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Abstract— The design of assembly systems has been 
mainly a manual task including activities such as gathering 
and analyzing product data, deriving the production process 
and assigning suitable manufacturing resources. Especially in 
the early phases of assembly system design in automotive 
industry, the complexity reaches a substantial level, caused by 
the increasing number of product variants and the decreased 
time to market. In order to mitigate the arising challenges, 
researchers are continuously developing novel methods to 
support the design of assembly systems. This paper presents 
an artificial intelligence system for assisting production 
engineers in the selection of suitable equipment for highly 
automated assembly systems. 

Keywords— artificial intelligence, assembly system design, 
automotive, body-in-white, neural network, hyperparameter 
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I. INTRODUCTION 
The assembly system design (ASD) covers a wide 

spectrum of different tasks that are performed manually in 
industrial practice. Nevertheless, different fields of 
research have emerged to improve the automation or 
assistance of ASD, such as the automated product analysis 
or the robotic assembly line balancing. [1, 2] Currently, in 
industrial ASD two different design approaches are 
commonly applied: (i) conventional, manual ASD, which 
requires a substantial investment of time and effort  
(ii) template-based assembly system design, based on a 
virtual assembly system model, which however limits the 
solution space of product development significantly. [3–5] 
Optimally, the template does not require any changes. In 
case significant changes are required, the template-based 
approach is highly inefficient and depicts an error prone 
process. 

The automated or assisted ASD is not yet widespread in 
industrial practice. However, it shows high benefits in 
accelerating the design process, increasing the optimality 
of the design solution and supporting the documentation 
consistency. Various authors have been emphasizing the 
high potential of the assisted ASD: Bauernhansl et. Al. 
show the potential of intelligent assistance software and 
call for the essential need of software support due to the 
increasing complexity of production systems [6]. Bracht et. 
al. discuss a fractional automation of ASD processes, for 
instance, the automated welding gun selection [7]. 

Moreover, Michalos et. al. refer to the large size and 
complexity of current assembly lines in automotive 
industry and demand methods to assist the balancing of 
assembly lines. [8] Therefore, the authors do not primarily 
see the major potential in reducing the work dedicated to 
the design, rather in achieving a higher quality and more 
optimal assembly system configurations, which engineers 
might not consider. 

Please note the structure of this paper: Firstly, the state 
of the art in the field of assisted and automated assembly 
system design will be presented. Afterwards, the new 
method and software prototype for the assisted assembly 
equipment selection will be described in detail. Lastly, the 
authors outline the optimization process of the neural 
network (NN) and its results. 

II. STATE OF THE ART AND ASSEMBLY SYSTEM 
DESIGN PROCESS 

In the early phases of assembly system design, 
engineers need to complete the following activities in 
highly iterative processes:  

(i) Product Analysis and Assembly Sequence: 
The ASD starts with the product data analysis. The 

engineer classifies the joining elements under the 
consideration of their parameters such as the joining 
technology or material properties. The holistic product 
analysis enables the assembly planner to decide in which 
order the single parts and sub-assemblies are to be joined – 
the so-called assembly sequence. The assembly sequence 
depends on multiple factors, e.g. the accessibility of joining 
elements, the flange positions, etc. Previous publications 
have focused on the automated product analysis and the 
creation of possible assembly sequences such as [9, 10].  

(ii) Assembly System Configuration and Balancing: 
The joining sequence enables the derivation of the 

initial assembly process and rough configuration of the 
assembly system. The assembly system configuration is 
primarily defined by the number of stations and the number 
of robots (workers) and is based on the extensive station 
balancing. For the automated balancing and assembly 
system configuration, a vast number of publications are 
available such as [11–13].  



(iii) Equipment Selection and Specification: 
The assembly system configuration (see step ii) 

determines the number of resource types in each station. 
Resource types serve as placeholders, which need further 
specification. This manual equipment selection and 
specification problem has been analyzed extensively in 
literature. However, no systematic literature review and 
classification methodology exist for this problem. Various 
papers in literature focusing on the assisted selection of 
assembly equipment, such as [14] and [15], which present 
methods for the automated selection of industrial robots. 
Other authors, for instance [16, 17] concentrate on the 
assisted selection of machine tools and handling 
equipment. Nevertheless, none of the presented methods 
follow a generic approach able to suggest different kinds of 
assembly equipment. 

(iv) Assembly Facility Layout:  
After the equipment is selected and the assembly 

system configuration is set, the system needs to be 
positioned in the production facility – the assembly facility 
layout. A large number of research projects have focused 
on the search for suitable algorithms. Especially the search 
for suitable heuristics has been a major topic, such as in 
[18–20].  

III. ASSISTED SELECTION OF ASSEMBLY EQUIPMENT 
This chapter begins with the description of the industrial 

scenario, which has been used to develop the hereby 
presented method and software prototype. Then, the method 
– i.e. the necessary activities for the assisted selection of 
assembly equipment – and the software architecture is 
introduced. Subsequently, the prototype implementation 
will be presented.  

A. Industrial Scenario 
It has been stated that the automated or assisted 

selection and specification problem has not been regarded 
sufficiently by research and industry. Exactly this gap will 
be tackled in this research paper. Therefore, real 
automotive assembly scenarios from the body-in-white 
(BiW) production stage have been used to develop the here 
presented method and software prototype. In industrial 
equipment selection, the input data depict an assembly 
system configuration and an assembly sequence enriched 
with joining element information. Assembly system 
configurations consist of different resource modules, which 
serve as placeholders for real assembly equipment. The 
resource modules in BiW are mainly of the following types: 
(i) joining robot, (ii) handling robot, (iii) fixture, (iv) 
carrier, (v) buffer. The target of the equipment selection is 
to replace those placeholders by real resources from a 
resource library in which several thousand resources are 
stored.  

B. Method Description and Software Architecture 
The method for the assisted selection of assembly 

equipment uses a neural network that can predict the values 
of the parameters of assembly equipment (output layer) 
based on the parameter values of the assembly process and 
pre-defined assembly station parameters (input layer).  

The first stage of the method (see Fig. 1) is the training 
process, which begins with the import and interpretation of 

input data, composed of information about the assembly 
process and the corresponding assembly system (step 1).  

 
Fig. 1.  Assembly system with assigned equipment 

The process information contains data about the 
assembly operations that are necessary to join the chassis 
components of a vehicle. Among others, parts to join (e.g. 
part number, size), the assembly sequence, types of 
assembly process (e.g. spot weld or arc weld) and attributes 
of the assembly process such as the number of joined parts 
are included. On the other hand, information about the 
assembly system reveals the stations and assembly 
equipment of the production system that has been designed 
to perform the necessary assembly operations for the 
considered chassis components.  

The training of the neural network (step 2) takes place 
based on the links between assembly stations and assembly 
operations, which represent the domain knowledge of 
production planners. After the training is completed, the 
next stage of the method can begin.  

The assisted selection of assembly equipment begins 
with the import and interpretation of project data (step 3). 
The first necessary input is the process information with the 
same contents as given above. In contrast to the training 
stage, the process information addresses the assembly 
process of a newly developed chassis, for which the 
necessary assembly equipment needs to be selected. In other 
words, a specific assembly system for the given operations 
does not exist yet. The second input information provides a 
general framework for the designed production system, 
which consists of the number of stations and placeholder 
equipment for each station.  

In step 4, the neural network begins to generate fictional 
equipment by defining the parameter of suitable equipment 
(output layer) based on the parameter values of the assembly 
process (input layer).  The outcomes of the neural network 
are called fictional because there is no guarantee that the 
calculated parameters exactly match to the parameters of 
any existing equipment in the resource library of Daimler.  

Due to the fact that the fictional equipment is not 
applicable in assembly system design, a filter function 
compares the parameters of fictional and existing 
equipment. Based on this comparison, equipment 
suggestions are generated which are regarded as suitable 
for the concerning assembly process (step 5). 
Subsequently, the production planner examines the 
suggested equipment for a given assembly process and 
selects the most suitable assembly equipment (step 6). 

Import training
data [1]

Training of the
neural network [2]

Import project
data [3]

Generate fictional
equipment [4]

Generate
equipment

suggestions [5]

Select assembly
equipment [6]

Update training
data corpus [7]



During the assisted selection of equipment, the method 
updates the training data corpus based on the created link 
between the assembly process and equipment (step 7).  

In Fig. 2, the conception of the software architecture is 
shown with all its elements required for enabling the 
aforementioned activities. The architecture consists of three 
modules. The core of the architecture depicts the data 
handling module and the AI-module. The third module 
comprises the hyperparameter optimization. Between the 
modules, arrows indicate the data flow. The functionality of 
the data handling and AI-modules and the corresponding 
data flow will become apparent in the following chapter. 
The optimization module and the hyperparameter 
configuration will be discussed in detail in Chapter IV. 

C. Prototype Implementation 
This section provides information about the software 

prototype, which implements the proposed method in order 
to provide a platform to evaluate the suitability of artificial 
intelligence (AI) in the context of assisted selection of 
assembly equipment.  

The essential information regarding the assembly 
process, assembly system and general framework for 
projects are imported via the AutomationML (AML) 
interface. As stated in the previous section, the method 
requires two concurrent files as input for training and 
equipment selection modes. In order to avoid wrong data 
transfers, the software prototype allows importing ZIP files 
that contain two AML files. Note that all imported AML 
files are converted to input matrices in CSV format to 
enable the usage of data by the AI algorithms. In addition, 
an interface for Excel sheets is available to import the 
resource library.   

As shown in Fig. 3, the graphical user interface (GUI) 
of the software prototype consists of two main workspaces. 
On the left side, the structure of the assembly system (i.e. 
stations and associated equipment) are shown. Placeholder 
equipment is visualized in red to differentiate from the 
already selected equipment by the planner. The right side 
of the GUI provides information about the selected 
equipment, placeholder equipment, fictional equipment 
and suggested best match and alternatives. Note that the 
suggestions are sorted by the calculated score, which is 
computed based on a comparison of the parameters of the 

fictional and existing equipment using the Manhattan 
distance metric. In case two or more suggestions have the 
same score value, they are sorted in accordance to the count 
of their occurrences in the training data set. In other words, 
suggestions that were preferred more often in previous 
projects are favored than the less frequently applied 
assembly equipment in case they have the same score.  

The entries on the right side are expandable to enable 
the analysis of parameters if necessary. As shown in Fig. 3, 
equipment parameters such as library ID, set flags and 
plantypes (to label the capabilities of equipment, such as 
handling, curve, input), capacity values (e.g. load capacity 
of a robot arm) and size of the equipment. If necessary, it 
is possible to hide undesired parameters to limit the shown 
information on the graphical user interface (see the 
dropdown menu “Filter Attributes”).  

In addition to the assisted selection of assembly 
equipment, the software prototype also supports a complete 
manual selection to cover the cases that the planner does 
not agree to any of the suggested equipment. The manual 
equipment selection is performed by opening the resource 
library (see the button “Open Library”). 

The important settings regarding the neural network 
and the filter function are managed using a configuration 
file that is saved in the same directory with the software 
prototype. For instance, the values of the neural network 
parameters such as the learning rate is controlled within the 
configuration file. In addition, the weighting coefficients 
for the score calculation can be changed flexibly to modify 
the filter function.  

IV. OPTIMIZATION OF PREDICTIONS 
The implementation of the method in a software 

prototype must be followed by the determination of the 
neural network parameters. The correct configuration of 
artificial intelligence algorithm has a crucial role on the 
quality of predictions. However, the theoretical knowledge 
about the AI parameters is not sufficient for the optimal 
configuration of the neural network with regard to the 
specific use case of authors’ research. Therefore, a 
parameter configuration tool was developed to support the 
identification of the optimal configuration.  

 
Fig. 2.   The conception of the software architecture 
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When executed, the configuration tool calculates the 
rate of overlap (i.e. hit rate) between correct assembly 
equipment and the suggested assembly equipment for each 
parameter configuration. The hit rate counts as the 
performance indicator for the evaluation of possible 
parameter configurations.  

The applied optimization approach searches for the 
optimal configuration by varying the AI hyperparameters 
with equally sized steps within the predefined value ranges 
(see Table I). For instance, the parameter nn_limit is varied 
using the values 500, 1000 and 2000.  

TABLE I.    VALUES OF PARAMETERS FOR GRID SEARCH 

Parameter Value 1 Value 2 Value 3 Value 4 

nn_limit 500 1000 2000  

max_epoch 100 200 300  

mini_batch_size 50    

learning_rate 0.0001 0.001 0.01 0.1 

solver_weight_decay 0 1   

solver_momentum 0 1   

 

In addition to the hyperparameters, also the shape and 
the structure of the neural network is varied within this 
investigation. Shape is a hyperparameter that affects the 
structure of the NN and has two forms. The first form is a 
rectangular shape where the amount of neurons in each 
layer is the same. The second form is a pyramid shape, 
meaning that the amount of neurons decreases towards the 
output layer and hereby forming a triangular shape. In 
addition, the number of hidden layers are varied between 1 
to 3, whereby structures without hidden layers are not taken 
into consideration in our experiments since such neural 
network configurations are not capable of learning non-
linear input/output patterns [21]. A further factor that 
affects the structure of the neural network is the coefficient 
for the number of neurons on each layer, which is varied 
between 1 and 4.  

The initial definition of the hyperparameters base on the 
common recommendations in the literature and previous 
experiences of the authors. It is aimed to limit the variation 
sparingly to reduce the necessary processing time to 
acceptable levels. (The configuration tool required around 
60 hours to process 2880 different configurations on a 
typical business PC without GPU usage.)  

 Among all possible configurations, the rates for TOP 
10 match (i.e. the correct equipment is among the first 10 
suggestions according to their score values) vary between 
41.84% and 96.45% while the average value equals to 
80.84%. In total, three different configurations deliver the 
highest average values, which are shown with details in 
Table II. Note that the configurations are identical except 
the values for max_epoch, which means that the 
max_epoch does not cause any difference regarding the hit 
rate in the top configurations. Aside from max_epoch, the 
superior values for the hyperparameters are recognizable 
(e.g. nn_limit with 2000, only one hidden layer or 
rectangular NN shape).   

TABLE II.     RESULTS OF HYPERPARAMETER OPTIMIZATION WITH GRID 
SEARCH 

Hyperparameter C1 C2 C3 

nn_limit 2000 2000 2000 

max_epoch 100 200 300 

mini_batch_size 50 50 50 

learning_rate 0.1 0.1 0.1 

solver_weight_decay 0 0 0 

solver_momentum 0 0 0 

Shape Rectang. Rectang. Rectang. 

No. of hidden layers 1 1 1 

Coefficient 1 1 1 

TOP 10 hit-rate 96.45% 96.45% 96.45% 

 

 
Fig. 3.   GUI of the software prototype 

 

 



A further analysis of the results reveals that a hit rate of 
58.51% is possible for exact matches, i.e. the suggested 
equipment with the highest score is indeed the correct 
assembly equipment. This hit rate is especially important 
for the considerations regarding the applicability of the 
method for a fully automated selection of assembly 
equipment.  

In the next chapter, a more advanced strategy for 
hyperparameter tuning is presented. The aim of this 
strategy is to be able to identify the best hyperparameter 
combinations in a shorter time due to the reduced number 
of combinations compared to grid search strategy.  

V. FURTHER OPTIMIZATION POTENTIAL 
In order to further improve the results of the software 

prototype, the initial neural network could be divided into 
individual neural networks for each output variable. Under 
this condition, the activation function of the output layer 
can be chosen under consideration of the variable type. 
Tailored activation functions allow more precise 
predictions. For continuous output variables, linear 
functions have been proven successful. For binary variables 
the sigmoid function. [22] 

In that case, each neural network itself has to be tuned 
regarding its hyperparameters. This increases the amount 
of parameters to be tested by the number of predictable 
outputs. In addition, the parameter optimization approach 
introduced in chapter IV has shown that the computational 
effort increases with the number of steps and the number of 
parameters that are tested. The computational effort 
therefore increases vastly if the abovementioned 
optimization potential is exploited or more precise 
parameter value estimations are desired. Those facts 
demand for replacing the grid search strategy by a method 
with lower computational effort. A possibility is to use a 
method the authors call implicit search strategy. [23] In the 
following, this tuning process is described for a single 
neural network.  

The used hyperparameters equal the ones enumerated 
in Chapter IV. All hyperparameters are varied in each 
optimization loop in order to detect interdependencies. A 
priorly created search tree determines the optimization 
room for each parameter. The general approach is iterative. 
Several iterations are executed in order to approximate the 
best possible value of each parameter. Hence, the 
advantage of the new calculation method is a heuristic 
approach to decrease the amount of combinations 
calculated. Therefore, the testing of all values and 
parameters is enabled in each iteration. The result is a 
unique configuration of parameter values for each neural 
network.  

Fig. 4 shows a search tree for the parameter “Batch 
Size” as an example. Each iteration equals one level of the 
search-tree. In each iteration, the algorithm only expands 
the best-rated node of each iteration. In the shown case, the 
parameter “Batch Size” assumes in each iteration the grey 
value for one specific neural network. For predicting a 
different output, a different neural network is used, which 
possibly follows a different path. 

 
Fig. 4.   Search Tree for parameter "Batch Size" 

In order to force the algorithm to converge, the range of 
possible values for each parameter is decreased in each 
iteration. The authors have chosen to halve the range of 
possible values in each iteration and hereby the algorithm 
continuously searches on a more granular grid. Therefore, 
the delta of the analyzed hyperparameter values decreases 
in each iteration. For instance, in the first iteration the 
highest batch size delta between the different parameter 
configurations is 32. In the third iteration, the delta 
decreases to the value of 8. Eventually, the parameter 
would change slightly more in a higher number of iterations 
and lead to an increased result quality. 

Nevertheless, a trade-off between number of iterations 
and the quality of the resulting neural networks exists. 
Initial calculations indicated that in the third iteration, the 
quality of the neural network does not change significantly 
anymore. If the method is applied in different 
environments, a higher number of iterations may be 
needed. Hence, an objective stop criterion is beneficial in 
order to justify a termination of the method.  

The best-rated node is chosen by evaluating all possible 
parameter combinations in each iteration regarding a 
quality criterion. A possible quality criterion is the value of 
the loss function when applying the trained neural network 
on a test-set. In each iteration, the algorithm chooses 
between all offered specifications of a parameter by 
training each configuration of the neural network and 
evaluating the value of the loss function on the test-set for 
each configuration. The aforementioned stop criterion 
could therefore be the percentage change of the loss 
function. 

Search trees similar to Fig. 4 are created for all 
parameters named in Chapter IV. The number of parameter 
configurations, which are to be tried, varies depending on 
the number of possible parameter values of each parameter 
in each iteration. Let 𝑎𝑎𝑗𝑗,𝑖𝑖 be the number of possible values 
of parameter j in iteration i. If m parameters are tuned, this 
leads to ∏ 𝑎𝑎𝑗𝑗,𝑖𝑖

𝑚𝑚
𝑗𝑗=1  different configurations which are tested 

in the iteration i. 

The benefit of the implicit search strategy is the 
reduction of parameter configurations that have to be tested 
while keeping a certain flexibility: Even if in the first 
iteration the lowest of all manifestations of a parameter is 
chosen, this choice can be adjusted towards higher values 
in further iterations. This ability of the implicit search 
strategy is very important due to interdependencies 
between different parameters: A change of one parameter 
can affect the optimal value for another parameter. The 
reduction of parameter configurations becomes apparent in 



Fig. 4. During three iterations, the implicit search strategy 
is able to find a value for the parameter “Batch Size” with 
a precision of 8 (i.e. delta=8) while testing 2+3+3=8 
parameter configurations. All configurations of the value 
set A= {8, 16, 32, 40, 48, 56, 64, 72, 80, 88} could have 
been identified. In order to achieve the same precision by 
using Grid Search, 11 parameter configurations would have 
to be tested, namely all configurations of the value set A. 
This equals a reduction of 27%. The percentage reduction 
increases with higher precision: If 6 iterations are used 
(precision of 1), implicit search tests 17 configurations, 
while Grid Search tests 95 configurations (reduction of 
82%). 

VI. CONCLUSION 
In the previous chapter, the authors have presented the 

results of the performed experiments with the aim to find 
the best hyperparameter configuration and structure for the 
applied neural network. In this chapter, a short summary of 
the obtained results is given, followed by the recognized 
threats to the validity of the results and future research.  

A. Summary of the Results 
The obtained results from the grid search show that it is 

possible to reach a hit rate of 96.45% is for TOP 10 match. 
The analysis of the best performing configurations show 
that a rectangular shaped neural network with one hidden 
layer and no multiplicator for the number of neurons 
delivers the best result. The values of the varied AI 
hyperparameters within the best performing configuration 
are as follows: nn_limit (2000), learning_rate (0.1), 
solver_weight_decay (0), and solver_momentum (0). On 
the other hand, it is not possible to name a superior value 
for the hyperparameter max_epoch.  

A possible strategy to improve the obtained results is 
the splitting of the neural network according to binary and 
continuous variables in the output layer. As a result, the 
output of the neural network is tailored to the desired output 
range, which is expected to lead to a higher precision. One 
disadvantage of this approach is the increased 
computational effort for the hyperparameter tuning process 
due to the increased count of neural networks. To overcome 
this issue, an implicit search strategy has been proposed 
instead of the grid search strategy.  

An experiment that has been conducted to test the 
implicit search strategy has shown that in each iteration, the 
quality of the predictions improves. In order to compare the 
implicit search strategy to other hyperparameter tuning 
approaches like “Bayesian optimization” or gradient-based 
approaches, a comparison with an example dataset would 
be required in order to properly compare speed and 
precision of the different approaches for hyperparameter 
tuning. 

B. Threats to Validity 
The conducted experiments base strongly on the 

defined value ranges and the steps of the hyperparameters. 
Due to time restriction during research, the authors have 
limited the value ranges and steps sparingly. Therefore, it 
is not possible to exclude the possibility of achieving better 
results with the hyperparameter values that have not been 
taken into consideration in the experiments. Furthermore, 
the random separation of training and test data is a non-
controllable factor in the experiments. To mitigate the 

undesired consequences of the random separation of data, 
it is recommended to repeat the experiments to gather 
multiple results set.  

A further threat to the validity of the obtained results 
has a natural cause that all performed experiments are using 
test data from already existing assembly systems. That 
means, it is possible to optimize the hyperparameter 
configuration in accordance to the existing assembly 
systems (retrospective optimization), but this cannot 
guarantee that the configured neural network fits optimally 
for assembly systems that are yet to be created. 

Lastly, it is not possible to guarantee that the used 
training data corresponds to the real assembly stations of 
the production site. If operational changes to the production 
plant are made after the project data has been used as 
training data, the AI system is trained on false assumptions. 

C. Future Research 
In this paper, it has been shown that the configuration 

and hyperparameter settings of the neural network have a 
considerable impact on the equipment selection results. 
Even though the system has been optimized significantly, 
there is still potential for improvement: Similar to the 
splitting of the neural network into multiple networks, it is 
conceivable to activate specific neural networks for each 
resource type, such as tools, grippers, et cetera.  

Despite the possibilities to improve the AI system itself, 
the data basis has to be further improved. Analyses have 
shown that a high percentage of the equipment cannot be 
distinguished explicitly, based on their given attributes. In 
specific terms, the resource library contains many “similar” 
equipment, which makes our AI-driven selection of 
assembly equipment more difficult. In the same way, the 
given training basis for development proposes of our 
method needs to be sufficiently increased, especially if the 
proposed method needs to be prepared for pilot projects. 
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