡ denotes the time-averaged data field, g′ the
corresponding fluctuations, ai the i-th temporal coefficient and ϕi the i-th spatial mode.
Consequently, the (temporal) fluctuations g′ in the original field g are expressed as the linear
combination of the spatial modes ϕi and their corresponding temporal coefficients ai [69].
Furthermore, ai and ϕi can be obtained from an eigenvalue decomposition of the (temporal)
covariance matrix R ∈ RN×N resulting from g:

Rvi = λivi for i = 1, . . . , N with λ1 ≥ · · · ≥ λN ≥ 0. (1.3)

Here, the temporal coefficient ai is given by the scaled eigenvector vi with respect to the
eigenvalue λi as

ai :=
√︁

Nλi vi for i = 1, . . . , N, (1.4)

and the spatial mode

ϕi(x) := 1
Nλi

N∑︂
k=1

ai(tk)g′(x, tk) for i = 1, . . . , N. (1.5)

A detailed description of the calculations of R from g can be found in [69], as well as in the
method section of the first two publications given in Chapter 2.

Note that the sum of all eigenvalues represents the mean energy of the considered system,
according to [72]. For a variable of interest g with appropriate physical units, the mean energy
of the considered system can be identified with a physical energy, such as turbulent kinetic
energy for a velocity field [69, 72]. However, for variables with arbitrary units instead of
physical units, the mean energy of the system refers to the total variance in the data set [73].
Thus an eigenvalue λi represents a measure for the proportion of the intensity of the mean
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fluctuations from the data set that is captured by the corresponding eigenvector, or rather the
corresponding temporal coefficient.

After the POD modes are calculated for a given flow field of interest, an additional mode
coupling algorithm is applied for the analyses in this thesis. This algorithm was introduced by
Sieber et al. in [68] and is based on the fact that the dynamics of periodic coherent structures
can be described by a pair of modes and the observation that such modes also show a similar
amount of energy and appear pairwise in the POD spectrum, i.e. eigenvalues appear pairwise
in the spectrum of R (see Equation 1.3), as mentioned in [74]. The algorithm identifies related
modes by the spectral similarity of their temporal coefficients, which accounts for modes that
are shifted by a quarter period. Then the identified modes are combined into pairs of coupled
modes, which are assumed to describe the same underlying coherent structure. This is achieved
by an additional eigenvalue decomposition of the temporal coefficients and the calculation of
the harmonic correlation as similarity measure of the different modes. Details can be found in
[68], as well as in the method section of the first two publications given in Chapter 2.

Even though other variations of the POD technique exist, e.g., spatial POD, the snapshot-
based approach is presently the most widely used POD method in fluid mechanics, due to the
significant reduction in the required computation and memory resources [69]. The applications
of the POD techniques include fundamental analysis of fluids flows [75], reduced-order modeling
[76], data compression and reconstruction [77, 78], flow control [79, 80], and aerodynamic
design optimization [81], particularly for single phase flows, see also [69]. For multiphase flows,
however, there are only a few references on POD. The method was primarily used to find a low
order description of large and complex multiphase flow data sets [82, 83, 84] and to investigate
turbulent structures in two-phase flows [85, 86, 87, 88]. In [89] a temporal characterization
of horizontal slug flow is presented, based on a POD-analysis of cross-sectional tomography
measurements.

In this thesis, not only a temporal, but also a spatial characterization of horizontal slug
flow as well as an approximation of the dynamic behavior of the liquid level time series, derived
from a POD-analysis of raw spatially and temporally resolved data sets, is presented. These
data sets consist of phase-fraction fields in a longitudinal section along the vertical centerline
of the pipe as well as high speed video recordings from the side.

For a specific temporal characterization of separated and intermittent multiphase flows, a
deep learning based image-processing technique is also presented in this thesis, which enables
a fast and robust approximation of the liquid level time series from raw video data. In this
context, the basic concepts of deep learning and the used network architecture, called U-net,
is briefly introduced in the next section.

1.3.2 U-net

Deep learning is a subfield of machine learning and allows computational models, which are
composed of multiple processing layers, to learn representations of data with multiple levels
of abstraction [90, 91]. Convolutional Neural Networks (CNN) constitute a class of deep
learning models which are based on convolution operations in the layers [92, 93]. CNN’s are
widely used for image classification and segmentation problems [94, 95]. The most common
learning technique for CNN’s is supervised learning [91], where the model receives a set of
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labeled input-output pairs as training data and learns a function that maps from input to
output to predict also unseen data points [96, 97].

The U-net is a convolutional neural network architecture for a fast and precise segmentation
of images and was introduced by Ronneberger et al. [98]. It has been successfully applied in
many image-to-image learning problems, e.g., computer tomography, see [99, 100, 101]. The
U-net is typically trained in a supervised manner and able to achieve accurate results with
only few labelled training data. Details can be found in [98], as well as in the method section
of Publication IV, given in Chapter 2.

An essential point to achieve the desired characterizations and approximations with the
used data-driven approaches and quantitative methods are the data itself, and more precisely,
the spatial and temporal features of the flow, which are captured in it. In that regard, the
used data sets are described briefly in the next section.

1.4 Data

In this thesis, different types of spatially and temporally resolved data sets of separated and
intermittent multiphase flows have been analysed. This includes data from high-speed video
recordings of horizontal two- and three-phase flows at different position along the pipe and
phase fraction measurements from cross-sectional electrical capacitance tomography (ECT)
systems. The video data show an approximately 0.5 m long transparent pipe segment from
the side, where the multiphase flow and its instationary phase-distribution can be observered.
Thus, the three-dimensional flow in this 0.5 m long pipe segment is represented in the frames
of the video as a two-dimensional projection with spatial degrees of freedom in vertical and
longitudinal directions (see Figure 1.4). In contrast to this, the cross-sectional tomography
measurements show the instationary phase-distribution inside a complete pipe cross-section,
but only at a certain streamwise position, with spatial degrees of freedom in vertical and
transversal directions (see Figure 1.4).

These data sets were acquired in experiments performed by TÜV SÜD NEL and DNV as
part of the projects Multiphase flow metrology in oil and gas production (MultiFlowMet I)
[102] and Multiphase flow reference metrology (MultiFlowMet II) [7].

Moreover, spatially and temporally resolved phase volume fraction fields from a numerical
simulation of a horizontal air-water slug flow were also considered. These phase volume fraction
fields were extracted from longitudinal sections of different lengths along the vertical centerline
of the pipe, with spatial degrees of freedom in vertical and longitudinal directions (see Figure
1.4).

In Figure 1.4, the described types of data are illustrated. Please note that they are given
one after another along the horizontal pipe just for illustration.

To achieve the desired characterizations and approximations with the previously described
data-driven approaches and quantitative methods, snapshot sequences of the video frames
from experiments as well as snapshot sequences of phase volume fraction fields from numerical
simulations have been analysed. The cross-sectional tomography measurements provided
reference parameters for validations.

Detailed descriptions of the data can be found in the individual publications in Chapter 2.
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Figure 1.4: Illustration of the different types of spatially and temporally resolved data (snapshot
sequences) that have been used in this thesis.

In the previous sections, the basic aspects for the understanding of the research presented
in this thesis have been introduced. These topics include the phenomenology of gas-liquid
flows and parameters for their quantification, the methodology of snapshot POD and the U-net
as well as the different types of data. Accordingly, the research objectives are formulated in
the following section.

1.5 Research objectives

Multiphase flows occur in a variety of industrial and environmental processes [6] and pose
challenges for the operators and engineers due to the complex behavior of the phases and the
lack of its complete phenomenological understanding. This applies in particular to gas-liquid
slug flows, which are encountered especially in the deep sea oil and gas production. In this
area, the slug flow pattern causes various disadvantages, e.g., increased measurement errors
[42], increased pressure drops [22], undesired fluctuations in pressure and flow rates [43]
as well as induce vibrations and the associated fatigue of the piping [6, 103]. Because of
this, it is important to take the slug flow pattern into account for the design of multiphase
transportation pipeline systems. Therefore, predictive models, numerical simulations, and
empirical correlations have widely been used as a starting point for engineering designs [6,
35, 44, 45, 46]. However, due to the complexity of the slug flow pattern, it is still subject to
intensive research to find models, which reliably and accurately predict the flow pattern and the
slug characteristics for given flow rates, fluid properties, pipe diameters, and inclinations [35,
27, 47]. For the development, calibration and validation of such predictive models, correlations
and simulations, methods that provide precise descriptions of slug flow are of special interest.
Typically, the procedures that are used for this purpose, are focusing either on a temporal
description of the slug flow or a spatial description of the slugs. This includes time series

11



1. Introduction

analysis of phase volume fraction [40] and liquid level measurements [36] or image analysis for
the measurement of geometrical properties of the slugs [64]. Some of the established approaches
also rely on additional subjective decisions for the analysis, such as manually counting slugs
[67]. Usually, the slug length is approximated from temporal descriptions of slug flow, but this
requires additional information, such as the translational slug velocities, which needs to be
measured in advance [50]. Furthermore, these methods require specific data, which differ in its
type for the temporal or spatial quantification of slug flow.

In this context, the snapshot Proper Orthogonal Decomposition is considered, which has
been proven as a robust and objective method for the temporal and spatial quantification
of coherent structures in single phase flows from spatio-temporal data sets. Thus, it has the
potential to provide a robust and objective description for the temporal and spatial features
of horizontal slug flow from a single spatially and temporally resolved data set, such as a
snapshot sequence of phase volume fraction fields or video recordings (see Section 1.4).

In that regard, a novel approach for the quantification of horizontal slug flow with snapshot
POD is investigated in this thesis. This includes the aspect of the representation of the slugs
in the POD modes, the derivation of the spatial and temporal characteristics of slug flow from
the POD-modes and the data requirements for this application.

In the course of these investigations, an approximation of the liquid level time series as well
as time scales of slug flow have been derived from video recordings. Typically, such video-based
approaches have been used for counting slugs [67] as well as determining geometrical properties
of the slugs and bubbles [64]. An approximation of the liquid level time series and a derivation
of the time scales of the slugs from video observations was not reported in the literature,
except in the authors earlier work [62]. For this reason, the plausibility of the temporal
quantification of slug flow achieved with this new procedure needs to be investigated. In
that regard, the temporal quantification of slug flow from video observations are assessed
in a further examination, where parameters from an established tomography measurement
technique are used as a reference.

If only a pure temporal characterization of slug flow is needed, or the spatial scales of
the slugs do not allow a direct characterization from video observations, a fast and reliable
non-intrusive method for the approximation of the liquid level time series from video data can
serve as a useful tool in related industrial and academic operations. The achieved temporal
quantification helps to assess not only slug flow, but also other separated and intermittent flow
patterns and do not require intrusive as well as costly non-intrusive measurement techniques,
such as wire-mesh sensors or tomography measurements, respectively. In that regard, a novel
deep learning based image processing technique is presented and the accurate and efficient
extraction of the liquid level time series from video observations of separated and intermittent
flow pattern is investigated.

The introduced research objectives, which are adressed in this thesis, are summarized in
the following:

1. The quantification of horizontal slug flow with snapshot POD

a Representation of the slugs in the POD modes.
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b Derivation of time and length scales from the POD modes for the characterization
of slug flow.

c Data requirements for the characterization of slug flow with POD

2. The evaluation of the temporal quantification of slug flow from video observations by
using tomography measurements as a reference.

3. Accurate and efficient extraction of the liquid level time series from video observations
of multiphase flows with a deep learning model.

These research objectives are addressed in four journal publications, which comprises this
thesis. These publications and their contribution to the individual research objectives are
presented in Chapter 2. The scientific results presented in the publications are discussed in
Chapter 3 in the context of the research objectives.
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Publications

This chapter contains the publisher-versions of the four journal publications in chronological
order. In these publications, the scientific results of the investigations are presented, which
address the research objectives of this thesis (see Section 1.5). This includes the quantification
of horizontal slug flow with snapshot POD (see Publication I and II), the evaluation of the
temporal quantification of slug flow from video observations by using tomography measurements
as a reference (Publication III), and the accurate and efficient extraction of the liquid level time
series from video observations of multiphase flows with a deep learning model (see Publication
IV). A short summary for each of the four journal publications and their contribution to the
different research objectives are given in advance, prior to each article. This thesis is comprised
of the following for publications:

Publication I
M. Olbrich, E. Schmeyer, M. Bär, M. Sieber, K. Oberleithner, S. Schmelter, "Identification of
coherent structures in horizontal slug flow". In: Flow Measurement and Instrumentation 76
(2020), p. 101814, ISSN 0955-5986, https://doi.org/10.1016/j.flowmeasinst.2020.101814.

Publication II
M. Olbrich, M. Bär, K. Oberleithner, S. Schmelter, "Statistical characterization of horizontal slug
flow using snapshot proper orthogonal decomposition". In: International Journal of Multiphase
Flow 134 (2021), p. 103453, ISSN 0301-9322, https://doi.org/10.1016/j.ijmultiphaseflow.
2020.103453.

Publication III
M. Olbrich, A. Hunt, T. Leonard, D. S. van Putten, M. Bär, K. Oberleithner, S. Schmelter,
"Comparing temporal characteristics of slug flow from tomography measurements and video
observations". In: Measurement: Sensors 18 (2021), p. 100222, ISSN 2665-9174, https:
//doi.org/10.1016/j.measen.2021.100222.

Publication IV
M. Olbrich, L. Riazy, T. Kretz, T. Leonard, D. S. van Putten, M. Bär, K. Oberleithner, S.
Schmelter, "Deep learning based liquid level extraction from video observations of gas–liquid
flows". In: International Journal of Multiphase Flow 157 (2022), p. 104247, ISSN 0301-9322,
https://doi.org/10.1016/j.ijmultiphaseflow.2022.104247.
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2.1 Publication I

2.1 Publication I

Identification of coherent structures
in horizontal slug flow

The snapshot Proper Orthogonal Decomposition has been proven as a robust and objective
method for the temporal and spatial quantification of coherent structures in single phase flows
from spatio-temporal data sets. Thus, it has the potential to provide a robust and objective
description for the temporal and spatial features of horizontal slug flow. In that regard, a novel
approach for the quantification of horizontal slug flow with snapshot POD is investigated in
this publication, with the particular focus on the representation of the slugs in the POD modes
and their characterization (research objective Nr. 1a and b). For this, two different instances
of horizontal slug flow are investigated with snapshot proper orthogonal decomposition and
an additional mode coupling algorithm. At first, an operationally induced air-water slug flow
from a numerical simulation is considered, where the slugs occur in a periodic manner with a
fixed frequency of 1 Hz at the point of observation. For this instance, temporally and spatially
resolved phase volume fraction fields from a longitudinal section along the vertical centerline
of a pipe segment are used. Furthermore, a nitrogen-brine water slug flow with hydrodynamic
slugging from an experiment is considered, where the slugs occur intermittently at the point
of observation. For this, temporally and spatially resolved gray intensity fields from video
recordings of the flow from the side are used.

For both slug flows, it is shown that the dynamics of one of the temporal coefficients from
the most dominant pair of POD modes coincides with the dynamics of the liquid level time
series, extracted from the raw data. Thus, it reveals the dynamics of the phase distribution
and can therefore be used for a temporal characterization of the slugs.

For the slug flow data from the numerical simulations, the structure displayed in one of the
spatial modes of the dominant mode pair shows a strong similarity to the ensemble-averaged
slug, derived from the raw data. Thus, it can be used for the spatial characterization of the
slugs. In this context, a mean length scale is derived from the spatial mode that approximates
the mean slug body length. For the video data from the slug flow experiment, the averaged
slug is too long to be displayed entirely in the observed region of interest. Thus, a spatial
characterization could not be derived from the spatial mode. Nevertheless, with additional
knowledge of the averaged translational velocity of the slugs, it is demonstrated for both
instances that a mean length scale for the slugs can be calculated with the approximation of
the slug body time from the temporal coefficients.

Altogether, it is shown for the considered slug flow data that the slugs are represented in
the dominant mode pair. Furthermore, rough estimates of the temporal and spatial scales
were derived from the POD modes.
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A B S T R A C T   

Multiphase flow measurement devices are significantly affected by the flow pattern, such as, e.g., slug flow, 
leading to large uncertainties. In this context, the slug flow pattern in horizontal pipes is investigated with the 
aim of finding a statistical characterization of the structures in space and time. For this, two different instances of 
slug flow are analyzed with a snapshot proper orthogonal decomposition and an additional mode coupling al-
gorithm, which provides an energy-ranked mode basis of the underlying coherent structures. For the considered 
flows, the most energetic mode pair has been identified with the corresponding slugging structures. Thereby, the 
temporal and spatial information of these mode pairs enables a statistical characterization of the slugs. In this 
context, a length scale, a dominant frequency, and an energy representation of the slugging structures are ob-
tained from this method.   

1. Introduction 

One central aim in multiphase flow metrology is to explain and 
quantify the large uncertainty in multiphase flow metering that reaches 
up to 20% in the oil and gas industries [11]. For this, the slug flow 
pattern in horizontal pipes is of special interest since multiphase flow 
measurement devices can significantly be affected by liquid slugs and 
the induced pressure fluctuations and vibrations. A concise description 
of the slug flow pattern can contribute to the aim of explaining these 
uncertainties. Therefore, a technique for a quantification of this flow 
pattern is investigated. 

In this contribution, we focus on the analysis of horizontal slug flow 
by means of snapshot proper orthogonal decomposition (snapshot POD), 
see, e.g., Ref. [1,3,4], with an additional mode coupling algorithm, as 
proposed in Ref. [4]. The snapshot POD extracts an energy-ranked mode 
basis of the coherent structures from the flow data with the aim of 
representing the relevant flow phenomena (e.g., slugs) by a few ele-
ments of the mode basis. This method is applied to spatially and 
temporally resolved data. 

At first, we analyze data obtained from the CFD simulation of an air- 
water slug flow test case, for which the slugs occur at a fixed frequency 
of 1Hz [6]. Furthermore, the snapshot POD analysis is applied to data 
from experimental video observations of a nitrogen - brine water slug 
flow. 

Since the flow pattern is characterized by the distribution of the 

different phases in the pipe, time-resolved phase volume fraction fields 
from CFD, as well as gray intensity fields from video observations are 
used for this analysis. 

In both slug flows, the most energetic mode pair from snapshot POD 
provides a statistical characterization of the slugging structures through 
their temporal and spatial information. 

2. Data analysis methodology 

2.1. Snapshot proper orthogonal decomposition 

The snapshot proper orthogonal decomposition (snapshot POD) is a 
modal decomposition and often used for the identification and charac-
terization of coherent structures in turbulent flows, see, e.g., Ref. [1–5]. 

For the analysis of coherent structures in the slug flow regime, the 
snapshot POD is applied to spatially and temporally resolved data of this 
flow pattern. For this, let g(x, y, t) be a snapshot sequence of a two- 
dimensional scalar field. Then, the data is decomposed as follows 

g(x, y, t) = g(x, y) + g
′

(x, y, t) = g(x, y) +
∑

i
ai(t)φi(x, y), (1)  

where g denotes the time-averaged data field, g′ the corresponding 
fluctuations, ai the temporal coefficients and φi the spatial modes. 
Furthermore, ai and φi can be obtained from an eigenvalue 
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decomposition of the correlation matrix of the fluctuations g′ as follows. 
Let G ∈ RM×Nbe the matrix of the rearranged fluctuations of the snap-
shot sequence g′ with M rows and N columns, where M denotes the 
number of spatial points and Ndenotes the number of snapshots. Here, 
all spatial points of the i-th snapshot are arranged in the i-th column of G. 
Then ai and φi are obtained from the eigenvalue decomposition of R : =
1
NGTG: 

Rvi = λivi, i = 1, …, N, with λ1 ≥ … ≥ λN ≥ 0. (2) 

Here, the temporal coefficient ai is given by the scaled eigenvector vi 

with respect to the eigenvalue λi as, 

ai(t) : =
̅̅̅̅̅̅̅
Nλi

√
vi (3)  

and the spatial mode φi is given as 

φi(x, y) : =
1

Nλi

∑N

k=1
ai(tk)g′

(x, y, tk) (4)  

for i = 1, …, N. In the context of fluid dynamics, a temporal coefficient 
ai(t) (Equation (3)) can be interpreted as the dynamical behaviour of an 
underlying coherent structure of the flow field. The corresponding 
eigenvalue provides a measure of the energy of this coherent structure. 
The spatial mode φi(x, y) (Equation (4)) can then be understood as a 
weighted time-average of the considered flow field fluctuations, 
weighted with the corresponding dynamics and energy. This provides 
spatial information of the underlying coherent structure. Further details 
can be found in Ref. [1,3,4]. 

2.2. Mode-coupling algorithm 

Since the dynamics of periodic structures can be described by a pair 
of modes, the mode-coupling algorithm proposed in Ref. [4] is used in 
addition. Related modes are identified by the spectral similarity of their 
temporal coefficients, which accounts for modes that are shifted by a 
quarter period. The mode coupling is computed by an additional 
eigenvalue decomposition 

Aci = μici (5)  

with A : =

⎡

⎢
⎢
⎣

a2
1 ⋯ a2

N

⋮ ⋱ ⋮
aN

1 ⋯ aN
N

⎤

⎥
⎥
⎦

T

⋅

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎣

a1
1 ⋯ a1

N

⋮ ⋱ ⋮
aN−1

1 ⋯ aN−1
N

⎤

⎥
⎥
⎦

T ⎞

⎟
⎟
⎟
⎠

+

,

Where ak
i denotes the k-th entry of the i-th temporal coefficient ai and 

(⋅)+ denotes the Moore-Penrose pseudo inverse of the corresponding 
matrix. Note that this is a dynamic mode decomposition (DMD) on the 
temporal coefficients. The similarity measure of the temporal co-
efficients ai and aj is given by 

Hi,j : = Im

(
∑N

k=1
ci

kcj
ksgn(Im(μk))

)

, (6)  

where cj
k denotes the complex conjugate of cj

k, Im the imaginary part and 
sgn the sign function. The matrix H is also called harmonic correlation 
matrix. 

The indices of the coupled modes are then given by the indices of the 
maximal entries of H, since it indicates the temporal coefficients with the 
highest spectral similarity. The dominant frequency f of an identified 
mode pair (ai,aj) (equivalently denoted by (φi,φj)) is then derived from 
the corresponding eigenvalue μk (Equation (5)) by 

f =
Im(ln(μk))

2π . (7) 

To determine the combined energy content of the mode pair (ai, aj) 

the corresponding eigenvalues of the modal decomposition (see Equa-
tion (2)) are summarized as 

E =
λi + λj
∑N

l=1λl
. (8) 

Note that E represents the energy distribution in terms of a discrete 
time signal. It can only be identified with a physical energy if g has 
appropriate physical units. For details see Ref. [4]. 

3. Data of horizontal slug flow 

For the analysis of horizontal slug flow with snapshot POD, two 
different types of slug flow data are considered. 

At first, phase volume fraction fields, obtained from the CFD simu-
lation of a periodic air-water slug flow, are used. Because of its peri-
odicity, this flow is suitable for testing the applicability of snapshot POD. 

Second, the method is applied to video observations of an experi-
mental nitrogen-brine water slug flow. 

3.1. CFD simulation of periodic air-water slug flow 

The simulation of an air-water slug flow through a horizontal pipe 
with an inner diameter of D = 0.054m and a length of L = 8m, was 
adopted from Ref. [6]. The fluid properties and superficial velocities of 
this flow are given in Table 1. 

For the computation, the pipe was discretized as an O-grid consisting 
of about 1.1 million nodes (45 nodes in radial, 104 nodes in angular, and 
685 nodes in longitudinal direction). 

To generate a periodic formation of slugs in the pipe, a time- 
dependent sinusoidal displacement of the vertical position of the air- 
water interface is applied to this flow as introduced in Ref. [6]. For 
this, the inlet is initialized with equally distributed phases in the inlet 
cross section, such that the lower half of the cross section is filled with 
water and the upper half is filled with air (see Fig. 1). The initial con-
dition is obtained from the vertical position of the interface ỹint by 

ỹint(x, t = 0) =
D
4

sin
(

2π 4x
L

)

+
D
2

, (9)  

where t denotes the time and x the spatial component in flow direction 
(see Fig. 1). The time-dependent vertical position of the interface at the 
inlet is then given by 

ỹint(x = 0, t) =
D
4

sin
(

2π v4t
L

)

+
D
2

, (10)  

where v = 2 m
s denotes the inlet gas or liquid velocity. This perturbation 

leads to a periodical slug formation in the pipe of 1  Hz (see Fig. 2). 
Furthermore, a no-slip boundary condition at the walls of the pipe 

and a pressure outlet boundary condition was set. 
The CFD simulation was performed in ANSYS FLUENT [7]. For this, 

an unsteady Reynolds-averaged Navier-Stokes (URANS) approach with 
the k-ω-SST turbulence model was chosen [8]. 

To model the gas-liquid interface the volume of fluid (VOF) method 
was applied within a mixture model [9]. In addition, turbulence 
damping was included to model such flows with high velocity gradients 
at the interface correctly [10]. The space and time discretization 
schemes are chosen as in Ref. [12]. 

Table 1 
Fluid properties and superficial vel. for CFD.   

water air 

density in 
kg
m3  

998.2 1.225 

dyn. viscosity in Pa⋅s  1.003×10-3 1.789×10-5 

superficial vel. in 
m
s  

1.0 1.0  
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In Fig. 2, a snapshot of the gas volume fraction field αair(x, y, t) from a 
longitudinal section of the pipe at t = 70.86s is depicted. Here, the time- 
dependent interface displacement at the inlet is visible along the first 
few metres of the pipe. Further downstream the water slugs are formed. 

To analyze the fully developed slug flow from the simulations with 
snapshot POD, the gas volume fraction field data is collected from a 
longitudinal section of a 1.5m long pipe segment at 4− 5.5m (see Fig. 2). 
To ensure that numerical effects from the initialization do not affect the 
flow field anymore and the simulated flow is well developed, the 
snapshot sequence is collected in a time interval of 10s from 70s to 80s 
with a sample rate of 100Hz (see Fig. 3). 

3.2. Experimental slug flow 

The considered experiment of a horizontal gas-liquid slug flow was 
performed by TUV SUD NEL. The experimental setup consists of a 
straight horizontal pipe with an inner diameter of D = 0.0972m and a 
length of 100D, followed by a Perspex viewing section with a length of 
0.5m, where the slug flow was recorded from aside by a high-speed 
camera with a frame rate of 240fps. This section is followed by a 
right-angled bend connected to a vertical measurement configuration 
[11], but this is of minor interest, since the slugging structures in the 
horizontal pipe are investigated. The fluid properties and superficial 
velocities are listed in Table 2. 

To obtain a scalar field representation of the multidimensional RGB- 
frames from the video, the grayscale is extracted. A snapshot sequence of 
these grayscale frames for a time interval of 50s is then used for the 
analysis with snapshot POD (see Fig. 3). 

4. Results 

In this chapter, the results of the snapshot POD analysis of the flow 
field data from CFD and experimental video observations are presented. 
Since this work focuses on a statistical characterization of the slugging 
structures, only the relevant results are selected. For both data sets, the 
coherent structures, represented by the most energetic mode pair can be 
identified with the slugging structures of the corresponding slug flow. 
Hence, this mode pair provides spatial and temporal parameters for a 
characterization of the slugging structures. For a validation of this 
identification, the statistical length and time scales of the flow are 
compared with the length and time scales that were derived from the 
snapshot POD results. 

4.1. Results for CFD data 

In Fig. 4, the most energetic mode pair of the air-water slug flow from 
CFD, as well as the corresponding temporal coefficients and the time- 
averaged gas volume fraction field are depicted as the results of the 
analysis with snapshot POD. In addition, the vertical position of the gas- 
liquid interface (liquid level) over time and the averaged slugging 
structure are also given for a visual comparison. The liquid level was 
extracted from the snapshot sequence at x = 13.9D with the method of 
tracking the gas-liquid interface described in Ref. [13]. The averaged 
slugging structure was obtained from the mean of all snapshots with a 
slug (at centered position). Due to the eigenvalue decomposition of the 
gas volume fraction field in the POD algorithm, the absolute values of 
the single spatial modes are not in the same range as the gas volume 
fraction. For consistency in Fig. 4, the spatial modes were normalized to 
the range of the gas volume fraction as follows 

φ̂i =
φi − min(φi)

max(φi) − min(φi)
(11) 

This mode pair is identified with the averaged slugging structure of 
the corresponding air-water slug flow, since the temporal coefficients 
coincides with the liquid level, especially in width and periodicity of the 
spikes. Note that a1 is shifted to a2 as stated in Chapter 2. Furthermore, 
the frequency of the coupled mode pair (φ1, φ2) of 1Hz (see Equation 
(8)) is equal to the frequency of slug occurrence of the periodic slug flow. 
The structure displayed in the spatial mode φ2(x, y) is interpreted as the 
averaged slugging structure. This can be verified by the averaged slug, 
which is also depicted in Fig. 4. From that, the slug body length Ls can be 
derived [14–16]. Here, the averaged slug body length derived from the 
spatial mode φ2(x, y) is given by LPOD

s = 6.5D, whereas the averaged slug 
body length derived from the averaged slug of the flow data is given by 
Ls = 6D. This length scale and the slug frequency f provide parameters 
for a statistical characterization of the slug flow. 

Furthermore, an additional length scale L* can be obtained from a2 as 
proposed in Ref. [2], where the similarity between one of the dominant 
temporal coefficients and the liquid holdup was mentioned. For this, the 
transitional velocity of a slug vs is multiplied by the time interval of a 
slug Δts passing by at one point, i.e.: 

L* = vs⋅Δts. (12) 

Based on the unit cell model [14] and the considered specific rect-
angular shape of a slug, this length scale is often used for the calculation 

Fig. 1. Illustration of the initial field (not to scale).  

Fig. 2. Snapshot of gas volume fraction field from a longitudinal pipe section at 
t = 70.86s with exposed field of interest (not to scale). 

Fig. 3. Illustration of snapshot sequences from CFD data (left) and grayscale 
frames of experimental videos (right). 

Table 2 
Fluid properties and superficial vel. for experiment.   

Brine water nitrogen 

density in 
kg
m3  

1011 10.8 

dyn. viscosity in Pa⋅s  8.82×10-4 1.75×10-5 

superficial vel. in 
m
s  

0.545 1.635  
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of the slug body length, see Ref. [15]. But for slugs, which deviate much 
in their shape from the unit cell model, this identification is not obvious. 
Since on strongly tilted slugging structures as in Fig. 4, it is not clear how 
to determine a unique time of a slug front and a slug tail. Nevertheless, 
the length scale L* can be obtained from the liquid level over time as well 
as the temporal coefficient a2 (denoted by L*

POD) under knowledge of vs, 
since it depends only on temporal information and a velocity. Consid-
ering the liquid level time series, a spike with a large amplitude close to 
y/D = 1 indicates a slug, where the beginning and the end of the spike 
are given by the corresponding local minima. Then, the obtained length 
scale L* provides an information of the length of the complete structure, 
and not just the inner part of the slug body. To determine L*, average 
parameters are considered, since a statistical characterization is sought. 
For this, the averaged translational velocity of the slugs is obtained by a 
cross-correlation of a column of the field of interest at x1 = 0D and x2 =

27.8D over time. Since the distance is known, the average velocity of the 
slugs is then derived by the shift of the data obtained by the (unique) 
maximum of the cross-correlation function. This procedure is adopted 
from the PIV-measurement technique, see, e.g., Ref. [17]. This leads to 
an average translational velocity vs = 2.63 m

s of the slugging structures. 
Considering the liquid level over time in standard score, the time 

interval of a slug Δts is approximated by the width of the associated spike 
from zero to zero. Taking the mean of all these intervals, the average 
time interval Δts = 0.23s can be derived from the liquid level time series. 
This results in a length scale for the averaged slugging structure of about 
L* = 11.2D, which matches the length of the average slug shown in 
Fig. 4. Since the temporal coefficient a2 represents the dynamics of the 
liquid level, an approximation of these parameters can also be derived 

from a2, resulting in ΔtPOD
s = 0.31s and L*

POD = 15.1D, which also 
matches the length of the blurred slugging structure shown in φ2 (see 
Fig. 4). The parameters for a statistical characterization of the slugs 
obtained from analysis with snapshot POD are summarized in Table 3. 

4.2. Results for experimental data 

In Fig. 5, the most energetic mode pair of the experimental nitrogen - 
brine water slug flow, as well as the corresponding temporal coefficients 
are depicted as result of the analysis with snapshot POD. Analogously to 
Fig. 4, the liquid level over time, obtained from the experimental video 
observations with the same method as mentioned in Section 4.1, see 
Ref. [13], is plotted for comparison. 

Since a snapshot sequence of grayscale fields are analyzed, the modal 
decomposition accounts for the changes in the gray intensities. For the 
considered flow, the brine water shows higher gray intensities than the 
transparent nitrogen in front of the dark background. But the highest 
gray intensities appear at the gas-liquid interface, due to reflection at the 

Fig. 4. Most energetic mode pair (φ1, φ2) with corresponding temporal coefficients a1, a2( ) from snapshot POD in comparison with liquid level over time ( ), 
the averaged slug and the time-averaged gas volume fraction field αair, obtained from CFD data. In addition, the derived length scales Ls, L*, LPOD

s , L*
POD are given. 

Note that a1, a2 and the liquid level are depicted in standard score, respectively. Drawings not to scale. 

Table 3 
Parameters for statistical characterization of air-water slug flow from CFD data 
derived from snapshot POD results.  

Coupled energy content E of mode pair (φ1, φ2) (see Equation (8))  46.6%  
Frequency f of mode pair (φ1, φ2) (see Equation (7)) 

(Identified with slugging frequency)  
1Hz  

Averaged slug body length LPOD
s  6.5D  

Averaged structure length L*
POD  15.1D   
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liquid surface. Hence, the spatial modes show coherent structures of the 
flow in terms of gray intensities, but with a highlighted gas-liquid 
interface. 

The depicted mode pair (see Fig. 5) is also identified with the aver-
aged slugging structure because of the clear similarity of the liquid level 
with the corresponding temporal coefficients and the shape of the spatial 
modes. Since the gas-liquid interface in φ2 occupies the complete length 
of the field of view, it can be deduced, that the average slug is at least as 
long as the field of view. Therefore, an average slug body length scale Ls 
cannot be derived from the spatial mode. Nevertheless, the length scale 
L*

POD = 7.6D can be derived from the temporal coefficient a2, as well as 
L* = 6.7D from the liquid level over time. For this, the averaged trans-
lational velocity vs = 2.85 m

s and the averaged time interval ΔtPOD
s =

0.26s and Δts = 0.23s are obtained as explained before in Section 4.1. 
Furthermore, the dominant frequency f and the energy content E of the 
selected mode pair is also provided by snapshot POD analysis. These 
parameters can be used for a statistical characterization of the slugging 
structures and are summarized in Table 4. Note that the dominant fre-
quency f = 1.4Hz agrees with the averaged frequency of slug occur-
rence, where the number of counted slugs (72) is divided by the length of 
the considered time interval (50s). 

5. Conclusion 

To characterize the structures of two different slug flows statistically, 

an analysis with snapshot POD was performed and validated. For both 
examples, the most energetic mode pair was identified with the slugging 
structures and used for their characterization in space and time. Alto-
gether, the snapshot POD with an additional mode coupling algorithm is 
a valid tool for the identification of coherent structures in horizontal slug 
flow and enables a quantitative characterization of the occurring liquid 
slugs by their temporal and spatial information. 
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Nomenclature 

A, G,R real valued matrices 
D inner pipe diameter 
E energy content of a corresponding mode pair 
H harmonic correlation matrix 
L pipe length 
Ls averaged slug body length derived from snapshot sequence 
LPOD

s averaged slug body length derived from spatial mode of snapshot POD 
L* average slug structure length derived from liquid level time series 
L*POD averaged slug structure length derived from temporal coefficient of snapshot POD 
M number of spatial points 
N number of snapshots 
ai(t) i-th temporal coefficient 
ci i-th eigenvector of A 
f dominant frequency of a corresponding mode pair 
g(x,y, t) snapshot sequence of a two-dimensional scalar field 
g(x,y) temporal mean of g(x,y, t)

Fig. 5. Most energetic mode pair (φ1, φ2) with corresponding temporal co-
efficients a1, a2( ) from snapshot POD in comparison with liquid level over 
time ( ). Note that a1,a2and the liquid level are depicted in standard score for 
a 10s time interval [25s, 35s], respectively. Drawing of φ1, φ2 not to scale. 

Table 4 
Parameters for statistical characterization of nitrogen – brine water slug flow 
from experimental data derived from snapshot POD results.  

Coupled energy content E of mode pair (φ1, φ2) (see Equation (8))  55.9%  
Frequency f of mode pair (φ1, φ2) (see Equation (7)) 

(Identified with slugging frequency)  
1.4Hz  

Averaged structure length L*
POD  7.6D   
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g′

(x,y, t) temporal fluctuations of g(x,y, t)
t time variable 
vi i-th eigenvector of R 
vs averaged translational velocity of the slugs 
x,y space variables 
ỹint(x, t) sinusoidal interface displacement 
αair(x,y, t) gas volume fraction field 
αair temporal mean of αair 

Δts averaged time interval of slugs passing by at one position derived from liquid level time series 
ΔtPOD

s averaged time interval of slugs passing by at one position derived from temporal coefficient of snapshot POD 
λi i-th eigenvalue of R 
μi i-th eigenvalue of A 
ϕi(x,y) i-th spatial mode 

ϕ̂i(x,y) normalization of ϕi(x,y)
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2.2 Publication II

2.2 Publication II

Statistical characterization of horizontal slug flow using
snapshot proper orthogonal decomposition

The analysis of horizontal slug flow with snapshot Proper Orthogonal Decomposition is
deepened in this publication, based on the findings of Publication I (see Section 2.1). The
representation of the slugs in the POD modes (research objective 1a) is further investigated,
especially for the video data. Precise characterizations of the slugs are derived from the POD
modes (research objective 1b) and the data requirements for a meaningful characterization of
the slugs with snapshot POD (research objective 1c) are investigated.

In a first step, phase volume fraction fields of the same periodic slug flow from a numerical
simulation are analyzed as in Publication I (see Section 2.1). For the dominant mode, which
represents the slugs, it was found that the corresponding standardized temporal coefficient
approximates best the standardized liquid level time series extracted at exactly that streamwise
position in the region of interest, where the liquid intensity in the corresponding spatial mode
is maximal. This fact contributes to a better understanding of the representation of the slugs
in the POD modes and their characterization. Moreover, it enables a detailed validation of the
representation of the slugs in the POD modes. The influence of the length of the observed pipe
segment on this representation was further investigated. It was found that the accuracy of the
representation of the liquid level time series in the temporal coefficient decreases in general
with increasing length of the observed pipe segment. A similar behavior was noticed for the
representation of the averaged slug in the spatial modes. Based on this analysis, the required
length of the observed pipe segment for a meaningful temporal and spatial characterization
of slug flow with snapshot POD was discussed. It was found that the length should be large
enough to display the entire (averaged) slug, but also sufficiently small to avoid larger errors of
its representation in the POD modes. In contrast to this, for a pure temporal characterization
with the temporal coefficient, the length should be as small as possible. Furthermore, an
optimal length of the observed pipe segment for the analysis of the considered data set with
snapshot POD was found by a detailed error analysis. With this, a precise description of the
slugs was derived from the dominant mode pair, including the common statistical time and
length scales of slug flow, e.g., mean slug frequency and mean slug body length.

In a second step, RGB-intensity fields from highspeed video recordings of a gas - oil slug
flow with hydrodynamic slugging from an experiment are analyzed. In this case, the length
of the observed pipe segment is too small to display the entire averaged slug, similar to the
experimental data in Publication I (see Section 2.1). Therefore, an artificial extension of the
region of interest was developed that embeds frames next to time-shifted frames from the same
video such that the averaged slug is visible entirely in the extended region of interest. This
extension procedure is applied to the considered slug flow data set in a pre-processing step to
enable also a spatial characterization of the slugs with snapshot POD. Based on the findings
from the previous investigations, it is demonstrated that a precise statistical characterization
of slug flow in space and time can also be derived from the dominant mode pair of a snapshot
POD analysis for the considered video data from a slug flow experiment.
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It was also discussed that, in general, the energy-representations of the POD modes
correspond to the mean fluctuating intensities in the data. Moreover, the mean slug frequency
is not represented in general by the mean frequency of the mode pair, which correspond to the
mean dominant frequency of the temporal coefficients.

Altogether, in this publication was shown that the slugs are represented in the dominant
mode pair of a snapshot POD analysis and that a precise statistical description of the slugs
in space and time can be derived from this mode pair, at least if certain data requirements
are fulfilled. Moreover it is demonstrated that snapshot POD provides this statistical
characterization not only for the high quality phase volume fraction fields from a numerical
simulation, but also for RGB-values of a noise-affected experimental video recording.
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a b s t r a c t 

Slug flow is an intermittent and complex gas-liquid flow pattern, that can cause severe problems in in- 

dustrial operations and lead to large uncertainties in multiphase flow metering. These problems are pri- 

marily caused by the liquid slugs of the flow. In this context, different cases of slug flow in horizontal 

pipes are investigated to find a statistical characterization of the slugs in time and space. To achieve this, 

snapshot proper orthogonal decomposition (snapshot POD) with an additional mode coupling algorithm 

is employed, which provides an energy-ranked mode basis of the underlying coherent structures. It is 

shown that the characterization for the considered slug flows can be derived from the temporal and spa- 

tial information of the dominant mode pair. In that regard, the slug frequencies, the averaged slug body 

length and an energy representation of the slugs are obtained from this method. Furthermore, the accu- 

racy of this characterization is shown and the influence of the size of the observed pipe section on its 

reliability is investigated. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Multiphase flow metrology is subject to large uncertainties in 

flow metering, which typically reach values of up to 20% in the oil 

and gas industries ( ENG, 2018 ). This also applies to the slug flow 

pattern since it is one of the most common gas-liquid flow regimes 

in multiphase transportation pipelines ( Al-Kayiem et al., 2017 ). Fur- 

thermore, the piping and the multiphase flow measurement de- 

vices can significantly be affected by liquid slugs and the induced 

pressure fluctuations and vibrations ( Hanratty, 2013 ). Therefore, a 

detailed investigation of the slug flow pattern in horizontal pipes 

is of special interest. 

The slug flow pattern is characterized by a continuous liquid 

phase with coherent blocks of aerated liquid, which are separated 

by volumes of gas and moving on top of a slowly flowing liquid 

layer downstream the pipe at approximately the same velocity as 

the gas ( Hanratty, 2013; Taitel and Dukler, 1977; Al-Safran, 2009 ), 

as shown in Fig. 1 . These aerated liquid blocks are called slugs or 

slug structures. They are typically quantified by their length scales, 

such as slug body length L s and slug unit length L u , and corre- 

sponding time scales, such as slug frequency f s = T −1 
s , where T s is 

∗ Corresponding author. 

E-mail address: marc.olbrich@ptb.de (M. Olbrich). 

the time of a slug unit passing by at a fixed position ( Al-Kayiem 

et al., 2017; Baba et al., 2018 ), as illustrated in Fig. 1 . With this 

time scale, an averaged slug frequency can be calculated by 

f̄ s = 

1 

T̄ s 
with T̄ s = 

1 

N s 

N s ∑ 

i =1 

T s i , (1) 

where N s denotes the number of slugs in the considered time in- 

terval ( Dukler and Fabre, 1994 ). 

Based on the slug initiation mechanism, slug flow in pipes can 

be classified into different categories, such as hydrodynamic and 

operationally induced slugging ( Lu, 2015; Al-Safran, 2009 ). Gener- 

ally, hydrodynamic slugging is intermittent and caused by insta- 

bilities at the stratified gas-liquid interface. Due to the inertia of 

the liquid and shear stress at the gas-liquid interface, waves form 

and grow to a sufficient height to fill the complete pipe cross sec- 

tion locally with liquid and block the gas flow. This blockage of 

liquid is then accelerated by the faster gas flow to form a slug. 

On the other hand, operationally induced slug flow is caused by 

operational transients and perturbations. In general, slug flow is a 

complex gas-liquid flow pattern, which leads to severe problems in 

industrial operations. The slugs can grow to large structures, mov- 

ing at high velocities. So, they can have large momentum. This can 

induce stresses and vibrations, when they impact at surfaces of the 

piping ( Hanratty, 2013 ). Furthermore, the pressure drop due to slug 

https://doi.org/10.1016/j.ijmultiphaseflow.2020.103453 
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flow can be an order of magnitude higher, compared to other gas- 

liquid flow patterns ( Taitel and Dukler, 1977 ). 

These problems, as well as the high uncertainties in flow me- 

tering, are caused by the intermittent sequence of slugs moving 

along the pipe. To find solutions and gain understanding for such 

phenomena, it is essential to quantify these slug structures. In this 

paper, the method called snapshot proper orthogonal decomposition 

(snapshot POD) was implemented to achieve this quantification 

since it provides a statistical characterization of the slugs in space 

and time. 

The snapshot POD is a modal decomposition, which extracts an 

energy-ranked mode basis of the coherent structures from the flow 

data. It is often used for the identification and characterization of 

coherent structures in singlephase turbulent flows ( Sirovich, 1987; 

Lumley, 1967; Sieber et al., 2017 ). For multiphase flows, there are 

only a few references on POD. In Munir et al. (2015) , POD was 

used to identify coherent turbulent structures, such as eddies, in 

gas-liquid flow. In Wang et al. (2016) ; Polansky and Wang (2017, 

2018) ; Viggiano et al. (2018) , POD was used for reduced order 

modelling with the aim of recognizing different flow patterns as 

well as the transition between them. In this context, the analy- 

ses were usually performed on cross-sectional measurements of 

the phase distribution in the pipe. Measured flow data were ap- 

proximated by a reduced order model based on a small num- 

ber of POD modes, which capture the dominant behavior of the 

flow pattern. In Viggiano et al. (2018) , POD was applied to cross 

sectional tomography measurements of horizontal slug flow. They 

found a strong correlation between the temporal coefficient of a 

dominant POD mode and the liquid holdup in the pipe. From that, 

a timescale was derived to characterize the slugs. In summary, POD 

was used to find a low order description of large and complex mul- 

tiphase flow data and to characterize horizontal slug flow in time. 

In this contribution, the focus is not only on a temporal, but 

also on a spatial characterization of slug flow, derived from POD. 

For this, snapshot POD with an additional mode coupling algorithm 

( Sieber et al., 2017 ) is applied to data from horizontal slug flows 

using longitudinal sections of the pipe and observations from the 

side. In our previous work ( Olbrich et al., 2019 ), the identification 

of the underlying coherent structure of the most dominant mode 

pair from snapshot POD with the slug structures were proposed 

and a characterization was attempted. The aim of this work is a de- 

tailed validation of the time and length scales of the slugs, which 

can be derived from the temporal coefficients and spatial modes 

of the most dominant mode pair. This validation is performed on 

data for an operationally induced periodic slug flow from a nu- 

merical simulation, as well as for a non-periodic experimental slug 

flow with hydrodynamic slugging. 

2. Methods 

2.1. Snapshot proper orthogonal decomposition 

For the analysis of coherent structures in the slug flow regime, 

the snapshot POD is applied to spatially and temporally resolved 

data of this flow pattern. For this, let (g(x, y, t k )) k =1 , ... ,N be a snap- 

shot sequence of scalar or vector field on a two dimensional do- 

main, considered as an XY -plane. Then, the data is decomposed as 

follows 

g(x, y, t k ) = ḡ (x, y, t k ) + g ′ (x, y, t k ) = ḡ (x, y, t k ) + 

∑ 

i 

a i (t k ) φi (x, y ) , 

(2) 

where ḡ denotes the time-averaged data field, g ′ the corresponding 
fluctuations, a i the i th temporal coefficient and φi the i th spatial 

mode. Furthermore, a i and φi can be obtained from an eigenvalue 

decomposition of the correlation matrix of the fluctuations g ′ as 
follows. Let 

G := 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

g ′ (x 1 , y 1 , t 1 ) · · · g ′ (x 1 , y 1 , t N ) 
g ′ (x 1 , y 2 , t 1 ) · · · g ′ (x 1 , y 2 , t N ) 

. . . 
. . . 

g ′ (x 1 , y M y 
, t 1 ) · · · g ′ (x 1 , y M y 

, t N ) 

. . . 
. . . 

g ′ (x M x 
, y 1 , t 1 ) · · · g ′ (x M x 

, y 1 , t N ) 
g ′ (x M x 

, y 2 , t 1 ) · · · g ′ (x M x 
, y 2 , t N ) 

. . . 
. . . 

g ′ (x M x 
, y M y 

, t 1 ) · · · g ′ (x M x 
, y M y 

, t N ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

∈ R 
M×N (3) 

be the matrix of the rearranged scalar field snapshot sequence, 

where M = M x · M y denotes the amount of spatial points of the do- 

main and N the amount of snapshots. For a snapshot sequence of 

a vector field, every component is rearranged as above and stacked 

to obtain G ( Taira et al., 2017 ). Hence, all spatial points of the i th 

snapshot are arranged in the i th column of G . Then a i and φi are 

obtained from the eigenvalue decomposition of R = 
1 
N G 

T G : 

R v i = λi v i , for i = 1 , . . . , N with λ1 ≥ · · · ≥ λN ≥ 0 . (4) 

Here, the temporal coefficient a i is given by the scaled eigenvector 

v i with respect to the eigenvalue λi as, 

a i := 

√ 

Nλi v i , for i = 1 , . . . , N, (5) 

and the spatial mode 

φi (x, y ) := 

1 

Nλi 

N ∑ 

k =1 

a i (t k ) g 
′ (x, y, t k ) , for i = 1 , . . . , N. (6) 

The temporal coefficient a i ( t ) (see Eq. (5) ) reveals the dynami- 

cal behavior of the structure that is captured in the correspond- 

ing spatial mode φi ( x, y ), which provides spatial information. Fur- 

ther details can be found in Sirovich (1987) ; Sieber et al. (2016) ; 

Taira et al. (2017) ; Holmes et al. (2012) . 

2.2. Mode-coupling algorithm 

Since the dynamics of periodic structures can be described by 

a pair of POD-modes, the mode-coupling algorithm proposed in 

Sieber et al. (2016) is used in addition. Related modes are identi- 

fied by the spectral similarity of their temporal coefficients, which 

accounts for modes that are shifted by a quarter period. Such 

modes also show a similar amount of energy and appear pairwise 

in the POD spectrum, i.e. eigenvalues appear pairwise in the spec- 

trum of R (see Eq. (4) ), as mentioned in Oberleithner et al. (2014) . 

The mode coupling is computed by an additional eigenvalue de- 

composition 

Ac i = μi c i (7) 

with A := 

⎡ 

⎢ ⎢ ⎣ 

a 2 1 · · · a 2 N 
. . . 

. . . 
. . . 

a N 1 · · · a N N 

⎤ 

⎥ ⎥ ⎦ 

T 

·

⎛ 

⎜ ⎜ ⎜ ⎝ 

⎡ 

⎢ ⎢ ⎣ 

a 1 1 · · · a 1 N 
. . . 

. . . 
. . . 

a N−1 
1 

· · · a N−1 
N 

⎤ 

⎥ ⎥ ⎦ 

T 
⎞ 

⎟ ⎟ ⎟ ⎠ 

+ 

∈ R 
N×N , 

(8) 

where a k 
i 
denotes the k th entry of the i th temporal coefficient a i 

and (·) + denotes the Moore-Penrose pseudo inverse of the corre- 

sponding matrix. Note that this is a dynamic mode decomposition 

2.2 Publication II

26



M. Olbrich, M. Bär and K. Oberleithner et al. / International Journal of Multiphase Flow 134 (2021) 103453 3 

Fig. 1. Illustration of a slug unit in a longitudinal section of a pipe segment. 

( Schmid, 2010; Tu, 2014 ) of the temporal coefficients. The similar- 

ity measure of the temporal coefficients a i and a j is given by 

H i, j := Im 

( 

N ∑ 

k =1 

c i k c̄ 
j 

k 
sgn ( Im (μk ) ) 

) 

, (9) 

where 
¯
c 
j 

k 
denotes the complex conjugate of c 

j 

k 
, Im the imaginary 

part and sgn the sign function. The corresponding matrix H is also 

called harmonic correlation matrix. The maxima of H correspond 

to the temporal coefficients with the highest spectral similarity, 

which allow an identification of the coupled modes. The dominant 

frequency f i,j of an identified mode pair ( a i , a j ) (equivalently de- 

noted by ( φi , φj )) is then derived from the corresponding eigen- 

value μk (see Eq. (7) ) by 

f i, j := 

Im ( ln (μk ) ) 

2 π
. (10) 

To determine the combined energy content of the mode pair ( a i , 

a j ), the corresponding eigenvalues of the modal decomposition (see 

Eq. (4) ) are summed as 

E i, j := 

λi + λ j ∑ N 
k =1 λk 

. (11) 

Note that for variables g with arbitrary units, such as phase vol- 

ume fraction and RGB-intensity which are used in this paper, the 

term E i,j represents a mathematical energy distribution in terms of 

total variances or mean fluctuating intensities of the correspond- 

ing discrete time series in a i and a j ( Sirovich, 1987; Wold et al., 

1987 ). Thus, the largest eigenvalues reveal the POD-modes with 

the largest mean fluctuations. The term E i,j can only be identified 

with a physical energy if g has appropriate physical units, such as 

turbulent kinetic energy for a velocity vector field. For details, see 

Sieber et al. (2016) . 

3. Simulated slug flow 

The simulation of a periodic air-water slug flow through a hor- 

izontal pipe with an inner diameter of D = 0 . 054 m and a length of 

L = 8m , was adopted from Frank (2005) . The considered slug flow 

consists only of periodically formed slugs, moving on top of the 

liquid layer. This attribute of the flow pattern simplifies the evalu- 

ation of the POD-modes and enables a basic validation of the char- 

acterization achieved by snapshot POD. The fluid properties and 

superficial velocities of this flow are given in Table 1 . 

For the computation, the pipe was discretized as an O-grid con- 

sisting of about 1.1 million nodes (45 nodes in radial, 104 nodes in 

angular, and 685 nodes in longitudinal direction). To generate a pe- 

riodic formation of slugs in the pipe, a time-dependent sinusoidal 

Table 1 

Fluid properties and superficial velocities for numerical simula- 

tion. 

Parameter Air Water 

density in kg · m 
−3 1.225 998.2 

dyn. viscosity in Pa ·s 1 . 789 · 10 −5 1 . 003 · 10 −3 

superficial velocity in m · s −1 1.0 1.0 

Fig. 2. Illustration of initial condition and geometry for the numerical simulation 

(not to scale) 

Table 2 

Spatial discretization schemes. 

Variable Method 

Gradient Green-Gauss node based 

Pressure Body force weighted 

Momentum Second order upwind 

Volume fraction Compressive 

Turbulence parameters First order upwind 

displacement of the vertical position of the air-water interface is 

applied to this flow as introduced in Frank (2005) . For this, the in- 

let is initialized with equally distributed phases in the inlet cross 

section, such that the lower half of the cross section is filled with 

water and the upper half is filled with air (see Fig. 2 ). 

The initial condition is obtained from the vertical position of 

the interface ˜ y int by 

˜ y int (x, t = 0) = 

D 

4 
sin 

(
2 π

4 x 

L 

)
+ 

D 

2 
, (12) 

where t denotes the time and x the spatial component in flow di- 

rection (see Fig. 2 ). The time-dependent vertical position of the in- 

terface at the inlet is then given by 

˜ y int (x = 0 , t) = 

D 

4 
sin 

(
2 π

v 4 t 
L 

)
+ 

D 

2 
, (13) 

where v = 2 ms −1 denotes the inlet gas or liquid velocity. This per- 

turbation leads to a periodic slug formation in the pipe with a fre- 

quency of 1Hz (see Fig. 2 ). Furthermore, the walls of the pipe are 

treated as hydraulically smooth with no-slip boundary conditions 

applied for both phases. At the end of the pipe, a pressure outlet 

boundary condition is set. 

The multiphase flow simulations were performed using the 

commercial CFD solver ANSYS FLUENT, version R18.2 ( Fluent User’s 

Guide, 2015 ). For this, an unsteady Reynolds-averaged Navier-Stokes 

(URANS) approach with the k − ω-SST turbulence model was cho- 

sen ( Menter, 1994 ). To model the gas-liquid interface the volume of 

fluid (VOF) method was applied within a mixture model ( Hirt and 

Nichols, 1981 ). In addition, turbulence damping was included to 

model such flows with high velocity gradients at the interface 

( Egorov, 2004 ). The spatial discretization schemes are chosen as in 

Fiebach et al. (2016) and are stated in Table 2 . For the time dis- 

cretization, a bounded second order implicit scheme was applied. 

The Pressure-Implicit- with Splitting-of-Operator (PISO) algorithm 

together with an Algebraic-Multigrid (AMG) method is used for 

solving the discretized Reynolds-averaged Navier-Stokes equations. 

In Fig. 3 , a snapshot of the gas volume fraction field αair ( x, y, 

t 1 ) from a longitudinal section of the pipe is depicted. Here, the 

time-dependent interface displacement at the inlet is visible along 
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Fig. 3. Air volume fraction field αair from the longitudinal section of the complete 

pipe, with the 24 D long field of interest (not to scale) and illustration of the snap- 

shot sequence. 

Table 3 

Fluid properties and superficial velocities for experiment. 

Parameter Nitrogen gas Paraflex oil 

density in kg · m 
−3 11.4 829.32 

dyn. viscosity in Pa ·s 1 . 8 · 10 −5 16 . 07 · 10 −3 

superficial velocity in m · s −1 0.625 1.864 

the upstream part of the pipe. Further downstream the water slugs 

are formed. 

To ensure, that numerical effects from the initialization do not 

affect the flow field anymore and the simulated flow is well devel- 

oped, the first seconds [0, T ] of the simulated flow are discarded 

for the analysis, such that 

T 
v̄ inlet 
L p 

> 10 , (14) 

with the averaged inlet velocity v̄ inlet = 2 ms −1 and the length of 

the pipe L p = 8m . Hence, before monitoring the flow, the time that 

the fluid of the initialization needed to left the pipe in average, has 

passed more than tenfold. Afterwards, the data are collected with 

a sample rate of 100Hz. 

For the analysis of the simulated slug flow with snapshot POD, 

a snapshot sequence of gas volume fraction fields are collected 

from a longitudinal section of the pipe. For this, a 24 D long pipe 

segment is considered, starting at x / D ≈ 74 (x = 4m) , where the 

liquid slugs are already formed (see Fig. 3 ). Furthermore, a time 

interval of 10s with 10 slugs is considered sufficient for a statisti- 

cal characterization of this slug flow test case, since the slugs are 

formed periodically, with a similar propagation velocity, as well as 

similar length and shape due to the perturbation at the inlet. 

4. Experimental slug flow 

The experimental data of a horizontal gas-liquid slug flow is 

used to verify the characterization achieved by snapshot POD also 

for more complex types of slug flow. The experiment was per- 

formed by TÜV SÜD National Engineering Laboratory (NEL) as part 

of the project Multiphase flow metrology in oil and gas production 

( ENG, 2018 ). The experimental set-up is illustrated in Fig. 4 . It 

consists of a straight horizontal pipe with an inner diameter of 

D = 0 . 0972 m and a length of approximately 100 D , followed by a 

Perspex viewing section with a length of approximately 5 D , where 

the slug flow was recorded from the side by a high-speed RGB- 

camera with a frame rate of 240fps. This section is followed by a 

complex measurement section with bends and vertical segments 

( ENG, 2018; Fiebach et al., 2016 ), but this part is of minor interest 

since the slugs in the horizontal pipe are investigated. The fluid 

properties and superficial velocities are listed in Table 3 . 

Fig. 4. Illustration of the experimental set-up with region of interest (ROI) for data 

extraction. 

In the RGB-frames of the video recording, the oil appears to be 

reddish-brown and the black background is only visible for the 

transparent gas (see Fig. 4 ). Due to that, the red component of 

the RGB-frame is considered for the analysis with snapshot POD 

since it allows a clear distinction of the fluids. For the extraction of 

the snapshot sequence, a region of interest (ROI) is defined on the 

frames that includes only the visible area of the pipe segment (see 

Fig. 4 ). Since a statistical characterization of the slugs is sought, an 

interval of 60s with approximately 150 slugs is used for the analy- 

sis with snapshot POD. 

4.1. Extension of the region of interest 

For the spatial characterization of the slugs with snapshot POD, 

the size of the field should be sufficiently large, such that the aver- 

aged slug structure can be displayed entirely. However, for the con- 

sidered experimental data, the observed averaged slug body length 

L̄ s ≈ 6 . 3 D is larger than the 4.2 D long segment of the viewing sec- 

tion, visible in the video recordings. Because of this, an extension 

procedure based on cross correlation is applied to the video data. 

The extension of the region of interest is done by embedding 

the frames into time-shifted frames from the same video, with- 

out a distortion of the slugs. Therefore, the averaged time is re- 

quired that the slugging structures need to travel from inlet to out- 

let of the pipe segment in the frames. To determine this time, the 

normalized cross-correlation is used ( Lewis, 2001 ). For this, pixel 

columns over time are extracted from the grayscale frames at the 

inlet and outlet of the viewing section, visible in the video (see 

Fig. 5 a-c). These images are cross-correlated to obtain the tempo- 

ral offset �t in between the observed flow at inlet and outlet. This 

offset is given by the coordinates of the maximal cross-correlation 

coefficient. Here, the unique global maximum γmax = 0 . 84 indicates 

a horizontal shift of 31 time steps from inlet to outlet. This time- 

shift is then used to identify the frames for the embedding. Fur- 

thermore, the pixel-wise mean absolute percentage error (MAPE) 

( Hyndman and Koehler, 2006 ) of the pixel columns over time at 

inlet and outlet, shifted by �t , is given by 1.94%. In addition, the 

corresponding pixel-wise error in Fig. 5 d indicates that the error is 

mostly located at the different reflection areas as well as the foamy 

areas in between the slugs. This is caused by different lighting 

conditions at the inlet and outlet. From this, it can be concluded 

that the variations in shape and translational velocity of the slugs 

are negligible over the distance of the 4.2 D long pipe segment in 

the frame. These facts allow the region of interest to be extended 

by 4.2 D in downstream and upstream direction, without distort- 

ing the slugs. Hence, the inlet of the pipe segment in the frame 
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Fig. 5. Illustration of the cross-correlation procedure of the pixel column over time 

from grayscale frames (a) extracted at the inlet (b) of the field of view and the 

outlet (c), as well as the pixel-wise error map (d) of (b) and (c) shifted by �t . 

Fig. 6. Snapshot of the red component fluctuations g ′ ( x, y, t k ) at the time step 

t k ≈ 3s (a) and corresponding snapshot for the extended region of interest (b), 

consisting of the merged snapshots g ’ (x, y, t k +31 ) ∪ g ’ (x, y, t k ) ∪ g ’ (x, y, t k −31 ) . Flow 

direction from left to right. 

at t k is then connected with the outlet of the pipe segment in the 

frame at t k +31 , to extent the region of interest by an additional 

segment length of 4.2 D in upstream direction. With the same pro- 

cedure, the region of interest is extended by 4.2 D in downstream 

direction, using the frame at t k −31 ( Fig. 6 b). A similar procedure is 

often used for the visualization of a single slug, where consecu- 

tive frames need to be chosen and merged to display the slug, see 

ENG (2018) ; Wang et al. (2016) . The proposed embedding is ap- 

plied to all frames of the video, to generate a snapshot sequence 

with an approximately 12.6 D long region of interest (see Fig. 6 b), 

such that the averaged slug can be displayed entirely. 

An averaged translational velocity of the slugs is also derived 

from the temporal offset �t obtained from cross correlation. The 

calculated offset of 31 time steps correspond to �t ≈ 0.13s. Then 

a velocity of approximately 3 . 18 ms −1 can be derived, with the dis- 

tance of about 0.41m in between the inlet and the outlet of the 

visible segment of the viewing section. This velocity represents 

an averaged translational velocity of the large structures in the 

flow ( Fig. 5 b,c). Hence, it can be used to approximate the aver- 

aged translational slug velocity v̄ s . This procedure is similar to the 

calculations of the slug velocity by cross correlation of the liquid 

holdup time series ( Baba et al., 2018 ) except that it is based on 

flow images as in the calculations for optical velocimetry, such as 

PIV ( Brossard et al., 2009 ). Thus, the calculated averaged trans- 

lational slug velocity for the considered experiment is given by 

v̄ s = 3 . 18 ms −1 . 

5. Results and discussion 

5.1. Parameter for validation 

For the validation of the snapshot POD results, the time series 

of the vertical position of the gas-liquid interface at a specific lon- 

gitudinal position is required. This non-dimensional parameter rep- 

resents the dynamics of the gas-liquid flow pattern, similar to the 

holdup parameter. It has a range of [0,1] with respect to the in- 

ner diameter of the pipe and is hereinafter also referred to as the 

liquid level over time at a certain position x , denoted by h L ( t ). For 

the considered gas volume fraction fields of the simulation data, 

the air-water interface can easily be identified in the longitudinal 

pipe sections by αair = 0 . 5 . The vertical position of this interface is 

then collected over time at the desired position to obtain the liq- 

uid level over time. For a smooth representation of this parameter, 

a Savitzky-Golay filter with a window size of 21 sampling points 

and a polynomial degree of 3 is applied. This filter type is based 

on low-order polynomial regression and accounts also for small 

changes to represent the signal tendency more precisely, compared 

to standard type filters, such as moving average ( Savitzky and Go- 

lay, 1964 ). 

To extract this parameter from the high-speed video observa- 

tions of the considered experiment for horizontal slug flow, the 

RGB color values of a vertical line through the horizontal pipe 

(pixel column) at a desired position are selected over time. Thus, 

an image is obtained, which represents a two dimensional projec- 

tion of the slug flow from aside at one position over time (see 

Fig. 7 a). The gas-liquid interface in this image was marked manu- 

ally by the authors. Then the vertical position of the marked inter- 

face was extracted with an edge detection filter to obtain an ap- 

proximation of the liquid level over time h L ( t ) (see Fig. 7 b). The 

parameter h L ( t ) represents the dynamical behavior of the slug flow 

at a fixed position and is used to derive timescales for the slug 

structures. 

Fig. 7. Illustration of the procedure for liquid level extraction from high-speed 

video recordings of the experiments for horizontal slug flow, 8s of the flow ex- 

tracted at the position x/D = 2 . 2 in the visible pipe segment. 

5.2. Results for simulation data 

In this section, a statistical characterization in space and time of 

the periodic air-water slug flow from a numerical simulation, de- 

scribed in Section 3 , is presented. The characterization is derived 

from the most energetic mode pair ( φ1 , φ2 ) (see Fig. 8 ) of a snap- 

shot POD analysis, and can clearly be verified since the considered 
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Fig. 8. Most energetic mode pair ( φ1 , φ2 ) with corresponding temporal coefficients 

a 1 ( t ), a 2 ( t ) ( ) from snapshot POD in comparison with liquid level h L ( t ) ( ) at 

x/D = 11 . 3 , the averaged slug S̄ and the time averaged air volume fraction field ᾱair , 

obtained from simulated data. The averaged slug body length L̄ s = 7 D is indicated 

in d ) and f ). Note that a 1 , a 2 , h L are depicted in standard score and the drawings 

are not to scale. 

slug flow is periodic with an averaged slug frequency f̄ s = 1 Hz (see 

Eq. (1) ) and similar slug structures. Furthermore, at the position, 

where the snapshot sequence was extracted, this flow only con- 

sists of slugs and the corresponding film regions. Due to that, the 

slugs are well recognizable and do not interfere with other struc- 

tures, such as large amplitude waves. 

In Fig. 8 a-d, the most energetic mode pair with corresponding 

temporal coefficients is shown. The underlying coherent structure 

of this mode pair is identified with the slug structures, as pro- 

posed in Olbrich et al. (2019) . In detail, this identification can be 

concluded from the following. 

The temporal coefficients a 1 , a 2 in standard score, i.e.: 

z(a i )(t) := 

a i (t) − ā i 
σ ( a i ) 

, (15) 

where ā i denotes the mean value and σ ( a i ) denotes the standard 

deviation of a i ( Larsen and Marx., 2012 ), coincide with the liquid 

level h L in standard score, especially in width and periodicity of 

the peaks. Thus, the underlying coherent structure, described by 

( a 1 , a 2 ), shows the same dynamical behavior as the slug structures 

in the flow, which are represented by the liquid level h L . Note that, 

the standard score is considered for the comparison of the time 

series, because a i and h L have different ranges. Furthermore, the 

structures displayed in the spatial modes can be identified with 

the averaged slug (see Fig. 8 f). Note that, the modes of a mode 

pair are shifted to each other. Hence, the focus for further analysis 

is on a 1 and φ1 , because for this, the structures are fully resolved 

within the considered viewing section. 

The mean relative error δ of the variables h L and a 1 in standard 

score is given by 

δ(z(h L ) , z(a 1 )) := 

100 

n 

�n 
j=1 

| z(a 1 )(t j ) − z(h L )(t j ) | 
max z(h L ) − min z(h L ) 

= 6 . 14% . (16) 

Moreover, the averaged slug frequency f̄ s = 1 Hz obtained from h L 
is equal to that, obtained from a 1 . Note that, for the calculation 

of f̄ s and the corresponding time intervals in between the slug 

fronts T s i from the time series, a threshold of z(a 1 ) = z(h L ) = 1 was 

set. Such a threshold-procedure is often used to identify slugs in 

time series of the liquid holdup ( Zhao et al., 2015 ). Another impor- 

Table 4 

Statistical characterization of simulated slug 

flow from most energetic mode pair. 

Energy content E 1,2 49.7 % 

Averaged slug frequency f̄ s 1Hz 

Averaged slug body length L̄ s 7 D 

tant aspect for the comparison of the time series a i and h L is the 

x -position in the pipe segment, where the liquid level is consid- 

ered. For this, the correct position was found to be the stream- 

wise position of the highest blue (liquid) intensity x = 11 . 3 D in 

the spatial mode φ1 , since the corresponding temporal coefficient 

a 1 represents also the dynamics of the gas and liquid distribution, 

shown in φ1 . Therefore, the liquid level time series was extracted 

at x = 11 . 3 D as described in Section 5.1 . In conclusion, the dynam- 

ical behavior of the liquid level is represented sufficiently accurate 

by the temporal coefficient a 1 . Due to that, a temporal characteri- 

zation of the slug flow can be derived from a 1 . 

Furthermore, the averaged slug S̄ ( Fig. 8 f) and the spatial mode 

φ1 ( Fig. 8 d) show a strong correlation with a maximal normalized 

cross correlation coefficient ( Lewis, 2001 ) of max (γ ( ̄S , φ1 )) = 0 . 88 , 

without an offset in the coordinates of max (γ ) . Hence, the liq- 

uid structure displayed in φ1 matches the averaged slug S̄ and the 

averaged slug body length L̄ s = 7 D can be derived from φ1 ; Ex- 

planations of S̄ later in the text. Note that, the normalized cross 

correlation coefficient is a reliable measure for feature tracking or 

template matching. It is independent of feature size and changes 

in image amplitude. Details can be found in Lewis (2001) . In the 

analysis of this contribution, the MATLAB function normxcorr2d 
from the image processing toolbox is used to compute γ . 

In addition to that, the energy content E 1 , 2 = 49 . 7% ( Eq. (11) ) 

and the averaged dominant frequency f 1 , 2 = 1 Hz ( Eq. (10) ) of the 

coupled mode pair ( φ1 , φ2 ) is obtained from the snapshot POD 

with mode coupling. For this test case, f 1,2 coincides with f̄ s since 

the slug flow is periodic. However, for non-periodic slug flow with 

additional waves, f 1,2 and f̄ s may differ, since f 1,2 represents a mean 

dominant frequency of the corresponding time series given by the 

temporal coefficients ( a 1 , a 2 ) and not the inverse mean time in be- 

tween consecutive slugs, such as f̄ s . 

Altogether, a statistical characterization for the considered slug 

flow in space and time can be derived from the most energetic 

mode pair ( φ1 , φ2 ) and is summarized in Table 4 . 

For the comparison of the liquid structure shown in φ1 with the 

averaged slug from the flow, the latter needs to be at the same po- 

sition as the structure shown in φ1 . Thereby, the influence of the 

variation in slug shape at different streamwise positions, caused 

by, e.g.: slug growth, can be avoided. Therefore, the averaged slug 

S̄ (see Fig. 8 f) is extracted from the considered snapshot sequence 

of the air-volume fraction field, where the times of the slugs at 

the desired position in the pipe segment are determined from the 

times of the local maxima of the temporal coefficient. For bet- 

ter comparability, the time-averaged field ᾱair (see Fig. 8 e) is sub- 

tracted from the selected snapshots. 

5.3. Influence of the field length 

In this section, the influence of the field length on the tempo- 

ral coefficient as well as on the spatial mode is presented. Here, 

the primary focus is on the accuracy of the temporal coefficient 

and the liquid level, as well as the spatial mode and the time- 

averaged slug. To determine the accuracy, the error δ and the max- 

imal normalized cross correlation coefficient γmax is considered, as 

described in Section 5.2 . Generally, a clear negative trend in accu- 

racy was noted with increasing length of the region of interest. The 

detailed results are presented in the following. 
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Fig. 9. Illustration of the region of interest with different lengths. Drawings are not 

to scale. 

Fig. 10. Mean relative error δ( z ( h L ), z ( a )) ( ) of the temporal coefficient a and 

the liquid level h L in standard score (left axis), as well as the maximal normalized 

cross correlation coefficient γmax = max (γ ( ̄S , φ)) ( ) of the averaged slug S̄ and 

the spatial mode φ (right axis) for increasing lengths L of the region of interest are 

depicted. The marker ( •) indicates the values at L = 24 D, which was used for the 

analysis in Section 5.2 . 

For this investigation, the snapshot POD was performed on 

snapshot sequences, extracted from regions of interest with 38 dif- 

ferent lengths L = 1 D, 2 D, 4 D, . . . , 74 D, starting at x / D ≈ 74 (x = 

4m) of the horizontal pipe (see Fig. 9 ). In the further, only the 

mode of the most energetic mode pair is considered, where the 

corresponding temporal coefficient matches the liquid level over 

time at the position of maximal blue intensity in the spatial mode, 

such as a 1 in Section 5.2 . This mode is hereinafter denoted as φ
and a respectively. 

The mean relative error δ( z ( h L ), z ( a )) is growing for increasing 

length L (see Fig. 10 ). One reason for this trend is the calculation 

of the temporal coefficient a from the temporal correlation matrix 

R of the spatially averaged gas volume fraction fields (see Eq. (4) ). 

Due to the not normalized spatial averaging of the snapshots in the 

POD algorithm, small structures, such as single slugs, are under- 

represented in larger regions of interest. Furthermore, spatial av- 

erages of neighboring snapshots, where the same structure is at a 

slightly different position, become more similar for larger regions 

of interest. This leads to a broader temporal correlation, and re- 

sults in a smoother and wider temporal coefficient with lower am- 

plitude and lower energy ratio (see Fig. 11 a,d,g,j). Hence, the rep- 

resentation of the slugs in the temporal coefficient becomes more 

imprecise for increasing L , relative to the detailed liquid level h L . 

For L > 48 D , when a second slug start to be visible in the region 

of interest simultaneously, the error δ decreases (see Fig. 10 ). 

Note that the energy content of the mode pairs that correspond 

to the given modes in Fig. 11 decrease for increasing ROI length: 

E 1 D = 73 , 7% , E 20 D = 54 , 9% , E 40 D = 40 . 4% with a slight increase of 

energy, when the second slug starts to be visible simultaneously 

E 60 D = 41 . 7% . 

To obtain meaningful results of the measure γ in the compar- 

ison of the spatial mode φ with the averaged slug S̄ , only the re- 

gions of interest with the lengths L ≥ 18 D are considered, since 

the slugs need to be fully visible in the region of interest, from the 

beginning of the slug front to the end of the slug rear. 

The normalized cross correlation coefficient γmax shows a clear 

average decay with increasing length L (see Fig. 10 ) and has an 

inverse behavior of δ. This can be explained by the fact, that the 
spatial mode φ is calculated as the weighted average of the fluctu- 

ations of the snapshots, where the weights are given by the values 

of the temporal coefficient and the corresponding eigenvalue (see 

Eq. (6) ). Thus, the error δ in the temporal representation of the 

slugs in a propagates in their spatial representation in φ. In detail, 

the broader and more inaccurate the peaks in the temporal coef- 

ficient, the more weight is put on snapshots with slugs in slightly 

shifted position for the calculation of φ. Thus, the averaged slug 

visible in φ appear to be blurred for increasing L (see Fig. 11 e-k). 

In addition to that, slugs accelerate and change shape as they 

move downstream the pipe. For larger L , this phenomenon is also 

having more influence on the averaging processes in the computa- 

tion of a and φ and can cause negative effects on the accuracy. 

Altogether, it can be concluded, that for a meaningful approxi- 

mation of the dynamics and shape of the slugs in a and φ respec- 

tively, the length L of the region of interest should be sufficiently 

small. For this example, L ≤ 30 D was found to give reasonable re- 

sults, since δ ≤ 8% and γmax ≥ 0.85. Note that L = 24 D was chosen 

for the analysis in Section 5.2 because δ attains a local minimum 

at δ = 6 . 14% and γmax = 0 . 8766 is sufficiently high (see Fig. 10 ). 

5.4. Results for experimental data 

In this section, a statistical characterization in space and time of 

the nitrogen gas - paraflex oil slug flow described in Section 4 is 

presented. Following the same procedure as in the periodic slug 

flow in Section 5.2 , the characterization of the experimental slug 

flow is also derived from the most energetic mode pair ( φ1 , φ2 ) of 

a snapshot POD analysis. First, the results for the original region of 

interest are presented, which focus on the temporal characteriza- 

tion of the slugs, since the short region of interest does not resolve 

the averaged slug. After this, the results for the extended region of 

interest are presented, which allow also a spatial characterization 

of the slugs. 

5.4.1. Results for original region of interest 

In Fig. 12 a-d, the most energetic mode pair with correspond- 

ing temporal coefficients is shown. This mode pair is similar to the 

mode pair of the periodic slug flow from the numerical simulation 

( Fig. 8 a-d), and the underlying coherent structure of this mode pair 

is also identified with the slugs. Note that the ordering of the sin- 

gle modes in the mode pair is different com pared to the simulated 

slug flow test case. 

The temporal coefficient a 2 coincides with the liquid level 

over time h L ( t ) at x/D = 2 . 2 ( Fig. 12 c) with a mean er- 

ror δ(z(h L ) , z(a 2 )) = 10 . 3% . The corresponding spatial mode φ2 

( Fig. 12 d) indicates, that the pipe segment is completely filled with 

the brown paraflex oil, without a recognizable slug tail and slug 

rear. The same holds for the averaged slug S̄ ( Fig. 12 f), since the 

averaged slug is longer than the region of interest. Due to that, 
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Fig. 11. Illustration of one peak of the temporal coefficient a ( ), that represents the second slug in the flow data, in comparison with liquid level h L in standard score 

( ) extracted at the position of maximal blue intensity in the corresponding spatial mode (a,d,g,j), as well as the corresponding spatial mode (b,e,h,k) and the averaged 

slug (c,f,i,l) for the different lengths L ∈ {1 D , 20 D , 40 D , 60 D }. Energy content of corresponding mode pairs: E 1 D = 73 , 3% , E 20 D = 54 , 9% , E 40 D = 40 . 4% , E 60 D = 41 . 7% . Drawings 

are not to scale. 

the averaged slug body length L̄ s cannot be derived from the spa- 

tial mode. Nevertheless, a temporal characterization of the slug 

flow can be derived from the temporal coefficient, as mentioned 

in Viggiano et al. (2018) ; Olbrich et al. (2019) . The temporal co- 

efficient a 2 represents the dynamics of the large structures in the 

flow, such as slugs. Hence, an average slug frequency can be de- 

rived from it. Here, a threshold of z(a 2 ) = z(h L ) = 0 . 5 was set to 

detect the slug fronts. That corresponds to an absolute value in the 

liquid level of h L = 0 . 93 . This allows to distinguish between large 

amplitude waves and slugs, but not separate slugs by larger en- 

trained bubbles, floating in the upper part of the slug. Then, the 

averaged slug frequency is given by f̄ s = 2 . 53 Hz . Using the same 

threshold for the temporal coefficient in standard score z ( a 2 ) the 

calculations of the averaged slug frequency results in f̄ s = 2 . 57 Hz . 

In addition to that, the mean frequency of the mode pair is given 

by f 1 , 2 = 2 . 26 Hz . The difference in between f 1,2 and f̄ s can be ex- 

plained by the fact that, f 1,2 represents a mean dominant frequency 

of the corresponding time series given by the temporal coefficients 
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Fig. 12. Most energetic mode pair ( φ1 , φ2 ) with corresponding temporal coefficients a 1 ( t ), a 2 ( t ) ( ) from snapshot POD in comparison with liquid level h L ( t ) ( ) at 

x/D = 2 . 2 , the averaged slug S̄ and the time averaged air volume fraction field ᾱair , obtained from experimental data. The averaged slug is too long for the viewing section, 

as visible in d ) and f ). Note that a 1 , a 2 , h L are depicted in standard score and the drawings are not to scale. 

Fig. 13. The probability density function (PDF) of slug frequency f s = T −1 
s obtained 

from the liquid level over time h L at x/D = 2 . 2 ( ) and the temporal coefficient 

a 2 ( ) with corresponding histogram for h L ( ) and a 2 ( ). 

( a 1 , a 2 ), whereas f̄ s denotes the inverse mean time in between 

consecutive slugs, as mentioned already in Section 5.2 . Since this 

slug flow is non-periodic, a distribution of the slug frequency can 

provide a more detailed characterization of the slug flow, com- 

pared to a single mean value and allows further validation of the 

temporal characterization by snapshot POD. 

In Fig. 13 , the probability density function as well as the cor- 

responding normalized histogram of the inverse time in between 

consecutive slugs T −1 
s , obtained from the liquid level h L as well as 

the temporal coefficient a 2 , are given. Here, a threshold of z(a 2 ) = 

z(h L ) = 0 . 5 and a uniform bin size of 0.3Hz was used. The prob- 

ability density functions and corresponding histograms calculated 

from the temporal coefficient a 2 and liquid level h L provide similar 

statistical parameters as shown in Table 5 . The small discrepancy is 

Table 5 

Statistical parameters for the slug frequencies f s 
from the liquid level h L and the temporal coeffi- 

cient a 2 . 

parameter h L a 2 

mean f̄ s 2.53Hz 2.57Hz 

median ˜ f s 2.58Hz 2.47Hz 

standard deviation σ ( f s ) 5.30Hz 5.50Hz 

primarily caused by the overestimation of large waves in the tem- 

poral coefficient. 

In addition to the temporal characterization from the tempo- 

ral coefficient, a spatial characterization of the averaged slug can 

be derived from the time series under knowledge of the aver- 

aged translational slug velocity v̄ s , see e.g. Viggiano et al. (2018) ; 
Baba et al. (2018) . In this case, v̄ s = 3 . 18 ms −1 , see Section 4.1 . Us- 

ing the same threshold z(a 2 ) = z(h L ) = 0 . 5 , as before, the time in- 

tervals from the slug front to rear are detected and averaged. Then, 

the averaged slug body length L̄ s can be approximated by multipli- 

cation of the averaged interval with v̄ s . This leads to L̄ s = 5 . 94 D 

for the temporal coefficient a 2 ( t ) and L̄ s = 6 . 3 D for the liquid level 

h L ( t ). 

5.4.2. Results for extended region of interest 

To show that the snapshot POD can also provide a spatial char- 

acterization of an experimental slug flow in the spatial modes, the 

snapshot POD is performed on the frame embedded snapshot se- 

quence with the extended region of interest (see Section 4.1 ). The 

results are presented in the further. This extended region of inter- 

est with about 12.6 D in length is long enough to display the aver- 

aged slug with an averaged slug body length of L̄ s = 6 . 3 D entirely. 

In Fig. 14 , the most energetic mode pair is depicted. Note that the 

discontinuities, visible in Fig. 14 b,d,e, arise from the differences in 

illuminance and lighting conditions in between inlet and outlet of 

the viewing section in the video recordings. Here, the inlet-region 

is more illuminated, than the outlet-region. This leads to the dis- 

continuities at the position x/D = 4 . 2 and x/D = 8 . 4 , where outlet 
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Fig. 14. Most energetic mode pair ( φ1 , φ2 ) with corresponding temporal coefficients a 1 ( t ), a 2 ( t ) ( ) from snapshot POD in comparison with liquid level h L ( t ) ( ) at 

x/D = 6 . 6 and the averaged slug S̄ (see e), obtained from experimental data with extended region of interest. The gas liquid interface from the averaged slug S̄ is highlighted 

( ) in d ) and e ). Furthermore, the averaged slug body length L̄ s = 6 . 3 D is indicated in d ) and e ). Note that a 1 , a 2 , h L are depicted in standard score and the drawings are 

not to scale. 

Fig. 15. The probability density function (PDF) of slug frequency f s = T −1 
s obtained 

from the liquid level over time h L at x/D = 6 . 6 ( ) and the temporal coefficient 

a 1 ( ) for the extended region of interest with corresponding histogram for h L 
( ) and a 1 ( ). 

and inlet were merged for the embedding. As discussed before, the 

underlying coherent structure of this mode pair is identified with 

the slug structures in the flow. 

Following the same analysis of the temporal coefficient as be- 

fore in Section 5.4.1 , the mean relative error of a 1 and h L in stan- 

dard score is given by δ(z(h L ) , z(a 1 )) = 12 . 1% , which is 1.8% larger 

then the corresponding error for the results of the original region 

of interest. This is in line with the observed trend in Fig. 10 , where 

the error increases with increasing length of the region of interest 

and the time series become smoother with broader peaks of lower 

amplitude. Due to that, the threshold for the slug frequency cal- 

culations was adjusted to a lower value of z(a 1 ) = 0 . 34 , to match 

best the averaged slug frequency, obtained by the liquid level h L 
with a threshold of z(h L ) = 0 . 5 . The probability density function as 

well as the statistical parameters for the calculations of the slug 

frequencies are shown in Fig. 15 and Table 6 , respectively. 

Table 6 

Statistical parameters for the slug frequencies f s 
from the liquid level h L and the temporal coeffi- 

cient a 1 for the extended region of interest. 

parameter h L a 1 

Mean f̄ s 2.53Hz 2.72Hz 

Median ˜ f s 2.61Hz 2.58Hz 

Standard deviation σ ( f s ) 5.53Hz 5.03Hz 

Table 7 

Statistical characterization of the slug flow 

experiment from the most energetic mode 

pair. 

Energy content E 1,2 25.2 % 

Averaged slug frequency f̄ s 2.72Hz 

Averaged slug body length L̄ s 6.3 D 

As can be seen in Fig. 15 , the PDF and the corresponding his- 

togram obtained from a 1 follow the main trend of those, obtain 

from the liquid level h L . Furthermore a 1 and h L provide similar sta- 

tistical parameters of the slug frequency, as shown in Table 6 . 

However, the difference of the PDF’s for the liquid level and the 

temporal coefficient is larger, compared to the original region of 

interest ( Fig. 13 ), due to the larger difference of the liquid level 

and the temporal coefficient. Note that, the values obtained from 

h L are slightly different compared to Section 12 , because h L was 

extracted at a different x -position in the pipe segment, due to the 

larger region of interest. Here, it can be concluded, that the tem- 

poral coefficient a 1 represents the main temporal features of the 

slugs in this experiment. 

Furthermore, the spatial mode φ1 is representing the averaged 

slug S̄ , as shown in Fig. 14 d,e. For reasons of clarity, the gas-liquid 

interface of S̄ is marked in Fig. 14 e and superimposed on the spa- 

tial mode φ1 in Fig. 14 d. Here, the averaged slug with an averaged 

slug body length of L̄ s ≈ 6 . 3 D is recognizable in the spatial mode 

φ1 (see Fig. 14 d). 

Finally, the results of the analysis for the snapshot sequence 

with the extended region of interest is given in Table 7 , since the 
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parameters can be derived from the snapshot POD results without 

any further information. 

6. Conclusion 

A procedure for the statistical characterization of horizontal 

slug flow based on the dominant mode pair from snapshot POD 

was introduced in this paper. Furthermore, the achieved charac- 

terization was validated in detail by comparison to information 

extracted from data on the liquid level. For this, a periodic slug 

flow from a numerical simulation as well as a non-periodic experi- 

mental slug flow were considered. It was shown that the temporal 

coefficients of the corresponding mode pair represent the dynam- 

ics of the gas-liquid interface and that the corresponding spatial 

modes exhibit a dominant structure, which was identified with the 

averaged slug. Consequently, parameters for the characterization of 

the slugs in time, such as averaged slug frequency and the corre- 

sponding probability density function, can be derived from one of 

the two temporal coefficients of the dominant mode pair. In addi- 

tion to that, the averaged slug body length can be obtained from 

the corresponding spatial mode if the region of interest is large 

enough to resolve the averaged slug. Here, the snapshot POD pro- 

vides this information not only for the high quality phase volume 

fraction fields from a numerical simulation, but also for RGB-values 

of a noise-affected experimental video recording. Furthermore, the 

influence of the length of the region of interest on the accuracy of 

the achieved characterization was investigated under usage of the 

simulation data. In this regard, a clear negative trend in accuracy 

for increasing length was noted. Consequently, the region of inter- 

est should have the necessary length to resolve the averaged slug 

entirely, but should remain sufficiently short to avoid larger errors 

in the parameters for a characterization in space and time. If only 

a characterization in time is sought, the region of interest should 

be chosen as short as possible. Altogether, snapshot POD provides 

a reliable statistical characterization in time and space for the con- 

sidered horizontal slug flows. Prospectively, the snapshot POD can 

be used as a tool for comparing data from a numerical simulation 

to measurements from a corresponding experiment. 
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Comparing temporal characteristics of slug flow from
tomography measurements and video observations

In the course of the previous investigations, an approximation of the liquid level time series
as well as time scales of slug flow have been derived from video recordings. This temporal
quantification of slug flow needs to be validated. In that regard, the temporal quantification
of horizontal slug flow from highspeed video recordings is evaluated in this publication, where
reliable parameters from an conventional tomography measurement technique are used as a
reference (research objective 2).

For these investigations, the liquid level time series extracted from video recordings and
the derived time scales of the slugs are compared to liquid volume fraction measurements of
an electrical capacitance tomography (ECT) measurement system for two different horizontal
oil-gas slug flow experiments. In a first step, the comparability of the time series from the video
recordings and the cross-sectional tomography measurements is discussed. In this context, an
approximation of the liquid level time series is constructed from the volumetric tomography
measurements and a correction of the refractive effects from the transparent pipe wall in
the video recordings is developed to achieve a comparability of the parameters from the two
different measurement techniques. In a second step, the liquid level time series extracted
from video observations are qualitatively compared with the time series from the tomography
measurements. The same is done with the temporal slug characteristics.

Altogether, in this publication is shown that the characterizing time scales of slug flow
from video recordings are in good agreement with the ones from the tomography measurement
data. However, the liquid level time series from the video observations are systematically
overestimated, compared to the tomography measurement data.
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Comparing temporal characteristics of slug flow from tomography measurements and 
video observations  

A R T I C L E  I N F O   

Keywords 
Slug flow 
Interface dynamics 
Tomography 
Video observation 

A B S T R A C T   

In industrial operations, the slug flow pattern can lead to serious problems, that are mostly caused by the liquid 
slugs of the flow. Hence, a detailed description of the slug flow pattern is of special interest. In this context, the 
temporal flow characteristics that are derived from high-speed video observations of the flow, are compared to 
tomography measurements. For this, the liquid level time series as well as the temporal slug characteristics of 
two different slug flow experiments are considered. It is shown that the liquid level time series from the video 
observations are systematically overestimated, but the slug dynamics are in good agreement.   

1. Introduction 

The slug flow pattern is a common gas-liquid flow regime in multi-
phase transportation pipelines, and can cause severe problems, such as 
large pressure fluctuations and vibrations [1,4]. These problems are 
primarily caused by the liquid slugs of the flow [5]. Thus, an accurate 
description of these slugs can contribute to the solution of such 
problems. 

In this context, we have investigated different methods for a statis-
tical characterization [6,7] as well as numerical modelling of horizontal 
slug flow [8,9] in previous works. For the validation of these methods 
and models, the vertical position of the gas liquid interface at a fixed 
position in flow direction was extracted from video recordings of the 
slug flow experiments, for details see [7]. In these video recordings the 
slug flow is observed from the side. The extracted time series is a 
non-dimensional parameter that represents the dynamics of the 
gas-liquid flow pattern, similar to the holdup parameter. It has a range of 
[0,1] with respect to the inner diameter of the pipe and is referred to as 
the liquid level over time. 

In this contribution, the reliability of the liquid level time series 
extracted from video recordings is evaluated. For this purpose, it is 
compared with liquid volume fraction measurements of an electrical 
capacitance tomography (ECT) measurement system for two different 
horizontal oil-gas slug flow experiments. The focus of this investigation 
lies not only on a comparison of the time series from the ECT and the 
video system, but also on a comparison of the temporal characterizations 
of the liquid slugs, that can be derived from the time series. 

2. Methods 

In this chapter, the experimental setup, the considered horizontal 

slug flows, the tomography system, the video recordings and the pro-
cedure of extracting the time series are introduced. 

2.1. Experimental set-up 

The experiments were performed by TÜV SÜD National Engineering 
Laboratory (NEL) and DNV [4]. 

Fig. 1. Illustration of the experimental setup (drawing not to scale).  
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The experimental set-up is illustrated in Fig. 1. It consists of a straight 
horizontal pipe with an inner diameter of D = 66.64 mm and a length of 
90.5 D, followed by an ECT measurement system and a transparent 
Perspex viewing section. This horizontal inflow section is followed by a 
complex measurement section with bends and vertical segments [4]. 
However, for our investigations, the latter section is of minor interest. 
The ECT-system is an Atout APL-C-900 research system and provides a 
snapshot sequence of cross-sectional liquid volume fraction measure-
ments embedded in a rectangular grid with a spatial resolution of 
32x32 px and a samplerate of 350 Hz, for details of the ECT system see 
[3]. At the transparent viewing section, the flow is recorded from the 
side by an RGB-camera with a spatial resolution of 1920 x1080 px and a 
framerate of 100 fps for the experiment at NEL and a framerate of 
240 fps for the experiment at DNV. The two experiments show different 
types of slug flow. The fluid properties and superficial velocities of the 
considered slug flows are listed in Table 1. 

2.2. Time series from the ECT system 

The ECT-system provides spatially and temporally resolved data sets 
of the considered slug flows. These data sets consist of liquid volume 
fraction fields in the pipe cross section, which are measured over time 
with a constant sample rate of 350 Hz. From these measurements, two 
time series are derived. The first ones are the time series of the cross- 
sectionally averaged liquid volume fraction, denoted by αtomo

L (t). The 
second ones are the time series of the vertical position of the gas-liquid 
interface, extracted from the vertical centreline of the cross-sectional 
measurement, denoted by htomo

L (t). This is illustrated in Fig. 2. The 
interface in the stacked centreline image (see Fig. 2 on the right) is 
detected by calculating for every time t, the median of the vertical po-
sition in the centreline column, where 0.4 < αL < 0.5 holds. The stacked 
centreline image (see Fig. 2 on the right) was found to represent best the 
side view of the flow, captured in the videos. Hence, htomo

L (t) is a 
reasonable parameter for a comparison with the liquid level time series 
from the videos. Please note that under this construction of htomo

L , it does 
not follow from htomo

L = 1, that αtomo
L = 1.

2.3. Time series from video recordings 

The RGB-camera provides a snapshot sequence of the flow, recorded 
from the side, that represents a two-dimensional projection of the three- 
dimensional flow. To extract time series from this data set, a vertical 
pixel column through the pipe at a fixed x-position is stacked over time, 
similar to the vertical centreline image of the tomography data (see 
Fig. 2). Then, the interface is marked by hand to get a liquid level time 
series representation from the video recordings, denoted as hvideo

L (t), see 
[7,9]. The refractive effects of the transparent Perspex pipe wall are 
corrected, to achieve a better comparability with the measured time 
series from the ECT-system. For this correction as well as the extraction 
of the pixel column, the height of the projected inner diameter onto the 
outer pipe wall hmax is needed (see Fig. 3a). Since this height is not 

Table 1 
Fluid properties and superficial velocities.  

Slug flow exp. Oil density in kg/m3  Gas density in kg/m3  Superficial gas vel. in m/s  Superficial liquid vel. in m/s  

NR. 1 (NEL) 816.80 (Paraflex HT9) 10.79 (Nitrogen) 2.39 2.39 
NR 2. (DNV) 823.44 (Exxsol D120) 10.44 (Nitrogen) 2.40 2.40  

Fig. 3. Calculation of the projected inner diameter hmax onto the outer pipe 
wall (a), and correction of the refractive effects of the transparent pipe wall (b), 
illustrated for the fourth quadrant of the pipe cross section. Fig. 2. Illustration of time series extraction of tomography data for Slug flow 2.  
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clearly assignable in the video frames, it is calculated by finding hmax
2 ∈

[ri, ro] with 

α1 = arcsin
(

hmax
ro

)

and β = arcsin
(

nair
nperspex

sin(α1)

)

, such that 

ri =
ro

sin( γ )
sin( β ), (1)  

where the inner radius of the pipe is given by ri = 33.32 mm, the outer 
radius of the pipe is given by ro = 50 mm. Here, the angle of incidence α 
and the angles γ = π − α2 − β, α2 = π

2 − α1 are calculated with trigono-
metric functions, see Fig. 3. The angle of refraction β is given by the law 
of refraction [2], where the indices of refraction are given as nair = 1.0 
and nperspex = 1.49. This results in hmax = 44.5299 mm. In a similar 
procedure as in (1), the refractive effects of the transparent pipe wall for 
the observed liquid level lobs ∈ [0, 1] with respect to hmax can be cor-
rected, to get the correct liquid level lreal ∈ [0, 1] with respect to the inner 
diameter D, see Fig. 3b. Here lreal is given as 

lreal =

⎧
⎪⎪⎨

⎪⎪⎩

|ri − Lreal|

D
, if lobs ≤ 0.5 ,

1 −
|ri − Lreal|

D
, else,

(2)  

where Lreal = sin(α1 + α2)ri, Lobs = hmax(0.5 − lobs), the angle of inci-

dence α1 = arcsin
(

L
ro

)

, the angles α2 = π − γ − β and γ = π−

arcsin
(

ro
ri

sin(β)

)

are calculated by means of trigonometric functions. 

Furthermore, the angle of refraction β is derived from the law of 
refraction, as given in (1). Please note that this correction was estab-
lished under the assumption, that the ray of light for the observation is in 
parallel to the z-axis of the pipe cross-section. 

3. Results 

For a quantitative comparison, the time series from the ECT-system 
and the video recording are shifted in time to show the same time in-
terval of the flow using the maximum of the cross-correlation function. 
This leads to a common total time of the time series for the analysis of 
117 s for Slug flow 1 and 100 s for Slug flow 2. 

For the comparison of the time series from the ECT-system and the 
video recording, their statistical parameters, as well as temporal slug 
characteristics are considered. In particular, we determine the slug unit 
time tu and the slug body time tb, where the slug unit time tu is the time 
interval between two consecutive slug fronts and the slug body time tb is 
the time interval from slug front to slug rear. To detect slug fronts and 
slug rears in the time series, a thresholding technique is applied, for 
details see [9]. These thresholds are set for all time series individually 
and are given in Table 2. In Fig. 4, the time series αtomo

L , htomo
L and hvideo

L of 
Slug flow 1 and 2 are shown for a time of 5 s with the corresponding 
threshold lines. As it can be seen in Fig. 1, Slug flow 1 has short slugs and 
several waves with larger amplitudes. For this flow, entrained bubbles in 
the slugs and waves as well as layers of foam in between these structures 
were observed in the videos. In contrast to this, Slug flow 2 consists of 
larger slugs and less waves. Please note, due to the two different types of 
slug flow, the level of agreement for the evaluation methods may vary. 

In Fig. 5, the boxplots with the statistical parameters, such as mean, 

median, interquartile range (IQR), minimum and maximum values are 
given for the time series αtomo

L , htomo
L and hvideo

L of Slug flow 1 and 2. Here, 
a systematic difference between the time series can be seen. The liquid 
volume fraction αtomo

L is a volumetric parameter, derived from the 
complete pipe cross-section by averaging and therefore accounts for 
changes in all three dimensions of the flow, especially along the z-axis. 
This averaging leads to low values and a small range (interval in be-
tween Minimum and Maximum) compared to the other time series. In 
contrast to this, the liquid level hvideo

L is derived from a two-dimensional 
projection of the three-dimensional flow, which does not account for 
changes in the z-direction, since they are not visible in the videos. The 
liquid level time series from tomography htomo

L is a reasonable approxi-
mation of hvideo

L and therefore hvideo
L shows a better agreement with htomo

L , 
compared to αtomo

L . However, htomo
L is based on liquid volume fraction 

data in the centreline of the pipe cross-section, and therefore also 
dependent on the distribution of the phases along the z-axis. 

Table 2 
Threshold values for slug detection.  

Time series Slug flow 1 Slug flow 2 

αtomo
L  0.7 0.65 

htomo
L  0.75 0.8 

hvideo
L  0.9 0.9  

Fig. 4. The time series of Slug flow 1 and 2 from tomography αtomo
L , htomo

L and 
video recordings hvideo

L shown for 5s with their corresponding threshold lines. 

Fig. 5. Boxplots of the time series of slug flow 1 and 2 from tomography αtomo
L , 

htomo
L and video recordings hvideo

L . 
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Apart from the changes of the flow in between the location of the ECT 
and camera-system along the pipe, foamy layers and entrained gas 
bubbles are also leading to a discrepancy of the time series from to-
mography and video recordings. This is caused by the foamy layers, that 
are assigned to the liquid phase, when the interface is extracted from the 
video recordings, because the classification of foam into liquid or gas is 
not obvious for camera-based flow observations from the side. The same 
holds for entrained gas bubbles in the waves or slugs. In contrast to this, 
the tomography system only measures the liquid phase, leading to lower 
values for αtomo

L and htomo
L , compared to hvideo

L . In Fig. 6a and b, the 

probability density functions of the slug unit times tu and slug body 
times tb derived from all three time series are presented for Slug flow 1 
and 2. 

In contrast to the larger differences of the statistical parameters of 
the time series themself, the slug characteristics tu and tb show better 
agreement. This is especially true for the slug unit times tu that are 
directly related to the slug frequency, see [7,9]. The slug body times tb 

derived from hvideo
L are slightly overestimated with respect to αtomo

L and 
htomo

L because the time series themself show the same behaviour. 

4. Conclusions 

In this paper, the liquid level time series extracted from RGB-video 
recordings of two horizontal slug flows were compared to liquid level 
and liquid volume fraction time series derived from a tomography 
measurement system. The liquid level time series from the video re-
cordings show a systematic overestimation with respect to the time se-
ries from the tomography system. In contrast to this, the derived 
temporal characteristics of the liquid slugs show good agreement, 
especially the slug unit times, which are the inverse of the slug fre-
quencies. From this, it can be concluded, that the temporal character-
ization of horizontal slug flow derived from the liquid level parameter 
from RGB-video recordings give reasonable results. 
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Deep learning based liquid level extraction from video
observations of gas–liquid flows

A fast and reliable non-intrusive method for the approximation of the liquid level time
series from video data can serve as a useful tool in industrial and academic operations, where
a temporal quantification of separated and intermittent flow patterns, such as stratified wavy
or slug flow, is needed. In that regard, the accurate and efficient extraction of the liquid level
time series from video observations of separated and intermittent flow patterns with a novel
deep learning based image processing technique is investigated in this publication (research
objective 3).

For this, a deep-learning based image processing method is presented, that consists of
a certain type of a deep convolutional neural network, called U-net, and several pre- and
post-processing steps. The U-net was trained and tested with video data from horizontal
slug flows for the task of segmenting liquid and gas regions in the video frame data. For
the training procedure and the quantification of accuracy and error values in the validation
process, hand-labelled segmentation maps were used as reference. The consistency of these
hand-labelled data and the predictions from the U-net was shown in an inter-observer reliability
test. For further evaluations of this model, additional independent video data were used, which
show different fluids, settings, and flow pattern.

Altogether, it is shown in this publication that the presented method accurately extracts
the liquid level time series from the considered video data. It can handle different types of
data, even unseen data sets. Furthermore, it can overcome various noise effects, which are
generally included in such image or video data. Once, the net is successfully trained, it predicts
highly accurate segmentation maps in very short time, such this the liquid level time series
can be extracted accurately and efficiently from the raw video data.
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A B S T R A C T
The slug flow pattern is one of the most common gas–liquid flow patterns in multiphase transportationpipelines, particularly in the oil and gas industry. This flow pattern can cause severe problems for industrialprocesses. Hence, a detailed description of the spatial distribution of the different phases in the pipe is neededfor automated process control and calibration of predictive models. In this paper, a deep-learning based imageprocessing technique is presented that extracts the gas–liquid interface from video observations of multiphaseflows in horizontal pipes. The supervised deep learning model consists of a convolutional neural network,which was trained and tested with video data from slug flow experiments. The consistency of the hand-labelleddata and the predictions of the trained model have been evaluated in an inter-observer reliability test. Themodel was further tested with other data sets, which also included recordings of a different flow pattern. Itis shown that the presented method provides accurate and reliable predictions of the gas–liquid interface forslug flow as well as for other separate flow patterns. Moreover, it is demonstrated how flow characteristicscan be obtained from the results of the deep-learning based image processing technique.

1. Introduction
Multiphase flow phenomena are often encountered in different sec-tors of the energy industry, particularly in the oil and gas production,where the two phases of liquid and gas are flowing simultaneouslythrough transportation pipelines (Lin et al., 2020). Field measurementsof these flows have a high degree of uncertainty, reaching up to20% (Elliott et al., 2021). Based on the operating conditions, differentflow patterns can form, which describe the spatial distribution of thetwo phases in the pipe (Hanratty, 2013). One of the most commonflow patterns in multiphase transportation pipelines is the slug flowpattern (Al-Kayiem et al., 2017).Slug flow is characterized by a continuous liquid phase with coher-ent blocks of aerated liquid, which are separated by volumes of gas,see Fig. 1, left. These aerated blocks of liquid are called slugs. Theyare moving downstream the pipe on top of a slowly flowing liquidlayer at approximately the same velocity as the gas (Hanratty, 2013;Taitel and Dukler, 1977; Al-Safran, 2009). The slug flow pattern cancause severe problems in industrial operations. The pressure drop due

∗ Corresponding author at: Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany.E-mail address: marc.olbrich@ptb.de (M. Olbrich).

to slug flow can be an order of magnitude higher compared to othergas–liquid flow patterns (Taitel and Dukler, 1977), such as stratified orwavy flow, where the two phases are separated by a smooth or wavyinterface (Hanratty, 2013). Furthermore, the intermittent sequence ofliquid slugs, which can grow to large structures, induces vibrations andstresses when impacting on surfaces of the piping (Hanratty, 2013).These problems can also affect the multiphase flow measurement de-vices significantly. Thus, a detailed characterization of the flow patternis required and had already been the subject of many investigations,see, e.g., Pedersen et al. (2017), Olbrich et al. (2020) and Drury et al.(2019). Parameters that are typically used for a characterization of thisflow pattern are temporal and spatial scales of the liquid slugs as wellas their translational velocities. Spatial scales are for example the slugbody length 𝐿𝑏 and the slug unit length 𝐿𝑢, i.e. the distance betweenthe slug front and slug rear or between two consecutive slug fronts,respectively. Their corresponding time scales, the slug unit time 𝑇𝑢 andthe slug body time 𝑇𝑏, are defined as the time that a slug body or a slugunit needs to pass by at a fixed position. Another often used parameter
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Fig. 1. Illustration of slug flow in a horizontal pipe (left side) with a slug unit, the slug unit length 𝐿𝑢, and the slug body length 𝐿𝑏, as well as the liquid level time series ℎ𝐿(𝑡)at a fixed position x (right side) with the slug unit time 𝑇𝑢 and the slug body time 𝑇𝑏 for a given threshold.
is the mean slug frequency, defined as
𝑓𝑠 =

1
�̄�𝑢

with 𝑇𝑢 =
1
𝑁𝑠

𝑁𝑠∑
𝑖=1

𝑇𝑢𝑖 , (1)
where 𝑁𝑠 denotes the number of slug units in the considered timeinterval, see Al-Kayiem et al. (2017), Baba et al. (2018), Dukler andFabre (1994) and Olbrich et al. (2021a). The length and time scales ofslug flow are illustrated in Fig. 1. These characteristics are often mea-sured with non-intrusive imaging techniques, such as videometric ap-proaches, where the flow is observed with a high-speed camera througha transparent pipe segment (do Amaral et al., 2013). The flow param-eters provided by these type of measurement techniques were used forexample to identify the flow pattern (Baghernejad et al., 2019), to ver-ify and investigate flow pattern maps (Crawford, 2018), to investigateshapes of slugs and bubbles for specific operating conditions (do Amaralet al., 2013), to validate numerical simulations (Olbrich et al., 2018),as well as to investigate the effects of slug frequency on induced pipestresses and develop predictive models and correlations (Mohmmedet al., 2019).One way to obtain these characteristic parameters is to considerthe time series of the vertical position of the liquid–gas interface ata fixed 𝑥-position in the pipe, as illustrated on the right side of Fig. 1.This non-dimensional parameter has a range of [0, 1] with respect tothe inner pipe diameter 𝐷 and is hereinafter referred to as the liquidlevel time series at a fixed position 𝑥, denoted by ℎ𝐿(𝑡) (Olbrich et al.,2021a; Schmelter et al., 2021a). It reveals the dynamics of the spatialdistribution of the two phases in the pipe and can therefore reliablyindicate slugs, waves or other liquid structures, similarly to the hold-upparameter, see Olbrich et al. (2021b). Typically, for analyses of hold-upor liquid level time series, the conventional length and time scales ofslug flow are calculated by simple thresholding procedures, see Zhaoet al. (2015), Baba et al. (2018), Schmelter et al. (2021a) and Olbrichet al. (2020, 2021b) and Fig. 1.In this paper, the liquid level time series are derived from high-speed video recordings of gas–liquid flows observed from the sidethrough a transparent pipe section. These flows are two-phase gas–oiland gas–water flows, as well as three-phase gas–oil–water flows, wherethe liquid phase is a homogeneous mixture of oil and water. For this, adeep learning based image processing technique has been developed. Inan earlier work, the time series have been extracted from the video datausing a fixed sequence of image filters, see Olbrich et al. (2018). Thiswas similar to other approaches in the field, see e.g., do Amaral et al.(2013) and provided reasonable results for the video data with (exactly)the same conditions it was developed for, such as the colours of thefluids and the background as well as lighting and reflections. However,changes in these conditions as well as noisy data led to incorrect liquidlevel estimations, and individual adaptations were needed. In contrastto this, deep learning models have the potential to overcome suchdifficulties and to provide reliable and more versatile image processingtechniques.

Deep learning describes a family of learning algorithms in the fieldof machine learning and artificial intelligence (Emmert-Streib et al.,2020). It is used to learn complex and robust prediction models,e.g., multi-layer neural networks with many hidden units, directlyfrom the data without the need of carefully engineering suitable fea-tures (Emmert-Streib et al., 2020; LeCun et al., 2015). Deep learninghas a wide range of applications in science, business, and technology,e.g., image or speech recognition, see LeCun et al. (2015), Krizhevskyet al. (2017), Ronneberger et al. (2015) and Graves et al. (2013).However, in the field of multiphase flows, deep learning has onlyrarely been applied. In the following, we give a short summary on suchapplications.For the numerical simulations of multiphase flows, deep learningmodels were trained for example to approximate the governing equa-tions, estimate simulation errors, predict flow parameters, as well asclosure coefficients, see e.g., Wang and Lin (2020), Bao et al. (2020)and Ma et al. (2015). Other applications of deep learning models arefor example the correction or prediction of certain parameters formultiphase flow measurements, such as flow rates, phase fractions orvelocities, see e.g., Yan et al. (2018), Alakeely and Horne (2021), Danget al. (2019) and Li et al. (2021). Furthermore, in Lin et al. (2020), adeep learning model is used to predict different two-phase flow patternsin inclined pipes based on superficial velocities of the individual phasesand inclination angles. Moreover, image processing techniques basedon deep convolutional neural networks have been presented in Poletaevet al. (2020), Haas et al. (2020) and Cerqueira and Paladino (2021) forthe detection, reconstruction, and analysis of gas bubbles in verticalpipes and micro-channels, for the recognition of flow patterns in micropulsating heat pipes (Kamijima et al., 2020; Ahmad et al., 2022) aswell as for the extraction of relevant water regions as pre-processingstep for two-phase PIV-measurements in the field of ship and oceanengineering (Yu et al., 2021). For the quantification of separated and in-termittent gas–liquid flow patterns in horizontal pipes, such as stratifiedwavy or slug flow, such advanced image processing techniques have notbeen reported. For this, image filter based methods are typically used,which are sensitive to changes in image quality, contrast, and recordingset-up. The deep-learning based image processing technique presentedhere overcomes these problems to certain extent and provides a quan-tification for other separated flow pattern, namely, stratified, wavy,plug, and slug flow.The proposed deep-learning model was trained in a supervisedmanner to correctly predict the liquid level time series from videorecordings of gas–liquid flows. The model, a convolutional neural net,was extensively trained and tested with video data from real slug flowexperiments and classifies each region in a video frame into its respec-tive phase being either liquid or gas. For supervised learning the datahas to be labelled. To do so, the respective video frames were used tocreate hand-labelled segmentation maps. Furthermore, the consistencyof the hand-labelled data and the predictions of the trained modelhave been evaluated in an inter-observer reliability test. For further
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evaluations of the reliability and versatility of the trained model, datafrom experiments are considered, which differ from the ones used fortraining and testing. These data also include an experiment with adifferent flow pattern, namely a stratified wavy flow.
2. Methods

In this section, the architecture of the convolution neural networkas well as the experiments, the data, and its acquisition are described.Furthermore, it is explained, how the deep learning model is used withpre- and post-processing steps to extract the liquid level time seriesfrom the video data of the experiments. Moreover, the training andtest procedure for the deep learning model is described. Finally, theaccuracy and error metrics are provided that are used to evaluate thetrained model.
2.1. Convolutional neural network

Deep convolutional neural networks are state-of-the-art machinelearning techniques for image classification and segmentation prob-lems (Dhillon and Verma, 2020; Aloysius and Geetha, 2017). In thispaper, the liquid level extraction is considered as an image segmen-tation problem, where regions of liquid and gas need to be identi-fied and segmented in the video frames. For this purpose, a specificconvolutional neural network, the so-called U-net, was chosen. Thisarchitecture was introduced by Ronneberger et al. (2015) and hasbeen successfully applied in many image-to-image learning problems,e.g., computer tomography, see Mao et al. (2016), Dosovitskiy et al.(2015) and Jin et al. (2017). The U-net is able to achieve accurateresults with only few labelled training data and was therefore takenin this paper. The structure was altered from its original form andadapted from Sterbak (2018). The final architecture is illustrated inFig. 2. An RGB-image input with the dimensions of 128 × 1024px ispassed through several layers of convolutions comprising a contractingpart (left part of the U-shape), a bottleneck with minimal dimensionin the centre of the U-shape and an expansive part (right part of theU-shape). The contracting part transfers the input image into a featuremap with lower spatial dimensions but a higher number of featurechannels. The expansive part generates the resulting segmentation mapwith the same spatial dimensions as the input image from the lowerdimensional feature maps. In Fig. 2, the blue rectangles represent multi-channel feature maps. Here, their dimensions are also given, where thefirst two entries of the 3-tuple are related to the spatial dimensions(height and length) of the input image and the last entry correspondsto the number of feature channels. The basic operation in this networkis the 3 × 3-convolution, which is followed by a batch normalizationoperation and a rectified linear unit (ReLU) as activation function. Forthe contracting part, the spatial dimensions are down-sampled with2 × 2-max-pooling operations with stride 2. After each max poolingoperation the number of features produced by the 3 × 3-convolution isdoubled. For the expansive part, the feature-maps are up-sampled by3 × 3-(up)-convolutions, which halve the number of feature channels,but double the number of spatial dimensions. For additional informa-tion in the reconstruction of the higher dimensional map, the featuremaps from the corresponding level of the contracting part are copiedand concatenated after each up-convolution. Finally, the segmentationmap results from a 1 × 1-convolution and an activation operationusing the Sigmoid function. The operations are illustrated as colouredarrows in Fig. 2. For details on the architecture and the operations,see Ronneberger et al. (2015) and Sterbak (2018).
2.2. Experiments

The used deep-learning model was trained and tested with datafrom video observations of horizontal gas–liquid flows. These flows

Table 1Laboratory that conducted the experiments, the set-up for the video recordings (seeFig. 3) and fluid properties for some operating conditions that are used in theexperiments.Lab Set-up Fluid Density Viscosity Temp. Pressurein kgm−3 in cP in °C in bar (g)

MultiFlowMet I
NEL 1 & 2 Paraflex oil 831.40 16 20 9Brine Water 1037.89 1.15Nitrogen gas 11.51 0.018
MultiFlowMet II
NEL 3 Paraflex HT9 815.10 7.32 45 9Brine Water 1024.19 0.65Nitrogen gas 10.5 0.019
DNV 4 Exxsol D120 827.55 5.10 18 8Brine Water 1031.69 1.04Nitrogen gas 10.46 0.018

are two-phase gas–oil or gas–water flows, as well as three-phase gas–oil–water flows, where the liquid phase is a homogeneous mixtureof oil and water. The experiments were performed by TÜV SÜD NELand DNV as part of the projects Multiphase flow metrology in oil andgas production (MultiFlowMet I) (Crawford, 2018) and Multiphase flowreference metrology (MultiFlowMet II) (Pieper, 2020).The experimental set-ups are illustrated in Fig. 3. They consist of ahorizontal inflow section followed by a vertical measurement section,but here the latter part is of minor interest since the flows in thehorizontal pipe are investigated. For the set-up of the MultiFlowMetI project, the horizontal inflow section consists of a straight hori-zontal pipe with an inner diameter 𝐷 = 0.0972m and two differentlengths 𝐿inflow ∈ {100𝐷, 500𝐷}, followed by a transparent Perspexviewing section with a length of 𝐿viewSec = 5𝐷. For the set-up of theMultiFlowMet II project, the horizontal inflow section consists of astraight horizontal pipe with an inner diameter 𝐷 = 0.066 64m andthree different lengths 𝐿inflow ∈ {100𝐷, 300𝐷, 600𝐷}, followed by atransparent Perspex viewing section with a length of 𝐿viewSec = 9𝐷.In Table 1, the laboratory that conducted the experiments, therecording set-up for the video data (see also Fig. 3), the fluids andtheir properties for some operating conditions are given for the twoprojects, for details see Crawford (2018) and Pieper (2020). In Table 2,the superficial velocities and lengths of the horizontal inflow sections
𝐿inflow of the considered two- and three-phase flows of MultiFlowMetI and MultiFlowMet II are given, respectively. For all flows except thestratified wavy flow of Experiment Nr. 13, the slug flow pattern wasobserved. Please note that, for the stratified wavy flow experiment Nr.13 and for the slug flow experiments Nr. 1–7 and Nr. 9–12, the interfaceis clearly visible from the side, which is necessary for the algorithm towork. These experiments have been considered in the training, testing,and evaluation procedure (see Sections 3.1 and 3.3). For the slugflow experiments Nr. 8, 14, 15, and 16, the gas–liquid interface is(partially) unrecognizable due to dispersed phenomena, such as foamor spray. These flows have been considered for the investigations on thelimitations of the proposed image processing technique, see Section 4.The flows were recorded at the viewing sections from the sideusing a high-speed RGB-camera with a frame rate of 240fps. For eachexperimental set-up, two different video recording set-ups were used,see Fig. 3. The set-ups 1, 2 and 3 were recorded at NEL, and set-up 4was recorded at DNV. In set-up 1, the Paraflex oil has an orange–browncolour, the background is black and the viewing section is illuminatedfrom the front. In set-up 2, the Brine water is of grey colour but slightlytransparent, the background has a dark blue colour and the viewingsection is illuminated from below. In set-up 3, the Paraflex oil (HT9)has a red-brown colour, the background is blue and the viewing sectionis illuminated from the front. And in set-up 4, the Exxsol oil (D120)is ocher-green, the background has a blue colour and the viewingsection is illuminated from behind. Please note that nitrogen gas is
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Fig. 2. Illustration of the architecture of the U-net. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Illustration of the experimental setting of the projects MultiFlowMet I and MultiFlowMet II with the different recording set-ups. (For interpretation of the references tocolour in this figure legend, the reader is referred to the web version of this article.)
transparent and colourless, similar to other common gases in the oiland gas industry, e.g., natural gas and argon (Pieper, 2020). Hence, thebackground colour is visible through the gas for all recording set-ups.Furthermore, for the three-phase gas–oil–water flows recorded in set-up 1, 3 and 4, the watercut is relatively small. Hence, the water doesnot form a separate liquid layer and the liquid phase appears in thevideo observations as a homogeneous oil–water mixture with similarcolour as the oil. In Tables 3 and 6, the video recording set-up as well

as the recorded time (length of the videos) are given for the consideredexperiments of MutliFlowMet I and II.
2.3. Pre- and post-processing

The U-net, described in Section 2.1, is used to segment liquidand gas regions in parts of the video frames. However, before theU-net is applied, the video frames need to be prepared in several
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Table 2Superficial velocities 𝑣oil𝑠 , 𝑣water𝑠 , 𝑣gas𝑠 and lengths of inflow section 𝐿inflow in innerdiameters D for the considered experiments of the MultiFlowMet I & II project.Experiment Superficial velocities in ms−1 𝐿inflow

𝑣oil𝑠 𝑣water𝑠 𝑣gas𝑠 in 𝐷

MultiFlowMet I
Nr. 1 1.349 0 1.692 100, 500Nr. 2 1.869 0 0.627 100Nr. 3 1.930 0 0.751 100, 500Nr. 4 2.547 0 3.185 100, 500Nr. 5 0.986 0.328 2.849 100Nr. 6 1.963 0.638 0.892 100Nr. 7 0 1.847 0.678 100Nr. 8 3.386 0 1.276 100
MultiFlowMet II
Nr. 9 0.822 0 3.285 100, 300, 600Nr. 10 1.218 0 1.179 100, 300, 600Nr. 11 1.610 0 0.704 100, 300, 600Nr. 12 2.390 0.006 2.398 100Nr. 13 0.475 0 3.246 100Nr. 14 2.352 1.559 1.548 100Nr. 15 0.399 0 7.699 100Nr. 16 0.739 0.470 11.442 100

pre-processing steps. Furthermore, to extract a time series from the gas–liquid segmentation maps of the U-net, additional post-processing stepsare necessary.In Fig. 4, the complete processing pipeline of the liquid level extrac-tion from the video observations is illustrated. The first step is to extracta vertical line (pixelcolumn) through the pipe at a fixed 𝑥-positionfor every frame, i.e., time step, and stack it. From this procedure, anRGB-pixelcolumn over time is obtained, which represents the phasedistribution along the observed vertical line through the pipe and itstemporal changes at a fixed 𝑥-position. Because of this, the gas–liquidinterface visible in this image is associated with the liquid level timeseries with respect to the inner pipe diameter. Under this construction,the frame rate of the video represents the sample rate of the timeseries. Therefore, the RGB-pixelcolumn over time provides the basisfor further calculations. In the second step, the RGB-pixelcolumn overtime is interpolated to a uniform height (𝑦-component) of 128 px andcut into segments with a length (𝑡-component) of 1024 px, to meetthe input dimension criterion for the chosen U-net architecture. Inthe third step, the evenly sized segments are normalized to reducethe influence of disturbances in the video recording set-up, such asdifferences in luminance or colour. For this normalization, the z-score(also called statistical standardization or standard score, see Larsenand Marx (2012)) is applied RGB-component wise. This step completesthe pre-processing and the standardized image segments are passed tothe U-net to perform the segmentation. The output of the U-net is acontinuous segmentation map with values in [0, 1], where 1 (white)indicates gas and 0 (black) indicates liquid. In the first post-processingstep, the continuous segmentation maps are binarized (with a thresholdof 0.5) to obtain a sharp gas–liquid interface. Afterwards, the segmentsare concatenated in correct order to get a segmentation map for thecomplete RGB-pixelcolumn over time. In the last step, the verticalposition of the gas–liquid interface (edge between black and whiteregions) is detected in the binarized and concatenated segmentationmap. In case of multiple vertical interface positions at one time step,such as for bubbles or droplets, the values are averaged to get a uniquerepresentation of the interface over time. This ensures the propertyof a mathematically well-defined function for the extracted liquid leveltime series in case of multiple vertical interface positions such that itcan be used for further time series analyses. It should be noted that thisaveraging can lead to a misrepresentation of certain flow structures inthe liquid level time series. With this procedure the liquid level timeseries are obtained from the video recordings of multiphase flows. The

code for the extraction of the liquid level time series from the RGB-pixelcolumns over time is available as Jupyter Notebook in Olbrichet al. (2021c).
2.4. Training and testing

The U-net was trained and tested with data from horizontal gas–liquid slug flows. For this, the video data of 18 different slug flowswere used. That includes data from 9 experiments of the MultiflowMetI project and 9 experiments of the MultiflowMet II project, specificallyNr. 1−6, as well as Nr. 9−11 for all inflow lengths, see Table 3. For thetesting in the optimization process of the training procedure, a subsetof the data is needed, which is disjoint to the training data. Here, therandomly chosen two experiments Nr. 5 - 100𝐷 and Nr. 11 - 300𝐷 areused for testing and the remaining 16 experiments are used for training.Please note that the naming of the individual experiments are given inthe form of (Nr. - 𝐿inflow).To prepare the video data for the training of the U-net, the RGB-pixel-columns over time are extracted and normalized as described inSection 2.3 and Step 1 − 4 in Fig. 4. Furthermore, binary segmentationmasks are needed as reference in the training and testing process,which represent a correct classification into gas and liquid. These maskswere generated from hand-labelled gas–liquid interfaces in the RGB-pixelcolumns over time for all experiments. They have a sharp interfacewith values of 1 for gas and 0 for liquid. Since they are extracted fromthe RGB-pixelcolumns over time, the masks represent an approximationof the temporally resolved gas volume fraction fields in a vertical linethrough the pipe at a fixed position. In the training and testing of theU-net, the masks are compared with the predicted segmentation mapsto determine an accuracy for the prediction. For this, the masks arealso transformed into evenly sized segments of 128 × 1024 px (see Step2 in Fig. 4). This results in 483 pairs of evenly sized RGB-segments andcorresponding mask segments for the training set as well as 61 of suchpairs for the test set.Since the segmentation includes only 2 classes, i.e., gas and liq-uid, the binary accuracy function was chosen as accuracy metric, seeEq. (2) and Chollet et al. (2015). Furthermore, for the training processthe stochastic gradient descent optimization method adaptive momentestimation (ADAM) was set together with the binary cross-entropy -lossfunction and a dropout of 5%. Details can be found in Ronnebergeret al. (2015), Sterbak (2018), Chollet et al. (2015) and Kingma andBa (2017). For the training, the dropout-layer is located after everymax-pooling operation in the contracting part of the U-net and afterevery concatenation-operation in the expansive part of the U-net, seeFig. 2. Furthermore, a mini batch size of 32 was used to train the U-net over a maximum number of 50 epochs. Early stopping (Prechelt,1998) was applied. For details, see Sterbak (2018) and Chollet et al.(2015). The model was trained and tested using python version 3.7,tensorflow version 2.3 and Keras version 2.4.3, see Chollet et al. (2015)and Abadi et al. (2015). The implementation of the model, the code forthe training of the model as Jupyter Notebook, and the weights of thetrained model are available in Olbrich et al. (2021c).
2.5. Accuracy and error metrics

In this section, the metrics are given, which are used to evaluate thesegmentation maps from the U-net as well as the extracted liquid leveltime series.The binary accuracy of a predicted segmentation map 𝐴pred and acorresponding mask 𝐴mask is given by
𝑎𝑐𝑐bin(𝐴pred, 𝐴mask) = 1

𝑁𝑡 ⋅𝑁𝑦

𝑁𝑡∑
𝑖=1

𝑁𝑦∑
𝑗=1

𝜙
(
𝐴pred𝑖𝑗 , 𝐴mask𝑖𝑗

)
, (2)
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Fig. 4. Illustration of the processing pipeline from the raw video observations to the final liquid level time series. (For interpretation of the references to colour in this figurelegend, the reader is referred to the web version of this article.)

where 𝑁𝑡 and 𝑁𝑦 denote the number of pixels of the mask in 𝑡-directionand 𝑦-direction, respectively, and the pixelwise binary evaluation func-tion 𝜙 is given by
𝜙(𝐴pred𝑖𝑗 , 𝐴mask𝑖𝑗 ) =

⎧⎪⎨⎪⎩

1, if 𝐴pred𝑖𝑗 > 0.5 ∧ 𝐴mask𝑖𝑗 > 0.5
1, if 𝐴pred𝑖𝑗 ≤ 0.5 ∧ 𝐴mask𝑖𝑗 ≤ 0.5
0, else. (3)

Then, 𝜙 indicates if a pixel in the predicted segmentation mapwas successfully classified as gas or liquid. This function is pre-implemented in the open source software library Keras, see Cholletet al. (2015).The deviation of the liquid level times series, which are extractedfrom the hand-labelled segmentation map ℎmask𝐿 and the U-net output
ℎpred𝐿 can be measured in terms of the mean absolute error (MAE), givenby
𝜖(ℎpred𝐿 , ℎmask𝐿 ) = 1

𝑁𝑡

𝑁𝑡∑
𝑖=1

|||ℎ
pred
𝐿 (𝑡𝑖) − ℎmask𝐿 (𝑡𝑖)

||| . (4)

3. Results
In this section, the results of the liquid level extraction with the deeplearning model are presented for the training and testingprocedure, as well as for additional evaluations on different data sets.The results include the accuracy of the predicted segmentation mapswith respect to the hand-labelled masks and the mean absolute error ofthe extracted liquid level time series. Furthermore, the consistency ofthe hand-labelled data and the prediction is investigated in an inter-observer reliability test. Moreover, the limitations of the proposedimage processing technique are demonstrated and discussed.

3.1. Training and testing
The U-net was trained on a set of 483 pairs and tested on a set of

61 pairs of RGB-images from horizontal slug flow and correspondingmasks, as described in Sections 2.3 and 2.4. The training was termi-nated after 42 epochs due to early stopping. The best model was foundafter 31 epochs. For this model, a mean binary accuracy of 97.91%
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Fig. 5. Prediction of the U-net and extracted liquid level from Experiment Nr. 10 - 100𝐷 in comparison with hand-labelled mask for the interval [50 s, 55 s].
for the training set and a mean binary accuracy of 97.74% for thetest set, was achieved. These accuracies are high compared to the re-ported training and test accuracies in between 89% and 98.7% of othersuccessfully trained deep-learning based gas and liquid segmentationmodels, see e.g. Cerqueira and Paladino (2021), Yu et al. (2021) andAhmad et al. (2022).In Fig. 5, the RGB-pixelcolumn over time from Experiment Nr. 10 -
100𝐷, the prediction of the U-net, its binarization, the correspondinghand-labelled mask, as well as the extracted liquid level time seriesare given. Please note that, Experiment Nr. 10 - 100𝐷 belongs to thetraining set. The prediction of the U-net and its binarization show goodagreement with the mask. Furthermore, the gas and liquid regions aresegmented in more detail in the prediction, compared to the hand-labelled mask, as can be seen for instance at the slug between 52 s and
52.5 s in Fig. 5. Here, the hand-labelled mask shows one larger slug,but the prediction shows two slugs, which are separated by a short gasbubble and foam. Due to the foamy areas between the rear of the firstslug and the front of the second slug, this (optical) separation is notobvious. Nevertheless, the separation of the two slugs can be verifiedin the RGB-pixelcolumn over time, see Fig. 5a. Hence, in this case,the prediction from the trained model is more consistent and detailedcompared to the hand-labelled mask on which it was trained.In Table 3, the binary accuracy (see Eq. (2)) of the predictions andthe masks in full length, as well as the mean absolute error (see Eq. (4))of the extracted liquid level time series from prediction and mask aregiven for all experiments used for training and testing. The binaryaccuracy of the segmentation maps varies from 96.86% to 98.85% andthe mean absolute error of the liquid level time series varies from1.15% to 3.12%. From these high accuracies and low errors for thetraining and testing, it can be concluded, that the model performs wellfor the considered types of data. Furthermore, since the net accuratelypredicts the segmentation maps also for the two test sets that werenot used in training, it is able to generalize to unseen data from bothexperimental set-ups, respectively.

Table 3The number of the experiment, the recording set-up, the recorded time (length of thevideo), the belonging to training or test set, the binary accuracy 𝑎𝑐𝑐bin(𝐴pred , 𝐴mask) (seeEq. (2)) of the predicted segmentation map and corresponding mask as well as the meanabsolute error 𝜖(ℎpred𝐿 , ℎmask𝐿 ) (see Eq. (4)) of the liquid level time series, extracted fromprediction ℎpred𝐿 and mask ℎmask𝐿 are given for all experiments used for training andtesting.Experiment Set-up Rec. time Training 𝑎𝑐𝑐bin 𝜖(Nr. - 𝐿inflow) in s or Test in % in %

Nr. 1 - 100𝐷 1 122 Training 98.01 2.00Nr. 1 - 500𝐷 1 150 Training 98.65 1.38Nr. 2 - 100𝐷 1 150 Training 97.91 2.08Nr. 3 - 100𝐷 1 150 Training 98.17 1.82Nr. 3 - 500𝐷 1 150 Training 98.85 1.15Nr. 4 - 100𝐷 1 150 Training 97.40 2.59Nr. 4 - 500𝐷 1 150 Training 97.73 2.26Nr. 6 - 100𝐷 1 150 Training 97.15 2.85Nr. 9 - 100𝐷 3 122 Training 96.86 3.12Nr. 9 - 300𝐷 3 126 Training 97.61 2.41Nr. 9 - 600𝐷 3 121 Training 97.73 2.31Nr. 10 - 100𝐷 3 122 Training 97.54 2.45Nr. 10 - 300𝐷 3 125 Training 98.37 1.62Nr. 10 - 600𝐷 3 123 Training 98.47 1.52Nr. 11 - 100𝐷 3 122 Training 97.86 2.13Nr. 11 - 600𝐷 3 123 Training 98.12 1.84Nr. 11 - 300𝐷 3 123 Test 97.72 2.26Nr. 5 - 100𝐷 1 150 Test 97.75 2.42

3.2. Inter-observer test
In this section, the inter-observer reliability is considered to eval-uate the consistency of the hand-labelled data sets, which were usedfor the training of the U-net. For this, three independent observershave labelled the gas–liquid interface for the first 60 s of four chosenexperiments from the training and test set, namely Nr. 5 - 100𝐷, Nr.6 - 100𝐷, Nr. 9 - 100𝐷 and Nr. 10 - 300𝐷 (see Table 3). Please note
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Table 4The Pearson-correlation values for the pairwise comparison of the different labels.Experiment 𝑟(ℎobs1𝐿 , ℎobs2𝐿 ) 𝑟(ℎobs1𝐿 , ℎobs3𝐿 ) 𝑟(ℎobs2𝐿 , ℎobs3𝐿 )

Nr. 5 - 100𝐷 0.973 0.965 0.969Nr. 6 - 100𝐷 0.920 0.981 0.880Nr. 9 - 100𝐷 0.938 0.914 0.931Nr. 10 - 300𝐷 0.985 0.981 0.977
Table 5The Pearson-correlation values for the pairwise comparison of the prediction with thedifferent labels.Experiment 𝑟(ℎpred𝐿 , ℎobs1𝐿 ) 𝑟(ℎpred𝐿 , ℎobs2𝐿 ) 𝑟(ℎpred𝐿 , ℎobs3𝐿 )

Nr. 5 - 100𝐷 0.970 0.970 0.962Nr. 6 - 100𝐷 0.954 0.933 0.901Nr. 9 - 100𝐷 0.970 0.962 0.939Nr. 10 - 300𝐷 0.993 0.987 0.981

that, the U-net was trained and tested with labels from Observer 1. Theinter-observer or inter-rater reliability (IRR) is defined as the degree ofrelationship between the labels of different observers that are operatingindependently (Kottner and Dassen, 2008; Tinsley and Weiss, 1975).Here, the IRR for the hand-labelled time series is quantified by the nor-malized cross-correlation coefficient. In the IRR-context, this coefficientis also referred to as Pearson’s r or Pearson-correlation, see Kottner andDassen (2008) and Berman (2016).For every experiment, the labelled data sets of the different ob-servers show a strong correlation to each other with values in between0.88 and 0.985, see Table 4. This indicates a high degree of relationbetween the hand-labelled liquid level time series of the differentobservers. Hence, the hand-labelled liquid level time series show con-sistency and reliability among the different observers and are thereforesuited for the training of the U-net. This correlation was calculatedusing the function pearsonr of python’s SciPy module (Virtanen et al.,2020). Please note that, it returned 𝑝-values for the null-hypothesissignificance testing of less then 0.001 for all cases. Furthermore, thisanalysis is applied to the prediction of the U-net to quantify the degreeof relation between the prediction and the labels of the independentobservers, see Xiao et al. (2017).As given in Table 5, the Pearson-correlation values for the pairwisecomparisons of the prediction and the labels of the different observersreach from 0.901 to 0.993 with 𝑝-values of less then 0.001 for allcases. This shows a strong correlation in a similar range as for theobservers (see Table 4), and therefore, indicates a consistency betweenthe predictions of the U-net and the labels of the independent observers.In addition to the Pearson-correlation, the pointwise errors be-tween the hand-labelled time series of the different observers as wellas between the labels and the prediction of the U-net are consid-ered. For a quantification of the error between the observers, thethree time series of the pointwise errors between the different ob-servers |ℎobs𝑖𝐿 (𝑡𝑘) − ℎ
obs𝑗
𝐿 (𝑡𝑘)|𝑘=1,…,𝑁𝑡

for 𝑖 ≠ 𝑗 ∈ {1, 2, 3} are ensemble-averaged (Walburn et al., 1983) to obtain one time series of the averagepointwise error in between the observer for every experiment, i.e.,
⟨|ℎobs𝑖𝐿 − ℎ

obs𝑗
𝐿 |⟩(𝑡𝑘) = 1

3
∑

𝑖≠𝑗∈{1,2,3}
|ℎobs𝑖𝐿 (𝑡𝑘) − ℎ

obs𝑗
𝐿 (𝑡𝑘)|, for every 𝑡𝑘. (5)

The same is done for the comparison of ℎpred𝐿 and ℎ
obs𝑗
𝐿 with 𝑗 ∈ {1, 2, 3}.These ensemble-averages are shown as boxplots on the right side ofFig. 6. Here, the boxplots represent the distribution of these errors. Itcan be seen that, the statistical quantities (mean, median) and ranges(interquartile range and range between 5th and 95th percentile) ofthe errors are smaller for ⟨|ℎpred𝐿 − ℎ

obs𝑗
𝐿 |⟩ compared to ⟨|ℎobs𝑖𝐿 − ℎ

obs𝑗
𝐿 |⟩for all experiments. On the left side of Fig. 6, the range in betweenthe minima and maxima of the liquid level time series for every timepoint, labelled by the three observers, are given for the interval of 5 s.This range represents a tolerance in the observation of the gas–liquid

Table 6The number of the experiment, the recording set-up, the recorded time (length ofthe video), the binary accuracy 𝑎𝑐𝑐bin(𝐴pred , 𝐴mask) (see Eq. (2)) of the predictedsegmentation map and corresponding mask as well as the mean absolute error
𝜖(ℎpred𝐿 , ℎmask𝐿 ) (see Eq. (4)) of the liquid level time series, extracted from prediction
ℎpred𝐿 and mask ℎmask𝐿 for the three additional independent evaluations.Experiment Set-up Rec. time 𝑎𝑐𝑐bin 𝜖(Nr. - 𝐿inflow) in s in % in %

Nr. 7 - 100𝐷 2 60 96.99 3.00Nr. 12 - 100𝐷 4 60 95.41 4.92Nr. 13 - 100𝐷 3 60 97.68 2.32

interface or the liquid level. In addition to this, the liquid level timeseries from the prediction of the U-net is superimposed. Here, it can beseen that, the predicted time series is near or in the tolerance range.Altogether, the hand-labelled parameters of the different observershave a strong correlation as well as low pointwise errors betweeneach other. Hence, this parameter shows consistency in between theobservers and is therefore a reliable parameter for the training of theU-net. Furthermore, the comparison of the predicted liquid level timeseries with the observers show not only similarly strong correlation val-ues, but also smaller statistical quantities of the considered pointwiseerrors. Hence, the predictions of the U-net also provide liquid level timeseries, which are consistent with respect to the different observers.
3.3. Further evaluations on different data sets

For further evaluations on the reliability and versatility of thetrained model, data from three additional experiments are considered,which differ from the ones used for training and testing.The model was trained and tested for Paraflex oil–nitrogen slugflows with black or blue background (recording set-up 1 and 3), seeFig. 3 and Section 2.4. In contrast to this, the flows considered in thissection are either recorded in a different set-up with different fluids,or for a different flow pattern. They inlcude the brine water–nitrogenslug flow experiment Nr. 7 - 100𝐷 from recording set-up 2 with greyliquid colour and dark blue background, the Exxsol oil–nitrogen slugflow experiment Nr. 12 - 100𝐷 from recording set-up 4 with an ocher-green liquid colour, and the stratified wavy Paraflex oil–nitrogen flowexperiment Nr. 13 - 100𝐷 from recording set-up 3. Please note that, alsothe lighting conditions and occurring reflections differ from the trainingand test set, e.g., reflections in the back of the pipe for Experiment Nr.7 - 100𝐷 and white colour on top of the slugs for Experiment Nr. 12- 100𝐷, see Fig. 7. These differences are causing changes in contrastand RGB-intensity values. Together with the different flow pattern, thisleads to a change in conditions for the model, compared to the trainingand testing data.In Table 6, the binary accuracy of the prediction and the corre-sponding hand-labelled masks as well as the mean absolute error ofthe extracted liquid level time series are given. For the Brine water–nitrogen slug flow of Experiment Nr. 7 - 100𝐷, the binary accuracyof 96.99% and the error value of 3% are in the same ranges as forthe training and testing that are [96.86%, 98.85%] and [1.15%, 3.12%],respectively. The same holds for the stratified wavy flow of ExperimentNr. 13 - 100𝐷, with a binary accuracy of 97.68% and an error of2.32%. The prediction for the slug flow experiment Nr. 12 - 100𝐷 didnot achieve such high accuracy as the other experiments. Nevertheless,with a binary accuracy of 95.41% and an error of 4.92%, it is still closeto the other values and a reasonable result.In Fig. 7, the RGB-pixelcolumn over time with the extracted liquidlevels from the prediction and the hand-labelled mask are given for atime interval of 5 s for experiment Nr. 7 - 100𝐷, Nr. 12 - 100𝐷 and Nr. 13- 100𝐷. As it can be seen in Fig. 7(i), the liquid level from the predictionfor the brine water - nitrogen slug flow experiment Nr. 7 - 100𝐷 showsa frequent underestimation in foamy areas in between shorter slugs.
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Fig. 6. Inter-observer comparison with prediction for the slug flow experiments Nr. 5 - 100𝐷, Nr. 6 - 100𝐷, Nr. 9 - 100𝐷 and Nr. 10 - 300𝐷. Left: range of hand-labelled liquidlevel time series by the three independent observers and superimposed prediction for 5 s. Right: Boxplots of the ensemble-averaged point wise differences between the observersand between prediction and observers. Please note, the whiskers in the boxplots represents the 5th and 95th percentile, the coloured box represents the interquartile range (Q3-Q1),the horizontal line in the box represents the median, and the black cross represents the mean. (For interpretation of the references to colour in this figure legend, the reader isreferred to the web version of this article.)
For the Exxsol oil - nitrogen slug flow experiment Nr. 12 - 100𝐷 inFig. 7(ii), the prediction shows differences for slugs that are close toeach other, see for instance the slugs at [50 s, 50.5 s] and [52 s, 52.5 s].Furthermore, for this flow, the slug rears are predicted later comparedto the mask. One reason for this is the liquid film that flows down onthe inner walls of the pipe after a slug passed by. This also causes thetop of the slugs to appear smeared out in the RGB-pixelcolumn overtime and leads to the differences in between prediction and mask. Apartfrom the aforementioned deviations, the liquid level time series fromthe prediction and mask are in good agreement for all three flows.In addition to this evaluation, the two previously unseen slug flowexperiments Nr. 7 - 100𝐷 and Nr. 12 - 100𝐷 are further validated inthe same manner as in the inter-observer test in Section 3.2. There-fore, the three independent observers have labelled the gas–liquidinterface of these two slug flows. For the validation, the Pearson-correlation 𝑟 between the different observers, as well as between theprediction and the observers, are considered, see Tables 7 and 8.Furthermore, the ensemble-averaged pointwise errors ⟨|ℎpred𝐿 − ℎ

obs𝑗
𝐿 |⟩and ⟨|ℎobs𝑖𝐿 − ℎ

obs𝑗
𝐿 |⟩ are considered for this evaluation, see Fig. 8.For the two additional experiments, the hand-labelled data sets ofthe different observers show a strong correlation to each other withvalues in between 0.922 and 0.974 and 𝑝-values of less then 0.001, see

Table 7The Pearson-correlation values for the pairwise comparison of the different labels.Experiment 𝑟(ℎobs1𝐿 , ℎobs2𝐿 ) 𝑟(ℎobs1𝐿 , ℎobs3𝐿 ) 𝑟(ℎobs2𝐿 , ℎobs3𝐿 )

Nr. 7 - 100𝐷 0.974 0.958 0.953Nr. 12 - 100𝐷 0.941 0.942 0.922

Table 7. These values are similar to the ones obtained for the inter-observer test in Section 3.2 and indicate a high degree of relationbetween the hand-labelled liquid level time series of the differentobservers. The Pearson-correlation values for the pairwise comparisonsof the prediction and the labels of the different observers reach from0.868 to 0.967 with 𝑝-values of less then 0.001, see Table 8. Thisalso shows a strong correlation and, therefore, indicates a consistencybetween the predictions of the U-net and the labels of the independentobservers.As mentioned in the discussion of Fig. 7, the predictions of theliquid level time series for Experiment Nr. 7 - 100𝐷 and Nr. 12 - 100𝐷show some systematic deviations from the hand-labelled data. For thepreviously unseen nitrogen-water slug flow Experiment Nr. 7 - 100𝐷,the prediction of the liquid level at the aerated liquid film region behindthe slugs is often lower compared to the hand-labelled data. Moreover,for the previously unseen nitrogen–oil–water slug flow Experiment
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Fig. 7. Visualization of the results for three untrained flows and set-ups. For each experiment, the RGB-pixelcolumn over time and the extracted liquid level from the binarizedprediction and the corresponding mask are given for the time interval [50 s, 55 s]. (For interpretation of the references to colour in this figure legend, the reader is referred to theweb version of this article.)
Table 8The Pearson-correlation values for the pairwise comparison of the prediction with thedifferent labels.Experiment 𝑟(ℎpred𝐿 , ℎobs1𝐿 ) 𝑟(ℎpred𝐿 , ℎobs2𝐿 ) 𝑟(ℎpred𝐿 , ℎobs3𝐿 )

Nr. 7 - 100𝐷 0.967 0.957 0.946Nr. 12 - 100𝐷 0.905 0.900 0.868

Nr. 12 - 100𝐷, the slug rears often appear later in the predictioncompared to the hand-labelled data. This is also shown in Fig. 8. Thisbehaviour leads to slightly lower (but still high) Pearson-correlationvalues between the prediction and the observers for Experiment Nr. 12- 100𝐷 compared to Experiment Nr. 7 - 100𝐷. Furthermore, this alsoleads to a slightly larger variation in the ensemble-averaged pointwiseerrors ⟨|ℎpred𝐿 − ℎ
obs𝑗
𝐿 |⟩, compared to ⟨|ℎobs𝑖𝐿 − ℎ

obs𝑗
𝐿 |⟩ for both experi-ments, see Fig. 8. Nevertheless, the liquid level predictions of bothexperiments are near or in the tolerance range of the observers, seeleft side of Fig. 8. Moreover, the statistical parameters of the ensemble-averaged pointwise errors between the predictions and the observers

⟨|ℎpred𝐿 − ℎ
obs𝑗
𝐿 |⟩ are very similar to the ones between the differentobservers ⟨|ℎobs𝑖𝐿 − ℎ

obs𝑗
𝐿 |⟩, see right side of Fig. 8. Hence, for the two

difficult unseen slug flow experiments Nr. 7 - 100𝐷 and Nr. 12 - 100𝐷,a strong consistency between the prediction and the observers can beconcluded.In the further, slug flow characteristics are calculated from theextracted liquid level time series for Experiment Nr. 12 - 100𝐷. Thecharacteristics considered in this paper are the slug unit times 𝑇𝑢,the slug body times 𝑇𝑏, as well as their mean values, the mean slugfrequency 𝑓𝑠, the mean slug unit length �̄�𝑢, the mean slug body length
�̄�𝑏, as well as the mean translational velocity of the slugs �̄�slug, seeFig. 1 and Eq. (1). Considering these slug characteristics that can be ob-tained from the predicted time series exemplifies the physical insightsprovided by the results of the proposed image processing technique.It also allows further validation of the predicted time series. In thatregard, it is shown that the predicted liquid level time series providereasonable slug characteristics, also for the unseen data of ExperimentNr. 12 - 100𝐷 with the lowest accuracy and largest error values of allconsidered cases (𝑎𝑐𝑐bin(𝐴pred, 𝐴mask) = 95.41%, 𝜖(ℎpred𝐿 , ℎmask𝐿 ) = 4.92%),see Tables 3 and 6.In Fig. 9a, the predicted and hand-labelled liquid level time seriesof Experiment Nr. 12 - 100𝐷 are given for a time interval of 5 s, similarto Fig. 7(ii). For the calculation of the slug unit times 𝑇𝑢 and slug bodytimes 𝑇𝑏, a threshold value of 0.95 has been set to detect the slug fronts
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Fig. 8. Inter-observer comparison with prediction for the slug flow experiments Nr. 7 - 100𝐷 and Nr. 12 - 100𝐷. Left: range of hand-labelled liquid level time series by the threeindependent observers and superimposed prediction for 5 s. Right: Boxplots of the ensemble-averaged point wise differences between the observers and between prediction andobservers. Please note, the whiskers in the boxplots represents the 5th and 95th percentile, the coloured box represents the interquartile range (Q3-Q1), the horizontal line in thebox represents the median, and the black cross represents the mean. (For interpretation of the references to colour in this figure legend, the reader is referred to the web versionof this article.)

Fig. 9. The predicted and hand-labelled liquid level time series ℎmask𝐿 and ℎpred𝐿 for Experiment Nr. 12 - 100𝐷 with the threshold of 0.95 for slug detection (see a), histograms andprobability density functions (pdf’s) of the slug unit times 𝑇𝑢 (see b) and slug body times 𝑇𝑏 (see c) in comparison. Here, an illustration of the calculation of 𝑇𝑢 and 𝑇𝑏 is givenin the time series plot (see a).
and slug rears in the time series, as illustrated in Fig. 9a. Please notethat thresholding is the conventional procedure for this task, see Zhaoet al. (2015), Baba et al. (2018) and Schmelter et al. (2021a), andtherefore also applied in this investigation. Generally, the choice ofthe threshold values for the detection of slugs in the time series is notobvious and needs to be chosen individually for every time series. Itshould not be too high, otherwise larger slugs are separated by theirentrained gas bubbles. However, it should also be chosen high enoughto avoid the miscounting of large amplitude waves (Schmelter et al.,2021a). Furthermore, the histograms and probability density functions(pdf’s) of the calculated slug unit times 𝑇𝑢 and the slug body times 𝑇𝑏

are given in Fig. 9b and c for both, the hand-labelled and predictedliquid level time series. It can be seen that the predicted time seriesprovide similar values for 𝑇𝑢 and 𝑇𝑏 compared to the hand-labelledtime series. This is especially the case for the slug unit times 𝑇𝑢 withnearly identical pdf’s. The histograms and pdf’s for the slug body timesshow a slight shift to larger values for the prediction compared tothe hand-labelled time series. This is caused by the later predictionof the slug rears in the predicted liquid level time series, as alreadydiscussed for Fig. 7(ii). Furthermore, the mean slug frequency 𝑓𝑠 candirectly be obtained from the mean slug unit time �̄�𝑢, see Eq. (1),
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Fig. 10. Illustration of the calculation of the mean translational slug velocity �̄�slug.
which is about 2.4Hz for both time series, see also Table 9. In addi-tion, the mean translational velocity of the slugs is calculated for thehand-labelled and predicted liquid level time series. This was achievedby a cross-correlation analysis, which is typically used to calculate themean translational velocity and approximate the length scales 𝐿𝑢 and
𝐿𝑏 of the slugs from hold-up and liquid level time series, see Babaet al. (2018), Viggiano et al. (2018) and Olbrich et al. (2021a). Forthis, the proposed image processing technique is applied to extractthe liquid level time series at two different positions 𝑥1 and 𝑥2 alongthe pipe in the video with a distance of 2.2 inner diameters 𝐷, asillustrated in Fig. 10. For the comparison, also hand-labelled liquidlevel time series have been considered for these positions. Then, thetime lags of the time series from position 𝑥1 and 𝑥2 are calculated byusing the cross-correlation coefficient for the time series, resulting in
8 time steps (0.033 s) for the prediction and 7 time steps (0.029 s) forthe hand-labelled time series with a sample rate of 240Hz. Then, themean translational velocity of the slugs �̄�slug is obtained by dividingthe distance between 𝑥1 and 𝑥2 (0.146m) by the calculated time lag(0.033 s for the prediction and 0.029 s for the hand-labelled time series),resulting in �̄�slug = 4.390m s−1 for the prediction and �̄�slug = 5.017m s−1for the hand-labelled time series, see also Table 9.Moreover, the mean slug body length 𝐿𝑏 and the mean slug unitlength 𝐿𝑢 are approximated by multiplying the corresponding meantime scales �̄�𝑢 and �̄�𝑏 with the mean translational slug velocity �̄�slug.The approximated length scales for both, the prediction and the hand-labelled time series can also be found in Table 9. Altogether, the slugflow characteristics obtained by the predicted liquid level time seriesare in good agreement with the ones from the hand-labelled time series.This holds in particular for the temporal scales (�̄�𝑢, �̄�𝑏, 𝑓𝑠). For thespatial scales (�̄�𝑢 and �̄�𝑏), on the other hand, slight deviations betweenthe predicted and the hand-labelled data can be observed due to theone time step difference in the lag detected in the cross-correlationprocedure. Hence, this analysis also gives insight into how much errorpropagation plays a role if parameters are considered that are notdirectly determined but calculated from other derived quantities.The characterization of slug flow with length and time scales as wellas frequency spectra of the complete liquid level time series, obtainedfrom the results of the proposed deep learning based image processingtechnique have already been used in the investigation of flow exper-iments and validation of numerical simulations, see Schmelter et al.(2021b).

Table 9Comparison of the mean slug characteristics calculated from the hand-labelled andpredicted liquid level time series.Parameter Mask Prediction
Mean slug unit time �̄�𝑢 in s 0.421 0.415Mean slug body time �̄�𝑏 in s 0.205 0.229Mean slug frequency 𝑓𝑠 in Hz 2.373 2.407Mean transl. slug vel. �̄�slug in ms−1 5.017 4.390Mean slug unit length �̄�𝑢 in D 31.709 27.353Mean slug body length �̄�𝑏 in D 15.392 15.056

Altogether, it can be concluded that the trained model can handledifferent types of data and provides reliable results for its specifictask. Furthermore the proposed image processing technique providesaccurate liquid level time series that allow a detailed characterizationof the flow.
4. Limitations

The visual recognition of gas and liquid regions or the gas–liquidinterface in the video data constitutes a major limitation of the suc-cessful extraction of the liquid level time series with the proposeddeep learning based image processing technique. For flows, where theinterface cannot be observed from the side, a meaningful gas–liquidsegmentation cannot be provided by the trained model. This is forinstance the case for dispersed or annular flow patterns as well as forflows with large amounts of liquid spray, e.g., for slug or wavy flowsin the transition to a dispersed or annular flow pattern. Furthermore,for foamy/bubbly regions in the flow, the segmentation often includesfoam into the liquid phase, leading to overestimated absolute valuesfor the liquid level time series. This overestimation was investigated indetail in Olbrich et al. (2021b), where hand-labelled liquid level timeseries of slug flow have been compared to reference parameters of aconventional tomography measurement system.To demonstrate the limitations of a meaningful liquid level ex-traction with the proposed image processing technique, the method isapplied to four instances of slug flow with larger amounts of dispersedphenomena, such as foam/bubbles or spray/mist. These are ExperimentNr. 8 and 14 with high liquid and low gas flow rates leading to a highliquid level in the pipe with large amounts of short slugs and foam/bubbles (see Tables. 2, 10 and Figs. 11i, 11iii) as well as Experiment
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Fig. 11. Visualization of the limitations of the prediction for four slug flows with large amounts of dispersed phenomena. For each experiment, the RGB-pixelcolumn over time(see a), the binarized predicted segmentation map (see b) and the extracted liquid level time series (see c) are given for the time interval [50 s, 55 s].
Table 10The number of the experiment, the recording set-up, the recorded time (length of thevideo), the superficial liquid and gas velocities 𝑣liquid𝑠 , 𝑣gas𝑠 (see also Table 2) and thedominant dispersed phenomena in the flow leading to an unrecognizable gas–liquidinterface.Experiment Set-up Rec. time 𝑣liquid𝑠 𝑣gas𝑠 Dispersed(Nr. - 𝐿inflow) in s in ms−1 in ms−1 phenomena
Nr. 8 - 100𝐷 1 60 3.386 1.276 Foam/bubblesNr. 14 - 100𝐷 3 60 3.911 1.548 Foam/bubblesNr. 15 - 100𝐷 3 60 0.399 7.699 Spray/mistNr. 16 - 100𝐷 3 60 1.209 11.442 Spray/mist

Nr. 15 and 16 with high gas and low liquid flow rates leading to a lowliquid level with fewer shorter slugs and large amounts of spray/mist(see Tables. 2, 10 and Figs. 11ii, 11iv).Due to the dispersed phenomena, the gas–liquid interface becomes(at least partially) unrecognizable for the observer in the consideredimage data. Thus, a meaningful hand-labelled segmentation map asground truth for a validation of the prediction is not obtainable. How-ever, the predictions are presented with the RGB-pixelcolumns overtime in order to give an impression about the limitations of the pro-posed deep-learning based image processing technique.For Experiment Nr. 8 and 15, the binarized predictions show arte-facts caused by the foam/bubbles or the spray/mist, see for instancethe segmented bubble in the foam/bubbles at [51.5 s, 52 s] in Fig. 11i(b)as well as the segmented lump of liquid in the spray/mist at 53 s inFig. 11ii(b). These artefacts lead to deviations for the extraction ofthe liquid level time series. Despite the fact that a detailed validationwith hand-labelled segmentation masks cannot be made, the extractedliquid level time series show the dominant liquid structures in theflow and can therefore be used for a quantification of the slugs in

these two cases. For Experiment Nr. 14 and 16, on the other hand,with more dispersed phenomena compared to Experiment Nr. 8 and15, the binarized predictions show larger areas of segmented liquidcompared to what can visually be observed in the corresponding RGB-pixelcolumns over time (see 11iii(a,b) and 11iv(a,b)). This includesfoam/bubbles or spray/mist, which are identified as liquid in the gas–liquid segmentation by the trained deep learning model, leading toimpractical liquid level time series approximations.
5. Conclusions

In this paper, an image processing method based on a superviseddeep learning model was presented, which extracts the liquid level timeseries from video recordings of liquid–gas flows in horizontal pipes.This method consists of a certain type of a deep convolutional neuralnetwork, called U-net, and several pre- and post-processing steps. TheU-net was trained and tested with video data from horizontal oil–gasslug flows for the task of segmenting liquid and gas regions in the videoframe data. For further evaluations of this model, additional indepen-dent video data were considered, which show different fluids, recordingset-ups, and flow pattern. It was shown that, the trained model providesan accurate segmentation of oil and gas in the video data, even forpreviously unseen video recordings. In that regard, the model hasproven to be versatile and is also applicable for other transparentgases. Furthermore, the extracted liquid level time series from thepredicted segmentation maps show low errors. For the quantificationof accuracy and error values, hand-labelled data was used as reference.The consistency between these hand-labelled data and the predictionsof the U-net was shown in an inter-observer reliability test. Moreover,it was demonstrated how flow characteristics can be obtained fromthe results of the deep-learning based image processing technique.
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Altogether, the presented method accurately extracts the liquid leveltime series from the considered video data. It can handle different typesof data, even unseen data sets. Furthermore, it can overcome variousnoise effects, which are generally included in such image or video data.Once, the net is successfully trained, it predicts highly accurate segmen-tation maps in very short time. Prospectively, this method can provideparameters for the analysis and characterization of certain types ofmultiphase flows, in particular for the wavy or slug flow pattern,where temporal and spatial scales of the slugs, waves and bubbles, aswell as their translational velocities can be derived from the extractedliquid level time series. The achieved characterization helps to assessand quantify problems for industrial operations that are induced byspecific flow patterns. In addition, the proposed model has the potentialfor a segmentation of more complex three-phase flows, such as gas–oil–water flows with separate phases, on condition that it is trainedwith such data. Moreover, the proposed deep-learning based imageprocessing technique can be used for monitoring multiphase flows foroperation control if a transparent viewing section can be installed. Thisincludes academic investigations under laboratory conditions as wellas industrial applications, e.g., transportation pipelines in the oil andgas industry as well as cooling systems in the nuclear energy sector. Inthat regard, the link between the extracted liquid level time series andcontrolling parameters, such as pressure, flow rates, and phase ratiocan be subject to further research.
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3
Discussion

3.1 The quantification of horizontal slug flow with snapshot
Proper Orthogonal Decomposition

The conventional procedures for the quantification for horizontal slug flow are focusing either
on a temporal description of the flow or a spatial description of the slugs. For the temporal
quantification of slug flow, this includes time series analysis of phase volume fraction [40] and
liquid level measurements [36], slug triggering mechanisms [63] as well as manually counting
slugs [67]. Typically, these analyses are performed on data sets, which provide information
about the dynamics of the phase distribution at a certain position in the pipe, but do not
contain necessary spatial information about the slugs, for instance cross-sectional measurements
[54] or single local wire-sensor [56]. To extrapolate spatial information of the slugs from these
data, additional parameters, such as the translational slug velocities, need to be measured
in advance [50]. For the measurement of spatial information of the slugs on the other hand,
image processing techniques are usually employed on image or video data of the slugs [64].
Although video data contain temporal information too, the reported spatial analyses of slugs
have not yet focused on the flow dynamics. In this context, a novel approach for a robust
temporal and spatial quantification of horizontal slug flow with snapshot POD is presented,
which uses spatio-temporal data sets, such as raw video data or snapshot sequences of phase
fraction fields.

The snapshot POD is a modal decomposition, which extracts an energy-ranked mode
basis of the coherent structures from the flow data [68, 69]. It is the most widely used POD
method in fluid mechanics [69] and often employed for the identification and characterization
of coherent structures in singlephase turbulent flows [72, 71, 75, 69]. For multiphase flows,
however, there are only a few references on POD. In [85, 86, 87, 88], POD was used to identify
coherent turbulent structures, such as eddies, in gas-liquid flows. In these investigations, the
method was typically applied to velocity data from PIV-measurements. In [82, 83, 84, 89],
POD was used for reduced order modelling with the aim of recognizing different flow patterns
as well as the transition between them. In this context, the analyses were usually performed
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on cross-sectional measurements of the phase distribution in the pipe. Measured flow data
were approximated by a reduced order model based on a small number of POD modes, which
capture the dominant behavior of the flow pattern. In [89], POD was applied to cross sectional
tomography measurements of horizontal slug flow. They found a strong correlation between
the temporal coefficient of one of the dominant POD modes and the liquid holdup in the pipe.
From that, a timescale was derived to characterize the slugs. In summary, POD was used to
find a low order description of large and complex multiphase flow data sets, to investigate
turbulent structures in two-phase flows, and to characterize horizontal slug flow in time.

In this thesis, not only a temporal, but also a spatial characterization of horizontal gas-liquid
slug flow with snapshot POD is presented. For the considered data sets, the characterization of
slug flow is derived from the most dominant POD-mode pair and the corresponding temporal
coefficients. These POD-analyses are performed on phase fraction fields from a longitudinal
section along the vertical centerline of the pipe, as well as high speed video recordings of the
slug flow from the side, see Section 1.4 or Section 3 in Publication I (2.2) and Section 3 and
4 in Publication II (2.2). In the first step, an operationally induced slug flow is analyzed,
which consists only of periodically formed slugs that appear with the exact frequency of 1 Hz
at the point of observation, see Section 1.4 or Section 3 in Publication I (2.2) and Section
3 and 4 in Publication II (2.2). Hence, the slugs constitute a periodic structure in the data
set. Since the dynamics of periodic structures can be described by a pair of POD-modes,
the mode-coupling algorithm proposed by Sieber et al. in [68] is applied a-posteriori to the
temporal coefficients of the calculated POD-modes. In this algorithm, related modes are
identified by the spectral similarity of their temporal coefficients, which is measured by using
the so-called harmonic correlation from [68], see Equation (9) in Publication II (2.2). This
measure provides a quantification of the spectral proximity of the individual modes and allows
a coupling of the modes also for flows with more complex dynamics [68]. Thus, the mode
coupling algorithm is also applied for the POD-analysis of the considered non-periodic slug
flows. Generally, this technique helps to condense information about the individual coherent
structures in the flow, which are provided by the snapshot Proper Orthogonal Decomposition.
This is of particular interest in the context of this thesis since a characterization of specific
structures, namely slugs, is desired.

For the investigation of this novel approach for the quantification of horizontal slug flow
with snapshot POD, three aspects are addressed. These are the representation of the slugs in
the POD modes, the derivation of the spatial and temporal characteristics of slug flow from
the POD-modes, and the data requirements for this application.

3.1.1 Representation of the slugs in the POD modes

In the investigations for the quantification of horizontal slug flow by using snapshot POD, it
was shown in Publication I and II that, the slugs of the considered horizontal slug flows are
represented in the most dominant mode pair of a snapshot-POD analysis. This includes a
strong similarity between the (ensemble) averaged slug and the liquid structure in the spatial
modes as well as a strong similarity between the standardized liquid level time series and the
standardized temporal coefficients of the most dominant mode pair. These similarities are
illustrated for one of the two modes from the most dominant mode pair in Figure 3.1 for two

60



3.1 The quantification of horizontal slug flow with snapshot Proper Orthogonal
Decomposition

instances of slug flow, i.e., an air-water slug flow from the numerical simulation and a gas-oil
slug flow from an experiment. For details, see Publication II (Section 2.2).
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Figure 3.1: Illustration of the spatial modes ϕ1 (see b and e) and their temporal coefficients a1 in
z-score (see black line in a and d) from the most dominant mode pair of a snapshot POD-analysis
in comparison with corresponding liquid level time series hL in z-score (see red line in a and d)
and the (ensemble) averaged slugs S̄ (see c and f) for an air-water slug flow from a numerical
simulation (phase fraction fields) and a gas-oil slug flow from an experiment (video recordings).
For reasons of clarity, the interface from the averaged slug is highlighted in f and superimposed
over the spatial modes in e). In addition, the mean slug body lengths Ls̄ are indicated. For details
see Publication II in Section 2.2

The representation of the slugs in the POD-modes is further discussed in the following.

3.1.1.1 Spatial Modes

It was found for the considered data sets that, the (ensemble) averaged slug is represented
in the spatial modes of the dominant POD-mode pair. This was concluded from a detailed
comparison of the spatial modes with the (ensemble) averaged slug, including visual comparison
as well as a quantitative comparison of the derived length scales. Moreover, for the high-quality
phase fraction fields from the simulated air-water slug flow, a detailed correlation analysis of
the spatial mode and the averaged slug was conducted in addition to determine the similarity
between these structures. In the context of image processing, the normalized 2-dimensional
cross-correlation coefficient is a common similarity measure for images and often used in
template matching tasks [104].

For the comparison with the averaged slug, the one out of two spatial modes of the mode
pair was considered, for which the liquid structure was visible to its full extend. Generally,
the two spatial modes of the most energetic mode pair show the same structure, but are
shifted to each other. This can be concluded from the coupling procedure of the POD-modes
and the calculation of the spatial modes from the corresponding temporal coefficients. In
the mode coupling algorithm, related modes are identified by the spectral similarity of their
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temporal coefficients, which accounts for modes that have similar, but shifted dynamics. Thus,
the temporal coefficients of the coupled modes show similar patterns and behavior, but they
are shifted to each other. Since the spatial modes are calculated as the weighted average of
the fluctuations of the snapshots, where the weights are given by the values of the temporal
coefficients and the corresponding eigenvalues (see Equation (1.5)), the spatial modes are also
shifted in the same manner. Due to this shift, the structure shown in the spatial modes, is not
necessarily visible to its full extend in both of the modes, even if the length of the observed
pipe segment (region of interest) is large enough to resolve the entire structure. However, in
the course of these investigations, the averaged slug was typically visible in one of the two
spatial modes of the most energetic mode pair for the considered data sets with a sufficiently
long pipe segment.

Another aspect in the comparison of the (ensemble) averaged slug with the structure in
the spatial modes is their position in the considered pipe segment. This needs to be taken
into account to avoid undesired differences in slug shape and length, which can be caused for
instance by slug growth. Hence, the structure in the spatial modes dictate the position for the
comparison and the (ensemble) averaged slug needs to be calculated at this position.

3.1.1.2 Temporal Coefficients

Apart from the spatial modes, it was also found for the considered data sets that, the dynamics
of the liquid level time series are represented in the temporal coefficients of the dominant
POD-mode pair. In detail, the standard score of the liquid level time series coincides with the
standard score of the temporal coefficients. This was concluded from a detailed comparison of
the temporal coefficients with the liquid level time series in standard score, including visual
comparison, quantitative comparison of the derived time scales, as well as an error analysis.
Therefore, the temporal coefficients describe the temporal features of slug flow. Since the
snapshot POD provides a mode basis for the data set, the individual basis elements do generally
not have values that are in the same range as the variable, which has been decomposed. Due
to that, the temporal coefficients and the spatial modes represent the temporal or spatial
variations, but they do not attain the absolute values of the parameters, such as liquid level
time series or the phase distribution for the (ensemble) averaged slug, respectively. For this
reason, the liquid level time series and the temporal coefficients have been compared in standard
score and the spatial modes have been normalized accordingly.

In the course of these investigations, the liquid level time series have been extracted from
the vertical centerline of the pipe or approximated from video observations from the side, at a
fixed streamwise position in the observed pipe segment. In order to avoid undesired deviations
in the comparison of the temporal coefficient with the liquid level time series, this streamwise
position needs to be taken into account. In this context, it was found for the considered data
sets that, the standardized temporal coefficient approximates best the standardized liquid level
time series, which has been extracted at the streamwise position, where the liquid intensity in
the corresponding spatial mode is maximal. Typically, the position was located in the middle
of the liquid structure (averaged slug) shown in the spatial mode.

Generally, the most energetic POD-modes represent the most dominant structures of the
flow in terms of their fluctuations in the data. Thus, for more complex types of slug flow, such
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as flows consisting of slugs and larger waves, the mode pair does not exclusively represent the
slugs in the flow, but also other larger structures, e.g., the larger waves. This can be seen in
the temporal coefficients, which reveal the dynamics of the gas-liquid interface at a certain
position, especially for larger structures (see Figure 3.1d). Thus, the larger waves are also
represented in the spatial modes, which are calculated with the temporal coefficients. However,
from a phenomenological point of view, the large amplitude waves in between the slugs are
typically shorter (in their length) compared to the slugs, and become less for further developed
slug flows. Hence, the slug remains the prominent structure visible in the spatial mode. On
the other hand, for the considered types of slug flow data, the slugs and large amplitude waves
constitute the most dominant fluctuations in the data set. Due to that, it is reasonable for
these dominant structures to be represented by the most dominant mode pair with the largest
eigenvalues-ratio.

Altogether, the scientific result presented in Publication I and II (see Section 2.1 and
2.2) are leading to the conclusion that, the slugs are represented in the dominant mode pair
of a snapshot POD-analysis for the considered slug flow data sets. These results include a
description of the gas-liquid interface dynamics (approximation of the dynamics of the liquid
level time series) in the temporal coefficients as well as the representation of the averaged slug
in the spatial modes. This allows a detailed characterization of the temporal features of the
flow as well as a statistical characterization of the spatial features of the slug. In this context,
the derivation of time and length scales for the characterization of slug flow are discussed in
the following section.

3.1.2 Derivation of time and length scales from the POD modes for the
characterization of slug flow

In Publication I and II, different approaches for the derivation of the characterizing time
and length scales for slug flow from the most dominant mode pair of a POD analysis have
been considered, and further investigations on the accuracy of these length and time scales
have been conducted. As discussed in the previous section, both temporal coefficients from
the most energetic mode pair represent the dynamics of the vertical position of the gas-
liquid interface from the considered data sets. However, it was observed that one of the
two standardized temporal coefficients approximates the standardized liquid level time series
more accurate. Typically, for this temporal coefficient, the averaged slug structure was more
distinctly recognizable in the corresponding spatial mode. In detail, this means that the entire
slug structure was typically visible to its full extend for observed pipe segments (regions of
interest), which are large enough to resolve it. On the other hand, for observed pipe segments
(region of interests), that are shorter, the spatial mode appeared to be completely filled with
liquid, which indicates the averaged slug structure, but did not show it to its full extend.
This spatial mode and the corresponding temporal coefficient was further considered for the
derivation of the characterizing time and length scales of slug flow, see for instance Figure 3.1.
In the following, this derivation of the time and length scales is further discussed.
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3.1.2.1 Conventional length and time scales of slug flow

An approximation of the averaged slug body length Ls̄ can directly be obtained from the
representation of the averaged slug in the spatial mode, see Figure 3.1. Moreover, the
characterizing time scales of slug flow, such as slug unit times Tu or slug body times Tb, can be
derived from the temporal coefficient. Then, the mean slug frequency can be calculated from
Tu as given in Equation (1.1). Typically, for analyses of holdup time series, these quantities
are calculated by simple thresholding procedures, see [105, 50]. Although, thresholding is
error-prone, it is the conventional procedure for this task and therefore also applied in these
investigations. Generally, the choice of the threshold values for the slug detection in the time
series is not obvious. In particular for the temporal coefficient, which has a different range
compared to the typical quantities, such as liquid level or holdup. In a first approach in
Publication I (see Section 2.1), the threshold value has been chosen generically as 0 for the time
series in standard score, which led to an estimate of the mean time of the entire slug structure
passing by, instead of a reasonable approximation of the slug body time. Consequently, an
appropriate choice of a threshold value for the time scale detection needs further considerations.
It must be noticed that, the threshold value needs to be chosen individually for every time
series. Furthermore, it should not be too high, otherwise larger slugs are separated by their
entrained gas bubbles. However, it should also be chosen high enough to avoid the detection of
large amplitude waves [106]. Based on this, the threshold procedure was adapted accordingly
for the individual time series in the more detailed analyses in Publication II (see Section 2.2)
with the aim of accurately calculating the slug body times.

3.1.2.2 Dominant frequency and eigenvalues of the POD-modes

The dominant frequency fi,j of the mode pair (ai, aj) is provided by the mode coupling
algorithm, see Equation (10) in Publication II (Section 2.2). This parameter represents a
mean dominant frequency of the corresponding time series given by the temporal coefficients
(ai, aj). For the dominant mode pair of the considered slug flows, this frequency provides an
approximation of the dominant frequency of the liquid level time series hL, since the temporal
coefficients of the mode pair approximate hL. Thus, it can be used as an additional quantity
for the characterization of the flow. In this context however, the dominant frequency fi,j of the
most dominant mode pair (ai, aj) is generally not equal to the mean slug frequency fs̄, which
is defined as the inverse mean time in between consecutive slugs, see Equation (1.1). But for
certain types of slug flow, such as the periodic air-water slug flow considered in Publication I
and II (Section 2.1 and 2.2), these frequencies can coincide.

In addition, the snapshot-POD algorithm also provides the eigenvalues λi of the modes,
see Equation (1.3). In general, this parameter represents a measure for the proportion of the
fluctuations from the data set that is captured by the corresponding eigenvector, or rather the
corresponding temporal coefficient, and is often referred to as an energy representation. For
input variables with physical units, this parameter can indeed be identified with a physical
energy, for instance a representation of the turbulent kinetic energy for velocity fields [72]. In
contrast, such an identification with a physical energy can not be made for the considered
slug flow data with arbitrary units, such as phase fraction fields and RGB-pixel values. These
eigenvalues are often used as a characterizing quantity for the coherent structure, described by
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the corresponding modes or mode pairs, in particular for the comparison of flows under different
operating conditions, see for instance [75]. It also has significance in the reduced order modeling
of flow data, where it constitutes a key parameter for choosing the number of basis vectors,
which forms the reduced order model, see [76]. However, for a conventional characterization of
slug flow with its time and length scales, this parameter is of minor importance. Nevertheless,
it can contribute to a quantitative comparison of different slug flows or data sets.

3.1.2.3 Influence of the field length

In Publication II (see Section 2.2) it was found that, the length of the observed pipe segment
(field or region of interest) affects the accuracy by which the temporal coefficient approximates
the corresponding liquid level time series. This relation is a result from a detailed error analysis
based on the high-quality phase-fraction data of the simulated air-water slug flows, but was
also observed for the experimental data. For this, the mean relative error of the standardized
temporal coefficient and the standardized liquid level time series have been investigated for
independently conducted snapshot POD analyses of data from 38 differently long regions of
interest, reaching from 1 inner pipe diameter to 74 inner pipe diameters, see Figure 9 and
10 in Publication II. Different reasons for the described negative trend in accuracy for the
increasing length of the region of interest have been identified in Publication II. On one hand,
the calculation of the temporal coefficient from the temporal covariance matrix of the phase
volume fraction fields (see Equation (1.3)) are contributing to this error behavior. In detail,
due to the summation over the spatial components of the fluctuations of the snapshots (dot
product) in the POD algorithm, small structures, such as single slugs, are underrepresented in
larger regions of interest, where also other fluctuations are taken into account. Furthermore,
the scalar representation from the dot product of neighboring snapshots, where the same
structure is at slightly different positions, become more similar for larger regions of interest.
This leads to a broader temporal correlation, and results in a smoother temporal coefficient
with wider spikes of lower amplitude (Figure 11 in Publication II). Hence, the representation
of the slugs in the temporal coefficient becomes more imprecise for longer regions of interest
relative to the detailed liquid level time series hL. Another reason for this negative trend is
that, the slugs accelerate and change shape as they move downstream the pipe. For longer
regions of interest, this phenomenon is also having more influence on the computation of ai

and ϕi and causes negative effects on the approximation of the liquid level time series by the
temporal coefficient. Consequently, this behavior affects also the accuracy of the derived time
scales in the same manner, in particular the slug body times. It can also be concluded, that
the most accurate approximations of the liquid level time series by the temporal coefficient are
achieved for the shortest regions of interest. This is also in line with the results of Vigiano et
al. [89], where a strong correlation of the holdup time series and the temporal coefficient of a
dominant mode from a snapshot POD analysis of cross-sectional phase fraction measurements
of horizontal slug flow was reported, since the cross-sectional data does not resolve spatial
information of the slugs in the longitudinal direction.

For the representation of the averaged slug in the spatial mode, a similar negative trend
in accuracy has been noted for increasing length of the region of interest, see Figure 10 in
Publication II ( Section 2.2). This can be explained by the calculation of the spatial mode ϕi
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as the weighted average of the fluctuations of the snapshots, where the weights are given by
the values of the temporal coefficient ai and the corresponding eigenvalue λi (see Equation 1.5).
Thus, the error in the temporal representation of the slugs in ai, i.e., wider spikes with lower
amplitude, propagates in their spatial representation in ϕi. In detail, the broader and more
inaccurate the spikes in the temporal coefficient, the more weight is put on snapshots with
slugs in slightly shifted positions for the calculation of ϕi. Thus, the averaged slug visible in ϕi

appears to be blurred for longer regions of interest. This causes inaccuracies in the derivation
of the mean slug body length from the spatial mode.

Altogether, it was presented for the considered data sets in Publication I and II (Section
2.1 and 2.2), that the conventional length and time scales for the characterization of horizontal
slug flow can be derived from the most dominant mode pair of a snapshot POD analysis.
Moreover, for a meaningful spatio-temporal characterization of slug flow with this length and
time scale derived from the most dominant mode pair, the region of interest should have the
necessary length to resolve the averaged slug entirely, but should remain sufficiently short
to avoid larger errors in the characterizing parameters. If only a characterization in time is
sought, the region of interest should be chosen as short as possible.

In order to derive a reasonable characterization of horizontal slug flow from the most
dominant mode of a snapshot POD analysis, the data should meet certain requirements. These
are discussed in the following.

3.1.3 Data requirements for the characterization of slug flow with snapshot
POD

In the investigations concerning the quantification of horizontal slug flow with snapshot POD
in Publication I and II, different types of data have been analyzed. These data sets satisfy
certain criteria, which are substantial for the presented characterization of slug flow with
snapshot POD. Those requirements are discussed in the following.

The first requirement is the representation of the spatial phase distribution with its temporal
changes in the data. In general, multiphase flow patterns, such as horizontal gas-liquid slug
flow, are defined by the spatio-temporal distribution of the different phases in the observed
pipe segment. Thus, for a quantification of the slug flow pattern, the considered data should
provide a description of this spatio-temporal phase distribution. Furthermore, the snapshot
POD algorithm is based on the temporal correlation of spatially averaged snapshots (see the
calculation of the temporal co-variance matrix R ∈ RN×N in Publication II (Section 2.2)).
For snapshots, that provide spatial information of the phase distribution of slug flow, this
averaging process leads to a reasonable description of the liquid structures in the snapshot,
i.e., the fraction of the investigated phase in the corresponding snapshot.

For a temporal and spatial quantification of horizontal slug flow with snapshot POD,
the second requirement is the spatial representation of the slugs in the data, in particular
their length. Since slugs are liquid structures of different lengths, which block the complete
pipe cross-section with liquid, the data should capture the spatial information in the pipe
along the vertical axis from bottom to top, as well as along the longitudinal axis, in order
to resolve the slugs in their vertical and longitudinal dimensions. In detail, for a meaningful
spatio-temporal characterization of slug flow with snapshot POD, the region of interest should
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have the necessary length to resolve the averaged slug entirely, but should remain sufficiently
short to avoid larger errors in the characterizing parameters, as discussed in Section 3.1.2.
This requirement changes if only a characterization in time is sought. Then, the region of
interest should be chosen as short as possible, such that the data represents at best the phase
distribution along a vertical line in the pipe, from bottom to top, as pointed out in Section
3.1.2.

For these reasons, data sets that represent the phase distribution in a two-dimensional
plane along the vertical and longitudinal axis of an observed pipe segment have been considered
in this work. This includes two-dimensional volume fraction fields in a longitudinal section
along the vertical centerline of the observed pipe segment for the simulated air-water slug flow
(see also Section 1.4) as well as two-dimensional scalar fields of RGB-components from a video
recording of the flow from the side for an gas-water and gas-oil slug flow (see also Section 1.4).
For the gas-oil slug flow, it was possible to describe the phase distribution in the observed pipe
segment by considering the red component of the RGB-values, due to the reddish-brown color
of the oil, the transparent gas and the dark background in the recording setup (see Publication
II in Section 2.2). For the gas-water slug flow, the grayscale of the RGB-values was considered,
because of the gray color of the water in the videos (see Publication I in Section 2.1).

The phase fraction data of the air-water slug flow from the numerical simulation was
available for the complete length of the computational domain, i.e., the 8 m long pipe, such
that the spatial resolution of the slugs in the considered two-dimensional plane was ensured. In
contrast to this, the experimental set-ups consist of permanently installed transparent viewing
sections with a fixed length of approximately 0.5 m. For the considered slug flow experiments,
this viewing sections were too short to resolve the averaged slugs entirely, see for instance
Publication I in Section 2.1. Thus, the slug body lengths could not be derived from the spatial
modes in the first place. To enable also a direct spatial characterization of the slugs from
the spatial mode, an artificial extension procedure for the region of interest based on cross
correlation was developed and applied to the raw video data of the gas-oil slug flow experiment,
as presented in Publication II (Section 2.2). The extension of the region of interest was done by
embedding the frames into time-shifted frames from the same video. For slug flows, where the
slugs have similar translational velocities and the changes in their properties, such as velocity
and shape, are negligible within the viewing section, this embedding can be applied to enlarge
the region of interest without a distortion of the slugs, for details see Publication II in Section
2.2. It was applied to the video data of the gas-oil slug flow experiment in order to extend
the region of interest and resolve the entire averaged slug. This procedure provided data with
sufficient spatial information of the slugs, and hence, made their direct spatial characterization
with snapshot POD possible, see Publication II in Section 2.2.

Altogether, for a meaningful temporal and spatial characterization of horizontal slug flow
with snapshot POD, the data should represent the phase distribution with its temporal changes
in a pipe segment, which is long enough to resolve the desired spatial information of the slugs.
Three different data sets have been considered for the investigations for the quantification of
horizontal slug flow with snapshot POD, which belong to two common types of data in the
industrial and academic field of multiphase flows. The first type is high quality data from
numerical simulations, which are a proven tool for the investigation of fluid flows. The second
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type is RGB-data of noise-affected experimental video recordings, which are a common for
experimental investigations of two-phase flow patterns, especially in the academic field. For
these two types of data, the novel concept of the quantification of horizontal slug with snapshot
POD was proven.

In the course of these investigations, an approximation of the liquid level time series as
well as time scales of slug flow have been derived from video recordings. Although video-based
approaches are common for the investigations of slug flows, in particular to examine geometrical
properties of the slugs and bubbles, an approximation of the liquid level time series and a
derivation of the time scales of the slugs from video observations was not reported in the
literature. For this reason, the plausibility of the temporal quantification of slug flow from
video observations needs to be investigated. In this regard, the approximation of the liquid
level time series as well as time scales of slug flow from video recording are further examined
and discussed in the next section.

3.2 The evaluation of the temporal quantification of slug flow
from video observations by using tomography measure-
ments as a reference

The liquid level time series describes the dynamic behavior of the interface of horizontal
gas-liquid flows in a certain plane, commonly in the vertical centerline of the pipe for a fixed
longitudinal position, see Figure 1.3. Therefore, it also represents the dynamics of the phase
distribution and thereby provides a temporal quantification of separated and intermittent flow
pattern. The conventional measurement techniques of the liquid level time series for horizontal
stratified and slug flows include intrusive wire-sensor measurements in the vertical centerline of
the pipe [36, 56, 57] as well as non-intrusive narrow-beam gamma densiometer measurements
in the pipe cross-section [60]. For the approximation of the liquid level time series with image
processing techniques, only very few references can be found. In [107], an image processing
technique is presented, where the gas-liquid interface is detected in the grayscale image of
each video frame from recordings of air-water stratified and wavy flows. From that, also a
liquid level time series was derived to investigate the liquid film thickness in stratified flows.
In [108], an image processing technique is presented, where the gas-liquid interface is detected
in a binarization of each video frame from recordings of air-water stratified and slug flows. For
their analysis of the transition from stratified flow to slug flow, time series of mean values of
the liquid film thickness over the complete length of the observed pipe segment have been
considered. However, an approximation of the liquid level time series from video recordings
of horizontal slug flow was not reported in the literature, except in the author’s earlier work
[62]. In that paper, an image processing technique based on a fixed sequence of image filters
is presented that extracts an approximation of the liquid level time series. However, this
approach is only applicable to certain types of gas-oil and gas-water slug flows, which have
been recorded under specific conditions. This technique was used in the investigations of
Publication I (Section 2.1) to extract an approximation of the liquid level time series from
the raw video data as a reference parameter for the temporal coefficient of the snapshot POD
analysis, as discussed in Section 3.1.1. However, for the video recordings of the oil-gas slug
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flow in Publication II (Section 2.2), the approximation of the liquid level time series with this
technique was not successful. Thus, the liquid level time series has been derived from manually
marked gas-liquid interfaces in the video data, as described in Publication II in Section 2.2.
All of the aforementioned approximations of the liquid level time series from video recordings
have not been validated with other conventional measurement techniques. For this reason, the
validity of the derived time scales of slug flow needs to be proven.

In this context, the approximation of the liquid level time series from video data of two
instances of horizontal slug flow with manually marked gas-liquid interfaces as well as the
derived time scales of the slugs have been qualitatively compared to reference parameters from
well-established tomography measurements in Publication III, see Section 2.3. It was found
that, the liquid level time series from the video recordings are systematically overestimated
with respect to the liquid level time series from the tomography system. However, the derived
temporal characteristics of the liquid slugs are in good agreement, especially for the slug
unit times. Thus, the approximation of the liquid level time series from video recordings of
horizontal slug flow allows a reasonable temporal characterization of the slugs. The comparison
of the liquid level time series from video data hvideo

L (t) with the liquid level and holdup time
series from the tomography measurements, htomo

L (t) and αtomo
L (t), as well as the probability

density function (pdf) of the derived time scales, namely slug unit time TU and slug body time
TB, are illustrated in Figure 3.2.

b

Slug flow 1
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a) time series

c) slug body times
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Slug flow 2

e) slug unit times
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Figure 3.2: Illustration of the qualitative comparison of the temporal quantification for Slug flow
1 and 2 from video data and tomography measurements. For details see Publication III in Section
2.3

For this investigation, two instances of gas-oil slug flow have been considered, which
represent margins for the optical assessability of the gas-liquid interface and the liquid
structures of the flow. The video recording of the first experiment, denoted as Slug flow 1 in
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Publication III (Section 2.3), predominantly shows short aerated slugs with numerous large
amplitude waves and foam, see Figure 3.2a. Due to that, a clear assignment of the interface
in the camera-based flow observations is not obvious, particularly for the foamy regions and
aerated parts of the slugs and waves. In contrast to this, the video recording of the second
case, denoted as Slug flow 2 in Publication III (Section 2.3), shows larger slugs with reduced
aeration and foam, as well as fewer waves, see Figure 3.2d. For this case, the interface is clearly
assignable in the video recordings.

To achieve a comparability of the parameters from video observations and the ECT-System,
preprocessing steps have been employed. This inlcudes a correction of the refractive effects
of the transparent pipe wall for the video data, as well as the construction of the liquid level
time series from the ECT-measurements, which are discussed in the following.

3.2.1 Comparability of video and tomography data

In this qualitative comparison, data from video recordings and measurements from an ECT-
system have been used for approximations of the liquid level time series. These two different
types of data are readily comparable. The video recordings show the flow from the side
through a transparent viewing section. Thus, the obtained images represent a two-dimensional
projection of three dimensional flow from the side. The ECT-system on the other hand,
provides phase fraction measurements in the pipe cross-section. For a better comparability
between the observed liquid level in the videos and the measured reference parameters, the
refractive effects of the transparent pipe wall have been corrected, which are primarily caused
by the curvature and the thickness of the pipe wall as well as the different optical properties of
the media [109]. For this, a post processing routine has been developed, which is based on the
law of refraction [110], basic trigonometric relations and optical and geometrical properties of
the pipe wall, for details see Publication III in Section 2.3. This is similar to the approach in
[111]. The correction accounts for the vertical distortion in the observation of the interface
through the transparent pipe wall, especially close to the bottom and the top of the pipe,
which are crucial areas for the observation of slug flow. Such refractive effects and distortions
can be reduced for optical measurements by using specifically designed optical measurement
section, see for instance [64, 112]. However, the considered experimental setup only consists of
the transparent pipe segment such that the refractive effects need to be corrected a posteriori.

To further enhance a comparability of the different data sets, suitable parameters have
been constructed from the tomography measurements. The ECT-system provides spatially and
temporally resolved liquid volume fraction measurements in the pipe cross section, see Section
1.4. From these measurements, a liquid level time series is constructed for the comparison
with the video data. For this, the time series of the vertical position of the gas-liquid interface
is extracted from the phase fraction measurements in the vertical centerline of the pipe cross-
section. This is similar to the conventional wire-sensor measurements of the liquid level, see
[36, 57, 59]. To define a unique location of the gas-liquid interface from the spatially resolved
liquid volume fraction values αL along the considered vertical line through the pipe for every
time t, a threshold is applied. This threshold is defined as the median of all vertical positions
within the considered vertical line, where 0.4 < αL < 0.5 holds, see Figure 2 in Publication III
(Section 2.3). The interval (0.4, 0.5) for the threshold was chosen in accordance to the gas-
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liquid interface visualization for horizontal slug flow with the same ECT-measurement system,
given in [40]. The median of the detected positions was chosen to make the vertical interface
position unique and robust against outliers, such as artifacts in the measurement. With this
construction, a liquid level time series can be extracted from the temporally and spatially
resolved cross-sectional phase fraction measurements, denoted as htomo

L (t), see Publication III
in Section 2.3.

3.2.2 Comparison of the time series and time scales

The liquid level time series extracted from video recordings hvideo
L (t) have been compared with

the liquid level time series htomo
L (t) and the liquid holdup time series αtomo

L (t) extracted from
the tomography system for both slug flows, see Figure 3.2a,d. It was noted that hvideo

L (t)
showed systematically larger values compared to αtomo

L (t) and htomo
L (t). This is primarily

caused by the type of data, which have been used for the different approximations of the
liquid level time series, i.e., a two-dimensional projection of a three dimensional flow from
the side in contrast to volumetric phase fraction data from pipe-cross sections. Due to that,
the approximation of the interface from the video data includes foam and aerated regions in
the slugs and waves as liquid phase, whereas the volumetric measurement only measures the
proportion of the liquid. Furthermore, the volumetric measurement in the pipe cross-section
accounts for detailed changes in vertical and transversal directions, whereas a vertical line
through the pipe in the two-dimensional projection of the flow from the video data only
accounts for changes in the vertical direction. This causes larger values for hvideo

L (t) compared
to htomo

L (t) and particularly compared to αtomo
L (t), Figure 3.2a, d. Moreover, these differences

become larger with increasing dispersion of the phases in the flow, such as atomization of the
liquid, aerated liquid in the slugs and waves as well as foam. For these reasons, the liquid level
approximations derived from these types of data, show larger differences for the Slug flow 1,
which has more of such undesired phenomena, compared to Slug flow 2, see Figure 3.2 and
Publication III in Section 2.3. Another parameter that influences the deviations between the
different liquid level approximations in this qualitative comparison is the distance in between
the points of observation/measurement, in which the structures of the flow can change, i.e., the
distance between the viewing section and the ECT-measurement section. For the considered
experiments, the liquid level approximations have been made at centered position of each
section, resulting in a distance of approximately 14 inner pipe diameters, see Publication III
in Section 2.3. For such a short distance, slug flows with short slugs, numerous waves and
dispersed regions, such as Slug flow 1, will be more affected by the change of the flow structures
than slug flows with longer and more distinct slugs, such as Slug flow 2.

In contrast to the systematic overestimation of the absolute values in the video based
liquid level approximations, the derived characterizing time scales of slug flow showed good
agreement, see Figure 3.2b, c, e, f. These time scales have been derived from the different
liquid level time series hvideo

L (t) and htomo
L (t) as well as from the holdup time series αtomo

L (t)
for both slug flows, using the conventional thresholding procedure, described in the previous
sections. To find suitable values, the thresholds have been chosen individually for each time
series, see Figure 3.2a, d. It was found that, the pdfs of the slug unit times extracted from
the different time series show similar behavior, particularly for Slug flow 2. For this slug flow,
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which consists of larger slugs and fewer waves, the pdfs are almost identical. In contrast to
this, the pdfs of the slug body times showed more deviations, especially for Slug flow 1, which
consists of short slugs, numerous waves and dispersed regions. One reason for this is that, the
slugs appear longer in the video recordings, compared to the tomography measurements, see
Figure 3.2a,d. This is caused by the overestimation of liquid for the aerated regions in the
slugs in the video, which are particularly located close to the slug fronts due to the mixing
eddy, as well as close to the slug rears due to the shedding of the entrained gas from to slug
into the liquid layer behind, see Figure 1.2 and Section 1.2.1 for the phenomenology of the
slugs. Thus, also the slug body times become longer for the video data. However, the time
scales of the slugs, which have been derived from the video recordings of the considered slug
flow experiments provide a reasonable and consistent temporal characterization of slug flow.
This holds in particular for the slug unit times and the related slug frequencies, see Equation
(1.1).

Altogether, a systematic overestimation of the liquid level time series approximation from
the video data is noted in this qualitative comparison. Thus, measurements of related flow
parameters, e.g., liquid film thickness, from video data should only be done under careful
consideration, particularly for horizontal slug flow. In contrast to this, the derived temporal
characteristics of the liquid slugs from video recordings provide a reasonable and consistent
temporal characterization of slug flow. It was found that shorter aerated slugs and dispersed
regions are leading to larger errors in the derived time scales for the video data. For slug flows
with larger slugs and fewer dispersed regions, which is typically the case for slug flows in a
fully developed state [27], the proposed temporal quantification of horizontal slug flow from
video recordings has the potential to provide accurate time scales of the slugs.

In this regards, for academic or industrial application, where temporal quantifications of
horizontal slug flows and other separated and intermittent flow pattern are needed, a fast and
reliable method for the approximation of the liquid level time series from video data can serve
as a useful tool. In this context, the accurate, efficient and automated extraction of the liquid
level time series from video recordings with a novel deep learning based image processing
technique is discussed in the next section.

3.3 Accurate and efficient extraction of the liquid level time
series from video observations of multiphase flows with a
deep learning model

The slugs in horizontal slug flow can generally grow to large structures with average lengths of
more than 40 pipe diameters in their stable state. Even lengths of up to 500 pipe diameters
have been reported, see [113]. For investigations of slug flows with such long slugs, temporal
quantifications are preferably considered since a direct spatial characterization with images of
entire slugs, for instance with the previously proposed snapshot POD analysis, is impractical.
As mentioned in Section 3.1.2, the snapshot POD can also provide an approximation of the
dynamics of the gas-liquid interface from short regions of interest, which do not resolve the slugs
entirely. However, the eigenvalue decomposition and the construction of the spatial modes in
the snapshot POD algorithm are memory and time consuming calculations. Furthermore, the
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absolute values of the liquid level time series are not reproduced in this approximation. Thus,
a fast image processing technique, which automatically extracts an accurate approximation of
the liquid level time series from video recordings of separated and intermittent flow patterns
can serve as a useful tool in related industrial and academic operations.

Most of the image processing techniques for the measurement of characteristic parameters
for separated and intermittent horizontal two-phase flows are using fixed sequences of image
filters and pixelwise comparisons to detect the gas-liquid interface or to segment the gas
and liquid regions. This methods include grayscale transformation, contrast enhancement,
threshold binarization, and edge-detection with pixel-value gradients, in particular for gas-water
flows, see [64, 62, 108, 107]. For gas-oil slug flows, a similar procedure was proposed in the
author’s earlier work [62]. These approaches have been developed for specific video recording
setups, liquids, and lighting. They often require individual adaptations for changes in these
conditions, due to the pixelwise comparisons, see for instance the different approaches needed
to extract the interface for gas-oil and gas-water slug flows in [62]. In contrast to this, deep
learning models have the potential to overcome such difficulties and to provide reliable and
more versatile image processing techniques.

Deep learning describes a family of learning algorithms in the field of machine learning
and artificial intelligence [114]. It is used to learn complex and robust prediction models, e.g.,
multi-layer neural networks with many hidden units, directly from the data without the need of
carefully engineering suitable features [114, 91]. Deep learning has a wide range of applications
in science, business, and technology, e.g., in image or speech recognition, see [98, 91, 93,
115]. However, in the field of multiphase flows, deep learning has rarely been applied. In the
context of numerical simulations of multiphase flows, deep learning models have been used to
approximate the governing equations, estimate simulation errors, and predict flow parameters
as well as closure coefficients, see e.g., [116, 117, 118]. Further applications of deep learning in
the field of multiphase flows are the prediction of flow patterns and parameters, such as mean
flow rates or mean phase fractions, based on operating conditions or related measurements, see
[119, 120, 121, 47]. Moreover, image processing techniques based on deep convolutional neural
networks have been presented in [122, 123, 124, 125, 126] for the detection, reconstruction,
and analysis of gas bubbles in vertical pipes and micro-channels, as well as for the extraction
of relevant water-regions as pre-processing step for two-phase PIV-measurements in the field
of ship and ocean engineering. For the quantification of separated and intermittent gas-liquid
flow patterns in horizontal pipes, such as wavy or slug flow, such advanced image processing
techniques have not been reported.

In this context, a novel deep-learning based image processing method is presented in
Publication IV in Section 2.4. It has been shown that, this method accurately and reliably
extracts the liquid level time series from video recordings of stratified wavy and slug flows for
different recording setups, liquids, and lighting conditions. This extraction includes several
image processing steps, which are briefly described and discussed in the following.

3.3.1 Image processing steps

The proposed deep-learning based image processing method consists of several image processing
steps. At first, the RGB-values in a pixelcolumn along a vertical line through the pipe (inner
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pipe diameter) are extracted from the video frames at a desired longitudinal position in the
observed pipe segment and stacked. The resulting image, also called RGB-pixelcolumn over
time, represents a two-dimensional projection of the three-dimensional flow in the observed
vertical line through the pipe from the side with its temporal variations. For suitable separated
and intermittent flows, this image allows an approximation of the phase distribution with
its temporal changes in the observed vertical line, see for instance Figure 4 in Publication
IV (Section 2.4). This is similar to the previously proposed approaches for the liquid level
extraction in Publication I, II, III and in [62]. Then, the phase distribution in this image is
approximated by the segmentation of gas and liquid regions, similar to phase volume fraction
fields. This segmentation task is performed by an previously trained and tested deep-learning
model, which is based on a U-net. Before the RGB-pixelcolumn over time is segmented by the
deep-learning model, the long image is cut in length and reshaped in height into evenly sized
segments, which are individually normalized with an RGB-componentwise z-score to reduce
the influence of disturbances in the video recording setup, such as differences in luminance or
color. It was found that, this normalization led to the most accurate and consistent training
results, compared to other RGB-componentwise or image wise normalizations, for instance
with the maximum norm. A similar result for the z-score normalization has been reported for
the image processing procedure for bubbly two-phase flows in [123]. Afterwards, the segmented
image is binarized to obtain a sharp representation of the gas-liquid interface, from which
the approximation of the liquid level time series is calculated with a simple edge detection.
For details, see Publication IV in Section 2.4. The essential step in this image processing
technique is the segmentation of gas and liquid regions with the trained deep-learning model.
This model with its training and testing process is discussed in the following.

3.3.2 Training and testing of the deep learning model

The used deep-learning model was extensively trained and tested with video data from real
slug flow experiments and classifies each region in the RGB-pixelcolumn over time into its
respective phase being either liquid or gas. The model is based on the U-net, a convolutional
neural network architecture for a fast and precise segmentation of images that was introduced
by Ronneberger et al. [98]. It has been successfully applied in many image-to-image learning
problems, e.g., computer tomography, see [99, 100, 101]. The U-net is typically trained in a
supervised manner and able to achieve accurate results with only few labelled training data [98].
For these reasons, the U-net was chosen for the liquid-gas segmentation in the proposed image
processing technique. It was trained and tested with video data from 18 different horizontal
gas-liquid slug flow experiments from two different recording setups with different liquid colors.
These different recording setups also include different background colors, lighting conditions,
reflections and other noise effects. The videos show each flow from the side for a duration
of 120 s to 150 s, see Section 1.4 or Publicaiton IV in Section 2.4 for details. To prepare the
video data for the training of the U-net, the RGB-pixelcolumns over time have been extracted
and binary segmentation masks have been generated from hand-labelled gas-liquid interfaces
in the RGB-pixelcolumns over time for all experiments. These masks have a sharp interface
with values of 1 for gas and 0 for liquid and represent an approximation of the temporally
resolved gas volume fraction fields in the observed vertical line through the pipe. For the
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testing in the optimization process of the training procedure, a subset of these data, i.e. two
out of 18 experiments, was randomly chosen, and the data is split into a disjoint training
and test set. The U-net was trained on a set of 483 pairs and tested on a set of 61 pairs of
RGB-images and corresponding masks (544 pairs in total), as described in Publication IV in
Section 2.4. Although, training sets of large numbers of images and masks are generally used
for segmentation and recognition tasks, see e.g., [122], for the segmentation of gas and liquid in
two phase flows, CNN-based models have also been successfully trained on data sets with just
several hundreds of image pairs [126, 125], in particular for the U-net, which is able to achieve
accurate results with only few labelled training data [98]. Since the segmentation includes
only two classes, i.e., gas and liquid, the binary accuracy function was chosen as accuracy
metric for the comparison of predicted segmentation maps and hand-labelled segmentation
masks, see Publication IV in Section 2.4. The training was terminated after 42 epochs due to
early stopping. The best model was found after 31 epochs. For this model, a mean binary
accuracy of 97.91% for the training set and a mean binary accuracy of 97, 74% for the test set,
was achieved. The mean binary accuracies for the prediction on the individual experiments
varies from 96.86% to 98.85%. These accuracies are high, compared to the reported training
and test accuracies in between 89% and 98.7% of other successfully trained gas and liquid
segmentation models, see e.g. [124, 125, 126]. In a second step, the mean absolute error of the
derived liquid level times series from the predicted and hand-labelled segmentation maps have
been considered. This error varies from 1.15% to 3.12% for the individual experiments from
the training and test set. It was also observed that, the predictions from the trained model
showed more detailed and consistent segmentation maps compared to the hand-labelled masks,
see Publication IV in Section 2.4. From these high accuracies and low errors for the training
and test data, it can be concluded that, the model was trained successfully for its task and
performs well for the considered types of data. For further evaluations on the reliability and
versatility of the trained model, video data from three additional experiments were considered,
which differ from the ones used for training and testing in recording setup, liquid color, and
flow pattern, see Publication IV in Section 2.4. For the previously unseen data sets of these
three expermients, the binary accuracies for the predicted segmentations reaches from 95.41%
to 97.68% and the mean absolute error of the extracted liquid level time series reaches from
2.32% to 4.92%. From the high accuracies and low errors for the disjoint test set and the three
additional unseen data sets, it can be concluded, that the model is able to generalize to unseen
data and accurately predicts the segmentation maps also for different recording setups, liquids,
and flow patterns.

In addition, the consistency of the hand-labelled data sets has been proven in an inter-
observer reliability test that measures the degree of consistency of subjective judgments
among independent observers, see [127, 128]. For this, the Pearson-correlation [129] of the
hand-labelled liquid level time series from three independent observers have been considered
for the video data from four different slug flow experiments. The Pearson-correlation is a
common measure for this task, see [127]. These correlation values are in between 0.914 and
0.985, i.e., close to 1, which indicates a strong correlation and a high degree of consistency
between the hand-labelled liquid level time series of the different observers. Hence, it can be
concluded that, the hand-labelled gas-liquid interfaces provide reliable segmentation masks
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for the training of the U-net. Furthermore, this analysis was also applied to the prediction
of the U-net to quantify the degree of consistency between the prediction and the labels of
the independent observers, see also [130]. In addition to this, also the pointwise error was
considered. In the comparison of the predicted liquid level time series with the hand-labelled
time series, it was found that, the predictions of the U-net also provide liquid level time series,
which are consistent with respect to the different observers.

Altogether, the presented method accurately extracts the liquid level time series from the
considered video data of stratified wavy and slug flow. It can handle different types of data, even
unseen data sets. Once, the net is successfully trained, it predicts highly accurate segmentation
maps in very short time. The segmentation of an image with the size of 128 × 1024px only
takes a few milliseconds on the used Intel Core i5-8265U CPU @ 1.6GHz, e.g., 9 ms for one
image segment of Experiment Nr. 11 − 100D from Publication IV in Section 2.4. Apart from
the differences in recording setups, liquids, and flow patterns, the used video data also showed
various noise effects, lighting conditions, and light reflections on the pipe wall, which posed
serious problems for the liquid level approximation with the previously published image filter
technique in [62]. Due to these disturbances, the approximation with the filter-based technique
was not successful for several of the videos, see for instance Publication II in Section 2.2.
In contrast to this, the trained deep learning model can overcome such effects and predicts
highly accurate segmentation maps, also for the cases, where the filter-based technique was
not successful. The proposed model was trained with videos of different slug flows. This flow
pattern also includes stratified smooth and wavy regions in between the slugs, which where
also captured in the video recordings of the slug flows. Moreover, the plug flow pattern is
very similar to the slug flow pattern, particularly for video data, as mentioned in Section 1.2.
Consequently, the model can generally be applied for separated and intermittent gas-liquid
flow patterns as demonstrated for stratified wavy and slug flow in Publication IV in Section
2.4.

3.3.3 Limitations and outlook

The visual recognition of gas and liquid regions or the gas-liquid interface in the video data
constitutes a limitation of the successful segmentation with the trained model. For flows,
where the interface cannot be observed from the side, a meaningful segmentation cannot be
provided. This is for instance the case for dispersed or annular flows as well as for flows
with large amounts of liquid spray, such as for slug flows in the transition to a dispersed or
annular flow pattern. Furthermore, for foamy regions in separated and intermittent gas-liquid
flows, the segmentation often includes the foam into the liquid phase, leading to overestimated
absolute values for the liquid level time series as mentioned in Publication 2.3. However, for
separated and intermittent flows, where the gas-liquid interface can clearly be observed from
the side, a meaningful segmentation is provided by this method.

Because of its proven accurate and fast segmentation for various recording setups of suitable
separated and intermittent two-phase flow patterns, the proposed deep-learning based image
processing method can serve as a useful non-intrusive technique in related industrial and
academic operations. This includes the development, calibration and validation of predictive
models, correlations, and simulations in the field of multiphase flows as well as the monitoring
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of such types of flows for operation control in different sectors of the energy industry, including
transportation pipelines in the oil and gas industry as well as cooling systems in the nuclear
energy industry.
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4
Conclusions and outlook

In this thesis, quantitative methods for the characterization of separated and intermittent gas-
liquid flow patterns have been presented and discussed. This includes the temporal and spatial
characterization of horizontal slug flow with the most dominant mode pair of a snapshot POD
analysis from spatially and temporally resolved phase fraction fields and video recordings as
well as the extraction of the liquid level time series with a deep learning based image processing
technique for video recordings of separated and intermittent gas-liquid flow patterns.

The scientific results, which have been presented in Publication I and II (see Section 2.1
and 2.2) and discussed in Section 3.1.1, are leading to the conclusion that, the slugs are
represented in the dominant mode pair of a snapshot POD analysis for the considered slug
flow data sets. This includes a description of the gas-liquid interface dynamics (approximation
of the dynamics of the liquid level time series) in the temporal coefficients as well as the
representation of the averaged slug in the spatial modes. Hence, the snapshot POD allows a
detailed temporal and spatial characterization of the slugs.

As presented in Publication I and II (Section 2.1 and 2.2) and discussed in Section 3.1.2,
the conventional length and time scales for the characterization of horizontal slug flow can be
derived from the most dominant mode pair of a snapshot POD analysis. Moreover, it was
found that the length of the observed pipe segment (region of interest) affects the accuracy
of the approximation of the liquid level time series by the temporal coefficient as well as the
representation of the the averaged slug in the spatial modes. Hence, for a meaningful spatial
and temporal characterization of slug flow with its length and time scale derived from the
most dominant mode pair, the region of interest should have the necessary length to resolve
the averaged slug entirely, but should remain sufficiently short to avoid larger errors in the
characterizing parameters. If only a characterization in time is sought, the region of interest
should be chosen as short as possible. Apart from the length of the observed pipe segment, the
data should represent the phase distribution with its temporal changes in order to characterize
horizontal slug flow with a snapshot POD analysis, as discussed in Section 3.1.3.

Consequently, limitations for a successful temporal and spatial characterization of horizontal
slug flow with snapshot POD are given by the data, i.e., the spatial and temporal information
captured in it. Other limitations of this approach are that, the temporal coefficients only
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approximate the dynamics of the liquid level time series and not their absolute values. Due to
that, direct estimations of other flow parameters, such as volumetric phase fraction or liquid
film thickness in the pipe, cannot be made from it. A further consequence of this missing
information is that, an identification of the flow pattern is not obvious. In detail, without the
absolute values for the vertical position of the gas-liquid interface in the temporal coefficients,
a differentiation between a wavy flow with large amplitude waves and a slug flow with short
slugs is difficult. Another limiting aspect is the computational time of the POD algorithm.
Generally, the eigenvalue decomposition and the construction of the spatial modes in the
snapshot POD algorithm are memory and time consuming calculations. Furthermore, the
slugs in horizontal slug flow can generally grow to large structures. For investigations of slug
flows with long slugs, temporal quantifications are preferably considered since a direct spatial
characterization with images of entire slugs, for instance with the snapshot POD analysis,
is impractical. In this context, a fast and accurate deep learning based image processing
method for the approximation of the liquid level time series with its absolute values from video
recordings of horizontal slug flow as well as other separated and intermittent gas-liquid flow
pattern in horizontal pipes was developed.

As presented in Publication IV (Section 2.4) and discussed in Section 3.3, the image
processing method consists of an extensively trained and tested deep learning model for the
segmentation of gas and liquid regions in the video data as well as several pre- and post-
processing steps to approximate the liquid level time series. It was shown that, the method
accurately extracts the liquid level time series from the considered video data of stratified wavy
and slug flow. It can handle different types of data, even unseen data sets, and overcomes
various noise effects, which are generally included in this kind of image or video data. As
demonstrated in Publication IV (see Section 2.4), the model cannot only be applied to slug
flow, but also to other separated and intermittent gas-liquid flow patterns in horizontal pipes.

In the course of the investigations in this thesis, video recordings have been used to
characterize horizontal slug flow and to find an approximation of the liquid level time series
and the time scales of the slugs. This temporal quantification of horizontal slug flow from video
recordings have been validated with reference parameters from a conventional tomography
measurement system as presented in Publication III (Section 2.3) and discussed in Section
3.2. It was found that, the approximation of the liquid level time series from the video data
is systematically overestimated. Thus, measurements of related flow parameters, e.g., liquid
film thickness, from video data of horizontal slug flow should only be done under careful
consideration. In contrast to this, the derived temporal characteristics provide a reasonable
and consistent temporal characterization of slug flow. It was noted that, shorter aerated slugs
and dispersed regions are leading to larger errors in the derived time scales for the video data.
For slug flows with larger slugs and fewer dispersed regions, which is typically the case for slug
flows in a fully developed state, the proposed temporal quantification of horizontal slug flow
from video recordings has the potential to provide accurate time scales of the slugs.

A general limitation for the characterization of gas-liquid flows with video or image data is
given by the visual recognition of the gas and liquid regions and the gas-liquid interface. This
applies not only for the successful image segmentation of the phases with the trained deep
model, but also for the snapshot POD analysis of video data. For separated and intermittent

80



flows, where the gas-liquid interface can clearly be observed from the side, a meaningful
characterization is provided by these methods. For flows, where the interface cannot be
observed in the video data, a meaningful characterization cannot be provided by the proposed
methods. This is for instance the case for dispersed or annular flows as well as for flows with
large amounts of liquid spray or foam, such as for slug flows in the transition to a dispersed or
annular flow pattern.

Prospectively, the proposed quantitative methods can be used for the development,
calibration and validation of predictive models, correlations and simulations for separated
and intermittent gas-liquid flows in horizontal pipes. In this context, the characterization of
horizontal slug flow with snapshot POD can be further improved by the approximation of the
absolute values of the liquid level time series in the temporal coefficients under the use of the
information provided by the spatial modes and the mean field. Since the deep learning based
image processing method provides a fast and accurate approximation of the liquid level time
series from video data, it is also suitable for the monitoring of such types of flows in different
sectors of the energy industry, including transportation pipelines in the oil and gas industry
as well as cooling systems in the nuclear energy industry. Here, the versatility of the trained
deep learning model can be further improved by additional instances of training with different
types of data, for instance from bubbly flows or vertical flow patterns.
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