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Abstract: An approximate solution for a contact problem of profiles which are not axially symmetrical
but deviate only slightly from the axial symmetry is found in a closed explicit analytical form. The
solution is based on Betti’s reciprocity theorem, first applied to contact problems by R.T. Shield in
1967, in connection with the extremal principle for the contact force found by J.R. Barber in 1974
and Fabrikant’s approximation (1986) for the pressure distribution under a flat punch with arbitrary
cross-section. The general solution is validated by comparison with the Hertzian solution for the
contact of ellipsoids with small eccentricity and with numerical solutions for conical shapes with
polygonal cross-sections. The solution provides the dependencies of the force on the indentation, the
size and the shape of the contact area as well as the pressure distribution in the contact area. The
approach is illustrated by linear (conical) and quadratic profiles with arbitrary cross-sections as well
as for “separable” shapes, which can be represented as a product of a power-law function of the
radius with an arbitrary exponent and an arbitrary function of the polar angle. A generalization of
the Method of Dimensionality Reduction to non-axisymmetric profiles is formulated.

Keywords: contact problem; non-axisymmetric indenter; extremal principle; generalized MDR

1. Introduction

In 1882, Heinrich Hertz solved the problem of elastic contact of parabolic bodies [1].
A solution for the contact of an arbitrary body of revolution with a compact contact area
was found much later, in 1941–1942 by Föppl and Schubert [2–4]. An attempt to overcome
the restriction of axial symmetry was undertaken in 1990 by Barber and Billings [5]. Their
approach is based on using Betti’s reciprocity theorem as suggested by Shield in 1967 [6]
and the extremal principle found by Barber [7]. However, in [5] Barber and Billings merely
illustrated their method on examples of contacts with “linear profiles” (pyramids with
polygonal cross-sections) since an analytical solution is possible only for this case. In the
present paper, we apply the extremal principle of Barber to another case where a largely
analytical treatment is possible: To contacts of profiles that are not axially symmetrical but
deviate only slightly from the axial symmetry.

2. Barber’s Extremal Principle

In [6], Shield used Betti’s reciprocity theorem to show that the normal force FN(A)
appearing due to indentation of the profile f (x, y) to a depth d (while A is the contact area
in this state) is given by the equation

FN(A) =
1
d∗

x

A

p∗(x, y)(d− f (x, y))dxdy (1)

where in the pressure distribution, p∗(x, y) is that under a flat punch with the cross-
sectional shape A which is indented by d∗. Note that the indentation d∗ is an auxiliary
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parameter used solely for determining the pressure p∗(x, y); it has nothing to do with the
true indentation depth d. Of course, the integral (1) does not depend on d∗ as pressure
p∗(x, y) under an arbitrary flat punch is proportional to d∗. In [7], Barber has shown that
the area A fulfilling the usual contact conditions (the pressure inside the contact area is
positive and there is no interpenetration, outside the contact, the pressure is zero and
the distance between surfaces is positive), corresponds to the maximum force at a given
indentation depth. (For axisymmetric profiles, this extremal principle has already been
used by Shield [6]).

To be able to look constructively for a solution, Barber and Billings propose to use
Fabrikant’s approximation [8] for the pressure distribution under a flat-ended punch.
Fabrikant’s hypothesis is that the stress distribution is given in a good approximation by
the equation

p =
2E∗d

L
a(ϕ)√

a(ϕ)2 − r2
(2)

where a(ϕ) is the equation for the contact boundary in polar coordinates and

L =

2π∫
0

a(ϕ)dϕ (3)

The motivation for the ansatz (2) is straightforward. It is known to be exact for elliptical
punches with arbitrary eccentricity, and it provides the correct kind of asymptotic behavior
in the vicinity of the boundary, which must be fulfilled for a flat-ended punch of arbitrary
shape [9].

The origin for the polar coordinate system has to be taken as the centroid of the area
A provided there are no tilting moments around the origin (which we will assume in
this paper).

With Fabrikant’s pressure (2), Equation (1) becomes

FN(A) =
2E∗

L

2π∫
0

a(ϕ)∫
0

a(ϕ)(d− f (r, ϕ))rdrdϕ√
a(ϕ)2 − r2

(4)

Introducing definitions

gϕ(a) = a
a∫

0

f ′(r, ϕ)√
a2 − r2

dr,
dGϕ(a)

da
= gϕ(a), (5)

the force (4) can be rewritten as

FN(A) =
2E∗

L

2π∫
0

(
d · a(ϕ)2 − a(ϕ)Gϕ(a(ϕ))

)
dϕ (6)

3. Finding the Force Maximum
3.1. Axially Symmetric Profiles

In the case of an axially symmetric profile, a(ϕ) = a0, L = 2πa0, the force equation
simplifies to

FN(a0) = 2E∗(d · a0 − G(a0)) (7)

The condition for its maximum reads dFN(a0)/da0 = 2E∗(d− g(a0)) = 0 or

d = g(a0) (8)
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and the normal force is equal to

FN(a0) = E∗
a0∫
−a0

(d0 − g(a))da (9)

The pressure distribution can be calculated by integrating contributions (2) during indenta-
tion from the first touch up to the given indentation depth, as described in detail in [10]
(Appendix B),

p(r) =
E∗

π

a∫
r

1√
ã2 − r2

dg(ã)
dã

dã (10)

Equations (8)–(10) are the well-known equations of the Method of Dimensionality Reduc-
tion (MDR) [11].

3.2. General Profiles

In the general case of non-axisymmetric profiles, let us first search for the maximum
of functional (6) at a constant value of L. This can be done, according to Lagrange, by
searching for an unconditional extremum of the functional

2E∗

L

2π∫
0

(
d · a(ϕ)2 − a(ϕ)Gϕ(a(ϕ))

)
dϕ− D

 2π∫
0

a(ϕ)dϕ− L

 (11)

where D is a Lagrange multiplier. At the maximum of this functional, the first variation
must vanish identically

2E∗

L
(
2d · a(ϕ)− Gϕ(a(ϕ))− a(ϕ)gϕ(a(ϕ))

)
= D (12)

This equation determines implicitly the contact boundary a(ϕ), while D is connected with L
through the condition (3). After substitution of a(ϕ) into (6), the force will remain a function
of the still undefined L, which should finally be found as a value giving the maximum to
the force. All stated operations, beginning with the solution of Equation (12) with respect to
a(ϕ), can be carried out analytically without approximations only in two cases: Either the
above case of axisymmetric profiles (leading to the MDR) or in the case of linear (conical)
profiles. The latter has already been done in the paper [5] for polygonal cross-sections. To
be able to constructively realize the above program for more general shapes, let us consider
profiles that only slightly deviate from axisymmetric ones. We will show below that this is
the third case where a largely analytical treatment is possible.

3.3. Profiles Slightly Deviating from Axisymmetric Ones

Let us consider a profile that is not axially symmetrical but deviates only slightly from
axial symmetry:

f (r, ϕ) = f0(r) + δ f (r, ϕ) (13)

where δ f (r, ϕ) is a small deviation. We define the position of the origin of coordinates in
such a way that

f (0, ϕ) = f0(0) = δ f (0, ϕ) = 0 (14)

The functions gϕ(a) and Gϕ(a) will correspondingly consist of two parts

Gϕ(a) = G0(a) + δGϕ(a), gϕ(a) = g0(a) + δgϕ(a), gϕ
′(a) = g0

′(a) + δgϕ
′(a) (15)

with

g0(a) = a
a∫

0

f0
′(r)√

a2 − r2
dr, δgϕ(a) = a

a∫
0

δ f0
′(r, ϕ)√

a2 − r2
dr (16)
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and correspondingly
G0
′(a) = g0(a), δG′ϕ(a) = δgϕ(a) (17)

The contact boundary will also be almost a circle with a small perturbation

a(ϕ) = a0 + δa(ϕ) (18)

Substituting (18) into (12), expanding all functions with respect to small deviation δa(ϕ)
and neglecting all terms of the second or higher orders, we get for the deviation of the
contact contour from a circle in the first approximation

δa(ϕ) =
Dπa0

E∗ − 2da0 + Gϕ(a0) + a0gϕ(a0)

2d− 2gϕ(a0)− a0gϕ
′(a0)

(19)

With (15), we obtain

δa(ϕ)[2d− 2g0(a0)− a0g0
′(a0)]

2

=
[

Dπa0
E∗ − 2da0 + G0(a0) + a0g0(a0)

]
[2d− 2g0(a0)− a0g0

′(a0)]

+[2d− 2g0(a0)− a0g0
′(a0)]

[
δGϕ(a0) + a0δgϕ(a0)

]
+
[

Dπa0
E∗ − 2da0 + G0(a0) + a0g0(a0)

][
2δgϕ(a0)− a0δgϕ

′(a0)
]

(20)

To determine the Lagrange multiplier D we require

2π∫
0

δa(ϕ)dϕ = 0 (21)

Note that the separation (13) into an axisymmetric part and perturbation is not unique.
We can use this freedom to essentially simplify the following relations. Let us define the
deviation in such a way that

2π∫
0

δgϕ(a0)dϕ = 0 (22)

for all a0. This will automatically mean that

2π∫
0

δGϕ(a0)dϕ = 0 and
2π∫
0

δgϕ
′(a0)dϕ = 0 (23)

and also guarantee that
2π∫
0

[
δGϕ(a0) + a0δgϕ(a0)

]
dϕ = 0 (24)

and thus, that integral over ϕ of the term in the third line in (20) vanishes. If we now chose
the constant D such that

[
Dπa0

E∗ − 2da0 + G0(a0) + a0g0(a0)
]
= 0, then the integrals over ϕ

of the terms in the second and fourth lines of (20) vanish identically and the condition (21)
is fulfilled. We then obtain from (20)

δa(ϕ) =

[
δGϕ(a0) + a0δgϕ(a0)

]
[2d− 2g0(a0)− a0g0′(a0)]

(25)

The force (6) can now be written as
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FN(A) = E∗
πa0

2π∫
0

(
d · a(ϕ)2 − a(ϕ)Gϕ(a(ϕ))

)
dϕ

= E∗
πa0

2π∫
0

(
d · a0

2 − a0G0(a0)
)
dϕ + E∗

πa0

2π∫
0
[2d · a0 − G0(a0)− a0g0(a0)]δa(ϕ)dϕ− E∗

π

2π∫
0

δGϕ(a0)dϕ

(26)

The second and the third term are equal to zero due to relations (22) and (23) so that only
the first term remains. Its maximization leads to the usual MDR result [11]

d = g0(a0) (27)

This means that Equation (25) can finally be rewritten as follows:

δa(ϕ) = −
δGϕ(a0) + a0δgϕ(a0)

a0g0′(a0)
(28)

This equation provides the explicit solution for the deviation of the contact boundary from
the circle with radius a0. The normal force is given by the Equation (9)

FN(a0) = 2E∗
a0∫

0

(d− g0(a))da (29)

3.4. Pressure Distribution for Profiles Slightly Deviating from Axisymmetric Ones

Let us take a close look at the process of indentation from the first touch to the final
indentation depth d and denote the current values of the force, the indentation depth and
the effective contact radius respectively by F̃N , d̃ and ã0. The entire process consists of
changing the indentation depth from d̃ = 0 to d̃ = d, whereby the contact radius changes
from ã = 0 to ã0 = a0 and the contact force from F̃N = 0 to F̃N = FN . An infinitesimal
indentation by dd̃ of the area, which is given by the contour equation r = a(ϕ), produces
the following contribution to the pressure distribution

dp =
E∗

πa0

a(ϕ)√
a(ϕ)2 − r2

dd̃ for r < a(ϕ) (30)

The pressure distribution at the end of the indentation process is equal to the sum of the
incremental pressure distributions:

p(r, ϕ) =
E∗

π

d∫
d(r)

1
ã0

ã(ϕ)√
ã(ϕ)2 − r2

dd̃ =
E∗

π

a(ϕ)∫
r

1√
ã(ϕ)2 − r2

ã(ϕ)

ã0

dg0(ã0)

dã(ϕ)
dã(ϕ) (31)

where ã0 must be considered here as a function of ã(ϕ).

4. Examples
4.1. Contact with Parabolic Profiles with Arbitrary Cross-Section

Consider a profile
z = f (r, ϕ) = r2ψ(ϕ) (32)

Thus
f0(r) = r2ψ and δ f (r, ϕ) = r2(ψ(ϕ)− ψ

)
(33)

where ψ is the averaged value of ψ(ϕ) over all angles:

ψ =
1

2π

2π∫
0

ψ(ϕ)dϕ (34)
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The corresponding angle-dependent “MDR profile” is

gϕ(a) = 2a2ψ(ϕ) (35)

For all necessary auxiliary functions, we get

g0(a) = 2ψa2, δgϕ(a) = 2a2(ψ(ϕ)− ψ
)
, g0

′(a) = 4ψa, (36)

G0(a) =
2ψa3

3
, δGϕ(a) =

2a3

3
(
ψ(ϕ)− ψ

)
. (37)

The effective contact radius is given by Equation (27):

a0 =

√
d

2ψ
(38)

and the contact area is given by the relation (18)

a(ϕ) = a0

(
5
3
− 2

3
ψ(ϕ)

ψ

)
(39)

To find the pressure distribution, we use Equation (31)

p(r, ϕ) =
E∗

π

a(ϕ)∫
r

ã(ϕ)√
ã(ϕ)2 − r2

1
ã0

dg0(ã0)

dã(ϕ)
dã(ϕ) =

2
π

E∗
(

d · ψ
2

)1/2
√

1−
(

r
a(ϕ)

)2
(40)

4.2. Contact with a Paraboloid

As a special case of a general parabolic profile, let us consider a paraboloid

z = f (x, y) =
x2

2R1
+

y2

2R2
=

r2

2

(
cos2 ϕ

R1
+

sin2 ϕ

R2

)
(41)

In this case,

ψ(ϕ) =
1
2

(
cos2 ϕ

R1
+

sin2 ϕ

R2

)
=

1
4

(
1

R1
+

1
R2

)
+

1
4

(
1

R1
− 1

R2

)
cos 2ϕ (42)

and

ψ =
1
4

(
1

R1
+

1
R2

)
(43)

Equations (38)–(40) take the form

a0 =

√
2d · R1R2

R1 + R2
(44)

a(r, ϕ) = a0

[
1− 2

3
R2 − R1

R1 + R2
cos 2ϕ

]
(45)

and

p(r, ϕ) =
2
π

E∗
(

d · (R1 + R2)

2R1R2

)1/2
√

1−
(

r
a(ϕ)

)2
(46)

The total normal force is equal to

FN =
4
3

E∗
(

2R1R2

R1 + R2

)1/2
d3/2

(
1−

(
2
3

R2 − R1

R1 + R2

)2
)

(47)
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Equation (45) describes in the approximation of small eccentricities an ellipse with half-axes

a = a0

[
1 +

2
3

R2 − R1

R1 + R2

]
, and b = a0

[
1− 2

3
R2 − R1

R1 + R2

]
(48)

For the eccentricity of the contact area, we get

e =

√
1− b2

a2 =
2√
3

eg

√
1− e2

g/2

1− e2
g/6

(49)

where

eg =

√
1− R1

R2
(50)

is the eccentricity of cross-sections of the indenter. For small eccentricities, the ratio of
eccentricities of contact area and cross-sections of the ellipsoid is constant and equal to
2/
√

3, which is the exact asymptotic value according to the Hertzian solution [9] (p. 35).
Equation (49) provides a very good approximation for the exact solution for eccentricities
up to 0.7 (see Figure 1).
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4.3. Contact of a Conical Indenter with an Arbitrary Cross-Section

Consider a general conical profile with an “almost axisymmetric” shape

f (r, ϕ) = r · ψ(ϕ) = f0(r) + δ f (r, ϕ) (51)

Thus
f0(r) = rψ and δ f (r, ϕ) = r

(
ψ(ϕ)− ψ

)
(52)

where ψ is the averaged value of ψ(ϕ) over all angles according to (34). For all necessary
auxiliary functions, we get

g0(a) =
π

2
aψ, δgϕ(a) =

π

2
a
(
ψ(ϕ)− ψ

)
, g0

′(a) =
π

2
ψ (53)

G0(a) =
π

4
a2ψ, δGϕ(a) =

π

4
a2(ψ(ϕ)− c) (54)

The contact area is given by the relation (18)

a(ϕ) =
2
π

d
ψ

(
5
2
− 3

2
ψ(ϕ)

ψ

)
(55)
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To find the pressure distribution, we use Equation (31)

p(r, ϕ) =
E∗

π

a(ϕ)∫
r

1√
ã(ϕ)2 − r2

ã(ϕ)

ã0

dg0(ã0)

dã(ϕ)
dã(ϕ) =

E∗

2
ψ · ln

 a(ϕ)

r
+

√(
a(ϕ)

r

)2

− 1

 (56)

4.4. Contact of a Pyramid with Square Cross-Section

Let’s consider a linear profile

f (r, ϕ) = r tan α cos ϕ,−π

4
< ϕ <

π

4
(57)

and similar equations for the angles π/4 < ϕ < 3π/4, 3π/4 < ϕ < 5π/4 and −3π/4 <
ϕ < −π/4, which describes a pyramid with square cross-sections and the angle α between
the inclined planes of the pyramid and the horizon. In this case,

ψ(ϕ) = tan α cos ϕ, ψ =
2
√

2
π

tan α (58)

The boundary of the contact area is given by the relation (55) (see Figure 2)

a(ϕ) =
d

tan α

(
5

2
√

2
− 3π

8
cos ϕ

)
for− π

4
< ϕ <

π

4
usw. (59)
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( , ) tan cosf r r   ,   
4 4

      (57)

and  similar  equations  for  the  angles  / 4 3 / 4    ,  3 / 4 5 / 4      and 

3 / 4 / 4      , which describes a pyramid with square cross‐sections and the angle 

   between the inclined planes of the pyramid and the horizon. In this case, 

( ) tan cos    , 
2 2

tan 


   (58)

The boundary of the contact area is given by the relation (55) (see Figure 2) 

5 3
( ) cos

tan 82 2

d
a

 

 

  
 

  for   
4 4

      usw.  (59)

 

Figure 2. The normalized contact boundary line (a(ϕ) tan α/d) according to Equation (59) (blue line)
and the result of numerical simulation with Boundary Element Method (gray figure). Numerical data
have been obtained by Qiang Li [12] with the method described in [13].

For the normal force, we get

FN =
2
π

E∗
d2

ψ
=

E∗d2
√

2 tan α
(60)

Numerical simulation gives the solution FN = 0.7395E∗d2/ tan α which is 4.6% larger than
the above analytical result.

For the pressure distribution in the contact area, we obtain, according to (56),

p(r, ϕ) =
E∗

2
ψ · ln

 a(ϕ)

r
+

√(
a(ϕ)

r

)2

− 1

 (61)
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4.5. Contact of Power-Law Shapes

Consider a profile having the form

f (r, ϕ) = rn · ψ(ϕ) (62)

which means that all vertical cross-sections are self similar differing only by the scaling fac-
tor ψ(ϕ). The decomposition into a rotationally symmetric part and deviation is as follows

f0(r) = rn · ψ, δ f (r, ϕ) = rn ·
(
ψ(ϕ)− ψ

)
(63)

where ψ is the average value of ψ(ϕ), Equation (34).
For all necessary auxiliary functions, we get

gϕ(a) = ψ(ϕ) · γ(a), Gϕ(a) = ψ(ϕ) · (a), ′(a) = γ(a), g0(a) = ψ · γ(a) (64)

with

γ(a) = a
a∫

0

nrn−1
√

a2 − r2
dr = κnan, κn =

1∫
0

ξn−1dξ√
1− ξ2

=
π

2
nΓ
( n

2
)

Γ
(

n
2 + 1

2

) (65)

while Γ(. . .) is the gamma function.
For the deviations, we have

δgϕ(a) = κnan(ψ(ϕ)− ψ
)
, δGϕ(a) = κn

an+1

n
(
ψ(ϕ)− ψ

)
(66)

The boundary of the contact area is given by the relation (28)

a(ϕ) = a0

(
1 +

(
n−1 + n−2

)(
1− ψ(ϕ)

ψ

))
(67)

where a0 is determined by the condition ψκna0
n = d:

a0 =

(
d

κnψ

)1/n
(68)

The normal force is equal to

FN(a0) = 2E∗
a0∫

0

(
d− ψκnan)da = 2E∗da0

n
n + 1

=
2n

n + 1
E∗d

n+1
n
(
κnψ

)−1/n (69)

The average pressure is equal to

p =
FN(a0)

πa2
0

=
2n

n + 1
E∗d

n−1
n
(
κnψ

)1/n

π
(70)

For the pressure distribution in the contact area, normalized by the average pressure, we
obtain, according to (31),

p(r, ϕ) =
(n + 1)

2

1∫
r

ξn−1√
ξ2 − r2

dξ (71)

with r = r/a(ϕ). It is again the same result as that for an axisymmetric contact ([10], p. 78)
with the substitution r/a0 → r/a(ϕ) .
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5. Extended Method of Dimensionality Reduction (MDR) for Slightly
Non-Axisymmetric Contacts

The above-sketched solution procedure can be considered as an extension of the
Method of Dimensionality Reduction [11] to non-axisymmetric profiles. Let us summarize
the above findings in the form of procedure that has to be applied for the solution of
such problems.

We consider an “arbitrary” profile z = f (r, ϕ) underlying the following restrictions:

(1) the profile deviates only weakly from an axisymmetric one;
(2) during the normal indentation, only the normal contact force appears (no tilting forces

or moments).

Under these conditions, the following procedure can be applied.

I. In the first step, an “equivalent axisymmetric profile” is determined. In the first-order
approximation, it was shown to be just the profile averaged over the angles:

f0(r) =
1

2π

2π∫
0

f (r, ϕ)dϕ (72)

II. The profile can now be decomposed into an axisymmetric part and the small deviation

f (r, ϕ) = f0(r) + δ f (r, ϕ) (73)

with
δ f (r, ϕ) = f (r, ϕ)− f0(r) (74)

by definition.

III. With the equivalent axisymmetric profile (72), the usual MDR solution procedure is
applied. In particular, the MDR-transformed profile is determined as

g0(a) = a
a∫

0

f0
′(r)√

a2 − r2
dr (75)

IV. The effective radius a0 is determined by the condition

d = g0(a0) (76)

V. The normal force is given by the equation

FN = 2E∗
a0∫

0

(d− g0(x))dx (77)

VI. The effective pressure distribution in the contact area is given by the usual MDR
equation [14] (p. 9)

p0(r/a0) = −
1
π

∞∫
r

q′(x)√
x2 − r2

dx (78)

with

q(x) = E∗
{

d− g(x), |x| < a0
0, |x| > a0

(79)

VII. The true non-axisymmetric contact area is given by the equation

a(ϕ) = a0 + δa(ϕ) (80)
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where δa(ϕ) is determined by (28).

VIII. Finally, the true pressure distribution is given by

p(r, ϕ) = p0(r/a(ϕ)) (81)

The last equation can be considered as a generalization of Fabrikant’s ansatz for flat-
ended punches. Fabrikant states that the pressure distribution under a non-axisymmetric
punch is equal to that under an axisymmetric punch but “rescaled” to the true shape of
the contact area. Similarly, Equation (81) states that the contact pressure is equal to that
under an “equivalent axisymmetric indenter” but rescaled to the true contact area. In the
present paper, we have shown that Equation (81) is the exact first-order approximation for
the power-law profiles (with arbitrary cross-section)—independently of the exponent of
the power law. Even while it was not proven in a general case, the independence of the
exponent gives hope that it could be a good approximation for arbitrarily shaped profiles.
Testing of this hypothesis (e.g., through comparison with a numerical solution with BEM)
is an important task of further studies.

6. Discussion

Using the Barber’s extremal principle, we derived explicit analytical relations for all
essential contact properties of an indenter of “arbitrary” shape (under restriction that it
should be close to an axisymmetric one). The solution provides the dependency of the
normal force on the indentation depth, the size and the shape of the contact area, and the
pressure distribution in the contact area. The derivation has been carried out under two
assumptions (which are the main sources of deviation from the exact solution): (1) Fab-
rikant’s approximation for the stress of a flat-ended punch with arbitrary cross-section and
(2) assumption of a small deviation of the indenter shape from an axial one. However, an
acceptable accuracy is obtained even with relatively large deviations from axial symme-
try, e.g., the eccentricity of the contact area for a paraboloid is given accurately up to an
eccentricity of approximately 0.7. The deviation of normal force in a contact of a pyramid
indenter with square cross-section is of about 4.6%. The whole calculation resembles the
Method of Dimensionality Reduction very much and can be considered as its generaliza-
tion for non-axially symmetric contacts. A central approximation used in this paper is
Fabrikant’s approximation for the pressure under a flat punch. This approximation could be
further improved by using higher-order corrections obtained by Golikova and Mossakovskii for
the pressure distribution under plane stamps of nearly circular cross-section [15].
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