
Multimodal Interaction in Smart Environments:

A Model-based Runtime System for Ubiquitous User

Interfaces

vorgelegt von

Diplom-Informatiker

Marco Blumendorf

Von der Fakultät IV � Elektrotechnik und Informatik

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

Dr.-Ing.

genehmigte Dissertation

Promotionsausschuÿ:

Vorsitzender: Prof. Dr. Volker Markl

Berichter: Prof. Dr. Sahin Albayrak

Berichter: Prof. Kris Luyten

Berichter: Prof. Jean Vanderdonckt

Tag der wissenschaftlichen Aussprache: 13.07.2009

Berlin 2009

D 83

Zusammenfassung

Die wachsende Verbreitung des Computers in allen Bereichen des Lebens birgt neue

Herausforderungen für Wissenschaftler und Programmierer in verschiedensten Fachrich-

tungen der Informatik. Vernetzte Geräte bilden intelligente Umgebungen, die unter-

schiedlichste Geräte, Sensoren und Aktoren integrieren und leiten allmählich einen Paradig-

menwechsel in Richtung des �Ubiquitous Computing� ein. Mit der wachsenden Durch-

dringung unserer Lebensbereiche durch Computer-Technologie, nimmt auch das Bedürf-

nis zu, die steigende Komplexität über neuartige Benutzerschnittstellen einerseits hand-

habbar zu machen und andererseits vor dem Nutzer zu verbergen. Diese Arbeit prägt den

Begri� Ubiquitous User Interface (Allgegenwärtige Benutzerschnittstelle) um Schnittstellen

zu bezeichnen, die einer Vielzahl von Nutzern erlauben mit verschiedenen Geräten über

mehrere Modalitäten mit einem Satz von Diensten in wechselnden Situationen zu inter-

agieren. Die Entwicklung und Bereitstellung solcher Benutzerschnittstellen stellt neue

Anforderungen an Design und Laufzeit.

Der Einsatz von Modellen und Modellierungstechnologien ist ein vielversprechender Weg

um der steigenden Komplexität von Software Herr zu werden. Diese Arbeit beschreibt

einen modell-basierten Ansatz, der ausführbare Modelle von Benutzerschnittstellen mit

einer Laufzeitarchitektur verbindet, um die wachsende Komplexität von Benutzerschnitt-

stellen zu adressieren. Ausführbare Modelle identi�zieren dabei die gemeinsamen Bausteine

von dynamischen, in sich geschlossenen Modellen, die Design- und Laufzeitaspekte kom-

binieren. Die Überbrückung der Kluft zwischen Design- und Laufzeit innerhalb eines

Modells ermöglicht die Heranziehung von Designinformationen für Laufzeitentscheidun-

gen sowie Schlussfolgerungen über die Semantik von Interaktion und Präsentation. Basierend

auf dem Konzept von ausführbaren Modellen wird ein Satz von Metamodellen eingeführt,

der Designaspekte aktueller Benutzerschnittstellenbeschreibungssprachen aufgreift und

zusätzliche Laufzeitaspekte wie Zustandsinformation und dynamisches Verhalten inte-

griert. Die de�nierten Metamodelle umfassen dabei Kontext-, Dienst- und Aufgaben-

modelle, ebenso wie abstrakte und konkrete Interaktionsmodelle. Sie ermöglichen die

De�nition der Elemente Allgegenwärtiger Benutzerschnittstellen auf verschiedenen Ab-

straktionsebenen. Beziehungen zwischen den Modellen ermöglichen den Austausch von

Informationen zur Zustandssynchronisierung und den Datenaustausch zur Laufzeit.

Die Integration der Konzepte in die Multi-Access Service Platform, einer Architektur

für die Interpretation von Benutzerschnittstellenmodellen, stellt einen neuartigen Ansatz

zur Nutzung dieser Modelle zur Erstellung und Verwaltung Allgegenwärtiger Benutzer-

schnittstellen dar. Die Architektur bietet Unterstützung für die Anpassung der Präsen-

ii

tation in Abhängigkeit der Geräteeigenschaften, multimodale Interaktion, Verteilung von

Benutzerschnittstellen über mehrere Geräte und die dynamische Anpassung an Kontex-

tinformationen. Die Integration zustandsbehafteter Benutzerschnittstellenmodelle mit

der Welt auÿerhalb dieser Modelle wird durch die Projektion des Modellzustandes auf

die Darstellung als Benutzerschnittstelle und die Stimulation von Zustandswechseln auf

Basis von Benutzereingaben erreicht. Modelle für die Verteilung, multimodale Informa-

tionsverarbeitung (Fusion) und Adaption der Benutzerschnittstelle verbinden die äuÿere

Welt mit der modellierten Benutzerschnittstellenbeschreibung. Verschiedenste Interak-

tionsgeräte werden unterstützt, um dem Nutzer den internen Zustand des Benutzer-

schnittstellenmodells, mit Hilfe von multimodaler Interaktion, über verschiedene Interak-

tionsressourcen zu präsentieren. Die Implementierung der Laufzeitarchitektur der Multi-

Access Service Platform wurde als Teil des Service Centric Home Projektes in eine in-

telligente Heimumgebung integriert und diente als Plattform für die Implementierung

verschiedener Applikationen für das intelligente Heim. Fallstudien wurden durchgeführt

um die entwickelten Konzepte zu evaluieren. Die Umsetzung durch verschiedene aus-

führbare Modelle ermöglichte dabei die Kombination der Modelle in einem komplexen

Netz zur Laufzeit und zeigte die Anwendbarkeit der entwickelten Lösung.

iii

Abstract

The increasing popularity of computers in all areas of life raises new challenges for com-

puter scientists and developers in all areas of computing technology. Networked resources

form smart environments, which integrate devices and appliances with sensors and actors,

and make an ongoing paradigm shift towards ubiquitous computing paradigms visible.

With this growing pervasiveness of computing technology, their user interfaces need to

transport and hide an increasing complexity. In this work the term Ubiquitous User Inter-

face (UUI) is coined to denote user interfaces that support multiple users, using di�erent

devices to interact via multiple modalities with a set of applications in various contexts.

The creation of such user interfaces raises new requirements for their development and

runtime handling.

The utilization of models and modeling technologies is a promising approach to han-

dle the increasing complexity of current software. This thesis describes a model-based

approach that combines executable user interface models with a runtime architecture

to handle UUIs. Executable models identify the common building blocks of dynamic,

self-contained, models that integrate design-time and runtime aspects. Bridging the gap

between design- and runtime models allows the utilization of design information for run-

time decisions and reasoning about interaction and presentation semantics. Based on the

concept of executable models a set of metamodels is introduced, that picks-up design-

time features of current user interface description languages and integrates additional

runtime aspects like state information and dynamic behavior. The de�ned metamodels

range from context-, service- and task- to abstract- and concrete interaction model and

aim at the de�nition of the aspects of UUIs on di�erent levels of abstraction. Mappings

between the models allow the exchange of information for state synchronization and data

exchange.

The integration of the concepts into the Multi-Access Service Platform as an architecture

for the interpretation of the models, provides a novel approach to utilize user interface

models for the creation and handling of Ubiquitous User Interfaces at runtime. It provides

components to support shaping according to interaction device speci�cs, multimodal in-

teraction, user interface distribution and the dynamic adaptation of the user interface

to context information. The integration of the stateful user interface models with the

outside world is addressed by the projection of the model state to UUI presentations and

the stimulation of state transitions within the models, based on user input. Integrating

distribution, fusion and adaptation models bridges real-world needs and the modeled

user interface de�nition. Various interaction devices are supported to convey the inter-

iv

nal state of the user interface model via a multimodal presentation, distributed across

multiple interaction resources. The implementation of the runtime architecture has been

integrated into a smart home environment as part of the Service Centric Home project

and served as implementation platform for di�erent multimodal home applications. Case

studies have been conducted, to evaluate the developed concepts. The realization of var-

ious executable models supported their combination into a complex net of models at

runtime and allowed to prove the feasibility of the developed approach.

v

Acknowledgments

I would like to thank my adviser Prof. Sahin Albayrak for the great support and for

giving me the opportunity to conduct my research in the stimulating environment of

the DAI-Labor of the Technische Universität Berlin. You gave me the opportunity to

work with and lead the HCI working group, providing the basis for my research. I would

also like to thank Prof. Jean Vanderdonckt and Prof. Kris Luyten for their motivating

support and feedback as members of the committee.

This work has been conducted as part of the research of the HCI working group and

is based on collaborative work and a great amount of shared ideas. Many thanks also

go to the great team forming that group; with every team member, namely Sebastian

Feuerstack, Grzegorz Lehmann, Dirk Roscher, Veit Schwartze, Florian Weingarten, as

well as Serge Bedime, being a hard worker, an excellent programmer and a remarkable

scientist. It was a great pleasure to work with every single one of you during the last

years. Additional thanks go to all the people I had the pleasure to work with at the

DAI-Labor and that helped me by testing and implementing various ideas to support

this thesis. Namely these are Andreas Rieger, Joos-Hendrik Böse, Nadine Farid, Daniel

Freund, Alexander Nieswand, Daniel Käs, Maximilian Kern, Kalppana Sivakumaran,

Tilman Wekel, Cornelius Wefelscheid, Tammo Winkler, and Mathias Wilhelm. I also

want to thank the German Federal Ministry of Economics and Technology for funding

the years of my research and thus provide me the opportunity to �nish this work.

I want to thank my friends, for always supporting me during all the years of hard work,

for listening to my ideas and not understanding a single word sometimes, for distracting

me when I needed a break and for good times in Berlin and everywhere on the planet.

Special thanks go to Katrin and Florian for all the fun weekends and nights out. Finally,

I want to thank my family for always being there for me, giving me a stable basis I could

always return to. You gave me the roots I needed to grow and the courage to �nish what

I started.

When completing a work of this size and duration, it is almost impossible not to forget

to acknowledge someone. So a big thank you to everybody I forgot to mention.

vi

Contents

1. Introduction 2

1.1. Goals and Contributions . 4

1.1.1. Executable Models . 5

1.1.2. Reference Metamodels . 6

1.1.3. A Runtime Architecture . 6

1.2. Thesis Structure . 7

2. Ubiquitous User Interfaces for Smart Environments 8

2.1. Smart Environments . 8

2.2. User Interfaces for Smart Environments 10

2.3. Ubiquitous User Interfaces . 12

2.3.1. Basic Terms . 12

2.3.2. Shapeability . 14

2.3.3. Distribution . 15

2.3.4. Multimodality . 16

2.3.5. Shareability . 17

2.3.6. Mergeability . 18

2.3.7. A De�nition of UUIs . 19

2.4. Summary . 20

3. Fundamentals 22

3.1. Adaptive, Shapeable, Distributed & Multimodal Interaction 22

3.1.1. Adaptation . 22

3.1.2. Shaping . 27

3.1.3. Distribution . 29

3.1.4. Multimodal Interaction . 33

3.1.5. Summary . 45

3.2. Model-Based Development . 46

3.2.1. Fundamental Concepts . 47

viii

Contents

3.2.2. Levels of Abstraction . 49

3.2.3. Models at Runtime . 51

3.2.4. Summary . 54

3.3. User Interface Description Languages . 55

3.3.1. UIML . 55

3.3.2. TERESA XML . 57

3.3.3. USer Interface eXtensible Markup Language (UsiXML) 58

3.3.4. Other . 60

3.3.5. Summary . 61

3.4. Architectures . 62

3.4.1. W3C Multimodal Interaction Framework 62

3.4.2. MultiModal Dialog System . 63

3.4.3. ICARE . 64

3.4.4. Cameleon-RT . 64

3.4.5. DynaMo-AID . 65

3.4.6. FAME . 67

3.4.7. DynAMITE . 68

3.4.8. SmartKom . 70

3.4.9. Other Systems . 71

3.4.10. Discussion . 73

3.5. Conclusion . 78

3.5.1. Shortcomings . 79

3.5.2. Requirements . 80

3.5.3. Summary . 86

4. Executable UI Models 88

4.1. The Meta-Metamodel . 89

4.2. Execution Logic . 91

4.2.1. Intra-Model Logic . 92

4.2.2. Inter-Model Logic . 92

4.2.3. External Model Logic . 93

4.3. The Mapping Metamodel . 94

4.3.1. Synchronization Mappings . 97

4.3.2. Constructional Mappings . 97

4.4. Summary . 98

5. User Interface Metamodels 100

ix

Contents

5.1. Task Model . 101

5.2. Domain Model . 103

5.3. Service Model . 104

5.4. Interaction Modeling . 106

5.4.1. Abstract Interaction Model . 107

5.4.2. Concrete Input Model . 110

5.4.3. Concrete Output Model . 115

5.4.4. Interrelations between Interaction Elements 118

5.5. Connecting the Models . 121

5.6. Discussion . 124

5.7. Summary . 127

6. The Multi-Access Service Platform 130

6.1. Architecture . 131

6.2. Context Model . 133

6.2.1. Environment Information . 134

6.2.2. User Information . 134

6.2.3. Integrating External Processes . 136

6.2.4. Interaction Resources . 136

6.3. Interaction Channels . 137

6.3.1. Channel Types . 138

6.3.2. Integration of Channels and Models 140

6.3.3. Summary . 140

6.4. User Interface Distribution . 141

6.4.1. Distribution Component . 142

6.4.2. Distribution Model . 144

6.4.3. Distribution Sequence . 145

6.5. User Interface Shaping . 147

6.6. Multimodal Input Processing . 148

6.6.1. Monomodal Input Processing . 149

6.6.2. Fusion Component . 150

6.6.3. Fusion Model . 151

6.6.4. Input Interpretation Sequence . 152

6.6.5. Summary . 153

6.7. User Interface Adaptation . 153

6.8. MASP Event Propagation . 157

x

Contents

6.9. Summary . 159

7. Evaluation 162

7.1. The Service Centric Home . 163

7.2. Case Study: Infrastructure for UUIs . 165

7.3. Case Study: Executable UI Models . 167

7.4. Requirements Validation . 169

7.4.1. Shapeability . 169

7.4.2. Dynamic Distribution . 170

7.4.3. Multimodality . 172

7.4.4. Adaptation . 173

7.4.5. Architecture Concepts . 174

7.4.6. UI Concepts . 175

7.5. Summary . 175

8. Conclusion 178

8.1. Future Work . 180

8.2. Concluding Remarks . 182

A. Case Study: Infrastructure for UUIs 184

A.1. The General Concept . 184

A.2. 4-Star Cooking Assistant . 189

A.3. Smart Home Energy Assistant . 199

A.4. Meta-UI . 201

A.5. Summary . 204

B. Case Study: Executable UI Models 206

B.1. The Executable Task Model . 209

B.2. Other Models . 212

B.3. Mappings . 214

B.4. Bootstrapping . 216

B.5. Resulting User Interface . 217

B.6. Summary . 219

List of Figures 220

List of Tables 226

xi

Contents

Bibliography 228

xii

1. Introduction

Computer systems are currently changing our lives and the way we handle technology.

The growing number of computers, miniaturized and embedded into TVs, washing ma-

chines, on-board computers of cars, or the various generations of mobile devices, trans-

form the computer from a business machine, dedicated to speci�c tasks in a well de�ned

environment, to a universal problem solver in all areas of live. Interconnecting these

systems drives information exchange and cooperation and blurs the boundaries of stand-

alone devices. Connected systems in homes and o�ces form smart environments and

integrate devices and appliances with sensors and actors. An ongoing paradigm shift

towards ubiquitous computing concepts (Weiser, 1993) becomes observable as environ-

ments become smart and provide new and innovative applications.

These developments also lead to a change in human-computer interaction. Interaction

within smart environments becomes highly distributed and situation dependent. It is

driven by the utilization of multiple interaction devices, sequentially or simultaneously.

Interaction takes place via a network of interconnected devices, instead of a single device.

Multiple usage situations in�uence the interaction style or the usage of the applications

and multimodal interaction gains importance within mobile usage and changing con-

text situations. Di�erent interaction styles and modalities (e.g. voice, pen-based input,

gestures, or touch screens) support �exible interaction techniques. Additionally, users

interact with a multiplicity of applications and a�ect virtual data as well as real world

actors (e.g. controllable appliances). Sharing resources, data, and applications for col-

laboration becomes important for multi-user environments, but users also compete for

restricted and limited resources. The resulting interaction complexity and multiplic-

ity raises the need for integrated interfaces, that provide user tailored universal access to

applications and services, supported by the available resources of the smart environment.

Handling this interaction complexity and the multiple dimensions of interactive appli-

cations for smart environments requires new user interface features, not supported by

current runtime architectures. User interfaces that adjust to device capabilities or usage

situation, that support multimodal interaction, and that can be distributed across mul-

2

1. Introduction

tiple interaction devices, are complex to handle and pose new development challenges.

Competing for resources, sharing applications between multiple users, integrating ap-

plications and merging user interfaces, even increase this complexity. Additionally, the

changing conditions ((dis-)appearing user, devices, situations) make the dynamic adap-

tation of such user interfaces by adjusting and (re-)con�guring the underlying features

an important aspect.

This work addresses the runtime handling of Ubiquitous User Interfaces (UUIs) that com-

bine shapeability, multimodality, distribution, shareability and mergeability as features

to address these multiple dimensions of user interfaces for smart environments. While

this raises the need for a User Interface Description Language (UIDL) to express the

identi�ed features at design-time, the creation of UUIs also raises the need to handle in-

teraction between user and interactive system at runtime, which is the main focus of this

thesis. A model-based approach is followed to address the user interface complexity, the

integration of design- and runtime issues and the combination of runtime concepts with

the UIDL. This aims at a central user interface model, that stores information about the

user interface on di�erent levels of abstraction. In contrast to most other model-based

approaches the main aspect is not the development of models that allow the derivation

of a �nal user interface description, but the de�nition of models that are the �nal user

interface description. Utilizing these models at runtime provides an internal representa-

tion of the state of the computer system, that can be understood and used to mediate

between human and computer. It allows the direct access to design decisions and thus

the better interpretation of the meaning of the user interface for adaptation and con-

�guration purposes. Underlying the user interface models is the concept of executable

models, which aims at the utilization of the developed models and the exchange of in-

formation between them at runtime. A net of stateful models provides the possibility to

observe the interaction state at any moment in time and to stimulate model elements to

trigger state changes and complex chain reactions on di�erent abstraction levels. The

models are de�ned by a set of metamodels, re�ecting the needs of UUIs. A common

meta-metamodel re�ects the meta concepts, making each of the models executable. The

Multi-Access Service Platform incorporates the meta and meta-meta concepts to provide

a runtime architecture for the generation of user interfaces and the interpretation of the

interaction. It addresses the need to project the internal state of the modeled system to

the outside world in form of a Ubiquitous User Interface. The architecture combines a set

of core UI models with additional runtime speci�c models and incorporates means to de-

rive user interfaces, manage and synchronize multiple parts of the user interface, interpret

and fuse user input from multiple modalities and devices and incorporate the context

3

1. Introduction

of use into the interaction. Focusing on features like context adaptation, distribution

across and migration between multiple devices as well as support for multimodal inter-

action, di�erent applications have been build and evaluated in two case studies. Main

parts of this work have been conducted as part of the Service Centric Home (SerCHo,

www.sercho.de) project, sponsored by the German government (BMWi). A major focus

was thus the application of the results to realize innovative services and applications for

smart home environments.

1.1. Goals and Contributions

Aiming at the development of a framework for the creation and runtime management of

user interfaces for smart environments, UI development and runtime handling are two

important aspects. While the UI development process has been described in (Feuerstack,

2008), this work aims at realizing a runtime system providing the means to handle user

interfaces for smart environments. It focuses on the speci�cation of the user interface

metamodels according to runtime needs and the computer-based interpretation of con-

forming user interface models. In summary, the overall goal of this work can be described

as the simpli�cation of human-computer interaction regarding two perspectives:

• user support: The user is more and more focused in recent systems and should be

the ultimate target of development e�orts. The overall goal from this perspective

is thus to provide optimal interaction capabilities for users at all times.

• development support: The system developer and UI designer face the challenge of

an increased complexity of the interaction and the user interface. Thus there is

the need to express the interaction possibilities while giving room to their actual

representation and adaptation to multiple usage contexts and runtime aspects.

As sketched in �gure 1.1, the Multi-Access Service Platform acts as runtime system,

mediating between user and backend services. A main concept of the approach is the

de�nition of the meta-metamodel of executable models. This provides the general el-

ements to support the execution of models within the architecture of the system. It

also allows the creation of a set of conforming metamodels that express the concepts

of Ubiquitous User Interfaces and provide the core concepts of the architecture to cre-

ate UUIs. Using these metamodels, the user interface developer is able to de�ne a user

interface model, comprising multiple models that conform to the di�erent metamodels.

These models describe the anticipated interaction and can be �loaded� into the runtime

architecture to create a UUI. The user is then able to utilize the UUI to interact with

4

1. Introduction

the system and the connected backend services within the smart environment. Main

aspects of the architecture are the exploitation of the smart environment by delivery and

distribution of the UI with continuous synchronization and management of the interfaces

at runtime, the de�nition of multimodal interaction including the distribution of output

across modalities and the fusion of multimodal input as well as the adaptation of the

interaction to the current context of use. Based on this general approach, three main

Figure 1.1.: The runtime system, mediating between user and backend services.

contributions of this work to build Ubiquitous User Interfaces can be identi�ed and are

described in the next sections:

• Ameta-metamodel, identi�es the common building blocks of user interface mod-

els to be used at runtime in form of executable models.

• A set of metamodels, conforming to the meta-metamodel, addresses the runtime

needs of UUIs.

• An architecture, integrates the meta-metamodel concepts and the set of meta-

models to provide the means to handle UI models and create UUIs at runtime.

The application of the approach has been empirically evaluated within two case studies,

addressing the creation of Ubiquitous User Interfaces for smart home environments.

1.1.1. Executable Models

Models and domain speci�c languages have been identi�ed as a promising approach to

address the complexity of software systems and have also been applied to the domain of

user interfaces recently. This work uses models for the description of user interfaces and

extends this approach by making these models dynamic and executable. This allows to

utilize them as central interaction de�nition in combination with the runtime architecture

5

1. Introduction

and to describe interaction on multiple levels of abstraction in a �exible way. Underlying

this approach is the de�nition of a meta-metamodel, identifying the common building

blocks of executable models. This provides the foundations to create metamodels to

describe Ubiquitous User Interfaces and express their static and dynamic aspects at

runtime. The meta-metamodel combines static de�nition elements with their semantic

meaning in form of executable elements and situation elements as explicit execution state.

At runtime this allows the inspection and manipulation of the current state of the model

and its execution. Based on these building blocks, multiple metamodels and generic links

between them can be de�ned. The executable models concept is described in more detail

in chapter 4.

1.1.2. Reference Metamodels

Utilizing the meta-metamodel of executable models to create UUIs and especially exe-

cutable UUI descriptions additionally requires its application to the next lower level of

abstraction. This leads to the de�nition of a set of metamodels, applying the concept of

executable models to the domain of Ubiquitous User Interfaces. The set of metamodels

aims at picking up �ndings from other model-based approaches, but puts a strong focus

on the issues arising during the runtime interpretation of user interface models. Modeling

UUIs, main aspects of the metamodels have been shapeability and support for distribu-

tion across multiple devices and modalities sequentially and simultaneously. Besides the

adaptation at runtime, multimodality has played a major role, supported by the expres-

sion of interaction possibilities on an abstract, modality independent- and a concrete,

modality dependent level to facilitate the dynamic combination of modalities. The refer-

ence metamodels, that comprise task-, domain-, service- as well as abstract interaction-,

concrete input and concrete output model, are described in detail in chapter 5.

1.1.3. A Runtime Architecture

The third contribution of this work is the combination of the concept of executable models

and the developed metamodels with an architecture to build a runtime system, handling

user interface descriptions to create Ubiquitous User Interfaces. This has been addressed

by building the Multi-Access Service Platform (MASP) that supports the utilization of

the de�ned models to derive user interfaces and de�ne their behavior over time. Utilizing

the same models at design-time and at runtime makes design decisions explicit at runtime

and provides meaning to the di�erent user interface elements. Additional aspects, speci�c

6

1. Introduction

for the combination of the user interface metamodels with the architecture, like the

handling of input fusion, user interface distribution or context adaptation are addressed.

The MASP is described in more detail in 6.

1.2. Thesis Structure

Illustrating the described contributions, this thesis is structured as follows.

Chapter 2 introduces the basic concepts of smart environments and illustrates the idea of

Ubiquitous User Interfaces in detail. It describes �ve underlying features - shapeability,

distribution, multimodality, shareability and mergeability - and derives the main building

blocks, needed for their realization at runtime.

Chapter 3 illustrates the current state of the art in the related areas, providing a general

overview of model-based approaches and multimodal systems. It also describes selected

research issues in this area in greater depth and identi�es shortcomings and requirements.

Chapter 4 introduces the meta-metamodel of executable models.

Chapter 5 describes a set of reference metamodels for user interface development and

emphasizes the runtime aspects of these models.

Chapter 6 introduces the Multi-Access Service Platform, combining the concept of exe-

cutable models and the introduced reference models with an architecture.

Chapter 7 presents the validation of the approach by two case studies and the evaluation

of the concepts against the original requirements.

Chapter 8 concludes this work with a summary and outlook on future work.

Details about the conducted case studies can be found in appendix A and B.

7

2. Ubiquitous User Interfaces for Smart

Environments

The advent of ubiquitous access to various networks and the Internet from any kind of de-

vice as well as the direct interconnection between di�erent devices in smart environments

raise new needs for the interaction with remote services and distributed systems. This

chapter introduces smart environments and the challenges the development of applica-

tions for smart environments raises. From these challenges a set of features (shapeability,

distribution, multimodality, shareability and mergeability) are identi�ed and presented

in section 2.3. The term Ubiquitous User Interface (UUI) is coined for user interfaces

incorporating these features.

2.1. Smart Environments

Smart environments are characterized by the availability of numerous devices and ap-

pliances that are interconnected and thus able to exchange information with each other.

They integrate sensors to monitor context information, usually host multiple services and

applications and support interaction with multiple users. Figure 2.1 shows a sketch of a

smart home environment build at the DAI-Labor of the Technische Universität of Berlin

in cooperation with the Deutsche Telekom Laboratories. The �gure shows four rooms

equipped with multiple networked resources: interaction devices, sensors and controllable

appliances as actors. The connection of these resources forms a complex system o�ering

new possibilities for services and interaction. Considering the set of networked resources

and the basic structure of smart environments, some issues and challenges for the cre-

ation of applications can be identi�ed. Real-time and real life issues like continuous

availability, extensibility, resource e�ciency, safety, security or privacy (Nehmer et al.,

2006; Becker, 2008) are major challenges for such systems. However, interactive applica-

tions for such environments face additional challenges. In contrast to PC-based systems,

personal devices and applications, interactive systems and applications embedded in the

8

2. Ubiquitous User Interfaces for Smart Environments

Figure 2.1.: A smart home environment with various networked devices.

environment need to addressmultiple users and various user groups with di�erent skills

and preferences. Such systems are used in scenarios much less predictable than the usual

�user in front of a PC� usage schema (Abascal et al., 2008). Special needs of di�erent

target groups like supportive usage, non disruptiveness, invisibility, low acceptance for

technical problems and the involvement in the active everyday life (Abascal et al., 2008;

Weber et al., 2005; Becker, 2008) have to be considered carefully. While personalization

puts a strong focus on the user as the main actor for any kind of system, context of

use adaptivity goes one step further and comprises adaptation to multiple situations,

including user, platform and environment at runtime. The complexity of such adaptive

systems is massively increased by the distributedness of smart environments. Combin-

ing multiple applications requires the close integration and data exchange between

these applications to create the image of a single integrated system for the user. The

availability of multiple resources (interaction devices, sensors and appliances) raises the

need to utilize di�erent resources for interaction, making the adaptation to the di�er-

ent capabilities or even di�erent modalities an essential issue. The interactive systems

must be capable of dealing in real-time with the distribution of input and output to

multiple devices in the environment to provide humans with continuous, �exible, and

coherent communication (Emiliani and Stephanidis, 2005). The distribution of interac-

tion across multiple interaction devices sequentially can provide a richer interaction by

addressing the fact that the user moves around in the environment during interaction.

Using multiple interaction devices simultaneously takes into account the appropriateness

of a combination of resources for a given task over the utilization of a single device. The

combination of multiple di�erent interaction devices also leads to the usage of multiple

modalities and interaction paradigms. Interaction shifts from an explicit paradigm, in

which the user's attention is on computing, to an implicit paradigm, in which interfaces

9

2. Ubiquitous User Interfaces for Smart Environments

Figure 2.2.: Multiplicity in smart environments: Multiple users use multiple modalities to
interact via multiple devices with multiple applications in multiple situations.

themselves proactively drive human attention when required (Emiliani and Stephanidis,

2005). Multimodal interaction can provide greater robustness of the system and natural

communication between user and system by voice and gestures can enhance usability,

especially if keyboard and mouse are not available or suitable to use. Distributed multi-

modal interaction requires the ability to consider an unpredictable number of devices and

device federations ranging from mobile phones or headsets to multi-touch wall displays

and needs to address the lack of a dominating interaction paradigm in smart environ-

ments. Looking at all these challenges, a main factor is the overall interaction experience,

which has to be excellent, so that users like the vision of being surrounded by comput-

ers, which is usually not the case with today's graphical user interfaces (Mühlhäuser,

2007). It is required to establish an appropriate balance between automation and human

control (Emiliani and Stephanidis, 2005). While it is sometimes appreciated, that the

system learns human behavior patterns, human intervention directing and modifying the

behavior of the environment should always be possible (Emiliani and Stephanidis, 2005;

Mühlhäuser, 2007).

From this general analysis of the properties and overall challenges of smart environments,

a set of �ve dimensions, that a�ect the development of user interfaces for smart environ-

ments, is selected and covered by this work. The selected dimensions are illustrated in

the next section.

2.2. User Interfaces for Smart Environments

The �ve identi�ed dimensions that have to be covered by user interfaces for smart en-

vironments can be summarized as: multiple users using multiple modalities to interact

via multiple devices with multiple applications in multiple situations. As illustrated in

�gure 2.2, this leads to con�gurations with multiple dimensions.

10

2. Ubiquitous User Interfaces for Smart Environments

Multiple Users denote the support for di�erent users using the system simultaneously or

sequentially. To make use of this, shared interaction, shared resources and shared

information are crucial aspects. While distinguished personal interaction spaces

and privacy are still necessary, collaboration between users should also be a main

focus.

Multiple Modalities identify the need to support di�erent interaction styles in di�erent

situations. In contrast to current PC-based systems, smart environments do not

provide a dominating interaction paradigm and users are often busy with a primary

task, while seeking support by the computer. Multimodality can also help realizing

more robust and natural interaction.

Multiple Devices re�ect the need to support multiple interaction resources and devices.

This addresses the need to change the used interaction devices sequentially, e.g.

while changing rooms, as well as the need to utilize multiple devices at the same

time. The latter can e.g. support multimodality or collaborative work. The �exible

and dynamic combination of multiple interaction devices lowers the boundaries and

limitations that each of the devices has.

Multiple Applications address the fact that a smart environment comprises multiple

interactive applications that are utilized by the di�erent users. While there is the

need to separate these applications to avoid side-e�ects, there is also the need to

integrate the di�erent applications to exchange information and provide the view

of a single comprehensive system.

Multiple Situations re�ect the incorporation of context information into the interac-

tion and thus denotes the fact that an application can be used under di�erent

circumstances. In some cases interaction optimized for one situation can not be

performed in another (gesturing while cutting onions, speech commanding while

on the telephone) and thus e.g. a di�erent interaction paradigm might be more

appropriate.

The complexity of these dimensions is vastly increased by the runtime dynamics in smart

environments. Users and devices can enter and leave the scene, situation and context

parameters change at all times, modalities can become (un-)suitable, new applications

can be installed or old ones removed. Re�ecting these alterations in the application and

its user interface is usually referred to as (runtime) adaptation (Vanderdonckt et al.,

2007). In the following section, a set of features addressing the identi�ed dimensions is

derived and user interfaces incorporating these features are de�ned as Ubiquitous User

Interfaces.

11

2. Ubiquitous User Interfaces for Smart Environments

2.3. Ubiquitous User Interfaces

Based on the selected �ve dimensions, �ve features, de�ning the design space of user

interfaces for smart environments, are described in the following. The features comprise

• shapeability to address di�erent layouts for users, device capabilities and usage

contexts,

• distribution across multiple interaction devices,

• multimodality, to support various input and output modalities,

• shareability between multiple users,

• mergability and interoperability of di�erent applications.

They can on the one hand be used as general framework to evaluate the feasibility of

applications for their utilization in smart environments; on the other hand they guide

the development of architectures and integrated systems for smart environment. From

a design-time perspective the features identify static properties of the developed user

interfaces. However, more important for this work is their applicability as dimensions for

the runtime adaptation of user interfaces. In this latter case, the dynamic alteration of

the con�guration of the features as interaction parameters allows the dynamic adaptation

of the application if usage situation and context change at runtime.

Before the features are described and de�ned in detail in the following sections, some

basic terms and general concepts have to be de�ned.

2.3.1. Basic Terms

This section introduces some basic terms to ensure the common understanding of the

de�nitions and explanations in the reminder of this work.

Interaction Resource

Interaction Resources (IRs) are de�ned in (Vandervelpen and Coninx, 2004) as �atomic

I/O channels that are available and that a user can exploit for executing a task. In this

context atomic means the I/O channel is �one-way� and limited to a single modality�.

Examples for IRs are keyboards, mice, screens, speakers, microphones, or cameras. A user

interface spanning multiple interaction resources is distributed, if it also spans multiple

modalities, it would be considered multimodal. An Interaction Resource is usually part

12

2. Ubiquitous User Interfaces for Smart Environments

of an interaction device, that often provides a higher level of abstraction and allows the

utilization of the interaction resources for the interaction with an interactive application.

Interaction Device

Interaction Devices (IDs) are de�ned in (Vandervelpen and Coninx, 2004) as �computing

systems that handle the input of or send output to individual IRs that are connected to

it. In other words, an ID is a collection of IRs together with the computing unit.� An

interaction device usually comprises the hardware used for the interaction (e.g. screen,

keyboard, touch-pad) as well as a software platform for communication and presentation

tasks. Additionally, it either provides local applications or the capability to connect to

a remote system for application usage. Examples for interaction devices include desktop

computers, laptops, PDAs, or mobile phones.

Platform

The term Platform has been de�ned as �the set of variables that characterize the compu-

tational device(s) used for interacting with the system. Typically, memory size, network

bandwidth, screen size, etc. are determining factors� in (Calvary et al., 2001a). In this

work platform refers to the combination of hardware and software of an interaction de-

vice, used to interact with the system. From the user interface point of view especially

interesting are the available interaction resources and the software, providing the ren-

dering capabilities and the input possibilities for the interactive application. Examples

for a platform would be a PC running a web browser, a PDA, running Java, or a mobile

phone, running a mobile browser.

Context of Use

The context of use of an interactive system is de�ned in (Calvary et al., 2003) as a

combination of three entities:

• the users of the system, who are intended to use (and/or who e�ectively use) the

system,

• the hardware and software platform(s), that is, the computational and interaction

device(s) that can be used (and/or are used, e�ectively) for interacting with the

system,

13

2. Ubiquitous User Interfaces for Smart Environments

• the physical environment where the interaction can take place (and/or takes place

in practice).

Con�guration

The term Con�guration (or user interface con�guration) will be used in the following, to

denote the current characteristics of a user interface. A user interface can have one or

multiple static con�gurations to support multiple contexts of use. Assuming the changing

contexts of use of smart environments, adaptation to these contexts is expressed through

the dynamic alteration of the user interface con�guration at runtime, which in turn leads

to an alteration of the perceivable user interface. Altering a con�guration at runtime is

referred to as recon�guration and can be system or user initiated.

Based on these de�nitions, the following sections describe the identi�ed �ve features of

UUIs and their dynamic aspects in greater detail.

2.3.2. Shapeability

Shaping the user interface (also referred to as remolding (Vanderdonckt et al.,

2007)) adjusts appearance and presentation to di�erent contexts of use. It puts

a main focus on the consideration of platform capabilities, but also comprises

the consideration of user capabilities and preferences and can take information

about the environment into account. Figure 2.3 shows an example, where the size of user

interface elements changes with the distance of the user to the screen.

A user interface is shapeable if di�erent variants of it can be produced, re�ecting di�erent

context situations. Adjusting graphical user interfaces (also referred to as layouting

within this work) can e.g. be performed in terms of orientation, size, containment, order,

and style of the user interface elements and usually has the goal to enhance the usability

of the user interface. Adjusting a vocal user interface can happen in terms of temporal

arrangement or intonation. In the area of user interfaces for smart environments shaping

addresses a single interaction resource at a time, but can re�ect user interface distribution

or multiple used modalities. Altering the shape of a user interface at runtime is required

to re�ect context parameters like user preferences, platform properties or the environment

changing at runtime. However, alterations of the shape of a user interface have to be

applied very carefully to ensure consistency and avoid confusion of the user interface.

De�nition 1.1: Shapeability identi�es the capability of a user interface to provide mul-

tiple representations suitable for di�erent contexts of use on a single interaction resource.

14

2. Ubiquitous User Interfaces for Smart Environments

Figure 2.3.: Shaping Example: The size of the output elements is increased with the
distance of the user to the screen, the size of the input element is reduced.

2.3.3. Distribution

The availability of multiple (networked) interaction resources in smart environ-

ments provides the possibility to simultaneously exploit them for interaction.

Partitioning the user interface across multiple IRs increases communication band-

width and allows the utilization of the di�erent features of each IR. Directly

addressing interaction resources like keyboard, mouse, speaker or screen, distribution

e.g. allows their recombination (e.g. controlling one computer with a keyboard con-

nected to a di�erent computer). Replicating the complete UI or parts of it on multiple

resources realizes redundancy within the interaction. Additionally, the utilization of dif-

ferent IRs allows the customization of the interaction dependent on the suitability of the

IRs to carry out speci�c tasks. Figure 2.4 shows two con�gurations of a user interface

distributed across a �xed screen and a mobile device.

Adjusting the distribution of a user interface at runtime pays tribute to the dynamics of

interaction resources in smart environments. Mobile devices, appearing and disappearing

in the environment, users entering and leaving rooms and moving around in the environ-

ments as well as multiple applications available to users, make the alteration of the used

IRs and thus the redistribution of the UI an important aspect. The dynamic alteration

of the distribution includes the (re-)partition of the user interface to multiple interaction

resources, the replication of (parts of) the user interface on multiple resources as well the

dynamic migration of (parts of) a user interface from one device to another one.

De�nition 1.2: Distribution identi�es the capability of a user interface to present in-

formation simultaneously on multiple interaction resources, connected to di�erent inter-

action devices.

15

2. Ubiquitous User Interfaces for Smart Environments

Figure 2.4.: Distribution Example: The user interface can be distributed across multiple
interaction devices and is continuously synchronized.

2.3.4. Multimodality

The capability of the user interface to support not only multiple interaction re-

sources but also multiple modalities can provide more natural and robust interac-

tion capabilities to human users. A main goal of multimodal user interfaces is to

provide the most suitable interaction modalities for the current task in the given

context of use to optimally support the user. It provides great potential to enhance inter-

action e.g. in hands-free scenarios or applications that go beyond the mouse/keyboard

interaction of standard desktop situations as shown in �gure 2.5. Modalities can thereby

be used one after another according to the current task and usage context or simul-

taneously to increase the communication bandwidth and expressiveness between user

and system. While cross-modal systems support multiple usage variants via di�erent

modalities, multimodal systems support the simultaneous usage of multiple modalities.

The alteration of the used modalities at runtime allows a very �exible usage of multiple

modalities by turning modalities on and o� and adding and removing interaction ca-

pabilities at any time. This re�ects context changes, making e.g. one modality useless

like an increased noise level, increased distance to a touch-screen or having the hands

busy while the system expects gestures. In combination with the capability to distribute

the user interfaces across devices, modality (re-)con�guration can be addressed through

cross-modal or multimodal distribution.

De�nition 1.3: Multimodality identi�es the capability of the user interface to support

more than one modality. (A more detailed de�nition is given in 3.1.4.)

16

2. Ubiquitous User Interfaces for Smart Environments

Figure 2.5.: Multimodal Interaction Example: The user is able to utilize multiple inter-
action resources and modalities including voice, touch and gesture simulta-
neously.

2.3.5. Shareability

The simultaneous presence of multiple users in smart environments leads to a

demand for the shared and collaborative usage of information, applications and

resources (e.g. light and temperature control of a room, collaborative work or

shared resource planning). Shareable applications can support the usage by

multiple users either sequentially or simultaneously by providing (synchronized) common

elements within shared user interfaces. This can be realized via personal input devices of

di�erent users being connected to a single application or via shared interaction resources,

like e.g. multi-touch-screens. Figure 2.6 shows two users using a single application

simultaneously. Users on di�erent locations can also be using shared applications through

the replication of content on multiple locations. In the latter case, each user still has an

own private interaction and information space, but exposes selected information to other

users.

At runtime, shareability denotes the fact that a system can be switched to a collabora-

tive mode, allowing a user to share an application with another (possibly distant) user.

Making this feature con�gurable gives the user (as well as the application) control over

when to share which information with whom. This allows to improve cooperative usage

of applications and pays tribute to the multi-user aspects of smart environments.

De�nition 1.4: Shareability denotes the capability of a user interface to be used by more

than one user (simultaneously or sequential) while sharing (partial) application data and

(partial) interaction state.

17

2. Ubiquitous User Interfaces for Smart Environments

Figure 2.6.: Shareability Example. Two users sharing applications.

2.3.6. Mergeability

Mergeability identi�es the capability to utilize one interaction resource to inter-

act with multiple user interfaces simultaneously. To realize this, user interfaces

can either split the available interaction bandwidth (e.g. split screen) or merge

to provide an optimized usage. Merging can either happen through combination

of the perceivable presentation i.e. shaping (e.g. in terms of the layout of the graph-

ical user interface) or semantically where the underlying meaning is matched e.g. in

terms of common tasks. Figure 2.7 shows an application user interface embedded into

a Meta-UI controlling di�erent parameters of the user interface. In combination with

distribution capabilities, merging also allows to combine only parts of an application in

a given modality or on a given IR. This is especially important when multiple applica-

tions are to be controlled via a modality that provides only a single channel (e.g. voice

or gesture). In this case establishing another channel is impossible or impractical (e.g.

using another microphone) thus, a virtual channel can be established e.g. by requiring

pre�xes to directing commands or commands need to be merged and otherwise adapted

(e.g. commands like �App A: do X�, �App B: do Y�).

While merging applications at design-time allows the creation of new applications (e.g.

mash-ups), which can be �ne tuned by a developer, merging applications at runtime

allows to use an unknown combination of applications simultaneously. In current PC-

based systems this is done by overlapping or split screen and data exchange is performed

via drag and drop or copy and paste. In smart environments, merging applications on

a higher level of abstraction helps to better integrate multiple applications, which aims

at better usability at runtime. Runtime merging also comes into play as applications

in smart environments are dynamic and can appear and disappear (similar to users and

18

2. Ubiquitous User Interfaces for Smart Environments

devices).

De�nition 1.5: Mergeability de�nes the capability of a user interface to be combined

either partly or completely with another user interface to create combined views and input

possibilities.

Figure 2.7.: Mergeability Example: The user interface of a cooking assistant is embedded
in the user interface of a meta user interface controlling di�erent parameters
of the interaction.

2.3.7. A De�nition of UUIs

Based on the �ve described features, Ubiquitous User Interfaces address the challenges,

that the realization of the ubiquitous computing in smart environments poses on user

interfaces. However, besides the static aspects of the features - an application that can be

executed in di�erent variants or with di�erent con�gurations - the dynamic aspects of the

features are of great importance. This denotes the capability of the user interface to alter

its feature con�guration at runtime and switch seamlessly between di�erent variations.

This is also referred to as (runtime) adaptation and allows the dynamic adjustment of

the application as usage situation and context change at runtime. Similar to Grolaux

(2007) adaptation is de�ned as follows.

De�nition 1.6: Adaptation of user interfaces de�nes the alteration of the con�guration

of the user interface features at runtime, in order to adapt the presented user interface

to changing needs.

With these features, interaction possibilities are expanded to the multiplicity of users,

modalities, devices, situations and applications. This also aims at bridging between the

invisibility of technology and choice and control by the user through the user interface.

Transparency of the complex environment is gained by conveying the system state to the

19

2. Ubiquitous User Interfaces for Smart Environments

user and the removal of the boundaries of single devices. Based on the features and their

runtime con�guration, Ubiquitous User Interfaces are de�ned as follows.

De�nition 1.7: Ubiquitous User Interfaces are user interfaces that support the con-

�guration of shapeability, distribution, multimodality, shareability, mergeability and the

alteration of this con�guration according to the context of use at runtime.

2.4. Summary

In this chapter smart environments and the implications they pose on the usage of inter-

active applications have been analyzed with a special focus on their user interfaces. Five

features (shapeability, distribution, multimodality, shareability, mergeability) have been

presented to address the multiple dimensions (users, modalities, devices, applications

and situations) of such user interfaces. They can be used to classify user interfaces for

smart environments as well as to in�uence their development. The term Ubiquitous User

Interfaces has been coined for user interfaces supporting these features. An important

factor within its de�nition is the possibility to (re-)con�gure the features at runtime to

dynamically adapt the user interface and the characterization of the features according

to the covered runtime aspects.

While all �ve features are strongly interconnected, the ability to shape the user interface

and the possibility to distribute it across interaction resources can be identi�ed as basis

for the application of the other features. While multimodality, shareability and merge-

ability provide important aspects, they build upon shapeability and distribution. The

remainder of this work thus focuses on multi-device and multi-situation systems and thus

the application and con�guration of shapeability and distribution at runtime to adapt

the user interface. Additionally, multimodality is considered, as a main factor facilitat-

ing �exible and robust interaction. Multi-user and multi-application scenarios are only

brie�y considered where suitable, as these aspects strongly rely on the availability of the

more basic features. However, some information about how these are integrated into the

approach are provided throughout the work.

Having de�ned Ubiquitous User Interfaces and their main features raises the need to de-

scribe such user interfaces at design-time and to handle interaction with them at runtime.

The goal in this work is the creation of a runtime system, that allows the provisioning

of UUIs for smart environments and that handles system output as well as user input.

Based on the described features, it should be able to control the dialog �ow and mediate

20

2. Ubiquitous User Interfaces for Smart Environments

between the user and the system by providing shaped, distributed, multimodal interac-

tion possibilities that adapt at runtime. Important related aspects are the handling of

context information and the available interaction resources, as well as the utilization of

these resources to provide Ubiquitous User Interfaces. Before the approach is described,

the current state of the art is analyzed with respect to these aspects in the next section.

21

3. Fundamentals

In this chapter the state of the art is evaluated according to the goal to provide Ubiqui-

tous User Interfaces for smart environments and the fundamentals to address this goal

are discussed. Beginning with an illustration of the state of the art in user interface

shaping, distribution, multimodality and adaptive interfaces, model-based development

is described as an approach to handle user interface complexity and address user in-

terface description languages to de�ne the underlying user interface model. Afterwards

selected user interface description languages as well as architectures and frameworks are

discussed, to provide the desired �exibility for the next generation of user interface at

runtime. The chapter concludes with a summary and identi�cation of the shortcomings

of the existing approaches.

3.1. Adaptive, Shapeable, Distributed & Multimodal

Interaction

Multimodality as well as the distribution, shaping and the dynamic con�guration of these

features for the adaptation of user interfaces has been of increasing interest with the ad-

vance of research in ubiquitous computing and smart environments. In the following the

current state of the art in these areas is analyzed, and common understandings of the

problems, available approaches and open issues are discussed. Starting with the adapta-

tion of UIs, the dynamic (re-)con�guration of user interface features and the alteration

of characteristics is discussed. Afterwards, shaping, distribution and multimodality are

described as features that de�ne a user interfaces and that can be con�gured at runtime

for adaptation purposes.

3.1.1. Adaptation

Recently developers are confronted with the need to dynamically adapt their applications

to changing conditions. This includes users (e.g. capabilities and preferences), device

22

3. Fundamentals

capabilities and usage situations (e.g. on the move, at home). Within the application

logic and the user interface, there is thus a strong need to re�ect knowledge about the

current context (user, device and environment).

Context has been speci�ed by Dey and Abowd (Abowd et al., 1999) as `any information

that can be used to characterize the situation of entities (i.e. whether a person, place or

object) that are considered relevant to the interaction between a user and an application,

including the user and the application themselves'. The overall goal of the adaptation

to context information is obviously not the adaptation itself, but the improving of the

interaction and thus of usability, e�ciency and e�ectiveness of the user interface (even at

runtime). While context changes at runtime often require open adaptation to unknown

contexts during a running session, closed adaptations can be de�ned and performed at

design-time or application startup. The latter includes adaptations to predictive contexts

that are known in advance like e.g. di�erent user groups that individuals can be assigned

to or a set of supported interaction devices. Depending on who performs the adaptation,

di�erent types can be distinguished:

• system triggered self-adaptation: the systems adapts itself according to the sensed

context information

• user triggered self-adaptation: the systems adapts itself according to the sensed

context information on request of the user

• system triggered adaptation: the systems initiates an adaptation process, involving

the user to control the adaptation

• user triggered adaptation: the systems provides adaptation capabilities that are

triggered and controlled by the user

• con�guration: the user con�gures the system according to his needs

Context information relevant for the adaptation of a user interface is manifold. Park and

Kwon (2007) proposed a generic context model that captures information about users,

the environment, devices, and applications, Calvary et al. (2003) de�ne context of use as

a combination of user, platform and environment. Independent of the considered context

information or the type of adaptation, any adaptation process can be structured in the

following phases (see also Calvary et al., 2001a):

• sense the context information

• interpret the sensed information (detect and understand context changes)

• select or de�ne a suitable adaptation strategy

23

3. Fundamentals

• execute/apply the adaptation strategy

While the sensing of context information can usually be performed application indepen-

dently the interpretation of the context information strongly depends on the needs of the

application. Similarly, the selection of a suitable adaptation and the application of that

adaptation heavily depend on the architecture of the underlying system and the needs of

the application. Based on this process, adaptation can happen in two variants. On the

one hand adaptation can �simply� (cosmetically) (re-)shape the perceivable user inter-

face e.g. through rearrangement of interactive elements (surface restructuring). On the

other hand adaptation can also be performed directly on the user interface description

(functionally) altering the underlying concepts, according to adaptation rules de�ned

by a third party (model restructuring). In any way, the de�ned interaction concepts

provide an outline of the anticipated interaction and de�ne the boundaries for possible

adaptations. Di�erent systems have been proposed to handle context information and

to address software and user interface adaptation.

The Context Toolkit (Salber et al., 1999; Dey, 2000) introduced the notion of context

widgets, which hide the speci�cs of devices and sensors to provide abstract context in-

formation and reusable building blocks. Encapsulating a state and behavior, the widgets

can be queried by applications to receive context information. A context interpreter is

used to create context information based on interpretation of available information and

a context aggregator is used to collect and aggregate context information.

Huebscher and McCann (2005) present the Adaptive Middleware Framework for Context-

Aware Applications, which abstracts from the raw sensor information using a 4-tier ar-

chitecture. While the bottom layer consists of sensors, providing raw data, the second

layer provides context providers, encapsulating this sensor information into context in-

formation. The third layer then allows the encapsulation of the context information by

providing services hiding the particular context providers from the application on layer

four. Applying this approach also allows the middleware itself to adapt to changing needs,

e.g. by exchanging a context provider on layer three transparently for the application.

The Mobility and Adaptation Enabling Middleware (MADAM) (Mikalsen et al., 2006)

comprises a context manager, an adaptation manager and a con�gurator to support the

development of adaptive applications. Based on architecture models of applications the

properties of each component are analyzed by the adaptation manager to identify relevant

context information that it has to subscribe to at the context manager. Adaptation is

supported at startup as well as at runtime (recon�guration), by selecting the most feasible

application variant according to the monitored context information.

24

3. Fundamentals

Figure 3.1.: Runtime infrastructure for open model-driven adaptation from Sottet et al.
(2007b).

Rossi et al. (2005) present patterns providing di�erent methods to apply for context

adaptation. They mainly distinguish context objects, that encapsulate context infor-

mation and perform the related adaptations and a rule-based approach, de�ning rules

for �xed context information. Garlan (2004) presents the Rainbow framework that ad-

dresses adaptation by providing an external, reusable adaptation component. Similarly

to MADAM it addresses the adaptation of an existing software architecture based on the

architectural model of the application.

Focusing speci�cally on the adaptation of user interfaces, SUPPLE, presented by Gajos

and Weld (2004) provides an optimization based approach to user interface adaptation

according to the device capabilities and user information. The performed adaptation

aims at computing an optimal layout and choosing a set of widgets for the rendering of

an adapted user interface.

The Dynamo-AID runtime architecture (Clerckx et al., 2004) integrates a context control

unit that utilizes abstract and concrete context objects to encapsulate context informa-

tion. While abstract context objects can be directly linked to nodes of a task tree to

a�ect the dialog �ow, concrete context objects encapsulate the actual context informa-

tion and are linked to the abstract objects. Based on the detected context information

the system is able to change the dialog �ow and recalculate the set of active tasks based

on the available context information.

25

3. Fundamentals

Sottet et al. (2007b) present a runtime infrastructure allowing the model-driven adap-

tation of user interfaces based on the models manager, the evolution engine, the trans-

formation engine, the redesign engine and the CUI/FUI model interpreter. Figure 3.1

shows the components of the approach.

The model manager maintains the graph-based models at runtime and monitors changes

e.g. new interaction resources or user input. It sends noti�cations to the redesign en-

gine or the evolution engine in case of changes to the user model, to trigger adapta-

tions of the UI. Adaptation is based on rules, consisting of a trigger event, a condition

and an action part which can be de�ned in ATL (Atlas Transformation Language -

http://www.eclipse.org/m2m/atl/). Each adaptation rule comprises a triggering event,

a condition as well as an action to execute. Adaptation rules are de�ned as adaptation

model, complying to a metamodel. The transformation engine then applies the selected

transformation rules to the target models.

FAME provides a model-based Framework for Adaptive Multimodal Environments (Duarte

and Carriço, 2006). An adaptation module comprises a platform and device model, an

environment model, a user model and an interaction model and de�nes an adaptation

engine and adaptation rules to provide adaptive multimodal user interfaces (more detail

will be given in section 3.4.6). Duarte (2008) also identi�es several problems of UI adap-

tations, that can confuse the user and lead to a drop of usability and e�ciency of the

user interface.

• Hunting refers to the fact that the user builds up a mental model of the system

and has to adapt this mental model whenever the user interface of the application

adapts.

• Loss of Control denotes the problem of adaptations that are not transparent

and predictable for the user, which results in the feel of loosing control over the

application.

• Consistency refers to the fact that adaptation should always produce similar

results for similar contexts and that keeping the user interface constant might

countervail the adaptation from the user's perspective.

• Reliability is required to ensure that no incorrect adaptations occur, which is

likely to happen based on incorrect adaptation rules, wrong context information,

or false user models.

• Privacy is an important factor, when monitored user behavior in�uences the user

interface adaptation. Keeping information, that lead to the adaptation, private is

26

3. Fundamentals

an important factor, especially if information from other users is also considered

for the adaptation.

• Persistence refers to the fact, that performed adaptations have to be kept even

through a system restart. This holds especially true for manual adaptations by the

user.

Based on these problems several solutions have been proposed, including the active con-

�rmation or initiation of adaptations by the user, the application of thresholds to reduce

the number of adaptations, the limitation of adaptations during one session to a mini-

mum and the scheduling of extensive adaptation in between two session, the minimization

of the adaptation time, the direct in�uence of the user to system assumptions, context

information and user data, leading to adaptations as well as the direct in�uence on the

adaptation results. Additionally, the separation of �xed and adaptive parts and the con-

sistency of adaptations can help to prevent the user interface from confusing the user

more than supporting him or her.

While the described adaptation of user interfaces (and applications) a�ects all di�erent

aspects of the user interface and in�uences all identi�ed features, the initially perceivable

feedback is the alteration of the shape of the user interface, discussed in the next section.

3.1.2. Shaping

With the development of graphical user interfaces and the increasing diversity of com-

puting resources, the idea of �exible user interface layouts began to rise. While user

interface adaptation addresses the dynamic alteration of any aspects of the user interface

at runtime, shaping addresses the possibility of the user interface to support multiple

interaction devices.

While voice user interfaces can be shaped, according to temporal information, tone and

intonation, the more obvious application of shape is for graphical interfaces. Shaping

a graphical user interface refers to the possibility of the user interface to gain maxi-

mal usability on any interaction resource. Current approaches to realize this are layout

managers, as they are used in Java Swing or AWT for example, as well as interpreted

UI descriptions like HTML. Java layout managers, provide the means to de�ne Flow,

Border, Grid, Gridbag, Card or Box layouts and also to nest these layouts. The goal of

the utilization of a these layout managers is to move and resize the UI elements on the

screen to best �t the available screen space. Using HTML, the browser addresses the

same problem, by moving around the de�ned elements to best �t the available space.

27

3. Fundamentals

However, HTML does not provide a layout manager, but elements with de�ned prop-

erties, that remain constant and elements, that can be adjusted along their unspeci�ed

properties. HTML aims to separate shape and context via the utilization of Cascading

Style Sheets (CSS).

An important aspect in the SUPPLE system Gajos and Weld (2004) was the computing

of an optimal layout to render the user interface. It focuses on minimizing the user's

e�ort when controlling the interface by adjusting size and position of elements on the

screen. Constraints are used to describe device and interactor capabilities and in�uence

their presentation.

Florins et al. (2006) apply graceful degradation to adjust user interfaces to the available

screen space. Their work aims at the transfer of user interfaces designed for large screen

to platforms with signi�cantly less screen space. The underlying technique applies the

pagination of interaction elements (e.g., windows, dialog boxes, web pages) based on a

speci�cation in the UsiXML user interface description language.

Other approaches focus on the calculation of a layout based on user interface constraints.

A recent approach by Luyten et al. (2006b) focused on the implementation of a layouting

algorithm based on the Cassowary algorithm (Badros et al., 2001), a weak constraint

satisfaction algorithm. Hosobe (2001) presents the geometrical constraint solver Chorus,

supporting "soft" constraints with hierarchical strengths or preferences. The same author

later presents the DuPlex algorithm (Hosobe, 2005), that solves hybrid systems of linear

constraints and one-way constraints and aims at the handling of Web document layout

methods.

Richter (2006) proposes several criteria that need to be maintained to ensure consistency

and usability when (re-)layouting a user interface. Nichols et al. (2002) also describe a set

of requirements that need to be addressed in order to generate high-quality graphical and

speech user interfaces. Based on these requirements, they present the Personal Universal

Controller (PUC, http://www.pebbles.hcii.cmu.edu/puc/), aiming at the utilization of

handheld devices to control appliances in smart environments. The PUC system aims at

automatically generating multiple graphical as well as speech interfaces from the same

user interface description. Similar approaches are also pursued by TERESA (Mori et al.,

2004) and UsiXML (Limbourg et al., 2004b).

While shaping or layouting of user interfaces has been widely discussed and applied in

di�erent systems, supporting multiple interaction devices by the same user interface is

still an open issue. However, it is the basic requirement to support multiple interaction

28

3. Fundamentals

resources, possibly unknown at design-time, as well as unforeseen combinations of in-

teraction resources. While the adaptation of the user interface shape at runtime is an

important aspect and has great in�uence on the perception of the user interface and its

usability, the shape can also be in�uenced by other aspects, like the combination of used

interaction resources described as distribution in the next section.

3.1.3. Distribution

Distribution has its roots in the ubiquitous computing domain, realizing the fact that

human-computer interaction in smart environments is likely to happen via multiple de-

vices simultaneously and describes the process of splitting a user interface across multiple

interaction resources. With the availability of multiple (networked) interaction devices

with di�erent capabilities, human-computer interaction is not longer bound to a single

interaction device. Using a set of interaction devices simultaneously allows each device

to convey a part of the user interface via its output resources (e.g. a screen or voice

capabilities) and allow interaction via its input resources (e.g. keyboard, mouse, touch

pad or voice input). Altering a distribution con�guration at runtime is often referred

to as migration (Berti et al., 2005) and describes the fact, that the user interface or a

part of it move to another device. However, providing the capabilities for a device to

expose its interaction resource (IRs) also allows the distribution (and migration) of user

interface elements on an IR-basis. This allows the �exible assembly of the optimal set of

interaction resources (even across multiple modalities). Such an independent addressing

of resources also poses challenges to interaction devices and user interface components.

UIs now have to have input and output separated and synchronized across the network.

Within a smart environment such a distribution of a user interface can be realized within

the following steps:

• discover & manage the available resources

• select a set of resources to distribute the UI to

• split the UI into the di�erent segments and assign the segments to resources

• deliver the di�erent segments to the selected resources

• receive input from input resources

• update output resources according to the system state

The discovery and management of interaction devices, their resources as well as their

capabilities is an important prerequisite for the distribution or migration of user inter-

29

3. Fundamentals

faces. Only if the system is aware of the available resources it can consider them in

the distribution process. Basically two methods to include devices can be identi�ed: (1)

the active registration of the device either automatically or by a user or (2) the auto-

matic discovery of the available resources e.g. via UPnP (Luyten et al., 2005). Once the

available devices and their interaction resource are known, the system can calculate a

distribution con�guration, based on e.g. the resources used in previous interaction steps,

the requirements of the current interaction step, the overall application state, context

information or any other relevant data.

The user interface then has to be split to match the selected interaction resources (also

known as �ssion). The main problem here is the partitioning of the user interface across

interaction resources and modalities, without breaking the conveyed meaning. This re-

quires to derive a presentation from semantic information by (1) content selection and

structuring, (2) modality selection and the speci�cation of the presentation details in

each available modality and (3) spatial and temporal output coordination (Foster, 2002).

Content selection and structuring denote the de�nition of the overall goal of the com-

munication act and the identi�cation of the information to be presented to the user.

Computational linguistics distinguishes at least three types of structure:

• intentional structure, relates the utterances to the desired e�ect,

• information structure, de�nes the semantic relationships between the information,

• attentional structure, denotes the information currently in the focus of the atten-

tion.

Additional types like the rhetorical and the information structure have also been discussed

in the literature. Based on these types the presentable content can be structured for the

presentation.

The selection of modalities to convey the information can be de�ned as the goal to �nd a

set of modalities that e�ectively presents the given set of data in the current situation. It

comprises the selection of the presentation modality for each information chunk as well

as the speci�cation of the presentation details according to the selected modality. The

selection process can be in�uenced by characteristics of the available output modalities

(see e.g. Bernsen, 1997b) and of the information to be presented, communicative goals

of the system, user characteristics, current tasks of the user, and any limitations of the

available interaction resources.

The coordination of the output �nally comprises the task of arranging the presentation.

This includes physical/spatial and temporal arrangement. Additionally, coordinating

30

3. Fundamentals

the output includes the ability to reference information across modalities and also to

reference the modalities themselves. The spatial arrangement of the presentation mainly

addresses screen layout like the partitioning of the screen or the positioning of images in

relation to textual information. Temporal coordination is required to provide coherent

output especially in combination with speech or animations. This is also related with

references across modalities (�as you can see on the screen now ...�). A problem here

is the exact timing, as the duration of a speech output might e.g. not be determinable

by the system. Referencing modalities and across modalities �nally denotes the need

to point the users attention to information presented in a di�erent modality. This can

e.g. be the highlighting of graphical information the system currently talks about or the

referring to it (�Please select one from the highlighted list.�).

Depending on the application and the �ssion process, application elements can either

be presented each on a single resource or be duplicated (cloned) to multiple resources

simultaneously. The following properties of a distribution can be distinguished:

Static and dynamic: While a static distribution de�nes the utilized interaction resources,

a dynamic distribution changes at runtime and requires the migration of user in-

terfaces between interaction resources.

Replication and migration: While replication refers to the duplication of parts or the

complete user interface on another device, migration refers to the fact that user

interfaces (or parts) are removed from the source device and transferred to the

target device.

Complete and partial: Altering a distribution con�guration at runtime, complete and

partial migration is distinguished. Complete migration refers to the complete user

interface presented on one device migrating to another device. Partial migration

in contrast identi�es the separation of multiple parts of the user interface and the

migration of at least one of these parts to another device.

Clone and copy: In case of the duplication of (parts of) the user interface, a clone and

a copy of the user interface can be distinguished. A clone completely imitates the

behavior of the original user interface (parts) and is thus completely synchronized.

A copy of the user interface presents the same elements, but an interaction with

the copy would not a�ect the original user interface.

While several of the adaptation dimensions and the distribution aspects have been iden-

ti�ed in the literature (Demeure et al., 2005; Berti et al., 2005; Molina et al., 2006),

no general approach or common understanding has been achieved yet. In the following

31

3. Fundamentals

some selected approaches, addressing the distribution of user interfaces, are introduced

and some detail problems are illustrated.

Demeure et al. (2005) proposes a reference model for the classi�cation of di�erent types

of distributed user interfaces and distinguishes mouldable, distributable, and migratable

UIs. Based on the approach, the 4C reference framework is de�ned in (Demeure et al.,

2008) and identi�es four general dimensions for distributed UIs: computation (what is dis-

tributed?), communication (when is it distributed?), coordination (who is distributing?),

and con�guration (from where and to where is the distribution performed?). Molina et al.

(2006) also present a de�nition of a (limited) problem space of distributed user interfaces,

but with a focus on the prototyping of distributed interaction at runtime. Grolaux et al.

(2005) presents detachable interfaces, Bandelloni and Paternò (2004) present migratable

user interfaces and sketch a runtime system for their realization.

The DynAMITE (Dynamic Adaptive Multimodal IT-Ensembles) project (Kirste, 2004)

aims at the development of software-infrastructures that use self-organizing ad-hoc appli-

ance ensembles, based on the SODAPOP system (Encarnação and Kirste, 2005). It aims

at the utilization of di�erent devices and modalities that can be dynamically assembled

to support user interaction at runtime. In the same context, Elting and Hellenschmidt

(2004) present con�ict resolution strategies when distributing output across graphical

user interfaces, speech syntheses and virtual characters. A channel connects multiple

output devices and can apply di�erent strategies to support the distribution of output.

• the all-strategy forwards output to all connected devices supporting the type of

output

• the random-strategy forwards output to only one of the devices

• the best-strategy selects the devices based on a utility value function

• the multimodal output coordination strategy applies a hierarchical AI planning

approach to output distribution

The system models the IO devices, services and resources which allows the provisioning

of its own properties by each entity (Ding et al., 2006). Devices provide input and

output components (screen, speaker, mouse, ...), which can be either graphically or

acoustic, and are classi�ed according to Bernsen's taxonomy of unimodal input and

output (Bernsen, 2001). Additionally, the communication goal and content are considered

for the presentation strategy.

The I-AM (Interaction Abstract Machine) system (Barralon et al., 2007) presents a soft-

ware infrastructure for distributed migratable user interfaces. It provides a middleware

32

3. Fundamentals

for the dynamic coupling of interaction resources (screens, keyboards and mice) to form

a uni�ed interactive space. Interactive spaces in this context are assembled by cou-

pling devices (private & public interaction resources) to access services within the global

environment, which is an interesting aspect in contrast to other approaches. Coutaz

et al. (2003) identify limiting factors for current tools and approaches as: the concept

of windows over that of a physical surface, the poorly modeled geometrical relationships

between surfaces, the limitations of the number of parallel supported input interaction re-

sources, the limited focus on single workstations, and the absence of a dynamic discovery

of interaction resources. I-AM supports a physical level, where an IAMPlatformManager

manages the interaction resources that are connected to the platform it runs on and

provides the basic means to access these. A logical level provides an abstraction of this

available infrastructure to the application and an interactor level implements the basic

graphical interaction concepts (windows & widgets) as IAMInteractors. IAMInteractors

can then be created, moved, destroyed, etc. in the logical space which is then mapped

to the physical resources.

Berti et al. (2005) present a taxonomy for migratory user interfaces comprising 11 dimen-

sions (Activation Type, Type of Migration, Number/Combinations of Migration Modal-

ities, Type of Interface Activated, Granularity of Adaptation, How the UI Is Adapted,

The Impact of Migration on Tasks, Implementation Environment, Architecture, Usabil-

ity Issues) of the migration process. They identify session persistence and user interfaces

able to adapt to the changing context (device, user, and environment) as crucial require-

ments for their realization and describe a migration process involving two main entities:

the interactive system model, de�ning the application and the context model, de�ning

the outside world. Earlier approaches, focusing of the migration of interfaces between

multiple devices are e.g. I-Land (Streitz et al., 1999) and Seescoa (Luyten et al., 2002).

Web-based distribution has e.g. been described in (Vandervelpen et al., 2005).

3.1.4. Multimodal Interaction

Multimodal interaction aims at the utilization of multiple modalities to interact with the

human user. Main goals of multimodal systems are to increase the available interaction

bandwidth, to achieve an interaction closer to natural human-human communication

and to increase the robustness of the interaction by using redundant and complementary

information. The area of multimodal interaction is multidisciplinary, comprising (at

least) signal processing, pattern recognition, computer vision, dialog management, agent

architectures, knowledge representation strategies, psychology, user interface design, and

33

3. Fundamentals

an understanding of how humans use their di�erent senses and motor skills (Fang Chen,

2005). This multidisciplinarity makes the development of multimodal user interfaces a

very complex problem, leading to various de�nitions of terms and approaches depending

on the underlying perspective (i.e. user or system view).

While such an approach can help to increase the communication bandwidth and make

communication more robust and natural, e�cient multimodal interaction poses numerous

challenges on computing systems. This section describes the main terms and concepts

of the modality theory in the following and presents selected framework illustrating the

current state of the art afterwards. Finally, fusion and �ssion are described as major

aspects of multimodal user interfaces.

Modality Theory

The concepts of multimodal interaction are based on the understanding of the terms

mode, media, modality and channel.

While mode and modality are often used synonymously, this work follows the de�ni-

tion given in (Stanciulescu, 2008), de�ning (communication) mode correspondent to the

human senses (sight, hearing, smell, taste, and touch). The author accordingly de�nes

four types of input communication modes: graphical, vocal, tactile and gesture and six

output communication modes: graphical, vocal, tactile, olfactory, gustatory, and gesture.

A communication mode thus determines the interaction type between the user and the

system and refers to the communication channel used by the two interacting entities.

Media is de�ned in (Blattner and Glinert, 1996) as a physical device that allows stor-

ing, retrieving or communicating information. This includes input devices like mouse,

keyboard, touchscreen or microphone, as well as output devices like screen or speak-

ers. Additionally, entities storing information like CDs or DVDs are often referred to as

media.

From a system perspective, the communication mode is determined by the employed

physical interaction resources, allowing acquiring/transmitting information from/to the

environment. In this sense, a communication channel de�nes �the temporal, virtual, or

physical link that makes the exchange of information possible between communicating

entities� Coutaz et al. (1993). It ties the (physical) media to a mode of utilization.

In this sense, this work also follows the de�nition of a modality given in (Nigay and

Coutaz, 1993) and de�nes a modality as a tuple, comprising a device d and an interaction

34

3. Fundamentals

language L: M = <d, L>. A modality thus combines a (physical) interaction device to

acquire input or deliver output (e.g. keyboard, mouse, microphone, screen, speakers)

with an interaction language, de�ning a set of symbols that convey meaning (e.g. natural

language or a set of gestures).

Based on these de�nitions, the terms multimode, multimedia and multimodal can be

de�ned as follows (see also Stanciulescu, 2008). A multimode system is a system, that

relies on multiple modes of communication and thus addresses multiple human senses.

A multimedia system involves multiple media for interaction and thus utilizes multi-

ple interaction devices. A multimodal system �nally supports multiple input or output

modalities and thus combinations of interaction devices and interaction languages.

Figure 3.2.: Relation of multimode, multimedia and multimodal systems.

With these de�nitions, multimode includes multimedia and multimodal systems as a

multimodal system is also a multimode system, because it exploits at least two di�erent

communication modes. A multimedia system also involves multiple modes and thus is

also multimode. The main di�erence between a multimedia and a multimodal system is

the capability of the multimodal system to also semantically process (�understand�) the

exchanged interaction data. Nigay and Coutaz (1993) thus also de�ne multimodality as

the �capacity of the system to communicate with a user along di�erent types of commu-

nication channels and to extract and convey meaning automatically�. Figure 3.2 shows

the relation between the di�erent systems. Additionally, Maes and Saraswat (2003) in-

troduce the following terms to classify the use of multiple modalities, with respect to

their temporal relation and usage.

• Sequential Multimodal Input, to identify the sequential usage of di�erent modalities

one after another.

• Simultaneous Multimodal Input, to identify the simultaneous usage of multiple

modalities but their independent interpretation.

35

3. Fundamentals

• Composite Multimodal Input, to identify the complementary usage of multiple

modalities.

Multiple attempts to de�ne the properties of modalities and devices can be found in

the literature. The two most discussed are probably Bernsen (1994), that focuses on

the de�nition of a taxonomy of output devices and Card et al. (1991), that de�nes a

taxonomy of input devices.

Bernsen describes in his work a generative taxonomy of output modalities, distinguishing

between representational modalities and the 'sensory modalities' of psychology (vision,

hearing, smell, taste, and touch) to provide a theory generated from basic principles

rather than based on empirical data. He identi�ed three output media, namely graphics,

acoustics and haptics that will be mainly used to represent information to humans or

machines in a "physically realized intersubjective form". A modality is de�ned by prop-

erties allowing to distinguish modalities from one another: "linguistic/non-linguistic,

analogue/non-analogue, arbitrary/non-arbitrary and static-dynamic", focusing on the

types (or modalities) of information to be exchanged between user and system during

task performance. Selection of appropriate modalities (as required for distribution or

�ssion) is thereby based on the following variables: generic task, speech act type, user

group, interaction mode, work environment, generic system, performance parameter,

learning parameter and cognitive property (Bernsen, 1995, 1997a).

Card et al. (1991) classi�ed input devices by the combination of linear/rotary, posi-

tion/force, and absolute/relative. This results in a six tuple of manipulation operator,

input domain, state of the device, a resolution function that maps from the input domain

set to the output domain set, the output domain set, and a general purpose set of de-

vice properties that describe additional aspects of how a device works. The goal of this

de�nition is to support the combination of individual input devices into complex input

controls.

Nigay and Coutaz (1993) describe a design space for multimodal systems, de�ning both,

the input and output attributes of an interface comprising three dimensions: Levels of

Abstraction, Use of Modalities and Fusion. While the Level of Abstraction describes the

di�erent abstraction levels input and output are described at, when human and computer

are exchanging data, Use of Modalities refers to the temporal relationship of the used

modalities ranging from parallel usage of multiple modalities to sequential usage. Fusion

�nally describes the combination of data received from di�erent modalities, resulting in

the distinction between "Independent" and "Combined" modalities.

With these results as background information, di�erent frameworks to understand multi-

36

3. Fundamentals

modal interaction have been proposed. In the following two frameworks are introduced,

that are relevant for this work and also gained much attention in the scienti�c community.

Theoretical Frameworks

Theoretical frameworks are used to understand the implications of the use of multiple

modalities and to characterize the relations between the modalities. In the following

the TYCOON Framework and the CARE Properties are introduced, which both provide

similar means to characterize multimodal interaction.

The TYCOON Framework is a theoretical framework, based on the notion of TYpes and

goals of COOperatioN between modalities (Martin, 1998). The framework comprises the

notion of �ve basic types of cooperation between modalities and de�nes modality as a

computational process.

1. Transfer describes the usage of one information chunk created in one modality by

another modality, e.g. a mouse click that provokes the display of an image.

2. Cooperation by equivalence denotes the processing of an information chunk by

one of several alternative modalities, e.g. the invocation of a command via speech

or a mouse click.

3. Specialization means that a speci�c chunk of information is always processed

by the same modality, e.g. input to text �elds is always provided through the

keyboard.

4. Modalities that cooperate by redundancy, process the same information by

each modality, e.g. typing and uttering the same command.

5. Complementary denotes the processing of information by di�erent modalities

but not independently. This means the processed information has to be merged,

e.g. uttering �put that there� in combination with pointing gestures.

The CARE properties (Coutaz et al., 1995), similarly to TYCOON, provide a framework

for reasoning about multimodal interaction. The CARE properties comprise Comple-

mentarity, Assignment, Redundancy, and Equivalence as relationships.

1. Complementarity describes the supplemental processing of user input. This

means an utterance in one modality can only be interpreted in conjunction with

another utterance in another modality.

2. Assignment denotes the assignment of a speci�c modality to a given task or of a

speci�c interaction device to a given modality.

37

3. Fundamentals

Figure 3.3.: Pipe-Lines Model from Nigay and Coutaz (1997).

3. Redundancy denotes the usage of multiple equivalent modalities simultaneously.

4. Equivalence of modalities de�nes that two modalities have the same expressive-

ness for a given task.

CARE Relationships are established between devices and interaction languages and be-

tween interaction languages and tasks, following the three levels (physical action in rela-

tion with a physical device, informational unit in relation with an interaction language,

system action in relation with a task) of the Pipe-Lines model (Nigay and Coutaz, 1997)

depicted in �gure 3.3.

The ICARE (Interaction-CARE) system (Bouchet et al., 2004) provides a component-

based approach for the development of multimodal interfaces and speci�es elementary

components, describing pure input modalities and composition components, allowing the

combination of modalities according to the CARE properties.

While CARE and TYCOON de�ne similar properties for the relation of multiple modal-

ities in a multimodal system, some di�erences can be identi�ed. Besides additional

transfer property in TYCOON, it also focuses on the description of various types of

cooperation among modalities and the view of a modality as a process that is analyzed

to produce information. In contrast, CARE de�nes relationships among devices and in-

teraction languages, interaction languages and tasks, or among di�erent modalities and

vies a modality as a tuple of device and language. Finally, TYCOON is completely de-

�ned from a system perspective, while CARE can be utilized from a user or a system

perspective. Despite these di�erences, both frameworks describe the relations between

multiple modalities and can be used to classify multimodal systems according to these

38

3. Fundamentals

properties. Due to the widespread usage in the literature and the similarity of the two

approaches the CARE properties will be used as classi�cation scheme in the remainder

of this work.

In the following fusion and �ssion are discussed, as basic technologies for handling mul-

tiple modalities and building multimodal user interfaces.

Fusion and Fission

Fusion and �ssion address the need to combine (fuse) multimodal user input to derive

meaning and separate di�erent building blocks to be presented via di�erent modalities.

While Fission is part of the distribution process, that has been discussed in section 3.1.3,

a speci�c �ssion approach for multimodal systems has e.g. be realized in the SmartKom

system (Wahlster, 2002; Müller et al., 2003). It is brie�y introduced in the following

to illustrate the concepts of �ssion from a multimodal perspective. Figure 3.4 shows

the presentation pipeline of the system. A presentation planner receives a M3L encoded

communication goal in a modality free representation and can be adapted via presen-

tation parameters, e.g. to encode user preferences or capabilities of output devices. It

decomposes the communication goal into primitive presentation tasks, according to con-

text information and the current presentation parameters. Afterwards di�erent output

modalities are allocated to the presentation tasks and unimodal presentation goals are

formulated accordingly. The system is able to synchronize speech output with the lip

movement of an animated agent as well as deictic pointing gestures of the agent with

graphical information.

Fusion technologies address the problem of combining user input received via multiple

modalities to derive meaning and the user intention. One example would be the well

known �put that there� approach by Bolt (1980). It combines speech and gesture input

to e.g. select objects and move them between locations. The problem arises from the

need to integrate continuous streams of signals from multiple modalities. These streams

then need to be segmented and related events need to be combined. In contrast to these

streams, common GUI based approaches create distinct events that can be interpreted

directly. This paradigm also holds for GUIs distributed across multiple devices and thus

fusion is mainly relevant for multimodal systems. The handling of contradictory input,

often also handled in the fusion process, is relevant for all types of distributed systems,

too.

Multimodal integration as part of modality fusion has been widely discussed in the liter-

39

3. Fundamentals

Figure 3.4.: The presentation pipeline of the SmartKom system (Reithinger et al., 2003).

ature. The reported systems utilize early fusion on the feature level to directly integrate

the received signals without any semantic interpretation (Stork and Hennecke, 1996; Ru-

bin et al., 1998) and late fusion to integrate the received signals on a higher semantic

level (Bolt, 1980; Neal and Shapiro, 1988; Cohen et al., 1989; Wang, 1995; Cohen et al.,

1997; Johnston et al., 2002; Holzapfel et al., 2004) and incorporate di�erent integration

mechanisms to realize input parsing and modality merging like melting pots (Nigay and

Coutaz, 1995), Typed Feature Structures (Johnston et al., 1997), Uni�cation Grammars

(Johnston, 1998), Finite State Machines (Johnston and Bangalore, 2000, 2005), neural

networks (Vo and Waibel, 1993; Waibel et al., 1995), rule-based approaches (Holzapfel

et al., 2004), agent-based systems (Cohen et al., 1994), context-based fusion (P�eger,

2004) as well as a biological-motivated approach (Coen, 2001). All approaches address

the processing and understanding of natural speech input in combination with additional

modalities e.g. gesture or pen-based input.

40

3. Fundamentals

In early fusion, the recognition process of one modality usually in�uences or constrains

the recognition process in another modality. This approach is considered more appro-

priate for temporally related modalities, such as speech and lip movement (Stork and

Hennecke, 1996; Rubin et al., 1998). Early Fusion can e.g. be realized through the cre-

ation of feature vectors, combining the information and the utilization of hidden Markov

models (HMM) for classi�cation. However, the required training data and the close

coupling to recognition technologies makes this approach less �exible than late fusion.

Early Fusion also fails to handle imperfect input data and asynchronous input streams.

Example systems based on early fusion can be found in (Bregler and Konig, 1994; Vo

et al., 1995; Pavlovic, 1998).

Late fusion approaches use individual recognizers working unimodally and support the

fusion of multiple recognition results on a semantic level. This allows the incorporation

of available recognizers that can be trained with unimodal data. Late Fusion is better

suited for modalities that are less coupled temporally or have di�erent response times.

It usually takes place in a two step process, integrating the di�erent recognition results

into a combined �nal representation �rst and deriving the meaning from the combined

representation in the second step. The interpretation is based on the partial meaning

of the di�erent information chunks and a combined common meaning. Late fusion thus

requires a common representation of meaning for all modalities.

In contrast to early fusion approaches, late (semantic) fusion approaches can more easily

consider additional information like previously observed data or context information.

Similar to early fusion approaches, time still plays an important role to determine the

temporal relation of the chunks to each other and is thus often annotated to the chunks

in form of a time stamp.

Early examples for late fusion can be found in (Bolt, 1980; Cohen et al., 1989, 1997;

Neal and Shapiro, 1988; Wang, 1995). More recent approaches are presented e.g. in

(Holzapfel et al., 2004; Johnston et al., 2002). Selected mechanisms for the required

modality integration are described in the following and selected implementations are

described afterwards.

Integration Mechanisms

A well known method to represent multimodal inputs is based on so-called frames (Min-

sky, 1975). A frame represents objects and their relations, where each object consists

of a set of attributes representing its characteristic properties. Frames can be organized

in a net of nodes, where each node is a frame with attributes called slots. In multi-

41

3. Fundamentals

modal applications, slots are �lled with data, extracted from the user input. Delgado

and Araki (2006) distinguish three types of frames: input frames, that hold the input of

each modality independently, integration, integration frames, that are created by com-

bining multiple input frames during the fusion process and output frames, that can be

utilized to create system output. The �lling of the slots of each frame can be carried

out incrementally, as data is received. Additionally, slots can be derived from available

information in other slots or �lled with information from the previous interaction step.

Another approach to store the information representation are the so-called melting pots

Nigay and Coutaz (1995). A melting pot collects the information received for a time

slot and combines it with a time stamp. This allows the fusion based on time, context

and the matching of the di�erent melting pots. Three types of fusion are supported:

microtemporal fusion combines chunks that are received in parallel; macrotemporal fusion

combines chunks that are complementary and �t in the same temporal analysis window,

contextual fusion combines chunks without considering time restrictions.

Feature Structures (Kay, 1984) and Typed Feature Structures (TFSs) (Carpenter, 1992)

allow the representation of multimodal inputs using shared variables to indicate common

structures. Typed feature structures are often used in natural language processing and

aim at the uni�cation of representation structures. TFSs support the speci�cation of

partial information chunks that are represented by sub-speci�ed structures containing

features that have not been instantiated and support uni�cation by determining the con-

sistency of two representation structures and their combination, if they are consistent.

Typed feature structures have been used e.g. in Quickset (Johnston et al., 1997) to inte-

grate input from speech and gesture recognition. Multidimensional TFSs have been used

in (Denecke and Yang, 2000) to represent di�erent aspects of multimodal input and also

by Holzapfel and Fuegen (2002) to integrate emotions of the user and provide additional

information like the used modality or con�dence score for each information chunk. Uni�-

cation Grammars are used to interpret typed feature structures and have been used e.g.

by Johnston (1998). This allowed to state strategies for multimodal integration declara-

tively and to utilize a multidimensional chart parser to compose received inputs. Finite

State Machines have been used by Johnston and Bangalore (2000, 2005) to parse multiple

input streams and combine their content into a single semantic representation. In their

approach a multimodal context-free grammar is used to specify possible interactions.

Other approaches use partial action frames and neural networks (Vo and Waibel, 1993;

Waibel et al., 1995), rule-based approaches (Holzapfel et al., 2004) or agent-based systems

(Cohen et al., 1994) to process the multimodal input. Coen (2001) presents a biological

42

3. Fundamentals

view to the problem, arguing that there is a strong interconnection between our senses

and thus handling multimodal integration should happen as early as possible and on mul-

tiple levels of abstraction. Portillo et al. (2006) introduce a hybrid-approach, combining

multimodal grammars and a dialog-driven strategy. In (P�eger, 2004), P�eger introduces

the PATE (Production rule system based on Activation and Typed feature structure El-

ements) system and emphasizes that multimodal fusion is also largely related to the

context of the interaction and thus the current state of the dialog. Similarly, Chai et al.

(2005) describe the interpretation of multimodal input according to the conversation-,

domain- and visual context of the interaction.

Selected Approaches

The Quickset system (Cohen et al., 1997) uses a fusion technology based on typed feature

structures to combine speech, gesture, and direct manipulation. It combines a set of

continuous speech and gesture recognizers running in parallel and provides multimodal

integration via a uni�cation mechanism working on the typed features structures as

semantic representation of the interaction. The approach has been continuously extended

and redeveloped exploring di�erent grammar-based technologies e.g. in the Match system

(Johnston et al., 2002) and a statistical approach in (Wu et al., 1999).

In (Vo and Wood, 1996) an application framework for speech and pen gesture input

fusion in multimodal learning interfaces is proposed. The system uses a frame merging

algorithm with di�erent modes to create partial �lled frames and a continuous merging

with scores. A poor recognition rate of ~80% was reported.

Holzapfel et al. (2004) present a system for multimodal human-robot interaction. The

system is based on input events, represented as tokens which are transformed into se-

mantic typed feature structures in a �rst step. Based on this feature structure an input

set is created, providing the input for the fusion process. During fusion the tokens are

read and the parser determines whether a subset of tokens can be merged. Di�erent to

other approaches, the order of the tokens is not critical and the approach supports the

asynchronous retrieval of tokens. It is able to cope with processing delays by delaying

the addition of new tokens until the parser �nishes. Application speci�c fusion rules are

used to con�gure the parser.

The SmartKom system realizes fusion based on adaptive con�dence measures from rec-

ognizers that produce time-stamped and scored hypotheses (Wahlster, 2003). SmartKom

provides a uni�cation of all hypothesis graphs and the application of mutual constraints

to reduce the ambiguity and uncertainty of the analysis results, similar to what has been

43

3. Fundamentals

realized in the Quickset system. An additional discourse model is used to rank the fusion

result within the context of previous interaction and to resolve deictic references.

Duarte proposes a Fusion process based on a Behavioral Matrix and related rules (Duarte

and Carriço, 2006), Flippo et al. (2003) propose a Framework for Rapid Development of

Multimodal Interfaces, supporting semantic fusion based on a parse trees generated by a

natural language parser. The system produces information frames that can be processed

by the dialog manager. In order to resolve references and ambiguities in the parse tree,

the system incorporates resolving agents, operating on the parse tree, including resolvers

for

• anaphoras and deictic references, �nding referred screen objects and their locations,

• objects, �nding an object according to the speci�ed attributes

• spelling, returning spelled words

• dialog history, allowing the resolving of references based on the conversation history,

• coordinates, creates a (x, y) tuple from e.g. spoken input

• names, allowing string manipulations

The used agents are only aware of their local information and collaborate to create

the complete information frame for a given parse tree. Additionally, a fusion manager

combines data from multiple sources and spawns resolving agents.

TYCOON (Martin, 1998) integrates multiple modalities through the interpretation of

sequences of detected events as commands that can be speci�ed using a command lan-

guage. A command speci�cation like �complementary_coinc X SPEECH here MOUSE

click * � allows merging the word here with a mouse click at any location in the same tem-

poral window. Sequence interpretation is performed by a multimodal module, providing

interconnected processing units, that process received signals according to the speci�ed

commands and the cooperation types.

ICARE provides generic composition components to implement the CARE properties,

merge the data, and send it to the next linked CARE component, allowing a cascading of

the components. Data merging is thereby performed on the task/component level of the

system by the fusion mechanisms from (Nigay and Coutaz, 1995), utilizing the notion of

buckets. A more detailed description can be found in section 3.4.3.

In conclusion, fusion technologies address the derivation of a common representation of

meaning from the multimodal input resulting from multiple modalities creating di�erent

44

3. Fundamentals

information on the signal level as well as di�erent (partial) interpretation results on the

semantic level. The fusion of signals or (partially) interpreted information to derive the

common meaning is the goal of the di�erent fusion algorithms.

3.1.5. Summary

In this section the state of the art of adaptive, shaped, distributed and multimodal sys-

tems has been introduced and di�erent approaches in these areas were presented. In

summary, adaptive system are highly dependent on the notion of context and the provi-

sioning of �exible user interface descriptions that allow dynamic adjustments of the �nal

user interface. Shaping of user interfaces, graphical and vocal, requires the possibilities

to express the relations between the elements and the boundaries for the adaptation

by the system. Distribution of user interfaces is a complex problem, spanning support

for multiple platforms and devices as well as support for the creation and synchroniza-

tion of system output and user interfaces. Multimodal interaction requires means to

semantically interpret multimodal input as well as to create multimodal output.

Interaction within smart environments provides the possibilities to combine and inte-

grate these di�erent aspects of user interfaces. Shaped user interfaces optimally exploit

the capabilities of the used interaction resources. Multiple modalities support robust

and natural interaction, and better insights into the user's intentions than traditional

interfaces. Distribution can help to compensate weaknesses of interaction resources and

modalities and, in combination with multimodal interaction and adaptation, enhance

usability for diverse users. Supporting Ubiquitous User Interfaces in smart environments

thus provides several advantages and has the potential to sustainably change the way we

interact with computers and computer-based systems.

However, these aspects also raise new challenges, e.g. described in (Bourguet, 2004; Pa-

ternò, 2005; Vanderdonckt, 2005). One main problem of the provisioning of Ubiquitous

User Interfaces is the orthogonality of the faced problems. While the abstract de�nition

of UIs allows generic outlines that can be specialized (automatically), multimodal UIs

require to combine various modalities that interact with each other to deliver meaning

and functionality. Of major importance is thus to solve the problems of meaning, hidden

within the usage of the di�erent modalities, and the need to provide capabilities to make

these meanings transparent and understandable for the computer. New user interface de-

sign, implementation, and runtime requirements burden the developer the task to de�ne

user interfaces, able to process (understand and generate) multimodal and distributed

45

3. Fundamentals

interaction. Developing such interfaces does not seem to be possible by hand anymore to-

day, but requires new methods of User Interface Engineering, based on the fundamentals

of Software Engineering (SE), Human-Computer Interaction (HCI) and Human Factors

(HF) (Vanderdonckt, 2005). One approach currently discussed in the scienti�c commu-

nity is the development of model-based user interfaces, similar to successful model-based

approaches in software engineering, which is described in the next section.

3.2. Model-Based Development

Model-Based Software Engineering (MBSE) has recently been successfully deployed as an

approach to handle the increasing complexity of current software systems. It addresses

the need to de�ne reusable building blocks that abstract from the underlying system

complexity and allow the developer to focus on the domain speci�c problem rather than

to deal with implementation details. Underlying the approach is the idea, that a descrip-

tion of the problem domain can be formalized as a metamodel, allowing the creation of

multiple models solving di�erent domain speci�c problems. While the Uni�ed Modeling

Language (UML) made the idea of modeling popular by providing a common language

to exchange concepts between developers, the Meta Object Facility (MOF) and Model-

Driven Architectures (MDA) provide the key concepts for the utilization of model-based

software engineering to derive running systems from software models. Technologies like

Executable UML, UML Actions or the Business Process modeling Language (BPML)

focus on the shift from static- to dynamic systems and executable models, allowing the

direct utilization of the model to create executable code. While the original static mod-

els were mainly able to present snapshot views of the systems under study and could

thus only provide answers to �what is� kinds of questions, dynamic models give access to

information that changes over time and are thus also able to answer �what has been� or

�what if� kinds of questions (see also Breton and Bézivin, 2001). Tools like the Eclipse

Modeling Framework (EMF) or the Graphical Modeling Framework (GMF) provide the

required infrastructure to create reusable models and building blocks.

In contrast to the �eld of MBSE, which is already wide spread in industrial software

development, Models-Based User Interface Development (MBUID) is currently growing

out of academia as an approach to deal with the increasing complexity of user interfaces.

Managing the sequential or even simultaneous usage of multiple devices and modalities,

adaptation to the context of use, multiple users with di�erent preferences, etc. makes

the already complex development of user interfaces even more complex. User interface

46

3. Fundamentals

code already takes up to 50% percent of developed applications and this rate has very

likely been increased since the study has been conducted by Myers and Rosson in 1992

(Myers and Rosson, 1992). Similar to MBSE, MBUID strives for a formalization of the

domain of user interfaces to reduce complexity and provide reusable building blocks. It

aims for the identi�cation of the main aspects common for user interfaces and their ab-

straction in a user interface model to simplify the user interface development process by

taking it from the code level to a higher level of abstraction. User Interface Descrip-

tion Languages provide basic information and concepts to express such models. Current

model-based approaches support the developer by providing mechanisms to decompose

complex applications into smaller manageable parts, modeling di�erent aspects of the

application independently. They usually combine a formal modeling language for user

interfaces, an engineering methodology and tool support. Utilizing formal user interface

models also takes the design process to a computer-processable level, that makes design

decisions understandable for automatic systems. The main approaches can be separated

in design-time approaches, providing development tools required to support the develop-

ment of user interface models e.g. (Paternò and Santoro, 2002) or the tools related to the

UsiXML Language (Vanderdonckt, 2005) and model interpretation at runtime (Clerckx

et al., 2004; Balme et al., 2004; Sottet et al., 2006b). The latter gains more interest

recently and aims at the possibility to exploit the information contained in the model

for the adaptation of the user interface to multiple and changing contexts of use. All

recent approaches aim at the integration of several models, describing di�erent aspects

of the user interface on di�erent levels of abstraction in a common user interface model.

Which models are required as basis for these approaches and which information is re-

quired in these models is still in discussion, although some basic types of models (tasks

and concepts, abstract user interface, concrete user interface and �nal user interface)

have recently been proven to be suitable descriptions of basic concepts (Calvary et al.,

2003).

In the following a description of the basics of model-based development, introducing

concepts like metamodels, transformations and mappings is provided. Afterwards the

di�erent levels of abstraction to consider within model-based user interface development

are described. Finally, the utilization of user interface models at runtime is discussed.

3.2.1. Fundamental Concepts

Model-based development aims at the de�nition of Domain Speci�c Languages (DSL)

allowing to form models of the addressed domain. Similar to the object-oriented pro-

47

3. Fundamentals

gramming paradigm �Everything is an Object� in model-based systems the paradigm can

be noted as �Everything is a Model�. The utilization of models for software develop-

ment has gained great attention with the introduction of the Model Driven Architecture

(MDA) by the Object Management Group (OMG). Its speci�cation classi�es Computing

Independent Model (CIM), Platform Independent Models (PIM) and Platform Speci�c

Models (PSM), aiming at the provisioning of a rei�cation process. Starting with the

colloquial description of the system in the CIM, a de�nition of abstract PIMs is derived.

These are rei�ed into more concrete PSMs using model transformations. The process

�nally leads to the creation of platform speci�c executable code.

In this sense, MDA (Miller and Mukerji, 2001) de�nes a model as a representation of part

of the function, structure and/or behavior of a system. The system is in this case also

noted as the system under study and the model aims at providing answers about questions

concerning the system without having to study it directly. In this sense, descriptive and

prescriptive models can be distinguished, with the former describing an existing system

and the latter a system to be built. Additionally, dynamic and static models can be

de�ned as models that do or do not change over time (Bézivin, 2005). Static models

thus provide (only) a snapshot of the system under study at a given point in time, while

dynamic models can also describe how a system evolves.

Figure 3.5.: The MOF Metadata Architecture (Obj, 2002).

An important concept in the domain of models is the concept of a metamodel, de�ned

by the MDA speci�cation as a model of models. In this sense a metamodel speci�es a

model that de�nes the language for expressing a model as de�ned by the Meta Object

Facility (MOF) speci�cation (Obj, 2002). In this context, MOF speci�es the metadata

architecture depicted in �gure 3.5. The architecture de�nes four layers (also called levels)

of abstraction. The lowest layer M0 identi�es the system under study. This is described

by models on the M1 layer. The next higher layer M2 then identi�es the metamodels,

48

3. Fundamentals

describing the syntax and semantics of the M1 models. The top layer M3 identi�es the

meta-metamodel, which is the model of all metamodels.

In systems comprising multiple models, relations between models can be either speci�ed

as mappings or transformations. Mappings express the relationship between two or more

models and are de�ned as a set of rules and techniques used to modify one model in order

to get another model (Miller and Mukerji, 2001). In this sense mappings are also said

to perform transformations between PIM and PSM. Transformations are thus used to

transform one or more models into new models, which re�ne the aspects of the original

models. The di�erence between mappings and transformations can be seen as the former

being an extension of the latter. When transformations create a model, the created

model is not bound to the source model anymore. A mapping between two models can

also be continuously maintained and thus relate source and target. In this work the term

mapping is mainly utilized to describe links between existing models, while the term

transformation is used to identify the creation of a new model from existing information.

Based on these understandings of the fundamentals of model-based software development

the next sections introduce fundamentals and state of the art concepts of model-based

user interface development.

3.2.2. Levels of Abstraction

Earlier approaches in model-based user interface design and development discussed a

broad variety of possible models and abstraction levels, user interfaces could be de�ned

with. However, recently there has been a consensus that four main levels of abstraction

can be distinguished as proposed e.g. in (Szekely, 1996) or (Calvary et al., 2003):

1. de�nition of tasks and concepts,

2. de�nition of the modality independent Abstract User Interface (AUI),

3. de�nition of the platform independent Concrete User Interface (CUI),

4. de�nition of the platform speci�c Final User Interface (FUI).

These levels are de�ned and supported by the Cameleon Reference Framework, which

presents a unifying framework that structures the development process of plastic user

interfaces, capable of adapting to variations of the context of use (Calvary et al., 2001b)

and multi-target user interfaces (Calvary et al., 2003). The framework is built on a set

of models, comprising the domain concept model, de�ning the domain data, the task

model, modeling the user tasks, the platform model, de�ning the target platform of the

49

3. Fundamentals

context of use, the environment model, de�ning additional context of use information,

the interactor model, comprising the available widgets for the concrete interface, and the

evolution model, specifying the transition between states. Based on these basic models,

the framework aims at the derivation of transient models by the developer or system.

Transient models exist on the four layers of abstraction: Task and Concepts, Abstract

UI (AUI), Concrete UI (CUI) and Final UI (FUI). The task and concepts model de-

scribes the interaction tasks and the related domain concepts. Based on these basic

information, the AUI Model provides a modality independent de�nition of the interac-

tion, serving as basis for the modality dependent, but platform independent interaction

of the CUI Model. The FUI represents the platform dependent user interface code, based

on the CUI Model. The framework additionally de�nes three types of transformations

between the models. Rei�cation allows the incorporation of information from a higher

level of abstraction into a more concrete model, while abstraction de�nes the opposite

transformation, incorporating concrete information into a more abstract model. Trans-

lation �nally de�nes a transformation of the model on the same level of abstraction, e.g.

to incorporate a di�erent context of use. The complete model is depicted in �gure 3.6.

Figure 3.6.: The Cameleon Unifying Reference Framework for Multi-Target User Inter-
faces from Calvary et al. (2003).

The original framework has been revised in (Calvary et al., 2002) to support additional

bottom-up development and reverse engineering approaches as well as multiple entry

points for the development process and support for runtime computation of UIs. It has

also been extended by the runtime life cycle depicted in �gure 3.7. In Calvary et al.

(2003) the framework has been extended to support the development of multi-target

user interfaces. During this extension, three types of the underlying models have been

50

3. Fundamentals

identi�ed: ontological, archetypal and observed models. Ontological models thereby

give rise to archetypal models, comprising the design information and observed models,

guiding the runtime process. Additionally, a runtime infrastructure, following the three-

step process of �gure 3.7 based on the observed models has been introduced. The reaction

of the system based on the identi�ed situation may thereby comprise switching to another

platform (migration), switching the underlying executable code to better suit the needs,

perform an adaptation of the UI without code switching or execute speci�c tasks, to alter

the trigger situation. One important factor during these adaptations is the conservation

of the state of the interaction in the prologue (persistence) which might however not

always be possible to any extend and the restoring of the state in the epilogue.

The Cameleon Reference Framework targets the development of multi-platform user in-

terfaces and also addresses the adaptation to platform and environment at design- and

at runtime. The structure of the used models has been referenced often in the litera-

ture and can be considered as a common set of abstraction levels. However, while the

framework provides the means to derive multiple user interfaces from a set of models, as

a classi�cation framework, it does not provide details about how this is done.

Figure 3.7.: Cameleon Runtime Lifecycle from Calvary et al. (2002).

3.2.3. Models at Runtime

While user interface development tools usually aim at the generation of executable code

from the model, rendering the underlying model useless at runtime, there is also an urgent

need to handle interaction complexity at runtime. In the 1980 User Interface Manage-

ment Systems (UIMS) (for an overview see Szekely, 1996; da Silva, 2001) were heavily

51

3. Fundamentals

researched as approach to cope with the complexity of user interface programming. A

typical UIMS included �a presentation layer for input-output handling and device commu-

nication; a dialog manager for controlling the semantic interpretation between the system

and the user; and an application interface for interpreting the application commands to

the dialog manager and the user� (Blattner and Glinert, 1996). However, the approach

failed as the resulting systems were large, complex, di�cult to learn, and incapable of

doing everything the users wanted (Blattner and Glinert, 1996).

Recently, the new challenges in the area of multimodal, distributed and adaptive user

interfaces and the increasing complexity of user interface development makes the ideas

of early UIMS appear quite appealing again today. The interpretation of XML-based

user interface description languages is an important factor for this. With XHTML and

VoiceXML being major interpreted languages to create user interfaces today, the question

for a comprehensive multimodal user interface description language (besides the limited

XHTML+Voice) remains yet unsolved. While some promising languages are discussed

in section 3.3, approaches for the interpretation of user interface models at runtime are

discussed in this section.

The runtime interpretation of models provides several advantages. While the usual ap-

proach to transform models into executable code in the �nal development step can lead

to a loss and scattering of design information, the continuous utilization of the design

models at runtime, keeps this information available and accessible. Additionally, the re-

�ection of the state of the system within the model makes this state explicitly accessible

and allows its easy monitoring. Supporting the utilization of the models for adapta-

tion means as well as their evolution over time allow the creation of dynamic systems,

completely described at runtime by the underlying design models. Decision processes at

runtime are supported by design information and thus formal descriptions of meaning of

the application elements, or the interaction in case of user interfaces.

However, utilizing models at runtime requires an architecture and a process for the

interpretation of the models. Addressing this issue, Sanchez et al. (2008) propose a

platform to execute runtime models, that aims at the provisioning of reusable monitoring

and control tools. The presented Cumbia platform mainly aims at supporting extensible

work �ow-based applications but is reported su�ciently generic to be valuable in other

contexts. It uses executable models, which keep their structural information during

execution. This allows the platform to o�er runtime information about every object in

the models. Executable models are realized by open objects, combining an entity, a state

machine, and a set of actions. While the entity holds a traditional object with attributes

52

3. Fundamentals

and methods, the state machine de�nes the life cycle of the entity, which allows access

to its state and to react to its changes. Actions are pieces of behavior, executed when

the state machine performs a transition. Based on these meta-elements of all models,

the platform is capable of handling any type of model with a corresponding metamodel.

Maoz (2008) describes model-based traces, which re�ect the runtime state of a system

using design models. The approach traces behavioral models of a system design during

its execution and follows their activation and progress as they come to life at runtime.

This allows to reconstruct and replay a system execution at the abstraction level de�ned

by its models, which makes the execution of the program visible at this abstraction level.

Additionally, the live synchronization makes the state of the system perceivable within

the model. This enables the strong coupling of dynamic analysis and model-driven en-

gineering. Rohr et al. (2006) describe an approach for the model-driven realization of

self-management, based on meta-models that de�ne constraints, monitoring and recon-

�guration. A runtime model re�ects the current state of the system with respect to its

architectural entities.

One major application of models at runtime is the adaptation of systems at runtime.

Here, the availability of the underlying design decisions is a major aspect, aiming at the

semantic understanding of the performed adaptations. While architectural properties

are usually re�ected through runtime artifacts, which is suitable as long as the software

system remains �xed at runtime. This approach is likely to fail if user needs and operat-

ing conditions vary dynamically. Floch et al. (2006) utilize architectural models for the

runtime adaptation of applications within the MADAM project. Another approach for

runtime adaptation based on models is discussed in (Schneider and Becker, 2008). The

authors utilize runtime models for self-adaptation in the ambient assisted living domain

in the context of the BelAmI project. They equip interactive components with an adap-

tation and a con�guration model and describe an infrastructure, where an adaptation

manager monitors the context to decide upon possible system changes, which are then

performed by a con�gurator component.

In the domain of user interfaces, Klug and Kangasharju (2005) present executable task

models to create applications adapting to the actions of the user. They extend the

ConcurTaskTree notation to allow the dynamic execution of a task model at runtime by

keeping the active task state for leaf tasks. Additionally, input and output ports extend

the temporal operators to facilitate information exchange. Another approach utilizing

models at runtime is the DynaMo-AID runtime architecture. The system presented in

(Clerckx et al., 2004) utilizes a task and a context model to generate context-sensitive

53

3. Fundamentals

user interfaces.

Sottet et al. (2007a) propose the utilization of user interface models at runtime to sustain

user interface plasticity and perform UI adaptation. Traditional user interface models

are enhanced with transformations and new models to support reasoning about their

own adaptation when the context of use changes. The used models form a net of models,

that comprises user-, platform- and environment model, a property model, as well as

concept- and task-model. A workspace-, interactor- and program model provide di�erent

perspectives to the UI at design-time. Transformations are able to transform information

from one model to another one, mappings keep the models connected at runtime.

These approaches show the growing utilization of models at runtime for software and user

interface development, to cope with limitations of current approaches and to stronger

interconnect design and runtime information.

3.2.4. Summary

In this section, the idea to utilize models to describe user interfaces has been introduced

and recent work in this are has been presented. Utilizing the idea to describe everything

as a model, this software engineering approach can also be applied to user interface

development. However, while the application of model-based software development lead

to various successful approaches, model-based user interface development still faces the

gap between freely creative UI design and UI engineering, but the increasing complexity

of future UIs are likely to render current techniques insu�cient.

Utilizing user interface design models at runtime keeps design information available to

allow the revision of design decisions and the adaptation of the user interface. It unveils

the meaning behind the UI components and facilitates a better semantic understanding

of the interaction. The underlying user interface model is interpreted and likely to evolve

over time as the state of the interaction changes. It can dynamically express its state

within the model to make it explicit to any observers.

The main requirements for the utilization of such an approach are (1) the availability

of a set of models in form of a user interface description language, as well as (2) the

availability of an architecture, providing the means to interpret the models and handle

interaction with the user, incorporation of context information and the connection of

backend services. Both aspects are further analyzed in the following.

54

3. Fundamentals

3.3. User Interface Description Languages

Multi-platform and multimodal user interfaces raise the need for a more declarative

description of human-machine interaction on a higher level of abstraction. This has

lead to the de�nition of multiple User Interface Description Languages (UIDLs). Initial

challenges for UIDLs in the context of smart environments are especially the lack of a

dominating interaction paradigm, the needed interaction �exibility and the goal to de�ne

one common description for all possible instances of a user interface. In the following a

selection of User Interface Description Languages (UIDLs) is analyzed within the context

of the goals of this thesis. Main requirements to these languages from the perspective of

Ubiquitous User Interfaces are:

• support for the de�nition of multi-platform and multimodal user interfaces

• information modeling at higher levels of abstraction and the possibility to create

device-dependent and multimodal presentations from the generic information

• support for the synchronization of the di�erent (parts of the) user interfaces

• runtime support and the integration of representation of the state of the system

• the possibility to adapt the resulting user interface or even the underlying model

dynamically to context information

In this section three selected approaches are presenting.

3.3.1. UIML

The User Interface Markup Language (UIML) (Abrams et al., 1999) is an XML-based

meta-language, aiming at the de�nition of a canonical representation of any user interface

for multi-platform, multi-lingual, and multimodal purposes. It provides a limited number

of tags and and allows the de�nition of vocabularies for di�erent purposes. The meta-

language consists of �ve parts:

• descriptions, that specify how elements are rendered and what their functions are;

• structures, that specify which elements from a description are presented for a given

device and how they are structured;

• data elements, that collect all application speci�c data;

• style elements, that contain device dependent style and data;

55

3. Fundamentals

• events, that de�ne runtime events between interface elements or interface elements

and the backend.

Using UIML to develop user interfaces, the developer has to de�ne an UIML vocabulary

that speci�es the allowed UI elements (similar to a DTD for XML documents) and their

mappings to a user interface toolkit. Di�erent vocabularies supporting HTML, WML,

VoiceXML or Java have been developed. Additionally, generic vocabularies (Plomp and

Mayora-Ibarra, 2002), addressing multiple renderings and UIML interpreters have been

de�ned (Luyten et al., 2006a). A main goal of UIML was also the separation of user

interface and backend. For this purpose, UIML hides calculations and backend calls by

aiming at a runtime engine, that monitors all events and provides the communication

with the backend.

Di�erent extensions to UIML have been de�ned to address support for multimodal and

distributed user interfaces. The Dialog and Interface Speci�cation Language (DISL)

(Bleul et al., 2004; Robbie Schaefer, 2006) and the Cooperative User Interfaces Markup

Language (CUIML) (Sandor et al., 2001) extend UIML with generic widgets, new behav-

ioral aspects and address the need to synchronize multiple generated views. The main

focus of DISL is the creation of generic and modality independent dialog descriptions. It

de�nes an extension mechanism and the following generic widgets:

• output: variable�eld and text�eld

• input: command, con�rmation, variablebox and textbox

• structuring and selection of structured elements: choicegroup and widgetlist

• extension elements: generic�eld, genericcommand and genericbox

The underlying dialog model provides a new separate layer for the integration of di�erent

modalities and the behavior section is extended with possibilities to specify variables,

events, new rules and transitions.

In contrast to DISL, CUIML targets the development of user interfaces for wearable com-

puters consisting of numerous devices like head mounted displays, palm-size devices, and

speech recognition systems that support multimodal interaction. To synchronize these

di�erent UI parts, CUIML suggests a MVC-based (Model-View-Controller) framework,

allowing fast information exchange and the application of manipulators that directly

change parts of a view instead of rerendering the view as a whole.

56

3. Fundamentals

3.3.2. TERESA XML

The Transformation Environment for inteRactivE Systems representAtions (TERESA)

is a model-based tool to support the authoring of multi-device user interfaces based

on the TERESA XML (Berti et al., 2004) language. It has been recently extended to

also support multimodal user interfaces (Paterno et al., 2008) and supports the four

CARE properties (Complementarity, Assignment, Redundancy and Equivalence). It also

structures interaction into three phases: Prompt, Input, Feedback. TERESA XML dis-

tinguishes three levels of abstraction: task de�nition, abstract user interface and concrete

user interface.

The task model is based on the Concurrent Task Tree (CTT) Notation (Paternò, 1999)

and de�nes user, system and interaction tasks. The tasks are hierarchically ordered and

temporal operators de�ne their relations. The CTT notation allows the de�nition of the

model in XML.

The abstract user interface de�nition is derived from the task model and aims at de-

scribing the device and modality independent semantics of the user interface. It re�ects

the de�ned temporal relations between tasks and provides multiple presentations. Each

presentation combines the set of interactors (at a given time) with connections, de�ning

the dynamic behavior of the user interface. Considered presentation elements are output

(text, object, description, feedback) and input interactors (selection, control (activator,

navigator), edit, interactive description) as well as composition operators (grouping, re-

lation, ordering, hierarchy). The abstract level is complemented by an interaction model,

adding dynamic behavior for each presentation. The model de�nes presentation states

and related transitions between the states. Each transition is associated with an ini-

tial state, an interactor to trigger the transition, an abstract event (selection, editing,

activation) and a target state. Each event can specify additional consequences (change

state, modify interactor, modify another interactor, conditional consequence, set variable,

generic function).

The concrete user interface de�nition re�nes the abstract elements for speci�c devices

and modalities. It de�nes the rendering possibilities for each abstract interactor and

rei�es the abstract events (selection can e.g. be mapped to a 'onClick'-event). Figure

3.8 shows the abstract and concrete interactors in an excerpt from the TERESA user

interface metamodel for the graphical desktop.

57

3. Fundamentals

Figure 3.8.: Excerpt from the TERESA concrete user interface metamodel for the graph-
ical desktop from Paterno et al. (2008)

The underlying model-based transformational approach of TERESA allows the trans-

formation of the concrete user interface description into a �nal user interface noted in

a supported target language (currently XHTML, VoiceXML, X+V, SVG, Xlet, and a

gesture library) and is combined with comprehensive tool support.

3.3.3. USer Interface eXtensible Markup Language (UsiXML)

The USer Interface eXtensible Markup Language (UsiXML) (Limbourg et al., 2004b) is

an XML-compliant markup language that addresses platform-, modality-, and context-

independence and -sensitivity of user interfaces. Providing multiple levels of abstraction

(task and concept, abstract UI, concrete UI and �nal UI) as de�ned by the Cameleon

Reference Framework (Calvary et al., 2003) and a set of di�erent models it aims at the

realization of multi-path development of user interfaces. A UsiXML UI consists of three

initial model: task, domain, and context. They describe the tasks to accomplish in a

CTT-based notation, the Uni�ed Modeling Language (UML)-based de�nition of domain

objects and a de�nition of the relevant context information (user, platform, environment).

Based on this information, transformations allow the creation of an abstract user interface

and, based on this, a concrete user interface model.

The abstract user interface addresses the device independent meaning of the user inter-

face. It contains abstract interaction objects distinguished in abstract individual compo-

nents with di�erent facets (input, output, navigation, control) and abstract containers as

well as abstract user interface relationships (decomposition, abstract adjacency, spatio-

temporal, dialog control, mutual emphasis).

58

3. Fundamentals

Based on the abstract user interface de�nition, the concrete user interface model provides

the means to specify modality speci�c (but platform independent) properties of the �nal

user interface. It uses concrete interaction objects to provide an abstraction of the �nal

widget sets (e.g. HTML, Java, Flash). The layout of the concrete interaction objects is

de�ned via relative relations between them. The concrete UI also aims at the provision-

ing of a navigation de�nition and events/actions providing the dynamic behavior as part

of the dialog. Stanciulescu (2008) introduces a set of voice- and multimodal concrete in-

teraction objects to extend UsiXML with support for multimodal user interfaces. Figure

3.9 shows the concrete voice interaction objects of UsiXML.

Figure 3.9.: UsiXML voice concrete interaction objects taken from Stanciulescu (2008)

The mapping model de�nes a set of relationships (triggers, observes, updates, isRei-

�edBy, isAbstractedInto, isGraftedOn, isExecutedIn, isTranslatedInto, isAllocatedTo, ma-

nipulates, hasContext, isDelegatedTo, isShapedFor) between the elements of the di�erent

59

3. Fundamentals

model. It also speci�es the information exchange between the di�erent parts of the user

interface description.

The combination of the di�erent models with comprehensive tool support addresses the

development of multi-platform user interfaces via various development methodologies.

The widespread use of the language and its continuous extensions make it a promising

approach to handle the upcoming problems of future user interfaces.

3.3.4. Other

Besides the languages that have been introduced above, a variety of UIDLs have been

created for di�erent purposes. In the following some interesting aspects of other languages

are emphasized to complete the overview of relevant languages.

The most common and well known example for an interpreted (UI-)language is proba-

bly (X)HTML (eXtended Hypertext Markup Language) available in version 5 today. It

is interpreted by web browsers which are available for various �xed and mobile devices

now, to provide web-based graphical user interfaces. It can be enriched with dynamic

information via Javascript and allows the separation of style and content via CSS. Simi-

larly, VoiceXML allows the creation of voice-based user interfaces, interpreted by a voice

browser, that provides the means to output voice and interpret vocal user input. A �rst

approach to provide multimodal UIs has been provided by XHTML+Voice, which aims

at combining XHTML and VoiceXML in a single document to enrich graphical user in-

terfaces with voice output. In the same language family, XForms has been developed to

provide a stronger separation of content and presentation. The Synchronized Multimedia

Integration Language (SMIL) has been developed to synchronize multimedia content in

time. Finally, the Extensible MultiModal Annotation markup language (EMMA) aims

at the standardized representation of interpreted multimodal content for text, speech

and handwriting. All languages are standardized by the World Wide Web Consortium

(W3C).

The eXtensible Interaction-Sheet Language (XISL) (Katsurada et al., 2003) provides

means to build multimodal UIs based on interaction scenarios. It controls dialog �ow

and transitions similar to VoiceXML and supports the synchronization of input/output

similar to SMIL. Unique features of this approach are the separation of content and

interaction (HTML elements are referenced from a XISL de�nition via XPath expressions)

and its de�nition of parallel, sequential and alternative input.

The eXtensible Interface Markup Language (XIML) (Puerta and Eisenstein, 2001) aims

60

3. Fundamentals

at the creation of a universal speci�cation of interaction data. Based on the concepts

of components, each consisting of a set of interface elements, attributes and relations,

developers can de�ne their own languages or use a prede�ned set of components. Similarly

to UsiXML, XIML follows a model based approach and allows the de�nition of a task-

, domain-, user-, dialog-, and presentation model. It supports relations between the

di�erent models like �Data of type A is displayed with presentation element B or C�,

which allows the de�nition of structures that can be examined by a rendering software.

The Personal Universal Controller (PUC) Speci�cation Language aims at the automatic

generation of remote control interfaces and has an interesting approach to support state

variables to explicitly incorporate and manipulate the interaction state during execution

(Nichols et al., 2006).

The Multimodal Markup Language (M3L) (Wahlster, 2003) has been developed within

the SmartKom project and serves as exchange format for the di�erent modules of the

system. It combines concepts from frame languages, concept languages and termino-

logical linguistics as well as web languages to provide object oriented modeling, formal

semantics and inference capabilities based on an XML/RDF syntax. It is e.g used to

express temporal relations between gestures and voice and allows the mapping of typed

feature structures to M3L constructs.

3.3.5. Summary

In this section User Interface Description Languages that address the de�nition of multi-

modal interaction and multi-platform user interfaces have been presented. The described

approaches mainly address the derivation of multiple (multimodal) user interfaces, sup-

porting di�erent devices. However, from the perspective of Ubiquitous User Interfaces,

it has to be noted, that none of the UIDLs incorporates means to integrate all identi�ed

features of UUIs. Considering these features, it also remains unclear, how the �nal UI

code is created from the models, as the consideration of information only available at

runtime plays an important role for shaping, user interface distribution, the dynamic

usage of modalities or adaptation. None of the presented approaches directly aims at the

utilization of the UI description at runtime. Thus, in the next section di�erent architec-

tures are presented, that put a strong focus on addressing the various runtime needs of

Ubiquitous User Interfaces.

61

3. Fundamentals

3.4. Architectures

The de�nitions of architectures allowing the creation of multimodal as well as distributed

and adaptive user interfaces have been widely discussed in the literature. In this section

selected architectures are presented, with a focus on architectures that facilitate these

features.

3.4.1. W3C Multimodal Interaction Framework

The Multimodal Interaction Framework of the W3C (Larson et al., 2003) aims at an

identi�cation of the major components of multimodal systems. It identi�es markup lan-

guages to describe information (for components and to support data �ow) and supports

current and future input and output modes. It is explicitly de�ned as a framework being

one level above a concrete architecture.

The main components identi�ed by the framework are depicted in �gure 3.10 and de-

scribed in the following.

• The Human User is an actor, using the system by entering input and perceiving

output.

• Input provides a representation for multiple input modes (de�ned as audio, speech,

handwriting, keyboarding, and other input modes).

• Output provides a representation for modes of output (de�ned as e.g. speech, text,

graphics, audio �les, and animation).

• An Interaction Manager is the component that coordinates data and execution �ow

from various input and output components. It maintains the interaction state and

context of the application and responds to inputs from components. It also reacts

to changes in the system and environment and coordinates input and output.

• Application Functions connect to the functional core and the application logic.

• The Session Component provides state management and (temporary and persis-

tent) sessions.

• A System and Environment Component connects the interaction component and

the actual environment information.

62

3. Fundamentals

Figure 3.10.: General components of the Multimodal Interaction Framework from Larson
et al. (2003)

Input is supported by the cooperation of a recognition component, capturing input from

the user (e.g. based on a grammar, e.g. W3C Speech Recognition Grammar for speech),

an interpretation component, processing the results of recognition components in terms of

meaning and semantics and an integration component, combining the input from multiple

interpretation components. EMMA (Baggia et al., 2008) is used to de�ne information

exchanged between the components.

Output is realized by the cooperation of a generation component, selecting the used

output modalities, a styling component, adding layout information, and a rendering

component, rendering the �nal e.g. graphical or speech user interface. The output

components use e.g. Speech Synthesis Markup Language, Cascading Style Sheets or

the Synchronized Multimedia Integration Language for styling and create XHTML or

Scalable Vector Graphics as output.

3.4.2. MultiModal Dialog System

The conceptual structure of the MultiModal Dialog System (MMDS) of Delgado and

Araki (Delgado and Araki, 2006) provides a system architecture consisting of several

modules organized in three main components: input interface, multimodal processing

and output interface. Input and output are individually addressed and a central model

handles the dialog �ow.

Similar to the Multimodal Interaction Framework the concept identi�es multiple input

and output modalities. While input is integrated by a multimodal fusion engine, output

is coordinated by a response generator. The main di�erence to the W3C framework is the

more detailed approach for the interaction management in form of the multimodal pro-

cessing. The integration of a dialog manager, based on a task description and a database,

containing domain objects, allows a more detailed description of the multimodal dialog.

63

3. Fundamentals

3.4.3. ICARE

Based on the de�nition of the CARE properties (see section 3.1.4), ICARE (Interaction-

CARE) (Bouchet et al., 2004) provides a component-based approach for the development

of multimodal interfaces. It speci�es elementary components, describing pure modali-

ties, and composition components, allowing the combination of modalities according to

the CARE properties. Elementary components comprise device components, allowing

the translation of device speci�c input into recognizable utterances, and language com-

ponents, allowing the translation of the utterances recognized by the device component

into higher level commands. Four generic composition components �nally implement

the CARE properties, merge the data (supporting the Bucket-fusion mechanism from

Nigay and Coutaz, 1995) and send it to the next linked care component, allowing a

cascading of the components. The hierarchical combination of the components allows

the �exible combination of multiple modalities and the expression of the interrelation of

the elements. This allows the interpretation of multimodal input on multiple levels of

abstraction, based on the consideration of the CARE properties. The system focuses on

the fusion of multimodal input and does not yet support �ssion or multimodal output.

Several systems have been developed based on the ICARE system and the underlying

fusion mechanism has been tested and enhanced in (Dupuy-Chessa et al., 2005).

3.4.4. Cameleon-RT

Cameleon-RT (Balme et al., 2004) provides an architecture reference model supporting

distributed, migratable plastic user interfaces. It de�nes three basic layers of abstraction:

the Interactive Systems Layer, the Distribution, Migration and Plasticity (DMP) Layer

and the Platform layer, shown in �gure 3.11. While the DMP Layer is the central layer of

the approach, the Interactive Systems Layer comprises the applications currently running,

and the platform layer forms the basis of the system and includes hardware and operating

system.

The DMP Layer provides mechanisms and services for DMP UIs. It therefore comprises

context infrastructure to incorporate context information as well as a platform manager

and interactors toolkit to support resource discovery, hide the platform heterogeneity

and support distribution and migration of the UI. It also hosts the Open Adaptation

Manager, which is one of the key components of the architecture. It incorporates the

location-, user- and platform-information as well as information about the interactive

system through observers, enabling the situation synthesizer to compute the current

64

3. Fundamentals

situation from the information. If a new situation is discovered, the evolution engine

identi�es the components of the UI that must be adapted and provides a con�gurator with

a plan of actions. The con�gurator �nally executes the plan and performs the required

adaptations. It can access a component manager to retrieve required components. The

con�gurator is also able to retrieve the state of a running component and transfer it to

a new component, replacing the �rst one.

Figure 3.11.: The Cameleon-RT architecture. (Balme et al., 2004)

3.4.5. DynaMo-AID

DynaMo-AID (Dynamic Model-bAsed user Interface Development) allows to develop

context-sensitive user interfaces for pervasive systems that support dynamic context

changes (Clerckx et al., 2004, 2006). It comprises a task-centric design process as well as

a runtime system and is part of the Dygimes User Interface Creation Framework (Coninx

et al., 2003). The design process consists of seven steps:

1. the creation of a task model,

2. attaching abstract descriptions to each task,

3. calculating the collection of task trees relevant for di�erent contexts,

4. automatic extraction of the dialog model,

5. dialog construction by the designer,

6. linking of context to task and dialog model and

7. service modeling.

65

3. Fundamentals

Based on this approach an application model is created, providing multiple variations of

a task tree according to di�erent supported context variants.

To put these design principles into practice, the DynaMo-AID approach comprises a

runtime system depicted in �gure 3.12, consisting of three distinct modules: (1) the

application, that manages the functional core and the state of the application, (2) context,

provides context information to the dialog controller and the functional core, and (3)

presentation, provides the actual presentation of the UI. The three modules are connected

by the dialog controller as the central component of the system. The dialog controller

controls the communication between the modules, manages the dialog models of the

application and maintains the state of the user interface. Based on the detected context

information the active variant of the task-model is selected. Additionally, whenever a

service (dis-)appears the corresponding task tree can be attached to a currently active

task tree if there is a reserved spot. Each service is therefore associated with the task

tree to provide a high-level description of the required interaction.

Figure 3.12.: The DynaMo-AID Runtime Architecture, adopted from (Clerckx et al.,
2006).

The distribution manager holds a distribution model, describing to which type of device

a task or dialog element can be distributed and distributes the elements of a dialog

across devices accordingly. It keeps track of the available interaction devices via UPnP-

66

3. Fundamentals

based device discovery. The available devices are stored in the environment model.

The �nal rendering of the user interfaces is handled by the interaction devices, running

UIML renderers (Abrams et al., 1999) or a presentation manager to support XHTML or

XHTML+Voice (Clerckx et al., 2007).

3.4.6. FAME

The Framework for Adaptive Multimodal Environments (FAME) (Duarte and Carriço,

2006) provides a model-based approach that comprises an architecture, a representation

of adaptation rules and a set of guidelines for the development process. The architec-

ture, depicted in �gure 3.13, uses several models for controlling multimodal outputs and

presentation layout as well as for the interpretation of user input.

The models used in the architecture, store context information (user-, platform & devices-

, and environment model) and describe the UI elements available for presentation and

interaction (interaction model). The user model stores user preferences, goals, and past

interaction history as well as general user characteristics. The platform and devices

model stores information about available interaction devices, platform characteristics

and application speci�c events. It is relevant to the choice of what modalities to use for

input and output and the selection information presented to the user. The environment

model stores information about the surrounding environment like noise level of lighting

conditions. The models are continuously updated by a set of observers for device and

environmental changes with the possibility to process application generated events and

support the fusion of input events. The additional interaction model stores templates,

de�ning the components that are used to generate the actual interface, according to

the context of use. Atomic templates de�ne the presentation of a component for a

single modality; composite templates express relations between templates and allow their

grouping, even across modalities.

The underlying adaptation knowledge is expressed in the Behavioral Matrix, introduced

to reduce the complexity of expressing the adaptation rules. One Behavioral Matrix

is de�ned for each component in the interaction model and encodes the behaviors and

transitions between them. The adaptation module is the core of the architecture and

combines the di�erent models with the Behavioral Matrix to process user inputs, deter-

mine context changes, and adjust the parameters controlling the multimodal operation

of fusion and �ssion.

The outer layer of the depicted architecture provides means for multimodal input pro-

67

3. Fundamentals

cessing and output generation. The input processing elements translate and forward

information from outside the application boundaries to the adaptation module, distin-

guishing user inputs, environmental changes, device changes and application generated

events. User inputs are processed by a multimodal fusion component, determining the

intended user action from the input. Weights of modalities and underlying integration

patterns of the fusion engine are thereby controlled by the adaptation module. The

output generation process combines a multimodal �ssion and an adaptive arrangement

component. The �ssion process separates the data received from the adaptation module

and coordinates the presentation of the di�erent modalities. The arrangement component

�nally deals with the arrangement of the presentation elements of each single modality.

The parameters of both components are controlled by the adaptation module.

Figure 3.13.: FAME Architecture taken from Duarte and Carriço (2006)

3.4.7. DynAMITE

DynAMITE aims at �intelligent multimodal interaction with distributed networked de-

vices within dynamical changeable ensembles� to realize assistive systems and services

(www.dynamite-project.org, last visited March 2009). Its goal is to empower devices and

software components (of di�erent software producers) to interact spontaneously. This

should allow to analyze the user's interaction in terms of intentions and goals and to

act accordingly across multiple devices in a so called ensemble. The approach comprises

three main aspects:

68

3. Fundamentals

1. A Software-Infrastructure to realize the communication between distributed com-

ponents.

2. A Topological Model to de�ne the required components for the realization of rea-

sonable behavior of smart environments and for the self-organizing management of

the communication �ow.

3. Semantic Models to de�ne common ontologies for the di�erent components within

smart environments.

The DynAMITE-Software-Infrastructure (Heider and Kirste, 2002) is based on the SodaPop-

model, that distinguishes two fundamental elements: channels and transducers. Trans-

ducers send and receive messages and communicate with each other via channels. Chan-

nels deliver messages and use con�ict resolution strategies to determine addressees. It

realizes the essential communication patterns of data-�ow based multi-component archi-

tectures.

The topological model consists of �ve components, depicted in �gure 3.14.

1. Input components that monitor user interactions.

2. Output components rendering information from Dialog components in a user friendly

manner

3. Dialog components that collect and interpret input information and control the

dialog with the user to identify the user goals.

4. Strategy components analyze the detected user goals and to map them to executable

functions.

5. Actuator components �nally execute the called functions.

These components allow the de�nition of multimodal interfaces that separate input and

output and allow the management of human-computer dialogs to derive an action strategy

and �nally execute the appropriate actions.

Figure 3.14.: Components of the topological model of DynAMITE. Taken from (Kirste,
2004).

69

3. Fundamentals

The semantic model of the approach �nally distinguishes user and preferences, devices

and the environment and allows the description of the context of the interaction.

The DynAMITE approach addresses the needs of interaction within distributed systems

and explicitly focuses on the semantic processing and understanding of user input to

derive interaction strategies and �nally identify the required function calls to match the

users goals and needs.

The same authors also propose a conceptual architecture based on common basic archi-

tectural building blocks for situation-aware multimodal interactive assistance systems,

derived from the evaluation of multiple systems: EMBASSI, MAP, and SmartKom with

rather comprehensive approaches, and ARVIKA, INVITE, and MORPHA (Kirste and

Rapp, 2001). The main building blocks of the architecture are:

1. The Multimodal UI combines input recognition and fusion as well as output

generation and presentation planning with an appropriate dialog management.

2. The Autonomous Control elements maps user requests to action sequences, con-

trolling the external world.

3. The Context Knowledge components contain knowledge about the external

world in terms of domain, discourse, user, resources and environment information

and provide this to the UI and the control elements.

The proposed infrastructure explicitly addresses smart environments and distributed sys-

tems. It goes beyond the pure de�nition of user interfaces and again also considers the

control and monitoring of the environment (the external world).

3.4.8. SmartKom

SmartKom (Wahlster, 2006) is a multimodal dialog system that symmetrically combines

speech, gestures and facial expressions for input and output. It uses an animated agent

to realize multimodal interaction re�ecting the communication habits of the human user.

It features the processing of imprecise, incomplete or ambiguous input and provides pre-

sentations, coordinating multiple modalities. Based on shared knowledge services, the

system is able to reason about user input and to create multimodal output. An intention

analysis interprets the fusion results and initiates the action planning, to create an ap-

propriate answer. Backend services are integrated via a function modeling component.

The information exchange between the components is realized via the M3L language,

allowing the representation and exchange of multimodal content with a single language.

70

3. Fundamentals

SmartKom realizes three di�erent scenarios, namely a multimodal portal to information

services at home/o�ce, a communication kiosk for public places, and mobile services on

a PDA.

3.4.9. Other Systems

Besides the presented systems, several other projects also provide interesting approaches

and solutions. Some are brie�y introduced in the following.

The Open Agent Architecture (OAA) (Cohen et al., 1994; Moran et al., 1997; Cheyer

and Martin, 2001) is an agent-based system, allowing the distributed execution of user

requests through a multimodal interface supporting pen, voice and direct manipulation.

It is based on a hierarchical blackboard approach that utilizes facilitator agents to store

global data as well as schedule and maintain information �ow. Requests that can not be

handled are passed to the next higher hierarchical layer. Agents can be distributed across

di�erent devices and communicate via the network. User Interfaces are implemented by

a set of agents coordinated by a central User Interface Agent that hides the currently

used modality from the underlying application implementation. Micro-agents, handling

di�erent modalities independently, comprise gesture, handwriting and speech recogni-

tion. A Modality Coordination Agent combines the inputs from di�erent modalities and

resolves references to derive the user's intention. Application Agents provide application

speci�c services for speci�c tasks (e.g. speech recognition).

The Quickset system (Cohen et al., 1997) is based on the Open Agent Architecture

and runs on desktop and handheld PCs, communicating via (wireless) LAN. It employs

speech, gesture, and direct manipulation to formulate a military scenario that allows

creating, positioning, and editing units as well as supplying them with additional infor-

mation. It allows the user to gesture and draw directly on a map while uttering spoken

commands. Speech recognition, gesture recognition and natural language agents perform

the basic input processing. A multimodal integration agent provides a uni�cation mech-

anism based on typed features structures to integrate multimodal input. Output can be

created via a text-to-speech or a web-display agent as well as through the coupling of

other systems via additional agents. The Quickset system o�ers capabilities for collab-

orative user interfaces, where multiple users can have di�erent interfaces, while working

with the same system.

The MATCH (Multimodal Access To City Help) system (Johnston et al., 2002) is based

on a multimodal application architecture that combines �nite-state multimodal language

71

3. Fundamentals

processing, a multimodal dialog manager using on speech-acts, a multimodal output

generation, and text planning algorithms. The implementation is built on a hub-and-

spoke architecture similar to MITREs Galaxy System. MATCH itself is a multimodal

speech and pen based interface to restaurant and subway information for New York City

for mobile devices.

The i-Land system (Streitz et al., 1999) aims at the creation of dynamic workspaces for

future cooperative work of dynamic teams by enhancing existing roomware with addi-

tional electronic functionalities. i-Land is based on the BEACH software infrastructure

(Tandler, 2004), supporting collaboration with heterogeneous devices. An application

of the BEACH infrastructure is the ConnecTables system (Tandler et al., 2001) that,

similar to I-AM, aims at connecting multiple surfaces for interaction.

Another approach to address multimodal issues are multimodal widgets. Blattner et al.

(1992) present MetaWidgets as part of the PolyMestra System (Glinert and Wise, 1996)

to create multimodal widgets that abstract information from the application to the user.

Each widget contains a set of representations in di�erent (combinations of) modalities

and methods of selecting among them to determine the optimal presentation. In the

background of the PolyMestra system a resource monitor calculates the total cognitive

load of the user and a presentation manager determines which information to present

based on the cognitive load, user preferences and other system data. Kobayashi et al.

(2005) also present an approach identifying Trigger, Delta, BoundedValue and TextEntry

as input types on a meta-level, that can be utilized to connect widgets supporting di�erent

modalities to a service component of an interactive system. Crease et al. (2000) present

a toolkit for the development of widgets that are capable of presenting themselves in

multiple modalities and adapting to the context in which they are used.

Aiming at bridging the gap between model-driven engineering and these interactor toolk-

its, COMET de�nes a software architecture for task-based plastic interactors (called

COMETs). COMETs can be rendered in di�erent variations and support multiple inter-

action technologies. Each COMET is composed of three facets: Logical Consistency, to

represent the user tasks, a Logical Model, to realize the semantics, a Physical Model to

realize physical and functional properties and implement the semantics. COMETs are

structured in a graph of multiple COMETs to realize complex user interfaces. A semantic

network links together di�erent concepts ranging from �nal UI to task and concept level.

72

3. Fundamentals

3.4.10. Discussion

In this section, eight selected architectures for the creation of multimodal, distributed and

adaptive user interfaces have been presented and common aspect have been identi�ed.

The architectures have been developed with di�erent foci and di�erent applications in

mind and cover various abstraction levels. Compared to the features identi�ed in chapter

2, none of the architectures completely covers all of the features, but each approach

addresses some of the features and each of the features has been covered by at least

one of the architectures. However, if one would set out to implement a Ubiquitous User

Interface there would be no framework, architecture, tool or reference implementation,

covering all the needs.

The following tables provide a comparison of di�erent aspects of the presented architec-

tures with respect to the features of UUIs. Table 3.1 compares the aspects related to

multimodality:

• Multimodality: Modalities covered by the approach.

• Fusion: Describes how the combination of user input from multiple modalities is

supported.

• Fission: Identi�es the means to separate output across modalities.

• Separation of input and output: Denotes the capability of the system to sep-

arate input and output on the UI level.

Framework
Multi-

modality
Fusion Fission

I/O

Separation

W3C MIF

voice,

handwriting,

keyboard,

graphic

multimodal

integration

component

output

generation

component that

selects the used

modalities

explicitly

separates input

processing and

output

generation

73

3. Fundamentals

Framework
Multi-

modality
Fusion Fission

I/O

Separation

MMDS

voice,

handwriting,

gesture, face,

gaze, lip

reading,

keyboard,

graphic, haptic

output

fusion

component

response

generator

component

input and

output interface

are

distinguished

ICARE

input only, e.g.

voice, mouse,

location/

orientation

tracker, graphics

composition

components

(implement the

CARE

properties)

�ssion is not

addressed

considers only

input

Cameleon-

RT
not multimodal

fusion is not

addressed

�ssion across

modalities is not

addressed

does not

separate input

and output

DynaMo-

AID

input and

output

modalities

depend on the

available UIML

renderers

fusion is not

explicitly

addressed

�ssion across

modalities is not

addressed

does not

separate input

and output

FAME

input is

abstracted as

observers,

output depends

on available/

supported

devices

directed by the

Behavioral

Matrix and

controlled by

the adaptation

module

directed by the

Behavioral

Matrix and

controlled by

the adaptation

module

distinguishes

user input and

presentation

updates

74

3. Fundamentals

Framework
Multi-

modality
Fusion Fission

I/O

Separation

DynAMITE

addresses e.g.

avatars, speech,

gesture, position

recognition,

haptics

fusion

component aims

at deriving user

intentions

presentation

planning and

generation

components are

proposed

perception and

rendition are

distinguished

SmartKom

supports

gesture, speech,

graphics and a

character agent

time-stamped

hypotheses and

uni�cation

grammar

presentation

pipeline with

presentation

planner

separates

intention

analysis and

presentation

planning

Table 3.1.: Comparison of the architectures part 1.

Table 3.2 compares distribution and adaptation as additional aspects, directly related to

the features of UUIs as well as main aspects like the functional core and the underlying

model:

• UI Distribution: Identi�es the capabilities of the system to distribute a UI across

multiple interaction resources and to dynamically change that distribution at run-

time.

• Adaptation: Denotes the capabilities to adapt the UI to the context of use.

• Functional Core: Identi�es the capabilities of the system to connect to external

application functions and services

• Modeling Approach: Lists the models supported by the approach.

Framework Distribution Adaptation
Functional

Core

Modeling

Approach

W3C MIF

focus on

multimodal

interaction

does not focus

on adaptation

provides a

component

representing the

available

application

functions

not model-based

75

3. Fundamentals

Framework Distribution Adaptation
Functional

Core

Modeling

Approach

MMDS

focus on

multimodal

interaction

no focus on

adaptation

integration of

the functional

core is not

explicitly

addressed but

tasks and a

database are

considered

not model-based

ICARE
considers only

input

no focus on

adaptation

based on arch

and integrates a

functional core

adapter

not model-based

Cameleon-

RT

provides a

distribution

layer,

supporting the

handling of

distributed

components

provides an

open adaptation

manager

integration of

the functional

core is not

explicitly

addressed

models can be

considered, but

are not

explicitly

addressed

DynaMo-

AID

provides a

distribution

manager

context

adaptation is

considered (e.g.

for task

selection)

the functional

core is

integrated via a

data controller,

making service

calls based on

the task model

considers a

task-based

application

model with

multiple

variants for

di�erent

contexts

76

3. Fundamentals

Framework Distribution Adaptation
Functional

Core

Modeling

Approach

FAME

does not

explicitly focus

on distribution,

but provides

multimodal

�ssion

based on the

Behavioral

Matrix

integration of

the functional

core is not

explicitly

addressed

platform&

devices-,

environment-,

user- and

interaction

model are

considered

DynAMITE

addresses

interaction

within

distributed

environments

context is

considered, but

dynamic

adaptation is

not explicitly

discussed

considers the

control of

functions of the

�external world�

domain-,

discourse-, user-,

resources- and

environment

model are

considered at

runtime

SmartKom
does not focus

on distribution

a dynamic

action planning

can consider

context

information

a function

model connects

external services

interaction-,

discourse-

context- and

function model

are considered

Table 3.2.: Comparison of the architectures part 2.

In summary, a major drawback of the presented approaches is the lack of distribution

and adaptation support within the MIF, MMDS and ICARE architectures. ICARE is

additionally limited to multimodal input and does not support the creation of multi-

modal output yet. While aiming at UI adaptation, Cameleon-RT and DynaMo-AID

lack support for multimodal interaction. The DynAMITE system aims at the creation

of multimodal systems with a focus on distributed interaction in smart environments.

While the system is able to incorporate context information into the interaction, it does

not focus on the provisioning of adaptive user interfaces. SmartKom provides a very

interesting approach to create symmetric multimodal systems, with a focus on speech

and gesture modalities, but does not address the dynamic combination and alteration of

these modalities. Adaptation is considered only by the action planning component.

77

3. Fundamentals

The most interesting approach from the perspective of this work is the FAME framework

and architecture. It presents a model-based approach to generate adaptive multimodal

user interfaces. The framework uses an interaction model, comprising multiple templates

for di�erent modalities and modality combinations and facilitates a behavioral matrix,

to select the most appropriate template for the current interaction context. Although

this approach provides means to adapt to prede�ned contexts, it does not facilitate open

adaptation and the semantic understanding of the templates by the system. It is also

unclear, how the templates for the di�erent modalities are de�ned and how they are

synchronized at runtime. Additionally, the approach lacks any means to integrate a

functional core or backend services within the developed application.

In summary, the presented frameworks and architectures cover a broad range of topics

and provide various capabilities to create innovative user interfaces for di�erent purposes.

However, none of the approaches covers all identi�ed features and thus, none of the archi-

tectures is suitable for the creation of Ubiquitous User Interfaces for smart environments

in the current state.

3.5. Conclusion

In this chapter di�erent aspects of the current state of the art have been evaluated and

described with respect to the goals of this thesis. Starting with the analysis of adap-

tation, shapeability, distribution and multimodality as primary features of Ubiquitous

User Interfaces, model-based development has been introduced as approach to cope with

the increasing complexity of such user interfaces. The need to de�ne the underlying

models leads to the analysis of selected UIDLs, providing the means to express di�erent

aspects of the user interface on di�erent levels of abstraction. However, while models

and languages (and the appropriate tools) can greatly simplify the development process

of user interfaces, there is also a need to address the runtime issues arising with the new

challenges posed by Ubiquitous User Interfaces. In terms of the Cameleon Reference

Framework this would be the runtime infrastructure, handling the �nal user interface.

Thus, di�erent architectures for the development of user interfaces with a broad range

of characteristics have been evaluated. These architectures address various issues related

to the creation of Ubiquitous User Interfaces, ranging from the identi�cation of the basic

components of multimodal user interfaces as in the Multimodal Interaction Framework

of the W3C to the integration of multiple models as part of di�erent architectures like

e.g. in FAME and the de�nition of adaptive widgets and concrete implementations of

78

3. Fundamentals

di�erent systems. However, up to now, the development of a Ubiquitous User Interface

requires a high and usually very complex implementation e�ort as there are little reusable

components for the runtime handling of interaction. None of the approaches addresses

all required features and it is yet unclear how a language to express such interfaces and

interaction could look like.

3.5.1. Shortcomings

To successfully create applications and user interfaces for smart environments it is nec-

essary, to provide the means to take the dynamic nature of such environments into

account. Multiple devices facilitate user interface distribution and migration, di�erent

device capabilities require shaping, various usage situations demand for �exible and mul-

timodal interfaces, context variations require adaptations. The need to set up such an

environment and maintain it makes it impractical to also maintain a set of stand alone

applications. An integrated environment, providing basic services and hosting capabil-

ities would also open possibilities for inter-application cooperation. Integrating such a

hosting environment with �exible application implementations would be a major goal

here. Directly utilizing application and user interface models at this point would make

design details, that might be crucial e.g. for adaptation purposes, available at runtime,

instead of having them lost and scattered in the code. The UI models should allow the

expression of the interaction means, while also providing leeway for the interpretation

process. From this perspective of the development of Ubiquitous User Interfaces, three

major shortcomings of the presented approaches have been identi�ed:

Missing runtime concepts in UIDLs can be identi�ed, considering the fact that the

models are not only required to describe a static snapshot of the user interface, but rep-

resent its dynamics as well as its evolution over time. Concepts for the representation of

the interaction state are needed, as well as concepts to con�gure components that man-

age fusion, �ssion or handle interaction resources. Assuming, that the user interface and

the underlying interaction are completely expressed within the user interface description,

these concepts are mandatory.

No comprehensive approach that re�ects the close interconnection of all features

has been found. While each of the features is addressed by at least one of the approaches,

none of the evaluated approaches addresses all features. Considering the interconnection

of all features, it seems however necessary to not only consider their isolated application,

79

3. Fundamentals

but also their interrelations. Examples for this are the re�ection of user interface dis-

tribution and modalities within the layout of an interface, the need to re�ect supported

input modalities also in the output of a UI distribution, or the possibility to reference

distributed output interactors and the used devices within the user input.

A low level of integration between architectures and UIDLs can be identi�ed. While

the described architectures facilitate the provisioning of multimodal interaction at run-

time, they mainly work as blueprints for the development of speci�c multimodal systems.

However, the idea of UIDLs is to automatically derive the �nal user interface from the

description in a transformation process. Currently, there is a gap between the concepts

available in the user interface description and their implications at runtime. A possibil-

ity to bridge this gap, is the runtime interpretation of UIDLs, which has gained little

attention yet.

3.5.2. Requirements

From the perspective of the identi�ed shortcomings, addressing the creation and handling

of UUIs raises the need to describe UUIs at design-time and the need to handle interaction

with them at runtime. While the former is needed to express the complex interaction as

well as interface structure and semantics, the latter allows the interaction with the user

and ideally re�ects all design-time aspects at runtime.

This leads to the concept of a runtime architecture, handling declarative user interface

descriptions to �exibly create and manage Ubiquitous User Interfaces. The architecture

and the underlying user interface description language are closely coupled to ensure that

the created user interface model holds everything needed to express the design informa-

tion as well as to allow its runtime interpretation. However, even with a (limited) focus

on adaptive multimodal, multi-device and multi-situation user interfaces, the relevant

development dimensions are manifold. In the following the required concepts and their

relations are identi�ed with a special focus on the adaptation of the user interface in the

dimensions of shapeability, distribution and multimodality at runtime. Afterwards, the

problem space is analyzed from the architectural perspective, illustrating the concepts

an architecture for UUIs has to re�ect and the concepts an UIDL has to provide are

discussed from the runtime perspective.

The requirements in the following are structured according to the features. However, as

the features are closely connected, they also share several requirements which are only

introduced once and are not repeated for each feature.

80

3. Fundamentals

Shapeability

Shapeability of the user interface is the major aspect to support multiple interaction

resources and modalities or the dynamic adaptation of the user interfaces. It requires

the de�nition of boundaries for the shaping at design-time and a possibility for �exible

adjustments within these boundaries. Temporal and spatial aspects should be considered

to support the optimal utilization of interaction resources. Additionally, context of use

information, re�ecting changes in user-, environment- and platform properties can be

considered. This leads to the following requirements:

Requirement #1.1: The developed approach should support the de�nition of temporal

and spatial boundaries at design-time and the �exible adjustment within these boundaries

at runtime.

Requirement #1.2: Information about the utilized interaction resources and their

capabilities are required to in�uence the runtime shaping.

Requirement #1.3: Additional context information should be accessible and consid-

ered.

Distribution

Distribution allows the simultaneous utilization of multiple interaction resources and, in

conjunction with the possibility to dynamically alter these resources, allows the sequential

usage of di�erent interaction resources for speci�c tasks within the interaction process. A

separation of input and output allows the independent addressing of resources, but also

requires to keep a semantic connection between the two (e.g. resolve deictic references or

directly address modalities: �as you can see on screen X�). Fission into and synchroniza-

tion between multiple representations is required for distributed user interfaces (as well as

for di�erent modalities). Support for UI distribution entails the following requirements:

Requirement #2.1: The separation of input and output is required to independently

address input and output resources.

Requirement #2.2: The semantic relation between input and output has to be con-

sidered, even if the two are technically separated.

Requirement #2.3: Continuous synchronization of di�erent parts of the user interface

has to be supported.

Requirement #2.4: Fission of output across resources and modalities is the basis for

multimodal output and user interface distribution.

81

3. Fundamentals

Requirement #2.5: Information about the available interaction resources and their

capabilities are required to calculate a distribution (while shaping requires the knowledge

about the actually used IRs in #1.2).

Multimodality

Multimodality aims at the interaction via multiple input modalities and the presentation

of information via di�erent output modalities to create robust and natural interaction. It

is based on the distribution of input across multiple IRs (and modalities) and additionally

requires the fusion of multimodal input from multiple IRs. Additionally, streams of

input and output (e.g. continuous speech) have to be supported and eventually mapped

to processable information chunks. Dynamic support of multiple modalities raises the

need to provide a modality independent processing layer, de�ning abstract interaction

semantics as well as the mapping of these to a concrete level addressing modality speci�cs.

Requirement #3.1: Fusion of user input from di�erent modalities is important to

derive the meaning of combined, complementary input.

Requirement #3.2: Continuous interaction requires the constant processing of input

streams and the creation of output streams as well as their transformation into discrete

information chunks.

Requirement #3.3: The provisioning of interaction concepts and adaptation facilities

on multiple levels of abstraction should be considered.

Adaptation

The dynamic adaptation of user interface properties is a major requirement to enable the

dynamic re�ection of context information and context changes within the user interface.

Using a user interface model, UI properties are the design-time information expressed

by the model structure as well as the runtime information (state). Making the state

explicit at runtime requires a model of the UI state. The dynamic redesign of the UI

and the recon�guration of the features require direct access to and alteration means for

model structure and state. Performing these alterations at runtime requires the persistent

monitoring of user interaction (e.g. as part of the UI state) to ensure its continuity. This

adds the following requirements:

Requirement #4.1: An explicit interaction state is required, to make the current

status of the interaction accessible and perceivable.

82

3. Fundamentals

Requirement #4.2: Direct access to and alteration means of structure and state of

the underlying UI model are needed.

Requirement #4.3: Persistence has to be supported to ensure interaction consistency

and continuity during adaptation.

General Aspects

In addition to the feature related requirements, additional, more general requirements

can be identi�ed. The utilization of a UI model at runtime, underlying the approach

developed in this work, raises the need to bridge model and outside world. It requires

the re�ection of both, design-time information and runtime information, as a model to

build a complete internal representation of the system under study - the user interface.

While the model provides a view of the system and allows to analyze it, a projection of

the results of the analysis into the outside world in form of the created UI is required.

Any interaction with this UI has to be interpreted in relation to the model and in�uences

its runtime state.

Requirement #5.1: Utilizing a model at runtime requires to bridge the inner repre-

sentation - the model - and re�ect it to the outside world as well as the re�ection of any

changes of the outside world (interaction) within the model.

The possibilities to in�uence the con�guration of distribution, used modalities or adap-

tation at runtime also lead to the demand for user control over this feature con�guration.

This includes the triggering of adaptations as well as full control over the con�guration

of the UUI features and thus the behavior of the created user interface.

Requirement #5.2: The provisioning of (meta-)control over the feature con�guration

of the user interface is an important requirement.

From the runtime perspective, another major aspect is the consideration of the integra-

tion of the functional core within the interaction. This is important to actually execute

functions realizing the user's intentions in the �real world�. This addresses the integration

of services as part of the modeled domain, in contrast to the projection of the model state

into the world outside of the model of #5.1.

Requirement #5.3: The integration of the functional core is required to connect user

interface and backend services.

These derived requirements can be mapped to architectural concepts as well as UIDL

concepts, presented in the following.

83

3. Fundamentals

Architecture Concepts

Developing an architecture, incorporating a user interface model at runtime to handle

user interaction and make it more �exible is based on the idea of having additional design

information available at runtime and being able to utilize and alter these information.

This requires the semantic understanding of the underlying model and the possibility to

map this model to interaction with the outside world. In the case of UUIs, this outside

world would be the user, interacting with the system via the created user interface.

Assuming that the UI model provides the system's internal model of the interaction, a

dynamic model is required. Based on this model, the system analyzes the current state

and creates a UI, that projects this state to the outside world. User input received via this

interface can then be fed into the model. As the dynamic model is able to model behavior

over time, dependent on external stimulation, feeding the input into the model leads to

a state change of the model, which is in turn re�ected by the created user interface. A

major aspect of any architecture utilizing models at runtime is thus the provisioning of

capabilities to analyze the model and project its de�ned aspects to the outside world.

In the case of UUIs this requires the independent utilization of multiple interaction

resources to re�ect the state of the model in a distributed manner. However, as the

distribution of the output might also in�uence the presentation, there is a feedback loop,

between the used interaction resources and the information presented on these resources.

An example is the utterance �as you can see on screen XY� which can only be rendered if

the system is aware of this fact. As an aspect that can not be modeled at design-time (as

the available devices are unknown), but in�uences the presentation, distribution is thus

required to have information about its state a�ect the internal model. The same holds

true for shaping, where only boundaries or constraints can be de�ned at design-time, but

the actual shape has to be determined at runtime. Multimodality requires the re�ection

of the used modalities and the processing of received multimodal input according to

the state of the internal model. Adaptation, altering the model to incorporate context,

requires the direct and continuous projection of the model structure and state to the

presented UI. Additionally, context information has to be monitored and provided on

the model level, to allow its incorporation into the internal system state.

Similarly, the utilization of the model as an internal representation requires the integra-

tion of external processes into the model processing. At some point during the interaction,

actions of the system, triggered by the user, are required. A home control service would

e.g. have to switch on the actual light within the room. This requires the integration

of external functionalities and its integration as accessible functional core within the

84

3. Fundamentals

architecture.

The described concepts summarize the requirements for an infrastructure realizing the

model-based provisioning of and interaction with UUIs at runtime. For UUIs, the dis-

cussed runtime aspects have to be supported by the runtime infrastructure, but need also

to be expressed within the UI model as they are application speci�c information, which

is addressed in the next section.

UI Concepts

Besides the architectural view, the identi�cation of concepts that have to be covered

and addressed by the underlying UI de�nition and thus by the used UIDL is crucial for

the approach. The UIDL is required to provide means for the developer to express the

anticipated interaction as well as to constrain and control the UUI features.

From the perspective of distributed and multimodal interaction, the UI description has to

identify separable building blocks that can be utilized via multiple interaction resources

and shaped to match resource speci�cs. These building blocks provide the basic interac-

tion elements the architecture can assign to available resources. Assigning an interaction

element to an IR then results in the projection of the element to the IR in form of a

UI. The separation of input and output within the UIDL allows to address and combine

input and output resources independently. However, the interrelation of input and out-

put also has to be expressed to keep them connected. In combination with the goal to

support multimodal interaction multiple levels of abstraction are required. This allows

to express the input and output relation on one level and their separation on another.

Additionally, a modality independent abstraction allows to handle the combination of

di�erent modality speci�c de�nitions on a lower abstraction level.

With the goal to utilize the created UI description at runtime, it also has to cover runtime

issues like the integration of backend services and the expression of state information. The

integration of backend services requires means for the developer to identify the services.

At runtime the identi�ed services then need to be called by the architecture, based on

the provided design information. Utilizing the UI description as a runtime model of the

anticipated interaction additionally requires state information allowing the observation

of the modeled system to interconnect it with the outside world. Providing interaction

states and transitions between these states as part of the model allows to convey the

model state to the user and to utilize user input to stimulate the model to perform state

changes according to the provided input. Integrating the means to re�ect this state

85

3. Fundamentals

supports its explicit observation and alteration. Covering not only static aspects, but

also the UI behavior and evolution over time allows the modeling of dynamic systems.

Context information has to be modeled to de�ne possible adaptations. At runtime, this

requires the provisioning of live context information that can be incorporated into the

interaction process and re�ected within the state transitions of the model.

The concepts identi�ed in this section summarize the UUI speci�c requirements to the

user interface description language and thus the model underlying the user interface at

design and runtime. A focus has been put on the runtime aspects required for the han-

dling of UUIs. Additional basic aspects like grouping (TERESA and UsiXML), event-

ing (TERESA and UIML), abstract and concrete interactor details (TERESA, UIML

and UsiXML), voice interactors (UsiXML), graphical interactors and design information

(TERESA, UIML and UsiXML), have already been addressed in the presented UIDLs

and have thus not been explicitly discussed here.

3.5.3. Summary

While the current state of the art shows great progress in the possibilities to create

�exible user interfaces for future applications, handling the identi�ed shortcoming is

crucial for the success of Ubiquitous User Interfaces and the interaction in and with

smart environments. The identi�ed requirements address the need for a framework that

closes the gap between user interface description languages and runtime architectures.

They serve as basis for the determination of an architecture and a suitable UIDL to

express Ubiquitous User Interfaces and summarize the needs speci�c to Ubiquitous User

Interfaces. The described concepts have to be addressed by the underlying models and

supported by the developed runtime architecture. A strong focus has been put on the

identi�cation of aspects relevant for the combined integration of the UUI features, as

there is a close coupling between the di�erent features, aggravating the consideration of

isolated aspects.

Based on the identi�ed requirements, the remainder of this work focuses on the real-

ization of the infrastructure required to realize Ubiquitous User Interfaces for smart

environments. Three major building blocks are considered to reach this goal:

1. an architecture, capable of interpreting user interface models and handling the

desired interaction with the user,

2. the identi�cation of common UIDL (meta-)concepts, required to utilize model-

based user interface descriptions at runtime,

86

3. Fundamentals

3. the de�nition of a reference UIDL to express the concepts of UUIs, based on the

underlying UIDL meta-concepts.

The close integration of the architecture, with the general concepts allows its utilization

for the interpretation of various user interface models, integrating the provided concepts.

However, a reference implementation of the architecture to create Ubiquitous User Inter-

faces, based on the de�ned reference models is also provided. While the integration of the

development process and methodological aspects is an important factor, the remainder

of this work concentrates on the runtime aspects.

Based on the identi�ed requirements, the next section illustrates the implications of the

identi�ed concepts to the architecture, followed by the introduction of executable models,

providing the foundations for the UIDL meta-concepts in chapter 4. A set of reference

models, addressing the application speci�c issues are then presented in chapter 5.

87

4. Executable UI Models

Aiming at the utilization of user interface models at runtime, based on earlier work

(Lehmann, 2008), this chapter identi�es common building blocks to facilitate this ap-

proach. It presents a meta-metamodel, allowing the development of metamodels, which

express dynamics and behavior within a stateful model and combine syntax and seman-

tics.

Dynamic executable models allow the combination of static and dynamic elements with

the related execution logic, de�ning the dynamic behavior in one single model. This

makes the models complete in the sense that they have �everything required to produce

a desired functionality of a single problem domain� (Mellor, 2004). They provide the

capabilities to express static elements as well as behavior and evolution of the system

in one single model. Executable models run and have similar properties as program

code. In contrast to code however, executable models provide a domain-speci�c level

of abstraction which greatly simpli�es the communication with the user or customer.

Combining the idea of executable models with dynamic elements as part of the model

gives the model an observable and manipulable state. Besides the initial state of a system

and the processing logic, dynamic executable models also make the model elements that

change over time explicit and support the investigation of the state of the execution at

any point in time. In summary, dynamic executable models can be described as models

that provide a complete view of the system under study over time. Main advantages of

the approach based on the availability of design information at runtime are:

• the direct interpretation of models, as the interpretation/execution logic is part of

the metamodel,

• explicit access to dynamic runtime information as this is also part of the model,

• alteration of static and dynamic aspects of the model even at runtime,

• well-de�ned boundaries of the model and means to access elements outside of these

boundaries,

88

4. Executable UI Models

• the possibility to connect models and support the runtime data exchange between

them.

The meta-metamodel (M3 layer of the MOF Architecture), introduced in the following,

describes the common building blocks of these executable models formally. The descrip-

tion of its syntax and semantic is complemented by the description of well-de�ned access

to elements outside of the scope of the model. Additionally, a mapping metamodel allows

the de�nition of relations between multiple models. Being itself an executable model, the

mapping metamodel is de�ned as the glue between models, which allows the exchange

of information between di�erent models at runtime. A summary concludes this chapter

and motivates the set of reference models illustrating the approach and its utilization in

the context of Ubiquitous User Interfaces in chapter 5.

4.1. The Meta-Metamodel

The meta-metamodel of executable models conceptually describes the common building

blocks shared by all executable models and identi�es the concepts models have to obey to

be executable at runtime. It combines the initial state of the system, the dynamic model

elements that change over time and the processing logic in one model. This leads to the

need to clearly distinguish de�nition-, situation- and executable elements as shown in

table 4.1. A similar classi�cation has also been identi�ed by Breton and Bézivin (2001).

Figure 4.1.: Meta-Metamodel of Dynamic Executable Models

89

4. Executable UI Models

Element Description

De�nition
Elements

De�nition Elements de�ne the static structure of the model and
thus denote the constant elements that do not change over time.
De�nition elements are de�ned by the designer and represent the
constants of the model, invariant over time.

Situation
Elements

Situation Elements de�ne the current state of the model and thus
identify those elements that do change over time. Situation
elements are changed by the processing logic of the application
when making a transition from one state to another one. Any
change to a situation element can trigger an execution element.

Executable
Elements

Executable Elements de�ne the execution logic and thus the
semantic of the models. They specify the dynamic of the models
and thus the logic altering the models at runtime. This alteration
either changes the state of the model, in which case situation
elements are a�ected, or the de�ned structure of the model, in
which case de�nition elements are a�ected. Two types of
executable elements are distinguished: Situation Modi�cation
Elements and De�nition Modi�cation Elements.

Situation
Modi�cation
Elements

Situation Modi�cation Elements (SMEs) de�ne the interpretation
process of the model, in other words the transitions from one
state to another. In this sense these elements are procedures or
actions altering the situation elements of a model. Situation
modi�cation elements also provide the entry points for data
exchange with entities outside of the model. De�ning execution
elements as part of the model allows the incorporation of
semantic information and the interpretation process as part of
the model itself and thus ensures consistency and an
unambiguous interpretation. This approach makes an executable
model complete and self-contained.

De�nition
Modi�cation
Elements

De�nition Modi�cation Elements (DMEs) de�ne manipulation
processes altering the model and are specializations of execution
elements. As executable elements they, similarly to situation
modi�cation elements, alter the model, but are not limited to
situation elements. They do not de�ne internal state transitions
of the model, but changes to the structure of the model de�nition
and can thus alter any model element. De�nition modi�cations
are part of the metamodel and have to ensure that any performed
alteration is legal with respect to this metamodel.

Table 4.1.: The main building blocks of executable models.

The di�erence between the Situation Modi�cation Elements and the De�nition Modi�-

cation Elements is important. While the former change the run time state of the model,

90

4. Executable UI Models

the latter modify any model elements and are able to create or alter any kind of model

structure. DMEs are theoretically able to revise decisions of the designer and can be

used for adaptation purposes. Additionally, they make it possible to de�ne the whole

construction of correct models as part of the metamodel and to ensure that tools are

only able to create correct models. Distinguishing the di�erent elements leads to the

conceptual meta-metamodel of dynamic executable models depicted in �gure 4.1.

In summary, the described meta-metamodel provides a formal view of executable models

and summarizes the common concepts the models are based on. The separation of the

elements provides clear boundaries for the designer, only modifying de�nition elements

and the runtime system, altering situation elements. A de�nition element as the basic

element �nally aggregates situation- and executable elements that describe and change

situations for the given de�nition element. Using such models in a prescriptive way

(constructive rather than descriptive modeling) allows de�ning systems that evolve over

time, reason about the past and predict future behavior. Thus, dynamic models can also

be used to build self-adaptive applications, similar to approaches described in Rohr et al.

(2006); Schneider and Becker (2008); Sottet et al. (2007b). In this context, the models

monitor system and environment to calculate adaptation and behavior of the UI.

From this de�nition of the meta-metamodel, two issues arise. One is the integration of

objects and services outside of the scope of the model into the execution logic. While this

is technically possible, e.g. via a Java/EMF implementation as in our approach, there is

a need for well-de�ned concepts to do so, which will be discussed in the next section. The

other issue is the connection of multiple models, especially at runtime, which is discussed

in section 4.3.

4.2. Execution Logic

Creating executable models requires to express execution logic as part of the model.

Additionally, runtime execution interconnects the model with external instances outside

of the scope of the model. This is required to incorporate external information and a�ect

the outside world. This leads to three types of execution logic:

intra-model logic is part of the model and expresses the internal execution semantics of

the modeled domain.

inter-model logic is related to the model, but does only indirectly a�ect the modeled

domain. It is outside of the scope of the model, but related in a wider sense.

91

4. Executable UI Models

external model logic interconnects the model with real-world entities, that have to be

integrated into the model, but are not directly part of it.

The three logic types are described in the following sections.

4.2.1. Intra-Model Logic

The integration of executable elements requires execution logic to be part of the model.

While models usually aim at the derivation of code from the designed models, executable

models aim at the direct execution and the speci�cation of their internal behavior. Intra-

model logic thus expresses how the model is transformed from one state into another.

Expressing this in a formally modeled manner can be suitable in some cases, e.g. to

formally ensure its correctness. Some approaches thus aim at the modeling of execution

logic as part of the model (see e.g. (Muller et al., 2005)). In other cases, a formal

de�nition of the execution logic might produce some overhead. It can thus be suitable

to simply integrate a programming language and apply some restrictions on its usage to

express the internal logic of the model.

In this work, the algorithms and semantic to compute runtime situations and structural

modi�cations are not formally modeled, but it is assumed, that there is a language

allowing to express them in conjunction with the model. A similar approach can be

observed in the connection of EMF and Java.

4.2.2. Inter-Model Logic

In contrast to the internal state transitions and the structural modi�cations of the model,

runtime utilization of a model also raises the need to embed the model in a larger con-

text or system. Within this larger system, dependencies and interconnections may be

observable, that are not directly part of a model, but that a�ect the model internals.

The notion of components allows the de�nition of interpretation logic that observes one

(or multiple) model(s) and provides some execution logic, based upon observed changes.

Interaction with models to incorporate the execution results then happens via calls to

execution elements and thus the internal logic of the model.

Similarly to object oriented programming concepts that still use imperative code as part

of their objects, this allows the integration of objects or imperative program code to

express information beyond the scope of the model. The main contrast to the executable

92

4. Executable UI Models

elements of a model is that components are not limited by the boundaries of a single

model. They can read information from other models and directly call external execution

elements.

4.2.3. External Model Logic

Additionally, a strong focus has been put on the connection of the models and especially

their semantics, to the outside world. While a design model aims at the creation of code

that can be connected to any kind of external, non-modeled code, executable models

have to directly incorporate such connections and handle them at runtime.

An example: Assuming, the de�nition of a context model, that models the context at

runtime and thus has to continuously re�ect the current context. This requires access of

the model to real world context information, which is dynamically acquired via sensors

in the environment. However, the model itself has to acquire the information and ensure

that it is up-to-date and thus needs to be aware of the outside system. A problem is the

de�nition of the border of this model.

Any executable model has to assure, that it does not depend on logic (or program code)

outside of the model. Assuming, that the model is somehow aware of the sensors and of

the information they deliver, it could also express which sensors deliver which information

and how to acquire this information. However, at some point a border between what is

modeled and what is outside of the model is required. In this example outside of the

model is e.g. the implementation of the API of the sensor or a web service call to acquire

information from this API. This raises the need to de�ne how information can be brought

into the model and how information can be requested from the outside by the execution

logic of the model.

While the �rst issue to bring information into the model can be solved by making Exe-

cutable Elements available to the outside world (e.g. context provider or modeling tools),

the second issue requires referencing external code from within the model and thus blurs

the models boundaries. To cope with this issue, the concept of a proxy element is intro-

duced.

A proxy de�nition element identi�es processes outside of the model and provides an

internal representation of these processes without requiring to directly reference them.

Based on this proxy, models can control the external processes and communicate with

them. Some required elements of the proxy have been identi�ed in table 4.2.

93

4. Executable UI Models

Element Description

processIdenti�er The processIdenti�er uniquely identi�es the referenced process.
Using Java, this would be the class name of the Java object to
instantiate. As the processIdenti�er is provided by the UI
developer, it is stored in the de�nition element at design-time.

proxyCon�guration The proxyCon�guration is an additional de�nition information,
holding the con�guration of the external process, e.g. parameters
for the constructor.

startMethod The startMethod identi�es the method to initialize the process.
stopMethod The stopMethod identi�es the method to terminate the process.
callback The callback attribute denotes the situation modi�cation element

the process is able to call to push information into the model.
proxyReference The proxyReference stores the reference of the instantiated

process at runtime. As the reference is created at runtime this is
a situation element. Storing the reference allows controlling the
process if it has a longer lifespan.

Table 4.2.: Main attributes of the proxy de�nition element, connecting model and outside
world.

Based on these six elements, a proxy element can be de�ned as part of any metamodel

allowing to identify and incorporate processes outside of the model. This allows the def-

inition of clear boundaries of the model, while still being able to express connections to

the outside (unmodeled) world. Additionally, to the proxy element, which connects un-

modeled entities, the mapping metamodel presented in the next section allows to connect

di�erent models with each other and facilitate the information exchange at runtime.

4.3. The Mapping Metamodel

Building models of complex systems often requires the utilization of multiple models

that describe di�erent aspects of the system (e.g. the di�erent abstraction layers in

the Cameleon Reference Framework or the models in UML). An explicit de�nition of

links between these models is crucial for executable models, as there should not be any

implicit knowledge and thus hidden dependencies in the models. In this section a mapping

metamodel is introduced, which allows to express (runtime) relations between multiple

metamodels.

Located on the M2 layer, the mapping metamodel provides an extra metamodel solely

for mappings, that conforms to the described meta-metamodel. The mapping metamodel

94

4. Executable UI Models

itself is executable and provides the required event hooks in the execution logic to inter-

connect multiple metamodels. It has been de�ned on the concepts of the meta-metamodel

only and is thus able to connect any metamodels conforming to the meta-metamodel.

This also enables to bene�t from tool support and removes the problem of mappings

hard-coded into the architecture, as has been advised e.g. by Puerta and Eisenstein

(1999). The mapping metamodel allows the de�nition of the common nature of the map-

pings, relating metamodels elements. The mapped models do not need to be aware of

their relations.

Figure 4.2.: Mapping Metamodel

An example of a mapping metamodel, consisting of a �xed set of prede�ned mapping

types, can also be found in UsiXML described by Limbourg et al. (2004b). Sottet et al.

(2006a) have de�ned a mapping metamodel, which can also be used to describe transfor-

mations between model elements at runtime. However, in contrast to these approaches

the presented mapping model puts a stronger focus on extensibility, the speci�c situation

at runtime and the information exchange between dynamic models. Especially interesting

at runtime is the fact, that the relations can be utilized to keep models synchronized and

to transport information between models. The information provided by the mappings

can be used to synchronize elements if the state of the source elements changes. Mellor

et al. (2004) see the main features of mappings as construction (when the target model is

created from the source model) and synchronization (when data from the source model

is propagated into the existing target model). The mapping model contains mappings of

the latter kind. Focusing on runtime aspects, a mapping expresses the possibility to alter

95

4. Executable UI Models

an existing target model, based on changes that happen to the related source model. In

contrast to the transformational view of mappings, the mappings utilized here do not

transform a model into another one. Instead, they synchronize runtime data between

coexisting models. Mappings connect de�nition elements of di�erent models with each

other. They are always triggered by situation elements and activate execution elements.

The conceptual mapping metamodel is provided in �gure 4.2 and combines mapping

types and mappings. It consists of the following elements:

• Mapping types are the main elements of the mapping metamodel, as they provide

prede�ned types of mappings that can be used to de�ne the actual mappings be-

tween elements on M1 layer. A mapping type is prede�ned by the architect of the

user interface meta-models and can also serve as extension mechanism to integrate

additional relations or models. It basically consists of two de�nition elements and

well-de�ned links between the two.

• The de�nition elements are the source and the target of the mapping and the

mapping synchronizes the runtime data between these two elements.

• The links consist of a situation element, an executable element and a transforma-

tion.

• The situation element is the trigger of a link. Whenever a situation element in a

model changes, the link is triggered and the referenced execution logic is executed

to synchronize the two de�nition elements of the mapping.

• The executable element is the logical target of the link, as model changes can only

be performed by executable elements.

• The optional transformation associated with the link describes how the situation

data, which activated the trigger, is transformed into (input) data needed by the

target execution element in the other model. This transformation might be re-

quired, especially when models with distinct data types and structures are linked

by mappings.

To simplify the usage of the model, the metamodel supports multiple links in one mapping

type, as multiple situation elements (e.g. related to the same de�nition element) might

be relevant to trigger the execution. Supporting more than one link also allows a back

linking, as some mapping types might also demand two-way links.

From the designer's point of view, the initial mapping model provides a set of available

mapping types with prede�ned logic, de�ned on the metamodel level. Thus to relate two

96

4. Executable UI Models

models, the user interface designer extends this initial model by creating new mappings

that reference an available mapping type (see the box �UI Designer Access� in �gure 4.2).

To create such a mapping, the designer has to provide the speci�c source and target model

elements to the mapping and de�ne its type. This leads to a relation between the two

elements and their synchronization according to the given execution logic.

Using the meta-metamodel the mapping metamodel could be de�ned independently from

the concrete metamodels that mappings can be created between. Only the mapping

models contain mapping types, which are not of generic nature, but speci�cally designed

for the given metamodels. Using executable elements as target allows the de�nition of

two variants of mappings: synchronization and construction mappings.

4.3.1. Synchronization Mappings

Synchronization mappings are (runtime relevant) mappings that have situation modi�-

cation elements as their target elements. These mappings aim at the synchronization of

the state of two models and facilitate the exchange of information between them. At

runtime the alteration of the situation of one model can trigger a mapping and thus

in�uence the situation of another model. E.g. could the completion of a task trigger

the removal of the related presentation elements from the screen. An example is shown

in �gure 4.3. While the mapping type is de�ned on the level of the metamodel and

identi�es the element types, the mapping itself is de�ned on the model level and relates

two distinct elements. As the situation element of Metamodel X is linked to the SME

of Metamodel A, changing situation X in Model X triggers the execution of A -> B and

thus the alteration of situation A to B.

While synchronization mappings are used to maintain a consistent runtime state, con-

structional mappings alter the underlying de�nition elements at runtime.

4.3.2. Constructional Mappings

In contrast to synchronizational mappings, the utilization of constructional mappings

allows the relation of model de�nitions. Using this mapping ties the structure of two

models together. A modi�cation of the structure of the source model also triggers a

modi�cation of the structure of the target model. At design-time, this supports the

creation of consistent systems spanning multiple models. At runtime, it addresses the

need to re�ect runtime alterations within multiple models. The basis for the mapping

97

4. Executable UI Models

are the de�nition modi�cation elements, that allow the metamodel-conform alteration of

the model de�nitions. Being allowed to alter any de�nition elements and thus any model

structures of the model, DMEs are de�ned as part of the metamodel and operate on the

metamodel structures.

Figure 4.3.: Example for a synchronization mapping.

Taking this to the extreme, the metamodel can provide a set of de�nition modi�cation

elements, that allow to construct any (set of) metamodel compliant model(s), similar to

production rules of grammars. At runtime, the possibility to alter the de�nition of the

meta-model in a well-de�ned manner, allows to perform model adaptation according to

the context of use, even across multiple models. To realize this, constructional mappings

support de�nition modi�cation elements as target elements. Relating a situation to

a de�nition modi�cation thus allows to re�ect e.g. context changes, by altering the

structure of the underlying model.

4.4. Summary

The executable models introduced in this section support the creation of models that

de�ne systems and their behavior over time, while also exposing all state information for

manipulation and inspection. The meta-metamodel of executable models describes the

building blocks of such models as de�nition-, situation- and executable elements. Based

on these elements dynamic systems that change over time can be de�ned and coupled

with external processes. While de�ning dynamic situation elements makes the state of

the model explicit, the de�nition of execution logic as part of a metamodel also makes

98

4. Executable UI Models

the transitions between states explicit. This strongly interconnects syntax and semantic

as part of the model. Bridging the model and the real world (or the derived system),

external processes can be encapsulated within proxy elements to be incorporated into

the execution process. More complex systems, spanning multiple models, can be built

by linking multiple models together via mappings. A mapping metamodel formalizes

the mechanisms to map metamodel elements and also complies to the overall meta-

metamodel. Mappings between models allow the exchange of information at runtime and

ensure structural consistency across models. In summary, executable models provide:

• the identi�cation of common aspects that make (meta-)models executable

• the strong interconnection of syntax and semantics as well as runtime state and

execution logic as part of a model

• well-de�ned external calls into the model altering the runtime state (situation) or

structure (de�nition)

• embedding of external processes

• a realization of events between the models to exchange information via mappings

This approach sets the foundations for a UIDL, that is not only interpretable but by

itself executable at runtime. Based on the de�ned meta-metamodel and the mapping

model, a set of metamodels is introduced in the following. The metamodels speci�cally

address identi�ed runtime issues of multimodal user interfaces for smart environments

and form the basis for the creation of a runtime architecture for UUIs.

99

5. User Interface Metamodels

The basis for the development of user interface descriptions and models is the availability

of a modeling- or user interface description language. While the previous chapter explored

common building blocks for the runtime utilization of user interface models, expressed in

the meta-metamodel of executable models, this chapter applies the �ndings to develop

a conforming set of core metamodels. These metamodels basically form a user interface

description language to de�ne Ubiquitous User Interfaces. Based on the metamodels,

user interface models can be de�ned and executed at runtime. The goal of this chapter

is not to describe another UIDL, but to illustrate concepts, suitable to extend existing

approaches towards their interpretation at runtime and to illustrate the features and

runtime issues of Ubiquitous User Interfaces.

A main focus is set on the interaction metamodel as the central instance for the output

creation and input interpretation. Additionally, task-, domain- and service-metamodel

are explored. A mapping metamodel allows to dynamically link the di�erent models to

express their interrelations. The roles of the involved metamodels can be described as

follows:

1. The task metamodel (section 5.1) de�nes the basic work�ow of the application. It

separates interaction tasks, re�ned via the interaction model and application tasks,

accomplished without user interaction by backend services via the service model.

2. The domain metamodel (section 5.2) describes the domain concepts underlying the

user interface. It de�nes types and objects, which are referenced from tasks and

thus involved in interaction tasks and service calls.

3. The service metamodel (section 5.3) results from the need to integrate backend

services at runtime. It provides the means to identify the functional core, make

calls to services, pass parameters, and process return values.

4. The interaction metamodel (section 5.4) re�nes interaction tasks and de�nes the

actual communication with the user. The metamodel provides support for multi-

modal interaction and separates the following abstraction levels:

100

5. User Interface Metamodels

a) An abstract interaction metamodel (section 5.4.1) aims at a modality and

device independent description of interaction.

b) A concrete input metamodel (section 5.4.2) targets the de�nition of user input

expected via speci�c modalities and devices.

c) A concrete output metamodel (section 5.4.3) targets the creation of output in

di�erent modalities.

5. The mapping metamodel (section 5.5) �nally provides the possibility to intercon-

nect the di�erent models and thus ensures synchronization and information ex-

change between models.

In the following the di�erent core metamodels are described in detail. Their intercon-

nection and the runtime process, the combination of models facilitates, is described in

section 5.5. For the sake of brevity the term model is used to refer to a metamodel as

the whole section elaborates on the meta-level (M2).

5.1. Task Model

The task model describes the tasks the user is able to execute. It provides a high level

view to the intentions of the user and the system and de�nes the work�ow of the applica-

tion. At runtime the work�ow of the interaction is derived from the temporal operators of

the task model. Based on the active tasks, (interactive) elements in other models are acti-

vated and deactivated to provide interaction possibilities matching the currently available

tasks. Similar to TERESA and UsiXML, the task model is based on the ConcurTaskTree

Notation (CTT) (Paternò, 1999), which de�nes interaction-, application- and user-tasks.

The order of the tasks is de�ned by high level LOTUS operators, providing hints about

the execution order of the tasks and the interdependencies between tasks. To �t the

runtime approach, the CTT notation has been modi�ed to distinguish interaction-in-,

interaction-out- and application tasks (Feuerstack et al., 2007). This approach allows a

clearer separation between the expected type of interaction - user input or system output

- and also takes into account the need to connect to the backend to perform tasks that

only the system is involved in. Additionally to the modi�ed task types, the object refer-

ences for each task have been modi�ed allowing the distinction of objects being declared,

created, read, or modi�ed. This allows a clear classi�cation of the object modi�cations

performed by each task. In combination with the domain model holding the referenced

101

5. User Interface Metamodels

concepts, the annotation of the objects also allows the speci�cation of an object life-

cycle for the domain model. Other approaches follow a similar concept. Limbourg et al.

(2004a) de�ne actions (start/go, stop/exit, select, choose, create, delete, modify, move,

duplicate, toggle, view, monitor) and items (operation, container, collection, element)

the actions manipulate. Oviatt (1999) also proposes actions (specify constraint, overlay,

locate, print, scroll, control task, zoom, label, delete, query, calculate distance, modify,

move, add), which could be applied on a task level. In this work, the interaction seman-

tics are detailed as part of the interaction model, described in section 5.4. To be able to

execute the CTT-based task model the static part of the CTT metamodel has been ex-

tended with state information, needed to re�ect the state of the execution in the model.

The model thus introduces situation elements as attributes for each task, identifying the

runtime state. Figure 5.1 shows the metamodel structure for executable task models.

Figure 5.1.: An executable task metamodel.

As one can see in �gure 5.1, every task model is comprised of a root task with a set of

child-tasks. Each task is a de�nition element which also comprises situation elements.

While name, type, description, relation (temporal relation to neighbor task) and the

iterative �ag are de�ned by the designer, state and suspended state (the last state before

suspension) are annotated as situation elements as they change over time.

Based on these elements, the execution of the task model at runtime can be illustrated.

The setNewState execution element is used to change the state of the task as well as

all related child-tasks (according to their temporal relations). This allows to explicitly

store the execution state of the model as part of the model. The execution starts with

the root task and derives the initial Enabled Task Set (ETS). Each task in this set is at

state enabled. Based on this set of tasks, backend services are called or user interaction

is requested. Once a task from the set is completed, it is set to done and a new ETS

102

5. User Interface Metamodels

is calculated, which alters the presentation or executes additional backend services via

mappings to other models.

In summary, the task model comprises the static de�nition of tasks, their temporal

relations, the current state of each task and thus of the whole process, and the execution

logic, that de�nes the transition from one state to the next in a single model. However,

to support the creation of a user interface based on this information, additional models

are needed. While the interaction model (section 5.4) and the service model (section 5.3)

re�ne the frontend and backend interaction for each task, the domain model described

next denotes the objects presented and manipulated during the interaction.

5.2. Domain Model

The domain model is required to model the classes representing the application domain

from the user interface point of view. Similar to the task model, TERESA or UsiXML

integrate a domain model. Stocq and Vanderdonckt (2004) show how domain model

and task model can be related to create user interfaces, Pribeanu (2007) describes a

set of mapping rules between task and domain model. Earlier approaches like GENIUS

(Janssen et al., 1993) and TRIDENT (Bodart et al., 1995) also use entity-relationship

models related to a database. As in the more recent approaches, the utilized domain

model allows to link de�ned classes of domain objects to tasks that de�ne actions (declare,

create, read, modify) performed on objects of the de�ned classes. It additionally covers

the need to handle instances of the described objects at runtime. Figure 5.2 shows the

structure of this model.

At design-time, the domain model de�nes the structure of the objects related to the

di�erent models in form of a class diagram. Classes can reference each other and are

structured in packages. Each domain object is of a certain class, combined of subclasses

and attributes. This is important to check for consistency and to guarantee that the

objects instantiating the classes at runtime regard the structure of the model. The

model de�nes the known instances of each class. This guarantees that object references

in other models refer to the same object. Thus all objects required by the application as

well as their structure are known at design-time.

At runtime, the domain model plays a major role as storage space for domain objects.

Any object created through user interaction or received as result from a service call is

stored as situation within the domain model as value of the domain objects. This makes

all domain data continuously available at a central location. In this sense, the de�nition

103

5. User Interface Metamodels

elements of the object de�ne the types and known objects, the situation elements of the

model hold the instances of the objects. Other models, referencing types or objects from

the domain model, can retrieve instances of objects from the model or be synchronized

with object instances if they are altered via mappings.

Objects stored in the domain model serve as interaction objects providing dynamic infor-

mation for input and output possibilities. Additionally, the domain model holds objects

that are passed to backend services during service calls or return values received from

these services via mappings.

Figure 5.2.: An executable domain metamodel.

5.3. Service Model

As described in 5.1, the task model comprises application tasks identifying tasks the

system is able to perform without any kind of user interaction. This kind of task is

especially relevant for the interpretation of the task tree at runtime to integrate the

referenced backend services. The service model, depicted in 5.3 provides the connection of

the application tasks to the backend services. It de�nes service adapters and service calls,

which allow to call any referenced backend service. Similar models have been utilized in

the DynaMo-AID system or SmartKom as well as in the ICARE system, utilizing the

Arch concept (Bass et al., 1992) of an adapter for the functional core. Ghorbel et al.

104

5. User Interface Metamodels

(2006) present an approach to model assistive services for smart environments. While

the latter aims at the dynamic discovery and utilization of services, similarly to the �rst

three approaches, the presented service model aims at the referencing of services to call

directly. Dynamic discovery, composition, etc. could then occur within the called service.

In contrast to other approaches, the utilized service model does not aim at the modeling

of the related services, but focuses on the possibility to make calls to existing services. An

additional main di�erence to other approaches is the utilization of the service model as

an executable model. Service adapters, realized as proxy elements, allow the connection

of multiple technologies to perform the actual service calls and provide execute methods,

that translate the service call to the technology the adapter represents. Technology

speci�c adapters can be integrated by re�ning the general concept. Each service call

references an adapter and is thus speci�c for a given technology, which makes it easy to

change the technology underlying a service call. Parameters allow to pass elements from

the domain model to the triggered service, properties allow an additional con�guration

e.g. of the utilized adapter. This model allows the comprises all elements needed to

execute calls to external services, but does not model the services or their underlying

semantics yet.

Figure 5.3.: Service Model

Service calls are referenced by application tasks in the task tree and allow to call backend

services. They become active immediately when the application task becomes enabled,

which allows the realization of asynchronous service calls via application tasks, parallel

to interaction tasks. Required parameters are related to the domain model via mappings,

which allows the exchange of domain objects between the services and the user interface.

105

5. User Interface Metamodels

After executing the service call, the service can also provide results updating stored

domain objects accordingly. This can result in user interface updates of the interaction

elements, that are related to the updated domain object. These user interface updates

are handled by the interaction models as described in the next section. The sequence, a

service call is realized by, is presented in �gure 5.4.

Figure 5.4.: Service Call Sequence.

5.4. Interaction Modeling

To model UUIs, the interaction model described in this section aims at the de�nition

of modality independent abstract interaction and its re�nement as modality speci�c

concrete interaction model. It focuses on the description of the runtime utilization of

the de�ned models.

The device and modality independent de�nition of the anticipated interaction in an

abstract form and the specialization of the described interaction in a more concrete

model have been in the focus of di�erent UIDLs, including UIML, UsiXML and TERESA.

The usual approach here is to build the abstract interaction model (e.g. based on the

task model) and then to re�ne the abstract interaction with concrete representations for

di�erent target modalities and platforms at design-time.

Figure 5.5.: Basic Structure of the Interaction Model, separating an abstract and a con-
crete level. Based on an abstract interaction de�nition, concrete input and
output are the basis for the creation of input and output UIs. Information
exchange at runtime is denoted by arrows.

In contrast, the approach presented in this section, assumes that the abstract and con-

106

5. User Interface Metamodels

crete model exist in conjunction at runtime, linked by mappings. Common elements of

the existing UIDLs have been incorporated into executable interaction models to illus-

trate the approach. Figure 5.5 shows the underlying structure. The interaction model

is split into three parts: an abstract interaction model, a concrete input model and a

concrete output model. While the abstract model allows the modality independent def-

inition of the anticipated interaction, the concrete models provide a de�nition in terms

of input styles and user interface elements. Input and output elements are separated to

support the dynamic combinations of multiple interaction resources. The combination

of the three models describes the interaction from a system point of view, forming the

mental model of the system in terms of possible output and expected user input. All

three models are executable in the sense, that they encapsulate state information and

allow the activation and deactivation of the interaction elements. Input can be processed

and output can be de�ned accordingly. In the following the models and their relation

are described in detail.

5.4.1. Abstract Interaction Model

The abstract interaction model (�gure 5.6) describes the anticipated interaction in an

abstract, device and modality independent way. Its purpose is the provisioning of a com-

mon abstraction layer, that all di�erent modalities and interaction technologies adhere

to. The model does not specify the work�ow of the application, but re�nes more ab-

stract elements like tasks. An abstract interactor can be seen as a speci�cation of the

interaction concepts of a task. The temporal relations as well as a possible hierarchy

between interactors are expressed externally in the task model. The model de�nes �ve

interaction elements that determine the basic types of interaction, similar to UsiXML

and TERESA. Modality independence is thereby provided, as the elements do not re-

fer to any modality-speci�c elements (buttons, voice prompts, gestures, ...). Table 5.1

describes the available elements, also shown in �gure 5.6. The additional DataSlot ele-

ment provides the connection to domain data (and thus the domain model), serving as

reference element for application dependent data at runtime. It provides the dynamic

information, the abstract interaction is populated with (e.g. the elements of a list the

user has to choose from). As Figure 5.6 visualizes some abstract interactors have rela-

tions to DataSlots. Each DataSlot represents a data object that is either read or written

during the interaction. In case of the FreeInput interactor the newInput DataSlot holds

the new data provided by the user, while the oldInput DataSlot can optionally hold the

previously provided input. This allows creating and modifying domain data. Similarly,

107

5. User Interface Metamodels

DataSlots allow populating lists of alternatives the user has to choose from with domain

data as well as the storage of the user's selections. The OutputOnly interactor can be

connected to multiple DataSlots to make domain data perceivable to the user. Finally,

Command interactions are not connected to any data slots, as they are not related to

application data, but provide access to �xed application functions.

Element Description

OutputOnly OutputOnly, identi�es interaction where the computer
presents the user information without requiring feedback or
input. For example information as images or text.

FreeInput FreeInput, denotes that the user inputs (unstructured) data
into the system. Examples of FreeInput interactions are
providing a name or a password.

Command Command, is used when the user sends a signal to the
system ordering it to perform an action. Command
interactions are often referred to as navigation, since they
typically cause a change of state in the dialog between the
human and the system. Examples of Command interactions
are �OK� and �Cancel� buttons or menus.

Choice Choice, provides a selection to the user and denotes the
possibility to choose one or several options from a list of
elements.

ComplexInteractor ComplexInteractor, allows the aggregation of multiple
abstract interaction objects into a more complex type. This
provides logical grouping facilities and allows the de�nition
of temporal relations.

Table 5.1.: The abstract interaction elements of the abstract interaction model.

From the system perspective, these interactors can be identi�ed as the basic interaction

elements behind a broad range of widgets like menus, buttons, lists of any form, free

text input, text and image output, etc. The de�nition of the listed elements is modality

independent and covers the utilization at runtime by providing the basic interaction

elements ready to receive input from the user and adapt the related output accordingly.

This ensures the availability of information about the interaction possibilities as well

as the currently expected interaction, e.g. for better adaptation and multimodal input

processing.

At runtime, the state of each abstract interactor de�nes the currently available input and

output capabilities of the system. The underlying precondition is that the set of currently

active interactors (the work�ow) is determined by another instance, i.e. another model

108

5. User Interface Metamodels

(e.g. the task model). This allows the selection of the currently active interaction ele-

ments and provides the means to process user input and to create the system. Activating

and deactivating interactors is possible using the state attribute of each interactor. Four

states are supported as shown in table 5.2

Figure 5.6.: Abstract Interactors of the Interaction Model

State Description

Inactive The interactor is not activated and cannot be interacted with.
Active The interactor is perceivable/usable by the user.
Focused An interactor reaches the state Focused when the user directs

attention to it (e.g. by moving the mouse pointer over the
element).

Selected A focused interactor becomes Selected when the user
explicitly interacts with it. The state Selected is only
momentary, just as the user's interaction is. Therefore, after
being selected the interactor instantly returns into the state
Focused.

Table 5.2.: The four runtime states of the abstract interactors.

All interactors provide hooks in form of execution elements to in�uence their state. Each

object provides the setState execution element, that allows the alteration of the state

of the element (and the state situation element). Additionally, the execute method of

109

5. User Interface Metamodels

a Command, con�rm and toggleElementSelection of a List or the input element of a

FreeInput element provide hooks to trigger additional actions within the model.

This approach allows the selection of the active interaction elements based on the current

state of the application and explicitly holds the state of the interaction. Additional

execution elements allow further interaction with the model. The combination with the

concrete input and output models allow the relation of abstract elements to more concrete

interaction de�nitions as described in the next section.

5.4.2. Concrete Input Model

In contrast to the abstract interaction model, the concrete interaction model provides

a more speci�c description of the interaction. While the abstract interactors combine

input and output, the concrete representation separates the two. The concrete input

model allows the de�nition of possible inputs related to the abstract interaction objects,

independently from the presentation. This approach supports the distribution of the

interactors to di�erent devices and the free combination of multiple input resources to

enable di�erent modalities and interaction styles. The utilized concrete interactors are

designed to conceptually match the supported interaction technologies and simplify the

connection of new interaction resources by keeping the implementation e�orts as low as

possible.

Figure 5.7 shows the classi�cation of ConcreteInputInteractors. The interaction elements

aim to support as many interaction resources as possible and therefore still abstract from

the speci�c properties of the interaction resources. The model distinguishes the input

types listed in table 5.3.

The additional de�nition of the CARE properties for complex interactors allows to ex-

press complementarity, assignment, redundancy or equivalence of di�erent input de�ni-

tions. This way, the relations of multimodal input can be de�ned by interaction elements.

A similar approach has been proposed within the ICARE platform (Bouchet et al., 2004)

in form of the ICARE software components. In contrast to ICARE however, the com-

ponents here are embedded in an interaction model and integrated in a model-based

approach. Table 5.4 explains the supported properties.

In combination with these properties, the described elements provide the modality spe-

ci�c input elements to de�ne multimodal input, retrievable from the di�erent interaction

resources. Additional prede�ned input components help to structure reoccurring inter-

action, that is especially interesting for a generic control of graphical user interfaces.

110

5. User Interface Metamodels

Figure 5.7.: The concrete input interactors that are considered for the de�nition of mul-
timodal input.

Element Description

GestureInput GestureInput, supports the de�nition of gestures that can be

performed to interact with an abstract interaction object.

Gestures can e.g. be pen drawn gestures as well as a mouse

gesture or even a mouse click.

NaturalLanguageInput NaturalLanguageInput, allows the incorporation of natural

language in form of Voice- or TextInput which can be used to

assign utterances or keywords to the related abstract

interaction elements.

CharacterInput CharacterInput, provides a stream of characters produced by

a keyboard or a similar device. Each character presents a

single input event that can be related to an abstract

interaction element.

111

5. User Interface Metamodels

Element Description

PointingInput PointingInput, allows the incorporation of continuous

pointing information. While a stream of gestures can be

segmented into distinguishable gestures, continuous pointing

creates a stream of coordinates with no indication, how to

segment it. An extra input type is de�ned, supporting

continuous pointing, which provides the ability to query the

pointing modality at a given moment e.g. to resolve a deictic

reference.

DynamicInteractor DynamicInteractors, allow the utilization of any of the above

interactors as a template to dynamically create interactors at

runtime. This addresses cases, in which the user interface

and the underlying interaction are dynamically determined

by content of the domain model. On the one hand the

utilization of templates addresses the need to create input

elements that vary in number and type (e.g. three vs �ve

voice commands with key words dynamically taken from the

domain model). On the other hand the activation of di�erent

variants based on information from other models allows to

consider multiple situations known at design-time (e.g. a

gesture instead of voice). In this case, the designer creates

multiple variants of the user interface at design-time and the

most appropriate variant is activated via a mapping at

runtime. Selection and creation rules can be de�ned as

con�guration for the speci�c interactor.

ComplexInput ComplexInput, �nally allows the combination of any of the

simple input elements described above. A complex element

thereby allows the speci�cation of temporal or spatial

constraints to relate the aggregated elements. This allows the

creation of input interactors de�ning a combination of

multiple input elements that can even be assigned to

di�erent modalities.

Table 5.3.: The interactors supported by the concrete input model.

112

5. User Interface Metamodels

Property Description

Complementarity Complementarity of modalities is expressed by the utilization of

complex input elements, that combine multiple inputs from

di�erent modalities. The connected simple input interactors then

have to be used in combination to provide the expected input.

Their temporal (or spatial) relations and fusion constraints can

be speci�ed by the complex interactor.

Assignment Assignment of an interaction to a distinct modality is addressed

by the provisioning of a single concrete input element. This is

thus the standard case, even if no complex interactor has been

speci�ed and only one modality is supported for the interaction.

Redundancy Redundancy can be realized by providing multiple concrete

interaction elements for di�erent modalities, that support the

same interaction means. The given elements are then used in

parallel, to provide redundant input possibilities, which means all

expected input has to be provided by the user. This allows e.g.

the provisioning of more robust interaction techniques in critical

applications.

Equivalence Equivalence allows the alternative utilization of di�erent

interaction techniques, that all serve the same interaction purpose

and provide the same interaction means. In contrast to

redundancy, only one of the available interactions has to be

performed to complete the interaction.

Table 5.4.: The CARE properties supported by the concrete input model.

The following prede�ned input has been distinguished and can be con�gured via various

modalities:

• Select, to perform the selection of any element.

• Cancel, to abort any action or e.g. unselect an element.

• Next and Previous, to allow 1D navigation e.g. within a list.

• Up, Down, Left, Right, to allow 2D navigation e.g. between spatial arranged wid-

gets.

113

5. User Interface Metamodels

The prede�ned interactions provide reusable elements that can be either generically de-

�ned or overridden with speci�c interactions, depending on the application. However, the

main advantage of the open and device independent de�nition of the input capabilities

for each interaction is the maximized support for various types of devices and modali-

ties. While for output the application developer decides which widgets to use for which

modalities, for input this decision is made by the user. The goal is thus to support a

maximum of input capabilities that can be used in conjunction (parallel or alternatively)

with a minimum e�ort for the application developer.

At runtime, the selection of the currently active interaction elements is determined by the

activated abstract interactors which are mapped to the input interactors. Activation is

again performed via the setState execution element. While inactive, active (triggered by

the activation of task and thus abstract interactor), focused (if the interactor is focused

by the user) and selected (if the user interacts with the interactor) are used similar to the

abstract model, assigned and readyToDeliver have been introduced as additional states.

They have a strong focus on the runtime utilization of the model and are explained in

table 5.5.

State Description

assigned The state assigned is reached after the interactor has been
assigned to an interaction resource, e.g. by the distribution. In
this state, interaction resource speci�c adaptations can be
performed.

readyToDeliver The readyToDeliver state is assigned after any adaptations have
been completed and the interactor is ready to be delivered to the
assigned interaction resource.

Table 5.5.: Additional states of concrete input elements.

At runtime, each concrete interaction element (and thus the state of the model) can be

manipulated using the speci�ed execution elements to re�ect user input or changes to

the system state. The main elements all input interactors support are:

• setState, to set the state of the input element. While this is mainly used to syn-

chronize the states of abstract and concrete interaction objects, setting the state

also occurs to signal interaction. Selecting an element e.g. sets the state attribute

to Selected. This also applies for focus and unfocus, which is also signaled through

the state.

• setValue, to alter the value situation element to set the value produced by the cur-

114

5. User Interface Metamodels

rent input. Based on the produced value, di�erent mappings to execution elements

of the other models can be triggered.

Based on the described elements, the concrete input model allows the speci�cation and

processing of various types of multimodal input expected from the user. After introduc-

ing the concrete output model in the next section, the relation of abstract to concrete

interaction elements and the interrelation of concrete input and output is described in

detail in section 5.4.4.

5.4.3. Concrete Output Model

Similarly to the concrete input model, the concrete output model re�nes the abstract

interaction model in terms of output presentation means. Each abstract interactor can

thus be mapped to input capabilities (InputInteractors) as well as to a perceivable rep-

resentation (OutputInteractors). An exception is OutputOnly which is only related to

output interactors. For each abstract interactor there is a separate type of presentation to

address the distinct properties and functionalities of the interactor via speci�c mappings.

Figure 5.8 shows the concrete output model with graphic and voice as main modalities.

Additionally, more limited modalities like blinking lights or haptic feedback (vibration)

can be considered using signal output. The entailed types of output interactors are

described in table 5.6.

The combination and structuring of modalities in the complex output interactors is again

supported by CARE-based relations as listed in table 5.4. In the case of output, com-

plementarity is used to combine multiple output modalities, assignment again relates a

distinct modality to the output, redundancy of output has the goal to present the infor-

mation in as many of the speci�ed modalities as possible, and equivalence leads to the

selection of the currently most suitable of the available output interactors.

To realize scenarios of any complexity, complex interactors can be nested and hierarchi-

cally structured allowing e.g. to de�ne a presentation combining multiple complementary

modalities that is equivalent to a presentation only using voice output. An additional

structure to the otherwise �at collection of concrete output elements can be given by

the group element. Expressing the interrelation of interactors, that are not otherwise

connected, it can be used to combine e.g. graphical elements to a group or ensure that

related elements are not scattered across interaction resources. The meaning of the group

depends on its properties, with the separable attribute explicitly con�guring if the group

can be broken up or not.

115

5. User Interface Metamodels

Figure 5.8.: The concrete output model with interactors separated into NaturalLangua-
geOutput, GraphicalOutput and more simple Signals.

At runtime the state of the model is again expressed via the state of the interactors. This

allows the selection of the currently active output elements by activating and deactivating

interactors to alter the presentation. The utilization of executable models allows the

realization of execution logic for each of the output interactors. This is e.g. re�ected

by the view port speci�ed for some graphical elements. Altering the view port aims at

an update of the presentation and can e.g. be utilized to realize scrolling within a list.

However, as the manipulation of the viewport is an output speci�c interaction it is usually

not de�ned within the abstract interaction model. Realizing the desired scrolling e�ect

thus requires the speci�cation of additional input elements that are only necessary in

combination with speci�c output elements. More details about this connection between

concrete input and concrete output as well as their relation to the abstract interaction

model are given in the next section.

116

5. User Interface Metamodels

Element Description

NaturalLanguageOutput NaturalLanguageOutput, allows to de�ne one-dimensional
voice or text output. This allow e.g. to specify a voice
description that is read out, when an abstract interaction
element changes its state. It can be a plain text that is read
out or a description of a command that is incorporated into
the voice dialog accordingly. Additionally, complex voice
output can be created combining multiple concrete
elements. While �gure 5.8 only shows a basic set of
interactors, a more detailed speci�cation as e.g. provided in
(Stanciulescu, 2008) can be easily integrated to support
more �ne grained voice interaction.

GraphicalOutput GraphicalOutput addresses two dimensional modalities
providing graphic capabilities. It provides the possibility to
assign graphical presentations in form of images, buttons,
text and text �elds to abstract interaction objects. These
objects are also intended to guide input in a related GUI,
by showing the required interactors.

SignalOutput SignalOutput summarizes three interaction modalities with
a rather low bandwidth. While still important e.g. for
noti�cations or direct feedback, sounds, haptic feedback
like e.g. vibrations and and limited visual noti�cations are
not capable of transporting a large amount of information.

DynamicInteractor DynamicInteractors address the dynamic creation of
multiple output (as has also been described for input).
While e.g. a graphical list output has to take care of the
presentation of all related list items, the DynamicInteractor
again serves as container for other dynamically created
elements.

ComplexOutput ComplexOutput, allows the combination of any of the
simple output elements described above. The complex
element speci�es temporal or spatial constraints to relate
the aggregated elements, which allows the creation of
output interactors structuring multiple elements to a
complex construct. While spatial constraints allow the
structuring of graphical objects, temporal constraints could
be added for voice coordination or animations. Complex
elements can also complementary span multiple modalities,
which is again realized by incorporating the CARE
properties. Additionally, the separable attribute identi�es if
and how the included elements can be split across
interaction resources.

Table 5.6.: The interactors supported by the concrete output model.

117

5. User Interface Metamodels

5.4.4. Interrelations between Interaction Elements

The separation of the three parts of the interaction model addresses the need to de�ne

interaction on multiple levels of abstraction. While this is usually utilized to simplify

the development process, it can also be used at runtime to facilitate a loose coupling of

multimodal interaction and keep a more abstract de�nition of the interaction goals. This

allows to separate interaction that is only relevant for the handling of the user interface

(e.g. scrolling) and interaction that is application relevant (e.g. activating a command).

Additionally, the separation of input and output allows to freely combine interaction

resources as needed.

However, the combination of abstract interaction, concrete input and concrete output

entails several relations between the three models and the overall state of the interaction

is only expressed by the combination of all three models. This also requires the intercon-

nection of the models to facilitate information exchange between them. After discussing

the relation of abstract to concrete and concrete input to concrete output in the follow-

ing, the dependency of the UI to content information and the resulting mapping types

are introduced.

Abstract-Concrete Relation

The abstract and concrete representations of the interaction are related to support the

rei�cation of the abstract interaction towards an actual user interface. While the abstract

interaction model describes the semantics of the interaction (e.g. trigger a command,

select an element), the concrete interaction model provides modality-speci�c interaction

means (button/keyword, list). The two abstraction levels are connected via the state of

the interactors. This means, if an abstract interactor is activated, the related concrete

interactors also become active. An important point here is, that an abstract element

combines input and output. Its state is mapped to multiple elements to simultaneously

activate input and output means for the interaction (e.g. show the form �eld that typed

characters are put in). The utilization of the data slot and related mappings ensures,

that values to present are properly passed to the concrete output objects and received

input is properly stored within the data slot and passed to the abstract level.

Besides the activation of concrete elements, abstract elements can also trigger the al-

teration of the presentation of an element. Focusing the graphical representation of a

command (i.e. a button) via an input interactor, triggers a state change to Focused of

the abstract interactor, which in turn changes the state of the related concrete interactor

118

5. User Interface Metamodels

to Focused, resulting e.g. in a highlighted button. This behavior is realized by mappings

between the state attributes and the setState execution elements. Similarly, the selec-

tion of a button triggers the execution of the related command via a mapping targeting

the execute method. In combination with multiple models, this creates a multi-level

event propagation, that allows the incorporation of information from multiple models to

interpret a received input event or to create the related output.

In contrast to the abstract-concrete relations that span two levels of abstraction, the

concrete-concrete relations address the need to integrate input and output means not

directly relevant for the interaction with the application.

Concrete-Concrete Relation

While interaction at the abstract level is application driven and focuses on the goal of the

interaction, interaction on the concrete level is driven by the capabilities of the modalities.

A long list on a screen e.g. requires scrolling, even if the anticipated abstract interaction

is �only� the selection of a list element. Thus, there is another level of interaction that is

not directly required for the completion of the task but important for comfort and clarity

reasons. This interaction level is expressed as relation between the input and the output

elements on the concrete level. Using the list involves the selection of a viewport and thus

the number of items to display in parallel as well as the change of that viewport and thus

the scrolling through that list. Such interaction is not directly related to the underlying

user task, but crucial for the graphical modality. Additionally, scrolling through that list

can also be realized via multiple modalities, making it a multimodal interaction directly

related to a speci�c output modality. This example is illustrated in �gure 5.9.

This example shows that input capabilities vary depending on the current form of the

presentation and thus also depend on the currently active presentation objects. The direct

relation of input elements to output elements is thus supported to facilitate controlling the

modality speci�c representation. This way, the activation of a concrete output object can

also activate additional concrete input elements, not related to the abstract interaction.

Interaction with these input interactors is then directly mapped to the concrete output to

in�uence its presentation. Figure 5.9 also shows that input elements can require speci�c

output elements they rely on. In case of an active voice command, there may e.g. be an

additional hint explaining the available voice commands.

The two di�erent types of relation between interaction elements show that di�erent levels

of interaction means exist, that have to be addressed, when modeling multimodal user

119

5. User Interface Metamodels

interfaces. While this is often addressed by widgets, smart enough to announce and pro-

vide their required interaction means, full control of this behavior within the development

process can be achieved by making this behavior explicit.

Figure 5.9.: Abstract example of a graphical list, that can be controlled via voice.

Content Dependent Interaction

Besides the interconnection of the di�erent interaction models, with the utilization of

interaction models at runtime the in�uence of dynamic (domain) data on user interface

and interaction is another issue. This rises from the need to re�ect dynamic information

in the user interface. Three cases can be distinguished, that have to be addressed:

1. The most obvious case is probably a list, showing dynamic content (a list of available

services, a list of values from a database). In this case, list elements have to be

dynamically created. As this is a standard case in graphical user interfaces, it

becomes more di�cult with multimodal interaction. An example are list items

displayed on a screen, that can also be directly addressed via voice. In this case

there is also a need to create the required voice commands.

2. The dynamic creation of elements which are not part of a list. In this case, the

type and number of needed interaction elements varies with dynamically acquired

information (e.g. three vs �ve buttons with dynamic captures taken from a complex

object, stored in the domain model).

3. Dynamic content can also play a role if multiple situations known at design-time

should be considered (e.g. di�erent numbers of buttons or an image instead of

120

5. User Interface Metamodels

text). This way multiple variants of the user interface can be created and the most

appropriate variant is selected at runtime.

While the �rst case is addressed by the list interactor itself, which takes care of the cre-

ation of the items to display, the second case is handled by the provisioning of templates

within the DynamicInput and DynamicOutput interactors. The actors handle the cre-

ation of interaction elements and take care of their presentation or input processing. In

the third case the dynamic interactors allow the de�nition of di�erent variants, that can

be activated according to other model information. Variants and template utilization are

handled via mappings to the execution elements and the activated elements are stored

as situation (child-) elements. Storing these elements as situation elements is crucial for

the approach, as they are created at runtime, according to the model processing logic

and are not provided by the designer.

Based on these cases and requirements for the mappings between interactors, a set of

mapping types expressing the described means can be identi�ed as described in the next

section.

5.5. Connecting the Models

The models described in the previous sections provide the core models of Ubiquitous User

Interfaces. While each model de�nes speci�c aspects of user interfaces, each model on

its own is not very comprehensive. The power of the approach lies in their combination

into a net of models, comprising all the di�erent aspects. Information can then be fed

into the network to observe the behavior and derive the interaction results.

The basic mechanism underlying the approach is the propagation of state information

(inactive, active, selected, focused) and user input/application data across models. User

input is propagated from the user interface up to the higher levels of abstraction to

realize a multi-level interpretation process abstracting the concrete input to a machine

processable instruction. In the other direction, the propagation of application data to

the user interface across multiple levels of abstraction facilitates the rei�cation of the

application information to human readable information.

Following the concepts of the mapping metamodel, described in 4.3, various mappings

between the given metamodels have been de�ned. They interconnect situation- and

executable elements across models at runtime and facilitate the exchange of information

between the models. While the mappings between the di�erent parts of the interaction

121

5. User Interface Metamodels

models have already been described in section 5.4, additional mappings between task-,

domain-, service- and interaction-model are discussed in this section. Figure 5.10 shows

the created net, connecting the core models to handle the interaction state.

Figure 5.10.: Interconnection of and mappings between the involved Models.

Starting with the task model, the graphic illustrates that based on the work�ow, de�ned

in the task model, service calls or abstract interaction elements are (de-)activated. Map-

pings between the task- and domain model facilitate the speci�cation of a life cycle and

object management for the stored domain objects and allow the creation of objects if

needed as well as the garbage collection of objects not needed any further. The service

model utilizes information from the task and the domain model, to make service calls.

Thus whenever an application task becomes active, the corresponding service call is ac-

tivated as well. Mappings between service calls and domain objects take care about the

passing of parameters to the service and the update of the domain object with the result

of the service call. On the other hand the abstract interaction model is also related

to task and domain model. In a similar way, as the activation of an application task

activates a service call, the activation of an interaction task activates the corresponding

interaction elements. The interaction elements are also related to domain objects, pro-

viding the dynamic information to visualize through the interaction objects as well as

the information to alter through the actual user interaction. The abstract interaction

model is related to more concrete representations of the interaction, separated into input

and output.

Using this general structure a set of di�erent types of mappings can be distinguished.

Based on the mapping metamodel, all types relate de�nition elements of two di�erent

models and contain a set of links that detail the relationship. The mapping types are

listed in table 5.7.

122

5. User Interface Metamodels

Mapping Type Description

IsPerformedBy Relates an application task to a service call or an interaction

task to an interaction object. The mapping activates the

corresponding service call or interaction element whenever

the related task becomes active and also changes the task

state to done, when the service call �nishes or the

interaction is complete.

Uses Denotes the domain objects involved in an interaction or

service call. In case of a service call the object can be a

parameter or a service result, in case of a user interaction

the object can be presented to the user or manipulated /

created by the user.

IsStateSynchronized Relates two interaction objects and synchronizes their state.

This means that if one element becomes active, the other

does as well. The relation is either direct or with a

translation function rede�ning the dependency of the states.

State synchronization from abstract to concrete or concrete

to concrete elements e.g. guarantees that all related

concrete elements are activated whenever an abstract

interaction element becomes active and that related

concrete elements are activated simultaneously.

IsValueSynchronized Addresses the need to transport additional information

between the di�erent elements and across di�erent levels of

abstraction. It allows to communicate user input to higher

levels of abstraction and to con�gure concrete interaction

elements according to information from other elements. For

the communication of input e.g. each concrete input

element provides a value attribute (situation element) that

can be changed during the interaction.

123

5. User Interface Metamodels

Mapping Type Description

IsDynamicallyRelated Addresses the creation of elements based on dynamic data.

This is crucial to deal with input capabilities that depend

on data unknown at design-time like e.g. a list populated

with dynamically generated elements where each should be

directly addressable via speech at runtime.The mapping is

established to dynamic interactors (DynamicInput and

DynamicOutput) which allow the identi�cation of template

elements and variants, that can be populated with the

dynamic data. This allows the relation of dynamic data and

the concrete visualization of input options related to this

data. The transformation method can be utilized to

incorporate the dynamic data into the input construct of a

given type.

IsAccessedThrough Relates an interaction object with an interaction resources

that is used to present or manipulate the object.

IsAdaptedBy De�nes the adaptation of an interaction object according to

context information.

Table 5.7.: The prede�ned mapping types supported by the mapping model to relate the

de�ned elements.

While the IsPerformedBy and the Uses mapping mainly focus on the work�ow and ob-

ject management the IsStateSynchronized, IsValueSynchronized and IsDynamicallyRe-

lated directly address the user interface management. IsAccessedThrough and IsAdapt-

edBy are related to context information. Linking the models together via these mappings

allows the combination of the di�erent models to a comprehensive executable system, ex-

changing information between the models, with the user and the service backend. The

combination of the di�erent models also allows the interpretation of the interaction on

di�erent levels of abstraction.

5.6. Discussion

The models presented in this section are strongly based on the current UIDLs presented in

section 3.2.3. While UIML, UsiXML and TERESA XML provide similar elements, the

presented models incorporate runtime aspects and the concepts of executable models.

124

5. User Interface Metamodels

They aim at the integration with a runtime architecture instead of the derivation of

executable code.

While especially UsiXML and TERESA XML comprise a similar set of models there are

some major di�erences. In case of the interaction model, UsiXMLs abstract user interface

model distinguishes components, containers and relations. Components can have one or

more facets of the type: input, output, navigation, control. Containers group components

and subcontainers and de�ne an order type and if the group is splittable. Relationships

de�ne time and space, mutual exclusion, containment, adjacency, and dialog control in

terms of LOTOS operators. TERESA XML distinguishes output and interaction on

the abstract level. Output interactors are: textual, object, description, and feedback ;

interaction elements are: selection (single choice, multiple choice), editing (numerical

edit, text edit, position edit, object edit), control (activator, navigator), and interactive

description. Additionally, interactor composition can be de�ned based on the following

relations: grouping, relation, ordering, hierarchy and a connection to the functional core

is de�ned as part of the model. In both approaches, the abstract model is re�ned by

concrete elements at design-time. The concrete elements of UsiXML are the most �ne

grained here.

Main di�erences between the presented interaction models compared to UsiXML/TERESA

are:

• The strong separation of abstract and concrete model to avoid redundancy, create

clear boundaries and allow the incorporation of interaction means into adaptation

and input interpretation at runtime. However, the creation of the models and the

related mappings can become complex and requires comprehensive tool support.

The di�erent mapping types allow di�erent views to the mappings in terms of

mutual activation, information exchange and dynamic element handling.

• The separation of input and output and the de�nition of mappings between abstract-

concrete and concrete-concrete levels provide an extended �exibility, and allow to

establish two levels of interaction:

1. task related interaction, that in�uences the application logic,

2. presentation related interaction, that only controls the presentation.

• The integration of the CARE properties as attribute of complex interactors allows

to express the relations between interactors across modalities.

• The incorporation of information from the task model at runtime helps to determine

125

5. User Interface Metamodels

grouping and temporal relations, which do not have to be rede�ned within the

interaction models.

• Additional groups for output interactors can be created to allow a rendering speci�c

grouping and the provisioning of group speci�c properties.

• The direct mapping between tasks and abstract interaction objects provides clear

boundaries for the level of detail of the task model and allows to re�ne the task

semantics as abstract interaction.

• Execution and interpretation semantics are part of the model, de�ned as execution

elements. Embedding the execution semantic into the model allows to address the

de�nition of the interactor behavior on the meta-level. The handling of the CARE

properties and fusion e.g. can be supported by the execution logic of complex

elements.

• The dynamic creation of interaction objects is supported based on templates that

can be de�ned at design-time and a mechanism to handle these templates at run-

time. Additionally, multiple variants of a user interface can be created.

The integration of the interaction model in a larger net of coexisting models at runtime

instead of utilizing transient models at design-time also leads to a di�erent utilization of

mappings between the models. While a de�nition of di�erent types of mappings between

the models has also been provided by Limbourg et al. (2004a) in the context of UsiXML,

the main di�erence to the their approach lies in the extension of the mappings by the

inclusion of backend service access and the extended separation of tasks and manipulated

objects at runtime. Using the presented mappings, the manipulation of domain objects is

directly de�ned through the interaction objects. However, the UsiXML mappings provide

valuable insights which can be transferred to runtime aspects and have been incorporated

into the presented mapping types.

In summary, the presented models and especially the interaction model address several

of the requirements identi�ed for the UIDL:

• a possibility to de�ne interaction, while not having to specify all details of the user

interface to gain the needed �exibility (requirement #1.1)

• the relation and separation of input and output (requirement #2.1, #2.2) and the

related support for distribution and multimodality,

• support of fusion and �ssion means by the provisioning of independent building

blocks as well as the separation of input and output (requirement #2.4, #3.1),

126

5. User Interface Metamodels

• the dynamic utilization of data slots to store user input to support persistence

(requirement #4.3),

• an explicit interaction state (requirement #4.1),

• di�erent levels of abstraction (requirement #3.3) and their separation of modality

and device independence and speci�cs.

• the possibility to integrate backend services via a service model (requirement #5.3)

Di�erent types of mappings facilitate the synchronization of elements and their dynamic

creation, and the overall approach is easily extensible if more interactors are needed.

Utilizing the interaction model at runtime is strongly based on support by the runtime

architecture and the interconnection of the interaction model with additional models to

re�ect the model state within the outside world (requirement #5.1). The next chapter

illustrates the integration with a context model (requirement #1.2, #1.3, #2.5) as well as

the means for input and output handling (requirement #2.3, #3.2), runtime distribution,

shaping, multimodality, and adaptation (requirement #4.2).

5.7. Summary

In this chapter, a core set of metamodels for the creation of Ubiquitous User Interfaces

has been presented. Based on a task metamodel, de�ning the work�ow of an application,

and a domain metamodel, de�ning domain speci�c data, service calls to the functional

core can be triggered and user interaction can be initiated and processed. A major role is

played by the interaction metamodel, combining abstract interaction with concrete input

and output elements to provide a modality independent de�nition and interpretation of

interaction as well as the independent support for input and output interaction resources.

The abstract interaction model serves as central point to connect input and output and

allows to re�ne interaction tasks in terms of semantics and interaction means. The

concrete models support the development of multimodal interaction and allow the usage

of the CARE properties to combine multiple modalities in di�erent ways. Mappings

between the di�erent (meta-)models facilitate the synchronization of state information

and the exchange of information between the models. All presented metamodels are based

on the concepts of the meta-metamodel of executable models an are thus comprised of

de�nition-, situation- and executable elements.

A major advantage of the integration of execution concepts within the metamodels is the

possibility to utilize these models at runtime. The proposed linking of the models allows

127

5. User Interface Metamodels

the execution of the task model to trigger a chain reaction, leading to the derivation of

a set of active concrete user interface elements from the de�ned user interface models.

Stimulation from the outside via the interaction or the service model trigger the derivation

of the next interaction state, resulting in new interaction means and executed services.

Thus the net of models provides a dynamic view to the runtime behavior of the modeled

system. It forms the internal representation of the system, that has to be conveyed to

the user via the interaction resources.

However, to do so additional elements are needed that cover aspects like distribution,

fusion, and adaptation. This requires bridging the internal state of the models to the out-

side world. Context information is added, channels convey the model state to interaction

resources, and distribution, fusion and adaptation means are added to the network of

models. This additional infrastructure is provided by the Multi-Access Service Platform

as explained in the next chapter.

128

6. The Multi-Access Service Platform

After introducing the notion of executable models in chapter 4 and the set of reference

metamodels in the previous chapter, this chapter deals with the integration of the con-

cepts with an architecture for the creation and handling of Ubiquitous User Interfaces

for smart environments. The Multi-Access Service Platform (MASP) is introduced as

an implementation of the described concepts, that integrates additional components and

models to bridge model and outside world and handle shaping, distribution, multimodal

interaction and adaptation as basic UUI features.

The MASP combines executable models with these additional components and can be

denoted as runtime infrastructure for executable models. However, as executable mod-

els provide their own interpretation logic, this does not fully re�ect the nature of the

approach. In this sense the MASP rather is a set of metamodels, combined with a set

of components, to enable the creation of multimodal user interfaces for smart environ-

ments. Figure 6.1 shows the introduced meta-metamodel of executable models (M3), the

described metamodels (M2) as well as the user interface models (M1) of the MASP in

relation to the MOF Meta Pyramid.

Figure 6.1.: The MASP models in relation to the MOF Meta-Pyramid.

130

6. The Multi-Access Service Platform

At runtime the M1 level is the most important, as it comprises all developed UI models

utilized for user interface creation (and input interpretation) by the architecture. It

con�gures and drives the connection of the functional core as well as the user interaction

and the mediation between the application and the user using the application in terms

of input interpretation and output generation. From the current state of the models,

the �nal user interface representing the interaction state, is continuously derived and

distributed to the available interaction resources.

In this chapter, the overall architecture of the MASP and its di�erent building blocks

are illustrated. Starting with an overview of the architecture in the next section, the

additional models and components are described. This includes the context model, mak-

ing live context data accessible for the executable models, as well as the concept of

interaction channels, making interaction resources directly accessible for the MASP. Ad-

ditionally, the underlying concepts for UI distribution, shaping, multimodal fusion and

adaptation are introduced in this chapter. Finally, a walk-through illustrates the inter-

connection of the di�erent components and models and illustrates how user interfaces

are created and interaction is handled within the MASP.

6.1. Architecture

The overall architecture of the MASP combines the described core models with additional

models and components, to re�ect the main concepts identi�ed for the creation of UUIs

in section 3.5.2. As shown in �gure 6.2 it directly integrates the core models to handle the

state of the interaction and integrate backend logic. They allow the derivation of multiple

user interface variants for varying modalities and IR combinations. The mapping model

contains all mappings de�ned between the various mappings. However, additional models

have been added, to provide additional features and address speci�c problems of UUIs.

The MASP Core Model con�gures the utilized models and component for any application

and provides general access to the used models via an exposed API. It provides the

means to initially load applications (sets of models) and trigger their execution. The

model contains sessions for the user and application management and instantiates the

external components via proxy elements. Additionally, it provides a basic API to access

the models, making it easy to build software and management tools for the platform.

The MASP Core Model is created by the developer and represents the con�guration of

the developed application. This allows the developer to directly in�uence which models

are used and how these models are linked. It also allows the runtime system to manage

131

6. The Multi-Access Service Platform

Figure 6.2.: MASP Architecture with exemplary IRs.

users accessing the application and to start and stop instances of the application ac-

cordingly. A context model provides direct access to context information for the created

models. Shaping, distribution and fusion are realized by a combination of problem spe-

ci�c models, that provide con�guration possibilities and hold calculation results, with

additional components. An adaptation model addresses the adaptation of the models

to the context of use. Finally, input and output channels (handled through the context

model) connect interaction resources and make them available to the MASP. They handle

the UI presentation and provide the means to push updates to the presentation at any

point in time and to receive user input. Input is interpreted based on the current state

132

6. The Multi-Access Service Platform

of the interaction and fused with input received via additional modalities.

This combination of executable models with additional components as well as external

elements like context providers and channels, connected via proxies, allows the creation

and handling of UUIs. The infrastructure aims at the realization as a central server

within a smart environment, allowing the aggregation of multiple interaction resources

and the handling of multiple applications and users. Each available interaction device

registers its resources, which are then directly addressed independently by the server-

side system. Additionally, the server allows the integration of central context sensing

capabilities for the whole interaction environment with multiple applications and users.

The main components and the full underlying interaction mechanism are illustrated in

detail in the following. Starting with the context model in the next section, distribution,

shaping, channels and UI delivery are explained afterwards. Fusion and adaptation

means round up the chapter which is then concluded with a complete walk-through and

a summary.

6.2. Context Model

The context model provides the means to include context information as basis for adap-

tation and interaction con�guration. It aggregates context data from various sensors and

provides a central model to access the acquired data. It bridges the user interface models

and the outside world, by integrating sensor information into the model level. From the

design perspective, its main task is the identi�cation of the context information relevant

for the application. From the runtime perspective, its main task is the acquisition and

provisioning of live context data at runtime.

At design-time, there is a need to specify the relevant context information, to ensure

that the modeled concept can properly re�ect these. In this sense, a design-time context

model needs to specify relevant data and provide the means to de�ne hypotheses about

this data at runtime.

At runtime, the model is �lled with information delivered by various sensors and triggers

behavior or UI adaptations dependent on the context. At this stage, the context model

re�ects the actual real life context, the application is executed in. This results in the

need to acquire and maintain data about the current context and provide this to the

application (in a way that it understands). Modeling the context as an executable model

allows to address this by the de�nition of dynamic elements as well as the integration of

133

6. The Multi-Access Service Platform

context providers directly into the model. This is supported by the utilization of proxy

elements, encapsulating the actually used providers. Considering smart environments,

this also leads to the need for con�gurations, that re�ect the static properties of the

environment. In this sense, the context model contains a speci�c con�guration for the

very environment, that identi�es static values (e.g. rooms) and is con�gured with the

required parameters to incorporate the available dynamic context providers.

As depicted in �gure 6.3 the used context metamodel comprises information about the

user, the available interaction resources and the environment, including position informa-

tion of user and devices in terms of rooms and coordinates. Additionally, details about

the interaction resources are emphasized as they are most relevant for the interaction.

Context providers are directly con�gured and integrated within the model. The di�erent

parts are discussed in the following.

6.2.1. Environment Information

The context model speci�es an environment with a set of rooms and devices as basic

elements. Devices consist of interaction resources, which are located in rooms and can

have detailed positions. The capabilities of these resources are further speci�ed in the IR

part of the model. Users within the environment can then also be located within a room.

Similar to IRs, they have a position, which can be set. For the utilization of a radio- or

visual-tag based localization, tags can be assigned to any of the elements to determine

their positions. Finally, rooms can have areas that identify speci�c parts of the room,

which might be especially interesting for interaction purposes (e.g. in front of a screen).

6.2.2. User Information

User information within the model aims at the modeling of user preferences and capa-

bilities. In the current model it is limited to the (more or less abstract) preferences

and capabilities. Additionally, the preferred modalities and some con�guration informa-

tion (the status of the follow-me function) can be speci�ed. The current position of the

user in terms of the room and the respective coordinates is important information for a

whole list of application functionality. While information can easily be added as needed,

the currently available information grew from the speci�c needs of the developed demo

applications.

134

6. The Multi-Access Service Platform

Figure 6.3.: Context Model

135

6. The Multi-Access Service Platform

6.2.3. Integrating External Processes

The integration of external information is a central aspect within the context model.

While the other models discussed so far are mainly self-contained, the context model

has a strong connection to the outside world. It has to provide means to acquire data

from as well as to interact with the outside world. As introduced in section 4.2.3, proxy

elements are utilized for this purpose. Proxy elements encapsulate external processes to

integrate them into the model and provide control, without having to completely specify

them as part of the model. While con�guring a context model for a given environment,

the connections to the context providers are con�gured (e.g. a webservice URL) and

the provided information is mapped to information of the context model by identifying

the executable elements acting as callback for the process. With this method external

processes can be started and provide dynamic information incorporated into the model

via well-de�ned interfaces. This is illustrated e.g. by the localization provider, setting

the locations of the known tags at runtime. Other supported context providers include a

user management, providing information about the known users, and a client discoverer,

providing information about available interaction resources. A similar mechanism is also

used to connect the available interaction resources to the system via the channel. Here

the channel provides a proxy allowing to send data (e.g. HTML code) to the external

resource and to receive incoming interactions.

6.2.4. Interaction Resources

The available interaction resources are a major aspect of the interaction context within

the smart environment. The presented model distinguishes input and output interaction

resources with di�erent capabilities to support the interaction model de�ned in section

5.4. The maintained interaction resources are mainly categorized by their type and the

modality they support. Additional knowledge about mobility and personal or public

character of the resource can also be considered if information is to be pushed to a user.

The concept of a channel is introduced, to identify the connection to an interaction

resource that can be used for information exchange and interaction with the user. A

channel provides an internal representation of an interaction resource. To match the

concrete interaction model concepts to a platform speci�c language, the channel acts as

proxy object for the implementation of a resource and modality speci�c communication

channel which is encoded as external process.

136

6. The Multi-Access Service Platform

6.3. Interaction Channels

With the goal, to �exibly utilize various interaction resources, there is the need to make

them directly accessible. While the IRs are managed by the context model, the actual

communication with the resources is realized via interaction channels. Using proxy ele-

ments, these channels are assigned to the interaction resources by the context model and

connect the physical medium to the system internals. Internally, they provide logical

representations of the resources and their capabilities, abstracting from the underlying

platform speci�cs and the platform dependent communication format (e.g. HTTP), while

providing a common interface for resources of various types.

Each interaction channel connects a single interaction resource to the MASP and thus

supports a single modality. This also entails a separation of input channels, conveying

input user interfaces and output channels, presenting output interfaces. Input channels

monitor user input, which is preprocessed based on an input UI, derived from the state

of the concrete input model. Output channels translate the state of the concrete output

model into a perceivable user interface presentation. The main role of the channel is to

ensure, that provided information can be processed on both sides (IR and system). It

thus mediates between the internal representation of the system and the presentation

format of the resource. Main elements, as shown in �gure 6.4 are:

• a target language processable by the resource (e.g. HTML),

• transformations between the resource speci�c language and the internal represen-

tation of the system,

• an API to send information to and receive information from an interaction resource,

• a meta-description of the resource capabilities.

Figure 6.4 illustrates the utilization of input and output channels. Receiving the concrete

interaction elements to handle (after the distribution has been calculated, as explained

in section 6.4), the channel transforms the elements into the �nal user interface of the

speci�c target language. In case of input, user interaction is translated back into events

handled by the fusion component (see section 6.6) and then by the concrete input model.

In the following, a set of exemplary interaction channels that have been realized to build

multimodal applications with the MASP is introduced and the integration of channels

and models is illustrated.

137

6. The Multi-Access Service Platform

Figure 6.4.: Channels connecting a pen input IR and a graphical output IR to the MASP.

6.3.1. Channel Types

The current MASP implementation distinguishes seven types of channels, matching the

types of the input and output interaction objects de�ned in the concrete interaction

model (see section 5.4).

The Natural Language Input Channel (NIC) allows the processing of natural lan-

guage input of the user. This includes text processing as well as Automated Speech

Recognition (ASR) engines. It provides the means to encapsulate speech recognition fa-

cilities and abstracts from the underlying speci�cs of di�erent engines. The encapsulated

language is thus a data exchange format like e.g. VoiceXML. NICs have been used to

connect Dragon Natural Speaking, a Voice Genie Platform and a Loquendo System. An

additional Text Input Channel (TIC) has been created to substitute voice interaction

and perform Wizard of Oz tests. It realizes keyboard input the user could enter to a

chat-like window. Additionally, the TIC allows the integration of handwriting devices if

the recognition software is able to produce a text string from the provided input.

The Character Input Channel (CIC) supports the connection of various devices

providing simple discrete events. The channel can be used to directly feed single key

presses into the system (e.g. the up arrow or the enter key). It also allows to connect

other interaction resources providing input that can be mapped to single discrete event

like e.g. the click of a mouse button, without the consideration of the mouse position as

well as the usage of a remote control or of any kind of switch. User interfaces for this

type of interaction device provide a mapping of single characters to discrete events and

thus also limit the set of processable character.

The Pointing Input Channel (PIC) allows the incorporation of pointing information

into the user interaction. Pointing in this sense includes the mouse position as well as

any pointing gestures recognized by the system. The PIC is able to continuously monitor

pointing information from the connected resource and to provide pointing information

138

6. The Multi-Access Service Platform

on request. It can also send events if a pointing inside or outside of a given area has

been perceived. The relevant areas would in this case be de�ned by the provided input

user interface. This allows on the one hand the monitoring of pointing gestures and the

query of the monitored gestures to resolve deictic references e.g. in the voice input. On

the other hand pointings of the user to given coordinates can directly trigger processable

input events.

The Gesture Input Channel (GIC) allows the detection of gestures performed by the

user. The basic channel concept can be used to connect di�erent modalities providing

gesture-based input to the system. This includes mouse gestures, 3D gestures using

accelerometers or camera-based systems as well as pen gestures. Gestures also include

simple mouse clicks or touches on a touch screen, interpreted as selection gesture (point

and click). User interfaces supporting gesture input provide mappings of a gesture to

MASP input events that can be directly processed by the de�ned concrete interaction

model. This approach also helps limiting the gestures that can be processed at a certain

state of the interaction and can thus help to improve detection performance.

The Natural Language Output Channel (NOC) allows the connection of Text-To-

Speech (TTS) engines as well as of text capable displays. The channel internally provides

the means to present any natural language text to the user and thus accepts such texts

for presentation. It has e.g. been used to connect the Loquendo and Voice Genie TTS,

which allows to trigger voice output at any point in time. Additionally, the possibility to

output the same information as text in the Wizard of Oz tool is provided, supporting a

chat like interaction style. Chat like interaction can also be utilized in noisy environments

or to keep information private and can be combined with textual or pen-based input.

The Graphical Output Channel (GOC) allows the connection of graphical displays

as interaction resources to the MASP. It connects any graphical rendering device, which

includes HTML-based web browsers as well as GUI-based applications like Java Swing.

The channel provides the means to graphically present the concrete presentation objects

to the user and serves as reference system for pointing based interaction, which is required

as the coordinates supported by the pointing interaction strongly depend on the related

graphical presentation. To address this issue, a global coordinate system is maintained,

to which local graphical and pointing coordinates can be mapped to calculate pointing

areas.

Last but not least, the Signal Output Channel (SOC) provides the means to convey

very simple interaction, e.g. to gain the users attention. The SOC allows the connection

of very simple interaction devices that produce sounds, light e�ects or haptic feedback like

139

6. The Multi-Access Service Platform

vibrations. It thus allows the transportation of one dimensional, simple interaction that

conveys (maybe) important, but not very detailed information. Signals mainly follow a

�re and forget approach. That means a signal is simply been �red and not maintained

in any way by the channel.

6.3.2. Integration of Channels and Models

To utilize the di�erent types of channels, each channel provides a channel API, comprising

similar methods for each channel. As each channel handles a set of concrete interaction

objects, that de�ne the current interaction (input or output) possible on this channel,

each channel also provides the possibilities to manipulate this set of interaction objects.

This includes adding and removing objects, as well as updating complete objects or only

a certain �eld of an object. Additionally, the channel provides the means to alter the

state of the interaction object in terms of focused, unfocused, selected, etc.

These functionalities are mapped to executable elements of the proxy element of each

channel in the context model. These mappings are dynamically created at runtime and

are of the IsAccessedThrough type. Thus, the activation of concrete output triggers a

mapping, that add the element to the channel to trigger it rendering on the connected

IR. In detail, this is done after the distribution has been calculated and the shape of the

UI for each of the utilized IRs has been determined as described in section 6.4 and 6.5. A

constant connection is kept between the state of the concrete element in the model and

the channel, which ensures, that any state change is immediately conveyed through the

channel to the connected IR. Additionally, each input channel allows the registration of

a callback handler, processing the received user inputs, which are handled by the fusion

engine described in section 6.6 and �nally processed by the net of UI models to alter

their state accordingly.

6.3.3. Summary

The described channels provide a multi-layered approach to handle user input and sys-

tem output, with some similarities to the Pipe-Lines of Nigay and Coutaz (1997). They

mediate between the interaction resource and the model, abstract from the very details

of each interaction resource and allow the easy incorporation of new interaction capabil-

ities into the MASP. The continuous access to the IR allows to immediately convey any

changes of the state of the model to the connected resources. This means, if e.g. a new

140

6. The Multi-Access Service Platform

voice command is added, the channel takes care of updating the grammar and retrans-

mitting that grammar to the ASR. This way it is guaranteed, that the maintained user

interfaces always represent the current state of the interaction, convey the most recent

information and restrict the interaction to the currently processable input. Underlying

the utilization of di�erent interaction resources at runtime is the possibility to calculate

a distribution of the UI among them. The underlying mechanism is strongly based on

the interaction model and described in the next section.

6.4. User Interface Distribution

The goal of the distribution mechanism of the MASP is the assignment of concrete in-

teraction elements to interaction resources for presentation purposes and input handling.

The main challenge in this context is the provisioning of an optimal distribution with

respect to context, interaction elements (content), available IRs, and user preferences.

Figure 6.5 illustrates this approach.

Figure 6.5.: Concept and goal of the distribution.

The UI model contains the abstract interaction model and concrete input and output

models as well as the other core models. The interaction state identi�es the UI ele-

ments that currently have to be presented to the user as well as the currently available

input possibilities. Based on these elements and the available interaction resources a

141

6. The Multi-Access Service Platform

distribution con�guration is calculated, which assigns interaction elements to interaction

resources. These input and output user interfaces are then delivered to the interaction

resources via input and output channels.

Based on this general mechanism, the distribution component and the distribution model,

which store the current and past distributions, are described in the following. Utilizing

the described interaction model, the goal of the distribution component is the assignment

of concrete interaction objects to interaction resources for presentation purposes and

input handling. The distribution model stores the current state of the distribution and

provides design information speci�ed by the developer.

6.4.1. Distribution Component

Based on the set of active interactors, the distribution component has the goal to calculate

which interactor shall be presented on which of the available resources. The discovery

and management of interaction resources is thereby accomplished by the context model

and provided to the distribution component. A distribution con�guration is in�uenced,

by di�erent additional aspects:

• information describing the current situation (the active interactors and context

information like the available IRs),

• previous distributions calculated by the system or con�gured by the user for the

same set of interactors and the same context (incl. history and user con�gurations)

• requirements of the current interaction step, that are the constraints imposed by the

developer (CARE properties in the interaction model and distribution con�gured

by the developer).

Due to the anticipated independent handling of input and output the distribution has to

consider the two types of user interfaces, leading to two distribution goals.

• Input user interfaces, restrict the interaction possibilities and support the integra-

tion of multiple input capabilities. Restricting the possible user interaction in a

single modality can e.g. be done by in�uencing the recognition engines (see also the

approach of Coen (2001)). In terms of input the distribution goal can be formulated

as: support as many (equivalent) input resources as possible while considering the

speci�ed CARE relations between the input elements. This aims at leaving the

control about which interaction resource to use to the user by supporting a wide

selection. However, based on information from the context model, only currently

available input resources within the vicinity of the user are considered.

142

6. The Multi-Access Service Platform

• Output user interfaces, provide the presentation that conveys information from

the system to the user. In terms of output the goal can be formulated as: �nd

the most suitable combination of output resources while considering the speci�ed

CARE relations between the output elements. Distributed output thus aims at

utilizing the most suitable combination of interaction resources to convey the user

interface. The selection of resources again depends on their capabilities and context

information like the resource location.

Based on these goals, the assignment of the di�erent parts of the UI to the interaction

resources is performed by the distribution component. Whenever a new set of concrete

interactors is activated, the distribution component is noti�ed and triggers the execution

of the distribution algorithm. The algorithm �rst checks for suitable previous distribu-

tions within the history and the user speci�ed distributions. As these distributions were

already active in the past, they are considered as suitable. The algorithm �rst selects

every distribution speci�ed for the same set of concrete interactors. Furthermore, the

situation describing the circumstances under which the distribution was established is

compared to the current situation. Therefore, the relevant context information is re-

trieved from the context model and compared to the saved context information from

the selected distributions. All distributions where the context comprehends less or equal

amount of information than the current context are now marked as relevant for further

consideration. These distributions were active when having at least the same amount of

knowledge as currently available and are thus relevant for further consideration. One,

more than one or no distribution can be found during the comparison process. If only

one distribution is found, the distribution algorithm �nishes and the distribution is set as

current distribution. This results in the creation of a mapping between the concrete in-

teractor and the interaction resources. If multiple distributions are found, the algorithm

evaluates the creator of the distribution to determine the most suitable one. Distribu-

tions from the user are considered better than distributions of the application as user

con�gurations are done by users to adapt the existing distribution to their current needs,

which neither the system nor the application designer can calculate or foresee better.

Similarly, application con�gurations are considered better than distributions calculated

by the system as the application developer speci�es distributions with a speci�c intention,

which the system should not overrule. If the comparison of the saved distributions does

not reveal any results, the current context comprehends more information than the saved

contexts. Thus, the distribution might be done with better certainty. The system then

calculates a distribution based on information from previous distributions, the current

context and properties of the user and constraints de�ned by the application developer.

143

6. The Multi-Access Service Platform

The saved distributions with the least proximity in terms of information context to the

current context are prioritized and evaluated in relation to the additional information.

The result is the storage of the calculated distribution in the distribution model, which

is described next.

6.4.2. Distribution Model

The distribution model depicted in 6.6 is used to store distribution constraints as design-

time con�guration speci�ed by the developer (left part) as well as the runtime results,

user settings and history of the distribution calculations (right part).

Figure 6.6.: The distribution model, storing/triggering the distribution of the added el-
ements.

The design-time con�guration of distribution constraints allows the developer to specify

application speci�c distribution hints. Constraints therefore contain con�gurations that

map concrete interactors to interaction resource types. This allows e.g. the assignment

144

6. The Multi-Access Service Platform

of a PDA display as preferred IR for a set of interactors and the de�nition of a �xed

touch display for others. Situations acting as precondition for the constraint can be

de�ned based on information modeled in the context model. Constraints are dynam-

ically (de-)activated at runtime and only active constraints are considered throughout

the distribution calculation. At runtime, the distribution model mainly acts as storage

for calculated and user distributions. The current distribution is expressed as a set of

con�gurations that map concrete interactors to speci�c resources, based on the current

context situation. This situation also contains the currently active constraints as these

can change and lead to a new distribution. Each applied distribution is also de�ned by a

timestamp of its applications and the creator of the distribution (user, application, and

system can also directly assign interactors to resources). A history stores all applied dis-

tributions for later consideration within the algorithm. Storing the current distribution

within the model also makes this information available to the interaction model. A map-

ping transports the information of the currently used interaction resources to the variables

in the interaction model. At runtime, the interconnection of the interaction model and

the distribution model allows the �exible handling of the interaction elements. The close

interconnection of the distribution model with the distribution component bridges the

gap between the modeled information and the results of the distribution algorithm that

considers various information from multiple models, including context-, interaction- and

distribution model.

A major reason for storing the current distribution con�gurations within the distribution

model is to make it accessible to other executable models using the mapping mechanism.

This is required to address the issue of referencing resources and modalities from within

the user interface. The de�nition of variables in the interaction model, allows the de�ni-

tion of mappings, that map the current distribution con�guration for a certain element

to the variable. In detail, the user friendly name of the interaction resource and the used

modality would be mapped to this variable. This allows output interfaces to refer to

distribution information as well as to interpret user utterances referencing resources and

modalities within the fusion process.

6.4.3. Distribution Sequence

To distribute a set of concrete interactors to the available interaction resources via the

channels, the distribution component implements the mechanism, exemplary illustrated

in �gure 6.7.

145

6. The Multi-Access Service Platform

Figure 6.7.: Illustration of the sequence of the basic steps of the distribution calculation
and the relation of the involved models.

Whenever a new set of concrete interactors becomes active, the distribution component

is noti�ed, that a new distribution might be needed. This is realized via a mapping

between the concrete interactors state and the addActiveInteractor method of the distri-

bution model (1). Triggered by the method call, the distribution component calculates a

distribution (2). If a con�guration for the context is available, it is applied. Otherwise a

new con�guration is calculated according to the algorithm described above, by querying

the context model (3) and incorporating the capabilities of the resources, their location

and information about the user like location and situation as well as earlier distributions

(4), etc. In any case, the result is the assignment of the active interaction elements to

speci�c interaction channels, stored in the distribution model (5). Based on the calcu-

lated distribution con�guration, the distribution component creates a mapping between

the concrete interactor and the executable element add of the selected channel (see the

context model), which ensures that the presentation information of the interactor are

conveyed by the channel (6). This mapping is triggered when the state of the interactor

is set to ReadyToDeliver, which is done by the shaping component setting arrangement

and style for all components on a given channel (explained in section 6.5). Finally, the

state of the user interface is set to assigned to trigger the shaping as next step of the UI

creation process (7). Once the UIs have been delivered to the IRs, user input is processed

from the input channels. The goal of this input processing is an alteration of the state

of the runtime model. Any state change of the model then results in an update of the

presentation. The support of di�erent interaction resources and the loose coupling of

multiple interactors also requires means to control the arrangement and style of the user

interface elements. This is discussed in the next section.

146

6. The Multi-Access Service Platform

6.5. User Interface Shaping

Creating user interfaces, that can be dynamically arranged across multiple interaction

resources poses high challenges in terms of user interface layouting to the user inter-

face developer. If the combination of interactors on any interaction resource can not be

completely de�ned at design-time the temporal and spatial arrangement of these inter-

actors becomes very complex. The shaping component uses a constraint-based layouting

for this purpose, which is brie�y introduced in the following and described in detail in

(Feuerstack et al., 2008).

The shaping of the user interface takes place after the di�erent interactors have been

assigned to the available channels. It arranges the user interface elements of each channel

based on constraints, that specify their order, orientation, containment, and size. Thus

once an interactor reaches the state assigned, the shaping model is noti�ed and the

interactor is scheduled for layouting. The underlying process is similar to the described

distribution process. The shaping component determines the global coordinates for the

interactor based on the de�ned constraints, the other elements assigned to the channel

and additional information from other models like task model (for grouping and temporal

relations), abstract interaction (for grouping) or the context model (for user preferences

and interaction resource capabilities). These coordinates are then added to the interactor

by the setArrangement method. Additional style information can be provided by the

setStyle method. Once the layout of the component has been completely determined,

its state is set to ReadyToDeliver, which triggers its delivery to the interaction resource

via the channel. Important steps during this delivery are the translation of the set of

concrete interactors into a device and toolkit speci�c representation and the translation

of their global coordinates into absolute coordinates for the speci�c channel. The same

mechanism can also be applied for the temporal arrangement of voice user interfaces.

Although this approach is very powerful, it might not always produce the desired results.

While a main goal of the approach is to keep the interface usable even if modalities and

devices change, there is also the need to support the provisioning of optimal presentations

for prede�ned usage situations. While the general arrangement and layouting of the user

interface is determined by layouting information on the concrete interaction level, provid-

ing e.g. coordinates and sizes of elements, the �nal style is applied by the channel, which

is the instance aware of the exact capabilities of the interaction resource. To support this

device speci�c adaptation the interaction channels include additional means to de�ne

speci�c styles that can be applied to the �nal presentation of a user interface. These

stylesheets allow the very speci�c determination of user interface properties using veloc-

147

6. The Multi-Access Service Platform

ity templates, XSLT transformations and Cascading Style Sheets (CSS). The di�erent

types of stylesheets are provided for di�erent use cases. On the one hand each channel

provides rendering templates for each concrete interaction object. These templates are

available as velocity templates, which provide powerful templating mechanisms and can

be changed by the developer if needed. Additionally, for any XML-based (intermediate)

result of the rendering process in the channel, XSLT transformations can be applied

to incorporate additional information. For HTML-based presentations there is also the

possibility to directly incorporate Cascading Style Sheet (CSS) information into the web

page.

Finally, the most powerful possibility to in�uence the presentation of a user interface is

the extension of the MASP with customized interaction channels. Such channels have

the complete freedom of applying any rendering techniques and technology the developer

needs to transform the concrete user interface elements into the �nal presentation or

input con�guration. Using the channel API, new channels can be easily integrated into

the MASP.

The utilization of constraint-based shaping algorithms and styling capabilities allows to

optimize the presentation results of the created user interfaces. Based on the channel

capability to continuously synchronize the state of the interactor in the model with its

external representation on the interaction resource, any alterations to arrangement and

style are immediately re�ected within the user interface. This also allows the dynamic

adaptation of the layout, style and shape of the user interface, according to any proper-

ties of the user interface state. One approach to convey dynamic alterations, currently

applied within the MASP is the smooth translation of the alterations into animations

via the Scriptaculous Animation Framework, which help the user to keep track of the

modi�cations. This provides a stronger impression of a consistent interaction experience

than e.g. having user interface elements jump around when the con�guration changes.

6.6. Multimodal Input Processing

Besides the described handling of output, a major aspect of Ubiquitous User Interfaces is

the handling, integration and interpretation of multimodal user input. While the concrete

input model provides means for the developer to de�ne expected user input, at runtime

the need to match the actually received input with the expected input arises. This is

supported by the concept of input user interfaces, that allow the preprocessing of any user

input. Based on these input interfaces, input events are generated and transmitted to the

148

6. The Multi-Access Service Platform

fusion component of the MASP architecture. The component analyzes the received input

according to the concrete input model and aims at the resolution of references and the

realization of CARE relations between received input. Processed (or combined) events

then trigger executable elements of the concrete input model, which in turns triggers the

event processing of the core models. Details about this model-based input processing

and fusion process are given in this section.

6.6.1. Monomodal Input Processing

A major aspect of the described approach is the constraining of the interaction possi-

bilities. Instead of aiming at the processing of any user input, the goal is to �lter out

unexpected input as early as possible. Restraining the interaction is thereby similar

to what humans do during conversations, try e.g. going to burger king and order �ve

stamps. They probably reply �Excuse me?�, because you are outside of their domain of

discourse and even if they understand you, they will most likely not be able to ful�ll your

request. This behavior is mapped to the system by input user interfaces.

Input user interfaces are derived from the concrete input model by distributing concrete

input elements to interaction channels. Once a set of elements is delivered to a channel,

it is the channel's responsibility to �lter any user input it receives according to these

elements. This can be done in various ways. In case of pointing input, relevant areas can

be speci�ed, for voice input, a grammar for Automatic Speech Recognition (ASR) can be

de�ned, for character input, the known characters can be provided and for gesture input,

the set of gestures can be determined. This allows the matching of the received input

with the expected input and the removal of misleading or unexpected input. The goal

of this process is the creation of input events that are delivered to the fusion component

as has been illustrated in �gure 6.4 in section 6.3.

Input events are generated by the input channel, based on the received user input and

the underlying information from the concrete input model. They incorporate information

about the user, the used IR, channel and modality, the con�dence level, a timestamp as

well as the actually received input. The concrete input interactor, this input is assigned

to, is referenced if possible. Additionally, an input interface can also produce n-best

lists containing multiple possible inputs and interpretations (e.g. pointing in between

two objects or an ASR result) and a con�dence level. Unknown events are forwarded

if needed, as they might still be relevant for the fusion process, e.g. to improve the

robustness of the input handling. Once the input event has been created, it is forwarded

to the fusion component for further processing.

149

6. The Multi-Access Service Platform

6.6.2. Fusion Component

Based on the di�erent events that can be produced through the input user interface, the

fusion component matches the received input events to what is expected according to the

active input elements within the current state of the models and combines multimodal

input according to the complex interactors of the concrete input model. The goal of the

fusion is the mapping of the received input event to an executable element of the concrete

input model to trigger the event processing of the core models.

To realize this, the fusion initially checks if the received event can be directly mapped

to a concrete input element, in which case the executable element could be directly

triggered. If a matching is possible, but the event belongs to a complex input element,

expecting redundant or complementary input, additional input events have to be awaited,

to trigger the related execution. If the event can not be directly matched, information

from additional models is queried, to resolve the input event. The current distribution is

checked, to evaluate the concrete elements assigned to the origin channel, while context

and previous (partial) fusion results are also considered.

In addition the fusion can also deal with the handling of ambiguous input and reference

resolving (deictic and temporal), querying missing information, resolution of unclear

input (e.g. n-best results), and the handling of recognition errors to make the interaction

more robust. While unclear input and recognition errors can also be �ltered out by the

mono-modal pre-processing of the channel, providing such input to the fusion engine can

be helpful to support a lazy input interpretation. Querying missing input can happen

via mappings of the fusion model to the concrete interaction, triggering state changes in

the core models.

Three types of results of the fusion process can be distinguished:

• Finalized self-contained input, that can be directly mapped to an executable

element of a concrete input element and is directly forwarded by calling this exe-

cution element.

• Open input, that requires additional parameters to be processed, is related to a

complex input interaction object. Based on this object, the fusion engine deter-

mines the types of input that are missing to complete the complex object. Thus it

stores the received open object in the fusion model and waits for additional input

completing the element. After a given timeout or the reception of another distinct

open event the processing is interrupted and the object is removed from the fu-

sion model. Events to complete an open interaction can either be another open

150

6. The Multi-Access Service Platform

interaction in which case the complex input object would contain another complex

object, a self-contained event, that can be mapped to a sub-element of the complex

element or an ambiguous event, that matches the open slot of the complex object.

• Ambiguous input is produced whenever an input user interface allows to �nd two

internal representations for a single input event. In this case both interpretations

are provided to the fusion engine, which has to resolve the ambiguity. This can be

done based on context information, recent interactions from the interaction history

or additional events (e.g. waiting open input).

Storing the (partial) results in the fusion model allows the user interface model to react

to missing information. Mappings from the fusion model to other models allow the direct

in�uencing of the user interfaces by partial fusion results. A missing deictic reference

could e.g. result in highlighting all objects the user could point at.

6.6.3. Fusion Model

The fusion model allows the con�guration of the fusion component and acts as storage

for fusion results. It bridges fusion and the core models, which makes any partial results

of the fusion transparent and observable for other models and components. This bridges

the gap between the internal state of the fusion component and the state of the other

models.

Figure 6.8.: The fusion model, storing (partial) fusion results and con�guring the fusion
component.

The fusion model, shown in �gure 6.8. Besides the con�guration provided by the devel-

oper, it holds fusion results in form of input events. An event can either be a complex

event consisting of multiple single events, e.g. for complementary or redundant input, or

151

6. The Multi-Access Service Platform

a single event. Each single event consists of the originating user and channel as well as

a representation of the actual received input. Additionally, the concrete interactor, the

event has been assigned to, is referenced in the model. This allows the fusion model to

re�ect partial fusion results which can be mapped to the concrete interaction model for

semantic interpretation. Additionally, it allows other models and components to consider

(partial) fusion results e.g. to adapt the rendering of the UI.

6.6.4. Input Interpretation Sequence

The resulting input interpretation process based on channels, fusion component and

model is illustrated in �gure 6.9.

Figure 6.9.: Illustration of the sequence of the basic steps of the fusion process and the
relation of the involved models.

After performing any input via an interaction resource, the input is received via the

channel and preprocessed according to the input user interface. This results in an input

event provided to the fusion component (1), containing the received input and additional

information. Based on the received event, the fusion component is now responsible to

�nd the instance of the concrete input interactor this event addresses. It therefore checks

the current distribution (2) and the active input interactors (3). During the matching

process, references e.g. within voice input are resolved and information from additional

models like previous (partial) fusion results, the current interaction state and context

information (e.g. the interaction history) are considered (4). Once the element has been

matched it is stored as partial result in the fusion model, depicted in �gure 6.8 (5). This

fusion result combines the received input event data with details about the addressed

152

6. The Multi-Access Service Platform

concrete input interactor. If the fusion result can be matched to a concrete interactor,

the performInput method of that interactor is triggered and the received input is passed

(6). This triggers the processing of the input in terms of the modeled interaction means

and �nally results in a state change of the user interface and possibly a service call. If

the identi�ed concrete input interactor is part of a complex input interactor, awaiting

complementary or redundant input, the fusion engine processes further input to �ll all

de�ned slots (children) of the interactor before it activates the performInput method of

the interactor.

6.6.5. Summary

In summary the described fusion process allows the processing of multimodal events,

pre-determined by a designer. It can be compared with a frame-based slot-�lling process

and strongly utilizes the CARE relations de�ned in the concrete input model. Once the

received input events have been matched to expected input modeled in the concrete input

model, the corresponding executable elements of the interactors are called, triggering the

event processing within the model. This causes a state change within the model, resulting

in the triggering of additional events, which again in�uence the states of other models.

In this way information is transported from the concrete to the abstract and then to the

conceptual task and domain level and step by step translated into machine processable

input until it results in the execution of backend logic of the application and the entering

of the next interaction state of the user interface model. The derivation of meaning from

user input in the MASP is thus based on the combination of the model-based approach

with a fusion process, matching multimodal input events. While the underlying user

interface model allows to restrain the interaction and to interpret received input based

on the current state of the interaction, the fusion process takes the modeled information

into account while matching input events received from multiple interaction resources.

Before this underlying multi-level event propagation process is described in section 6.8,

the utilization of the adaptation model to adapt the user interface to di�erent contexts

of use is discussed in the next section.

6.7. User Interface Adaptation

The adaptation of user interfaces and interaction to context of use information aims at

improving the interaction experience and usability of the application by incorporating

153

6. The Multi-Access Service Platform

external information into the interaction. However, this requires capabilities to alter the

adaptation according to foreseen as well as unforeseen situations.

Figure 6.10.: The executable adaptation model.

In the following the adaptation model is described, allowing the de�nition of model adap-

tations that alter existing models based on available context information. The approach

is based on the adaptation metamodel and the executable nature of the meta-metamodel

and its de�nition modi�cation elements. Due to the capability of the metamodel to alter

elements of the realized models, the adaptation model is able to alter the structure of any

model of the user interface according to the de�ned adaptations. While this approach is

very powerful and allows the creation of an adaptation layer that can be de�ned without

154

6. The Multi-Access Service Platform

having to touch the underlying models, it has also to be deployed very carefully to not

break the application through careless adaptations.

The adaptation model de�nes manipulations to the provided user interface models and

is able to alter the design of the user interface. As de�nition modi�cation elements

of the meta-metamodel provide the means to adapt any kind of model (obeying to an

metamodel), the adaptation model references these elements to perform adaptations.

Context situations act as triggers to perform adaptations with multiple steps. The basis

for the triggers is provided by the context model, sensing context information and making

it accessible for the application. The utilization of the adaptation model, the executable

elements and the context information is described in the following. The adaptation

metamodel is depicted in Figure 6.10.

The model is composed of ContextSituations and Adaptations. Similar to Sottet et al.

(2007a) it has been de�ned according to the Event-Condition-Action principle, and thus

the ContextSituations act as triggers for the adaptations. An Adaptation consists of

multiple steps (represented by AdaptationStep elements) applied to model elements ref-

erenced in form of XPath-like queries (modeled as the rootQueries). Adaptation steps

reference executable elements (situation modi�cation or de�nition modi�cation), which

can be parametrized with variables (queries to model information, primitive values or

execution results). The elements of an adaptation step are described in detail in the

following.

• The target query represents the left hand side of the adaptation step by identi-

fying the nodes the adaptation has to be applied to. The query allows referencing

any element or set of elements in a model. In case of EMF-/XML-based models

XPath expressions are utilized to de�ne queries.

• The executable element provides the right hand side of the adaptation step by

referencing executable elements of the target model. When the adaptation step

is executed the speci�ed executable element is invoked upon the model element

referenced by the target query. The utilization of executable elements for the

modi�cation of models ensures a metamodel conform adaptation.

• Variables are used to parametrize the executable elements referenced by adapta-

tion steps. A Variable can be a query to some model elements (ideally relative to

the root query as this ensures reusability of the adaptation), a primitive variable

holding �xed values (for example a prede�ned integer) or a result of the execution of

an adaptation step. During execution the variables are evaluated and their values

are passed to the executable elements.

155

6. The Multi-Access Service Platform

• Any result, returned by the executable element of an adaptation step can be stored

in the result variable and reused in the following adaptation steps.

In summary, an adaptation of a model (or multiple models) is de�ned by the node(s)

to apply the transformations to and a description of the alteration of these nodes. The

alteration of the nodes is de�ned in form of de�nition modi�cation elements, that are

provided by the metamodels itself and are speci�c for each given metamodel.

Utilizing executable elements, de�ned by the metamodel of the model to adapt, ensures

compliance to the metamodel, as any applied modi�cation is well de�ned and by de�nition

conforms to the metamodel. It is thus the responsibility of the developer of the metamodel

to ensure that no operation performed by an executable elements leads to an invalid

model. This becomes even more important from the runtime perspective, where models

are adapted while being executed. The utilization of de�nition modi�cation elements

guarantees, that the model remains executable while being adapted. In combination

with executable models the execution of the adaptations at runtime also allows building

adaptations, that take the situation elements of the model into account. This allows

to �exibly react to the current state of the application to improve the quality of the

adaptation. The de�ned adaptation model additionally allows the creation of reversible

adaptations by the means of undo steps, which allows applying adaptations based on

a recognized situation and applying counter adaptations if a situation is not active any

more. This supports the de�nition of adaptations that ensure that the original state of

the application can always be reached again.

One remaining issue is that adaptations can lead to a dead end, i.e. a state that no

other adaptation can be applied any more. This also holds true for the application of

adaptations to an already adapted model which might be di�cult to foresee for the

designer. However, checking all applied adaptations (adaptations with an active context

situation) when applying a new adaptation allows reapplying them to the newly adapted

model if necessary. For performance reasons the a�ects relation has been introduced. It

denotes other adaptations that have to be reapplied after the application of the current

adaptation � of course only if their triggering context situation is still valid.

Performing adaptations is strongly connected to various other models, acting as target

for the adaptation, when being adapted or as trigger, initiating an adaptation. To trigger

the execution of an adaptation, the system continuously monitors the context model for

situations speci�ed as triggers. Once such a situation is detected, the execute method

of any related adaptation is called. This leads to the performance of the de�ned adap-

tation steps, calling the referenced de�nition modi�cation elements, which results in an

156

6. The Multi-Access Service Platform

alteration of the underlying user interface model. However, any model only provides

well de�ned alteration means (in form of DMEs), that can be utilized to manipulate

the model. Any changes to the models are re�ected in the user interface, as there is a

continuous synchronization between the state of the model and the presented interface.

Based on this mechanism, the user interface developer can de�ne adaptations to user

interface models, altering the user interface according to context information.

The adaptation model completes the overview of the architecture speci�c aspects of the

utilization of executable user interface models to create multimodal user interfaces and

handle them at runtime. To summarize the utilization of the approach, the next section

gives an overview of the interplay of all described elements.

6.8. MASP Event Propagation

In this section a complete interaction cycle within the MASP is described, based on an

exemplary con�guration. Starting with the registry of interaction devices, the request

of an initial user interface, the creation and delivery of that user interface to multiple

interaction resources, the perception of multimodal user input and its implications to the

state of the interaction and the �nal update of the presentation according to the user

input are illustrated.

After the MASP has been started and loaded the models of the available applications

de�ned in the core model, the context model is ready to receive context information via

the registered context providers. Any interaction device can now be found via UPnP or

connect to the client discoverer to register its interaction resources with the MASP. For

each registered interaction resource the MASP creates a channel allowing the direction

of output to that resource and the receiving of input from it in case of an input resource.

This approach has to be supported by the interaction device, which is ensured by a small,

device speci�c application installed during or before registration. For the following exam-

ple, a voice server registering itself by the MASP is assumed, which results in a Natural

Language Input Channel and a Natural Language Output Channel being established.

Additionally, a browser registers to the MASP, providing mouse, keyboard and a graph-

ical display. The browser opens an URL pointing to the device observer and receives an

initial web page, providing a initial MASP (Meta-)UI as well as some Javascript func-

tions allowing the direct processing of mouse events and keystrokes as well as the adding

and removing of HTML elements from the browsers underlying Document Object Model

(DOM) Tree. The initial UI allows the user to start any of the available applications as

157

6. The Multi-Access Service Platform

well as to con�gure the active IRs, the distribution, migration and personal preferences.

The user starts an application from the list and is provided with the initial view of the

application. Behind the scenes, the MASP registers a new session with the MASP core

model and sets the model in the initial state for this session. This activates the �rst

state of the task tree and the related domain objects. Initial service calls are executed if

any service task is present in the initial set of enabled tasks. Additionally, the abstract

interaction elements related to the interaction tasks are activated (state is set to active)

and �lled with the dynamic information from the domain model. The mappings between

the abstract interaction model and the domain model ensure that any element referencing

information from the domain model is immediately updated as soon as the domain model

object is altered. Based on the active set of abstract elements, the mapped concrete

input elements and the concrete output elements are activated (state is set to active).

As soon as these elements are activated, the add method of the distribution model is

triggered, scheduling the new elements for the distribution process. This in turn triggers

the distribution component to assign the di�erent interaction elements to the available

and active interaction resources, including the mouse, keyboard, screen as well as voice

input and voice output.

Once a possible distribution has been calculated, the state of the elements is set to

assigned. This triggers the arrangement of the concrete output elements by the shap-

ing component for each channel. Afterwards, these enriched elements are set to state

readyToDeliver and sent to the assigned channel, using its add method. This results

in the channel rendering each received element on the provided position. Similarly, the

input user interfaces are created from the concrete input elements and assigned to the

related input channels. For the browser based device, this results in a con�guration

of the Javascript to send only events for some selected keys, the system can handle in

the current state as well as the con�guration of events for certain relevant areas for the

mouse. A gesture input channel established to handle point and click gestures of the

mouse maintains all relevant coordinates of the clickable elements, including buttons and

the elements of a list presented on the screen. Additionally, the natural language input

channel is provided with a grammar identifying known utterances and the events each

utterance creates. The natural language output channel is used to provide the user with

a short greeting message.

Once all concrete interaction elements are rendered, the user can interact via speech,

mouse and keyboard. As �rst input the user utters �remove that element� and clicks with

the mouse on a list item. The system processes the voice message, which is translated

158

6. The Multi-Access Service Platform

to the selection of the remove option from the list of possible actions to carry out.

Additionally, the remove action requires the selection of an element from the list. Thus

the mouse click to the object is interpreted as a select event to that list item. Both events

are processed in combination by the fusion engine, arranging them in the right order to

actually perform the task. The fusion of the events thus results in the update of the

state of the item to Selected and afterwards in the update of the state of the �remove�

item from the list of possible commands to Selected. This update triggers a task done

event, setting the �remove item� task to done, which in turn triggers the execution of an

application task removing the item from the list stored in the domain model. After the

execution of the application task, the task tree iteratively moves into the same state as

before.

The update of the domain object now results in an update of the list presented on the

screen with the new content from the domain model. To perform this, the related choice

abstract interaction element is noti�ed about the change of the associated domain object,

relating in an update of the related concrete UI objects, related to the updated abstract

element. This way, the updated information is transformed into a format perceivable for

the user and �nally results in an update message transported to the user via the channel

that maps the update information to a DOM manipulation of the HTML page in the

browser.

6.9. Summary

In this section, the architecture and selected features of the Multi-Access Service Platform

have been described. Underlying the described approach is the goal to create Ubiquitous

User Interfaces for smart environments and to combine the architectural elements with

the concept of executable models and the utilization of the developed reference models.

It has been shown, that it is possible to combine the models with lightweight compo-

nents at runtime, to address issues like shaping, distribution, fusion and adaptation.

Based on the utilization of the set of models and the exploitation of mappings between

them, the state of the user interface can be continuously derived and conveyed to the

user. Presentation of the user interface and perceiving of interaction are realized by con-

necting independently addressable interaction resources via channels and continuously

synchronizing their state with the state of the model. Based on the description of ab-

stract interaction and concrete input and output facilities, the distribution of the user

interface as well as the processing of multimodal fusion are supported. Additionally,

159

6. The Multi-Access Service Platform

well de�ned hooks to alter the models via de�nition modi�cation elements, allow the

de�nition of adaptations of the user interface models to runtime needs, which makes the

design decisions of the user interface directly manipulable.

The described Multi-Access Service Platform realizes a comprehensive model-based run-

time environment for the interpretation of user interface models with a focus on Ubiqui-

tous User Interfaces and smart home environments. To evaluate the described concepts

and infrastructure, various demos and prototypes have been developed. In the next chap-

ter, two selected prototypes will be described, each evaluating di�erent aspects of the

concepts and architecture.

160

7. Evaluation

The Multi-Access Service Platform has been under development since 2003 and has been

revised multiple times. Consequently it served as basis for various demonstrations and

evaluations and supported the continuous testing and revising of ideas and concepts. This

chapter introduces two case studies and a validation against the original requirements to

evaluate the approach to build Ubiquitous User Interfaces.

Both case studies aim at the realization of the concepts developed throughout this thesis.

The �rst case study focuses on the realization of the identi�ed features from a user

perspective, allowing the creation of multimodal user interfaces that can be distributed

and adapted dynamically within a smart environment. While it realizes the necessary

infrastructure to do so, it has some open issues within the utilization of the underlying

user interface models and thus the �exibility of the approach. The prototype of the second

case study addresses these issues and sets a much stronger focus on the development of

Ubiquitous User Interfaces and the developer perspective. It comprises the described set

of metamodels, realized as executable models with the Eclipse Modeling Framework. This

allows the formal de�nition of user interfaces in terms of models and mappings between

the models. The major work for the di�erent case studies has been done within the

Service Centric Home project, which has been conducted with several industry partners

and sponsored by the German government. The projects main goal was the creation of

infrastructure for the development and deployment of assistive services for smart home

environments.

After a brief introduction of the Service Centric Home in the next section, the two

case studies and the developed applications are described. In section 7.4 the developed

approach is evaluated against the originally de�ned requirements and an overview about

how these requirements have been met is presented.

162

7. Evaluation

7.1. The Service Centric Home

The Service Centric Home (SerCHo) project has been running for three years, from 2005

- 2008, with a strong focus on the creation of an integrated platform for the development

and provisioning of services for future smart home environments. An important part of

the project was the development of integrated user interfaces in form of assistants, that

support the user with di�erent tasks at home and tools for their creation. Another ma-

jor aspect of the project has been the creation of the Ambient Assisted Living Testbed,

a smart home environment for evaluation-, testing- and demonstration purposes. Con-

sisting of four rooms (�gure 7.1), a kitchen, a living room, an o�ce and a studio, the

environment comprises numerous devices and appliances which are all interconnected via

(wireless) LAN connections. The rooms are equipped with multiple interaction devices

including touch screens, remote controls, gesture recognition devices, voice recognition

and camera systems, sketched in �gure 7.2. Cameras for gesture recognition and posi-

tioning of the user are located on the ceiling of each room as well as besides most of

the indicated screens. All screens are connected to a PC to be controlled and run a web

browser in the current setup. The available speakers are also connected to PCs running

SIP clients or RTP renderers for voice output. Voice input is currently realized via a

portable Sennheiser headset the user is carrying. In addition to the available interaction

resources the environment has been equipped with various sensors and controllable ap-

pliances. An Ubisense localization system is capable of detecting the users location with

an accuracy of about 30cm.

Figure 7.1.: The four rooms of the SerCHo Laboratory.

This environment served as development and evaluation testbed for all developed appli-

cations. Installed on the central home server, the Multi-Access Service Platform plays a

central role for the delivery and distribution of Ubiquitous User Interfaces for this smart

home environment.

163

7. Evaluation

Figure 7.2.: Ground plan of the lab with sketched interaction devices (screens (touch is
indicated by the �nger), keyboards, remote control, speakers (a microphone
is worn by the user) and PDAs), all connected to the home server running
the MASP.

Two typical scenarios within a smart home environment are the control of the home

appliances and the usage of additional services via the various interaction resources. In

the �rst case, the MASP provides a home control user interface that can be utilized to

switch appliances on and o�, check and set the room temperature or schedule events

like turning on the washing machine early in the morning. From the user perspective,

realizing such an application with a Ubiquitous User Interface has the advantage that it

would be available everywhere in the house. It could be controlled via various interaction

resources and multiple modalities. Multi-user facilities are required as every inhabitant

could use the home control application. In the second scenario, an additional application

provides enhanced services while exploiting the facilities of the smart home. A cooking

assistant supports the selection of a recipe, the search for available ingredients, handling

of a shopping list and the step by step instruction of the cooking process. While sitting on

the couch, the inhabitants can comfortably select a recipe using the TV and the remote

control. Checking the available ingredients afterwards, the ingredients list can be send to

the kitchen and read out via voice, while the family members search for each ingredient.

Missing ingredients are added to a shopping list, which is directly synchronized with

the mobile device of any family member, stopping at the supermarket on his way home.

He/She can then check every bought element o� the list, which is synchronized with the

home displays where the others can follow the progress. The people at home can also

add additional elements which directly appear on the list. When the groceries arrive,

164

7. Evaluation

cooking can begin and the assistant guides step by step through the process e.g. via voice

and graphical output. Interaction within the kitchen can be realized via voice, touch

and gestural input for the maximum convenience. Multi-application support allows the

integration of the home control within the cooking assistant e.g. to comfortably program

the oven. Additionally, a noti�cation when the meal is ready can be received anywhere

in the home and the oven can be turned o� remotely.

7.2. Case Study: Infrastructure for UUIs

In this case study, the �rst prototype of the MASP has been developed with a strong

focus on the quick realization of Ubiquitous User Interfaces within the home environment.

It was the goal to develop a central server, able to host multiple applications and make

these applications accessible via the available interaction resources. While this sounds

similar to the task of a web server, there are indeed some parallels that have been utilized

for the approach. Consequently, the MASP was developed as a web application inside an

Apache Tomcat Web-Server, running on the central home server. This allows the easy

connection of multiple clients via HTTP and supports the utilization of existing browser

and web server technology.

The utilization of user interface models for this approach was a requirement from the

very beginning. The implementation is thus based on a task model, a service model and

the de�nition of the interaction means. The presented user interfaces have additionally

been styled using a layout model, templates and CSS to beautify the demonstration

and embed them into the smart home. Several main concepts have been integrated and

evaluated within the demonstrations. This includes:

• a work�ow description based on the interpretation of a task model at runtime,

• exchanging information between (hierarchical) models for synchronization pur-

poses,

• accessing backend functionality via the service model,

• the independent creation and synchronization of voice and graphical interface,

• the utilization of channels to address various interaction resources,

• the creation of input events mapped to model alterations,

• context integration and consideration at runtime,

• the realization of di�erent layouting features e.g. based on the task information,

165

7. Evaluation

• migration and distribution features and the integration of follow-me functionality.

While this list is by far not complete, it gives an overview of the implemented features.

The �rst prototype had a strong focus on the realization of the basic concepts of Ubiqui-

tous User Interfaces to gain experiences with the infrastructural needs, required for the

realization of the features. It also served as a test and demo system allowing user studies

and evaluations.

Based on this realization of the basic infrastructure, assistive applications with Ubiq-

uitous User Interfaces have been implemented. This comprises a cooking assistant, an

energy assistant and a Meta User Interface. The developed 4-Star Cooking Assistant

(SCA) has been deployed in the kitchen of the testbed, supporting the search for recipes,

the seeking of and shopping for the required ingredients as well as the cooking process.

It provides voice interaction and can be used via the touch screen in the door of the

kitchen cabinet. A shopping list can be distributed to and synchronized with a mobile

device. The Smart Home Energy Assistant (SHEA) is based on the idea to visualize

the energy consumption of the devices in the smart home and remotely control them.

It also supports voice and touchscreen interaction, as well as utilization via a remote

control. As third application, the Meta User Interface (Meta-UI) can be controlled via

di�erent modalities and provides con�gurational access to MASP features like modality

control, migration, adaptation and distribution. All three applications can be seen in

�gure 7.3. A detailed description, illustrating the implementation details of the MASP

and the underlying concepts can be found in appendix A.

In summary, the created MASP infrastructure utilizes a task-, domain-, service-, and lay-

outing model, as well as rendering templates and interaction mappings to provide �exible

interaction and various con�guration possibilities for the user interface, by providing full

control for the application developer. Using an infrastructure of connected tuple spaces

in combination with interaction channels allows to convey the internal state of the ap-

plications to the outside world and the continuous synchronization between state and

presentation. The context model and a distribution algorithm, encapsulated in the dis-

tribution component, allow the �exible distribution of user interfaces and the integration

of context information. Additionally, a layouting implementation ensures that the shape

of the user interface is always properly adjusted to the used interaction resource. Mul-

timodality is supported by additional voice channels and rendering templates, providing

voice user interfaces.

166

7. Evaluation

Figure 7.3.: The 4-Star Cooking Assistant startscreen (left) the energy assistant called
from within the meta UI (right).

The major limitation of this case study was the limited expressiveness of the utilized

models. While a comprehensive infrastructure has been developed and proven to be

suitable for the development of Ubiquitous User Interfaces, the provided features are

limited to the task level of the user interface and su�er from the loss of semantics in

the used templates. While it is possible to de�ne very �exible templates, as HTML

and Javascript provide some �exibility per se, some limitation apply. The case study

introduced in the next section, thus addresses these issues and evaluates the utilization of

executable models to provide a more expressive de�nition of the user interface description,

resulting in a better adaptation, more detailed distribution possibilities and stronger

multimodal interaction.

7.3. Case Study: Executable UI Models

The second case study has been conducted with a much stronger focus on the utiliza-

tion of executable models and the strict realization of user interfaces via an EMF-based

implementation. The main concern of this part of the evaluation was to ensure that

executable models can be implemented in EMF and that the models play well together.

Concepts in the focus of this implementation were:

• the utilization of the complete set of models,

• the realization of the models as executable models,

• the interconnection of the models using mappings within the mapping model,

167

7. Evaluation

• the integration of models and external components,

• bootstrapping and model management within a model-based runtime system.

The developed system realizes these concepts with a set of di�erent models (task-,

domain-, service-, abstract interaction-, concrete input-, concrete output-, shaping-,

distribution-, fusion-, context-, adaptation-, MASP core-, and mapping model) that are

all connected via mappings. Based on the features realized in the �rst case study, the

same applications have been modeled using EMF models. While the work�ow is again

de�ned by a task model, this model, as well as domain- and service model, is now com-

pletely realized as an executable model in EMF. An interaction model describes the basic

interaction means and allows the derivation of user interfaces. The integration of context

information and the delivery of user interfaces to the interaction resources are again re-

alized via the channel-based distribution mechanism and the integration of the existing

context model. EMF has been chosen as modeling notation, providing a modeling and

code generation framework integrated into the Eclipse platform. It is widely used and

provides comprehensive tool support. Figure 7.4 shows a screenshot of the Swing-based

user interface of the cooking assistant (on the left) and a screenshot of the Eclipse editor,

showing a live view of the model at runtime. A detailed description of the implementation

can be found in appendix B.

From the developer's perspective, the utilization of executable models and the EMF

technology provides access to the models at runtime and makes the connection between

the model and the derived UI more transparent. Besides a life view of the runtime models,

changes to the models can be directly made at runtime and are immediately re�ected in

the UI. Utilizing EMF, provides generic editors for this purpose, but also allows the easy

creation of more powerful and customized editors for speci�c purposes. While executable

models and runtime development are still not able to hide the existing complexity from

the developer, they provide a big step towards making model-based approaches more

transparent and usable.

In summary, this second case study showed how the features of the EMF ECore model

support the implementation of models and their mapping to executable Java code. Dif-

ferent executable models have been implemented and connected via mappings to create

a UI model, observable at runtime. Additionally, layouting- and context-model as well

as a basic implementation of the adaptation model have been realized. Reusing the dis-

tribution component and the concept of channels allowed the creation of user interfaces

and the evaluation of the approach. The developer's perspective has been studied and

transparency and runtime development are supported. However, while the approach is

168

7. Evaluation

promising it does not yet ensure the same quality of the derived user interface as the

application of rendering templates with more speci�c user interface code used in the �rst

case study. This is mainly caused by the not yet fully developed interaction model, which

is the major element for further extensions of the implementation. Additionally, more

powerful tools and a mature development methodology are needed to better support the

developer.

Figure 7.4.: Screenshot of the graphical user interface of the recipe �nder step of the cook-
ing assistant, that is derived from the executable model. To the right, a view
of the Eclipse environment, monitoring the model at runtime, is depicted.

7.4. Requirements Validation

After the illustration of the two case studies and their results, this section validates the

developed concepts with respect to the features of UUIs and against the original require-

ments identi�ed in section 3.5.2. Besides, shapeability, distribution, multimodality, and

adaptation, architecture- and UIDL concepts are discussed.

7.4.1. Shapeability

The shaping of the user interface is required to re�ect IR capabilities and create an

appropriate user interface even for a con�guration unknown at design-time. Besides

automatic shaping, special optimization for prede�ned settings should be supported.

169

7. Evaluation

Throughout the work, the adaptation of the shape of a user interface has mainly been

addressed for graphical output user interfaces, which it is most relevant for. As described

in section 6.5, the developed architecture comprises a shaping component, that adapts

the layout of the user interface to the needs of the used interaction resources. A shaping

model de�nes statements, relating model elements to properties of the presentation in

terms of containment, order, size and orientation of the elements. At runtime these

statements are translated to constraints that are solved to determine the arrangement

of the user interface elements within the graphical presentation. The boundaries of

the possible shaping are set by the user interface models in terms of relations between

the elements, de�ning temporal and spatial constraints as well as multimodal CARE

properties within the complex interactors.

Besides graphical output, additional temporal constraints can be considered for voice

input and output. On top of the means to shape the user interface, provided by the

layouting mechanism and the complex interactors, an adaptation model has been created

to address more complex adaptations. It is described in section 6.7 and allows altering

the underlying user interface model according to well de�ned adaptation rules. These

alterations are expressed using the de�nition modi�cation elements of the metamodels

and are assembled into a dedicated adaptation model, which de�nes speci�c context

information as trigger for these adaptations. Di�erent aspects of the context of use,

including e.g. the screen size of the used interaction resource, location or user preferences

can be incorporated into this process.

7.4.2. Dynamic Distribution

The dynamic distribution of the user interface across interaction resources was one of the

fundamental requirements of the presented approach. It provides the basis to address

multiple modalities via multiple interaction resources and to �exibly incorporate any

interaction resource within a smart environment. While input and output IRs should

be handled independently, on a semantical level, the input and output UI elements are

strongly interconnected. The synchronization of (distributed) presentation with the in-

ternal state of the user interface models as well as the synchronization of multiple pre-

sentations with each other were required to be supported.

Dynamic distribution has been realized by the combination of the distribution model with

the distribution component (section 6.4) and supported by the underlying interaction

model (section 5.4). Additionally, the independent handling of interaction resources via

170

7. Evaluation

context model (section 6.2) and interaction channels (section 6.3) is crucial to handle the

distribution at runtime.

The basis for the distribution is provided by the interaction models, separating abstract

interaction as well as concrete input and concrete output. This provides the required

separation of input and output, while still keeping the semantic connection via the ab-

stract interaction. Additionally, the de�ned atomic and complex elements identify the

main building blocks of the user interface that can be independently distributed. Besides

these elements, the developed approach allows the consideration of task relations as well

as CARE properties, temporal and spatial relations as constraints for the distribution.

Distribution means are de�ned by an additional distribution model, that holds distribu-

tion con�gurations. These con�gurations are created by user, application or the system

and are incorporated into the distribution process in this order. Once the distribution

has been calculated for all currently active elements of the user interface model, the ele-

ments for each interaction channel are passed to the shaping component for arrangement

and styling. Afterwards, the channel takes care of their suitable presentation on the

connected interaction resource. While the elements are presented, any state changes are

continuously communicated to the interaction resource and re�ected by the presentation.

Providing the capability to store the current distribution within the distribution model

also allows the consideration of the current distribution con�guration within other models

at runtime. This allows to reference the current distribution con�guration within the

user interface to e.g. direct the attention of the user to a speci�c interaction resource

or modality. As the developer can not foresee any distribution of elements at design-

time, variables, that can be �lled e.g. with human understandable names of interaction

resources at runtime, address this issues. The additional issue of resolving such references

used by the user, is addressed by incorporating such variables not only into the output

user interface, but in the input user interface as well.

Major aspects of the distribution of user interfaces have been evaluated in the two case

studies and during experiments with the developed system in the Ambient Assisted Living

Testbed. The realized Meta-UI e.g. allows to freely con�gure the distribution on a task

basis. However, using this features is rather complex and not yet suitable for the end-

user. A more suitable approach seems to be the embedding of distribution features within

the applications as for the shopping list of the cooking assistant.

171

7. Evaluation

7.4.3. Multimodality

A main requirement of the approach was the utilization of multiple modalities to support

robust and natural interaction. From the perspective of the user interface description,

this required the de�nition of modality independent aspects as well as modality and

device speci�c aspects. Additionally, the �exible combination of interaction resources

and input and output modalities required the separation of UI parts (�ssion) and of

input and output within the UI description. Fusion is a major aspect to process user

input from di�erent modalities, which can be supported by the de�nition of modality

relations and semantics within the user interface description.

Multimodal interaction is deeply integrated as a key feature and addressed by various

aspects in the developed approach. Initially, the identi�ed architecture provides strong

means to address input and output independently and to integrate interaction resources

independent of the connected devices. This results in the ability to �exibly utilize mul-

tiple modalities, based on the idea of distributing interaction elements across various

interaction resources at runtime (section 6.4). The underlying �ssion of the UI build-

ing blocks is supported by the separation of modality independent task- and abstract

interaction model and modality speci�c concrete input and output interaction model on

the UI description level (section 5.4). The handling of the UI building blocks and their

assignment to interaction resources is then handled by the distribution component via

the channels (section 6.3).

A fusion component (section 6.6), receives the user input events from the channel and

can apply di�erent fusion mechanisms. The utilization of this component is strongly

connected to the user interface description, which de�nes interaction semantics as well

as the intended relations between the modalities in form of the CARE (complementary,

assignment, redundancy and equivalency) properties. This strongly supports the creation

of input user interfaces, that pre-process the user input with respect to the current

interaction goals of the system. The component is supported by a fusion model, that

stores partial fusion results to make them available to other models and e.g. allow their

re�ection within the user interface.

The utilization of multiple modalities has also been evaluated within both case studies,

setting a focus on the combination of graphical output with mouse, keyboard, touchscreen

and voice interaction. It has however to be noted here, that the application of the CARE

properties at runtime has not been evaluated in detail yet within the presented approach

(but e.g. in (Bouchet et al., 2004)). The realized case studies mainly supported equivalent

input, reducing the need for fusion and semantic input processing.

172

7. Evaluation

7.4.4. Adaptation

Supporting interaction within smart environments with changing contexts of use, also

lead to the need to adapt the interaction to dynamically re�ect user preferences and

capabilities, interaction resource capabilities and the environment. A major aspect to

support adaptation was the utilization of comprehensive UI models, which explicitly

re�ect the state of the interaction at any point in time. This also supports the persistent

handling of this state as well as of user input and output. The handling of context

information, including the available interaction resources, is crucial to trigger the required

adaptation steps.

Adaptation has been de�ned as the possibility to alter the con�guration of the user in-

terface features at runtime (section 2.3.7). It is addressed by the various components in

terms of the alteration of the shape of the user interface according to changing contexts

or con�gurations, the �exible distribution of the user interface, that can be altered at

runtime to support migration of partial or complete user interfaces, and the dynamic

utilization of interaction resources and modalities. Additionally, an adaptation model

(section 6.7) allows the utilization of executable elements of the models to alter their

structure and adapt them to the context of use. The utilization of the de�nition mod-

i�cation elements (section 4.1) ensures that the performed adaptations conform to the

metamodel of the altered model and do not render the model unusable. The utilization

of a central adaptation model supports the coordinated alteration of multiple models to

ensure consistency across the models.

The utilization of executable models (section 4.1) also ensures the explicit availability of

both, state as well as transitions between states within the user interface models. Design-

time de�nitions in form of de�nition elements are coupled with runtime information in

form of situation elements and transitions between runtime states in form of executable

elements. This explicit state information is also fundamental for the utilization of the user

interface models to convey the current state of the interaction and de�ne the behavior of

the user interface. Additionally, it allows to ensure persistence on each of the di�erent

abstraction levels of the user interface. While the task level (section 5.1), stores the

completion of any task, the continuous synchronization of the interaction model (section

5.4) with the actual user interface and the direct processing of any input, also ensure

that interaction with any interactor is persistently stored. Dependent on the capabilities

of the channel and the realization of the input user interface, the approach is also open

for the storage of any atomic interaction, e.g. a typed character in a form �eld, as this

can be directly processed by the interaction model as well.

173

7. Evaluation

Context and device management are addressed by the context model (section 6.2) and

the utilization of channels to directly address any interaction resources. The executable

context model comprises the de�nition of the available context information, which can

be used for the speci�cation of the user interface models at design-time, as well as proxy

elements, that integrate the actual context sensing systems into the execution process at

runtime. An EMF-based context model has been developed for this purpose. It allows

to handle information about users, location, interaction resources and the established

channels and integrates location provider and device discovery services to illustrate the

usage at runtime.

Some adaptation capabilities have been realized in both of the conducted case studies.

While case study one supported distribution, migration and adaptive user interface lay-

outs, case study two additionally focused on the utilization of an adaptation model to

alter user interface models at runtime. An explicit interaction state and the persistent

storage of this state and any user input has been supported in both case studies.

7.4.5. Architecture Concepts

The developed runtime architecture (chapter 6) is based on the concept of executable

models (chapter 4) and the de�ned metamodels (chapter 5). Using user interface models

at runtime allows incorporating design information into the interaction. Making these

models executable adds information about the state and the evolution over time and

makes the model dynamic. From the perspective of the architecture (and of the devel-

oper), this allows to continuously observe the state of the model and to trigger state

transitions by stimulating the model with external input. The main task of the architec-

ture is to translate the internal state of the model into a perceivable user interface and

to map the input received from the user to stimulations of the model that trigger state

changes.

The developed architecture provides components to bridge between the model state and

the outside world (section 4.2). Components integrate means to translate between model

and outside world, e.g. distribute the UI elements to interaction resources or fuse user

input to stimulate the model and create the related response. The channels, shaping,

distribution and fusion work in this manner, based on the handling of the available

interaction resources by the architecture. Additionally, the architecture exposes APIs

(section 6.1) to access the models and realizes the bootstrapping and management of

the executable user interface descriptions and provides the basic means to integrate the

proxy elements into the user interface descriptions.

174

7. Evaluation

7.4.6. UI Concepts

The developed executable model concept has been applied to various metamodels through-

out this work, to describe the di�erent user interface aspects via specialized models on

di�erent levels of abstraction. Separating task (section 5.1) and domain (section 5.2),

abstract interaction (section 5.4.1) and concrete input (section 5.4.2) and output (section

5.4.3) provides the basic means to support the de�nition of modality and device indepen-

dent as well as modality and device speci�c interaction capabilities. Having these models

available at runtime makes the design process and its underlying decisions completely

accessible and understandable and supports the transparency of design decisions. The

connection of the di�erent models to a complex net via mappings (section 5.5), supports

the information exchange at runtime as well as powerful means to interpret user input

and derive user interface presentations. The model thus de�nes the structure of the an-

ticipated user interface as well as its behavior over time, allowing the observation and

stimulation of the model of the system under study (the user interface).

The concept of proxy elements (section 4.2) has been integrated into the models to allow

the integration of external processes into the modeled domain. Based on these elements,

the runtime integration of the functional core is provided by the utilization of the service

model (section 5.3). This allows the de�nition of service calls to backend functionality

via di�erent technologies like Java methods or web services. Proxy objects reference

the external services and realize service calls that are triggered by application tasks.

Parameters can be passed from the domain model, where results are also stored. The

service model has been extensively used in both case studies to equip the developed

applications with actual functionality. Within the Meta-UI, the service model is used to

connect the MASP API to the Meta-UI frontend. Similarly, the context model (section

6.2) supports the utilization of proxy elements to integrate sensor information and context

observers.

7.5. Summary

In this chapter, two case studies, illustrating the usage of user interface models at runtime

to create Ubiquitous User Interfaces and a comparison of the development results with

the initial requirements have been presented. While the �rst case study focused on the

foundations of the basic infrastructure and the creation of quick examples to show the

potential of Ubiquitous User Interfaces, the second case study aimed at the realization

175

7. Evaluation

of executable user interface models to address shortcomings of the expressiveness of the

models used in the �rst study. In combination, the two case studies complement each

other and evaluate the infrastructure as well as the application of executable models.

Di�erent concepts like the levels of abstraction of the models, the exchange of information

between the models, the multi-level interpretation of user input and the consideration of

the internal state of the models to derive the user interface have explicitly been targeted

in both approaches. Runtime development and tool support have been addressed by the

second case study, but were not the main focus of this work. Additionally, the validation

against the requirements showed that all major requirements have been addressed in the

concept. However, some open issues as the expressiveness of the interaction models, the

seamless integration of a fusion component as well as the interconnection of distribution,

fusion, and adaptation within the implementation still have to be further elaborated and

evaluated in detail. The next chapter concludes this work and points to future work to

address the remaining open issues.

176

8. Conclusion

In this work, the concept of Ubiquitous User Interfaces to realize interaction within smart

environments has been investigated. UUIs combine shapeability, distribution, multi-

modality, shareability and mergeability as �ve main features to support human-computer

interaction. Underlying these features is the observation, that �ve main dimensions drive

the interaction within smart environments: multi-device, multi-modal, multi-user, multi-

application, and multi-situation. This leads to a vast multiplicity of variants that a UUI

has to cover. Aiming at the realization of UUIs for smart home environments, a lack of

support for UUIs has been observed within the current state of the art. Three major

shortcomings have been identi�ed within the scope of this thesis:

1. the lack of a comprehensive approach to re�ect the close interconnection of the

features of UUIs,

2. a low level of integration between UIDLs and the results they produce at runtime,

3. some missing concepts of UUIs that were not supported by current UIDLs.

To fully address these shortcomings two interconnected elements have to be considered.

The user interface description language, which allows the de�nition of user interface mod-

els to express the interaction means, and the architecture, which is needed to support

the interaction handling at runtime and the mapping of the model to the actual user

interface. This leads to the combination of an architecture for the handling of user inter-

action at runtime, with the concept of executable models to express the dynamic nature

of UUIs. Based on a reference set of metamodels, the Multi-Access Service Platform

integrates the metamodels and the underlying concept of executable models within the

runtime architecture. The approach has been evaluated in two case studies, addressing

the realization of the runtime system to develop and deploy UUIs in a smart home en-

vironment and the utilization of executable models to provide the means to express the

dynamic nature of such user interfaces.

In summary, the main contributions of this work are:

178

8. Conclusion

the utilization of executable models to express the dynamic aspects of UUIs: Exe-

cutable models have been identi�ed as possibility to express the dynamic nature

of UUIs, especially important for their runtime management. Consisting of static

de�nition and dynamic situation elements, combined with construction means and

execution logic in terms of de�nition modi�cation and situation modi�cation el-

ements, executable models combine syntax and semantic interpretation within a

single model.

the application of the concept of executable models to a set of reference metamodels:

The concept of executable models has then been applied to de�ne a set of refer-

ence metamodels for UUIs. These metamodels have been designed to express the

interaction means with a focus on the utilization of the models at runtime to con-

tinuously describe and re�ect the state of the user interface and thus the interaction

between system and user. In this sense, they de�ne the internal representation of

the interaction means of the system. Mappings between the di�erent models (and

their concepts) link them together and facilitate the exchange of (state) informa-

tion at runtime. The developed reference metamodels comprise the application of

the executable models to state of the art concepts like task and domain model as

well as an extended version of an interaction model, re�ecting the requirements of

adaptable distributed multimodal user interfaces.

the combination of metamodels with the architecture to create UUIs: The Multi-Access

Service Platform has been presented as an approach to combine the concept of ex-

ecutable models, and its realization in form of the reference metamodels, with a

runtime architecture. The MASP makes extensive use of the execution capabili-

ties of the developed user interface models and projects the internal state of the

model to the outside world to create Ubiquitous User Interfaces. It derives �exible

presentations from the models and interprets user input according to the de�ned in-

teraction means. The concepts of the Multi-Access Service Platform and thus the

architecture, the executable models and the reference metamodel concepts have

been extensively evaluated in two conducted case studies.

The described contributions of this work focus the strong connection of UIDL and the

developed user interface models with the realization of user interfaces at runtime. Un-

derlying this approach is the observation, that each system providing UUIs would be

in need to maintain an internal representation of the user interface (ideally on multiple

levels of abstraction and with various details) to present interaction means to the user

and interpret the received user input. Utilizing the design model of the user interface for

179

8. Conclusion

this purpose has the advantage, that all taken design decisions are still available (and

even revisable) at runtime. Thus, formalizing the design model and extending it with

interpretation semantics has been evaluated as well suitable approach, to handle the

increasing complexity of such user interfaces.

Reconsidering the user and developer perspective to the problem, the combination of

user interface models with the runtime system, allows to focus on the user interaction

and enhance it by providing a better knowledge about the concepts of the anticipated

interaction instead of just a �nal user interface. From the developer's perspective, the

utilization of executable models combines the expressiveness of the models with their exe-

cution semantics, making the model interpretation and behavior visible to the developer.

Additionally, the dynamic nature of the models and the interconnection via mappings

facilitates the de�nition of the behavior of the user interface and thus its dynamic aspects

instead of providing a static snapshot of the system. Allowing to inspect and manipulate

the underlying models at runtime provides the basis for new development approaches

and makes the underlying processes more transparent.

The realization of the developed concepts within the two case studies, di�erent demon-

strations and implemented applications, provided deep insights into the details and open

issues of the presented approach. The results have been build and evaluated as part of

the Service Centric Home project and deployed in the Ambient Assisted Living Testbed

at the Technische Universität Berlin. Additionally, various artefacts and the prototypes

of the case studies can be found at http://masp.dai-labor.de. However, the work on this

thesis and the application of the results to the development of UUIs within smart home

environments also revealed several open issues and possibilities for future work.

8.1. Future Work

With respect to the state of the art and the identi�ed shortcomings and requirements,

some issues beyond the scope of this work remain to be explored within future work.

They range from multi-user and multi-application scenarios to the integration of natural

language processing and tool development.

From the perspective of this work, the next logical step would be the application and ex-

tension of the developed approach to support multi-user and multi-application scenarios.

While the developed approach is able to host multiple applications and support multiple

users, the information exchange between these instances is not yet supported. Merging

applications to share interaction resources or support simultaneous usage by multiple

180

8. Conclusion

users requires con�ict resolution strategies and concepts for user interface sharing and

integration of application spanning UI elements, which have also to be re�ected within

the underlying models. To further extend the approach to real world scenarios, these

aspects are essential.

Utilizing the architecture in smart environments also raises the issue of system perfor-

mance and of distributing not only the user interface across interaction resources, but

also the architecture across computing resources. As a major aspect of ubiquitous com-

puting, the distribution of resources is crucial. Computing resources entering and leaving

environments, mobile computing and heterogeneous environments lead to the need to ex-

pand the currently centralized approach to support multiple servers, raising coordination

issues and requiring the application of distributed computing best practices. The service

model has to be extended to cope with a broader range of dynamically appearing services

that might be unknown at design-time.

While the developed Multi-Access Service Platform has been evaluated within a smart

home environment and utilized to build several applications, it has put a main focus on

the runtime issues raised by the realization of UUIs. The built applications have been

tested and evaluated. However, yet they lack an underlying concept and best practices

for the design of Ubiquitous User Interfaces. As the technology to create UUIs has

just been developed there is now the need to explore how the features can be optimally

deployed to address the users' needs. Similarly, the realization of UUIs is a big challenge

for application developers and raises an urgent need for a mature set of tools to build

and evaluate models for UUIs. While the implemented possibility to observe the state of

the models at runtime via the Eclipse EMF is a �rst step, visualization techniques and

optimized editors yet have to be developed. Stronger support for the creative aspects of

user interface development has to be added and limitations of the developed metamodels

have to be overcome.

Additional aspects like the integration of natural language processing facilities or ex-

tended distribution and fusion algorithms go hand in hand with the improvement of the

produced UIs and the available development tools. Integrating more aspects from ex-

isting UIDLs into the presented reference models, uniting existing UIDLs, enriching the

net of models with extended world knowledge, best practices or design guidelines and

enhancing the capabilities to project the internal state to the presented UI can make the

developed interactive systems more robust and natural.

181

8. Conclusion

8.2. Concluding Remarks

In this work the utilization of user interface models at runtime to create Ubiquitous

User Interfaces has been investigated to address interaction within smart environments.

Aiming at the integration of model-based technologies with runtime aspects, a meta-

metamodel of executable models, integrating syntax and semantic in a dynamic model

that evolves over time, has been presented. An architecture integrates a net of executable

user interface metamodels to express the internal state of a Ubiquitous User Interface

and provides means to convey this state to the user. User input is processed and mapped

onto the model, stimulating internal state changes. The developed concepts have been

implemented and evaluated in two successful case studies.

The work showed that executable user interface models can be deployed to cope with

the increasing complexity and raising needs for �exible and adaptive user interfaces in

smart environments. It also paves the road for the development of new methods for user

interface design and development by making the internal state of interactive systems

observable and accessible. Connecting multiple models into networks and bridging these

networks and the world outside of the modeled domain has the potential to strongly

in�uence the utilization of models within the design and implementation of any kind of

software, interactive or not.

Runtime models make internal state and processes more transparent and blur the bound-

aries between design- and runtime. This opens the doors for understandable software and

end-user development. It has the potential to take user interface design and development

from an artistic process to a well-structured engineering approach and contributes to the

idea to make software accessible everywhere, at everytime and for everyone. However, a

crucial issue for the acceptance of model-based user interface development is to overcome

the constraints the models pose to the developer. While �rst steps have been taken, it

is still a long way until the creative output of user interface designers can be directly

mapped to formal models processable by computers.

182

A. Case Study: Infrastructure for UUIs

The main focus of this case study was the realization of UUIs within a smart home

environment. The challenge was thus to develop an architecture, implementing the de-

veloped concepts. However, initially a focus was set on the technical realization of the

infrastructure relevant aspects of the approach, namely shaping, multimodality, migra-

tion and distribution, and context integration. While the utilization of the core models

was an important aspect, it has been limited to a task-, domain-, service-, and layouting

model as well as the integration of a context model. In the following the basic infras-

tructure underlying the concept is illustrated. Afterwards, the implementation details

of the 4-Star Cooking Assistant and the Smart Home Energy Assistant are explained.

Both assistants aim at multimodal interaction in smart home environments and support

various aspects of UUIs. Additionally, the implementation of the Meta User Interface

to provide full control over the infrastructure is explained. The initial cooking assistant

example is utilized as main example and the two additional examples are described to

illustrate selected aspects.

A.1. The General Concept

The development of MASP applications is strongly based on a task model, described in

the CTT notation, that de�nes the work�ow of the application, and a domain model, that

de�nes the objects manipulated by the de�ned tasks and thus the internal state of the

application. Each interaction task references objects de�ned in the domain model as well

as a user interface description allowing the creation of partial user interfaces for each task.

User interface descriptions are realized as velocity templates (http://velocity.apache.org/)

allowing the creation of user interfaces in various output formats, based on the objects

referenced in the related task. Application tasks ensure the execution of service calls to

the backend logic.

Pursuing the utilization of user interface models at runtime, the developed prototype is

based on the utilization of tuple spaces to store the model information. Each space stores

184

A. Case Study: Infrastructure for UUIs

a single model and events between the spaces allow the synchronization of the stored ob-

jects. Based on this technology, a system of distributed components, exchanging informa-

tion about the state of each component can be realized quickly. The content of the tuple

spaces is initially con�gured via spring con�guration (http://www.springsource.org/),

allowing the de�nition of java objects via an XML description. The overall architecture

is illustrated in �gure A.1 and explained in the following.

Figure A.1.: Illustration of the architecture of the �rst prototype of the MASP, allowing
the initial realization of Ubiquitous User Interfaces for smart home environ-
ments.

Figure A.1 (1) shows the parts of the user interface model. During the user interface

creation process in a �rst step the Enabled Task Set (ETS) is derived from the task

model and the related objects and user interface descriptions are loaded. According to

the set of available interaction channels the set of tasks is distributed to the channels

(�gure A.1 (2)). A distribution con�guration that can be provided externally or by the

application itself, de�nes which tasks are distributed to which channels. For rendering

purposes, multiple templates are provided for each task, supporting the multiple types

of interaction resources. The appropriate template is selected accordingly to the type of

the used channel. The manipulation of the distribution by the user or the application

allows to send single tasks to di�erent channels. Finally, task, objects and the selected

rendering template are pushed to the selected delivery channel (�gure A.1 (3)). As soon

as the channel receives the request to deliver a (partial) user interface to the connected

resource, the velocity template is rendered, producing the �nal user interface based on

the passed objects de�ned in the related task. The result of the rendering process is then

delivered to the interaction resource, presenting the UI to the user. Interaction between

system and user takes place in two ways:

1. Changes to the models are communicated as UI updates via the channels and alter

the presented UIs. The annotation of the related objects in the task tree allows

185

A. Case Study: Infrastructure for UUIs

the relation of objects to templates as well as the implementation of an observation

mechanism for the domain model, ensuring that each UI element, that references

a domain object, is updated as soon as the domain object changes.

2. User input is pre-processed via the channel, interpreting the input to create a

channel event from it. This channel event is then translated to a processable

MASP event via interaction mappings. Each of the channel events, received from

the channel is mapped to a MASP event, with the goal to re�ect the user input

within the user interface model.

In the implementation, user interaction is communicated via the three di�erent channel

events (focus, selection and input) shown in table A.1.

Event Explanation

FocusEvent Triggered, when the user focuses an element, e.g.
moves the mouse over a button.

SelectionEvent Triggered, when the user selects an element, e.g. say
a speci�c word.

InputEvent Triggered, when the user enters information, e.g.
writes text into a text �eld.

Table A.1.: Supported channel events for input received from the channels.

To provide meaning to these events from the system perspective and enable them to alter

the underlying application model, channel events are translated to internal MASP events.

These internal events comprise alterations of the task model (taskDone) or alterations of

domain data (DSWrite) and are shown in table A.2.

Event Explanation

DSWrite An object in the domain storage is changed. A DSWrite
event contains a query to the object, which has the form
ObjectID(.FieldID)*, which speci�es where to put the
new value. It is possible to replace not only whole
objects, but also only parts of them.

TaskDone The user has �nished performing a task, which results in
marking the task as done.

Table A.2.: Supported MASP events to alter the internal representation of the interaction
state in terms of task and domain model.

The Mapping of channel events to MASP events and thus alterations of the underlying

186

A. Case Study: Infrastructure for UUIs

models is de�ned according to the interaction mappings, provided by the user interface

developer. A selection of such mappings is shown in table A.3.

The transformation of user input from distinct events occurring in the UI to manipula-

tions of the underlying mappings nicely re�ects the concept of user input interpretation

according to model state and given interpretation means. Any changes to the underlying

models can then be re�ected in the presented UI, even simultaneously across distributed

interaction resources and multiple modalities. The update of the related UIs is realized

via the utilization of code snippets, that are sent to the remote device and then inte-

grated into the DOM Tree. In both cases (input and output UIs) the execution of the

template creates a code snippet (a <div> tag, in case of HTML and a <form> tag in

case of VoiceXML). For HTML, using Javascript, initially deployed to the browser when

the channel is established, allows adding <div> tags to the displayed web page initially

or replacing existing <div> whenever information in the model changes. The layout

is in this case de�ned by Cascading Style Sheets (CSS) allowing the de�nition of the

properties of the <div> tags, e.g. the position. The position can either be determined

by the interface developer or be calculated by a layouting algorithm, which allows the

dynamic positioning and resizing of the elements when distributing the UI. The layout-

ing model, serves as basis for the calculation of the arrangement of the elements in the

�nal presentation. It de�nes layouting constraints based on the de�ned tasks and thus

allows the �exible de�nition of user interface layouts, that adapt to context changes and

distribution. The input channel allows the processing of input by delivering Javascript

code executed by the browser that creates the related events.

The described implementation aims at the creation of multimodal user interfaces, dis-

tributed across multiple interaction resources. Resources currently supported are (touch-)

screen, mouse and keyboard - in this case a web browser is used as integration platform

providing access to the resources via Javascript functions - as well as voice input and

output - in this case Dragon Natural Speaking as well as a Loquendo and a VoiceGenie

server are used - and gesture based input. Gesture based input is realized via a small

device, that allows the interpretation of simple gestures detected by an accelerometer.

Any interaction resource can thereby be manually registered, by calling a dedicated URL

or be discovered using UPnP.

In the following, the utilization of the described platform for the development of UUIs

for smart home environments is illustrated based on three examples, the 4-Star Cooking

Assistant, the Smart Home Energy Assistant and the MASP Meta User Interface.

187

A. Case Study: Infrastructure for UUIs

Mapping Input Output Explanation

SelectionToTaskDone SelectionEvent TaskDone A selection of a UI element
causes a task to be marked as
done.

InputToDSWrite InputEvent DSWrite The user enters some input,
which is then written into the
domain storage.

FocusToDSWrite FocusEvent DSWrite The user focuses an element
(e.g. by moving the mouse
pointer over it), which is then
written into the domain
storage (e.g. to cause a
highlighting of the related
element).

SelectionToDSWrite SelectionEvent DSWrite The user selects a UI element
and the identi�er of the
element is written into the
domain storage. This mapping
can be used to store the
information which element has
been selected and use it for
output synchronization or
highlighting.

DSModify SelectionEvent DSWrite The user selects a UI element,
which leads to the
modi�cation of an object from
the domain storage. The
initial SelectionEvent only
triggers the mapping, but has
no further in�uence on it. The
mapping contains a
transformer which is
responsible of modifying the
value of the domain object.
When the mapping becomes
activated, the value of the
object is read from the
domain storage and passed to
the transformer. The
transformer modi�es the
object and updates it.

Table A.3.: Mappings to transform channel events into MASP events.

188

A. Case Study: Infrastructure for UUIs

A.2. 4-Star Cooking Assistant

The 4-Star Cooking Assistant (SCA) provides multimodal cooking instructions based

on four main interaction steps. In the �rst step the assistant welcomes the user and

introduces three options to select a recipe: a recommendation of the system, the recipe

of the cooking show last seen on TV and a customized search. Selecting the �rst two

options takes the user directly to the con�guration of the number of persons, while the last

option guides the user to the recipe search, allowing the provisioning of search criteria.

The selection of the option as well as the input of the search criteria can happen via

mouse and keyboard as well as via the touch screen or voice input. Output is provided

via the screen and supported by voice hints.

After selecting the number of persons in the next step the user is taken to the list of

needed ingredients according to the selected recipe. The goal of this interaction step is

the creation of a shopping list based on the identi�cation of the available ingredients.

The system supports di�erent means to identify the ingredients in this step. Available

ingredients can be provided by the backend system, allowing the incorporation of dif-

ferent mechanisms like RFID or camera-based object recognition. However, from the

perspective of this work the active provisioning of information by the user is of greater

interest. Based on the list of ingredients the system now queries each ingredient, allowing

the user to check the availability and then communicate either via voice or a touch on

the screen if that ingredient is available or not. Additionally, the ingredients list can be

moved (migrated) to a mobile device to carry it around, e.g. into the cellar.

Based on the availability of the ingredients, a shopping list is created, which can also

be completed with additional items via free text input (voice or optionally keyboard).

Dependent on the availability of a mobile device, belonging to the current user, the

shopping list can be cloned (migrated) to this device, while still keeping interaction

capabilities and being synchronized with the system. When the shopping list is migrated,

the input of additional items remains in the kitchen, allowing family members to add

items to the list, even if someone is shopping already. Added items are immediately

synchronized with the remote presentation of the list; checked items are immediately

synchronized between the two lists.

Once all ingredients are available the user can start the cooking process, based on the

guidance of the system. The SCA reads out each step description and allows the user

to navigate between steps using �back� and �forward� voice commands or buttons on the

touch screen. Additionally, an explanatory video can be requested and controlled via

189

A. Case Study: Infrastructure for UUIs

voice and devices involved in the cooking step can be controlled via the UI. Device and

video control are also possible via voice, touch or mouse and keyboard. Ingredients and

step details are presented visually and via voice output.

Realizing the SCA allowed the evaluation of di�erent features of the underlying approach.

An executable task model describes the basic work�ow of the application. A service model

interconnects services from the smart environment, speci�cally the kitchen appliances in

this case. The combination of voice input and output with graphical output and a

touchscreen allows the evaluation of multimodal interaction capabilities. Additionally,

scenarios like the system driven querying of available ingredients and the migration of

the shopping list to a mobile device allowed the evaluation of distribution and migration

features of the system. The continuous development and enhancement of the MASP

and the cooking assistant as a running demonstration, allowed to gain deep insights

in the issues and downsides of the utilization of such a system at runtime. Pursuing an

evolutionary approach, the implementation has been evolved and evaluated over a period

of several years. The realization of the SCA scenario, based on the MASP infrastructure,

is described in the following.

Underlying Models

Utilizing the Multi-Access Service Platform, the main models the cooking assistant is

based on, are a task model, a domain model and a service model as well as a layouting

model for the arrangement of the output user interface and the mappings from the

received user inputs to these models. Additionally, a context model is utilized to integrate

context information into the interaction process. Based on this set of models, the MASP

is able to derive the intended user interface and control the interaction with the system.

To illustrate the underlying models, the interaction with the ingredients list is analyzed,

as this step comprises di�erent interaction concepts and also involves information from

all underlying models. The graphical user interface underlying the interaction is depicted

in �gure A.2.

The task model de�nes the basic work�ow of the application by a set of tasks, describing

the interaction in multiple steps. A screenshot of an CCT-based Eclipse plug-in showing

the ingredients list sub-tree is depicted in �gure A.3. In a �rst step the needed ingredients

are calculated and the list is presented on the screen in combination with two buttons

allowing to toggle if the selected ingredient is available or not. This task (checkO�)

iteratively allows checking the available ingredients and in combination with a system

task continuously updates the list. Additionally, a parallel task allows the distribution

190

A. Case Study: Infrastructure for UUIs

of the shopping list to the mobile device by triggering a system task. Another parallel

task provides the hook for the application backend to provide additional information

about available ingredients on the �y. The whole interaction can �nally be aborted by a

disabling task to continue with the next step. In contrast to the CTTE Tool, the used

Eclipse-based editor allows the easy annotation of interaction object to the tasks and is

based on EMF/GMF, which makes it also suitable to work with executable models. The

editor supports CTT XML as well as EMF/XMI as format for the task models.

Figure A.2.: Graphical user interface of the shopping/ingredients list (in German).

At runtime, the underlying task tree interpreter works on the XML speci�cation of the

task model. The de�nition of the ShowShoppingList (shopping- and ingredients list are

used synonymously in the task model) task in CTT-XML can be found in �gure A.4.

The XML has been slightly tidied, by removing empty and unused elements. Figure A.5

shows the same task in the XMI syntax of the EMF model. In both representations,

one can see that the description tag of the de�nition is used to reference the related

representations for the task from the con�guration �le of the application (line 3-7 in

the CTT-XML and line 2-5 in the XMI). Additionally, the object elements are utilized

to reference the task related elements from the domain model. Lines 12, 16, 20 in the

CTT-XML and 8, 11, 14 in the XMI, identify the shoppingList, selectedIngredients and

newNumberofPersons as input element, read by the task. While this de�nition of the

task model is not optimal for runtime interpretation, it supports the comfortable editing,

using the CTTE or the shown MTTE tool.

191

A. Case Study: Infrastructure for UUIs

Figure A.3.: The task model of the ingredients list of the cooking assistant opened in the
MTTE Editor developed at the DAI-Labor.

Figure A.4.: The XML representation of the ShowShoppingList interaction task in CTT
XML.

192

A. Case Study: Infrastructure for UUIs

Figure A.5.: The XML representation of the ShowShoppingList interaction task in
EMF/XMI.

Figure A.6.: Code of the velocity template, rendering the ingredients list for an HTML
channel.

193

A. Case Study: Infrastructure for UUIs

Via a con�guration �le, each task is directly connected to velocity templates, rendering

di�erent representation of the task. The HTML-based rendering template for the ingre-

dients list part of the screen (left of �gure A.2) is shown in �gure A.6. As one can see

e.g. in line 14, elements from the domain storage are directly accessible for rendering

purposes. However, this is only the case for those objects that have been assigned to the

related task in the task model. The template of the same element for a voice channel is

shown in �gure A.7.

Figure A.7.: Code of the velocity template, rendering the ingredients list for a voice
channel.

The domain model of the cooking application is de�ned by a set of java objects, that are

instantiated at application startup with the initial values the developer provided. The

objects are related to the object identi�ers speci�ed in the task list and can easily be

referenced from the velocity templates. For the ingredients list example, three objects

are required: shoppingList, holding the elements on the list, selectedIngredient holding

the selected elements, newNumberOfPersons, holding the number of persons for the cal-

culation of the amount of ingredients. At runtime these objects are stored in a tuple

space, acting as domain storage, that allows the easy access to any of the stored objects.

The service model of the ingredients list part of the application comprises a service call

to the ingredients manager, retrieving the list of ingredients from the application back-

end and the parallel call, handling the alteration of the availability of the ingredients.

The calls are executed, when the application task, referencing the call (currently in the

description attribute) becomes active. As the service model also speci�es the related

objects, parameters can be passed and return values are stored in the domain storage.

Service calls are realized as java function calls to beans con�gured via a spring con�gu-

ration. This con�guration also identi�es the constructor arguments and parameters to

retrieve from the domain model and pass to the function. An example con�guration is

194

A. Case Study: Infrastructure for UUIs

shown in �gure A.8. Additionally, the alteration of the distribution is handled as a ser-

vice call using the model manipulation capabilities of the MASP to alter the distribution

of the shopping list for the given user according to the available devices.

Figure A.8.: Spring bean con�guration of a service call.

During startup the context model of the MASP is connected to the available context

providers of the Ambient Assisted Living Testbed, delivering context information received

from the di�erent sensors. Of most interest for the realized use cases is the location of

the user within the environment. A focus has thus been set on the connection of the

Ubisense system and the embedding of the information into the context model. An EMF-

based context model (as presented in section 6.2) is used to provide access to context

information within the MASP implementation. It de�nes the known users and their

locations, as well as the available interaction resources and the channels, set up to each

resource.

Finally, the layouting model de�nes constraints for the arrangement of the user interfaces.

It allows the de�nition of restrictions for containment, size, orientation and order of the

user interface elements in terms of statements. In the current implementation these

statements are de�ned on the granularity of the task model, as the next level of detail

is directly embedded into the code of the Velocity templates. Figure A.9 shows two

statements about the ShowShoppingList task. The �rst statement de�nes that it is

contained in the ShoppingListContainer node, the second statement de�nes that its size

is calculated relatively to this container. Based on the de�ned statements, constraints

will be derived and solved by a cassowary constraint solver at runtime. See Feuerstack

(2008) for more details about the layouting.

195

A. Case Study: Infrastructure for UUIs

Figure A.9.: Statements in the layouting model, that de�ne information about the shop-
ping list task and its container.

While the channel events are directly generated by the channel, based on the element

id of e.g. the HTML elements in the Velocity templates, the mappings of these channel

events to MASP events have to be manually de�ned. Figure A.10 shows two mappings of

the ingredients list, de�ned as Spring (http://www.springsource.org/) con�guration. The

�rst mapping stores the selected ingredient in the respective object in the domain model,

the second mapping sets the AcceptShoppingList task to done if the button is selected.

While the mappings are con�gured via Spring, they are realized as Java implementations,

parametrized with the provided arguments.

Figure A.10.: Mappings of the shopping list to the domain storage.

196

A. Case Study: Infrastructure for UUIs

Runtime Interpretation

The runtime interpretation of the described building blocks follows the general concept

that has been described in A.1. However, there are some interesting additional aspects

within this application.

The general work�ow of the application has been de�ned by the task model. Seman-

tics have been added to each task by referencing a service call for each application task

and Velocity rendering templates for each interaction task. Domain information is pro-

vided by Java objects within the domain storage. Based on this basic structure, the

application is split into building blocks on a per task-basis. These building blocks can

be independently distributed to di�erent or even multiple interaction resources where

they are rendered and arranged by the layouting constraints. This allows the indepen-

dent addressing of multiple modalities and the synchronization of user interfaces across

devices and modalities. Thus the basic mechanism for the creation of distributed user

interfaces is provided by the channels and heir utilization at runtime. While each task

can be distributed independently and its input and output can be separated, a �exible

combination of interaction resources is possible, which can even be calculated at runtime.

The distribution of the shopping list can be seen in �gure 2.4 in section 3.1.3.

A major feature that this implementation provides is the con�guration of the own distri-

bution by an application at runtime. Within the SCA this has been utilized to move the

ingredients list to a mobile device, e.g. to collect ingredients from the cellar, as well as

to realize the cloning of the shopping list to a mobile device, while keeping a completely

synchronized copy of the application in the kitchen. Underlying these features is the

capability of the distribution, depicted in �gure A.1 (2) to assign tasks to channels for

presentation. While the distribution component is capable to calculate di�erent distri-

butions, is can also be con�gured from the outside. For this purpose, it provides an

API that can be used for services to con�gure the MASP distribution. In case of the

cooking assistant, this feature has been used to alter the distribution by a service call,

when the user requests to do so. The same MASP API also makes all storages and the

context model accessible to external services and thus allows the in�uencing of the UI

presentation and handling in various ways.

Another feature that has been realized as part of the SCA is the possibility to adapt the

layout of the user interface according to context information. Based on the layouting

model, a relation between the distance of the user and the current screen is de�ned by

conditions as depicted in �gure A.11, in�uencing the presentation of the user interface.

In particular, the relation prioritizes the statements according to their relation to each

197

A. Case Study: Infrastructure for UUIs

type of interaction elements. Thus, the space taken by input elements is lower prioritized

than the space taken by presentation elements, if the user moves further away from the

display. Figure 2.3 in section 2.3.2 illustrates the e�ect of the adaptation of the shape of

the ingredients list.

Figure A.11.: De�nition of a situation as part of the layouting statement de�nition.

Using the System

The developed cooking assistant has been installed as continuous demonstration in the

Ambient Assisted Living Testbed. In this environment it is continuously presented to

visitors from economy and academics. The system has additionally been presented on

various fairs and conferences within a mobile setup. However, the feedback gained from

visitors was manifold. While many people liked the ideas and concepts underlying the

approach, having a talking cooking assistant actually at home in the kitchen polarizes

people. This has also been shown by a small study within the SerCHo project, where the

di�erent applications have been presented and people have been asked for their feedback.

The applications have been presented to about 20 users between 18 and 60 with di�erent

educational backgrounds. While the study had a focus on the acceptance of the overall

system, additional questions about the multimodal aspects of the cooking assistant and

the features of Ubiquitous User Interfaces have been asked. The users were asked to on the

one hand interact with the CA as well as rate it and develop ideas for improvements. After

brie�y introducing the cooking assistant, the users were asked to �nd the lamb chops and

check the �rst three steps of the cooking process. The users were guided and supported

by the interviewer; voice interaction has been realized through a Wizard-of-Oz setup,

where the system was manually controlled. While it was very unclear, if users would like

the idea of multimodal applications within their home environment and especially within

their kitchen, it turned out, that this topic really polarizes users. While more than 2/3 of

the users were positive about the idea to use multiple modalities to control the cooking

198

A. Case Study: Infrastructure for UUIs

assistant and the possibility to seamlessly switch between the used modalities (touch

and speech) about half of the users would not want such an application in their kitchen.

The availability of the touch screen as additional input modality provided an idea of

safety against failures of the voice recognition and the ability to control the application

redundantly with multiple modalities was mentioned positive.

A.3. Smart Home Energy Assistant

The Smart Home Energy Assistant has been developed, based on the same implementa-

tion of the underlying MASP infrastructure as the 4-Star Cooking Assistant. It provides

similar features in terms of shaping, multimodal usage, distribution and migration. How-

ever, the actual goal of the assistant is di�erent from that of the cooking assistant. While

the SCA has a continuous step by step interaction, the SHEA requires jumping around

between dialogs. It initially provides an overview of the available rooms and selecting a

room leads to a view of the devices within the room. Selecting a device then leads to an

overview of the energy consumption of the device in form of a graph and the possibility

to control the device. From the energy graph, the user can jump back to the device list

or the room overview. The room overview and the energy consumption graph are shown

in �gure A.12.

Figure A.12.: Screenshots of the Smart Home Energy Assistant.

In contrast to the cooking assistant the user is always able to jump back and forth between

dialog steps, which requires more navigation capabilities and poses a greater challenge

on the task tree than the step by step process of the cooking assistant. Additionally,

the assistant emphasizes the ability of the user interface to follow the user throughout

the rooms and illustrates the possibility to address elements via voice, that are not

199

A. Case Study: Infrastructure for UUIs

currently shown on the screen. The utilization of the application via a remote control

also posed additional requirements to the user interface that had to be considered during

the design and development. The follow-me functionality is based on the distribution and

migration functionality, that has been used for the shopping- and ingredients list. It is

realized as a combination of the location information provided by the context model and

the capability of the distribution component to automatically calculate the combination

of selected channels. In dependence of the position of the user and its distance to the

used interaction resources, the MASP calculates a new set of interaction resources, that

might be more suitable if the follow-me mode is activated. This leads to the continuous

availability of the user interface on the interaction resources closest to the user.

This basic functionality required for the follow-me of a user interface has been realized

as part of the distribution component. It consists of the possibility to register observers

to the context model, that notify the distribution component about any changes to the

user location or the available interaction resources (appearing and disappearing). This

is realized using tuple space observers in case of any information stored in tuple spaces.

However, as the context model is stored as EMF model, the EMF capabilities are used.

Whenever interaction resources appear and disappear or the user changes his location,

the distribution component is noti�ed. This in turn leads to a recalculation of the used

interaction channels, based on the new information from the context model. As a re-

sult, the elements of the presented user interface are removed from the channels of the

resources, that are no longer suitable. This is done via the update mechanism, allowing

e.g. the removal of any of the <div>-tags of the presented HTML-based graphical user

interface. Additionally, user interface elements are added to the channels of the newly

assigned interaction resources via the same mechanism. A basic need for this interac-

tion is thus the continuous connection of the interaction resources and the unrestricted

manipulability of the user interface at any time.

However, important factors that rose in combination with the developed applications are

user control and con�gurability of the provided features. While features like dynamic dis-

tribution at runtime and follow-me, multimodality or the adaptation of the user interface

can be powerful features there is a strong need to provide user control. Although, the

features can be either triggered by the application to support application functionality,

they are also provided as application spanning features of the underlying infrastructure,

which requires to provide an application spanning mechanism to control them. These

observations are the basis for the third application, presented in the next section: the

Meta-UI.

200

A. Case Study: Infrastructure for UUIs

A.4. Meta-UI

A third application that was realized via the Multi-Access Service Platform is the Meta-

UI, providing direct control to the MASP features for the user. It allows the management

of multiple assistants and supports switching between them. Additionally, it allows the

user to alter the distribution of the user interface by con�guring interaction devices, to

change the utilization of di�erent modalities, to move assistants back and forth between

speci�c devices and to control adaptation capabilities of the MASP like distance-based

layouting or follow-me. The Meta-UI is also the initial MASP application, loaded at

startup and provides user management capabilities.

Initialization

During the initialization phase, the MASP in the �rst step connects all available inter-

action resources through the interaction channels. Each interaction channel delivers an

initial user interface to the interaction resource signaling the connection to the MASP

on output IRs and monitoring any initial input on input IRs. One initial problem is the

separation of input and output in this context, as initially input and output resources

are separated and not related until associated to a user. This leads to the a setup where

the event of the user hitting a button on a keyboard or a remote control triggers an

interaction request, but initially lacks the relation to a screen, which makes it di�cult

to start some interaction. Thus, on the initial input event a distribution con�guration,

combining input and output resources, has to be calculated based on the information

about the IRs, e.g. which IRs are combined in the same interaction device or which IRs

are close to the user. This can be calculated based on the context model. While this con-

cept is understandable for a remote control, that can be used to control multiple screens,

it becomes a bit awkward for a touch screen. However, once the initial distribution con-

�guration has been calculated the user is either provided with a login screen if he could

not be identi�ed by the Meta-UI application or with his personal view of the Meta-UI

allowing him to control the MASP features and use additional MASP applications.

Meta-UI Features

The Meta-UI allows to control the features of UUIs. The main goal of the Meta-UI can be

described as the provisioning of control about the con�guration of the personal interactive

space of a user. An ambient interactive space has been de�ned as a dynamic assembly

201

A. Case Study: Infrastructure for UUIs

of physical entities coupled with computational and communicational entities to support

human activities (Coutaz, 2006). According to this de�nition the personal interactive

space can be de�ned as the set of currently used services and interaction resources as

well as the connections between them as illustrated in �gure A.13.

Figure A.13.: The personal interactive space of a user, comprising the used devices, ser-
vices and the connections between them.

As illustrated in �gure A.14, the user uses the interaction resources available in the en-

vironment to interact with the provided UUIs and accesses backend services through

them. In the same way, the Meta-UI is provided as a UUI, allowing to access con�g-

uration services provided by the MASP API. These con�guration services in turn alter

the connections between UUIs and interaction resources and thus the distribution of the

user interface, via the API provided by the distribution component.

Utilizing this con�guration of the distribution, the Meta-UI can alter the input and

output devices currently used by an application (user interface) and thus provide full

control about this con�guration to the user. Features that have been integrated into the

Meta-UI in a similar manner are:

1. the con�guration of modalities, which can be mapped to the alteration of the

distribution with respect to the type of devices,

2. the migration of a UI between interaction resources as described above,

3. as well as the additional con�guration of features like follow-me or distance-based

layouting by additional services and functionalities provided by the MASP API.

4. the (re-)distribution of parts of a UI to di�erent interaction resources, which has

been realized on a task-basis in the described implementation, meaning that each

task can be independently assigned to an interaction resource,

202

A. Case Study: Infrastructure for UUIs

Figure A.14.: Utilization of the Meta-UI. The user uses device in the environment to
access the Meta-UI (and other services). The Meta-UI is then used to
con�gure the utilization of the interaction resources by altering the distri-
bution, connecting a UI to an interaction resource.

A screenshot of the Meta-UI illustrating the four di�erent con�guration possibilities

(from left to right) is shown in �gure A.15. The screenshot shows the capability to start

and visualize a service in the top left corner. The symbols at the top-middle visualize

the currently active modalities. At the bottom, the four con�guration possibilities are

visualized. Additionally, the Meta-UI is controllable via voice. The command �Open

Meta-UI� shrinks the current application and opens the Meta-UI around it. Afterwards,

additional commands like e.g. �Migration to kitchen display� can be used to control the

provided features.

Technically, the di�erent con�guration scenarios described above can be brought down

to the atomic operations of creating a connection between a task representation and

an IR or removing such connections. For example changing the interaction modality

of a task from graphical to vocal includes the removal of connections between IRs and

graphical UI elements of that task and the creation of new connection between the voice

elements and the appropriate IR (or IRs). When a "UI to IR" connection is established

the MASP runtime system sends the element to the IR, which then creates the �nal

user interface and delivers it to the IR. If a UI element should no longer be accessible

through an IR, the appropriate connection between both is destroyed, which results in

the removal of the corresponding UI element (e.g. the <div>-tag) from the IR. Again,

the association between the presented UI elements and the elements at higher levels of

abstraction (task and domain) are always preserved, which is necessary for the state

203

A. Case Study: Infrastructure for UUIs

synchronization of all elements. For example, if a task becomes no longer available to

the user, the associations assure that all connections between the UI elements belonging

to the task and the interaction resources are removed. As the result the user cannot

access the user interface of the task and has no possibility to perform it.

Figure A.15.: Screenshot of the Meta-UI with the di�erent con�guration features. From
left to right: Modality allows to con�gure the used modalities (voice out,
voice in, graphical out), Migration allows to migrate complete applications
to the current device or redirect their output, Adaptation allows to enable
and disable distance-based layouting and follow-me adaptation capabilities,
Distribution allows to con�gure which task should be presented on which
interaction resource.

This utilization of the Meta User Interface to control the MASP features shows the

possibility to on the one hand completely integrate and utilize the provided features

from within an application via service calls to the MASP API. On the other hand, it

also illustrates the possibility to provide application spanning con�guration features to

personalize the personal interactive space and the presentation and interaction means of

any Ubiquitous User Interface.

A.5. Summary

In this section the implementation details of a case study to evaluate the idea of Ubiq-

uitous User Interfaces and the required infrastructure features have been presented. An

important aspect of the approach was to veil the boundaries of each device and let the

system appear as one complex system. This is technically supported by the network con-

nections between the di�erent systems, and has been exploited by the created distributed

204

A. Case Study: Infrastructure for UUIs

user interface. The independent addressing of input and output and the free con�guration

of used modalities and resources provides very �exible and dynamic interaction means

for smart environments.

Based on this infrastructure, di�erent example smart home applications have been cre-

ated, deployed, and evaluated in a smart home laboratory. The presented cooking as-

sistant puts a focus on the utilization of multiple modalities for interaction and the

evaluation of application dependent migration and distribution features. The energy as-

sistant incorporates a remote control as IR and puts a focus on the utilization of the

follow-me feature to provide seamless access to the application if requested. Finally, the

Meta-UI provides strong customization possibilities and full control over the UUI fea-

tures for the user. Additionally, it showed the recursion of the approach, by allowing to

implement the Meta-UI as meta user interface, using the same features that are provided

for any MASP application.

Based on the results of these implementations, a second case study has been conducted,

with a stronger focus on the modeling aspects of the approach. Details about this study

are described in the next section.

205

B. Case Study: Executable UI Models

Based on the results of the implementation of the infrastructure concepts, a second case

study has been conducted with a stronger focus on the full utilization of the developed

set of models and components. Main aspects were the evaluation of the model execution

capabilities, the interconnection of the models via mappings, as well as the bootstrapping

and management of the models at runtime. Thus, the described metamodels have been

implemented and selected features of the 4-Star Cooking Assistant have been reimple-

mented/remodeled. Additional aspects that have been investigated but are outside of

the scope of this thesis are the development of the models at design-time using Eclipse

and Eclipse Modeling Framework (EMF) / Graphical Modeling Framework (GMF) tools,

and the utilization of these tools to monitor and control the runtime state of the system,

which lead to the realization of interesting approaches and tools.

In the following, the utilization of the executable models and their realization in EMF

is discussed on the example of the 4-Star Cooking Assistant. EMF has been chosen as

modeling notation, as it is a modeling and code generation framework integrated into the

Eclipse platform, which is widely used and provides comprehensive tool support. EMF

integrates three main components:

• The core EMF framework, which provides the ECore metamodel for describing

models. It also includes runtime support for the models (noti�cation, persistence,

and a re�ective API).

• The EMF.Edit framework, which includes generic classes for building editors for

EMF models.

• The EMF code generation facility, which is capable of generating code from a

developed EMF (meta-) model.

In the following the utilization of the ECore metamodel, its runtime support and the code

generation facilities are of most interest for the creation of executable models. ECore is

probably the most used model and metamodel exchange format and has been de�ned as

a subset of MOF, making it compliant to OMGs MDA approach. The elements of ECore

are shown in �gure B.1.

206

B. Case Study: Executable UI Models

Figure B.1.: The main elements of the ECore metamodel.
From http://www.eclipse.org/modeling/emf/ (last visited February 12th,
2009).

The root entity of this metamodel is the EObject, of which all other elements are subtypes.

Similarly to Java, ECore elements are organized in EPackages, storing EClassi�ers, which

are EClasses and EDataTypes. Similarly to object oriented languages, EClasses are de-

�ned by EOperations and EAttributes. Other classes can be referenced by the EReference

element, where aggregations and compositions are supported. Both the EAttribute and

the EReference are EStructuralFeatures contained in the EClass elements and resemble

the notion of class �elds from the Java programing language. De�ning metamodels can

be done with the graphical EMF editor shown in �gure B.2. Models can be edited with

the build-in tree-based editor shown in �gure B.4. Alternatively, own editors can be de-

veloped for comfortable and metamodel speci�c editing. Metamodels as well as models

are stored in the XML-based XMI format and can thus be easily exchanged. An example

XMI de�nition of the task metamodel is shown in �gure B.3.

207

B. Case Study: Executable UI Models

Figure B.2.: Screenshot of the graphical editor for EMF metamodel.

Another important aspect for the utilization of ECore for executable models is its direct

mapping to Java code. This allows the generation of Java classes from metamodels which

can also be enhanced with custom code. Any creation of a model then relies on these

derived classes. In case of Eclipse this means, that the internal editor not only shows the

tree-view of the model, but also holds the related instances of the generated classes in

its memory. This allows the direct execution of models from within the Eclipse platform

and even their alteration at runtime. The EMF technology thus provides the foundations

for the following description of the implementation of executable models.

The realization of the metamodels with EMF, strongly follows the descriptions of the

metamodels provided in chapter 5 and 6. As the models have been extensively dis-

cussed there, only some additional implementation related aspects are illustrated in the

following, before the SCA example is described.

208

B. Case Study: Executable UI Models

Figure B.3.: Example XMI-code of the task metamodel.

B.1. The Executable Task Model

The basic structure of the executable task metamodel, as described in section 5.1, pro-

vides the foundations for the realization of the model within EMF. Based on the de�ned

metamodel, Eclipse allows the creation of various task models via the internal editor as

shown in �gure B.4 or the specialized task editor that has been shown in �gure A.3. To

be able to utilize the CTT-based task model the static part of the CTT meta-model has

been extended with the required dynamic state information. During execution - starting

with the root task - the setNewState operation is used to change the state of the task

as well as all related child-tasks (according to their temporal relations). The execution

state of the model is then stored as part of the model to derive the Enabled Task Set

(ETS) containing all enabled tasks. Once a task is completed it is set to state done

and removed from the ETS. To realize the described execution functionality of the task

209

B. Case Study: Executable UI Models

model, Java classes have been derived from the metamodel and adapted to support the

runtime execution. They initially implement getter and setter methods for each element

of the model. Figure B.5 shows the interface of the implementation of the task element.

Figure B.4.: Screenshot of the Eclipse ECore editor, showing an excerpt of the executable
task model of the cooking assistant and the properties of the �SearchFor-
Recipes� task..

Figure B.5.: Java interface of the implementation derived from the task element of the
task metamodel.

210

B. Case Study: Executable UI Models

During the code generation EMF implements interfaces and standard implementations

for di�erent ECore element. Some mappings between ECore elements and Java classes

are shown in table B.1. The de�ned interfaces realize an API, which allows to access

models conforming to the metamodel.

EMF Java

EClasses Java interface with getter and setter methods for
each EStructuralFeature of the EClass

EStructuralFeature getter and setter methods
EOperations Java methods stubs, that have to be �lled by the

developer
EEnums Java enumerations
EDataTypes no code is generated as they encapsulate already

existing Java types
EPackage Java package plus a special interface, which contains

information needed for metamodel re�ection

Table B.1.: Selection of the most relevant mappings from EMF elements to Java code.

Based on these interfaces, the implementation of the elements can be adapted to re�ect

the behavior expected from the metamodel. This is especially required for the execution

elements identi�ed in the metamodel, which realize the execution logic of the �nal model.

The mapping between the elements of the meta-metamodel to EMF elements is listed in

table B.2.

Additionally, the generated code allows the registration of adapters to each of the model

elements, which support the exchange of noti�cations about any changes to any of the

model elements the adapter has been registered for. Every received noti�cation contains

the information about the EStructuralFeature, which has been changed, as well as its new

and previous values. Additionally, a noti�cation informs whether an element has been

added, removed or updated. This feature is especially used by the mapping model and

to interconnect multiple models.

211

B. Case Study: Executable UI Models

Meta-
Metamodel
Element

ECore Element Description

De�nition
Elements

EClasses The De�nition Elements are
represented by EClasses in ECore.

Situation
Elements

EStructuralFeatures The situation elements �nd their
representation in the ECore's
EStructuralFeatures although not all
EStructuralFeatures are situation
elements as some attributes of an
element (EAttribute) may describe
runtime state data. The di�erentiation
is therefore done by the adoption of an
extra EAnnotation.

Executable
Elements

EOperations The executable elements are in ECore
expressed as EOperations, which allows
adding execution logic into a
metamodel in form of Java code
fragments. In Java the execution logic
is de�ned within methods and these
are represented by EOperations within
ECore.

Table B.2.: Mapping of meta-metamodel elements to ECore elements.

B.2. Other Models

In a similar way as the described task model, the additional metamodels have been

implemented. This comprises the domain-, service-, interaction-, layouting- and context-

model. Additionally, a basic implementation of the adaptation model has been realized.

Some insights and selected details about the implementations will be explained in the

following. It has to be noted here, that the distribution- and fusion model have not yet

been implemented as EMF models, as they have been implemented as Java components

using proprietary con�guration and storage technologies (e.g. tuple spaces in case of the

distribution).

The realized domain model allows a straightforward realization within EMF, a main

aspect here was the modi�cation of the getClass method of the Class element to actually

refer to the classes de�ned in the domain model. More interestingly, the implementation

of the service model required the implementation of facilities to perform calls to Java

212

B. Case Study: Executable UI Models

methods as well as to web services. Thus the facilities to generically perform such calls

have been implemented as part of the classes underlying the metamodel. Main portions

here have been addressed via Java re�ection methods.

The realization of the interaction model, however, required an immense additional pro-

gramming e�ort. Here, the interaction logic of each of the interactors had to be im-

plemented on the server side. This re�ects the fact, that the interaction is completely

handled and synchronized via the server-side elements. Thus, each of these elements is

required to handle incoming user interaction or state updates from the system and to

adapt its internal state accordingly. Additionally, each adaptation of the internal state

also has to be conveyed to the user by an update message through the related channel.

An example would e.g. be the user, selecting a list element. This would result in a

selected event, passed to the concrete input interactor, which is again related to e.g. the

selectElement method of the concrete graphical list interactor. Here the internal logic

of the interactor has to identify the selected element and ensure, that it is marked as

highlighted, which is then again re�ected in the current presentation.

The most interesting aspect of the context model is probably the realization of the connec-

tion between the model and external components outside of the model. For this purpose

an EClass is used, to de�ne the proxy element for external process. The EClass provides

�elds for the class name of the Java class implementing the external process, con�gu-

ration information for the external process, the start and stop method of the process,

and a reference to the instantiated external process at runtime. Additionally, callback

elements identify EOperations, that can be used by the process to push information back

into the model. This proxy, allows managing the process at run time so it does not run

out of control and can be started or stopped when necessary.

One of the proxies that has been implemented for the context model, connects the lo-

calization system to the position information of the ElementWithPosition. This proxy

references a Java class, that connects to a server providing the location information of the

Ubisense localization system. The reference object is initialized during the initialization

phase of the context model and connects to the Ubisense server at startup. Once started,

the currently relevant tags can be registered for the process. Afterwards, the proxy uses

the setPosition executable element as callback method to push positioning updates into

the model. Altering the position of an element (which changes the position situation

element) can then trigger any mapping to adjust the corresponding models accordingly.

213

B. Case Study: Executable UI Models

B.3. Mappings

To connect the di�erent executable models that have been implemented, the additional

mapping metamodel has also been implemented using EMF, to facilitate the exchange of

information between the models at runtime. The EMF implementation of the mappings

re�ects the metamodel illustrated in �gure 4.2 in section 4.3 and conforms to the described

meta-metamodel of the executable models. The main principle behind the realization of

the mapping model with EMF is the ability of EMF to include and reference a model

within another model. This feature allows to create standard mappings as types, that

refer to the metamodels of the system. Once a UI developer creates models according

to these metamodels, the pre-de�ned mappings can directly be used to relate dedicated

model elements and thus easily provide the necessary information exchange.

The implementation of the mapping metamodel is derived from the mapping of the meta-

metamodel with the ECore meta-metamodel. This way it is possible to de�ne mapping

types on top of any executable ECore metamodel (M2) used within the approach. The

mappings use the mapping types to connect M1 entities and thus reference EObjects.

The mapping type of a mapping de�nes what links it contains, whereas each link may

be triggered by a di�erent situation element. The implementation utilizes the build in

eventing mechanisms provided by EMF in the generated Java objects derived from the

models. Using these, the mapping model is able to register adapters to every EObject

acting as source for a mapping. These adapters become noti�ed about any occurrence

within the model element. Every received noti�cation contains the information about

the EStructuralFeature (situation element), which has undergone a change and its new

and previous values. A transformation language allows the de�nition of additional trans-

formation logic, which can be used to mediate between the concepts of di�erent models.

After a link has been triggered and the transformation produced new data for the target

model the Java method denoted by the EOperation of the execution element is invoked.

As described in section 4.3, the mapping metamodel distinguishes mapping types, de-

�ned between metamodels, and the actual mappings, de�ned between the actual models.

Figure B.6 shows a mapping type, that has been de�ned between the task model (line

2-8) and the abstract user interface (line 9-11). The de�ned mapping reacts on the alter-

ation of the task state to Enabled or Active (line 13-18), which results in the activation

of the abstract interactor (line 19-22). Additionally, setting a task to Inactive, Disabled

or Done (line 25-31), results in the deactivation of the interactor (32-35).

214

B. Case Study: Executable UI Models

Figure B.6.: Mapping type, mapping interaction tasks to abstract choice objects.

De�ning the mapping to relate a speci�c task to a speci�c abstract interactor, requires

the de�nition of a mapping between the two distinct elements as shown in �gure B.7.

Type, as well as source and target elements of the mapping are identi�ed via XPath

expressions, identifying the absolute path to the model elements.

Figure B.7.: A mapping de�ned between a distinct interaction tasks and an abstract
choice element.

Mapping the de�nition of mapping types and mappings to Java implementations allows

the relation of the de�ned model elements and facilitates the exchange of information

between the elements at runtime. An overview of the relation of the models for the

215

B. Case Study: Executable UI Models

described recipe �nder example is sketched in �gure B.8.

Figure B.8.: Illustration of the relation of the di�erent models via the mappings.

B.4. Bootstrapping

One interesting issue when expressing a user interface as a set of executable models is

the bootstrapping mechanism, starting up the system. To address this, a core model has

been de�ned for each application. This model lists all models and components required to

execute the models. The metamodel of the core model is shown in �gure B.9. As one can

see, the MASP itself is de�ned as a set of metamodels, combined with models, that belong

to an application as well as components and session. While an application is expressed

in terms of multiple models and the required components, a session identi�es the user,

using the application. During bootstrapping, the known metamodels, applications and

components are initially loaded. This also leads to the possibility to register interaction

devices manually or automatically. At this stage now, a user can log into the system,

by �taking over� one of the interaction resources and requesting an application. This in

turn leads to the creation of a session for the given user and application and initializes

the application state for the given user. At this point the application is rendered on the

used interaction resources and ready to be used.

216

B. Case Study: Executable UI Models

Figure B.9.: The metamodel of the MASP core model, ensuring the bootstrapping by
referencing the required models and components.

B.5. Resulting User Interface

Executing the de�ned user interface models within the MASP runtime environment re-

sults e.g. in the graphical representation of the recipe �nder of the cooking assistant

that has been shown in �gure 7.4 in section 7.3. Additionally, voice and HTML support

have been developed, to produce multimodal user interfaces, similar to what has been

presented in section A. However, the possibilities to actually style the user interface to

achieve similar results as in the �rst case study are currently still limited. The main rea-

sons for this are the limitations of the rather rough de�nition of the interaction models.

To achieve similar results as e.g. with current HTML/Javascript-based user interfaces,

requires an extended de�nition of user interface design characteristics within the models.

The developed approach allows the additional de�nition of style information for speci�c

channels, that can override the automatically created style in selected cases.

Based on the recipe �nder, the model adaptation has been evaluated as approach to adapt

the user interface dynamically. To realize this, the adaptation model de�nes di�erent

variants of the task model. The search capability of the recipe �nder gives the user

the possibility to input several criteria and start a database search for recipes. Criteria

include three di�erent options: dish type, calories, and nationality of the recipe; each

with several possibilities, designed as multiple-choice selection. Figure B.10 (a) shows the

217

B. Case Study: Executable UI Models

graphical user interface of the recipe �nder when su�cient display size is available and the

corresponding task tree. Active tasks are marked green and the task currently performed

by the user (recognized because the user focuses the associated GUI elements with the

mouse) is marked blue. Assuming that the user switches to a di�erent interaction device

with a reduced screen size it might become impossible to render all recipe �nder elements

at once, which requires an adaptation of the user interface. A possible adaptation includes

rendering only one recipe criteria container at once and letting the user select the criteria

he wishes to input. Although, this mainly in�uences the presentation, it can be done

with a modi�cation of the task tree by putting concurrent tasks in a sequence. Figure

B.10 (b) shows the recipe �nder after such an adaptation. Now the user may only set

one type of criteria at once and navigate between the criteria types using the Next>�>

button. Ideally the adaptation algorithm takes the current state of the application into

account and does not hide the currently focused task (DishTypeSelection) from the user

so his interaction is not interrupted.

The code of the adaptation model for this example is shown in �gure B.11. As one can

see, multiple adaptation steps are de�ned. The �rst step (line 2-6), e.g. queries the

focused children from the task to adapt by applying the root query and the identi�ed

subquery (line 18-23) and stores the result in a variable. In the additional steps, the

operators are rebuild and a new interaction task, the related mapping and the abstract

interaction elements are added by calling the identi�ed executable elements.

Figure B.10.: Example for the application of the adaptation model, altering the task tree
to adapt the user interface.

218

B. Case Study: Executable UI Models

Figure B.11.: Code of the adaptation model, performing the adaptation visualized in
�gure B.10.

B.6. Summary

In this section the implementation of a set of executable models using the Eclipse Mod-

eling Framework has been described. The developed system utilizes eight executable

models, connected via mappings. The integration of ECore and Java have been de-

scribed and selected details of the developed models have been illustrated to provide a

deeper understanding of the underlying realization and the utilization of the created Java

objects at runtime. While each metamodel de�nes the Java classes of its building blocks

and thus allows to realize the execution logic, the instantiation of the classes happens

within the developed user interface models. As the objects are also hold in the memory

by the Eclipse environment at design-time, a close coupling of design- and runtime is

supported by this approach. Additionally, the described set of models and the mappings

between them allow the creation of user interface models, suitable to �t the illustrated

runtime infrastructure of the previous case study.

219

List of Figures

1.1. The runtime system, mediating between user and backend services. . . . 5

2.1. A smart home environment with various networked devices. 9

2.2. Multiplicity in smart environments: Multiple users use multiple modali-

ties to interact via multiple devices with multiple applications in multiple

situations. 10

2.3. Shaping Example: The size of the output elements is increased with the

distance of the user to the screen, the size of the input element is reduced. 15

2.4. Distribution Example: The user interface can be distributed across mul-

tiple interaction devices and is continuously synchronized. 16

2.5. Multimodal Interaction Example: The user is able to utilize multiple in-

teraction resources and modalities including voice, touch and gesture si-

multaneously. 17

2.6. Shareability Example. Two users sharing applications. 18

2.7. Mergeability Example: The user interface of a cooking assistant is em-

bedded in the user interface of a meta user interface controlling di�erent

parameters of the interaction. 19

3.1. Runtime infrastructure for open model-driven adaptation from Sottet et al.

(2007b). 25

3.2. Relation of multimode, multimedia and multimodal systems. 35

3.3. Pipe-Lines Model from Nigay and Coutaz (1997). 38

3.4. The presentation pipeline of the SmartKom system (Reithinger et al.,

2003). 40

3.5. The MOF Metadata Architecture (Obj, 2002). 48

3.6. The Cameleon Unifying Reference Framework for Multi-Target User In-

terfaces from Calvary et al. (2003). 50

3.7. Cameleon Runtime Lifecycle from Calvary et al. (2002). 51

220

List of Figures

3.8. Excerpt from the TERESA concrete user interface metamodel for the

graphical desktop from Paterno et al. (2008) 58

3.9. UsiXML voice concrete interaction objects taken from Stanciulescu (2008) 59

3.10. General components of the Multimodal Interaction Framework from Lar-

son et al. (2003) . 63

3.11. The Cameleon-RT architecture. (Balme et al., 2004) 65

3.12. The DynaMo-AID Runtime Architecture, adopted from (Clerckx et al.,

2006). 66

3.13. FAME Architecture taken from Duarte and Carriço (2006) 68

3.14. Components of the topological model of DynAMITE. Taken from (Kirste,

2004). 69

4.1. Meta-Metamodel of Dynamic Executable Models 89

4.2. Mapping Metamodel . 95

4.3. Example for a synchronization mapping. 98

5.1. An executable task metamodel. 102

5.2. An executable domain metamodel. 104

5.3. Service Model . 105

5.4. Service Call Sequence. 106

5.5. Basic Structure of the Interaction Model, separating an abstract and a

concrete level. Based on an abstract interaction de�nition, concrete in-

put and output are the basis for the creation of input and output UIs.

Information exchange at runtime is denoted by arrows. 106

5.6. Abstract Interactors of the Interaction Model 109

5.7. The concrete input interactors that are considered for the de�nition of

multimodal input. 111

5.8. The concrete output model with interactors separated into NaturalLan-

guageOutput, GraphicalOutput and more simple Signals. 116

5.9. Abstract example of a graphical list, that can be controlled via voice. . . 120

5.10. Interconnection of and mappings between the involved Models. 122

6.1. The MASP models in relation to the MOF Meta-Pyramid. 130

6.2. MASP Architecture with exemplary IRs. 132

6.3. Context Model . 135

6.4. Channels connecting a pen input IR and a graphical output IR to the

MASP. 138

221

List of Figures

6.5. Concept and goal of the distribution. 141

6.6. The distribution model, storing/triggering the distribution of the added

elements. 144

6.7. Illustration of the sequence of the basic steps of the distribution calculation

and the relation of the involved models. 146

6.8. The fusion model, storing (partial) fusion results and con�guring the fusion

component. 151

6.9. Illustration of the sequence of the basic steps of the fusion process and the

relation of the involved models. 152

6.10. The executable adaptation model. 154

7.1. The four rooms of the SerCHo Laboratory. 163

7.2. Ground plan of the lab with sketched interaction devices (screens (touch

is indicated by the �nger), keyboards, remote control, speakers (a micro-

phone is worn by the user) and PDAs), all connected to the home server

running the MASP. 164

7.3. The 4-Star Cooking Assistant startscreen (left) the energy assistant called

from within the meta UI (right). 167

7.4. Screenshot of the graphical user interface of the recipe �nder step of the

cooking assistant, that is derived from the executable model. To the right,

a view of the Eclipse environment, monitoring the model at runtime, is

depicted. 169

A.1. Illustration of the architecture of the �rst prototype of the MASP, allow-

ing the initial realization of Ubiquitous User Interfaces for smart home

environments. 185

A.2. Graphical user interface of the shopping/ingredients list (in German). . . 191

A.3. The task model of the ingredients list of the cooking assistant opened in

the MTTE Editor developed at the DAI-Labor. 192

A.4. The XML representation of the ShowShoppingList interaction task in CTT

XML. 192

A.5. The XML representation of the ShowShoppingList interaction task in

EMF/XMI. 193

A.6. Code of the velocity template, rendering the ingredients list for an HTML

channel. 193

A.7. Code of the velocity template, rendering the ingredients list for a voice

channel. 194

222

List of Figures

A.8. Spring bean con�guration of a service call. 195

A.9. Statements in the layouting model, that de�ne information about the shop-

ping list task and its container. 196

A.10.Mappings of the shopping list to the domain storage. 196

A.11.De�nition of a situation as part of the layouting statement de�nition. . . 198

A.12.Screenshots of the Smart Home Energy Assistant. 199

A.13.The personal interactive space of a user, comprising the used devices,

services and the connections between them. 202

A.14.Utilization of the Meta-UI. The user uses device in the environment to

access the Meta-UI (and other services). The Meta-UI is then used to

con�gure the utilization of the interaction resources by altering the distri-

bution, connecting a UI to an interaction resource. 203

A.15.Screenshot of the Meta-UI with the di�erent con�guration features. From

left to right: Modality allows to con�gure the used modalities (voice out,

voice in, graphical out), Migration allows to migrate complete applications

to the current device or redirect their output, Adaptation allows to enable

and disable distance-based layouting and follow-me adaptation capabili-

ties, Distribution allows to con�gure which task should be presented on

which interaction resource. 204

B.1. The main elements of the ECore metamodel.

From http://www.eclipse.org/modeling/emf/ (last visited February 12th,

2009). 207

B.2. Screenshot of the graphical editor for EMF metamodel. 208

B.3. Example XMI-code of the task metamodel. 209

B.4. Screenshot of the Eclipse ECore editor, showing an excerpt of the ex-

ecutable task model of the cooking assistant and the properties of the

�SearchForRecipes� task.. 210

B.5. Java interface of the implementation derived from the task element of the

task metamodel. 210

B.6. Mapping type, mapping interaction tasks to abstract choice objects. . . . 215

B.7. A mapping de�ned between a distinct interaction tasks and an abstract

choice element. 215

B.8. Illustration of the relation of the di�erent models via the mappings. . . . 216

B.9. The metamodel of the MASP core model, ensuring the bootstrapping by

referencing the required models and components. 217

223

List of Figures

B.10.Example for the application of the adaptation model, altering the task

tree to adapt the user interface. 218

B.11.Code of the adaptation model, performing the adaptation visualized in

�gure B.10. 219

224

List of Tables

3.1. Comparison of the architectures part 1. 75

3.2. Comparison of the architectures part 2. 77

4.1. The main building blocks of executable models. 90

4.2. Main attributes of the proxy de�nition element, connecting model and

outside world. 94

5.1. The abstract interaction elements of the abstract interaction model. . . . 108

5.2. The four runtime states of the abstract interactors. 109

5.3. The interactors supported by the concrete input model. 112

5.4. The CARE properties supported by the concrete input model. 113

5.5. Additional states of concrete input elements. 114

5.6. The interactors supported by the concrete output model. 117

5.7. The prede�ned mapping types supported by the mapping model to relate

the de�ned elements. 124

A.1. Supported channel events for input received from the channels. 186

A.2. Supported MASP events to alter the internal representation of the inter-

action state in terms of task and domain model. 186

A.3. Mappings to transform channel events into MASP events. 188

B.1. Selection of the most relevant mappings from EMF elements to Java code. 211

B.2. Mapping of meta-metamodel elements to ECore elements. 212

226

Bibliography

[Abascal et al. 2008] Abascal, J. ; Fernández De Castro, I. ; Lafuente, A. ; Cia,

J. M.: Adaptive Interfaces for Supportive Ambient Intelligence Environments. In:

ICCHP '08: Proceedings of the 11th International Conference on Computers Helping

People with Special Needs. Berlin, Heidelberg : Springer-Verlag, 2008. � ISBN 978�3�

540�70539�0, S. 30�37

[Abowd et al. 1999] Abowd, G. D. ; Dey, A. K. ; Brown, P. J. ; Davies, N. ; Smith, M.

; Steggles, P.: Towards a Better Understanding of Context and Context-Awareness.

In: HUC '99: Proceedings of the 1st international symposium on Handheld and Ubiq-

uitous Computing. London, UK : Springer-Verlag, 1999. � ISBN 3�540�66550�1, S.

304�307

[Abrams et al. 1999] Abrams, M. ; Phanouriou, C. ; Batongbacal, A. L. ;

Williams, S. M. ; Shuster, J. E.: UIML: An Appliance-Independent XML User

Interface Language. In: Computer Networks 31 (1999), Nr. 11-16, 1695�1708

[Badros et al. 2001] Badros ; J., G. ; Borning, A. ; Stuckey ; J., P.: The Cassowary

Linear Arithmetic Constraint Solving Algorithm. In: ACM Transactions on Computer-

Human Interaction 8 (2001), Nr. 4, 267�306

[Baggia et al. 2008] Baggia, P. ; Burnett, D. C. ; Carter, J. ; Dahl, D. A. ;

McCobb, G. ; Raggett, D.: EMMA: Extensible MultiModal Annotation markup

language - W3C Proposed Recommendation 15 December 2008 / W3C. 2008

[Balme et al. 2004] Balme, L. ; Demeure, A. ; Barralon, N. ; Coutaz, J. ; Calvary,

G.: CAMELEON-RT: A Software Architecture Reference Model for Distributed, Mi-

gratable, and Plastic User Interfaces. In: EUSAI, 2004, S. 291�302

[Bandelloni and Paternò 2004] Bandelloni, R. ; Paternò, F.: Flexible Interface

Migration. In: Proceedings of the 9th International Conference on Intelligent User

Interfaces. Funchal, Madeira, Portugal : ACM Press New York, NY, USA, 2004, 148

- 155

228

Bibliography

[Barralon et al. 2007] Barralon, N. ; Coutaz, J. ; Lachenal, C.: Coupling Interaction

Resources and Technical Support. In: HCI International 2007 Bd. 4555, 2007 (Lecture

Notes in Computer Science), S. 13�22

[Bass et al. 1992] Bass, L. ; Faneuf, R. ; Little, R. ; Mayer, N. ; Pellegrino, B.

; Reed, S. ; Seacord, R. ; Sheppard, S. ; Szczur, M. R.: A Metamodel for the

Runtime Architecture of an Interactive System: The UIMS Tool Developers Workshop.

In: SIGCHI Bull. 24 (1992), Nr. 1, S. 32�37. � ISSN 0736�6906

[Becker 2008] Becker, M.: Software Architecture Trends and Promising Technology

for Ambient Assisted Living Systems. In: Karshmer, A. I. (Ed.) ; Nehmer, J.

(Ed.) ; Raffler, H. (Ed.) ; Tröster, G. (Ed.): Assisted Living Systems - Mod-

els, Architectures and Engineering Approaches. Dagstuhl, Germany : Internationales

Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Ger-

many, 2008 (Dagstuhl Seminar Proceedings 07462). � ISSN 1862�4405

[Bernsen 1994] Bernsen, N. O.: Modality Theory in Support of Multimodal Interface

Design. In: Proceedings of the AAAI Spring Symposium on Intelligent Multi-Media

Multi-Modal Systems, 1994, 37-44

[Bernsen 1995] Bernsen, N. O.: A Toolbox of Output Modalities. Representing Output

Information in Multimodal Interfaces. Esprit Basic Research Project AMODEUS-2

Working Paper RP5-TM-WP21 / Centre for Cognitive Science, Roskilde University.

1995

[Bernsen 1997a] Bernsen, N. O.: Towards a Tool for Predicting Speech Functionality.

In: Speech Commun. 23 (1997), Nr. 3, S. 181�210. � ISSN 0167�6393

[Bernsen 2001] Bernsen, N. O.: Multimodality in Language and Speech Systems �

From Theory to Design Support Tool. In: From Theory to Design Support Tool,

Kluwer Academic Publishers, 2001

[Bernsen 1997b] Bernsen, N. O.: De�ning a Taxonomy of Output Modalities from an

HCI Perspective. In: Comput. Stand. Interfaces 18 (1997), Nr. 6-7, S. 537�553. � ISSN

0920�5489

[Berti et al. 2004] Berti, S. ; Correani, F. ; Paternò, F. ; Santoro, C.: The

TERESA XML Language for the Description of Interactive Systems at Multiple Ab-

straction Levels. In: Proceedings of Workshop on Developing User Interfaces with

XML: Advances on User Interface Description Languages. Gallipoli (LE), Italy, 2004,

S. 103�110

229

Bibliography

[Berti et al. 2005] Berti, S. ; Paternò, F. ; Santoro, C.: A Taxonomy for Migratory

User Interfaces. In: Harrison, M. (Ed.): Proceedings of the 12th Int. Workshop on

Design, Speci�cation, and Veri�cation of Interactive Systems (DSV-IS'2005), Springer-

Verlag, 2005

[Blattner and Glinert 1996] Blattner, M. ; Glinert, E.: Multimodal Integration. In:

IEEE Multimedia 3 (1996), Winter, Nr. 4, S. 14�24. � ISSN 1070�986X

[Blattner et al. 1992] Blattner, M. ; Glinert, E. ; Jorge, J. ; Ormsby, G.: Metaw-

idgets: Towards a Theory of Multimodal Interface Design. In: Proceedings of the

16th International Computer Software and Applications Conference (COMPSAC '92)

(1992), Sep, S. 115�120

[Bleul et al. 2004] Bleul, S. ; Schaefer, R. ; Mueller, W.: Multimodal Dialog

Description for Mobile Devices. In: Luyten, K. (Ed.) ; Abrams, M. (Ed.) ; Van-

derdonckt, J. (Ed.) ; Limbourg, Q. (Ed.): Developing User Interfaces with XML:

Advances on User Interface Description Languages, Satellite Workshop of Advanced

Visual Interfaces (AVI'04), 2004

[Bodart et al. 1995] Bodart, F. ; Hennebert, A.-M. ; Leheureux, J.-M. ; Provot, I.

; Sacré, B. ; Vanderdonckt, J.: Towards a Systematic Building of Software Archi-

tecture: The TRIDENT Methodological Guide. In: Palanque, P. (Ed.) ; Bastide,

R. (Ed.): Design, Speci�cation and Veri�cation of Interactive Systems '95. Wien :

Springer-Verlag, 1995, 262�278

[Bolt 1980] Bolt, R. A.: "Put that there": Voice and Gesture at the Graphics Interface.

In: Proceedings of the 7th Annual Conference on Computer Graphics and Interactive

Techniques (SIGGRAPH '80). New York, NY, USA : ACM Press, 1980. � ISBN

0�89791�021�4, S. 262�270

[Bouchet et al. 2004] Bouchet, J. ; Nigay, L. ; Ganille, T.: ICARE Software Compo-

nents for Rapidly Developing Multimodal Interfaces. In: ICMI '04: Proceedings of the

6th international conference on Multimodal interfaces. New York, NY, USA : ACM

Press, 2004. � ISBN 1�58113�995�0, S. 251�258

[Bourguet 2004] Bourguet, M.-L.: Software Design and Development of Multimodal

Interaction. In: IFIP Congress Topical Sessions, 2004, S. 409�414

[Bregler and Konig 1994] Bregler, C. ; Konig, Y.: "Eigenlips" for Robust Speech

Recognition. In: IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP-94) Bd. ii, 1994, S. II/669�II/672 vol.2

230

Bibliography

[Breton and Bézivin 2001] Breton, E. ; Bézivin, J.: Towards an Understanding of

Model Executability. In: FOIS '01: Proceedings of the international conference on

Formal Ontology in Information Systems. New York, NY, USA : ACM, 2001. � ISBN

1�58113�377�4, S. 70�80

[Bézivin 2005] Bézivin, J.: On the Uni�cation Power of Models. In: Software and

System Modeling (SoSym) 4 (2005), Nr. 2, 171�188

[Calvary et al. 2001a] Calvary, G. ; Coutaz, J. ; Thevenin, D.: Supporting Context

Changes for Plastic User Interfaces: A Process and a Mechanism. In: A. Blandford,

J. V. (Ed.) ; Gray, P. (Ed.): Joint Proceedings of HCI'2001 and IHM'2001. Lille :

Springer-Verlag, September 2001, 349-363

[Calvary et al. 2001b] Calvary, G. ; Coutaz, J. ; Thevenin, D.: A Unifying Reference

Framework for the Development of Plastic User Interfaces. In: EHCI '01: Proceed-

ings of the 8th IFIP International Conference on Engineering for Human-Computer

Interaction. London, UK : Springer-Verlag, 2001. � ISBN 3�540�43044�X, S. 173�192

[Calvary et al. 2003] Calvary, G. ; Coutaz, J. ; Thevenin, D. ; Limbourg, Q. ;

Bouillon, L. ; Vanderdonckt, J.: A Unifying Reference Framework for Multi-

Target User Interfaces. In: Interacting with Computers 15 (2003), Nr. 3, 289�308

[Calvary et al. 2002] Calvary, G. ; Coutaz, J. ; Thevenin, D. ; Limbourg, Q. ;

Souchon, N. ; Bouillon, L. ; Florins, M. ; Vanderdonckt, J.: Plasticity of User

Interfaces: A Revised Reference Framework. In: TAMODIA '02: Proceedings of the

First International Workshop on Task Models and Diagrams for User Interface Design,

INFOREC Publishing House Bucharest, 2002. � ISBN 973�8360�01�3, S. 127�134

[Card et al. 1991] Card, S. K. ; Mackinlay, J. D. ; Robertson, G. G.: A Mor-

phological Analysis of the Design Space of Input Devices. In: ACM Transactions on

Information Systems 9 (1991), Nr. 2, S. 99�122. � ISSN 1046�8188

[Carpenter 1992] Carpenter, B.: The Logic of Typed Feature Structures. New York,

NY, USA : Cambridge University Press, 1992. � ISBN 0�521�41932�8

[Chai et al. 2005] Chai, J. Y. ; Pan, S. ; Zhou, M. X.: Mind: A Context-Based

Multimodal Interpretation Framework in Conversational Systems. In: Advances in

Natural Multimodal Dialogue Systems 30 (2005)

[Cheyer and Martin 2001] Cheyer, A. ; Martin, D.: The Open Agent Architecture.

In: Journal of Autonomous Agents and Multi-Agent Systems 4 (2001), March, Nr. 1,

S. 143�148

231

Bibliography

[Clerckx et al. 2004] Clerckx, T. ; Luyten, K. ; Coninx, K.: DynaMo-AID: A

Design Process and a Runtime Architecture for Dynamic Model-Based User Interface

Development. In: EHCI/DS-VIS, 2004, S. 77�95

[Clerckx et al. 2007] Clerckx, T. ; Vandervelpen, C. ; Coninx, K.: Task-Based De-

sign and Runtime Support for Multimodal User Interface Distribution. In: Proceedings

of Engineering Interactive Systems 2007 (EHCI-HCSE-DSVIS'07), 2007

[Clerckx et al. 2006] Clerckx, T. ; Vandervelpen, C. ; Luyten, K. ; Coninx, K.:

A Task-Driven User Interface Architecture for Ambient Intelligent Environments. In:

IUI '06: Proceedings of the 11th international conference on Intelligent user interfaces.

New York, NY, USA : ACM Press, 2006. � ISBN 1�59593�287�9, S. 309�311

[Coen 2001] Coen, M. H.: Multimodal Integration - A Biological View. In: Proceedings

of the Fifteenth International Joint Conference on Arti�cial Intelligence, 2001

[Cohen et al. 1989] Cohen, P. R. ; Dalrymple, M. ; Moran, D. B. ; Pereira, F. C. ;

Sullivan, J. W.: Synergistic Use of Direct Manipulation and Natural Language. In:

SIGCHI Bull. 20 (1989), Nr. SI, S. 227�233. � ISSN 0736�6906

[Cohen et al. 1994] Cohen, P. R. ; Cheyer, A. ; Wang, M. ; Baeg, S. C.: An Open

Agent Architecture. In: AAAI Spring Symposium on Software Agents, AAAI Press,

1994, S. 1�8

[Cohen et al. 1997] Cohen, P. R. ; Johnston, M. ;McGee, D. ; Oviatt, S. ; Pittman,

J. ; Smith, I. ; Chen, L. ; Glow, J.: Quickset: Multimodal Interaction for Distributed

Applications. In: ACM International Multimedia Conference, 1997

[Coninx et al. 2003] Coninx, K. ; Luyten, K. ; Vandervelpen, C. ; Bergh, J. V. ;

Creemers, B.: Dygimes: Dynamically Generating Interfaces for Mobile Computing

Devices and Embedded Systems. In: Chittaro, L. (Ed.): Mobile HCI Bd. 2795,

Springer, 2003 (Lecture Notes in Computer Science). � ISBN 3�540�40821�5, 256�270

[Coutaz 2006] Coutaz, J.: Meta-User Interfaces for Ambient Spaces. In: Coninx, K.

(Ed.) ; Luyten, K. (Ed.) ; Schneider, K. A. (Ed.): TAMODIA Bd. 4385, Springer,

2006 (Lecture Notes in Computer Science). � ISBN 978�3�540�70815�5, 1�15

[Coutaz et al. 2003] Coutaz, J. ; Balme, L. ; Lachenal, C. ; Barralon, N.: Soft-

ware Infrastructure for Distributed Migratable User Interfaces. In: Workshop At the

Crossroads: The Interaction of HCI and Systems Issues in Ubicomp. 2003, 2003

[Coutaz et al. 1993] Coutaz, J. ; Nigay, L. ; Salber, D.: The MSM Framework:

A Design Space for Multi-Sensori-Motor Systems. In: Bass, L. J. (Ed.) ; Gornos-

232

Bibliography

taev, J. (Ed.) ; Unger, C. (Ed.): EWHCI Bd. 753, Springer, 1993 (Lecture Notes in

Computer Science). � ISBN 3�540�57433�6, S. 231�241

[Coutaz et al. 1995] Coutaz, J. ; Nigay, L. ; Salber, D. ; Blandford, A. ; May,

J. ; Young, R. M.: Four Easy Pieces for Assessing the Usability of Multimodal

Interaction: The CARE Properties. In: INTERACT, 1995, S. 115�120

[Crease et al. 2000] Crease, M. ; Brewster, S. ; Gray, P.: Caring, Sharing Widgets:

A Toolkit of Sensitive Widgets. In: Proceedings of BCS HCI2000, Springer, 2000, S.

257�270

[Delgado and Araki 2006] Delgado, R. L.-C. ; Araki, M.: Spoken, Multilingual and

Multimodal Dialogue Systems. John Wiley & Sons, Ltd, 2006

[Demeure et al. 2005] Demeure, A. ; Calvary, G. ; Sottet, J.-S. ; Vanderdonkt,

J.: A reference model for distributed user interfaces. In: TAMODIA '05: Proceedings

of the 4th international workshop on Task models and diagrams. New York, NY, USA

: ACM Press, 2005. � ISBN 1�59593�220�8, S. 79�86

[Demeure et al. 2008] Demeure, A. ; Sottet, J.-S. ; Calvary, G. ; Coutaz, J. ;

Ganneau, V. ; Vanderdonkt, J.: The 4C Reference Model for Distributed User

Interfaces. In: The Fourth International Conference on Autonomic and Autonomous

Systems (ICAS 2008), 2008

[Denecke and Yang 2000] Denecke, M. ; Yang, J.: Partial Information in Multi-

modal Dialogue. In: ICMI '00: Proceedings of the Third International Conference

on Advances in Multimodal Interfaces. London, UK : Springer-Verlag, 2000. � ISBN

3�540�41180�1, S. 624�633

[Dey 2000] Dey, A. K.: Providing Architectural Support for Building Context-Aware

Applications, Georgia Institute of Technology, Diss., 2000

[Ding et al. 2006] Ding, Y. ; Elting, C. ; Scholz, U.: Seamless Integration of Output

Devices into Intelligent Environments: Infrastructure, Strategies and Implementation.

In: International Conference on Intelligent Environments IE06, 2006

[Duarte 2008] Duarte, C.: Design and Evaluation of Adaptative Multimodal Systems,

Department of Informatics, University of Lisbon, Diss., March 2008

[Duarte and Carriço 2006] Duarte, C. ; Carriço, L.: A Conceptual Framework for

Developing Adaptive Multimodal Applications. In: IUI '06: Proceedings of the 11th

international conference on Intelligent user interfaces. New York, NY, USA : ACM

Press, 2006. � ISBN 1�59593�287�9, S. 132�139

233

Bibliography

[Dupuy-Chessa et al. 2005] Dupuy-Chessa, S. ; Bousquet, L. du ; Bouchet, J. ;

Ledru, Y.: Test of the ICARE Platform Fusion Mechanism. In: DSV-IS, 2005, S.

102�113

[Elting and Hellenschmidt 2004] Elting, C. ; Hellenschmidt, M.: Strategies for Self-

Organization and Multimodal Output Coordination in Distributed Device Environ-

ments. In: Workshop on Arti�cial Intelligence in Mobile Systems 2004 In conjunction

with UbiComp 2004, September 2004, 2004

[Emiliani and Stephanidis 2005] Emiliani, P. L. ; Stephanidis, C.: Universal Access

to Ambient Intelligence Environments: Opportunities and Challenges for People with

Disabilities. In: IBM Syst. J. 44 (2005), Nr. 3, S. 605�619. � ISSN 0018�8670

[Encarnação and Kirste 2005] Encarnação, J. ; Kirste, T.: Ambient intelligence:

Towards Smart Appliance Ensembles. (2005)

[Fang Chen 2005] Fang Chen, R. D. C. P. Julien Epps E. Julien Epps: NICTA-HCSNet

Multimodal User Interaction Workshop - Outcomes Report / National ICT Australia

& HSCNet. Australian Technology Park, Sydney, September 2005

[Feuerstack 2008] Feuerstack, S.: A Method for the User-centered and Model-based

Development of Interactive Applications, Technische Universität Berlin, Diss., 2008

[Feuerstack et al. 2007] Feuerstack, S. ; Blumendorf, M. ; Albayrak, S.: Proto-

typing of Multimodal Interactions for Smart Environments based on Task Models. In:

Constructing Ambient Intelligence: AmI 2007 Workshops Darmstadt, 2007

[Feuerstack et al. 2008] Feuerstack, S. ; Blumendorf, M. ; Schwartze, V. ; Al-

bayrak, S.: Model-based Layout Generation. In: Bottoni, P. (Ed.) ; Levialdi,

S. (Ed.): Proceedings of the working conference on Advanced visual interfaces, ACM,

2008

[Flippo et al. 2003] Flippo, F. ; Krebs, A. ; Marsic, I.: A Framework for Rapid Devel-

opment of Multimodal Interfaces. In: ICMI '03: Proceedings of the 5th international

conference on Multimodal interfaces. New York, NY, USA : ACM Press, 2003. � ISBN

1�58113�621�8, 109�116

[Floch et al. 2006] Floch, J. ; Hallsteinsen, S. ; Stav, E. ; Eliassen, F. ; Lund,

K. ; Gjorven, E.: Using Architecture Models for Runtime Adaptability. In: IEEE

Software 23 (2006), Nr. 2, S. 62�70. � ISSN 0740�7459

[Florins et al. 2006] Florins, M. ; Simarro, F. M. ; Vanderdonckt, J. ; Michotte,

B.: Splitting Rules for Graceful Degradation of User Interfaces. In: IUI '06: Proceed-

234

Bibliography

ings of the 11th international conference on Intelligent user interfaces. New York, NY,

USA : ACM Press, 2006. � ISBN 1�59593�287�9, S. 264�266

[Foster 2002] Foster, M. E.: State of the Art Review: Multimodal Fission, COMIC

Deliverable D6.1 / COMIC consortium. 2002

[Gajos and Weld 2004] Gajos, K. ; Weld, D. S.: SUPPLE: Automatically Generating

User Interfaces. In: IUI '04: Proceedings of the 9th international conference on Intelli-

gent user interface. New York, NY, USA : ACM Press, 2004. � ISBN 1�58113�815�6,

S. 93�100

[Garlan 2004] Garlan, S.-W. H. A.-C. S. B. S. P. D.; Cheng C. D.; Cheng: Rainbow:

Architecture-based Self-Adaptation with Reusable Infrastructure. In: Computer 37

(2004), October, Nr. 10, S. 46�54. � ISSN 0018�9162

[Ghorbel et al. 2006] Ghorbel, M. ; Mokhtari, M. ; Renouard, S.: A Distributed

Approach for Assistive Service Provision in Pervasive Environment. In: WMASH

'06: Proceedings of the 4th international workshop on Wireless mobile applications

and services on WLAN hotspots. New York, NY, USA : ACM, 2006. � ISBN 1�59593�

470�7, S. 91�100

[Glinert and Wise 1996] Glinert, E. P. ; Wise, G. B.: Adaptive Multimedia Inter-

faces in PolyMestra. In: First European Conference on Disability, Virtual Reality and

Associated Technologies (ECDVRAT '96), 1996

[Grolaux 2007] Grolaux, D.: Transparent Migration and Adaptation in a Graphical

User Interface Toolkit, Université Catholique de Louvain, Diss., 2007

[Grolaux et al. 2005] Grolaux, D. ; Vanderdonckt, J. ; Roy, P. V.: Attach Me,

Detach Me, Assemble Me Like You Work. In: Human-Computer Interaction - IN-

TERACT 2005, 2005

[Heider and Kirste 2002] Heider, T. ; Kirste, T.: Architecture Considerations for

Interoperable Multi-modal Assistant Systems. In: DSV-IS '02: Proceedings of the 9th

International Workshop on Interactive Systems. Design, Speci�cation, and Veri�cation.

London, UK : Springer-Verlag, 2002. � ISBN 3�540�00266�9, S. 253�268

[Holzapfel and Fuegen 2002] Holzapfel, H. ; Fuegen, C.: Integrating Emotional Cues

into a Framework for Dialogue Management. In: ICMI '02: Proceedings of the 4th

IEEE International Conference on Multimodal Interfaces. Washington, DC, USA :

IEEE Computer Society, 2002. � ISBN 0�7695�1834�6, S. 141

235

Bibliography

[Holzapfel et al. 2004] Holzapfel, H. ; Nickel, K. ; Stiefelhagen, R.: Implementa-

tion and Evaluation of a Constraint-based Multimodal Fusion System for Speech and

3D Pointing Gestures. In: ICMI '04: Proceedings of the 6th international conference

on Multimodal interfaces. New York, NY, USA : ACM, 2004. � ISBN 1�58113�995�0,

S. 175�182

[Hosobe 2001] Hosobe, H.: A Modular Geometric Constraint Solver for User Interface

Applications. In: UIST '01: Proceedings of the 14th annual ACM symposium on User

interface software and technology. New York, NY, USA : ACM Press, 2001. � ISBN

1�58113�438�X, S. 91�100

[Hosobe 2005] Hosobe, H.: Solving Linear and One-Way Constraints for Web Document

Layout. In: SAC '05: Proceedings of the 2005 ACM symposium on Applied computing.

New York, NY, USA : ACM Press, 2005. � ISBN 1�58113�964�0, S. 1252�1253

[Huebscher and McCann 2005] Huebscher, C. ; McCann, A.: An Adaptive Middle-

ware Framework for Context-Aware Applications. In: Personal Ubiquitous Comput.

10 (2005), Nr. 1, S. 12�20. � ISSN 1617�4909

[Janssen et al. 1993] Janssen, C. ; Weisbecker, A. ; Ziegler, J.: Generating User

Interfaces from Data Models and Dialogue Net Speci�cations. In: CHI '93: Proceedings

of the SIGCHI conference on Human factors in computing systems. New York, NY,

USA : ACM Press, 1993. � ISBN 0�89791�575�5, S. 418�423

[Johnston 1998] Johnston, M.: Uni�cation-based Multimodal Parsing. In: ACL-36:

Proceedings of the 36th Annual Meeting of the Association for Computational Linguis-

tics and 17th International Conference on Computational Linguistics. Morristown, NJ,

USA : Association for Computational Linguistics, 1998, S. 624�630

[Johnston and Bangalore 2000] Johnston, M. ; Bangalore, S.: Finite-State Multi-

modal Parsing and Understanding. In: Proceedings of the 18th conference on Compu-

tational linguistics. Morristown, NJ, USA : Association for Computational Linguistics,

2000. � ISBN 1�55860�717�X, S. 369�375

[Johnston and Bangalore 2005] Johnston, M. ; Bangalore, S.: Finite-State Mul-

timodal Integration and Understanding. In: Nat. Lang. Eng. 11 (2005), Nr. 2, S.

159�187. � ISSN 1351�3249

[Johnston et al. 2002] Johnston, M. ; Bangalore, S. ; Vasireddy, G. ; Stent,

A. ; Ehlen, P. ; Walker, M. ; Whittaker, S. ; Maloor, P.: MATCH: An

Architecture for Multimodal Dialogue Systems. In: Annual Meeting of the Association

236

Bibliography

for Computational Linguistics. Morristown, NJ, USA : Association for Computational

Linguistics, 2002, 376�383

[Johnston et al. 1997] Johnston, M. ; Cohen, P. R. ; McGee, D. ; Oviatt, S. L. ;

Pittman, J. A. ; Smith, I.: Uni�cation-based Multimodal Integration. In: Proceed-

ings of the eighth conference on European chapter of the Association for Computational

Linguistics. Morristown, NJ, USA : Association for Computational Linguistics, 1997,

S. 281�288

[Katsurada et al. 2003] Katsurada, K. ; Nakamura, Y. ; Yamada, H. ; Nitta, T.:

XISL: A Language for Describing Multimodal Interaction Scenarios. In: ICMI '03:

Proceedings of the 5th international conference on Multimodal interfaces. New York,

NY, USA : ACM Press, 2003. � ISBN 1�58113�621�8, S. 281�284

[Kay 1984] Kay, M.: Functional Uni�cation Grammar: A Formalism for Machine Trans-

lation. In: ACL-22: Proceedings of the 10th International Conference on Computa-

tional Linguistics and 22nd Annual Meeting on Association for Computational Lin-

guistics. Morristown, NJ, USA : Association for Computational Linguistics, 1984, S.

75�78

[Kirste 2004] Kirste, T.: DynAMITE - Dynamisch Adaptive Multimodale IT Ensem-

bles. In: Tagungsband: Forschungso�ensive "Software Engineering 2006", 2004

[Kirste and Rapp 2001] Kirste, T. ; Rapp, S.: Architecture for Multimodal Interactive

Assistant Systems. In: Statustagung der Leitprojekte "Mensch-Technik-Interaktion",

2001

[Klug and Kangasharju 2005] Klug, T. ; Kangasharju, J.: Executable Task Models.

In: Proceedings of TAMODIA 2005. Gdansk, Poland : ACM Press, September 2005,

S. 119�122

[Kobayashi et al. 2005] Kobayashi, N. ; Tokunaga, E. ; Kimura, H. ; Hirakawa,

Y. ; Ayabe, M. ; Nakajima, T.: An Input Widget Framework for Multi-modal and

Multi-device Environments. In: Proceedings of the Third IEEE Workshop on Software

Technologies for Future Embedded and Ubiquitous Systems (SEUS '05), 2005

[Larson et al. 2003] Larson, J. A. ; Raman, T. ; Raggett, D. ; Bodell, M. ; John-

ston, M. ; Kumar, S. ; Potter, S. ; Waters, K.: W3C Multimodal Interaction

Framework - W3C NOTE 06 May 2003 / W3C. 2003

[Lehmann 2008] Lehmann, G.: Model Driven Runtime Architecture for Plastic User

Interfaces, Technische Universität Berlin, Diplomarbeit, 2008

237

Bibliography

[Limbourg et al. 2004a] Limbourg, Q. ; Vanderdonckt, J. ; Michotte, B. ; Bouil-

lon, L. ; Florins, M. ; Trevisan, D.: USIXML: A User Interface Description

Language for Context-Sensitive User Interfaces. In: Proceedings of the ACM AVI'2004

Workshop" Developing User Interfaces with XML: Advances on User Interface De-

scription Languages, 2004, S. 55�62

[Limbourg et al. 2004b] Limbourg, Q. ; Vanderdonckt, J. ; Michotte, B. ; Bouil-

lon, L. ; López-Jaquero, V.: USIXML: A Language Supporting Multi-path Devel-

opment of User Interfaces. In: Bastide, R. (Ed.) ; Palanque, P. A. (Ed.) ; Roth, J.

(Ed.): EHCI/DS-VIS Bd. 3425, Springer, 2004 (Lecture Notes in Computer Science).

� ISBN 3�540�26097�8, 200�220

[Luyten et al. 2006a] Luyten, K. ; Thys, K. ; Vermeulen, J. ; Coninx, K.: A Generic

Approach for Multi-device User Interface Rendering with UIML. In: CADUI 2006:

Computer-Aided Design of User Interfaces V, 2006

[Luyten et al. 2005] Luyten, K. ; Vandervelpen, C. ; Bergh, J. V. ; Coninx,

K.: Context-sensitive User Interfaces for Ambient Environments: Design, Develop-

ment and Deployment. In: Davies, N. (Ed.) ; Kirste, T. (Ed.) ; Schumann, H.

(Ed.): Mobile Computing and Ambient Intelligence: The Challenge of Multimedia,

Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss

Dagstuhl, Germany, 2005 (Dagstuhl Seminar Proceedings 05181). � ISSN 1862�4405

[Luyten et al. 2002] Luyten, K. ; Vandervelpen, C. ; Coninx, K.: Migratable User

Interface Descriptions in Component-Based Development. In: DSV-IS, 2002, S. 44�58

[Luyten et al. 2006b] Luyten, K. ; Vermeulen, J. ; Coninx, K.: Constraint Adapt-

ability of MultiDevice User Interfaces. In: Richter, K. (Ed.) ; Nichols, J. (Ed.)

; Gajos, K. (Ed.) ; Seffah, A. (Ed.): Proceedings of the CHI*06 Workshop on The

Many Faces of Consistency in Cross Platform Design, 2006

[Maes and Saraswat 2003] Maes, S. H. ; Saraswat, V.: Multimodal Interaction Re-

quirements - W3C NOTE 8 January 2003 / W3C. 2003

[Maoz 2008] Maoz, S.: Model-Based Traces. In: 3rd Int. Workshop on Models at

Runtime at MoDELS'08, 2008

[Martin 1998]Martin, J.-C.: TYCOON: Theoretical Framework and Software Tools for

Multimodal Interfaces. In: Intelligence and Multimodality in Multimedia interfaces,

AAAI Press (1998)

[Mellor 2004] Mellor, S. J.: Agile MDA / Project Technology, Inc. 2004

238

Bibliography

[Mellor et al. 2004] Mellor, S. J. ; Scott, K. ; Uhl, A. ; Weise, D.: MDA Distilled:

Principles of Model-Driven Architecture. Boston : Addison-Wesley, 2004

[Mühlhäuser 2007] Mühlhäuser, M.: Multimodal Interaction for Ambient Assisted

Living (AAL). In: Karshmer, A. I. (Ed.) ; Nehmer, J. (Ed.) ; Raffler, H. (Ed.)

; Tröster, G. (Ed.): Assisted Living Systems - Models, Architectures and Engineer-

ing Approaches Bd. 07462, Internationales Begegnungs- und Forschungszentrum fuer

Informatik (IBFI), Schloss Dagstuhl, Germany, 2007 (Dagstuhl Seminar Proceedings)

[Mikalsen et al. 2006] Mikalsen, M. ; Floch, J. ; Paspallis, N. ; Papadopoulos,

G. A. ; Ruiz, P. A.: Putting Context in Context: The Role and Design of Context

Management in a Mobility and Adaptation Enabling Middleware. In: MDM '06: Pro-

ceedings of the 7th International Conference on Mobile Data Management. Washington,

DC, USA : IEEE Computer Society, 2006. � ISBN 0�7695�2526�1, S. 76

[Miller and Mukerji 2001]Miller, J. ; Mukerji, J.: Model Driven Architecture (MDA).

OMG Document ormsc/2001-07-01 edition. Object Management Group, Juli 2001

[Minsky 1975] Minsky, M.: A Framework for Representing Knowledge. In: The Psy-

chology of Computer Vision (1975). ISBN 0�262�62101�0

[Müller et al. 2003] Müller, J. ; Poller, P. ; Tschernomas, V.: A Multimodal

Fission Approach with a Presentation Agent in the Dialog System SmartKom. In: KI

2003: Advances in Arti�cial Intelligence, 2003

[Molina et al. 2006] Molina, J. ; Vanderdonckt, J. ; González, P. ; Fernández-

Caballero, A. ; Lozano, M.: Rapid Prototying of Distributed User Interfaces.

In: Proceedings of 6th Int, Conf. on Computer-Aided Design of User Interfaces

(CADUI'2006), Springer-Verlag, 2006, S. pp. 151�166

[Moran et al. 1997] Moran, D. B. ; Cheyer, A. J. ; Julia, L. E. ; Martin, D. L. ;

Park, S.: Multimodal User Interfaces in the Open Agent Architecture. In: IUI '97:

Proceedings of the 2nd International Conference on Intelligent User Interfaces. New

York, NY, USA : ACM Press, 1997. � ISBN 0�89791�839�8, S. 61�68

[Mori et al. 2004] Mori, G. ; Paternò, F. ; Santoro, C.: Design and Development of

Multidevice User Interfaces through Multiple Logical Descriptions. In: IEEE Trans.

Softw. Eng. 30 (2004), Nr. 8, S. 507�520. � ISSN 0098�5589

[Muller et al. 2005] Muller, P. A. ; Fleurey, F. ; Jézéquel, J. M.: Weaving Exe-

cutability into Object-Oriented Meta-languages. In: Briand, L. C. (Ed.) ;Williams,

C. (Ed.): Proceedings of the 8th International on Model Driven Engineering Languages

239

Bibliography

and Systems Bd. 3713. Montego Bay, Jamaica : Springer, October 2005 (Lecture Notes

in Computer Science), S. 264�278

[Myers and Rosson 1992] Myers, B. A. ; Rosson, M. B.: Survey on User Interface

Programming. In: CHI '92: Proceedings of the SIGCHI conference on Human factors

in computing systems. New York, NY, USA : ACM, 1992. � ISBN 0�89791�513�5, S.

195�202

[Neal and Shapiro 1988] Neal, J. G. ; Shapiro, S. C.: Intelligent Multi-Media Interface

Technology. In: SIGCHI Bull. 20 (1988), Nr. 1, S. 75�76. � ISSN 0736�6906

[Nehmer et al. 2006] Nehmer, J. ; Becker, M. ; Karshmer, A. ; Lamm, R.: Living

Assistance Systems: An Ambient Intelligence Approach. In: ICSE '06: Proceedings

of the 28th International Conference on Software Engineering. New York, NY, USA :

ACM, 2006. � ISBN 1�59593�375�1, S. 43�50

[Nichols et al. 2002] Nichols, J. ; Myers, B. ; Harris, T. K. ; Rosenfeld, R. ;

Shriver, S. ; Higgins, M. ; HughesInc., J.: Requirements for Automatically Gen-

erating Multi-Modal Interfaces for Complex Appliances. In: Fourth IEEE International

Conference on Multimodal Interfaces (ICMI'02), 2002, S. p. 377

[Nichols et al. 2006] Nichols, J. ; Myers, B. A. ; Rothrock., B.: UNIFORM:

Automatically Generating Consistent Remote Control User Interfaces. In: Proceedings

of CHI'2006, 2006, S. pp. 611�620

[Nigay and Coutaz 1993] Nigay, L. ; Coutaz, J.: A Design Space for Multimodal

Systems: Concurrent Processing and Data Fusion. In: CHI '93: Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems. New York, NY, USA

: ACM Press, 1993. � ISBN 0�89791�575�5, S. 172�178

[Nigay and Coutaz 1995] Nigay, L. ; Coutaz, J.: A Generic Platform for Addressing the

Multimodal Challenge. In: CHI '95: Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems. New York, NY, USA : ACM Press/Addison-Wesley

Publishing Co., 1995. � ISBN 0�201�84705�1, S. 98�105

[Nigay and Coutaz 1997] Nigay, L. ; Coutaz, J.: Multifeature Systems: The CARE

Properties and Their Impact on Software Design. In: Intelligence and Multimodality

in Multimedia Interfaces. 1997

[Obj 2002] Object Management Group (Ed.): Meta Object Facility (MOF) Speci�-

cation � Version 1.4. Object Management Group, April 2002

[Oviatt 1999] Oviatt, S.: Ten Myths of Multimodal Interaction. In: Commun. ACM

42 (1999), Nr. 11, S. 74�81. � ISSN 0001�0782

240

Bibliography

[Park and Kwon 2007] Park, T. H. ; Kwon, O.: Identifying a Generic Model of Context

for Context-Aware Multi-services. In: Proceedings of 4th International Conference Bd.

Volume 4611/2007, 2007 (LNCS)

[Paternò 1999] Paternò, F.: Model-Based Design and Evaluation of Interactive Appli-

cations. Springer-Verlag, 1999 (Applied Computing). � 208 S. � ISBN 1�85233�155�0

[Paternò 2005] Paternò, F.: Model-based Tools for Pervasive Usability. In: Interacting

with Computers 17 (2005), Nr. 3, 291�315

[Paternò and Santoro 2002] Paternò, F. ; Santoro, C.: One Model, Many Interfaces.

In: Kolski, C. (Ed.) ; Vanderdonckt, J. (Ed.): CADUI, Kluwer, 2002. � ISBN

1�4020�0643�8, S. 143�154

[Paterno et al. 2008] Paterno, F. ; Santoro, C. ; Mantyjarvi, J. ; Mori, G. ;

Sansone, S.: Authoring Pervasive Multimodal User Interfaces. In: International

Journal of Web Engineering and Technology 4 (2008), 235-261(27)

[Pavlovic 1998] Pavlovic, V.: Multimodal Tracking and Classi�cation of Audio-Visual

Features. In: International Conference on Image Processing (ICIP 98), 1998, S. 343�

347

[P�eger 2004] Pfleger, N.: Context Based Multimodal Fusion. In: ICMI '04: Pro-

ceedings of the 6th International Conference on Multimodal interfaces. New York, NY,

USA : ACM, 2004. � ISBN 1�58113�995�0, S. 265�272

[Plomp and Mayora-Ibarra 2002] Plomp, J. ; Mayora-Ibarra, O.: A Generic Widget

Vocabulary for the Generation of Graphical and Speech-Driven User Interfaces. In:

International Journal of Speech Technology V(5), Issue 1, 2002

[Portillo et al. 2006] Portillo, P. M. ; García, G. P. ; Carredano, G. A.: Multimodal

Fusion: A New Hybrid Strategy for Dialogue Systems. In: ICMI '06: Proceedings of

the 8th International Conference on Multimodal Interfaces. New York, NY, USA :

ACM, 2006. � ISBN 1�59593�541�X, S. 357�363

[Pribeanu 2007] Pribeanu, C.: Tool Support for Handling Mapping Rules from Domain

to Task Models. In: Task Models and Diagrams for Users Interface Design Bd. Volume

4385/2007, Springer Berlin / Heidelberg, 2007, S. 16�23

[Puerta and Eisenstein 2001] Puerta, A. ; Eisenstein, J.: XIML: A Universal Language

for User Interfaces / RedWhale Software, 227 Town & Country, Palo Alto. 2001

[Puerta and Eisenstein 1999] Puerta, A. R. ; Eisenstein, J.: Towards a General Com-

241

Bibliography

putational Framework for Model-Based Interface Development Systems. In: Intelligent

User Interfaces, 1999, 171-178

[Reithinger et al. 2003]Reithinger, N. ; Alexandersson, J. ; Becker, T. ; Blocher,

A. ; Engel, R. ; Löckelt, M. ; Müller, J. ; Pfleger, N. ; Poller,

P. ; Streit, M. ; Tschernomas, V.: SmartKom: Adaptive and Flexible Multimodal

Access to Multiple Applications. In: ICMI '03: Proceedings of the 5th international

conference on Multimodal interfaces. New York, NY, USA : ACM Press, 2003. � ISBN

1�58113�621�8, S. 101�108

[Richter 2006] Richter, K.: Transformational Consistency. In: CADUI'2006 Computer-

AIDED Design of User Interface V, 2006

[Robbie Schaefer 2006] Robbie Schaefer, W. M. Ste�en Bleul B. Ste�en Bleul: Dialog

Modelling for Multiple Devices and Multiple Interaction Modalities. In: 5th Inter-

national Workshop on Task Models and Diagrams for UI design (TAMODIA'2006).

Hasselt, Belgium, October 2006

[Rohr et al. 2006] Rohr, M. ; Boskovic, M. ; Giesecke, S. ; Hasselbring, W.:

Model-driven Development of Self-managing Software Systems. In: Proceedings of the

Workshop �Models@run.time� at the 9th International Conference on Model Driven

Engineering Languages and Systems (MoDELS/UML'06) 2006, 2006

[Rossi et al. 2005] Rossi, G. ; Gordillo, S. ; Lyardet, F.: Design Patterns for

Context-Aware Adaptation. In: SAINT-W '05: Proceedings of the 2005 Symposium

on Applications and the Internet Workshops (SAINT 2005 Workshops). Washington,

DC, USA : IEEE Computer Society, 2005. � ISBN 0�7695�2263�7, S. 170�173

[Rubin et al. 1998] Rubin, P. ; Vatikiotis-Bateson, E. ; Benoit, C.: Audio-Visual

Speech Processing (Special Issue). In: Speech Cummunication 26 (1998), S. 1�161

[Salber et al. 1999] Salber, D. ; Dey, A. K. ; Abowd, G. D.: The Context Toolkit:

Aiding the Development of Context-Enabled Applications. In: CHI, 1999, 434-441

[Sanchez et al. 2008] Sanchez, M. ; Barrero, I. ; Villalobos, J. ; Deridder, D.: An

Execution Platform for Extensible Runtime Models. In: 3rd Int. Workshop on Models

at Runtime at MoDELS'08, 2008

[Sandor et al. 2001] Sandor, C. ; Reicher, T. ;München, T. U.: CUIML: A Language

for the Generation of Multimodal Human-Computer Interfaces. In: In Proceedings of

the European UIML conference, 2001

242

Bibliography

[Schneider and Becker 2008] Schneider, D. ; Becker, M.: Runtime Models for Self-

Adaptation in the Ambient Assisted Living Domain. In: 3rd Int. Workshop on Models

at Runtime at MoDELS'08, 2008

[da Silva 2001] Silva, P. P.: User Interface Declarative Models and Development Envi-

ronments: A Survey. In: Interactive Systems. Design, Speci�cation, and Veri�cation,

8th International Workshop, DSV-IS 2001, Glasgow, Scotland, Springer-Verlag Berlin.

Bd. 1946. Limerick, Ireland, 2001, S. 207�226

[Sottet et al. 2006a] Sottet, J.-S. ; Calvary, G. ; Favre, J.-M.: Mapping Model: A

First Step to Ensure Usability for sustaining User Interface Plasticity. In: Pleuss, A.

(Ed.) ; Bergh, J. V. (Ed.) ; Hussmann, H. (Ed.) ; Sauer, S. (Ed.) ; Boedcher, A.

(Ed.) ; ACM/IEEE (Org.): Model Driven Development of Advanced User Interfaces

(MDDAUI 2006) Bd. 214 ACM/IEEE, 2006, S. 51�54

[Sottet et al. 2006b] Sottet, J.-S. ; Calvary, G. ; Favre, J.-M.: Models at Runtime

for sustaining User Interface Plasticity. 2006

[Sottet et al. 2007a] Sottet, J.-S. ; Calvary, G. ; Coutaz, J. ; Favre, J.-M.: A

Model-Driven Engineering Approach for the Usability of Plastic User Interfaces. In:

Proc. Engineering Interactive Systems 2007, 2007

[Sottet et al. 2007b] Sottet, J.-S. ; Ganneau, V. ; Calvary, G. ; Coutaz, J. ; De-

meure, A. ; Favre, J.-M. ; Demumieux, R.: Model-Driven Adaptation for Plastic

User Interfaces. In: Baranauskas, M. C. C. (Ed.) ; Palanque, P. A. (Ed.) ; Abas-

cal, J. (Ed.) ; Barbosa, S. D. J. (Ed.): Human-Computer Interaction - INTERACT

2007, 11th IFIP TC 13 International Conference, Rio de Janeiro, Brazil, September

10-14, 2007, Proceedings, Part I Bd. 4662, Springer, 2007 (Lecture Notes in Computer

Science). � ISBN 978�3�540�74794�9, 397-410

[Stanciulescu 2008] Stanciulescu, A.: A Methodology for Developing Multimodal User

Interfaces of Information Systems, Université Catholique de Louvain, Diss., 2008

[Stocq and Vanderdonckt 2004] Stocq, J. ; Vanderdonckt, J.: A Domain Model-

Driven Approach for Producing User Interfaces to Multi-Platform Information Sys-

tems. In: AVI '04: Proceedings of the working conference on Advanced visual interfaces.

New York, NY, USA : ACM Press, 2004. � ISBN 1�58113�867�9, 395�398

[Stork and Hennecke 1996] Stork, D. G. (Ed.) ; Hennecke, M. E. (Ed.): Speechreading

by Humans and Machines. Springer, 1996

[Streitz et al. 1999] Streitz, N. A. ; Geiÿler, J. ; Holmer, T. ; Konomi, S. ;Müller-

Tomfelde, C. ; Reischl, W. ; Rexroth, P. ; Seitz, P. ; Steinmetz, R.: i-LAND:

243

Bibliography

An Interactive Landscape for Creativity and Innovation. In: CHI '99: Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems. New York, NY,

USA : ACM, 1999. � ISBN 0�201�48559�1, S. 120�127

[Szekely 1996] Szekely, P. A.: Retrospective and Challenges for Model-Based Interface

Development. In: Bodart, F. (Ed.) ; Vanderdonckt, J. (Ed.): DSV-IS, Springer,

1996. � ISBN 3�211�82900�8, S. 1�27

[Tandler 2004] Tandler, P.: The BEACH Application Model and Software Framework

for Synchronous Collaboration in Ubiquitous Computing Environments. In: J. Syst.

Softw. 69 (2004), Nr. 3, S. 267�296. � ISSN 0164�1212

[Tandler et al. 2001] Tandler, P. ; Prante, T. ; Müller-Tomfelde, C. ; Streitz,

N. ; Steinmetz, R.: Connectables: Dynamic Coupling of Displays for the Flexible

Creation of Shared Workspaces. In: UIST '01: Proceedings of the 14th Annual ACM

Symposium on User interface Software and Technology. New York, NY, USA : ACM

Press, 2001. � ISBN 1�58113�438�X, S. 11�20

[Vanderdonckt 2005] Vanderdonckt, J.: A MDA-Compliant Environment for Devel-

oping User Interfaces of Information Systems. In: Pastor, O. (Ed.) ; Cunha, J. F.

(Ed.): CAiSE Bd. 3520, Springer, 2005 (Lecture Notes in Computer Science). � ISBN

3�540�26095�1, 16�31

[Vanderdonckt et al. 2007] Kapitel 4. In:Vanderdonckt, J. ; Calvary, G. ; Coutaz,

J. ; Stanciulescu, A.: Multimodality for Plastic User Interfaces: Models, Methods,

and Principles. 2007, S. 75�105

[Vandervelpen and Coninx 2004] Vandervelpen, C. ; Coninx, K.: Towards Model-

based Design Support for Distributed User Interfaces. In: NordiCHI '04: Proceedings

of the third Nordic Conference on Human-Computer Interaction. New York, NY, USA

: ACM Press, 2004. � ISBN 1�58113�857�1, S. 61�70

[Vandervelpen et al. 2005] Vandervelpen, C. ; Vanderhulst, G. ; Luyten, K. ;

Coninx, K.: Light-Weight Distributed Web Interfaces: Preparing the Web for Het-

erogeneous Environments. In: ICWE, 2005, S. 197�202

[Vo et al. 1995] Vo, M. T. ; Houghton, R. ; Yang, J. ; Bub, U. ; Meier, U. ;Waibel,

A. ; Duchnowski, P.: Multimodal learning interfaces. In: Proceedings of the ARPA

Spoken Language Systems Technology Workshop, 1995

[Vo and Waibel 1993] Vo, M. T. ;Waibel, A.: A multimodal human-computer interface:

combination of speech and gesture recognition. In: Adjunct proceedings of InterCHI'93,

1993

244

Bibliography

[Vo and Wood 1996] Vo, M. T. ; Wood, C.: Building an application framework for

speech and pen input integration in multimodal learning interfaces. In: Acoustics,

Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE

International Conference on 6 (1996), May, S. 3545�3548 vol. 6

[Wahlster 2002] Wahlster, W.: SmartKom: Fusion and Fission of Speech, Gestures,

and Facial Expressions. In: Proc. of the 1st International Workshop on Man-Machine

Symbiotic Systems, 2002

[Wahlster 2003] Wahlster, W.: Towards Symmetric Multimodality: Fusion and Fis-

sion of Speech, Gesture, and Facial Expression. In: KI 2003: Advances in Arti�cial

Intelligence, 2003

[Wahlster 2006]Wahlster, W. (Ed.): SmartKom: Foundations of Multimodal Dialogue

Systems. Springer, 2006

[Waibel et al. 1995] Waibel, A. ; Vo, M. T. ; Duchnowski, P. ; Manke, S.: MULTI-

MODAL INTERFACES. In: AIRJ'94, 1995

[Wang 1995]Wang, J.: Integration of eye-gaze, voice and manual response in multimodal

user interface. In: IEEE International Conference on Systems, Man and Cybernetics,

1995. Intelligent Systems for the 21st Century. Bd. 5, 1995, S. 3938�3942 vol.5

[Weber et al. 2005]Weber, W. (Ed.) ; Rabaey, J. M. (Ed.) ; Aarts, E. (Ed.): Ambient

Intelligence. Springer, 2005

[Weiser 1993] Weiser, M.: Some computer science issues in ubiquitous computing. In:

Commun. ACM 36 (1993), Nr. 7, S. 75�84. � ISSN 0001�0782

[Wu et al. 1999] Wu, L. ; Oviatt, S. ; Cohen, P.: Multimodal integration-a statistical

view. In: Multimedia, IEEE Transactions on 1 (1999), Dec, Nr. 4, S. 334�341. � ISSN

1520�9210

245

	1 Introduction
	1.1 Goals and Contributions
	1.1.1 Executable Models
	1.1.2 Reference Metamodels
	1.1.3 A Runtime Architecture

	1.2 Thesis Structure

	2 Ubiquitous User Interfaces for Smart Environments
	2.1 Smart Environments
	2.2 User Interfaces for Smart Environments
	2.3 Ubiquitous User Interfaces
	2.3.1 Basic Terms
	2.3.2 Shapeability
	2.3.3 Distribution
	2.3.4 Multimodality
	2.3.5 Shareability
	2.3.6 Mergeability
	2.3.7 A Definition of UUIs

	2.4 Summary

	3 Fundamentals
	3.1 Adaptive, Shapeable, Distributed & Multimodal Interaction
	3.1.1 Adaptation
	3.1.2 Shaping
	3.1.3 Distribution
	3.1.4 Multimodal Interaction
	3.1.5 Summary

	3.2 Model-Based Development
	3.2.1 Fundamental Concepts
	3.2.2 Levels of Abstraction
	3.2.3 Models at Runtime
	3.2.4 Summary

	3.3 User Interface Description Languages
	3.3.1 UIML
	3.3.2 TERESA XML
	3.3.3 USer Interface eXtensible Markup Language (UsiXML)
	3.3.4 Other
	3.3.5 Summary

	3.4 Architectures
	3.4.1 W3C Multimodal Interaction Framework
	3.4.2 MultiModal Dialog System
	3.4.3 ICARE
	3.4.4 Cameleon-RT
	3.4.5 DynaMo-AID
	3.4.6 FAME
	3.4.7 DynAMITE
	3.4.8 SmartKom
	3.4.9 Other Systems
	3.4.10 Discussion

	3.5 Conclusion
	3.5.1 Shortcomings
	3.5.2 Requirements
	3.5.3 Summary

	4 Executable UI Models
	4.1 The Meta-Metamodel
	4.2 Execution Logic
	4.2.1 Intra-Model Logic
	4.2.2 Inter-Model Logic
	4.2.3 External Model Logic

	4.3 The Mapping Metamodel
	4.3.1 Synchronization Mappings
	4.3.2 Constructional Mappings

	4.4 Summary

	5 User Interface Metamodels
	5.1 Task Model
	5.2 Domain Model
	5.3 Service Model
	5.4 Interaction Modeling
	5.4.1 Abstract Interaction Model
	5.4.2 Concrete Input Model
	5.4.3 Concrete Output Model
	5.4.4 Interrelations between Interaction Elements

	5.5 Connecting the Models
	5.6 Discussion
	5.7 Summary

	6 The Multi-Access Service Platform
	6.1 Architecture
	6.2 Context Model
	6.2.1 Environment Information
	6.2.2 User Information
	6.2.3 Integrating External Processes
	6.2.4 Interaction Resources

	6.3 Interaction Channels
	6.3.1 Channel Types
	6.3.2 Integration of Channels and Models
	6.3.3 Summary

	6.4 User Interface Distribution
	6.4.1 Distribution Component
	6.4.2 Distribution Model
	6.4.3 Distribution Sequence

	6.5 User Interface Shaping
	6.6 Multimodal Input Processing
	6.6.1 Monomodal Input Processing
	6.6.2 Fusion Component
	6.6.3 Fusion Model
	6.6.4 Input Interpretation Sequence
	6.6.5 Summary

	6.7 User Interface Adaptation
	6.8 MASP Event Propagation
	6.9 Summary

	7 Evaluation
	7.1 The Service Centric Home
	7.2 Case Study: Infrastructure for UUIs
	7.3 Case Study: Executable UI Models
	7.4 Requirements Validation
	7.4.1 Shapeability
	7.4.2 Dynamic Distribution
	7.4.3 Multimodality
	7.4.4 Adaptation
	7.4.5 Architecture Concepts
	7.4.6 UI Concepts

	7.5 Summary

	8 Conclusion
	8.1 Future Work
	8.2 Concluding Remarks

	A Case Study: Infrastructure for UUIs
	A.1 The General Concept
	A.2 4-Star Cooking Assistant
	A.3 Smart Home Energy Assistant
	A.4 Meta-UI
	A.5 Summary

	B Case Study: Executable UI Models
	B.1 The Executable Task Model
	B.2 Other Models
	B.3 Mappings
	B.4 Bootstrapping
	B.5 Resulting User Interface
	B.6 Summary

	List of Figures
	List of Tables
	Bibliography

