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Abstract: Two experiments are reported that investigate to what extent performance 
consequences of automated aids are dependent on the distribution of functions 
between human and automation and on the experience an operator has with an 
aid. In the first experiment, performance consequences of three automated aids for 
the support of a supervisory control task were compared. Aids differed in degree of 
automation (DOA). Compared with a manual control condition, primary and secondary 
task performance improved and subjective workload decreased with automation 
support, with effects dependent on DOA. Performance costs include return-to-manual 
performance issues that emerged for the most highly automated aid and effects of 
complacency and automation bias, respectively, which emerged independent of 
DOA. The second experiment specifically addresses how automation bias develops 
over time and how this development is affected by prior experience with the system. 
Results show that automation failures entail stronger effects than positive experience 
(reliably working aid). Furthermore, results suggest that commission errors in 
interaction with automated aids can depend on three sorts of automation bias effects: 
(a) withdrawal of attention in terms of incomplete cross-checking of information, (b) 
active discounting of contradictory system information, and (c) inattentive processing 
of contradictory information analog to a “looking-but-not-seeing” effect.
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Introduction
In many complex work environments, human operators are supported by an increasing 
number of automated systems. In particular, systems that support decision mak-
ing, such as navigation systems in cars, image-based assistance systems for sur-
gery, or diagnostic aids for process control, have gained much attention lately. In 
providing human operators with such aids, system designers usually intend to 
improve the overall system’s reliability and performance as well as to reduce the 
workload of the user while he or she is performing the supported task. However, 
the benefits of automation may not always be realized but can be offset by some 
unwanted performance consequences resulting from an inappropriate use of the 
systems. These performance consequences include overreliance on automation, 
loss of situation awareness, and possible loss of skills needed to perform the 
automated functions manually in case of automation failure (Endsley & Kiris, 
1995; Parasuraman, Sheridan & Wickens, 2000).

Framework Models of Human-Automation Interaction
To guide the research on automation-induced performance consequences, 

different framework models have been proposed that allow for a standardized 
characterization of automated systems with respect to how functions are distrib-
uted between humans and machine (e.g., Endsley & Kaber, 1999; Endsley & 
Kiris, 1995; Parasuraman et al., 2000; Sheridan, 2000). Common to all of these 
models is the basic assumption that automation is not an all-or-none phenom-
enon and that the performance consequences in terms of benefits and costs of 
automation will directly depend on which and how many functions are auto-
mated. One of the currently most recognized models in this respect is the types 
and levels taxonomy of automation proposed by Parasuraman et al. (2000). This 
model distinguishes automated systems with respect to two aspects. The first 
aspect involves the stages of human information processing that are supported 
by a given automated system. Four successive stages are distinguished, which 
are referred to as information acquisition, information analysis, decision making 
and response selection, and action execution. The second aspect regards to what 
extent information-processing functions within each of these stages are sup-
ported, that is, how much the human is still kept involved in the given function. 
Closely related to this taxonomy is the distinction of different degrees of automa-
tion (DOA) introduced by Wickens, Li, Santamaria, Sebok, and Sarter (2010). 
According to this concept, “higher degrees of automation can be accomplished 
by both higher levels within a stage and by including later stages” (Wickens  
et al., 2010, p. 389). For example, an alarm system informing human operators 
about the presence of a specific critical situation would be considered to repre-
sent a higher DOA than would a simple master alarm (both supporting informa-
tion analysis functions on different levels). However, the same system would 
represent a lesser DOA compared with a system that also provides advice for 
proper responses (support of decision making and response selection) in addi-
tion to the alerting function. With respect to human performance consequences, 
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it is assumed that intended benefits of automation in terms of better perfor-
mance and workload reduction directly increase with DOA. In contrast, medium 
DOA, which keeps the human in the loop at least to some extent, has been 
assumed to provide the best choice for realizing benefits from automation and, 
at the same time, preventing what has been referred to as out-of-the-loop unfa-
miliarity, namely, a loss of situation awareness and a loss of manual skills, which 
may lead to performance problems if the operator has to resume manual control 
after an automation breakdown (Endsley & Kiris, 1995). Thus far, only few 
studies have addressed the impact of DOA on human performance systemati-
cally, with somewhat mixed results. Whereas some studies have provided evi-
dence for the benefits of medium DOA for maintaining situation awareness and 
skills (e.g., Endsley & Kaber, 1999; Endsley & Kiris, 1995; Kaber & Endsley, 
2004), other findings suggest that higher DOA may provide benefits in this 
respect (Lorenz, Di Nocera, Roettger, & Parasuraman, 2002).

Misuse of Automation: Complacency and Automation Bias
One particular factor that has not been addressed in the studies already 

referred to includes misuse of automation, that is, an uncritical reliance on the 
proper functioning of an automated system without recognizing its limitations 
and the possibilities of automation failures (Parasuraman & Riley, 1997). In 
typical supervisory control tasks, misuse of automation is reflected in an insuf-
ficient monitoring and checking of automated functions, a phenomenon that 
also has been referred to as “automation-induced complacency” (Moray & 
Inagaki; 2000, Parasuraman, Molloy, & Singh, 1993). Possible performance 
consequences of complacency are suggested to include a loss of situation aware-
ness, difficulties in returning to manual performance in case of automation fail-
ures, and an elevated risk that operators fail to detect and manage automation 
failures in due time (Endsley & Kiris, 1995; Parasuraman et al., 1993).

A distinct but related aspect of misuse of automation has been described for 
human interactions with automated decision aids. According to Mosier and 
Skitka (1996), the availability of automated aids can lead the user to make deci-
sions that are not based on a thorough analysis of all available information but 
that are strongly biased by the automatically generated advice, a phenomenon 
that they have referred to as “automation bias.” One possible performance con-
sequence of this bias involves commission errors, which occur when operators 
follow a recommendation of an automated aid even though it is wrong. As has 
been described by Skitka, Mosier, and Burdick (1999), these errors “can be the 
result of not seeking out confirmatory or disconfirmatory information, or dis-
counting other sources of information in the presence of computer-generated 
cues” (p. 993). This description suggests that at least two sorts of automation bias 
should be distinguished. The first one reflects a decision bias in a strict sense. 
Having obtained contradictory information from different sources, the operator 
decides for some reason to trust the provisions of the automated aid. However, 
the second one, that is, following the aid’s recommendation without verification, 
seems to reflect a kind of decision bias that directly corresponds to complacency 
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in automation monitoring. Similar to complacent operators who do not monitor 
an automated process sufficiently, users of an automated aid misuse the automa-
tion to the extent that they directly follow the automatically generated advice 
without cross-checking its validity against other available and accessible 
information. 

Direct empirical evidence for this supposed theoretical link between compla-
cency and automation bias has been provided by a recent series of studies 
(Bahner, Elepfandt, & Manzey, 2008; Bahner, Hueper, & Manzey, 2008). In these 
studies, participants were required to monitor an autonomously running life-
support system and to intervene whenever this system failed. This fault identifi-
cation and management task was supported by an automated aid, which alerted 
the participants of a system failure and provided an automatically generated 
diagnosis together with suggestions for appropriate steps of error management. 
To explore the supposed link between complacency and automation bias, it was 
assessed whether participants fully verified the automatically generated diagnosis 
before accepting it and how this would relate to the occurrence of commission 
errors in case the aid provided an incorrect recommendation. Between 21% 
(Bahner, Hueper, et al., 2008) and 75% (Bahner, Elepfandt, et al., 2008) of the 
participants committed a commission error when the aid provided a diagnosis 
that in fact was wrong. More detailed analyses showed that these operators gen-
erally tended to rely on the diagnoses of the aid without verifying it appropriately 
with other available information. Moreover, this tendency was stronger for par-
ticipants who never had the practical experience before (e.g., during training) 
that the aid could fail. In contrast, only a minority of participants were found to 
commit this error if they had checked all necessary information to verify the aid’s 
recommendation before. This finding suggests that the majority of commission 
errors observed in these studies reflected not the effect of a classical decision 
bias—that is, an inappropriate weighting of different information—but the effect 
of a bias of information processing characterized by an automation-induced 
withdrawal or reallocation of attention, which resembles the complacency effect 
in automation monitoring (cf. Parasuraman & Manzey, 2010).

Most interesting in the current context are recent studies that suggest that 
automation bias effects in interaction with a decision aid are affected by the DOA 
of an aid (Rovira, McGarry, & Parasuraman, 2007; Sarter & Schroeder, 2001). 
For example, Sarter and Schroeder (2001) examined the performance of pilots 
interacting with automated decision aids that supported decision making in case 
of in-flight icing events. Two types of decision aids were compared. The first 
involved an aid that provided information about the specific icing condition (i.e., 
wing icing vs. tailplane icing) but left the selection of a proper action with the 
pilots. Thus, the support remained limited to the stage of information analysis 
(Parasuraman et al., 2000). The second aid provided not only information about 
the icing condition but also recommendations for decision making and the selec-
tion of appropriate responses. Compared with a baseline condition in which 
pilots had to manage in-flight icing encounters without any automation support, 
the availability of the aids increased the number of correct decisions and responses 
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considerably. However, this performance benefit was observed only when the 
aids provided correct recommendations. In case of inaccurate information, the 
aids resulted in performance decrements compared with baseline conditions. 
This impairment of performance was mainly related to the pilots’ inadvertently 
following the aids’ recommendation even though the available kinesthetic cues 
contradicted it. Moreover, a significant interaction effect was found between this 
indication of automation bias and the type and accuracy of the decision aid. 
Whereas both aids led to worse performance when the information provided was 
inaccurate compared with an accurate condition, this effect was stronger for the 
more highly automated aid. Similar results were also reported by Rovira et al. 
(2007). They explored to what extent automated aids differing in DOA (informa-
tion automation vs. three levels of decision automation) affected the speed and 
quality of command and control decisions. As expected, the availability of all 
kinds of automated aids improved performance when they provided accurate 
advice. However, in case of inaccurate recommendations, clear performance 
costs in terms of decreased decision accuracy were identified compared with an 
unsupported (manual) control condition. Furthermore, evidence was found that 
the DOA moderated these effects. Decrements of decision accuracy in case of 
inaccurate automation advice were most pronounced if the aid provided a high 
level of support of decision-making functions (i.e., provided a specific recom-
mendation for an optimum decision).

However, other results suggest that higher DOA actually may also lead to less 
reliant behavior in interaction with automated aids. Lorenz et al. (2002) investi-
gated DOA effects of automated aids providing support for fault identification 
and management in a simulated process control task. More specifically, they con-
trasted an automated aid that provided automatically generated diagnoses for a 
given fault combined with recommendations for appropriate actions with a sys-
tem that additionally performed all necessary actions autonomously if not vetoed 
by the operator. The latter kind of aid was associated with better return-to-manual 
performance after a complete failure of the automation. This effect seemed to be 
related to the fact that participants working with the most highly automated aid 
spent more time cross-checking the proposed diagnoses, that is, were less reliant 
on the automated processes, to maintain their own assessment of the situation. 
However, obvious differences in time pressure between the different DOA condi-
tions, given the provision for a fixed time interval for a veto with the highest 
DOA, as well as strong practice effects, make a clear-cut interpretation of these 
results difficult.

Current Research
The experiments presented in this article extend this line of research. The first 

experiment addressed an evaluation of human performance consequences of 
automated decision aids dependent on their DOA. With the use of essentially the 
same task as in the studies by Lorenz et al. (2002) and Bahner, Hueper, et al. 
(2008), the model used for this research included a simulated supervisory con-
trol task that was supported by different automated aids for fault identification 
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and management. Three kinds of aids were compared that differed in how much 
the human operator was kept actively involved in the overall process of fault 
management by providing support for different stages of information processing. 
The first aid (information analysis [IA] support) provided an automatically gen-
erated diagnosis for a given system fault but left it to the operator to plan and 
implement all necessary actions. The second aid (action selection [AS] support) 
provided additional recommendations for necessary actions, which had then to 
be implemented manually by the operator. The third aid (action implementation 
[AI] support) performed the whole process of fault management autonomously if 
the operator confirmed the proposed diagnosis and plan of interventions. In addi-
tion, participants in a manual control condition had to perform the entire fault 
identification and management without any automation support. The evaluation 
of DOA effects on performance included an evaluation of the intended positive 
effects on primary task performance and workload as well as an evaluation of pos-
sible negative performance consequences in the event of an automation failure. 
With respect to the latter, a particular focus was laid on automation bias effects. 
However, also issues of return-to-manual performance in case of automation fail-
ure were assessed. It was expected (a) that providing automated decision support 
would lead to performance benefits compared with manual performance and (2) 
that more highly automated aids would show greater performance improvements 
than less automated aids. With respect to negative performance consequences, it 
was supposed (c) that higher compared to lower DOAs would lead to stronger 
automation bias effects in terms of less careful automation monitoring and a result-
ing higher number of commission errors as well as increased difficulties of return-
to-manual performance. Furthermore it was supposed (d) that the strength of 
complacency-like automation bias effects would depend on the effort needed to 
invest for automation verification.

The second experiment capitalized on the results of the first one and addressed 
issues of automation bias in interaction with the aids in more detail. Specifically, 
the dynamic interactive development of trust and automation bias effects in 
interaction with a decision aid was analyzed. Furthermore, the impact of system 
experience, that is, whether the operator had the practical experience that the aid 
may fail, and the specific origins of automation bias were investigated. On the 
basis of earlier research (e.g., Bahner, Hueper, et al., 2008; de Vries, Midden, & 
Bouwhuis, 2003; Dzindolet, Peterson, Pomranky, Pierce, & Beck, 2003; Lee & 
Moray, 1992, 1994; Merritt & Illgen, 2008), we expected that trust and automa-
tion bias in human-automation interaction represent adaptive phenomena that 
develop dynamically over time and are determined by feedback loops that are 
driven by the practical experience made with a certain aid.

Experiment 1
Method
Participants. In the first experiment, 56 engineering students (40 male, 16 
female) participated, ranging in age from 20 to 31 years (M = 24.2). None of 
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them had prior experience with the simulated process control task. Participants 
were paid €70 for completing the study.

Apparatus: AutoCAMS 2.0. A revised version of AutoCAMS (Hockey, Wastell, & 
Sauer, 1998; Lorenz et al., 2002) was used for the experiment (AutoCAMS 2.0; 
Manzey et al., 2008). This task was developed as a small-scale simulation of a 
typical supervisory control task of control room operators. Specifically, it simu-
lates an autonomously running life-support system consisting of five subsystems 
that are critical to maintain atmospheric conditions in a remote space capsule 
(i.e., oxygen, nitrogen [cabin pressure], carbon dioxide, temperature, humidity). 
During nominal operation, all parameters are automatically kept within a target 
range. However, because of malfunctions in the system, parameters can go out of 
range. A total of nine malfunctions can occur in either the oxygen or the nitrogen 
subsystem, including a block of a valve, a leak of a valve, a stuck-open valve, a 
sensor defect, or a defect of the mixer valve.

The user interface of AutoCAMS 2.0 is shown in Figure 1. The primary task 
of the operator involves supervisory control of the subsystems, including diagno-
sis and management of system faults. Whenever a fault is detected in the system, 
a master alarm turns on (Figure 1G), and a time counter starts displaying how 
much time has elapsed since the occurrence of the fault. To have the malfunction 
fixed, its specific cause has to be identified, and an appropriate repair order has 
to be selected from a maintenance menu. The repair itself takes 60 s. During this 
time, the operator is required to control the affected subsystem manually. For this 
purpose, a manual control menu can be activated that allows for manual control 
of the different system parameters (Figure 1F). If the repair order sent is correct, 
the warning signal turns green and all subsystems run autonomously again. In 
case of a wrong repair order, the warning light stays red and the operator is 
required to manually control the system by selecting appropriate actions from 
the control menu until a correct repair is initiated and completed.

Depending on the specific version of AutoCAMS 2.0, participants have to 
perform fault diagnosis and management manually (manual control) or with the 
support of one of three kinds of an automated aid (Automated Fault Identification 
and Recovery Agent [AFIRA]; Figure 1H). In case of IA support, the master alarm 
is accompanied by a message providing a specific diagnosis for the given fault. 
However, action planning and implementation is left to the operator. In case of 
AS support, the diagnosis is complemented by a list of appropriate actions, which 
the operator has to implement. In case of the most comprehensive AI support, 
AFIRA does not only display a diagnosis and a listing of necessary actions but 
also implements all steps autonomously if confirmed by the participant.

To identify faults in the manual control condition or verify proposed diagnoses in 
conditions with automation support, operators have independent access to all 
important parameters (Figures 1A through 1C). These include relevant system 
parameters and a history graph for each of the five subsystems. However, this 
information is not always visible but has to be activated for a 10-s view by mouse 
click on the tank, flow meter, or history graph, respectively. Every system 
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malfunction has specific symptoms in such a way that it is possible for the 
operator to identify most malfunctions or to verify the diagnosis provided by 
AFIRA by accessing two to four specific parameters, depending on the complexity 
of the fault. However, identifying most complex faults unambiguously additionally 
requires interventions in the system.

In addition to the primary task, two concurrent secondary tasks have to be 
performed. The first one is a prospective memory task, which requires partici-
pants to check and record the carbon dioxide values every 60 s in a specific data 
entry field, which is provided in the AutoCAMS interface (Figure 1E). The other 
secondary task is a simple probe reaction time task. This task is introduced to the 
participants as a check of a proper connection with the spacecraft. Participants 
have to click on a “communication link” icon (Figure 1E) as fast as possible. This 
icon appears in random intervals roughly twice per minute.

Although AutoCAMS 2.0 represents a laboratory task, its main cognitive and 
multitask demands have been designed to resemble those of real supervisory 

Figure 1. User interface of AutoCAMS 2.0. The figure shows the system with active 
action selection support. (A) history graphs, (B) tank level readings, (C) valve flow 
readings, (D) field where the “connection check” icon appears (secondary task), (E) field 
for entry of carbon dioxide readings (secondary task), (F) menu for manual control and 
repair orders, (G) master alarm, (H) assistance system (Automated Fault Identification 
and Recovery Agent).



	 Human Performance Consequences of Automated Decision Aids	 65

control tasks. Furthermore, performing the task requires complex system knowl-
edge and skills, which makes the task inherently motivating for participants who 
have acquired these competencies during training.

Design. The study used a 4 (DOA) × 5 (block) design with DOA (manual con-
trol, IA support, AS support, AI support) defined as between-subjects factor and 
block defined as within-subjects factor. The five blocks per session differed with 
respect to whether automation support was available. During the first block, all 
participants worked manually, that is, without the assistance of AFIRA. During 
Blocks 2, 3, and 4, the three AFIRA groups were supported by AFIRA, whereas 
the manual control group continued working without automated support. In 
Block 5, participants of all experimental groups had to return to manual perfor-
mance, that is, diagnose and manage all system faults manually again without 
automation support. In each block, six kinds of system faults occurred. Faults in 
all blocks were matched with respect to type and complexity. Thus, it was ensured 
that the fault identification and management procedures were equivalent for all 
blocks. All groups worked with the same set and distribution of faults. In the 
AFIRA groups, the six faults in each block were all correctly indicated and diag-
nosed by the automated aid. However, in Block 4, an additional, seventh fault 
occurred for which AFIRA provided a wrong diagnosis. This failure of AFIRA was 
implemented to simulate a “first automation failure effect.”

Dependent measures. Dependent measures were derived from questionnaires 
and from mouse-click data, which were logged during the experiment.

Three primary task performance measures were calculated for each block: (a) 
Percentage of correct diagnoses was the percentage of the six faults occurring per 
block for which the first repair order sent was correct, a measure of quality of 
fault identification performance. (b) Fault identification time (FIT) was defined 
as time (in seconds) from appearance of the master alarm until the correct repair 
order was issued. This measure was used to assess speed of fault identification 
performance. (c) Out-of-target error (OTE) was defined as the time (in seconds) 
the most critical system parameter (oxygen) was out of target range when a sys-
tem fault was present, a measure of quality of the fault management.

Secondary task performance was assessed by two measures: (a) mean response 
time (in milliseconds) to the appearance of the “communication link” icon and 
(b) prospective memory performance, that is, proportion of entries of carbon 
dioxide records that were provided within the correct time interval (i.e., full 
minute ±5 s). Only performance during periods when a participant had to deal 
with a system fault was considered.

Subjective workload was assessed by the NASA Task Load Index (NASA-TLX; 
Hart & Staveland, 1988) and was defined as the mean of the ratings provided for 
the six subscales.

Measures used to assess the effort invested in automation verification included 
(a) automation verification time (AVT), (b) automation verification information 
sampling of relevant system parameters (AVIS-R), and (c) automation verification 
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information sampling of necessary system parameters (AVIS-N). AVT was defined 
as the time interval (in seconds) from the appearance of the master warning until 
sending of a first repair order, regardless of whether this order was correct. 
AVIS-R was defined as the proportion of all system parameters accessed that, in 
principal, were considered useful (relevant) to cross-check the automatically 
generated diagnosis for a given malfunction. AVIS-N was defined as the propor-
tion of all system parameters accessed immediately necessary to cross-check a 
given diagnosis unambiguously. Note that necessary parameters represent a sub-
set of relevant parameters. Necessary and relevant parameters were determined 
by means of a task analysis that was conducted to define a normative model of 
“eutactic” operator information sampling (Moray & Inagaki, 2000). The number 
of necessary parameters that were immediately needed to verify a given diagnosis 
unambiguously varied as a function of the complexity of a given system failure 
and included two parameters (lowest complexity), three to four parameters 
(medium complexity), or two parameters combined with two additional active 
interventions in the system needed to disambiguate two possible diagnoses 
(highest complexity).The number of parameters actually accessed (plus interven-
tions correctly performed when needed) was then related to this normative 
model. Only parameters accessed between the occurrence of the master warning 
and the sending of the first repair order were considered for this measure. This 
approach to operationally define the level of complacency has first been described 
and used by Bahner, Hueper, et al. (2008).

Performance consequences of a possible automation bias in terms of commission 
error were analyzed by the percentage of participants who followed the diagnosis 
of the automated decision aid for Fault 7 in Block 4 although it was wrong. As a 
control measure, it was assessed how many participants of the manual control 
group provided a wrong diagnosis for this fault.

Return-to-manual performance was assessed for the automation-supported 
groups by comparing performance in Block 1 with that in Block 5 on the basis of 
primary task performance measures as defined previously.

Procedure. The study comprised two 4.5-hr sessions, which took place across 2 
days. The first session included a familiarization and practice session with the 
AutoCAMS 2.0 system. Participants were introduced to the different subsystems 
and trained to identify and manage all possible system faults that could occur 
either in the oxygen or nitrogen subsystem. The training was concluded by a test 
(questionnaire) probing the knowledge of participants about procedures for the 
identification and management of the different faults. All participants passed this 
test successfully and were accepted for the experiment. Before starting the exper-
iment on the 2nd day, participants were randomly assigned to one of the four 
experimental groups. Participants of the automation-support groups were intro-
duced to their automated aid and practiced using it for several trials. During this 
training, AFIRA always provided correct diagnoses. However, participants were 
informed that its reliability would be high but not perfect and were warned 
explicitly to check the proposed diagnoses before initiating a repair order. 
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Participants of the manual control group performed the same practice trials with 
AutoCAMS 2.0 but without any automation support. Thereafter, the experiment 
started. Each of the five blocks lasted 40 min. Blocks were separated by short 
breaks, during which subjective ratings of workload were collected.

Results
Primary task performance. Primary task performance measures were analyzed 
by a 4 (DOA) × 5 (block) ANOVA. Percentage of correct fault identifications 
varied across blocks, F(4, 208) = 25.09, p < .01, and this effect was further mod-
erated by a significant DOA × Block interaction, F(12, 208)  = 1.95, p  < .03. 
General level of performance was already relatively high for all experimental 
groups in Block 1 (manual control, 87%; IA support, 86%; AS support, 81%; AI 
support, 86%). As expected, using automated aids in Blocks 2 through 4 
improved performance to about 100% correct diagnoses in all automation- 
supported groups, whereas the manual control group showed only slight 
improvement across these blocks (M = 91%).

Effects for FIT and OTE are displayed in Figure 2. For FIT, the DOA effect, 
F(3, 52) = 3.45, p < .03; the block effect, F(4, 208) = 48.25, p < .01; and the DOA 
× Block interaction, F(12, 208) = 2.68, p < .01, became significant. As becomes 
evident from Figure 2 (left panel), FIT profited considerably from the use of 
automated aids in Blocks 2 through 4 compared with manual performance in 
Blocks 1 and 5 as well as compared with the performance of participants in the 
manual control group. In addition, mean FIT varied across the three automation 
groups. The latter effect was confirmed by a separate 3 (DOA) × 3 (block) ANOVA 
comparing FIT for the three automation-supported groups across Blocks 2 
through 4, which showed a significant main effect of DOA, F(2, 39) = 4.98, p < 
.02. Post hoc contrasts (Bonferroni) revealed that mean FIT was significantly 
shorter for the group working with the most highly automated aid (AI support, 
20.9 s) than the other two automation-supported groups (IA support, 28.3 s; AS 
support, 28.5 s), both contrasts p < .05.

Essentially the same pattern of results also was revealed for OTE (see Figure 2, 
right panel). Because of technical problems, only data from 13 and 11 out of 14 
participants in the IA and AS groups, respectively, could be included in the anal-
ysis. Participants of all experimental groups were more able to stabilize the sys-
tem during states of faults in Blocks 2 through 4 than in Blocks 1 and 5, F(4, 
192) = 62.27, p < .01. Similar to the FIT data reported previously, the strength of 
this effect was dependent on DOA, F(3, 48) = 3.60, p < .05, and showed a differ-
ent trend across blocks for the different DOA conditions, reflected in a significant 
DOA × Block interaction, F(12, 192) = 2.48, p < .01. The smallest improvements 
emerged in the manual control group, probably reflecting some kind of practice 
effect. Among the three automation-supported groups, performance improve-
ments developed more quickly (see right panel of Figure 2) and were higher with 
AI support than with one of the less automated aids. The latter effect was also 
indicated by a separate 3 (DOA) × 3 (block) ANOVA, which yielded a main effect 
of DOA, F(2, 37) = 4.37, p < .03. According to post hoc contrasts (Bonferroni), 
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participants working with AI support were significantly better in keeping the 
oxygen level within the target range (mean OTE = 103.10 s) than was the IA 
group (142.51 s), p < .03, and a similar trend also emerged for the contrast with 
the AS group (137.59 s), p < .07. Taking into account that the AI aid was the only 
aid that also provided automation support for the control of the affected subsys-
tem, one could expect these differences between the aids.

Secondary task performance. Performance in both secondary tasks was analyzed 
by a 4 (DOA) × 5 (block) ANOVA. No significant effects emerged for probe reac-
tion times in the connection check task. However, a significant main effect of 
block, F(4, 208) = 21.17, p < .01, and a DOA × Block interaction, F(12, 208) = 
2.94, p < .01, were found for prospective memory performance. The sources of 
the interaction can be derived from Figure 3 (left panel). As becomes evident, 
prospective memory performance improved immediately with the introduction 
of automation support (Blocks 2 through 4) for participants working with the 
most highly automated aid (AI support). In contrast, participants working with 
IA and AS support also improved across blocks but at a slower pace. Essentially 
no performance changes across blocks were found for the manual control group.

Subjective workload. Analysis of subjective workload was based on a 4 (DOA) × 5 
(block) ANOVA. A significant block effect, F(4, 208) = 24.99, p < .01, was found, 
moderated by a significant DOA × Block interaction, F(12, 208) = 2.33, p < .01. 
This pattern of effects is shown in Figure 3 (right panel). All groups started at about 
the same level in Block 1. Although in Blocks 2 through 4, workload decreased for 
all groups, it decreased the most for the AI group. In Block 5, which demanded 
manual control again, subjective workload increased for the automation-supported 
groups, with the most pronounced increase for the AI group.
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Figure 2. Primary task performance of the experimental groups across blocks. Left 
graph: Means and standard errors of fault identification time. Right graph: Means and 
standard errors of out-of-target error.
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Return-to-manual performance. Assessment of return-to-manual performance 
for groups supported by the automated aid was based on a contrast of perfor-
mance in Blocks 1 and 5 by a 3 (DOA) × 2 (block) ANOVA. Whereas no signifi-
cant effects were found for percentage of correct diagnoses, FIT improved across 
blocks, F(1, 39) = 6.24, p < .02, probably reflecting effects of practice. However, 
some, albeit weak, indications of DOA effects on return-to-manual performance 
emerged for the OTE, reflecting fault management performance. Whereas man-
ual performance of the participants in the IA group and the AS group improved 
considerably from Block 1 to Block 5, a slight performance decrement was 
observed for the group supported by the highest-DOA aid. This effect was evalu-
ated by aggregating the data of the IA and AS groups, both of which did not get 
any automation support for fault management actions, and contrasting it with 
the AI group. The means for this contrast across blocks are illustrated in Figure 4. 
A 2 (DOA) × 2 (block) ANOVA revealed a significant DOA × Block effect, F(1, 38) = 
4.46, p < .05.

Automation verification during reliable automation support. Automation veri-
fication behavior was analyzed by a 3 (DOA) × 3 (block) ANOVA for the automa-
tion-supported groups in Blocks 2, 3, and 4. A first analysis of the time spent to 
verify the recommendation of the aid (AVT) revealed a significant effect of DOA, 
F(2, 39) = 4.32, p < .02. A post hoc analysis revealed that the group supported 
by the most highly automated aid (AI support) invested significantly less time to 
verify the automatically provided diagnosis than did the group working with the 
least automated aid (IA support), p < .03. Neither the effect for block nor the 
interaction became significant. Further analyses focused on the extent of verifica-
tion and was based on the different measures of information sampling. Sampling 
of system parameters that were considered to be relevant to verify a given 
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diagnosis (AVIS-R) did not vary dependent on DOA but decreased significantly 
across blocks, F(2, 78) = 9.43, p < .01. In contrast, sampling of system parame-
ters immediately needed for verifying the automatically generated diagnoses of 
the aid (AVIS-N) remained stable on a comparatively high, albeit not perfect, 
level (M = 93.5%) across blocks in all DOA groups. Neither the main effect of 
DOA nor the main effect of block or the DOA × Block interaction became signifi-
cant for this measure. Obviously, participants reduced their effort of automation 
verification over time only by neglecting sampling of additional system parame-
ters that were not immediately needed for a cross-check of the recommendations 
provided by the aid.

An additional 3 (DOA) × 3 (block) × 3 (complexity) ANOVA of the AVIS-N 
measure was run to explore the hypothesis that the effort spent for automation 
verification was affected by the complexity of the cross-check needed. The analy-
sis revealed a significant main effect of complexity, F(2, 78)  = 7.50, p  < .01. 
Although verification was almost complete (M  = 97.6%) for low-complexity 
errors, that is, errors that could be verified by sampling just two system param-
eters, it decreased for medium-complexity errors (three to four parameters, M = 
93.1%) and even more for high-complexity errors, which also required interven-
tions to verify the diagnosis (M = 91.1%). Most interestingly, this effect was mod-
erated by a significant Complexity × DOA interaction, F(4, 78) = 3.92, p < .01. 
This interaction is illustrated in Figure 5. As becomes evident, amount of verifi-
cation did not differ dependent on DOA for low- and medium-complexity errors. 
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However, for the most complex failures, the group working with the most highly 
automated aid (AI support) completed significantly fewer verification steps than 
did the IA or the AS group. This finding was substantiated by additional one-way 
ANOVAs contrasting the automation verification behavior of the three DOA 
groups separately for the three levels of fault complexity. This analysis revealed a 
significant main effect only for high-complexity faults, F(2, 39) = 3.74, p < .04. 
When we looked at which part of the verification procedure was neglected, it 
became evident that most participants in the AI group sampled the necessary 
system parameters but tended to omit the additional control actions needed for 
unambiguous automation verification.

Commission errors and automation verification in case of automation failure. 
We found clear evidence for automation bias leading to a commission error in all 
automation-supported groups by analyzing fault identification performance for 
Fault 7 in Block 4. Up to half of the participants in the automation-supported 
groups followed the automatically generated diagnosis for this fault even though 
it was incorrect. However, no significant difference was found for the different 
kinds of support (IA, 42.9%; AS, 50%; AI, 35.7%), F < 1.0. In contrast, 13 out 
of 14 participants in the manual control group (92.9%) working on the same 
fault identified this fault correctly and sent a correct repair order.

To investigate whether this effect was attributable to a lack of automation veri-
fication or to a discounting of contradictory information from other available 
sources, we contrasted the information sampling behavior of participants who 
committed an error of commission with that of participants who did not. A 3 
(DOA) × 2 (wrong diagnosis detected vs. not detected) ANOVA revealed no sig-
nificant effects for AVIS-N. A more detailed analysis of information sampling 
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within the group of participants who committed a commission error revealed that 
out of the 18 participants who followed the wrong recommendation, 11 had 
checked all necessary information before making a decision, that is, they had 
accessed all system parameters needed to detect the contradiction between the 
automatically generated diagnosis and the actual system state. Only 7 participants 
showed a complacency-like automation bias effect reflected in an incomplete 
cross-check before sending the repair order. However, a significant difference 
emerged between participants who did and did not detect the automation failure 
when we additionally contrasted the time spent per accessed system parameter. 
This time was significantly shorter for participants committing a commission 
error, F(1, 35) = 12.13, p < .01. To see whether this difference was already present 
in the preceding blocks with reliable automation support, we contrasted the veri-
fication behavior of participants who committed a commission error with that of 
participants who did not. A 4 (block: 2, 3, 4, Fault 7) × 2 (commission error: 
wrong diagnosis detected vs. not detected) ANOVA revealed a significant effect of 
block, F(3, 117) = 4.40, p < .01, moderated by a Block × Commission Error inter-
action, F(3, 117) = 11.36, p < .01, for time spent per parameter. Figure 6 shows 
this effect. With reliable automation, there was no difference between the two 
groups. However, when the automated decision aid provided a wrong diagnosis, 
participants who did not detect the wrong diagnosis spent the same amount of 
time per parameter as in normal operation trials, whereas participants who 
detected the wrong diagnosis invested more time per parameter to inspect the 
system. Obviously, both groups cross-checked the aid’s diagnosis to a comparable 
degree but differed considerably with respect to the time spent for dealing with 
the sampled information in case it contradicted what the aid had proposed.
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Discussion
Providing automation support for fault identification and management yielded 

the intended performance benefits. Compared with the performance in the 
manual control group, support by an automated aid led to reduced FIT as well as 
better fault management performance. In addition, operators supported by an aid 
reported less workload associated with their supervisory control task than did 
operators who did not get this kind of automation support. As expected, all of 
these performance benefits were found to be dependent on the level of automa-
tion. Compared with manual performance, the most pronounced and directly 
observable performance benefits were found with the highest-DOA aid. 
Participants working with AI support were faster in diagnosing a given fault and 
better able to keep the oxygen level within the target range, compared with the 
other two experimental groups. In addition, they also showed better secondary-
task performance. This improvement was specifically reflected in prospective 
memory performance, which immediately improved for participants supported 
by the most highly automated aid, compared with manual performance. 
Comparable benefits were observed with IA and AS support but took more time 
to develop across blocks in which automation support was available. This latter 
effect might reflect the higher memory load associated with the latter kinds of 
support, which provided a diagnosis for a given fault but still required the user 
to retrieve the appropriate fault management actions from memory (IA support) 
or to remember how to implement the actions proposed by the aid (AS support).

At first sight, the finding that higher DOA led to greater benefits in primary- 
and secondary-task performance might not be very surprising. However, it is 
remarkable that the aid representing the highest DOA also shortened the FIT. 
Given the fact that the automated support for the subtask of fault identification 
was the same for all aids, this effect could not be expected. Obviously, partici-
pants working with the most highly automated aid accepted the suggestion of the 
automated aid more quickly than did those working with less automated ver-
sions. As discussed later, this effect seems to be related to the fact that operators 
working with the most highly automated aid appeared to spend less time in 
automation verification and invested less effort in cross-checking the aid’s diag-
nosis if this cross-check required time-consuming interventions in the system. 
This result contrasts with findings of Lorenz et al. (2002), who, using essentially 
the same task, did not find effects of DOA on FIT. However, in their study, the 
most highly automated aid was associated with a veto function, which always 
provided a constant time for operators to intervene before a repair order was 
sent, that is, did not provide the opportunity to influence the speed of fault man-
agement by rapid confirmation.

With respect to return-to-manual performance, we found some indications 
for an automation-induced decline of skills when comparing manual fault iden-
tification and management performance before and after the participants had 
worked with automation support (Block 1 vs. Block 5). It is striking that they 
emerged specifically for fault management performance (OTE) in the group sup-
ported by the most highly automated aid. Whereas OTE performance of 
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participants working with IA and AS support improved in Block 5 compared 
with Block 1, participants supported by AI support did not show a comparable 
improvement. Similar results suggesting that return-to-manual issues increase 
with higher DOA have been reported by Endsley and Kiris (1995), who investi-
gated the impact of automated decision support on a planning task. They found 
that decision time increased when their participants had to return to manual 
performance after using an automated decision support system for some time. 
The greatest performance loss was found for a group that was supported by a 
“consensual AI expert system,” which resembled the AI support aid in the pres-
ent study. However, in the current experiment, the skill loss observed became 
statistically significant only for manual fault management performance but not 
for the cognitive skills needed to diagnose a system fault. Obviously, the auto-
mated support for the cognitive skills involved did not lessen the benefits of 
practice, which were comparable to those in the manual control group. This 
finding suggests that participants were well able to maintain and further develop 
their system knowledge even when using the diagnostic aid. In contrast, auto-
mated support of system stabilization as provided by the AI aid tended to 
adversely affect the development of appropriate skills to control and stabilize the 
system manually. This finding constitutes an important difference to both the IA 
and the AS support, which left the planning and implementation (IA) or at least 
the implementation of actions (AS) to the human. Both of these kinds of support 
led to practice effects in manual system control across blocks that were compa-
rable to those in the manual control group. This finding provides an interesting 
correspondence to results from Lorenz et al. (2002), who, using essentially the 
same task, reported comparable effects for return-to-manual performance depen-
dent on DOA. This finding suggests that medium levels of automation specifi-
cally provide advantages for return-to-manual performance if manual skills need 
to be maintained. A similar conclusion was also drawn from Endsley and Kaber 
(1999), who found return-to-manual issues particularly for automated aids that 
supported the implementation of actions in a simulated dynamic control task.

However, the main focus of the present research with respect to possible per-
formance costs of automation was on automation bias effects. On first sight, 
automation bias effects in terms of insufficient automation verification found in 
the present study were weaker than expected. Although participants of all exper-
imental groups reduced the extent of automation verification over time, support-
ing earlier results of Bahner, Hueper, et al. (2008), this effect remained limited to 
the checking of what has been referred to as “relevant” system parameters. When 
looking at the stricter variable, that is, system parameters that were immediately 
needed to unambiguously verify a given diagnosis, information sampling stayed 
at a constantly high, albeit not perfect, level for all blocks in all three DOA 
groups. On average, participants checked somewhat more than 90% of these 
necessary parameters before sending a repair order. This decrease in checking 
relevant parameters while keeping a cross-check of necessary parameters at a 
high level can be seen as optimization of information sampling. Only those 
parameters were constantly sampled that were absolutely essential for verifying a 
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given diagnosis, whereas other information that was useful but not necessary 
became more and more neglected over time. That is, participants learned to sam-
ple only the information that was essential for verification. With this strategy, the 
demands for verifying an automated diagnosis could be reduced without damage 
to the diagnostic performance. However, a more detailed analysis revealed that 
this strategy of automation verification was moderated by DOA as well as the 
effort needed for cross-checking. Although verification of necessary system 
parameters was almost complete for system faults of low and medium complex-
ity, it decreased for high-complexity errors, which required a complex cross-
checking procedure including not only assessing system parameters but also 
analyzing the effects of control actions. This kind of automation bias, which 
resembles what has been referred to as complacency in the context of supervi-
sory control, was particularly observed in the group working with the most 
highly automated aid (AI support). When looking at which part of the verifica-
tion was not completed, we noticed that participants supported by the most 
highly automated aid primarily omitted necessary control actions. This finding is 
especially interesting against the background that the AI group was the only 
group that was supported for the fault management implementation and never 
had to implement control actions after sending a repair order. This behavior 
seems to generalize to their verification behavior during the diagnostic phase 
before sending a repair order.

From this analysis of automation verification behavior, it might be concluded 
that complacency-like issues in interaction with automated aids remain limited to 
very specific circumstances. However, the results suggesting this conclusion are 
qualified by another finding of the present study that suggests that just looking at 
system information to cross-check an automatically generated diagnosis does not 
prevent the occurrence of commission errors. Up to half of the participants work-
ing with the automated aid committed a commission error when the automated aid 
generated a false diagnosis for the first time. This effect emerged independent of 
DOA and independent of how many system parameters had been checked to verify 
a given diagnosis. A comparison of information sampling behavior between par-
ticipants who did and did not commit a commission error actually revealed only 
few differences with respect to the number of system parameters accessed.

Out of the 18 participants who followed the wrong recommendation, only 7 
could be called complacent in the sense that they had not verified AFIRA com-
pletely before sending a repair order. The other 11 participants had checked all 
the necessary information before decision making and still followed the aid’s 
incorrect recommendation. However, a significant difference between both sub-
groups was found in the time spent per system parameter to evaluate it. 
Participants who correctly recognized that the aid’s advice was wrong showed a 
sharp increase in the average time needed to process a sampled system parameter 
in case its information did not fit the diagnosis of the aid, compared with trials 
in which the aid’s diagnoses were correct. Obviously, these participants became 
aware of the incongruity of the system parameters and the aid’s diagnosis and 
invested more time to evaluate the system data. This finding is in line with 
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Schriver, Morrow, Wickens, and Talleur (2008), who found that experts allocate 
more attention to failure-relevant cues when a failure was present and that more 
attention allocated to failure-relevant cues was associated with higher decision 
accuracy. In contrast, participants who did not detect the wrong diagnosis, 
although they had sampled some or all of the contradictory system parameters, 
did not show any difference in the time spent for evaluating the system’s raw data 
whether the aid’s diagnosis was correct or wrong. Given this finding, the com-
mission error committed by these participants does not seem to be related to a 
decision bias in terms of discounting of contradictory information. Similarly, an 
explanation in terms of confirmation bias in processing the sampled information 
or difficulties of comprehension is also unlikely, given that the participants were 
very well trained and that the system parameter always contradicted the aid’s 
diagnosis in an unequivocal way. Rather, the commission errors in this group 
seem to be attributable to a sort of “looking-but-not-seeing” effect, analogous to 
what in other contexts has been referred to as “inattentional blindness” (Mack & 
Rock, 1998), a phenomenon whereby attention and eye movements are dissoci-
ated and information in the environment can be missed even if fixated. This 
finding is particularly interesting. It provides evidence that the commission 
errors associated with complete (optimal) information sampling found in the 
present study were not owed to a misweighting of contradictory information. 
Instead, it seems that they were related to a more subtle sort of automation-
induced bias in information processing that was reflected not in an obvious 
neglect of automation verification but in a withdrawal of attentional resources 
from processing the available (and looked-at) system data. That is, even the par-
ticipants who did not detect the aid’s failure obviously continued to cross-check 
the aid’s recommendation as instructed in the training but did not invest atten-
tion in this task anymore. Such effect would fit an earlier suggestion of Duley, 
Westerman, Molloy, and Parasuraman (1997), who also found a similar effect in 
a supervisory control task supported by an automated aid. It further would fit 
recent results of Sarter, Murmaw, and Wickens (2007). In their study, pilots in a 
simulator were found to look at the mode indicator of their flight management 
system but nevertheless committed a mode error, which suggested that they did 
not see what they had looked at. However, the data of the present experiment are 
not fully conclusive for supporting this conclusion. Thus, a second experiment 
was run to explore this effect in more detail. In addition, the second experiment 
was used to investigate how the different effects of automation bias develop over 
time, to what extent these effects are related to the operator’s trust in the system, 
and how this dynamic development is affected by the practical experience an 
operator has made with a given system.

Experiment 2
Two sets of questions concerning automation bias effects in interaction with 

automated decision aids were addressed in this experiment. The first set con-
cerned a better understanding of why operators sometimes followed a wrong 
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recommendation of an automated aid despite seeking out all parameters neces-
sary to detect that the aid’s advice was wrong. The results of the first experiment 
suggested that at least a few of these errors are related to a kind of looking-but-
not-seeing effect, whereby operators maintain their usual strategies of automa-
tion verification but stop processing the sampled information attentively. This 
would reflect a new source of automation bias. In Experiment 2, this issue was 
investigated by implementing a kind of situation awareness assessment immedi-
ately after participants had sent a repair order following a false recommendation 
of their aid. Specifically, it was explored to what extent they were aware of what 
they did to verify the automatically generated diagnosis of their aid and to what 
extent they were aware of the system’s parameters they had accessed for automa-
tion verification. This analysis allowed for directly investigating whether an 
observed commission error was related to incomplete automation verification, to 
automation verification without awareness, or to active discounting of contradic-
tory cues.

The second set of questions was guided by the general idea that operators cali-
brate their trust in an automated system on the basis of what they know about 
the system and what experiences they have with using it (Lee & See, 2004; 
Merritt & Illgen, 2008; Seong & Bisantz, 2008). Specifically, it was analyzed how 
positive and negative experience with an automated aid would play together over 
time in determining the level of trust and automation bias. It was assumed that 
two feedback loops would need to be considered in this respect. The first one 
represents a positive loop, which is triggered by the experience that the automa-
tion provides valid advice. Repeated experience of this kind will successively 
increase trust in the system and eventually lead to a reduction of effort invested 
in cross-checks and automation verification. If this effort reduction does not 
yield any negative performance consequences (which is the more likely the more 
reliably the aid works), it might get reinforced and result in a self-amplifying 
process that continuously increases the level of automation bias (cf. the similar 
concept of “learned carelessness”; Luedtke & Moebus, 2005). However, a reverse 
effect was assumed to result from a concurrent negative feedback loop, which is 
mainly triggered by the experience of automation failures. More specifically, it 
was assumed that the negative feedback loop entails much stronger effects than 
the positive one. Evidence for this assumption is provided by many studies 
pointing to strong effects of automation failures on operators’ trust and reliance 
(e.g., de Vries et al., 2003; Dzindolet et al., 2003; Lee & Moray, 1992, 1994; 
Madhavan, Wiegman, & Lacson, 2006). In particular, findings suggest that the 
experience of even a single automation failure can considerably reduce the trust 
of operators in a given system (Lee & Moray, 1992). First evidence that the expe-
rience of automation failures also affects the automation verification behavior in 
interaction with an automated aid has been provided by Bahner, Heuper et al. 
(2008). In the present experiment, we investigated the dynamic interplay of 
these feedback loops in more detail by analyzing how subjective trust, automa-
tion verification behavior, and the probability to commit a commission error 
change with the repeated experience that an aid works properly. Furthermore, it 
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was of interest to what extent the dynamics of these effects were dependent on 
whether the operator had ever experienced an automation failure before.

Method
Participants. For the second experiment, 88 engineering students (65 male, 23 
female; mean age 24.1 years) participated. Participants were paid €70 for com-
pleting the study.

Apparatus: AutoCAMS 2.0. The same simulation of a supervisory process con-
trol task was used as in the first experiment. However, only the most highly 
automated decision aid (AI support) was used for this study.

Design. The study involved four experimental groups that differed with respect 
to how long participants had worked with the aid until an automation failure 
eventually occurred and whether this automation failure was the first or second 
one the participants were exposed to. The time course of events for the four 
experimental groups is shown in Figure 7.

Participants of the first experimental group worked with the aid for one 
30-min block before a first automation failure occurred. During this time, AFIRA 
provided correct diagnoses for five system faults in a row before it eventually 
failed. The second experimental group worked according to an identical sched-
ule with the only difference that the run already started with a first system fault 
for which the diagnosis provided by AFIRA was wrong. Thus, the automation 
failure at the end of the session represented the second automation failure for this 
group. A similar variation was realized for Experimental Groups 3 and 4 with the 
difference that participants of these groups worked for a considerably longer 
period (four blocks; 20 system faults) with the system before the critical automa-
tion failure at the end of the session occurred. Analyses of the relative impact of 
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Figure 7. Time course of events for the four experimental groups (FC = critical 
automation failure of the aid at the end of the session for which issues of automation 
bias are observed; F0 = automation failure at the beginning of the session as part of the 
experimental treatment).
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negative and positive experience on trust and automation verification behavior 
over time were based on Groups 3 and 4. The analysis of time- and experience-
related effects on automation bias involved all four groups.

Dependent measures. Measures used to assess the level of automation verifica-
tion included (a) AVT and (b) AVIS-N. The definition of these measures was the 
same as in the first experiment. Performance consequences of automation bias in 
terms of errors of commission were again quantified by the percentage of partici-
pants who followed the wrong diagnosis of the aid in case of an automation 
failure at the end of the experiment (first failure for Groups 1 and 3; second 
failure for Groups 2 and 4). In addition, the underlying determinants of commis-
sion errors were analyzed. For this purpose, the simulation was stopped as soon 
as a participant had decided to either follow the aid’s wrong advice or disagree 
with it, and participants were then asked questions about their approach of auto-
mation verification by means of a standardized Automation Verification Ques-
tionnaire (AVQ). Specifically, they had to provide information about (a) which 
diagnosis had been proposed by AFIRA, (b) which parameters they had sampled 
to verify the aid’s advice, and (c) what the critical relations were between the 
parameters accessed (the relation between parameters provides the critical infor-
mation needed to disambiguate similar system failures). This questioning was 
done to check to what extent the participants were aware of the steps they had 
performed and the system information they had accessed. Based on the AVQ 
results, an assessment was made of how many participants committing a com-
mission error made this error because of (a) an incomplete automation verifica-
tion, operationally defined like AVIS (see earlier definition); (b) a complete 
automation verification without awareness, that is, a situation whereby they 
indeed looked at all information needed to verify the aid’s diagnosis but were not 
able to report what they had seen; or (c) a discounting of contradictory informa-
tion, a situation whereby they looked at all necessary parameters and were able 
to report the contradictory information but nevertheless had followed the wrong 
diagnosis of the aid.

Subjective trust in the diagnostic function of AFIRA was assessed directly by ask-
ing the participants how trustworthy they thought AFIRA was (“How much did 
you trust in the assistance system AFIRA?”). Respondents answered on a 10-point 
Likert-type scale ranging from not at all to absolutely. To avoid any demand char-
acteristics, we “hid” the specific question relevant for the study in a larger ques-
tionnaire consisting of 18 questions that asked for subjective ratings of trust and 
estimated reliabilities not only for AFIRA but for all subsystems of AutoCAMS 
(e.g., oxygen and nitrogen subsystems).

Procedure. The experiment consisted of two familiarization and practice sessions 
and one experimental session distributed across 3 days. Procedural details of the 
practice session and the familiarization part of the experimental session were the 
same as for the first experiment. Participants were randomly assigned to one of 
the four experimental groups. Independent of the specific experimental group 
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and the length of the experimental session (one 30-min block for Groups 1 and 
2 and four blocks for Groups 3 and 4), all participants were instructed that the 
whole experiment would include a total of five 30-min blocks. This instruction 
was given to assure that all participants worked with the same attitude and 
expectation and were not able to anticipate the real end of the experiment. For 
Groups 3 and 4, the blocks were separated by short breaks (~3 min). After the 
automation failure at the end of the session, the simulation stopped and partici-
pants had to answer the AVQ. Ratings of subjective trust in the components of 
the AutoCAMS 2.0 system (e.g., oxygen, nitrogen, carbon dioxide subsystems) 
and AFIRA as well as ratings of its reliabilities were collected before each 30-min 
block and at the end of the session.

Results
Subjective trust in automation. Effects of positive and negative experience with 
AFIRA on subjective trust were explored on the basis of data from Experimental 
Groups 3 and 4. As expected, the dynamics of trust development in these groups 
were highly dependent on the kind of experience the participants made with the 
aid. Even more important, negative experience with the aid seemed to affect 
subjective trust more than did positive experience. This difference becomes evi-
dent from the time course of effects shown in Figure 8 (left). Immediately after 
familiarization and training with AFIRA (Block 0), participants of both groups 
showed a comparatively high level of trust in the correct functioning of the aid. 
For participants of Group 3, this level even increased across the first three blocks, 
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Figure 8. Left graph: Subjective trust ratings across experimental blocks for Experimental 
Groups 3 and 4 (Block 0 = subjective trust rating after training with the aid). Shown are 
means and standard errors of responses to the question “How much did you trust the 
assistance system AFIRA [Automated Fault Identification and Recovery Agent]?” Right 
graph: Automation verification information sampling across blocks for Experimental 
Groups 3 and 4. Shown are means and standard errors of AVIS-N (automation 
verification information sampling of necessary system parameters) measure.
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as they repeatedly experienced that the aid worked properly. However, the first 
experience of an automation failure at the end of Block 4 led to a sharp decrease 
of trust in this group, down to a level that was even slightly lower than the initial 
trust. A different picture emerged for participants of Experimental Group 4, who 
were exposed to a first automation failure already in the beginning of the experi-
mental session. This experience caused a significant and sharp decline of trust 
that was still visible at the end of the first block, despite the fact that the aid 
meanwhile had worked properly again for five events. Although trust ratings 
recovered slowly across the next two blocks (10 events) when the aid worked 
correctly, they never reached the level of the other group’s ratings. After the expe-
rience of a second failure at the end of Block 4, trust ratings dropped again con-
siderably yet less than after the first failure. A 2 (groups) × 5 (block) ANOVA of 
these effects revealed significant main effects of group, F(1, 41) = 4.62, p < .04, 
and block, F(4, 164) = 10.43, p < .01, as well as a significant Group × Block 
interaction, F(4, 164) = 5.56, p < .01.

Automation verification. To explore whether the effects seen in subjective trust 
ratings also would be reflected in differences in automation verification behavior, 
we compared to what extent participants of Groups 3 and 4 sampled all the sys-
tem parameters necessary to cross-check the automatically generated diagnosis 
of AFIRA before confirming it. Only events for which AFIRA provided a correct 
diagnosis were considered for this analysis. The effects are shown in Figure 8 
(right). As becomes evident from this figure, the experience of a failure of the aid 
at the beginning of the experimental session entailed a significant effect on auto-
mation verification (AVIS-N) that persisted across the entire time of the experi-
ment. Participants with an early failure experience were significantly less biased 
in interaction with the aid than were participants without failure experience. On 
average, they sampled 97.4% of the system parameters that were necessary to 
completely verify the aid’s diagnoses. In contrast, participants without failure 
experience checked only 92.0% of the critical information. A 2 (group) × 4 
(block) ANOVA revealed a significant group effect, F(1, 42) = 6.82, p < .02. Nei-
ther the block effect nor the Group × Block interaction was significant. Similarly, 
no significant group effect was found for AVT.

Commission errors. Table 1 provides an overview of the number of participants 
who committed a commission error when the aid surprisingly proposed a wrong 
diagnosis at the end of the experimental session. As becomes evident, the risk of 
committing such error was considerably higher for the group of participants who 
did not have prior experience of an aid’s failure. In this case, 20.4% of the partici-
pants committed a commission error. This rate contrasted with a significantly 
lower error rate (4.5%) for participants who were already exposed to the aid’s 
first failure at the beginning of their session, χ2(1) = 5.10, p < .03. Somewhat 
contrary to expectations, the number of valid diagnoses prior to the automation 
failure did not entail any significant effects on automation bias, χ2 < 1.
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Microanalyses of commission errors. Out of the 11 participants who followed 
the wrong automation advice at the end of the experiment, 6 showed a behavior 
resembling that of a complacent operator in supervisory control, as they made 
the commission error because they did not check all the information that would 
have been necessary to verify the aid’s diagnosis. The other 5 participants fol-
lowed the wrong automation advice despite checking all parameters that were 
necessary to realize that the automatically generated diagnosis was wrong. How-
ever, 4 of these participants seemed to have conducted these cross-checks with-
out, or with less, attention. This finding was revealed by the results of the 
questionnaire that was administered after they had falsely confirmed the aid’s 
diagnosis. Although all 5 participants in fact had checked all necessary system 
information to verify the aid’s diagnosis, 4 of them were not able to recall cor-
rectly what they had seen. Three of these participants stated that the nitrogen 
flow they had checked was on standard level—which is an indicator for the 
system fault that was wrongly proposed by the aid—although it was actually 
much lower. Another participant was not able to recall a critical relation between 
two parameters even though the log file revealed that he had looked at both. 
Only 1 of the 11 participants committed the error despite being aware of all the 
contradictory system information. However, he failed to give a clear reason for 
his decision. In contrast, out of the 77 participants who had correctly identified 
the aid’s wrong diagnosis, only 4 were not able to recall all necessary parameters 
that they had cross-checked before.

Discussion
One of the goals of the second experiment was to investigate to what extent 

positive and negative experience in interaction with an automated aid would 
determine the level of trust, the degree of automation verification, and the 
strength of automation bias in terms of commission errors. The assumption that 
two feedback loops were active in determining the subjective level of trust could 

Table 1. Number of Participants Who Committed a Commission Error When the 
Aid Failed at the End of the Session

Correct Diagnoses Prior to  
the False Diagnosis

Prior Experience of a  
False Diagnosis 5 20 Total

No 6 (27.3%) 3 (13.6%) 9 (20.4%)
Yes 0 (0%) 2 (9.1%) 2 (4.5%)
Total 6 (13.6%) 5 (11.4%) 11 (12.5%)

Note. Percentages in brackets reflect the proportion in relation to the number of participants in the 
different cells (n = 22, n = 44, and n = 88, respectively).
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be confirmed. However, the strength of these loops seems to be considerably 
different. This finding is suggested by the different time courses of trust effects 
induced by positive and negative experience. About 20 repeated positive inci-
dents were needed to compensate for a decline of trust induced by the single 
automation failure that occurred early in time during work with the aid. This 
finding is in line with earlier results of Lee and Moray (1992), who have studied 
the dynamics of trust development in a supervisory control task. The two pro-
posed feedback loops also determined the level of automation verification and 
the risk of commission errors in interaction with the automated aid. Participants 
who had already had the experience of an automation failure turned out to be 
less biased and less prone to commit a commission error when the aid failed a 
second time. This finding confirms similar results reported by Bahner, Hueper, 
et al. (2008) and suggests that direct experience of automation failures may 
provide an effective countermeasure for automation bias effects.

Whereas the effects of a single automation failure on subjective trust seemed 
to recover (albeit slowly) over time if the aid worked properly again afterward, a 
similar effect was not observed for automation verification information sampling 
behavior. Regaining the initial trust level was not reflected in the participants’ 
cross-checking behavior, which persisted at a nearly perfect level and thereby 
reduced the probability of a commission error. This finding suggests that the 
impact of the negative feedback loop is more enduring on the behavioral level 
than on the subjective trust level.

Another study objective aimed at a better understanding of the proposed 
looking-but-not-seeing effect as a possible cause of commission errors. Overall, 
the proportion of participants committing a commission error (n = 11 out of 88, 
i.e., 12.5%) was smaller than in previous studies. However, among only partici-
pants for whom the automation failure at the end of the session was the first 
failure (Experimental Groups 1 and 3), the percentage rose to 20.5% (n = 9 out 
of 44), which corresponds to the figure reported by Bahner, Hueper, et al. (2008). 
Similar to the first experiment, only about half of the participants (n = 6) who 
committed a commission error did so because they did not check all information 
needed to verify the aid’s recommendation. The other half of the participants (n = 
5) actually checked all relevant information needed to identify the wrong diag-
nosis but, nevertheless, followed the incorrect advice. As was revealed by the 
situation awareness questionnaire, only 1 of these latter participants could cor-
rectly report what the system parameters indicated. The others had indeed 
looked at all the parameters but obviously had not processed the information 
attentively. This finding supports the looking-but-not seeing hypothesis derived 
from the results of the first experiment and suggests that automation bias can be 
associated with three different effects: (a) a withdrawal of attention in terms of 
incomplete cross-checks of information, (b) an active discounting of contradic-
tory information, and (c) an inattentive processing of the contradictory informa-
tion analogue to a looking-but-not-seeing effect. The latter effect is in line with 
earlier results from automation monitoring (e.g., Duley et al., 1997; Sarter et al., 
2007) and enlarges the set of already known sorts of automation bias.
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Summary and Conclusions
The present research provides detailed insights into the human performance 
consequences of automated decision aids and their dependence on the kind of 
function allocation operationally defined in terms of DOA. As expected, the 
provision of automated aids resulted in clear performance benefits that were 
directly dependent on the DOA, that is, more highly automated aids led to 
higher performance improvements than did less automated aids. In the first 
study, this finding was reflected in shorter FIT as well as better performance in 
stabilizing the simulated life-support system in states of failure. However, these 
benefits of automated support were not without costs. Performance costs were 
mainly reflected in return-to-manual difficulties as well as issues of automation 
bias. Both sorts of costs showed at least some relation to the kind of function 
allocation. Difficulties of return-to-manual performance remained limited to the 
most highly automated aid, which provided support not only for cognitive pro-
cesses involved in fault identification but also for the implementation of appro-
priate manual control actions. Issues of automation bias in terms of neglect of 
automation verification were primarily found for the most highly automated aid 
when automation verification included comparatively complex procedures. 
These findings provide support for earlier assumptions that a lower DOA might 
provide advantages to a higher one in this respect (e.g., Endsley & Kaber, 1999; 
Endsley & Kiris, 1995). However, this advantage of a lower DOA does not hold 
for preventing risks of commission errors as well. Commission errors in case of 
a first automation failure occurred independent of the DOA. The more detailed 
analysis of the origins of these errors in the second experiment revealed that the 
vast majority of them could be explained by participants’ withdrawing attention 
from the automated processes, directly reflected either in insufficient verification 
or, more subtle, in inattentive information processing. Furthermore, the results 
provide evidence that these effects represent phenomena that are directly based 
on the practical experience an operator has in interaction with an automated 
system as well as on individual differences, which obviously make some indi-
viduals more prone to automation bias effects than others. The latter is suggested 
by the fact that only a minority of the participants who never had the experience 
that the aid can fail committed a commission error although almost all of them 
showed some evidence of neglect of automation verification.

Altogether the pattern of effects found in the present research supports a framework 
model of complacency and automation bias, which has recently been described in 
detail by Parasuraman and Manzey (2010). This model conceptualizes complacency 
and at least most kinds of automation bias as reflecting automation-induced atten-
tional phenomena that “result from a complex interaction of personal, situational, 
and automation-related characteristics” (Parasuraman & Manzey, 2010, p. 403). 
Practical conclusions that might be drawn from this work relate to the advan-
tages of medium levels of automation—such as AS support in the present 
study—as a sort of compromise for balancing performance benefits and costs of 
automation. In addition, the significance of practical experience with automation 
failures for preventing issues of automation bias might be taken 
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into consideration for concepts of training and familiarization of operators with 
automated decision aids (cf. Bahner, Hueper, et al., 2008; Parasuraman & 
Manzey, 2010).

Limitations of the present research relate to the typical characteristics and 
constraints of laboratory experiments. Although the experimental task used for 
this research represented a sort of microworld, which makes it more complex 
than usual laboratory tasks, and the participants in this research, that is, engi-
neering students, seem to be more or less similar to the target group of operators 
typically involved in the use of such systems, other aspects of the current research 
have only limited ecological validity. This limitation holds in particular for assess-
ing the impact of time-related and experience-related effects on return-to-man-
ual issues and automation bias effects. Whereas in the real world, these kinds of 
effects usually develop across months and years, laboratory experiments require 
simulating these dynamics within a couple of hours. It is difficult to assess how 
this limitation might have affected the strength of effects observed in the given 
studies. In particular, the finding of comparatively weak return-to-manual effects 
might underestimate the performance consequences of automation support in 
the real world.
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