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Architecture created digitally might not involve the use of actual ma-

terials [BeFo97]. However the translation of these architectural visions 

created by the use of programming, computer modelling and algorithms 

into actually built objects poses a huge challenge to the work of a struc-

tural engineer. For a long time the tessellation of free-form building 
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of the years of collaboration with architects during my employment with 
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liams for taking over the role of the ‚Mitberichter‘. 

I owe my deep gratitude to Cecil Balmond, my superior and mentor at 

Arup’s Advanced Geometry Unit, for much valued conversations and 
advice as well as for giving me the opportunity to work and research in 

the interdisciplinary environment of the AGU. At AGU I worked with a 
number of great people whose contribution to the making of this thesis 

deserves special mention: Paul Jeffries for setting up the framework of 
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search on the state of the art of digital fabrication technology and Daniel 

Hambleton for his research on isothermic surfaces and circle patterns. 
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Free form architectural design created with the aid of digital media 

requires a fundamental change of the approach to the entire planning 

and building process as it might not involve the use of actual materials. 

However architectural visions created by the use of programming, com-

puter modelling and algorithms have to be translated somehow into real 

buildings. One of the biggest challenges is the mastering of the produce 

ability of the building components and foremost - as probably the most 

significant part of a building - mastering its envelope. 
Complex geometry needs to be broken down into elements that not only 

size-wise but also with respect to their geometrical description can be 

manufactured and assembled. This process requires the tessellation of 

surfaces. The triangulation of a surface is a well documented process 

however from an architectural and economical point of view the planar 

quadrilateral  tessellation of a surface offers several advantages. 
Yet  the accurate  tessellation (every single joint lies exactly in the 

surface) of an arbitrary surfaces with planar quads remains an unsolved 

problem. 

There are no generally recognised principles of generation to date in 

contrary to the well researched principle of triangulation. So far the gen-

eration of PQ facets is only possible for certain sub-classes of surfaces, 

which in them self feature simple generating methods. 

To address this problem an approximation network is generated which 

has to follow certain rules: the topology of the network is determined by 

the properties of the surface which shall be approximated. This means 

the faces are positioned in such a way so their edges will always follow 

the principal curvature lines of the surface. Usually the singular points of 

a PQ mesh surface are characterised by the number of 4 edges per joint. 

The approximation mesh will be manually sculpted whilst considering 

the position/ location of those singular points whose number of members 

differ from the usual 4 edges in a typical joint of a PQ mesh.
The final step of the process is to optimise the approximation network by 
using dynamic relaxation principles. 

A  number of case studies carried out on surfaces of different levels of 
complexity show that the principle of approximation network in          

combination with dynamic relaxation allows to facet almost any doubly 
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curved surface designed in a scale typical for the construction industry. 

There might be a few surfaces whose shape is too complex to apply the 

tool successfully in the first run. These are usually surfaces which feature  
areas of high curvature which resulting to small curvature radii.

In this case by making a number of test runs the output surface although 

at first not satisfactory for panelisation can be used to isolate those sur-
face areas which are causing problems. After applying slight changes to 
only those parts of the surface the process can be repeated and the output 

surface should result in a PQ mesh suitable for manufacturing. 

Depending on the complexity of the input surface the generated quads are 

planar or nearly planar within a tolerance that is determined by the user 

before generating the approximation network. Obviously the tolerance 

is correlated/linked directly to the envisaged material the quads will be 

manufactured of.   

A  method is now available that allows translating almost any doubly 
curved shape into a network of quadrilateral elements which feature 

the characteristic of planarity in terms of manufacturing requirements. 

This might influence the approach of designers to free-form architecture 
significantly as the realisation of complex geometries so far was only pos-

sible for design offices with specialist units who were specially trained in 
mastering geometry problems. 

On the one hand high efficient/powerful CAD and 3D modelling pro-

grammes offered tools which allowed the advanced user with a view 
clicks to create the most complex shapes, objects and surfaces. On the 

other hand the translation of these virtual buildings into physical objects 

often necessitated a redesign in sense of simplification and still meant 
considerable manufacturing costs. 

This situation posed a big limitation to the design freedom of architects 

but if to be made available to the free economy the tool might serve as a 

link between designer and manufacturer – a kind of translator of excep-

tional design visions into built reality. 
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Abstract

Ende des 20.Jahrhunderts entstand durch die stetige Weiterentwicklung 

von CAD-Software und den zugehörigen 3D-Werkzeugen mit der Frei-
form-Architektur eine neue architektonische Stilrichtung, die sich äußerst 
komplexer, häufig ungleichmäßiger konvexer und konkaver Formen bedi-
ent (heute auch Blobitecture genannt, nach William Safire, 2002, New 
York Times Magazine). 

Entwürfe der sogenannten Freiform-Architektur, die zunächst lediglich 
im virtuellen Raum existieren, erfordern jedoch eine grundlegende Um-

stellung der Herangehensweise für den gesamten Planungs- und Bau-

prozess:

Visionen im digitalen Raum lassen zunächst häufig Überlegungen 
bezüglich ihrer Umsetzbarkeit mit reellen Baumaterialien wie Stein, 

Glas, Stahl oder Holz außer Acht. [BeFo97]. Eine neue Herausforderung 
besteht somit darin, komplexe Formen, die im Computerzeitalter mit-

tels digitaler Werkzeuge wie Programmierung, B-Spline und NURBS-

Modelling sowie der Nutzung von Algorithmen erschaffen wurden, in die 
gebauteWirklichkeit zu übersetzen. Eine der größten Aufgaben stellt in 
diesem Zusammenhang die Übersetzung der Großform eines Entwurfs 
in individuelle Gebäudeteile dar: jeder Entwurf muss, wenn er denn 

tatsächlich gebaut werden soll, in einzelne Bauteile übersetzt werden, 

ohne jedoch die ursprüngliche Formensprache des Entwurfs zu stark den 

Restriktionen der Fertigungstechnik zu unterwerfen. Gleichzeitig sollten 

die Gebäudeteile aber zum großen Teil vorfertigbar und in hoher Anzahl 
repetitiv sein, um die Wirtschaftlichkeit und somit Baubaubarkeit eines 

Gebäudeentwurfs zu gewährleisten. Vor allem die Realisierung der Ge-

bäudehülle als eines der wichtigsten da Gestalt prägenden Elemente eines 

Bauvorhabens, stellt eine große Herausforderung dar.
Komplexe Geometrien müssen in Einzelelemente unterteilt werden, 

welche sowohl in Bezug auf ihre Elementgröße als auch hinsichtlich 
ihrer geometrische Beschreibung mit den in der Industrie verfügbaren 

Methoden (CAM computer-unterstützte Fertigung und File-To-Factory-
Fertigung) hergestellt und anschließend auf der Baustelle montiert 
werden können. Geometrisch betrachtet erfordert dies die Unterteilung 
einer im mathematischen Sinn kontinuierlichen Ausgangsfläche durch 
die Methode der Vernetzung (Tesselierung). Die dreieckige Vernetzung 
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einer Fläche (Triangulieren) ist eine mathematisch gut dokumentierte 

Methode, allerdings bietet die Vierecksvernetzung mit ebenen Elementen 

(Planar Quad oder auch PQ-Vernetzung) aus architektonischer wie auch 

wirtschaftlicher Sicht eine Anzahl von Vorteilen. Die akkurate Vernet-
zung (jeder einzelne Knotenpunkt der erzeugten Paneele liegt präzise in 

der vorgegebenen Fläche) einer beliebigen Ausgangfläche mit ebenen 
Vierecken stellt allerdings bis dato ein mathematisch ungelöstes Problem 
dar: im Gegensatz zu den gut erforschten Prinzipien der Triangulierung 

konnte noch keine allgemeingültige Methode entwickelt werden, mit der 

eine beliebige Freiformfläche in ein PQ-Netz ‘übersetzt’ werden kann. 
Die Erzeugung von PQ-Netzen ist bisher nur für spezielle Flächenkat-

egorien nachgewiesen, welchen bereits hinsichtlich der Generierung der 

Ausgangsfläche einfache, gut erforschte mathematische Prinzipien zu 
Grunde liegen.

Diese Arbeit befasst sich daher mit der Aufgabe, einen allgemeingültigen 
Lösungsansatz für das Generiereneines PQ-Netzes auf einer beliebigen 
Freiformflächen zu finden. 
Hierfür wird zunächst ein‘Topologienetz’ auf einer willkürlich erzeugten 
Ausgangsfläche generiert, das folgende Bedingung erfüllen muss: die 
Topologie des Netzwerks ist durch dieselben Eigenschaften definiert, 
welche auch die Ausgangsfläche definieren, die approximiert werden soll. 
Hierfür wird zunächst eine Analyse der Ausgangsfläche zur Bestimmung 
ihrer Hauptkrümmungslinien vorgenommen. Im nächsten Schritt können 
mittels der Hauptkrümmungslinien die singulären Punkte (Nabelpunkte) 

der Fläche dargestellt werden. Während sich in den Kreuzungspunkten 

normalerweise jeweils zwei Hauptkrümmungslinien schneiden, ist die 

Anzahl der sich kreuzenden Linien in den singulären Punkten größer als 
2. Diese Flächenbereiche müssen bei der anschließenden Erzeugung des 
Approximationsnetzes entsprechend berücksichtigt werden. Das Approxi-
mationsnetz wird manuell generiert unter Beachtung der für die Facet-

tierung gewünschten Paneelgröße. Abschließend wird das Netz durch 
mehrmaliges Anwenden einer modifizierten Version der Dynamischen 
Relaxation soweit optimiert, bis die gewünschte Planarität der Paneele 

unter Berücksichtigung eines vordefinierten Toleranzwertes erreicht ist. 
Eine Reihe von Fallstudien, durchgeführt an Flächen unterschiedlicher 

Komplexität, beweisen, dass mittels der Methode des ‘Annäherungsnetz-

es’ und anschließender Optimierung durch ‘Dynamic Relaxation’ jede 
doppelt gekrümmte Fläche mit ebenen Paneelen näherungsweise ‘belegt’ 
werden kann.

Vereinzelt kann es vorkommen, dass für Flächen mit besonders komplex-

er Startgeometrie ein Anwendungsdurchlauf der beschriebenen Methode 
nicht ausreicht. Hierbei handelt es sich im Allgemeinen um Flächen, die 
in einzelnen Bereichen sehr stark gekrümmt sind und daher sehr kleine 

Kurvenradien aufweisen.

In diesem Fall kann mit Hilfe einer Anzahl von Testläufen ein erstes To-

pologienetz erzeugt werden, das zwar noch nicht die endgültige Lösung 
darstellt, jedoch als Zwischenstand verwendet werden kann, um diejeni-

gen Flächenbereiche zu ermitteln, die hinsichtlich der gewünschten Pla-

narität Probleme verursachen. Diese Bereiche können dann geometrisch 
geringfügig angepasst werden, wodurch nach erneuter Anwendung der 
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‘Dynamic Relaxation’ letztendlich ein Annäherungsnetz mit der gewün-

schten PQ-Geometrie vorliegt. 

Je nach Komplexität der Eingabefläche sind die erzeugten Vierecke 
planar oder annähernd planar innerhalb eines Toleranzbereichs, der vom 

Nutzer vor der Anwendung des Prozesses definiert werden muss. Dieser-
Toleranzbereich ist durch die technischen Eigenschaften des Materials 

vorgegeben, aus dem die Paneele hergestellt werden sollen. 

Somit steht also ein Verfahren zur Verfügung, mit dessen Hilfe jede 

beliebige doppelt gekrümmte Fläche mit einem Netzwerk aus planaren-

Vierecken angenähert werden kann, wobei der Begriff ‘planar’ nicht in 
mathematisch absolutem Sinn zu sehen ist, sondern entsprechend der 

Material bedingten maximal möglichen Abweichung der Paneele.

Die Tatsache, dass für dieses bis dato ungelöste geometrische Problem 
ein Lösungsansatz entwickelt wurde, könnte die Herangehensweise von 
Architekten und Entwerfern bezüglich Freiformarchitektur maßgeblich 
beeinflussen. 

Komplexe CAD-und 3D-Modellierungs-Tools ermöglichten dem-

versierten Nutzer entsprechender Programmen zwar, mit wenigen 

“Mausklicks” hochkomplexe Formen zu erzeugen, der Versuch, diese 

in einen für das Bauwesen typischen Maßstab zu transferieren und dann 
tatsächlich zu bauen, scheiterte jedoch oft am fehlenden mathematischen 

Wissen und resultierte nicht selten in einer kompletten Überarbeitung des 
ursprünglichen Entwurfs.

Entsprechend eingeschränkt war die Gestaltungsfreiheit vielerArchitek-

ten bezüglich freier und somit komplexer Gebäudeformen. Sollte die 

entwickelte Methode jedoch zukünftig auf dem freien Markt als Planung-

swerkzeug zur Verfügung stehen, können entwerferische Visionen unab-

hängig davon, wie komplex die zu Grundeliegende Geometrie sein mag, 

relativ problemlos in die gebaute Wirklichkeit überführt werden. Es

ist ein Bindeglied geschaffen zwischen virtuellem Raum und Realität, 
zwischen ‘nackter’ Geometrie und den Zwängen der herstellenden Indus-

trie.
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1 Buildability of free-form archi-

tecture and its limitations

1.1  Introduction

During the non-digital architectural age the architect designed buildings 

using tools like sketches, drawings and physical models which were all 

produced by hand. The simple geometrical appearance buildings featured 

during the ‘pre-digital’ age clearly reflected the limited design and work-

ing methods available in those days when building compositions con-

sisted mainly of a variety of different planar shapes. As William Mitchell 
[Ko03] describes it, “Architects drew what they could build and built 

what they could draw.” If curvy elements formed part of a building’s ge-

ometry these were usually clearly defined geometrical shapes (Figure 1.1 
and 1.2) like spheres, cylinders, cones etc. or segments of them. Basically 

the architects’ creativity was confined to the Euclidean Geometry which 
until recently formed the basis of all architectural design. According to 
Schodek at al [SchoBe05] ”…., there is a general relationship among 

the development of tools for representing design information, the devel-

opment of technologies for making complexly shaped members, and the 

specific kinds of architectural designs that were enabled by the relation-

ships that existed at a specific point in time. It is not without interest to 
note that historically many highly evocative shapes envisioned by design-

ers were simply never built (such as works by Hans Luckhardt, Herman 

Finsterlin, J.J. Leonidov, and others). Whilst attracting great interest, 

some designs remained simply utopian and were visualised with sketches 

and physical models only. Few tools were available to represent these 

design intentions precisely.” 

1.2  The appearance of freeform architecture before 

the ‘Information Age’

The pursuit of going beyond a non-linear design vocabulary existed 

already in Baroque when the strict orders of the Renaissance era were 

broken up and concave and convex forms like domes, column groups, 

gables and architraves with rich ornamental jewellery defined the appear-
ance of a new architectural style. In following epochs the use of curved 

building parts and components will be found more and more in the design 

language of architecture. However depending on their complexity and in 

Figure 1.1:  Barrel-shaped roof (seg-

ment of a cylinder) of the Cristal Palace 

by Paxton, London, 1851 [Image by 
Wikipedia]

Figure 1.2:  Euclidian geometry: basis 

of architectural design during the 

‘pre-digital’ age [Image by ANSYS 
Modeling and Meshing Guide]
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lack of experience and knowledge how to build such ambitious designs 

architects and master builders of these eras had to develop their own 

strategies to realise their visions - if they could be realised at all: 

In this respect the organic and biomorphic forms of Art Nouveau espe-

cially in Antoni Gaudi’s oeuvre during Modernism, the Catalan variation 
of Art Nouveau, are a great study object (Figure 1.3) . 

Case study: Works of Antoni Gaudi, Catalonia, Spain, 1852-1926 
Gaudi was mostly inspired by the free form shapes which he found in 

nature and his biggest challenge was to find a language to translate them 
into architecture. He used the principle of ruled surfaces to realise his 

visions of a new architectural language: hyperbolic paraboloid, hyper-

boloid, helicoid and cone - just to name a few – formed the geometrical 

basis of his buildings. 

Per definition a surface S is a ruled surface if there is a straight line l through every point 
of S which lies completely in S. A ruled surface can be generated by moving a straight line 
along a curve, subsequently the surface consists of a continuous family of straight lines l

x
 

which are called the rulings or generators of S. 

The fact that ruled surfaces are defined by a family of straight lines al-
lowed realising their structural framework with a latticework of straight 

elements which was easily to be built even with the technical possibilities 

of the 19th century. 

Case study: Einstein Tower by Erich Mendelsohn, Potsdam, Germany, 

1920-1924

Another interesting example is Mendelsohn’s Einstein Tower in 1924 
(Figure 1.4) whose complex design language was ahead of the times. 

It had to be realised in a ‘coarse’ way as the manufacturing techniques 
to build the doubly-curved shapes weren’t available by then: Initially 
Mendelsohn proposed his astrophysical observatory as a monolithic 

concrete structure. As this proofed to be impossible to realise the builders 
had to hark back to construction techniques which didn’t do justice to the 
smooth geometry of the initial design. Eventually the curvy walls were 

built of brick covered in thick layers of plaster to achieve the envisaged 

surface continuity. 

Case study: Works of Hermann Finsterlin, visionary architect, Germany, 

(1887-1973)
The visions of expressionist Hermann Finsterlin show a different aspect 
of free form architecture that is to say design ideas which were never 

realised because their complex geometry (Figure 1.5) quite easily wasn’t 
buildable at the time the designer put the sophisticated shapes down on 

paper. 

Case study: Sydney Opera House by Jørn Utzon, Sydney, Australia, 
1957-1973 

A famous example for rationalising a free form surface to objects of the 
Euclidean Geometry are the roof shells of the Sydney Opera House by 

Jørn Utzon (Figure 1.6). The initial design consisted of free form roof 

Figure 1.3: Casa Mila by Antoni Gaudi, 
Barcelona, Spain, 1910 [Image by 

politforen.net]

Figure 1.4:  Einstein Tower by  Erich 

Mendelsohn, Potsdam, Germany, 1921 

[Image by durr-architect]

Figure 1.5:  House of Glass by Her-

mann Finsterlin, 1924, never realised 

[Image by Wikipedia]

Figure 1.6:  Sydney Opera House by 

Jørn Utzon, Australia, 1957-1973 [Im-

age by Wikipedia]
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shapes resembling segments of an orange peel. As these proofed unrealis-

able the scheme “was simplified through a seven year design development 
phase with 12 different shell solutions each successive form becoming 

more rationalised and structural elements more repetitive” [SchoBe05]. 

Finally they were approximated to surface segments of spheres of differ-
ent radii. This method allowed describing the underlying surface geom-

etry of each of the different shells based on the geometrical knowledge of 
the 1950s and 1960s. The next step in the rationalisation process was to 

find a faceting pattern that resulted in planar repetitive components which 
could be manufactured with the ‘state of the art’ techniques of that time. 
After years of struggle this approach finally made it possible to realise 
Utzon’s sophisticated design from 1953 in the early seventies. 

1.3  CAD and CNC to change the design univers 

With the introduction of the computer as a drawing and design tool 

(Computer Aided Design - CAD) and the introduction and subsequent 
development of highly efficient three-dimensional CAD programs the 
possibilities in terms of visualisable geometry changed dramatically. free 

form shapes – sometimes referred to as ‘blobby’ architecture - which until 
then where only known in the area of product design and here only in the 

realisation of comparatively small objects, quickly found their way into 

the design language of the architect.
“It was only within the last few years that the advances in computer-aided de-
sign (CAD) and computer-aided manufacturing (CAM) technologies have started 
to have an impact on building design and construction practices. They opened 
up new opportunities by allowing production and construction of very complex 
forms that were until recently very difficult and expensive to design, produce, 
and assemble using traditional construction technologies……. The consequences 
will be profound, as the historic relationship between architecture and its means 
of production is increasingly being challenged by new digitally driven processes 

of design, fabrication and construction.”  [SchoBe05].

1.4  Feasibility retards the shape visionaries 

Although these new design tools opened up a whole new world in ar-
chitecture at the same time problems emerged in terms of the construct 

ability of such ambitious geometrical ideas: Most 3D programs allow the 

experienced user to create very complex designs of free form shapes with 

a variety of available 3D tools whilst the sometimes extremely complex 

mathematical description of these shapes stays hidden for the user some-

where in the ‘no man’s land’ of the computer. 
Broadly speaking “The mathematical development of differential geom-

etry and related general theories of curved surface, provided the needed 

theoretical basis for understanding complex surfaces, but their formula-

tions remained beyond the reach of design practitioners.“ [SchoBe05]

However to realise a computer generated design and to actually build 

it the question arises how to translate complex digital geometries like a 

doubly curved surface into a set of information that can be handed over to 

and used by a manufacturer to produce the required building components. 

Digital revolution - Timeline

1963 CAD
Development of the SKETCH-
PAD system at the Massachu-
setts Institute of Technology 
(MIT) by Ivan Sutherland can 
be seen as the birth of com-
puter aided design

1963 CNC
The design of a trunk lid based 
on a 2D paper sketch was 
realised as a 3D clay prototype 
- for the first time a prototype 
was produce by means of digi-
tal data

Late 1970s PC 
Advent of the personal com-
puter

1977 CATIA
Start as an in-house develop-
ment which was later devel-
oped to the first parametric 
design tool 

1987    Introduction of additive
           manufacturing
C. Deckard developed the 
idea of producing an object by 
building it up layer by layer 
instead of cutting away at a 
larger chunk of material

1989 WWW
Invention of the World Wide 
Web

early 1990s  
Internet is reaching a critical 
mass 

1992 
Introduction of parametric 
modelling software to the 
building and construction 
industry - adaption of CATIA 
as an architectural design tool 
(‘Barcelon Fish’ by F.O. Gehry)

1993 Rhino  
Launch of Rhino, a NURBS-
based 3D modelling tool 

2003 GC 
‘Generative Components’, 
parametric CAD software de-
veloped by Bentley Systems, 
is first introduced. Already 
by early 2005 the program is 
increasingly used in the London 
architects’ scene

2007  
Launch of Grashopper, a 
graphical algorithm editior 
which operates with Rhino’s 3D 
modeling tools
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As Branko Kolarevic states in ‘Architecture in the digital age’ [Ko03]: 
“The information age, ………, is challenging not only how we design 

buildings, but also how we manufacture and construct them.” 

Unfortunately 3D programs have no ‘built-in button’ to automatically 
generate the required data out of a 3D model. Therefore there is no 

standard solution and the way how the construction industry deals with 

this problem varies widely depending on the geometry itself, the size of 

the required components and also the materials that are envisaged for the 

realisation. Each building is a prototype and the challenges to actually 

build it to this day can only be met by developing a very specific solution 
both in terms of computational process and production method for each 

individual project.

 

There is a good reason why most of the leading architectural companies 

such as Foster + Partners, Zaha Hadid Architects, Gehry Partners etc. as 
well as cutting-edge structural engineering companies such as Arup or 
Buro Happold nowadays all have their own specialist units who deal with 

complex building geometry and the question how to translate them into 

reality. Their task is to develop a computational concept to rationalise a 

three-dimensional model and extract small building components from 

geometrically complex surfaces or solids. Depending on the concept 

deemed to be the most suitable the result might be the geometric data for 

two-dimensional, planar components or three-dimensional curvilinear 

components. In any case they comprise the numerical input required for 

digital fabrication. 

This is an ongoing research process which will be advanced and refined 
in parallel to constantly emerging new computer technologies (both in 

terms of CAD programs and CNC technology), new building materials 
and improved processing methods.

1.5  The development of freeform architecture during 

the ‘Information Age’ 

Case study: Guggenheim Museum by Gehry & Partners, Bilbao, Spain, 

1997 

The principle of ‘Paper Surfaces’ (also called sheet material surfaces) 
was developed by Gehry & Partners during a time in architecture when 

computers although having already found their way into the design and 

construction process were mainly used for two-dimensional construction 

drawings and if at all for simple three-dimensional representations of 

physical models. However, with Gehry & Partners highly ambitious de-

sign approach in terms of free form shapes they had to break new ground 

to be able to realise their projects. 

Indeed Gehry & Partners can be seen as the pioneers in working with and 

actually realising complex free form shapes at a time, when the knowl-

edge about complex geometry and relating computer tools was still very 

limited. 

The principle of ‘paper surfaces’ or ‘sheet material surfaces’ was devel-

Figure 1.7:  Guggenheim Museum by 

Frank O. Gehry, Bilbao, Spain, 1997

Highly complex envelope real-
ised with the principle of ‘paper 
surfaces’ [Image by Wikipedia]

Information Age - Definition

The period beginning around 
1970 and noted for the abun-
dant publication, consumption, 
and manipulation of informa-
tion, especially by computers 
and computer networks. 

The American Heritage® Dictionary 

of the English Language

A period beginning in the last 
quarter of the 20th century 
when information became 
easily accessible through 
publications and through the 
manipulation of information 
by computers and computer 
networks

WordNet 3.0, Farlex clipart col-
lection. © 2003-2008 Princeton 

University, Farlex Inc.

A time when large amounts of 
information are widely avail-
able to many people, largely 
through computer technology 
(Sociology) 

Collins English Dictionary – Com-
plete and Unabridged

“Many of the forms he (Gehry) 
is developing now are only pos-
sible through the computer...... 
Bilbao is a perfect example. 
Prior to the development of the 
computer applications in the 
office, they would have been 
considered something to move 
away from.” 

Zaera, Alejandor, Frank Gehry 
1991-5, Conversations with 
Frank O. Gehry, in El Croquis, 
no. 74-5, 1995
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oped as a compromise between the highly constrained class of planar 

surfaces and the highly complex class of doubly-curved surface forms. 

As the name ‘sheet material surfaces’ implies the basic idea was to design 
surfaces or rationalise an existing design to a surface that can be built us-

ing common sheet materials and relating economic production methods to 

realise the cladding. 

They can be constructed by flat, flexible sheet materials which to a certain 
degree are smoothly bent, rolled and twisted to match the form of the 

physical model (Figure 1.8). This means paper surfaces are based on the 
mathematical principle of developable surfaces with the difference that 
the deformation of the cladding panels is accepted within a pre-defined 
tolerance (subject to the chosen material). One important aspect of paper 

surfaces is the fact that “the forms assumed by paper and other sheet ma-

terials in scale physical models have important counterparts in full scale 

construction. These materials may be readily formed by manual methods 

into curved shapes in space, so long as these forms do not require stretch 

forming of the material that would produce plastic deformation in the 

plane of the surface material”. [Sche02]

The idea is to build scale physical models with materials that already in 

the small scale of model making resemble similar material properties than 

the sheet material later used in the actual construction process (Figure 

1.9). With this approach the model making process acts not only as a 

design and visualisation tool but also as a tool to rationalise those areas 

whose curvature is too extreme for being realised with sheet material. 

Attempting to realise any doubly-curved shape with paper surfaces might 
result in wrinkling, creasing or ripping of the sheet of paper which indi-

cates that the designed shape has to be slightly adapted to avoid disconti-

nuities in the smooth surface. 

Case study: The Sage by Foster + Partners, Gateshead, UK,  2003

The complex geometry of the doubly-curved roof of Foster + Partners’ 
music centre in Gateshead was rationalised using the radial geometry of a 

torus (definition 3.5.3). The surface is composed of different tori patches 
which smoothly transition from one to another (Figure 1.10). Each patch 

again is subdivided into individual bands which are cladded with planar 

quadrilateral panels (Figure 1.11). To guarantee the planarity of each indi-

vidual face the design of the roof shape was consequently subordinated to 

the form finding principles for a rationalised surface. 

1.6  Visionary architecture versus budget 

These case studies show that the effort involved in the realisation of free 
form architecture is immense both in terms of engineering and design. 

It seems that complex designs still can only be realised if they have been 

designed by one of the major architectural companies which have the 

required knowledge in the field of discrete free form structures and differ-
ential geometry as well as solvent clients who can afford the difficulties 
inherent to complex shapes. 

Hence great designs might be doomed to failure if their realisation can’t 

Figure 1.8: Physical presentation model 

made of sheet materials [Image by 

rocor via flickr]

Figure 1.9: Model of ‘Paper Surface’
Marques de Riscal Winery, 
Spain, 1998 [Image by Digital 
Gehry (Li01) page 19]

Figure 1.10:  The Sage, Gateshead, UK, 

2004 by Foster + Partners [Image by 

Wikipedia]

Figure 1.11: Pre-rationalised envelope:

The shape of the building enve-
lope was adapted to allow the 
faceting with planar quadrilat-
eral elements
[Image by Ian Jones via flickr]

Frank O. Gehry about the de-
pendency of construction cost 
and complex building compo-
nents in 1995: 
“Flat pieces cost one dollar, 
single curvature pieces cost 
two dollars; double curvature 
pieces cost ten dollars.”
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be managed by the people involved in the project. 

The aim is to develop tools and methods which allow the designer to live 

their dreams irrespective of their knowledge in the field of differential 
geometry and computation. 

In recent years the construction industry already found some answers to 

the task of manufacturing building components with complex geometry. 

But although the sophisticated manufacturing techniques of the twenty-

first century like solid free form fabrication (aka rapid prototyping) allow 
the realisation of highly complex designs one of the most important 

questions remain their feasibility in terms of budget, program and col-

laboration between the different members of the design and construction 
process. The most unsatisfying situation will always be the redesign of a 

great idea because the design team wasn’t able to deliver a solution that is 
within budget and still offers an aesthetically pleasing result. 

“Geometry alone is not able to provide solutions for the entire process, 

but a solid geometric understanding is an important step toward a suc-

cessful realisation of such a project.” [Li01]

Generally speaking the difficulty with freeform architecture is the ‘break-

ing down’ of a computer generated model into building components 
which can be manufactured in terms of

 • panel size 
 • complexity in shape
 • number of different components and their allocation 
    during assembly 

Surface approximation

A particular challenge with free form shapes is the faceting of the enve-

lope which usually represents the biggest part of a building or in more 

abstract words the subdivision of the building surface. Whilst a computer 

generated surface is a smooth shape its translation into a geometrical 

object with relevant information for the construction process is the discre-

tisation of the surface or in other words the approximation of the surface 

by use of a polygonal mesh. 

The underlying geometrical principle of all surface subdivisions is the 

polygonal tessellation (Figure 1.12) which subdivides a surface using the 

geometrical description of a polygon (e.g. triangle, quadrangle, pentagon, 

hexagon, heptagon etc.). This process results in a collection of vertices, 

edges and faces which define the shape of a polyhedral object. Tessella-

tions of the Euclidean plane always result in planar polygonal subdivi-

sions but it is also possible to tessellate the n-dimensional space which 

will result in n-dimensional polytopes. These can be either planar or 

curvilinear depending on the applied method. In theory it seems that the 

designer has great freedom how to transfer his design idea into buildable 

components. In reality however this process is limited by considerations 

like 

Figure 1.12: Example of different types 
of a computer-generated subdivison by 

means of polygonal tessellation 

“Value engineering
is essentially a process that 
uses function cost analysis to 
reduce cost. Usually done after 
the design work is complete, it 
often results in large-scale cuts 
in program, quality, or com-
plexity.”
Digital Gehry: material resist-
ance/digital construction,  
Bruce Lindsey,, Birkhaeuser 
2001 [Li01]

Arbitrary freeform surface

With isocurves visible

Triangulation

Quadrilateral tessellation

Polygonal tessellation
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• How close does the subdivision reflect the initial surface 
   geometry (degree of freedom for shape optimisation)

• Does the generated pattern reflect the design intent 
• Difficulties regarding the assembly of a structure which 
   might consist of a myriad of unique components

• Is the desired subdivision on budget or is there a need for 
   further rationalisation (planar versus curvilinear components, 

   non-repetitive building components versus a certain number 

   of identical or at least similar components etc.)

These are all factors with a major influence on the feasibility of a design 
especially in terms of the budget: 

1.7  Number of identical components of surface subdi-

vision 

There are systems in place to help with the assembly if a big number of 

individual building components needs to be allocated precisely as done 

for Gehry’s ,Experience Music Centre, in Seattle in 2000 or for Foster + 
Partners’ roof of the ,Great Court Yard, of the British Museum in 2000. 
Building costs however could have been reduced significantly if the num-

ber of individual components had been reduced as done for the roof shells 

of the Sidney Opera House in 1973. 

1.8  Planar versus curvilinear components 

With highly sophisticated CNC manufacturing techniques it is not a prob-

lem anymore to manufacture doubly-curved cladding elements. However 

doubly-curved components can only be produced with a limited number 

of materials hence the choice of cladding material will be restricted. 

The other aspect is the production process which is far more complex 

and thus more expensive than for planar components. Consequently the 

focus of this thesis is directed on a subdivision principle which results 

in planar components. The most obvious way would be to apply one of 

the available triangulation principles as these will always result in planar 

components. However quite often the distinct geometrical appearance of 

triangulated surfaces doesn’t meet the initial design intent of the architect 
and a ‘calmer’ geometry is desired which leads to the requirement for a 
quadrilateral subdivision (Figure 1.13). 

The planar quadrilateral faceting of a surface is one of the most desirable 

subdivision principles both from an architectural and an economic point 

of view. Architecturally it provides a calmer appearance as the edges of 
the mesh seem to be in some kind of linear order. Economically planarity 

is less expensive than curved faces. 

“An object consisting of planar components can be unfolded in the plane 

Figure 1.13: Triangulation of the glass 

roof of the BMW World, Munich, Coop 

Himmelb(l)au, 2007 [Images by Maira 

Onofri/ Cepolina]
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without distortion and thus fabricated with simple two-dimensional cut-

ting techniques.” [SchoBe05] 

Although a number of generation principles for PQ meshes are already 
known these will all lead to specific types of surfaces. 
They all require either pre-rationalisation meaning the form finding 
process has to be subordinated to the generation principle or post-ration-

alising for which the initial design idea can only be preserved to a certain 

degree as the surface has to undergo optimisation processes to make it 

suitable for quad tessellation. Their mathematical properties will be ex-

plained in detail in chapter 03. 

 

To date there is no general method which allows the subdivision of an 

arbitrary doubly curved surface into a mesh of planar quads. 

As stated by Axel Kilian et al.: “The design of a PQ mesh that satisfies 
all of the high requirements of aesthetics and that is sufficiently close to a 
provided input surface is an unsolved research problem. We will be able 

to compute a solution if the network of principal curvature lines can be 

used as a basis of a mesh that is then improved via optimisation. Howev-

er, singularities as well as large variations in cell sizes caused by the flow 
of principal curvature lines may make this approach unfeasible.” 

The purpose of this thesis is therefore to find a universal generation prin-

ciple which allows the translation of any arbitrary doubly curved surface 

into a mesh of planar quadrilateral faces without exerting influence on the 
design and its formal vocabulary. Ideally the method of solution shall be 

applicable to every surface irrespective of its complexity and the geom-

etry of the input surface shall be preserved as far as possible. 

  Fundamentals of PQ mesh generation principles

First the focus directed at the understanding of the mathematical fun-

damentals of PQ meshes and those surfaces which have been success-

fully discretised into a PQ mesh. This knowledge is imperative for the 

further research regarding a universal generation principle. 

  Surface versus mesh

In mathematics a surface is defined as a continuous smooth sequence 
of an indefinite number of points. A mesh in contrary is the discretisa-

tion of a surface as only the vertices and edges of the mesh are located 

exactly on the input surface. Areas circumscribed by four adjacent 
edges remain mathematically undefined (Figure 1.14). Is the mesh 
defined by straight edges it is the vertices only that form part of the 
input surface. For a satisfying surface representation an approximation 

process is required which generates a face density representing the 

input surface as precisely as possible and at the same time addressing 

the requirements of the manufacturing industry. 

  Conjugate network of curves and their importance for PQ

  meshes 

It is mathematically proven that the edges of a PQ mesh always dis-

cretise a conjugate network of curves (referred to as CNCs hereafter) 

Purpose of thesis
generation principle to be 
developed to transform an 
arbitrary doubly curved surface 
of any complexity into a mesh 
of planar quadrilateral faces

Research gap
State of research regarding PQ 
meshes based on principal cur-
vature lines (Axel Kilian et al.)

Figure 1.14:  Arbitrary doubly curved 
surface (above) and its translation into 

a mesh - the discretised version of the 

same surface (below)
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and that theoretically there exists an indefinite number of conjugate 
networks of curves for every single surface (Chapter 3.4) [BoSu08, 
PoAs07]. Thus an initial solution to the problem could be to isolate 
one of these networks from the input surface to use it as basis for the 

segmentation process. However although the existence of countless 

CNCs per surface is known so far their mathematical generation prin-

ciples are widely unexplored. 

There are a limeted number of generation principles for CNCs e.g. 

translation surfaces (Figure 1.15) which are well-researched and 

documented and although the discretisation of these surfaces delivers 

a PQ mesh they don’t provide a general solution to the problem of PQ 
faceting as their use would imply the pre-rationalisation of the input 

surface. 

This however will restrict the architects’ freedom of design signifi-

cantly as only doubly curved surfaces based on the generation princi-

ples of one of these specific surface types would guarantee a PQ mesh. 
Hence a more general approach needs to be found.

  Network of principal curvature lines

One type of conjugate network of curves is of particular interest 

though: for each surface there is only one CNC which features the 

property of orthogonality of the curves in their intersections. This 

specific network is called the network of principal curvature lines 
(referred to as LPCs hereafter). As one of the important properties of 
mesh faces with respect to both the manufacturing process and their 

appearance (architectural and economical aspects) is the perpendicu-

larity of their edges the LPCs pose an ideal basis for the generation of 

the output mesh. 

•  Every surface possesses only one network of principal 
    curvature lines 

•  It is a generation principle which results in quadrilateral 
    faces which are close to being planar 

•  the network of LPCs features almost right angles which 
    provides an additional advantage in terms of 

    manufacturing requirements

•  Their generation principle is well-research and 
    documented 

The LPCs however will provide a mesh suitable as start geometry only 

for those areas of a surface which feature regular points. In the vicinity 

of singularities or singular points (Chapter 2.5.3) this approach proofs 

unfeasible as the flow of the LPCs deflect to unusual configurations 
and cell sizes which are unsuitable as start geometry (Figures 2.22-

2.24). 

  Crude mesh

An alternative way must be found to generate a continuous and visu-

ally appealing PQ mesh which follows the lines of principal curvature 

in ‘regular’ surface regions but may diverge in areas where the LPC 

Figure 1.15:  Network of principal 

curvature lines

Figure 1.16:  Conjugate network of 

curves on a translation surface
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flow doesn’t provide a suitable start geometry.
By picking the vertices manually - close to the lines of principal 

curvature but with the freedom to choose their location just close-by 

instead of exactly on the lines - a generation principle is chosen which 

takes advantage of the knowledge regarding the LPCs and the geo-

metrical particularities of its relating network but still allows to deal 

with the difficulties posed by special surface areas. These faces can 
be sculpted manually and placed in such a way that their edges line 

up with the LPCs of the target surface. Although the lines of principal 
curvature are not used directly to generate the crude mesh their geo-

metrical configuration indicates how the PQ approximation mesh is 
best to be set up. 

  Mesh subdivision

A subdivision algorithm is applied in order to refine the crude mesh. 
At the same time the newly generated vertices are averaged to guaran-

tee a smooth and continuous but finer mesh. The subdivision algo-

rithm can be applied iteratively until the desired density of the mesh is 

achieved. After each iteration cycle the newly generated vertices are 
‘pulled back’ onto the target surface to allow as little deviation from 
the input surface as possible.

  Optimisation

It is obvious that this approach results in faces which are not exactly 

planar and therefore as a final step an optimisation process shall be 
developed to change mesh areas with non-planar faces and to force 

them into planar ones. This process is based on dynamic relaxation 

principles. 

1.9 Main focus and limitations

In the broadest sense the thesis deals with the translation of an arbitrary 

free form surface into a mesh consisting of vertices, edges and faces. This 

operation is pre-conditioned by two aspects: 

•  planarity of the faces 
•  quadrilateral shape

An additional aspect is the adherence to the original design intent.
There are many different ways how to panelise free form architecture 
which are still unexplored or whose generation principles can be im-

proved. The reason why this thesis is focusing on a solution for PQ 

meshes is the obvious advantages in comparison to other panel shapes 

namely node simplicity, a higher degree of transparency with respect to 

the reduced number of members per verities and reduced manufacturing 

costs with respect to planarity of the faces.

However, regarding planarity the constraint is made that it’s not about ab-

solute planarity in a mathematical sense, but planarity in terms of manu-

facturing requirements. This means the generated faces are close to planar 

Planarity in an absolute versus  
relative sense
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within a pre-defined tolerance. Depending on the stiffness of the cladding 
material the tolerance can be chosen more generously for bendy materials 

like sheet metal respectively less generously for stiff materials like glass. 
Planarity in a mathematical sense isn’t necessary as even for glass panels 
a certain deformation is acceptable and will result in reduced building 

cost in comparison to planar facets in an absolute sense. 

The quadrilateral shape of the faces is a precondition for reasons of 

higher structural transparency in comparison to triangulation. 

From an economic point of view it could be desirable to go a step further 

and aim for rectangles instead of quads. Hence a further development of 

the tool could be the perpendicularity of planar faces. 

Another aspect relevant for the economic viability of a project could be 
to maximise the amount of repetitive elements for the panelisation. The 

research in this thesis concentrates on PQ meshes irrespective of the 

number of different panels as the foremost interest is to provide a general 
solution for this to date unsolved problem. Still for reasons of produc-

tion and assembly a high amount of identical elements could be a huge 

benefit. 

For the sake of completeness it shall be mentioned that Dr. Yang Liu et al. 

already developed a planarisation algorithm in 2006 which can be applied 

to an arbitrary mesh of non-planar faces. However the generation of a 

suitable starting mesh was left un-discussed and will therefore be address 

in this thesis.

1.10  Outline

The analysis and documentation of PQ mesh properties in chapter 2 de-

liver the mathematical fundamentals which are required to approach the 

problem of surface segmentation. Elements of planar quad meshes as well 

as rules and actions relevant for their understanding are explained and 

illustrated. 

In Chapter 3 the mathematical generation principles for surfaces which 

in the past have already been successfully discretised into a PQ mesh are 

analysed and discussed in detail: what has been studied so far, how flex-

ible are the well-known methods in terms of surface representation and 

how can the available knowledge been used for the solution finding pro-

cess for the specified problem. Basically the ‘State of the Art’ of surface 
discretisation in differential geometry is documented. 
Notably the special meaning of ‘conjugate network of curves’ and  the 
‘network of principal curvature lines’ for planar quadrilateral faceting are 
explained as these two principles play a vital part in the solution finding 
process.

In Chapter 4 a generation principle is developed which allows the facet-

ing of an arbitrary doubly curved surface with planar quadrilateral faces. 

The methodology comprises of several steps to get from a crude input 

Chapter 2
‘PQ mesh properties’ 
The intrinsic properties of 
PQ meshes are analysed and 
compiled

Chapter 3
‘PQ mesh surfaces’
Compilation and documen-
tation of PQ mesh surfaces 
whose mathematical genera-
tion principles are known

Dr. Yang Liu et al. planarisation 
algorithm in 2006  [LiPo06]

Amount of repetitive elements

Generation of rectangles as a 
step further
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Chapter 4
‘PQ mesh approximation’
A generation principle is devel-
oped which allows the faceting 
of an arbitrary doubly-curved 
surface with planar quadrilat-
eral faces

Chapter 5
‘Case studies’
The developed tool is applied 
to surfaces of different levels 
of complexity and the results 
are analysed and interpreted

Chapter 6
‘Summary and preview’
Scope of research and its 
achievements, significance for 
future developments

mesh to an approximation mesh which features the desired planarity in a 

density suitable for the construction process. Intermediate steps like the 

refinement of the mesh by use of a subdivision algorithm and the dynam-

ic relaxation process to achieve planarity are explained. 

A number of case studies in chapter 5 shall document how successfully 
the developed tool might perform surface segmentations. The program is 

applied to and tested with a number of arbitrary surfaces of different lev-

els of complexity to provide a general overview of its potential. The sur-

faces used for this exercise are especially created for the test run in order 

to compare similar surface topologies with different degrees of curvature. 

However, arbitrarily generated surfaces -although ideal to show certain 

aspects of a problem- are artificial creations and therefore might differ 
from the built reality in scale, shape and complexity of curvature. For this 

reason an additional test run is performed for which the tool shall be ap-

plied to surfaces of actually built projects. 

For each of the test surfaces the course of the segmentation process is 

documented with screen shots in a step by step manner to allow a direct 

comparison of the different surface types. 

The results are analysed and interpreted regarding aspects like

•  degree of planarity 
•  mesh density
•  adherence to original design intent
•  regularity of face pattern

Chapter 6 shall give an overview of what has been achieved and what 

could be the future prospects: a preview for possible further develop-

ments of the tool and its significance for the construction and manufactur-
ing industry in general as well as for the field of computation and pro-

gramming in particular.  





Planar quad (PQ)

mesh properties

Chapter 2
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2  Planar Quad (PQ) mesh prop-

erties

2.1  Introduction

As the research aim of this thesis is the generation of a planar quadrilat-
eral mesh (called PQ mesh hereafter) from an arbitrary freeform surface 

In this chapter we will discuss the intrinsic geometric properties of PQ. 

meshes. For this reason we will break down the mathematical object of a 

mesh into the components it consists of and start our examination with a 

single mesh face as the smallest possible unit. 

The two relevant properties are the number of vertices which for our 

particular case is defined as four and the plan
arity of the face. In a mathematical sense the definition of a quadrilateral 
is trivial and will be disregarded. However planarity of an object consist-

ing of four corner points is essential for the solution finding and therefore 
we will start with the investigation of the various criteria which guarantee 

the planarity of a single face. 

To get from a single PQ face to the complex structure of a PQ mesh the 

next step is the PQ strip which as per definition consists of a series of PQ 
faces linked together in such a way that they form a single row. Mesh 

strips exist in three generic configurations. As the research aim of this 
thesis is the generation of a planar cylindrical strips, conical strips and 

tangential strips of which represent a discrete version of a developable 

surface [LiPO06].

Similarities and differences of the three PQ strip types will be explained 
as well as their reference to developable surfaces. 

If one links an arbitrary number of PQ strips with each other this will 

finally result in a PQ mesh. It is mathematically proven that the edges of 
a PQ mesh always represent the discrete version of a conjugate network 

of curves with the particularity that all curves of a conjugate network on 

a surface are in conjugate directions to each other. Hence the properties 

of conjugate networks of curves and the mathematical principles which in 

general define curve directions as conjugate are explored. 

The lines of principal curvature on a surface are an example for such a 

conjugate network of curves. However this special network type features 
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the property that only one network of principal curvature lines exists for 

any given surface and is therefore explored in more detail. 

In addition two more mesh types are investigated and explained because 

of their particular meaning for PQ meshes: If all faces of a PQ mesh pos-

sess a circumcircle such a mesh is called a circular mesh. If faces which 

have one vertex in common are all tangent to a right circular cone (with 

the vertex forming the peak of the cone) such a mesh is called a conical 

PQ mesh. It is important to know that both circular and conical meshes 

discretise the principal curvature lines of a surface. 

Finally mesh transformations and the possibilities and implications of-

fered by them shall be briefly explored in the last section of this chapter. 

2.2  PQ Face Planarity Criteria

Let a quad face (Figure 2.1) be defined by its four corner points p1, p2, p3, 
p4 edge vectors e1, e2, e3, e4 and corner angels α1, α2, α3, α4.

The planarity of the quadrilateral or quadrangle face can be defined in 
various ways. The basic condition may be that a quad face is called planar 

if all corner vertices lie in a plane. If the following conditions are satisfied 
a mesh face is planar.

2.2.1  Angle sum

The condition of planarity is satisfied if the four corner angles α1 to α4 which are included by the edges e1 to e4 (Figure 2.2) sum up to 2π 

(360°):

 Σ α1, α2, α3, α4 = 2π                 Equation 2.1

2.2.2  Two Parallel Edges

If we consider the four edge vectors e1 to e4, the opposed edge vectors 

require to be parallel in space in order to form a PQ face (Figure 2.2). 

This condition is reciprocal hence we need to check only one pair of edge 

vectors for parallelism. The conditions of two vectors to be parallel in 

space is satisfied if their cross product vanishes:

 e1 ‖ e3 if e1 x e3 = 0            Equation 2.2(a) e2 ‖ e4 if e2 x e4 =0                     Equation 2.2(b)

2.2.3  Three Linear Dependant Edge Vectors

If three vectors in space lie in a common plane they are called to be linear 

Figure 2.1: Quad Face
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Figure 2.2: Parallel Edge Vectors

(e4 ) ⃗‖(e2) ⃗

(e1 ) ⃗‖(e3) ⃗



  36

dependant. This condition is satisfied if their determinant vanishes. The 
condition is reciprocal meaning only one of equations 2.3(a) to 2.3(d) 

needs to be satisfied to prove the planarity of a face. 

 det (e1, e2, e3) = 0            Equation 2.3(a)

 det (e1, e2, e4) = 0            Equation 2.3(b)

 det (e1, e3, e4) = 0            Equation 2.3(c)

 det (e2, e3, e4) = 0            Equation 2.3(d) 
 

2.2.4  Vanishing distance of a forth point to a three Point Plane

Three points in space define a plane. Equation 2.4 defines the distance of 
a point to the defined plane. The reference plane is defined by any three 
corner vertices of a face. If the fourth vertex of this face has vanishing 

distance from the reference plane the face is a PQ face. If we check this 

condition the non-zero event will also give us a value for the non-planar-

ity.

 d = |v • n|                 Equation 2.4

 e.g. plane (p1,p2,p4), point (p3) 
 v = (p3x – p1x, p3y – p1y, p3z – p1z)

2.2.5  Four vertices on a circumcircle 

A quad face is called to be circular or discrete orthogonal if its four cor-
ner vertices all lie on a common circle. The following condition must be 

fulfilled for a quad face to be circular [WaWa07]:

 ф1 + ф3 – π = 0 and ф2 + ф4 – π = 0              Equation 2.5 ф1 to ф4…interior corner angels of a face
If only one of the five above described conditions is satisfied it is proven 
that a quadrilateral face is planar. 

With the mathematical fundamentals of planarity of a quadrangle defined 
we will now investigate the unit next in size of a mesh structure. 

If a series of planar faces is linked together in a single row the arrange-

ment will form a planar quadrilateral strip. As any PQ mesh can be 
broken down into a number of different PQ strips their fundamentals are 
essential and will be investigated in the following section. 

Figure 2.3: Out of Plane Distance
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 n= e1 x e4|e1 x e4| 
 2.7 
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2.3  PQ Strip Properties

The arrangement of a series of planar quads in a single row is the discrete 

version of a developable surface strip [LiPo06]. Therefore the study of 

PQ meshes and the elements such a mesh consists of is directly linked 

with the study of developable surfaces and their particularities. In 3.2.2 

we will have a closer look at developable surfaces with respect to pos-

sible discretisation principles as well as the relationship between develop-

able and ruled surfaces. However the three established types of develop-

able surfaces shall be briefly introduced here as their respective discrete 
versions are the three main types of PQ strips which PQ meshes of any 

kind are composed of. 

A developable surface S is defined as the envelope of a one-parameter 
family of planes because each of these planes touches the surface along 

a straight line. These straight lines are called the rulings (or generators) 

of S. Depending on the configurations of the rulings three main types of 
developable surfaces can be isolated: 

cylinder surface: all rulings of S are parallel 

conical surface:   all rulings of S pass through a fixed point a namely the
    apex of the cone 

tangent surface:   all rulings of S are tangents of a space curve c 

If we now examine the properties of a PQ strip which as mentioned above 

is the discrete version of a continuous developable surface it becomes 

obvious that the different PQ strip types can be distinguished in the same 
way as their respective developable surface types namely by the configu-

ration of their rulings. 

In reference to the main types of developable surfaces explained above 

there are three basic types of PQ strips: 

 - cylindrical PQ strip 

 - conical PQ strip 

 - tangential PQ strip 

The only difference to their continuous equivalent is that the space be-

tween adjacent rulings of a PQ strip is defined by a plane whereas for de-

velopable surfaces single curvature is involved. Consequently this means 

that the property of single curvature of a developable surface is trans-

formed into a number of planar quads arranged in a single row and joined 

together in their parallel edges which form the rulings of the PQ strip. 

Any two consecutive edges of the quads in a PQ strip are parallel in 
space and therefore co-planar (Chapter 2.2.2). As PQ strips consist of 
a sequence of planar quads they can be unfolded into the plane without 

distortion like stretching or compressing. The edges of the PQ strip where 

the planar quads are joined together represent the rulings of the respective 

developable surface. 

The mathematical definition of the three main types of PQ strips are sum-

marised in the following section. 
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2.3.1  Cylindrical PQ Strip

The cylindrical PQ strip is defined by a family of parallel lines in space 
(Figure 2.4). These rulings may be generated by the parallel extrusion of 

a discrete spatial or planar curve in any direction. The parametric defini-
tion of a cylindrical surface is given in Equation 2.6 below:

 S[u]=p(u) + z(u)                Equation 2.6

 p(u)... section curve 
 z(u)... extrusion vector
Two corresponding edges of the PQ strip faces are always part of the 

rulings which define the PQ strip. The scond pair can be freely chosen 
as two polygonal lines with their vertices of the rulings. Here can distin-

guish between congruent and non-congruent quadrangles:

If the second corresponding set of edges is parallel to the extrusion profile 
curve the PQ strip faces between too adjacent rulings are called to be 

congruent. The faces are identical in shape and in size. In absence of the 

previous condition the quadrangles called to the non-congruent (Figure 

2.5).

2.3.2  Conical PQ Strip

If we connect the vertices of a planar or spatial polygonal curve to a 

single point we obtain a discrete conical surface (Figure 2.6).The conical 

PQ strip is part of the concical surface. The concical surface is defined in 
Equation 2.7 below:

 S[u,v]=p(u) + vz(u)                      Equation 2.7

 with 

 c0 ... cone point

The edge defining lines may alternatively generated as the central extru-

sion of a discrete curve towards a common point.

One corresponding set of PQ face edges lie on the straight generators of 

the concical surface. Here can distinguish between similar and non-simi-

lar quadrangles:

If the vertices of the faces between two adjacent generators have a con-

stant distant to the common point the quadrangles are called to be similar 

(Figure 2.7). The faces are identical in shape but not in size. They can be 

Figure 2.4: Congruent cylindrical PQ 

strip  
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d2

Figure 2.5: Non-congruent cylindrical 

PQ strip
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Figure 2.6: Discrete concical surface

Figure 2.7: Similar face conical PQ 

strip
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translated and scaled into each other. A similar PQ strip will form a po-

lygonal arc when unrolled. A varying distance will derive in a non-similar 

layout of the PQ strip.

2.3.3  Tangential PQ Strip

The surface defined by a series of tangent curves along a spatial curve 
is called to be a tangential surface (Figure 2.8). The tangential PQ strip 
is formed by a part of the he discrete version of the tangent surface. The 

parametric definition of a tangential surface is given in Equation 2.8:

 S[u,v]=c(u) + vc’(u)                      Equation 2.8  
 
 c(u)... spatial curve  c’(u)... first diveration of spatial curve
The consecutive rulings are co-planar and their intersections result in a 

series of points which reciprocally approximate the tangential generat-

ing curve. If the distance between the consecutive rulings is chosen to be 

infinitesimal small the subdivision points will match the generating curve 
(Figure 2.9). 

Two opposing edges of each face are always part of two consecutive 

rulings which define the strip. The condition of similar and non-similar 

quadrangles applies in the same way than described for the conical PQ 

strip. 

It is mathematically proven that cylindrical, conical and tangential sur-

faces are the only existing developable surfaces in 3-dimensional space 

[PoWa01]. Hence every PQ mesh must be a composition of PQ strips of 

one or more types of these three configurations. 

With the structure of a PQ mesh and its components mathematically 

defined we can now look at it from a different angle: In the previous sec-

tion we have stripped the mesh down into its basic elements (mesh face - 

mesh strip - entire mesh). In the following, we want to examine the mesh 

structure with respect to its linear components and the resulting curve 

configurations. 

If we consider a PQ mesh with the focal on the configuration of the po-

lygonal curves formed by the consecutive edges it reflects a network with 
unique properties, namely the discrete version of a conjugate network of 

curves of the respective surface. The meaning of this special curve net-

work and its relevance regarding a general solution for PQ meshes for an 

arbitrary freeform surface will be explained in the next section. 

Figure 8: Discrete tangential 
              surface

Figure 2.8: Discrete tangential surface

Figure 2.9: Tangential PQ strip

Section curve

Rulings

Reciprocal 
intersection 
points
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2.4  Conjugate network of curves

In chapter 3 we will have a closer look into the different surface types 
which -when discretised in a certain way- automatically result in a PQ 

mesh. These are very specific with respect to their appearance and hence 
unsuitable for a general approach.   

The conjugate network of curves of a surface however could potentially 

offer a first step in the solution finding process as it features two impor-
tant properties: 

•  Any surface in 3-dimensional space irrespective of its 
    complexity can be parameterised using conjugate curves. 

•  If discretised a conjugate network of curves will always result
    in a PQ mesh, thus featuring faces which are planar quads. 

Or in reverse PQ meshes posses the special property that their edges 

always represent the discrete version of a conjugate network of curves. 

Such a net is also called Q-net. 

Based on this knowledge, in theory one could approach the problem by 

generating a conjugate network of curves for a surface and then discretise 

this Q-net to obtain a PQ mesh. However in this context it is important 

to know that there is not only one but an infinite number of conjugate 
networks of curves for any given surface [BoSu08, PoAs07] meaning 
they don’t provide a unique solution. Besides, only a very limited number 
of generation principles are known to date which allow the generation of 

a Q-net on an arbitrary surface. 

As the name implies all curves of a conjugate network are in conjugate 
direction to each other at any vertex of the net. Hence the question is how 

to determine such conjugate directions for an arbitrary surface point in 

order to generate a Q-net. This can be done by means of the Indicatrix of 

Dupin or the Eulers theorem [Kr59]. 

2.4.1  Indicatrix of Dupin

In the field of differential geometry of curved surfaces the mathematical 
term ,Indicatrix’ is defined as a planar conic section (resulting in either 
parabola, ellipse, circle or hyperbola), which describes the local behav-

iour of curvature of a surface S in a defined point P. It was defined by 
Pierre Charles François Dupin (1784 - 1873) and is therefore also known 
as Indicatrix of Dupin 

If we consider a sufficiently small environment around a point P on a 
surface S one can approximate the surface arbitrarily closely by means 

of a quadric (a surface of 2nd order). If the tangent plane T in point P is 

moved infinitesimally in the direction of the surface normal vector n and 
its opposite direction the plane will intersect with the surface and result in 

one of the three geometrical configurations (elliptic, hyperbolic, para-

bolic) described in the following chapters. 

Figure 2.10: Elliptical Indicatrix

Curvature directions

Surface normal

Figure 2.11: Hyperbolic Indicatrix above 

surface

Figure 2.12: Hyperbolic Indicatrix 

below surface
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2.4.2  Elliptic point (K > 0, кmax, кmin >0):

The intersection of the surface with a plane parallel to the tangent plane 

generates an ellipse (Figure 2.10). The directions of the maximum and 

minimum radii of this ellipse are corresponding to the maximum (кmax) 

and minimum (кmin) principle curvature directions. The ellipse can be 

described as follows:

 кmax x² + кminy² = 1, Rmax = √кmax, Rmin = √кmin                 Equation 2.9 √ Rmax, √ Rmin ... principle semi axis
On a sphere all points are elliptic but with identical values for the maxi-

mum and minimum radii of an ellipse and respectively for the principal 

curvature directions.  Hence the Indicatrix for a sphere is always a circle. 

2.4.3  Hyperbolic point (K < 0, кmax > 0, кmin < 0):

The intersection of the surface with two planes parallel to the tangent 

plane generates a set of conjugate hyperbolas (Figures 2.11, 2.12). Their 

main axes are corresponding to the maximum and minimum principle 

curvature directions. The two asymptotes of the hyperbolas representing 

the asymptotic directions which comprises of vanishing curvature (к = 
0). The conjugate hyperbolas are defined as follows:

 кmax x² + кmin y² = ±1, Rmax = √кmax, Rmin = √кmin           Equation 2.10 |√ Rmax|,|√ Rmin|... principle semi axis
2.4.4  Parabolic point (K = 0, кmax > 0, кmin = 0):

The intersection of the surface with the plane close to the tangent plane 

and parallel to it generates two parallel lines. The parallel lines are in 

direction of the single asymptotic line. With the help of Dupin’s Indica-

trix we can now investigate the conjugate directions at any point on the 

surface. 

2.4.5  Conjugate directions

As explained above the two directions at a point P on a surface S which 
coincide with the conjugate diameters of Dupin’s Indicatrix are called the 

two conjugate directions. 

The two diameters d1, d2 within the Indicatrix are called conjugate if 

d1 bisects the chords parallel to d2 and vice versa (Figures 2.13, 2.15). 

Figure 2.13: Elliptic conjugate diam-

eters

Figure 2.14: Elliptic conjugate diam-

eters
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Hence this condition is reciprocal. 

It is important to mention that for each point P on a surface S there is 

not only one pair of conjugate directions but an infinite number of them. 
This becomes obvious if we have a look at an arbitrary elliptical point on 

a surface: Once the Indicatrix of Dupin is generated one can choose the 

first diameter d1 of the ellipse freely. The second diameter results from 
the condition described in the paragraph above. Consequently one can 

generate an infinite number of ‘conjugate direction pairs’ in a single point 
just by choosing a different ‘start’ diameter. This method can be applied 
respectively to hyperbolic and parabolic points.

If we consider the infinite number of conjugate directions there is only 
one pair which features the particularity of the two directions being per-

pendicular. These are called the principal diameters and coincide with the 

principal curvature directions in a point P (Figures 2.14, 2.16) [Kr59]. 

2.4.6  Conjugate networks 

A two directional network of curves (with the direction of one family of 
curves named A and the other named B) on a surface is called conjugate 
if at every intersection the tangential directions of A and B are conjugate. 
From section 2.4.3 follows that the directions A and B are conjugate if the 
corresponding diameters of Dupin’s Indicatrix are conjugate [Kr59]. 

The tangents at discrete points along curve A in the directions of curves 
B must form a tangent developable surface with the tangents themselves 

forming the rulings of the developable surface (see Figure 2.21). This 

condition highlights the coherence between a conjugate network of 

curves on a smooth surface S and a PQ mesh as its discrete representa-

tive. It also corroborates the relationship between developable surfaces 

and PQ strips as explained in section 2.3. 

As mentioned before there is an infinite number of conjugate networks 
of curves for any given surface [LiPo06]. Depending on the surface type 

their generation principles for the Q-nets can be more or less sophisticat-

ed. For some surfaces (e.g. those which feature a ‘kinematic’ generation 
principle) the Q-net simply consists of the surface generating elements 

like path curves or rulings. However, surface types with a more complex 

geometry usually require more complex generation principles for their 

conjugate networks of curves. Some network examples and the respective 

surface types they are generated on are listed below [LiPo06]:

 -Meridian curves and parallel circles of a revolving surface 

 -Generators of a translational surface 

 -Network of principal curvature lines of any freeform 

  surface irrespective of its complexity 

 -Family of contour generators 

 -Curves of steepest decent 
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Although we have shown in this section that Q-nets might be a potential 
approach for the generation of a PQ mesh, the resulting network may not 

be suitable for our purpose, that is it might not serve as a basis for a us-

able mesh layout. 

The reason for this is that the mesh pattern can’t be predicted: the exist-
ence of an inifinite number of Q-nets for an arbitrary surface means that 
one would have to generate and compare a certain number of them in 

order to determine one with a suitable mesh layout. 

There is however one conjugate network of curves which is unique for 

any given surface and whose geometry is determined by the surface 

shape. The lines of principal curvature represent a net which is not only 

unique for any given surface but also features an orthogonal face pattern 

which is an additional advantage in terms of the buildability of a structure 

(as explained in 2.4.5 the principal curvature directions coincide with the 

only conjugate directions of each surface point which are perpendicular 

to each other). 

In the next section we will investigate principal curvature lines in detail 

in order to provide the mathematical background for the discrete approxi-

mate procedure to compute principal curvature lines on NURBS surfaces 

which will be proposed in chapter 04. 

2.5  Network of principle curvature lines

A doubly curved surface is covered by a network of principle curvature 
lines simply and without gaps expect of umbilical or naval points (flat 
points) [STr61] .The lines of principle curvature (LPC) follow the two 

principal curvatures/directions which measures how the surface bends by 

different amounts in different directions at a point.

2.5.1  Principle Curvature Directions

The intersection of the normal plane with the surface at a point will 

generate a planar curve which indicates the normal curvature кn for the 

chosen direction. The normal plane contains the surface normal at the 

point. If we compute all normal curvature direction at a point we will 

receive a maximum and a minimum value for every non – umbilical point 

in the surface (Figure 2.17). These directions are the principal curvature 

directions which are denoted кmax, кmin or к1, к2.

The principle curvature directions are given in the quadratic equation for λ:

 (Fg-Gf) λ² + (Eg-Ge) λ + (Ef + Fe) = 0            Equation 2.11 E, F, G…first fundamental form coefficients e, f, g…second fundamental form coefficients
Figure 2.17: Principal Normal curva-

tures
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The first and second fundamental from describes the behaviour of curves 
near point of the surface. For more detailed information please refer to 

[Str61] chapters 2.2 and 2.5.

The principal curvature direction also be determined with the knowledge 

of the Gaussian (K) and Mean (H) curvatures [KoMa03, Str61]:

2.4 
 n= e1 x e4|e1 x e4| 
 2.7 
 z=c0- p|c0-p|  2.12  K=kmaxkmin= eg-f²EG-F²  2.13  H= 12 (kmax+kmin)= Eg-2fF+eG2(EG-F2)   2.14  kmax, kmin[u,v]=H[u,v]+/-�H²[u,v]-k[u,v]  2.15  Kmax= 1rmax , Kmin= 1rmin  2.16  duds =η(f+kF),  dvds =η(e+kE)  2.17  duds =μ(g+kG), dvds =μ(f+kF)  

               Equation 2.12

             Equation 2.13

            Equation 2.14

According to Euler (Leonhard Euler, 1707 – 1783) they are always per-
pendicular to each other.

The multiplicative inverse of the principle normal section curves radii’s 
represents the principle curvatures:

              Equation 2.15

With the understanding of the principle curvature directions one can 

interograte a network of principle curvature lines. 

2.5.2  Lines of principle curvature (LPC)

A line of principle curvature is a curve on a surface whose tangents are at 
every point in the direction of the principal curvatures. There a two sets 

of lines which are orthogonal to each other which are following respec-

tively the maximum and minimum curvature direction [Str61]. We can 

obtain a line of principal curvature when solving one of the following 

differential equations [KoMa03]:

2.4 
 n= e1 x e4|e1 x e4| 
 2.7 
 z=c0- p|c0-p|  2.12  K=kmaxkmin= eg-f²EG-F²  2.13  H= 12 (kmax+kmin)= Eg-2fF+eG2(EG-F2)   2.14  kmax, kmin[u,v]=H[u,v]+/-�H²[u,v]-k[u,v]  2.15  Kmax= 1rmax , Kmin= 1rmin  2.16  duds =η(f+kF),  dvds =η(e+kE)  2.17  duds =μ(g+kG), dvds =μ(f+kF)  

                             Equation 2.16

 or

2.4 
 n= e1 x e4|e1 x e4| 
 2.7 
 z=c0- p|c0-p|  2.12  K=kmaxkmin= eg-f²EG-F²  2.13  H= 12 (kmax+kmin)= Eg-2fF+eG2(EG-F2)   2.14  kmax, kmin[u,v]=H[u,v]+/-�H²[u,v]-k[u,v]  2.15  Kmax= 1rmax , Kmin= 1rmin  2.16  duds =η(f+kF),  dvds =η(e+kE)  2.17  duds =μ(g+kG), dvds =μ(f+kF)               Equation 2.17 к… principle curvature η, μ…normalisation factors of the first fundamental form E, F, G…first fundamental form coefficients e, f, g…second fundamental form coefficients

Figure 2.18: Maximum LPC on El-

lipsoid

Figure 2.19: Minimum LPC on El-

lipsoid

Figure 2.20: LPC on Ellipsoid

Figure 2.21: Tangential Ruled Surface
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The surface normals along a line of principal curvature form a tangential 

ruled developable surface as displayed in figure 2.21 [Str61].

From previous sections we know that for every surface irrespective of 

its complexity there is exactly one network of LPCs. Based on Euler we 

know that these lines are always orthogonal to each other. By means of 

equations 2.15 and 2.16 we are now in a position to generate the lines of 

principal curvature for an arbitrary surface. 

We also know that the generation of the LPCs require the determination 

of the maximum and minimum curvature (kmax and kmin) in a point P 

of a surface S. This is possible for all regular surface points. However, 

depending on the shape of a surface there might be a number of points 

which don’t show the properties of a regular surface point. 
If the local area around a point P of a surface S forms either a plane or a 

sphere it is not possible to determine the principal curvature directions 

in P. At every point of a plane all normal curvatures are infinite hence 
the principal curvature directions are indetermined. At ervery point of a 
sphere all normal curvatures comprise of the same curvature radius - the 

radius of the sphere. Hence the principal curvature directions are indeter-

mined. These special point types are called umbilical points of a surface 

S. 

2.5.3  Umbilical points

At an umbilical or naval point all normal curvatures are equal and the 
principal directions are indeterminate [KoMa03, Str59] as expressed in 

Equation 2.17:

 k = kmax = kmin                Equation 2.18

Except for the plane and the sphere the number of umbilical points on a 

surface is finite. They are located in areas of a surface which are either 
part of a plane or part of a sphere/either locally spherical or locally planar 

[Kr59]. At every point of the plane all normal curvatures are infinite 
hence the principal curvature directions are indetermined. Consequently 

all points on the sphere and plane are umbilical points. 

An umbilical point occurs if the following condition is satisfied 
[KoMa03]:

 H² - K = 0               Equation 2.19

 H…Mean curvature K… Gaussian curvature
Umbilics appear in various forms on a free-form surface such as isolated 

points, lines or regions. Methods for the numeric extraction of umbilical 

features on a polynominal surface have been proposed in [CaFa06]. 
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The types of isolated umbilical points can be classified by the number 
of ridge lines which are a special type of LPCs namely those passing 

through the umbilic, their index and behaviour close to the umbilical 

point. The index is the amount of rotation the curvature line experiences 

when passing through the point. 

Isolated umbilical points can be categorised into three basic types de-

pending on the configuration of their ridge lines: 

 - Lemon

 - Star

 - Lemonstar or monstar

2.5.4  Lemon 

There are is one LPC passing trough the lemon type which changes their 

sign from maximum to minimum or reverse dependant from which side 

we approach the point. The LPC passing trough the umbilical point is a 

straight line in close proximity to it. The ‘lemon’ shape behaviour of the 
LPC which don’t pass through the umbilical point is displayed in figure 
2.22. 

2.5.5  Star 

There are three LPC passing through the Star type umbilical point, which 

change their sign at the point. The six lines approaching the umbilical 

which are next to each other have alternating signs. Three lines approach-

ing the umbilical point cannot be contained in a right angel. The ‘star’ 
type behaviour of the LPC close the point is displayed in figure 2.23.

2.5.6  Lemon Star

Also three LPC passing through the lemon star umbilical point which are 
changing their signs at the point. The three lines approaching the point 

which are next to each have the same sign and change their sign respec-

tively when leaving the point. The three lines with the same sign can be 

contained in a right angel. The previous properties distinguish the lemon 

star from the star umbilical point. The layout of the LPC close to the um-

bilical point are displayed in figure 2.24.

The knowledge about the characteristics of umbilical surface points and 

the special configuration the LPCs feature in close proximity to them 
allows us to isolate those areas of a surface where the LPCs will not offer 
a mesh pattern suitable for panelisation. It highlights surface areas for 

which a different approach needs to be found. 
As mentioned previously if discretised the lines of principal curvature 
will result in a PQ mesh with the particularity that this mesh is unique for 

each surface and offers a definite principle of generation. In addition it 

Figure 2.22: Lemon Umbilic [Image by 

Wikipedia] 

Figure 2.23: Star Umbilic [Image by 

Wikipedia] 

Figure 2.24: Lemon Star Umbilic [Im-

age by Wikipedia] 
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features the property of being per definition a circular mesh. To obtain a 
comprehensive understanding of the principal curvature lines and the PQ 

mesh resulting of them we will have a look at the particular properties of 

circular meshes in section 2.6. 

2.5.7  Gauss-Codazzi-Mainardi equations 

Alternatively to the method describes in the previous chapter for classical 
surfaces the Lines of Principle Curvature can be derived using the Gauss–

Codazzi–Mainardi or Peterson–Codazzi–Mainardi equations which 

consist of a pair of related equations [Str61]:

 

2.18 
 ∂e∂v - ∂f∂u =eΓ121 +f�Γ122 -Γ111 �-gΓ112  
 2.19 
 ∂f∂v - ∂g∂u =eΓ221 +f�Γ222 -Γ121 �-gΓ122   Γjki   2.20  kmax= eE ,  kmin= gG   2.21  ev= 12 Ev �eE + gG� ,   gu= 12 Gu �eE + gG�  2.22  ∂kmax∂v = 12 EvE (kmin+kmax),  ∂kmin∂u = 12 GuG (kmax+kmin)   

                  Equation 2.20
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…Christoffel symbols of second kind e, f, g…second fundamental form coefficients
Hereby Equation 2.20 relates to the Gauss curvature of a surface to the 

derivatives of the Gauss map. Hence it is also called Gauss equation.

Equation 2.21 is called the Codazzi–Mainardi equation and expresses 

a structural condition on the second derivatives of the Gauss map and 

incorporates the mean curvature of the given surface. The equation 

expresse the remarkable ‘Theorema egregium’ which says that the ... 

Gaussian curvature of a surface does not change if one bends the surface 

without stretching it [WIKI].

Both equations are using the Christoffel symbols which depend exclu-

sively on the coefficients of the first fundamental form: E,F, G. For a de-

tailed definiton of the Christoffel symblos please refer to [Str61] chapter 
3-2 (2-7). 

If we now set F = 0 and f= 0 we will directly receive the lines of principle 

curvature as the coordinate lines of the surface. 

The principle normal curvatures can be defined as such:
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                  Equation 2.22
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which reduces the Codazzi equations into the following form
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                 Equation 2.23

and can be express in

 

2.18 
 ∂e∂v - ∂f∂u =eΓ121 +f�Γ122 -Γ111 �-gΓ112  
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If we solve the differential equations for a fixed value of u and v we re-

ceive network of principle curvature lines.

2.6  Circular and conical meshes

Circular and conical meshes are special PQ meshes with properties which 

are interesting for architectural design. Their geometric properties have 

been studied in [PoWa06], [WaWaLi07] and [BoSu08]. Their key charac-

teristics are summarizes in the following section.

2.6.1  Circular quad configurations 

Circular quad faces have been introduced as one of the planarity criteria 

for quad faces in general in section 2.2.5. A  mesh face is called to be 
circular or discrete orthogonal if all four corner vertices lie on a common 

circle (Figure 2.25).The following condition must be fulfilled for a mesh 
to be circular [WaWa07]:

 ф1 + ф3 – π = 0 and ф2 + ф4 – π = 0            Equation 2.25 ф1 to ф4…interior corner angels of a face
Depending on the order in which the vertices of a quad are contected with 

each other two different configurations of a circular quad are possible: as 
the resulting face can feature edges which intersect or edges which do not 

intersect one has to distinguish between embedded and non-embedded 

circular quads. For an embedded quad its four edges do not intersect (Fig-

ure 2.25). In contrast one pair of the opposite edges of the non-embedded 

circular quad intersect and create an overlapping mesh face (Figure 2.26). 

Figure 2.25: Embeded Circular Quad

Figure 2.26: Non Embeded Circular 

Quad
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For this reason it is obvious that only embedded quad faces are of inter-

est for the generation of a PQ mesh to obtain a reasonable geometry with 

respect to the construction industry. Non-embedded quads shall be men-

tioned only for the sake of completeliness but in the following we will 

disregard them and concentrate on circular meshes composed of embed-

ded quads and their properties. 

2.6.2  Circular mesh

If all faces of a PQ mesh can be circumscribed by a circle meaning if the 

points which are associated to vertices of elementary quadrilaterals are 

concircular the mesh is called to be a circular mesh. This is of particular 

interest as a circular PQ mesh represents a discrete version of the princi-

pal curvature lines of the surface the mesh is generated on (Figure 2.27). 

Because of this interrelation with the LPCs circular meshes feature the 

following properties:

- The edges of each quad are aligned with the principal curvature di-

rections meaning the consecutive edges of the mesh form a polygonal 

curve which is the discrete version of one principal curvature line of 

the surface. It is obvious that respectively this property applies to the 

relationship of every single curvature line of a surface and the aligning 

consecutive edges. 

- Analoguous to the relationsship between continuous LPCs and ruled 
developable surfaces (explained in section 2.3) the normals at the 

vertex vectors along a consecutive series of edges form the discrete 

version of a ruled developable surface. 

The number of edges which meet in an internal mesh vertex indicates if 

the vertex represents a regular mesh point or an umbilic. For a regular 

mesh point of a quad mesh the number of edges should usually be four.  

The rule applies that all vertices different from degree four indicate an 
umbilical point. 

At a vertex V the circumscribed circles of the adjacent faces intersect 
each other. Hence at a vertex with degree four each circle intersects three 

neighbouring circles orthogonally and the neighbouring circles touch 

cyclically (figure 2.28). Based on this fact circular meshes are also called 
to be discrete orthogonal nets. 

A particular property is the fact that any circular mesh can be transformed 
into a dual mesh on the unit sphere while preserving the planarity crit-

erium of the faces [WaWa07]. Thus it results in a PQ mesh on the sphere. 

The relationship between PQ meshes on the sphere and their inversions 

into freeform surfaces have a special relevance for freeform surfaces as 

they feature an inherent PQ mesh if and only if these surfaces are based 

on the unit sphere. 

The construction of circular meshes on the unit sphere and their dualisa-

tion is described in detail in chapter 3.8. 

Figure 2.27: Circular Mesh on El-

lipsoid

Figure 2.28: Orthogonal Net
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2.6.3  Conformal circular meshes

‘In mathematics, conformal geometry is the study of the set of angle-pre-

serving (conformal) transformations on a space ‘ [WIKI]. 

A mapping of smooth surfaces is conformal if tangent vectors retain their 
angles. If all quadrilaterals of a circular mesh are conformal the mesh 

forms a discrete version of an isothermic surface. A quadrilateral/square 
is called to be conformal (Figure 2.29) if its cross ratio is -1 [BHSp05]:

 aa’/bb’=-1               Equation 2.26 a,a’/bb’…opposite edges
Per definition an isothermic surface is a surface whose lines of curvature 
form an isothermic net/system. This again is defined as an orthogonal net 
of curves on a surface in Euclidean space in which the small quadrangles 

formed by two pairs of lines from distinct families are, up to infinitesimal 
quantities of the first order, squares. This means the conformal circular 
mesh posses the particular property of being a PQ mesh based on the 

LPCs and featuring only squares as mesh faces. 

As explained in section 2.6.1 a circular mesh discretises the lines of 
principal curvature on a smooth surface. We can therefore transfer the 

above explained property namely the mesh being a discrete version of 

an isothermic surface to the smooth surface itself: if the curvature line 

parmetrisation is conformal the surface from which the mesh is generated 

is an isothermic surface. 

Any isothermic surface can be dualised when applying the Schwarz–
Christoffel transformation (Elwin Bruno Christoffel, 1829-1900 and Her-
mann Amandus Schwarz 1843-1921) under preservation of the intrinsic 

properties of the surface. A detailed definition of this topic will be provid-

ed in section 3.8.2. In complex analysis, a Schwarz–Christoffel mapping 
is a conformal transformation of the upper half-plane onto the interior of 

a simple polygon. Hence the dualised mesh as the discrete version of a 

smooth isothermic surface is an isothermic mesh and its faces are confor-

mal, planar and circular. 

‘The class of isothermic surfaces contains all surfaces of revolution, 

all quadrics, all constant mean curvature surfaces and ,..., all minimal 

surfaces.’[BHSp05] 

2.6.4  Circular offset meshes

The circular mesh holds constant vertex offset properties. The faces de-

fined by the offset in the direction of the vertex normal by a fixed distance 
are an offset mesh which preserves the circularity and planarity property 
(Figure 2.30).

Figure 2.29: Conformal Quad

Figure 2.30: Circular Offset Net

Figure 2.31: Conical Mesh Faces

a'

b'

a

b
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2.6.5  Conical PQ meshes

The faces of a circular PQ mesh are defined by the condition that the fac-

es adjacent to a vertex are tangent to a cone of revolution (Figure 2.31). 

Also the conical PQ mesh represents a discrete version of the principal 
curvature lines of the surface the mesh is generated on. The following 

condition must be fulfilled for a mesh to be conical [LiPo06],[WaWa07]:

 ω1 + ω3 = ω2 + ω4               Equation 2.27 ω1 to ω4…exterior corner angels around a vertex
2.6.6  Conical offset meshes

The conical mesh holds constant face offset properties. The offset mesh 
defined by the constant offset in the direction of the face normal preserves 
the conical and planarity property.

The fact that for both the circular and the conical mesh properties like 

planarity and angle geometry are preserved when an offset mesh is cre-

ated makes these mesh types an ideal structure for the cladding industry. 

A reasonable offset mesh is the main requirement for the build-up of a 
cladding system for which a support structure is required (represented 

by the offset mesh) which carries the structure of the actual facets of the 
envelope (represented by the original mesh). 

2.6.7  Orthogonal support structure 

Both circular and conical meshes comprise of a orthogonal and pla-

nar support structure. The quad faces defined by the connection of the 
original and offset vertices are also planar and strip wise developable. 
The supporting face plane is also orthogonal to the initial surface (Figure 

2.32).

2.7  PQ mesh transformations 

Any affine transformation of the PQ mesh such as scaling with different 
factors in x, y or z direction  will preserve the planarity of the faces. The 

general definition of spatial transformations are defined in Equations 2.22 
(a to c) [PoAs07]: 

 x1 = ax + by + cz + u          Equation 2.28 (a)

 y1 = dx + ey + fz + v          Equation 2.28 (b)

 z1 = gx + hy + iz + w          Equation 2.28 (c)

Figure 2.32:  Orthogonal Support 

Structure
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 a to i…deformation parameters u,v,w…translation vector t = (u,v,w)
When applying a affine transformation to a PQ mesh the following prop-

erties are preserved:

 - Straightness of edges

 - Planarity of faces

 - Paralletity of opposite edges

 - Length ratio of discrete points on two parallel edges 

In general affine transformations are a composition of the four basic types 
such as translations, scalings, shears and rotations. 

If we apply only a certain choice out of the deformation parameters a to i, 

we can obtain the basic affine transformations.
The translation and rotation of PQ meshes are only from trivial  interest 

hence we set the translation vector to zero t  = (0,0,0) and do not observe 

rotation in greater depth. 

2.7.1 PQ mesh scaling

When we only apply the factors a,e to the Equations 2.22 a to c we obtain 

a scaling of the PQ mesh. For constant values a to c (a= b= c) the scaling 

is uniform and for non constant values respectively non-uniform (Figure 

2.34). 

 x1 = ax           Equation 2.29 (a)

 y1 = ey           Equation 2.29 (b)

 z1 = iz            Equation 2.29 (c)

2.7.2  PQ mesh shear transformation

For a shear transformation parallel to the xy - plane we omit any transla-

tion of the mesh vertices z coordinates. The x and y coordinates are trans-

lated according to their z values and the constant values c and f. Figure 

2.35 shows a non - uniform bi axial shear transformation of the reference 

surface displayed in figure 2.33.

 x1 = x + cz          Equation 2.30 (a)

 y1 = y + fz          Equation 2.30 (b)

 z1 = z            Equation 2.30 (c)

Figure 2.33: Reference PQ Mesh

Figure 2.34: Non - Uniform Scaling

Figure 2.35: Non - Uniform Shear



  53

2.8  Summary

With the knowledge compiled in this chapter we are now in a position to 

generate a PQ mesh from a freeform surface based on different generation 
principles. In addition we have a limited number of transformation prin-

ciples at our disposal to modify the PQ meshes we are able to generate in 

order to further approximate their geometry towards the input surface. 

By contrast in the following chapter surface types are compiled each of 

whom offer a unique generation principle how to discretise them to a 
PQ mesh which is well documented in the literature. Although based on 
conjugate network of curves only some of these meshes is generated by 

use of the LPCs. A special generation principle exists for each of these 
surfaces which is explained in detail. Surface types with specific gen-

eration principles for PQ meshes offer the advantage that the resulting 
mesh features absolute planarity of its faces whereas a general generation 

principle will always result in faces which are only close to planar within 

a pre-defined tolerance. 

The disadvantage however is the constraint in design freedom as each of 

these surfaces features quite a distinct appearance. This means if the de-

signer is not willing to subordinate his design idea and the accompanying 

form finding process to one of the shapes offered by these special surface 
types none of them can provide a solution and a more general approach 

needs to be found. 

In chapter 03 we will have a closer look at these surfaces and their poten-

tial for our problem.





 Chapter 3 Surfaces with intrinsic 

PQ mesh representation
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3  Surfaces with intrinsic PQ 

mesh representation

3.1  Introduction

As mentioned in section 2.4 there is a number of subsets of surfaces 
which feature an inherent PQ mesh representation to their smooth appear-

ance/definition. This means certain elements of the surface like generat-
ing curves, meridians or curvature lines (to name just a few of them) 

might provide a PQ mesh if discretised in a certain way. Such surfaces 

'deliver' their respective PQ mesh representation by the way they are 

mathematically constructed or described. 

In contrast we will learn that there are surfaces for which a PQ mesh rep-

resentation has to be generated specifically and that a generic tool which 
can be applied to any arbitrary surface is yet to be developed. 

Before we look into a possibility of generating PQ meshes for arbitrary 

surfaces (provided in chapter 04) in chapter 03 we will introduce those 

surface types for which a parametric representation is known that will 

lead directly to a PQ mesh. By classifying them into different subsets 
of surfaces it becomes obvious which characteristics of the respective 

surface class provides the basis for the discretisation. Finally construc-

tion principles for each surface type shall deliver an easy approach to a 

number of discrete PQ mesh surfaces.

Classical and free form surfaces: First we have to distinguish between 

surfaces which can be described by a single two dimensional parametric 

form. These are called classical surfaces hereafter (Figure 3.1). In con-

trast there is the wide class of surfaces featuring a mathematical descrip-

tion which is a composition of any number of polynominal expressions. 

These shall be called free form surfaces hereafter (Figure 3.2). A detailed 
differentiation of these two will be delivered in 3.3. 
As mentioned a PQ mesh parameterisation can be inherent in the gener-
ating principle of a surface as is the case for surfaces of revolution and 

translational surfaces (Chapter 2.4.3 and Figure 3.3). It is important to 

know that surfaces with an intrinsic PQ mesh mainly belong to the class 

of classical surfaces . Some of them feature the particularity that the 

curves their generation is based on coincide with a conjugate network of 

curves. 

Figure 3.1: Typical example of a clas-

sical surface  (z = sinx + cos y)

Figure 3.2:  Example of a free form 

surface 

Figure 3.3:  Cylinder generated as a 

revolving surface  
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Generally a number of different parametric definitions may exist for each 
individual surface in the R³ space all of which will lead to an identical 

smooth surface. An example is the cylinder which can be generated as a 
revolving surface (straight line segment revolving around an axis) or as a 

translation surface (circle translated along a straight line segment, Fig-

ure 3.4). Each particular parameterisation may lead to parametric curves 

which coincide with curves of special properties such as asymptotic lines 

or principal curvature lines. For some surfaces these curves represent a 

network which can be discretised to a PQ mesh. These shall be identified 
and their parametrisation as well as the parametrisation of their describ-

ing curves shall be explained.

Any surface in the R³ space is represented by its two dimensional explicit 
parametric form [Kr59]: 

 S[u,v] = [x(u,v),y(u,v),z(u,v)]                  Equation 3.1

A parametric curve or coordinate curve is formed when setting one of the 
two variables as constant.

All surface parameterisations which lead to a PQ mesh share the unifying 
property that they form a conjugate network of curves (Chapter 2.4). In 

most cases such a conjugate PQ parameterisation also coincides with the 

principal curvature lines of the surface. As stated in section 2.4 an infinite 
number of conjugate network of curves exists for each individual surface 

which when discretised will result respectively in an infinite number 
of PQ meshes. In theory each of them could be generated by using the 

knowledge compiled in chapter 02 what would however be a cumber-

some exercise. 

In contrast to this ‘manual generation’ in this chapter we want to con-

centrate on the particular conjugate network of curves inherent to some 

surface types based on their generation principle or one could say the PQ 

net which in a way is delivered automatically by generating a surface. 

In this respect it is fundamental that the only surface class which features 

an intrinsic PQ mesh parametrisation is that of classical surfaces that is 

surfaces which can be defined by a single mathematical expression (for a 
precise definition Chapter 3.3.1). 

Depending on the complexity of the surface there are two different ways 
how to isolate a PQ mesh: For surface types featuring a simple geomet-

ric description like revolving surfaces or translation surfaces a uniquely 

defined PQ mesh can be obtained by using certain generative construc-

tion rules (e.g. lamellar or rhombic tessellation of a sphere or a revolving 

dome as shown in Figure 3.5. and 3.6). 

A more sophisticated method for example is required for classical surfac-

es with constant negative Gaussian curvature (CNGC): in order to obtain 

a PQ mesh an equal length mesh on a sphere is generated (Figure 3.7) 

Figure 3.4:  Cylinder generated as a 

translation surface 

Figure 3.5:  Rhombic triacontaherdron 

tessellation of a sphere [Image by 

Wikipedia]

Figure 3.6:  Lamellar tessellation of 

a dome
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which is being transformed to receive a CNGC surface of a shape differ-
ent from that one of a sphere and finally discretised to a PQ mesh ( Figure 
3.8). Other representatives of the 'more sophisticated approach' to an in-

herent PQ mesh are discrete minimal surfaces (DMS) based on the sphere 

and cyclidic nets composed of patches of a cyclide (3.5.2). Obviously 

these surface types all result in quite distinct output meshes and therefore 

might have only a very limited applicability. Still it shows a way how to 

obtain PQ meshes without manually generating them and might offer a 
solution for particular geometrical tasks. 

In order to provide an overview of the above described particularities first 
all surfaces shall be compiled which posses an intrinsic PQ mesh and are 

already documented and researched in mathematical literature. The next 

step shall be to investigate and understand the generation principle for 

each of these surfaces and categorise them accordingly: 

  - type A: surfaces with simple geometric description thus 
                 featuring a PQ mesh based on their generation 

                 principle

  - type B: PQ mesh representations of complex surface shapes 

     which originate from simple geometric surface 

     discriptions which are transformed into dual 

     surface shapes 

For type A we can isolate the curves relevant for each individual surface 
type (e.g. path curves, profile curves, asymptotes etc.) and show their 
mathematical description. This method will deliver the parametrisation of 

one special conjugate network of curves out of the infinite number which 
are in theory available for any arbitrary surface (Figure 3.9). If discretised 

this conjugate network of curves will deliver a PQ mesh on the surface. 

For type B the relevant steps will be described how to obtain a PQ mesh 

representations of rather complex surface shapes which originate from 

surfaces of simple geometry like a sphere or a cyclide. The transforma-

tion principles to get to the final surface are explained. 

Conjugate network of curves as the basis 

In chapter 2.3.3 the methodology was described how to generate a conju-

gate network of curves ‘manually’. If compared now with the few steps 
required to obtain a PQ-net from a surface whose parametrisation delivers 

the respective mathematical description it becomes clear that the manual 

method requires far more time and effort. However the surfaces with a 
PQ mesh inherent to their parametrisation principle are limited in terms 

of shape variety and using only those surface types would restrict the 

design freedom significantly. 

We will start our investigation with some mathematical fundamentals and 

definitions regarding surfaces in general which are essential to understand 
the analysis of specific surface types as provided in the following. 
The difference between single curved and doubly curved surfaces will be 

Figure 3.7:  Equal length mesh on the 

sphere 

Figure 3.8:  Equal length mesh after 

transformation

Figure 3.9:  Conjugate network of 

curves of same surface 

Translation surface generators

Lines of Principle Curvature
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defined and as representatives of these two the relationship and differenc-

es between ruled and developable surfaces. Furthermore the class of clas-

sical surfaces shall be differentiated from the class of free form surfaces. 
Finally individual generation principles, the mathematical definition and 
special properties of surfaces with intrinsic PQ mesh parametrisation will 

be explained and summarised going from less complex to highly complex 

surface types with respect to their conjugate parameterisation principles. 

3.2  Single curved surfaces 

Single curved surfaces feature vanishing Gaussian curvature (K=0) for 

any given point P of a surface S [Kr59]. From section 2.5.1 we know 

that the Gaussian curvature is defined as the product of the two principal 
curvatures, κ1 and κ2. Consequently either k1 or k2 has to equal zero if 
the Gaussian curvature is to be zero. From section 2.4.4 we know that a 

point with zero Gaussian curvature is locally parabolic. If this property 

holds for every single point of a surface S it has to consist of parabolic 

points only and consequently can be unrolled onto the plane without 

distortion like stretching or compressing. For this reason such a surface is 

also called a developable surface and the planar isometric image is called 

the development of S. 

If unrolled into the plane one particularity of developable surfaces con-

sists in the preservation of the edge length of their parametric curves as 

well as the intersection angles of their curves. In mathematics, a mapping 

that preserves lengths and angles is called an isometric mapping [Kr59]. 

As isometric mappings also preserve Gaussian curvature the converse 
argument for the fact that a surface is developable is that the surface must 

have the same Gaussian curvature than the plane namely Gaussian curva-

ture equal to zero. 

As mentioned above the Gaussian curvature can only vanish if one or 
both of the principal curvatures are equal to zero. The only curve how-

ever with zero curvature is a straight line which means that in every point 

P on a single curved surface a straight line passes. For single curved 

surfaces such a straight line in a point represents one of the two principal 

curvature lines in P. 

In comparison the class of ruled surfaces by definition can be generated 
by moving a straight line along a path curve thus resulting in surfaces 

which carry families of straight lines [PoAs07]. At the same time we 
know that only some ruled surfaces posses the property of being single 

curved or in other words developable. This means although both surface 

types carry straight lines these must feature significant differences which 
characterise the two surface classes. 

To distinguish ruled surfaces from the class of developable surfaces in 

the following paragraph we will investigate properties and particularities 

of ruled surface in general and ruled developable surfaces in particular. 
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Special attention will be paid to the configuration of the rulings for both 
surface types to highlight their commonalities and differences. 
For the sake of completeness it shall be mentioned that general ruled 

surfaces actually belong to the class of doubly curved surfaces. However 

they are covered in the following section in order to differentiate between 
them and the class of developable surfaces whose intrinsic PQ mesh will 

be described subsequently. 

3.2.1  Ruled surfaces 

Generally speaking a ruled surface is a surface generated by the spatial 

motion of a straight line called its generator or ruling along a path curve 

called the directrix. Hence by definition ruled surfaces carry a continuous 
family of straight lines or in other words through every point of a ruled 

surface at least one straight line passes which lies on the surface. 

Rulings

These straight lines are called rulings and posses the special property that 

they are asymptotic curves of the surface S. 

An asymptotic curve of a surface S is defined as one which is always 
tangent to an asymptotic direction of S. An asymptotic direction again is 
defined as one in which the normal curvature is zero. This means for any 
arbitrary point P on an asymptotic curve c of a surface S the following 

property holds: if we construct the plane which is defined by the normal 
of S in P and the tangent of c in P the curve that results from intersecting 

the plane with S will feature zero curvature in P. An interesting aspect 
is that asymptotic directions only occur in surface points which feature 

either negative or vanishing Gaussian curvature [Wikipedia]. From this 

definition it follows that the Gaussian curvature on a ruled regular surface 
is everywhere nonpositive and consequently the surface carries only para-

bolic and/or hperbolic points. [WolframMathWorld]

 

Parametric representation

The motion of the generator g is determined by the path curve p(u) and 

the direction vector z of g for every value of u as the unit vector v(u). A 
ruled surface may therefore be presented in the following form [Kr59]:

 S[u,v]=p(u) + vz(u)                 Equation 3.2

Ruled surfaces can be generated in two different ways:

I. By moving a straight line (generator) along a single path 

   curve while simultaneously changing the line’s direction 
   corresponding to the direction vector of the generator (Figure 3.10).

II. By connecting two sets of corresponding points on two 

Figure 3.10:  Ruled surface I

Figure 3.11:  Ruled surface II
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     directrix (spatial) curves with a series of straight lines (Figure 3.11).

An interesting aspect of generation principle II is the fact that different 
parametrisations of the two directrix curves will result in different sur-
faces: the parametrisation defines the points on the curve and the shape of 
the surface is determined by connecting two sets of corresponding points 

of the two directrix curves. Hence the parametrisation of these curves will 

influence the location of the points and consequently the location of the 
rulings which ultimatively determine the shape of the surface. A related 
notion is the parametrisation of a classical surface which is defining its 
inherent PQ mesh (Chapter 3.1). 

If we apply generation principle I a ruled surface such as the conoid or 

the möbius strip (August Ferdinand Möbius, 1790 - 1886) will be the 

result. For the right conoid (Figure 3.12) we use a linear path curve with 

rulings which are all perpendicular to the path curve. The rulings can 

perform any kind of rotation around the path curve while moving along 

it. The parametric description of the right conoid is given in equation 3.3 

[MW01]:

 x[u,v] = v cos J(u)
 y[u,v] = v sin J(u)
 z[u,v] = h(u)                Equation 3.3

If in contrast we apply a constant rotation ( h(u) = 2u, J(u) = u) to the 

rulings we receive a helicoid (Figure 3.13) which is a special type of the 

right conoid. 

The Möbius strip (Figure 3.14) is generated by choosing a circle as path 

curve of the surface. The rulings are continuously rotated perpendicular 

to the circular path in such a way that the last ruling coincides with the 

first one. The result is a surface with the special properties of having only 
one side and one boundary curve and being non-orientable. The paramet-

ric definition of the Möbius strip is given in equation 3.4:

 x[u,v] = r cos u + v cos u/2 cos u
 y[u,v] = r sin u + v cos u/2 sin u, 
 z[u,v] = v sin u/2                Equation 3.4

Examples for ruled surfaces generated by using principle II are hyper-

bolic paraboloid (HP) surfaces (Figure 3.15) and the hyperboloid (Figure 

3.16). The hyperbolic paraboloid and the hyperboloid posses the special 

property of being doubly ruled surfaces as for any given point P on these 

two surfaces two straight rulings are passing. The boundary components 

of a hyperboloid are defined by two parallel circles. Parametric defini-
tions for both surfaces are given below:

Figure 3.12:  Conoid 

Figure 3.13:  Helicoid

Figure 3.14:  Möbius strip 
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Hyperbolic parboloid [MW02]

 x[u,v] = u
 y[u,v] = v 
 z[u,v] = u v                Equation 3.5

Hyperboloid of one sheet [MW03]

 x[u,v] = a √ (1 + u²) cos v
 y[u,v] = a √ (1 + u²) sin v
 z[u,v] = c u                Equation 3.6

The plane, the tangent developable surface, the cylinder and the cone are 

ruled surfaces which are at the same time developable. Consequently the 

rulings of these surface types must feature additional properties to those 

typical for ruled surfaces. This will be investigated in detail in the follow-

ing section. 

3.2.2  Developable surfaces 

The general properties of single curved and thus developable surfaces 

have been studied in section 3.2. Here we want to investigate the special 

relationship between ruled surfaces and developable surfaces which are a 

special type of ruled surfaces. 

If a developable surface lies in three-dimensional Euclidean space, and is 
complete, then it is necessarily ruled. However the converse is not always 

true [Wikipedia]. 

We know that a cylinder and a cone are developable surfaces as they 

are singly curved. We also know that they can be generated by moving 

a straight line along a path curve meaning they belong to the class of 

ruled surfaces (Chapter 3.2.1). If we have a look at a hyperboloid we can 

see that although being a ruled surface it is not singly curved and hence 

doesn’t belong to the class of developable surfaces. 

The unifying property of developable surfaces and ruled surfaces is the 

family of straight lines which both surfaces types are carrying in every 

arbitrary point. Consequently whatever distinguishes one surface type 

from the other must be tied to their rulings. 

If we have a look at the tangent planes of ruled surfaces the difference 
becomes obvious: for a ruled surface the tangent plane t in a point P usu-

ally touches the surface solely in P and the ruling r through P has no other 

common points with t than P. Looking at another arbitrary point of r and 

its associated tangent plane we will see that the tangent plane performs 

Figure 3.15:  Hyperbolic paraboloid

Figure 3.16:  Hyperboloid of one sheet 
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a twist (Figure 3.17) meaning it rotates around the ruling [PoAs07]. In 
comparison there are rulings for which the tangent plane in a point P does 

touch the ruling not only in P but the ruling is contained in the tangent 

plane (Figure 3.18). This special type of ruling is called a torsal ruling. 

Those ruled surfaces whose rulings are exclusively torsal are developable 

surfaces. 

A ruling is called torsal if the following condition holds:

‘A developable surface is a ,.., ruled surface with the property that it 

has the same tangent plane at all points on one an the same generator.’ 

[Kr59]

All developable surface can be categorised based on their rulings which 
come in three different configurations: 

  - all rulings are parallel 

  - all rulings pass through a fixed point A 
  - all rulings are tangents of a space curve r 

Hence there are four basic types of developable surfaces which can be 

distinguished by means of their rulings: cylinders, cones, tangent surfaces 

of space curves (Figure 3.19) and planes [Kr59]. Any developable surface 
is a composition of these four basic developable surface types [PoAs07]. 
Consequently a surface which consists of a number of developable 

patches which belong to one of the above named types is still develop-

able. However depending on the way these surfaces patches are joined 

together the surface might feature a smooth appearance or it might feature 

kinks along the joints. 

Another surface configuration might be a mixture of developable and 
non-developable surface patches. These can be distinguished by means 

of their ruling types: If a surface features torsal rulings but in a non-ex-

clusive manner only those surface patches are developable for which the 

torsal rulings are in consecutive order. 

3.2.3  Extrusion surfaces 

An alternative generation principle for a cone or a cylinder surface (or a 
plane which is trivial and therefore omitted) is the linear extrusion of a 

planar or spatial profile curve. 
In the field of geometry extrusion describes a dimension increase of an 
‘element’ by parallel or central translation in space. A vector determines 
the direction of the translation. If the translation is to be parallel all points 

of the curve will follow this direction. If the translation is to be central 

the vector determines the apex in which all generators of the extrusion 

surface will meet. The generators of an extrusion surface can be defined 
as straight line segments which connect each discrete point of the base 

curve b with the apex A. The base curve can be an open or closed linear 

Figure 3.17:  Rotating normals of rul-

ing tangent planes

Figure 3.18: Tangent developable 

surface 

Figure 3.19: Torsal ruling
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element, either planar or spatial and consisting of straight line segments 

or being curved. Extruding a line or curve will always result in a develop-

able surface or the discrete version of it. 

Cylinder and cone 

If a parallel extrusion of a circular base curve is performed a right circular 

cylinder is generated for which all generators are parallel. The central ex-

trusion of a closed curve generates a generalised cone (open curve results 

in a conical surface) for which all generators pass through a common 

point called the apex of the cone. These generation principles apply for 

all types of conical and cylindrical surfaces. 

As briefly mentioned in the introduction to chapter 03 single curved 
surfaces can be divided into two surface classes which are distinguished 

by their parametric representation. If a surface can be defined by a single 
mathematical expression it belongs to the class of classical surfaces. If 

the description of a surface requires a number of polynomial equations it 

belongs to the class of freeform surfaces. For single curved surfaces this 

distinction is irrelevant (and therefore disregarded) as all of them fea-

ture an intrinsic PQ mesh without exception. For doubly curved surfaces 

however this distinction is important as only the class of classical dou-

bly curved surfaces can feature an intrinsic PQ mesh (Chapter 3.3.1 and 

3.3.2).  

3.2.4  PQ meshes on developable surfaces 

In section 3.2.2 we have investigated the special properties of the rulings 

of a developable surface. A geometrical interpretation of the results could 
be that for developable ruled surfaces the consecutive rulings are always 

co-planar hence they lie in the same plane. In contrast the consecutive 

rulings of a ‘general’ ruled surface are skew lines and therefore they do 
not intersect and are not parallel. 

If consecutive rulings are always co-planar these can quite simply be 

isolated to describe a planar quad mesh on the surface: if we discretise the 

profile curve of a developable surface this will result in a polyline with a 
certain number of vertices V

1
 - V

x
. We can then isolate the rulings of the 

developable surface precisely in these vertices. If we now discretise the 

rulings this will result again in a number of vertices r
1
-r

x
. This way we 

obtain a point cloud on the surface. If we finally connect the vertices with 
straight lines in an order which follows the bounding components of the 

input surface we will obtain a PQ mesh. 

If this principle is applied to a cylindrical surface (surface obtained from 

a planar base curve and parallel extrusion) the generated parameter curves 

coincide with the principal curvature lines of the surface. If we choose the 

same distances between the vertices when discretising the rulings and the 

circles the generated quads will be congruent. For a cone and a tangent 

developable surface this condition will lead to quads which are similar 

(same corner angles and same proportion of edge lengths but scaled in 

size). 
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When discretising a surface the distances between the vertices can be 

chosen to have different length. This will lead to PQ faces which are non-
congruent for cylinder surfaces or non-similar in case of cone and tangent 

developbable surfaces. 

3.3  Doubly curved surfaces 

In contrast to single curved surfaces a doubly curved surface must feature 

Gaussian curvature which is different from zero (K ≠ 0) ( Section 3.2). 
This is a condition which applies locally for a doubly curved surface 

might feature surface patches with single curvature. As applies for single 
curved surfaces doubly curved surfaces can be divided into the two class-

es of classical surfaces and freeform surfaces. For doubly curved surfaces 

this distinction is essential as only classical doubly curved surfaces can 

feature an intrinsic PQ mesh parametrisation. Therefore these two sur-

faces classes are clearly defined in the following.

3.3.1  Classical surfaces 

The parametric representation of a classical surface is using elementary 

linear and/or nonlinear functions which are defining the entire surface 
in one expression. A good example delivers Scherk’s second minimal 
surface (Heinrich Ferdinand Scherk, 1785- 1885) [MW04]. This surface 

although being described in one expression features quite a complex 

geometrical shape (Figure 3.20). Still it belongs to the classical surfaces 

and thus posses an intrinsic PQ mesh. For a detailed description of the  

generation principle for PQ meshes on minimal surfaces please refer to 

3.8 (PQ meshes from circle packings on the sphere). The equation for 
Scherk’s second minimal surface is given below: 

 x[r,q] = ln ((1+r²+2r cosq) / (1+r²-2r cosq))
 y[r,q] =(1+r²-2r sinq)/ (1+r²+2r sinq)
 z[r,q] = 2 tan -1((2 r² sin(2q))/ (r 4 - 1))             Equation 3.7

 with q ∈ (0, 2t), r ∈ (0,1)

Amongst other things the theory of classical differential geometry deals 
with the investigation of curves and surfaces which can be defined by this 
one parametric expression. From this expression the first and the second 
fundamental form of a surface can be derived. 

By means of the first and second fundamental form the metric properties 
of a surface like its curvature behaviour (Gaussian curvature, mean cur-

vature and normal curvature) as well as line element and area element can 

be determined. In general terms one could say they describe the behav-

iour of curves near a point P on a surface S (Chapter 2.5.1). 

An example of the two fundamental surface forms shall be given on the 

Figure 3.20: Scherk’s second minimal 
surface
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basis of Scherk’s minimal surface: 

First fundamental form of Scherk’s minimal surface [MW04] E = 16 ( 1 + r²)²/ ( 1 + r8 - 2 r4 (cos2q))
 F = 0 
 G = 16 ( 1 + r²)²/ ( 1 + r8 - 2 r4 (cos2q))                Equation 3.8

Second fundamental from of Scherk’s minimal surface [MW04]

 e = 8 ( 1 + r4) sin2q/ ( 1 + r8 - 2 r4 (cos4q)) g = 8 ( 1 + r4)cos2q/ ( 1 + r8 - 2 r4 (cos4q)) 
 f = 8 ( 1 + r4) sin2q/ ( 1 + r8 - 2 r4 (cos4q))                Equation 3.9

3.3.2  Freeform surfaces 

In contrast to classical surfaces a freeform surface can’t be described by 
a single mathematical expression. Depending on the complexity a host 

of polynomial equations may be required to mathematically define the 
surface or according to Pottmann et al. one needs appropriate mathemati-

cal algorithms [PoAs07]. 

In fact there was no mathematical description of freeform geometry 

before the 1940s and 50s when CAD and CNC found their way into the 
world of design. Questions like ‘How to store a surface design digitally’ 

initiated the development of concepts for digital freeform design. Bezier 

surfaces, B-spline surface, NURBS surfaces and subdivision surfaces 

all offer different methods how to design and control freeform surfaces 
within a 3D modeling package. In general they all have a quadrilateral 

control mesh (Figure 3.21) which can be used to build and influence a 
freeform surface. Surface modifications basically change the polynomial 
functions of higher degree which are describing the actual surface. This 

mathematical process however stays hidden and only the visual part 

namely the graphical changes to the surface are visible. Depending on 

the interpolation technology the control point weight, the knot vector and 

the degree of the polynomial can be manipulated in order to influence the 
final shape of the surface via its given control mesh. 

The complex mathematical description of freeform surfaces already 

suggests that there is no intrinsic PQ mesh for any of them. This again 

underlines the necessity for a general solution. 

Still we have to investigate in detail how intrinsic PQ meshes are of-

fered by different types of classical single and doubly curved surfaces as 
introduced at the beginning of this chapter. An overview will be provided 
in the following sections starting with less complex surface types going to 

the highly complex ones. 

Figure 3.21:  Quadrilateral control 

mesh of a free form surface 
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3.4  Surfaces of revolution 

A surface of revolution R (also known as rotational surface or revolving 
surface) is defined by the rotation of a profile curve about a straight line 
called the axis A. Any arbitrary planar or spatial curve can be chosen to 
generate a surface of revolution although a planar curve will result in a 

better indication of the final surface shape and should therefore be pre-

ferred. 

For revolving surfaces a planar profile curve always coincides with one of 
the two families of principal curvature lines meaning one part of the PQ 

mesh is ‘delivered’ already by the surface description. The same does not 
apply for a spatial profile curve meaning for this case isolating a PQ mesh 
will require more effort. 

In order to understand how a revolving surface is defined we will first 
examine an isolated point P on the profile curve c. It is obvious that due 
to the rotational generation principle any point on this curve will describe 

a circle C when rotated about A. The plane which contains C is called the 
supporting plane S and is orthogonal to axis A. This applies for any arbi-
trary point on c and thus a revolving surface carries a set of circles which 

we call parallel circles hereafter. For each of these circles there is a sup-

porting plane orthogonal to A. If we now intersect the revolving surface 
R with a set of planes M which all contain axis A we obtain a number of 
section curves which are called meridians curves of R. It is obvious that 

the meridian curves are planar (section curve from surface and plane) and 

due to the revolving generation principle are all congruent (Figure 3.22). 

From the geometrical relationship between axis A and both sets of planes 
S and M follows that their respective section curves (parallel circles and 

meridians) are always orthogonal to each other. We have explained earlier 

that planar section curves of a revolving surface always coincide with one 

set of the principal curvature lines. Now however we have isolated to sets 

of planar section curves which in addition to planarity are orthogonal to 

each other. This implies that the parallel circles and meridians coincide 

with the lines of principal curvature of the revolving surface. In addition 

the meridian curves always coincide with the geodesic lines of R (namely 

curves of shortest path) [Str61]. 

A general surface of revolution can be described in the form:

 x[u, v] = x(v)cos(u) – y(v) sin(u) 
 x[u, v] = x(v) sin(u) + y (v) cos(u) 
 x[u, v] = z(v) 

 note: not for cylinders                   Equation 3.10

If a planar section curve is chosen as profile curve the parametric repre-

sentation can be simplified to:

Figure 3.22:  Defining elements of a 
revolving surface 

A

S

M
R
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c



  68

 x[u, v] = x(v) cos(u) 
 y[u, v] = x(v) sin(u) 
 z[u, v] = z(v)]
 
 note: this eq. doesn’t apply for cylinders      Meridians for u = const, parallels for v = const                 Equation 3.11
One particular property of surfaces of revolution is the fact that they form 

a discrete isothermic surface [BoPi94] meaning the lines of curvature of a 

revolving surface represent an isothermic net which is defined as a mesh 
of curves which are orthogonal to each other and which up to infinitesi-
mal discrepancies result in square facets. As we know from 2.6.2 isother-
mic surfaces can be discretised by means of a circular mesh consisting 

of conformal squares. These are interesting properties inherent to every 

PQ mesh on a revolving surface which might proof useful for their ap-

plicability in the construction industry. A general way how to obtain a PQ 
mesh on surfaces of revolution shall be described in chapter 3.4.4.  

However before concentrating on the generation principle of a PQ mesh 

there are a few special types of revolving surfaces featuring particulari-

ties which we want to highlight in the following sections. Inter alia these 

include the only revolving surface which is at the same time a minimal 

surface (catenoid) and those revolving surfaces which allow a geodesic 

mapping onto the plane (spherical and pseudo spherical surfaces).

Besides some of them even offer a further PQ mesh configuration in addi-
tion to the ‘general’ one described in 3.4.4. Both the special surface types 
and the special PQ mesh generation principles shall be described next. 

3.4.1  Surfaces of revolution with constant Gaussian curvature 

There is a sub-class of revolving surfaces all of which have constant 

Gaussian curvature (K=const) and are therefore called constant Gaussian 

curvature (CGC) surfaces. One of their particularities is that they can be 

mapped geodesically into the plane (E. Beltrami, 1835-1900). 
In general terms a geodesic mapping transforms the geodesic lines of one 

space into the geodesic lines of another space. A surface which -at least 
locally- permits a geodesic mapping is called -locally- projectively flat. 
It is important to know that geodesic mappings only exist in exceptional 

cases one of them being for surfaces of constant curvature. Thus these 

surfaces can be called projectively flat [Kr59].
A geodesic mapping preserves geodesic lines. We can distinguish be-

tween surfaces of constant positive Gaussian curvature (K>0) which are 

called spherical surfaces and those of constant negative Gaussian curva-

ture (K<0) called pseudospherical surfaces. 

Both surface types can be represented in the following general form 

[Kr59]:

Figure 3.23: Surface of revolution 

(revolving dome) discretised with a 

PQ mesh  

Figure 3.24:  Built example: Lingotto 

glass dome by Renzo Piano [Image by 

Antonio Mancinelli
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 x[u,v] =  λ cos(u/c) cos(v)
 y[u,v] = λ cos(u/c) sin(v)
 z[u,v] = ∫ √(1- λ²/c² sin²(u/c)) du                     Equation 3.12

Spherical surfaces of revolution (K>0)

There are three different types of spherical surfaces of revolution (K>0) 
which correspond to the values λ = c for the sphere with radius c λ > c for hyperbolic spherical surfaces and (Figure 3.26)λ < c for elliptic spherical surfaces (Figure 3.25) 

Pseudospherical surfaces of revolution (K<0) 

Again there are three different types which can be generated by resolving 
the elliptic integral respectively for the hyperbolic, parabolic and elliptic 

condition. The parabolic pseudospherical surface can be represented with 

terms of elementary function: 

 x[u,v]= c cos(u) sin(v)
 y[u,v]= c sin(u) sin(v)
 z[u,v]= c (cos(v) log (tan(v/2))                 Equation 3.13

Depending on the type of profile curve we receive different types of pseu-

dospherical surfaces. 

One example is the revolving profile curve which is called tractrix (Fig-

ure 3.27) and which was first considered by C. Perrault in 1670. It can be 
described with the following function [WP01]:

                 Equation 3.14

The particularity of a tractrix t is the property that the length of the seg-

ment of the tangent line from any point P on t to the y-axis is constantly 

equal to 1. The parabolic pseudospherical surface which is generated 

by rotating a tractrix about its asymptote is called the tractricoid. Other 

names are tractroid, antisphere, tractrisoid or most commonly known 

'pseudosphere'. The pseudosphere has a singular central circle and thins 

out asymptotically on both ends (Figure 3.28) [Str61]. The name ‘pseudo-
sphere’ derives from the fact that the surface has the same volume as 
the sphere of same radius however featuring constant negative Gaussian 

curvature in comparison to the constant positive curvature of the sphere. 

An interesting aspect of the pseudosphere is that it is always -at least lo-

cally- part of a hyperbolic surface structure. 
Figure 3.25: Discrete pseudosphere

Figure 3.26: Tractrix

3.14 
 y= � �a²-t²ta
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Figure 3.27: Discrete elliptic spherical 

surface of revolution

Figure 3.28: Hyperbolic pseudospheri-

cal surface of revolution [Image by 

Geometrie Werkstatt Prof. Dr. Chris-

toph Bohle 
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CGC surfaces usually feature an unsual and often complex shape. The 

special cases of cylinder and cone which feature vanishing constant 

Gaussian curvature (K=0) however belong to the class of single curved 

surfaces (Chapter 3.2) and are the only two revolving surfaces which are 

developable. 

3.4.2  Surfaces of revolution with vanishing mean curvature 

(VMC or minimal surfaces) 

Surfaces with vanishing mean curvature (M=0) are called minimal 

surfaces. They may also be characterised as representing the one surface 

within a closed boundary curve which features the smallest possible 

surface area (just like a soap film would span a closed wire curve). For 
this reason they are also known as soap film surfaces. One particularity 
is that on a minimal surface the asymptotic lines (curves of zero normal 

curvature) form an orthogonal network of curves which can be mapped 

conformally (angle preserving) onto a sphere. This property also applies 

to the principal curvature lines of the surface. 

The catenoid (Figure 3.29) is the only revolving surface which at the 

same time belongs to the class of minimal surfaces. It can be generated 

by the rotation of a catenary curve (hanging rope curve) about an axis. 

The catenoid is represented in the following form:

 S [u,v] = [u cos(v), u sin(v), c coshˉ¹ (u/c)]                Equation 3.15

The cantenoid can be mapped isometrically (arc length preserving) onto a 

right helicoid and will locally coincide with it.

General (non-revolving) minimal surfaces e.g. those generated form a 

circle packing on the sphere will be discussed in detail in section 3.7.7. 

If generalised the definition of minimal surfaces may also cover surfaces 
with constant mean curvature other than zero. These are investigated in 

the following. 

3.4.3  Surfaces of revolution with constant nonzero mean cur-

vature 

In general surfaces which possess constant mean curvature (CMC) other 

than zero are based on an area minimisation under a volume constraint: 

Given are a pre-defined volume and one or a number of boundary curves. 
The minimal surface based on these conditions is the one surface that 

features the smallest possible surface area for the pre-defined volume 
within the given boundary curves. Such CMC surfaces are closely related 

to shapes which are used for pneumatic constructions. 

The Delaunay surfaces Nodoid and Unduloid (C. E. Delaunay 1816 – 

Figure 3.29: Discrete catenoid
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1872) are the only two surfaces with constant nonzero mean curvature 

which can be parametrised with a rotational generation principle and thus 

featuring an inherent PQ mesh. 

If a hyperbola is rolled along a fixed line l the movement of the focal 
point generates a trajectory which forms the profile curve for the nodoid 
(Figure 3.30). The same applies for an ellipse and the unduloid (Figure 

3.31). Generation principles for a PQ mesh for both surfaces are given in 

3.4.6. 

After having compiled and discussed the parametric definition and the 
special properties of different types of continuous revolving surfaces we 
will now investigate the discretisation of revolving surfaces in general 

and those surfaces which offer an additional PQ mesh configuration in 
particular. 

3.4.4  PQ meshes on general surfaces of revolution 

In general the substitution of the planar profile curve and the parallel 
circles of a revolving surface for a number of polylines and the discreti-

sation of the rotation by a pre-defined angle-degree leads to an orthogo-

nal PQ mesh. If the discretisation of the rotation is uniform we receive 

facets which are congruent. The edges of the PQ facets are formed by the 

discrete meridians and parallel circles of the revolving surface R which 

coincide with the principal curvature lines of R. Hence the facets are at 

the same time circular quads. To obtain the discret version of meridians 

and parallel circles the u and v values of the parametric representation S 
[u,v] need to be set as constant. As previously mentioned the discretisa-

tion of a surface of revolution always results in a circular mesh of confor-

mal squares thus providing a facet layout of a very distinct appearance. 

Therefore in the following we want to investigate additional PQ mesh 

configurations which are however only available for some individual 
revolving surfaces. 

3.4.5  Rhombic PQ meshes for surfaces of revolution with posi-

tive Gaussian curvature 

A special case are revolving surfaces with positive Gaussian curvature 
(K>0) as for this surface type we can generate a PQ mesh which leads to 

a rhombic or lamellar tesselation: As start configuration for the mesh gen-

eration we need to isolated two parallel circles with a pre-defined distance 
and discretise them to polylines with a pre-defined vertex density.  We 
can then construct faces in a diagonal layout (Figure 3.32). 

The resulting mesh is uniquely defined for any chosen starting parameters 
and is covering the entire surface of revolution. The construction steps are 

described below:

Figure 3.30: Starting circles and paral-

lels

Figure 3.31: Half facet

Figure 3.32: Nodoid [Image by 3DXM 

Consortium] 

Figure 3.33: Unduloid [Image by 

GeometrieWerkstatt Prof. Dr. Christoph 

Bohle
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We choose two parallel circles c
1
,c

2
 on a surface of revolution with 

positive Gaussian curvature (Figure 3.32). The chosen distance of the 
circles will determine the height of the starting triangle which later in 

the construction process will result in the first mesh facet (a rhombus 
consisting of two triangles). The even and uniform subdivision of the two 

parallel circles on the other hand determines the length of the diagonal of 

the starting facet as two times the vertex distance represents the diagonal 

length. Each of the vertices V
1
, V

2
 on the discrete parallel circles deter-

mine the location of a corresponding meridian curve m
1
, m

2
 which runs 

through one V. The triangular starting facet is defined by an arbitrary 
point P on the first parallel circle and two vertices V1 and V2 on the 

second parallel circle which are located to the right and to the left of the 

meridian curve that runs through start point P . These three points define 
the supporting plane of the initial facet (Figure 3.33. The intersection of 
the supporting plane with the meridian m

3
 through start point P defines 

the fourth vertex V4 of the planar starting rhombus (Figure 3.34). This 
principle will be repeated to generate the first row of rhombs. It becomes 
obvious that for the definition of points Vx and Vy of each rhombus we use 

only every other of the vertices which were generated by the subdivision 

of the parallel circles. To generate the next row of rhombs the procedure 

will be repeated  on the second parallel circle but with a shift by one ver-

tex. This construction principle can be performed until we hit the bounda-

ries of the surface and thus the whole surface will be covered eventually 

with planar quadrilateral facets in the shape of a rhombus. 

For this construction principle the facets will feature different sizes de-

pending on the local curvature of the surface as the curvature determines 

the location of the forth vertex of a rhombus. The facet size however can 

be influenced by the distance of the parallel circles we start with and their 
subdivision which defines the distance of the vertices Vx and Vy. 

Due to the fact that for the construction of the PQ mesh only every other 

vertex is used we can obtain a second PQ mesh which is congruent to the 

first one by choosing as the starting point of the second mesh the point 
precisely to the right or the left of our initial starting point P. This will 

result in an identical mesh (with respect to facet sizes) but positioned on 

the revolving surface with a shift by one vertex (or half the diagonal of 

the rhombus). 

A well-known built example is the roof structure of Bruno Taut’s famous 
glass pavilion (Figure 3.37) at the 1914 Cologne Werkbund exhibition 

which was realised using the asymptotic tesselation approach to deter-

mine the geometry for the planar glazing sheets. 

3.4.6  PQ meshes for surfaces of revolution with constant mean 

curvature 

A discrete version of the unduloid can be generated using the principle as 
described in 3.4.4. For the nodoid however there is an additional geomet-

ric construction procedure to generate a PQ mesh. This has been proposed 

Figure 3.34: Construction of the fourth 

vertex

Figure 3.35: Full facet

Figure 3.36: Lamellar dome

Figure 3.37: Bruno Taut Pavillion [Im-

age by Wikipedia]
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by T. Hoffmann in [Ho00]. The required steps are explained below:

First we need to define an ellipse E and choose a starting point Q0 on this 

ellipse. Beginning in Q0 we will subdivide E by performing the follow-

ing steps: In Q0 we will define a starting direction/direction vector  v
d
 

which is pointing to the inside of E. The vector v
d
 will hit E in a second 

point called Q1. This process can be repeated for a pre-defined number 
of iterations whilst considering the standard law of reflection (outcom-

ing angle equals incoming angle) and will result in a so called standard 

billiard (Figure 3.38 featuring a number of vertices on E called Q0 - Qx
. 

Due to the ‘reflection rule’ and depending on the number of iterations the 
vertices may lie on E in a seemingly non-consecutive order. However they 

will be named consecutively (Q0, Q1 - Qx-1 , Qx 
) as their order plays a vital 

part for the following construction steps. Obviously for a larger number 

of iterations the polygonal lines of the billiard may intersect each other. 

This procedure results in a number of vertices on E which if connected 

with one of the focal points F1 or F2 of E deliver a series of triangles 

within E (Figure 3.39). It is important to note that in focal point F there 
lies a whole series of points F0 - Fx

  each of which form one vertex of 

the newly created triangles. Again one edge of each triangle forms one 

segment of the boundary polygon which was generated by means of the 

billiard ‘procedure’ whereas the other two edges lie within the ellipse. 

The boundary polygone can now be unrolled into a straight line l. Those 

vertices of the triangles which previously coincided with one of the focal 

points of E will form a new polyline g with vertices F0 - Fx
  (Figure 3.40). 

If we rotate this polyline about its straight axis l, it will result in a dis-

crete version of a nodoid (Figure 3.41). If we finally substitute the smooth 
rotation of the polyline by a discrete rotation with pre-defined angles we 
will obtain a PQ mesh. Depending on the number of iterations described 

for the ‘billiard’ the resulting discrete nodoid will consist of one, two or 

even more sphere-like volumes. 

3.5  Envelope surfaces 

Envelope surfaces in general are defined by the spatial movement of a 
one parameter family of surfaces. For those envelope surfaces however 

which feature an inherent PQ mesh the generating surfaces are always 

one parameter families of spheres S. If the movement of the spheres is 

discretised (we can stop the moving sphere in certain points) they touch 

the envelope surface in a circle Cx (Figure 3.42) which is contained in S. 

This property forms the basis of the PQ mesh parametrisation which will 

be described later on. 

The sub-class of envelope surfaces generated by one parameter families 

of spheres is called canal surfaces. In the following we will investigate 

canal surfaces as the only representatives of envelope surfaces with an 

inherent PQ mesh. 

Figure 3.38: Triangles 

Figure 3.39: Unrolled triangles

Figure 3.40: Discrete nodoid
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3.5.1  Canal surfaces 

Canal surfaces are described by the movement of a one parameter fam-

ily of spheres Sx along a spatial curve c (Figure 3.43). These generating 

spheres can feature varying diameter while moving along c meaning they 

are non-congruent. 

The spine curve c is defined by the locus of the midpoints of spheres Sx 

which inscribe the canal surface. The surface itself wraps around these 

spheres and touches them along the circles Cx each of which is usually 

one of the small circles of the individual sphere. (The particular case of 

the surface touching the spheres in the great circles results in a pipe sur-

face). The supporting plane of each circle is at the same time the normal 

plane n to the spine curve c in the intersection between sphere Sx and c. 

Canal surfaces exist as open and closed surfaces depending on the spine 

curve being an open or closed curve (e.g. catenary or circle). An inter-
esting example of a closed canal surface is the cyclide or Dupin cyclide 

(Pierre Charles François Dupin, 1784 – 1873). The cyclide (Figure 3.44) 

is generated by the movement of a number of spheres with varying 

diameters along a closed circular path curve. Another description of the 
cyclide is given by the envelope of all spheres touching three given fixed 
spheres. Each of the fixed spheres is to be touched in an assigned manner, 
either externally or internally (Figure 3.45). This geometric configuraton 
is also known as the 3D generalization of the Steiner Chain: The Soddys 

hexelet. The cyclide can be described in the following form:

 x[u,v] = (μ(c - a cos(u) cos(v)+b²cos(u))/(a– c cos(u)cos(v)) 
 y[u,v] = (b sin(u) x (a - μ cos(v))/(a - c cos(u) cos(v))
 z[u,v] = (b sin(v) x (c cos(u) - μ )/(a - c cos(u) cos(v))       

                 Equation 3.16

 a, c ,μ…constants with a² > c ² c = √ (a² - c²)
 [u,v] ∈ [0 ; 2π]²             

For this surface type the lines of curvature are all circular arcs or straight 

lines (which can be defined as arcs with an infinite centre). The sphere 
which is tangent to the surface at a point and comprises equal radii to the 

reciprocals of the principal curvature line at this point is called the cur-

vature sphere. For a cyclide the curvature spheres have constant diameter 

along a principal curvature line and contain the corresponding curvature 

line as a great circle. 

3.5.2 PQ meshes on canal surfaces 

A canal surface m may be discretised in an analogous way to the one 
described for rotational surfaces in 3.4.4. namely by isolating the defining 

Figure 3.42: Discrete canal surface 

with open spine curve

Figure 3.43: Closed canal surface - 

Dupin cyclide

Figure 3.44: Steiner Chain [Image by 

Wikipedia] 

Figure 3.45: Discrete canal surface 

with generating spheres of varying 

diameters

S
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curves of the surface whose intersection will form a PQ mesh: We start 

with isolating the spine curve s which is defined by the midpoints of the 
moving spheres that inscribe the canal surface (these are non-congruent 

spheres with varying diameters). The spine curve will be substitute by 

a polyline with a pre-defined number of vertices and in each vertex the 
respective normal plane n will be generated. The intersection of normal 

planes with the canal surface results in a number of circles on m which 

are orthogonal to s. We obtain circles which are non-congruent as they 

result from spheres with varying diameters. 

The circles are discretised thus each delivering a number of points. When 

connected with the points of the adjacent circles by straight line segments 

this procedure will form the PQ mesh on a canal surface. Depending on 

the density of the circles and the number of pre-defined vertices on them 
the PQ mesh might feature a high or low facet density. 

There is a further approach to discretise a canal surface namely by means 

of a series of right circular (truncated) cones which are tangent to a 

sequence of non-congruent space spheres which have their centres on 

the spine curve c. Each cone circumscribes two consecutive spheres of 

different diameters and intersects with the adjacent cone in an ellipse. The 
result is a chain of truncated cones which form a strip model of the canal 

surface whose edges are described by the intersection curves (ellipses) 

of the cones. If the truncated cones are discretised (the ellipse as profile 
curve of the cone will be substituted by a polyline) we will obtain a PQ 

mesh with facets that are orthogonal and circular meaning the PQ mesh 

consists of square planar facets. These properties have been utilised to de-

velop a modelling tool which uses cyclidic patches to design PQ meshes 

(explained in detail in 3.9

). 

If we use non-congruent spheres instead the same procedure will lead to a 

canal surface and respectively its discrete version. 

3.5.3  Pipe surface 

The pipe surface is defined as a one parameter family of congruent 
spheres moving along a space curve c called the spine curve or central 

curve with the centres of the spheres being located on c. As an alternative 
generating principle a family of circles with radius r. These circles must 

be contained within the normal planes of the spine curve with their centre 

points being located on the spine curve. Pipe surfaces exist as open and 

closed surfaces depending on the spine curve being an open or closed 

curve. However, there are special cases of generating curves resulting in 

special surface types: In the simplest case the pipe surface is a rotational 

circular cylinder with the central curve being a straight line segment. 

If we choose a circle as the spine curve the resulting pipe surface will be 

a ring torus. Parametric definitions for both objects are given below:

Figure 3.46: Discrete pipe surface
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General pipe surface [Kr59]

 G[xi,s] = {x - y(s)} {x - y(s)} - r² =0                  Equation 3.17

 y(s)...spine curve  r...radius of sphere
Torus [MW05]

 x[u,v]= (c + a cos(v)) cos (u)
 y[u,v]= (c + a cos(v)) sin (u)
 z[u,v]= a sin(v)                   Equation 3.18

 for u,v ∈ [0,2p], c > a: ring torus, c = a: spindle torus, c < a: spindle torus
3.5.4  PQ meshes on the pipe surface 

A pipe surface m may be discretised in an analogous way to the one 
described for the general type of a canal surface namely by isolating the 

defining curves of the surface whose intersection will form a PQ mesh: 
First we isolate the spine curve s which is defined by the midpoints of 
the moving spheres that generated the pipe surface in the first place. 
This curve will be substitute by a polyline with a pre-defined number of 
vertices. In each vertex of the spine curve we generate the normal plane n 

and intersect these planes with the pipe surface m. This way we obtain a 

number of circles on m which are orthogonal to s.

If we now discretise the circles we obtain a number of points on each 

circle which represent the vertices of a PQ mesh on the pipe surface. 

Depending on the density of the circles and the number of pre-defined 
vertices on them the PQ mesh might feature a high or low facet density. 

Another approach to discretise a pipe surface is by means of a series of 
rotational cylinders which are tangent to a sequence of congruent space 

spheres whose centres are on the spine curve. Each cylinder circum-

scribes two consecutive spheres and intersects with the adjacent cylinder 

in an ellipse. The cylinders form a strip model of the pipe surface whose 

edges are formed by the intersection ellipses of the cylinders. The cylin-

ders are discretised by substituting the elliptical profile curve by a pol-
yline of a certain density. This will deliver a PQ mesh which features the 

special properties of being orthogonal and circular. 

3.6  Spatial motion surfaces 

In general spatial motion surfaces are generated by applying a spatial 

motion to a planar or 3D curved profile curve. Depending on the way 
the profile curve is moved a number of different subclasses of the spatial 
motion surface can be created each featuring interesting properties. Some 

Figure 3.47: Entrance of canary wharf 

tube station by Foster & Partners [Im-

age by Foster & Partners]

Figure 3.48: Discrete Torus

Figure 3.49: Entrance of canary wharf 

tube station by Foster & Partners [Im-

age by Foster & Partners]



  77

of the previously described surfaces could as well be classified as spatial 
motion surfaces (e.g. an envelope surface generated by the spatial motion 

of a sphere along a path curve) but have been assigned to a surface class 

according to their most obvious generating feature. 

In this section we want to concentrate on spatial motion surfaces which 

are generated by moving a profile curve along a path curve. Out of these 
the moulding surface which is a special sweeping surface and the trans-

lation surface are of particular interest as these are the only two spatial 

motion surfaces which feature an inherent PQ mesh and hence will be 

discussed in detail in the following. 

3.6.1  Moulding surface 

The moulding surface was first proposed by C. Monge (1746 - 1818). It is 

a special sweeping surface generated by the movement of a profile curve 
p along a planar path curve c in such a way that p always lies in the local 

normal plane n of the Frenet-Serret frame of c (Figure 3.50). The Frenet–

Serret frame of a curve c is defined by the three unit vectors of c which 
are the tangent, normal, and binormal unit vectors of the curve in a point 

P, also called T, N, and B. 

T is the unit vector tangent to the curve, pointing in the direction of mo-

tion. N is the vector orthogonal to T which is contained in the osculating 

plane of c and B is the cross product of T and N. 

Because of the Frenet-Serret frame condition the profile curve when 
moved along the path curve will always be orthogonal to it. The move-

ment of p defines a moulding surface m which if intersected with planes 
parallel to the supporting plane of the path curve will result in section 

curves congruent to the path curve. These curves can be seen as the tra-

jectories of the motion of p. 

3.6.2  PQ meshes on the moulding surface 

A moulding surface can be discretised by applying a combined transla-

tion and rotation to a substituted profile curve (Figure 3.51): first both 
profile curve and planar path curve are substituted by a polyline with a 
pre-defined number of vertices. The discrete profile curve p1 may then 

be translated along the path curve c1 from vertex to vertex and rotated 

into the local normal plane of the respective vertex of c1 thus featuring 

a rotation during the translation of c. This procedure delivers an array of 

vertices which, if connected by straight line segments in a consecutive 

manner, results in a PQ mesh with faces that feature the special porperties 

of orthogonality and congruency. 

3.6.3  Translation surface 

The spatial motion of a profile curve also called generatrix along a path 

curve also called directrix will generate the translation surface (Figure 

Figure 3.50: Generation of a moulding 

surface

Figure 3.51: Discrete moulding   sur-

face

Figure 3.52: Strassbourg station [Image 

by Seele]
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3.53). In geometry a translation is defined as the transformation of an 
object by a constant offset without rotation or distortion. Any pair of 
arbitrary spatial or planar curves can be used to perform this operation. 

As the motion of the generatrix curve is only a translational operation all 
translated curves isolated at discrete points of the directrix are parallel to 

the original generatrix. It is a matter of definition which of the two curves 
will be defined as the profile curve and respectively as the path curve. The 
resulting surface will be the same. For this reason the parallelism condi-

tion is likewise valid for the directrix. This means the translation surface 

carries two sets of congruent parameter curves: one set based on the 

generatrix and the other one based on the directrix. The tangents along a 

generating curve envelop(e) a cylindrical strip which obviously touches 

the translation surface tangentially. Translation surfaces may be described 

in the following form:

 S [u,v] = g(u) +d(v)             Equation 3.19

 g(u)..directrix curve
 d(v)..genratrix curve
Although all translation surfaces irrespective of their generating elements 
posses an intrinsic PQ mesh surfaces generated by planar generatrix 

and directrix curves will indicate the final shape in a better way than 
those surfaces generated with spatial curves. If the generating curves are 

orthogonal to each other this will have an additional positive influence on 
the surface shape. 

If the generating curves belong to the class of isotropic curves the trans-

lation surface belongs to the class of minimal surfaces [Kr59]. For a 

definition of isotropic curves please refer to [Kr59]. Scherk’s first surface 
(Heinrich Ferdinand Scherk, 1785- 1885) is an example for a minimal 

surface which can be generated as a translation surface (Figure 3.55). The 

planar profile curves can be described in the following form:

 Generartix: x = 0, z = ln(cos y) Directrix: y = 0, z = -ln(cos x)                Equation 3.20

There is also a set of rotational surfaces which can be generated as trans-

lation surfaces. The elliptic paraboloid results from a rotational parabo-

loid if an independent scaling is applied. It can however be generated as a 

translation surface by translating two parabolas along one another which 

must be open to the same side and have parallel axes (Figure 3.56). The 

elliptic paraboloid parametrised as a translation surface is defined as such:

 Generartix: x = 0, z = a y² Directrix: y = 0, z = a x²              Equation 3.21

Figure 3.53: General translation surface

Figure 3.54: Grid shell hippo house 

Berlin [Image by Schlaich Bergermann 

& Partner]

Figure 3.55: Sherk’s first minimal 
surface

Directrix

Generatrix
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Another example for a rotational surface that alternatively may be gener-
ated as translation surface is the hyperbolic paraboloid (HP surface) 

(Figure 3.57). In contrast to the elliptic paraboloid the HP surface may be 

generated by two parabolas which need to be open to opposing sides: 

 Generartix: x = 0, z = a y² Directrix: y = 0, z = -a x²             Equation 3.22

If we apply a local centric scaling to the generatrix in course of the mo-

tion with the centres of scaling being located on a continuous curve we 

obtain a scaled translation surface . The scaling curve and the scaling fac-

tors can be chosen freely. However if extreme scaling factors are chosen 

the shape of the resulting surface is hard to predict and facets may be 

distorted (Figure 3.58). As discussed in chapter 2.7.1 the scaling transfor-
mation preserves planarity of the facets. 

The translation can also be performed using a closed curve in combina-

tion with a central scaling curve in vertical direction. This will lead to a 

surface which is similar to a moulding surface. The fundamental dif-

ference between these two consists in the orientation of the sections of 

supporting plane with path curve. For the translation surface the vertical 

sections are all oriented towards the centre of expansion in comparison to 

the moulding surface for which the sections are always perpendicular to 

the path curve. 

There is a large variation of surfaces available when using the translation 

surface approach as H. Schober demonstrated in [Scho02] and [GlSh04]. 

3.6.4 PQ meshes on translation surfaces 

The PQ mesh of translation surfaces is so to speak built into their genera-

tion principle. Both the generatrix and directrix curve may be substituted 

by polylines with a chord length that can be chosen freely depending on 

the envisaged mesh density. Instead of the smooth translation as ap-

plied for the surface generation the discrete translation of the generating 

polyline from one vertex to the next of the directing polyline will deliver 

a mesh of polylines with each segment of a polyline defining an edge of 
a PQ facet. As each set of polylines are parallel in space the facets are all 
planar. We have now discussed a number of different surface types. This 
compilation of generation principles for classical surface and their respec-

tive intrinsic PQ mesh parametrisations provides a good overview of PQ 

meshes ‘readily at hand’ if one is prepared to subordinate the form finding 
process for a surface to the available geometrical principles. The list be-

low shall summarise all surface types that have been documented as yet: 

Developable surfaces

 -cylinder 

 -cone

Figure 3.56: Hyperbolic paraboloid

Figure 3.57: Scaled translation surface

Figure 3.58: Elliptic paraboloid
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 -tangent surfaces of space curves

Extrusion surfaces

 -cylinder

 -cone

Surfaces of revolution

 -general surfaces of revolution

 - Surfaces of revolution with constant Gaussian curvature

   (spherical and pseudospherical surfaces) 

 - Surfaces of revolution with vanishing mean curvature 

   (catenoid - minimal surface) 

 - Surfaces of revolution with constant nonzero mean 

    curvature  (nodoid, unduloid)

 - Surfaces of revolution with positive Gaussian curvature

Envelope surfaces 

 - Pipe surfaces (general pipe surface, torus)

 - Canal surfaces (general canal surface, cyclide)

Spatial motion surfaces 

 - Moulding surfaces 

 - Translation surfaces (general and scaled)

For a general overview of all PQ,mesh surfaces please refer to Appendix 
A 10.

So far the system how we classified the documented surfaces was accord-

ing to their generation method (rotational surfaces, translation surfaces 

and so forth). 

In the following we will deviate from this approach to introduce two sur-

faces which play a special role with respect to their discretisation poten-

tial independent from their affiliation with certain generation principles. 

The sphere and the cyclide both offer a whole variety of possible PQ 
mesh parametrisations which all feature certain particularities. Most im-

portantly however the meshes generated on the sphere/them can be tran-

forrmed by applying a number of transformation principles thus resulting 

in mesh surfaces with interesting shapes and still featuring the desired PQ 

tessellation. From the appearance of these surfaces one would not assume 

a relationship with the sphere or cyclide although they are generated by 

transformation processes applied on one of those objects. 

Therefore the documentation of these two surfaces is handled differently: 
following a brief definition of the surface itself we will examine the dif-
ferent available discretisation principles and possible transformations of 

them. 
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3.7  PQ meshes on the sphere and their duals 

In this chapter we will investigate the possible PQ tesselations on a 

sphere and their dualisations. 

A number of different PQ meshes can be generated on the sphere depend-

ing on the applied generation principle: 

An equal length mesh on the sphere can be inverted to a PQ mesh or 
transformed to the discrete version of a deformed pseudospherical 

surface. Circular meshes on the sphere can be transformed to discrete ver-

sions of minimal surfaces. 

The generating principles of the following PQ mesh types shall be de-

scribed in detail: 

  - Diagonal inversion of an EQL mesh

  - Discrete K-surface from an EQL mesh

  - Discrete minimal surface from circle packings

Before we start looking into these PQ meshes however we want to intro-

duce the unit sphere as a geometrical object and discuss its properties.

3.7.1 The sphere 

The sphere is generated by a 180º rotation of a circle about an axis A 
which must contain the centre of the circle. The sphere may be described 

in the following form:

 S [u,v] = [r cos(v) cos(u), r cos(v) sin(u), r sin(v)]    Equation 3.23

Some particularities of the sphere

All points on a sphere feature constant distance r from the centre of the 
generating circle. 

The meridians and parallel circles on the sphere coincide with the geodes-

ic lines (curves of shortest path). The sphere has constant positive Gauss-

ian curvature (K > 0) and constant positive mean curvature (H > 0). All 
points on the sphere are umbilic points. Hence the principal curvature 

lines are undefined on the sphere. 

In addition to the general PQ mesh parameterisation for rotational sur-

faces described in 3.4.4 to 3.4.5 (which is applicable to the sphere as a 

special rotational surface) less obvious PQ mesh layouts can be gener-

ated on the sphere. These are of particular interest as there are a number 

of transformation principles available which change the 'common' shape 

of a sphere into completely different surfaces whilst keeping the proper-
ties of the PQ meshes generated on the sphere. These principles shall be 

described in the following. 
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3.7.2  Diagonal 'inversion' of an equal length mesh 

An equal length (EQL) mesh or Chebychev net (Pafnuty Lvovich Cheby-

shev, 1821-1894) can be generated on any arbitrary surface and forms a 

quadrilateral mesh for which the faces all have constant edge length and 

are parallelograms. 

On the sphere S an EQL mesh forms a set of parameter lines which are at 

the same time asymptotic lines (curves of zero normal curvature) of S. If 

a plane is osculated along an asymptotic line this plane coincides with the 

surface tangent planes of the sphere at every point of the asymptotic line 

a. The osculating plane is spanned by the tangent vector T and normal 

vector N of a point P on a. The cross product of T and N (resulting in B) 

is hence the normal vector of the sphere in point P. 

When using the asymptotic coordinates u,v the EQL mesh can be defined 
in the following partial differential equation [Pi08]:

 N x Nuv = 0                  Equation 3.24

If we substitute the coordinates u,v to: 

 x = u + v
 t = u - v                  Equation 3.25

Equation 3.24 becomes

 N x (Nxx - Ntt) = 0             Equation 3.26

We receive the asymptotic lines of the surface if we set t = const. The 

EQL mesh is completely determined for any given starting configuration 
(edge length and direction). 

Two approaches to generate a EQL mesh on the sphere have been pro-

posed in [Pi08]:

I. EQL mesh with a fixed point 

We choose a point S on the sphere and define a small circle C on the 
sphere which is parallel to the tangent plane in S (Figure 3.60). The dis-

tance from point S to an arbitrary point on the chosen circle will set the 

edge length of the entire EQL mesh. Then we determine the subdivision 

of C (number of vertices V
1
 - V

x
 on the circle and their distances) which 

will determine the layout of the EQL mesh. 

When we connect point S with each of the new vertices V
1
 - V

x
 we 

receive two edges of each facet in the first row of the EQL. With now 
three corner vertices of one facet defined (one being fixed point S and two 

Figure 3.59: Start circle

Figure 3.60: EQL mesh with a fixed 
point

Figure 3.61: PQ faces from a uniform 

EQL mesh

Figure 3.62: PQ mesh non - uniform 

EQL mesh

S

C

V
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consecutive subdivsion vertices on the first parallel circle V
x-1

, V
x
) we can 

construct the fourth vertex for each facet of the first row which obviously 
lies on the next (second) parallel circle: 

the location of vertices on the second circle is shifted precisely by half the 

distance of two consecutive vertices of circle 1. 

the distance between parallel circle 2 and parallel circle 1 is determined 

by the edge length of the mesh.

By repeating these two construction steps for a given number of iterations 

using the constant edge length property the sphere will be covered with 

facets row by row. If required it can be covered with multiple overlaying 

meshes. 

If a uniform subdivision is chosen all vertices generated within one step 

lie on a common parallel circle and intersect with a set of meridians 

(Figures 3.60 + 3.61). A non-uniform subdivision generates a more dis-

torted graph but can still be inverted to a PQ mesh (Figure 3.62). When 

setting up the EQL one has to consider that if the sum of all edges within 

one row is less then the circumference of the sphere the EQL mesh will 

reverse at some point (when the sum of all edges of a row is less than the 

respective parallel circle ) and thus will not cover the whole sphere. 

One particularity of this method is that the construction of the mesh can 

start in second row earliest as the first row quads are collapsed towards 
the fixed point. 

II. EQL mesh from a closed smooth curve

Starting geometry for this construction principle is a smooth closed curve 

c on the sphere S whose length must be shorter than the circumference of 

S. In theory c can be located anywhere on S although a location some-

where close to one of the poles results in a clearer EQL. We define a sub-

division of c (number of vertices V
1
 - V

x 
and their distances) and the edge 

length of the EQL. Starting with two consecutive vertices V
x-1

 and V
x
 on c 

we can construct a third point of the first facet. If repeated for all verti-
ces on c we will obtain a starting geometry for the EQL mesh consisting 

of the first row of 'half parallelograms' each consisting of three corner 
vertices (Figure 3.64). This procedure will be repeated row by row until 

the complete sphere is covered with parallelograms which form the EQL 

mesh. Only the small area of the sphere encircled by the starting curve 

will not be covered by the mesh. This area however can be neglected as 

the transformation of the EQL mesh will still result in a continuous PQ 

mesh without any gaps (Figure 3.64). 

Both construction principles result in a mesh with rhombic non-planar 

facets all featuring the same edge length hence the name equal length 

mesh. The diagonal 'inversion' of the EQL mesh finally forms a PQ mesh 
on the sphere. This means we use the vertices defined by the EQL mesh 
but connect them with straight line segments according to the direction 

of parallel circles and meridians. This results in a mesh which looses the 

equal length property but gains the planarity for all facets. 

For every EQL mesh on the sphere we can generate two different PQ 
meshes by using only every other vertex of the EQL mesh for the con-

Figure 3.63: EQL mesh with a cone 

point

Figure 3.64: PQ mesh with a cone point

c



  84

struction of the PQ mesh. Hence for PQ mesh A the construction may 
start in an odd row of the EQL mesh and for PQ mesh B respectively in 

an even row. Both meshes obviously feature less density than the mesh 

which uses all vertices and consequently the applicability of this ap-

proach depends on the desired facet size and on the chosen edge length 

and subdivision of curve c. 

A PQ mesh face on the sphere can be constructed when applying the fol-
lowing rule:

 F = [fn,m+1; fn+1,m; fn,m-1; fn-1,m]             Equation 3.27

 f… vertices of the EQL mesh on the sphere 
For notation of the EQL vertices please refer to figure 3.65. The two 
methods described above result either in a PQ mesh on the sphere by 

inverting the EQL mesh or alternatively the EQL mesh can be used as a 

starting geometry for a transformation process which results in discrete 

surfaces featuring constant negative Gaussian curvature (K=-1) called 

K-surfaces. 

3.7.3  Discrete K-surface from an EQL mesh on the sphere 

The K-Surface is a surface which comprises of constant negative Gauss-

ian curvature (K=-1). In chapter 3.4.1 we have already discussed re-

volving surfaces with constant negative Gaussian curvature including 

the pseudosphere. K-surfaces however represent all surfaces with K=-1 

meaning also those which cannot be generated by a revolving generation 

process. 

The method proposed by U. Pinkall [Pi08] will allow us to generate a K-
surface by means of the Gauss map: a K- surface is the Gauss image of an 

EQL mesh on the sphere. In other words when we apply the Gauss map 

to a EQL mesh on the sphere we obtain a discrete K-surface. If the EQL 

mesh is deformed this will result in an accordantly deformed discrete 

K-surface. As the Gauss map preserves planarity of the faces the result-
ing mesh will still be a PQ mesh however featuring a completely different 
shape than the EQL mesh on the sphere. 

Discrete K- surfaces possess the following properties:

I. All vertices surrounding one vertex lie in a plane 

This condition guarantees the planarity of a quad face defined by the end 
vertices of those edges which all meet in the 'centre' vertex. This fact is 

of particular importance as the PQ mesh of the K-surface is obtained by 

inverting the K-mesh (discrete K-surface) and using exactly this geo-

metrical constellation for the mesh faces.

The four vertices surrounding a 'centre vertex' also lie on a circumcircle 

Figure 3.65: Notation of EQL mesh 

vertices [Image by S. Sechelmann]

F
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with a radius equal to the projection of the 'equal length edge' onto the 

circle plane. This means the K-surface is a circular quadrilateral mesh. 

As we know from 2.6.2 a mesh forms a discrete version of an isothermic 
surface if all quadrilaterals of a circular mesh are conformal . Hence the 

K-surface is an isothermic surface. 

II. All edges have the same length 

The second condition allows us to construct the discrete K-surface on the 

sphere as an EQL mesh (Chebyshev net) which will be dualised by means 

of the Gauss map into its Gauss image which is the K-Surface. The EQL 

mesh forms a network of asymptotic curves. 

In the next chapter we want to introduce the Gauss map and resulting 

Gauss image to clearly illustrate the construction of a K-surface by means 

of an EQL mesh on the unit sphere. 

3.7.4  Computation of the Gauss image 

In the field of differential geometry, a surface in Euclidean space can be 
mapped onto the unit sphere by means of the Gauss map which was intro-

duced by Carl F. Gauss in 1825. This means for every point on an surface 
a corresponding point on the unit sphere exists which can be defined 
using the function of the Gauss map. Globally this is restricted to surfaces 

which are orientable whereas locally the Gauss map can be defined for 
any arbitrary surface. 

The Gauss image is the image which is generated on the unit sphere when 

applying the Gauss map to a surface. 

If we invert this method we start with an EQL on the sphere using one of 

the starting conditions defined in subchapter 3.7.2 (fixed point or closed 
smooth curve) which delivers an EQL mesh. We can then apply the 

Gauss map to the EQL mesh to dualise it into its Gauss image namely the 

respective K-surface. 

This K-surface is in itself an equal length mesh which can be easily trans-

formed into a PQ mesh by applying the 'inversion method' as described in 

section 3.7.2. 

This method delivers PQ meshes of very distinct appearance

(Figure 3.66 ). Still there may be a restricted number of problems in the 

construction business for which this method could provide a solution. 

The geometric construction of a discrete K-surface from an EQL mesh on 

the sphere will be described in the following paragraph.

3.7.5  Reconstruction of a discrete K-surface 

We can reconstruct the faces of a discrete K-surface from an EQL mesh 

by applying the following construction rule (difference equation):
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 f n+1,m = f n,m + [N n+1,m x N n,m] f n,m+1 = f n,m + [N n,m x N n,m+1]                    Equation 3.28

 fn,m… corresponding vertices on the sphere and the discrete K-surface N… normal vector of the plane defined by the vertex and its four neighbours
 Nn x Nm… cross product of the two Normal vectors For notations please refer to figure 3.65
The construction can be described in the following steps:

 -Choose the start vertex in the second row (or higher)

 on the EQL mesh on the sphere. (To define the normal 
 vector of a vertex which is required later on we need the 

 adjacent vertices in the following and previous rows 

 hence this wouldn't be possible for row 1)
 -Define the start point of the K–surface (which should 
 have a certain distance from the start vertex on the 

 sphere).

 -Compute the normal vectors for all vertices of the 

 EQL mesh (as explained in equation 3.28) 
 -Choose a fixed scale value for the normal vectors or use
 non-normalised vectors for the construction.

 -With the starting values defined we can construct the
 K-surface vertices successively performing vector
 additions following the rules given in Equation 3.28.

This method delivers a discrete K-surface from an EQL mesh on the 

sphere which finally can be inverted into a PQ mesh as described in sec-

tion 3.7.2. 

Aside from the EQL mesh there is another way to generate PQ meshes 
based on the sphere. This method requires the generation of a circle pack-

ing on the sphere which is then being dualised to result in the discrete 

version of a minimal surface. 

The basic principle is similar to the approach described previously: the 

geometrical object of a sphere is being used to generate a PQ mesh which 

can then be transformed into the discrete version of a surface whose 

shape is completely different from that one of a sphere but still featuring 
the PQ mesh properties. 

3.8  Discrete minimal surfaces from circle packings 

on the sphere 

Minimal surfaces are defined as surfaces featuring vanishing mean curva-

ture. The special type of minimal surfaces of revolution and their inherent 

PQ meshes have already been discussed in section 3.4.2. In this section 

however we want to introduce a method to generate minimal surfaces 

Figure 3.66: K-Surface with a cone 

point
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with an inherent PQ mesh by transforming a mesh which is initially gen-

erated on a sphere. 

In general minimal surfaces belong to the class of free form surfaces 

and hence do not feature an inherent PQ mesh to their generation prin-

ciple. However there is a special method how to create discrete minimal 

surfaces which automatically results in a PQ mesh representation. This 

method is harvesting the knowledge about a number of well-researched 

and documented mathematical laws and theorems of differential geometry 
each of which in itself has no specific use with respect to PQ meshes. By 
integrating these singular principles into a process which ultimately leads 

to a PQ tesselation of a minimal surface they play a vital role in the PQ 

mesh generation process:

I In mathematics it is known that a minimal surface (or its discrete 

version) can always be mapped conformally onto the sphere which means 

the mapping preserves angles and planarity of faces of the input mesh. In 

reverse a mesh generated on the sphere can be transformed conformally 

to a minimal surface again preserving angles and planarity of the initial 

mesh. Consequently the discrete version of the minimal surface will fea-

ture PQ facets if the mesh generated on the sphere is a PQ mesh. 

II In mathematics it is also known that there exists a unique circle 

packing for any arbitrary triangular mesh on the sphere. For every circle 

packing on the sphere a Koebe polyhedron can be generated which can 

therefore be seen as the discrete version of a sphere. 

The Koebe Theorem provides us with the knowledge how to discretise a 

sphere in a way that the output mesh is suitable for the subsequent trans-

formation into a minimal surface: 

If a sphere is discretised by means of triangulation the resulting mesh 

can be used to generate a circle packing on the sphere. The circle pack-

ing represents a Koebe polyhedron which is a discrete version of the 

sphere. Obviously there are different ways how to discretise a sphere. The 
Koebe polyhedron however features the special property that it can be 

transformed by means of the Schwarz-Christoffel mapping (Elwin Bruno 

Christoffel, 1829 - 1900 and Hermann Amandus Schwarz, 1843 - 1921) 
into a discrete minimal surface. 

Our application however does not require any kind of discrete version of 

a surface but a planar quad tessellation. Consequently we need to find a 
way how to discretise the sphere so the Koebe polyhedron consists of pla-

nar quads. This PQ mesh can then be transformed to the discrete version 

of a minimal surface which still consists of PQ facets. 

The generation principle for circle packings on the sphere and the 

Schwarz-Christoffel mapping will be described in the following section. 
A method will be discribed how to generate a circle packing of such a 
type which will result in a PQ mesh on the sphere  and consequently in 

a PQ mesh minimal surface after application of the Schwarz-Christoffel 
transformation. 

Figure 3.67*: Face circle packing on 

sphere

Figure 3.68*: Vertex circle packing 

on sphere

Figure 3.69*: Vertex/Face circle pack-

ing on sphere

Figure 3.70*: Tessellation of sphere
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3.8.1  The Koebe polyhedron 

In general a circle packing is defined as the arrangement of circles within 
a pre-defined boundary. In our particular case this boundary is the surface 
of a sphere. The circles can be of equal or varying size but they have to be 

arranged in a way such that no overlapping occurs and all neighbouring 

circles are mutually tangent or in other words a circle packing is defined 
as a configuration of disjoint discs which may touch but do not intersect. 
According to William P. Thurston [Th97] tessellations of regular poly-

gons correspond to particular circle packings. Hence the packing from a 

triangulation is different than those based on other tessellations. Circle 
packings exist in various configurations depending on the envisaged 
packing density and depending on the mesh they are based on. For our 

application the packing density is irrelevant however the circle arrange-

ment is important as the special configuration of all neighbouring circles 
only touching in four points will result in a quad mesh. In general a PQ 

mesh face can be inscribed with or circumscribe by a circle (Figure 3.71). 

Each circle c of the circle packing defines a plane which we call the 
supporting plane of c. If we intersect these planes the intersection lines 

will result in a mesh which at the same time describes a special type of 

polyhedron known as the Koebe Polyhedron (Paul Koebe, 1882 - 1945). 
A Koebe polyhedron is defined as a spherical polyhedron whose edges 
are all tangent to a sphere S. Hence it can be seen as a discrete version of 

S. It is obvious that the facets of the Koebe polyhedron are planar as they 

result from the intersection of a number of planes. 

The quad property of the mesh results from the special configuration of 
the circles which form the circle packing. To understand the computa-

tion of such circle packings on the sphere which can be derived into a 

PQ mesh, we need to start with the Koebe theorem (Paul Koebe, 1882 – 
1945):

The Koebe theorem:

For every triangulation of the sphere there is a packing of circles on 

the sphere such that circles correspond to vertices and two circles 

touch if and only if the corresponding vertices are adjacent. This cir-

cle pattern is unique up to Möbius transformations of the sphere.

A generalisation of Koebe’s theorem has been proposed by A. I. Bobenko 
and A. Springborn in [BoSp02] which suggests that the faces correspond-

ing to a circle packing on the sphere do not necessarily have to be trian-

gular:

Theorem 1:

For every polytopal cellular decomposition of the sphere, there ex-

ists a pattern of circles on the sphere with the following properties. 

There is a circle corresponding to each face and to each vertex. The 

vertex circles form a packing with two circles touching if and only 

if the corresponding vertices are adjacent. Likewise, the face circles 

form a packing with circles touching if and only if the corresponding 

Figure 3.71: Inscribe/Circumscribed 

Face
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faces are adjacent. For each edge, there is a pair of touching vertex 

circles and a pair of touching face circles. These pairs touch in the 

same point, intersecting each other orthogonally. This circle pattern 

is unique up to Möbius transformations.

In theorem 1 the triangulation condition is softened in order to allow the 

consideration of quad meshes as basis for a circle packing. Furthermore 

the existence of two circular meshes is proven, one corresponding to the 

edges and another one which corresponds to the vertices of a mesh. If 

these two types of circular packings are superimposed they always inter-

sect orthogonally (Figure 3.72). 

The two types of circular meshes are based on the fact that each circle 

carries a planar face, which is either inscribed with (edge corresponding) 

or circumscribed by a circle (vertex corresponding). 

The Koebe Polyhedron which is generated from a circle packing and its 

properties are defined in the following Theorem 2 [BoSp02]:

Theorem 2:

For every polytopal cellular decomposition of the sphere, there 

is a combinatorially equivalent polyhedron with edges tangent to 

a sphere. This polyhedron is unique up to projective transforma-

tions which fix the sphere. There is a simultaneous realisation of the 

dual polyhedron, such that corresponding edges of the dual and the 

original polyhedron touch the sphere in the same points and intersect 

orthogonally. 

As mentioned in the beginning a circle packing is the arrangement of 
circles within a defined boundary hence for each surface there might be 
a number of different circle packing configurations. If we only consider 
those circle packings for which each circle is touched in four points 

(meaning each circle has four tangent neighbouring circles) we receive 

a Koebe polyhedron consisting of PQ facets. Following the condition of 

the four touching points such a PQ mesh obviously is called to be circular 

hence all vertices of each face lie on a common circle (Chapter 2.6.1). 

Although the above stated theorems confirm the existence of such circle 
packings on the sphere their computation requires non-linear approxima-

tion. This means there is no 'construction rule' how to arrange the circles 

on the mesh. The packing configuration has to be determined by means of 
non-linear optimization which will be outlined in the following: 

To reach convergence of a system under optimization we need to start 

with a graph which is combinatorial equivalent to the polytopal cellular 

decomposition of the sphere. The properties of such a system can be 

described as follows [Se07]:

 -No edge loops are permitted

 -No edges share the same vertices (no duplicates) 

 -At least three edges are meeting in each vertex 

Figure 3.72*: Two types of circular 

Koebe meshes

* Images generated with software 

‘Cyclidic Nets’ by E. Huhnen-Venedey 
http://www3.math.tu-berlin.de/geom-

etrie/lab/ps.shtml
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If the starting graph satisfies these conditions it is called to be valid in the 

sense that it will lead to a mesh from which the respective Koebe Polyhe-

dron can be constructed. 

To receive a circle pattern which reflects the rules given in Theorem 1 we 
need to apply the medial combinatorics to the initial graph which leads 

to a medial graph. Each face of the medial graph corresponds to a face 

of the initial graph and the same applies for each vertex. The vertices of 

the medial graph are characterised by the number of four edges meeting 

in each point. The construction of the medial graph can be described as 

follows:

 -Subdivision of the initial graph (the midpoints of each 
  edge will generate a new set of vertices, Figure 3.73)
 -By connecting this set of vertices according to the 

  topology of the initial graph a new face is generated 

  

In order to receive a quad mesh we have to restrict the initial graph to 

consist of quad faces only. These quads can be subdivided to the medial 

graph whereupon the quad property of the faces is preserved. The subdi-

vision can be refined iteratively until we receive the desired face density. 
The subdivided graph represents the quad mesh which the circle pack-

ing can be generated on (Figure 3.74). Once the packing configuration is 
generated the radii of the circles need to be approximated in order to fulfil 
the condition of orthogonal intersections amongst the two sets of circles. 

Solutions for this process have been proposed by K. Stephens [St05] and 

A. Springborn / A.I. Bobenko using non linear optimisation and variation-

al principles which can be studied in [BoSp02, Sp03]. 

Finally we receive a circle pattern which might be suitable for the 

Schwarz-Christoffel transformation but which is still in the Euclidean 
plane and therefore first has to be projected stereographically onto the 
sphere. As the stereographic projection preserves angles and circles, the 

orthogonal circle pattern will result in an orthogonal circle pattern on the 

sphere after projection (Figure 3.75). 

As explained previously the edges of the Koebe Polyhedron result from 
the intersection of the supporting planes of the circle packing and form a 

PQ mesh on the sphere. 

The construction process of this circular PQ mesh on the sphere can be 

summarised in the following steps: 

 -sketching of a planar graph consisting of quad faces 

  with at least 3 edges meeting in every vertex of the 
  graph. This graph has to be valid in a sense as described 

  further above.

 -subdivision of the valid graph by connecting the 

  midpoints of all edges to receive a medial graph 

 -repetition of the subdivision steps to reach the required 

  face density

Figure 3.73: Medial combinatorics of 

the cube [Image by S. Sechelmann]

Figure 3.74: 2 D Circle pattern of the 

cube [Image by S. Sechelmann]

Figure 3.75: Stereopraphic projected 

circle pattern of cube [Image by S. 

Sechelmann]

Initial graph 

New face
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 -generation of a circle packing based on the 

   subdivided graph

 -approximation of the radii of the circles in order to 

  guarantee orthogonal intersections of the two sets of 

  circles 

 -stereographic projection of the circle pattern onto 

   the sphere

 -computation of the Koebe Polyhedron which forms 
   a PQ mesh on the sphere

With the sphere discretised by a PQ mesh based on a Koebe polyhedron 

finally the Schwarz Christoffel mapping can be applied to transform the 

PQ mesh into a discrete minimal surface. 

3.8.2  Schwarz-Christoffel mapping of the Koebe polyhedron 

As explained in 3.7.4 any arbitrary surface in Euclidean space can be 
mapped onto the unit sphere by means of the Gauss map resulting in the 

Gauss image of that surface on the sphere. This process is an involu-

tion and therefore a mesh constructed on the unit sphere in reverse may 

be mapped into a surface in Euclidean space. Depending on the applied 

transformation method the output surface may feature certain proper-

ties: in the particular case of applying the Schwarz-Christoffel mapping 
to a Koebe polyhedron the output surface namely the Gauss image of the 

Koebe polyhedron will feature vanishing Gaussian curvature. Hence the 

Schwarz-Christoffel mapping transforms a mesh on the unit sphere into 
the discrete version of a minimal surface in Euclidean space. 

We know that this transformation process is conformal which proves that 

a PQ mesh on the sphere results in a PQ mesh representation of a mini-

mal surface. 

Minimal surfaces are examples for isothermic surfaces. Isothermic sur-

faces again are characterised by the fact that if they are discretised by a 

quad mesh this mesh necessarily consists of conformal squares. The two 

sets of edges of the conformal squares in consecutive order represent the 

discrete version of the two families of principal curvature lines of the 

minimal surface. 

A square is called to be conformal (Figure 3.76) if the following condi-
tion for the edges is fulfilled: aa’/bb’ = -1                Equation 3.29

 a,a’,b,b’…edge vectors  
   

Conformal squares feature circumscribed circles or spheres which 

intersect orthogonally at their points of contact (Figure 3.77). Ordinary 

vertices have four adjacent edges. In contrast vertices with the degree of 

three correspond to umbilic points on the surface. We need to know the 

location of the umbilic points on the surface in order to create the corre-Figure 3.76: Conformal square [Image 

by S. Sechelmann]

a'

b'

a

b
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sponding quad graph for a specific minimal surface as we have to cut the 
combinatorics along those curvature lines whose intersections represent 

the umbilic points. Usually the construction of a minimal surface may be 

performed in patches. Any patch has a number of boundary curves each 
of which is a curvature line of the surface. If the patches are joined to-

gether this will be done along the boundary curvature lines. Consequently 

adjacent patches have to feature the same boundary curves in order to 

receive a smooth surface. 

A construction method has been developed by Bobenko, Hoffmann and 
Springborn [BHSp05]: 

We start with a Gauss image on the sphere which in our particular case is 

the PQ mesh generated from the according circle packing on the sphere. 

To receive the so-called dual surface from the Gauss image we apply the 

Schwarz-Christoffel mapping also known as Schwarz-Christoffel trans-

formation or Schwarz-Christoffel dual. 

Two planar quadrilaterals are called to be dual if the following conditions 

hold [BoSu08]:

Corresponding sides are parallel (A*B*) || (AB), (B*C*) || (BC), (C*D*) || (CD), (D*A*) || (DA)
Non-corresponding diagonals are parallel: (A*C*) || (BD), (B*D*) || (AC)          

 A, B, C, D ... orginal qudrilateral corner vertices
 A*, B*, C*, D*.... dual quadrilateral corner vertices
The construction the dual from an original quad by means of the 

Schwarz-Christoffel mapping can be described in the following steps:  

Given is a planar quad face defined by its four corner vertices A to D, the 
four edges a to d and the diagonal straight connection vectors AC and BD 
which connect A to C and B to D (Figure 3.78).

 -Choose one of the four vertices of the quad (e.g. A) 

  and translate it with a user defined distance to receive 
  the first vertex of the dual quad (A*) 
 -Choose one of the edge which are adjacent to the 

  starting vertex A (e.g. edge a) 

 -Reverse the vector of the chosen starting edge 

  (originally the vector is pointing away from the start 

  point towards the end point of the edge) 

 -Set a scale value for the construction 
 -Translate the reversed start vector to the start point 

 A* of the dual quad and multiply the vector by the 
  scale value. This will define the first edge (a*) 
  of the dual quad 

Figure 3.77: Confromal circular mesh

Figure 3.78: Dual quads [Images by S. 

Sechelmann]

ACBD

AC*
BD*

A B

CD

A*B*

C* D*
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 -Translate the edge vector b (in original direction) to

  corner point B* of the dual quad 
 -Translate the diagonal vector BD to A* 
 -The third point (C*) of the dual quad will result from/lie 
  at the intersection of edge vector b* and diagonal 
  vector AC* 
 -Translate the reversed edge vector c to point C* 
  of the dual quad 

 -Translate the reversed edge vector d to point A* 
  of the dual quad 

 -The last point D* will result from/lies at the intersection 
  of c* and d* 

Obviously the described construction principle can be applied not only to 

a single quad but also to a quad mesh. This way we can transform the cir-

cle packing created on a sphere to its dual minimal surface. As the circle 
packing represents a quad mesh its dualisation will result in a planar quad 

representation of the minimal surface. 

The interesting aspect of this way of creating a PQ parametrised surface 

is that the geometrical starting point was an entirely different surface, 
namely a sphere. 

Java applets where created by S. Sechelmann which produce the Koebe 

Polyhadra and it's corrsponding Minimal surface. The applet was used 

for this thesis to produce the images of the Koebe Polyhydra. For further 

infromation please refer to [Se07] and the following links:

http://www3.math.tu-berlin.de/geometrie/lab/ps.shtml#KoebePolyhedron

http://www3.math.tu-berlin.de/geometrie/lab/ps.shtml#MinimalSurfaces

In the following we want to describe a method to obtain a PQ mesh sur-

face which does not transform the input surface like described previously 

but uses parts of an existing surface to create a new surface shape out of 

them. 

3.9  Cyclidic patches and cyclidic nets 

A cyclidic patch is a part of a full Dupin cyclide which is cut out along 

four principal curvature lines that describe the original cyclide: two 

curves of one parameter family of lines and two from the other family. 

The intersection of these four curves determine the corner points of the 

patch. As we know form section 3.5.1 the Dupin Cyclide is a special case 

of a canal surface which holds the unique property that all of its princi-

pal curvature lines are formed by circles. The dicretisation of the Dupin 

Cyclide by using its curvature lines leads to a PQ mesh. With the cyclidic 

patch being a cut-out of a full cyclide consequently the PQ mesh property 

applies respectively. 

Figure 3.79: Koebe Quad graph [Image 

by S. Sechelmann]

Figure 3.80: Dual Minimal Surface by 

Christoffel transformation [Image by S. 
Sechelmann]



  94

Cyclidic nets are a composition of a number of four-sided cyclidic 

patches which are joined together along their boundary curves. Cyclidic 

patches - and hence equally cyclidic nets which are composed of the 

patches themselves - can be quite simply discretised by a curvature line 

parameterisation. The intersection of two curvature lines (one of each 

parameter family of curves) at the same time always forms an orthogo-

nal coordinate system. This property can be utilised to design PQ mesh 

surface patches if a number of boundary curves are given. Any cyclidic 
patch is uniquely defined by its four boundary curves. These curves 
are circular arcs and their end points are located on a common circle. A 
method to create cyclidic patches by using pre-defined boundary curves 
has been proposed by A. Bobenko and E. Huhnen Venedey in [BoHu11]. 
As we are using a curvature line discretisation for the cyclidic patches 
and nets consequently the generated meshes are always circular and at the 

same time conical quadrilateral meshes. 

In the following chapter we provide a brief summary of the mathemati-

cal background of cyclidic patches and cyclidic nets and explain how to 

obtain a discrete version of them. 

3.9.1  Cyclidic patch 

A cyclic patch is a surface which is cut out of a full Dupin cyclide (Figure 

3.81). The resulting surface patch is bounded by four edge curves ( a, a1, 
a2, a3) all of which form pieces of a curvature line of the original cyclide 

(Figure 3.82). From chapter 3.5.1 we know that the curvature lines of a 
cyclide are always circles hence a cut-out of a cyclide consists of circular 

arcs. The four boundary curves intersect orthogonally at the four corner 

points ( x, x1, x2, x3 ) of the cyclidic patch and lie on a common circle 

(Figure 3.83). 

  Definition and construction principle 

A cyclidic patch can be decribed by the four vertex frames (B, B1, B2, B3) 
which are located at the four corner points of the patch. These frames are 

orthonormal 3-frames B = (t(1), t(2), n) whose vectors t(1) and t(2) are the 

tangent vectors of the two boundary curves meeting at the corner point 

which the vertex frame is defined for and vector n the normal vector of 

the supporting cyclide at that point. 

As we know from section 3.5 a cyclide can be defined by a number of 
spheres moving along a spine curve with each curvature sphere touching 

the cyclide only along one of its curvature lines which forms a circle. In 

general curvature spheres are defined as the spheres tangent to a surface 
with their radii equal to the reciprocals of the principal curvature lines at 

the point of tangency. Hence the intersection of the sphere with the cor-

responding surface results in a curvature line which at the same time is 

the great circle of the sphere. 

Each of the four boundary arcs of a cyclidic patch is part of one of the 

principal curvature lines of the cyclide. The corresponding curvature 

Figure 3.81**: Full Dupin cyclide 

Figure 3.82**: Single cyclidic patch 

with corner frames

Figure 3.83**: Cyclidic patch with 

four edge curves and four corner points

x, B

x1, B1

x2, B2

x3, B3

* * Images generated with software 

‘Kobe Polyhydron Editor’ by S. Echel-
mann http://www3.math.tu-berlin.de/

geometrie/lab/ps.shtml
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sphere and respective boundary arc have their centre at the intersection of 

the normal vectors of the three adjacent vertex frames. 

For the construction of a cyclidic patch it is important to know that neigh-

bouring vertex frames (vertex frames of adjacent corner points) comprise 

of reflecting angles relative to their bisecting hyperplane. In Euclidean 

space a hyperplane separated this space into two half spaces. At the same 
time it defines a reflection that fixes the hyperplane and interchanges 
those two half spaces [WIKI]. 

The bisecting hyperplane of two adjacent corner vertices is determined by 

the following three conditions [BoHu11]:

 i)  The bisecting hyperplanes are oriented orthogonal       to the supporting plane of the common circle.  ii)  All hyperplanes intersect at the centre of the       common circle 
 iii)  The hyperplane between two adjacent corner vertices         intersects their connecting vector at half distance. 
With the four hyperplanes defined and with the knowledge about the 
condition of the reflecting angles of the vertex frames it is obvious that all 
corner vertex frames are linear dependent. Hence if we choose the orien-

tation of one vertex frame the missing three are defined uniquely and can 
be constructed respectively. 

Once a cyclidic patch is defined either by cutting it out of a full Dupin 
cyclide or by constructing it based on four given boundary curves it can 

be used as the starting geometry to generate a mesh by means of subdivi-

sion. The first step of this process will be to generate a sub-patch which 
by further subdivisions results in a mesh of a certain density depending 

on the number of subdivision steps. 

  Generation principle of a sub-patch 

Given is a cyclidic patch defined by its corner points x, x
1
, x

2
 and xij, , the 

corresponding vertex frames in each of these points and the boundary 

arcs a
1
, a

2, 
a

11
 and a

22
 of the patch (Figure 3.86). Start point for the sub-

patch may be point x. If we choose two new points x
1
*and x

2
* each one 

lying on one of two adjacent boundary arcs (a
1
 and a

2
 ) in point x we can 

construct a sub-patch of the cyclidic patch. 

First we can determine the end points x
11

 and x
22

 of the two curvature arcs 

which start at points x
1
* and x

2
* as these are located on the opposite edge 

arcs of a
1
 and a

2
 at the corresponding subdivision ratio of x

1
, x

2
  in rela-

tionship to  a
1
, a

2 
(Figure 3.87). 

Figure 3.84: Principal curvature spheres 

touching a surface in its principal cur-

vature directions [Image by E. Huhnen 

-Venedey]

Figure 3.85: Hyperplane between 

two spheres [Image by E. Huhnen 

-Venedey]

Figure 3.86:Starting patch configura-

tion 
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Figure 3.87: Sub arc end points 
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With the knowledge about the hyperplanes and reflecting angles in refer-
ence to a vertex frame we can now define the vertex frames in the start 
and end points of the new arcs. By defining the hyperplane between an 
existing and a new corner point the 3-frames of the original vertex points 

can be reflected to obtain the vertex frames in new points x
1
*, x

2
*, x

11
 and 

x
22

 (Figure 3.88). 

The start corner point x and the chosen points x
1
* and x

2
* define the com-

mon circle c
1 
of the sub-patch. In the same way corner point x

1
 which is 

adjacent to x and points x
1
* and x

22
 (start point of one new curvature arc 

and the end point of the other new curvature arc) define another com-

mon circle c
2 
of three points (Figure 3.89). These two circles intersect in 

two points one being x
1
 and the other one being the missing fourth corner 

vertex x
12

 of the sub-patch. The vertex frame in x
12
 can be defined using 

the hyperplane method. 

With all corner points and corresponding vertex frames of the sub-patch 

defined we can construct the four boundary arcs of the sub-patch connect-
ing corner vertices x, x

1
, x

2
 and x

12
. They define a concircular planar quad 

meaning all corner vertices lie on a common circle. This again proofs that 

the four points lie in a common plane and thus straight line connections 

between them describe a planar quadrilateral face. 

Obviously we can use this approach to construct as many curvature 

arcs as required by successively refining the sub-patches of the original 
cyclidic patch. The result will be a cyclidic patch described by a mesh of 

PQ facets of a density according to the number of subdivions applied to 

the original patch. 

A related notion to the cyclidic patch with similar properties is the spheri-
cal patch which can be constructed based on a sphere instead of a Dupin 

cyclide. 

  Spherical patch 

The sphere can be seen as a special type of a Dupin cyclide for which the 

generating family of spheres all have the same diameter and the circu-

lar spine curve features vanishing diameter meaning it is described by 

a point. The patch cut out from a sphere S is called spherical patch and 

similar geometric properties apply as for the cyclidic patch: 

Just like for the cyclidic patch the boundary curves of a spherical patch 

are circular arcs which form part of the one supporting sphere. In contrast 

a cyclidic patch always has four different supporting spheres - one for 
each boundary curve. The centre of the single supporting sphere S of the 

spherical patch is located at the intersection of the normal vectors n of the 

corner vertex frames which at the same time form the radius of S. 

The orientation of the four vertex frames are oriented towards one com-

mon point. This can be achieved by choosing the four vertices of the 

patch in a way that they lie on a common square in addition to the condi-

Figure 3.88: Sub patch 3-frames 
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tion of being concircular. If we determine the orientation of the vertex 

frame in the first corner point the other three frames can be constructed 
by reflection about their corresponding hyperplanes. It is obvious that 
with all four corner points having the same distance to each other and 

with the hyperplanes all meeting in the centre point C (Figure 3.90) of 

the common circle that the reflection of the vertex frames is identical to a 
rotation about C. Hence their normal vectors will all intersect in a com-

mon point namely the centre of the sphere which is the supporting sphere 

of the spherical patch. 

  Geometric construction of a PQ mesh based on a cyclidic patch 

A discrete cyclidic patch can be constructed uniquely when we choose 
four concircular corner vertices and determine the vertex frame at one 

of these vertices. The construction steps which finally lead to a PQ mesh 
based on a cyclidic patch are outlined in the following: 

 -Set the diameter of the supporting circle and choose 

  four vertices on the circle (concircular corner vertices) 

 -Choose the orientation of the vertex frame at one

  corner vertex (rotation about the three principal axes

  defined by vectors t(1), t(2) and  n of the frame) 

 -Construction of the four bisecting hyperplanes 

 -Successive reflection of the vertex frames in order to 
  receive the three missing corner vertex frames 

 -Successive intersection of the four normal vectors of the 

  adjacent corner vertices in order to receive the centres 

  of the four boundary arcs 

 -Construction of the boundary arcs which are defined by 
  centre point and two end points (two adjacent corner 

  points of the patch) 

 -Choose the number of (even) subdivision steps for each 

  set of opposing edge arcs 

 -Construction of the curvature arcs at the subdivision 

  points using the sub-patch methodology 

 - Intersection of all newly created curvature arcs in 

  order to obtain the vertices of the PQ mesh 

When choosing the location of the initial corner vertices we may prefer to 

consider only configurations which lead to an embedded quad in order to 
avoid intersecting boundary curves (Figures 3.92 + 3.93). For the sake of 

completeness it shall be mentioned that in theory a cyclidic patch could 

be constructed for a configuration with intersecting boundary curves. The 
resulting mesh however will not be usable for the construction business 

and is therefore disregarded in this thesis. 

  Geometric construction of a PQ mesh based on a spherical patch 

Figure 3.91:Spherical patch

Figure 3.92: Embeded circular quad

Figure 3.93: Non-embeded circular quad
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The construction of the spherical patch can be perfomed analougus to 

the method used for the cyclidic patch as described in 3.9.1.4. The only 

difference between the construction principles is the configuration of the 
four normal vectors at the corner points of the patch: In order to receive a 

spherical patch all four normal vectors of the vertex frames must intersect 

in a common point. This point defines the centre of the sphere which the 
spherical patch forms part of. Hence after setting the centre point P we 

will orient all vertex frame normal vectors towards P.  Apart from this 
additional constraint all other construction steps  can be performed as 

described in chapter 3.9.1.4. The result will be a spherical PQ mesh. 

The advantage of the described method is the fact that we can obtain a 

PQ mesh based on a single cyclidic or spherical patch without having 

to construct a full cyclide or sphere first. Contrariwise we can start with 
four arbitrary points with the only constrain that the points have to be 

con circular to allow the construction of the patch. The disadvantage of 

this method however is the fact that the entire surface shape is defined by 
the initial patch and the subdivision into a number of sub-patches only 

provides a refinement of the mesh in the sense of a higher face density. 
Hence there is no freedom in surface design with this approach. 

Another interesting surface geometry can be obtained by means of a cy-

clidic net which in general is still based on cyclidic patches but with the 

difference that not only one patch but a number of different patches form 
the basis of the net. 

3.9.2  Cyclidic nets

Generally speaking a cyclidic net is a composition of a number of dif-

ferent cyclidic patches which are joined together along their boundary 

curves to result in a new surface. In comparison to the mere subdivision 

of one cyclidic patch as described in the previous section this approach 

will allow a greater freedom in shape design. In theory a cyclidic net 

might consist of patches each one different from the others in terms of 
size and curvature. The question however is how these can be joined 

together to form a smooth continuous surface. 

Although one method to obtain a number of different cyclidic patches 
is to cut them out of a full Dupin cyclide these 'singular' patches are not 

suitable to form a cyclidic net as there is no method available how to 

determine which patches feature the same boundary curve characertistic 

in order to join them in a smooth continuous way. 

In section 3.9.1 we have explained a method how to obtain a cyclidic 

patch namely by mathematically generating it based on 4 arbitrary con-

circular points (vertices ( x, x1, x2, x3 ) and an ortho-normal 3-frame B = 
(t(1), t(2), n) in one of these points. If we use such a patch as the basis of 

our cyclidic net the question arises how to determine the vertices adja-

cent to the starting patch and their relating boundary arcs to construct the 

neighbouring patches. 
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To understand the mathematical relationship of neighbouring patches in 

a cyclidic net in detail we first have to introduce the class of principal 
contact element nets (called PCENs hereafter) as the basis of all cyclidic 

nets. 

  Correlation between cyclidic nets, circular nets and principal con-

tact element nets

Per definition in 3.8.1 the four vertices of cyclidic patches always lie on a 
common circle and per definition in chapter 2.6 circular meshes/nets are 
maps for which the vertices of each elementary quadrilateral are concir-

cular [BoHu11]. Consequently a cyclidic net which consists of a number 

of cyclidic patches joined along their boundary curves can be seen as 

an extension of a circular net with the particularity that each quadruple 

of circular points represents the vertex set of one cyclidic patch. Based 

on the knowledge about orthonormal 3-frames sitting in each vertex of 

a cyclidic patch with adjacent frames being reflections of each other it 
becomes obvious that there is a 3-parameter family of cyclidic nets for a 

given circular net. 

Consequently a circular net can be seen as the geometrical basis of a cy-

clidic net: the intersections of the circles the circular net is composed of 

deliver the vertices for the cyclidic net with each set of four concircular 

intersections representing the quadruple of one elementary cyclidic patch. 

The question arises what principal contact element nets are required for if 

the geometrical configuration of the net is already determined. 
Basically the knowledge about two geometrical objects being in principal 

contact to each other and the net which can be generated based on these 

contact elements provides the underlying mathematical description to ex-

plain the relationship of neighbouring patches in a net and how they can 

be generated one based on the other. 

According to [BoHu11] each principal contact element net contains a 

circular net as well as a conical net meaning they both belong to the class 

of principal contact element nets whose defining property is that neigh-

bouring contact elements share a common sphere which coincides with 

the principal curvature sphere of a surface. 

  Oriented contact and contact elements 

It is important to know that the definition of 'oriented contact' of two geo-

metrical elements is different depending on the two objects which are in 
contact with each other. With respect to cyclidic nets the relevant topic is 

oriented contact of two hyperspheres s1 = (c1, r1) and s2 = (c2, r2) which 

are called to be in oriented contact if they are tangent to each other with 

coinciding normals in the point of contact (Figure 3.94)

 

sphere s1

sphere s2

contact element 

bisecting 
hyperplane

bisecting 
hyperplane

point of 
contact

Figure 3.94: Two spheres s1 and s2 in 

oriented contact (above) and the bisect-

ing hyperplane containing the contact 

element (below) [Image by E. Huhnen 

-Venedey]

n 

x 
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Definition [BoHu11]

Given are two spheres s1 and s2. These are said to be in oriented 
contact if there is a unique point of contact X with a unique normal n 

in X. This normal in turn determines a unique oriented hyperplane p 

through X, which is in oriented contact with both s1 and s2. Conse-

quently two spheres in oriented contact determine a unique pair (X, 

n) which gives rise to a 1-parameter family of oriented spheres. This 
family of spheres is comprised by all spheres in oriented contact with 

contact point X and the normal n in this point. This constellation of 

point and vector (also called a pencil because of its characteristic 

shape) is defined as a contact element and can be identified with the 

tuple (x, n). 

With this knowledge around contact elements we can define a net of prin-

cipal contact elements as the basis for our cyclidic net.

  Principal contact element nets 

A map is called a principal contact element net if the following condi-
tion applies to all its elements: two neighbouring contact elements (x, 

n) and (xi, ni) have a sphere s(i) in common with the particularity that 

this sphere is the principal curvature sphere of the discrete version of the 

described surface in the point of contact (Figure 3.95). 

Principal contact element nets form the basis for cyclidic nets which ac-

cording to Bobenko and Suris [BoSu07] can be seen as a discretisation 

of curvature line parametrised surfaces. In this connection curvature lines 

are characterised by the property that two infinitesimally neighbouring 
contact elements share exactly one sphere, namely the corresponding 

principal curvature sphere. 

Correlation of neighbouring principal contact elements 

For an elementary quadrilateral of a generic principal contact element net 

with finite contact points, the following holds:

 i) The normals of neighbouring contact elements

     intersect.

 ii) The point spheres contained in the contact elements 

     lie on a circle.

The above explained mathematical fundamentals about cyclidic nets and 

principal contact element nets deliver the background how in general 

cyclidic nets can be composed of  a single cyclidic patch. An interesting 
aspect is that this knowledge can be used to either generate 2D cyclidic 

nets or 3D cyclidic nets with the difference that 2D nets feature an open 
surface confined by a number of boundary curve s (Figure 3.96) whereas 
3D nets feature a closed surface (Figure 3.97).

Figure 3.95: Infinitesimal principle 
contact condition [Image by E. Huhnen 

-Venedey]

(x,n) 

(xi,ni) 

Figure 3.96**: 2D cyclidic net

Figure 3.97**: 3D cyclidic net
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  Geometric construction of a 2D cyclidic net 

A 2D cyclidic net can be constructed uniquely for a given circular net and 
a triply orthogonal frame in one of the vertices of the circular net. The 

circular net must consist of at least 12 intersecting circles to act as the 

start geometry of a cyclidic net. The intersections of these circles define 
the corner vertices of 4 neighbouring cyclidic patches (Figure 3.98). 
The construction steps how to generate a discrete cyclidic net based on 

such a given circular net are outlined in the following: 

 -Choose one net face with corresponding four vertices 

  ( x, x1, x2, x3 ) of the given circular net as starting 

  geometry 

 -Choose one vertex x of the elementary face 

  as the start point of the cyclidic net 

 -Choose the orientation of the orthonormal 3-frame 
   B = (t(1), t(2), n) in vertex x 

 -With the start configuration set up we can now 
  construct the first cyclidic patch and all neighbouring 
  patches successively following the construction steps as 

  described in section 3.9.1 
  For each patch the four corner points are given by the 

  vertices of the underlying circular net. 

  Once the first cyclidic patch is generated at least two 
  corner frames of the next patch are determined as the 

  adjacent new patch shares two vertices and thus the 

  corresponding 3-frames with the already constructed 
  patch. 

After the generation of the first cyclidic patch one particularity with 
respect to the construction of 3-frames in neighbouring vertices has to 

be observed: for all subsequent patches the tangent vector which does 

not describe the common curvature line needs to be reversed in order to 

obtain differentiable results. 

This process of generating neighbouring patches can be carried out 

for any size of circular net with the only condition being the minimum 

required size of four circles (Figure 3.99 + Figure 3.100). As described 
previously the smoothness of the generated cyclidic net is based on the 

characteristics of principle contact element nets (PCEN) which any circu-

lar net is based on. 

For the sake of completeness the construction of 3D cyclidic nets shall be 

briefly described although their application for the construction business 
might be rather limited due to their explicit shape. 

Figure 3.98: No 12 circular net

Figure 3.99**: Circles and corner 

frames 4 patch

Figure 3.100**: 2D cyclidic 4 patch 

surface regular

Figure 3.101**: 2D cyclidic 4 patch 

surface irregular
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  Geometric construction of a 3D cyclidic net 

Just as for 2D cyclidic nets the geometrical basis of 3D cyclidic nets con-

sists of a circular net however the 3-dimensional version of it as shown in 

Figure 3.97. 

For any 3D circular net, there is a 3-parameter family of 3D cyclidic nets 

with the intersctions of the circular net representing the vertices of the 3D 

cyclidic net

The result is a closed surface surcumscribed by a number of cyclidic 

patches whose geometric configuration fullfills the following characteris-

tics: 

 -All boundary curves represent curvature lines of 
  cyclidic patches 

 -For each indivicual face the vertices are concircular 

 -All boundary curves intersecting in a vertex are 
  orthogonal to each other 

A general definition of cyclidic nets in n-dimensinal space is provided by 
Huhnen [BoHu11]:

A map is called an N-dimensional cyclidic net, if x is a circular net 

and the frames B;Bi in neighbouring vertices x; xi are related as fol-

lows:

The (N - 1)-tuples

 (n(1),........, n(i-1), n(i+1),........., n(N))

 and

 (n
i

(1),......... n
i

(i-1) , n
i

(i+1) ,........, n
i

(N)) 

are refections of each other in the perpendicular bisecting hyper-

plane of the line segment [x, xi ], whereas the vector n
i

(1) is obtained 

from n(i) by frst refecting and afterwards changing the orientation (cf. 

flipping of vectors for the contstruction of a 2D cyclidic net). 

With the described method a wide variety of different surfaces can be 
generated all based on the same circular net. Although the vertices are 
pre-defined the possibility of choosing the orientation of the vertex frame 
in the start point allows a certain design freedom. The shape of the under-

lying circular net defines the 'general structure' of the new surface but the 
curvature of the individual patches is determined by the orientation of the 

3-frame in the start point. 

A Java applet by E. Huhnen produces the cyclidic patches, 2D and 3D cy-

clidid nets and was used to generate the images for this thesis. The applet 

can be found under the following link:

http://www3.math.tu-berlin.de/geometrie/lab/ps.shtml#CyclidicNets

Figure 3.102**: 3D Circular net

Figure 3.103**: 3D Cyclidic net
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3.10  Summary  

All previously described surfaces and corresponding inherent PQ meshes 
shall provide an overview of what is known in the field of PQ mesh para-

metrizations and which surface types could be used for design purposes 

if the designer is comfortable with a pre-rationalisation of his design. As 
becomes obvious from the described surfaces this means a certain restric-

tion of the design freedom as only a limited number of surface types are 

available for the pre-rationalisation approach towards a PQ mesh. 

Still the compiled methods deliver a pool of knowledge how certain 

geometrical elements and objects can be used for the generation of a PQ 

mesh. 

Hence the question is if there is a solution to parametrize any arbitrary 

freeform surface to obtain a PQ mesh representation of the initial surface 

by making use of some of the described mathematical theorems and prin-

ciples but in a new way. 

The following chapter 04 describes a method which allows the faceting of 

an arbitrary doubly curved surface with planar quadrilateral faces. It uses 

subdivision algorithm and dynamic relaxation principles which will be 

outlined. 

The methodology comprises of several steps to get from a crude input 

mesh which is generated by hand/manually based on principle curvature 

lines to an approximation mesh which features the desired planarity of 

the mesh facets in a density suitable for the construction industry. This re-

quires several intermediate steps like the refinement of the mesh by use of 
a subdivision algorithm and the dynamic relaxation process of the mesh 

to achieve planarity of the facets. This process and all required steps will 

be explained in detail in the following chapter. 





Chapter 4 Planar quad (PQ)

mesh approximation
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4  Planar Quad (PQ) mesh ap-

proximation

4.1 Introduction

In this chapter a new method is proposed to approximate a given NURBS 

surface with a PQ mesh. Powerful universal numerical algorithms exist 

which can be used to optimise any given starting mesh towards planarity 

of the faces. But to reach optimal convergence the topology of the start-

ing mesh needs to match the intrinsic curvature behaviour of the target 

surface. Therefore we focus on the investigation of the curvature proprie-

ties of the target surface which leads us to a high quality starting mesh.    

 

The method consists of four basic steps which are performed fully or 

semi - automated.  An important goal of the development was the im-

plementation of a adequate user interaction to adopt architectural design 

ambitions. To perform the approximation steps a series of computer pro-

grammes have been developed. In the following sub chapters we discuss 

the underlying theory which is relevant for the particular approximation 

step.

As discussed in chapter 2.4  the Lines of Principal Curvature 
form a conjugate network of curves on a surface and is therefore most 

suitable to derive a PQ mesh from these curves. The first step of the 
method consist of the computation of a principle curvature line sketch on 

the given surface. Here the user can choose seed points manually from 

which the population of the curvature line map starts. The density and the 

distribution (isotropic or anisotropic) of the LPC map can be influenced 
via numerical parameters. 

Umbilical points (see also chapter 2.5.3) or flat regions play an important 
role when computing the LPC map. The knowledge of there position on 

the surface may be considered when choosing the starting points for the 

LPC map. Hence the detections of such surface features is discussed and 

also implemented into the software. 

With the computed LPC map and knowledge of the umbilical point one 

can determine the topology of the approximation mesh. We use a so 

called crude mesh, which can be sculpted manually and populated there-

after using a subdivision algorithm to fix the basic topology. Here the 
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user needs to consider the direction of the curvature lines and place the 

edges of the initial crude topology mesh along the corresponding direc-

tions. The typical vertex has the valence of four expect at/around umbili-

cal points. The detected umbilical points can be classified by the number 
of LPC terminating in the point (see chapter 2.5.3). For the individual 

umbilic point types the corresponding crude mesh layout is proposed.    

To populate the initial crude topology mesh the Catmull Clark subdivi-

sion algorithm is adopted. The subdivision may be performed until the 

mesh reaches the desired density. To achieve a close fit of the mesh the 
newly generated vertices are projected onto the target surface.

In the last step the subdivided mesh faces are optimized towards planarity 

using Dynamic Relaxation principles. Here the initial DR algorithm was 

modified in order to force the adjacent four mesh vertices of a face into a 
common plane. 

We can summarize the outlined steps as follows:

 Step 1: Principle Curvature Line Sketch

 Step 2: Topology Mesh 

 Step 3: Subdivision Mesh

 Step 4: Optimization

4.2  Step 1 - Principle Curvature Line Sktech

4.2.1  General

As already identified in chapter 2.4 the principle curvature lines on a sur-
face form a conjugate network of curves. It is understood that the faces of 

a discrete conjugate net (Q-nets) which approximates an arbitrary surface 

are planar per definition. Hence a mesh derived from principle curvature 
lines on a free form surface appears to be a suitable starting mesh for 

further optimization. In this chapter we will describe a robust method to 

compute the Lines of Principle Curvature (LPC) on a NURBS surface.

The computation of principle curvature lines and quad meshes generated 

of them, is from great interest in computer graphics and the mechanical 

industry. Various methods have been developed in the recent past which 

employs object matching [KoMa03], anisotropic surface re-meshing 

[MaKo04] and quad based surface parametrization [KäNi07].

The techniques proposed by the authors mentioned before use sophisticat-

ed numerical methods to explicitly integrate curvature lines on manifolds 

or NURBS surfaces. As we are only interested in a curvature line image 
which is used as the guidance for a starting mesh, the sophisticated exact 

integration of the curvature lines is not necessary. A much simpler and 
processing  time efficient method which uses piece wise linear integra-

tion of a vector field has been proposed in [DoKi05]. The method adopted 

Figure 4.1: Anisotropic Remeshing 
[Image by M. Marinov, L. Kobblet]

Figure 4.2: Quad Cover [Image by F. 

Kälberer, M. Nieser, K. Polthier
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allows the user to influence the density and isotropic (uniform) or ani-
sotropic (curvature dependant) behaviour of the curvature line network. 

The underlying theory and the individual step of the discrete integration 

method proposed by S. Dong, S. Kircher, and M. Garland is briefly ex-

plained in the following chapters.

For completeness it need to be mentioned that a method which builds a 

PQ mesh directly from a LPC network has been discussed in [Schi07]. 

The disadvantage of the described method lies in the fact that the overall 

appearance, variations in mesh density and the location(s) of singular 

points (umbilics) is determined by the surface itself. To overcome the 

limitations in architectural design freedom it is proposed to manipulate 

the kernel radii for the principal curvature direction.  

4.2.2  Curvature vector field

The integration of the curvature lines requires the knowledge of the prin-

cipal curvature directions at any location on the surface. We describe the 

classical theory of principal curvature directions in chapter 2.5.1. which is 

based on differentiation of a globally defined surface. Consequently dif-
ferentiability of the objects studied is a requirement. However, it is not 

possible to directly carry over these concepts to NURBS or polyhedral 

surfaces like triangle meshes.

In recent years numerous ways of overcoming this have been investi-

gated. In [CoMo03] ways of generalizing the curvature tensor to triangle 

meshes stem from discrete differential geometry has been presented 
which is then used in [AlCo03] for generating the principal curvature 
direction vector field and tracing principal curvature lines. 

In the following we will briefly outline the method for 3D curvature ten-

sor estimation proposed by [AlCo03]:

For a piece wise linear surfaces ( E.G. NURBS surfaces) or meshes we 

need to built a equally piece wise linear curvature tensor field. There-

fore the the curvature tensors will be estimated at specific points on the 
surface or mesh vertices. For a mesh a natural curvature tensor can only 

be defined on points which lie on a mesh edge [CoMo03]. These tensors 
T(v) will the be averaged over an arbitrary region B which leads to the 

following expression [AlCo03]:

 

4.6 
 q11= p11+p12+p21+p224  
 4.7 
 q12= C+D2 + p12+p2222   4.8 
 q22= Q4 + R2 + p224  
 Q= p11+p12+p21+p224  
 R= C+D2 + p12+p2224  
 4.1 
 T(v)= 1|B| � β(e)edge e |e∩B| e� e�t 
 
 �u'(t)v'(t)� =γ(t) 
 
 T = Pt �kmin 00 kmax� P 
 

                             Equation 4.1

 v … mesh vertex |B|… Surfaces area around v considered for tensor estimation β(e)… Angle between adjacent mesh faces, pos: convex, neg: concave (figure 4.3) |e⋂B|… Lenght of e⋂B between 0 and |e|  e...Unit vector of Edge e Figure 4.3: Signed Angle between 
adjacent triangles [Image by P. Alliez, 
D. Cohen Steiner,O. Devillers, B. Levy, 

M. Desbrun
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The tensor will be evaluate at each point for the defined neighbourhood B  
which approximates the geodesic disk with the radius r around the point 

v. A geodesic disc defines a set of point which lie within the geodesic dis-

tance of r from the vertex point v. The principal normal vector at v is de-

rived as the Eigenvalue with minimum magnitude from the Eigenvector 

of T(v). The two remaining Eigenvalues are estimating the two principal 

curvature direction k
max

 and k
min

. Please note that the associated directions 

are switched as such that γ
min 

reflects the maximum curvature and γ
max 

the 

minimum curvature.

The adopted 3D-CAD software package (Rhinoceros 4.0 ®) allows ex-

tracting the principal curvature directions, curvature radii, Gaussian and 

Mean curvatures at any point of a NURBS surface. The principal curva-

ture tensor field k1, k2 is smooth and orthogonal so that all integral lines 

may converge at extremal points (umbilical points). An example surface 
with the principal curvature tensor field is shown in figure 4.4.

It can be observed that Rhino provides the principal curvature directions 

with sufficient accuracy. This will be in the form of two vectors k1 and 
k2 which are orthogonal to each other and points away from the reference 

point p. 

The vector direction initially provided by the CAD software will be 
called to have a positive sign. If we reverse the initial vector we receive 

the vector direction with negative sign respectively. 

However, a vector field is not uniquely defined in regions close to umbilic 
areas/points. Hence the distribution of the sign of the initial vector direc-

tions which are extracted from Rhino shows inconsistencies. It occurs 

that points in close proximity to each other show that the initial curvature 

vector directions pointing in opposite directions. Further the curvature 

direction of points close to each other may change abrupt from maximum 

into minimum or vice versa (Figure 4.5).  

These ‘noisy’ feature of the curvature vector field needs to be considered 
when we integrate a single curvature line. Several smoothing techniques 

have been proposed to address this problem. The Laplacian smoothing 

method proposed by Martin Marinov and Leif Kobbelt [MaKo04] uses 

the discrete Laplacian operator which originates from the discretization of 

the heat equation. 

In [RaWa06] a Global smoothing approach is described which bases on 

the minimization of an energy function. The function reduces the angular 

deviation between adjacent Eigenvectors in  a tensor field.

For our application the inconsistencies in the principal curvature field are 
solve discretely for each LPC independently during their integration. The 

method will be outlined in the next chapter. 

Figure 4.4: Principle curvature vec-

tor field

Figure 4.5: Vector field imperfec-

tions
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4.2.3  Single curvature line integration

We discretize a curvature line as a piece wise linear curve. The discrete 

curve is defined by a sequence of nodes n(1 to i) of which the principal 

curvature vectors in minimum curvature and respectively maximum 

curvature direction (k1 or  k2) are aligned with the tangent vector of the 

integrated principal curvature line. Each line of curvature either starts 

from an umbilic point and ends at another one, or has a closed orbit, or 

can enter and exit from the domain bounds. 

If we adopt the definitions given in [AlCo03] one can trace such a curve 
in the parameter space (u; v) of the surface by integrating the following 

ordinary differential equation:

 

4.6 
 q11= p11+p12+p21+p224  
 4.7 
 q12= C+D2 + p12+p2222   4.8 
 q22= Q4 + R2 + p224  
 Q= p11+p12+p21+p224  
 R= C+D2 + p12+p2224  
 4.1 
 T(v)= 1|B| � β(e)edge e |e∩B| e� e�t 
 
 �u'(t)v'(t)� =γ(t) 
 
 T = Pt �kmin 00 kmax� P 
 

                             Equation 4.2

 γ … Eigenvector of T(u(t);v(t)) 
where γ reflects the Eigenvector of the 2D Curvature Tensor T(u(t ); v(t )) 
which is given in Equation 4.3. 

 

4.6 
 q11= p11+p12+p21+p224  
 4.7 
 q12= C+D2 + p12+p2222   4.8 
 q22= Q4 + R2 + p224  
 Q= p11+p12+p21+p224  
 R= C+D2 + p12+p2224  
 4.1 
 T(v)= 1|B| � β(e)edge e |e∩B| e� e�t 
 
 �u'(t)v'(t)� =γ(t) 
 
 T = Pt �kmin 00 kmax� P 
 

                             Equation 4.3

 Pt … Tensor of principal direction
“We do not need to compute the matrix P in practice. The tensor can be 

found simply by picking an edge from the 1-ring, projecting it onto the 

tangent plane, and computing the signed angle α between this projection 
and the eigenvector of the maximum eigenvalue: the quasi-conformality 

of our parameterization allows us to now nd the projected eigenvector 

by starting from the same edge in parameter space, and rotating it by α .” 

[AlCo03]

As the curvature vectors are oriented orthogonal to each other the sym-

metric matrix T can be found explicitly.

Our process starts at a given point p on the surface. To find the defining 
nodes we use a simple search algorithm which successively connects the 

curvature vectors. For a given start point, a start direction (k1 or k2) and 

the sampling interval the discrete consecutive nodes can be generated. 

The closest point to the surface at the tip of the vector in the chosen direc-

tion and length defines the next node of the curvature line. The process 
runs over the surface until it satisfies one of the following stopping crite-

ria:

Figure 4.6: LPC vector chain

Figure 4.7: LPC NURBS curve
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 -Reaches predefined length (steps)
 -Hits the defined surface boundary
 -Exactly hits an umbilical point

From the given start point we can trace four lines which are in maximum 

and minimum curvature direction and both positive and negative direc-

tions. The so generated nodes can then be joined with straight segments 

to from a polygonal line or interpolated with a NURBS curve. 

As noted in chapter 4.2.2. the curvature tensor field shows inconsisten-

cies in surface regions near umbilic points. We can observe the following 

cases for a consecutive pair of curvature vectors:

 1. Vectors k1/k2 pointing in opposite directions

 2. Vector k1/k2 changes direction by roughly 90°  

Therefore the angle θ between consecutive curvature ki,n ki,n+1 vectors 

will always be checked and if required correct before the next node is 

generated. The conditions for the correction of the curvature vectors ki,n 

can be formulated as follows:

 Case 1:  θ > (180 °±tol) k1/k2 to be reversed    

 Case 2: θ = (90 °±tol) continue with integration in other curvature
  direction (k1 → k2, k2 →k1)

This approach delivered fairly stable LPC integration results which are 

sufficient to produce a meaningful curvature sketch on a NURBS surface. 

4.2.4  Seed point sampling distance

In order to generate a network of curvature lines we need to place further 

lines next to the initial start curve. A new curve starts at their seed point 
and it is therefore crucial in which distance and where along the initial 

curve the new seed point is placed. We can control the seed point location 

and hence the density of the vector field with the user supplied sampling 
distance function [DoKi05]:

 h
1
 = h/(1+α log10  (1+к

2
))                             Equation 4.4

 h
2
 = h/(1+α log10  (1+к

1
))            

 h
1
,h

2
 … valued sampling distance along max, min curvature direction  

  h … reference sampling distance α … curvature sensitivity parameter к
1
, к

2
 … local normal curvature in direction

Figure 4.8: Anisotropic Mesh [Image 
by S. Dong, S. Kircher, M. Garland]

Figure 4.9: Isotropic Mesh [Image 

by S. Dong, S. Kircher, M. Garland] 
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The density of a curvature network can be categorized as follows:

 Isotropic: Uniform spaces, curvature independent 

 Anisotropic: Uneven spaces, curvature sensitive   

With the user defined parameter α one can influence the density of paral-
lel curvature lines corresponding to the local curvature of the surface. For 

a high α value we generate a dense curvature line arrangement in highly 

curved areas - an anisotropic pattern. 

For α = 0 the network becomes curvature independent and evenly spaced 

(h1=h2=h), therefore an isotropic pattern. The authors of [DoKi05] rec-

ommend to use a values less the 20 for the parameter α in order to receive 

meaningful results.

For a given value α  at each discretization point along the initial curvature 

line the h1 or h2 values will be computed. Hence the density of h values 

will be dependent on the step length of the initial curvature line. At the 
position with the highest value for h1,h2 the new seed will be placed 

orthogonal to the initial curve with the distance of h1,h2. This will ensure 

that the curvature line does not get too dense in highly curved areas.

Figure 4.10: LPC Sketch



  113

4.2.5  Extraction of Umbilical points

At umbilical points of a surface the principal curvature vector field shows 
singular behaviour in proximity. It is therefore important to locate the 

umbilics before tracing the curvature lines as their location may influence 
the choice of location for seed points. An umbilic is a point on a surface 

where the normal curvatures in all directions are equal and the principal 

directions are indeterminate. The principal curvature functions are repre-

sented in terms of the Gaussian (K) and the mean (H) curvature functions 
as follows [KoMa03]:

 к
1
, к

2
(u,v) = H(u,v)±√H2(u,v) - K(u,v)                    Equation 4.5

 

 к
1
, к

2 
… local normal curvature in direction 1, 2 (max, min)

 H… Mean curvature K… Gaussian curvature
If we denote W(u,v) = H² - K for a point to be an umbilical point the 

condition W (u,v) = 0 must be fulfilled. Hence for an umbilical point the 
requirement can then be simplified to: 

 H² - K = 0 or к
1
 - к

2
 = 0                 Equation 4.6

The strict zero condition of the above formulas will be relaxed to a rea-

sonable tolerance δumb which is in correspondence with the global toler-

ance of the CAD software.

 к
1
 - к

2
 = δumb or H² - K = δumb                 Equation 4.7

 δumb… user defined tolerance value
The reporting of umbilical points, lines and regions has been the topic 

of various research publications. The authors of [KoMa03] propose the 

adaptive quad tree decomposition to locate the roots of the Bernstein 

basis of the polynomial surface description. Another method suggested by 
[CaFa06] which reports umbilical points as intersections of ridges which 

are computed whilst solving their implicitisation theorem. 

For our application we adopt the quad tree decomposition algorithm as 

proposed in [KoMa03] in order to locate umbilic points on a NURBS 

surface. To detect the existence of umbilical points on a confined surface 
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patch [KoMa03] it is requiewd to solve the roots of the Bernstein basis of 

this patch. 

A simpler and less computation time intensive method is used instead. 
A field of discrete points within a search patch will be checked against 
Equation 4.7. The process starts with a coarse grid of search points cover-

ing the entire surface and a high value for δumb. The quad tree decomposi-

tion algorithm then successively refines the search patches which po-

tentially contain umbilical points whilst increasing the density of search 

points and the tolerance δumb. 

In order to set the size of the starting patches for the quad tree decom-

position we choose the no. of subdivision ku,kv for the uv domain of the 

untrimmed NURBS surface. 

Note: Umbilical points which may be detected in patches beyond the 

trimming boarder of the original surface will be ignored after execution 

of the algorithm.

Each rectangular surface domain is then subdivided into four rectangular 

domains at the mid points of u and v using the de Casteljau algorithm 

which evaluated with rounded interval arithmetic. The domain for each 

starting patch at the depth of d is described in the following definitions:

 r2-d ≤ u ≤ (r+1)2-d

  s2-d ≤ v ≤ (s+1)2-d                Equation 4.8 r...0 ≤ r ≤ 4d-1

 s...0 ≤ r ≤ 4d-1

Note: Umbilical points which may be detected in patches beyond the 

trimming boarder of the original surface will be ignored after execution 

of the algorithm.

The new generated vertices Vsub (v0 to vk, u0 to uk ) define the corner nodes 
of the new patches Ps and their sub domains  ( u1 to u2, v1 to v2). For 

a given sampling grid subdivision gs  further vertices are computed and 

checked against the user defined tolerance δ umb for Equation 4.7. If the 

patch contains vertices which satisfy the given condition it is marked for 

refinement.

The patches which contain potential umbilic points are subdivided further 

to receive four new patches. For the subdivided patches new vertices are 

computed whilst keeping the number of grid subdivision gs  constant. 

The check against the condition of Equation 4.7 is performed with an 

increased tolerance δ umb. The sampling point density increases by the 

factor of two as we keep the grid subdivision constant and the patch edge 

length halves.

Figure 4.11: Umbilical points Iteration 

1

Figure 4.12: Umbilical points Iteration 

2

Figure 4.13: Umbilical points Iteration 

0

Figure 4.14: Adaptive Quad tree 
decomposition
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This process iteratively refines the regions until the desired final tolerance 
is reached or a single umbilical vertex is isolated. If the latter is chosen, 

ridges or flat regions may not converge into a single point. This option is 
only appropriate in the case it is known that the surface does not contain 

such features. 

To isolate a single umblical vertex a large number of iterations may be 

required. The user can choose an alternative approach at which approxi-

mates the potential umbilic point. At a chosen iteration we compute the 
convex hull of the remaining candidates in a cluster and set the final um-

bilic point at their centre if  gravity. As this point may not lay on, but very 
close to the surface, it will be projected back onto it. 

4.3  Step 2 - Topology Mesh

In the proposed method we use the LPC network of the target surface as a 

guidance for the manual sculpting of a crude starting mesh. As discussed 
in chapter 2.4 the PQ mesh is a discrete version of a conjugate network 

of curves. The principal curvature lines form such a conjugate network. 

Hence we desire a approximation mesh which edges are aligned with the 

lines of principal curvature. With the definition of the crude mesh we also 
set the topology of the PQ mesh hence we call the crude starting mesh the 

topology mesh. 

The topology of the crude mesh needs to be in correspondence to the 

special features of the target surface. The relevant surface features are 

the umbilical points and the ridge or valley lines connecting them. The 

umbilics can be specified by the number of LPC’s which intersecting each 
other exactly in the umbilic point (refer to chapter 2.5.3). Often the LPC’s 
approaching or leaving an umbilic point follow ridges or valleys on the 

surface. The information gained from the principal curvature line network 

and their special feature will be used to sculpt an optimal crude topology 
Figure 4.15: Subdivision i = 1 n

f
 = 4 

Figure 4.16: Face i= 0, n
f
 = 1

Figure 4.17  Refinement of search patches

Figure 4.18: Umbilical points Iteration 

3

Figure 4.19: Final Umbilical points
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mesh. A proposal how to treat areas close to umbilic points and how to  
connect the umbilical points, lines and regions when sculpting the starting 

mesh are given in the following chapter. 

4.3.1  Mesh density

Before manually sculpting the crude mesh faces the user needs to esti-

mate the crude mesh face sizes and the number of subdivision iterations 

required. The algorithm (will be outlined in chapter 4.3) allows only for a 

fixed subdivision sequence as expressed in Equation 4.4:

 nf = 22i n
c
                 Equation 4.9

 nf … number of total faces
 n

c 
… number of crude faces i ... number of subdivisions 

For a given target panel size and number of iterations the rough crude 

mesh face sizes can be estimated with Equation 4.5 

 f
lc
 = f

lt
 2i                Equation 4.10

 f
lc 

… face edge length crude f
lt 

… face edge length target i ... number of subdivisions 
In order to receive acceptable smooth meshes a minimum of 2 subdivi-

sions should be applied. However the algorithm also allows to choose 

the number of subdivision and smoothing steps independently. Hence a 

course mesh can be smoothed afterwards without changing the number of 

subdivisions.   

4.3.2  Umbilic points

At umblic points we need to allow vertices with a valence other the four. 
The topology of the crude starting mesh needs to be chosen carefully 

in order to reflect the singular behaviour of the network of LPC’s near 
umbilics. In chapter 2.5.3 we classified the Umbilical points in the three 
basic types lemon, star and lemon star. Here we propose the equivalent 

crude mesh configuration which leads to a subdivided mesh which be-

haves similar to the LPC’s in close proximity to the umbilic point.

Figure 4.20: Crude Lemon with 2 

triangles

Figure 4.21: Smooth Lemon with 2 

triangles

(1)

(2)

(1)

(2)

(3)(3)

(4)(4)

(5)

(4)(4)

(5)

Figure 4.22: Subdivision i = 2, n
f
 = 16

Figure 4.23: Subdivision i = 3 n
f
 = 64
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4.3.3  Lemon Type Umbilic

The lemon type umbilic occurs when only one LPC is passing the umbilic 

point. When passing the umbilic point the sign of the line changes from 

minimum curvature to maximum curvature or respectively. Hence one 

maximum and one minimum LPC is approaching/leaving the Umbilic 

Lemon point. The LPC’s in close proximity are curling around the umblic 
point and forming a shape similar to the lemon. For the crude mesh ap-

proximation we propose two approaches:

Crude Lemon with two triangles

The first approach contains two triangular mesh faces forming the inner 
lemon with the umbilic point in the centre (Figure 4.22 + 4.23). We locate 

the two sharing edges of the triangles along the Ridge LPC with the 

umbilic point at their midpoints. We set the length of the Ridge edge and 

receive two vertices (1) of the initial triangular faces. Then we compute 

two Lemon LPC’s starting at both end vertices of the sharing edge. The 
third point of each triangel will be placed at the intersection (2) of the 

previously computed LPC’s.
  

The second row of the Crude Lemon mesh will now only contain quad 

mesh faces. There are four faces which share an edge of the initial trian-

gles and two faces sharing only a vertex.

For the faces  sharing and edge with the initial triangles there are already 

two vertices (1) given. The third vertex (3) lies on the ridge LPC at a 

chosen distance. It is appropriate to set the distance equals the length of 

the shared edge of the triangular faces to receive facets close to a square. 

To construct the fourth point we use the same approach as for the trian-

gular faces. We compute the second row of lemon LPC starting at the 

new  point (3) and intersect with the first row LPC’s to receive point (4). 
When this procedure is executed for all four faces sharing an edge with 

the initial triangles the three vertices of the final two faces are already set. 
The fourth point (5) is then located at the intersection of the second row 

of lemon umblics. 

Additional rows can be constructed using the procedure described before.     

Crude Lemon with a diamond

The second approach is nearly identical to the first one except that we 
replace the two inner triangular faces with a diamond shaped quad face. 

This will avoid too small facets in the centre of the Lemon (Figure 4.24 + 

4.25). 

4.3.4  Star Type Umbilic

At the star umbilic there are three LPC’s passing the umbilic point which 
change their sign when crossing the point. The typical angle between the 

Figure 4.24: Crude Star

Figure 4.25: Smooth Star

Figure 4.26: Crude Lemon with a 

diamond

Figure 4.27: Smooth Lemon with a 

diamond
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six Ride LPC’s is around 60°. Three ridge LPC’s approaching the umbili-
cal point cannot be contained in a right angel. We propose the following 

layout for the Star umbilic point:

Crude Star  

The first row of the crude star contains six mesh faces which all have one 
vertex located on the umbilic point (1) and two of their edges are aligned 

with the ridge LPC’s (Figure 4.26). Hence we place six vertices (2) on the 
ridge PLC’s in a given distance from the umbilic point. This will define 
three vertices of the quad faces. 

To receive the missing fourth vertex we now compute the LPC’s in the 
orthogonal direction to the ridge LPC’s at the new defined vertices (2). 
We call these LPC’s the tangent LPC’s of the first row of faces. Then we 
place the final vertices of the first row of quads at each others intersection 
(3) of these six tangent LPC’s. The second row of the crude star consists 
of 3 x 6 = 18 mesh faces. We again place six vertices (4) of the Ridge 
LPC’s in a chosen distance to the first row. We propose to set this distance 
as twice the value of the initial distance chosen for the first row faces. 

This approach showed good results in matching the LPC pattern when we 

apply the subdivision algorithm. The Catmull Clark algorithm stretches 

the edges of the new generated faces in the first row unproportionally 
around the umbilic point. In order to receive a homogenous distribution 

of the refined mesh we choose smaller crude mesh faces adjacent to the 
umbilic point (Figure 4.27). 

The neighbouring vertices of the first nodes (5) of the second row faces 
will be placed at the intersection of the first row tangent LPC’s with the 
LPC’s orthogonal to the ridge LPC’s - the second row tangent LPC. The 
missing six vertices are located at the intersections (6) of the second row 

tangent LPC’s.

Additional rows can be added when using the same construction princi-
ple as described for the second row. The number of mesh faces will be 

increased by six additional faces for each additional row.

 

4.3.5  Lemon Star Type Umbilic

There are three LPC passing through the lemon star or mon star umbilical 

point which are changing their signs at the point. The three lines ap-

proaching the point which are next to each have the same sign and change 

their sign respectively when leaving the point. The three lines with the 

same sign can be contained in a right angel. We propose the following 

crude mesh layout to approximate the LPC in the proximity of the lemon 

star umbilic point (Figure 4.28). 

Figure 4.28: Crude Lemon Star

Figure 4.29: Smooth Lemon Star
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Crude Lemon Star

The inner row of the Crude Lemon Star consist of four mesh faces. All 
faces have one vertex (1) located at the umbilic point. We locate four 

mesh vertices (2) at the chosen mesh density distance on the two ridge 

LPC’s with the same sign and which are contained in a right angel. This 
will define three vertices of the four  first row mesh faces. Two of the 
missing fourth vertices (3) will be placed at each others intersections of 

the first row tangential LPC’s which start at the previously defined verti-
ces. Similar to the Lemon Type Umbilic point the tangential LPC’s form 
a lemon shape around the umbilic point hence we have only two intersec-

tions of these lines. The last two vertices are located at the intersection 

(4) of the tangential LPC’s with the horizontal ridge LPC’s. Here we have 
to accept that at the inner row none of the mesh edges is aligned with the 

horizontal ridge LPC. The second row consists of ten crude mesh faces. 

We start with the faces which edges are aligned with the horizontal ridge 

LPC. Two new vertices (5) are placed on the ridge LPC in the typical 

mesh distance from the vertices which are already located on the ridge. 

We repeat this approach with the four missing ridge LPC’s and receive 
four mesh faces (6). These vertices also define the second row tangential 
LPC’s. Please note that in case of the Curde Lemon Star the second row 

vertices located on the horizontal ridge LPC’s are not aligned on the outer 
tangential LPC’s.When we now intersect the first row tangential LPC’s 
with the second row tangential LPC’s we receive four new vertices (7) 
which define also four new faces. The intersection of the second row tan-

gential LPC’s with each other define the last two vertices (8) and hence 
that last two faces.

Ridge LPC

Ridge LPC

Ridge LPC

Face Guide

Face Guide

Figure 4.30: Guide LPC’s
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4.3.6  Sculpting the Topology Mesh

The topology mesh needs to be manually sculpted by the user. We can 

outline the required steps as follows:

 -Determination of target  crude mesh face size

 -Classification of umbilical points
 -Visual extraction of ridge LPC’s and face guides
 -Selection of face edge LPC’s
 -Sculpting of crude faces around umbilical points

 -Sculpting of crude faces in between umbilical points  

Target size of crude mesh faces and number of subdivisions can be de-

termined according chapter 4.3.1. The surface feature (LPC’S, Umbilic 
points) which have been extracted as described in chapter 4.2 function 

here as guides for the sculpting. The detected umbilical points can be 

classified into the three basic types lemon, star and lemonstar as describe 

in the previous chapter. Here the number of LPC’s which enter leave and 
umbilic points is the most distinct feature for their classification. These 
LPC’s are also called ridges and need to be considered mandatory as a 

sculpting guide. Additional LPC’s , in full length or parts of them, may 
be choose in the distance of the target crude mesh face. We call these the 

face guides (Figure 4.30). 

First the mesh crude faces around the umbilical points need to placed 

following the layout describe in the previous chapter. The intersections 

Figure 4.31: Crude Mesh
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of the ridge and face guides propose the location for the vertices of the 

remaining crude faces (Figure 4.31). 

It is obvious the quality of the guide network is dependant of the cur-

vature behaviour of the target surface. In regions where the LPC’s are 
evenly spaced and show consistent curvature the curves can be taken al-

most literally as face edges. In regions where the LPC’s densify or change 
directions sharply is need to be accepted that the mesh faces may cross 

LPC’s rather then be aligned with them. 

4.4  Step 3 - Subdivision Mesh

To populate the manually sculpted topology mesh we apply a subdivision 

algorithm. The so called subdivision surfaces are generated by the se-

quential subdivision and averaging of a coarse input mesh. The procedure 

can be repeated infinitely and produce a B-Spline surface in their limit. 
The topology of the subdivision surfaces converges after the first itera-

tion dependant on the scheme applied and is preserved in the following 

refinement steps. Here we constrain the subdivision to the target surface. 
This can be either performed strictly on the surface or as a user defined 
attraction which may smooths uneven target surfaces.

4.4.1  The Catmull Clark Algorithm 

Subdivision algorithms have been proposed first in 1978 by Daniel Doo 
/ Malcom Sabin [DoSa78] and Edwin Catmull / James Clark [CaCa78] 
simultaneously. Both schemes produce quad dominated meshes, although 

the Doo-Sabin scheme also generates irregular vertices other then with 

the valence of four. The Catmull-Clark approach results in a quad only 

mesh after the first refinement step and is therefore more suitable for the 
proposed application.

Catmull-Clark’s algorithm computes a face point for each face, followed 
by an edge point for each edge and then a vertex point for each vertex. 

With the so generated vertices a new finer and averaged mesh can be 
constructed. 

In reference to the notation of a standard bicubic B-spline patch as dis-

played in Figure 4.32 we recall the computation of the new faces:

1. Computing Face points 

The new face point q
11

 needs to be computed first. Face points are located 
in the centre of gravity of each face and reflect the average of all adjacent 
vertices of the face:

  

4.6 
 q11= p11+p12+p21+p224  
 4.7 
 q12= C+D2 + p12+p2222   4.8 
 q22= Q4 + R2 + p224  
 Q= p11+p12+p21+p224  
 R= C+D2 + p12+p2224  
 4.1 
 T(v)= 1|B| � β(e)edge e |e∩B| e� e�t 
 
 �u'(t)v'(t)� =γ(t) 
 
 T = Pt �kmin 00 kmax� P 
 

               Equation 4.11



  122

2. Computing Edge points

Next the edge point q
12

 are computed. The edge points are defined as the 
average of the two endpoints of that edge and the two face points of the 

edge’s adjacent faces:

 

4.6 
 q11= p11+p12+p21+p224  
 4.7 
 q12= C+D2 + p12+p2222   4.8 
 q22= Q4 + R2 + p224  
 Q= p11+p12+p21+p224  
 R= C+D2 + p12+p2224  
 4.1 
 T(v)= 1|B| � β(e)edge e |e∩B| e� e�t 
 
 �u'(t)v'(t)� =γ(t) 
 
 T = Pt �kmin 00 kmax� P 
 

             Equation 4.12

 C… adjacent face point q
11

 as in Equation 4.11 D… adjacent face point q
13

 = (p
12

+p
13

+p
22

+p
23

)/4
3. Computing  Vertex points

The computation of the new vertex point q
22

 is defined by:

 

4.6 
 q11= p11+p12+p21+p224  
 4.7 
 q12= C+D2 + p12+p2222   4.8 
 q22= Q4 + R2 + p224  
 Q= p11+p12+p21+p224  
 R= C+D2 + p12+p2224  
 4.1 
 T(v)= 1|B| � β(e)edge e |e∩B| e� e�t 
 
 �u'(t)v'(t)� =γ(t) 
 
 T = Pt �kmin 00 kmax� P 
 

             Equation 4.13

The two intermediate points Q and R are given by:

 

4.6 
 q11= p11+p12+p21+p224  
 4.7 
 q12= C+D2 + p12+p2222   4.8 
 q22= Q4 + R2 + p224  
 Q= p11+p12+p21+p224  
 R= C+D2 + p12+p2224  
 4.1 
 T(v)= 1|B| � β(e)edge e |e∩B| e� e�t 
 
 �u'(t)v'(t)� =γ(t) 
 
 T = Pt �kmin 00 kmax� P 
 

 

4.6 
 q11= p11+p12+p21+p224  
 4.7 
 q12= C+D2 + p12+p2222   4.8 
 q22= Q4 + R2 + p224  
 Q= p11+p12+p21+p224  
 R= C+D2 + p12+p2224  
 4.1 
 T(v)= 1|B| � β(e)edge e |e∩B| e� e�t 
 
 �u'(t)v'(t)� =γ(t) 
 
 T = Pt �kmin 00 kmax� P 
 

             Equation 4.14

 Q…the average of all new adjacent face points of the current vertex v R… the average of all mid - points of the edges adjacent to current vertex v

Figure 4.32: B-Spline patch
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The equations 4.11 to 4.14 can be generalized into a set of geometric 

rules which can be applied to arbitrary topologies:

 -New face points - the average of all the old points defining the
 face 

 -New edges points - the average of midpoints of the old 

 edge with the average of the new face points sharing the edge 

 -New vertex points - the average Q/n +2R/n +S(n-3)/n
 

  Q, R... as defined in equation 4.9  S ... old vertex points
4. Building New faces

The edges of the new faces are then defined as follows:

 -The connection of each new face point to its adjacent 

  edge points

 -The connection of each new vertex point to the edge 

  points of all old edges incident on the old vertex point

Figure 4.33: Subdivided Mesh with surface and perimeter curve constraint - 2 iterations
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4.4.2  Constraint Subdivision

In order to gain further user control over the refined mesh generated by 
the algorithm we introduce the following constraints:

 vertex constraint - individual vertices can be fixed in place

 curve constraint - vertices within a user defined distance to a
 curve will be projected orthogonal onto this curve

 surface constraint - vertices within a user defined distance to a
 reference surface will be projected onto this surface

The constraint mechanism will be performed after each subdivision itera-

tion.  

4.5  Step 4 - Optimization

The dynamic relaxation algorithm is suitable to solve approximation 

problems of discrete systems. The method is based on the discretization 

of lumped mass system which oscillates about the equilibrium position 

under the influence of internal and external forces. The relationship be-

tween the individual nodes is defined in terms of stiffness similar to finite 
element methods. The iterative process updates the geometry after each 

iteration according to the acting forces under consideration of  

pseudo-dynamic damping. The pulling forces may be formulated specifi-

cally for the particular optimization target. We only need to specify a new 

set of Internal Forces which justifies the desired condition and execute 
the iteration under the given damping scheme. For the triangulated grid 

shell structure of the courtyard roof at the British Museum the relaxation 

algorithm has been manipulated in order to achieve nearly regular faces. 

The method proposed by Chris K. Williams in [Wi01] starts with a mesh 

generated in the plane by the simple subdivision of segments with straight 

boarders. The so generated start mesh is then projected and fixed to the 
design surface. The algorithm moves the vertices until all edge lengths 

are within a specified boundary in order to generate a smooth transitions 
between of the initial triangulated patches.

4.5.1  Dynamic Relaxation (DR)

The dynamic relaxation method is widely used for form finding and 
nonlinear structural analyses of fabric or cable structures. The method 

uses the dynamic equation of a damped system with or without externally 

applied loads to calculate the static behaviour of structures. To reduce the 

computation storage requirements the DR method is formulated as direct 

vector method which only considers geometric nonlinearity. 

The motion of mesh nodes representing a 2D structure is traced over 

time until the sum of residual forces in the nodes reach the convergence 



  125

criteria. This indicates the state of equilibrium of the structural system. 

The first DR algorithm for structures was proposed in 1965 by A. S. Day 
[Da65] and J.R.H. Otter [Ot65]. The appropriate choice of damping influ-

ences how rapid a system converges and has been studied by Papadraka-

kis in [Pa81]. 

4.5.2  Dynamic Relaxation Theory

The DR algorithm targets to obtain the equilibrium configuration for a 
damped solution of the dynamic equations of motion. The equation of a 

viscously damped motion in the centred difference form can be formu-

lated according M.R.Barnes [Ba]:

 R [j,t] = M[j]/Dt
 (V[j,t + Dt/2] - V[j,t - Dt/2])+ C[j]/2 (V[j,t + Dt/2] - V[j,t - Dt/2])

      
                                         Equation 4.15
  R...Vector of residual forces for the jth degree of freedom at time t 
 M...Mass V...Gradient vector C...Correction vector
 j...degree of freedom
 t...time

The substitution of C, A,B and rearrangement delivers:

 V[j,t + Dt/2] = A V[j,t - Dt/2] + B[j] R[j,t]/Dt              Equation 4.16

 with  C[j] = M[j] C`/Dt A = (1- C`/2)/(1+C`/2)
 B[j] =  Dt²/2M[j] (A+1)
The total nodal deflection d[j] at the time t+Dt is given in Equation 4.17:

 d[j,t+Dt]
 = d[j,t] + A (d[j,t] - d[j,t-Dt]

) + B R [j,t]             Equation 4.17

The above Equation is written at each node of the structure for the prin-

cipal stiffness directions and all mass components Mj are adjusted pro-

portional to the direct stiffness Kji. It may be shown that the critical time 

interval is:

 

 Dtcrit  = √(2Mj/Kji)                            Equation 4.18

 Kji...Stiffness matrix 



The optimum convergence for the Dynamic Relaxation method corre-

sponds to the critically damping of the fundamental mode and is given in 

Equation 4.19: 

  l
opt

= √A              Equation 4.19

When using the relation of the critical time interval expressed in Equation 

4.17 for Equation 4.15 we receive: 

 d[i+1] = d
[i]

 + A ( d
[i]

 - d
[i-1]

) + (A+1) {S} R 
[i]

            Equation 4.20

 {S}...Stiffness matrix 
The critical damping C’ needs to be evaluated newly after each iteration 

run. This can be performed using an automated adjustment procedure. 

The convergence rate of the incremental deflection vectors can be ex-

pressed in the following function:

 l = Dd
[i]

/Dd
[i-1]

 = ( d
[i]

 - d
[i-1]

)/(d
[i-1]

 - d
[i-2]

)            Equation 4.21

If we use Equation 4.16 we receive:

 A
[i]

 = ||Dd
[i]

||² /  ||Dd
[i-1]

||²              Equation 4.22

If we want to transform the above Equation to a common global coordi-

nate system {S}, to which the deflections and residuals can be referred to, 
we amend Equation 4.17 to:

 {S’} = {T} T {S} {T}               Equation 4.23

 {T} ...Block diagonal matrix of nodal transformations
4.5.3  The Dynamic Relaxation Algorithm

In this chapter we explicate the individual steps of the dynamic relaxa-

tion algorithm derived from the theoretical basis outlined in the previous 

chapter. The DR method has been implemented into a 3D-CAD environ-

ment (Rhinoceros 4.0 ®) as a ‘PlugIn` application. The programming has 

been performed using the VB.Net language. The algorithm consists of 

the iterative computation of a series of vector operations applied to the 

vertices of a given mesh. As the first step of the process the initial mesh 
needs to be investigated in order to determine the internal adjacencies of 

its faces (f), edges (e) and vertices (v). For a quad mesh we can define 
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the following relations:A face has 4 adjacent vertices and 4 adjacent edges: f{v1...v4},{e1...e4}An edge has 2 adjacent faces and 2 adjacent nodes: e{f1,f2},{n1,n2}A vertex has the minimum of 2 adjacent edges: v{e1...e2...en}

 f,fi ...current face, adjacent face
 e,en...current edge, adjacent edge
 n,nn...current node, adjacent node                Definition 4.1
The above defined adjacencies will be computed and written to the start-
ing mesh in order to extract the relevant information during the iterations

The following operations need to executed at each iterative step. For all 

mesh vertices the weighted nodal residual (r’) needs to be evaluated first 
and is given as:

 r’
[i]

 = (f
[i]

 + acc
[i-1]

 M + vel
[i-1]

 C) - f
[i-1] 

           Equation 4.24

 r’...Weighted residual vector  f...Internal force vector acc...Acceleration vector M...Fictitious mass  vel...Velocity vector C...Fictitious damping i...Iteration
The current internal force vector (f

[i]
) of a node point (p) is equals the 

sum of all force vectors acting on the current node. The vectors acting of 

the node are given by the geometry of the adjacent edges/vertices ex-

pressed as vectors pointing towards the node.

 f
[i]

 = S (e
1
 ...e

n
)               Equation 4.25

 
 with e

n
 = v - v

k

The resulting vector (f
[i]

) reflects the out of equilibrium value for the par-

ticular position which needs to be minimised. In case of a node with va-

lence four the equilibrium state is reached if the crossing pairs are point-

ing in opposite directing and have the same resulting value which reflects 
the tension only condition for form found structures. Additional external 
acting force may be also added to the resulting vector at this stage. 

The term “acc * M + vel * C” is a modifier to the central difference in-

tegrator in order influence the convergence behaviour of the algorithm, 
consisting of weighted results of the previous run. For the first iteration 
we set the Acceleration (acc), Velocity (vel) and Forces (f) equals to the 

zero vector. The parameters M and C are constants reflecting the fictitious 
mass and the fictitious damping of the system. 
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The current value for the Velocity (vel
[i]

) is determined in Equation 4.23. 

We use the results of r’ and vel from the previous run and some constants 

F1,F2: 

 vel
[i]

 = (vel
[i-1]

(F1 / F2)) + (r’ 
[i]

/ F2)            Equation 4.26

The parameters F1 and F2  are controlling the damping and are defined 
below:

 F1 = M / Dt - C / 2                            Equation 4.27 F2 = M / Dt + C / 2                                       Equation 4.28

 Dt...Timestep
The constant time step (Dt) can be chosen by the user in order to influence 
the speed of convergence of the system. We may alter the value for time 

step during the relaxation process. 
The value for Acc is set in the current iteration to be used in the next 

iteration and is defined as the difference between the current Velocity 
(Vel

[i]
) and the previous Velocity (Vel

[i-1]
):  

 Acc = Vel
[i]

 - Vel
[i-1]

              Equation 4.29

Finally we use the new computed Velocity (Vel[i]) to update the node 

position:

 p
[i]

 = p
[i-1]

 + (Vel * Dt)                         Equation 4.30

 p...node point

To evaluate the final nodal residual vector (r) of the iteration we need to 

consider the user defined control or boundary conditions. If a mesh node 
is within a specified tolerance of a control object it ‘snaps’ to it. The con-

trol objects may be defined as points (fixed), curves (sliding) or surfaces 
(orthogonal projection). The option of a user defined attraction rather then 
the strict snap to control object is available. If attraction is chosen the di-

rect connecting line between node point and constraint object will behave 

like a virtual spring. The farther away the node point from the constraint 

object the larger the pulling forces. We choose the following linear fall off 
function:

 p
[i]

 = p
[i-1]

 + ( pcontrol - p
[i-1]

) W             Equation 4.31
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 for |pcontrol - p
[i-1]

| < snap tolerance
 W...weight (0 ≥ W ≥ 1)

After the boundary conditions are considered in the update of the node 
positions the nodal residual vector (r) can be computed:

 r = p
[i]

 – p
[i-1]

               Equation 4.32

The global residual value (R) can be computed when adding all absolute 

values of the nodal residual vectors:

  R = S |r
[i]

|                Equation 4.33

  

The procedure gets repeated for predefined number of iterations or until 
the target residual is reached.

4.5.4  Planar Relaxation

As mentioned in chapter 4.5.1 the DR algorithm has been previously used 
to optimise structures towards other targets then to achieve tension force 

equilibrium in all vertices. We only need to define a new set of pulling 
forces which are acting towards the desired condition of the mesh. In our 

case we desire that all adjacent faces to a node become planar. To achieve 

this target we need to redefine the internal forces with new pulling forces 

acting towards planarity of all mesh faces. Let us introduce the new pull-

ing forces (fp) : 

 fp
[i]

 = S (n
p1

 ...npj)                            Equation 4.34

 npj...out of planarity vector adjacent face j...number of adjacent faces
For every vertex we compute the out of plane vectors (np) of the adjacent 

faces. The plane of the adjacent face is defined by the vertices of this 
face, other then the current one. The out of planarity condition can be 

expressed with the distance (d) to three point plane criteria as described 

in chapter 2.2.4. In order to compute the out of planarity vector (np) we 

need to  find the  closest point of the current node on the adjacent face 
plane. This point is called the root point and can be defined as follows: 

 pr = p + t0 * n                             Equation 4.35
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Figure 4.34: Planrity graph for subdivided mesh - max non-planar: 121mm  

Figure 4.35: Planarity graph for optimized mesh after 1632 iterations - max non-planar: 9mm 



  131

 with t0 = d - n * p/n²
 for d refer to Equation 2.4
 n...normal vector of adjacent face plane
Finally we replace the internal forces (f) in Equation 4.24 with the new 

defined planar pulling forces (fp) and receive:
 r’

[i]
 = (fp

[i]
 + acc

[i-1]
 M + vel

[i-1]
 C) - fp

[i-1] 
           Equation 4.36

4.6  Summary

With the described 4 step method any surface geometry can be approxi-

mated with a PQ mesh. The outlined procedure to generate the Lines of 

Principles Curvature (LPC’s) and the umbilical points produces results 
which are accurate enough to understand the curvature behaviour of the 

target surface. It is understood that the generated lines may not be accu-

rate in a strict mathematical sense. As these lines are mainly used as the 
guide for the sculpting of the topology mesh this fact may be negligible. 

With the availability of the LPC’s sketch and approximate location of the 
umbilical points the crude topology mesh can be sculpted which follows 

the curvature of the surface. Specify mesh layouts in close proximity of 

the 3 different umbilical point types (lemon, star, lemonstar) are proposed. 
The applied subdivision algorithm (Catmull - Clark) generates a smooth 

mesh on the target surface in the desired density. Finally the proposed 

numerical optimization of the still imperfect mesh uses a modified ver-
sion of the Dynamic Relaxation (DR) Algorithm. The procedure works 
computational efficiently and shows stable convergency. In the next 
chapter the case studies are executed to verify the proposed method. The 

results of a trial optimization is displayed in Figure 4.33 before optimiza-

tion and on Figure 4.43 after optimization. In the next chapter we will test 

the functionality of the proposed procedure in greater depth.





Chapter 5 PQ mesh approximation

case studies
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5  PQ mesh approximation case 

studies

5.1  Introduction

In this chapter the proposed PQ mesh approximation method is tested. 

First we introduce mesh quality criteria in order to measure the improve-

ment or degrading of the mesh during the optimization. The relative 

planarity (rp
n
) set the absolute planarity in proportion to the size of the 

mesh face. This will consider the fact that larger glass panes allow larger 

elastic deformations than smaller ones. An important visual quality crite-

ria is the smoothness or continuity of a mesh. Therefore we introduce the 

face continuity (fc
i
)and the edge continuity (ec

n
).

In order to evaluate basic functionality of the Planar Relaxation (PR) 

algorithm a series of simple meshes will be optimised toward planarity. 

Each individual optimization will aim to demonstrate the performance of 

the algorithm under a different aspect such as to handle large deforma-

tions, optimise closed objects or approximate pre-defined solutions.  
  

Finally we will investigate different meshing approaches for one theoreti-
cal surface (Ellipsoid) and two already realized glass steel roofs: British 

Museum Courtyard roof and Westfield Shopping Centre both located in 
London/England. For the ellipsoid surface we mainly evaluate the two 

proposed approaches for the meshing of lemon type umbilics.

The realized glass structures both contain only triangular glazing panes. 

Here we test different alternative meshing solutions containing only quad 
faces. 

The first solution comprises the of quads which are defined by two joined 
triangles of the original mesh. We then further refine the topology mesh 
considering the alignment of the faces edges with the principal curvature 

lines of the original roof surface. For some solution we introduce con-

straint conditions along their perimeter. During optimization process the 

planarity-, continuity properties and and the distance of individual verti-

ces travelled from the starting geometry is monitored and summarized in 

a table. 

5.2  Mesh Quality Criteria

The quality of the optimization procedure can be measure directly by the 

achieved planarity of the mesh faces. Here we can distinguish between 

absolute planarity (ap) and relative planarity (rp) of a face. For the defi-
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nition of absolute planarity please refer to chapter 2.2.4. In the following 

section we introduce the relative planarity of a face.

In general a smooth and continuous mesh surface will be most desirable 

the for architectural purposes. As an interpretational quality criteria we 
introduce the face continuity and edge continuity at a mesh vertex. Their 

definitions will be outlined in chapters 5.2.2 and 5.2.3.  

5.2.1  Relative Planarity

The relative planarity (rp
n
) represents the relation between the absolute 

planarity and the diagonal size of the mesh face. Here we need to evalu-

ate four relationships in order to receive the most onerous value:

 rp
1,n

 = d
1
/ap

1,n
                 Equation 5.1

 rp
2,n

= d
2
/ap

2,n
                 Equation 5.2 rp

3,n
 = d

1
/ap

3,n
                 Equation 5.3 rp

4,n
 = d

2
/ap

4,n
                 Equation 5.4

 d
1 

… distance between p
1
 and p

3

 d
2

… distance between p
2
 and p

4
 

 ap
1...4,n 

… absolute planarity
The larger value of the two relationships will be set as the relative planar-

ity value of the face. 

For the assessment of real glass panes the relative planarity value is more 

meaningful the absolute planarity as larger sheets can accept larger elastic 

deformations then smaller ones.   

5.2.2  Face Continuity

In order to measure the smoothness of the mesh before and after the opti-

mization we introduce the face continuity (fc
i
) property. The face continu-

ity measure the angles between faces in a mesh which share an edge. We 

need to evaluate the normal vectors of all adjacent faces at a vertex. In 

the most case the faces are not planar. Therefore we need to evaluate the 

normal vectors of the two triangular faces, which are building the quad 

face and set the average of the two triangular face normal vectors as the 

quad face normal vector. From the resulting set of normal vector angles 

we choose the largest and set it to the vertex’s face continuity angle fc. 

 fc
n
 = max ⦠{n

n,1 to v-1
, n

n,2 to v
}               Equation 5.3

 n
n,v 

… normal vectors of adjacent faces at vertex n
 v

 
… valence of vertex 

Figure 5.1: Relative Planarity 1
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Figure 5.2: Relative Planarity 2

Figure 5.3: Relative Planarity 3
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Figure 5.4: Relative Planarity 4
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The face continuity will not give any information about the smoothness 

of the edges crossing the current vertex. The adjacent faces may com-

prises of a small face continuity angle but have discontinues faces edges. 

Therefore we introduce the edge continuity property which is outlined in 

the next chapter.

5.2.3  Edge Continuity

For the evaluate the edge continuity (ec
n
) we measure the angles between 

all adjacent edge vectors {e
1
,e

2
,e

3
,e

4
} pointing outwards of the current 

vertex. The state of ideal continuity may be reached when all edge vec-

tors are equally spaced. Hence the edge continuity criteria measures the 

deviation from the ideal angel (iec
i
). Dependant on the number of faces 

adjacent to the current vertex the ideal angel derive to a portion of 360° (2π) for vertices other then edge or corner vertices. For edge vertices 

the ideal condition set to be a portion of 180°(π) and for corner vertices 
to 90° (1/2 π ). It is obvious that this state can only be reached when all 

adjacent edge vectors share a common plane.    

 ec
n
= max |⦠{e

n,1 to v-1
, e

i,2 to v
}-iec

i
|                   Equation 5.4

 v
 
… valence of vertex 

 iec
n 

… 360°/ v inner mesh vertex
 iec

n 
… 180°/ v-1 edge vertex

 iec
n 

… 90°/v-1 corner vertex
The proposed continuity values can only provide an indication of an im-

provement or decrease relative to the starting mesh.

During the optimization of the cases studies documented in next chapters 

we will measure the previous defined values after each iteration step and 
store them in a graph.

5.3  Basic functionality tests

The first series of optimization test will be executed a series of simple ge-

ometry meshes in order to evaluate the general functionality of the Planar 

Relaxation (PR) algorithm. Each individual test aims to demonstrate the 

performance of the algorithm focussing under a single aspect.  

    -Large deformations

  -Highly deformed meshes

 -Closed Objects

 -Approximated pre-defined solutions   
 -Constraint Meshes

The individual test meshes and optimization results are briefly outlined in 
the following chapters. 

Figure 5.5: Edge Continuity

Figure 5.6: 2 x 2 mesh planar (16 iteration) 

Figure 5.7: 2 x 2 mesh non-planar (rp
max,0

 = 1.09) 
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Figure 5.8: Face Continuity fc
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5.3.1  2 x 2 mesh

The first test demonstrates the initial functionality of the PR Algorithm. 
We apply the optimization to a unconstraint mesh with 4 faces which 

comprise of the average edge length of 700 mm. The algorithm start with 

out of planar values larger then 100% and finds a rp
max,16

 = 0.0001 planar 

solution within 16 iterations. The maximum displacement occurs in the 

central vertex and results to 340 mm. Images of the results are displayed 

in figures 5.7 to 5.9.

5.3.2  5 x 5 mesh highly deformed

To evaluate the PR Algorithms capability the perform large movements 
we execute a highly deformed  5 x 5 face. The maxim relative planarity 

counts to rp
max,0

=2.19. We leave the edges unconstraint allow free move-

ment of the vertices. The algorithm find as planar solution after 65 itera-

tions. 

5.3.3  Deformed Cube

The next test mesh is closed object: We perform the optimization for a 

twisted cube mesh consisting of 6 faces. The optimization is performed 

without any constraint. The algorithm untwist the cube until all faces are 

planar. Only 11 iterations are required to reach rp
max,11

 = 0.0001. The faces 

edges which had varying length before the optimization have similar 

length thereafter.   

Figure 5.9: Deformed cube non- planar (rp-

max,0
=0.68)

Figure 5.10: Planar cube (11 iterations) Figure 5.11: Mesh displacements (410mm)

Figure 5.12: 5 x 5 mesh non-planar (rp-

max,0
=2.19)

Figure 5.13: 5 x 5 mesh planar (65 iterations) Figure 5.14: 5 x 5 mesh displacements (340mm)

Figure 5.15: 2 x 2 mesh displacements 

(340mm)
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5.3.4  Approximation of pre-defined solution

The next test is intended to evaluate the algorithms capability to approxi-

mate a already pre-defined planar mesh layout. As test surface we use the 
Elliptic Paraboloid. The related PQ mesh (Figure 5.16) is generated using 

the translation surface principle as discussed in chapter 3.7.3. The mesh 

comprises of 529 faces with the average edge length of 2500mm.

We then deform 4 mesh vertices in the top of the domed shape (Figure 

5.17). The PR Algorithm is the executed considering fixed boundary con-

ditions along all four the perimeter curves.   

The planar solution was found after 647 iterations. However, the original 

shape generated by translation could not be reproduced exactly with the 

PR Algorithm. In plan view it is visible that the initially introduced de-

formation of the faces in the apex of the dome is still visually noticeable. 

Only the vertices in close proximity to the imperfection where moved by 

the PR Algorithm.    
The apex vertices of the planarized remains 590mm lower then the at the 

original mesh (figure 5.20).   

5.3.5  Constraint mesh 22 x 28 faces 

As the last generic performance test we apply the of the PR algorithm to 
a mesh with constraint boundary conditions. We execute a 22 x 28 mesh 
which is draped over an ellipsoid. Three of the four edges are considered 

to be fixed. These edge constraint lines are lying in a common plane. 

Figure 5.16: Elliptic Paraboloid mesh Figure 5.17: EP mesh deformed 

   

Figure 5.18: EP mesh planar (647 iterations)

Figure 5.19: EP mesh planar top view Figure 5.20: EP mesh planar side view
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The relative maximum non-planarity of the faces counts to rp
max,0

= 0.27. 

The non-planar faces occurs along the ridge where the deforming body 

punches into the previously un-deformed mesh (Figure 5.21).

The algorithm produces mesh faces with maximum non-planarity values 

of rp
max,13500

 = 0.01 after 13500 iterations. The large number of iterations 

required is a result of the fully constraint corner faces. Three of their four 

vertices are lying on the edge constraint lines and are allow to move only 

along these. Hence the face can only become planar if the forth vertex 

lies in the plane defined by the three constraint lines. Therefore the entire 
mesh can only become 100% planar as long the all vertices coincide with 

the constraint plane. In other words a notional curvature of the mesh sur-

faces is only possible within the limits of the planarity tolerance given. 

Figure 5.21: Constraint Mesh planar (13500 iterations) Figure 5.22: Constraint Mesh displacements (1108mm)

Figure 5.23: Constraint Mesh Figure 5.24: Constraint Mesh mesh - non-planar (rp
max,0

 = 0.27)
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In the following chapters the approximation results of theoretical surfaces 

and realized glass roofs are documented. We follow the individual steps 

as described in chapter 4. On the basis of the principle curvature line 

sketch (chapter 4.2, Step 1) different variations of topology meshes are 
sculpted in order to evaluate their performance during the optimization 

process. Here we monitor the planarity and continuity properties as well 

as speed of convergence and the distance of individual vertices travelled 

from the starting geometry during the optimization.    

5.4  Case Studies - Ellipsoid

As the first case study investigate on halve of an ellipsoid surface. The 
originally closed surface comprises of a four fold symmetry. The prin-

ciples curvature line graph and the location of umbilical points is well 

understood and documented.

We can find two umbilical points on the surface. Both umbilical points 
can be classified as lemon type. In chapter 4.3.3 we proposed two crude 
mesh approximations: crude lemon with two triangles (mesh 01, figure 
5.24) or with a diamond (mesh 02, Figure 5.27). We will investigate the 

two proposals for this study.

A selection of LPC’s will be extracted in order to function as guides for 
sculpting the crude topology mesh (Figure 5.26 + 5.29).    Figure 5.25: Ellipsoid LPC sketch 

Figure 5.26: Crude Mesh 01- with Diamond Figure 5.27: Smooth Mesh 01 Figure 5.28: Mesh 01 - planarity rp
i
= 0.034

Figure 5.29: Crude Mesh 02 - with two triangels Figure 5.30: Smooth Mesh 02  Figure 5.31: Mesh 02 - planarity rp
n
=0.0015 



  141

For both meshes 2 iterations of Catmull Clarke subdivisions are per-

formed and the mesh is snapped to the ellipsoid surface.  

For mesh 01 the faces in proximity of the umbilical points show the larg-

est non-planarity values of rp
i
 = 0.034 (Figure 5.26).   

The maximum non - planarity values for mesh 02 (rp
i,max

=0.015) occur 

along the perimeter as we can see in Figure 5.29.  

Hence the crude topology mesh with two triangles delivers better approx-

imation results around the lemon umbilical point for the tested surface 

geometry. As the ellipsoid surface is showing a fairly ordered principle 
curvature graph the generated lines can be almost literally taken to sculpt 

the crude topology mesh.

We execute the PR algorithm for both meshes until we reach a relative 

planarity value of rp
max,i

=0.001. As a consequence of the quality of the 
starting geometry mesh 01 required more iterations (1013) then mesh 02 

(545) to reach the given target. Analogous the deviations caused by the 
optimization are for mesh 01 2.7 times larger then for mesh 02.

The explicit results of the optimization runs are documented in Appendix 
A1 +A2.

5.5  British Museum Great Court Roof 

The roof over the Court of the British Museum covers the area between 

the central Reading Room and the adjacent buildings. 

It was designed by Foster and Partners (architects) and Buro Happold 

(engineers) and was fabricated and erected by Waagner Biro.

The structure of the roof is formed by a triangular steel grid of box 

sections which are welded to the node pieces. The triangular facets are 

glazed by 3312 flat double glazing units with the overall area of approx. 
6,750 m².  

In order to achieve nearly regular faces a manipulated form of the Dy-

namic relaxation method was proposed by Chris K. Williams in [Wi01]. 

It starts with a mesh generated in the plane by the simple subdivision 

of segments with straight boarders. The so generated start mesh is then 

projected and fixed to the design surface. The algorithm moves the ver-
tices until all edge lengths are within a specified boundary to generate a 
smooth transitions between of the initial triangulated patches.

In this chapter we test several meshing options for the roof glazing which 

uses flat quadrangular panels. A planar quad tessellation of this project 
was proposed in [ZsSch10] by M. Zadravec, A. Schiftner, J. Wallner. The 
authors use a field of conjugate directions which are transverse every-

where, the so called TCD field, in order to define the layout of the quad 
panels. 

Figure 5.32: British Museum Great Court Roof 

[Image by Foster & Partners]

Figure 5.33: British Museum Great Court Roof 

[Image by Foster & Partners] 



  142

5.5.1  BM_Mesh 01: Rhombic Tessellation

As the first planar meshing test we evaluate the original triangular mesh 
layout (Figure 5.34) as a quad version. For that we join two of the origi-

nal triangular mesh faces into one quad face. Two adjacent triangular 

faces are joined along their edges which are in radial direction to the 

centre of the reading room building. The overall number of faces reduces 

from previous 3312 faces to now 1687 faces. Due to the diagonal layout 
we need to accept 66 triangular faces mainly along the central opening. 

During the optimization these faces will be ignored. 

The most non - planar facets are located in the four corners of the mesh. 

This will become obvious when we compare the layout of the edges with 

the Principle Curvature Lines Graph (Figure 5.37). The curvature lines 

and the mesh edges show little alignment in these areas.  

It is expected that the mesh layout will not show good convergence dur-

ing the planar optimization process. Hence we abandon any constraints in 

order to receive a solution within the target planarity value. The optimi-

zation target will be set to 1% (rp
max,i

 = 0.001) which is sufficient when 
using double insulating glazing units.

The following results will be monitored after each iteration (i) and stored 

in a table:

 Relative Planarity  rp
max,i

 Displacement  wi
max,i

 

 Face Continuity  fc
max,i

 Edge Continuity  ec
max,i

In addition we generate a coloured planarity gradient mesh at rp
max,i

 = 

0.05, 0.03 and 0.01 in order to trace the improvements visually. The 

figures 5.36 to 5.38 are showing the planarity scaled respectively to the 
maximum value of the individual graph.   

Figure 5.34: British Museum Triangulated Tessellation Figure 5.35: BM_Mesh 01 Rhombic Tessellation 
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Figure 5.36: BM_Mesh 01, Planarity  rp
n,max

 = 0.578, i = 0 Figure 5.37: BM_Mesh 01 LPC graph overlay

Figure 5.38: BM_Mesh 01, rp
 i,max

 = 0.05, i = 457 Figure 5.39: BM_Mesh 01, rp
 i,max

 = 0.03, i = 2601

Figure 5.40: BM_Mesh 01, rp
 n,max

 = 0.01, i = 7809 Figure 5.41: BM_Mesh 01, w 7809,max = 
 
5.37 m
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For the full extend of optimization results please refer to Appendix A3 to 
A6.

As expected the optimization shows slow convergence and requires large 
deformations from the starting mesh to achieve the planarity target. The 

edges of the faces are showing very little alignment with the principle 

curvature lines. Hence this test substantiates the necessity of a starting 

mesh of which edges are aligned with the principal curvature directions.   

5.5.2  BM_Mesh 02: Radial Tessellation free

For the next optimization test we will generate a mesh where most of the 

mesh edges are aligned with the LPC’s oriented in radial direction to the 
centre of the roof. The overlay with the LPC sketch is shown in Figure 

5.44. The overall number of faces counts to 2048 with an average edge 
length of 2.0 m. 

Figure 5.42: BM_Mesh 01, before optimization Figure 5.43: BM_Mesh 01, after optimization

Figure 5.44: BM_Mesh 02, top view Figure 5.45: BM_Mesh 02, iso view
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The most non - planar faces (rp
n,max

 = 0.23 ) are again located in the four 

corners of the roof. Here we need to accept faces with an edge length of 

4.0m. 

The maximum face continuity angel of the staring mesh counts to fc
n,max

 = 

28°. This value should be seen as the reference value in order to judge the 
mesh smoothness after the optimization.

To understand the general behaviour during the optimization we execute 

the algorithm first without any edge constraints. The optimization is 
showing fast convergence requiring only 121 iterations to reach rp

 121,max
 = 

0.03 relative planarity (Figure 5.49). In order to reach the planarity target 

of rp
 i,max

 = 0.01 the convergence slows down considerably whilst requir-

ing 2664 iteration (Figure 5.50). The maximum deformation w 
2664,max 

= 
 

1.97 m (Figure 5.51) occurs in the corners of the mesh which is coherent 

with the non - planarity distribution. The faces in this area need to move 

mainly in z - direction forming a spherical shape.

Figure 5.46: BM_Mesh 02, LPC graph overlay Figure 5.47: BM_Mesh 02, Planarity  rp
n,max

 = 0.23, i = 0 

Figure 5.48: BM_Mesh 02, free, rp
 i,max

 = 0.05, i = 24 Figure 5.49: BM_Mesh 02, free, rp
 i,max

 = 0.03, i = 121
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In plan view the mesh keeps almost the original square perimeter layout. 

The face continuity improves considerable from previous fc
0,max

 =28° to 
now fc

2264,max
 =9° . Edge continuity degrades slightly from previous ec

0,max 

=
40° to now ec

2264,max = 
45°. 

However from practical reasons the displacements in the corners may 

not be acceptable. Therefore we perform a further optimization with the 

same mesh considering a fixed support along the inner circular and outer 
rectangular perimeter. 

5.5.3  BM_Mesh 02: Radial Tessellation fixed

The optimization is showing very slow convergence requiring  13476 

iterations to reach the target relative planarity value rp
 13476,max

 = 0.01 (Fig-

ure 5.54). The maximum deformation w 
13476,max 

= 
 
3.00 m (Figure 5.55) 

occurs in the corners in upwards direction. 

Figure 5.50: BM_Mesh 02, free, rp
 n,max

 = 0.01, i = 2664 Figure 5.51: BM_Mesh 02,free, displacements, w 
2664,max 

= 
   
1.97 m

Figure 5.52: BM_Mesh 02, fixed, rp
 i,max

 = 0.05, i = 176 Figure 5.53: BM_Mesh 02, fixed, rp
 i,max

 = 0.03, i = 1119
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The faces in this area are forming a ridge from the corner towards the 

centre of the circular opening.

There are significant distortions of the faces along the ridge to be ob-

served.

Hence the face and edge continuity degrades from previous fc
0,max

 = 28° 
to after fc

13476,max
 = 45° . Edge continuity also degrades significantly from 

previous ec
0,max 

= 40° to after ec
13476,max 

=
 
130°. As the visual appearance of 

the distorted ridges is not acceptable and we will therefore focus on the a 

better solution for these areas in the next example.  

5.5.4  BM_Mesh 03: LPC Tessellation

For the last meshing test we will use the LPC network as a guide for 

the meshing. This can be performed quite literally as the LPC’s show a 
ordered distribution with only four singular points. 

Figure 5.54: BM_Mesh 02, fixed, rp
 n,max

 = 0.01, i = 13746 Figure 5.55: BM_Mesh 02, fixed, displacements, w 
13476,max 

= 
 
3.00 m

Figure 5.56: BM_Mesh 03, Guide LPC’s Figure 5.57: BM_Mesh 03, Subdivision 01
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From the flock of LPC’s we chose and/or generate LPC’s with even spac-

ing. The four umbilical points are from type Star and located  symmetri-

cally in the four corner areas. 

In Figure 5.54 the guide LPC’s are displayed which are used to layout the 
crude meshing. In order to locate the vertices with appropriate accuracy 

we apply one subdivision (Figure 5.57) to the initial topology mesh and 

relocate the vertices thereafter to match the intersections of the guide 

curves.

In the four corners we need to extend the starting mesh beyond the origi-

nal perimeter as the LPC’s are crossing the perimeter diagonally. To keep 
the mesh as close as possible to the target surface we need to strictly align 

the face edges especially in this area and truncated them after the optimi-

zation.      

Two further subdivision iterations are applied in order to receive  an aver-

age mesh size of 2.00 m (Figure 5.58). 

Figure 5.58: BM_Mesh 03, subdivided 3 iterations Figure 5.59: BM_Mesh 03, edge constraints

Figure 5.60: BM_Mesh 03, rp
 i,max

 = 0.083, i = 0 Figure 5.61: BM_Mesh 03, rp
 i,max

 = 0.03, i = 25
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We constrain the inner circular perimeter and a portion of the rectangular 

outer perimeter leaving the corners free (Figure 5.59).    

The most non - planar faces (rp
n,max

 = 0.083 ) are located around the um-

bilical points as displayed i Figure 5.60. This is mainly due to the larger 

sized faces in this area. 

The maximum face/edge continuity angel of the starting mesh counts to 

fc
n,max

 =11.4°/ fe
n,max

 =33.9°. These value should be seen as the reference 

value in order to judge the mesh smoothness after the optimization. 

The optimization is converging very fast requiring only 593 iterations 

to reach the target relative planarity value rp
 593,max

 = 0.01 (Figure 5.62). 

The maximum deformation w 
593,max 

= 
 
0.40 m (Figure 5.63) occur at the 

umbilical points in upwards direction.

The face and edge continuity degrade from previous fc
0,max

 = 11.4° to 

after fc
593,max

 = 18.2° . Edge continuity improves slightly from previous 
ec

0,max 
= 33.9° to after ec

593,max 
=

 
32.5°.

The meshing which edges are closest aligned with the Lines of Principle 

Curvature delivers indeed the best results. The deflections are fairly small 
and continuity values change only slightly which are marks for a good 

starting mesh quality.

Figure 5.62: BM_Mesh 03, rp
 i,max

 = 0.01, i = 593 Figure 5.63: BM_Mesh 03, displacements, w 
593,max 

= 
 
0.404 m
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Finally we will summarize the results of the previous optimization mesh-

ing test in the following table:

* Excluding triangular faces

**  Including extended faces

5.6  Westfield Shopping Mall 

The undulating roof surface of the Glazed Roof at the shopping centre 

Westfield/London is inspired by the wave movements of water in nature. 
Designed by the Buchan Group International pty Ltd and Benoy the roof 

shell covers the area of approx. 5,500m². The triangulated steel structure 

is based on a plan grid of equilateral triangles which is then projected on 

the doubly curved roof surface. The result of this meshing process are 

2250 unique glazing units, 12,000 individual beams and 7,000 individual 

nodes. The beams are formed by welded box sections with common outer 

cross section dimension and varying plate thicknesses. The nodes are fab-

ricated using CNC milling and composed of 20 individual parts in order 

to form a bolted connection.

In plan the roof is C - shaped with 72m long and 24m wide horizontal 

legs. The upright long side measures 120m and is 24m wide as well. The 

surface comprised of a series of waves joined with dome shaped forms at 

the corners. 

In the following chapters we will investigate alternative PQ meshes for 

the roof glazing. 

Figure 5.64: Westfield London [Image by 
Seele]

Figure 5.65: Westfield London [Image by 
Seele]

Mesh 01: Rhombic Mesh 02: Radial Mesh 02: Radial Mesh03: LPCEdge condition free free fixed fixedNo of faces 1618* 2459**Max face edge [mm] 3288 4183Min face edge [mm] 1139 332Planarity subdiv [mm] 1305 148Planarity subdiv [%] 57,85 8,33Iterations 5% 457 24 176 3Iterations 3% 2601 121 1119 25Iterations 1% 7809 2664 13746 593Displacement 5% [m] 4,765 0,715 0,863 0,094Displacement 3% [m] 6,954 1,268 1,801 0,178Displacement 1% [m] 9,23 1,97 3,000 0,40Face Discontinuity [°] 21,60 28,20 28,20 11,43Face Discontinuity 5% [°] 13,86 21,06 46,03 11,16Face Discontinuity 3% [°] 12,17 14,96 51,77 11,30Face Discontinuity 1% [°] 17,75 9,17 52,72 18,22Edge Discontinuity [°] - 40,06 40,06 34,47Edge Discontinuity 5% [°] - 38,42 56,21 34,44Edge Discontinuity 3% [°] - 37,64 122,59 33,97Edge Discontinuity 1% [°] - 45,71 130,49 31,55

2048475962245222,95

Table 5.1: BM _Mesh 01 to 03 optimization summary  
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5.6.1  LPC Graph

In order to inform the layout of the topology mesh we compute the LPC 

graph of the roof surface (Figure 5.66).

We can observe a similar behaviour of the LPC’s in the wave parts of the 
surface (Figure 5.67). The minimum (red) LPC’s are generally following 
the valleys and ridges of the waves. Whilst the maximum LPC’s (blue) 
then necessarily are follwoing the  waves and crossing the valleys and 

ridges orthogonally. Along the ridges several umblical points of type 
lemon star and star are located which disturbs the in principal clear order 

of the LPC’s. Whilst omitting the local distortion caused by the umbili-
cal points this suggest that this part of the surface is fairly suitable for a 

meshing which is very close to the LPC graph.

In the dome areas we can observe a different behaviour of the LPC’s. At 
the central area of dome 1 (Figure 5.68) the LPC’s show a very noisy 
behaviour. Several umbilical points distort the graph so that is  is not suit-

able as a literal guide for the topology meshing. Near to the lower part of 

the dome the LPC’c are more organized whilst showing a circular layout 
in maximum direction.   

Dome 2 is characterized by a ridge spanning diagonally between the inner 

and outer corner of the perimeter. The maximum LPC’s are running paral-
lel here and are flanked by umbilics.   

Figure 5.66: Westfield LPC graph

Figure 5.67: Typical wave LPC graph

Dome 1 
 

Dome 2 
 

Waves 
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5.6.2  West_Mesh 01: Rhombic Tessellation 

Similar to the case study of the British Museum Court Yard Roof we 

explore a quad meshing version of the initial triangulated mesh. Two 

triangular mesh faces are joined to receive a rhombic shaped quad face. 

In order to control the perimeter in plan during the optimization we intro-

duce a vertical constraint surface along the outline of the roof. All verti-
ces located at the perimeter will stay on this surface during optimization. 

We exclude the triangular faces along the perimeter for the optimization 

process.  

The most non - planar facets (rp
n,max

 = 0.47) are located along one of the 

wave ridges. Consequently this occurs where the mesh edges show the 

least alignment whit the curvature lines (Figure 5.72). 

The optimization target will be again set to 1% (rp
max,i

 = 0.001) which is 

sufficient when using double insulating glazing units. The maximum face/
edge continuity angel of the starting mesh counts to fc

n,max
 =33.4°/ fe

n,max
 

=25.7°.

Figure 5.68: Original triangulated tessellation Figure 5.69: Rhomic Mesh with constraint surface

Figure 5.70: LPC graph Dome 1 Figure 5.71: LPC graph Dome 2
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The process shows average convergences in respect to the high non - pla-

narity value of the starting mesh and the applied perimeter constraint. 

To achieve the target planarity the mesh faces get highly distorted in the 

some areas. The edge continuity value decreases by 260% from fe 
0,max

 

=25.7° to fe
2945,max

 =69.2°. 

The visual quality of the optimized mesh may not be acceptable for reali-

zation. The deflections from the target surface (Figure 3.77) is also fairly 
large ranging up to 3.00 m. 

Hence we will explore more curvature line correspondent meshes in the 

following chapters.Figure 5.72: Mesh edge to LPC misalignment 

Figure 5.73: West_Mesh 01, Planarity  rp
n,max

 = 0.47, i = 0 Figure 5.74: West_Mesh 01, rp
 i,max

 = 0.05, i = 163

Figure 5.75: West_Mesh 01, rp
 i,max

 = 0.03, i = 813 Figure 5.76: West_Mesh 01, rp
 i,max

 = 0.01, i = 2945



5.6.3  West_Mesh 02: Orthogonal Wave Tessellation

For the generation of the next mesh we will pick a series of maximum 

LPC’s as guides. As shown in Figure 5.78 the guides are running in equal 
distance parallel to the wave ridges or valleys. The vertices of the crude 

topology mesh are the located at the ends and mid points of the guides. At 
the two domed areas we locate the vertices more freely in a centred posi-

tion in order to receive an almost orthogonal layout of the mesh faces. We 

apply 3 subdivision iterations to receive 2304 faces with an average edge 

length of  2.00 m. We then again apply the perimeter surface constraint 

during the optimization.     

Figure 5.77: Guide LPC and Topology Mesh 02 Figure 5.78: West_Mesh 02, n = 2304

Figure 5.79: West_Mesh 01, displacements, w 
2945,max 

= 
 
3.04 m 
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The most non - planar faces (rp
n,max

 = 0.114 ) are located scattered along 

the inner perimeter as displayed Figure 5.80. The maximum face/edge 
continuity angel of the starting mesh counts to fc

n,max
 =27.5°/ fe

n,max
 

=27.5°. 

The optimization shows average convergence requiring  1566 iterations 

to reach the target relative planarity value rp
 593,max

 = 0.01 (Figure 5.83). 
The scattered faces with the initial maximum non-planarity along the 

perimeter disappear fast. The non-planarity hot spot thereafter occur at 

the dome areas.         

The face continuity improves to fc
1556,max

 =19.6° whilst the edge continu-

ity decreases only insignificantly to fe
n,max

 =27.9°. The improvement of 

the face continuity is mainly related to the flattening of dome 2. As in this 
area the faces edge are crossing the LPC’s diagonally large deformations 
are required to achieve the planarity criteria.  

The maximum deformation w 
593,max 

= 
 
1.08 m (Figure 5.84) occur along 

the ridge of dome 1 and in the centre of dome 2 in downwards direction.

The visual appearence of the optimized mesh is quite acceptable and 

stays close to  the original intent of the wave form. The explicit results of 

the optimization runs are documented in Appendix A7 to A9.   

Figure 5.80: West_Mesh 02, Planarity  rp
n,max

 = 0.114 ,i = 0 Figure 5.81: West_Mesh 02, rp
 i,max

 = 0.05, i = 124

Figure 5.82: West_Mesh 02, rp
 i,max

 = 0.03, i = 566 Figure 5.83: West_Mesh 02, rp
 i,max

 = 0.01, i = 1566
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5.6.4  West_Mesh 03: LPC Tessellation

For the last meshing option we will aim to stay as close as possible to 

the LPC graph. Due to the fact that the LPC’s are crossing the boarder of 
the surface at any angel we need to extend the starting mesh beyond the 

perimeter. The unnecessary faces may be deleted or trimmed after the 

optimization. The network of guide LPC’s is displayed in figure 5.85. At 
the wave areas we aim to choose LPC’s at similar spacing in order to re-

ceive a homogeneous mesh. The umblical points located along the ridges 

of the waves are diverting most of the maximum LPC’s. Hence we cannot 
use an entire LPC as a guide. However, if we omit the distorted areas we 

can compose a interrupted but in general continuous guide from several 

LPC’s as shown in Figure 5.86. 

For dome 01 we use the LPC’s which are running tangential to the centre 
of the dome until they start getting distorted by the multiple umblical 

points in this area. At the inner dome area we continue the mesh in an 
orthogonal layout. 

The dome 2 is characterized by a ridge spanning across between the inner 

and outer corner of the perimeter. Here we can use the diagonally running 

LPC’s as guides whilst ignoring the distorted regions. As these LPC’s are 
fanning out towards the outer corner we may correct the mesh vertices 

after one subdivision iteration (Figure 5.88).  

Figure 5.84: West_Mesh 02, displacements, w 
1566,max 

= 
 
1.10 m 

w = 1.0m

w = 0.97m
 

w = 1.10m
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Figure 5.85: Guide LPC network Figure 5.86: Component Guide LPC

Figure 5.87: Crude mesh Figure 5.88: Subdivison 1 with corrections

Figure 5.89: West_Mesh 03, n = 2358 
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The most non - planar faces (rp
n,max

 = 0.161 ) are located at the outer corner 

of dome 02. This is mainly causes by their elongated shape. As the LPC’s are 
fanning apart towards this corner the shorter face edge follows respectively.  

The maximum face/edge continuity angel of the starting mesh counts to 

fc
n,max

 =27.8°/ fe
n,max

 =34.9°. 

Due to the jagged perimeter of the mesh we can not apply sensible edge con-

straints. Here the approach will be that all faces crossing the original perim-

eter will be truncated after the optimization.  

In order to reach the relative target relative planarity value of rp 128,max = 0.05 

(Figure 5.91) only 128 iteration steps are required.
this is mainly caused by the fact that the corner faces at dome 02, which 

show the maximum non-planarity, can move fairly free. The non-planarity 

hot spot the shift to more constraint areas at the centre of dome 01 and side 

of dome 02.

The speed of convergence the slows down in order to reach the 0.03 and 0.01 

target values. The hot spots then consistently stay at the domed areas.

Figure 5.90: West_Mesh 03, rp
 i,max

 = 0.161, i = 0 Figure 5.91: West_Mesh 03, rp
 i,max

 = 0.05, i = 128

Figure 5.92: West_Mesh 03, rp
 i,max

 = 0.03, i = 700 Figure 5.93: West_Mesh 03, rp
 i,max

 = 0.01, i = 3149
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The face continuity improves to fc
700,max

 =21.7° until the optimization 

reaches rp
 700,max

 = 0.03. During the iterations towards rp
 700,max

 = 0.01 the 

face continuity value rises back to the level of the staring mesh: fc
3419,max

 

=27.2°. This is caused by a slight ridge developing along the seam of 

dome 02 connecting to the horizontal wave area (Figure 5.92). 

The edge continuity decreases slightly to fe
3419,max

 =36.7° which mainly 

occurs along the jagged edge faces. As these faces will be truncated after-
wards the deterioration can be ignored.

The maximum deformation in the mesh w 
593,max 

= 
 
1.19 m occurs along a 

edge at dome 2 in downwards direction.

As previously mentioned we may trim all faces which extend over the 
original perimeter as shown in Figure 5.95. This approach obviously 

generates very small faces or faces with sharp angels. Some the resulting 

shapes may not be realizable due to technical limitations. 

Figure 5.94: West_Mesh 03, displacements, w 
3149,max 

= 
 
1.10 m 

w = 1.02m
 

w = 0.74m
 

w = 1.19m
 



  160

In Table 5.2 we summarize the results of the three meshing approaches for the Westfield Roof. 
The best results delivered West_mesh 02 although there was not the most consequent alignment withe the LPC 

graph. 

The much stricter approach in West_mesh 03 did not converge  in better optimization result. 

This is mainly because in the domed areas the LPC’s showed a unsuitable fanning or distorted layout. Mesh 01: Rhombic Mesh 02: Wave Mesh03: LPCEdge condition fixed fixed freeNo of faces 1011 2304 2358Max face edge [mm] 2241 2149 6117Min face edge [mm] 2743 1055 442Planarity subdiv [mm] 1102 176 256Planarity subdiv [%] 47.35 11.75 16.14Iterations 5% 163 124 128Iterations 3% 814 566 700Iterations 1% 2945 3949 3419Displacement 5% [mm] 2353 511 920Displacement 3% [mm] 2794 786 1061Displacement 1% [mm] 3042 1103 1197Face Discontinuity [°] 34.40 27.86 27.83Face Discontinuity 5% [°] 25.85 23.70 22.51Face Discontinuity 3% [°] 30.16 22.68 21.74Face Discontinuity 1% [°] 35.97 19.25 27.20Edge Discontinuity [°] 25.74 27.86 34.85Edge Discontinuity 5% [°] 34.89 23.64 36.88Edge Discontinuity 3% [°] 29.75 22.62 37.74Edge Discontinuity 1% [°] 69.17 19.94 38.68

Figure 5.95: West_Mesh 03, truncated mesh 

Table 5.2: West _Mesh 01 to 03 optimization summary  



Conclusion  Chapter 6
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6  Conclusion

The motivation for this thesis arose from the practical experience in the 

building and construction business that to date no universal method is 

available which allows tessellating arbitrarily generated 3D free-form 

surfaces with quadrilateral planar elements (chapter 1 - Buildability of 

free-form architecture and its limitations). Available methods are restrict-
ed to either a very limited number of surface topologies or may require 

the manipulation of the input data. 

Therefore this dissertation focused on the development of a computation-

al tool which can process the input data provided by any given surface 

into data output comprising solely of planar quads suitable for the subse-

quent processing of building components.

This final chapter shall give an overview of the approach taken and the 
solution provided -what has been achieved and what could be future per-

spectives. In addition, limitations of the developed method are discussed 

and an alternative approach presented. 

Finally a prospect is given on a number of questions that may be ad-

dressed with the further development of the optimization process in order 

to address specific  requirements of the manufacturing industry. 

5.7  Methodology and solution

The thesis introduces a novel generation procedure for the approxima-

tion of arbitrary surfaces with a PQ mesh and documents with a number 

of case studies how successfully the developed tool can perform surface 

approximations.

The process starts with an imperfect mesh consisting of planar and non-

planar facets whose vertices are located exactly on the target surface. 

In chapter 3 a manipulated version of the Dynamic Relaxation (Planar 

Relaxation) was proposed which optimises the mesh vertices towards 

their planar state. It could be proven that the iterative application to any 

unconstraint mesh will eventually find a solution consisting of almost 
planar faces. 

If interior or exterior constraints are applied to the mesh during the opti-
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misationthe process will be slowed down. Depending on the constraints 

under very rare circumstances it might be possible that no solution can 

be achieved. During the non-linear optimisation process the vertices will 

gradually move away from the target surface. Depending on the number 

of iterations the mesh faces may distort with the overall appearance of the 

mesh eventually degrading.

The best results can be expected if the geometry of the starting mesh is 

close to its planar version hence the quality of the starting mesh defines 
how satisfactory the result of the optimisation process will be. Ideally the 

edges of the starting mesh can be aligned with a network of conjugate 

curves.

In chapter 2 the mathematical properties of PQ facets and meshes are 

outlined in order to explain the nature of a ‘high-quality’ starting mesh. 
The meshing process starts with a topology mesh which consists of fairly 

large hand-sculpted faces. In order to achieve a refinement a subdivision 
algorithm (Catmull Clarke) is iteratively applied until the mesh faces 

could be reduced to the desired size. It could be proven that the CC sub-

division is suitable for PQ meshing and delivers smooth and continuous 

starting meshes which are suitable as start geometry for the subsequent 

optimization process. Due to the algorithm’s nature the mesh face popu-

lation has an exponential development. Hence the size of the individual 

faces of the crude mesh and the number of subdivision iterations need to 

be chosen carefully in order to achieve the desired mesh density. If the 

target surface comprises of a non-compact footprint where some areas 

require a higher number of crude faces(e.g. due to high curvature areas 

or umbilical points), the desired mesh density can only be achieved with 

workaround methods: the mesh may be extended over the target surface 

perimeter and then truncated after subdivision and optimization. 

For future research the algorithm may be manipulated in such a way that 

other sequences of numbers than the pre-defined subdivision steps of 4, 
16, 64, 256can be computed. In chapter 4.3 topology mesh layouts are 

proposed which reflect the four different types of umbilical points. In gen-

eral umbilical points represent visually unpleasing features which should 

be avoided. For visual and meshing specific reasons it is recommended 
to sidestep the exact re-meshing of umbilical features: Especially in close 

proximity of the star type point the CC subdivision tends to generate 

mesh faces which are elongated and too large in size. Stretching of the 

faces can be avoided by locating the adjacent vertices closer to the um-

bilical point than proposed by the LPCs as the newly generated vertices 

will move away during subdivision and smoothing. 

Minimizing of the distortion caused by the subdivision algorithm near 

umbilical points may also be an interesting topic for further research. 

For the PQ meshing of the Westfield Roof in London a successful option 
was proposed which does not consider the umbilical features of the target 

surface at all. Only the general direction of LPC’S is considered for the 
topology mesh layout. 

As demonstrated in chapter 2.5 the Lines of Principle curvature repre-

sent a suitable guide for the layout of the topology mesh. In chapter 4.2 

a robust method for the generation of Principle Curvature Lines of any 

NURBS surfaces is proposed. It is understood that the generated curves 
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are only approximate and cannot withstand the exact mathematical defi-

nition of a Principle Curvature Line. Occasionally it can occur that the 

curvature information provided by the 3D CAD Software (Rhino) may 
locally be inaccurate in terms of the correct sign (Min, Max – curvature 

direction). In order to generate continuous curves these direction signs 

will require correction during the approximation process. Despite of 

the inaccuracies the LPC maps have proven to provide sufficient data to 
inform the sculpting of the topology mesh. The Umbilical points on the 

target surface already appear roughly in the right location if a reasonably 

dense grid of Principle Curvature Lines has been generated. For a more 

accurate detection a robust method using adoptive quad tree composi-

tion is proposed in chapter 4.2 and proves to deliver meaningful results. 

Chapter 2.4.6 states that any surface comprises of infinite conjugate curve 
networks. As the Principle Curvature Directions are always pointing in 
orthogonal directions to each other it can be concluded that the LPC net-

work is the first choice as a guide for PQ meshing. 
However, for surface areas with a ‘noisy’ behavior of the LPC’s the 
investigation of alternative conjugate networks should be the focus of 

further research: if we compare the generating curves of a translation 

surface with their Principle Curvature Lines it can be observed that the 

curve networks do not necessarily match. Especially for spherical shaped 

regions which naturally comprise of umbilical points an alternative conju-

gate network may provide a visually more pleasing and simpler PQ mesh. 

For the dome shaped surface areas of the Westfield Roof case study in 
(chapter 5.4.3) the orthogonal mesh layout provided better approximation 

results than the strict re-meshing of umbilical features. 

In chapter 3 an overview of surfaces with inherent PQ meshing principles 

was compiled. With the knowledge about these already well researched 

PQ meshing surfaces the designer can use them as a kind of construction 

kit to compose a desired shape from different PQ mesh types or integrate 
one of them as a patch /patches of them into an otherwise free sculpted 

surface. The patch transition will have to be smoothed out and planarized 

using the proposed tools (CC- Smoothing, Planar Relaxation). 

5.8  Future directions

Finally it is suggested that the investigation of a ‘bottom up’ method 
could be an interesting topic for further research: 

The vertices of the starting mesh are not located on the target surface. In 

contrary to the suggested ‘top down’ method we start with a perfect PQ 
mesh whose vertices are located within a certain distance from the target 

surface. Each vertex is then attracted (pulled) towards the surface whilst 

applying a user-defined ‘force’. By being moved/forced onto the desired 
shape the initial mesh faces might lose their planarity. The Planar Relax 

Algorithm can be applied to re- establish the PQ mesh status. To improve 
the appearance a CC- smoothing iteration can be applied before planari-

zation. By repetitively executing the 3 steps of ‘Attraction, Smoothing 
and Planarization’ the starting mesh will be sequentially moulded into the 
target surface which is acting as the die cast while retaining planarity of 

its faces independent of the number of iterations. Once the desired shape 
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has been accomplished the process can be stopped at any time.

As displayed in chapter 5.6 umbilical points of the input surface can 
cause an irregular appearance of the approximation mesh. This prob-

lem can be avoided  with the bottom-up method for which the umbilical 

points of the input surface do not have to be taken into consideration 

when generating an approximation mesh. Yet the optimization process ap-

plied to the approximation mesh may deliver a satisfying result. 

5.9  Final reflections

It has been proven that the developed method can be applied success-

fully to any arbitrary surface. Its application is numerically robust and 

without exception will deliver a result which can be used for subsequent 

processes. 

Furthermore the case studies conducted have confirmed that the algorithm 
proposed for the application performs well and achieves good results in 

terms of planarization of the approximation mesh. 

However to improve the properties of the output geometry in terms of 

buildability and cost a number of properties could be implemented into 

the optimization process: 

-reduction of torsion within the mesh nodes 

-faces with similar edge length 

-repetitive elements

-nearly rectangular corner angles

In conclusion, it can be said that the proposed method is not meant to be 

an end result, but intended to provoke  interest and ambitions for contin-

ued studies and research in the general field of PQ meshing as well as its 
translation into the built environment. 
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7  Appendix
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7.1  Graphs
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BM Mesh 01 (Rhombic)
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BM Mesh 02 free (Radial)
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BM Mesh 02 fixed (Radial)
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BM Mesh 03 fixed (LPC)
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West Mesh 01 Rhombic
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West Mesh 02 Wave
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West Mesh 03 LPC
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Appendix 11 

7.3  The ‚Enhanced Meshing‘ Plugin

In order to perform the methods described in chapter 4 PQ mesh approximation a ,PlugIn` application for the 

3D-CAD environment Rhinoceros 4.0/5. ® has been developed. The functionality of the ‘Enhanced Meshing’ 
plugin is outlined in the following chapter. 

 

The programming of the ,plugin’ has been performed using the VB.Net language.  As a programming environ-

ment the Visual Studio Version 2008 Standard is used. McNeels Rhino provides a Software Developer Kit 
(SDK) for Rhino 4.0 / 5.0 which allows to use all command functions available in the standard software for the 

development of bespoke applications - called Plugins.  

In order to run the Enhanced Meshing Plugin it needs to be installed using the Rhino Plugin Manager: 

If the Load box in the plugin manger is ticked the plugin will load automatically when Rhino is opened. 

Alternatively the plugin will appear when ‘Enhanced_Meshing’ is typed into the command line.

The Enhanced Meshing  Toolbox will appear on right side of the screen. The box can be undocked and replaced 

similar to the standard Rhino tool boxes.
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The toolbox contains the following selection boxes:

1. Base mesh

2. Control Objects

3. Preview

4. Catmull Clark Subdivision

5. Lines of Principal Curcature (LPC)

6. Dynamic Relaxation

7. Baking

8. Report

The Selection boxes can be be expanded and collapsed using the 

top right black button in the title block of each selection box.

The functionality of the individual tool boxes will be described 

in the following . 

Appendix 12 

1.

2.

3.

4.

5.

6.

7.

8.
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Appendix 13 

1. Base mesh

The ‘Set Base Mesh’ button will prompt in the Command Line:
‚Select Base Mesh‘

When the Base Mesh is selected a blue colored preview mesh appears

Mesh preview

If  ‚Repair‘ button is enabled all mesh vertices which are closer together then the defined repair tolerance (abso-

lute value in the rhino file units) will be collapsed into one vertex.
 

,Restore‘ button will restore the original state of the mesh when it was selected 

All operation performed with the ‚Catmull-Clark Subdivison‘ and/or ‚Dynamic Relaxation‘ functions will be 
lost.
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Appendix 14 

The Info Panel will give information about the selected base mesh:

No of Faces, Vertices

Max/Min Edge Lenght

Max/Min Angel – not used
Absolute Planrity in rhino file units (usually: mm or m)  
Relative Planarity as described in chapter 5.2.1 

2. Control Objects

In the ,Control Objects’ box the drawing objects can be selected which will constrain the operations executed 
with function in the ‘Catmull- Clark Subdivion’ and ,Dynamic Relaxation’ boxes. 

Add Control Objects Button:
Point, Curves and surfaces to be selected – Command line

Selected control objects: boundary surface

Selected control objects will be highlighted in light red after their selection (only if preview button is enabled 

for control objects)
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Control objects - when selected

If ‚Snap‘ button is enabled the vertices snaps directly to all control object within the given range

Hence range to be chosen in relation to mesh faces for curves and points

‚Range‘ within a vertex snaps or attracts to the closest control object

If ‚Snap‘ is disabled the value ‚Weight‘ defines the distance between the vertex and the control object within the 
snap range. A higher value for ‘weight’ the vertex will be pulled closer to the control object.

If ‚Global‘ is ticked all properties (Range, weight) of previously added control objects will be overridden and set 

to the current values  

Control objects can be selected successively and given an individual range or weight for snapping or attracting

‚Clear Controls‘ will delete all control objects 

This function will work for the components ‚Catmull Clark Subdivision‘ and ‚Dynamic Relaxation‘ 

3. Preview

The ,Preview’ box controls the items which are shown in the Graphics conduit. The displayed geometry only ex-

ist as a preview and are not rhino drawing objects. Only after executing the baking function the chosen elements 

become real drawing object. 

Buttons within ‚Preview‘ box will enabled/disables preview of selected and generated objects
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Appendix 16 

When button appears light blue the specific function is enabled.

If button is grey the specific function is disabled.  

To visualize the change in of setting the ,Preview’ button may need to be switched on/off or the display need to 
be zoomed in/out.

,Preview‘ button enables/disables preview of objects in general

‚Control‘ button enables/disables preview of control objects and will show/hide control objects coloured light 

red. Red connection lines will be shown between a mesh vertex and all control objects within the given Range

Vertices with control objects within range 
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Appendix 17 

,Diag Mesh‘ button showing the diagonal lines connecting the opposite vertices of each face of the selected 

mesh 

,Displacement’ button shows pink connection lines between each vertex of the base mesh and the correspond-

ing vertex of the optimized mesh after applying ,Dynamic Relaxation’ operations. Functionality only active for 
mesh deformations not for mesh populations such as Catmull-Clark operations.
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Appendix 18 

´Wire’ button enables the display of all face edges of the current mesh as blue lines

,Base’ button enables the display of the base mesh face edges as green lines

‘Circles’ button shows four red coloured circles each defined by three vertices of a mesh face in consecutive 
order. If all circles are identical the mesh faces is called to be circular. Function allow a visual judgment if the 

chosen mesh is suitable for ,Circular’ Dynamic Relaxation. 
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,Continuity’ button shows the colour gradient mesh informed by the continuity values computed at each vertex 
of the current mesh.

,LPC Surface’ button shows the selected surface for lines of principle curvature generation in light cyan colour 
,LPC Seeds’ button shows the seed points selected for lines of principle curvature generation in pink colour
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,Tensors’ button is showing the principal curvature vectors of the selected LPC surface at each seed point. For 
minimum curvature direction in blue colour and for maximum curvature direction in red colour. The vector 

display only appears after the LPC generation procedure was performed previously. 

,Planarity’ button shows a colour gradient mesh informed by the planarity values of each face

If the ,Absolute’ button is enabled the gradient colour mesh is informed by the absolute planarity values. Maxi-
mum value is displayed numerically in the top left corner of the screen.



  188

Appendix 21 

 If the ,Absolute’ button is disabled the gradient colour mesh is informed by the relative planarity values. Maxi-
mum value is displayed numerically in the top left corner of the screen.

,Attract Srf’ button shows the surface selected if the ,Planar Attract’ Optimization in ‘Dynamic Relaxation’ is 
chosen.

 

,Attract force’ button shows the force vectors as a pink line between each vertex and the attract surface (Similar 
to the ,Control’ display).
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4. Catmull Clark Subdivision

In the ,Catmull-Clark Subdivision’ box the input data and type of execution of the CC Subdivision process is 
defined.

In the ,Levels:’ selector box the number iterations for subdivision and smoothing operation can be chosen

If ‘Adv’ is disabled for each iteration both subdivision and smoothing will be performed simultaneously

If ‘Adv’ is enabled the no of iteration for subdivision and smoothing operations can be chosen individually

Only subdivisions are performed:
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Only smoothing is performed:

If  ‘Begin From Base Mesh’ is enabled all previously performed operations will be restored and currently cho-

sen operations start from the base mesh 

 

If  ‘Begin From Base Mesh’ is disabled all operations will be performed using the current mesh to start from. 
This would allow to change control conditions for each iteration.     

In the ‘Naked Edges’ selector box the following restrain condition for naked edges and their belonging vertices 
can be chosen: Loose, Tight or Fixed:

For the ‘Loose’ condition all edge vertices will be unrestrained. Hence the mesh will shrink along the edge ver-
tices due to the subdivision and averaging procedure as described in chapter    
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For the ‘Tight’ condition all edge vertices will be dependently restraint and move into the average position be-

tween the ‘Fixed’ and the ‘Loose’ condition. 



  192

Appendix 25 

For the ‘Fixed’ condition all corner and edge vertices will stay at their position according to the base mesh. All 
newly generated vertices are located on the polygonal perimeter of the base mesh. 

The ,Process’ button will perform the operations with the chosen settings.  
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5. Lines of Principal Curvature (LPC)

In the ,Lines of Principal Curvature (LPC)’ box the input data and type of execution of the LPC generation pro-

cess is defined.

,Set LPC Surface’ button will prompt in the command line to select the surface for LPC generation.

,Set LPC Boarder’ button will prompt in the command line to select the surface boarder of the LPC surface. 

Note: When a trimmed Brep is selected the trimming boundary will not be detected automatically by the algo-

rithm. Hence the explicit definition of the surface boarder is required. As an option a smaller area within the 
chosen surface can be defined by closed curve.
    

,Seed Grid’ will set a grid of seed points on the selected surface with the defined density. Both the U and V do-

main of the surface patch will be divided by the number given and a seed point located respectively. 
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In order to control the seed point density it is recommend to rebuilt the surface (cut off trimmed areas, change 
u/v density) using the standard Rhino Tools.

Nurbs patch with rebuilt uniform u/v- density:

With the ‘Set Seeds’ Button’ individual seed point can be selected to start the LPC generation from
 

,Set LPC Boarder’ button will set the boundary within the LPC generation is performed. The boarder not neces-

sarily has to coincide with the surface patch boarder but cannot cross the surface boarder.

In the section box ,Steplimit’ the number of approximation steps can be chosen. For details of the approximation 
process please refer to Chapter  4.2.3
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The , Stepsize’ defines the length of the vector in the Rhino files units for the approximation procedure. Value 
should be chosen according the surface curvature: Small value for highly curved surfaces – larger value for less 

curved surfaces. Recommended value: 100mm to 500mm   

Note: Values for ,Steplimit’ and ,Stepsize’ need to chosen in order to allow long enough LPC’s to run over the 
entire surface patch. Generated lines will automatically stop at the defined LPC boarder.

With the ‘Seed Grow’ button individual LPC’s can generated using the seed point sampling definition as outline 
in chaper 4.2.4

 

The value set for ‘Seed grow’ will define the number of LPC’s are generated for the selected Growing direction.

The ‘Grow dir’ can be set to ,Max’ or ,Min’. 
For ,Max’ the new generated Lines are Minimal LPC’s places in the specified number and distance along the 
corresponding Maximum LPC. The process will start at all selected seed points in both direction parallel to the 

initial Minimum LPC.   

For ,Min’ the procedure is performed respectively.

The value ,Grow (h) specifies the reference sampling distance according to Equation 4.4 chapter 4.2.4.
The value for ,Grow (alfa)’ influences the valued sampling distance (Equation 4.4 ).
For the value ,0’ the newly generated LPC’s are spaced in reference distance along the LPC in growing direction
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For values (alfa) higher then ,0’ the valued sampling distances (h1, h2) at all step points are evaluated. The new 
sampling point is then located at the highest value for h1 or h2 in the evaluated distance. Hence the location of 

the new sampling points may not lay on a particular growing direction LPC.   

The ‘Process’ button will run the generation procedure for the given settings.

The ‘Bake’ button will add the LPC’s as curve objects to the current layer of the rhino file: Blue coloured spline 
curves for Minimum LPC’s and Red coloured splines for Maximum LPC’s 

6. Dynamic Relaxation

In the ,Dynamic Relaxation’ box the input data and type of  execution of the Dynamic Relaxation Process is 
defined.

In the upper part (red) the settings for general DL processing can be defined. In the lower part (orange) for the 
bespoke DL processing functionality can be defined.
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In the ,Residual’ selector the numeric value will be until the DR process will be executed.

In the ,Cycles’ selector a maximum limit of iteration can be defined. Please note that the DL procedure will stop 
when the given residual is reached despite the maximum no. of cycles are reached. As against the given residual 
may not be reached for defined no. of  cycles.

The value for ‘Damping:’ can be chosen in the corresponding selection box. Note: For the default value = 1.00 
the DL process will executed as an undamped system. Only values larger the 1.00 will consider damping. The 

application of damping is only recommended for instable systems as the damping will slow down the conver-

gence of the system. Usually damping may not be required.

When ‘Auto Merge’ is enabled the algorithm will merge nodes automatically which are closer then the ,Repair 
Tolerance’ value as defined in box ‘Base Mesh’ 

If the selector ‘Auto Step’ the program will automatically evaluate a step value which ensures a stable process. 
The chosen values is displayed in the disabled selector box below. I is recommended to run the DR process with 

, Auto Step’ enabled.

In the ,Edge Stiff:’ selector the cable stiffness of all faces edges along the mesh perimeter can be set. For the de-

fault value 1.00 all edge cables will have the same stiffness then the cables within the net/mesh. All other values 
will amplify/reduce the edges stiffness in relation to the inner members.

Edge Stiffness = 1.0
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Edge Stiffness = 5.0

The ,Max Displace:’ selector will limit the displacement of any non – constraint vertex to the specified value in 
relation to its original position. For the default value 0 no displacement restriction will be considered.

In the ,Nodal Load’ selector external loads can be specified which are applied in global z – direction to each 
node of the mesh. The loads value is dimensionless and needs to be set in relation to the mesh size. A trail run 
will show the effect of the applied loading.
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For the form finding of shell structure a negative value for the nodal load must be applied. 

In the lower part of the box the input parameter for the bespoke DL processing functionality can be defined. 

‘LPC Relax’ – Development still in progress 

‘Planar Rlx abs’ will activate the planar relaxation optimization considering the residual target as an absolute 
value of planarity for each mesh face. 

  

‘Planar Rlx %’ will activate the planar relaxation optimization considering the residual target as the relative 
value of planarity for each mesh face. The following general selection boxes are enabled for the ,Planar Rlx abs, 

and ,Planer Rlx%’ : Damping,  Auto Merge, Auto Step, Max Displace and Nodal Load.   

‘Edge Relax’ – Development still in progress
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In the ‘Planarity [%]: ‘ selector box the residual value both for ,Planar Rlx abs, and ,Planer Rlx%’ must be speci-
fied.

In ,Node Mass’ the mass value may be modified which is used in for the DR algorithm – please refer to chapter 
4.5.2, Equation 4.2.4. A higher value for m will amplify the internal forces.

Note: ,Node Mass’ selector is also available for general DR processing.

The ,Smoothing Frq:’ selector defines after how many DR cycles a CC smoothing cycle will be performed (op-

tional).

If the ‘Write Log’ button is enabled a log file monitoring each cycle of the optimization will be written to the 
following location: c:\temp\planar_rlx_log.txt. Existing files will be overwritten.
 

Note: Please ensure that the designated folder c:\temp exists on the computers hard drive. 

‘Circular Relax’ – Development still in progress 

The ‘Process’ button will run the Dynamic Relaxation procedure for the given settings.

7. Baking

In the ,Baking’ box the geometric objects generated or manipulated with/by the processes and functions de-

scribed above can be baked as drawings objects into the current rhino file. The following options are available.

 Mesh   2D mesh 

 Nurbs Patches  mesh surface approximated with nurbs patches

 Wireframe  mesh edges discretised with lines

 Mesh (Planarity) gradient coloured mesh showing planarity values

 Circular mesh  no. 4 circles approximating each mesh face

 Diagonal Mesh  diagonal inversion of mesh with triangular faces along perimeter

 Displace Vectors lines objects connecting verticies of base mesh and optimised mesh

 Mesh (Continuity) gradient coloured mesh showing continuity values

In the selection box ,Thickness’ the option is available to bake a mesh with a specified thickness. For the default 
value 0.00 a mesh with no thickness will be baked.                 
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8. Report

In the ‘Report box’ information is given about the current selection, optimization or baking process.
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7.4  The PQ Mesh Approximation Process

In addition to the theoretical background and procedure described in chapters 4.2 to 4.5 in the following the as-

sociated Rhino(c) modelling and Enhanced Meshing plugin operations are outlined in further depth. We recall the 

approximation steps:

 Step 1: Principle Curvature Line Sketch

 Step 2: Topology Mesh 

 Step 3: Subdivision Mesh

 Step 4: Optimization

For their demonstration the case study Westfield Shopping Mall as summarized in chapter 5.6 is used and to be 
seen as an extension of the content already provided in this chapter. 

Step 1: Principle Curvature Line Sketch

For the processing of the principle curvature line sketch the target surface needs to be represented as a nurbs 

surface. It is also possible to use a trimmed and joined Brep for the LPC Generation as the algorithm runs over 

seams. In our example the target surface consist of no. 5 trimmed Breps. One can generate the LPC’s for each 
patch individually or as a whole. 

Nurbs surface

Especially if he ‘Seed Grid’ function is use the generation in individual patches may be preferred. As described 
previously the ‘Seed Grid’ function subdivides the u / v - domain by a fixed number chosen by the user and 
dependant on u/v - density of the particular patch. With ,Rebuilt Surface’ function provided by Rhino the u/v - 
density can be adjusted in order to match the patch size and desired density of the seeds. Alternatively the seeds 
can be manually chosen using the ‘Set Seeds‘ function of the Enhanced Meshing plugin. Please make sure that 

seeds are located on the surface. 

For our example we use the ,Seed Grid’ function with the density of 10 processing the entire surface. The sur-
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face comprised of the outline dimensions of 120m x 72m. The ,Stepsize’ for LPC generation is set to 0.2m. The 
,Steplimit’ is set to 800 which would allows the generation of a single LPC with the a total maximum length of 
approximately 800 x 0.2m = 160m. Hence a LPC could theoretically run over the entire length of the surface. 

LPC surface with LPC border and seeds

LPC sketch
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Step 2: Topology Mesh

As described in chapter 4.3 for the sculpting of the topology mesh a selection of LPC need to be chosen. There 
location relates to the desired face size and the no of CC - subdivisions required to gain this mesh size. The 

target surface can be broken down into no 5 patches: 

 Leg 1 : 23.8m x 48.0m
 Corner 1: 23,8m x 23,8m 
 Connector: 72.0m x 23,8m
 Corner 2: 23,8m x 23,8m
 Leg 2 : 23.8m x 48.0m

Nurbs patches

If we set the desired face size to approximately 1.5m the width of leg 1/2 needs to subdivided by 23.8m /1.5m = 
15.8 faces. The leg length needs to be subdivided by 48m / 1.5m = 32 faces. 
In Equation 4.10 a formula is given to estimated the topology mesh size: f

lc
 = f

lt
 2i                Equation 4.10

 f
lc 

… face edge length crude f
lt 

… face edge length target i ... number of subdivisions 
In the following table the options for leg 1/2 are summarised:

No of subdivi-

sions [i]

face edge 

length target 

(flt) [m]

face edge 

length crude 

(flc) [m]

Leg 1/2 width 

[m]

No of crude 

faces

Leg 1/2 length 

[m]

No of crude 

faces

1 1.5 3 24 8 48 16

2 1.5 6 24 4 48 8
3 1.5 12 24 2 48 4

4 1.5 24 24 1 48 2

The option chosen for patch leg 1/2 surface is marked red.

Corner 1 

Leg 1

Connector Corner 2 

Leg 2
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For the corner 1/2 and connector part we proceed respectively:

The count of the topology mesh layout can be summarized to:

Patch No of Crude faces

Leg 1 2 x 4

Corner 1 2 x 2

Connector 6 x 2

Corner 2 2 x 2

Leg 2 2 x 4

For the geometric location of the mesh vertices we use the LPC sketch. As proposed in chapter 5.6.3 we will 
pick a series of maximum LPC’s as guides. The guides are running in equal distance parallel to the wave ridges 
or valleys and the vertices of the crude topology mesh are the located at the ends and mid points of the guides.

At the two domed areas we locate the vertices more freely in a centred position in order to receive an almost 
orthogonal layout of the mesh faces. 

Guide LPC’s/Topology Mesh overlay

LPC Sketch/Topology Mesh overlay

Face Edges placed parallel 

to waves of surface 

Vertices placed freely in order to 

match general LPC flow direction 
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For the placement of the mesh vertices the LPC sketch also can be activated in order to have additional positions 

available. Any position along a LPC curve is suitable and can be snapped.

 Isometric view Topology Mesh

Step 3: Subdivision Mesh

In order to populate the topology mesh we apply 3 iterations of the Catmull Clarke subdivision algorithm. As all 
newly generated vertices are desired to be exactly be located on the target surface we need to consider the fol-

lowing control objects:

Target surface   All other then edge or corner vertices are snapped to surface
Corner points  Stay in there original position

Perimeter curve  All edge vertices are located on the target perimeter

When selecting the individual control objects the ,Snap’ selector needs to be enabled and an appropriate snap 
range needs to selected: 

   Snap Range Explanation

Target surface:   5.0m  Distance of target surface to topology mesh face plane less the 5.0m

Corner points:  1.0m  Desired mesh face larger then 1.0m

Perimeter curve: 1.0m  Desired mesh face larger then 1.0m

The snap range for control surfaces can be chosen more generously as the snap direction is orthogonal to the 

mesh and hence the vertices are unlikely to collapse into each other during subdivision. However the largest 

distance between mesh vertex and target surface is governing. As the position of the new generated vertices only 
can be guessed a trail run my be required to evaluate the adequate snap range.

For control points and the snap range needs to be chosen as small as possible in order avoid snapping to vertices 

in the next row of the mesh. It needs to be less then estimated final mesh face size. In or case the corner control 
points are already located in their final position and should exactly stay their after subdivision. Hence the snap 
range can be chosen smaller then the estimated final mesh size - say 1.0m
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For the curve control objects similar conditions apply then for points objects.

However, it could be case that the distance between the control curve and closest vertex is larger then the esti-

mated mesh size. These vertices then will not snap to the control curve. If the snap range is chosen to be larger 

then the estimated mesh size unwanted vertices will also be snapped to the control curve. In this case the snap 

range needs to be set for each subdivision iteration individually.

Control objects: Points, Perimeter Curve ( Control Surface not shown)

Subdivision 1

Control Points

Control Curve

Control Surface

Crude face

New node

d > snap range
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Subdivision 2

Subdivision 3

If we overlay the final mesh with the LPC sketch we can observe a fairly good alignment in most parts of the leg 
1/2 and connector patch. For this meshing approach we don not consider the umbilical points. 
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Overlay Subdivision 3 / LPC sketch 

It is recommended to bake the final subdivided mesh to the current rhino file before sating with the Planer Re-

laxation optimization.

Step 4: Optimization

As the final step we apply the Planar Relaxation optimization to the subdivided smooth mesh. First we analyse 
the mesh for planarity and mesh continuity using the specific buttons in the Preview Tool box. The gradient col-
oured meshes can be baked as drawing objects to the rhino file using the choices available in the ,Baking, tool 
box.
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Planarity Gradient mesh, rp
n,max

 = 0.114 

For the optimization the subdivided mesh from the previous process can be used. However, it is recommended 

to start with a baked mesh. In case of unexpected numerical problems the results of the subdivision may get 

lost and needs to performed again. Further this give us more flexibility to remove existing or add new control 
objects. The best optimization results are expected without consideration of any control object. For our example 

we only apply a perimeter surface.

Perimeter control surface, snap range 0.5m

We run the, Dynamic Relaxation’ with the ,Planar Rlx %’ mode. In order to track intermediate results the op-

timization target is tighten in the 3 steps: 5%, 2%,1%. In order to receive numerical results of the optimization 

process at each cycle we enable the ‘ Write Log’ option. The results are written to: c:\temp\planar_rlx_log.txt. 

Existing files will be overwritten. Please make sure that the folder is existing on the harddrive.  
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Planar Rlx % mode 5% planartity

Report box display

Visual control of Optimization process

Log file (text file)
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