
This version is available at https://doi.org/10.14279/depositonce-6928

Copyright applies. A non-exclusive, non-transferable and limited
right to use is granted. This document is intended solely for
personal, non-commercial use.

Terms of Use

©© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Eckhardt, J., Vogelsang, A., Femmer, H. (2016): An Approach for Creating Sentence Patterns for Quality
Requirements. In: 2016 IEEE 24th International Requirements Engineering Conference Workshops. IEEE.
https://doi.org/10.1109/rew.2016.057

Eckhardt, Jonas; Vogelsang, Andreas; Femmer, Henning

An approach for creating sentence
patterns for quality requirements

Accepted manuscript (Postprint)Conference paper |

An Approach for Creating Sentence Patterns for

Quality Requirements

Jonas Eckhardt

Technische Universität München

Garching b. München, Germany

eckharjo@in.tum.de

Andreas Vogelsang

DCAITI

Technische Universität Berlin

andreas.vogelsang@tu-berlin.de

Henning Femmer

Technische Universität München

Garching b. München, Germany

femmer@in.tum.de

Abstract—Requirements are usually categorized in functional
requirements (FRs) and quality requirements (QR). FRs describe
“things the product must do” while QRs describe “qualities the
product must have”. Besides the definition, classification, and
representation problems identified by Glinz, there are two further
problems with current definitions of quality requirements: (i) the
definitions are imprecise and thus difficult to understand and
apply, and (ii) the definitions provide no guidance or support for
their application in a given organizational context. To tackle these
two problems, we propose an approach that—given a quality at-
tribute (e.g., performance) as input—provides a means to specify
quality requirements by sentence patterns regarding this quality
attribute. In this paper, we contribute a detailed presentation and
description of our approach and a discussion of our lessons learnt
while instantiating it for performance requirements. Additionally,
we give guidance on how to apply our approach for further
quality attributes. Through this approach, we aim at encouraging
researchers to help us improve the precision of definitions for
quality requirements and support practitioners in eliciting and
documenting better quality requirements.

Index Terms—Quality Requirements, Sentence Patterns

I. INTRODUCTION

Requirements are usually categorized in functional

requirements (FRs), quality requirements (QRs) and

constraints [1]. FRs are characterized as “things the

product must do” contrasting QRs as “qualities the product

must have” and constraints as “organizational or technological

requirements”. Although the importance of QRs for software

and systems development is widely accepted, up until now,

there is no commonly accepted approach for the QR-specific

elicitation, documentation, and analysis [2]–[4]. This lack can

result in high maintenance costs in the long run [3].

Besides Glinz’s definition, classification, and representation

problem [5], there are two further problems with current

definitions of quality requirements: (i) the definitions are

not overly precise and thus not easily understandable and

applicable, and (ii) the definitions do not provide guidance or

support for their application in a given organizational context.

To tackle these two problems, we propose an approach

that—given a quality attribute (e.g., performance) as input—

provides a means to precisely specify requirements regarding

this quality attribute. Our approach is based on the identifi-

cation of content elements, i.e., different types of information

characterizing the quality attribute (e.g., the desired latency of

a system for performance requirements). In particular, given a

quality attribute, our approach provides (i) a precise and ex-

plicit definition of content elements that are needed to specify

requirements concerning the quality attribute, and (ii) a set of

sentence patterns for practitioners to specify requirements con-

cerning the quality attribute for a given organizational context.

We achieve the precise and explicit definition by a structured

identification of relevant content elements that requirements

of a specific quality attribute may consist of. Furthermore,

we use the idea of activity-based quality models [6], [7]

for the customization of these content elements to a given

organizational context and sentence patterns for guidance and

support for their application in practice.

We already instantiated our approach for one specific quality

attribute (performance) and conducted an empirical evaluation

with respect to its applicability [8]. The results indicated that

the approach is applicable and besides the constructive nature

of our approach, further supports analytic quality assessment

with syntactic analyses. For example, the question how can we

assess that all information necessary are documented in a given

textual requirement (i.e., the completeness1 of the individual

requirement)?

In this paper, we contribute a detailed presentation and

description of our approach, a discussion of our lessons

learnt while instantiating it for performance requirements, and

provide guidance for how to apply our approach for further

quality attributes. The objective of this paper is to encourage

other researchers to create more precise definitions for quality

requirements.

The remainder of this paper is structured as follows: In

Section II, we present our approach and discuss its application

to performance requirements in Section III. We discuss the

threats to validity of our approach and lessons learnt in

Section IV. Finally, in Section V, we report on related work

and conclude in Section VI.

II. APPROACH

Fig. 1 shows an overview of our approach: the approach

takes a specific quality attribute as input and creates a precise

and explicit definition and customized sentence patterns for

requirements concerning this quality attribute. The resulting

1Completeness can be considered on two levels: complete requirements
specifications as a whole or complete requirements, i.e., all information
necessary for single requirements. In the following, we focus on the latter.

308

1 2

3 4

Approach Attribute n

1 2

3 4

…

1 2

3 4

Approach Attribute 2

1 2

3 4

Approach Attribute 1

Documentation Elicitation

Negotiation

Core RE activities

M
a
n
a
g
e
m
e
n
t

V
a
lid

a
ti
o
n

Simplified RE Process

Fig. 1. Overview of the quality requirments definition approach and its integration in a simplified RE process (according to Pohl [1]).

definitions and sentence patterns can then be integrated in the

overall RE process to support the elicitation, documentation,

validation, and management of requirements in the given orga-

nizational context. Thus, our approach needs to be conducted

in advance for a given set of quality requirements and a given

context. Then, the results can be (re)used as, for example, a

company standard to specify and elicit quality requirements.

A. Goals of the Approach

Before we describe the approach in detail, we first discuss

the goals of the approach. Given a quality attribute, as for

example performance, we try to achieve the following four

goals:

1) Identification of relevant content elements: In literature

there exists a large amount of publications concerning

individual quality attributes. The challenge is to collect

this large amount of qualitative data and extract the

relevant content elements in a structured and reproducible

way that guarantees that all relevant content elements

are considered. The quality of the overall results of our

approach heavily depends on the content elements that are

identified to be needed to specify requirements concerning

the quality attribute.

2) Precise definition of relevant content elements: Given

a set of relevant content elements, a further challenge is

how to define these precisely such that all stakeholders

have the same understanding. This is a challenging yet

creative activity. For example, we may define each con-

tent element by means of a glossary entry or give a formal

definition by a mapping to a system model. The challenge

is to find a way to define the content elements such that

they are adequately represented. This activity is highly

dependent on the context (e.g., involved stakeholders).

3) Customization to a given organizational context: An-

other challenge is to assess whether the content elements

are actually relevant for a given organizational context.

The simple answer here is to provide a one-size-fits-all

solution. However, we argue that such a one-size-fits-

all solution does not work for requirements engineering

because the organizational contexts vary heavily. These

variations include not only the information and level of

detail in which projects document requirements but also

how projects use requirements documents in their context.

Thus, the challenge is to provide an approach that can be

customized for a given organizational context.

4) Provide a means to specify requirements for practi-

tioners: Finally, based on the relevant content elements

for a given context, we aim to create a means that

supports the structured elicitation, documentation, and

management of requirements concerning this quality at-

tribute.

B. Overview of the Approach

To meet the goals described above, our approach consists

of four steps. Fig. 2 shows an overview of our approach; it

takes a specific quality attribute as input (e.g., performance).

The approach is separated in two parts: The first part (Step 1

and 2) is intended to create a precise and explicit definition of

the quality attribute while the second part (Step 3 and 4) is

intended to customize the definition to a specific organizational

context and to provide a means for practitioners to specify

requirements concerning this type.

1) Context-independent Definition: The goal of this step

is to create a comprehensive content model that covers all

content elements and relationships that are needed to specify

requirements concerning the quality attribute. Fig. 3 shows

an overview of this step. To get a complete list of content

elements, we propose to use qualitative literature analysis

(e.g., a structured literature review or expert interviews) with

the goal to identify concepts related to the specification of

requirements concerning the quality attribute. Then, in a next

step, we identify the models that are used for the specification

of requirements; These models may be in textual, semi-formal,

or formal form (indicated by different icons in the figure).

Then, based on these models, we identify content elements

and create a consolidated content model that contains and

relates all content elements. This qualitative analysis is a

highly creative and subjective approach. We suggest to use

researcher triangulation to reduce this threat to the overall

validity. The result of this step is a content model that ideally

is a superset of all aspects concerning the quality attribute in

literature.

2) Precise Definition: Given the content model from the

previous step, the goal of this step is to give a precise definition

for the individual content elements of the content model. For

each content element of the content model, we define both, its

309

Literature on

the quality attribute
Content Model for QRs

concerning the quality

attribute

Context-independent Definition1

Context-dependent Customization

Activity-based

Quality Model

Customized Content Model

for QRs concerning the

quality attribute

2

Precise Definition

3

Precise Definition

Sentence Patterns for

QRs concerning the

quality attribute

4 Concretization

⎨
⎧
⎧

⎨
⎧
⎧

P
re
c
is
e
 a
n
d

e
x
p
lic
it
 d
e
fi
n
it
io
n

C
u
s
to
m
iz
a
ti
o
n
 a
n
d

c
o
n
c
re
ti
z
a
ti
o
n

Fig. 2. Overview of the approach

Literature on

the quality

attribute

Context-independent Definition1

Model 2

Model n

Model 1

…

Extraction of models

for the specification

of requirements

Consolidated Model

Coding and

Consolidation

Fig. 3. Overview of step 1: Context-independent definition.

syntax as well as its semantics. Depending on the stakeholders,

we may give a definition on differnt levels of detail ranging

from an informal glossary entry to a formal definition. For

example, if we chose to use a glossary, we may define the

syntax of the content element modality (of a requirement),

as “the modality of a requirement may be one of exclusion,

obligation, enhancement” and its semantics as “If the modality

of a requirement is exclusion, the property described by the

requirement must not hold, if it is an obligation, it must hold,

and if it is an enhancement, it may hold”. If we want to define

the content element more formally, we suggest to describe its

meaning in terms of a system model (e.g., [9]). For example,

if we aim to define the semantics of a requirement, we can

map it to a logical predicate, which relates input streams to

output streams. As with the previous step, this step is highly

creative and depending on the context. The result of this step

is a definition of each content element of the content model.

3) Context-dependent Customization: The goal of this step

is to achieve a customization of the context-independent con-

tent model for a given organizational context. To achieve this,

we propose to use the idea of activity-based quality models [6],

[7] and use the context-independent content model as input for

the creation of the activity-based quality model for the given

context. In particular, we use a model of stakeholders and their

development activities that take requirements of the quality

attribute as input (e.g., design a test based on a performance re-

quirement). Based on this model of activities, we successively

analyze the content elements that a stakeholder needs in a

requirement to complete the activity efficiently and effectively.

For example, to perform the activity designing a test, it is

necessary to know the scope of the requirement. Therefore,

we classify content elements as mandatory or optional for an

activity. The result of this step is a content model for the

quality attribute that is adapted to a specific set of activities

and where each content element is justified by at least one

of these activities. By this, we achieve a customization of the

content model to a given organizational context.

4) Concretization: In the final step, we must provide a

means for practitioners to specify requirements concerning the

quality attribute. To achieve this, we propose to derive a set of

sentence patterns from the context-dependent content model.

Sentence patterns have the advantage that they are easy to

use for the documentation of requirements and support the

structured elicitation and management of requirements. Fig. 4

shows an overview of the step. In particular, for each of the

content elements in the content model, we derive a sentence

fragment. The sentence fragment is intended to represent

the meaning of the content element as close as possible.

For example, lets assume that the content element modality

of a requirement may be an enhancement, an obligation,

or an exclusion. In this case, we can create the sentence

310

Concretization4

Customized Model Sentence Fragments Sentence Pattern

Fig. 4. Overview of step 4: Concretization.

fragments could/may for enhancement, must/shall for

obligation, and must not for exclusion. Furthermore, sen-

tence fragments may also contain variables that have to be

replaced by values when the pattern is instantiate. For example,

if we aim to represent an optional content element which

describes a specific start event, we can represent it by the

sentence fragment [start event <A>]. The angle brack-

ets indicate the variable while the square brackets indicate

that this sentence fragment is optional. Finally, we merge

these fragments into sentences. The result of this step is a

set of sentence patterns for the specification of requirements

concerning the quality attribute.

In summary, given a quality attribute, the approach derives

a context-independent content model based on qualitative

literature analysis, provides a clear and explicit definition

of the individual content elements, performs a customization

for a given organizational context, and provides a means for

practitioners to specify requirements concerning the quality

attribute for a given organizational context.

III. APPLICATION TO PERFORMANCE REQUIREMENTS

In this section, we give guidance how the individual steps

can be performed. As a running example, we use performance

requirements, or performance/efficiency requirements as they

are called in the ISO 25010. In our running example, we

explicitly focus on externally visible performance and exclude

internal performance (sometimes also called efficiency), which

describes the capability of a product to provide performance

in relation to the use of internal resources.

A. Step 1: Context-independent Definition

The goal of this step is to create a comprehensive con-

tent model that covers all content elements and relationships

that we need to specify requirements concerning the quality

attribute. In the last section, we proposed to use qualitative

literature analysis for this purpose.

For our running example, we reduced the set of relevant lit-

erature to classifications and categorizations of non-functional

and quality requirements (and software and systems quality

models). Fig. 5 gives a high-level overview of the results of

the literature review for our running example. In particular, lit-

erature differentiates three types of performance requirements:

Time behavior requirements, Throughput requirements, and

Capacity requirements. Time behavior requirements specify

fixed time constraints like “The operation Y must have an

average response time of less than x seconds”, throughput

Performance

Time Behavior Throughput Capacity Aux. Conditions

- Points in time
- Response time
- Reaction time
- Turnaround time
- Time intervals
- Latency
- Time constraints

- Rate of
 transactions
- Data volume per
 unit of time
- Reaction speed
- Processing
 speed
- Operating speed

- Maximum limits
- Concurrent
 users
- Communication
 bandwidth
- Size of database
 or storage

- Measurement
 location
- Measurement
 period
- Load
- Platform
- Scope of
 measurement
- Measurement
 assumption

Fig. 5. Running example: overview of performance.

requirements specify relative time or resource constraints

like “The system must have a processing speed of x re-

quests/second”, and capacity requirements specify limits of

the system like “The system must support at least x concurrent

users”. Furthermore, literature defines further aspects related

to performance requirements that apply for all three types

of performance requirements. We call these aspects auxiliary

conditions (e.g., the location of a measurement).

We then coded the results of the literature review as sug-

gested by Grounded Theory [10] to assemble a conceptual

model of the quality attribute in form of a content model.

The resulting content model contains content elements of the

quality attribute and relations between them. Furthermore, we

added content elements that apply to requirements in general

(e.g., the scope of a requirement). The result of this step is

a content model for performance that ideally is a superset

of all performance aspects mentioned in literature. A detailed

description of the resulting content model for performance can

be found in Eckhardt et al. [8].

B. Step 2: Precise Definition

Given the content model from the previous step, the goal

of this step is to provide a precise definition for the individual

content elements of the content model (see step 2 in Fig. 2).

We started with an informal definition of the content ele-

ments by a simple glossary. To create the glossary, we iterated

through the content model. We discussed the meaning of each

content element in several refinement rounds. Table I shows a

part of the glossary for performance requirements.

For a more formal definition of the content elements, we

mapped them to FOCUS, a formal modeling theory [9], [11]

and its probabilistic extension as introduced by Neubeck [12]

because we found in a previous study [13] that performance

requirements describe probabilistic and timed behavior of a

system.

C. Step 3: Context-dependent Customization

In the third step, our goal is to achieve a customization of

the content model for a given operational context (see step 3

in Fig. 2). To achieve this, we follow the idea of activity-

based quality models [6], [7] and use the context-independent

content model as input for the creation of the activity-based

quality model for the given context. Here, we first consider all

stakeholders and analyze their development activities that take

311

TABLE I
GLOSSARY ENTRIES FOR PERFORMANCE REQUIREMENTS.

Content
Element

Definition (Syntax and Semantics)

Modality The modality of a requirement may be one of exclu-

sion, obligation, enhancement. If the modality of a
requirement is exclusion, the predicate described by
the requirement must not hold, if it is an obligation, it
must hold, and if it is an enhancement, it may hold.

Time Behavior
Requirement

A Time Behavior requirement has a Time Quantifica-

tion and a Time Property. A time behavior requirement
demands that the time property complies with the time
quantification.

Time Quantifi-
cation

A Time Quantification has a quantification, i.e. one of
≤, <,=, >,≥ a time value, i.e. a natural number, and
a time unit. An example would be “≤ 100ms”.

Time Property The time property may be one of Response Time,
Processing Time, Latency.

.

requirements of the quality attribute as input, such as design

test of the test designer in case of performance requirement.

We identify necessary and important content elements that

these requirements must contain to complete the development

activities efficiently and effectively. We accordingly classify

content elements, marking crucial content elements as manda-

tory and the contributing content elements as optional. The

result of this step is a content model that is customized for a

given operational context and each content element is justified

by at least one development activity.

For our running example, we used testing activities as

described in the (rational) unified process (RUP) [14]. For

each of the stakeholders’ activities, we identified the corre-

sponding necessary content elements from the content model

to complete the activity efficiently and effectively. As the

description of the activities in the RUP is rather high-level

and does not provide detailed insights about the required

artifacts for an activity, we performed an in-depth analysis

of the description of the respective activities. Then, in a pair

of researchers, we discussed the activities and identified the

necessary content elements of a requirement for that activity:

We marked a content element as necessary when we agreed

that its absence would require a stakeholder to invest additional

effort for completing the activity or would even make the

activity impossible. Table II shows the resulting mapping

between the necessary content elements and the activities.

For example, for the activity design test by the test engineer,

the time/throughput/capacity property of the requirement is

necessary as its absence would make it impossible to set up

an adequate test environment. Furthermore, the scope of the

requirement is necessary for the activity plan test, as the test

engineer needs this information for assigning the test to a

person/team responsible. The final context-dependent content

model can be found in Eckhardt et al [8].

D. Step 4: Concretization

In the final step, we aim to provide a means for practitioners

to specify requirement concerning the quality attribute. To

achieve this, we propose to derive a set of sentence patterns

from the context-dependent content model (see step 4 in

Fig. 2). In particular, for each of the content elements in the

content model, we derive a sentence fragment. The sentence

fragment is intended to represent the meaning of the content

element as closely as possible. Finally, we merge these frag-

ments into sentences. The result of this step is a set of sentence

patterns for the specification of requirements concerning the

quality attribute.

In our running example, we iterated through the set of

content items in a pair of researchers and discussed how

to adequately represent this content element in terms of a

sentence fragment. The complete set of patterns can be found

in Eckhardt et al [8]. An exemplary instance of a sentence is

The system must have a processing time of < 10 ms

between event ‘‘receiving a request’’ and event

‘‘answering a request’’, when under a maximal load.

Measurement takes place on production hardware.

Included is browser render time.

IV. DISCUSSION

In this section, we discuss limitations and threats and direct

implications of our approach.

A. Limitations and Threats

The quality of the results of our approach heavily depends

on how the individual steps are performed. Furthermore, all

steps require a high amount of creative and qualitative work

and thus may be error-prone. To mitigate this threat, we

provided guidance in this paper that shows how to perform the

individual steps on the example of performance requirements.

We described how we performed the individual steps and the

respective results in detail and provided hints how to ensure

quality.
1) Context-dependent Definition: In the first step of our

approach, there are some threats that affect the generalizabil-

ity and applicability of the results. The initial collection of

literature may miss some important work, the extraction of

models may miss models or include unimportant models, and

finally the coding and consolidation of the models may lead

to inconsistent or inadequate models. We try to mitigate these

threats by using a structured and reproducible approach (e.g., a

structured literature review) and by performing the extraction

and coding steps in a pair of researchers (researcher triangula-

tion). Furthermore, we suggest to validate the resulting models

with quality requirements from practice or perform validating

interviews with practitioners.
2) Precise Definition: The goal of the second step is to

create a precise definition such that we reduce misunder-

standings. We propose to use either a glossary or a formal

definition by means of a system modeling theory. However,

in both cases, it is a highly challenging and creative activity

and the individual content elements can be contradictory

or inadequate. To mitigate this, we propose to perform a

validation in form of interviews with researchers as well as

with practitioners.

312

TABLE II
RUNNING EXAMPLE: NECESSARY CONTENT ELEMENTS TO COMPLETE DEVELOPMENT ACTIVITIES EFFICIENTLY AND EFFECTIVELY.

Stakeholder RUP activities Necessary content element

Test designer Plan Test Modality, Scope
Design Test Scope, Time Property, Throughput Property, Capacity Property
Implement Test Scope, Quantifier, Time Property, Throughput Property, Capacity Property, Time Quantification,

Time Value, Unit, Throughput Quantification, Change Value, Change Object, Capacity Quantifi-
cation, Capacity Value, Capacity Object

Evaluate Test Scope, Quantifier, Time Property, Throughput Property, Capacity Property, Time Quantification,
Time Value, Unit, Throughput Quantification, Change Value, Change Object, Capacity Quantifi-
cation, Capacity Value, Capacity Object

System tester Execute System Test Scope, Quantifier

Performance tester Execute Performance Test Scope, Quantifier

Designer Design Classes and Packages Scope, Time Property, Throughput Property, Capacity Property

Implementer Implement Components and
Subsystems

Scope, Time Property, Throughput Property, Capacity Property, Time Quantification, Time Value,
Unit, Throughput Quantification, Change Value, Change Object, Capacity Quantification, Capacity
Value, Capacity Object

3) Context-dependent Customization: The result of this step

is highly dependent on how the customization is performed.

We propose to use activity-based quality models that try to

make the relation between activities, artifacts, and quality

attributes explicit. However, the quality of the results still

depends on the level of detail and adequacy of the activity-

based quality model. In our running example, we build our

customization based on the activities for testing as described

in the RUP. However, the description of these activities was on

a very high level of detail, and thus, we discussed each activity

in a pair of researchers. In summary, to mitigate this threat, we

propose to either use a detailed activity-based quality model

or perform a cross validation or researcher triangulation.
4) Concretization: In the final step, the creation of sentence

patterns is straight-forward. However, the quality of the overall

approach depends on how well practitioners can apply the

sentence patterns to requirements and are how much they are

willing to use the patterns. To mitigate this, we propose to

validate the resulting patterns with quality requirements in

practice and furthermore conduct interviews with practitioners

concerning their willingness to use the patterns.

B. Syntactic Analyses: Challenging Incompleteness

Besides the constructive nature of our approach, we can

further support analytic quality assessment with syntactic anal-

yses. For example, through such patterns, we can syntactically

detect that a textual individual requirement does not document

a specific information, such as the location for a performance

requirement in our example (i.e., the completeness of the

individual requirement).

One benefit of our approach is that it creates a context-

dependent content model for a given quality attribute. The

model is context-dependent in the sense that for a given

context, the content model contains all necessary information

to complete subsequent activities efficiently and effectively.

We can now leverage this fact to support syntactic analyses

and introduce a notion of (syntactic) completeness for

requirements of this type.

We then define the completeness of requirements for a given

quality attribute with respect to the presence of all mandatory

content elements in the context-dependent content model. In

particular, we call a requirement complete if all mandatory

content elements are present in the textual representation of the

requirement. There are three cases for the presence of manda-

tory content in the textual representation of a requirement:

• The requirement does not contain the content. For ex-

ample, in case of a performance requirement stating “The

delay between [event A] and [event B] shall be short”,

the content regarding the quantifier is not contained.

• The requirement implicitly contains the content. With

implicit, we mean that the content is contained in the

requirement, but we need to interpret the requirement to

derive the content. For example, in case of a performance

requirement stating “The delay between [event A] and

[event B] shall typically be 10ms”. In this case, regarding

the quantifier, we can interpret “typically” as “median”.

• The requirement explicitly contains the content. With

explicit, we mean that the content is contained without

interpretation. For example, in case of a performance

requirement stating “The delay between [event A] and

[event B] shall have a median value of 10ms”. In this

case, regarding the quantifier, the content is explicitly

contained.

We can now derive the following definitions for strong and

weak completeness and for incompleteness of requirements of

a given quality attribute:

Definition (Strong Completeness). A requirement of a given

quality attribute is strongly complete, if all mandatory content

elements (w.r.t the context-dependent content model of the

attribute) are explicitly contained in its textual representation.

Definition (Weak Completeness). A requirement of a given

quality attribute is weakly complete, if all mandatory content

elements (w.r.t the context-dependent content model of the

attribute) are explicitly or implicitly contained in its textual

representation.

Definition (Incompleteness). A requirement of a given quality

attribute is incomplete, if at least one mandatory content

313

elements (w.r.t the context-dependent content model of the

attribute) is missing in its textual representation.

We argue that this definition of completeness for require-

ments of a given quality attribute can be used to detect incom-

pleteness and thus to pinpoint to requirements that are hard to

comprehend, implement, and test. For example, requirements

of class incomplete are not testable at all, requirements in class

weakly complete need to be interpreted by the developer and

tester and therefore bear the risk of misinterpretations, and

requirements in class strongly complete contain all content

necessary to be implemented and tested. Thus, we argue that

our approach further provides a helpful and actionable defini-

tion of completeness for quality requirements. This definition

of completeness can then be used to support analytic as well

as constructive quality control.

C. Analyses of the Content of Quality Requirements

Besides the assessment of completeness, one can further

leverage our approach to analyze the content of quality re-

quirements in practice. Our approach results in a context-

independent content model for a given quality attribute and

in a context-dependent content model for that attribute. The

context-independent content model provides a general defi-

nition of the content elements of the quality attribute and

the context-dependent model provides a justification for each

content model.

We can now analyze textual quality requirements and map

the content elements found in the requirements to the content

model. If we have a sufficiently large data set, we can now

analyze observations and draw conclusions about the content

elements of quality requirements in general. For example, a

common point of view of quality requirements is that they are

cross-functional and consider the system as a whole. When

analyzing performance requirements, we also included the

scope of a requirement in the content model. This allows

us to quantitatively analyze the distribution of the scope of

performance requirements found in practice.

D. Implications for Industry

Our approach is a step towards increasing the completeness

of quality requirements. Not only the concretization via sen-

tence patterns could be easily implemented in a requirements

authoring or management tool. Such a tool may provide

instant feedback to the requirements engineer about missing or

optional content elements, similar to requirements smells [15],

[16]. Furthermore, the tool might check the terms used in

a requirement with respect to an underlying domain model.

The tool could then uncover terms that are neither part of

the consolidated terminology nor defined through the pattern

semantics.

An additional benefit of our approach is that it makes

content in natural language requirements explicit and traceable

through content elements. This allows connecting specific con-

tent elements of requirements with specific content elements

in related artifacts such as test cases or components within

the implementation. Updates within requirements may then be

propagated directly to corresponding test cases for example,

making maintenance activities more efficient and effective.

V. RELATED WORK

There is a variety of work on requirement patterns in RE.

Franch et al. [17] present a metamodel for software require-

ment patterns. Their approach focuses on requirement patterns

as a means for reuse in different application domains and is

based on the original idea of patterns by Alexander et al. [18],

i.e., each pattern describes the core of a solution of a problem

that occurs over and over again. In particular, the PABRE

framework contains a catalogue of 29 QR patterns [19], 37

non-technical patterns [20], and a method for guiding the use

of the catalogue in RE [21]. Their approach for creating the

patterns catalogue is similar to ours, as it is also based on

requirements literature and a content analysis. However, they

provide solutions for recurring problems while our sentence

patterns provide a means for the specification of customized

requirements.

Supakkul et al. [22] present four kinds of NFR patterns for

capturing and reusing knowledge of NFRs and apply these

patterns in a case study. Their patterns and, in particular, the

objective pattern can be used to identify important NFRs for

a context or capture a specific definition of an NFR from

the viewpoint of a stakeholder. Thus, their patterns define

important content elements of a quality attribute in terms of

soft goals, which is similar to our context-dependent content

model [23], [24]. Our approach provides a structured way

to define and customize these content elements and also

provides sentence patterns to specify requirements. However,

their patterns can be used to define the specific quality attribute

but furthermore provide solutions and alternatives and thus go

one step further into the architecture or design of a system. Our

approach focuses on definition, customization, and concretiza-

tion of requirements concerning a specific quality attribute.

Withall [25] presents a comprehensive pattern catalogue for

natural language requirements in his book. The pattern cata-

logue contains a large number of patterns for different types

of requirements. In contrast to their work, in our approach,

we derive patterns from literature and customize them to a

specific application context. Almeida Ferreira and Rodrigues

da Silva [26] introduce RSL-PL, a language for the definition

of requirements sentence patterns. Their pattern definition

language can be used to represent our sentence patterns.

Kopczyńska and Nawrocki [27] present a method for elicit-

ing non-functional requirements, which is composed of a series

of brainstorming sessions driven by the ISO 25010 quality

sub-characteristics. Elicitation is supported by Non-functional

Requirements Templates (NoRTs), which are statements that

require some completion to become a well-formulated NFR.

Similar to our sentence patterns, the authors differentiate

between core parts, parameters, and optional parts within the

templates. The sentence patterns derived by our approach are

additionally adapted to specific classes of quality requirements.

Mylopoulos et al. [23] propose a comprehensive framework

for representing and using QRs in the development process.

314

Similar to our approach, they propose a means to integrate QRs

in the development process, however, they do not provide a

structured approach for explicitly stating the content elements

for specifying requirements concerning quality attributes and

do not provide a means for specifying QRs.

VI. CONCLUSION

We provided an approach that—given a quality attribute as

input—provides a means to precisely and explicitly defines

the content elements that are needed to specify requirements

concerning this quality attribute, and provides a means for

practitioners to specify these requirements for a given orga-

nizational context based on sentence patterns. The approach

consists of four steps:

1) Context-independent Definition: Relevant content el-

ements are identified by means of qualitative literature

analysis and coding.

2) Precise Definition: The resulting content elements are

precisely defined by e.g., a glossary or formalization by

means of a mapping to a system model.

3) Context-dependent Customization: The content ele-

ments are customized to a given organizational context

by using the idea of activity-based quality models.

4) Concretization Sentence patterns are used as a means

for practitioners to specify requirements concerning the

quality attribute.

As our main goal was to provide guidance for the applica-

tion of our approach, we furthermore discussed threats to va-

lidity and lessons learnt while instantiating it for performance

requirements. Finally, we argue that our approach is applicable

for performance requirements and besides its constructive

nature, provides a means for various statical analyses, as for

example completeness analyses.

We are planning to apply our approach for further quality

attributes, in particular, for availability as a direct next step. As

a broader vision, we are planning to unify the resulting content

models in one content model for quality requirements.

ACKNOWLEDGEMENTS

We would like to thank M. Broy, S. Eder, and M. Junker

for their helpful comments on earlier versions of this work.

This work was performed within the project Q-Effekt; it was

partially funded by the German Federal Ministry of Education

and Research (BMBF) under grant no. 01IS15003 A-B. The

authors assume responsibility for the content.

REFERENCES

[1] K. Pohl, Requirements Engineering: Fundamentals, Principles, and

Techniques, 1st ed. Springer, 2010.
[2] A. Borg, A. Yong, P. Carlshamre, and K. Sandahl, “The bad conscience

of requirements engineering: An investigation in real-world treatment of
non-functional requirements,” in 3rd Conference on Software Engineer-

ing Research and Practice in Sweden (SERPS), 2003.
[3] R. B. Svensson, T. Gorschek, and B. Regnell, “Quality requirements

in practice: An interview study in requirements engineering for embed-
ded systems,” in Requirements Engineering: Foundation for Software

Quality, ser. Lecture Notes in Computer Science. Springer, 2009, vol.
5512.

[4] L. Chung and B. A. Nixon, “Dealing with non-functional requirements:
three experimental studies of a process-oriented approach,” in 17th

International Conference on Software Engineering (ICSE), 1995.

[5] M. Glinz, “On non-functional requirements,” in 15th IEEE International

Requirements Engineering Conference (RE), 2007.

[6] H. Femmer, J. Mund, and D. Méndez Fernández, “It’s the activities,
stupid!: A new perspective on RE quality,” in 2nd International Work-

shop on Requirements Engineering and Testing (RET), 2015.

[7] F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert, and J. Girard,
“An activity-based quality model for maintainability,” in 23rd IEEE

International Conference on Software Maintenance (ICSM), 2007.

[8] J. Eckhardt, A. Vogelsang, H. Femmer, and P. Mager, “Challenging
incompleteness of performance requirements by sentence patterns,” in
24th IEEE International Requirements Engineering Conference (RE),
2016.

[9] M. Broy and K. Stølen, Specification and development of interactive

systems: focus on streams, interfaces, and refinement. Springer, 2001.

[10] S. Adolph, W. Hall, and P. Kruchten, “Using grounded theory to
study the experience of software development,” Empirical Software

Engineering, vol. 16, 2011.

[11] M. Broy, “Multifunctional software systems: Structured modeling and
specification of functional requirements,” Science of Computer Program-

ming, vol. 75, no. 12, 2010.

[12] P. Neubeck, “A probabilistic theory of interactive systems,” Ph.D.
dissertation, Technische Universität München, 2012.

[13] J. Eckhardt, A. Vogelsang, and D. Méndez Fernández, “Are non-
functional requirements really non-functional? An investigation of non-
functional requirements in practice,” in 38th International Conference

on Software Engineering (ICSE), 2016.

[14] I. Jacobson, G. Booch, J. Rumbaugh, J. Rumbaugh, and G. Booch, The

unified software development process. Addison-Wesley Reading, 1999.

[15] H. Femmer, D. Méndez Fernández, E. Juergens, M. Klose, I. Zimmer,
and J. Zimmer, “Rapid requirements checks with requirements smells:
Two case studies,” in 1st International Workshop on Rapid Continuous

Software Engineering (RCoSE), 2014.

[16] H. Femmer, D. Méndez Fernández, S. Wagner, and S. Eder, “Rapid
quality assurance with requirements smells,” Journal of Systems and

Software, 2016.

[17] X. Franch, C. Palomares, C. Quer, S. Renault, and F. De Lazzer,
“A metamodel for software requirement patterns,” in Requirements

Engineering: Foundation for Software Quality, ser. Lecture Notes in
Computer Science. Springer, 2010, vol. 6182.

[18] C. Alexander, The Timeless Way of Building. Oxford Books, 1979.

[19] S. Renault, Ó. Méndez-Bonilla, X. Franch, and C. Quer, “A pattern-
based method for building requirements documents in call-for-tender
processes,” International Journal of Computer Science & Applications,
vol. 6, no. 5, 2009.

[20] C. Palomares, C. Quer, X. Franch, C. Guerlain, and S. Renault, “A
catalogue of non-technical requirement patterns,” in 2nd International

Workshop on Requirements Patterns (RePa), 2012.

[21] X. Franch, C. Quer, S. Renault, C. Guerlain, and C. Palomares,
“Constructing and using software requirement patterns,” in Managing

Requirements Knowledge. Springer, 2013.

[22] S. Supakkul, T. Hill, L. Chung, T. T. Tun, and J. C. S. do Prado Leite,
“An NFR pattern approach to dealing with NFRs,” in 18th International

Requirements Engineering Conference (RE), 2010.

[23] J. Mylopoulos, L. Chung, and B. Nixon, “Representing and using
nonfunctional requirements: A process-oriented approach,” IEEE Trans-

actions on Software Engineering, vol. 18, no. 6, 1992.

[24] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-functional

requirements in software engineering. Springer Science & Business
Media, 2012, vol. 5.

[25] S. Withall, Software Requirement Patterns, 1st ed. Redmond, WA,
USA: Microsoft Press, 2007.

[26] D. de Almeida Ferreira and A. Rodrigues da Silva, “RSL-PL: A
linguistic pattern language for documenting software requirements,” in
3rd International Workshop on Requirements Patterns (RePa), 2013.

[27] S. Kopczyńska and J. Nawrocki, “Using non-functional requirements
templates for elicitation: A case study,” in 4th International Workshop

on Requirements Patterns (RePa), 2014.

315

