
Technische Universität Berlin
Fakultät für Elektrotechnik und Informatik

Lehrstuhl für Intelligente Netze und Management Verteilter Systeme

Virtual Network Embeddings:
Theoretical Foundations and Provably Good Algorithms

vorgelegt von

Matthias Johannes Rost, M.Sc.

von der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation

Promotionsausschuss
Vorsitzender: Prof. Dr. Rolf Niedermeier
Gutachter: Prof. Dr. Thomas Zinner
Gutachter: Prof. Dr. Stefan Schmid
Gutachterin: Prof. Anja Feldmann, Ph.D.
Gutachter: Prof. Dr. Harald Räcke

Tag der wissenschaftlichen Aussprache: 25. März 2019

Berlin 2019





Abstract

Virtualization and resource isolation techniques have enabled the efficient sharing of networked resources
both inside and across data centers. To guarantee reliable performance for all tenants, while efficiently
sharing the available resources, novel resource allocation problems have arisen. Specifically, the core
problem, coined the Virtual Network Embedding Problem (VNEP), asks for the embedding of several
virtualized networks to the physical network while not exceeding resource capacities. The VNEP has
been studied extensively for more than a decade, yet, few theoretic results pertaining to the VNEP are
known.

To facilitate a better understanding of the VNEP as well as to derive novel efficient algorithms for the
VNEP, this thesis studies the theoretical underpinnings of the VNEP. In particular, the computational
complexity of the VNEP is studied and the NP-completeness of the VNEP under various restrictions
is proven. Furthermore, the first (fixed-parameter) tractable approximations are obtained for the offline
setting. While theoretic in nature, we bridge the gap between theory and practice, and, based on our
theoretic insights, derive novel algorithms for the VNEP and show their practical applicability in extensive
computational evaluations.

Furthermore, we improve current state-of-the-art solutions and propose novel mechanisms to more effi-
ciently use and share resources. Considering the virtual cluster abstraction for data centers, we give an
optimal polynomial-time algorithm and develop a novel model to more efficiently use the scarce bandwidth
resources. Additionally, we propose a novel continuous-time approach to schedule virtual networks under
temporal flexibilities and validate the approach using computational studies.

iii



Zusammenfassung

Virtualisierung sowie Techniken zur Isolierung von Ressourcen haben das effiziente Teilen von vernetzten
Ressourcen sowohl innerhalb wie auch zwischen Rechenzentren ermöglicht. Um eine verlässliche Qualität
in der Diensterbringung für alle Beteiligten zu garantieren, während die Ressourcen effizient geteilt werden,
wurden neue Allokationsprobleme für Ressourcen von Nöten. Konkret verlangt das als Virtual Network
Embedding Problem bekannte Kernproblem die Einbettung mehrerer virtualisierte Netzwerke auf einem
einzelnen physikalischen Netz ohne dabei Ressourcenkapazitäten zu überschreiten. Dieses Problem wurde
im vergangenen Jahrzehnt intensiv studiert, es sind jedoch nur wenige theoretische Resultate bekannt.

Um ein besseres Verständnis des VNEPs zu ermöglichen sowie um neue effiziente Algorithmen für das
VNEP zu entwickeln, werden in dieser Dissertation die theoretischen Grundlagen des VNEPs studiert.
Insbesondere wird die Komplexität des VNEPs betrachtet und die NP-Vollständigkeit unter verschieden-
sten Restriktionen gezeigt. Weiterhin werden die ersten (parametrisierten) effizienten offline Approxima-
tionen gefunden. Während diese Resultate zunächst theoretischer Natur sind, verbinden wir Theorie und
Praxis, und leiten, ausgehend von den theoretischen Einsichten, neuartige Algorithmen für das VNEP ab
und zeigen deren Anwendbarkeit in umfangreichen Simulationsstudien.

Weiterhin verbessern wir bekannte Lösungen und schlagen neue Mechanismen vor, um Ressourcen ef-
fizienter zu nutzen und zu teilen. Spezifisch für die Abstraktion der Virtual Cluster, welche in Rechenzen-
tren benutzt wird, geben wir den ersten optimalen polynomiellen Algorithmus und zeigen eine neuartige
Methode auf, um die knappen Bandbreitenressourcen effektiver zu nutzen. Zusätzlich schlagen wir ein
kontinuierliches Zeit-Modell für die Einbettung virtueller Netzwerke unter Berücksichtigung temporaler
Flexibilitäten vor und validieren diesen Ansatz mittels Simulationsstudien.

iv



Acknowledgements

Obtaining the Ph.D. has been a strenuous journey, but also one filled with memories I am very fond of. I
would like to thank all the people who accompanied me on this journey and whom I had the pleasure to
work with, even though I may not have included them in the following.

First of all, I thank Anja Feldmann for including me in her group and giving me the freedom to realize my
research agenda. While we have worked together mostly in the realm of teaching, I have always deeply
valued her input and the mutual respect when ‘fighting’ for ideas.

I am most thankful to Stefan Schmid, who took me on as a master student and shaped my research like
no other. I have learnt so much from working with him and am still amazed at how productive and
quarrel-free our collaboration was throughout the last 7 years. Without his relentless quest to push ideas,
I could not have realized my full potential. Thank you!

I am also deeply grateful to Thomas Zinner, who not only filled the lingering void when Anja left, but
brought a new light to the group in a way I did not deem possible at that point in time. I will never forget
his continuous support during the last months of finishing my thesis.

I am very grateful to Harald Räcke for providing very detailed feedback on my thesis and his idea to again
consider Chernoff bounds, which has helped me to improve this thesis significantly.

I thank Georgios Smaragdakis for his numerous advices over the last years and for providing me with the
freedom to complete my thesis and other projects on my own terms.

Besides the above mentioned, I would furthermore like to thank all other professors, whose lectures and
engagement with me motivated me to pursue a Ph.D. In particular, I want to extend these thanks to Petr
Kuznetsov, Uwe Nestmann, Stephan Kreutzer, and Andreas Bley.

INET has truly been more than a workplace. Not only because I spent many nights, but because of the
companionship. With Srivatsan I not only shared numerous breaks and late-nights discussions about god
and the world, but found somebody as driven by research as I was. While Arne and Carlo did not teach
me how to win SET, they did an excellent job in passing the teaching torch to me and I have missed them
ever since they left. Nadi showed me how to handle EU projects just right while also having lots of fun,
especially in Athens. With Lalith I not only shared some of the darkest jokes and the same taste in music,
but also admired his discipline and his directness. Julius showed me that working hard can indeed go
hand in hand with still enjoying life. Bala always had an open ear and his aspirations to make an impact
in the research community inspired me. While Enric and Philipp at times pretended to dislike ‘this place’,
they truly made the place a more enjoyable and better one. The same goes without question for Thomas,
Niklas, and Susanna: thank you for the good times!

I also have to thank the student workers, with whom I had the pleasure to work with over the last couple
of years: Elias Döhne, Alexander Elvers, Tom Koch, and Johannes Wortmann. Without their help, I could
have never realized all the different projects I was involved in.

Last, but not least, my deepest gratitude goes to my wife and family for always being there and supporting
me even during the most stressful times!

v



Publications

Pre-published Papers

In the following a list of all works co-authored during my time as a PhD student is given. Papers containing
results presented in this thesis are highlighted using the • symbol. For all other works the ◦ symbol is
used and these works are treated as common related work. Except for the technical reports, all papers
have been peer-reviewed. All my collaborators are among my co-authors.

International Conferences

◦ M. Liu, A. W. Richa, M. Rost, and S. Schmid. “A Constant Approximation for Maximum Through-
put Multicommodity Routing And Its Application to Delay-Tolerant Network Scheduling”. In: IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications. Apr. 2019, pp. 46–54. doi:
10.1109/INFOCOM.2019.8737402

• M. Rost and S. Schmid. “Charting the Complexity Landscape of Virtual Network Embeddings”.
In: 2018 IFIP Networking Conference (IFIP Networking). May 2018, pp. 1–9. doi: 10 . 23919 /
IFIPNetworking.2018.8696604

• M. Rost and S. Schmid. “Virtual Network Embedding Approximations: Leveraging Randomized Round-
ing”. In: 2018 IFIP Networking Conference (IFIP Networking). May 2018, pp. 1–9. doi: 10.23919/
IFIPNetworking.2018.8696623

◦ G. Even, M. Rost, and S. Schmid. “An Approximation Algorithm for Path Computation and Function
Placement in SDNs”. In: Structural Information and Communication Complexity. Ed. by J. Suomela.
Cham: Springer International Publishing, 2016, pp. 374–390. isbn: 978-3-319-48314-6. doi: 10.1007/
978-3-319-48314-6_24

◦ A. Ludwig, S. Dudycz, M. Rost, and S. Schmid. “Transiently Secure Network Updates”. In: Proceedings
of the 2016 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer
Science. SIGMETRICS ’16. Antibes Juan-les-Pins, France: ACM, 2016, pp. 273–284. isbn: 978-1-
4503-4266-7. doi: 10.1145/2896377.2901476

◦ V. Kotronis, R. Klöti, M. Rost, P. Georgopoulos, B. Ager, S. Schmid, and X. Dimitropoulos. “Stitching
Inter-Domain Paths over IXPs”. In: Proceedings of the Symposium on SDN Research. SOSR ’16. Santa
Clara, CA, USA: ACM, 2016, 17:1–17:12. isbn: 978-1-4503-4211-7. doi: 10.1145/2890955.2890960

• M. Rost, S. Schmid, and A. Feldmann. “It’s About Time: On Optimal Virtual Network Embeddings
under Temporal Flexibilities”. In: 2014 IEEE 28th International Parallel and Distributed Processing
Symposium. May 2014, pp. 17–26. doi: 10.1109/IPDPS.2014.14

Peer-reviewed Journals

• M. Rost and S. Schmid. “Virtual Network Embedding Approximations: Leveraging Randomized Round-
ing”. In: IEEE/ACM Transactions on Networking (to appear) (2019)

• M. Rost, E. Döhne, and S. Schmid. “Parametrized Complexity of Virtual Network Embeddings: Dy-
namic & Linear Programming Approximations”. In: SIGCOMM Comput. Commun. Rev. 49.1 (Feb.
2019), pp. 3–10. issn: 0146-4833. doi: 10.1145/3314212.3314214

vi

https://doi.org/10.1109/INFOCOM.2019.8737402
https://doi.org/10.23919/IFIPNetworking.2018.8696604
https://doi.org/10.23919/IFIPNetworking.2018.8696604
https://doi.org/10.23919/IFIPNetworking.2018.8696623
https://doi.org/10.23919/IFIPNetworking.2018.8696623
https://doi.org/10.1007/978-3-319-48314-6_24
https://doi.org/10.1007/978-3-319-48314-6_24
https://doi.org/10.1145/2896377.2901476
https://doi.org/10.1145/2890955.2890960
https://doi.org/10.1109/IPDPS.2014.14
https://doi.org/10.1145/3314212.3314214


◦ A. Ludwig, S. Dudycz, M. Rost, and S. Schmid. “Transiently Policy-Compliant Network Updates”.
In: IEEE/ACM Transactions on Networking 26.6 (Dec. 2018), pp. 2569–2582. issn: 1063-6692. doi:
10.1109/TNET.2018.2871023

◦ T. Lukovszki, M. Rost, and S. Schmid. “Approximate and incremental network function placement”.
In: Journal of Parallel and Distributed Computing 120 (2018), pp. 159–169. issn: 0743-7315. doi:
https://doi.org/10.1016/j.jpdc.2018.06.006

◦ T. Lukovszki, M. Rost, and S. Schmid. “It’s a Match!: Near-Optimal and Incremental Middlebox
Deployment”. In: SIGCOMM Computer Communication Review (CCR) 46.1 (Jan. 2016), pp. 30–36.
issn: 0146-4833. doi: 10.1145/2875951.2875956

• M. Rost, C. Fuerst, and S. Schmid. “Beyond the Stars: Revisiting Virtual Cluster Embeddings”. In:
SIGCOMM Computer Communication Review (CCR) 45.3 (July 2015), pp. 12–18. issn: 0146-4833.
doi: 10.1145/2805789.2805792

◦ S. Sahhaf, W. Tavernier, M. Rost, S. Schmid, D. Colle, M. Pickavet, and P. Demeester. “Network service
chaining with optimized network function embedding supporting service decompositions”. In: Computer
Networks 93 (2015). Cloud Networking and Communications II, pp. 492–505. issn: 1389-1286. doi:
https://doi.org/10.1016/j.comnet.2015.09.035

Workshops and Poster Sessions

◦ B. Németh, M. Szalay, J. Dóka, M. Rost, S. Schmid, L. Toka, and B. Sonkoly. “Fast and efficient network
service embedding method with adaptive offloading to the edge”. In: IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS). Apr. 2018, pp. 178–183.
doi: 10.1109/INFCOMW.2018.8406882

◦ B. Németh, B. Sonkoly, M. Rost, and S. Schmid. “Efficient service graph embedding: A practical ap-
proach”. In: 2016 IEEE Conference on Network Function Virtualization and Software Defined Networks
(NFV-SDN). Nov. 2016, pp. 19–25. doi: 10.1109/NFV-SDN.2016.7919470

◦ V. Kotronis, R. Klöti, M. Rost, P. Georgopoulos, B. Ager, S. Schmid, and X. Dimitropoulos. “In-
vestigating the Potential of the Inter-IXP Multigraph for the Provisioning of Guaranteed End-to-End
Services”. In: Proceedings of the 2015 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems. SIGMETRICS ’15. Portland, Oregon, USA: ACM, 2015, pp. 429–
430. isbn: 978-1-4503-3486-0. doi: 10.1145/2745844.2745877

◦ A. Ludwig, M. Rost, D. Foucard, and S. Schmid. “Good Network Updates for Bad Packets: Waypoint
Enforcement Beyond Destination-Based Routing Policies”. In: Proceedings of the 13th ACM Workshop
on Hot Topics in Networks. HotNets-XIII. Los Angeles, CA, USA: ACM, 2014, 15:1–15:7. isbn: 978-
1-4503-3256-9. doi: 10.1145/2670518.2673873

◦ P. Sköldström, B. Sonkoly, A. Gulyás, F. Németh, M. Kind, F.-J. Westphal, W. John, J. Garay, E. Jacob,
D. Jocha, J. Elek, R. Szabó, W. Tavernier, G. Agapiou, A. Manzalini, M. Rost, N. Sarrar, and S. Schmid.
“Towards Unified Programmability of Cloud and Carrier Infrastructure”. In: 2014 Third European
Workshop on Software Defined Networks. Sept. 2014, pp. 55–60. doi: 10.1109/EWSDN.2014.18

Technical Reports

• M. Rost and S. Schmid. “NP-Completeness and Inapproximability of the Virtual Network Embedding
Problem and Its Variants”. In: CoRR abs/1801.03162 (2018). url: http://arxiv.org/abs/1801.
03162 (visited on Sept. 19, 2019)

vii

https://doi.org/10.1109/TNET.2018.2871023
https://doi.org/https://doi.org/10.1016/j.jpdc.2018.06.006
https://doi.org/10.1145/2875951.2875956
https://doi.org/10.1145/2805789.2805792
https://doi.org/https://doi.org/10.1016/j.comnet.2015.09.035
https://doi.org/10.1109/INFCOMW.2018.8406882
https://doi.org/10.1109/NFV-SDN.2016.7919470
https://doi.org/10.1145/2745844.2745877
https://doi.org/10.1145/2670518.2673873
https://doi.org/10.1109/EWSDN.2014.18
http://arxiv.org/abs/1801.03162
http://arxiv.org/abs/1801.03162


Publications

• M. Rost and S. Schmid. “Virtual Network Embedding Approximations: Leveraging Randomized Round-
ing”. In: CoRR abs/1803.03622 (2018). url: http://arxiv.org/abs/1803.03622 (visited on Sept. 19,
2019)

◦ T. Lukovszki, M. Rost, and S. Schmid. “Approximate and Incremental Network Function Placement”.
In: CoRR abs/1706.06496 (2017). url: http://arxiv.org/abs/1706.06496 (visited on Sept. 19,
2019)

◦ V. Kotronis, R. Klöti, M. Rost, P. Georgopoulos, B. Ager, S. Schmid, and X. A. Dimitropoulos. “In-
vestigating the Potential of the Inter-IXP Multigraph for the Provisioning of Guaranteed End-to-End
Services”. In: CoRR abs/1611.03407 (2016). url: http://arxiv.org/abs/1611.03407 (visited on
Sept. 19, 2019)

◦ V. Kotronis, R. Klöti, M. Rost, P. Georgopoulos, B. Ager, S. Schmid, and X. A. Dimitropoulos. “Stitch-
ing Inter-Domain Paths over IXPs”. In: CoRR abs/1611.02642 (2016). url: http://arxiv.org/abs/
1611.02642 (visited on Sept. 19, 2019)

◦ G. Even, M. Rost, and S. Schmid. “An Approximation Algorithm for Path Computation and Function
Placement in SDNs”. In: CoRR abs/1603.09158 (2016). url: http://arxiv.org/abs/1603.09158
(visited on Sept. 19, 2019)

• M. Rost and S. Schmid. “Service Chain and Virtual Network Embeddings: Approximations using
Randomized Rounding”. In: CoRR abs/1604.02180 (2016). url: http://arxiv.org/abs/1604.02180
(visited on Sept. 19, 2019)

◦ V. Kotronis, R. Klöti, M. Rost, P. Georgopoulos, B. Ager, S. Schmid, and X. Dimitropoulos. Investigat-
ing the Potential of the Inter-IXP Multigraph for the Provisioning of Guaranteed End-to-End Services.
Tech. rep. 360. ETH Zurich, Laboratory TIK, Feb. 2015. url: ftp://ftp.tik.ee.ethz.ch/pub/
publications/TIK-Report-360.pdf (visited on Sept. 19, 2019)

Under submission

Parts of this thesis are based on the following paper that is currently under submission.

Peer-reviewed Journals

• M. Rost and S. Schmid. “On the Hardness and Inapproximability of Virtual Network Embeddings”. In:
IEEE/ACM Transactions on Networking (under submission) (2019)

viii

http://arxiv.org/abs/1803.03622
http://arxiv.org/abs/1706.06496
http://arxiv.org/abs/1611.03407
http://arxiv.org/abs/1611.02642
http://arxiv.org/abs/1611.02642
http://arxiv.org/abs/1603.09158
http://arxiv.org/abs/1604.02180
ftp://ftp.tik.ee.ethz.ch/pub/publications/TIK-Report-360.pdf
ftp://ftp.tik.ee.ethz.ch/pub/publications/TIK-Report-360.pdf


Contents

Abstract iii

Zusammenfassung iv

Acknowledgements v

Publications vi

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Overview of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Formal Problem Statement 7

2.1 General Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Input and Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Core Problem Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Variants of the VNEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Undirected VNEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.2 VNEP with Splittable Edge Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.3 Additional Mapping Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Approximate Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 VNEP Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Algorithmic Background 14

3.1 Big O Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Classic Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Parametrized Complexity and Tree Decompositions . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 (Mixed-)Integer Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6 (Randomized) Approximation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.7 Competitive Online Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ix



CONTENTS

4 Related Work 23

4.1 Computational Complexity of the VNEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Online Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.2 Approximation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.3 Competitive Online Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Offline Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.2 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.3 Exact Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Computational Complexity of the Virtual Network Embedding Problem 28

5.1 Integer Programming Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Reduction Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 3-SAT: Notation and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.2 General VNEP Instance Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.3 The Base Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Hardness of the VNEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4 Hardness of Computing Approximate Embeddings . . . . . . . . . . . . . . . . . . . . . . . 36

5.5 Hardness under Graph Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.6 Hardness of the VMP and the Fractional Offline VNEP . . . . . . . . . . . . . . . . . . . . 42

5.7 Summary and Novelty of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 XP-Algorithms for the Fractional VNEP and the VMP 44

6.1 The Classic Multi-Commodity Formulation and Its Limits . . . . . . . . . . . . . . . . . . . 46

6.1.1 The Multi-Commodity Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1.2 Decomposing Solutions to the MCF Formulation . . . . . . . . . . . . . . . . . . . . 47

6.1.3 Limitations of the MCF Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 LP Formulation for Cactus Request Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2.1 Cactus Request Graph Decomposition and Notation . . . . . . . . . . . . . . . . . . 51

6.2.2 LP Formulation for Cactus Request Graphs . . . . . . . . . . . . . . . . . . . . . . . 51

6.2.3 Decomposing Solutions to the Cactus LP Formulation . . . . . . . . . . . . . . . . . 52

6.3 LP Formulations Based on Extraction Width . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3.1 Idea and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3.2 Structure of Edge Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

x



CONTENTS

6.3.3 Decomposable Extraction Width LP Formulation . . . . . . . . . . . . . . . . . . . . 57

6.3.4 Decomposition Algorithm for the Extraction Width LP Formulation . . . . . . . . . 59

6.3.5 Extraction Width: Graph Classes and Complexity . . . . . . . . . . . . . . . . . . . 62

6.3.5.1 Graph Classes of Bounded Extraction Width . . . . . . . . . . . . . . . . . 62

6.3.5.2 Hardness of Computing Extraction Orders. . . . . . . . . . . . . . . . . . . 63

6.3.6 Concluding Remarks and Known Extraction Width Extensions . . . . . . . . . . . . 65

6.4 LP Formulations Based on Tree Decompositions . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4.1 Tree Decompositions of Request Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4.2 Dynamic Program DynVMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4.3 Solving the Fractional Offline VNEP via Column Generation . . . . . . . . . . . . . 70

6.5 Summary and Novelty of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 XP-Approximations for the Offline VNEP and Evaluation of Derived Heuristics 75

7.1 Approximations for the Offline Cost VNEP . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.1.1 Deterministic Guarantee for the Cost . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.1.2 Bounding Resource Allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.1.3 Cost Approximation without Latencies . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.1.4 Cost Approximation with Latencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2 Approximating the Profit Variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2.1 Bounding the Profit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2.2 Probabilistic Guarantee for Resource Augmentations . . . . . . . . . . . . . . . . . . 81

7.2.3 Profit Approximation without Latencies . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.2.4 Profit Approximation with Latencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.2.5 Trading Off Capacity Violations with the Obtained Profit . . . . . . . . . . . . . . . 83

7.3 Derandomization: Deterministic Approximations . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3.1 Overview on the Method of Conditional Expectation . . . . . . . . . . . . . . . . . . 85

7.3.2 Pessimistic Estimators: Idea and Application . . . . . . . . . . . . . . . . . . . . . . 86

7.3.2.1 Generic Pessimistic Estimator for Resource Augmentations . . . . . . . . . 87

7.3.2.2 Pessimistic Estimator for the Obtained Profit . . . . . . . . . . . . . . . . . 89

7.3.3 Deterministic Approximation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.4 Summary and Discussion of Approximation Results . . . . . . . . . . . . . . . . . . . . . . . 93

7.5 Derived Heuristics for the Offline Profit VNEP . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.6 Computational Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.6.1 General Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xi



CONTENTS

7.6.2 Validation and Evaluation based on LP for Cactus Requests . . . . . . . . . . . . . . 101

7.6.2.1 Cactus Request Graph Topology Generation . . . . . . . . . . . . . . . . . 102

7.6.2.2 Instance Parameter Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.6.2.3 Baseline Performance and Validation . . . . . . . . . . . . . . . . . . . . . 104

7.6.2.4 Performance of Randomized Rounding Heuristics . . . . . . . . . . . . . . . 105

7.6.2.5 Optimal Rounding Solution RRMDK . . . . . . . . . . . . . . . . . . . . . . 107

7.6.2.6 Comparison of Formulation Strengths . . . . . . . . . . . . . . . . . . . . . 108

7.6.3 Evaluation of Column Generation Based Heuristics . . . . . . . . . . . . . . . . . . . 108

7.6.3.1 Qualitative and Quantitative Analysis of the Treewidth . . . . . . . . . . . 109

7.6.3.2 Comparison of LP Runtimes . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.6.3.3 Performance of Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.7 Summary and Novelty of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8 Optimal Virtual Cluster Embeddings and the Hose Based Model 115

8.1 Overview of Virtual Clusters and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.2 Optimal VC Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.3 Hose-Based VC Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.3.1 Problem Definition and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.3.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.3.3 Exact Unsplittable Hose Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.3.4 Algorithm for the Splittable Hose-Model . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.5 Summary and Novelty of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9 The Temporal Offline VNEP 125

9.1 The Continuous-Time Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.1.1 The Abstract Event Point Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9.1.2 ∆-Model: Representing only State Changes . . . . . . . . . . . . . . . . . . . . . . . 128

9.1.3 Σ-Model: Representing States Explicitly . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.2 The Compact State Model cΣ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.2.1 Compactification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.2.2 Temporal Dependency Graph Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9.2.3 Symmetry Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9.3 Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xii



CONTENTS

9.4 Computational Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.5 Summary and Novelty of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

10 Concluding Remarks 138

10.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A Derivation of Chernoff Bounds 141

A.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.2 Proofs of Chernoff Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.3 A Generalized Balls-and-Bins Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B Randomized Rounding Analysis using Hoeffding Bounds 148

B.1 Bounding Resource Allocations using Hoeffding . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.2 Comparison of Chernoff and Hoeffding Bounds . . . . . . . . . . . . . . . . . . . . . . . . . 150

List of Algorithms 152

List of Figures 153

List of Tables 155

xiii



“Wir müssen wissen. Wir werden wissen.”
– David Hilbert 1

Introduction

The advent of the Internet has profoundly impacted society as a whole. Today, we access information faster
than ever before, watch movies instantaneously on our mobile devices, and stay in contact with far away
friends via video calls. The success of the Internet and the ongoing societal transformations have been
facilitated by several advances in the areas of computing and communication technologies. In particular,
advances in virtualization technologies have been the main driver of innovation behind cloud computing:
the (remote) offering of virtualized compute resources in data centers for customers, individuals and
companies alike. The ever increasing reliance on such remote services necessitates the reliable operation
and the safeguarding of quality guarantees for the rendered services. With the ever increasing growth
of application traffic, sufficient bandwidth is required for optimal performance. Accordingly, means to
provide network virtualization have attracted much attention over the last decade and lead – among
others – to many realizations, most prominently in the form of the Software-Defined Networking (SDN)
paradigm. Given the capability to flexibly allocate virtualized compute and networking resources, several
algorithmic resource allocation challenges arose. Many of these resource allocation problems can be posed
as a graph-theoretic Virtual Network Embedding Problem (VNEP). In the following, we first informally
introduce the problem and then discuss its many applications.

A Glance at the Virtual Network Embedding Problem. The physical infrastructure is modeled
as a network: nodes offer compute resources and the edges represent communication channels of limited
bandwidth. Customers can request virtual networks that are analogously given as graphs, which are
attributed with compute and bandwidth demands on the nodes and edges, respectively. The task of the
infrastructure provider is to allocate resources appropriately within the physical network to embed the
virtual network. Figure 1.1 depicts an example: a virtual network consisting of 4 virtual nodes A, B, C,
D is embedded on a 5-node physical network, such that each virtual node is mapped to a physical node
and adjacent virtual nodes are connected in the physical network via paths which are colored differently

A B

CD

AC B

D

1

11

1

6

Virtual Network

Embedding 1/2

1/2 1/2

1/2

2/3

1/3

1 4

3 1

2/2 4/5

0/0 1/13/3

Physical Network

Figure 1.1: Exemplary embedding of a virtual network on a physical network. The numeric labels of the
virtual network elements denote the resource demands, while for the substrate network the resource usage
and the total capacity are given.

1



Chapter 1 Introduction

(a) GÉANT wide-area research
network [Kni+11]

(b) 4-port fat-tree data center topology [ALV08]

Figure 1.2: Exemplary physical networks.

in Figure 1.1. Importantly, the embedding shown in the example is feasible, i.e., the physical network’s
capacities are not exceeded, as this would otherwise result in performance degradation. Besides enforcing
feasibility of the embedding, additional constraints can be imposed, e.g., restricting the set of substrate
nodes and substrate edges to which a specific virtual node or virtual edge can be mapped.

Origins of the VNEP and its Applications over Time. The Virtual Network Embedding Problem
(VNEP) has received tremendous attention over the course of the last 15 years [Fis+13]. It originated
first in the early 2000s in the context of provisioning value-added services for, among others, video con-
ferencing [Cha+01; SIB03]. Additional interest in the VNEP arose in the networking community when
needing to set up testbeds [RAL03]. Using such testbeds indeed was deemed to be of crucial importance
to easily innovate the Internet using so called overlays [And+05]. By 2009, the VNEP was formulated as
graph-theoretic optimization problem and several algorithms tackling it were published [Yu+08; CRB09]
and by 2013 already more than 80 different algorithms for various flavors of the VNEP had been con-
ceived [Fis+13].

While – by virtue of its use cases – algorithms for the VNEP were developed for applications in Wide-
Area Networks (WANs, see Figure 1.2a for an example), the first specific virtual network abstraction for
data centers was proposed in the form of Virtual (Oversubscribed) Clusters [Bal+11]: a virtual cluster
topology is a simple star network with a logical switch connecting a set of VMs (see Figure 1.3a), while an
oversubscribed cluster is a tree of depth 2 with VMs as leaves. Virtual clusters were specifically conceived
for providing resource isolation for bandwidth-intensive MapReduce-like tasks and studied on specific data
center topologies, namely VL2 [Gre+09] and fat-trees [ALV08] (see Figure 1.2b). While the underlying
graph embedding problem did not change, the choice of hierarchical data center topologies lead to the
design of specific dynamic programming algorithms to solve the embedding problem [Bal+11]. Research

VM1

VM5

VM4VM3

VM2

VM1

VM5

VM4VM3

VM2

(a) A virtual cluster with 5 Vir-
tual Machines (VMs) connected to
a single logical switch in the cen-
ter [Bal+11].

Internet

LB1 LB2Cache

FW

NAT

Customer

Backend1 Backend2Backend1

LB1

(b) A Service Chain as envisioned in the context of mobile internet service
providers [Nap+16]. The customer’s traffic may be routed through a cache,
which is connected to several backends, while all traffic is routed through
a firewall and a network address translator.

Figure 1.3: Exemplary virtual network requests.

2



into the virtual cluster embedding problem is still ongoing, e.g., regarding temporal aspects of embeddings
or heterogeneous resource demands [Xie+12; Dai+15; YLH17]. Beside the orchestration of virtual clusters,
the VNEP was also studied in the form of the Virtual Data Center Embedding Problem [Amo+13;
Rab+13; Zha+14]. Here, the focus lies on embedding virtualized data center requests, which span several
data centers.

The most recent incarnation of the VNEP is based on the advent of Network Functions Virtualization
(NFV) [Chi+12], which envisions the virtualization of network functions, which have been classically
implemented via specific hardware appliances (middleboxes). In fact, in [She+12] it was found that the
number of middleboxes comes close to the number of classic networking components like routers. The NFV
approach proposes the replacement of these hardware appliances by virtualized network functions that can
be hosted on commodity servers, thereby reducing capital expenditures. Additionally, the Internet Service
Providers first proposing NFV also aimed for a distinct reduction in operational expenditures, due to
simpler management [Chi+12]. Besides technological innovation to allow for NFV in conjunction with for
example Software-Defined Networking [JP13; Soa+15; Mij+16], the virtual network abstraction of service
chains emerged [QN15; Bha+16]. While service chains originally represented only a concatenation of
functions (hence: chain) [MKK14; Sou+14], current use cases also include more general request topologies,
which may contain cycles or are bidirected [HP15]. The notion of service chains and the principle of network
slicing to provide Quality-of-Service guarantees are currently also specifically discussed in the context of
mobile operators [Nap+16] and 5G [Beg+17; Fou+17]. Figure 1.3b depicts an example of such a use
case.

Lastly, we note that NFV also has raised algorithmic challenges regarding the placement of (virtualized)
network functions. Accordingly, the task of finding the best locations to place network functions, such
that several service chains can be routed through these, has attracted significant attention over the course
of the last years [MT14; Bou+15; Coh+15; LRS16].

Objectives and Restrictions. Due to the many applications of the VNEP, several objectives and
mapping restrictions have been studied. In the following, a short overview is given.

The VNEP has been studied both in the online and offline setting. In the online setting the embedding
of a single request is considered. Here, the objective is to find an embedding minimizing the resource
allocation cost [CRB09; Fis+13] or minimizing the maximal load [CRB12; MKK14]. In the offline setting
the embedding of several requests is considered and the most studied objective is to maximize the provider’s
profit by exerting admission control [CRB12; Eve+13], i.e., selecting a subset of requests to embed.

Besides enforcing that capacities are not exceeded, additional restrictions have emerged in various appli-
cations:

• Restrictions on the placement of virtual nodes first arose to enforce the closeness to locations of in-
terest [CRB09], but were also used in the context of privacy policies to restrict mappings to certain
countries [SSF12]. However, these restrictions are now also used in the context of Network Functions
Virtualization and Service Chaining, as specific softwarized functions implemented as a virtual machine
may be mapped only to commodity servers, while hardware firewall functions can only be mapped on
respective hardware appliances [MKK14; HP15].

• Routing restrictions first arose in the context of expressing security policies, as for example some traffic
may not be routed via insecure domains or physical links shall not be shared with specific other virtual
networks [Bay+13; Fis+13].

• Restrictions on latencies were studied for the VNEP in [IR11] and have been recently studied intensively
in the context of Service Function Chaining to achieve responsiveness and Quality-of-Service [MKK14;
HP15].

3



Chapter 1 Introduction

Algorithmic Approaches. Solving the VNEP is the main resource allocation challenge in virtualized
networks and is algorithmically challenging, as it is known to be NP-hard [Ama+16]. Thus, for solving
the VNEP mainly heuristic and exact, i.e., non polynomial-time, algorithms were proposed [Fis+13]. In
particular, several dozens of algorithms were proposed to solve the VNEP and its siblings, including the
Virtual Cluster Embedding Problem [Bal+11] and the Service Function Chain Embedding Problem [HB16].
Most approaches to solve the VNEP either rely on heuristics [CRB09] or metaheuristics [Fis+13]. Mixed In-
teger Programming is the most widely used exact approach to tackle the VNEP [IR11; Fis+13; MKK14].

Importantly, efficient approximation algorithms for the VNEP have not been studied. While hopes were
expressed to obtain approximations using Linear Programming by Chowdhury et al. in 2009 [CRB09] and
the survey [CB09] explicitly mentions approximations as desirable, no general approximation results are
known. In 2013 and 2016, respectively, the surveys [Fis+13; Mij+16] call only for the development of
heuristics, as the VNEP is acknowledged to be computationally intractable.

1.1 Problem Statement

The concept of (network) virtualization allows the shared usage of physical resources. A cornerstone of
this paradigm is the efficient usage of the limited physical resources. This thesis provides algorithms to
improve existing solutions either by providing quality guarantees (compared to heuristics) or to provide
solutions quicker (compared to exact approaches).

Specifically, this thesis provides a theoretically well-founded basis for the development of provably good
algorithms, i.e., approximations, for the VNEP. Such approximation algorithms provide guarantees both
for the runtime as well as for the solution quality and may therefore bridge the gap between heuristic and
exact algorithms. Specifically, compared to purely heuristical approaches, approximations may increase the
solution quality or may facilitate finding valid solutions in the first place. Compared to exact algorithms,
the bounded runtime may be beneficial to obtain good solutions more quickly or to, e.g., more quickly
decide that no solution can exist. Besides the application of approximation algorithms to solve the VNEP,
a deeper understanding of the challenges associated with obtaining approximations may eventually also
shed light on how to obtain better heuristics or how to improve exact algorithms for the VNEP. Therefore,
the study of approximations bears the potential to, e.g., improve the substrate provider’s profit, reduce the
costs of customers and improve their satisfaction by providing better solutions. Notably, this is independent
of the approximation’s applicability in practice. While this thesis focuses on provably good algorithms,
the efficient implementation and computational evaluation of the respective algorithms is treated of equal
importance and is used to identify the benefits and limitations of their applicability in practice.

Besides extensively studying the theoretical foundations of the VNEP, approaches to improve state-of-the-
art solutions are also considered. Specifically, means to improve the resource utilization of virtual cluster
embeddings in data centers and means to harness temporal flexibilities in scheduling virtual network
requests are studied.

1.2 Contributions of this Thesis

This thesis provides a new theoretic framework for the VNEP, obtaining, among others, the first approx-
imation algorithms:

• The computational complexity of the VNEP is thoroughly studied and a series of novel hardness results
is obtained. In particular, the VNEP is shown to be NP-complete and therefore inapproximable under
any objective, unless P =NP holds, and our results also hold when only approximate embeddings are
studied. Even more, studying various restriction combinations, the NP-completeness is proven even in

4



1.3 Overview of this Thesis

the absence of capacity constraints and all presented hardness results also pertain when request graphs
are restricted to planar graphs.

• Given these NP-hardness results, novel algorithmic relaxations of the VNEP are studied. On the one
hand, the Valid Mapping Problem (VMP) is introduced, which relaxes the requirement that embeddings
must obey the substrate’s resource capacities. Based on the notion of valid mappings, the Fractional
VNEP is introduced, which allows to return a convex combination of mappings instead of just a single
one. While our hardness results pertain to the VMP and the Fractional VNEP as well, we constructively
show that these problems become fixed-parameter tractable when taking the request graphs’ structure
into account. In particular, the VMP and the Fractional VNEP can be solved in polynomial-time for
graphs of bounded treewidth. For all other graphs, the runtime is exponential in the treewidth of the
request(s).

• We show that the ability to solve the Fractional VNEP directly translates to the first (parametrized)
approximation algorithms for the offline VNEP for arbitrary request graphs. In particular, the consid-
ered approximations consider the setting in which multiple requests are given. We study two objectives
and give approximations for both of them. Under the profit objective, admission control can be exerted
to select a subset of requests maximizing the provider’s revenue. Under the cost objective, all request
must be embedded while minimizing resource costs. Based on these approximations, several heuristics
are derived for the profit variant and their practical applicability and their potential to improve over
existing heuristics is shown in extensive computational evaluations.

Furthermore, this thesis introduces solution approaches for two applications, the embedding of virtual
clusters, and the temporal scheduling of virtual networks.

• Considering the specific virtual cluster request abstraction, which restricts request graphs to star net-
works with uniform demands, the optimal polynomial-time solvability of the respective online embedding
problem is proven. Furthermore, a hose-based model adaptation is proposed, which can significantly
reduce resource consumption while rendering the respective embedding problem hard again. A heuris-
tic is derived and its performance is studied in an extensive computational evaluation to validate the
approach.

• Turning towards temporal aspects of virtual network embeddings, we introduce and study the Temporal
Virtual Network Embedding Problem (TVNEP), that asks not only to find embeddings for the requests
but to also temporally schedule the respective requests. Interested in a qualitative analysis of the
potential to harness temporal flexibilities, a series of Mixed-Integer Programs is proposed and analyzed.
Given the ability to solve the TVNEP exactly, our computational evaluation shows that even minor
temporal flexibilities may increase the provider’s profit substantially.

1.3 Overview of this Thesis

At first, in Chapter 2 the VNEP variants studied in this thesis are formally introduced. In particular,
besides introducing online and offline variants of the VNEP, a taxonomy of the various different VNEP
restrictions is introduced.

In Chapter 3 the necessary algorithmic background for this thesis is given. Among others, the fundamentals
of classic and parametrized computational complexity, Linear and Integer Programming, and (randomized)
approximation algorithms are discussed, such that this thesis is mostly self-contained.

In Chapter 4 an overview on existing works on the VNEP and its related problems is given. Here, our
presentation mainly focuses on known approximation and competitiveness results.

5



Chapter 1 Introduction

In Chapter 5, the computational complexity of the VNEP is studied and the NP-completeness under sev-
eral restriction combinations is shown. Furthermore, the hardness of computing approximate embeddings
under request graph restrictions is proven.

Chapter 6 presents the first parametrized algorithms for solving the Fractional VNEP and the VMP. The
algorithms are parametrized either by a novel graph number called extraction width or by the treewidth
of the request graphs.

Chapter 7 constructively proves the existence of the first (parametrized) approximation algorithms for
the offline VNEP, which generally come at the cost of exceeding resource capacities. Based on the
approximation results several heuristics are derived and their practical applicability is evaluated using
extensive computational evaluations.

In Chapter 8 algorithms for the embedding of virtual clusters as well as a new interpretation of the virtual
cluster abstraction is proposed and evaluated.

In Chapter 9 the Temporal VNEP is introduced and the impact of harnessing temporal flexibilities is
evaluated computationally.

This thesis is concluded in Chapter 10 by summarizing the results and discussing potential avenues for
future research.

6



“All models are wrong, but some models are useful.”
– George Edward Pelham Box 2

Formal Problem Statement

Within this section we formally introduce the various variants of the Virtual Network Embedding Problem
(VNEP). Specifically, in Section 2.2 the input of the VNEP and some basic definitions relating to
embeddings are given. In Section 2.3 several core problem formulations are introduced, while in Section 2.4
additional restrictions are discussed. Lastly, in Sections 2.5 and 2.6 the notion of approximate embeddings
and a taxonomy of the VNEP variants are given.

2.1 General Notation
The following notation is used throughout this work. We use [x] to denote the set {1, 2, . . . , x} for x ∈ N.
For a directed graph G = (V, E), we denote by δ+(u) = {(u, v) ∈ E} and δ−(v) = {(v, u) ∈ E} the outgoing
and incoming edges of node u ∈ V . Similarly, for an undirected graph G = (V, E), δ(u) = {{u, v} ∈ E}
denotes the edges incident to u ∈ V . We write x ∈ G to denote any node or edge contained in G, i.e.,
x ∈ V ∪ E. When considering functions on tuples, we often omit the parentheses of the tuple and simply
write f(a, b) instead of f((a, b)).

2.2 Input and Basic Definitions
Substrate Network. We refer to the physical network as substrate network and model it as a directed
graph GS = (VS , ES). Capacities in the substrate are given by the function dS : GS → R≥0 ∪ {∞}. The
capacity dS(u) of node u ∈ VS may represent for example the number of CPU cores while the capacity
dS(u, v) of edge (u, v) ∈ ES represents the available bandwidth. By allowing to set substrate capacities
to ∞, the capacity constraints on the respective substrate elements can be effectively disabled. Substrate
elements x ∈ GS may be attributed with costs cS(x) ≥ 0 to indicate the price for using the resource x
(per unit capacity). We denote by PS the set of all simple paths in GS .

Request Graphs. A request r is similarly modeled as a directed graph Gr = (Vr, Er) together with node
and edge demands dr : Gr → R≥0. While at times only a single request is considered, a set of requests R
may be given and each request r ∈ R may be attributed with a profit br ≥ 0 that the provider obtains
when embedding the request.

Valid Mappings and Feasible Embeddings. The general task is to find a mapping of a request graph
Gr on the substrate network GS , i.e., a mapping of request nodes to substrate nodes and a mapping of
request edges to paths in the substrate. Virtual nodes and edges can only be mapped on substrate nodes
and edges of sufficient capacity. Accordingly, we denote by V r,i

S = {u ∈ VS | dS(u) ≥ dr(i)} the set of
substrate nodes supporting the mapping of node i ∈ Vr and by Er,i,j

S = {(u, v) ∈ ES | dS(u, v) ≥ dr(i, j)}
the substrate edges supporting the mapping of virtual edge (i, j) ∈ Er.

Definition 2.1 (Basic Valid Mapping Definition). A valid mapping of request r to the substrate GS is a
tuple mr = (mV , mE) of functions mV : Vr → VS and mE : Er → PS , such that the following holds:

• The function mV maps virtual to suitable substrate nodes: mV (i) ∈ V r,i
S holds for i ∈ Vr.

7



Chapter 2 Formal Problem Statement

• The function mE maps each virtual edge (i, j) ∈ Er to a simple path in GS connecting mV (i) to mV (j)
while only using allowed edges, i.e., mE(i, j) ⊆ Er,i,j

S holds for (i, j) ∈ Er.

The set of all valid mappings of request r is denoted by Mr. □

Considering the above definition, note the following. Firstly, the mapping mE(i, j) of the virtual edge
(i, j) ∈ Er may be the empty path, if (and only if) i and j are mapped on the same substrate node.
Secondly, the above definition of valid mapping only enforces that single resource allocations do not
exceed the available capacity. To enforce that the cumulative allocations respect capacities, we introduce
the following:

Definition 2.2 (Allocations). We denote by A(mr, x) ∈ R≥0 the resource allocations induced by valid
mapping mr = (mV , mE) ∈Mr on resource x ∈ GS . The following holds for node u ∈ VS and edge
(u, v) ∈ ES , respectively:

A(mr, u) =
∑︂

i∈Vr:mV (i)=u

dr(i)

A(mr, u, v) =
∑︂

(i,j)∈Er:(u,v)∈mE(i,j)

dr(i, j) □

We refer to one or several mappings as feasible, if the (cumulative) allocations do not exceed any resources’
capacity:

Definition 2.3 (Feasible Embedding). A set of mappings {mr}r∈R over a set of requests R is feasible,
if and only if

∑︁
r∈R A(mr, x) ≤ dS(x) holds for all resources x ∈ GS . A single mapping mr is feasible, if

this holds for the singleton request set {mr}. □

We introduce the notions of maximal demands and maximal allocations as these will help useful for
bounding approximation guarantees later on.

Definition 2.4 (Maximal Demand, Maximal Allocations, Maximal Demand-to-Capacity Ratio). Con-
sidering a request r, we denote by dmax(r, x) the maximal demand that a virtual element of request r
may impose on substrate resource x ∈ GS and by dmax(x) the maximal demand on this resource over all
requests. Furthermore, we denote by Amax(r, x) the maximal (cumulative) allocations that any valid map-
ping may induce on resource x ∈ GS and by Amax(x) the maximum of these allocations over all requests.
Accordingly, the following holds:

dmax(r, u) = max
(︁
{0} ∪ {dr(i) | i ∈ Vr : u ∈ V r,i

S }
)︁

(2.1)
dmax(r, u, v) = max

(︁
{0} ∪ {dr(i, j) | (i, j) ∈ Er : (u, v) ∈ Er,i,j

S }
)︁

(2.2)
dmax(x) = max

r∈R
dmax(r, x) (2.3)

Amax(r, x) = max{A(mr, x) | mr ∈Mr} (2.4)
Amax(x) = max

r∈R
Amax(r, x) (2.5)

Furthermore, we introduce the maximal demand to capacity ratios with respect to nodes, edges, and all
resources as follows:

δV = max
u∈VS

dmax(u)/dS(u) (2.6)

δE = max
(u,v)∈VS

dmax(u, v)/dS(u, v) (2.7)

δmax = max{δV , δE} (2.8)

Notably, as virtual nodes and edges can only be mapped on respective substrate resources of sufficient
capacity (cf. Definition 2.1), δV , δE and δmax are upper bounded by 1. □

8



2.3 Core Problem Definitions

2.3 Core Problem Definitions

Within this thesis, we mainly study the following offline optimization variants of the VNEP.

Definition 2.5 (Offline Virtual Network Embedding Problem, Profit Variant). Given a set of requests R,
the task is to find a feasible embedding {mr}r∈R′ of a subset of requests R′ ⊆ R maximizing the profit∑︁

r∈R′ br. □

Definition 2.6 (Offline Virtual Network Embedding Problem, Cost Variant). Given a set of requests R,
the task is to find a feasible embedding {mr}r∈R of all requests minimizing the overall embedding cost∑︁

r∈R cS(mr) =
∑︁

x∈GS
cS(x) ·

∑︁
r∈R A(mr, x). □

To obtain approximations for the offline VNEP, the following fractional VNEP variant will be of impor-
tance:

Definition 2.7 (Fractional Offline Virtual Network Embedding Problem, Profit and Cost).
The Fractional Offline VNEP has the same input as the offline VNEP but allows for returning convex com-
binations of valid mappings (for each request) as a solution. Concretely, the Fractional VNEP asks for find-
ing a set of convex combination of valid mappings Dr = {(fk

r , mk
r ) ∈ R≥0 ×Mr} for each request r ∈ R,

such that:

(1) the sum of weights is bounded by 1, i.e.,
∑︁

(fk
r ,mk

r )∈Dr
fk

r ≤ 1 holds for request r ∈ R, and

(2) the cumulative (fractional) allocations do not exceed the resource capacities, i.e.,∑︁
r∈R

∑︁
(fk

r ,mk
r )∈Dr

fk
r ·A(mk

r , x) ≤ dS(x) holds for each resource x ∈ GS .

Again, we consider the profit and the cost variants:

Profit: The task is to maximize the overall profit
∑︁

r∈R
∑︁

(fk
r ,mk

r )∈Dr
fk

r · br .
Cost: Requiring that

∑︁
k fk

r = 1 holds for r ∈ R, the task is to minimize the overall cost∑︁
x∈GS

cS(x) ·
∑︁

r∈R

∑︁
(fk

r ,mk
r )∈Dr

fk
r ·A(mk

r , x) . □

In the literature [Fis+13], the online variant considering only a single request is often considered and we
introduce the following cost variant.

Definition 2.8 (Online Virtual Network Embedding Problem). Given a single request r, the online
VNEP asks for finding the feasible embedding mr minimizing the embedding cost cS(mr) =

∑︁
x∈GS

cS(x)·
A(mr, x). □

For computational complexity considerations, we also introduce the decision variant of the VNEP, asking
whether there exists a feasible embedding.

Definition 2.9 (Virtual Network Embedding Problem, Decision Variant). Given is a single request and
the task is to decide whether a feasible embedding exists and to return one if one exists. □

We will study the following relaxation of the online VNEP asking to find the minimum cost valid mapping
(which does not need to be feasible).

Definition 2.10 (Valid Mapping Problem (VMP)). Given a request r, the VMP asks for finding the
valid mapping mr minimizing the cost function cS(mr) =

∑︁
x∈GS

cS(x) · A(mr, x) or deciding that none
exists. □

Importantly, we note that when request demands are small compared to the substrate capacities, specifi-
cally, if any valid mapping is also feasible, the online VNEP reduces to the VMP:

9



Chapter 2 Formal Problem Statement

Observation 2.11. Given a request for which any valid mapping mr ∈ Mr is feasible, i.e., Amax(r, x) ≤
dS(x) holds for all substrate resources x ∈ GS , then the online VNEP reduces to the VMP: an optimal
solution to the VMP yields also an optimal solutions to the VNEP.

In Chapter 9 the Temporal Virtual Network Embedding Problem (TVNEP) is studied, which extends the
profit offline VNEP by incorporating scheduling aspects. Specifically, the TVNEP asks for (i) performing
access control and (ii) additionally scheduling the respective requests under temporal flexibilities, such that
the solution yields the highest profit while being feasible at any point in time.

Definition 2.12 (Temporal Virtual Network Embedding Problem). Given is a time horizon T > 0 and
temporal characteristics ts

r ≥ 0, te
r ≤ T , and td

r ∈ R≥0 for each request r ∈ R: ts
r and te

r denotes the
earliest and latest points in time at which r may be embedded, and td

r denotes the required embedding
duration for the request. The task is to find valid mappings {mr}r∈R′ for a subset of requests R′ ⊆ R
together with points in time at which the request r ∈ R′ starts t+

r ∈ [0, T ] and ends t−
r ∈ [0, T ], such that:

(1) t−
r − t+

r = td
r , ts

r ≤ t+
r and t−

r ≤ te
r hold for r ∈ R′, and

(2) resource allocations are feasible for all points in time t ∈ [0, T ], i.e.,

dS(x) ≥
∑︂

r∈R′:
t∈(t+

r ,t−
r )

A(mr, x)

holds for each resource x ∈ GS , and

(3) the profit
∑︁

r∈R′ br is maximized. □

In Chapter 8 the online embedding of Virtual Clusters is studied. Virtual Clusters are a specific abstraction
that enforces that the (undirected) request graph is a star network, where the leaves and the edges have
uniform node and edge capacity demands. Under this restriction and in the undirected graph model (cf.
Section 2.4.1) this problem reduces to the online VNEP.

2.4 Variants of the VNEP

In the following, several adaptations and extensions of the VNEP are introduced. We introduce the
VNEP on undirected graphs and with splittable edge mappings and then discuss additional common
mapping restrictions, that restrict the validity of mappings further.

2.4.1 Undirected VNEP

Early work on the VNEP considered undirected graphs instead of directed graphs [Fis+13].

Definition 2.13 (VNEP on Undirected Graphs). In the undirected VNEP both the substrate network
GS as well as the request graphs {Gr}r∈R are undirected graphs. Accordingly, the definition of valid edge
mappings (cf. Definition 2.1) is changed as follows. For a valid mapping mr = (mV , mE) ∈ Mr and
each undirected virtual request edge {i, j} ∈ Er the edge mapping mE({i, j}) returns an undirected path
connecting mV (i) to mV (j). All other definitions remain unchanged and we may omit the curly brackets
when referring to edge mappings and accordingly write mE({i, j}) = mE(i, j) = mE(j, i). □

10



2.4 Variants of the VNEP

2.4.2 VNEP with Splittable Edge Mappings

Above, the unsplittable variant of the VNEP was introduced that maps each virtual edge on a single
substrate path. Besides that, a splittable adaptation was conceived, such that fractions of the bandwidth
can be transported using arbitrarily many paths [Yu+08; CRB12].

Definition 2.14 (VNEP with Splittable Edge Mappings). For splittable edge mappings the notion of
valid mappings is adapted as follows. For a valid mapping mr = (mV , mE) ∈ Mr the edge mapping
mE(i, j) returns a convex combination of paths connecting mV (i) to mV (j). Specifically, mE(i, j) ∈
{(wk

i,j , P k
i,j) | wk

i,j ≥ 0, P k
i,j ∈ PS} must hold for each virtual edge (i, j) ∈ Er, such that:

(1) the k-th path P k
i,j connects mV (i) to mV (j) for all (·, P k

i,j) ∈ mE(i, j), and

(2) the weights of the convex combination sum to 1, i.e.,
∑︁

(wk
i,j

,P k
i,j

)∈mE(i,j) wk
i,j = 1 holds.

The bandwidth is distributed over the different paths according to their weights and the notion of edge
mapping allocations is adapted as follows:

A(mr, u, v) =
∑︂

(i,j)∈Er

∑︂
(wk

i,j ,P k
i,j)∈mE(i,j):

(u,v)∈P k
i,j

wk
i,j · dr(i, j) . □

Note that in the above definition directed substrate and request edges were assumed. However, splittable
edge mappings can just as easily be incorporated into the undirected VNEP variant, i.e., when considering
undirected virtual and substrate edges.

2.4.3 Additional Mapping Restrictions

As briefly discussed in Chapter 1, additional mapping requirements are enforced in many settings. Ac-
cordingly, we now formalize (i) node placement, (ii) edge routing, and (iii) latency restrictions. Node
placement and edge routing restrictions effectively exclude potential mapping options for nodes and edges.
Considering latency restrictions, we introduce latency bounds for each of the virtual edges. The following
definitions all restrict the set of valid mappings and hence carry over to the respective optimization and
decision variants. Figure 2.1 depicts examples for the respective restrictions.

Definition 2.15 (Node Placement Restrictions). For each virtual node i ∈ Vr a set of forbidden substrate
nodes V

r,i

S ⊂ VS is provided. Accordingly, the set of allowed nodes V r,i
S is defined to be {u ∈ VS \

V
r,i

S | dS(u) ≥ dr(i)}. □

Definition 2.16 (Routing Restrictions). For each virtual edge (i, j) ∈ Er a set of forbidden substrate
edges E

r,i,j

S ⊆ ES is provided. Accordingly, the set of allowed edges Er,i,j
S is set to be {(u, v) ∈ ES \

E
r,i,j

S | dS(u, v) ≥ dr(i, j)}. □

Definition 2.17 (Latency Restrictions). For each substrate edge e ∈ ES the edge’s latency is given via
lS(e) ∈ R≥0. Latency bounds for virtual edges are specified via the function lr : Er → R≥0 ∪ {∞}, and
we will require that the latency along the substrate path mE(i, j), used to realize the edge (i, j) ∈ Er, is less
than lr(i, j). Formally, the Definition 2.1 of valid mappings is extended by including that

∑︁
e∈mE(i,j) lS(e) ≤

lr(i, j) must hold for (i, j) ∈ Er. □

11



Chapter 2 Formal Problem Statement

B

Substrate GSRequest Gr

A B

CD

AC

D

(a) Visualization of a node placement restriction: virtual node B may only be mapped on the top substrate nodes
by excluding the other substrate nodes via the set V

r,B
S .

A B

CD

AC B

D

Substrate GSRequest Gr

(b) Visualization of an edge placement restriction: virtual edge (B, C) may only be mapped on the depicted
substrate edges by excluding the other substrate edges via the set V

r,B,C
S .

A B

CD

AC B

D

1 ms

Substrate GSRequest Gr

3 ms

0 ms

1 ms

5 ms

1 ms

1 ms 2 ms

2 ms2 ms

1 ms

(c) Visualization of latency restrictions: each virtual edge is attributed with an upper bound such that the
respective substrate paths may not exceed this latency.

Figure 2.1: Visualization of additional restrictions based on the example of Figure 1.1.

2.5 Approximate Embeddings

In the following we define the notion of approximate embeddings: instead of seeking a feasible embedding
satisfying all capacity constraints for the various VNEP variants, one may consider solutions of bounded
capacity violations. We refer to these as β-approximate (for node capacity violations) and γ-approximate
(for edge capacity violations) embeddings. Again, we define the notion of approximate feasibility with
respect to a set of mappings.

12



2.6 VNEP Taxonomy

Definition 2.18 (β- / γ-Approximate Embeddings).
A set of mappings {mr}r∈R is an approximate embedding, if the mappings are all valid but together violate
substrate capacities within certain bounds. Specifically, we call an embedding β- and γ-approximate, when
node and edge allocations are bounded by β and γ times the respective node or edge capacity. Formally,
the following must hold for β, γ ≥ 1:∑︂

r∈R
A(mr, u) ≤β · dS(u) ∀u ∈ VS∑︂

r∈R
A(mr, u, v) ≤ γ · dS(u, v) ∀(u, v) ∈ ES □

One may also seek to relax the latency constraints, pertaining to the validity of mappings. Accordingly,
we refer to a mapping which violates latency bounds by a factor δ as δ-approximate:

Definition 2.19 (δ-Approximate Mappings).
A mapping mr of a request r is a δ-approximate mapping, if latency constraints are obeyed within a

factor δ, but is otherwise valid. Formally, the following must hold for δ ≥ 1:∑︂
e∈mE(i,j)

lS(e) ≤δ · lr(i, j) ∀(i, j) ∈ Er □

Besides these above relaxations on the feasibility and validity of embeddings, approximations for the
VNEP are going to be studied and we use α to denote the approximation factors of the respective
solutions. We naturally allow for the combination of these different notions of approximate solutions and
write (α, β, γ, δ)-approximate to denote solutions which are within an α-factor of the optimum solution
while being β-, γ-, and δ-approximate as defined above.

2.6 VNEP Taxonomy

Given the mapping restrictions above, we introduce the following taxonomy to concisely name the respec-
tive VNEP variants emerging from the different combinations of restrictions. Importantly, our taxonomy
always refers to the directed variant with unsplittable edge mappings and whenever the undirected or
splittable variant are considered, this will be explicitly stated.

Definition 2.20 (Taxonomy). We use the notation ⟨C |A ⟩ to indicate whether and which of the capacity
constraints C and which of the additional constraints A are enforced.

C We denote by V node capacities, by E edge capacities, and by - that none are used. When node or
edge capacities are not considered, we set the capacities of the respective substrate elements to ∞.

A For the additional restrictions -, N, L, and R stand for no restrictions, node placement, latency, and
routing restrictions, respectively. □

Hence, ⟨VE | - ⟩ indicates the classic VNEP without additional constraints while obeying capacities and
⟨ - |NL ⟩ indicates the combination of node placement and latency restrictions without considering sub-
strate capacities.

13



“Before there were computers, there were algorithms.
But now that there are computers, there are even more
algorithms, and algorithms lie at the heart of computing.”

– Cormen et al. [Cor+09] 3
Algorithmic Background

Within this chapter the algorithmic foundations of this thesis are presented and some common notation
is introduced. Specifically, in Section 3.1 the Big O notation is revisited while in Sections 3.2 and 3.3
fundamental notions of the classic and parametrized computational complexity theory are introduced.
Then, in Sections 3.4 and 3.5 the foundations of Linear and Mixed-Integer Programming are discussed.
Lastly, in Sections 3.6 and 3.7 the notions of approximation algorithms and competitive online algorithms
are introduced.

3.1 Big O Notation

Let FN = [N → N] denote the space of all functions on natural numbers and let f : N → N ∈ FN be a
specific function. We employ the Landau symbols O and o to denote the following classes of functions.

O(f) =
{︃

g ∈ FN | lim sup
n→∞

f(n)/g(n) <∞
}︃

o(f) =
{︃

g ∈ FN | lim sup
n→∞

f(n)/g(n) = 0
}︃

While the above sets of functions specify (strict) upper bounds for the function f , we write f ∈ Ω(g), if
g ∈ O(f) holds, and f ∈ ω(g), if g ∈ o(f) holds, respectively. Additionally, if both f ∈ O(g) and g ∈ O(f)
hold, we write f ∈ Θ(g) and g ∈ Θ(f) to denote that f and g are asymptotically equal. Furthermore, we
use poly(f) ∈ fO(1) to denote any polynomial in the function f .

3.2 Classic Computational Complexity

In the following we introduce some computational complexity basics that are used in this thesis. For a
more complete overview, we refer the reader to the excellent text books [AB09] for classic complexity
theory and to [FG06; DF13] for an overview on parametrized complexity.

Letting Σ denote any finite and non-empty alphabet, the set of all words over Σ is denoted by Σ⋆. Given
a boolean function f : Σ⋆ → {0, 1}, the language of all words accepted by f is denoted by Lf = {x ∈
Σ⋆ | f(x) = 1}. Interpreting words as algorithmic inputs, comprising for example numbers, graphs, etc.,
deciding whether x ∈ Lf holds for an input x ∈ Σ⋆ reduces to the decision problem of computing f(x).
The length of the word x is denoted by |x|.

Using Turing Machines as model of computation, a deterministic Turing Machine is said to decide Lf , iff.
the Turing Machine computes the correct value f(x) for all inputs x ∈ Σ⋆. A non-deterministic Turing
Machine is said to decide Lf , if and only if, for an input x ∈ Lf there exists some execution returning 1

14



3.3 Parametrized Complexity and Tree Decompositions

while for x /∈ Lf it returns 0 along any execution path. The classes P and NP can accordingly be defined
as follows.

Definition 3.1 (Complexity Classes P, NP). Let f ∈ FN denote a function. A language L is contained in
Dtime(f) (respectively Ntime(f)) if there exists a deterministic (respectively non-deterministic) Turing
Machine deciding L that runs in time O(f(|x|)). The complexity classes P and NP are the closure of
Dtime and Ntime over all polynomial-time functions:

P =
⋃︂
c∈N

Dtime(n ↦→ nc)

NP =
⋃︂
c∈N

Ntime(n ↦→ nc) □

To compare the complexity of decision problems, polynomial-time reductions are used:

Definition 3.2 (Polynomial-Time Reduction). Given are two decision problems A and B together with
their languages LA and LB . We say that A is reducible to B, if there exists a function f : Σ⋆ → Σ⋆

translating instances of A to instances of B, such that for all inputs x ∈ Σ⋆, x ∈ La holds if and only if
f(x) ∈ LB holds. If f can be computed in polynomial-time, then A is polynomial-time reducible to B and
we write A ⪯ B. □

Accordingly, if A ⪯ B holds, then A can be decided by solving the decision problem for B and as A reduces
to B, B can be considered at least as complex as A. As only polynomial-time reductions are considered
in this thesis, the polynomiality of reductions is at times omitted and we simply use the term reduction.
For problems contained in NP , the following class of problems is of specific interest:

Definition 3.3 (NP-Completeness). A decision problem A is NP-complete if and only if A is contained
in NP and all other problems in NP reduce to A, i.e., A ∈ NP and B ⪯ A holds for any other problem
B ∈ NP . □

Among other problems, the satisfiability problem of the propositional calculus (SAT) is known to be
NP-complete [Kar72]. To show the NP-completeness of a decision problem A, it suffices to show that A
is contained in NP and to show a polynomial-time reduction from any other NP-complete problem B to
A.

Several decision or optimization problems are computationally at least as hard as NP-complete problems.
This motivates the following notion of NP-hardness.

Definition 3.4 (NP-Hardness). A Problem A is NP-hard if an NP-complete problem B can be solved
in polynomial-time when given oracle access to solve instances of problem A. □

Above, oracle access to A means that any instance of A can be solved in a single instruction while the
time to construct the respective instances for A is counted towards the algorithm’s runtime.

Lastly, the term strongly NP-complete (NP-hard) is used to indicate that the respective problem remains
NP-complete (NP-hard) when the numeric input is given in its unary representation.

3.3 Parametrized Complexity and Tree Decompositions

As it is widely believed that P ̸=NP holds and for none of the NP-complete problems polynomial-
time algorithms are known, NP-complete problems are generally believed to be intractable, i.e., not
decidable in polynomial-time. However, over the course of the last decades, the notion of parametrized

15



Chapter 3 Algorithmic Background

complexity has been introduced to capture a more fine-grained multivariate notion of complexity [DF13].
A parametrization may concern, among others, the solution value or specific properties of the instances.

Formally, a parametrized language L ⊂ Σ⋆×N consists of tuples ⟨x, k⟩ ∈ L, where x represents the actual
instance and k specifies the parametrization. For the respective parametrized decision problem, algorithms
are studied which may use super-polynomial time in dependence of the parametrization.

Definition 3.5 (Parametrized Complexity Class FPT [DF13]). A parametrized language L ⊂ Σ⋆ × N
lies in FPT , if and only if there exists an algorithm and a constant c ∈ N together with a computable
function f ∈ FN such that for all ⟨x, k⟩ ∈ L the algorithm runs in time at most f(k) · |x|c and decides
⟨x, k⟩ ∈ L. □

Importantly, in the above definition the function f takes as parameter only the parameter k. Denoting by
Lk = {⟨x, k⟩ ∈ L} the k-th slice of L, the runtime f(k) · |x|c is polynomial, with a parameter-depending
constant factor f(k).

Definition 3.6 (Parametrized Complexity Class XP [FG06]). A parametrized language L ⊂ Σ⋆ × N
(uniformly) lies in XP if and only if there exists an algorithm together with a constant c ∈ N and a
computable function f ∈ FN such that for all ⟨x, k⟩ ∈ L the algorithm runs in time at most |x|f(k) + |x|c
and decides ⟨x, k⟩ ∈ L. □

Note that for problems contained in XP each k-th slice lies in P: Lk ∈ P holds for k ∈ N. We refer to
algorithms as being fixed-parameter tractable (FPT) or XP if their runtime is accordingly bounded by
f(k) · |x|c and |x|f(k) + |x|c for constants c ∈ N and a computable function f ∈ FN.

A common parametrization for graph-theoretic problems is the treewidth of tree decompositions, which
we revisit in the following [Bod97; Bod98; FG06]. In a nutshell, tree decompositions are used to represent
arbitrary graphs as trees. The definition of tree decompositions ensures that (i) all nodes and edges of the
original graph are covered while (ii) preserving crucial structural information of the (undirected) original
graph.

Definition 3.7 (Tree Decomposition T = (T,B)). Given an undirected graph G = (V, E), a tree decom-
position of G is a pair T = (T,B) consisting of an undirected tree T = (VT , ET ) and a family B = {Bt}t∈VT

of subsets Bt ⊆ V , also referred to as the node bags, for which the following conditions hold:

(1) For all nodes u ∈ V , the set V −1
T (u) = {t ∈ VT | u ∈ Bt} of tree nodes containing node u is connected

in T .

(2) Each node and each edge is contained in at least one of the bags, i.e., for all nodes u ∈ V there exists a
tree node t ∈ VT , such that u ∈ Bt holds, and for all edges {u, v} ∈ E there exists a tree node t ∈ VT ,
such that {u, v} ⊆ Bt holds. □

The treewidth is then defined as follows (cf. [FG06]).

Definition 3.8 (Width of a Tree Decomposition and Treewidth). The width tw(T ) ∈ N of a spe-
cific tree decomposition T equals the maximal bag size minus one, i.e., tw(T ) = maxt∈VT

|Bt| − 1.
The treewidth of an undirected graph equals the minimal width among all decompositions. □

Finding tree decompositions of minimal width is itself a challenging optimization problem and is known
to be NP-hard [FG06]. However, if the treewidth of a graph G is known to be k ∈ N, the problem of
finding a tree decomposition is fixed-parameter tractable [Bod96]. Several graph classes are known to have
bounded treewidths (cf. Table 3.1). While all mentioned graph classes of Table 3.1 are planar, it is a
well-known result that planar graphs in general do not exhibit bounded treewidth. In particular, a k × k
grid has a treewidth of k [FG06].

16



3.4 Linear Programming

Graph Class Treewidth Description
trees 1 Connected graph without cycles.
cacti 2 Two cycles intersect at most in a single node.

series-parallel 2 Source-terminal graphs; generated only using parallel and serial compo-
sition.

(1-)outerplanar 2 Planar graph, whose nodes all lie on the outer face.
k-outerplanar k + 1 Planar graph; removal of nodes on outer face yields (k − 1)-outplanar

graph.

Table 3.1: Graph Classes of Bounded Treewidth [Bod98]

3.4 Linear Programming

In the following we summarize important results on Linear Programming. Our presentation is mostly
based on the text book by Matousek and Gärtner [MG07].

A Linear Program (LP) is a convex optimization problem over continuous variables, linear constraints,
and a linear objective. Specifically, an LP of n ∈ N variables and m ∈ N constraints in standard form can
be stated as follows:

maximize
n∑︂

j=1
cj · xj

subject to
n∑︂

j=1
aij · xj ≤bi ∀i ∈ {1, . . . , m}

xj ≥0 ∀j ∈ {1, . . . , n}

The same LP can be represented in matrix notation as follows.

maximize cT · x subject to A · x ≤ b and x ≥ 0 (P)

Here, the matrix A = (aij ∈ Qm×n) specifies the coefficients of the LP while the vectors b ∈ Qm and
c ∈ Qn specify the left-hand side of the constraints and the objective respectively.

We denote by FP = {x ∈ Qn | A · x ≤ b} the set of feasible solutions of this LP. If no feasible solution
exists, i.e., if FP = ∅ holds, then the LP is referred to as infeasible. A feasible LP is referred to as
unbounded if no optimal solution exists, i.e., if sup{cT · x | x ∈ FP} does not exist.

An important concept in Linear Programming is duality, which allows to associate with each maximization
LP an equivalent minimization LP and vice versa. Specifically, the dual of the above introduced primal
LP (P) over the variables y ∈ Qm is given by:

minimize bT · y subject to A · y ≥ c and y ≥ 0 (D)

Notably, the number of constraints and variables of the dual equals the number of variables and constraints
of the primal, respectively. Denoting the set of feasible solutions of (D) by FD, the following theorems are
folklore:

Theorem 3.9 (Weak Duality [MG07]). Considering any feasible primal and any feasible dual solution,
the objective value of the dual solution is an upper bound of the objective value of the primal solutions.
Formally, for any x ∈ FP and any y ∈ FD the following holds: cT · x ≤ bT · y.

17



Chapter 3 Algorithmic Background

Theorem 3.10 (Strong Duality [MG07]). For any primal LP (P) and any corresponding dual LP (D),
exactly one of the following statements hold:

1. Both (P) and (D) are infeasible.

2. (P) is unbounded and (D) is infeasible.

3. (D) is unbounded and (P) is infeasible.

4. Both (P) and (D) are feasible and for any optimal primal solution x̂ ∈ FP and any optimal dual
solution ŷ ∈ FD the objective values are equal, i.e., cT · x̂ = bT · ŷ.

An algorithm that solves an LP either detects infeasibility or unboundedness or returns an optimal solution.
Several algorithms to solve LPs exist. The Simplex algorithm was first developed by George Dantzig in
1947: it iterates over basic solutions of the LP that correspond to extreme points of the corresponding
polyhedron. The order in which these extreme points are iterated over is specified by the pivot rule.
While the Simplex algorithm performs well for many instances, no pivot rule is known for which the
Simplex attains a polynomial runtime in the worst-case. Current results observed that the classic Simplex
algorithm under Dantzig’s pivot rule is NP-mighty, i.e., it can be used to (implicitly during the execution)
solve any problem contained in NP [DS18].

The first polynomial-time algorithm for Linear Programming was derived by Leonid Khachyian in 1979
and was coined the Ellipsoid algorithm, as it is based on the ellipsoid method invented in 1970 by Shor,
Judin, and Nemirovski. While the Ellipsoid algorithm was not of significance for practical applications,
other polynomial-time algorithms known as ‘interior point’ methods have had more practical impact and
we state the following theorem:

Theorem 3.11 (Polynomial-Time Algorithms for LPs [Ans99]). Considering an LP with n variables and
letting L denote the total bit length for describing the matrix A and the vectors b, c, the LP can be solved
(to optimality) in time O(n3 · L/ ln n).

Despite the Ellipsoid algorithm’s practical insignificance, it was of tremendous importance. Among other
results, Grötschel, Lovazs and Schrijver proved the following central result based on the Ellipsoid algorithm:

Theorem 3.12 (Optimization via Separation [GLS88]). Consider a Linear Program over n variables where
the constraints {(ai, bi) ∈ Qn × Q}i∈I are given via an index set I, such that aT

i · x ≤ bi must hold for
each i ∈ I. Given access to a polynomial-time separation oracle that determines if any of the constraints
is violated (and returns one if it is violated), an optimal solution can be computed using an extension of
the Ellipsoid algorithm in polynomial-time. This also holds true when the number of constraints, i.e., the
size of the index set, is exponential.

The above result also has repercussions beyond the solvability of LPs with an exponential number of
constraints. In fact, the above method also enables so called column generation approaches, which are
employed when the number of variables is exponential while the number of constraints is polynomial [DL05;
MG07]. Specifically, given such an LP, its dual will have an exponential number of constraints and only
a polynomial number of variables. Being able to separate the constraints in polynomial-time, an optimal
dual solution can be computed. Even more, the generated dual constraints correspond to variables (i.e.,
columns) in the primal LP. Thus, in practice the following scheme is predominant which ensures primal
feasibility throughout its execution: given an initial feasible primal solution, the dual values can be
computed and the separation task is performed, yielding new columns then introduced in the primal
LP [MG07]. Recomputing the primal LP solution and iterating this process as long as violated constraints
exist, the primal LP can be solved to optimality. Note that the separation process is also referred to as
pricing, as newly generated variables correspond to columns of negative reduced cost which might then
enter the (simplex) basis.

18



3.5 (Mixed-)Integer Programming

For solving Linear Programs several industrial as well as academic optimization suites are available and we
mention just a few. Gurobi [Gur19], IBM CPLEX [IBM19], and Fico Xpress [FIC19] provide commercial
LP solvers which may be used for free for academic purposes. Open source LP solvers are provided as part
of the SCIP Optimization Suite [Gle+18] and as part of the Google OR-Tools [Goo19]. Within this thesis,
all LP computations have been performed using Gurobi. Gurobi offers both primal and dual Simplex
implementations as well as an implementation of the Barrier interior-point algorithm.

3.5 (Mixed-)Integer Programming

An important extension of Linear Programming is Integer Programming. In Integer Programs (IPs) the
variables are not continuous but constrained to integer numbers. Mathematical formulations employing
both integer and continuous variables are referred to as Mixed-Integer Programs (MIPs), while Integer
Programs whose variables are restricted to {0, 1} are referred to as Binary Programs (BPs). In the
following, we simply use the term Integer Programming. However, all discussed results are applicable to
any form of Integer Programs.

In contrast to Linear Programs which can be solved in polynomial-time, solving IPs lies in NP [Pap81]
and finding solutions to Binary Programs was among the first 21 problems to be proven NP-complete
by Karp in 1972 [Kar72]. Given an Integer Program, a corresponding Linear Programming relaxation
is obtained by relaxing the integrality constraints of the variables. Denoting by FIP the set of feasible
integral solutions and by FLP the set of feasible continuous solutions, we note that FIP ⊆ FLP holds.
Accordingly, the optimal LP relaxation solution is always a bound for the best integer solution.

To solve Integer Programs several solution techniques exist. The most common one is branch-and-
bound [MG07], which employs a search tree (branching) together with the usage of Linear Programming
relaxations to compute (local) bounds on the objective value. These LP relaxations are not only used to
guide the search for the best solutions, but are also used to cut off parts of the search tree. In particular,
considering a search tree node, whose local objective value is x, then the node itself (and all potential chil-
dren) can be discarded if a solution of value greater or equal to x is known (for maximization problems).
This intuitively holds true as no feasible integer solution of higher objective value can exist. The branching
process creates children by partitioning the space of values that the integer variables may attain.

The above mentioned software packages for solving LPs also allow for solving IPs and feature various (pro-
prietary) heuristics to perform branching and heuristics to compute feasible solutions. Tobias Achterberg’s
work on the open-source solver SCIP [Ach09] exemplifies the tremendous complexity of state-of-the-art
IP solvers. In particular, SCIP v6.0 has more than 2,400 parameters and contains several dozen different
heuristics for performing the branching, deciding which node to branch on, etc. [Gle+18].

While solving IPs to optimality may be very time consuming, IP solvers report at any point in time
during the execution on the current objective gap that is computed based on the currently best known
upper bound and the best incumbent solution. Referring to the upper bound as dual bound D and to the
best current solution as primal bound P , the objective gap is computed via |P − D|/|P |. Accordingly,
solutions computed by IP solvers always come with a relative quality guarantee (unless |P | equals zero)
and in practice often times the solution process is terminated when a specified objective gap is reached.

To strengthen the LP relaxations, IP solvers often generate additional constraints which are valid based on
the integrality of the variables. To give a minimal example, considering two binary variables x, y ∈ {0, 1}
and the constraint x + y ≤ 1.5, this constraint can be tightened to x + y ≤ 1 and we refer the interested
reader to [Cor08] for an in-depth discussion of cut generation techniques. While such cuts may be derived
automatically by the solver, it is at times beneficial to add custom constraints to the model to improve the
LP relaxations. These constraints, which do not cut off any integer solution while tightening the convex
hull of the respective LP relaxations are called valid inequalities or user cuts. Whenever cuts are added in

19



Chapter 3 Algorithmic Background

conjunction with using the branch-and-bound method to solve the IP, the resulting algorithm is referred
to as branch-and-cut.

Lastly, IPs can also be solved by combining column generation techniques with branch-and-bound methods.
Such methods are referred to as branch-and-price.

3.6 (Randomized) Approximation Algorithms

In the following theoretic notions pertaining to approximation algorithms in general and to randomized
approximation algorithms in particular are introduced. The following definitions are taken from the text
book [WS11].

Definition 3.13 (Approximation Algorithm [WS11]). An α-approximation algorithm for an optimization
problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose
value is within a factor of α of the value of an optimal solution. □

Accordingly, for maximization problems the approximation factor α lies (in general) below 1 while for
minimization problems approximation factors greater than 1 are considered. For some problems approx-
imation schemes exist, allowing the computation of approximate solutions which are arbitrarily close to
the optimum.

Definition 3.14 (Polynomial-Time Approximation Scheme (PTAS) [WS11]). A polynomial-time approx-
imation scheme is a family of algorithms {Aϵ}, where there is an algorithm for each ϵ > 0, such that Aϵ is a
(1+ϵ)-approximation algorithm (for minimization problems) or a (1−ϵ)-approximation (for maximization
problems). □

Definition 3.15 (Fully Polynomial-Time Approximation Scheme (FPTAS) [WS11]). A fully polynomial-
time approximation scheme is an approximation scheme such that the running time of Aϵ is bounded by
a polynomial in 1/ϵ and the instance’s input size. □

While the polynomial runtime of approximations is a crucial part of the above definitions, within the
framework of parametrized complexity also FPT- and XP-approximations are considered, such that the
approximation algorithm’s runtime is polynomial for a fixed parameter.

Linear Programming is often used for designing approximation algorithms [MR95; WS11]. Here, the notion
of the integrality gap plays an important role, as it measures the (worst-case) ratio of the LP objective
to the objective value of an optimal solution [WS11]. Approximations can often be obtained either by
interpreting the LP values as probabilities and applying randomized rounding [RT85] or via deterministic
rounding by employing, among others, greedy techniques [WS11]. Randomized algorithms often only
yield approximate solutions with some probability. However, by repeatedly executing the algorithm in a
Monte Carlo fashion, the probability to obtain an approximate solution then approaches 1. Specifically,
whenever a randomized algorithm can be used to obtain an approximate solution with probability 1−1/n
for any value n in polynomial-time in n ∈ N, we say that the approximation yields a solution with high
probability.

To bound tail probabilities of ‘bad’ events, the following measure of concentration bounds, which are
proven in Appendix A, are useful. While similar results are contained in any textbook on randomized
algorithms [MR95; DP09; WS11; AS16; MU17], the bounds proven in the related work are less general
(see discussion in Appendix A).

20



3.7 Competitive Online Algorithms

Theorem A.1. Let X be the sum of N random variables X1, . . . , Xn with Xi ∈ [0, 1] for i ∈ [N ]. Denoting
by µ̂i ≥ µi = E[Xi] upper bounds on the expected value of random variable Xi, i ∈ [N ], the following
holds for any δ > 0 and µ̂ =

∑︁
i∈[N ] µ̂i:

Pr[X ≥ (1 + δ) · µ̂] ≤
(︃

eδ

(1 + δ)1+δ

)︃µ̂

≤ e−δ2·µ̂/3 . (A.1)

Theorem A.2. Let X be the sum of N random variables X1, . . . , Xn with Xi ∈ [0, 1] for i ∈ [N ]. Denoting
by µ̃i ≤ µi = E[Xi] lower bounds on the expected value of random variable Xi, i ∈ [N ], the following
holds for any δ ∈ (0, 1) and µ̃ =

∑︁
i∈[N ] µ̃i:

Pr[X ≤ (1− δ) · µ̃] ≤
(︃

e−δ

(1− δ)1−δ

)︃µ̃

≤ e−δ2·µ̃/2 . (A.2)

Theorem A.3. Let X =
∑︁

i∈[N ] Xi be the sum of N ∈ N independent random variables with Xi ∈ [0, 1]
and let µi = E[Xi] denote their respective expected value for i ∈ [N ]. Let µ̂i ≥ µi be an upper bound on
the expected value of Xi ∈ [0, 1], i ∈ [N ], and let µ̂ =

∑︁
i∈[N ] µ̂i such that,

µ̂ =
∑︂

i∈[N ]

µ̂i ≥ 1 . (A.3)

Denote by c, n, λ, ρ, ξ constants, such that,

c ≥2 (A.4)
n ≥3 (A.5)
ρ ≥2 (A.6)

ρ · c ≥e (A.7)
ξ ≥ ln ln n/ ln n (A.8)
λ =ρ · c · ξ · ln n/ ln ln n . (A.9)

The following holds:

Pr[X ≥ λ · µ̂] ≤ 1/nc·µ̂·ξ . (A.10)

3.7 Competitive Online Algorithms

Lastly, we briefly revisit the notion of competitive online algorithms [BE05; BN09]. An online algorithm
is given inputs sequentially and only in parts. For each part of the input a decision of how to process
the input has to be made, while previously made decisions can in general not be revoked [BN09]. Online
algorithms are generally required to exhibit polynomial runtimes. To make this rather abstract outline
tangible, in the following online algorithms are discussed in the context of the VNEP.

For the online VNEP setting, it is assumed that requests arrive over time and upon the arrival the request
either has to be embedded or to be rejected [Eve+13]. Importantly, the sequence of (future) requests is not
known to the algorithm invoked for performing the processing. The objective of the online algorithm may
be to minimize congestion [Ban+15], or to maximize the provider’s profit as in the profit offline VNEP
(cf. Definition 2.5) [Eve+13].

The notion of approximations can be extended in the following way to the online setting. For the definition,
we assume a maximization objective, as, e.g., to maximize the provider’s profit. An algorithm is called
α-competitive, if the algorithm always achieves at least an α-fraction of the profit of an optimal offline

21



Chapter 3 Algorithmic Background

algorithm, which is given (i) unlimited computation time as well as (ii) the knowledge of the whole (possibly
infinite) request sequence. Accordingly, an α-competitive algorithm is robust and yields performance
guarantees independent of the sequence or structure of the requests arriving in the future.

To develop competitive algorithms and prove their competitiveness, several methods have been studied, e.g.,
the potential function method described in [BE05]. Also, the primal-dual approach has been successfully
applied to prove competitiveness for various problems [BN09]. In the following, the basics of the primal-
dual method are put forth and we refer the reader to [BN09] for an in-depth discussion.

The key idea of the primal-dual method is to consider a (primal) Linear Programming relaxation of the
studied problem together with its dual. An algorithm based on the primal-dual method will at any point in
time store a (feasible) solution to the primal and the dual LP formulations containing the inputs received
thus far. Upon the arrival of a new input, both the primal and the dual solution have to be adapted in a
way to preserve (at least dual) feasibility. The key idea for the analysis is then to prove that upon each
new input, the primal and dual objectives diverge only by some bounded factor α. Then, as the (feasible)
dual solution is a bound for the optimal offline solution, the α-competitiveness is proven.

22



“People think that computer science is the art of geniuses
but the actual reality is the opposite, just many people doing
things that build on each other, like a wall of mini stones.”

– Donald E. Knuth 4
Related Work

In this chapter related works pertaining to the VNEP are discussed. As a brief overview on the applications
of the VNEP and the different model restrictions was given in Chapter 1, we restrict the discussion to
algorithmic approaches. Furthermore, we exclude related work pertaining to the applications presented in
Chapters 8 and 9.

In Section 4.1 known results on the complexity of the VNEP are reviewed, while in Sections 4.2 and 4.3
known results pertaining to online and offline algorithms for the VNEP are revisited.

4.1 Computational Complexity of the VNEP
Despite the relevance of the VNEP and the large body of literature on it [Fis+13], the complexity of
the VNEP has not received much attention. While it can be easily seen that the Virtual Network
Embedding Problem encompasses several NP-hard problems as, e.g., the k-disjoint paths and unsplittable
flow problems [KS97; Chu+07], the minimum linear arrangement problem [DPS02], or the subgraph
isomorphism problem [Epp02], many works on the VNEP, e.g., [CRB12; Fis+13], cite a NP-hardness
result contained in a technical report from 2002 by Andersen [And02]. However, the proof is a sketch
at best and the authors of [Ama+16] note that the technical report lacks sufficient detail to verify its
correctness.

Accordingly, only recently in 2016, the first formalNP-hardness proofs were given by Amaldi et al. [Ama+16]
for the profit offline VNEP on undirected graphs:

Theorem 4.1 (NP-hardness results presented in [Ama+16]).
The following holds for the profit offline VNEP on undirected graphs.

(1) VNEP ⟨VE | - ⟩ is strongly NP-hard.

(2) VNEP ⟨VE |N ⟩ is inapproximable within a factor |VS |1/2−ϵ for any ϵ > 0, unless P =NP .

(3) VNEP ⟨VE | - ⟩ is strongly NP-hard even when considering only a single request.

(4) VNEP ⟨VE | - ⟩ is strongly NP-hard even when all requests consist only of a single node.

Our analysis of the computational complexity of the VNEP (cf. Chapter 5) extends these results signif-
icantly, showing, among others, the NP-completeness of the (decision) VNEP in the setting ⟨ - |NR ⟩,
i.e., when only considering node placement and routing restrictions in the absence of capacities.

4.2 Online Algorithms
In the following prior algorithms for the online variant of the VNEP are presented. Here, the requests are
assumed to arrive over time and admission control must be exerted instantaneously: the request is either
rejected or it is accepted and a feasible embedding (with respect to the residual capacities) must be found.
We group the works according to their guarantees: heuristics do not provide any optimality guarantees,
while approximations do for a single request, and competitive online algorithms provide guarantees for
any sequence of requests.

23



Chapter 4 Related Work

4.2.1 Heuristics

Most published works consider heuristics [Yu+08; CRB09; LK09; Che+11]. In the respective works,
the main task is to minimize the resources used for embedding each individual request to obtain a high
acceptance rate of requests and accordingly increase the substrate provider’s profit. Besides minimizing
the resource footprint, also load-balancing [CRB09] and the avoidance of resource-fragmentation [Che+11]
are considered. Most of the early works considered undirected request graphs. Furthermore, early on the
idea of splittable embeddings has been proposed [Yu+08; CRB09]. Importantly, all the heuristics for the
online VNEP can be considered to be greedy in the following sense: requests are always accepted, if the
respective embedding heuristic has found a feasible solution. As embeddings of requests may be long
lasting and the successive heuristic embedding process might lead to resource fragmentation and sub-
optimal solutions in general, migrations of virtual nodes and edges have been studied in [Yu+08; SSF12;
Bie+14].

ViNE Heuristics. In the following, we discuss the ViNE heuristics [CRB09; CRB12], which are one of
the most cited families of heuristics for the online VNEP. We discuss these, as they are based on Linear
Programming and will be used as a baseline in our evaluations. In particular, the authors of [CRB09;
CRB12] propose the usage of the Multi-Commodity Flow (MCF) LP formulation (discussed in depth in
Section 6.1) to guide the embedding process of single requests. In essence, the MCF formulation uses
node assignment variables yu

i ∈ [0, 1] for each virtual node i ∈ Vr and each substrate node u ∈ VS , subject
to the natural constraint that for each virtual node these node assignment variables sum to 1. Similarly,
for edge mappings, edge assignment variables zu,v

i,j ∈ [0, 1] are used to indicate whether the substrate
edge (u, v) ∈ ES lies on the path of the virtual edge (i, j) ∈ Er. By linking node and edge mapping
variables in the LP and considering capacity constraints, the first heuristic approach coordinating node
and edge mappings was obtained which outperformed existing heuristics significantly. Specifically, the
authors of [CRB09; CRB12] proposed the following heuristics to find feasible embeddings given the LP
solution. Firstly, the node mappings are computed by either deterministically choosing the substrate node
u maximizing yu

i for each virtual node or the node mapping variables are interpreted as probabilities and
the node mappings are accordingly probabilistically rounded. After having found feasible mappings for all
nodes, the splittable edge mappings are either computed optimally using the MCF formulation (under the
given node mappings), or when considering the unsplittable VNEP, the edges are realized by employing
(capacity observing) shortest paths. Furthermore, the authors of [CRB09; CRB12] proposed two different
objectives for the LP formulation: one simply minimizing resource usage and the second one performing
load balancing.

4.2.2 Approximation Algorithms

The author of this thesis is only aware of a single approximation result in the online algorithm realm. In
particular, Bansal et al. have studied, among others, the embedding of single d-depth trees on arbitrary
substrate graphs [Ban+15]. Here, a d-depth tree is defined as any (rooted) tree for which any leaf is
reachable from the root with less than d hops. The following XP-time result was obtained for undirected
graphs:

Theorem 4.2 (Online Embedding Approximation for d-depth Trees [Ban+15]). There is a randomized
(α, β, γ)-approximation for the online embedding of d-depth trees, which runs in time |VS |O(d), with α = 2
and β = γ = O(d2 · log(|VS | · d)).

The result is based on strong Linear Programming relaxations which can be considered to be inspired by
the Sherali-Adams hierarchy [SA90]. In particular, Bansal et al. introduce LP variables for (any prefix
of) each path from the root to any of the leaves and enumerate all mapping possibilities for the respective

24



4.2 Online Algorithms

nodes. These variables are then linked together in such a way that the LP variables model conditional
probabilities: considering a specific root-leaf path (prefix) of length k, the weight of the |VS | many path
extensions of length k + 1 sum to the weight of the path (prefix) of length k. The crucial idea to obtain
the approximation result is to introduce valid cuts, referred to as conditional congestion constraints, which
help in bounding the resource violations.

Considering the runtime bound stated in Theorem 4.2, we note the following. It is easy to see, that
the runtime for the algorithm by Bansal et al. is bounded by poly(|VS |d · |Vr|), where the poly() factor
arises, among others, from solving the LP and the |Vr| factor has to be considered as the number of paths
is polynomial in the number of leaves. However, under the assumption that |Vr| ∈ O(|VS |d) holds, the
runtime can be equivalently bounded by |VS |O(d) as done by Bansal et al., where all the polynomial factors
are encapsulated in the exponent.

4.2.3 Competitive Online Algorithms.

While the study of online algorithms is mostly restricted to heuristics, also some competitive online
algorithms have been studied in [Eve+13; Bie+14; EMP16]. Specifically, in [Eve+13] competitive online
algorithms for the VNEP under fixed node placements was studied and the following result has been
shown for the profit maximization objective.
Theorem 4.3 (General VNet Online Packing (GVOP) Algorithm [Eve+13]). Assuming that feasible
virtual network embeddings can be optimally computed, then the GVOP algorithm is (1/2, γ)-competitive,
i.e., it achieves at least half the profit of an optimal offline solution, while violating edge capacities by a
factor of at most γ = O (log(|ES |) · (maxe∈ES

dS(e)) · bmax), where bmax denotes the maximum profit of
any request.

Note that the restriction of fixed node mappings, has been due to the fact that at the time of publication
no polynomial-time algorithms were known for the (near-)optimal embedding of requests. However, the
result can be extended to obtain competitive algorithms under flexible node mappings. Specifically, based
on results obtained in this thesis on the polynomial-time solvability of the Virtual Cluster Embedding
Problem, Fattohi applied the GVOP algorithm in his thesis [Fat18] to obtain competitive online algorithms
for the embedding of virtual clusters.

Besides the result of [Fat18], an Ω(1/ log(|VS | · |Emax|))-competitive online algorithm was proposed
in [EMP16] for service chains, where |Emax| denotes the maximal number of edges of any of the requests.

Bansal et al. have also studied competitive online algorithms in their work [Ban+15]. However, they study
the congestion minimization objective: each request has to be embedded but the overall goal is to minimize
the maximal congestion at any point in time. Given an (α, β, γ)-approximation for the online embedding
of a single request, the algorithm can be used as oracle to obtain a O((α + max{β, γ}) · log(|VS | · D))-
competitive online algorithm, where D is the ratio of maximal to minimal durations. Accordingly, based
on their result for d-depth trees (cf. Theorem 4.2), an O((2 + d2 · log(|VS | · d)) · log(|VS | ·D))-competitive
online algorithm is obtained. However, the online algorithm’s runtime is again parametrized by the
maximal depth of any considered tree and the algorithm accordingly only runs in polynomial-time when
d is upper bounded by some constant.

Lastly, Bansal et al. have also studied the congestion minimization for graphs which are complete and
have uniform demands [Ban+15]. Their result for complete graphs is based on Räcke tree decomposi-
tions [Räc08]: the substrate graph is represented as a tree, in which the substrate nodes are leaves, such
that the capacity between any pair of leaf nodes is a logarithmic approximation of the actual bottleneck
cut-capacity in the original graph. Bansal et al. use these tree decompositions mainly to be able to embed
the (uniform and complete) request by performing dynamic programming. Their algorithm is shown to be
O(log2 |VS | · log log |VS | · log(|VS | · T ))-competitive, where T denotes the overall considered time horizon
of the online algorithm execution.

25



Chapter 4 Related Work

4.3 Offline Algorithms

Offline algorithms have first been developed in the realm of the VNEP to improve the performance of
online heuristics by considering batches of requests [CRB12; JK15]. Intuitively, by collecting a set of
requests and collectively performing admission control, the chance to select the most profitable subset of
requests is increased while also potentially reducing the induced (overall) resource allocations.

4.3.1 Heuristics

Heuristics for the offline VNEP are given for example in [HLZ08; CRB12; JK15; Ném+18]. Specifically,
the authors of the ViNE heuristics proposed the WiNE (windows-based Virtual network Embedding)
greedy heuristic [CRB12]: requests are ordered descendingly according to their profits and are embedded
sequentially using a heuristic. The authors studied the performance of WiNE using their ViNE heuristics
and observed that the acceptance ratio could be increased [CRB12] by batching requests into groups.

An interesting work close to this thesis is the work of Jarray and Karmouch [JK15], in which a more involved
heuristic for the offline profit VNEP was proposed. Using column generation methods, an adaptation of
the fractional offline profit VNEP (cf. Definition 2.7) is solved and accordingly for each request a set of
weighted mappings Dr = {(fk

r , mk
r ) | fk

r > 0, mk
r ∈ Mr} is returned. In fact, by combining heuristic and

exact methods, their column generation approach only returns mappings which are (in the absence of other
mappings) feasible. This is achieved by performing the separation procedure heuristically in a first step,
and, if no feasible solution was found by the heuristic, a Mixed-Integer Program is used to perform the
separation procedure optimally. After having computed the optimal LP solution according to their model
that only considers feasible valid mappings, an integral solution is computed either by transforming the
LP into an Integer Program and solving it using branch-and-bound techniques or computing a heuristic
solution by iteratively and deterministically selecting mappings that maximize the profit.

4.3.2 Approximations

Bansal et al. also gave offline approximations in their seminal work [Ban+15]. Notably again, the authors
study the congestion minimization objective and no admission control is performed, i.e., all requests
must be embedded. For this setting, two approximation results were presented. Their first result is a
very general one. Specifically, given an (α, β, γ)-approximation algorithm for the online embedding of a
single request, an O((α + max{β, γ}) · log |VS |/ log log |VS |) offline algorithm is obtained. In particular, the
offline algorithm employs the approximation algorithm as an approximate separation oracle to compute an
approximate Linear Programming solution which is then turned into an integral solution using randomized
rounding. Given the XP-time approximation for d-depth trees, a respective offline result was shown for
this specific type of request.

Furthermore, Bansal et al. also give an O(log3 |VS |) offline approximation when request graphs have
uniform demands and the request graphs are complete. Again, this result employs Räcke tree decomposi-
tions [Räc08].

The first (polynomial-time) approximation algorithm in the offline setting was given by Even, Schmid, and
the author of this thesis in [ERS16b]. Specifically, the profit variant of the VNEP ⟨E |NR ⟩ is considered
for service chains, i.e., request realizations are linear chains. By considering Linear Programming solutions
and rounding them as proposed by Raghavan and Thompson [RT85], the following results are obtained.

Theorem 4.4 (Approximation of Offline Profit VNEP ⟨E |NR ⟩ for Service Chains [ERS16a]). The
following results hold under the assumption that request demands are small compared to the capacities,

i.e., when
min(u,v)∈ES

dS(u, v)
maxr∈R |Er| ·maxr∈R,(i,j)∈Er

dr(i, j) ≥
(4.2 + ϵ) · (1 + ϵ) · ln |ES |

ϵ2 holds for some ϵ > 0:

26



4.3 Offline Algorithms

(1) The probability to exceed any edge capacity is upper bounded by 1/|ES | and the probability
to achieve less than a (1 − ϵ)/(1 + ϵ) fraction of the optimal profit bopt is upper bounded by
− exp

(︁
((1− ϵ) · ln(1− ϵ)− ϵ) · bopt/(maxr∈R br ·maxr∈R,(i,j)∈Er

dr(i, j))
)︁
.

(2) Under the additional assumptions that all requests have the same profit and that
bopt > min(u,v)∈ES

dS(u, v) holds, a (1 − O(ϵ))-approximation is obtained with high probability that
does not violate edge capacities.

Notably, the above approximation result (2) only holds under the stated assumptions on the demand to
capacity ratio and uniform benefits, and are only applicable for linear chains. Compared to this prior
result, the approximations given within this thesis hold for general request graphs and do neither require
assumptions on the demand to capacity ratio nor on the benefits.

4.3.3 Exact Methods

Besides heuristics, also exact approaches based on Mixed-Integer Programming were studied [MKK14;
Sah+15; Bas+17; DKM18]. The ability to compute optimal solutions for a set of requests is within these
works often used to analyze the performance of different objectives or the sensitivity of solutions under
varying constraints of the studied model. The respective Mixed-Integer Programming formulations are
all based on adaptations of the Multi-Commodity Flow formulation, whose integer variant is discussed in
Section 5.1.

27



“Try a hard problem. You may not solve it, but you will prove something else.”
– John E. Littlewood 5

Computational Complexity of the
Virtual Network Embedding Problem

In this chapter, we initiate the systematic study of the computational complexity of the Virtual Network
Embedding Problem under all combinations of node and edge mapping restrictions studied in this work.
Specifically, we consider node mapping restrictions and node capacities, as well as routing policies, latency
restrictions, and edge capacities (cf. Sections 2.2 and 2.4.3). We present a powerful 3-SAT reduction
framework in Section 5.2, which is the base for nearly all hardness results presented henceforth. Specifically,
we generally show the NP-completeness of the decision variant of the VNEP, which in turn also implies
the NP-hardness of any optimization variant. In particular, the following is shown:

• We show the NP-completeness of six different VNEP variants in Section 5.3. For example, we
consider the variant only enforcing capacity constraints, but also one in which only node placement
and latency restrictions must be obeyed in the absence of capacity constraints.

• We extend these results in Section 5.4 and show that the considered variants remain NP-complete
even when computing approximate embeddings, which may exceed latency or capacity constraints
by certain factors.

• In Section 5.5 it is shown that the respective VNEP variants remain NP-complete even when
restricting substrate graphs to directed acyclic graphs (DAGs) and request graphs to planar, degree-
bounded DAGs.

• In Section 5.6 we lastly discuss implications for the hardness of the VMP and accordingly for the
fractional offline VNEP.

As we are provingNP-completeness, the implications of our results are severe. Given the NP-completeness
of finding any feasible solution, finding an optimal solution subject to any objective is at least NP-hard.
Furthermore, unless P =NP holds, the respective variants cannot be approximated to within any factor.

Table 5.1 summarizes our results and is to be read as follows. Any of the six rightmost columns represents
a specific VNEP variant. The checkmark (✓) symbol indicates restrictions that are enforced, while the
⋆ symbol indicates restrictions which are not considered. Accordingly, considering a specific variant, the
respective column should be read from top to bottom. For example, for ⟨VE | - ⟩, its NP-completeness
is shown in Theorem 5.10 while its inapproximability when relaxing edge capacity constraints is shown
in Theorem 5.21. Lastly, all results also hold under the graph restrictions mentioned in the two bottom
rows. Importantly, it is easy to see that enabling additional restrictions (marked as ⋆ in Table 5.1), does
not change the results:

Lemma 5.1. A VNEP variant ⟨A |C ⟩ that encompasses all restrictions of ⟨A’ |C’ ⟩ is at least as hard
as ⟨A’ |C’ ⟩.

28



5.1 Integer Programming Formulation

Proof. The capacity constraints as well as the additional requirements were all formulated in such a fashion
that any one of these can be disabled. Considering capacities and latencies, one may set the respective
substrate capacities to ∞ and the latencies of edges to 0, respectively. For node placement and edge
restrictions one may set the forbidden node and edge sets to the empty set. Hence, there exists a trivial
reduction from ⟨A |C ⟩ to ⟨A’ |C’ ⟩ and the result follows. ■

V
N

E
P

va
ri

an
ts

Identifier according to Def. 2.20 ⟨VE | - ⟩ ⟨E |N ⟩ ⟨V |R ⟩ ⟨ - |NR ⟩ ⟨ - |NL ⟩ ⟨V |L ⟩

Node Capacities ✓ ⋆ ✓ ⋆ ⋆ ✓

Edge Capacities ✓ ✓ ⋆ ⋆ ⋆ ⋆

Node Placement Restrictions ⋆ ✓ ⋆ ✓ ✓ ⋆

Edge Routing Restrictions ⋆ ⋆ ✓ ✓ ⋆ ⋆

Latency Restrictions ⋆ ⋆ ⋆ ⋆ ✓ ✓

R
es

ul
ts

NP-completeness and inapprox-
imability under any objective

Thm. 5.10 Thm. 5.11 Thm. 5.12 Thm. 5.13 Thm. 5.13 Thm. 5.14

NP-completeness and inapprox-
imability when increasing node ca-
pacities by a factor β < 2

Thm. 5.15 - Thm. 5.15 - - Thm. 5.15

Inapproximability when increasing
edge capacities by a factor γ ∈
Θ(log n/ log log n) (unless NP ⊆
BP-TIME(

⋃︁
d≥1 nd log log n))

Thm. 5.21 Thm. 5.19 - - - -

NP-completeness and inapprox-
imability when loosening latency
bounds by a factor δ < 2

- - - - Thm. 5.16 Thm. 5.16

Results are preserved for acyclic
substrates (except for Theo-
rems 5.19 and 5.21)

Obs. 5.22

Results are preserved for acyclic,
planar, degree-bounded requests

Thm. 5.25

Table 5.1: Overview on obtained computational complexity results for the VNEP.

5.1 Integer Programming Formulation

We first give an Integer Programming (IP) formulation, which can be used to solve any of the considered
decision VNEP variants. A similar formulation was proposed in [IR11]. Given the hardness results
presented in this chapter and given that solving IPs lies in NP [Pap81], the IP may serve as an attractive
approach to solve the respective variants in exponential time. Besides the practical application, the
existence of our formulation (constructively) shows that the VNEP variants considered here are also all
contained in NP .

Our formulation naturally encompasses node placement and routing restrictions, while for latencies an
additional constraint is introduced. The decision variable x ∈ {0, 1} is used to indicate, whether the
request graph Gr is embedded or not. By maximizing x, the IP decides whether a feasible embedding
exists (x = 1) or whether no such embedding exists (x = 0). The mapping of virtual nodes is modeled

29



Chapter 5 Computational Complexity of the Virtual Network Embedding Problem

Integer Program 5.1: VNEP Decision Variant

max x (5.1)∑︂
u∈VS

yu
i = x ∀i ∈ Vr (5.2)∑︂

u∈VS\V r,i
S

yu
i = 0 ∀i ∈ Vr (5.3)∑︂

(u,v)∈δ+(u)

zu,v
i,j −

∑︂
(v,u)∈δ−(u)

zv,u
i,j = yu

i − yu
j ∀(i, j) ∈ Er, u ∈ ES (5.4)∑︂

(u,v)∈ES\Er,i,j
S

zu,v
i,j = 0 ∀(i, j) ∈ Er (5.5)∑︂

i∈Vr

dr(i) · yu
i ≤ dS(u) ∀u ∈ VS (5.6)∑︂

(i,j)∈Er

dr(i, j) · zu,v
i,j ≤ dS(u, v) ∀(u, v) ∈ ES (5.7)∑︂

(u,v)∈ES

lS(u, v) · zu,v
i,j ≤ lr(i, j) ∀(i, j) ∈ Er

⋆(5.8)

x∈ {0, 1} (5.9)
yu

i ∈ {0, 1} ∀i ∈ Vr, u ∈ VS (5.10)
zu,v

i,j ∈ {0, 1} ∀(i, j) ∈ Er, (u, v) ∈ ES (5.11)

using decision variables yu
i ∈ {0, 1} for i ∈ Vr and u ∈ VS . If yu

i = 1 holds, then the virtual node i ∈ Vr

is mapped on substrate node u ∈ VS . Constraint 5.2 enforces that each virtual node is mapped to one
substrate node, if the request is embedded (x = 1), while Constraint 5.3 excludes unsuitable substrate
nodes.

For computing edge mappings the decision variables zu,v
i,j ∈ {0, 1} for (i, j) ∈ Er and (u, v) ∈ ES are

employed. If zu,v
i,j = 1 holds, then the substrate edge (u, v) lies on the path mE(i, j). Constraints 5.4 and

5.5 embed virtual links as paths in the substrate, if the request is embedded. In particular, Constraint 5.4
constructs a unit flow for virtual edge (i, j) ∈ Er from the location u ∈ VS onto which i was mapped
(yu

i = 1) to the location v ∈ VS onto which j was mapped (yv
j = 1), while Constraint 5.5 excludes unsuitable

edges. Constraints 5.6 and 5.7 enforce that substrate capacities are obeyed. Lastly, Constraint 5.8 is only
used when latencies are considered: it enforces that the sum of latencies along the embedding path of a
virtual edge is smaller than the respective latency bound.

5.2 Reduction Framework
This section presents the main insight and contribution of this chapter, namely a generic reduction frame-
work that allows to derive hardness results by slightly tailoring the proof for the individual problem
variants. Our reduction framework relies on 3-SAT and we first introduce some notation. Afterwards
we continue by constructing a (partial) VNEP instance, whose solution will indicate whether the 3-SAT
formula is satisfiable.

5.2.1 3-SAT: Notation and Problem Statement

We denote by Lϕ = {xk}k∈[N ] a set of N ∈ N literals and by Cϕ = {Ci}i∈[M ] a set of M ∈ N clauses, in
which literals may occur either positively or negated. The formula ϕ =

⋀︁
Ci∈Cϕ

Ci is a 3-SAT formula, iff.
each clause Ci is the disjunction of at most 3 literals of Lϕ. Denoting the truth values by F and T, 3-SAT

30



5.2 Reduction Framework

asks to determine whether an assignment α : Lϕ → {F, T} exists, such that ϕ is satisfied. 3-SAT is one
of Karp’s 21 NP-complete problems:

Theorem 5.2 (Karp [Kar72]). Deciding 3-SAT is NP-complete.

For reducing 3-SAT to VNEP, it is important that the clauses be ordered and we define the following:

Definition 5.3 (First Occurence of Literals). We denote by C : Lϕ → [M ] the function yielding the index
of the clause in which a literal first occurs. Hence, if C(xk) = i holds, then xk is contained in Ci while not
contained in Ci′ for i′ ∈ [i− 1]. □

As we are interested in the satisfiability of a 3-SAT formula ϕ, we define the set of satisfying assignments
per clause:

Definition 5.4 (Satisfying Assignments). By Ai = {ai,m : Li → {F, T} | ai,m satisfies Ci} the set of all
possible assignments of truth values to the literals Li of Ci satisfying Ci is denoted. Note that all elements
of Ai are functions. □

Lastly, to abbreviate notation, we employ Li,j = Li ∩Lj to denote the intersection of the literal sets of Ci

and Cj .

5.2.2 General VNEP Instance Construction

For a given 3-SAT formula ϕ, we now construct a VNEP instance consisting of a substrate graph GS(ϕ)
and a request graph Gr(ϕ). The question whether the formula ϕ is satisfiable will eventually reduce to the
question whether a feasible embedding of Gr(ϕ) on GS(ϕ) exists. Figure 5.1 illustrates the construction
described in the following.

Definition 5.5 (Request Graph Gr(ϕ)). For a given 3-SAT formula ϕ we define the request graph Gr(ϕ) =
(Vr(ϕ), Er(ϕ)) as follows. For each clause Ci ∈ Cϕ a node vi is introduced, i.e., Vr(ϕ) = {vi | Ci ∈ Cϕ}. An
edge (vi, vj) is introduced if either the i-th clause Ci introduces a literal used in the j-th clause Cj , or if
j = i + 1 holds. Accordingly, we set Er(ϕ) = EL

r(ϕ) ⊔ EN
r(ϕ) with:

EL
r(ϕ) = {(vi, vj) | ∃xk ∈ Li,j : C(xk) = i}

EN
r(ϕ) = {(vi, vi+1) | i < M ∧ (vi, vi+1) /∈ EL

r(ϕ)}

Note that edges pertaining to literals EL
r(ϕ) take precedence over edges EN

r(ϕ) created for neighboring request
nodes. □

Note that the above definition only defined the request topology and did not specify demands or other
restrictions, as these will be set in the respective reductions. Matching the general construction of the
request graph, the substrate graph is analogously defined, albeit introducing up to 7 substrate nodes
per clause: the respective substrate nodes will correspond to the satisfying assignments of the respective
clause.

Definition 5.6 (Substrate Graph GS(ϕ)). For a given 3-SAT formula ϕ the substrate graph GS(ϕ) =
(VS(ϕ), ES(ϕ)) is defined as follows. For each clause Ci ∈ Cϕ and each potential assignment ai,m ∈ Ai

of truth values satisfying Ci a substrate node is used, i.e., VS(ϕ) =
⋃︁

Ci∈Cϕ
Ai. Two substrate nodes

ai,m ∈ VS(ϕ) and aj,n ∈ VS(ϕ) are connected in either of the following cases:

1. if (vi, vj) ∈ EL
r(ϕ) holds then the edge (ai,m, aj,n) is only introduced if the assignments ai,m and aj,n

agree on the literals Li,j contained in both clauses and

2. if (vi, vj) ∈ EN
r(ϕ) holds, then any edge (ai,m, aj,n) with ai,m ∈ Ai and aj,n ∈ Aj is introduced.

31



Chapter 5 Computational Complexity of the Virtual Network Embedding Problem

Accordingly, we set ES(ϕ) = EL
S ⊔ EN

S , with:

EL
S =

{︂
(ai,m, aj,n)

⃓⃓⃓
(vi, vj) ∈ EL

r(ϕ) and ai,m(xl) = aj,n(xl) for xl ∈ Li,j

}︂
EN

S =
{︁

(ai,m, aj,n)
⃓⃓

(vi, vj) ∈ EN
r

}︁
□

φ: (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x2 ∨ x̄3 ∨ x4)

GS(φ):

x1, x2, x3 : TTT

x1, x2, x3 : TTF

x1, x2, x3 : TFT

x1, x2, x3 : TFF

x1, x2, x3 : FTT

x1, x2, x3 : FTF

x1, x2, x3 : FFT

x1, x2, x4 : TTT

x1, x2, x4 : TTF

x1, x2, x4 : FTT

x1, x2, x4 : FTF

x1, x2, x4 : FFT

x1, x2, x4 : FFF

x2, x3, x4 : TTT

x2, x3, x4 : TTF

x2, x3, x4 : TFT

x2, x3, x4 : TFF

x2, x3, x4 : FTT

x2, x3, x4 : FFT

x2, x3, x4 : FFF

v1 v3v2Gr(φ):

x1, x2, x4 : TFT

mr(φ):

x1, x2, x3 : TTF

x1, x2, x3 : TFT

x1, x2, x3 : TFF

x1, x2, x4 : TTF x2, x3, x4 : TTF

x2, x3, x4 : TFT

x2, x3, x4 : TFF

x1, x2, x4 : TFT

Figure 5.1: Visualization of the construction of request and substrate graphs for the 3-SAT formula ϕ
(cf. Definitions 5.5 and 5.6). Additionally, a mapping mr(ϕ) satisfying the conditions of Lemma 5.8 is
shown. Accordingly, the formula ϕ is satisfied. Concretely, the mapping represents the assignment of
truth values x1 = T, x2 = T, x3 = F, x4 = F.

32



5.2 Reduction Framework

5.2.3 The Base Lemma

In the following we give the base lemma, on which nearly all of our results are based. It shows the
connection between the satisfiability of 3-SAT formulas and the existence of specific valid mappings
introduced below.

Definition 5.7 (Satisfiable Valid Mappings MSAT
r(ϕ)). We denote by MSAT

r(ϕ) the set of valid mappings of
Gr(ϕ) on GS(ϕ), such that each virtual node vi pertaining to the i-th clause is mapped on substrate nodes
Ai and that each virtual edge is embedded using a single substrate edge, i.e.:

MSAT
r(ϕ) =

{︁
m ∈Mr

⃓⃓
mV (vi) ∈ Ai for vi ∈ Vr(ϕ) and |mE(vi, vj)| = 1 for (vi, vj) ∈ Er(ϕ)

}︁
□

Lemma 5.8. A 3-SAT formula ϕ is satisfiable iff. MSAT
r(ϕ) ̸= ∅.

Proof. We first show that if ϕ is satisfiable, then a mapping mr(ϕ) ∈ MSAT
r(ϕ) must exist. Afterwards, we

show that if such a mapping mr(ϕ) ∈MSAT
r(ϕ) exists, then ϕ must be satisfiable.

Assume that ϕ is satisfiable and let α : Lϕ → {F, T} denote an assignment of truth values, such that
α satisfies ϕ. We construct a mapping mr(ϕ) = (mV , mE) for request r as follows. The virtual node
vi ∈ Vr(ϕ) corresponding to clause Ci is mapped onto the substrate node ai,m ∈ Ai ⊆ VS(ϕ), iff. ai,m

agrees with α on the assignment of truth values to the contained literals, i.e., ai,m(xk) = α(xk) for
xk ∈ Ci. As α satisfies ϕ, it satisfies each clause and hence mV (vi) ∈ VS(ϕ) holds for all Ci ∈ Cϕ. The
virtual edge (vi, vj) ∈ Er(ϕ) is mapped via the direct edge between mV (vi) and mV (vj): if (vi, vj) ∈ EL

r(ϕ)
holds, this edge (mV (vi), mV (vj)) must exist in EL

S , as mV (vi) = ai,m and mV (vj) = aj,n must agree by
construction on the assignment of truth values for all literals. Secondly, if (vi, vj) ∈ EN

r(ϕ) holds, then the
edge (mV (vi), mV (vj)) is clearly contained in EN

S . Hence, the constructed mapping mr(ϕ) satisfies the
conditions specified forMSAT

r(ϕ), such that mr(ϕ) ∈MSAT
r(ϕ) holds, hence completing the first half of the proof.

We now show that if there exists a mapping mr(ϕ) ∈ MSAT
r(ϕ), then the formula ϕ is indeed satisfiable.

We constructively recover an assignment of truth values α : Lϕ → {F, T} from the mapping mr(ϕ) by
iteratively extending the initially empty assignment. Concretely, we iterate over the mappings of the
virtual nodes corresponding to the clauses of Cϕ one by one according to the precedence relation of the
indices. By our assumption on the node mapping, mV (vi) ∈ Ai holds. Accordingly, as the substrate
node mV (vi) represents an assignment of truth values to the literals of clause Ci, we extend α by setting
α(xk) ≜

[︁
mV (vi)

]︁
(xk) for all literals xk contained in Ci.

We first show that this extension is always valid in the sense that previously assigned truth values are
never changed. To this end, assume that the clauses C1, C2, . . . , Ci−1 were handled without any such
violations. Hence the literals

⋃︁
j<i Lj have been assigned truth values in the first i − 1 iterations not

contradicting previous assignments. When extending α by the mapping of mV (vi) in the i-th iteration,
there are two cases to consider. First, if none of the literals Li were previously assigned a truth value,
i.e., Li ∩

⋃︁
j<i Lj = ∅ holds, then the extension of α as described above cannot lead to a contradiction.

Otherwise, if Li,pre = Li∩
⋃︁

j<i Lj ̸= ∅ holds, we show that extending α by mV (vi) = ai,m does not change
the truth value of any literal xk contained in Li,pre.

For the sake of contradiction, assume that xk ∈ Ci is a literal, for which α(xk) does not equal
[︁
mV (vi)

]︁
(xk).

As xk was previously assigned a value, there must exist a clause Cj in which xk was first used, such that
j < i holds. Let mV (vi) = ai,m ∈ Ai and mV (vj) = aj,n ∈ Aj . By our assumption all edges are mapped
using a single substrate edge, accordingly mE(vi, vj) = ⟨(aj,n, ai,m)⟩ must hold. Hence, the substrate edge
(aj,n, ai,m) must exist and must be contained in EL

r(ϕ) as Li,pre ̸= ∅ holds. Since (vj , vi) ∈ EL
r(ϕ) holds, the

respective substrate edge must be contained in EL
S by definition. As EL

S contains only edges if assignments
agree with each other,

[︁
mV (vj)

]︁
(xk) = aj,n(xk) = ai,m(xk) =

[︁
mV (vi)

]︁
(xk) is obtained. This contradicts

our assumption that α(xk) ̸=
[︁
mV (vi)

]︁
(xk) holds. Hence, the extension of α is always valid.

33



Chapter 5 Computational Complexity of the Virtual Network Embedding Problem

By construction of the substrate graph GS(ϕ), the node set Ai ⊆ VS(ϕ) contains only the assignments of
truth values for the literals Li of clause Ci ∈ Cϕ that satisfy the respective clause. Hence, the constructed
assignment α satisfies each clause and thus the formula ϕ, hence concluding the proof. ■

The above base lemma is the heart of our reduction framework for obtaining our NP-completeness and
NP-hardness results. The following formalizes this observation.

Lemma 5.9. If the restrictions ⟨X |Y ⟩ are sufficiently expressive to constrain feasible mappings of Gr(ϕ)
to GS(ϕ) to exactly the mappings of MSAT

r(ϕ) for any 3-SAT formula ϕ, then:

1. the decision VNEP ⟨X |Y ⟩ is NP-complete,

2. any optimization VNEP ⟨X |Y ⟩ isNP-hard and inapproximable (within any factor), unless P =NP
holds.

Proof. We outline the polynomial-time reduction from 3-SAT to the respective decision VNEP under
constraints ⟨X |Y ⟩. Considering any 3-SAT formula ϕ, the respective request and substrate graphs Gr(ϕ)
and GS(ϕ) are constructed. As the number of request nodes is bounded by the number of clauses and the
number of substrate nodes is bounded by 7 times the number of clauses, the construction is polynomial.
Under the assumption that the VNEP variant is sufficiently expressive to constrain the set of feasible
embeddings to exactly MSAT

r(ϕ) (cf. Definition 5.7), the question of whether the formula ϕ is satisfiable
reduces to the question of whether a feasible embedding of Gr(ϕ) on GS(ϕ) exists (cf. Lemma 5.8). This
reduction yields the NP-hardness of the respective VNEP variant under restrictions ⟨X |Y ⟩ as 3-SAT
is NP-complete. As the Integer Program presented in Section 5.1 can be used to decide VNEP under
any restrictions ⟨X |Y ⟩ and solving Integer Programs lies in NP [Pap81], the respective VNEP lies in
NP , hence showing the NP-completeness of the respective VNEP variant. This completes the proof of
the first statement.

The second statement holds as optimizing over the set of feasible solutions requires deciding whether a
feasible solution exists in the first place. Accordingly, any optimization variant is also NP-hard. Fur-
thermore, any optimization variant over the same set of restrictions is also inapproximable to within any
factor, unless P =NP . ■

5.3 Hardness of the VNEP

We employ our framework outlined in the previous section to derive a series of hardness results for the
VNEP. In particular, we first show the NP-completeness of the original VNEP variant ⟨VE | - ⟩ in
the absence of additional restrictions. Given this result, we investigate the remaining other five combi-
nations of node and edge mapping restrictions and show, among others, that also deciding ⟨ - |LN ⟩ is
NP-complete. Hence, even when the physical network does not impose any resource constraints (i.e.,
nodes and links have infinite capacities), finding an embedding satisfying latency and node placement
restrictions is NP-complete. Again, it must be noted that adding further restrictions only renders the
VNEP harder (cf. Lemma 5.1).

We first consider the most basic VNEP variant ⟨VE | - ⟩.

Theorem 5.10. VNEP ⟨VE | - ⟩ is NP-complete and cannot be approximated under any objective
(unless P =NP).

Proof. We show the statement via a polynomial-time reduction from 3-SAT according to Lemma 5.9.
Specifically, we show how to constrain the set of feasible embeddings of Gr(ϕ) to GS(ϕ) to exactly MSAT

r(ϕ)
(cf. Definition 5.7), such that each virtual node corresponding to the i-th clause is mapped on a substrate
node corresponding to the i-th clause, albeit embedding all virtual edges using a single substrate edge.

34



5.3 Hardness of the VNEP

To enforce the node mapping property ofMSAT
r(ϕ), namely that each virtual node vi ∈ Vr(ϕ) must be mapped

on nodes in Ai, we set unit substrate node capacities and demands:

dS(ϕ)(ai,m) = 1 ∀ Ci ∈ Cϕ, ai,m ∈ Ai

dr(ϕ)(vi) = 1 ∀ vi ∈ Vr(ϕ)

Given these demands and capacities, we note the following. Firstly, as the substrate nodes have a capacity
of 1 and the virtual nodes have a demand of 1, at most one virtual node may be placed on any substrate
node. Secondly, the request graph Gr(ϕ) contains edges (vi, vi+1) for i ∈ [N − 1], while the substrate
is acyclic with edges always being oriented towards substrate nodes pertaining to clauses with a higher
index.

Hence, if a virtual node vi ∈ Vr(ϕ) is mapped on a substrate node ak,o ∈ VS(ϕ) corresponding to the k-th
clause, then the virtual node vi+1 corresponding to the next clause must be mapped on a substrate node
ak′,o′ ∈ VS(ϕ) with k′ ≥ k + 1. If vi ∈ Vr(ϕ) was to be mapped on a substrate node ak,o ∈ VS(ϕ) with k > i,
then at least the last node vM of the chain ⟨vi, vi+1, . . . , vM ⟩ cannot be suitably mapped. By the same
argument, vi ∈ Vr(ϕ) cannot be mapped on a substrate node ak,o with k < i, as then at least the first node
v1 could not be mapped feasibly on any substrate node. Therefore, any feasible embedding must map the
node vi ∈ Vr(ϕ) on a substrate node ai,m ∈ VS(ϕ), therefore restricting the node mappings exactly as in
the definition of the set MSAT

r(ϕ).

To enforce the edge mapping restrictions specified for MSAT
r(ϕ), namely that each virtual edge is embedded

to exactly one substrate edge, the following non-unit edge capacities and demands are set for some λ with
0 < λ < 1/|Cϕ|:

dS(ϕ)(e) = 1 + λ · j ∀ Cj ∈ Cϕ, e ∈ δ−(Aj)
dr(ϕ)(e) = 1 + λ · j ∀ vj ∈ Vr(ϕ), e ∈ δ−(vj)

Accordingly, the capacity of a substrate edge and the demand of a virtual edge is determined by the
index of the clause its head is representing: the higher the clause-index of the edge’s head, the higher
the capacity. Given these capacities and demands, we now show that any virtual edge must be mapped
on exactly one substrate edge. To this end, assume for the sake of contradiction that the virtual edge
(vi, vj) ∈ Er(ϕ) is not mapped on a single substrate edge. As vi must be mapped on some node ai,m ∈ Ai

and vj must be mapped on some node aj,n ∈ Aj , and as both the request and the substrate are directed
acyclic graphs, the mapping of edge (vi, vj) must route through at least one intermediate node. Denote
by ak,l ∈ Ak for i < k < j the first intermediate node lying on the path along which the edge (vi, vj) is
routed. By construction, the capacity of the substrate edge (ai,m, ak,l) is 1 + λ · k. However, as k < j
holds and the edge (vi, vj) has a demand of 1 + λ · j, the edge (vi, vj) cannot be routed via ak,l. Thus, the
only feasible edges for embedding the respective virtual edges are the direct connections between any two
substrate nodes.

Therefore, according to the above capacities and demands, any feasible embedding m satisfies the con-
ditions of MSAT

r(ϕ) and is hence contained in it. On the other hand, the above imposed capacities do not
constrain the set of feasible embeddings any further: each mapping m ∈ MSAT

r(ϕ) is a feasible embedding
according to the above capacities. Thus, as the set of feasible embeddings equals MSAT

r(ϕ), the result follows
by Lemma 5.9. ■

In the following the above proof is adapted to other settings. All the proofs purely rely on constraining
the set of feasible embeddings to the setMSAT

r(ϕ) and the application of Lemma 5.9. Hence, in the following
we only prove that the set of feasible embeddings equals MSAT

r(ϕ).

35



Chapter 5 Computational Complexity of the Virtual Network Embedding Problem

Theorem 5.11. VNEP ⟨E |N ⟩ isNP-complete and cannot be approximated under any objective (unless
P =NP).

Proof. In this setting node placement restrictions and substrate edge capacities are enforced. Employing
the node placement restrictions, we can force the mapping of virtual node vi ∈ Vr(ϕ) onto substrate nodes
Ai by setting V

r(ϕ),vi

S(ϕ) = VS(ϕ) \ Ai for all vi ∈ Vr(ϕ). Utilizing the same edge capacities and demands as
in the proof of Theorem 5.10, virtual edges have to be mapped using a single edge, as intermediate nodes
do not support the respective demand. Hence, the result follows. ■

Theorem 5.12. VNEP ⟨V |R ⟩ isNP-complete and cannot be approximated under any objective (unless
P =NP).

Proof. In this setting node capacities and routing restrictions must be obeyed. We employ the same node
capacities as in the proof of Theorem 5.10, such that a virtual node vi ∈ Vr(ϕ) may only be mapped on
a substrate node contained in Ai. Furthermore, routing restrictions are set to only allow direct edges.
Specifically, for the virtual edge (vi, vj) ∈ Er(ϕ) the set of forbidden edges E

r(ϕ),vi,vj

S(ϕ) is set to ES(ϕ) \ (Ai×
Aj). As the node demands and capacities enforce the node mapping restrictions of MSAT

r(ϕ) and the routing
restrictions enforce that each virtual edge must be mapped on exactly a single substrate edge, the result
follows. ■

Theorem 5.13. The VNEP is NP-complete under restrictions ⟨ - |NR ⟩ and ⟨ - |NL ⟩ and cannot be
approximated under any objective (unless P =NP).

Proof. Both VNEP variants do not consider capacities. Allowing for node placement restrictions, the
node mapping restrictions ofMSAT

r(ϕ) (cf. Definition 5.7) are easily safeguarded (cf. proof of Theorem 5.11).
By employing the same routing restrictions as in the proof of Theorem 5.12 the result follows directly for
the case ⟨ - |NR ⟩.

For ⟨ - |NL ⟩, latency restrictions can be employed to enforce that virtual edges span at most a single
substrate edge. Concretely, we set unit substrate edge latencies and unit virtual edge latency bounds:

lS(ϕ)(e) = 1 ∀e ∈ ES(ϕ)

lr(ϕ)(e) = 1 ∀e ∈ Er(ϕ)

Accordingly, each virtual edge can only be realized by using at most a single substrate edge. Furthermore,
given the node mapping restrictions, the virtual nodes cannot be mapped onto the same substrate node.
Hence, the set of feasible embeddings equals exactly MSAT

r(ϕ) and the result also follows for ⟨ - |NL ⟩. ■

Theorem 5.14. VNEP ⟨V |L ⟩ is NP-complete and cannot be approximated under any objective (unless
P =NP).

Proof. This variant enforces node capacities while also obeying latency restrictions. Again, utilizing unit
node capacities and demands as in the proof of Theorem 5.10, the node mapping restrictions of MSAT

r(ϕ) are
safeguarded. By employing unit substrate latencies and unit latency restrictions for each virtual edge as
in the proof of Theorem 5.13, also the edge mapping restrictions of MSAT

r(ϕ) are enforced, thereby yielding
the result. ■

5.4 Hardness of Computing Approximate Embeddings

Given the hardness results presented in Section 5.3, the question arises to which extent the hardness can be
overcome when only computing approximate embeddings (cf. Definitions 2.18 and 2.19), i.e., embeddings
that may violate capacity or latency constraints by certain factors. Based on the proofs presented in Sec-
tion 5.3, we first derive hardness results for computing β-approximate embeddings (allowing node capacity

36



5.4 Hardness of Computing Approximate Embeddings

violations) and δ-approximate embeddings (allowing latency violations). For γ-approximate embeddings,
a reduction from a variant of the edge-disjoint paths problem will be given.

Theorem 5.15. For ⟨VE | - ⟩, ⟨V |R ⟩, and ⟨V |L ⟩ finding a β-approximate embedding is NP-complete
as well as inapproximable under any objective (unless P =NP) for any β < 2.

Proof. The NP-completeness proofs under the restrictions ⟨VE | - ⟩, ⟨V |R ⟩, and ⟨V |L ⟩ relied all on
the same argument to show that the virtual node vi ∈ Vr(ϕ) must be mapped on any substrate node
contained in Ai ⊆ VS(ϕ) (cf. Theorems 5.10, 5.12, and 5.14): due to the unit substrate node capacities and
the unit node demands only a single virtual node can mapped on a substrate node and accordingly the
chain of virtual nodes v1, v2, . . . , vM must be embedded linearly using substrate node sets A1,A2, . . . ,AM .
Notably, the remaining parts of the proofs were only using that vi ∈ Vr(ϕ) must be mapped on any node
in Ai ⊆ VS(ϕ).

Clearly, in the above proofs one may increase the substrate node capacities by any factor 1 ≤ β < 2 without
any changes in the respective proofs: even if substrate nodes were to have a capacity of β, only a single
virtual node can be hosted by any of the substrate nodes. As asking for a β-approximate embeddings is
equivalent to finding a non-approximate embedding while increasing all node capacities by the factor β,
any algorithm for the VNEP returning β-approximate embeddings for β < 2 could still be used to decide
3-SAT and therefore even deciding whether a β-approximate embedding exists remains NP-complete and
inapproximable for any β < 2. ■

Proving the NP-completeness of δ-approximate embeddings goes along the same lines:

Theorem 5.16. For ⟨ - |NL ⟩ and ⟨V |L ⟩ finding an δ-approximate embedding is NP-complete as well
as inapproximable under any objective (unless P =NP) for any δ < 2.

Proof. The proofs of Theorems 5.13 and 5.14 relied on the fact that due to the latency constraints each
virtual edge must be mapped on a single substrate edge. As the latencies of substrate edges are uniformly
set to 1 and all latency bounds are 1 as well, computing a δ-approximate embedding for δ < 2 implies
that each virtual edge can still only be mapped on a single substrate edge. Analogously to the proof of
Theorem 5.15, the respective VNEP variants remain NP-complete and inapproximable even when only
asking to decide whether a δ-approximate embedding exists. ■

For γ-approximate embeddings we employ an inapproximability result of a variant of the edge-disjoint
paths problem:

Definition 5.17 (DirEDPwC [Chu+07]). The Directed Edge-Disjoint Paths Problem with Congestion
(DirEDPwC) is defined as follows. Given is a directed graph G = (V, E) together with a set of l ∈ N
source-sink pairs (commodities) {(sk, tk)}k∈[l], sk, tk ∈ V , and a constant c ∈ N. The task is to find a path
Pk connecting sk to tk for each k ∈ [l], such that at most c many paths are routed via any edge e ∈ E.

□

It is well-known that the edge-disjoint paths problem on directed graphs is hard to approximate:

Theorem 5.18 (Chuzhoy et al. [Chu+07]). Let n = |V | denote the number of nodes. Given an instance
of the DirEDPwC, it is impossible to distinguish between the following two cases in polynomial-time,
unless NP ⊆ BP-TIME(

⋃︁
d≥1 nd log log n):

1. A solution with congestion c = 1 exists .

2. No solution with congestion c ∈ Θ(log n/log log n) exists.

37



Chapter 5 Computational Complexity of the Virtual Network Embedding Problem

Above, BP-TIME(f(n)) denotes the class of problems solvable by probabilistic Turing machines in time
f(n) with bounded error-probability [AB09]. Given the approximation-preserving reductions presented
above, the inapproximability of DirEDPwC carries over to the respective VNEP variants.

To apply this result for the DirEDPwC in the context of γ-approximate embeddings, reductions from
DirEDPwC to the VNEP variants ⟨E |N ⟩ and ⟨VE | - ⟩ are used. Importantly, these reductions are
preserved when relaxing edge capacities, such that γ-approximate embeddings translate to solutions of the
DirEDPwC with a congestion increase by a factor γ.

Theorem 5.19. Solving the γ-approximate decision VNEP under restrictions ⟨E |N ⟩ is not possible in
polynomial-time for γ ∈ Θ(log n/ log log n) with n = |VS |, unless NP ⊆ BP-TIME(

⋃︁
d≥1 nd log log n) holds.

Again, this result naturally also extends to optimization variants in the setting ⟨E |N ⟩.

Proof. We first give a reduction from DirEDPwC to the decision VNEP under restrictions ⟨E |N ⟩.
Given a DirEDPwC instance on the graph G = (V, E) with commodities (sk, tk)k∈[l] and congestion c, an
equivalent VNEP instance consisting of the substrate graph GS(edp) = (VS(edp), ES(edp)) and the request
graph Gr(edp) = (Vr(edp), Er(edp)) is constructed. Firstly, the substrate is set to equal the original graph,
i.e., GS(edp) = G, and the request graph Gr(edp) = (Vr(edp), Er(edp)) is defined as follows. Vr(edp) consists
of two virtual nodes per commodity, Vr(edp) = {ik, jk|k ∈ [l]}, and we set Er(edp) = {(ik, jk)|k ∈ [l]}. Let
σ : Vr(edp) → VS(edp) denote the function indicating the original substrate node locations of the respective
commodities. Specifically, σ(ik) = sk and σ(jk) = tk holds for all k ∈ [l]. We employ node mapping
requirements to force the mapping of virtual nodes ik and jk to the locations of the respective commodities
sk and tk by setting V

r(edp),i

S(edp) = V \{σ(i)} for i ∈ Vr(edp). Setting edge capacities in the substrate to c (the
congestion value) and virtual edge demands to 1, deciding the respective VNEP problem is equivalent
to deciding DirEDPwC: any embedding mr(edp) = (mV , mE) of the VNEP instance induces a solution
to the DirEDPwC instance by setting Pk = mE(ik, jk) for k ∈ [l] and vice versa. Importantly, note
that when considering γ-approximate solutions for the above VNEP instance, a respective DirEDPwC
solution of congestion γ · c can be obtained in exactly the same way.

Given that γ-approximate embeddings yield an increase in the congestion of the DirEDPwC solu-
tion by the same factor, we can now prove the impossibility to decide whether γ-approximate embed-
dings exist for γ ∈ Θ(log |VS |/ log log |VS |). For the sake of contradiction assume that there exists a
polynomial-time algorithm for the γ-approximate VNEP for some γ ∈ o(log |VS |/ log log |VS |) and that
NP ̸⊆ BP-TIME(

⋃︁
d≥1 nd log log n) holds. Now, consider a DirEDPwC instance with c = 1 and assume

that a feasible solution of congestion 1 exists. Clearly, the DirEDPwC solution of congestion c = 1
induces a feasible embedding (without exceeding edge capacities) of the respective VNEP instance. Ac-
cordingly, the γ-approximate VNEP algorithm must return a γ-approximate embedding in polynomial-
time. The γ-approximate solution can then be used to recover a solution to the original DirEDPwC
instance having congestion c = γ ∈ o(log |VS |/ log log |VS |) = o(log n/ log log n), where n = |V | = |VS |
denotes the number of nodes of the original DirEDPwC instance. However, under the assumption that
NP ̸⊆ BP-TIME(

⋃︁
d≥1 nd log log n) holds, the construction of this DirEDPwC instance of congestion

c = γ contradicts Theorem 5.18, which states that such an approximate solution cannot (always) be found
in polynomial-time. Hence, finding γ-approximate in polynomial-time is in general impossible for some
γ ∈ Θ(log n/ log log n). ■

We will now derive a similar result for the impossibility of solving the γ-approximate VNEP variant
under capacity restrictions ⟨VE | - ⟩. In contrast to the variant ⟨E |N ⟩, the reduction from DirEDPwC
is slightly more involved as the endpoints of the commodities have to be fixed using node capacities only.
To concisely state the result, we introduce the notion of core nodes. Specifically, considering a graph
G = (V, E) we use V c = {u ∈ V | |δ+(u) ∪ δ−(u)| ≥ 2} to denote the core nodes having more than a single
incoming or outgoing edge. We may assume that any DirEDPwC instance does only consist of core
nodes, as the following lemma shows.

38



5.4 Hardness of Computing Approximate Embeddings

Lemma 5.20. Any DirEDPwC instance on the graph G = (V, E) can be reduced to an equivalent
instance on a graph Gp = (Vp, Ep), such that Vp contains only core nodes, i.e., V c

p = Vp holds.

Proof. Given the initial graph G = (V, E), the idea is that any non-core node u ∈ V \ V c does not offer
any routing decisions and can therefore be removed from the instance. Specifically, consider a node u ∈ V
only having a single incoming edge e− or only one outgoing edge e+: the edge e− will only be used by
commodities whose target was mapped on u while the edge e+ will only be used by commodities whose
source was mapped on u. Furthermore, these commodities have to use the respective edge. When the
number of commodities having to use such an edge lies above the congestion c, then clearly no solution
can exist, while otherwise the respective node u can be removed, while reassigning the source or the target
of the respective commodities from u to the node incident to u. By iterating this process, equivalent
DirEDPwC instances are obtained until no non-core nodes exist anymore and the graph Gp = (Vp, Ep)
is obtained with Vp = V c

p . ■

Theorem 5.21. Solving the γ-approximate decision VNEP under restrictions ⟨VE | - ⟩ is not possible in
polynomial-time for γ ∈ Θ(log n/ log log n) with n = |V c

S |, unless NP ⊆ BP-TIME(
⋃︁

d≥1 nd log log n) holds.
Again, this result naturally also extends to optimization variants in the setting ⟨VE | - ⟩.

Proof. We essentially use the same argumentation as in the proof of Theorem 5.19, but employ a different
reduction from DirEDPwC to VNEP to fix the source and target mappings of commodities. Our
reduction again takes as input a DirEDPwC instance on the graph G = (V, E) with l commodities
(sk, tk)k∈[l] and outputs an equivalent VNEP instance consisting of a substrate GS(edp) and a request
Gr(edp).

To construct the VNEP instance, we first introduce some additional notation. We denote by O+ : V → N
and O− : V → N the function that counts the number of times a node v ∈ V occurs as source or as
sink in the commodities: O+(v) = |{k ∈ [l] | sk = v}| and O−(v) = |{k ∈ [l] | tk = v}|. To construct the
substrate graph GS(edp) the original graph G is extended as follows. For each node v ∈ V , we add O+(v)
many copies V +,v

S(edp) = {v+
1 , v+

2 , . . . , v+
O+(v)} and O−(v) many copies V −,v

S(edp) = {v−
1 , v−

2 , . . . , v−
O−(v)}. For

each copy v+
k an edge (v+

k , v) is added to ES(edp) while for any sink node v−
k the edge (v, v−

k ) is introduced.
Additionally using the function U : V → [|V |] assigning each vertex a unique numeric identifier, we define
substrate node capacities according to the following rule: all original nodes, v ∈ VS(edp)∩V , are assigned a
capacity of 0, while setting dS(v+

k ) = U(v) and dS(v−
l ) = U(v) for v ∈ V and k ∈ [O+(v)] and l ∈ [O−(v)].

The request graph Gr(edp) = (Vr(edp), Er(edp)) is constructed as in the proof of Theorem 5.19: Vr(edp) con-
sists of two virtual nodes per commodity, Vr(edp) = {ik, jk|k ∈ [l]}, and we set Er(edp) = {(ik, jk)|k ∈ [l]}.
Using again σ : Vr(edp) → V to denote the function indicating the original substrate node location of
the respective virtual nodes, the demand of virtual nodes is set to match the capacity of the respective
endpoints they are to be mapped on: dr(edp)(i) = U(σ(i)) is set for i ∈ Vr(edp). Given these capacities, we
now prove that for any feasible embedding mr(edp) = (mV , mE) any virtual node i ∈ Vr(edp) must indeed
be mapped on a copy corresponding to σ(i). Specifically, we show that for ik ∈ Vr(edp) and jk ∈ Vr(edp),
corresponding to the source and the target of commodity k, mV (ik) ∈ V

+,σ(ik)
S(edp) and mV (jk) ∈ V

+,σ(jk)
S(edp)

must hold.

We show the above statement by using an inductive argument and start off by first considering only the
mappings of virtual nodes which shall be mapped on the (unique) substrate node u of highest value U(u).
Clearly, any virtual node ik ∈ Vr(edp) with σ(ik) = u or any virtual node jk with σ(jk) = u can only be
mapped on substrate nodes of capacity U(u). As only the substrate nodes contained in V +,u

S(edp) ∪ V −,u
S(edp)

offer this capacity, mV (ik) ∈ V +,u
S(edp) ∪ V −,u

S(edp) and mV (jk) ∈ V +,u
S(edp) ∪ V −,u

S(edp) must hold. Furthermore, as
the virtual node ik induces a flow towards jk and not both virtual nodes can be placed on the same copy
of u, the virtual node must be mapped on a node contained in V +,u

S(edp) as only these have outgoing edges.
Analogously, the virtual node jk must be mapped on a node contained in V −,u

S(edp), as only these nodes
have an incoming edge. As the demanded capacities and the substrate capacities of node u are equal, all

39



Chapter 5 Computational Complexity of the Virtual Network Embedding Problem

virtual nodes can be mapped, while having to use all available capacity on the copies of node u. The above
proof scheme can now be iteratively applied for substrate nodes offering the second most capacity etc.,
thus concluding our proof that mV (ik) ∈ V

+,σ(ik)
S(edp) and mV (jk) ∈ V

+,σ(jk)
S(edp) holds for any ik, jk ∈ Vr(edp).

We now argue shortly that by the above construction a solution to the DirEDPwC instance exists if and
only if a solution to the respective VNEP instance exists. To this end, we set the edge capacities to the
congestion value c for original edges contained in E and to 1 to any newly introduced edges towards copies of
substrate nodes. Clearly, any embedding of the virtual edge (ik, jk) ∈ Er must start at mV (ik) ∈ V

+,σ(ik)
S(edp)

and therefore must traverse σ(ik) = sk as the second node. Analogously, the virtual edge must end in
mV (jk) ∈ V

−,σ(jk)
S(edp) and therefore must traverse σ(jk) = tk as second last node. By the same argument

any solution to the DirEDPwC instance yields a solution to the VNEP: considering commodity k ∈ [l]
first suitable (unused) source and target nodes v+ ∈ V +,sk

S(edp) and v− ∈ V −,tk

S(edp) are chosen and afterwards
the embedding is extended by mV (ik) = v+, mV (jk) = v−, and mE(ik, jk) = ⟨(v+, sk), Pk, (tk, v−)⟩.

Similar to the proof of Theorem 5.19 it remains to show that the above equivalence is preserved when
considering γ-approximate embeddings, which may exceed edge capacities by the factor γ. This indeed
remains true, as the above argument that the endpoints of each virtual edge (ik, jk) ∈ Er(edp) must
correctly be mapped on any of the respective source nodes V +,sk

S(edp) and sink nodes V −,tk

S(edp) only relied on (i)
the chosen node capacities and demands and (ii) the orientation of the respective incident edges. Thus, a
γ-approximate embedding increases the congestion of the corresponding DirEDPwC solution by a factor
of exactly γ.

Lastly, using the same argument as in the proof of Theorem 5.19, assuming the existence of a DirEDPwC
instance having a solution with congestion c = 1, it is impossible for any algorithm to find a γ-approximate
embedding with γ ∈ o(log n/ log log n) with n = |V |, unless NP ⊆ BP-TIME(

⋃︁
d≥1 nd log log n) holds.

As we may assume by Lemma 5.20 that the original graph G only consisted of core nodes, we have
n = |V | = |V c

S |, yielding the result. ■

5.5 Hardness under Graph Restrictions

All of our above hardness results are based on a reduction from 3-SAT (except for Theorems 5.19 and 5.21),
yielding a specific directed acyclic substrate graph GS(ϕ) and a specific directed acyclic request graph Gr(ϕ)
and we note the following:

Observation 5.22. Theorems 5.10 - 5.16 still hold when restricting the request and the substrate to
acyclic graphs.

Given the hardness of the VNEP and as for example Virtual Clusters (an undirected star network) can be
optimally embedded in polynomial time (cf. Chapter 8), one might ask whether the hardness is preserved
when restricting request graphs further.

In this section, we derive the result that the VNEP variants considered remain NP-complete when request
graphs are planar and degree-bounded. To obtain that the decision VNEP is NP-complete for planar
and degree-bounded request graphs, we consider reductions from a planar variant of 3-SAT, namely
Clause-Linked Planar 3-Bounded 3-SAT (CP3B-3-SAT):

Theorem 5.23 (CP3B-3-SAT is NP-complete [Fel+95]).
Deciding the satisfiability of a 3-SAT formula remains NP-complete under the following additional

restrictions.

40



5.5 Hardness under Graph Restrictions

1. The graph Gϕ = (Vϕ, Eϕ) is planar, where

Vϕ ={vi |Ci ∈ Cϕ} ∪ {uk |xk ∈ Lϕ}
Eϕ ={{vi, uk} | Ci ∈ Cϕ, xk ∈ xk : xk ∈ Ci} ∪ {vi, vi+1 | i ∈ [M − 1]} ∪ {{vM , v1}} .

2. Each clause Ci ∈ Cϕ contains at most three literals.

3. Each variable xk ∈ Lϕ occurs in exactly three clauses.

An example of a graph Gϕ pertaining to a formula ϕ is depicted in Figure 5.2.

The following lemma connects the CP3B-3-SAT formula ϕ with the corresponding request graph Gr(ϕ).

Lemma 5.24. Given a CP3B-3-SAT formula ϕ, the following holds for the request graph Gr(ϕ) (cf.
Definition 5.5):

1. The request graph Gr(ϕ) is planar.

2. The node-degree of Gr(ϕ) is bounded by 8.

v1 v3v2

u1 u2 u4u3 u1 u2 u4u3

u1 u2 u4u3

planar graph Gφ

planar graph Gr(φ)

v1 v3v2 v1 v3v2

v1 v3v2

Figure 5.2: Depicted is the transformation process of a planar graph Gϕ corresponding to a CP3B-3-SAT
formula ϕ (cf. Theorem 5.23) to the planar graph Gr(ϕ). Concretely, the example formula of Figure 5.1 is
revisited, i.e., ϕ = C1 ∧ C2 ∧ C3, with C1 = x1 ∨ x2 ∨ x3, C2 = x̄1 ∨ x2 ∨ x4, and C3 = x2 ∨ x̄3 ∨ x4. The
solid edges connect clause nodes and literal nodes, while the dashed edges link the clause nodes.
In the first step the edge {v3, v1} is removed and all remaining edges are directed: edges between clause
nodes and literal nodes are oriented towards literal nodes iff. the literal occurs in the respective clause
for the first time (according to the ordering of clause nodes) and edges between clause nodes are oriented
towards the clause with the higher index. In the second step, each outgoing edge of a literal node is
joined with the single incoming edge (duplicating it when necessary), hence allowing to remove the literal
nodes. In the last step, duplicate edges are removed, yielding the request graph Gr(ϕ). Each step of this
transformation process safeguards the graph’s planarity.

41



Chapter 5 Computational Complexity of the Virtual Network Embedding Problem

Proof. We consider an arbitrary CP3B-3-SAT formula ϕ to which the conditions of Theorem 5.23 apply.
We first show that the corresponding request graph Gr(ϕ) is planar by detailing a transformation process
leading from the planar graph Gϕ to Gr(ϕ) while preserving planarity (see Figure 5.2).

Starting with the undirected graph Gϕ, first the edge {vM , v1} is removed and all edges are oriented:
an edge between a clause node and a variable node is oriented from a clause node to a literal node iff.
the literal occurs in the respective clause for the first time according to the clauses’ ordering. The edges
between clause nodes are always oriented towards the clause with the higher index.

Given this directed graph, the literal nodes are now removed by joining the single incoming edge of the
literal nodes with each outgoing edge of the corresponding literal node. In particular, considering the
literal node u2 of Figure 5.2, the single incoming edge (v1, u2) is joined with the outgoing edges (u2, v2)
and (u2, v3) to obtain the edges (v1, v2) and (v1, v3), respectively. As the duplication of the single incoming
edge cannot refute planarity and all incoming and outgoing edges connect to the same node, the planarity
of the graph is preserved in this step. Lastly, duplicate edges are removed to obtain the graph Gr(ϕ),
which is, in turn, planar.

It remains to show, that the request graph Gr(ϕ) corresponding to ϕ exhibits a bounded node-degree of
8 (in the undirected interpretation of the graph Gr(ϕ)). To see this, we note the following. Based on the
second and third conditions of CP3B-3-SAT (cf. Theorem 5.23) each clause node is connected with at
most two different other clauses via each literal node it is connected to, yielding at most 6 neighbors.
Furthermore, any clause is directly connected to at most two further clause nodes via the edges between
clause nodes. ■

Given the above, we easily derive the following theorem:

Theorem 5.25. Theorems 5.10 - 5.16 hold when restricting the request graphs to be planar and degree
8-bounded. Theorems 5.19 and 5.21 hold for planar and degree 1-bounded graphs.

Proof. Our NP-completeness proofs in Section 5.3 and Section 5.4 (except for Theorems 5.19 and 5.21)
relied solely on the reduction from 3-SAT to the decision VNEP using the base Lemma 5.8. As formulas
of CP3B-3-SAT are a strict subset of the 3-SAT formulas, the base Lemma 5.8 is still applicable for
CP3B-3-SAT formulas. However, due to the structure of CP3B-3-SAT formulas, the corresponding
requests in the reductions are planar and exhibit a node-degree bound of 8 by Lemma 5.24. Hence, solving
the VNEP is NP-complete, even when restricting the requests to planar and / or degree-bounded ones.
Lastly, we note that Theorems 5.19 and 5.21 hold for planar and degree 1-bounded (unconnected) request
graphs, as in the reduction only such requests were considered. ■

5.6 Hardness of the VMP and the Fractional Offline VNEP

Before concluding this chapter, based on the above results for the various VNEP variants we derive some
insights into the hardness of the Valid Mapping Problem (VMP), which does only ask for finding valid
mappings (cf. Definition 2.10). As the VMP differs from the VNEP solely by not respecting cumulative
node and edge allocations (cf. Observation 2.11), solving the decision variant of the VMP is equivalent to
solving the decision variant of the VNEP in the settings ⟨ - |NL ⟩ and ⟨ - |NR ⟩. Accordingly, the results
obtained for these VNEP variants carry over to the VMP and we note the following:

Corollary 5.26 (Hardness of the VMP). When disregarding node and edge capacities, the VNEP reduces
to the VMP. Accordingly, considering the decision variant of the VMP, i.e., the task to decide whether
there exists any valid mapping, all results obtained for the VNEP settings ⟨ - |NL ⟩ and ⟨ - |NR ⟩ carry
over to the VMP in these respective settings. In particular, the following holds:

42



5.7 Summary and Novelty of Contributions

(1) The decision variant of the VMP is NP-complete and all optimization variants, specifically also the
one presented in Definition 2.10, are inapproximable (unless P =NP) when considering the settings
⟨ - |NL ⟩ and ⟨ - |NR ⟩ (by Theorem 5.13).

(2) For the variant ⟨ - |NL ⟩ the above still holds when loosening latency bounds by a factor δ < 2 (by
Theorem 5.16).

(3) The above mentioned results are pertained even for acyclic substrate graphs and for acyclic, planar,
degree-bounded requests (by Observation 5.22 and Theorem 5.25).

As the fractional offline VNEP (cf. Definition 2.7) asks for returning a convex combination of valid map-
pings, the same result also applies for the fractional offline VNEP and we only state the NP-hardness:

Corollary 5.27. The following holds for the profit and cost variants of the fractional offline VNEP.

(1) The fractional offline VNEP is NP-hard and inapproximable (unless P =NP) when considering the
settings ⟨ - |NL ⟩ and ⟨ - |NR ⟩.

(2) For ⟨ - |NL ⟩ the above still holds when loosening latency bounds by a factor δ < 2.

(3) The above mentioned results are pertained even for acyclic substrate graphs and for acyclic, planar,
degree-bounded requests (by Observation 5.22 and Theorem 5.25).

5.7 Summary and Novelty of Contributions

Above, a comprehensive set of hardness results for the various settings of the VNEP was given. Our results
are negative in nature: we show that the problem variants are NP-complete and hence inapproximable
(unless P =NP) and that this holds true even for restricted classes of request graphs.

Our results complement and extend the knownNP-hardness results obtained by Amaldi et al. in [Ama+16]
(see Theorem 4.1). In particular, we have proven NP-completeness and do not only consider the profit
variant. Furthermore, we study the latency and edge routing restrictions which were not considered by
Amaldi et al. and show that each combination of node and edge restriction renders the VNEP hard.

We believe that our results are of great importance for future work on embedding virtual networks. For
example, our results on the variant enforcing node placement and latency restrictions are of specific interest
for Service Function Chaining. Surprisingly, the respective problem is hard even when not considering
any capacity constraints. Furthermore, the structural result that the VNEP and the VMP are hard
even for planar request graphs is of importance when studying approximations, as this proves that no
polynomial-time approximations can exist for this class of request graphs (unless P =NP holds), hence,
motivating the study of parametrized algorithms for general request graphs in Chapters 6 and 7.

43



“Its running time is polynomial; also, it is very insensitive to the number of constraints in
the following sense: we do not need to list the faces in advance, but only need a subroutine
which recognizes feasibility of a vector and if it is infeasible then computes a hyperplane
separating it from P . Searching for such a hyperplane is another combinatorial optimization
problem which is often much easier to solve. So this method, the Ellipsoid Method, reduces
one combinatorial optimization problem to a second one. ”

– Grötschel, Lovász, Schrijver [GLS81] 6
XP-Algorithms for the

Fractional Offline VNEP and the VMP

In this chapter we present different algorithms based on Linear Programming to solve the fractional offline
VNEP (cf. Definition 2.7). As will be shown in Chapter 7, the ability to solve the fractional offline VNEP
will allow us to obtain the first approximation algorithms for both the profit and the cost variant of the
offline VNEP. However, as shown in Section 5.6, computing solutions to the fractional offline VNEP
is NP-hard and inapproximable for the VNEP settings ⟨ - |NL ⟩ and ⟨ - |NR ⟩. Thus, even though the
fractional variant poses a major simplification of the offline VNEP, as the respective algorithms do not
have to decide on a single valid mapping anymore, solving the fractional VNEP is itself a challenging
task.

In this chapter LP formulations for the restrictions ⟨VE |NR ⟩ and ⟨VE |NRL ⟩ are given. Notably,
these LP formulations can of course also be used in settings with fewer restrictions, solving the fractional
offline VNEP also in the other potential settings. To motivate our approach, we shortly discuss the
connection to approximations and then give a detailed overview of the contents of this chapter.

Enumerative LP Formulations and Overview of Randomized Rounding. To motivate the Linear
Programming approaches provided in this chapter, we shortly discuss two general LP formulations for the
fractional offline VNEP and discuss how randomized rounding will then be applied in general to obtain
approximate solutions for the VNEP.

The Formulations 6.1 and 6.2 for the profit and the cost variant are based on the explicit enumeration
of all valid mappings for each request. In particular, a ‘decision’ variable fk

r ≥ 0 is used for each map-
ping mk

r ∈ Mr of each request r ∈ R, to indicate the extent to which mapping mk
r is used to embed

r ∈ R. The Constraints 6.3 and 6.7 safeguard the (fractional) feasibility of cumulative allocations (cf.
Definition 2.7). Constraint 6.2 of the profit formulation ensures that the cumulative mapping weights
of each request do not exceed 1, while the Constraint 6.6 of the cost formulation ensures that each re-
quest is fully (fractionally) embedded. The respective objectives naturally follow the definition of the

LP Formulation 6.1: Enumerative Formulation for the Profit Fractional Offline VNEP
max

∑︂
r∈R,mk

r ∈Mr

fk
r · br (6.1)∑︂

mk
r ∈Mr

fk
r≤ 1 ∀r ∈ R (6.2)

∑︂
r∈R,mk

r ∈Mr

fk
r ·A(mk

r , x)≤ dS(x) ∀x ∈ GS (6.3)

fk
r≥ 0 r ∈ R, mk

r ∈Mr (6.4)

44



LP Formulation 6.2: Enumerative Formulation for the Cost Fractional Offline VNEP
min

∑︂
x∈GS

cS(x) ·
∑︂

r∈R,mk
r ∈Mr

fk
r ·A(mr, x) (6.5)∑︂

mk
r ∈Mr

fk
r = 1 ∀r ∈ R (6.6)

∑︂
r∈R,mk

r ∈Mr

fk
r ·A(mk

r , x)≤ dS(x) ∀x ∈ GS (6.7)

fk
r≥ 0 r ∈ R, mk

r ∈Mr (6.8)

respective fractional offline VNEP variants. Disregarding that the set of all valid mappings Mr per re-
quest can in general not be constructed in polynomial-time, solutions to the respective LPs yield the set
Dr = {(fk

r , mk
r ) | mk

r ∈Mr, fk
r ≥ 0} of convex combinations1 of mappings for each request r ∈ R. The

randomized rounding of a solution then generally works as follows. For each request r ∈ R, the mapping
mk

r is selected with probability fk
r (allowing for rejecting r with probability 1−

∑︁
k fk

r in the profit case).
As shown in Chapter 7 rounding the solutions in this way, the first approximations for the different VNEP
variants are obtained.

Overview. Solving the enumerative Formulations 6.1 and 6.2 is (at first) prohibitive due to the expo-
nential number of valid mappings and in this chapter we present several solution approaches to solve the
fractional offline VNEP. Common to all of these formulations is the observation that the structure of the
request graphs greatly influences the ability to solve the fractional VNEP in polynomial-time. Concretely,
we show in Section 6.1 that the classic Multi-Commodity Flow (MCF) formulation is sufficient to solve
the fractional VNEP in the setting ⟨VE |NR ⟩, when the request graphs are trees, but fails as soon as the
request graphs contain cycles.

Analyzing the root causes for the MCF’s failure to capture the structural properties of request graphs
with cycles, a first extended LP formulation is derived, which is applicable only for cactus request graphs
and increases in size by a factor O(|VS |) compared to the MCF formulation. Later on, in Section 6.3,
the idea of the LP formulation for cactus graphs is extended to arbitrary request graphs. However, this
comes at a distinct increase in formulation size: the size grows exponentially in a novel graph number,
namely the extraction width. While this yields the first XP-algorithms (parametrized in the extraction
width), we show that computing the optimal extraction width is NP-hard. Accordingly, in Section 6.4 we
turn towards the well-studied notion of tree decompositions and derive XP-algorithms for the fractional
VNEP which are parametrized in the treewidth of the request graphs. Compared to the extraction width
approach, the treewidth based approach has several distinct advantages:

1. Since tree decompositions have been extensively studied over the course of the last decade, efficient
algorithms are readily available to compute the (optimal) tree decompositions for small graphs.

2. Using the notion of tree decompositions, we present a dynamic programming approach to directly
solve the VMP. This algorithm can then be readily applied as separation oracle to solve the LP For-
mulations 6.1 and 6.2 via column generation. Here, the advantage lies in the observation that, from
a practical point of view, the column generation LP can speed up LP computations by magnitudes
in practice (validated in the evaluation presented in Section 7.6.3).

3. Lastly, while enforcing latency constraints using classic LP formulation is arguably not possible, it
is facilitated by an extension of the presented dynamic programming algorithm to solve the VMP.

1While for the cost variant the set Dr will indeed be a convex combination of mappings, such that
∑︁

k
fk

r = 1 holds, this is
generally not true for the profit variant. However, we still use the term convex combination in this case, as the respective
combination could be extended by the ‘empty mapping’ having weight 1 −

∑︁
k

fk
r .

45



Chapter 6 XP-Algorithms for the Fractional VNEP and the VMP

Therefore, only using the tree decomposition based dynamic programming algorithm, the fractional
offline VNEP can be solved for the setting ⟨VE |NRL ⟩.

As the (fractional) offline VNEP is considered throughout this section, we will omit the term offline from
now on. Furthermore, our LP formulations will always incorporate node placement and edge routing
restrictions as discussed in Section 2.4.

6.1 The Classic Multi-Commodity Formulation and Its Limits

In this section, we revisit the Multi-Commodity Flow (MCF) formulation for solving the VNEP (see
Formulation 6.3), which is widely used [CRB09; MKK14]. We first show the positive result that the
formulation is sufficiently strong to compute solutions to the fractional VNEP when requests are trees.
Subsequently, we show that the formulation fails to allow for the decomposition of cyclic request graphs
into convex combinations of valid mappings.

6.1.1 The Multi-Commodity Formulation

We explain the formulation by considering its integer variant. Notably, the IP Formulation 5.1 is gen-
eralized here as several requests are now considered. Otherwise, we employ the same variables and no-
tation. The variable xr ∈ {0, 1} indicates whether request r ∈ R is embedded or not. The variable
yu

r,i ∈ {0, 1} indicates whether virtual node i ∈ Vr is mapped on substrate node u. Similarly, the flow
variable zu,v

r,i,j ∈ {0, 1} indicates whether the substrate edge (u, v) ∈ ES is part of the path of the virtual
edge (i, j) ∈ Er. The variable ax

r ≥ 0 denotes the cumulative allocations that the embedding of request r
induces on resource x ∈ GS .

By Constraints 6.9 and Constraint 6.10, virtual nodes are only mapped on suitable substrate nodes when
xr = 1 holds. Constraint 6.11 induces an unsplittable unit flow for each virtual edge (i, j) ∈ Er from
the substrate location onto which i was mapped to the substrate location onto which j was mapped.
By Constraint 6.12 the mapping of virtual edges may only consist of allowed substrate edges. Con-
straints 6.13 and 6.14 compute the cumulative allocations while Constraint 6.15 enforces that resource
capacities are respected. Applying the objective max

∑︁
r∈R br · xr the profit variant is obtained. Setting

min
∑︁

x∈GS ,r∈R cS(x) · ax
r and enforcing xr = 1 for all requests r ∈ R the cost variant is obtained.

Formulation 6.3: Multi-Commodity Flow Base Formulation for the VNEP∑︂
u∈V r,i

S

yu
r,i= xr ∀r ∈ R, i ∈ Vr (6.9)

yu
r,i= 0 ∀r ∈ R, i ∈ Vr, u ∈ VS \ V r,i

S (6.10)∑︂
(u,v)∈δ+(u)

zu,v
r,i,j −

∑︂
(v,u)∈δ−(u)

zv,u
r,i,j= yu

r,i − yu
r,j ∀r ∈ R, (i, j) ∈ Er, u ∈ VS (6.11)

zu,v
r,i,j= 0 ∀r ∈ R, (i, j) ∈ Er, (u, v) ∈ ES \ Er,i,j

S (6.12)∑︂
(i,j)∈Er

dr(i, j) · zu,v
r,i,j= au,v

r ∀r ∈ R, (u, v) ∈ ES (6.13)∑︂
i∈Vr

dr(i) · yu
r,i= au

r ∀r ∈ R, u ∈ VS (6.14)∑︂
r∈R

ax
r≤ dS(x) ∀x ∈ GS (6.15)

46



6.1 The Classic Multi-Commodity Formulation and Its Limits

The LP formulation is obtained by relaxing the domain of the above introduced binary variables to [0, 1].
The following lemma states that whenever a virtual node i ∈ Vr is (fractionally) mapped on a certain
substrate node, suitable mappings for all incident edges and their endpoints can be found.

Lemma 6.1 (Local Connectivity Property of the MCF Formulation). Consider a fractional solution
(xr, y⃗r, z⃗r, a⃗r) to the LP Formulation 6.3 for request r ∈ R. If yu

r,i > 0 holds for i ∈ Vr and u ∈ V r,i
S , then

for incoming edges (k, i) ∈ Er and outgoing edges (i, j) ∈ Er there exist substrate paths P v,u
r,k,i and P u,w

r,i,j ,
such that:

(1) P v,u
r,k,i is a path from v to u, such that yv

r,k > 0 and ze
r,k,i > 0 holds for e ∈ P v,u

r,k,i.

(2) P u,w
r,i,j is a path from u to w, such that yw

r,j > 0 and ze
r,i,j > 0 holds for e ∈ P u,w

r,i,j .

The respective paths P v,u
r,k,i and P u,w

r,i,j can be found in time O(|ES |) by a simple graph search.

Proof. Fix any substrate node u ∈ VS for which yu
r,i > 0 holds. We first consider the outgoing edge

(i, j) ∈ Er. By Constraint 6.9,
∑︁

u∈V r,i
S

yu
r,i =

∑︁
v∈V r,j

S
yv

r,j holds. Hence, the virtual node j ∈ Vr must be
mapped also at least with value yu

r,i. If j is also partially mapped on u, i.e., if yu
r,j > 0 holds, then the

result follows directly, as u connects to u using (and allowing) the empty path P u,u
r,i,j = ⟨⟩. If, on the other

hand, yu
r,j = 0 holds, then Constraint 6.11 induces a flow of value yu

r,i at substrate node u with respect to
the commodity zr,i,j . As the right hand side of Constraint 6.11 may only attain negative values at nodes
w ∈ V r,j

S for which yw
r,j > 0 holds, the flow (of commodity zr,i,j) emitted at node u must eventually reach

a node w ∈ V r,j
S with yw

r,j > 0 and hence the result follows for any outgoing edge (i, j) ∈ Er. Note that
the corresponding path P u,w

r,i,j can be constructed in time O(|ES |) by a simple breadth-first search, which
only considers edges (u′, v′) ∈ ES for which zu′,v′

r,i,j > 0 holds.

The argument for incoming edges (k, i) ∈ Er is the same and the respective paths P v,u
r,k,i can be recovered

by breadth-first searches traversing substrate edges (u, v) ∈ ES in their opposite direction when zu,v
r,k,i > 0

holds. ■

6.1.2 Decomposing Solutions to the MCF Formulation

Given the connectivity property of Lemma 6.1, we argue how solutions to the LP relaxation of the MCF
formulation can be decomposed into convex combinations Dr = {(fk

r , mk
r ) | mk

r ∈Mr, fk
r ≥ 0} as long as

the request graphs are trees. The ideas presented henceforth will also apply for the decomposition of our
novel LP formulations presented in Section 6.2 and 6.3.

We naturally apply the idea of Ford and Fulkerson [FF10] for decomposing s − t flows into paths to our
setting. Given a LP solution (xr, y⃗r, z⃗r, a⃗r) for request r ∈ R, we need to find a valid mapping mr =
(mV , mE) ∈ Mr which is covered by the embedding variables. Concretely, letting
V(mr) = {ymV (i)

r,i | i ∈ Vr} ∪ {zu,v
r,i,j | (i, j) ∈ Er, (u, v) ∈ mE(i, j)} denote all the LP variables involved un-

der mapping mr, we say that the mapping mr is covered by the LP solution iff. fr = minV > 0 holds.
Accordingly, the mapping mr of weight fr can be extracted by reducing the variables in V by fr while
adding (fr, mr) to the set of convex combinations Dr. Importantly, after the extraction, the now adapted
LP solution is still feasible and hence the extraction process can be repeated. To find a mapping in the
first place, the mapping of nodes and edges has to be done in some order. We refer to this order as the
extraction order:

Definition 6.2 (Extraction Order GX
r ). Given a virtual network Gr = (Vr, Er), we refer to any rooted

graph GX
r = (Vr, EX

r , sr) as an extraction order, if the following holds:

(1) GX
r is a directed acyclic graph, s.t. each node is reachable from the root sr ∈ Vr, and

(2) EX
r is obtained from Er by (potentially) reversing the orientation of some edges.

47



Chapter 6 XP-Algorithms for the Fractional VNEP and the VMP

Algorithm 6.4: Decomposition algorithm of MCF solutions for Tree Requests
Input : Tree request r ∈ R together with a solution (xr, y⃗r, z⃗r, a⃗r) for Formulation 6.3

Extraction order GX
r = (Vr, EX

r , sr)
Output: Convex combination Dr = {Dk

r = (fk
r , mk

r )}k of valid mappings
1 set Dr ← ∅ and k ← 1
2 while xr > 0 do
3 set mk

r ← (mV , mE) ← (∅, ∅)
4 set Q ← {sr}
5 choose u ∈ V r,sr

S with yu
r,sr

> 0 and set mV (sr) ← u

6 while |Q| > 0 do
7 choose i ∈ Q and set Q ← Q \ {i}
8 foreach (i, j) ∈ δ+

EX
r

(i) do
9 if (i, j) = −→Er(i, j) then

10 compute path P u,v
r,i,j from mV (i) = u to v ∈ V r,j

S according to Lemma 6.1
such that yv

r,j > 0 and zu′,v′

r,i,j > 0 hold for (u′, v′) ∈ P u,v
r,i,j

11 set mV (j)← v and mE(i, j)← P u,v
r,i,j

12 else
13 compute path P v,u

r,j,i from v ∈ V r,j
S to mV (i) = u according to Lemma 6.1

such that yv
r,j > 0 and zu′,v′

r,j,i > 0 hold for (u′, v′) ∈ P v,u
r,j,i

14 set mV (j)← v and mE(−→Er(i, j))← P u,v
r,j,i

15 set Q ← Q∪ {j}

16 set Vk ← {xr} ∪ {ymV (i)
r,i |i ∈ Vr} ∪ {zu,v

r,i,j |(i, j) ∈ Er, (u, v) ∈ mE(i, j)}
17 set fk

r ← minVk

18 set v ← v − fk
r for all v ∈ Vk and set ax

r ← ax
r − fk

r ·A(mk
r , x) for all x ∈ GS

19 add Dk
r = (fk

r , mk
r ) to Dr and set k ← k + 1

20 return Dr

We denote by −→E r : EX
r → Er the function yielding the edge’s original orientation and by −→EX

r : Er → EX
r

its inverse. We write δ+
X (i) = {(i, j) ∈ EX

r } and δ−
X (i) = {(j, i) ∈ EX

r } to denote the outgoing and incoming
edges with respect to the edge set EX

r . □

Given the extraction order GX
r , the extraction process works by first choosing a suitable mapping location

for the root sr. Given this location, Lemma 6.1 is applied to obtain mappings for all outgoing edges of
sr (according to EX

r ) together with their heads. Continuing to apply Lemma 6.1 for each of the newly
mapped nodes, a complete mapping in which all virtual nodes and edges are mapped on suitable substrate
nodes and edges is constructed.

Algorithm 6.4 formalizes the decomposition scheme to extract convex combinations of valid mappings
from solutions to Formulation 6.3. The algorithm extracts mappings mk

r of value fk
r iteratively, as long

as xr > 0 holds. Initially, in the k-th iteration, none of the virtual nodes and edges are mapped. As
xr > 0 holds, the root node sr must be mapped accordingly by Constraint 6.9, i.e., there must exist a
node u ∈ V r,sr

S with yu
r,sr

> 0 and the algorithm sets mV (sr) = u. Given this initial fixing, the algorithm
iteratively extracts nodes from the queue Q which have already been mapped and considers all outgoing
virtual edges (i, j) ∈ EX

r . If the orientation of edge (i, j) was not changed, i.e., if (i, j) = −→Er(i, j) holds,
then Lemma 6.1 is applied to obtain a mapping of the edge (i, j) together with its head j. If the edge’s
orientation was reversed, i.e., iff. (i, j) ̸= −→Er(i, j) holds, Lemma 6.1 can be applied again, only now a path

48



6.1 The Classic Multi-Commodity Formulation and Its Limits

from the mapping of the head i (according to the edge’s original orientation) to some mapping of the tail
j is obtained. Lastly, the minimum mapping value fk

r is computed and the variables of the LP (including
the allocation variables) are decreased accordingly. The formal correctness of the algorithm is proven in
Lemma 6.3.

Lemma 6.3. Given a virtual network request r ∈ R, whose underlying undirected graph is a tree,
and a solution (xr, y⃗r, z⃗r, a⃗r) to the LP Formulation 6.3, the solution can be decomposed into convex
combinations of valid mappings Dr = {(fk

r , mk
r ) | mk

r ∈Mr, fk
r ≥ 0}, such that the following holds:

• The decomposition is complete, i.e., xr =
∑︁

k fk
r holds.

• The decomposition’s resource allocations are bounded by a⃗r, i.e., ax
r ≥

∑︁
k fk

r · A(mk
r , x) holds for

each resource x ∈ GS .

Proof. Note that the mapping of each virtual node and each virtual edge is valid by construction: Con-
straints (6.10) and (6.12) enforce that a node and an edge can only be mapped in a valid fashion. Fur-
thermore, as GX

r is an arborescence, node mappings are never revoked and each node of Gr will eventually
be mapped. The mapping value fk

r is computed as the minimum of the mapping variables Vk used for
constructing mk

r . Reducing the values of the mapping variables together with the allocation variables a⃗r,
the Constraints 6.9 to 6.13 continue to hold.

As the decomposition process continues as long as xr > 0 holds and in the k-th step at least one variable’s
value is set to 0, it is easy to check that (i) the algorithm terminates with a complete decomposition for
which

∑︁
k fk

r = xr holds and (ii) the algorithm has polynomial runtime, as the number of variables for
request r is bounded by O(|Gr| · |ES |) and in each iteration at least one variable is set to 0. ■

Theorem 6.4. Using the multi-commodity flow formulation, the fractional offline VNEP can be solved
optimally in the setting ⟨VE |NR ⟩ in time O(poly(

∑︁
r∈R |Gr| · |ES |)) when requests are trees.

Proof. The MCF formulation contains O(
∑︁

r∈R |Gr| · |ES |) many variables and accordingly, the time to
solve the respective LP is polynomially bounded in the size of the LP. Furthermore, the decomposition
algorithms runtime is polynomially bounded by the size of the formulation. Considering the profit variant
of the fractional VNEP, the decomposition’s completeness (cf. Lemma 6.3) implies that the decomposi-
tion’s profit equals the objective value of the LP and is hence optimal. Considering the cost variant of the
fractional VNEP, by Lemma 6.3 we have that

∑︁
k fk

r = 1 holds for each request and by the boundedness
of the allocation variables, the cost of the convex combination must be less than the LP’s objective value;
hence, the returned convex combination must also be optimal when considering the cost variant. ■

6.1.3 Limitations of the MCF Formulation

Having shown the decomposability of LP solutions for tree requests, we now show that this does not hold,
if the request graphs contain cycles. Figure 6.1 gives an example for an LP solution of Formulation 6.3
from which no valid mapping (that is covered) can be extracted. Concretely, considering the mapping of
i on u1 and following the depicted extraction order, k and j must be mapped on u6 and u2, at the same
time. However, the mapping of j on u2 only allows for the mapping of k on u3 and no valid mapping can
be extracted and we obtain the following.

Theorem 6.5. Solutions to the LP Formulation 6.3 can (in general) not be decomposed into convex
combinations of valid mappings, if request graphs contain cycles. Accordingly, the integrality gap of the
LP Formulation 6.3 is unbounded for cyclic request graphs.

Proof. Figure 6.1 depicts an example solution to the LP Formulation 6.3 from which not a single valid
mapping can be extracted. The validity of the depicted solution is easy to check. As virtual node i ∈ Vr

is mapped onto substrate node u1 ∈ VS , and u2 ∈ VS is the only neighboring node with respect to the
commodity zr,i,j that hosts j ∈ Vr, a mapping (mV , mE) with mV (i) = u1 and mV (j) = u2 must exist.

49



Chapter 6 XP-Algorithms for the Fractional VNEP and the VMP

Similarly, mV (k) = u3 must hold. However, the flow of virtual edge (k, i) ∈ Er leaving u3 ∈ VS only leads
to u4 ∈ VS . Hence the virtual node i ∈ Vr must be mapped both on u1 and u4. As the same argument
applies when considering the mapping of i onto u4, no valid mapping can be extracted.

We now show that the formulation exhibits an unbounded integrality gap. Consider the following restric-
tions for mapping the virtual links: Er,i,j

S = {(u1, u2), (u4, u5)}, Er,j,k
S = {(u2, u3), (u5, u6)},

Er,k,i
S = {(u3, u4), (u6, u1)}. Note that the solution depicted in Figure 6.1 is still feasible for the MCF

LP. Considering the profit variant of the MCF formulation, the LP will attain an objective of br. As on
the other hand, there does not exist a valid mapping of request r on GS , the optimal solution achieves a
profit of 0. Hence, the integrality gap of the profit formulation is unbounded.

For the cost variant, we add an edge (u3, u1) of arbitrarily high cost to the substrate and include this
edge in the set of allowed edges for the virtual edge (k, i) ∈ Er. Hence, there exists only a single valid
mapping, which uses this edge (u3, u1) while the MCF formulation might still use the LP solution depicted
in Figure 6.1. Hence, as the cost of the edge (u3, u1) can be arbitrarily high, the integrality gap is
unbounded. ■

6.2 LP Formulation for Cactus Request Graphs

In this section, we present a novel LP formulation and its accompanying decomposition algorithm for
the class of cactus request graphs, i.e., graphs for which cycles intersect in at most a single node (in its
undirected interpretation). Accordingly, these graphs can be uniquely decomposed into cycles and a single
forest (cf. Lemma 6.6 below).

Before delving into the details of our cactus LP formulation, we discuss our main insight on how to over-
come the limitations of the MCF formulation and accordingly how to derive decomposable formulations.
To this end, it is instructive, to revisit the non-decomposable example of Figure 6.1 by applying the de-
composition Algorithm 6.4 on the depicted LP solution. Concretely, we consider the acyclic reorientation
GX

r = (Vr, EX
r , sr) with EX

r = {(i, k), (i, j), (j, k)}, such that i is the root, i.e., sr = i holds. Assuming that
i is initially mapped on node u1, Algorithm 6.4 will map edges (i, k) and (i, j) first, setting mV (k) = u6 and
mV (j) = u2 However, when the edge (j, k) is processed, k must be mapped on substrate node u3 ̸= mV (k)
and the algorithm hence fails to produce a valid mapping. Accordingly, to avoid such diverging node
mappings, our key idea is to decide the mapping location of nodes with more than one incoming edge
(with respect to the request’s acyclic reorientation GX

r ) a priori.

By considering only cactus request graphs, the above can be implemented rather easily as exactly one node
of each cycle has more than one incoming edge: one only needs to ensure compatibility of node mappings
for this node. To resolve potential conflicts for the mapping of this unique cycle target, our formulation

Request Gr

i

jk

Substrate GS LP Solution

u1

u2

u3

u4

u5

u6

0.5i

0.5j

0.5k

0.5i

0.5j

0.5k

0.5i

0.5j

0.5k

Decomposition

0.5k

Extraction

i

jk

Order GX
r Attempt

0.5k

Figure 6.1: Example showing that solutions to the LP Formulation 6.3 cannot be decomposed into convex
combinations of valid mappings. The LP solution with xr = 1 is depicted as follows. Substrate nodes are
annotated with virtual node mappings: 0.5i at node u1 indicates yu1

r,i = 1/2. Substrate edge colors match
the color of the virtual edges mapped to it. All virtual edges are also mapped using flow values 1/2. The
color of substrate edge (u1, u2) therefore implies that zu1,u2

r,i,j = 1/2 holds.

50



6.2 LP Formulation for Cactus Request Graphs

employs multiple copies of the MCF formulation for the respective cyclic subgraph. Specifically, considering
a cycle with virtual target node k, we instantiate one MCF formulation per substrate node w ∈ V r,k

S onto
which k can be mapped. Accordingly, this yields at most |VS | many copies and for each of these copies the
virtual node k is fixed to one specific (substrate) mapping location. Accordingly, as the mapping location
of k is fixed to a specific node, valid mappings for the respective cycles can always be extracted from such
an MCF copy: the mappings of k cannot possibly diverge.

6.2.1 Cactus Request Graph Decomposition and Notation

Based on the assumed cactus graph nature of request graphs, we consider the following decomposition of
request graphs.

Lemma 6.6. Consider a cactus request graph Gr and an acyclic reorientation GX
r of Gr. The graph GX

r

can be uniquely partitioned into subgraphs {GA,C1
r , . . . , GA,Cn

r } ⊔GA,F
r , such that the following holds:

(1) The subgraphs {GA,C1
r , . . . , GA,Cn

r } correspond to the (undirected) cycles of Gr and GA,F
r is the

forest remaining after removing the cyclic subgraphs. We denote the index set of the cycles by
Cr = {C1, . . . , Cn}.

(2) The subgraphs partition the edges of EX
r , i.e., an edge (i, j) ∈ EX

r is contained in exactly one of the
subgraphs.

(3) The edge set EA,Ck
r of each cycle Ck ∈ Cr can itself be partitioned into two branches BCk

1 and BCk
2 ,

such that both lead from sCk
r ∈ V A,Ck

r to tCk
r ∈ V A,Ck

r .

Proof. We prove that the lemma holds independently of the chosen acyclic reorientation. Accordingly, let
GX

r be an arbitrary acyclic reorientation of Gr. We first show that |δ−(i)| ≤ 2 holds for each virtual node
i ∈ Vr with respect to the edge set EX

r , i.e., any virtual node has at most 2 incoming edges in GX
r . If

|δ−(i)| > 2 held, then by the definition of the acyclic reorientation there must exist at least 3 paths P1,
P2, P3 from the root sr to i. Let p1,2, p2,3 ∈ Vr be the last common nodes lying on both P1 and P2 and
P2 and P3, respectively. Clearly, from p1,2, there exist two (otherwise) node-disjoint paths to i and from
p2,3 there exist two (otherwise) node-disjoint paths towards i. Accordingly, there exist at least two cycles
intersecting either in i and p1,2 or i and p2,3, which contradicts the assumption on Gr being a cactus
graph. Accordingly, |δ−(i)| ≤ 2 holds for all virtual nodes i ∈ Vr according to EX

r .

Now, consider any node i ∈ Vr with |δ−(i)| ≤ 2. By performing a graph-search in the opposite direction
of edges in EX

r , a unique common ancestor node i′ can be determined, such that there exist exactly two
paths B1 and B2 (branches) from i′ to i. The union of these branches represents a single ‘cycle’ (cf.
Statement 3). Removing the identified cycle from the graph, the cactus graph property still holds, as
removing edges can never refute it. Accordingly, ‘cycles’ in the acyclic reorientation GA,C1

r , . . . , GA,Cn
r can

be uniquely identified (decomposed) and after repeated removal only the forest GA,F
r remains. Hence, the

first statement of the lemma follows. Lastly, the second statement of the lemma holds trivially as each
edge is either contained in any of the cycles or is part of the remaining forest. ■

Besides the above introduced notation, we denote by GCk
r and GF

r the subgraphs that agree with Gr on
the edge orientations and use V Ck

S,t = V r,t
Ck
r

S to denote the substrate nodes on which tCk
r can be mapped.

6.2.2 LP Formulation for Cactus Request Graphs

Our Formulation 6.5 uses the a priori partition of GX
r into cycles GA,Ck

r and the forest GA,F
r to construct

MCF formulations for the respective subgraphs: for the subgraph GF
r a single copy is used (cf. Con-

straint 6.16) while for the cyclic subgraphs a single MCF formulation is employed per potential target

51



Chapter 6 XP-Algorithms for the Fractional VNEP and the VMP

Formulation 6.5: Base Formulation for Cactus Request Graphs

Constraints (6.9) - (6.13) for GF
r on

variables (xr, y⃗r, z⃗r, a⃗r)JFrK
∀r ∈ R (6.16)

Constraints (6.9) - (6.13) for GCk
r on

variables (xr, y⃗r, z⃗r, a⃗r)JCk, wK
∀r ∈ R, Ck ∈ Cr, w ∈ V Ck

S,t (6.17)

xr=
∑︂

u∈V r,i
S

yu
r,i ∀r ∈ R, i ∈ Vr (6.18)

yu
r,i= yu

r,iJFK ∀r ∈ R, i ∈ V F
r , u ∈ V r,i

S (6.19)

yu
r,i=

∑︂
w∈t

Ck
r

yu
r,iJCk, wK ∀r ∈ R, i ∈ Vr, u ∈ V r,i

S , Ck ∈ Cr : i ∈ V Ck
r (6.20)

0= yu

r,t
Ck
r

JCk, wK ∀r ∈ R, Ck ∈ Cr, w ∈ V Ck

S,t , u ∈ V Ck

S,t \ {w} (6.21)

au
r =

∑︂
i∈Vr

dr(i) · yu
r,i ∀r ∈ R, u ∈ VS (6.22)

au,v
r = au,v

r JFK +
∑︂

Ck∈Cr,w∈V
Ck

S,t

au,v
r JCk, wK ∀r ∈ R, (u, v) ∈ ES (6.23)

∑︂
r∈R

ax
r≤ dS(x) ∀x ∈ GS (6.24)

location contained in the set V Ck

S,t (cf. Constraint 6.17). We index the variables of these sub-LPs by
employing square brackets, i.e., αJβK refers to the variable α of the sub-LP indexed by β.

To bind together these (at first) independent MCF formulations, we reuse the variables x⃗, y⃗, and a⃗ in-
troduced already for the MCF formulation. We refer to these variables, which are defined outside of the
sub-LP formulations, as global variables and do not index these. As we only consider the LP formulation,
all variables are continuous.

The different sub-formulations are linked as follows. We employ Constraint 6.18 to enforce the setting of
the (global) node mapping variables (cf. Constraint 6.9 of Formulation 6.3). By Constraints 6.19 and 6.20,
the node mappings of the sub-LPs for mapping the subgraphs must agree with the global node mapping
variables. With respect to cyclic subgraphs, we note that Constraint 6.20 allows for distributing the global
node mappings to any of the |V Ck

S,t | formulations: only the sum of the node mapping variables must agree
with the global node mapping variable. Constraint 6.21 is of crucial importance for the decomposability:
considering the sub-LP for cycle Ck and target node w ∈ V Ck

S,t , it enforces that the target node tCk
r of the

cycle Ck must be mapped on w. Thus, in the sub-LP JCk, wK both branches BCk
1 and BCk

2 of cycle Ck are
pre-determined to lead to the node w. Lastly, for computing node allocations the global node mapping
variables are used (cf. Constraint 6.22) and for computing edge allocations the sub-LP formulations’
allocations are considered (cf. Constraint 6.23).

6.2.3 Decomposing Solutions to the Cactus LP Formulation

We now argue how to adapt the decomposition Algorithm 6.4 to decompose solutions to the novel Formu-
lation 6.5 for cactus request graphs.

52



6.3 LP Formulations Based on Extraction Width

To decompose the LP solution for a request r, the acyclic extraction order GX
r , which was also used for

constructing the LP, must be handed over to the decomposition algorithm.

As the LP formulation does not contain (global) edge mapping variables, the edge mapping variables used
in Lines 10 and 13 of Algorithm 6.4 must be substituted by edge mapping variables of the respective
sub-LP formulations. Concretely, as each edge of the request graph Gr is covered exactly once, it is clear
whether a virtual edge (i, j) ∈ Er is part of GF

r or a cyclic subgraph GCk
r . If (i, j) ∈ GF

r holds, then
the edge mapping variables z·,·

r,i,jJFrK are used. If on the other hand the edge (i, j) ∈ Er is covered in
the cyclic subgraph GCk

r , then there exist |V Ck

S,t | many sub-LPs to choose the respective edge mapping
variables from. To ensure the decomposability, we proceed as follows.

If the edge (i, j) ∈ EX
r is the first edge of GCk

r to be mapped in the k-th iteration, the mapping variables
z·,·

r,i,jJCk, wK belonging to an arbitrary target node w, with y
mV (i)
r,i JCk, wK > 0, are used. Such a node w

exists by Constraint 6.20.

If another edge (i′, j′) of the same cycle was already mapped in the k-th iteration, the same sub-LP as
before is considered. Accordingly, the mapping of cycle target nodes cannot conflict, and as these are the
only nodes with potential mapping conflicts, the returned mappings are always valid.

To successfully iterate the extraction process, the steps taken in Lines 16 - 18 of Algorithm 6.4 must be
adapted to consider the sub-LP variables. Again, as in each iteration at least a single variable of the
LP is set to 0 and as the cactus Formulation 6.5 contains at most O(|VS |) times more variables than the
MCF Formulation 6.3, the decomposition algorithm still runs in polynomial-time. Hence, we conclude
that the result of Lemma 6.3 carries over to the LP Formulation 6.5 for cactus request graphs and state
the following theorem.

Lemma 6.7. Given a solution (xr, y⃗r, z⃗r, a⃗r) to the LP Formulation 6.5 for a cactus re-
quest graph Gr, the solution can be decomposed into a convex combination of valid mappings
Dr = {(mk

r , fk
r ) | mk

r ∈Mr, fk
r ≥ 0}, such that:

• The decomposition is complete, i.e., xr =
∑︁

k fk
r holds.

• The decomposition’s allocations are bounded by a⃗r, i.e., ax
r ≥

∑︁
k fk

r ·A(mk
r , x) holds for x ∈ GS .

Theorem 6.8. Using the cactus LP formulation, the fractional offline VNEP can be solved optimally in
the setting ⟨VE |NR ⟩ in time O(poly(

∑︁
r∈R |Gr| · |ES | · |VS |)) when requests are cactus graphs.

Proof. By the above argument, the cactus LP formulation increases in size by at most a factor O(|VS |)
compared to the MCF formulation. Accordingly, the result follows from Lemma 6.7 by the same observa-
tions as made in the proof of Theorem 6.4. ■

6.3 LP Formulations Based on Extraction Width

In this section we present an extension of the above presented LP formulations for cactus requests to solve
the fractional VNEP for arbitrary request graphs. We first present the high-level idea of our formulation
and introduce crucial concepts as extraction confluences and the extraction width. After introducing
further notation, we formally present the LP formulation and show the decomposability of its solutions.

53



Chapter 6 XP-Algorithms for the Fractional VNEP and the VMP

6.3.1 Idea and Definitions

Revisiting the shortcomings of the MCF formulation, specifically the example of Figure 6.1, we observe
that there exist two virtual paths towards k in GX

r , namely ⟨(i, k)⟩ and ⟨(i, j), (j, k)⟩. We refer to the
combination of two such paths in GX

r leading from a common virtual node to another common node as
an extraction confluence:
Definition 6.9 (Extraction Confluence CX

i,j). Given an extraction order GX
r , an extraction confluence

CX
i,j = P 1

i,j ⊔ P 2
i,j connects i ∈ Vr to j ∈ Vr using two otherwise node-disjoint paths P 1

i,j , P 2
i,j ⊆ EX

r . We
refer to i as the source and to j as the target of the confluence CX

i,j . □

According to the connectivity property of the MCF formulation (cf. Lemma 6.1), partial mappings can
always be extended, but the disjoint paths of a confluence might lead to different mappings of the con-
fluence’s target as depicted in Figure 6.1. However, this divergence is only possible when the confluence’s
target can be mapped on multiple locations and is not fixed.

b

i

c

a

f

l

j

g

k{j}

{i, l}
{k}

{l}
{j, l}

Figure 6.2: Exemplary labeled GX
r .

We use this as follows. Considering a confluence CX
i,j , our LP

formulation constructs multiple copies of the MCF formulation
for each potential mapping location of the confluence’s target.
In each of these copies, the mapping of the confluence’s target
is fixed to a specific substrate node. To generalize this idea to
multiple confluences, we label edges with confluence targets as
follows.
Definition 6.10 (Extraction Edge Labels). We introduce edge labels LX

r,e ⊆ Vr for e ∈ EX
r as follows.

The extraction order edge e is labeled with node j, i.e., j ∈ LX
r,e holds, iff. a confluence CX

i,j with target
j exists that contains e. We also label the edges in their original orientation accordingly: for edge e ∈ Er

we set Lr,e ≜ LX
r,e′ with e′ = −→EX

r (e). □

The edge labels will be used in our novel LP formulation to instantiate copies of the MCF formulation.
Additionally, we introduce confluence edge bags which partition outgoing edges.
Definition 6.11 (Confluence Edge Bags). Given an extraction order GX

r , the outgoing edges δ+
X (i) of

each node i ∈ Vr are partitioned into a set of edge bags BX
r,i = {BX ,b

r,i }b, such that two edges e1, en ∈ δ+
X (i)

are placed in the same bag BX ,b
r,i , iff. there exists a series of edges e2, e3 . . . , en−1 ∈ δ+

X (i) such that
LX

r,el
∩ LX

r,el+1
̸= ∅ holds for l ∈ {1, . . . , n− 1}.

We denote by LX ,b
r,i =

⋃︁
e∈BX ,b

r,i
LX

r,e the union of labels contained in a bag BX ,b
r,i ∈ BX

r,i and by

LX
b∩e = LX

r,e ∩ L
X ,b
r,i the intersection of labels of the bag BX ,b

r,i and the edge e ∈ EX
r . □

The size of our formulation will be proven to be exponential in the maximal number of labels contained
in any edge bag, and we define the notion of extraction width accordingly.
Definition 6.12 (Extraction Width). The width ewX (GX

r ) of an extraction order GX
r is the maximal

number of labels contained in an edge bag plus one: ewX (GX
r ) = 1 + maxi∈Vr,BX ,b

r,i
∈BX

r,i
|LX ,b

r,i |. Denoting
by X (Gr) the set of all extraction orders of a graph Gr, the extraction width of an arbitrary graph Gr is
the minimum width of any extraction order: ew(Gr) = minGX

r ∈X (Gr) ewX (GX
r ). □

Figure 6.2 depicts an example extraction order containing 5 confluences, which can be uniquely identified
by their sources and targets: CX

a,i, CX
i,j , CX

a,l, CX
b,l, CX

f,k with, e.g.,CX
b,l = {(b, i), (i, f), (f, l)} ⊔ {(b, d), (d, l)}.

According to Definition 6.11, the edge bags of node f are BX
r,f = {BX ,1

r,f = {(f, j)}, BX ,2
r,f = {(f, g), (f, k)},

BX ,3
r,f ={(f,l)} } with the corresponding label sets being LX ,1

r,f = {j}, LX ,2
r,f = {k}, and LX ,3

r,f = {l}. For node
i, only a single edge bag BX

r,i = {BX ,1
r,i = {(i, c), (i, f)}} with label set LX ,1

r,i = {j, l} exists.

54



6.3 LP Formulations Based on Extraction Width

6.3.2 Structure of Edge Labels

In the following, we study the structure of extraction confluences and of edge labels. We employ the
following notation for indicating edges being reachable from or by nodes in the extraction order.

Definition 6.13 (Reachable Edge Sets). Given an extraction order GX
r , we denote by

EX ,suc
r,i , EX ,pre

r,j ⊆ EX
r the set of edges which can be reached from i ∈ Vr and which may lead to j ∈ Vr.

We denote by EX
r,i⇝j = EX ,suc

r,i ∩ EX ,pre
r,j the edges lying on a path from i to j. □

The following lemma forms the basis for efficiently computing edge labels.

Lemma 6.14. Edge e ∈ EX
r is labeled with j ∈ Vr iff. there exists a node i ∈ Vr, such that (i) e lies on

a path from i to j, i.e., e ∈ EX
r,i⇝j , and (ii) a confluence CX

i,j from i to j exists.

Proof. It is easy to see that the above two conditions are necessary. Clearly, if the first condition does not
hold for some node i ∈ Vr, then there cannot exist a confluence from i to j covering the edge e. Secondly,
if there does not exist any confluence between i and j, then there cannot exist a confluence from i to j
covering e.

We now show that these conditions are also sufficient. First, note that any path from i to j must be
contained in EX

r,i⇝j . Let e ∈ EX
r,i⇝j denote any edge for which the above conditions hold. We show that

edge e lies on a confluence with target j. By the second condition, there exist two node-disjoint paths
P 1

i,j , P 2
i,j ⊆ EX

r,i⇝j from i to j. Now, if e lies on either of these paths, then P 1
i,j ⊔ P 2

i,j already constitutes
a confluence. Hence, assume that e does not lie on either of these paths. Let e = (k, l), i.e., k is the tail
and l the head. Furthermore, let Pi,k ⊆ EX

r,i⇝j denote any path from i to k and denote by Pl,j ⊆ EX
r,i⇝j

any path from l to j. Let Pi,e,j denote the path obtained from joining Pi,k, e = (k, l), and Pl,j .

If Pi,e,j only intersects with P 1
i,j (or P 2

i,j), then Pi,e,j together with P 2
i,j (or P 1

i,j) constitutes a confluence
towards j which covers e, proving our claim. Hence, assume that Pi,e,j intersects with both paths. Let k′

be the last node on path Pi,k which also lies on P 1
i,j or P 2

i,j and let l′ denote the first node on Pl,j which
also lies on P 1

i,j or P 2
i,j . Assume now w.l.o.g. that both k′ and l′ lie on path P 1

i,j , then the subpath of P 1
i,j

from k′ to l′ can be substituted with the subpath from k′ to l′ of Pi,e,j , yielding the confluence depicted
on the left of Figure 6.3. On the other hand, if k′ lies on P 1

i,j while l′ lies on path P 2
i,j , then there exists a

confluence from k′ to j covering the edge e: using the suffix of path P 1
i,j starting at node k′ as first path

and the subpath of Pi,e,j from k′ to l′ together with the suffix of P 2
i,j starting at l′, a confluence is found

that covers e. By construction, as the nodes of path Pi,e,j between k′ and l′ do neither lie on P 1
i,j nor P 2

i,j ,
the paths of the constructed confluence are disjoint (see Figure 6.3 (center) for a visualization). Hence,
the two conditions stated in the lemma are also sufficient to decide whether an edge e ∈ EX

r is covered by
a confluence towards j ∈ Vr holds. ■

Based on Lemma 6.14, the edge labels can be computed in polynomial-time. Concretely we apply Menger’s
theorem [Men27] to decide for any combination of virtual nodes i, j ∈ Vr, whether two disjoint paths exist
from i to j. If this is the case, then all edges lying in EX

r,i⇝j must be labeled with j and we obtain the
following lemma.

Lemma 6.15. The edge labels LX
r,e can be computed in time O(|Vr|3 · |Er|).

Proof. We argue that the conditions of Lemma 6.14 can be checked in polynomial time. For each potential
target node j ∈ Vr and each source node i ∈ Vr, we check whether two node-disjoint paths exist from
i to j by applying Menger’s theorem [Men27]: for each node k lying on a path from i to j, we decide
whether j is still reachable from i when k is removed. If this is true for each intermediate node, then by
Menger’s theorem, there exist at least two node-disjoint paths from i to j and hence there must exist a
confluence CX

i,j . Hence, given the existence of a confluence, all edges in EX
r,i⇝j are labeled by j. At most

O(|Vr|2) many node pairs need to be considered and the check whether two node-disjoint paths exist can

55



Chapter 6 XP-Algorithms for the Fractional VNEP and the VMP

k

l

j

P 2
i,jP 1

i,j

k′

l′

i

Pi,e,j

k

l

j

P 2
i,jP 1

i,j

k′

l′

i

Pi,e,j

l′

j

i

l

s′

P 1
i,j P 2

i,j

Ps′,i Ps′,k

km

Figure 6.3: Visualization of the constructions used in the proofs of Lemma 6.14 (left and center) and
Lemma 6.16 (right) to show that an edge (k, l) is covered by a confluence. The confluence path P 1

i,j is
dashed with a single dot and the confluence path P 2

i,j is dashed with two dots. The constructed confluences
consist of the highlighted paths in red and blue.
Lemma 6.14 (left and center): Construction of a confluence when P 1

i,j intersects with k′ and l′ (left).
Construction of a confluence when k′ lies on P 1

i,j , while l′ lies on P 2
i,j (center).

Lemma 6.16 (right): As there must exist a node s′ reaching both i and m, a confluence with target j is
constructed covering the edge (m, l).

be implemented in time O(|Vr| · |Er|). Hence, the overall runtime to compute all labels is bounded by
O(|Vr|3 · |Er|). ■

The two following lemmas state important structural properties for edge labels, namely that incoming
edges are always labeled the same and that each label has a unique source.

Lemma 6.16. LX
r,e = LX

r,e′ holds for any pair of incoming edges e, e′ ∈ δ−
X (l) of node l ∈ Vr.

Proof. Assume for the sake of contradiction that an edge e = (m, l) is labeled with j, i.e., j ∈ LX
r,e, and

that some other incoming edge e′ = (k, l) is not labeled with j, i.e., j /∈ LX
r,e′ . As the edge e is labeled with

j, there must exist some confluence CX
i,j covering e. As the edge e′ = (k, l) is not labeled with j, we obtain

from Lemma 6.14 that the edge e′ is not reachable from i, i.e., e′ /∈ EX
r,i⇝j holds. As both i and k are

reachable from the root sr of GX
r , there must exist paths Psr,i and Psr,k leading from the root sr to i and

k, respectively. Let s′ denote the last node that lies on both of these paths. The subpaths Ps′,i and Ps′,k

of Psr,i and Psr,k starting at s′ do not use any of the edges in EX
r,i⇝j . Hence, joining Ps′,i with P 1

i,j and
joining Ps′,k with e′ = (k, l) and the subpath of P 2

i,j beginning at node l, a confluence is constructed that
covers edge e′ (see Figure 6.3 (right) for an visualization of the construction). Therefore, also e′ must be
labeled with j, yielding a contradiction to our assumption that e′ was not labeled by j and all incoming
edges must be labeled the same. ■

Lastly, the following lemma shows that any label is introduced only once.

Lemma 6.17. For each label j ∈ Vr there exists a unique root node sj ∈ Vr, such that:

(1) Any edge e ∈ EX
r being labeled with j ∈ LX

r,e is contained in EX
r,sj⇝j .

(2) Any path from sr (the root of the extraction order) to j passes through sj .

Proof. Consider two nodes i, i′ ∈ Vr being the sources of confluences CX
i,j and CX

i′,j towards j. Assume that
neither i occurs in EX

r,i′⇝j nor that i′ occurs in EX
r,i⇝j . As the graph GX

r is rooted, there must exist a node
s′ reaching both i and i′ and spawning a confluence towards j. Furthermore, (EX

r,i⇝j ∪EX
r,i′⇝j) ⊆ EX

r,s′⇝j

holds in this case. Hence, for any pair of nodes i, i′ being sources of confluences towards j, either one of
the nodes is reachable from the other, or there exists another node s′ ∈ Vr such that EX

r,i⇝j and EX
r,i′⇝j

are contained in EX
r,s′⇝j . Clearly, as either i dominates i′ or i′ dominates i, or there exists some other

56



6.3 LP Formulations Based on Extraction Width

node s′ dominating both, there must exist a single unique root node sj ∈ Vr such that all edges labeled
with j lie in EX

r,sj⇝j .

The second claim is immediate: if there was to exist some path from the root sr to an edge being labeled
with j without passing through the unique root sj ∈ Vr, then there must exist a confluence CX

s′,j starting at
some other node s′ ∈ Vr, such that s′ reaches sj but sj does not reach s′. Hence, by our above observation
s′ dominates sj and sj cannot be the unique root. Thus, all paths from the root must pass through sj on
their way to j. ■

6.3.3 Decomposable Extraction Width LP Formulation

Our novel Linear Programming Formulation 6.6 is based on the idea to decide the mapping locations
of confluence targets a priori. We do so by considering copies or sub-LPs of the MCF formulation (see
Constraint 6.25) and we employ the following notation. For an edge e = (i, j) ∈ Er, we denote by
Gr,e = (Vr,e, Er,e) with Vr,e = {i, j} and Er,e = {e} the subgraph of Gr containing only edge e. Variables
of sub-LPs are named as before: αJβK denotes the variable α in the copy identified by β. To denote the
combinations of mapping possibilities of labels, we employ M(X) to denote the function space from the
set X to VS , i.e., M(X) = [X → VS ]. Accordingly, considering an edge e ∈ Er of request r ∈ R being
labeled by Lr,e, we instantiate one copy of the MCF formulation per edge label mapping mL

e ∈ M(Lr,e)
(cf. Constraint 6.25). For better readability, we write ⦉f |Z⦊ : Z → Y to denote f|Z , i.e., the (standard)
restriction of the function f : X → Y on the subset Z ⊆ X. Hence, ⦉f |Z⦊(z) = f(z) holds for z ∈ Z.

To link the LP copies, we employ two types of global node mapping variables. We use the global yu
r,i

variables already presented in Formulation 6.3 as well as node mapping variables γu
r,i,b,a ∈ [0, 1] for edge

bags BX ,b
r,i ∈ BX

r,i, each mapping mL
a ∈ M(LX ,b

r,i ) of the labels contained in the respective edge bag, and
the mapping locations u ∈ V r,i

S . The classic variables yu
r,i are used for coupling the embedding variable

xr and the sub-LP node mapping variables (see Constraints 6.26 and 6.27) as well as for computing the
node allocations (see Constraint 6.31). The node mapping variables for edge bags γu

r,i,b,a are defined for
all mappings of their label set mL

a ∈ M(LX ,b
r,i ). As LX

r,e ⊆ L
X ,b
r,i holds for all edges e ∈ BX ,b

r,i , the node
mapping variables of an edge bag directly induce node mappings for all edges contained in the respective
bag (see Constraint 6.28).

In the following, we argue how ‘flows’ are induced and accordingly how solutions to the formulation can be
decomposed. Figure 6.4 visualizes the workings of Constraints 6.28 to 6.30. Assuming that xr > 0 holds,
then by Constraint 6.26 there will exist a substrate node u ∈ V r,sr

S onto which the root sr is placed, i.e.,
yu

r,sr
> 0 holds. Constraint 6.27 distributes the quantity yu

r,sr
over the sub-LP node mapping variables

while Constraint 6.28 ensures that these node mapping variables agree with each other. Due to the validity
of the MCF Formulation 6.3, by setting the node mapping variable for one of the endpoints of the edge
graph Gr,e, the node mapping variables of the other endpoint of Gr,e must be set accordingly. On the
other hand, Constraint 6.29 ensures that any incoming edge (according to the extraction order) agrees
with the respective node bag variables and hence force the further distribution of ‘flows’. The correctness
of the formulation then mostly follows from the following observations:

1. Based on the acyclicity of the extraction order and the fact that all nodes can be reached from the
root sr, ‘flow’ is distributed throughout the whole request graph.

2. A novel edge label j is introduced only exactly once according to Lemma 6.17, namely at the root
sj ∈ Vr and hence only at node sj the a priori mapping of j is fixed.

3. For any confluence CX
k,i with target i all incoming edges of i are itself labeled by i (cf. Lemma 6.16).

57



Chapter 6 XP-Algorithms for the Fractional VNEP and the VMP

Formulation 6.6: Novel Decomposable Base Formulation for the VNEP
(6.9) - (6.13) for Gr,e on variables (xr, y⃗r, z⃗r, a⃗r)Je, mL

e K ∀r ∈ R, e ∈ Er, mL
e ∈M(Lr,e) (6.25)

xr =
∑︂

u∈V r,i
S

yu
r,i ∀r ∈ R (6.26)

yu
r,i =

∑︂
mL

e ∈M(Lr,e)

yu
r,iJe, mL

e K ∀r ∈ R, i ∈ Vr, u ∈ V r,i
S , e∈Er : i ∈ Vr,e (6.27)

yu
r,iJ
−→
Er(e), mL

e K =
∑︂

mL
a ∈M(LX ,b

r,i
):

⦉mL
a |LX

b∩e⦊=mL
e

γu
r,i,b,a

∀r ∈ R, i ∈ Vr, u ∈ V r,i
S , BX ,b

r,i ∈ BX
r,i,

e ∈ BX ,b
r,i , mL

e ∈M(LX
r,e)

(6.28)

∑︂
mL

e ∈M(LX
r,e):

⦉mL
e |LX

b∩e⦊=mL
b∩e

yu
r,iJ
−→
Er(e), mL

e K =
∑︂

mL
a ∈M(LX ,b

r,i
):

⦉mL
a |LX

b∩e⦊=mL
b∩e

γu
r,i,b,a

∀r ∈ R, i ∈ Vr, u ∈ V r,i
S , e ∈ δ−

X (i),
BX ,b

r,i ∈ BX
r,i, mL

b∩e ∈M(LX
b∩e)

(6.29)

yu
r,iJ
−→
Er(e), mL

e K = 0 ∀r ∈ R, i ∈ Vr, e ∈ δ−
X (i) : i ∈ LX

r,e,

mL
e ∈M(LX

r,e), u ∈ V r,i
S \ {mL

e (i)}
(6.30)

au
r =

∑︂
i∈Vr

dr(i) · yu
r,i ∀r ∈ R, u ∈ VS (6.31)

au,v
r =

∑︂
e∈Er

mL
e ∈M(Lr,e)

au,v
r Je, mL

e K ∀r ∈ R, (u, v) ∈ ES (6.32)

∑︂
r∈R

ax
r ≤ dS(x) ∀x ∈ GS (6.33)

xr ∈ [0, 1], ∀r ∈ R; yu
r,i ∈ [0, 1], ∀r ∈ R, i ∈ Vr, u ∈ V r,i

S ; ax
r ≥ 0, ∀r ∈ R, x ∈ GS

γu
r,i,b,a ∈ [0, 1], ∀r ∈ R, i ∈ Vr, u ∈ V r,i

S , BX ,b
r,i ∈ BX

r,i, mL
a ∈M(LX ,b

r,i )
(6.34)

Accordingly, considering a mapping mL
e ∈ M(Lr,e) of an incoming edge e ∈ δ−

X (i), Constraint 6.30
explicitly forbids node placements of i to nodes V r,i

S \{mL
e (i)} in the respective sub-LPs. Hence, incoming

edges of node i labeled by mL
e can only map i to mL

e (i) ∈ V r,i
S .

Theorem 6.18. Considering specific extraction orders GX
r for each request r ∈ R, the size of the novel

decomposable Formulation 6.6 is bounded by O(
∑︁

r∈R |GS |ewX (GX
r ) · |Gr|).

Proof. Consider a single request r ∈ R and a fixed extraction order GX
r . There are at most ewX (GX

r )− 1
many sub-LPs for each edge e ∈ EX

r , as |LX
r,e| ≤ ewX (GX

r )− 1 holds by definition. Otherwise, the formu-
lation’s size is dominated by the node bag mapping variables γu

r,i,b,a and the respective Constraints 6.28
- 6.30. Since the bags partition the outgoing edges and encode all potential mappings of the respective
label set LX ,b

r,i while including the mapping location of the respective virtual node i ∈ Vr, the size of the
respective formulation parts is bounded by O(|Vr| · |VS |ewX (GX

r )). The result is obtained by summing over
the requests. ■

58



6.3 LP Formulations Based on Extraction Width

yi1r,iJ(i, a), [i 7→ i1, l 7→ l1]K

yi1r,fJ(i, a), [i 7→ i1, l 7→ l2]K

yi1r,iJ(i, a), [i 7→ i2, l 7→ l1]K

yi1r,iJ(i, a), [i 7→ i2, l 7→ l2]K

γi1r,i,1,[j 7→j1,l 7→l1]

{j}

{i, l}
{j, l}

a
i

c

f

γi1r,i,1,[j 7→j1,l 7→l2]

γi1r,i,1,[j 7→j2,l 7→l1]

γi1r,i,1,[j 7→j2,l 7→l2]

yi1r,iJ(i, c), [j 7→ j1]K

yi1r,iJ(i, c), [j 7→ j2]K

yi1r,iJ(f, i), [j 7→ j1, l 7→ l1]K

yi1r,iJ(f, i), [j 7→ j1, l 7→ l2]K

yi1r,iJ(f, i), [j 7→ j2, l 7→ l1]K

yi1r,iJ(f, i), [j 7→ j2, l 7→ l2]K

Figure 6.4: Visualization of the relation of the different node mapping variables for the example of
Figure 6.2 under the assumption that the virtual nodes i, j, k ∈ Vr can be mapped only on ik, jk, lk ∈ VS

for k ∈ {1, 2}, respectively. Depicted are only the variables relating to the mapping of i to i1. To highlight
that the LP copies are created upon the original orientation of edges, we assume that (i, a), (f, i) ∈ Er

holds and that these were reversed for GX
r depicted in Figure 6.2 on Page 54.

The edges and nodes are to be read as ‘flows’ for which flow preservation holds. The directions of the
edges shall help the reader to follow how the node mapping variables of ‘incoming’ edges trigger the node
mapping variables of ‘outgoing’ edges. The connections on the left are due to Constraint 6.29 and the
connections on the right are due to Constraint 6.28. Note that the dashed edges on the left will be 0 due
to Constraint 6.30: in the index of the respective sub-LP, the virtual node i is mapped onto i2 and hence
the respective dashed variables are set to 0.

6.3.4 Decomposition Algorithm for the Extraction Width LP Formulation

We now formally present the decomposition algorithm (see Algorithm 6.7) and prove its correctness. The
algorithm builds on the ideas of the decomposition algorithm for the MCF Formulation 6.3 and the cactus
LP Formulation 6.5.

Fixing the mapping of the root initially, mappings for the outgoing edges (with respect to the extraction
order) are extracted again together with the mappings of the heads of these edges using Lemma 6.1.
However, as the edge embeddings are computed using a copy of the MCF formulation for each node
mapping function of the edge’s labels, the mapping of the edge’s labels to substrate nodes must be fixed
first. To this end, we employ the node mapping variables γu

r,i,b,a of the edge bags. Concretely, whenever
the outgoing edges of i ∈ Vr are mapped, we show that given the mapping of the virtual node i onto
some substrate node mV (i) = u, we can always find a variable γu

r,i,b,a for edge bag BX ,b
r,i ∈ BX

r,i and
mL

a ∈ M(LX ,b
r,i ), such that (i) the mapping of the bag mL

a agrees with the previous node mappings, i.e.,
mL

a (i′) = mV (i′) holds for all previously mapped virtual nodes i′, and that (ii) the variable γu
r,i,b,a is strictly

greater 0. Given such a variable γu
r,i,b,a and fixing the node mappings of all the new labels contained in

LX
r,e according to mL

a , mappings for the outgoing edges can always be extracted due to Constraint 6.28.
Concretely, after having fixed the mappings of the labels of the outgoing edge e, Constraint 6.28 ensures
that for the sub-LP with index ⦉mV |LX

r,e⦊ the condition yu
r,i > 0 holds, thereby allowing the application

of Lemma 6.1 to extract the mapping for the edge e. Having given this intuition, we now formally prove
its correctness.

Theorem 6.19. For a request r ∈ R and its extraction order GX
r , a solution to Formulation 6.6 can be

decomposed into Dr = {(fk
r , mk

r ) | mk
r ∈Mr, fk

r ≥ 0} in time O(|GS |2·ewX (GX
r )+1 · |Gr|2), such that:

• The decomposition is complete, i.e., xr =
∑︁

k fk
r holds.

59



Chapter 6 XP-Algorithms for the Fractional VNEP and the VMP

Algorithm 6.7: Decomposition algorithm for solutions to the novel LP formulation 6.6
Input : Request r ∈ R, extraction order GX

r , solution to Formulation 6.6
Output: Convex combination Dr = {Dk

r = (fk
r , mk

r )}k of valid mappings
1 set Dr ← ∅ and k ← 1
2 while xr > 0 do
3 set mk

r = (mV , mE) ← (∅, ∅)
4 set Q ← {sr}
5 choose u ∈ V r,sr

S with yu
r,sr

> 0 and set mV (sr) ← u

6 while |Q| > 0 do
7 choose i ∈ Q and set Q ← Q \ {i}
8 foreach BX ,b

r,i ∈ BX
r,i do

9 let MV = (mV )−1(VS) denote the already mapped nodes
10 choose mL

a ∈M(LX ,b
r,i ), s.t. γ

mV (i)
r,i,b,a > 0 and ⦉mL

a |L
X ,b
r,i ∩MV ⦊ = ⦉mV |LX ,b

r,i ∩MV ⦊
11 set mV (j)← mL

a (j) for all j ∈ LX ,b
r,i \MV

12 foreach e = (i, j) ∈ BX ,b
r,i do

13 if (i, j) = −→Er(i, j) then
14 compute path P u,v

r,i,j from mV (i) = u to v ∈ V r,j
S according to Lemma 6.1

s.t.
yv

r,jJ(i, j), ⦉mV |Lr,e⦊K > 0 and
zu′,v′

r,i,j J(i, j), ⦉mV |Lr,e⦊K > 0 for all (u′, v′) ∈ P u,v
r,i,j

15 set mE(i, j)← P u,v
r,i,j and if mV (j) = ∅ then mV (j)← v

16 else
17 compute path P v,u

r,j,i from v ∈ V r,j
S to mV (i) = u according to Lemma 6.1

s.t.
yv

r,jJ
−→
Er(i, j), ⦉mV |LX

r,e⦊K > 0 and
zu′,v′

r,j,i J−→Er(i, j), ⦉mV |LX
r,e⦊K > 0 for all (u′, v′) ∈ P u,v

r,j,i

18 set mE(−→Er(i, j))← P u,v
r,j,i and if mV (j) = ∅ then mV (j)← v

19 if mE(−→Er(e)) ̸= ∅ for all e ∈ δ−
X (j) then

20 set Q ← Q∪ {j}

21 set Vk ←

⎛⎜⎜⎜⎜⎝
{xr} ∪ {yu

r,i | i ∈ Vr, u = mV (i)}
∪ { xrJe, ⦉mV |Lr,e⦊K | e ∈ Er}
∪ { yu

r,iJe, ⦉mV |Lr,e⦊K | e ∈ Er, i ∈ Vr,e, u = mV (i)}
∪ {zu,v

r,i,jJe, ⦉mV |Lr,e⦊K | e = (i, j) ∈ Er, (u, v) ∈ mE(i, j)}
∪ {γu

r,i,b,a | i ∈ Vr, u = mV (i), BX ,b
r,i ∈ BX

r,i, mL
a = ⦉mV |LX ,b

r,i ⦊}

⎞⎟⎟⎟⎟⎠
22 set fk

r ← minV
23 set v ← v − fk

r for all v ∈ V
24 set ax

r ← ax
r − fk

r ·A(mk
r , x) for all x ∈ GS

25 foreach (i, j) ∈ Er and each x ∈ {i, j, (i, j)} do
26 set ax

r J(i, j), ⦉mV |Lr,e⦊K← ax
r J⦉mV |Lr,e⦊K− fk

r ·A(mk
r , x)

27 add Dk
r = (fk

r , mk
r ) to Dr and set k ← k + 1

28 return Dr

60



6.3 LP Formulations Based on Extraction Width

• Allocations are bounded by a⃗r, i.e., ax
r ≥

∑︁
(fk

r ,mk
r )∈Dr

fk
r ·A(mk

r , x) holds for x ∈ GS .

Proof. We prove that each iteration yields a valid mapping mk
r of value fk

r > 0.

First, note that if in Line 10 a suitable mapping mL
a was found, such that the respective edge bag variable

γ
mV (i)
r,i,b,a is positive, then the requirement of Lemma 6.1 that y

mV (i)
r,i Je, ⦉mV |LX

r,e⦊K > 0 holds is always
satisfied due to Constraint 6.28.

The initial mapping of the root in Line 5 is always possible due to Constraints 6.26. Furthermore, when
considering the edge bags of the root sr, there will always exist a suitable edge bag variable γ

mV (sr)
r,sr,b,a > 0

to choose from due to Constraints 6.27 and 6.28.

Having chosen a suitable mapping for the labels of the edge bag, the extraction of mappings for the
outgoing edges e ∈ BX ,b

r,i is always feasible, as Constraint 6.28 induces y
mV (sr)
r,sr > 0 in the respective

sub-LPs. Also note that the application of Lemma 6.1 safeguards that the head j is mapped positively on
some substrate node i, i.e., we have yv

r,jJ⦉mV |LX
r,e⦊K > 0.

Given the initial validity of the mapping of the root and its outgoing edges, assume now for the sake of
contradiction that the extraction process fails at some point in time. Concretely, we consider the first
point in time at which the constructed (partial) mapping mk

r = (mV , mE) is not valid anymore or at which
the choose operation in Line 10 fails.

We first consider the case that the mapping mk
r is not valid (anymore), such that the mapping of an edge

e = (i, j) fails to start at mV (i) or fails to lead to mV (j). Edges are only mapped in Lines 15 and 18 and
we consider w.l.o.g. that the algorithm fails in Line 15. For this type of failure to happen, the node j must
have been mapped before as the node j is otherwise validly mapped by the same line of the pseudocode.
As j can only be mapped multiple times if j is itself a label and all incoming edges of a node share the
same labels (see Lemma 6.16), the edge (i, j) must have been labeled by j. Let v′ denote the substrate
node in which the path mE(i, j) ends and for which v′ ̸= mV (i) holds. As stated in the beginning of the
proof, the requirement of Lemma 6.1 is always valid (if a suitable mapping mL

a was found) and hence, by
applying Lemma 6.1 we obtain yv′

r,jJe, ⦉mV |Lr,e⦊K > 0. However, Constraint 6.30 clearly forbids the use
of this node v′ as it does not equal mV (i) by setting yv′

r,jJe, ⦉mV |Lr,e⦊K = 0. This is a contradiction, and
the only option for the extraction process to fail is hence due to an infeasible choose operation in Line 10.

As argued in the beginning of the proof, the choose operation may not fail for the root. Hence, the
node i ∈ Vr for which Line 10 fails, is not the root and has been reached by at least one incoming edge
(k, i) ∈ EX

r . Assume that the choose operation fails for a specific edge bag BX ,b
r,i ∈ BX

r,i.

We first show that LX ,b
r,i ∩MV ⊆ LX

r,(k,i) holds. Assume for the sake of contradiction, that there exists
some label l ∈ LX ,b

r,i ∩MV such that l /∈ LX
r,(k,i) holds. As the label l is contained in MV , a mapping

was decided for l at some other node sl ∈ Vr. In particular, Lemma 6.17 specifies that the node sl is the
unique root of all the confluences towards l, such that any other node with an edge being labeled by l
must be reachable from sl. However, as all incoming labels agree on their labels (see Lemma 6.16) and
no incoming edge of the node i hence lies on a confluence with target l, we must have i = sl. In this case
however, the node mapping of l cannot have been decided before as the algorithm only fixes these node
mappings once the choose operation was executed at the respective node sl. Hence, LX ,b

r,i ∩MV ⊆ LX
r,(k,i)

holds.

As all previous mapping steps have been valid and the mappings were obtained by the application of
Lemma 6.1, we know that yu

r,iJ
−→
Er((k, i)), ⦉mV |LX

r,(k,i)⦊K > 0 holds for u = mV (i). Consider now the
particular mapping mL

(k,i) = ⦉mV |LX
b∩(k,i)⦊ which is well-defined, as all labels of the incoming edge (k, i)

must have been fixed before extracting the mapping of this edge. From the validity of Constraint 6.29 we
obtain that

∑︁
mL

a ∈M(LX ,b
r,i

):⦉mL
a |LX

b∩e
⦊=mL

(k,i)
γu

r,i,b,a > 0 holds, as yu
r,iJ
−→
Er((k, i)), ⦉mV |LX

r,(k,i)⦊K is larger than

0. As LX ,b
r,i ∩MV ⊆ LX

r,(k,i) holds, we know that
∑︁

mL
a ∈M(LX ,b

r,i
):⦉mL

a |LX ,b
r,i

∩MV ⦊=⦉mV |LX ,b
r,i

∩MV ⦊ γu
r,i,b,a > 0

61



Chapter 6 XP-Algorithms for the Fractional VNEP and the VMP

holds, since the restriction in the sum’s index has been loosened. Hence, the choose operation in Line 10
can always be successfully executed and the mapping constructed in the k-th iteration will always be valid.

It is easy to check that the claims with respect to the completeness and the bounds by the allocation vari-
ables also hold: the mapping is always covered by respective mapping variables in Vk and as the allocations
are computed as a function of these mapping variables, the extracted fractional resource allocations are
also bounded by a⃗r.

Lastly, every time a valid mapping is extracted, a mapping variable’s value is set to 0. As the formulation
has size O(|GS |ewX (GX

r ) · |Gr|) (cf. Theorem 6.18) for request r, and this also bounds the number of
variables, at most O(|GS |ewX (GX

r ) · |Gr|) many valid mappings may be recovered. For recovering a single
valid mapping, the runtime can be bounded by O(|GS |ewX (GX

r )+1 · |Gr|), as the choose operation in
Line 10 is executed at most |Vr| times and the path computations in Lines 14 and 17 can be implemented
in time O(|ES |) (cf. Lemma 6.1). Hence, the overall runtime of the decomposition algorithm is bounded
by O(|GS |2·ewX (GX

r )+1 · |Gr|2). ■

Theorem 6.20. Using the extraction width LP formulation, the fractional offline VNEP can be solved
optimally in the setting ⟨VE |NR ⟩ in time O(poly(

∑︁
r∈R |GS |ewX (GX

r ) · |Gr|)) given specific extraction
orders GX

r for each request r ∈ R.

Proof. The size of the LP formulation was proven to be O(
∑︁

r∈R |GS |ewX (GX
r ) · |Gr|) in Lemma 6.18 and

the time to solve the LP is polynomial in the size. Accordingly, the result follows from Theorem 6.19 by
the same observations as made in the proof of Theorem 6.4. ■

6.3.5 Extraction Width: Graph Classes and Complexity

The runtime to solve the fractional offline VNEP using the LP Formulation 6.6 grows exponentially in
the maximal width of any extraction order. Hence, two questions arise: (i) which graph classes have a
bounded extraction width, and (ii) how can extraction orders of minimal width be computed? In the
following these questions are partially answered. Specifically, for the second question we only show the
hardness of computing an extraction order of minimal width. Lastly, in Section 6.3.6 extensions of the
approach presented here are discussed, yielding an interesting connection to the treewidth based algorithms
presented in Section 6.4.

6.3.5.1 Graph Classes of Bounded Extraction Width

Given the impossibility of polynomial-time approximations for arbitrary request graphs, we now study
graph classes that have bounded extraction width. In particular, we show that cactus graph requests and
generalizations thereof have bounded extraction width.

Theorem 6.21. Consider a cactus request graph Gr, i.e., one for which cycles in its undirected interpre-
tation intersect in at most a single node. Then ewX (GX

r ) ≤ 2 holds for any extraction order GX
r . Hence,

for cactus request graphs solutions to the fractional offline VNEP can be computed in polynomial-time
using Formulation 6.6. for cactus graph requests.

Proof. Consider any extraction order GX
r . |LX

r,e| ≤ 1 must hold for all edges e ∈ EX
r : if this was not the

case then two confluences would overlap in e and violate the cactus property. Thus, edge label sets are
either equal or disjoint and the maximal edge bag size is 1. ■

While the class of cactus graphs is restrictive, it can be shown that by adding edges parallel to existing
ones the width increases by at most the maximum degree of the graph:

62



6.3 LP Formulations Based on Extraction Width

Customer Internet

LB1 LB2

Cache FW

NAT
VM1

VM2

VM3VM4

VM5

Figure 6.5: Repetition and slight adaptation of the exemplary virtual networks presented in Figure 1.3.
Left: a virtual cluster abstraction envisioned in batch processing applications [Bal+11]. Right: a service
chain envisioned in 5G networks [Nap+16], where the flows towards the Internet and the ones from the
Internet are now drawn using solid and dashed lines, respectively.

Lemma 6.22. Given an arbitrary graph Gr, adding any number of parallel edges (of any direction) for
an existing edge does increase the extraction width of Gr by at most the maximum degree of Gr. This
also holds true if paths are added instead of edges.

Proof. Consider an extraction order GX
r minimizing the width. Let e = (i, j) ∈ Er be an existing edge

and assume without loss of generality that the orientation of the edge e is the same in GX
r . Now, when

adding another edge e′ = (i, j) or e′′ = (j, i) to Er, we orient the edge the same way as the original edge e.
Hence, e′ would be introduced to EX

r as is, and the orientation of e′′ would be reversed. Now, if the node
j was previously not the target of a confluence, then by introducing e′ or e′′ a new confluence was created
and the size of the edge bag of node i containing the edge (i, j) ∈ EX

r increases by one. However, adding
e′ or e′′ cannot introduce confluences beyond that: the addition of a parallel edge cannot enable a novel
confluence to be created. Hence, arbitrarily many parallel edges can be added while increasing the size
of an edge bag of the tail of the edge by at most one per outgoing edge. Hence, arbitrarily many parallel
edges can be created for any existing edge while increasing the sizes of a single edge bag per node by at
most one per outgoing edge. Hence, the extraction width of the resulting graph has increased by at most
the maximum degree of the original graph Gr. ■

Lastly, in Figure 6.5 we revisit the example requests introduced in Chapter 1 and show in the following
that these have small extraction widths.

Observation 6.23. The example request graphs depicted in Figure 6.5 have an extraction width of 2
(Virtual Cluster) and 3 (Service Chain) respectively.

Proof. The virtual cluster graph depicted on the left of Figure 6.5 is a cactus graph and hence has width
2 by Lemma 6.21.

Considering the request graph on the right, we note that when only considering the solid edges, the graph
is a cactus and the width is hence 2. By adding the ‘parallel’ dashed edges, the extraction width increases
by at most the maximum degree 3 of the cactus graph according to Lemma 6.22. However, considering
the proof of Lemma 6.22, we see that for the node LB1, only 2 outgoing edges exist (according to the solid
edges) and hence the width increases by at most 2. Furthermore, as the node LB2 is already the target of
a confluence, the overall extraction width increases by 1 and the width is hence 3. ■

6.3.5.2 Hardness of Computing Extraction Orders.

Given the above examples, we now study the computational complexity of finding extraction orders of
minimum width. In fact, we prove the NP-hardness of computing optimal extraction orders. Our prove
relies on a reduction from vertex cover. As a first step towards this goal, consider the following lemma.

Lemma 6.24. Consider the half wheel graph Gw depicted in Figure 6.6 and any extraction order GX
w

being rooted at wc. Letting VC = {wk ∈ Vw | (wk−1, wk) ∈ EX
r ∨(wk+1, wk) ∈ EX

r } denote the set of nodes
which are the target of an edge in the extraction order GX

w , then the following holds: ewX (GX
w ) = |VC|+1.

63



Chapter 6 XP-Algorithms for the Fractional VNEP and the VMP

w1

w2

w3
wn/2

wn
wc

wn/2+1

wn/2+2

Half wheel Gw ewX (GXw ) ≥ n/2ewX (GXw ) = 2

w1

w2

w3
wn/2

wn

wn/2+1

wn/2+2

w1

w2

w3
wn/2

wn

wn/2+1

wn/2+2

wc wc

Figure 6.6: Depicted is an arbitrarily oriented ‘half wheel’ (left) together with two extraction orders:
The extraction order in the center is rooted at wn/2 and has width 2. The other order on the right is
rooted at wc and has a width of at least n/2 (shown below).

Proof. We denote by Gi
w = (V i

w, Ei
W ) the subgraph of GX

w induced by the set of nodes {w1, . . . , wi} ∪ {wc}.
Let VCi = {wk ∈ V i

w|(wk−1, wk) ∈ EX
r ∨ (wk+1, wk) ∈ EX

r }.

Via induction over the subgraphs Gi
w it can be seen that the edges ek = (wc, wk), and ek−1 = (wc, wk−1)

are either both labeled by wk (if wk ∈ VCi) or by wk−1 ∈ VCi (if wk /∈ VCi) for all k ∈ {2, . . . , i}.

Observing that VCn = VC equals the labels introduced in GX
w and noting that the edge label sets LX

r,ei

and LX
r,ei+1

overlap for all i ∈ {1, . . . , n − 1}, the root wc must have a single edge bag containing all the
labels contained in |VCi|. Hence, ewX (GX

w ) ≥ |VC|+ 1 follows. Furthermore, only the nodes contained in
|VC| can be labels (a node not contained in VC has only a single incoming edge) and the result follows. ■

By Lemma 6.24, the following corollary is immediate.

Corollary 6.25. Consider a wheel graph Gw with n outer nodes. For any extraction order GX
w , for which

the node wc is chosen to be the root, ewX (GX
w ) ≥ ⌊n/2⌋+ 1 holds.

The result of Lemma 6.24 can be generalized in the following sense.

Lemma 6.26. Given is a connected, undirected graph Ḡ = (V̄ , Ē), we define a directed ver-
sion GV C = (VV C , EV C) with an additional super node r̂ as follows: VV C = V̄ ⊔ {r̂},
and EV C = {(i, j)|{i, j} ∈ Ē, i < j} ∪ {(r̂, i)|i ∈ V̄ }. The minimal width of an extraction order GX

V C

rooted at r̂ equals the size of the minimum vertex cover of Ḡ plus one.

Proof. Let GX
V C be an extraction order of GV C which is rooted at r̂. The proof of Lemma 6.24 has shown

that whenever a path P in the original graph is considered, all nodes of GX
V C with at least one incoming

edge (with respect to the original edge set) are labels of the same edge bag of the root r̂. As this property
holds for any simple path contained in Ḡ and as Ḡ is connected, there can only be a single edge bag: if
there was more than one edge bag, then there does not exist a path P connecting any of the edges of the
first bag to any of the edges in the second bag, refuting the connectivity of Ḡ. Applying Lemma 6.24 for
any path P of the original graph, the single edge bag of the root r̂ must contain any node having at least
one incoming edge according to the original edge set Ē. Hence, assuming that GX

V C has minimal width,
the width of GX

V C equals the size of the minimum vertex cover of Ḡ plus one. ■

Lemma 6.26 is the basis of our proof that computing extraction orders of minimal width is NP-hard via
a reduction from vertex cover (cf. Theorem 6.28). For the proof of our reduction, we require the following
lemma.

Lemma 6.27. Consider a graph G = (V, E) with a corresponding extraction order GX
r = (V, EX

r , s).
Assume that a node v ∈ V exists that separates a set of nodes U ⊂ V from the root node s. Then
any edge incident to v and some node u ∈ U is oriented away from v in the extraction order GX

r , i.e.,
(v, u) ∈ EX

r holds for all u ∈ U .

64



6.3 LP Formulations Based on Extraction Width

Proof. Assume for the sake of contradiction that for some node u ∈ U the edge (u, v) is contained in the
extraction order. By the definition of the extraction order all nodes must be reachable from the root s. As
the node v separates u from the root, all paths from s to u must contain v. Hence, u must be reachable
from v and the edge (u, v) hence creates a loop in GX

r which contradicts the acyclicity of GX
r . Hence, any

edge incident to v and some node u ∈ U must be directed away from v. ■

Theorem 6.28. Computing an extraction order of minimum width is NP-hard.

Proof. We give a polynomial time reduction of the vertex cover problem to the problem of finding the
extraction order of minimum width. We adapt the construction used in Lemma 6.26 slightly, to force
the mapping of the root node to r̂. Concretely, we add a half wheel graph (cf. Figure 6.6) Gw with
2 · |V̄ | + 2 outer nodes to the graph GV C and identify the node r̂ with the wheel’s node wc, i.e., r̂ = wc.
Let GX

V C = (VV C , EX
V C , sV C) be an extraction order of minimum width. The extraction order’s root sV C

must be placed on some outer wheel node, as the following case analysis shows.

Root sV C is placed on a wheel node wi: We first consider the orientations of edges inside the wheel graph.
According to Figure 6.6 (center) there is an orientation such that the extraction width inside the wheel
graph is 2. The node r̂ = wc separates the original graph Ḡ from the extraction order’s root sV C = wi.
Thus, by Lemma 6.27 all edges incident to a node v ∈ V̄ and wc must be oriented away from wc. Hence,
excluding the outer wheel nodes, the node wc is a root in the corresponding extraction order. Thus, the
width of the extraction order GX

V C – excluding the outer wheel nodes – equals the size of a minimum
vertex cover of Ḡ plus one by Lemma 6.26 and the assumption that GX

V C is of minimal width. Lastly,
note that no confluence spanning the wheel graph Gw and the graph Ḡ exists. Letting V C denote a
minimal vertex cover of Ḡ, the width of the extraction order GX

V C equals max{2, |V C|} ≤ |V̄ |.

Root sV C is placed on r̂ = wc: In this case, the width of the extraction order GX
V C is at least |V̄ |+1 based

on Corollary 6.25. Hence, as the size of a vertex cover of Ḡ is always less than |V̄ |, the placement of
the root on r̂ contradicts the optimality assumption of GX

V C .

Root sV C is placed on a node v ∈ V̄ : In this case, the width is again at least |V̄ |+ 1: as the node r̂ = wc

separates the outer wheel nodes from the root sV C , all wheel edges incident to wc are oriented away
from wc. As wc is hence a root in the extraction order restricted to the wheel graph, the width is at least
|V̄ | + 1 by Lemma 6.24. Thus, the placement of the extraction’s root on any node v ∈ V̄ contradicts
the optimality of the extraction order GX

V C .

Now, let V C ⊆ V̄ denote a minimum vertex cover of Ḡ. If |V C| > 1 holds, then for any optimal extraction
order GX

V C , ewX (GX
V C) = |V C|+1 holds. Furthermore, a minimal vertex cover V C can be recovered from

any minimum width extraction order GX
V C by placing any node v in the cover V C whenever at least two

edges are oriented towards it in GX
V C . As the cases in which the minimal vertex cover is less or equal to 1

can be trivially identified, computing a minimum width extraction order is NP-hard. ■

6.3.6 Concluding Remarks and Known Extraction Width Extensions

The extraction width approach presented in this section is a natural one, considering the flow-oriented
definition of extraction orders. While enabling the computation of fractional offline VNEP solutions for
arbitrary request graphs, the involved definition of the extraction width renders computing extraction
orders of small width hard: only once all edges are oriented in an extraction order, the extraction width
can be computed. Besides the lack of suitable algorithms to efficiently compute good extraction orders,
the definition of confluence edge bags can also be improved as discussed in the following.

Consider the half wheel graph depicted in Figure 6.6 again and imagine two of these half wheels with n
nodes being connected at the center node. In this setting, it is easy to verify that the resulting graph’s
extraction width is lower bounded by Ω(n/2): to minimize the extraction width of a single half wheel

65



Chapter 6 XP-Algorithms for the Fractional VNEP and the VMP

graph, the root must be placed on one of its outer nodes; this however implies that the center node of the
other graph is a local root in the respective half wheel graph, leading to large extraction widths.

The above example shows a surprising property: while the respective center nodes are separators for the
other graphs, joining these has a severe impact. In the master thesis of Döhne [Döh18] several proposals to
improve the extraction width approach have been presented. In particular, one very promising approach
of Döhne is to redefine the confluence edge bags: instead of simply partitioning the outgoing edges, a
hierarchy of labels is introduced (for each confluence edge bag) and the problem of optimally computing
these hierarchical label set orders is studied. Based on an interesting connection to join trees and the
running intersection property, Döhne shows that minimizing the respective label set order width (locally
for a node) equals the minimization of the treewidth on an graph induced by the label set ordering.
Inspired by this finding, solution approaches for the fractional VNEP purely relying on the concept of
tree decompositions came into focus. In particular, the results presented next in Section 6.4 are a direct
consequence of this line of research and we see several advantages of the presented approach relying purely
on tree decompositions: tree decompositions and the notion of treewidth have been studied extensively (see
Section 3.3 for an overview) and efficient exact algorithms are known for reasonable request sizes (cf.
Evaluation in Section 7.6.3). Nevertheless, pursuing research based on the notion of extraction orders
might be worthwhile nonetheless, as related concepts might offer the potential of being faster to solve for
some instances.

6.4 LP Formulations Based on Tree Decompositions

While the extraction width LP formulation yields a first XP-algorithm for the fractional VNEP (cf.
Theorem 6.20), the inability to efficiently compute the extraction width hinders the application of this
result. We now turn towards another parametrized approach. In particular, similar to the extraction order
approach, tree decompositions of request graphs are used, which will enable the application of dynamic
programming to solve the VMP and in turn will yield an effective separation oracle for the enumerative
LP Formulations 6.1 and 6.2. We show the following:

1. We develop the dynamic programming algorithm DynVMP to solve the VMP, which runs in XP-
time O(|VS |poly(tw(Gr)) · poly(|VS | · |Vr|)). Thus, for graphs of bounded treewidth DynVMP runs in
polynomial-time.

2. Based on Linear Programming duality, we show that the DynVMP algorithm can be used as
separation oracle and derive an efficient column generation approach for solving the LP Formu-
lations 6.1 and 6.2.

3. With only minor adaptions, we show that the DynVMP algorithm can also be used to solve the
VMP approximately when considering latency constraints.

6.4.1 Tree Decompositions of Request Graphs

Since tree decompositions are defined for undirected graphs, we employ undirected interpretations of
requests:

Definition 6.29 (Undirected Request Graph Gr). For a request graph Gr = (Vr, Er) its undirected
interpretation Gr = (Vr, Er) is given by Er = {{i, j}|(i, j) ∈ Er} on the original node set Vr. □

Note that directed, antiparallel edges (i, j), (j, i) ∈ Er of the original request graph are accordingly rep-
resented using only a single undirected edge {i, j} ∈ Er. While tree decompositions were introduced in
Definition 3.7, we slightly adapt the notation for the consideration of request graphs:

66



6.4 LP Formulations Based on Tree Decompositions

Internet

LB1 LB2Cache

FW

NAT

VM1

VM5

VM4VM3

VM2

Customer

Backend1 Backend2

Tree Tr

Bags Br

Graph Gr

Figure 6.7: Depicted are two exemplary virtual network request graphs together with corresponding tree
decompositions: a load-balancing service chain and a virtual cluster with 5 VMs. The covering node bags
are depicted in the middle, while the resulting trees are depicted on the bottom. The tree decomposition
on the left has a width of 2, while the width of the virtual cluster is 1, as it is a tree.

Definition 6.30 (Request Tree Decomposition Tr = (Tr,Br)). Given an undirected request graph Gr =
(Vr, Er), a tree decomposition of Gr is a pair Tr = (Tr,Br) consisting of an undirected tree Tr = (VT , ET )
and a family Br = {Bt}t∈VT

of subsets Bt ⊆ VT , also referred to as the node bags, for which the following
conditions hold:

(1) For all request nodes i ∈ Vr, the set V −1
T (i) = {t ∈ VT | i ∈ Bt} of tree nodes containing node i is

connected in Tr.

(2) Each request node and each (undirected) request edge is contained in at least one of the bags:
∀i ∈ Vr. ∃t ∈ VT : i ∈ Bt and ∀{i, j} ∈ Er. ∃t ∈ VT : {i, j} ⊆ Bt hold. □

As noted in Section 3.3, several important graph classes are known to have small treewidths. In Figure 6.7,
tree decompositions of the example requests considered throughout this thesis are given: the virtual cluster
has a treewidth 1 and the service chain has a treewidth of 2. This also follows from the study of the
respective graph classes, as the service chain is outerplanar and the virtual cluster is a tree. However,
even if a request graph does not belong to a graph class of bounded treewidth, recent exact algorithms
can often compute optimal tree decompositions in a matter of seconds [Tam17].

A tree decomposition naturally groups request nodes together into node bags. As the size of each bag
is bounded for graphs of bounded treewidth, this allows to perform more complex operations on the
whole bag in polynomial-time. In particular, instead of mapping single virtual nodes, we will consider
the joint mappings of all request nodes contained in the bags. While the number of mapping possibilities
grows exponentially in the node bag’s size, it is polynomial for graphs of bounded treewidth. Concretely,
the number of mapping possibilities for a node bag Bt equals

∏︁
i∈Bt
|V r,i

S | ∈ O(|VS |tw(Tr)+1). We again
mathematically represent the space of node bag mappings as follows. We denote by M(Bt) = [Bt → VS ]
the set of all functions from Bt to VS , i.e., mV

t ∈ M(Bt) maps all virtual nodes of Bt. Given a specific
bag mapping mV

t ∈M(Bt), a cost-optimal valid mapping of the subgraph Gr[Bt] = (Bt, Er[Bt]) induced
by Bt, i.e., Er[Bt] = {(i, j) ∈ Er | i, j ∈ Bt}, is computable in polynomial-time:

Lemma 6.31 (Computation of optimal induced mappings). Given a node bag mapping mV
t ∈M(Bt), one

can check in timeO(poly(|Bt|·|GS |)) if a valid edge mapping extension mE
t exists, such that mt = (mV

t , mE
t )

67



Chapter 6 XP-Algorithms for the Fractional VNEP and the VMP

is a valid mapping of the induced subgraph Gr[Bt]. Furthermore, if such an induced valid mapping exists,
the least cost one can be computed in time O(poly(|Bt| · |GS |)).

Proof. The validity of the given node mapping mV
t can be checked by testing whether mV

t (i) ∈ V r,i
S holds

for each virtual node i ∈ Bt. As the node mappings are fixed, one can compute a shortest valid path for
each edge (i, j) ∈ Er[Bt] by applying e.g. Dijkstra’s algorithm, albeit only considering substrate edges
contained in Er,i,j

S . If valid paths exist for all induced edges Er[Bt] under the node mapping mV
t , a

cost-optimal edge mapping mE
t is obtained and otherwise no valid mapping can exist. ■

Besides the above lemma, we employ the following facts for our algorithm.

Fact 6.32 ([FG06]). Let N (t) ⊆ VT denote the neighboring tree nodes of t ∈ VT . For any tree node
t ∈ VT and any pair t1, t2 ∈ N (t) of neighbors of t with t1 ̸= t2, the following holds: (Bt1 ∩Bt2) \Bt = ∅.

Fact 6.33 ([FG06]). Any tree decomposition can be transformed into a small one for which Bt1 ̸⊆ Bt2

holds for all t1, t2 ∈ VT with t1 ̸= t2. For any small tree decomposition |VT | = |Br| ≤ |Vr| holds.

The first fact states that node bags separate neighboring node bags from each other, while the second
allows to bound the size of the tree |VT | by the number of original request nodes |Vr|.

The following additional notation will be used throughout this section. We employ Bt1∩t2 to denote
the intersection of the corresponding node bags, i.e., Bt1∩t2 = Bt1 ∩ Bt2 . Given a node bag mapping
mV

t , we again denote by ⦉mV
t |V ′

r⦊ : V ′
r → VS the restriction of mV

t to a subset V ′
r ⊆ Bt, such that

⦉mV
t |V ′

r⦊(i) = mV
t (i) for i ∈ V ′

r .

6.4.2 Dynamic Program DynVMP

We now present the XP-algorithm DynVMP for solving the VMP. We first consider the VMP without
latency constraints and afterwards present a minor extension to cater for latencies. The algorithm uses
the tree decomposition Tr of the request graph and applies dynamic programming: starting from the
leaves of the tree decomposition, (partial) cost-optimal valid mappings are constructed bottom-up. This
is facilitated by Lemma 6.31: for each single node bag mapping mV

t ∈ M(Bt), a cost-optimal induced
mapping can be computed in time O(poly(|Bt| · |GS |)). Starting at the leaves, these cost-optimal valid
mappings are then combined in a bottom-up fashion. Concretely, the algorithm stores for each tree node
t ∈ VT and each node bag mapping mV

t ∈M(Bt) the optimal mapping costs in the table C[t][mV
t ] (infinite

costs indicate infeasibility) together with the node mappings in table M[t][mV
t ] (see Lines 2-4).

The nodes of the tree decomposition are then traversed bottom-up (post-order traversal). Considering a
specific tree node t ∈ VT with node bag Bt, all node bag mappings mV

t ∈M(Bt) are enumerated (Line 7).
Only if the induced mapping is valid, the mapping is considered and otherwise the corresponding cost
C[t][mV

t ] stays infinite (indicating invalidity). Considering leaves, the (induced) mapping costs of locally
valid mappings can be readily computed using Lemma 6.31 by the InducedCost function. For nodes
having children, the current mapping mV

t is sought to be extended as cheaply as possible. To this end,
all suitable child mappings mV

tc
∈ M(Btc) agreeing with the current mapping mV

t are considered and
according to the cost-optimal one the mapping table M[t][mV

t ] is updated. Importantly, the different
children will never set a mapping of a virtual node i ∈ Vr twice by Fact 6.32: a request node i is either
contained in only a single child bag or in multiple; however, if it is contained in multiple bags, then it must
be contained in Bt. Accordingly, if i ∈ Bt holds, then the mapping of i is already explicitly set by mV

t

and the child mappings cannot disagree on the mapping of i, as only matching mappings were selected in
Line 12. Only if for all children valid mappings exist, the cost is updated and otherwise the mapping is
considered to be invalid (cf. Lines 23 and 24). Having processed the whole tree, the optimal valid mapping
is retrieved at the root node t̂r or ⊥ is returned to indicate that none exists.

68



6.4 LP Formulations Based on Tree Decompositions

Algorithm 6.8: DynVMP: Computing Optimal Valid Mappings
Input : substrate GS , request Gr, tree decomposition Tr

Output: valid mapping of minimal cost or ⊥ if none exists
1 PrecomputeShortestValidPaths(Gr,GS)
2 foreach t ∈ VT do // initialize tables
3 foreach mV

t ∈M(Bt) do
4 C[t][mV

t ]←∞ and M[t][mV
t ]← (i ↦→ ⊥ | i ∈ Vr \Bt)

5 set Q ← PostOrderTraversal(Tr, t̂r)
6 for t ∈ Q do // traverse tree in post-order
7 for mV

t ∈M(Bt) do // consider node bag mappings
8 if InducedMappingLocallyValid(mV

t ) then
9 set children valid← True

10 for (t, tc) ∈ δ+(t) do // find best child mapping m̂V
tc

11 set m̂V
tc
← ⊥

12 for
(︃

mV
tc
∈M(Btc) with

⦉mV
tc
|Btc∩t⦊ = ⦉mV

t |Btc∩t⦊

)︃
do

13 if m̂V
tc

= ⊥ or C[tc][mV
tc

] < C[tc][m̂V
tc

] then
14 m̂V

tc
← mV

tc

15 if m̂V
tc
̸= ⊥ then // if valid mapping exists

16 for i ∈ Vr \Bt do // as mV
t fixes Bt mapping

17 if i ∈ Btc then // as mV
tc

maps i

18 M[t][mV
t ](i)← m̂V

tc
(i)

19 else if M[tc][m̂V
tc

](i) ̸= ⊥ then
20 M[t][mV

t ](i)←M[tc][m̂V
tc

](i)
21 else // induced valid mapping cannot exist
22 set children valid← False and exit for-loop

23 if children valid then
24 C[t][mV

t ]← InducedCost(mV
t ∪M[t][mV

t ])

25 choose m̂V
t̂r
∈M(Bt̂r

) such that ĉ← C[t̂r][m̂V
t̂r

] is minimal
26 if ĉ <∞ then return InducedMapping(m̂V

t̂r
∪M[t̂r][m̂V

t̂r
])

27 else return ⊥

Theorem 6.34. The DynVMP algorithm correctly determines whether a valid mapping exists and if so,
returns a cost-optimal one. Its runtime is bounded by O(|Vr|3 · |VS |2·tw(Tr)+3).

Proof. By the above description of the algorithm, the algorithm returns an optimal valid mapping, if
one exists. With respect to the runtime, we first note that |VT | ≤ |Vr| holds when considering small
tree decompositions (cf. Fact 6.33). The pre-computation of all shortest valid paths can be implemented
in time O(|Vr|2 · |VS |3) by applying Dijkstra’s algorithm for each of the O(|Vr|2) request edges for each
potential substrate start node. On the other hand, the runtime of the Lines 12 to 22 dominate the main
algorithm’s runtime. Here, for each of the at most |Vr| tree nodes at most |VS |tw(Tr)+1 many mappings mV

t

are considered, for which again at most |Vr|·|VS |tw(Tr)+1 many mappings of its children must be considered
while adapting the mappings in Lines 17 to 20 may again take O(|Vr|) time, yielding the claimed overall
runtime. ■

Lastly, we show that the DynVMP algorithm can be used to approximate the cost of valid mappings

69



Chapter 6 XP-Algorithms for the Fractional VNEP and the VMP

under latency constraints. While computing minimum-cost latency-constrained shortest paths (LCSP) is
itself an NP-hard problem, a fully polynomial-time approximation scheme exists:

Theorem 6.35 (LCSP FPTAS, Lorenz and Raz [LR01]). For any εL > 0, an (1 + εL)-optimal path
satisfying the latency bound can be computed in time O

(︁
|ES | · |VS | · (log log |VS |+ 1/εL)

)︁
= timeLCSP(εL).

The FPTAS for the LCSP can be used in the DynVMP algorithm to compute approximate latency
respecting valid paths in Line 1. As each computed path is (1 + ε′)-optimal, the resulting mapping is also
(1 + ε′)-optimal and we obtain the following result:

Lemma 6.36. Using the LCSP FPTAS, the DynVMP algorithm finds a (1+εL)-optimal valid mapping,
if one exists. Its runtime is bounded by O(|Vr|2 · (|Vr| · |VS |2·tw(Tr)+2 + timeLCSP(εL))).

6.4.3 Solving the Fractional Offline VNEP via Column Generation

In the following, we now show how the LP Formulations 6.1 and 6.2 can be solved efficiently for arbitrary
request graphs by using the DynVMP algorithm. While these primal formulations use exponentially many
variables, the respective dual formulations (cf. Formulations 6.9 and 6.10) use a polynomial number of
variables λ⃗ (corresponding to Constraints 6.2 and Constraints 6.6, respectively) and µ⃗ (corresponding to
Constraints 6.3 and 6.7, respectively) while employing exponentially many constraints. However, it is
known that such LP formulations can be solved in polynomial-time, as long as violated constraints can be
identified in polynomial-time by a separation oracle. We will consider the case without latencies first.

Separation in the Absence of Latency Constraints. We start by considering the dual of the profit,
i.e., Formulation 6.9. The Constraints 6.36 can be separated using DynVMP as follows. First, we interpret
the µ⃗ variables as resource costs and accordingly define cS,µ : GS → R≥0 with cS,µ(x) = µx. Hence, the
mapping cost cS,µ(mr) of a valid mapping mr equals

∑︁
x∈GS

µx ·A(mr, x), i.e., the second term of the left-
hand side of Constraint 6.36. Accordingly, the DynVMP algorithm can be used to compute cost-optimal
mappings m̂r for each request r ∈ R. If cS,µ(m̂r) ≥ br − λr holds, then all valid mappings of request r
satisfy Constraint 6.36. On the other hand, if cS,µ(m̂r) < br−λr holds, then the constraint corresponding
to the mapping m̂r is added to the Linear Program 6.9. Notably, the initial primal containing no mappings
is valid and by setting (arbitrarily) λ⃗ = µ⃗ = 0⃗ the first mappings (columns) can be generated. Iteratively
separating the violated constraints then as long as one exists, an optimal LP solution can be computed.

For practical applications, the following lemma is helpful in terminating the separation process once a
solution of sufficient quality has been found:

Lemma 6.37 (Approximate Solutions to the Profit LP). Let µ⃗, λ⃗ be the dual variables corresponding to
a primal solution of the profit LP Formulation 6.1 and let ϵ > 0. If cS,µ(mr) · (1 + ϵ) ≥ br − λr holds for
all mr ∈Mr and each r ∈ R, then the primal LP solution is 1/(1 + ϵ)-optimal.

Proof. This follows from weak duality, as scaling the µ⃗ variables by a factor of (1+ ϵ) yields a feasible dual
solution while increasing the objective by at most a factor (1 + ϵ). ■

The separation process for the dual of the cost variant (cf. Formulation 6.10) can be implemented very
similarly. One notable difference is that constructing a feasible primal LP solution is not trivial, as each
request must be fully embedded and the capacity constraints may not be violated. However, using the
above result for the profit variant such a solution can be readily computed by introducing profits br = 1
for each request r ∈ R and solving the profit Formulation 6.1 optimally. If the obtained profit is less
than |R|, then no feasible solution can exist for the cost optimization task. On the other hand, if the
obtained profit equals |R|, the generated solution can be used to initialize the primal LP solution for the
cost optimization.

70



6.4 LP Formulations Based on Tree Decompositions

LP Formulation 6.9: Dual Enumerative Formulation for the Profit Offline VNEP

min
∑︂

r∈R
λr +

∑︂
x∈GS

µx · dS(x) (6.35)

λr +
∑︂

x∈GS

µx ·A(mk
r , x)≥ br ∀r ∈ R, mk

r ∈Mr (6.36)

λr ≥ 0 ∀r ∈ R (6.37)

µx ≥ 0 ∀x ∈ GS (6.38)

LP Formulation 6.10: Dual Enumerative Formulation for the Cost Offline VNEP

max
∑︂

r∈R
λr +

∑︂
x∈GS

µx · dS(x) (6.39)

λr +
∑︂

x∈GS

µx ·A(mk
r , x)≤ cS(mk

r ) ∀r ∈ R, mk
r ∈Mr (6.40)

λr ∈ R ∀r ∈ R (6.41)

µx ≤ 0 ∀x ∈ GS (6.42)

Having argued that a primal feasible solution can always be found for the cost variant, we now discuss the
separation procedure to optimize the costs. First note that the dual for the cost subtly varies from the
dual for the profit variant: the variables have different domains and the Constraints 6.40 have a different
right-hand side as well as a different sense. We begin by transforming Constraint 6.40 equivalently as
follows:

λr +
∑︂

x∈GS

µx ·A(mk
r , x) ≤cS(mk

r ) (6.43)

⇔ −cS(mk
r ) +

∑︂
x∈GS

µx ·A(mk
r , x) ≤− λr (6.44)

⇔ −
∑︂

x∈GS

cS(x) ·A(mk
r , x) +

∑︂
x∈GS

µx ·A(mk
r , x) ≤− λr (6.45)

⇔
∑︂

x∈GS

(cS(x)− µx) ·A(mk
r , x) ≥λr (6.46)

The Equation 6.45 follows directly from the definition of the cost of a mapping (cf. Definition 2.8). Ob-
serving that µx ≤ 0 holds for the dual of the cost, we can now define new resource costs cS,µ : GS → R≥0
with cS,µ(x) = cS(x) − µx. Given these positive costs, the DynVMP algorithm can again be employed
to separate the respective constraints as described above, and an optimal LP solution for the dual of the
cost can be computed. Again, also approximate solutions can be computed for the cost variant:

Lemma 6.38 (Approximate Solutions to the Cost LP). Let µ⃗, λ⃗ be the dual variables corresponding to
a primal solution of the cost LP Formulation 6.2 and let ϵ > 0. If cS,µ(mr) · (1 + ϵ) ≥ λr holds for all
mr ∈Mr and each r ∈ R, then the primal LP solution is (1 + ϵ)-optimal.

Proof. This follows from weak duality, as scaling the λ⃗ variables by a factor of 1/(1 + ϵ) yields a feasible
dual solution while decreasing the objective by at most a factor 1/(1 + ϵ). ■

Given the ability to solve the primal LP Formulation 6.2 optimally in the absence of latency constraints,
we obtain the following result:

Theorem 6.39. Using the column generation approach to solve LP Formulations 6.1 and 6.2 using the
DynVMP algorithm as separation oracle, the fractional offline VNEP can be solved optimally in the
setting ⟨VE |NR ⟩ in time O

(︁
poly

(︁∑︁
r∈R |Vr|3 · |VS |2·tw(Tr)+3)︁)︁ given specific tree decompositions Tr for

each request r ∈ R.

71



Chapter 6 XP-Algorithms for the Fractional VNEP and the VMP

Proof. The runtime of the column generation LP is polynomial in the runtime of the separation oracle.
Accordingly, the result follows as solutions to the respective LPs naturally model the respective fractional
offline VNEP variants. ■

Separation in the Presence of Latency Constraints. Lastly, we turn towards computing solutions
to the fractional offline VNEP under latency constraints. In this case, the adapted DynVMP algorithm
using the LCSP FPTAS is employed to approximately separate the Constraints 6.36 with latencies. Again,
we consider the profit variant first. For each request r ∈ R a (1 + εL)-optimal mapping m̃r is computed
during the column generation process and respective columns are added as long as cS,µ(m̃r) < br−λr holds.
After the separation procedure did not return any more new columns – due to the approximate nature of the
separation – some of the Constraints 6.36 might still be violated. In fact, only cS,µ(mk

r ) · (1+εL) ≥ br−λr

holds for all mappings mk
r ∈ Mr. However, by Lemma 6.37, we obtain that the respective solution is

(1 + εL)-optimal and we state the following theorem:

Theorem 6.40. When considering the VNEP setting ⟨VE |NRL ⟩, 1/(1 + εL)-approximate solu-
tions to the profit variant of the fractional offline VNEP can be computed for any εL > 0 in time
O
(︁
poly

(︁∑︁
r∈R |Vr|2 ·

(︁
|Vr| · |VS |2·tw(Tr)+2 + timeLCSP(εL)

)︁)︁)︁
by solving the LP Formulation 6.1 using the

adapted DynVMP algorithm, employing the LCSP FPTAS to approximate latency-obeying paths (cf.
Lemma 6.36), as separation oracle.

Proof. The runtime of the column generation LP is polynomial in the runtime of the separation oracle
and by the above arguments, the approximation factor of the separation oracle (cf. Lemma 6.36) carries
over to the solution of the profit variant of the fractional offline VNEP. ■

Considering the column generation process for the cost variant essentially the same holds true. Before

Formulation 6.11: Primal Enumerative LP for Warmstarting the Primal Cost LP

maxX (6.47)∑︂
k

fk
r =X ∀r ∈ R (6.48)∑︂

k

fk
r ·A(mk

r , x)≤ dS(x) ∀x ∈ GS (6.49)

X≤ 1 (6.50)

fk
r ≥ 0 ∀r ∈ R, mk

r ∈Mr (6.51)

X ≥ 0 ∀r ∈ R, mk
r ∈Mr (6.52)

Formulation 6.12: Dual Enumerative LP for Warmstarting the Primal Cost LP

ν +
∑︂

x∈GS

µx · dS(x) (6.53)

λr +
∑︂

x∈GS

µx ·A(mk
r , x)≥ 0 ∀r ∈ R, mk

r ∈Mr (6.54)

ν −
∑︂
r∈R

λr≥ 1 (6.55)

λr ∈ R ∀r ∈ R (6.56)

µx ≥ 0 ∀x ∈ GS (6.57)

ν ≥ 0 (6.58)

72



6.5 Summary and Novelty of Contributions

discussing the separation procedure, we note that computing an initially feasible primal LP solution is
slightly more challenging, as the primal profit LP can only be solved approximately. While the profit of
the profit LP is lower bounded by br/(1 + εL), one can in general not establish a lower bound for the
cumulative weights of each request as Lemma 6.37 only pertains to the whole objectives.

We propose a more involved LP approach to generate primal solutions in this setting. Concretely, we seek
to construct a solution for which the cumulative weight

∑︁
k fk

r is lower bounded by some value for each
request r ∈ R. Specifically, we propose the usage of the LP Formulations 6.11 (primal) and 6.12 (dual).
Compared to the original profit LP, the ‘warmstart’ LP has to embed each request to the same extent
X ∈ [0, 1]. Considering the task to separate Constraint 6.54, we note that this is essentially equal to the
previously studied separation task of the profit LP. Furthermore, the lemma on approximate solutions (cf.
Lemma 6.37) still holds. Accordingly, (1 + εL)-approximate solutions to the primal LP Formulation 6.11
can be computed. When X < 1/(1 + εL) holds, then provably no feasible primal LP solution can exist
for the cost LP. If on the other hand X ≥ 1/(1 + εL) holds, then by scaling the solution by the factor
1/X , i.e., scaling each weight fk

r for each request and each mapping mk
r ∈ Mr by 1/X , a feasible primal

LP solution for the cost optimization is obtained which violates capacity constraints by at most a factor
(1 + εL). Increasing the substrate capacities accordingly, the primal cost LP Formulation 6.2 can be
warmstarted.

Considering the separation process to optimize this initially constructed LP solution we note the following.
For each request r ∈ R a (1 + εL)-optimal mapping m̃r is computed during the column generation process
and respective columns are added as long as cS,µ(m̃r) < λr holds. After the separation procedure did
not return any more new columns – due to the approximate nature of the separation – some of the
Constraints 6.40 might still be violated. In fact, only cS,µ(mk

r ) · (1 + εL) ≥ λr holds for all mappings
mk

r ∈Mr. However, now by Lemma 6.38, we obtain that the respective solution is (1 + εL)-optimal.

Thus, the following result is obtained when including latency constraints. Note that the additional ap-
proximation factors (β, γ) for the resource violations arise due to the way the initial feasible primal LP
solution was generated. If a feasible LP solution is provided externally, the respective factors are 1.

Theorem 6.41. When considering the VNEP setting ⟨VE |NRL ⟩, (α, β, γ)-approximate solutions, with
α = β = γ = 1 + εL to the cost variant of the fractional offline VNEP can be computed for any εL > 0
in time O

(︁
poly

(︁∑︁
r∈R |Vr|2 ·

(︁
|Vr| · |VS |2·tw(Tr)+2 + timeLCSP(εL)

)︁)︁)︁
by first computing an initial primal

LP solution using LP Formulation 6.11 and then solving the cost variant of LP Formulation 6.2. For
the solution of both LPs the adapted DynVMP algorithm is used, employing the LCSP FPTAS, as
separation oracle.

6.5 Summary and Novelty of Contributions

In this chapter several approaches to compute solutions to the fractional offline VNEP in XP-time have
been proposed. Based on the computational complexity results presented in Section 5, we also know
that XP-time algorithms are the best one can hope for (unless P =NP). Importantly, only the column
generation approach discussed last allows for the inclusion of latencies. Overall, we believe that the pre-
sented DynVMP algorithm is of interest in its own right. As noted in the Observation 2.11, when request
demands are small compared to the substrate capacities, solving the VMP optimally (or approximately)
also yields optimal (or approximate) solutions for the VNEP.

Overall, the results presented in this Chapter are facilitated by the careful definition of the notion of
valid mappings: if one would require valid mappings to be feasible, the respective fractional offline VNEP
would remain NP-hard. Accordingly, in the work of Jarray and Karmouch [JK15], which only generated
feasible valid mappings in the separation, the respective separation procedure must be performed using
exact approaches. Indeed, in future work, one might compare the separation approach of [JK15] with our
presented XP-time algorithms to analyze trade-offs in runtime and solution quality.

73



“Probability is a mathematical discipline whose aims are akin to those, for example, of
geometry or analytical mechanics. In each field we must carefully distinguish three aspects
of the theory: (a) the formal logical content, (b) the intuitive background, and (c) the
applications. The character, and the charm, of the whole structure cannot be appreciated
without considering all three aspects in their proper relation.”

– William Feller 7
XP-Approximations for the Offline VNEP

and Evaluation of Derived Heuristics

As shown in Chapter 6, the fractional offline VNEP can be solved (respectively approximated) in XP-time.
Concretely, considering the parametrizations of the extraction width and the treewidth, the fractional of-
fline VNEP in the setting ⟨VE |NR ⟩ can be solved in polynomial-time when the respective parameters
are fixed. Additionally, considering the setting ⟨VE |NRL ⟩, using the adapted column generation ap-
proach presented in Section 6.4, which employs treewidth as parametrization, the fractional offline VNEP
can be approximated in XP-time.

In this chapter we apply randomized rounding on the computed solutions to the fractional offline VNEP to
obtain tri-criteria (α, β, γ)-(XP)-approximations for the profit and the cost variant of the VNEP, i.e., the
returned solutions will in general exceed node (factor β) and edge (factor γ) capacities. While the obtained
algorithms are at first probabilistic in nature, deterministic approximations (with the same approximation
guarantees) are presented as well by derandomizing the respective approximations.

In Sections 7.1 and 7.2 the approximation algorithms for the cost and the profit variant are presented
together with the analysis of their probabilistic guarantees. In Section 7.3 derandomizations for all ap-
proximations are presented, hence obtaining deterministic XP-time approximations. As the approximation
guarantees on the resource augmentations are highly dependent on various parameters, in Section 7.4 the
approximation results are summarized in terms of easily computable parameters as the maximal demand-
to-capacity ratio and the maximal size of any request graph and the size of the substrate network (cf.
Tables 7.1 to 7.3).

Turning to the practical applications of the approximation framework and concentrating on the profit vari-
ant, several heuristics are derived in Section 7.5. Importantly, among the studied heuristics are also ones
not exceeding capacity constraints. The performance of these heuristics is then evaluated in Section 7.6.
Specifically, Section 7.6.2 presents results obtained from employing the LP formulation for cactus request
graphs (cf. Section 6.2), while in Section 7.6.3 results based on the column generation LP (cf. Section 6.4)
are discussed.

7.1 Approximations for the Offline Cost VNEP

We first present the cost approximation in the setting without latencies, i.e., ⟨VE |NR ⟩. The pseudo-code
is given as Algorithm 7.1. The algorithm computes an optimal fractional VNEP solution, prunes costly
mappings, and then rounds solutions until an (α, β, γ)-approximate solution is obtained or the maximal
number of rounding tries are exceeded. As we will show, the algorithm yields solutions of cost not more
than 2 times the optimal cost. By probabilistic analysis, values for the respective approximation factors
will be derived below for which the algorithm returns solutions with high probability.

74



7.1 Approximations for the Offline Cost VNEP

Algorithm 7.1: Randomized Rounding Approximation for the Offline Cost VNEP ⟨VE |NR ⟩
1 {Dr}r∈R ← compute optimal solution to the cost fractional offline VNEP
2 foreach r ∈ R do // postprocess decomposition: prune costly mappings
3 let WCr =

∑︁
(fk

r ,mk
r )∈Dr

fk
r · c(mk

r )
4 remove tuples (fk

r , mk
r ) from Dr with c(mk

r ) > 2 ·WCr

5 normalize weights of Dr, such that
∑︁

(fk
r ,mk

r ) fk
r = 1 holds again

6 do // perform rounding; as probabilities sum to 1, each request is embedded
7 construct solution by choosing mapping mk

r with probability fk
r for all r ∈ R

8 while the solution is not (α = 2, β, γ)-approximate and maximal rounding tries are not exceeded;

7.1.1 Deterministic Guarantee for the Cost

To obtain an approximation of the cost, the decision which of the mappings mk
r to choose for request

r ∈ R cannot be (purely) left to chance. Intuitively, this is due to the fact that the computed optimal
fractional solution, may contain mappings of arbitrarily high cost but negligible weight. Hence, if the
possibility exists to choose such a mapping in the rounding step, no reasonable bound on the rounded cost
can be given in general. Accordingly, the costly fractional mappings are pruned for each request while
not losing too much weight in the convex combination. Concretely, given a request r ∈ R, we denote
by WCr =

∑︁
k fk

r · cS(mk
r ) the weighted (averaged) cost of request r ∈ R and the algorithm removes all

mappings mk
r from the convex combinations for which cS(mk

r ) > 2 ·WCr hold. Intuitively, the weight of
pruned mappings will be less than 1/2, as otherwise the WCr would need to be higher. The following
lemma proves this observation:

Lemma 7.1. The sum of the weights fk
r of the mappings mk

r with cost smaller than two times WCr is at
least 1/2 for each request r ∈ R.

Proof. Let λr =
∑︁

(fk
r ,mk

r )∈Dr:cS(mk
r ) ≤2·WCr

fk
r denote the sum of the weights of the mappings of cost

bounded by 2 ·WCr. For the sake of contradiction, assume that λr < 1/2 holds for any request r ∈ R. By
the definition of WCr and the assumption on λr, we obtain the following contradiction:

WCr =
∑︂

(fk
r ,mk

r )∈Dr

fk
r · cS(mk

r ) (7.1)

≥
∑︂

(fk
r ,mk

r )∈Dr:cS(mk
r )>2·WCr

fk
r · cS(mk

r ) (7.2)

≥
∑︂

(fk
r ,mk

r )∈Dr:cS(mk
r )>2·WCr

fk
r · 2 ·WCr (7.3)

≥ (1− λr) · 2 ·WCr > WCr (7.4)

The Inequality 7.2 follows as only a subset of the requests is considered and Inequality 7.3 follows as all the
considered decompositions have a cost of at least two times WCr. The first inequality of Equation 7.4 then
follows as (1 − λr) > 1/2 holds by assumption. As Equation 7.4 yields a contradiction, indeed λr ≥ 1/2
must hold for r ∈ R. ■

We note that mappings are pruned from Dr, the cost of the optimal solution equals the sum of the
(fractional) costs of the convex combinations:

Lemma 7.2. Letting cfrac denote the cost of the optimal fractional VNEP solution computed in Line 1,
we have: ∑︂

r∈R
WCr =

∑︂
r∈R

∑︂
k

fk
r · cS(mk

r ) = cfrac . (7.5)

75



Chapter 7 XP-Approximations for the Offline VNEP and Evaluation of Derived Heuristics

Proof. Follows from the definition of the fractional offline VNEP. ■

Considering the above, one the following deterministic approximation guarantee is immediate.

Lemma 7.3. The cost of any solution returned by the randomized rounding scheme is upper bounded by
two times the optimal cost.
Proof. Let cfrac denote the cost of the optimal fractional solution computed in Line 1. By allowing to
select only decompositions mk

r for which cS(mk
r ) ≤ 2 ·WCr holds and denoting the selected mapping by

m̂ we have cS(m̂r) ≤ 2 ·WCr. Hence
∑︁

r∈R cS(m̂r) ≤ 2 ·
∑︁

r∈R WCr holds. Together with Lemma 7.2 we
obtain

∑︁
r∈R cS(m̂r) ≤ 2 · cfrac. As cfrac is a lower bound for the minimum cost copt of the optimal solution

the lemma holds. ■

7.1.2 Bounding Resource Allocations

In the following, we analyze the probability that a rounded solution exceeds substrate capacities by a
certain factor. We model the allocations on resource x ∈ GS by request r ∈ R as random variable
Ar,x ∈ [0, Amax(r, x)]. By definition and under the simplifying assumption that no pair of mappings induces
the same allocations on any resource, we have Pr[Ar,x = A(mk

r , x)] = fk
r and Pr[Ar,x = 0] = 1−

∑︁
k fk

r .
Furthermore, we denote by Ax =

∑︁
r∈R Ar,x the random variable capturing the overall allocations on re-

source x ∈ GS . By definition E[Ax] =
∑︁

r∈R
∑︁

k fk
r ·A(mk

r , x) holds. Utilizing the Chernoff bounds proven
in Appendix A, the following lemma yields general bounds used throughout this section for exceeding the
capacity of a single resource.

Lemma 7.4. Consider a resource x ∈ GS and let ∆x > 0 be chosen in such a way that ∆x·dS(x) is an upper
bound on the expected allocations on x, i.e., ∆x · dS(x) ≥ E(Ax) holds. Letting µ̂x = ∆x · dS(x)/Amax(x),
the following holds for any n ≥ 3 and any c ≥ 3.

Pr
[︃
Ax ≥ 2 · c ·∆x · µ̂−1

x ·
ln n

ln ln n
·dS(x)

]︃
≤1/nc , if µ̂x <

ln n

ln ln n
(7.6)

Pr [Ax ≥ 2 · c ·∆x ·dS(x)] ≤1/nc , if ln n

ln ln n
≤µ̂x <3 · c · ln n (7.7)

Pr [Ax ≥ (1 + ε) ·∆x ·dS(x)] ≤1/nc , if µ̂x ≥3 · c · ln n/ε2 , ε ∈ (0, 1) . (7.8)

Proof. We first scale all random variables by the factor 1/Amax(x) to apply the Chernoff bounds of The-
orems A.1 and A.3. Accordingly, we introduce the scaled random variables A′

r,x = Ar,x/Amax(x) ∈ [0, 1],
r ∈ R, and A′

x =
∑︁

r∈R A′
r,x = Ax/Amax(x). We first prove Equation 7.6 by considering two cases, namely

µ̂x < 1 and µ̂x ≥ 1.

For µ̂x < 1, we apply Theorem A.3 on the sum A′
x using µ̂ = 1, ρ = 2, ξ = 1, and c ≥ 3. Clearly,

as µ̂x < 1 = µ̂ holds, and as we assume n ≥ 3 to hold, all requirements of Theorem A.3 are met.
Accordingly, Pr[A′

x ≥ 2 · c · ln n/ ln ln n] ≤ 1/nc is obtained. Now as, A′
x = Ax/Amax(x) holds, Pr[Ax ≥

2 · c · ln n/ ln ln n ·Amax(x)] ≤ 1/nc follows. Observing that Amax(r, x) = ∆x · dS(x)/µ̂x holds, Equation 7.6
follows for µ̂x < 1.

For 1 ≤ µ̂x ≤ ln n/ ln ln n, we again apply Theorem A.3, while choosing the parameters slightly differently.
In particular, we set µ̂ = µ̂x, ρ = 2, ξ = µ̂−1

x , and c ≥ 3. Again, it is easy to check that these settings
satisfy all requirements of Theorem A.3. Hence, the following holds:

Pr[A′
x ≥ 2 · c · µ̂−1

x · ln n/ ln ln n · µ̂x] = Pr[A′
x ≥ 2 · c · ln n/ ln ln n] ≤ 1/nc·µ̂−1

x ·µ̂x = 1/nc .

By the same arguments as above, Equation 7.6 then follows also for µ̂x ≤ ln n/ ln ln n.

76



7.1 Approximations for the Offline Cost VNEP

Equation 7.7 is a corollary of our above considerations for 1 ≤ µ̂x ≤ ln n/ ln ln n. Specifically, fixing
ξ = ln ln n/ ln n while otherwise applying Theorem A.3 using the same parameters, i.e., µ̂ = µ̂x, ρ = 2,
and c ≥ 3, the result readily follows, as ξ cancels out the factor ln n/ ln ln n.

Lastly, to obtain Equation 7.8, we employ Theorem A.1, specifically its second inequality. To this end,
assume that µ̂x ≥ 3·c·ln n/ε2 holds for some ε ∈ (0, 1). Setting δ = ε and using µ̂ = µ̂x, Theorem A.1 yields
Pr[A′

x ≥ (1+ε) · µ̂x] ≤ e−ε2·(3·c·ln n/ε2)/3 = 1/nc. Again, as Ax = A′
x ·Amax(x) and Amax(x) = ∆x ·dS(x)/µ̂x

holds, Pr[Ax ≥ (1 + ε) ·∆x · dS(x)] ≤ 1/nc follows, concluding the proof. ■

Given the above lemma that a single resource x ∈ GS exceeds its capacity by a certain factor, the following
lemma establishes general bounds that any resource exceeds its capacity.

Lemma 7.5. Let ∆V , ∆E > 0 be chosen minimally s.t. ∆V · dS(u) ≥ E[Au] and ∆E · dS(u, v) ≥ E[Au,v]
hold for u ∈ VS and (u, v) ∈ ES , respectively. Furthermore, let µ̂V = minu∈VS

∆V · dS(u)/Amax(u) and
µ̂E = min(u,v)∈ES

∆E · dS(u, v)/Amax(u, v). Considering a substrate graph of n nodes, i.e., n = |VS |, we
introduce the following generic function to denote the maximal capacity augmentation:

Λgen(c, n, ∆, µ̂) =

⎧⎪⎨⎪⎩
2 · c ·∆ · µ̂−1 · ln n

ln ln n if µ̂ < ln n
ln ln n

2 · c ·∆ if ln n
ln ln n ≤ µ̂ < 3 · c · ln n

(1 +
√︁

3 · c · ln n/µ̂) ·∆ if µ̂ ≥ 3 · c · ln n .

(7.9)

The function Λgen is monotonically decreasing for µ̂ when c, n, and ∆ are fixed. The following holds for
any c, n ≥ 3:

Pr
[︃

∃u ∈ VS : Au ≥ Λgen(n, c, ∆V , µ̂V ) · dS(u)
∨ ∃(u, v) ∈ ES : Au,v ≥ Λgen(n, c, ∆E , µ̂E) · dS(u, v)

]︃
≤ 1/nc−2 . (7.10)

Proof. First convince yourself that the function Λgen is monotonically decreasing when increasing µ̂ with
c, n, ∆ being fixed. This is apparent on the intervals (0, 3 · c · ln n) and (3 · c · ln n,∞). Furthermore, for the
only discontinuous point µ̂0 = 3·c·ln n, we have limµ̂↗µ̂0 Λgen(c, n, ∆, µ̂) = 2·c·∆ ≥ 2·∆ = Λgen(c, n, ∆, µ̂0)
as c ≥ 3, hence showing that Λgen is monotonically decreasing in µ̂.

Consider a node resource u ∈ VS . Denoting by ∆u = ∆x and µ̂u = µ̂x the values introduced in Lemma 7.4
for x = u, we observe that ∆u ≤ ∆V holds. As the function Λgen captures the resource augmentation fac-
tors according to Lemma 7.4, by the same lemma we obtain that Pr[Au ≥ Λgen(c, n, ∆u, µ̂u) · dS(x)] ≤ 1/nc

holds. As decreasing µ̂u only increases Λgen, also Pr[Ax ≥ Λgen(c, n, ∆u, µ̂V ) · dS(x)] ≤ 1/nc holds. Apply-
ing the same argument for edge resources, the following holds for any node resource u ∈ VS and any edge
resource (u, v) ∈ ES :

Pr[Au ≥ Λgen(n, c, ∆V , µ̂V ) · dS(u)] ≤1/nc

Pr[Au,v ≥ Λgen(n, c, ∆E , µ̂E) · dS(u, v)] ≤1/nc .

Observing that at most n2 substrate resources exist, namely n nodes and at most n · (n− 1) many edges,
and applying a union bound on these at most n2 many resources, each of which having a probability of
less than 1/nc to violate the resource bound, Equation B.3 follows. ■

Given the general Lemma 7.5, we obtain the following corollary for the cost approximation to exceed
resources.

Corollary 7.6. Assume that n = |VS | ≥ 3 holds. Letting µ̂cost
V = minu∈VS

2 · dS(u)/Amax(u) and
µ̂cost

E = min(u,v)∈ES
2 · dS(u, v)/Amax(u, v) and introducing

Λcost(n, ∆, µ̂) =

⎧⎪⎨⎪⎩
6 ·∆ · µ̂−1 · ln n

ln ln n if µ̂ < ln n
ln ln n

6 ·∆ if ln n
ln ln n ≤ µ̂ < 9 · ln n

(1 +
√︁

9 · ln n/µ̂) ·∆ if µ̂ ≥ 9 · ln n ,

(7.11)

77



Chapter 7 XP-Approximations for the Offline VNEP and Evaluation of Derived Heuristics

the following holds for the probability to exceed resources in the cost approximation according to Algo-
rithm 7.1:

Pr
[︃

∃u ∈ VS : Au ≥ Λcost(n, 2, µ̂cost
V ) · dS(u)

∨ ∃(u, v) ∈ ES : Au,v ≥ Λcost(n, 2, µ̂cost
E ) · dS(u, v)

]︃
≤ 1/n . (7.12)

Proof. The result follows from Lemma 7.5. First observe that E[Ax] ≤ 2 · dS(x) holds for any sub-
strate resource x ∈ GS . This follows from the observation that the initial fractional solution computed
in Line 1 of Algorithm 7.1 is feasible. Specifically,

∑︁
r∈R

∑︁
(fk

r ,mk
r )∈Dr

fk
r ·A(mk

r , x) ≤ dS(x) holds ini-
tially. After removing mappings of less than half of the weight and normalizing the remaining weights,∑︁

r∈R
∑︁

(fk
r ,mk

r )∈Dr
fk

r ·A(mk
r , x) ≤ 2 ·dS(x) holds. Hence, E[Ax] ≤ 2 ·dS(x) holds for any resource x ∈ GS

and accordingly, the choices of ∆V = ∆E = 2 and µ̂cost
V and µ̂cost

E satisfy the requirements of Lemma 7.5.
Employing c = 3, the result follows. ■

7.1.3 Cost Approximation without Latencies

Given Lemma 7.3 and Corollary 7.6, the following result is obtained for the cost variant of the offline
VNEP ⟨VE |NR ⟩.

Theorem 7.7. Assume n = |VS | ≥ 3. Consider µ̂cost
V , µ̂cost

E and the function Λcost as introduced in
Corollary 7.6. Let α = 2, β = Λcost(n, 2, µ̂cost

V ), and γ = Λcost(n, 2, µ̂cost
E ) and let N ∈ N be the maximal

number of rounding tries to execute. Algorithm 7.1 returns an (α, β, γ)-approximate solution for the cost
variant of the offline VNEP ⟨VE |NR ⟩ with the success probability being lower bounded by 1− (1/3)N ,
i.e., with high probability. The runtime of Algorithm 7.1 is polynomial in the time to construct a fractional
offline VNEP solution.

Proof. We consider the probability of the rounding step failing to produce an (α, β, γ)-approximate so-
lution. By Corollary 7.6 the cumulative probability that the rounded solution exceeds the capacity of
any node or edge resource by factors of β or γ is upper bounded by 1/3 for n ≥ 3. As by Lemma 7.3
any constructed solution will have a cost of at most two times the minimal cost, the probability to not
construct an (α, β, γ)-approximate solution within N rounding tries is lower bounded by 1 − (1/3)N .

With respect to the runtime of Algorithm 7.1, we note that each performed operation is polynomially
bounded in the cumulative number of returned mappings, which in turn is bounded by the runtime of the
algorithm to compute optimal fractional offline VNEP solutions. ■

7.1.4 Cost Approximation with Latencies

We now turn to the VNEP setting ⟨VE |NRL ⟩, i.e., including latency constraints. As shown in Sec-
tion 6.4, in this setting only (α = 1 + εL, β = 1 + εL, γ = 1 + εL)-approximate fractional solutions to the
offline VNEP can be computed (cf. Theorem 6.41). In the following, we argue that even using such an
approximate solution the Algorithm 7.1 can still readily be applied.

Specifically, considering the deterministic guarantee for the profit, we observe that the rounded solution will
always have a cost of at most α = 2·(1+εL) times the cost of an optimal solution. Furthermore, after prun-
ing costly mappings and normalizing the weights of the convex combinations, E(Ax) ≤ 2 · (1 + εL) · dS(x)
holds for any resource x ∈ GS . Accordingly, by employing the same arguments as in the proof of Theo-
rem 7.7, the following corollary is obtained:

Theorem 7.8. Assume that n = |VS | ≥ 3 holds and let εL > 0, µ̂cost,L
V = minu∈VS

2·(1+εL)·dS(u)/Amax(u),
and µ̂cost,L

E = min(u,v)∈ES
2·(1+εL)·dS(u, v)/Amax(u, v). Let α = 2·(1+εL), β = Λcost(n, 2·(1+εL), µ̂cost,L

V ),
and γ = Λcost(n, 2 · (1 + εL), µ̂cost,L

E ), with the function Λcost being defined as in Corollary 7.6.

78



7.2 Approximating the Profit Variant

In the setting ⟨VE |NRL ⟩ Algorithm 7.1 yields an (α, β, γ)-approximate solution with high probability,
when computing an (α = 1 + εL, β = 1 + εL, γ = 1 + εL)-approximate fractional offline VNEP solution in
Line 1. Specifically, the success probability is lower bounded by 1−(1/3)N and the runtime of Algorithm 7.1
is polynomial in the time to compute the (1 + εL, 1 + εL, 1 + εL)-approximate fractional offline VNEP
solution

7.2 Approximating the Profit Variant

In the following, the approximation for the profit variant of the offline VNEP is presented. Again we first
consider the VNEP setting ⟨VE |NR ⟩, i.e., without latencies.

The pseudo-code of our approximation for the profit is presented as Algorithm 7.2. In contrast to the
approximation of the cost variant, the algorithm first performs a preprocessing in Lines 1-3, which removes
all requests which cannot be fully (fractionally) embedded in the absence of other requests. As they cannot
be fully embedded, these requests can never be part of any feasible solution and can hence be removed
without further consideration. In Lines 3-7 the randomized rounding scheme is applied: a solution to the
fractional offline VNEP is computed and then rounded. Notably and in contrast to the approximation of
the cost variant, as the sum of the weights

∑︁
k fk

r for a request r ∈ R may not sum to 1, a request r is
rejected with probability 1−

∑︁
k fk

r . The rounding procedure is again iterated as long as the constructed
solution is not of sufficient quality or until the maximal number of rounding tries is exceeded. In the
following we discuss the parameters α, β, and γ for which solutions can be found with high probability.

7.2.1 Bounding the Profit

Employing the discrete random variable Br ∈ {0, br} to model the profit achieved by (potentially) em-
bedding request r ∈ R, we have Pr[Br = br] =

∑︁
(fk

r ,mk
r )∈Dr

fk
r and Pr[Br = 0] = 1−

∑︁
(fk

r ,mk
r )∈Dr

fk
r .

Hence, the overall profit achieved is B =
∑︁

r∈R Br with E[B] =
∑︁

r∈R br ·
∑︁

(fk
r ,mk

r )∈Dr
fk

r . Denot-
ing by bfrac =

∑︁
r∈R br ·

∑︁
(fk

r ,mk
r )∈Dr

fk
r the profit achieved by the optimal fractional solution, we have

bfrac = E[B].

By removing any request, which cannot be fully fractionally embedded (in the absence of other requests)
in the preprocessing step, we know that bfrac ≥ maxr∈R br = bmax holds: the fractional solution pertaining
to the whole set of requests must achieve at least the profit that was achieved by embedding each request
individually. By applying a Chernoff bound, the following is obtained.

Lemma 7.9. The probability of achieving less than a factor of α = 1 − 2/3 ·
√︁

bmax/bfrac ≥ 1/3 of the
profit of the optimal solution is upper bounded by exp(−2/9) ≈ 0.8007 ≤ 65/81.

Algorithm 7.2: Randomized Rounding Approximation for the Offline Profit VNEP ⟨VE |NR ⟩
1 foreach r ∈ R do // preprocess requests
2 compute optimal solution to the fractional profit VNEP for the request set {r}
3 remove request r from the set R if the fractional solution does not attain a profit of br

4 {Dr}r∈R ← compute optimal solution to the fractional offline VNEP for request set R
5 do // perform randomized rounding
6 construct solution by choosing mapping mk

r with probability fk
r for all r ∈ R

7 while the solution is not (α, β, γ)-approximate and maximal rounding tries are not exceeded;

79



Chapter 7 XP-Approximations for the Offline VNEP and Evaluation of Derived Heuristics

Proof. Let bmax = maxr∈R br denote the maximum benefit of the requests. We consider the random
variables B′

r = Br/bmax, such that B′
r ∈ [0, 1] holds. Let B′ =

∑︁
r∈R B′

r denote the total profit achieved
after scaling down the profits. Clearly, E[B′] = E[B]/bmax = bfrac/bmax holds. Applying the Chernoff bound
of Theorem A.2 with δ = 2/3 ·

√︁
bmax/bfrac and µ̃ = E[B′] = bfrac/bmax, the following is obtained:

Pr[B′ ≤ (1− δ) · µ̃] =Pr[B′ ≤ (1− 2/3 ·
√︁

bmax/bfrac) · bfrac/bmax] (plugging in values)

≤e−δ2·µ̃/2 (by Theorem A.2)
=e−4/9·bmax/bfrac·(bfrac/bmax)/2 (plugging in values)
=e−2/9

Denoting the optimal profit of the Integer Program by bopt and observing that bopt ≤ bfrac holds as
the fractional solution will always obtain a profit larger than the optimal (integral) solution, we have
bopt ≤ bfrac = E(B). Hence, letting α = 1− 2/3 ·

√︁
bmax/bfrac, we obtain

Pr[B ≤ α · bopt] ≤ Pr[B ≤ α · bfrac] = Pr[B′ ≤ α · bfrac/bmax] = Pr[B′ ≤ α · µ̃] ≤ exp(−2/9) .

Since bfrac ≥ bmax holds, the approximation factor α is lower bounded by 1/3.

Lastly, by using the Taylor series expansion of the function f(x) = ex, we obtain that ex ≤ 1 + x + x2/2
holds for x < 0. Accordingly, exp(−2/9) ≤ 65/81 holds. ■

7.2.2 Probabilistic Guarantee for Resource Augmentations

In the following, the probability that a rounded solution exceeds substrate capacities by a certain factor
is analyzed analogously to Section 7.1.2. In particular, the same random variables Ar,x ∈ [0, Amax(r, x)]
and Ax =

∑︁
r∈R Ar,x are employed to denote the cumulative allocations induced by request r ∈ R on

resource x ∈ GS and the overall allocations induced on resource x, respectively. Similarly, to the analysis
of the cost variant, we note that E[Ax] =

∑︁
r∈R

∑︁
k fk

r ·A(mk
r , x) holds by the feasibility of the computed

fractional solution. Furthermore, as the rounding procedure is the same as in Algorithm 7.1, Lemma B.3
is again applicable and we obtain the following corollary:

Corollary 7.10. Assume that n = |VS | ≥ 3 holds. Using µ̂prof
V = minu∈VS

dS(u)/Amax(u),
µ̂prof

E = min(u,v)∈ES
dS(u, v)/Amax(u, v) and introducing the function

Λprof(n, µ̂) =

⎧⎪⎨⎪⎩
8 · µ̂−1 · ln n

ln ln n if µ̂ < ln n
ln ln n

8 if ln n
ln ln n ≤ µ̂ < 12 · ln n

(1 +
√︁

12 · ln n/µ̂) if µ̂ ≥ 12 · ln n ,

(7.13)

the following holds for the probability to exceed resources in the profit approximation according to Algo-
rithm 7.2:

Pr
[︃

∃u ∈ VS : Au ≥ Λprof(n, µ̂prof
V ) · dS(u)

∨ ∃(u, v) ∈ ES : Au,v ≥ Λprof(n, µ̂prof
E ) · dS(u, v)

]︃
≤ 1/n2 . (7.14)

Proof. The result follows from Lemma 7.5. First observe that E[Ax] ≤ dS(x) holds for any substrate
resource x ∈ GS . This follows from the observation that for the initial fractional solution computed in
Line 4 of Algorithm 7.2 is feasible. Hence, the values ∆V = ∆E = 1 and µ̂prof

V and µ̂prof
E satisfy the

requirements of Lemma 7.5. Setting c = 4 the result follows. ■

80



7.2 Approximating the Profit Variant

7.2.3 Profit Approximation without Latencies

Given the probabilistic bounds for achieving an α-fraction of the optimal profit (cf. Lemma 7.9) and for
violating resource capacities by factors more than β and γ (cf. Corollary 7.10), the following approximation
result is obtained.

Theorem 7.11. Assume that n = |VS | ≥ 3. Let α = 1− 2/3 ·
√︁

bfrac/bmax ≥ 1/3, β = Λprof(n, µ̂prof
V ), and

γ = Λprof(n, µ̂prof
E ) with µ̂prof

V , µ̂prof
E , and the function Λprof defined in Corollary 7.10. Let N ∈ N be the

maximal number of rounding tries to execute. Algorithm 7.2 returns an (α, β, γ)-approximate solution
for the profit variant of the offline VNEP ⟨VE |NR ⟩ with the success probability being lower bounded
by 1 − (74/81)N , i.e., with high probability. The runtime of Algorithm 7.1 is polynomial in the time to
construct a fractional offline VNEP solution.

Proof. We consider the probability of the rounding step failing to produce an (α, β, γ)-approximate solu-
tion. By Corollary 7.10 the cumulative probability that the rounded solution exceeds the capacity of any
node or edge resource by factors of β or γ is upper bounded by 1/n2 ≤ 1/9 for n ≥ 3. As by Lemma 7.9
a rounded solution achieves at most an α-fraction of the optimal profit with probability 65/81, the cu-
mulative probability that no (α, β, γ)-approximate solution is found is upper bounded by 74/81. Hence,
the probability to construct such an approximate solution within N rounding tries is lower bounded by
1− (74/81)N .

With respect to the runtime of Algorithm 7.2, we note that each performed operation is polynomially
bounded in the cumulative number of returned mappings, which in turn is bounded by the runtime of the
algorithm to compute the optimal fractional offline VNEP solutions. ■

7.2.4 Profit Approximation with Latencies

We now turn towards the setting when additionally latencies are considered, i.e., the VNEP variant
⟨VE |NRL ⟩. As the respective fractional offline VNEP can only be approximately solved, Algorithm 7.2
must be adapted accordingly. The pseudo-code of the approximation with latencies is given as Algo-
rithm 7.3.

In contrast to Algorithm 7.2, a request is removed in the preprocessing step only if less than 1/(1 + εL)
of its profit was achieved, as only in this case it is guaranteed, that the respective request cannot be fully
embedded in an integral solution. Furthermore, as the solution computed in Line 4 is only an approximate
one, the analysis needs to be slightly adapted. To this end, we employ the same set of random variables
Br ∈ {0, br}, r ∈ R, and B =

∑︁
r∈R Br, where Br = br denotes the event that request r is embedded

and Br = 0 holds, if the request was rejected. Furthermore, we again denote by bmax = maxr∈R br the
maximum benefit of the requests and by bfrac the now 1/(1 + εL)-optimal objective of the LP solution. We
slightly adapt Lemma 7.9 as follows:

Algorithm 7.3: Randomized Rounding Approximation for the Offline Profit VNEP ⟨VE |NRL ⟩
Input : Requests R, Substrate GS , LCSP approximation factor εL

1 foreach r ∈ R do // preprocess requests
2 D̃r ← compute 1/(1 + εL)-approximate solution to fractional profit VNEP for request set {r}
3 remove request r from the set R if

∑︁
(f̃

k
r ,m̃k

r )∈D̃r
fk

r < 1/(1 + εL)

4 {Dr}r∈R ← compute 1/(1 + εL)-approximate solution to fractional offline VNEP for request set R
5 do // perform randomized rounding
6 construct solution by choosing mapping mk

r with probability fk
r for all r ∈ R

7 while the solution is not (α, β, γ)-approximate and maximal rounding tries are not exceeded;

81



Chapter 7 XP-Approximations for the Offline VNEP and Evaluation of Derived Heuristics

Lemma 7.12. The probability of achieving less than a factor of
α = (1 + εL)−1 · (1− 2/3 ·

√︁
bmax/bfrac) ≥ 1/3 · (1 + εL)−3/2 of the profit of the optimal solution is

upper bounded by exp(−2/9) ≈ 0.8007 ≤ 65/81.

Proof. Using the same argument as in the proof of Lemma 7.9, Pr[B′ ≤ (1 − δ) · µ̃] ≤ e−2/9 holds for
µ̃ = bfrac/bmax and δ = 2/3 ·

√︁
bmax/bfrac. However, two things need to be noted:

1. As the solution computed in Line 4 is only 1/(1 + εL)-approximate and denoting by bopt the optimal
solution, we have bopt ≤ (1+ εL) · bfrac. Hence, Pr[B ≤ (1− δ) · (1 + εL)−1 · bopt] ≤ e−2/9 follows from
Pr[B′ ≤ (1− δ) · µ̃] ≤ e−2/9 for the actual achieved profit B.

Hence, for the approximation guarantee α = (1− δ) · (1 + εL)−1 holds.

2. Secondly, by the preprocessing step only bfrac ≥ bmax/(1 + εL) holds true. Hence, for the minimum
value of bfrac, i.e., bfrac = bmax/(1 + εL), the following holds for the approximation factor α:

α ≥ (1− δ) · (1 + εL)−1 = (1− 2/3 ·
√︁

1/(1 + εL)) · (1 + εL)−1 = 1/3 · (1 + εL)−3/2 .

Using the above and the same Taylor series expansion to bound e−2/9, the result follows. ■

Given the above lemma, it is easy to see that the approximation result of Theorem 7.11 carries over to
the case with latencies under minor changes of the approximation factors:

Theorem 7.13. Assume n = |VS | ≥ 3 and let α = (1 + εL)−1
(︂

1− 2/3 ·
√︁

bfrac/bmax

)︂
, such that α ≥ 1/3 ·

(1 + εL)−3/2 holds, β = Λprof(n, µ̂prof
V ), and γ = Λprof(n, µ̂prof

E ) with µ̂prof
V , µ̂prof

E , and the function Λprof being
as defined in Corollary 7.10. Let N ∈ N be the maximal number of rounding tries to execute. Algorithm 7.3
returns an (α, β, γ)-approximate solution for the profit variant of the offline VNEP ⟨VE |NRL ⟩ with
the success probability being lower bounded by 1 − (74/81)N , i.e., with high probability. The runtime of
Algorithm 7.1 is polynomial in the time to construct a fractional offline VNEP solution.

Proof. We employ the same union bound as for the proof of Theorem 7.11. By Lemma 7.12 at least
an α fraction of the optimal profit is obtained with probability of at most e−2/9 ≤ 65/81. Based on
the feasibility of the solution, for any resource x ∈ GS still E[Ax] ≤ dS(x) holds. Hence, Corollary 7.10
can be readily applied to obtain that the probability to violate any resource by a factor of more than β
(nodes) or γ (edges) is upper bounded by 1/9. Using the same union bound argument, the probability
to successfully return an (α, β, γ)-approximate solution is lower bounded by 1− (74/81)N . Noting, again,
that the runtime of the approximation is dominated by the time to construct the approximate fractional
offline VNEP solutions, the result follows. ■

7.2.5 Trading Off Capacity Violations with the Obtained Profit

A well-known technique to reduce capacity violations is to a priori scale down the substrate’s capacities
by a certain factor, thereby reducing the a posteriori violations [RT87; CLN04; ERS16a]. In the following
this technique is applied to the approximations of the profit VNEP. Notably, as scaling down capacities
will proportionally reduce the achieved profit and thereby the embedding values, this technique is not
applicable for the cost variant, as in this case all requests need to be fully embedded.

In the following, we start by analyzing under which conditions capacities can be scaled without dispro-
portionately reducing the profit.

Lemma 7.14. Consider an offline profit VNEP instance. Denoting by δmax = maxx∈GS
dmax(x)/dS(x) ≤ 1

the maximal demand to capacity ratio (cf. Definition 2.4) and let εscal ∈ [δmax, 1]. If there exists a frac-
tional solution of profit bfrac under the original capacities, then there exists a fractional solution of profit
εscal · bfrac under the scaled capacities d′

S(x) = εscal · dS(x).

82



7.3 Derandomization: Deterministic Approximations

Proof. Denote by {Dr = {(fk
r , mk

r )}k}r∈R the solution under the original capacities dS of profit bfrac. The
solution {D̃r = {(f̃k

r = εscal ·fk
r , mk

r )}}r∈R clearly achieves a profit of εscal · bfrac and is feasible with respect
to the adapted capacities d′

S . Also note that with respect to the adapted capacities all scaled mappings
are still valid, i.e., the maximal demand on any substrate resource never exceeds the provided capacity.
This holds as εscal ∈ [δmax, 1] was enforced. Hence, even for the scaled capacities, the ratio of maximal
demand to maximal capacity still lies below 1. ■

Using the above observation, we can now slightly adapt the approximation algorithms for the profit variant
of the VNEP. Specifically, having computed a fractional solution, the weights are scaled together with
the capacities. Using the exact same analysis as before, but now with respect to the scaled capacities, the
following theorem is obtained.

Theorem 7.15. Assume that n = |VS | ≥ 3 and let εscal ∈ [δmax, 1]. Furthermore, let µ̂scal
V = minu∈VS

εscal ·
dS(u)/Amax(u) and µ̂scal

E = min(u,v)∈ES
εscal · dS(u, v)/Amax(u, v) be upper bounds on the expected alloca-

tions after scaling and

Λscal
prof(n, ε, µ̂) =

⎧⎪⎨⎪⎩
8 · (µ̂)−1 · ε · ln n

ln ln n if µ̂ < ln n
ln ln n

8 · ε if ln n
ln ln n ≤ µ̂ < 12 · ln n

(1 +
√︁

12 · ln n/µ̂) · ε if µ̂ ≥ 12 · ln n .

(7.15)

Considering the profit variant of the offline VNEP, Algorithms 7.2 and 7.3 can be adapted as follows
to trade off capacity augmentations with the achieved profit. After having computed the optimal or
approximate fractional offline VNEP solution in Line 4, the weights are scaled for each request by the factor
εscal and afterwards randomized rounding is applied on this scaled solution. The adapted approximation
yields (α = εscal · α′, β = Λscal

prof(n, εscal, µ̂scal
V ), γ = Λscal

prof(n, εscal, µ̂scal
E ))-approximate solutions with high

probability. Specifically, the success probability is lower bounded by 1 − (74/81)N , where N denotes the
number of rounding tries, and the runtime of the adapted approximations is still polynomial in the time
to construct the fractional offline VNEP solution.

Proof. Denoting by B and Bscal the profit of the unscaled and scaled solution, respectively, and noting
that E[Bscal] = εscal · E[B] holds, we have

Pr[B ≤ c · E[B]] = Pr[B · εscal ≤ c · E[B] · εscal] = Pr[Bscal ≤ c · E[Bscal]] .

Hence, scaling the weights results in an accordingly scaled approximation factor α = εscal · α′.

For the resource augmentations factors β and γ, consider the following. By Lemma 7.14, the scaled solution
is a feasible fractional solution with respect to the scaled capacities d′

S . Hence, Corollary 7.10 can be readily
applied with respect to the scaled capacities d′

S . By considering the expectations µ̂scal
V , µ̂scal

E with respect to
the scaled capacities, probabilistic bounds for Au ≥ Λprof(n, µ̂scal

V ) ·d′
S(u) and Au,v ≥ Λprof(n, µ̂scal

E ) ·d′
S(u, v)

are obtained for node and edge resources u ∈ VS and (u, v) ∈ ES , respectively. As d′
S(x) = εscal · dS(x)

holds, the probabilistic bounds translate to probabilistic bounds for Au ≥ Λprof(n, µ̂scal
V ) · εscal · dS(u) and

Au,v ≥ Λprof(n, µ̂scal
E ) · εscal · dS(u, v) with respect to the original capacities dS . As Λscal

prof(n, εscal, µ̂scal) =
εscal · Λprof(n, µ̂scal) holds, the result follows. ■

7.3 Derandomization: Deterministic Approximations

All above derived results (cf. Theorems 7.7, 7.8, 7.11, 7.13, and 7.15) rely on randomized rounding and are
hence probabilistic in nature. However, it is well-known that algorithms relying on randomized rounding
can often be derandomized using a technique called conditional probabilities or conditional expectation

83



Chapter 7 XP-Approximations for the Offline VNEP and Evaluation of Derived Heuristics

by employing pessimistic estimators [Rag86; Rag88; MR95; WS11; AS16; MU17]. In the following we
shortly revisit this concept and then show how to derandomize any of our randomized rounding algorithms
presented above.

7.3.1 Overview on the Method of Conditional Expectation

In all of the randomized rounding algorithms, first for each request r ∈ R a convex combination of
mappings Dr = {(fk

r , mk
r )}k is constructed and then one of the mappings mk

r is chosen (or potentially
none in the profit case). The construction of solutions can accordingly be probabilistically captured in the
following way. Let n = |R| denote the number of requests, R = {r1, . . . , rn}, and let k̂i = |Dri

| denote the
number of found mappings for the i-th request ri. Furthermore, denote by K̂i = {0, 1, . . . , k̂r} the index
set (including 0) for the i-th request ri. Denote by Zi ∈ K̂i the random variable pertaining to the choice
of mapping for request ri, such that Zi = k if and only if the k-th mapping was chosen to embed it and
Zi = 0 holds if none of the mappings was chosen. Clearly, Pr[Zi = k] = fk

r and Pr[Zi = 0] = 1 −
∑︁

k fk
r

holds.

Now, let F : K̂1 × . . . × K̂n → R≥0 denote a real-valued function over the choices of selected mappings.
Proving the performance guarantees of the randomized rounding approximations, probabilistic bounds
for events such as ‘no resource exceeds its capacity by factors more than β or γ’ were proven. In fact,
considering the resource augmentation example, consider the following function:

F(z1, . . . , zn) =

⎧⎪⎨⎪⎩0 , if no resource exceeds its capacity by factors β or γ

according to the embedding indicated by z1, . . . , zn

1 , otherwise
.

This function is the failure indicator function for constructing a suitable (β, γ)-approximate solution. The
probabilistic analyses of the different approximations have shown that

E[F(Z1, . . . , Zn)] = Pr[a resource exceeds its capacity by factors more than β or γ] < 1
holds, hence proving the existence of a (β, γ)-approximate solution. Using the above notation such a solu-
tion is now represented as an |R|-tuple (z1, z2, . . . , zn) ∈ K̂1× . . .× K̂n. The task of the derandomization
process is to deterministically construct such a solution. Since, trying out all

∏︁
i∈[n](k̂i + 1) potential

combinations of mapping choices is computationally prohibitive, a more involved technique needs to be
applied. In the following, the method of conditional expectations is revisited to deterministically construct
such solutions in polynomial-time.

The method of conditional expectations requires to efficiently evaluate the following function:
EZi+1,...,Zn

[F(z1, . . . , zi, Zi+1, . . . , Zn)] = Pr[F(Z1, . . . , Zn) | Z1 = z1, . . . , Zi = zi] .

If the above function can always, i.e., for any prefix length i and any choice of (z1, . . . , zi), be effi-
ciently computed, the method of conditional expectations constructs a solution as follows. Assum-
ing that EZ1,...,Zn

[F(Z1, . . . , Zn)] = ϵ < 1 initially holds, there must exist a choice z1 for Z1 such that
EZ2,...,Zn [F(z1, Z2, . . . , Zn)] ≤ ϵ < 1 holds. Given that the conditional expectation EZ2,...,Zn [F(z1, . . . , Zn)]
can be computed by our assumption for any value z1 ∈ K̂1, one may pick any mapping z1 satisfying
EZ2,...,Zn [F(z1, . . . , Zn)] ≤ ϵ < 1 and can then iteratively select appropriate values z2, z3, . . . , zn, such that
the conditional expectation only decreases:

1 > ϵ =EZ1,...,Zn [F(Z1, . . . , Zn)] (by assumption)
≥EZ2,...,Zn [F(z1, Z2, . . . , Zn)] (choice of appropriate z1)
≥EZ3,...,Zn [F(z1, z2, Z3, . . . , Zn)] (choice of appropriate z2)

...
≥E[F(z1, . . . , zn)] = F(z1, . . . , zn) (choice of appropriate zn)

84



7.3 Derandomization: Deterministic Approximations

As the conditional expectation only decreases and at the end no randomness remains, since for each random
variable specific values have been selected, F(z1, . . . , zn) ≤ ϵ < 1 must hold. Indeed, as the function is
binary, actually F(z1, . . . , zn) = 0 must hold, proving that the constructed solution indeed satisfies the
respective resource augmentation factors. To apply the above method, one has to efficiently compute
Pr[F(Z1, . . . , Zn) | Z1 = z1, . . . , Zi = zi], which is hard to do exactly for general distributions. However,
as shown by Raghavan [Rag88], it often suffices to consider pessimistic estimators to upper bound the
failure probability.

7.3.2 Pessimistic Estimators: Idea and Application

In the following the notion of pessimistic estimators is first exemplarily introduced and then applied
to efficiently bound the failure probabilities within the VNEP approximations, namely not obtaining a
sufficiently large profit and exceeding resources beyond factors β and γ.

To explain the notion of pessimistic estimators, we consider the following example. Let X =
∑︁

i∈[n] Xi be
a sum of independent random variables Xi ∈ [0, 1] and let the failure function be

G(x1, . . . , xn) =
{︄

0 if
∑︁

i∈[n] xi < (1 + δ) · µ̂
1 if

∑︁
i∈[n] xi ≥ (1 + δ) · µ̂

,

for µ̂ ≥ E[Z]. While computing Pr[G(X1, . . . , Xn) | X1 = x1, . . . , Xi = xi] exactly is generally hard,
Raghavan [Rag88] proposed to apply well-known techniques stemming from the analysis of Chernoff bounds
to bound the probability. In particular, for Pr[X ≥ (1 + δ) · µ̂] the proof of Theorem A.1 yields that the
following holds for any t > 0:

Pr
[︃
X =

∑︂
i∈[n]

Xi ≥ (1 + δ) · µ̂
]︃
≤ E [exp(t ·X)]

exp(t · (1 + δ) · µ̂) =
∏︁

i∈[n] exp(t · E[Xi])
exp(t · (1 + δ) · µ̂) . (7.16)

Hence, one can choose the following function as the pessimistic estimator:

E(x1, . . . , xn) =
∏︂

i∈[n]

exp(t · xi)/ exp(t · (1 + δ) · µ̂) .

Then the following holds for the conditional expectation for X1 = x1, . . . , Xi = xi:

EXi+1,...,Xn
[G(x1, . . . , xi, Xi+1, . . . , Xn)] ≤EXi+1,...,Xn

[E(x1, . . . , xi, Xi+1, . . . , Xn)]

=
∏︁

j∈[i] exp(t · xj) ·
∏︁n

j=i+1 exp(t · E[Xi])
exp(t · (1 + δ) · µ̂) (7.17)

Given the above inequality, the conditional expectation under the pessimistic estimator E can be computed
efficiently as long as the expectation E[Xi] is known or if it can be efficiently computed. The last ‘trick’ is
now the following: if Pr [X ≥ (1 + δ) · µ̂] = E[G(X1, . . . , Xn)] = ϵ < 1 was proven using a Chernoff bound,
then for the pessimistic estimator E initially also EX1,...,Xn [E(X1, . . . , Xn)] ≤ ε < 1 holds by the remaining
parts of the proof of the same Chernoff bounds. Importantly, this implies that for the pessimistic estimator
E of G the same value t as in the Chernoff analysis needs to be used. Hence, considering the above example,
according to the proof of Theorem A.1, t = ln(1 + δ) has to be used within the pessimistic estimator E .

In the following, the probabilistic (union) bounds studied in Sections 7.1 and 7.2 are translated into
corresponding pessimistic estimators.

85



Chapter 7 XP-Approximations for the Offline VNEP and Evaluation of Derived Heuristics

7.3.2.1 Generic Pessimistic Estimator for Resource Augmentations

We start by considering pessimistic estimators for the resource augmentations, which will be used for all
discussed randomized rounding algorithms. Given that all bounds on resource augmentations are based
on Lemmas 7.4 and Lemma 7.5, we analogously first introduce a general pessimistic estimator and will
then later on adapt it to the respective profit and cost approximations.

Lemma 7.16. Consider a resource x ∈ GS and let ∆x > 0 be chosen in such a way that ∆x ·dS(x) is an up-
per bound on the expected allocations on x ∈ GS , i.e., ∆x·dS(x) ≥ E(Ax) holds. Let µ̂x = ∆x · dS(x)/Amax(x)
and n ≥ 3 and c ≥ 3. Let A′

x(r, k) denote the allocation of the k-th mapping of request r ∈ R on resource
x divided by the maximal allocations, i.e.:

A′
x(r, k) =

{︄
A(mk

r , x)/Amax(x) if k ∈ K̂r \ {0}
0 otherwise

.

Let z⃗ = (z1, . . . , zn) ∈ K̂1× . . .×K̂n denote a selection of mappings, such that if zi = k holds, then request
ri is embedded using its zi = k-th mapping mk

r for k > 0 and is rejected if k = 0. Let FAx

n,c,∆x,µ̂x
(z⃗) ∈ {0, 1}

denote the failure function which is 1 iff. the allocation on resource x under mapping selection z⃗ exceeds
the capacity by a factor more than Λgen(n, c, ∆x, µ̂x) (cf. Lemma 7.5). The following function EAx

n,c,∆x,µ̂x

is a pessimistic estimator of FAx

n,c,∆x,µ̂x
:

EAx

n,c,∆x,µ̂x
(z⃗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∏︁
ri∈R exp(ln λ ·A′

x(ri, zi))
exp(λ · ln λ)

if µ̂x < 1
with λ = 2 · c · ln n/ ln ln n∏︁

ri∈R exp(ln λ ·A′
x(ri, zi))

exp(λ · ln λ · µ̂x)
if 1 ≤ µ̂x < ln n/ ln ln n

with λ = 2 · c · µ̂−1
x · ln n/ ln ln n∏︁

ri∈R exp(ln λ ·A′
x(ri, zi))

exp(λ · ln λ · µ̂x)
if ln n/ ln ln n ≤ µ̂x < 3 · c ln n

with λ = 2 · c∏︁
ri∈R exp(ln λ ·A′

x(ri, zi))
exp(λ · ln λ · µ̂x)

if 3 · c · ln n ≤ µ̂x

with λ = 1 +
√︁

3 · c · ln n/µ̂x

(7.18)

Specifically, letting Z⃗ = (Z1, . . . , Zn) ∈ K̂1 × . . . × K̂n denote the vector of random variables indicating
the selection of mappings, i.e., Pr[Zi = k] = fk

r and Pr[Zi = 0] = 1−
∑︁

k fk
r , the following holds:

(1) EZ⃗ [FAx

n,c,∆x,µ̂x
(Z⃗)] ≤ EZ⃗ [EAx

n,c,∆x,µ̂x
(Z⃗)] ≤ 1/nc

(2) EZi+1,...,Zn
[FAx

n,c,∆x,µ̂x
(z1, ..., zi, Zi+1, ..., Zn)] ≤ EZi+1,...,Zn

[EAx

n,c,∆x,µ̂x
(z1, ..., zi, Zi+1, ..., Zn)]

(3) EZi+1,...,Zn
[EAx

n,c,∆x,µ̂x
(z1, . . . , zi, Zi+1, . . . , Zn)] can be computed in time polynomial in the number of

returned mappings for any prefix length i and any choice of assignments z1, . . . , zi.

Proof. We first note that the function A′
x(r, k) correctly computes the (scaled) allocations on resource x

and that for the random variable A′
r,x, introduced in the analysis of resource augmentations in Section 7.1.2,

A′
ri,x = A′

x(ri, Zi) holds. Hence, the application of the Chernoff bounds on A′
x =

∑︁
r A′

r,x can be equally
stated in terms of the sum of the random variables Z⃗ via

∑︁
ri∈R A′

x(ri, Zi).

Next, we note that the different cases of Equation 7.18 are all derived by tracing the origins of the results
of Lemma 7.4 back to the application of the Chernoff bound of Theorem A.1. For example, in Lemma 7.4
for the first case, i.e., if µ̂x < 1 holds, the upper bound used in the analysis was set to 1 and accordingly
it does not occur in the denominator. Notably, according to this analysis, the bounds λ slightly differ

86



7.3 Derandomization: Deterministic Approximations

compared to the value of Λgen, as, e.g., the factor ∆x does not occur in the function EAx

n,c,∆x,µ̂x
while being

used in Λgen. This difference is due to the fact that the Chernoff bounds use the scaled random variables
A′

x albeit introducing additional factors as ∆x when restating these bounds in terms of the original random
variables Ax as Amax(x) = ∆x · dS(x)/µ̂x holds.

By the argument that the different cases of Equation 7.18 stem from the analysis of the Chernoff bound
used in Lemma 7.4, the first and second statements of this lemma follow. The third statement of this
lemma follows from the applicability of Equation 7.17, as the expectation E[A′

x(ri, Zi)] =
∑︁

(fk
r ,mk

r )∈Dri
fk

r ·
A(mk

r , x)/Amax(x) can be readily computed in time polynomial in the size of
∑︁

r∈R |Dr|. ■

The above introduced pessimistic estimator for exceeding the capacity of a single resource can easily be
generalized to obtain a pessimistic estimator for the failure probability of exceeding the capacity of any
resource. Intuitively, and reflecting the union bound argument of Lemma 7.5, this generalized pessimistic
estimator is obtained by simply summing up the respective estimators for each resource.

Corollary 7.17. Let ∆x > 0 be chosen in such a way that ∆x · dS(x) is an upper bound on the expected
allocations on x ∈ GS , i.e., ∆x · dS(x) ≥ E(Ax) holds. Let µ̂x = ∆x · dS(x)/Amax(x) and n ≥ 3 and c ≥ 3.
Let ∆V , ∆x, µ̂V , µ̂E , and Λgen be as defined in Lemma 7.5.

We denote by FA
n,c,∆V ,∆E ,µ̂V ,µ̂E

(z⃗) ∈ {0, 1} the function indicating the failure of constructing a solution
such that the allocations on each node resource u ∈ VS are bounded by a factor Λgen(n, c, ∆V , µ̂V ) and the
allocations on each edge resource (u, v) ∈ ES are bounded by a factor Λgen(n, c, ∆E , µ̂E). The function

EA
n,c,∆V ,∆E ,µ̂V ,µ̂E

(z⃗) =
∑︂

u∈VS

EAu

n,c,∆V ,µ̂u
(z⃗) +

∑︂
(u,v)∈ES

EAu,v

n,c,∆E ,µ̂u,v
(z⃗) (7.19)

is a pessimistic estimator for FA
n,c,∆V ,∆E ,µ̂V ,µ̂E

, such that the following holds:

(1) EZ⃗ [FA
n,c,∆V ,∆E ,µ̂V ,µ̂E

(Z⃗)] ≤ EZ⃗ [EA
n,c,∆V ,∆E ,µ̂V ,µ̂E

(Z⃗)] ≤ 1/nc−2

(2) EZi+1,...,Zn
[FA

n,c,∆V ,∆E ,µ̂V ,µ̂E
(z1, ..., Zi+1, ...)] ≤ EZi+1,...,Zn

[EA
n,c,∆V ,∆E ,µ̂V ,µ̂E

(z1, ..., Zi+1, ...)]

(3) EZi+1,...,Zn
[EAx

n,c,∆x,µ̂x
(z1, . . . , zi, Zi+1, . . . , Zn)] can be computed in time polynomial in the number of

returned mappings for any prefix length i and any choice of assignments z1, . . . , zi.

Note that in each summand of the above pessimistic estimator FA
n,c,∆V ,∆E ,µ̂V ,µ̂E

the maximal values ∆V

and ∆E are used while employing the resource specific values µ̂u and µ̂u,v. This again reflects the analysis
of Lemma 7.5. Analogous to the application of Lemma 7.5 to obtain specific bounds for the different
approximation algorithms (cf. Corollaries 7.6 and 7.10), the above presented generic pessimistic estimator
will eventually be slightly adapted by considering specific values ∆V and ∆E etc.

7.3.2.2 Pessimistic Estimator for the Obtained Profit

While the objective approximation guarantee is deterministic for the cost approximations, it is probabilistic
for the profit approximations. Hence, to derandomize the approximations for the profit, the additional
failure source of not achieving an α-factor of the profit has to be taken into account using an additional
pessimistic estimator. While the pessimistic estimator for the resource augmenations was based on the
Chernoff bound of Theorem A.1, the profit bounds are obtained via the different Chernoff bound stated
in Theorem A.2. However, the respective analysis only changes slightly and we state the following:

87



Chapter 7 XP-Approximations for the Offline VNEP and Evaluation of Derived Heuristics

Lemma 7.18. Let bmax = maxr∈R denote the maximal profit of any request, bfrac denote the profit
achieved by the fractional solution and µ̃ = bfrac/bmax. Also, let B′(r, k) denote the scaled profit of request
r when embedding it using the k-th mapping, i.e.:

B′(r, k) =
{︄

br/bmax if k ∈ K̂r \ {0}
0 otherwise

.

Let z⃗ = (z1, . . . , zn) ∈ K̂1× . . .×K̂n denote a selection of mappings, such that if zi = k holds, then request
ri is embedded using its zi = k-th mapping mk

r for k > 0 and is rejected if k = 0. Let FB
µ̃ (z⃗) ∈ {0, 1}

denote the failure function which is 1 iff. the cumulative profit under mapping selection z⃗ is less than a
factor α = 1− 2/3 ·

√︁
µ̃−1 of µ̃. The following function EB

µ̃ is a pessimistic estimator for FB
µ̃ :

EB
µ̃ (z⃗) =

∏︁
ri∈R exp(ln α ·B′(ri, zi))

exp(α · ln α · µ̃) . (7.20)

Specifically, letting Z⃗ = (Z1, . . . , Zn) ∈ K̂1 × . . . × K̂n denote the vector of random variables indicating
the selection of mappings, i.e., Pr[Zi = k] = fk

r and Pr[Zi = 0] = 1−
∑︁

k fk
r , the following holds:

(1) EZ⃗ [FB
µ̃ (Z⃗)] ≤ EZ⃗ [EB

µ̃ (Z⃗)] ≤ exp(−2/9)

(2) EZi+1,...,Zn [FB
µ̃ (z1, . . . , zi, Zi+1, . . . , Zn)] ≤ EZi+1,...,Zn [EB

µ̃ (z1, . . . , zi, Zi+1, . . . , Zn)]

(3) EZi+1,...,Zn [EB
µ̃ (z1, . . . , zi, Zi+1, . . . , Zn)] can be computed in time polynomial in the number of returned

mappings for any prefix length i and any choice of assignments z1, . . . , zi.

Proof. We first note that the function B′(r, k) correctly computes the (scaled) profit by using the k-th
mapping of request r to embed it. Hence, considering the random variable B′

r introduced in Section 7.2.1,
B′

ri
= B′(ri, Zi) holds. Thus, the application of the Chernoff bound on B′ =

∑︁
r∈R B′

r can be equivalently
stated by using

∑︁
ri∈R B′(ri, Zi).

The estimator is based on the analysis of the application of the Chernoff bound of Theorem A.2 in
Lemma 7.9. Specifically, the bound Pr[X ≤ (1− δ) · µ̃] ≤ E[exp(t ·X)]/ exp(t · (1− δ) · µ̃) was obtained in
Theorem A.2 by the application of Markov’s inequality. By choosing δ = 2/3 ·

√︁
µ̃−1 and t = ln(1 − δ),

the validity of Equation 7.20 with respect to the second statement is obtained.

The first statement follows from the further application of the Chernoff bound of Theorem A.2 in Lemma 7.9.

With respect to the last statement on the computational tractability of computing the conditional expec-
tation of EB

µ̃ , we note that E[B′(ri, Zi)] = E[B′
ri

] = br/bmax ·
∑︁

k fk
r holds. As the random variables in Z⃗

are independent, the conditional expectation can be computed as follows based on Equation 7.20:

EZi+1,...,Zn
[FB

µ̃ (z1, . . . , zi, Zi+1, . . . , Zn)]
≤EZi+1,...,Zn

[EB
µ̃ (z1, . . . , zi, Zi+1, . . . , Zn)]

=
∏︁

j∈[i] exp(ln α ·B′(rj , zj) ·
∏︁n

j=i+1 exp(ln α · E[B′(ri, Zi)])
exp(α · ln α · µ̃) . (7.21)

■

88



7.3 Derandomization: Deterministic Approximations

Algorithm 7.4: Generic Deterministic Rounding using the Method of Conditional Expectations
Input : Set of requests R, substrate GS , fractional solution {Dr}r∈R,

failure function F : K̂1× ...×K̂n→{0, 1}, s.t. F(z⃗) = 1 iff. z⃗ is not (α, β, γ)-approximate,
pessimistic estimator E : K̂1 × ...× K̂n → R≥0 of F , such that
(1) EZ⃗ [F(Z⃗)] ≤ EZ⃗ [E(Z⃗)] < 1,
(2) EZi+1,...,Zn

[F(z1, . . . , zi, Zi+1, . . . , Zn)] ≤ EZi+1,...,Zn
[E(z1, . . . , zi, Zi+1, . . . , Zn)],

(3) EZi+1,...,Zn
[E(z1, . . . , zi, Zi+1, . . . , Zn)] can be efficiently computed.[︃

Reminder: Zi ∈ K̂i denote the mapping selection random variable for ri ∈ R with
Pr[Zi = k] = fk

r and Pr[Zi = 0] = 1−
∑︁

k fk
r

]︃
foreach ri ∈ R do

1 for k ← 0 to K̂i do // iterate over all mapping indices for request ri

2 if Pr[Zi = k] > 0 then // only consider mappings of positive probability
3 set zi = k //(temporarily) select k-th mapping for request ri

4 if EZi+1,...,Zn
[E(z1, ..., zi, Zi+1, ..., Zn)] ≤ EZi,...,Zn

[E(z1, ..., zi−1, Zi, ..., Zn)] then
// failure estimate lies below expectation: choose k-th mapping

5 if k = 0 then
6 set m̂ri ← ∅ // request ri is not embedded
7 else
8 set m̂ri ← mk

r // request ri is embedded using mk
r

9 break // continue with the next request

10 return {m̂ri
}ri∈R

7.3.3 Deterministic Approximation Results

In the following, we show that all probabilistic randomized rounding approximations can be derandomized
using the above introduced pessimistic estimators. We first discuss the general deterministic approximation
scheme using a general, unspecified pessimistic estimator (see Algorithm 7.4) and then afterwards discuss
the actually chosen estimators for the different approximations.

Algorithm 7.4 implements the method of conditional expectation (cf. discussion in Section 7.3.1). Specifi-
cally, besides being given the fractional solution as convex combination Dr for each request r ∈ R, a failure
function F : K̂1 × . . .× K̂n → {0, 1} together with a pessimistic estimator E : K̂1 × . . .× K̂n → R≥0 has
to be specified. The failure function will be 1 if the constructed solution is not (α, β, γ)-approximate.
Using the method of conditional expectation, i.e., constructing a solution by iteratively considering the
estimation of the failure estimator and choosing any of the mappings such that the estimate of the failure
expectation does not increase, an (α, β, γ)-approximate solution is obtained as long as the initial failure
estimation expectation lies below 1. The following theorem formalizes the correctness of Algorithm 7.4.

Theorem 7.19. Algorithm 7.4 constructs an (α, β, γ)-approximate VNEP solution in time
O
(︁
poly

(︁
|GS | ·

∑︁
r∈R |Dr|

)︁)︁
when its prerequisites are met.

Proof. The algorithm iteratively tries all mapping possibilities for each request. Under the assumption
that initially EZ⃗ [E(Z⃗)] = ϵ < 1 holds, the estimated failure expectation decreases after having selected a
mapping for a request. Specifically, the following holds:

1 > ϵ =EZ1,...,Zn
[F(Z1, . . . , Zn)] (by assumption)

≥EZ2,...,Zn
[F(z1, Z2, . . . , Zn)] (choice of appropriate z1)

≥EZ3,...,Zn
[F(z1, z2, Z3, . . . , Zn)] (choice of appropriate z2)

89



Chapter 7 XP-Approximations for the Offline VNEP and Evaluation of Derived Heuristics

...
≥E[F(z1, . . . , zn)] = F(z1, . . . , zn) (choice of appropriate zn)

As F(z1, . . . , zn) ≤ ϵ < 1 holds after processing each request, F(z1, . . . , zn) = 0 has to hold, proving that
the constructed solution is indeed (α, β, γ)-approximate. We note that the probabilistic method establishes
that appropriate mappings z1, z2, etc. can always be found.

With respect to the runtime, we note that all (potential) expectations used in the pessimistic estimator
E can be computed once a priori. Furthermore, we assume that the pessimistic estimator E uses only up
to O(|GS |) many estimators itself, as there are at most |GS | substrate resources to consider for bounding
the failure probability of obtaining a (β, γ)-approximate solution while at most one estimator will be used
to bound the probability of not obtaining an α-approximate solution. As overall at most O

(︁∑︁
r∈R |Dr|

)︁
expectations have to be computed for each of the considered pessimistic estimators and the evaluation of
E afterwards lies in O

(︁
poly

(︁
|GS | ·

∑︁
r∈R |Dr|

)︁)︁
, the result follows. ■

Given the generic deterministic rounding scheme, we now proceed to show that all probabilistic approx-
imation results stated in this chapter can indeed be derandomized. To this end, it suffices to construct
appropriate pessimistic estimators using Corollary 7.17 and Lemma 7.18.

Theorem 7.20. Assume that n = |VS | ≥ 3 and let εL > 0. Let µ̂cost
V , µ̂cost

E , µ̂cost,L
V , µ̂cost,L

E and the function
Λcost(n, ∆, µ̂) be as defined Corollary 7.6 and Theorem 7.8.

For the offline cost VNEP the following deterministic (α, β, γ)-approximations exist:

Setting α β γ

⟨VE |NR ⟩ 2 Λcost(n, 2, µ̂cost
V ) Λcost(n, 2, µ̂cost

E )

⟨VE |NRL ⟩ 2 · (1 + εL) Λcost(n, 2 · (1 + εL), µ̂cost,L
V ) Λcost(n, ·(1 + εL), µ̂cost,L

E ))

The runtime of the respective deterministic approximations is polynomial in the time to construct the
optimal and (1 + εL, 1 + εL, 1 + εL)-approximate fractional solutions, respectively.

Proof. To obtain the result the rounding procedure of Algorithm 7.1 (Lines 6 to 8) is adapted by using the
deterministic rounding of Algorithm 7.4. To this end, in the setting ⟨VE |NR ⟩, the failure function Fcost,
with Fcost(z⃗) = 1 iff. the solution indicated by z⃗ exceeds the capacity on any resource by a factor larger than
Λcost(n, 2, µ̂cost

V ) (for nodes) or Λcost(n, 2, µ̂cost
E ) (for edges), is used. According to Corollary 7.17 and the

definition of Λcost, the function Ecost = EA
n,3,2,2,µ̂cost

V
,µ̂cost

E
is a pessimistic estimator for Fcost. As Ecost satisfies

all prerequisites of the deterministic rounding algorithm by Corollary 7.17, the deterministic approximation
result follows from the correctness of the deterministic rounding algorithm (cf. Theorem 7.19).

By the same arguments a slightly adapted result is obtained for the setting ⟨VE |NRL ⟩. Exchang-
ing again Lines 6-8 of Algorithm 7.1 with the execution of Algorithm 7.4 the result is obtained using
the following adapted failure indicator Fcost and its adapted pessimistic estimator Ecost. Specifically, let
Fcost(z⃗) = 1 iff. the solution indicated by z⃗ exceeds the capacity on any resource by a factor larger than
Λcost(n, 2 · (1 + εL), µ̂cost,L

V ) (for nodes) or Λcost(n, 2 · (1 + εL), µ̂cost,L
E ) (for edges). Accordingly, by choosing

Ecost = EA
n,3,2·(1+εL),2·(1+εL),µ̂cost,L

V
,µ̂cost,L

E

the result follows again by Corollary 7.17 and Theorem 7.19. ■

Theorem 7.21. Assume that n = |VS | ≥ 3. Let εscal and εL be chosen such that δmax ≤ εscal ≤ 1 and
εL > 0 hold. Let µ̂scal

V , µ̂scal
E and the function Λscal

prof be as defined in Theorem 7.15.

Denoting by bfrac the profit achieved by the fractional solution (before scaling down the weights) and by
bmax the maximal benefit of any request, for the offline profit VNEP the following deterministic

(α, β, γ)-approximations exist:

90



7.3 Derandomization: Deterministic Approximations

Setting α β γ

⟨VE |NR ⟩ εscal ·

(︄
1− 2

3

√︃
bfrac
bmax

)︄
≥ εscal/3 Λscal

prof(n, εscal, µ̂scal
V ) Λscal

prof(n, εscal, µ̂scal
E )

⟨VE |NRL ⟩ εscal ·

⎛⎝1− 2
3

√︂
bfrac
bmax

(1 + εL)

⎞⎠ ≥ εscal/3 · (1 + εL)−3/2 Λscal
prof(n, εscal, µ̂scal

V ) Λscal
prof(n, εscal, µ̂scal

E )

The runtime of the respective approximations is polynomial in the time to construct the optimal and
(1 + εL)-approximate fractional solutions, respectively.

Proof. The results stated in this Theorem are based on the Theorem 7.15 which generalizes the results of
Theorems 7.11 and 7.13 by scaling down the convex combination weights by a factor εscal ∈ [δmax, 1] after
having computed the LP solution. Specifically, by Theorem 7.15 the Algorithms 7.2 and 7.3 are adapted
such that for (fk

r , mk
r ) ∈ Dr the weight fk

r is multiplied by the factor εscal for all requests r ∈ R. Notably,
by choosing εscal = 1 the original results stated in Theorems 7.11 and 7.13 are obtained.

Given this scaling, the results of this Theorem are obtained by employing the deterministic rounding of
Algorithm 7.4 instead of applying randomized rounding. To deterministically round the solution, the
following failure indicator function F scal

prof is used. For a mapping selection z⃗ we set F scal
prof(z⃗) = 1 iff. the

solution z⃗ achieves a profit of less than b′
frac · (1 − 2/3 ·

√︁
bmax/b′

frac) with b′
frac = εscal · bfrac, or if the

solution z⃗ exceeds the capacity of any resource by a factor more than β = Λscal
prof(n, εscal, µ̂scal

V ) (for nodes)
or γ = Λscal

prof(n, εscal, µ̂scal
E ) (for edges).

Using this failure function both for the setting ⟨VE |NR ⟩ and ⟨VE |NRL ⟩, we employ the following
pessimistic estimator:

E scal
prof(z⃗) = EB

µ̃scal(z⃗) + EA
n,4,1,1,µ̂scal

V
,µ̂scal

E
(z⃗) . (7.22)

Importantly, the sub-estimators EB
µ̃scal of Lemma 7.18 and EA

n,4,1,1,µ̂scal
V

,µ̂scal
E

of Corollary 7.17 are constructed
with respect to the scaled profits and capacities by using µ̃scal = b′

frac/bmax, and µ̂scal
V and µ̂scal

E .

By the probabilistic analyses of Lemmas 7.9 and 7.12 and Theorem 7.15 the sub-estimator EB
µ̃scal cor-

rectly bounds the failure probability to not achieve at least an α factor of the optimal profit, with
α = εscal · (1− 2/3 ·

√︁
bfrac/bmax) for ⟨VE |NR ⟩ and α = εscal · (1 + εL)−1 · (1− 2/3 ·

√︁
bfrac/bmax) for the

variant ⟨VE |NRL ⟩. Considering the approximation factor for the variant ⟨VE |NRL ⟩, we note that
the additional factor (1 + εL)−1 was only introduced due to the approximate nature of the computed
fractional solution but is otherwise not reflected in the analysis of Theorem 7.15.

By the probabilistic analyses of Lemma 7.10 and Theorem 7.15 the sub-estimator EA
n,4,1,1,µ̂scal

V
,µ̂scal

E

correctly
bounds the failure probability to exceed resource capacities by factors of β or γ for nodes and edges,
respectively.

Given Corollary 7.17 and Lemma 7.18, we have that EZ⃗ [E scal
prof(Z⃗)] ≤ exp(−2/9) ≤ 65/81 and

EZ⃗ [EA
n,4,1,1,µ̂scal

V
,µ̂scal

E

(Z⃗)] ≤ 1/9 hold. Thus, EZ⃗ [E scal
prof(Z⃗)] ≤ 74/81 holds initially.

Accordingly, the constructed estimator E scal
prof satisfies all requirements of Theorem 7.19: it correctly bounds

the failure probability F scal
prof , the initial (unconditional) expectation lies below 1, and the conditional expec-

tation EZi+1,...,Zn [E scal
prof(z1, . . . , zi, Zi+1, . . . , Zn)] can be efficiently computed given the efficient computabil-

ity of the sub-estimators. Hence, the result follows. ■

91



Chapter 7 XP-Approximations for the Offline VNEP and Evaluation of Derived Heuristics

7.4 Summary and Discussion of Approximation Results

In all of the above approximation results the resource augmentation factors β and γ depend on the values
µ̂V and µ̂E , i.e., the minimal upper bounds of the expected resource allocations divided by the maximal
request allocation. Specifically, in Lemma 7.4 these bounds were used for the first time for a single resource
x ∈ GS and µ̂x = ∆x · dS(x)/Amax(x) was defined. Accordingly, to compute µ̂x (and thereby µ̂V and µ̂E),
one has to exactly compute Amax(x), which in general requires the enumeration of all valid mappings
of any request. As this is generally computationally prohibitive, in the following general bounds for the
value Amax(x) are derived and the approximation results are restated in terms of these upper bounds.
Furthermore, in this section the runtime for computing (approximate) fractional offline VNEP solutions
are considered as well, showing that all presented approximations indeed have a XP-runtime with respect
to the parameters of the treewidth and the extraction width. Lastly, at the end of this section, we analyze
under which conditions constant factor approximations can be obtained.

To bound Amax(x) we define the following. We denote by κV = maxr∈R |Vr| and by κE = maxr∈R |Er|
the maximal number of nodes and edges of any request graph and by κmax = max{κV , κE} the maximum
of either. Denoting by δV , δE , and δmax the maximal demand-to-capacity ratios for nodes, edges, and all
resources (cf. Definition 2.4), respectively, the following holds:

Amax(u) ≤κV · δV · dS(u) for all u ∈ VS , and (7.23)
Amax(u, v) ≤κE · δE · dS(u, v) for all (u, v) ∈ ES . (7.24)

Intuitively, the above bounds hold, as each node or edge resource may be used by at most κV or κE virtual
elements of the same request and each of these elements may induce an allocation of at most δV or δE

times the resource’s capacity. To further simplify the presentation of the results, the following unified
bound holds for all resources, nodes and edges alike by considering the respective maxima of κV and κE

and δV and δE , respectively:

Amax(x) ≤κmax · δmax · dS(u) for all x ∈ GS . (7.25)

Now, to derive bounds for µ̂V and µ̂E , consider the following. According to Lemma 7.5, µ̂V and µ̂E were
defined such that µ̂V ≤ ∆V · dS(u)/Amax(u) and µ̂E ≤ ∆E · dS(u, v)/Amax(u, v) hold for node resources
u ∈ VS and edge resources (u, v) ∈ ES , respectively, where ∆V and ∆E denote the (relative) resource
augmentation factor of the fractional LP solution. As for all considered approximations ∆V = ∆E = ∆
was set (cf. Corollary 7.6, Theorem 7.8, and Corollary 7.10), the following bounds hold with respect to
the respective ∆ values:

∆/(κV · δV ) ≤µ̂V and ∆/(κE · δV )≤µ̂E . (7.26)

Again, we note the following bound purely utilizing the respective maxima:

∆/(κmax · δmax) ≤ min{µ̂V , µ̂E} . (7.27)

By casting the resource augmentation functions Λcost and Λscal
prof as a function of this unified lower bound

∆/(κmax · δmax), approximations only depending on the easily computable values κmax and δmax can be
obtained as shown in the theorem below. Furthermore, the following theorem also states the total runtime
of the respective approximations by taking the results of Chapter 6 on the tractability of the fractional
offline VNEP into account.

Theorem 7.22. Assume that n = |VS | ≥ 3, εL ∈ O(1), εscal ∈ [δmax, 1], and that the maximal request
treewidth is at least 1. By employing the results on the tractability of the fractional offline VNEP presented
in Chapter 6, specifically Theorems 6.20, 6.39, 6.40, and 6.41, and the deterministic approximation results
presented in Theorems 7.20 and 7.21, the deterministic XP-time approximations stated in Table 7.1 using
the definitions of Tables 7.2 and 7.3 are obtained for the various different offline VNEP variants.

92



7.4 Summary and Discussion of Approximation Results

Objective/

Setting

Approximation Factors

α max{β, γ} Runtime

C
os

t ⟨VE |NR ⟩ 2 Λ̄cost(n, κmax, δmax)
poly

(︁
|R| · κmax · n2·κew

)︁
poly

(︁
|R| · κ2

max · n2·κtw+3)︁
⟨VE |NRL ⟩ 2 · (1 + εL) Λ̄L

cost(n, κmax, δmax, εL) poly
(︁
|R| · κ3

max · n2·κtw+2 · ε−1
L
)︁

P
ro

fit

⟨VE |NR ⟩
εscal·

(︄
1− 2

3

√︃
bfrac
bmax

)︄
⏞ ⏟⏟ ⏞

≥εscal/3

Λ̄scal
prof(n, κmax, δmax, εscal)

poly
(︁
|R| · κmax · n2·κew

)︁
poly

(︁
|R| · κ2

max · n2·κtw+3)︁

⟨VE |NRL ⟩
εscal·

⎛⎝1− 2
3

√︂
bfrac
bmax

1 + εL

⎞⎠
⏞ ⏟⏟ ⏞
≥(1 + εL)−3/2·εscal/3

Λ̄scal
prof(n, κmax, δmax, εscal) poly

(︁
|R| · κ3

max · n2·κtw+2 · ε−1
L
)︁

Table 7.1: Summary of deterministic approximation results for the offline VNEP.

Λ̄cost(n, κ, δ) =

⎧⎪⎪⎨⎪⎪⎩
6 · κ · δ · ln n

ln ln n if 2
κ·δ < ln n

ln ln n

12 if ln n
ln ln n ≤

2
κ·δ < 9 ln n

2
(︃

1 +
√︂

9 ln n · κ·δ
2

)︃
if 2

κ·δ ≥ 9 ln n

(7.28)

Λ̄L
cost(n, κ, δ, εL) =

⎧⎪⎪⎨⎪⎪⎩
6 · κ · δ · ln n

ln ln n if 2·(1+εL)
κ·δ < ln n

ln ln n

12 · (1 + εL) if ln n
ln ln n ≤

2·(1+εL)
κ·δ < 9 ln n

2(1 + εL)
(︂

1 +
√︂

9 ln n · κ·δ
2·(1+εL)

)︂
if 2·(1+εL)

κ·δ ≥ 9 ln n

(7.29)

Λ̄scal
prof(n, κ, δ, εscal) =

⎧⎪⎪⎨⎪⎪⎩
8 · κ · δ · ln n

ln ln n if εscal
κ·δ < ln n

ln ln n

8 · εscal if ln n
ln ln n ≤

εscal
κ·δ < 12 ln n

(1 +
√︂

12 ln n · κ·δ
εscal

) · εscal if εscal
κ·δ ≥ 12 ln n

(7.30)

Table 7.2: Definition of functions used in Table 7.1 to bound capacity violations β and γ.

Symbol Description
n = |VS | Number of substrate nodes.
R Set of requests with graphs Gr = (Vr, Er) for r ∈ R.

κmax = maxr∈R{|Vr|, |Er|} Maximal request size with respect to nodes and edges.
κtw = maxr∈R tw(Gr) Maximal treewidth of any request graph.
κew = maxr∈R ewX (GX

r ) Maximal extraction width of any of the pre-computed
extraction orders GX

r for r ∈ R.
δmax = maxx∈GS

dmax(x)/dS(x) Maximal demand to capacity ratio.
εL > 0 Approximation factor for the LCSP FPTAS.

εscal ∈ [δmax, 1] A posteriori scaling factor for profit approximations.
bfrac Profit of the fractional VNEP solution before scaling.
bmax = maxr∈R br Maximal profit of any of the requests.

Table 7.3: Overview of symbols used in Table 7.1.

93



Chapter 7 XP-Approximations for the Offline VNEP and Evaluation of Derived Heuristics

Proof. We first turn to the runtime aspects of the respective deterministic approximations. According to
the Theorems 7.20 and 7.21 the runtimes of the respective approximations are polynomially bounded in
the time to compute the respective (approximate or optimal) fractional VNEP solutions. Accordingly, the
runtimes stated in Table 7.1 are obtained by the runtimes stated in Theorems 6.20, 6.39, 6.40, and 6.41
as follows:

• The respective sums over the set of requests are substituted by considering only the largest summand
and bounding the remaining summands accordingly, thereby introducing the factor |R|.

• The number of substrate edges |ES | is bounded by |VS |2 while both the maximal number of virtual
nodes and maximal virtual edges is bounded by κmax.

• For the runtime of the approximations in the setting ⟨VE |NRL ⟩, the bound O(n4 ·ε−1
L ) is used for

bounding the runtime of computing approximate LCSP solutions for εL ∈ o(1), as
timeLCSP(εL) = O

(︁
|ES | · |VS | · (log log |VS |+ 1/εL)

)︁
) holds according to Theorem 6.35. Hence, the

factor κmax ·n2·κtw+2 +timeLCSP(εL) can be upper bounded by κmax ·n2·κtw+2 ·ε−1
L under the reasonable

assumption that κtw ≥ 1 holds.

With respect to the maximal resource augmentation, i.e., max{β, γ}, we note the following. Firstly, the
functions introduced in Table 7.2 are obtained from the functions Λcost (cf. Corollary 7.6) and Λscal

prof (cf.
Corollary 7.10) by considering the lower bounds stated in Equations 7.26 and 7.27. For example, consid-
ering the cost VNEP in the setting ⟨VE |NR ⟩, the resource augmentation bounds β = Λ̄cost(n, κV , δV )
and γ = Λ̄cost(n, κE , δE) are obtained from Equation 7.26 and Theorem 7.20 for ∆ = 2 by the observation
that the function Λcost is monotonically decreasing in µ̂ (cf. Lemma 7.5). Using the lower bound stated in
Equation 7.27, the maximal resource augmentation factor for the node and edge resources is bounded by
Λ̄cost(n, κmax, δmax). Using the same arguments, the resource augmentation bounds for the cost VNEP in
the setting ⟨VE |NRL ⟩ and for the profit VNEP are obtained from Theorems 7.20 and 7.21, respectively.

Lastly, we discuss some peculiarities of the functions of Table 7.2. Firstly, the different constant factors
of 6 and 12 in the first and second cases of Λ̄cost and Λ̄L

cost arise as the respective first cases contain the
factor ∆ · µ̂−1, such that the factor ∆ is canceled out for µ̂ = ∆/(κmax · δmax). Secondly, by the same
observation, the scaling factor εscal is canceled out for the first case of the function Λ̄scal

prof . Furthermore, we
note that the functions Λ̄cost, Λ̄L

cost, and Λ̄scal
prof are monotonically increasing in κmax, n, εL, and εscal, while

being monotonically decreasing in δmax. ■

While the above set of results gives specific bounds on the maximal resource augmentations, in the following
some general bounds are presented for different ranges of the value κmax · δmax.

Corollary 7.23. Assume that εL ∈ O(1) and n = |VS | ≥ 3. For any of the VNEP approximations the
following holds.

(1) The maximal resource augmentation max{β, γ} is bounded by O(δmax · κmax · ln n/ ln ln n).

(2) The maximal augmentation max{β, γ} lies in O(ln n/ ln ln n) for (κmax · δmax) ∈ O(1).

(3) The maximal augmentation max{β, γ} lies in O(1) for (κmax · δmax) ∈ O (ln ln n/ ln n).

Proof. Considering the first statement, we note that the resource augmentation functions are monotonically
increasing in δ. Hence, setting δmax to the maximum value of 1, the result is obtained by considering the
respective maximal augmentation factors.

For the second and third statements consider the following. Clearly, the resource augmentation functions
Λ̄cost, Λ̄L

cost, and Λ̄scal
prof are monotonically increasing when increasing the product κ · δ. Hence, both results

follow from plugging in the respective maximal values κmax · δmax ≤ c (for the second statement) and
κmax · δmax ≤ c · ln ln n/ ln n (for the third) for some sufficiently large value c. ■

94



7.4 Summary and Discussion of Approximation Results

Using the O-notation, the above corollary can be considered to yield coarse-grained rules of thumb for
three different cases, namely when the product κmax · δmax is not bounded, when κmax · δmax is a constant,
and when κmax · δmax is small compared to ln ln n/ ln n.

These resource augmentation factors were all obtained by the application of Chernoff bounds. However,
one can also employ the Hoeffding bound to obtain similar results as was done in the publications [RS18a;
RDS19; RS19b]. We now state the main results similar to Corollary 7.23, while referring the reader to the
Appendix B for the analysis.

Corollary 7.24 (Augmentation Factors using the Hoeffding Inequality). Assume that εL ∈ O(1) and
n = |VS | ≥ 3. By employing Hoeffding bounds instead of Chernoff bounds to analyze the maximal
resource augmentations, the following holds for any of the VNEP approximations.

(1) The maximal resource augmentation max{β, γ} is bounded by O(δmax · κmax ·
√︁
|R| · ln n).

(2) The maximal augmentation max{β, γ} lies in O(
√︁
|R| · ln n) for (κmax · δmax) ∈ O(1).

(3) The maximal augmentation max{β, γ} lies in O(
√︁
|R|) for (κmax · δmax) ∈ O (ln ln n/ ln n).

Proof. Observing that
√

ln n ∈ O(ln n/ ln ln n) holds, the results follow from Theorem B.4. ■

Comparing these results obtained using the Hoeffding bound with the ones of the Chernoff bound stated
in Corollary 7.23, we note that the additional factor

√︁
|R| is introduced while the term ln n/ ln ln n is

exchanged with
√

ln n. As ln n/ ln ln n grows only negligibly faster than
√

ln n and the ratio of these terms
is less than 2 for values of n up to 1032, the impact of these terms can be considered negligible for practical
applications. Hence, the additional factor O(

√︁
|R|) is dominating in the comparison of both types of

bounds. Nevertheless, it must be noted that the respective Hoeffding bounds include smaller constant
terms (cf. Theorem B.4). Hence, for practical applications which use only a small number of requests,
employing the Hoeffding bounds may be beneficial as they yield lower resource augmentation factors for
up to 200 requests. For more details on the comparison of these bounds, the reader is referred to the
discussion in Appendix B.2.

Besides the application of Hoeffding bounds, we will now conclude the discussion of approximation results
by studying how resource augmentations for the profit VNEP can be reduced by employing the scaling
factor εscal. Interestingly, our below results show that the factor εscal can only be used to reduce resource
augmentations when εscal/(κmax · δmax) > ln n/ ln ln n holds. Accordingly, as in this setting the resource
augmentations are already constant (cf. Equation 7.30), in the following we turn our attention on how to
obtain profit approximations without resource augmentations.

Theorem 7.25. Assume that n = |VS | ≥ 3 holds. When κmax · δmax · ln n ≤ 1/24 holds, there exist
deterministic XP-time approximations for the offline profit VNEP which do not violate any resource ca-
pacities. Specifically, letting ϵopt = 3 · κmax · δmax · ln n and εopt

scal =
(︂√

ϵopt + 1−
√

ϵopt
)︂2
≥ 1/2, by scaling

the fractional solutions by the factor εopt
scal the objective approximation factors shown in Table 7.4 are

obtained, while the maximal augmentation factor is bounded by 1, i.e., max{β, γ} ≤ 1 holds.

Setting α lower bound on α

⟨VE |NR ⟩ εopt
scal ·

(︂
1− 2

3

√︂
bfrac
bmax

)︂
1/6

⟨VE |NRL ⟩ (1 + εL)−1 · εopt
scal ·

(︂
1− 2

3

√︂
bfrac
bmax

)︂
(1 + εL)−3/2 · 1/6

Table 7.4: Summary of deterministic approximation results for the profit VNEP under the small demand
assumption using scaling.

95



Chapter 7 XP-Approximations for the Offline VNEP and Evaluation of Derived Heuristics

Hence, assuming additionally that εL ∈ O(1) holds when considering latencies, the approximations not
only do not violate resource capacities but also always achieve a constant factor of the optimal profit, i.e.,
α ∈ Ω(1) holds. Furthermore, we note that as ϵopt approaches zero, εopt

scal approaches 1, i.e., the scaling
factor becomes arbitrarily small.

Proof. We prove the theorem in the following three steps. We firstly show that by the choice of εopt
scal the

maximal resource augmentation is indeed upper bounded by 1, when εopt
scal/(κmax · δmax) ≥ 12 ln n holds. In

the next step, we prove that under the assumption κmax ·δmax ·ln n ≤ 1/24 always εopt
scal/(κmax ·δmax) ≥ 12 ln n

holds. In the last step, we argue that εopt
scal ≥ 1/2 must always hold under the given assumptions.

Assuming that εopt
scal/(κmax · δmax) ≥ 12 ln n holds, we prove that Λ̄scal

prof(n, κmax, δmax, εopt
scal) ≤ 1 holds, i.e.,

the maximal resource augmentation factor is bounded by 1 (cf. Theorem 7.22). To see this, we note
that under the given assumptions always the third branch of the function Λ̄scal

prof is chosen. To show
Λ̄scal

prof(n, κmax, δmax, εopt
scal) ≤ 1, we simply evaluate Λ̄scal

prof(n, κmax, δmax, εopt
scal):

Λ̄scal
prof(n, κmax, δmax, εopt

scal)

=(1 +
√︂

4 · ϵopt/εopt
scal) · ε

opt
scal (by definition of Λ̄scal

prof and ϵopt)

=(1 +
√︃

4 · ϵopt/
(︂√

ϵopt + 1−
√

ϵopt
)︂2
·
(︂√

ϵopt + 1−
√

ϵopt
)︂2

(by definition of εopt
scal)

=
(︂√

ϵopt + 1−
√

ϵopt
)︂2

+
√︃

4 · ϵopt ·
(︂√

ϵopt + 1−
√

ϵopt
)︂2

(associativity)

=
(︂√

ϵopt + 1−
√

ϵopt
)︂2

+ 2 ·
√

ϵopt · (
√

ϵopt + 1−
√

ϵopt) = 1 (factorization of root)

Turning towards the second step, namely that indeed always the third branch of the function Λ̄scal
prof is

chosen, we have to prove that εopt
scal/(κmax · δmax) ≥ 12 ln n holds. We first transform this inequality as

follows:

εopt
scal/(κmax · δmax) ≥12 ln n

⇔ εopt
scal ≥ 4 · ϵopt (by definition of ϵopt)

⇔
(︂√

ϵopt + 1−
√

ϵopt
)︂2
≥ 4 · ϵopt (by definition of εopt

scal)

⇔ϵopt +
√

ϵopt + 1 ·
√

ϵopt − 1/2 ≤ 0 (7.31)

Denoting by f(ϵ) = ϵ +
√

ϵ + 1 ·
√

ϵ − 1/2, the following is simple to verify: f(0) = −1/2 holds and
as f ′(ϵ) ≥ 0 holds for ϵ > 0, f is monotonically increasing. Furthermore, f is continuous for ϵ > 0 and
f(1/8) = 1/8+

√︁
9/64−1/2 = 0 holds. By the above insights on f , Equation 7.31 holds as long as ϵopt ≤ 1/8

holds. However, as ϵopt was defined to be 3 · κmax · δmax · ln n and we assumed κmax · δmax · ln n ≤ 1/24 to
hold, this holds trivially.

For the last step, namely that εopt
scal ≥ 1/2 holds as long as κmax · δmax · ln n ≤ 1/24 holds, we note the

following on the function g(ϵ) = (
√

ϵ + 1−
√

ϵ)2: g(0) = 1 holds and g is continuous for ϵ > 0. Furthermore,
g′(ϵ) = −(

√
ϵ−
√

ϵ + 1)2/(
√

ϵ ·
√

ϵ + 1) holds for the derivative and as g′(ϵ) < 0 holds for ϵ > 0, the function
g is monotonically decreasing. As g(1/8) = (

√︁
9/8 −

√︁
1/8)2 = (3/2 ·

√︁
1/2 − 1/2 ·

√︁
1/2)2 = 1/2 holds,

we have g(ϵ) ≥ 1/2 for ϵ ∈ [0, 1/8]. Now, as εopt
scal = g(ϵopt) holds, ϵopt ≤ 1/8 follows by the assumption that

κmax · δmax · ln n ≤ 1/24 holds. Thus. εopt
scal ≥ 1/2 is proven.

By the above arguments, Λ̄scal
prof(n, κmax, δmax, εopt

scal) ≤ 1 holds, proving that the maximal resource
augmentation factor max{β, γ} is upper bounded by 1. Furthermore, as εopt

scal ≥ 1/2 was shown,

96



7.5 Derived Heuristics for the Offline Profit VNEP

the approximation factors for the objective are at most halved, hence still yielding constant factor
approximations on the profit, while not violating resource capacities. Furthermore, we note that
limϵopt→0 εopt

scal = limϵopt→0 g(ϵopt) = 1 holds by our above analysis. Hence, when ϵopt becomes arbitrarily
small, the scaling factor εopt

scal approaches 1 and becomes negligible. ■

The above theorem has constructively shown that there exist constant factor XP-time approximations
for the offline profit VNEP as long as the maximal demand-to-capacity ratio is sufficiently small with
respect to the substrate size and the maximal request size, i.e., as long as κmax · δmax · ln n = ϵopt/3 ≤ 1/24
holds.

7.5 Derived Heuristics for the Offline Profit VNEP

In the following, heuristics based on the presented randomized rounding scheme are presented for the
profit variant of the offline VNEP. The heuristics are proposed (i) to study the raw performance of
the randomized rounding scheme and (ii) to obtain heuristics for the practical setting in which resource
capacities are not to be exceeded at any cost. Besides these heuristics, we also study the best solution
obtainable via randomized rounding while respecting resource capacities.

The first adaptation is to discard the consideration of respective approximation factors α, β, γ and simply
returning the best solution found within a fixed number of rounding iterations. Concretely, we consider two

Algorithm 7.5: Heuristical Rounding (without LP Recomputations)
1 {Dr}r∈R ← compute solution to fractional offline VNEP
2 for i← 1 to N do
3 set soli ← ∅
4 foreach r ∈ R do
5 choose m̂r ← mk

r with probability fk
r

6 if m̂r ̸= ∅ and soli ∪ {m̂r} is still feasible then
7 set soli ← soli ∪ {m̂r} // accept request r

8 return the solution soli maximizing the profit

Algorithm 7.6: Heuristical Rounding with LP Recomputation
1 compute solution to LP 6.1 (using column generation)
2 for i← 1 to N do
3 set soli ← ∅ and R′ ← R
4 foreach r ∈ R do
5 foreach r′ ∈ R′ and each mk

r′ ∈Mr′ do
6 if soli ∪ {mk

r} is infeasible then set fk
r′ = 0

7 resolve Linear Program (without column generation)
8 choose m̂r ← mk

r with probability fk
r

9 if m̂r ̸= ∅ then
10 set soli ← soli ∪ {m̂r} and fk

r = 1 // accept request r
11 else
12 set fk

r = 0 for all mk
r ∈Mr // reject request r

13 R′ ← R \ {r}

14 return the solution soli maximizing the profit

97



Chapter 7 XP-Approximations for the Offline VNEP and Evaluation of Derived Heuristics

variants and refer to these vanilla rounding, as the rounding procedure itself is not changed, i.e., Lines 5-7
of Algorithm 7.2 are executed unchanged. The first variant, RRMinLoad, returns the solution minimizing
resource augmentations (and among those the one of the highest profit is selected). The second variant,
RRMaxProfit, returns the solution maximizing the profit (and among those the one of the least resource
augmentations is selected).

Regarding heuristics that obey resource capacities, we first introduce the heuristical rounding presented
in Algorithm 7.5. Here, Line 6 of Algorithm 7.2 is adapted in such a way that selected mappings are only
accepted, when its incorporation into the solution does not exceed resource capacities. In other words, if
a mapping mk

r is selected for request r ∈ R whose addition would exceed any resource capacity, then this
mapping is simply discarded and request r is not embedded.

As an improvement over this heuristic and facilitated by the column generation approach discussed in
Section 6.4, we propose another rounding heuristic that a priori removes mappings whose addition would
lead to resource violations and recomputes the LP before applying the rounding (see Algorithm 7.6).
Therefore, the addition of any rounded mapping is feasible while also better guiding the rounding process
by providing currently optimal rounding probabilities. Specifically, in Lines 5 and 6 first all infeasible
mappings are ‘removed’ by setting the respective LP variables to 0. To reflect made rounding decisions
in the LP, either the respective mapping variable is set to 1 (Line 10), or selecting any mappings of the
rejected request is disabled (Line 12).

To distinguish between Algorithms 7.5 and 7.6, we often times refer to the former as heuristical rounding
without LP recomputations and to the latter as heuristical rounding with LP recomputations. Also,
note that the heuristical rounding without LP recomputations is referred to as RRHeuristic, while for the
rounding with LP recomputations no such identifier is used.

Besides the above discussed heuristics, we will also study the best solution obtainable via randomized
rounding while respecting resource capacities. Specifically, similar to Jarray et al. [JK15], we propose to
use the Multi-Dimensional Knapsack (MDK) Integer Program 7.7, as follows. Given the decomposed LP
solution, i.e., a set of precomputed decomposed mappings D̃r = {(fk

r , mk
r )}k for each request, the MDK

formulation introduces a single binary variable xk
r ∈ {0, 1} per mapping mk

r of request r while ensuring
that at most one of the mappings of a request is selected and that capacities are not violated. As each
decomposed mapping mk

r has a probability of fk
r > 0 to be chosen, the MDK allows to compute the best

possible solution that may be attained by rounding the solution while having an exponential runtime.
Note that compared to the enumerative LP Formulation 6.1, the MDK is restricted to the set of a priori
computed potential mappings D̃r, while in the LP formulation all valid mappings Mr are considered.

Integer Program 7.7: Optimal Rounding of Solutions – Multi-Dimensional Knapsack

max
∑︂

r∈R,(fk
r ,mk

r )∈D̃r

br · xk
r (7.32)

∑︂
(fk

r ,mk
r )∈D̃r

xk
r≤ 1 ∀r ∈ R (7.33)

∑︂
r∈R,(fk

r ,mk
r )∈D̃r

xk
r ·A(mk

r , x)≤ dS(x) ∀x ∈ GS (7.34)

xk
r ∈ {0, 1} ∀(fk

r , mk
r ) ∈ D̃r (7.35)

98



7.6 Computational Evaluation

7.6 Computational Evaluation

We now complement our formal approximation results with an extensive computational study. Specifically,
the performance of the heuristics presented above is evaluated. As we are not aware of any systematic eval-
uation of the profit maximization in the offline settings, we present synthetic but extensive computational
studies. The general methodology followed throughout this section is presented in Section 7.6.1.

In Section 7.6.2 the vanilla rounding heuristics as well as the heuristical rounding heuristic are evaluated
based on the Linear Programming Formulation 6.5 for cactus request graphs. To establish a baseline for
the experiments and validate the methodology, we also present results of the classic Multi-Commodity
Flow Mixed-Integer Program.

In Section 7.6.3 we report on a study based on the column generation approach presented in Section 6.4
to solve the fractional offline VNEP. Specifically, focusing on heuristics that obey resource capacities,
the heuristical rounding with and without LP recomputations are evaluated. Here, we also compare the
solutions obtained by these randomized rounding heuristic to the solutions of a classic greedy heuristic.

We have implemented all presented algorithms in Python 2.7. To solve the Mixed-Integer Programs and
Linear Programs Gurobi 8.1.1 (for Section 7.6.2) and Gurobi 8.0.0 (for Section 7.6.3) were employed.
All of our source code and the results presented within this section are publicly available [Döh+19]. All
experiments were executed on a server equipped with 4 Intel Xeon E5-4627v3 CPUs running at 2.6 GHz
and reported runtimes are wall-clock times.

7.6.1 General Evaluation Methodology

Substrate Graphs. We use five different substrate networks obtained from the Internet Topology
Zoo [Kni+11]. Specifically, wide-area network topologies of between 30 and 50 nodes and between 110
and 168 edges are considered. The topologies span single countries, a continent, or the whole world (see
Table 7.5). We consider a single node type and set node and edge capacities uniformly to 100.

Mapping Restrictions. To force the virtual networks to span across the whole substrate network, we
restrict the mapping of virtual nodes to one quarter of the substrate nodes. Hence, depending on the
substrate topology, the number of suitable substrate nodes per virtual node lies between 7 and 12. We do
not impose mapping restrictions for edges.

Name Identifier Type Year |VS| |ES|
Deutsche Telekom DT Global 2010 30 110

NTT NT Global 2011 32 126
Geant GE Continent 2012 40 122
UUnet UN Country 2011 49 168
Surfnet SN Country 2010 50 136

Table 7.5: Summary of Substrate Networks Used in the Evaluation

99



Chapter 7 XP-Approximations for the Offline VNEP and Evaluation of Derived Heuristics

Demand Generation. We control the demand-to-capacity ratio of node and edge resources using a
node resource factor NRF and an edge resource factor ERF. The request’s demands are drawn from an
exponential distribution and afterwards normalized, such that the following holds:∑︂

r∈R

∑︂
i∈Vr

dr(i) =NRF ·
∑︂

u∈VS

dS(u) (7.36)

ERF ·
∑︂

r∈R

∑︂
(i,j)∈Er

dr(i, j) =
∑︂

(u,v)∈ES

dS(u, v) (7.37)

The resource factors can be best understood under the assumption that all requests are embedded. Under
this assumption, a resource factor NRF = 0.6 implies that the node load – averaged over all substrate
nodes – equals exactly 60%. As virtual edges can be mapped on arbitrarily long paths (even of length 0),
the edge resource factor should be understood as follows: the ERF equals ‘the number of substrate edges
that each virtual edge may use’. In particular, a factor ERF = 0.5 implies that if each virtual edge spans
exactly 0.5 substrate edges (and all requests are embedded), then the (averaged) edge resource utilization
equals exactly 100%. Hence, while increasing the NRF renders node resources more scarce, increasing the
ERF reduces edge resource scarcity.

Profit Computation. To correlate the profit of a request with its size, its resource demands, and its
mapping restrictions, we compute for each request its minimal embedding costs as follows. The cost c(u, v)
of using an edge (u, v) ∈ VS is set to be proportional to the geographical distance of its endpoints. The
cost of nodes is set uniformly to c(u) =

∑︁
(u,v)∈ES

c(u, v)/|VS | for all u ∈ VS . Hence, the total node cost
equals the total edge cost. Defining the cost of a mapping mr to be

∑︁
x∈GS

A(mr, x) · dS(x), we compute
the minimum cost embedding for each request r ∈ R using an adaption of Mixed-Integer Program 6.3 and
set br to the respective minimum embedding cost.

7.6.2 Validation and Evaluation based on LP for Cactus Requests

In this section, we report on results pertaining to the vanilla rounding heuristics and the heuristical round-
ing (without LP recomputations) that are obtained by solving the LP Formulation 6.5 for cactus request
graphs. Accordingly, for this study, only cactus requests are considered, whose generation procedure is
discussed in Section 7.6.2.1.

In Section 7.6.2.3, we report on the baseline results obtained by solving the Multi-Commodity Flow Mixed-
Integer Programming Formulation 6.3. Afterwards, we discuss the performance of the rounding heuristics

0 3 6 9 12 15 18 21
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

EC
DF

Request Graph Characteristics

number of nodes:  |Vr|
number of edges:  |Er|
number of cycles: |Er| − |Vr| + 1

Figure 7.1: Characteristics of the generated cactus requests graphs, namely the number of nodes, edges
and number of cycles. The depicted empirical cumulative distribution functions (ECDF) are based upon
100,000 sampled cactus requests graphs.

100



7.6 Computational Evaluation

in Section 7.6.2.4 and of the best roundable MDK solutions in Section 7.6.2.5, and lastly, present in
Section 7.6.2.6 an overview on the empirical formulation strength of the cactus LP formulation and the
classic MCF formulation. Specifically, as shown in Theorem 6.5, the classic MCF formulation cannot
be decomposed and may attain arbitrarily worse bounds on the profit compared to the solution of the
fractional offline VNEP.

7.6.2.1 Cactus Request Graph Topology Generation

Cactus graph requests are generated by (i) sampling a random binary tree of maximum depth 3, (ii) adding
additional edges randomly as long as they do not refute the cactus property as long as such edges exist,
and (iii) orienting edges arbitrarily.

Concretely, the sampling process of binary trees works as follows: starting with at the root node, the num-
ber of children is drawn using the discrete distribution Pr(#children = 0) = 0.15, Pr(#children = 1) = 0.5,
and Pr(#children = 2) = 0.35. For each (newly) generated node (of depth less than 3) further children
are generated according to the same distribution. We discard graphs having less than 3 nodes. According
to the above generation procedure, the expected number of nodes and edges is 6.54 and 7.28, respectively.
On average, 61% of the edges lie on a cycle. Figure 7.1 offers a more in-depth view on the characteristics
of the requests.

7.6.2.2 Instance Parameter Space

To generate instances, we consider the cartesian product of the following parameters:

• |R| ∈ {40, 60, 80, 100},
• NRF ∈ {0.2, 0.4, 0.6, 0.8, 1.0},
• ERF ∈ {0.25, 0.5, 1.0, 2.0, 4.0}, and
• the 5 different substrate graph topologies as introduced in Table 7.5.

For each combination of these parameters, we generate 15 instances per parameter combination, yielding
7, 500 instances overall.

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e 
Fa

ct
or

MIPMCF: #Feasible Requests

0  

20 

40 

60 

80 

100

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e 
Fa

ct
or

MIPMCF: #Embedded / #Feasible [%]       

0  

20 

40 

60 

80 

100

Figure 7.2: Overview of the feasibility of generated requests and the baseline’s acceptance ratio. Each
cell averages the result of 375 instances.
Left: The feasibility of requests is obtained from (cost-optimally) embedding the requests to compute the
profit a priori. Note that absolute numbers are depicted.
Right: The acceptance ratio of the baseline MIPMCF with respect to the requests that were found to be
feasible (infeasible requests are not considered).

101



Chapter 7 XP-Approximations for the Offline VNEP and Evaluation of Derived Heuristics

40 60 80 100
Number of Requests

DT

NT

GE

UU

SN

Su
bs

tra
te

MIPMCF: Objective Gap [%]

0  

4  

8  

12 

16 

20 

0.2 0.4 0.6 0.8 1.0
Node Resource Factor

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e 
Fa

ct
or

MIPMCF: Objective Gap [%]

0  

4  

8  

12 

16 

20 

Figure 7.3: Overview of the objective gap achieved by the baseline algorithm MIPMCF after up to 2
hours of computation time. Note the different axes. The left plot averages the results of 375 and the
right one the results of 300 instances per cell. The number of requests, i.e., the problem size, has a less
distinct impact on the objective gap than the resource factors alone. Furthermore, the averaged objective
gap increases with the substrate topology size.

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e 
Fa

ct
or

MIPMCF: Runtime [min]

0  
15 
30 
45 
60 
75 
90 
105
120

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e 
Fa

ct
or

Runtime MDK [min]

0  

20 

40 

60 

80 

100

120

Figure 7.4: Overview of the runtimes of the baseline algorithm MIPMCF and the MDK formulation.
Each cell averages 375 results. Both formulations were solved using Gurobi 8.1.1 and computations were
terminated after 120 minutes.

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e 
Fa

ct
or

LPnovel: Total Runtime [min]

0  

1  

2  

3  

4  

5  

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e 
Fa

ct
or

LPnovel: Runtime Gurobi [min]

0  

1  

2  

3  

4  

5  

Figure 7.5: Overview of the runtimes of the novel LP Formulation 6.5 Each cell averages 375 results. On
the left, the total runtime including the time to construct the LP and the time to decompose the solution
is depicted. On the right only the time to solve the LP formulation is depicted.

102



7.6 Computational Evaluation

7.6.2.3 Baseline Performance and Validation

To obtain a near-optimal baseline solution for each of the 7,500 instances, we employ Gurobi 8.1.1 to solve
the Mixed-Integer Programming Formulation 6.3 using a single thread. We terminate the computation
after 2 hours or when the objective gap falls below 1%, i.e. when the constructed solution is provably less
than 1% off the optimum. On average the runtime per instance is 80.6 minutes (cf. Figure 7.4, left).

Figure 7.2 gives an initial overview of the number of requests for which feasible embeddings exist and
the acceptance ratio of the best solution as a function of the number of requests and the edge resource
factor. The number of feasible requests is determined during the a priori profit computation and may (on
average) lie below 50% when edge resources are very scarce (ERF = 0.25) but otherwise consistently lies
above 75%. Similarly, the acceptance ratio of the baseline solution highly depends on the edge resource
factor, ranging from close to 62% to roughly 98% (on average).

Figure 7.3 depicts quality guarantees for the baseline solutions obtained during the solution process of IP
Formulation 6.3. Concretely, the formulation is solved using Gurobi’s branch-and-bound implementation,
consistently yielding upper bounds on the attainable profit. Accordingly, the objective gap depicted in
Figure 7.3 gives guarantees on how far the found solutions are at most off optimality (on average). While
increasing the number of requests does not increase the objective gap per se, both the node and edge
resource factors have a distinct impact. Particularly, for the maximal node resource factor of 1.0 and a

0.2 0.4 0.6 0.8 1.0
Node Resource Factor

DT

NT

GE

UU

SN

Su
bs

tra
te

MIPMCF: Avg. Node Load [%]

0  

10 

20 

30 

40 

50 

60 

40 60 80 100
Number of Requests

0.2

0.4

0.6

0.8

1.0

No
de

 R
es

ou
rc

e 
Fa

ct
or

MIPMCF: Avg. Node Load [%]

0  

10 

20 

30 

40 

50 

60 

0.25 0.5 1.0 2.0 4.0
Edge Resource Factor

DT

NT

GE

UU

SN

Su
bs

tra
te

MIPMCF: Avg. Edge Load [%]

25 

35 

45 

55 

65 

75 

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e 
Fa

ct
or

MIPMCF: Avg. Edge Load [%]

25 

35 

45 

55 

65 

75 

Figure 7.6: Overview of the resource loads of the solutions computed by the baseline algorithm MIPMCF.
Each cell averages the results of 300 or 375 solutions, respectively. Depicted are the averaged node/edge
loads as a function of the node/edge resource factor and the number of requests and the substrate topology.
While the node resource factor has a distinct impact on the average node load, the average edge load lie
consistently between 50% and to 75%, allowing the conclusion that edge resources often represent the
bottleneck resource. Furthermore, the substrate topology has only a minor impact.

103



Chapter 7 XP-Approximations for the Offline VNEP and Evaluation of Derived Heuristics

40 60 80 100
Number of Requests

0.2

0.4

0.6

0.8

1.0
No

de
 R

es
ou

rc
e 

Fa
ct

or
MIPMCF: Max. Node Load [%]

0  

20 

40 

60 

80 

100

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e 
Fa

ct
or

MIPMCF: Max. Edge Load [%]

0  

20 

40 

60 

80 

100

Figure 7.7: Overview of the maximal resource loads of the solutions computed by the baseline algorithm
MIPMCF. Each cell averages the results of 375 solutions. Depicted are the maximum node/edge loads as a
function of the node/edge resource factor and the number of requests. Clearly, except for a node resource
factor of 0.2, the maximum loads are always close to 100%.

medium edge resource factor of 1.0, the averaged objective gap lies slightly above 18%. The mean objective
gap value is 6.6% and the maximum observed gap across all 7,500 instances is roughly 62%. Notably, the
average objective gap increases with the substrate topology size (cf. Table 7.5).

Figures 7.6 and 7.7 validate the impact the resource factors have on the respective resource loads. Depicted
are the averaged and maximal node and edge loads as a function of the respective resource factors, the
number of requests, and the substrate topology. As can be clearly seen, increasing the node resource
factor increases the average node loads, while the (average) maximum node resource load comes mostly
close to 100%. For the edge resource loads, the picture is a different one. In particular, the average edge
load consistently lies significantly above the average node load. Also, the maximum edge load approaches
nearly 100% in all the cases. Overall, we conclude that the edge resource factor is the key limiting factor,
as the utilization of edges is significantly higher. This observation is also supported by the impact the
edge resource factor has on the acceptance ratios (cf. Figure 7.2).

7.6.2.4 Performance of Randomized Rounding Heuristics

To apply the rounding algorithms presented in Section 7.5, we solve the LP Formulation 6.5 for cactus
requests by employing Gurobi 8.1.1, specifically its Barrier algorithm. Figure 7.5 (left) depicts the average
runtime to solve the LP, including the time to construct the (potentially very large) LP. The latter is not
negligible as the formulation contains up to 1,000k variables for some instances (cf. Figure 7.5, right). The
runtime increases from around 1 minute for |R| = 40 to around 3.5 minutes for |R| = 100. The maximally
observed runtime in our experiments amounted to roughly 15 minutes.

With respect to the results of our rounding heuristics, we first discuss the results of our vanilla rounding
heuristics RRMinLoad and RRMaxProfit. Concretely, we report on the best solution found within 1,000
rounding iterations. Figure 7.10 depicts the respective results as a scatter plot while Figure 7.9 depicts
empirical cumulative distribution functions (ECDF) for both the achieved profit and the maximal resource
loads. As can be seen, for RRMinLoad the algorithm achieves a profit between 50% and 140% compared
to the best solution constructed by the MIP, while exceeding resource capacities mostly by 25% to 125%
of the resource’s capacity. For RRMaxProfit, the achieved profit always exceeds the baseline’s profit. This
is to be expected based on our analysis in Section 7.2.1, as the expected benefit is at least as large as the
optimal Mixed-Integer Programming formulation’s value. The resource loads mostly lie below 500% with
the maximum being 871%.

104



7.6 Computational Evaluation

60 80 100 120 140
Profit(RRMinLoad)/Profit(MIPMCF) [%]

100

150

200

250

M
ax

Lo
ad

(R
R M

in
Lo

ad
) [

%
]

Vanilla Rounding Performance
ERF

0.25
0.5
1.0
2.0
4.0

100 150 200
Profit(RRMaxProfit)/Profit(MIPMCF) [%]

100

200

300

400

500

600

M
ax

Lo
ad

(R
R M

ax
Pr

of
it)

 [%
]

Vanilla Rounding Performance

ERF
0.25
0.5
1.0
2.0
4.0

Figure 7.8: Depicted is the performance of the solutions obtained via the two vanilla rounding schemes
RRMinLoad (left) and RRMaxProfit (right). Each point corresponds to a single instance and is colored
according to the instance’s edge resource factor. The left and right plots shows results for 7,458 and 7,499
of the 7,500 requests, respectively; the other results lie outside the depicted area.

10 50 100 200 500
Maximum Resource Load [%]

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

ECDF of Resource Loads

Resource
node
edge

Algorithm
RRMinLoad
RRMaxProfit
RRHeuristic
RRMDK
MIPMCF

50 100 150 200
Profit(RRAlg)/Profit(MIPMCF) [%] 

0.0

0.2

0.4

0.6

0.8

1.0
EC

DF

ECDF of Relative Achieved Profit

Algorithm
RRMinLoad
RRMaxProfit
RRHeuristic
RRMDK

Figure 7.9: Comparison of the different algorithms in terms of (maximal) resource usage and the relative
achieved profit for all 7,500 instances.

For both selection criteria, the edge resource factor has a distinct impact on the (overall) maximum load.
This can be explained as follows. As each request edge may use any of the substrate edges (compared to
the restricted node mappings), the chances of contentions, i.e., multiple request edges being mapped on
the same substrate edge, is higher. Additionally, the contention for edge resources is increased by the fact
that the number of virtual edges is (always) at least as large as the number of edges (cf. Figure 7.1) and
that a single request edge may use multiple substrate edges. This observation is further substantiated by
the ECDF presented in Figure 7.9: the maximal edge loads are consistently larger than the maximal node
resource loads for all randomized rounding algorithms.

The results of the heuristical rounding, which does not exceed resource capacities, are presented in Fig-
ure 7.10 (heatmaps) and Figure 7.9 (ECDFs). Again, 1,000 rounding iterations were considered. While
for low edge resource factors, i.e., scarce edge resources, the solutions achieve around 70% of the profit
of the MIP baseline, for larger edge resource factors, the relative performance exceeds 83%. Also, the
performance improves when increasing the number of requests. This can be explained as follows. For any
combination of resource factors, the virtual resource demands are computed according to Equations 7.36
and 7.37 independently of how many requests are considered. Hence, when increasing the number of
requests, the resource demands of each single request become smaller. Hence, the maximal demand-to-
capacity ratio δmax decreases for all substrate resources x ∈ GS when increasing the number of requests.
Accordingly, expected resource augmentations decrease (cf. Theorem 7.22). Thus, the heuristical rounding
algorithm is able to more easily find solutions of high profit not augmenting resources.

105



Chapter 7 XP-Approximations for the Offline VNEP and Evaluation of Derived Heuristics

Overall, the average relative performance with respect to the baseline solutions is 77.2%, with the minimal
one being 32.1%. Furthermore, less than 2% of constructed solutions achieve less than 50% of the baseline’s
profit (cf. Figure 7.9).

7.6.2.5 Optimal Rounding Solution RRMDK

We lastly discuss the results of executing the Multi-Dimensional Knapsack (MDK) Integer Program 7.7.
As for the baseline IP, solutions were computed using Gurobi 8.1.1 and computations were terminated when
an objective gap of less than 1% was reached or when Gurobi’s runtime exceeded 2 hours. As shown in
Figure 7.11, the optimal rounding solution improves upon the heuristical rounding solutions significantly:
the average relative profit is 91.2%, yielding an average improvement over the heuristical rounding by
14%. Interestingly, for the maximal edge resource factors and 80 or 100 requests, the solutions found by
the MDK slightly improve upon the baseline solutions (on average), with the maximal improvement over
the baseline being 20.6% (cf. Figure 7.9). Since the runtime of the MDK (cf. Figure 7.4) consistently
and at times significantly lies beneath the runtime for constructing the baseline solutions, the MDK may
pose an interesting alternative to computing solutions using the MCF IP formulation.

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e 
Fa

ct
or

Heuristic Rounding Performance      
Profit(RRHeuristic)/Profit(MIPMCF) [%]     

65 
70 
75 
80 
85 
90 
95 
100

40 60 80 100
Number of Requests

DT

NT

GE

UU

SN

Su
bs

tra
te

Heuristic Rounding Performance      
Profit(RRHeuristic)/Profit(MIPMCF) [%]     

65 
70 
75 
80 
85 
90 
95 
100

Figure 7.10: Overview of the averaged relative performance achieved by the heuristic rounding algo-
rithm as a function of the edge resource factor and the number of requests (left) and the substrate
topology (right). Each cell averages the result of 375 results.

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e 
Fa

ct
or

Optimal Rounding Performance      
Profit(RRMDK)/Profit(MIPMCF) [%]     

65 
70 
75 
80 
85 
90 
95 
100

40 60 80 100
Number of Requests

DT

NT

GE

UU

SN

Su
bs

tra
te

Optimal Rounding Performance      
Profit(RRMDK)/Profit(MIPMCF) [%]     

65 
70 
75 
80 
85 
90 
95 
100

Figure 7.11: Overview of the averaged relative performance achieved by the MDK solutions as a function
of the edge resource factor and the number of requests (left) and the substrate topology (right). Each cell
averages the result of 375 results.

106



7.6 Computational Evaluation

7.6.2.6 Comparison of Formulation Strengths

Lastly, we empirically study the strength of our novel LP Formulation 6.5 and compare it with the classic
MCF Formulation 6.3. Concretely, as proven in Theorems 6.5, the classic MCF formulation has an
unbounded or very large integrality gap in general, i.e., the bound on the profit returned by the solution
can be arbitrarily far off the optimal attainable profit. Our novel LP formulation is provably stronger
than the old formulation, as it only allows for (fractional) solutions, which can be decomposed into valid
mappings. Thus, it will always yield (equal or) better bounds on the attainable profit.

Figure 7.12 presents the experimental comparison of both formulations. In particular, for each of the
7,5000 instances we compare the objective of the novel Linear Programming Formulation 6.5 to two bounds
computed during the solution process of the baseline MIPMCF: the initial bound, i.e., the objective of the
Linear Programming Formulation 6.3, and the final (best) bound computed during the solution process of
the (Mixed-)Integer Program.

As can be seen, the initial LP bounds of the classic formulation at times exceeds our novel formulation’s
objective by more than 300%, i.e., the classic formulation ‘overestimates’ the maximal attainable profit by
a factor of more than 3. For roughly 22% of the instances, the novel LP improves the bounds by a factor
of at least 1.5. Clearly, the more requests are considered, the less accurate the classic MCF formulation is.
Considering the final bound computed during the execution of the (Mixed-)Integer Program, we see that
these bounds always improve upon the novel LP’s bound. However, for 80% of the instances, our LP’s
bound is only improved by roughly 15% with the maximal improvement being slightly more than 50%.

Concluding, we note that our novel LP formulation is much stronger than the classic formulation: it
consistently yields significantly better bounds in practice compared to the classic LP formulation and
comes close to the bounds obtained by solving the (Mixed-)Integer Program for up to 2 hours.

7.6.3 Evaluation of Column Generation Based Heuristics

In this section we present three types of evaluations to validate the treewidth based approach. Firstly,
we present a study of the treewidth of random graphs to grasp for which graphs our approach may be
reasonable. Secondly, we benchmark the column generation based Linear Programming Formulation 6.1

1.0 1.5 2.0 2.5 3.0 3.5
Bound(MIPMCF) / Bound(LPnovel)

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

LPnovel: Formulation Strength

Bound(MIPMCF)
initial
final

#Requests
40
60
80
100

Figure 7.12: Comparison of the bounds on the profit computed by the novel LP Formulation 6.5 and
the classic MCF Formulation 6.3. As objective bounds are continuously improved during the solution
process of the Mixed-Integer Program MIPMCF, we report on the initial (weakest) bound and the final
(best) bound. The initial bound is essentially the objective value of the LP relaxation of Formulation 6.3,
but might be improved by the solver Gurobi based on the introduction of cutting planes valid only for the
integer variant.

107



Chapter 7 XP-Approximations for the Offline VNEP and Evaluation of Derived Heuristics

against the LP Formulation 6.5 and show that the column generation approach clearly outperforms the
latter formulation. Thirdly, we generate another set of offline VNEP instances according to different
treewidths and compare the performance of the randomized rounding heuristics to the performance of the
well-known ViNE heuristics (cf. Section 4.2.1).

7.6.3.1 Qualitative and Quantitative Analysis of the Treewidth

We have generated 1,200 undirected graphs with {5, . . . , 45} nodes and edge creation probabilities in the
range of {0.05, 0.06, . . . , 0.95}, yielding 4.47M graphs overall. We have then run the exact algorithm by
Tamaki [Tam17] to compute the optimal treewidth. Our results are presented in Figure 7.13. Notably, the
(average) treewidth is less than 6 for most graphs with fewer than 15 nodes and a connection probability of
less than 50%. The runtime for computing the tree decompositions of width less than 10 lies vastly below
two seconds with a median computation time of only 200ms, enabling the application of our approach in
the first place.

5 15 25 35 45
Number of Nodes

10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

Ed
ge

 P
ro

ba
bi

lit
y

Average Treewidth

1  

2  
3  
4  
6  
10 

20 

40 

0 5 10 15 20 25 30 35 40 45
Treewidth

10−1

100

101

Ru
nt

im
e 

[s
]

Decomposition Runtime
percentiles

99% - 100%
75% - 99%
25% - 75%
1% - 25%
0% - 1%

median

Figure 7.13: Study of the treewidth of random graphs using Tamaki’s algorithm [Tam17].
Left: The average treewidth of randomly generated graphs. Depicted are also the contour lines for the
values 2, 3, 4, 6, 10, 20, 40.
Right: Runtime of Tamaki’s algorithm to compute the optimal tree decompositions.

7.6.3.2 Comparison of LP Runtimes

Our DynVMP implementation employs several optimizations. Most prominently, our implementation is
based on small ‘semi-nice’ tree decompositions (cf. [Bod97]) to enable cost computations using matrix
multiplications. Concretely, the used tree decomposition is a small one where for each edge a novel tree
node is introduced, such that the newly created node’s bag is the intersection of the two previously incident
nodes. For more details, we refer the interested reader to our implementation [Döh+19].

As discussed in Section 6.4, the column generation approach allows to compute approximate solutions (cf.
Lemma 6.37). In the experiments presented throughout this section, the separation process was stopped
once a 1.001-optimal solution was constructed.

We first benchmark the performance of the column generation approach against the Linear Programming
Formulation 6.5 for cactus request graphs (treewidth 2) on the instances discussed in Section 7.6.2. Fig-
ure 7.14 shows the runtime comparison in terms of speedup over the cactus LP formulation. Depicted are
speedup factors when including the time to compute the tree decompositions and without. As for cactus
graph requests the tree decompositions can be easily computed based on Lemma 6.6, in the following we
mainly discuss the runtimes without the tree decomposition runtimes.

108



7.6 Computational Evaluation

Firstly, note that the column generation approach performs always better, except for ≈ 3% of the scenarios
with 40 and 60 requests. The average speedup lies around 6.0 with the speedup increasing with the number
of requests. Moreover, for 15% to 20% of the instances the speedup factor lies above 10. Notably, the
maximal speedup factor observed is 49.6×. When including the tree decomposition runtimes, the average
speedup still lies above 1.5 with the maximum being 7.3. As the original LP runtime comes close to 900
seconds at times (cf. Figure 7.5), the potential runtime reduction is significant.

0.2 0.5 1.0 5.0 20.0 50.0
Speedup: time(LPCactus) / time(LPDynVMP)

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

LP Runtime Comparison

including  r computation
excluding r computation

#requests
40 
60 
80 
100

Figure 7.14: ECDF of the runtime speedup when using the novel column generation based LP over the
LP Formulation 6.5 for cactus request graphs on the instances studied in Section 7.6.2. The solid lines
include the time to compute the tree decompositions, while these are excluded for the dashed lines.

7.6.3.3 Performance of Heuristics

In the following we discuss the performance of the randomized rounding heuristics, obeying capacity
constraints, and compare their performance to the well-known ViNE heuristics [CRB12]. To study the
scalability of the column generation approach, we generate a novel set of 6,000 instances as follows.

Instance Generation. We generally follow the methodology presented in Section 7.6.1 to create in-
stances. In particular, we consider the same varying number of requests {40, 60, 80, 100}, the same node
and edge resource factors {0.2, 0.4, 0.6, 0.8, 1.0} and {0.25, 0.5, 1, 2, 4}, the same mapping restrictions, as
well as the same profit computation method. However, as substrate topology only the the medium-sized
GÉANT network is used.

We generate requests, such that all have the same exact treewidth, lying in {1, 2, 3, 4}. The number of
nodes per request is drawn uniformly from {5, . . . , 15}. For treewidth 1, i.e., trees, the request graphs
are generated randomly by adding edges until the graph is a tree (discarding edges creating cycles). For
generating graphs of treewidth 2, 3, 4, we employ the graphs generated to evaluate the performance of
Tamaki’s algorithm. To this end we have stored all generated undirected graphs and uniformly at random
select graphs of the respective treewidth and number of nodes. As directed requests are considered, edge
orientations are chosen uniformly at random.

Studied Algorithms and Implementation Details. We compare the performance of the randomized
rounding heuristics and the ViNE heuristics for unsplittable VNEP embeddings (cf. Section 4.2.1 for an
discussion). The ViNE algorithms use the Multi-Commodity Flow LP formulation to guide the embedding
of single requests: node mappings are performed either randomly or deterministically according to the
LP node mapping variables while request edges are embedded using shortest-paths. Two different LP

109



Chapter 7 XP-Approximations for the Offline VNEP and Evaluation of Derived Heuristics

0
20
40
60
80

100

Pr
of

it 
/ L

P U
B [

%
]

Cost Load Cost Load
Deterministic Randomized

WiNE(ViNE)

Random Static Achieved Random Static Achieved
No Recomputations Recomputations

RR Heuristics

best
mean

Performance of Algorithm Variants

Figure 7.15: Performance of the four different WiNE algorithms the six different randomized rounding
heuristics compared to the upper bound (LPUB).

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e 
Fa

ct
or

Rel. Profit: RRbest/LPUB [%]

0  

20 

40 

60 

80 

100

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e 
Fa

ct
or

Rel. Improv.: (RRrecomp.  - RRdef. )/LPUB [%]

0  
5  
10 
15 
20 
25 
30 

Figure 7.16: Left: Relative profit achieved by the best randomized rounding solution compared to the
upper bound LPUB (a cell averages 300 results). Right: Relative improvement with respect to the upper
bound LPUB that is achieved by the best solution rounded by the heuristic with LP recomputations
versus the best solution rounded without LP recomputations.

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e 
Fa

ct
or

Rel. Improv.: (RRbest - WiNEbest)/LPUB [%]

-24
-18
-12
-6 
0  
6  
12 
18 
24 

0
25
50
75

100 #req.:
40 & 60
#req.:
40 & 60
#req.:
40 & 60
#req.:
40 & 60
#req.:
40 & 60

40 70 100 130 160 190
profit(RRbest) / profit(WiNEbest) [%]

0
25
50
75

100 #req.:
80 & 100
#req.:
80 & 100
#req.:
80 & 100
#req.:
80 & 100
#req.:
80 & 100

ERF
0.25
0.5
1.0
2.0
4.0

ERF
0.25
0.5
1.0
2.0
4.0

EC
DF

 [%
]

Profit Comparison: RRbest / WiNEbest

Figure 7.17: Left: Relative improvement of randomized rounding over ViNE (a cell averages 300 results).
Right: Direct comparison of the best profits achieved (an ECDF represents 600 results).

110



7.6 Computational Evaluation

1 2 3 4
Treewidth

101

102

103

Ru
nt

im
e 

[s
]

LPDynVMP Runtime

#req.
40
60
80
100

#req.
40
60
80
100

1 2 3 4
Treewidth

100

101

102

Ru
nt

im
e 

[s
]

Recomp. Heuristic Runtime

#req.
40
60
80
100

#req.
40
60
80
100

Figure 7.18: Runtime of the novel LP (left) and of the novel rounding heuristic (right) as a function of
the treewidth and the number of requests. Note the logarithmic y-axes.

1 2 3 4
Treewidth

30
40
50
60
70
80
90

100

Fr
ac

tio
n 

of
 T

ot
al

 [%
]

Separation Runtime Share

#req.
40
60
80
100

#req.
40
60
80
100

1 2 3 4
Treewidth

10−3

10−2

10−1

100

Ru
nt

im
e 

[s
]

Average DynVMP Runtime

#req.
40
60
80
100

#req.
40
60
80
100

Figure 7.19: Share of the separation process in the total runtime of the LP and average runtime of the
DynVMP algorithm to perform the separation (per request) (right).

objectives were proposed in [CRB12]: one minimizing resource usage and another also performing load-
balancing. For the offline setting, the authors of [CRB12] have proposed the window-based heuristic
(WiNE) that orders requests descendingly according to their profits and greedily embeds each request
using ViNE.

Considering the randomized rounding heuristics, we again consider the heuristical rounding algorithm
(cf. Algorithm 7.5 but also study the heuristical rounding with LP recomputations (cf. Algorithm 7.6).
Furthermore, for this evaluation, we also study the impact of the order in which the requests are processed.
In particular, we study the following orders: random (as in Section 7.6.2) and either sorting the requests in
descending fashion by their static profits or their actual achieved profit in the LP. Specifically, the actually
achieved profit in the LP formulation for request r ∈ R is given by br ·

∑︁
k fk

r .

Results. We first report on the performance of the different algorithms. In Figure 7.15 the best and
mean solution quality relative to the maximum attainable LP profit is depicted. For ViNE, the load-
balancing objective outperforms the cost one. Considering the randomized rounding (RR) heuristics, the
ones with recomputations significantly outperform the ones without. Ordering the requests according to
the profit (static / achieved) yields the best solutions. This is also substantiated in Figure 7.16 (right):
the best solution constructed using LP recomputations achieves on average 20.7% more profit than the
best solution not applying recomputations.

Considering the performance of the best solution constructed by randomized rounding (cf. Figure 7.16 (left)),
we note that on average 77.5% of the upper bound is achieved. This relative profit highly depends both

111



Chapter 7 XP-Approximations for the Offline VNEP and Evaluation of Derived Heuristics

on the number of requests and the edge resource factor.

Figure 7.17 compares the performance of the randomized rounding and the WiNE heuristics. The mean
relative improvement over WiNE again significantly depends on the number of requests and the edge
resource factor: when edge resources are very scarce, i.e., for an ERF of 0.25, WiNE performs significantly
better, while for ERFs 1.0, 2.0, and 4.0 randomized rounding consistently yields better solutions (86.7% of
scenarios). Even more, for 80 and 100 requests and ERFs of 1.0 and 2.0, randomized rounding finds better
solutions in 99.9% of the scenarios, improving the best ViNE solution by more than 30% in 57.5% of the
scenarios. The performance drop for low ERFs may be due to fewer generated mappings being feasible.

The runtime of the column generation LP lies in the order of 100 seconds for treewidths below 3 and
several hundred seconds for treewidth 4 (see Figure 7.18). The runtime of the recomputation heuristics
mainly ranges between few seconds and 60 seconds (see Figure 7.18). The separation procedures takes up
a substantial amount of the time to compute the LP solutions (see Figure 7.19). For a treewidth of 4,
the separation runtime share lies around 90%. Considering the runtime of the DynVMP algorithm per
request, we see that the runtime lies in the order of few milliseconds for a treewidth of 1 and is even for
a treewidth of 4 upper bounded by 1 second, while the median lies around 100 milliseconds even in that
case.

The runtimes of the rounding without recomputations and the ViNE heuristics are not depicted but their
average consistently was 0.03s and 6.38s, respectively.

7.7 Summary and Novelty of Contributions

In this chapter the first tri-criteria approximations for the offline VNEP have been presented. All approx-
imations are based on the XP-time algorithms to solve (or approximate) the respective fractional offline
VNEP problems. The key to obtain these approximations has been to focus on the construction of valid
mappings, which do not enforce feasibility with respect to the capacities, to allow for the computation of
convex combinations of valid mappings using the LP formulations presented in Section 6. As a drawback
of this approach, the obtained approximations may exceed resource capacities and it was shown that the
resource augmentation factors are proportional to the maximal resource augmentation that a single valid
mapping may impose. Hence, when the demands are small compared to the capacities, the respective
resource augmentation factors are also small and one can even obtain approximations without resource
augmentations for the profit variant when using scaling.

Disregarding the potentially large resource augmentations, our findings are significant: neither approxima-
tions for general request graphs nor approximations incorporating latencies were known in the realm of the
VNEP. Compared to the results presented in [ERS16a] (cf. Theorem 4.4 for an overview), our approxima-
tion results do not depend on any assumptions on the demand-to-capacity ratios or the achieved benefit.
We believe the presented approximation results to be of interest in their own right and we note that using
the same techniques a novel approximation result for the splittable all-or-nothing multi-commodity flow
problem was recently obtained [Liu+19].

While it may in general possible to strengthen the LP formulations using the technique proposed by
Bansal et al. in [Ban+15], we note that the respective formulations would irrevocably lead to a numbers
of variables exponential both in the (e.g.) treewidth and the diameter. Specifically, considering a tree
decomposition Tr of diameter d, the size of the LP formulation would be (lower bounded) by O(|VS |tw(Tr)·d)
(see Theorem 4.2). Nevertheless, this approach might be applicable for small requests of small treewidth
and we leave the further study of the combination of these results to future work.

To study the practical impact of the obtained approximation results, we have also derived several heuristics
for the profit variant of the VNEP. Specifically, vanilla rounding heuristics were studied to investigate
the performance of the approximations and two heuristics that obey capacities were presented. Here,

112



7.7 Summary and Novelty of Contributions

even the simple and fast heuristical rounding approach, which discards mappings, whose addition would
violate resource capacities, performs well and reaches 77.2% of the profit of the baseline MIP solutions.
Even more, the heuristical rounding procedure with LP recomputations outperforms the simple rounding
heuristic by on average 20.7% of the baseline’s profit, while coming at the cost of longer but reasonable
runtimes.

Notably, the performance of our heuristics is clearly influenced by the scarcity of edge resources: on the
one hand, the greedy WiNE heuristic provides better solutions in the most cases when considering the
lowest ERF of 0.25, while on the other hand, for ERFs of 1.0 and 2.0 our randomized rounding based
heuristics yield up to 23.4% more (average) profit. Noting that our heuristics provide better solutions
in 99.9% of the cases for ERFs of 1 and 2, this demonstrates the potential usefulness of our approach in
practice.

Considering the runtime of the column generation approach, we note that it allows the computation of
solutions even for 100 requests in less than 300 seconds for graphs of treewidth 3. This runtime is facilitated
by the optimized implementation of the DynVMP algorithm, which has a runtime lying in the range of
few to hundreds of milliseconds, which is comparable to other heuristic algorithms. Given the possibility
to run the separation procedure in parallel, we believe that the respective algorithms can also scale to
orders of magnitude more requests.

113



“Your assumptions are your windows on the world.
Scrub them off every once in a while or the light won’t come in.”

– Alan Alda 8
Optimal Virtual Cluster Embeddings

and the Hose Based Model

While applications of the VNEP are mostly envisioned in the context of wide-area networks, the perfor-
mance of cloud applications inside data centers is also sensitive to network conditions [MP12]. Specifically,
cloud applications such as MapReduce and scale-out databases generate large amounts of network traffic,
and a considerable fraction of their runtime is due to network activity [Cho+11].

Accordingly, over the last years, several systems have been developed for providing the cloud tenant with
the illusion of a Virtual Cluster [Bal+11; Xie+12]: a star-shaped undirected request connecting virtual
machines to a logical switch with uniform request demands.

In this chapter, we debunk some of the myths around the embedding of virtual cluster requests. First, we
show that the online VNEP restricted to virtual cluster requests can be solved optimally in polynomial-
time using our flow-based embedding algorithm VC-ACE for arbitrary data center topologies. Secondly,
we argue that resources may be wasted by enforcing star-topology embeddings, and alternatively promote
a hose embedding approach [Kum+02]. We discuss the computational complexity of hose embeddings and
derive the HVC-ACE heuristic. Using simulations we substantiate the benefits of hose embeddings.

This chapter is structured as follows. In Section 8.1 virtual clusters are formally introduced and their ap-
plication inside data centers is discussed. In Section 8.2 the optimal polynomial-time algorithm VC-ACE
for virtual clusters is given and in Section 8.3 the hose interpretation of virtual clusters is introduced to-
gether with hardness results and a derived heuristic. In Section 8.4 we compare the performance of classic
virtual cluster embeddings with the novel hose based interpretation. Section 8.5 concludes the chapter.

8.1 Overview of Virtual Clusters and Related Work

Several systems have been proposed over the last years which allow the application to specify network
requirements and construct an inter-connecting virtual network with bandwidth guarantees [Bal+11;
Xie+12; Pop+13]. Among those, the virtual cluster abstraction introduced by Ballani et al. [Bal+11] has
received much attention: a Virtual Cluster request VCr is defined as a tuple VCr = (N (r), db(r), dc(r)),
specifying a minimal bandwidth db(r) ∈ N between the N (r) ∈ N many virtual machines (VMs) of size
dc(r) ∈ N and a non-oversubscribed logical switch, independently of the VM locations in the data center
topology (see Figure 8.1 for an example). A virtual cluster is attractive for its simplicity and flexibility: it
describes a simple star topology which guarantees the feasibility of all communication patterns in which
the aggregate ingress and egress bandwidth of each VM is bounded by db(r).

The objective studied for virtual clusters embeddings is generally to minimize the resource usage of the
embedding [Bal+11; Xie+12]. Accordingly, the embedding of virtual clusters is a classic instantiation of the
online VNEP (cf. Definition 2.8) on undirected graphs. We use the following notation to model virtual
clusters as regular requests and adapt the notation slightly to reflect that the requests are undirected.

114



8.2 Optimal VC Embeddings

Figure 8.1: The VCr with N (r) = 7, dc(r) = 2, db(r) = 1 on the left shall be embedded on the substrate
on the right, such that node and link capacities are respected.

Formally, the virtual cluster VCr = (N (r), db(r), dc(r)) is modeled as an undirected graph Gr = (Vr, Er)
with Vr = {1, 2, . . . ,N (r), center} and Er = {{i, center} | i ∈ [N (r)]}, where center denotes the
logical switch to which the VMs are connected. Accordingly, the demands are set to be dr(i) = dc(r),
dr(center) = 0, and dr({i, center}) = db(r) for i ∈ [N (r)]. Notably, as the logical switch has no
demand, (i) it can be mapped anywhere and (ii) no costs are considered for its mapping.

Despite the simplicity of the problem, only heuristic algorithms were considered so far for the embedding
of virtual clusters [Bal+11; Xie+12]. Moreover, existing algorithms are usually tailored towards specific
substrate networks, specifically aggregated fat tree data center topologies [ALV08] (see Figure 1.2b). Hence,
the respective algorithms cannot be used for other modern data center topologies, such as BCube [Guo+09],
Jellyfish [Sin+12], MDCube [Wu+09].

In fact, sometimes it is even claimed that the problem of “allocating virtual cluster requests on graphs with
bandwidth-constrained edges is NP-hard” [Bal+11], and accordingly, researchers have resorted to weaker
quality measures, such as spatial locality [Xie+12].

8.2 Optimal VC Embeddings

This section presents the fast and optimal algorithm VC-ACE for embedding virtual clusters on general
topologies. At the heart of VC-ACE (see Algorithm 8.1) lies the observation that the virtual embedding
problem can be reduced to a series of flow problems on an extended substrate graph (see Figure 8.2). We
exploit the following facts:

1) The required bandwidth db(r) and the respective compute resources dc(r) of each VM in a virtual
cluster is the same. As connections between the VMs and center are embedded as unsplittable paths,
the substrate’s edge capacities (and costs) can be normalized and we may assume db(r) = 1 to hold.

2) Assuming that the VM mappings mV as well as the location of the center are fixed, the cost-optimal
link mapping can be computed in polynomial-time. Concretely, the minimum-cost unsplittable multi-
commodity flow problem with commodities {(mV (i), mV (center), 1)} can be transformed into an
integral minimum-cost single-commodity flow problem by introducing a super source s+ together along
(possibly parallel) edges e+

i = (s+, mV (i)) with dS(e+
i ) = 1 for 1 ≤ i ≤ N (r). It suffices then to ask

for an integral minimum-cost flow of value N (r) from s+ to mV (center). The equivalence of these
problems follows from construction, since db(r) = 1 holds and edge capacities are integral (cf. [KV18]).

3) Assume that the mapping of center is fixed. The mapping decision for the VMs {1, . . . ,N (r)}
can be incorporated into the integral minimum-cost flow problem in the following way. The super

115



Chapter 8 Optimal Virtual Cluster Embeddings and the Hose Based Model

Algorithm 8.1: VC-ACE Algorithm
Input: Substrate S = (VS , ES), request VCr = (N (r), db(r), dc(r))
Output: Optimal VC mapping m̂V , m̂E if feasible

1 f̂ ← NULL and v̂ ← NULL
2 V ext

S = VS ∪ {s+} and Eext
S = ES ∪ {(s+, u)|u ∈ VS}

3 dext
S (e) =

{︄
⌊dS(e)/db(r)⌋ , if e ∈ ES

⌊dS(u)/dc(r)⌋ , if e = (s+, u) ∈ Eext
S

4 cext
S (e) =

{︄
cS(e) · db(r) , if e ∈ ES

cS(u) · dc(r) , if e = (s+, u) ∈ Eext
S

5 for v ∈ VS do
6 f ← MinCostFlow(s+, v,N (r), V ext

S , Eext
S , dext

S , cext
S )

7 if f is feasible and cext
S (f) < cext

S (f̂) then
8 f̂ ← f and v̂ ← v

9 if f̂ = NULL then
10 return NULL
11 return DecomposeFlowIntoMapping(f̂ , v̂)

source s+ is connected to all substrate nodes u ∈ VS via e+
u = (s+, u) with dS(e+

u ) = ⌊dS(u)/dc(r)⌋
and cS(e+

u ) = cS(u) · dc(r). We now consider an integral minimum-cost flow from s+ to the fixed
location of the center, i.e., mV (center). If such a flow f : ES → N of value N (r) exists, then∑︁

u∈VS
f(e+

u ) = N (r) holds and f(e+
u ) can be identified with the number of VMs that are placed on

u. By construction, placing f(e+
u ) ∈ N many VMs onto u cannot violate node capacities and costs are

correctly accounted for. Lastly, flows may only terminate at mV (center) and hence each node u ∈ VS

establishes exactly f(e+
u ) many unsplittable paths to mV (center).

The above insights are instrumental for designing VC-ACE (see Algorithm 8.1) and for understanding
its correctness. Based on 3), if the virtual switch’s mapping is fixed, then the optimal embedding can be
computed by solving a single integral minimum-cost flow problem (see Line 6) on a specifically constructed
graph (see Lines 2-4). For each possible location of center the optimal flow together with the mapping of
center is stored (see Lines 7,8). Lastly, if a feasible flow existed, the cost optimal flow f̂ is decomposed
into paths P = ⟨s+, u1, . . . , un, mV (center)⟩, yielding a VM placement on node u1 together with the
substrate path ⟨u1, . . . , un, mV (center)⟩ towards mV (center).

Figure 8.2: The flow problem for the situation from Figure 8.1, if center is mapped to the middle
switch.

116



8.3 Hose-Based VC Embeddings

VC-ACE has a polynomial runtime, which is dominated by solving exactly |VS | many minimum-cost flow
problems. By employing the Successive Shortest Paths Algorithm, we obtain a runtime of
O
(︁
N (r) · (n2 log n + n ·m)

)︁
, where n = |VS | and m = |ES |. On tree topologies like the fat tree, the

runtime of VC-ACE can be reduced to O(n · N (r)), which is on par with the best known heuristic ap-
proaches [Bal+11; Xie+12].

8.3 Hose-Based VC Embeddings

A virtual cluster essentially supports any communication pattern between the VMs for which the aggregate
ingress and aggregate egress bandwidth at each VM is at most db(r). If the only role of the logical
switch in the VCr abstraction is to facilitate these communication patterns, it is wasteful to enforce the
explicit star embedding and the redirection via the unique center. Thus, one may consider to remove the
switch and rather support the communication using direct interconnections between VM pairs in a hose
fashion [Duf+99].

In the following, we introduce the respective hose embedding problem and study how to solve it. We define
the hose virtual cluster embedding problem and highlight its potential benefits in Section 8.3.1. However,
we also show in Section 8.3.2 that the unsplittable hose embedding is computationally hard, and present
an optimal Mixed-Integer Programming (MIP) formulation in Section 8.3.3, which also forms the basis of
our proposed splittable-hose cluster embedding algorithm HVC-ACE presented in Section 8.3.4.

8.3.1 Problem Definition and Motivation

Henceforth, we denote by GC
r = (V C

r , EC
r ) the clique graph of request VCr with V C

r = {i | i ∈ [N (r)]} only
containing the VMs and with EC

r = {(i, j) | i, j ∈ V C
r , i < j} being the set of directed interconnections.

Note that we employ directed edges only for notational purposes and that the sought after paths will still
be undirected. A feasible solution to the hose-based virtual cluster embedding problem is characterized
as follows:

1. The mapping of VMs must not violate node capacities.

2. Each route (i, j) ∈ EC
r is realized as simple path mE({i, j}) ⊆ ES , connecting mV (i) and mV (j).

3. The (oblivious) routing according to mE does not violate the substrate’s edge capacities under any
communication pattern. Concretely, there exists an integral bandwidth allocation au,v ≤ dS(u, v)
for {u, v} ∈ ES , such that for all feasible traffic matrices M ∈ RN (r)×N (r), i.e., for each VM i ∈ V C

r

it holds
∑︁

(j,i)∈EC
r

Mj,i + Mi,j ≤ db(r), and the bandwidth reservation is not exceeded:∑︂
{i,j}∈EC

r :{u,v}∈mE({i,j})

Mi,j ≤ au,v .

Given bandwidth reservations au,v the cost of a hose-based virtual cluster embedding is defined analogously
to the definition of costs as

dc(r) ·
∑︁

i∈V C
r

cS(mV (i)) + db(r) ·
∑︁

e∈ES

au,v · cS(e).

In the following, we will refer to this virtual cluster interpretation omitting the logical switch as the
hose-based virtual cluster, short HVC.

117



Chapter 8 Optimal Virtual Cluster Embeddings and the Hose Based Model

Figure 8.3: A hose-based virtual cluster HVC=(6,1,1) (left) and a feasible embedding of the HVC on a
6-node substrate ring (right) with 2 units of bandwidth on each link and one compute unit on each server.

In order to clarify and highlight the difference between the two virtual cluster interpretations, we consider
the example in Figure 8.3: a ring substrate with 6 nodes, where nodes have a capacity of one unit and
links have a capacity of two units, and assume the virtual cluster with N (r) = 6, db(r) = 1, dc(r) = 1.

First we observe that it is impossible to map a logical switch center in this scenario: each ring node must
host one VM and any placement of the center therefore requires the establishment of N (r)−1 = 5 many
independent paths to the respective substrate node onto which center is mapped. This is impossible,
since each node’s accumulated bandwidth is 4; no ‘classic’ (star) VCr embedding exists.

In the hose-based virtual cluster HVC however, a feasible embedding can be computed (depicted in Fig-
ure 8.3). To see that this is indeed a feasible solution, consider e.g., the substrate edge e connecting mV (5)
and mV (6). The edge e lies on the routing paths of the VM pairs R(e) = {(1, 5), (2, 5), (3, 6), (4, 6), (5, 6)}.
Despite e’s capacity being 2, this still is a feasible solution. The load on e amounts to

∑︁
(i,j)∈R(e) Mi,j for

a traffic matrix Mi,j . As Mi,j is required to respect the cumulative bandwidth db(r), this load is bounded
by M1,5 + M2,5 ≤ 1 and M3,6 + M4,6 + M5,6 ≤ 1 and for the maximal allocations ae that may be induced
holds 2 ≤ dS(e).

This example highlights a qualitative disparity, in the sense that only HVCs can be embedded. Analo-
gously, it is easy to construct examples where both VCr and HVC can be embedded, but the corresponding
optimal embeddings differ significantly in their costs. For instance, consider the above ring network with
an additional node u whose compute capacity is 0, and which connects to all ring nodes with edges of
bandwidth 1 at some cost c > 0. While the HVC solution still has the same cost, the cost of the unique
VCr solution is N (r) · c which can be arbitrarily high. Our computational evaluation (see Section 8.4)
shows that this qualitative disparity also arises in other topologies, e.g., in fat trees.

8.3.2 Computational Complexity

The above example has shown the potential benefit of using the hose model. In the following, we study
the computational complexity of hose embeddings and show their hardness. In particular, we show that
an optimal hose embedding is actually a star embedding, if edge capacities can be neglected. However, if
edge capacities cannot be neglected, the respective embedding problem is hard and even inapproximable,
unless P =NP holds.

Case I: Bandwidth Requirements Are Negligible. We first present the rather intriguing result, that
VC and HVC embeddings are the same, if sufficient bandwidth is available, concretely if dS(e) ≥ N (r)·db(r)
holds for all edges e ∈ ES . This is a non-trivial result which follows from the famous VPN conjecture,

118



8.3 Hose-Based VC Embeddings

which was proven by Goyal et al. [GOS08]. In a nutshell, the VPN conjecture states that in uncapacitated
networks, hose embedding problems with symmetric bandwidth bounds and no restrictions on routing
(known as the SymG model), can be reduced to hose problem instances in which routing paths must
form a tree (known as the SymT model). Based on this result, any optimal HVC embedding will have a
central ‘hub’ (corresponding to the VC’s logical switch) in the network, such that all traffic passes this
node [GOS08].

Thus, when not considering link capacities any optimal HVC embedding contains a central ‘hub’. Recall
algorithm VC-ACE presented in Section 8.2 explicitly computes the minimum cost embedding towards
such a node, called center by us. By construction of the N (r) flows towards the center carrying exactly
db(r) much bandwidth, no VC solution will use more than N (r) · db(r) bandwidth and thus by the VPN
conjecture, the equality of VC and HVC solutions follows.

Case II: Bandwidth Requirements Are Not Negligible. We will now show that the HVC embed-
ding problem is generally – on non-tree topologies – inapproximable unless P =NP holds. This result
again follows from the literature on hose embedding problems, where terminals are fixed. In particular,
it was proven in [Gup+01] that computing optimal solutions in the capacitated hose model is NP-hard.
Furthermore, it was shown that even deciding whether a solution exists is NP-complete, implying that –
unless P =NP holds – no polynomial-time approximation algorithm can exist.

A simple reduction shows that this result translates to the HVC embedding problem: Given is a symmetric
hose problem on a graph (VS , ES) with the set of terminals T ⊆ VS and integral bandwidth bounds bt ∈ N
for each terminal t ∈ T . By setting dS(t) = bt and cS(t) = 0 for all t ∈ T , the original hose problem is
equivalent to the respective HVC problem of embedding the virtual cluster VCr(

∑︁
t∈T bt, 1, 1) onto the

substrate network with edge costs and capacities remaining the same.

8.3.3 Exact Unsplittable Hose Algorithm

The above inapproximability result rules out any type of efficient approximation algorithms. Hence we
give the exact Mixed-Integer Programming formulation HVC-OSPE for obtaining Optimal Single-Path
Embeddings (OSPE).

Our formulation (see MIP 8.2) builds upon the compact hose formulation by Altin et al. [Alt+07]. We
employ the following additional notation. We use ←→ES = {(u, v), (v, u) | {u, v} ∈ ES} to denote the set of
bi-directed substrate edges. We use δ+(W ) = {(u, v) ∈ ←→ES | u ∈ W, v /∈ W}. For breaking symmetries,
we assume some arbitrary numbering of the VMs, given by the bijection σ : VS → [|VS |].

We introduce node mapping variables yu
i ∈ {0, 1}, with yu

i = 1 iff. i ∈ V C
r is mapped onto the substrate

node u ∈ VS . Given these mapping variables, the symmetric hose formulation of [Alt+07] can be adapted:
The routing variables zu,v

i,j ∈ {0, 1} for (i, j) ∈ EC
r and (u, v) ∈ ←→ES determine the simple path between the

substrate nodes onto which i and j have been mapped (see Constraint 8.6). The cumulative load variable
of a substrate edge {u, v} is introduced as au,v ∈ N. The load variables are lower bounded according to
the ‘dual’ variables ωu,v

s ≥ 0 for all s ∈ V C
r , {u, v} ∈ ES (see Constraints 8.11 and 8.8, and [Alt+07] for

an in-depth explanation).

With respect to the node mapping, Constraint 8.2 enforces that each virtual cluster node is mapped onto
exactly one substrate node. Constraints 8.4 and 8.10 bound the resource allocations in the substrate by
the respective node and edge capacities. Lastly, we introduce Constraint 8.3 to break symmetries: as all
nodes in V C

r have identical resource requirements, a feasible node mapping induces up to N (r)! equivalent
ones. Constraint 8.3 only allows for one of these permutations.

Despite breaking symmetries the formulation HVC-OSPE remains hardly solvable even for small net-
works. Our initial computational experiments have shown that the mean runtime of HVC-OSPE for

119



Chapter 8 Optimal Virtual Cluster Embeddings and the Hose Based Model

Mixed-Integer Program 8.2: HVC-OSPE

min
∑︂

i∈V C
r ,u∈VS

cS(u) · yu
i +

∑︂
{u,v}∈ES

cS(u, v) · au,v (8.1)∑︂
u∈VS

yu
i = 1 ∀i ∈ V C

r (8.2)∑︂
u∈VS

σu · (yu
i − yu

i+1)≤ 0 ∀i ∈ V C
r \ {N (r)} (8.3)∑︂

i∈V C
r

dc(r) · yu
i ≤ dS(u) ∀u ∈ VS (8.4)

au,v≤ dS(u, v) ∀{u, v} ∈ ES (8.5)∑︂
(u,v)∈δ+(u)

zu,v
i,j −

∑︂
(v,u)∈δ−(u)

zv,u
i,j = yu

i − yu
j ∀(i, j) ∈ EC

r , u ∈ VS (8.6)

∑︂
i∈V C

r

db(r) · ωu,v
i ≤ au,v ∀{u, v} ∈ ES (8.7)

zu,v
i,j + zv,u

i,j ≤ ωu,v
i + ωu,v

j ∀(i, j) ∈ EC
r , {u, v} ∈ ES (8.8)

optimally embedding a 10-node VC onto a 20-node substrate already exceeds 10 minutes. One reason for
this runtime can be found in the number of integral flow variables which amounts to Θ(|ES | · N (r)2).

8.3.4 Algorithm for the Splittable Hose-Model

As discussed above, finding HVC embeddings is strongly NP-hard in the unsplittable path model. Fur-
thermore, using Mixed-Integer Program 8.2 to obtain (optimal) solutions in reasonable time seems out of
reach.

To compute hose-based embeddings more efficiently, we have to drop (1) the flexible node mapping as
well as (2) the unsplittable path routing model. Accordingly, this section presents the polynomial-time
Linear Program 8.3 for computing optimal Hose Multi-Path Routings (HMPR) under fixed node mappings.
In contrast to HVC-OSPE, the formulation HMPR can be solved within few minutes for much larger
problems.1 Together with an efficient node mapping heuristic based on algorithm VC-ACE, we obtain
the effective stand-alone heuristic HVC-ACE for the (splittable) hose-based virtual cluster embedding.

Based on the Mixed-Integer Program 8.2 we obtain the Linear Program 8.3. First, if all VMs are feasibly
mapped, i.e., without violating node capacities, via the function mV : V C

r → VS , Constraints 8.2 to 8.4
are not needed. However, more importantly, the computation of correct link loads can be significantly
simplified, by actually discarding the Θ(|ES | · N (r)2) many flow variables. Dropping the constraint of
unsplittable path routing, Constraints 8.6 and 8.8 can be equivalently stated using the cut-set inequalities
expressed in Constraint 8.12 (cf. Altin et al. [Alt+07]): given any substrate node set W , to which VM i
but not VM j has been mapped, there must exist a ‘path’ leaving W with value 1 such that the respective
dual variables are bounded accordingly.

The exponential number of constraints can be separated efficiently using maximum-flow computations
(cf. [KM98]) allowing to solve the formulation in polynomial-time [GLS88]. Lastly, the splittable routing

1In our computational evaluation (see Section 8.4) with hundreds of nodes and edges and up to 30 node requests, HMPR
computed more than 95% of the solutions in less than 3 minutes. Furthermore, our prototypical implementation of the
formulation HMPR uses the simple Edmonds-Karps maximum-flow algorithm to separate the Constraints 8.12 of Linear
Program 8.3 using |Er| = Θ(|Vr|2) many flow computations. The runtime can be reduced significantly by using Hao and
Orlin’s algorithm requiring only |Vr| many flow computations (see [KM98] for an explanation).

120



8.4 Evaluation

Linear Program 8.3: Hose Multi-Path Routing (HMPR)

min
∑︂

{u,v}∈ES

cS(u, v) · au,v (8.9)

au,v≤ dS(u, v) ∀{u, v} ∈ ES (8.10)∑︂
i∈V C

r

db(r) · ωu,v
i ≤ au,v ∀{u, v} ∈ ES (8.11)∑︂

(u,v)∈δ+(W )

(ωu,v
i + ωu,v

j )≥ 1 ∀(i, j) ∈ Er∀W ⊂ VS : mV (i) ∈W, mV (j) /∈W (8.12)

Algorithm 8.4: HVC-ACE Embedding Algorithm
Input: Substrate GS = (VS , ES), request VCr = (N (r), db(r), dc(r)), cost factor λ ≥ 1
Output: Splittable HVC-Embedding mV , mE

1 Eext
S ← ∅

2 for e ∈ ES do
3 Eext

S = Eext
S ⊔ {e, e′}

4 dext
S (e) = dS(e) and dext

S (e′) =∞
5 cext

S (e) = cS(e) and cext
S (e′) = cS(e) · λ

6 mV , mE ← VC-ACE(VS , Eext
S , VCr = (N (r), db(r), dc(r)))

7 if mV ̸= NULL then
8 mE ← HMPR(VCr, mV )
9 if mE ̸= NULL then

10 return mV , mE

11 return NULL

for (i, j) ∈ Er can be recovered from the dual variables by computing a minimum-cost flow of value 1
from mV (i) to mV (j) with edge capacities ωu,v

i + ωu,v
j for {u, v} ∈ ES . Such a flow always exists as

Constraint 8.12 enforces that any cut must have at least capacity 1 (cf. Constraint 8.8 of MIP 8.2).

Hence, the Linear Program 8.3 allows to compute optimal splittable hose-routings in polynomial-time for
fixed node mappings. We now describe a heuristic to find a corresponding node mapping to obtain the
efficient embedding algorithm HVC-ACE. Since optimal VC and HVC solutions coincide in uncapaci-
tated networks (see Section 8.3.2), we employ an adaption of the VC mapping algorithm VC-ACE (see
Algorithm 8.1). For each edge in the original graph, a copy of infinite capacity is added, having λ ≥ 1
times the original cost. Clearly, on this adapted graph (VS , Eext

S ) a feasible solution – given the existence
of a feasible node mapping – always exists. By varying the factor λ, the cost of using an infinite-capacity
edge can be controlled. Setting λ = 1, the cost structure of the original graph is not changed, while by
setting λ = ∞ the usage of non-existent edges can be minimized. Thus, for λ = ∞, the node mapping
equals the one found using VC-ACE, if one existed.

8.4 Evaluation

This section compares the performance of the optimal VC embedding and our heuristic hose-based em-
beddings. In particular we show that by using Algorithm HVC-ACE, the chances of being able to accept
a single request can be up to 60% higher than in the classic VC model. We furthermore show that the
hose-abstraction may reduce the resource footprint by up to 25% on fat tree topologies.

Our evaluation setup is as follows. We consider the (non-aggregated) fat tree (12-port switches, 432
servers) and the MDCube (4 BCubes with n = 12 and k = 1) data center topologies. We assume uniform

121



Chapter 8 Optimal Virtual Cluster Embeddings and the Hose Based Model

edge capacities and that each server offers 2 VM slots. Requests are embedded over time in an online
fashion with exponentially distributed inter-arrival times and duration. The mean of the inter-arrival time
is chosen to impose a system load of 75% (w.r.t. node utilization if all requests can be accepted). The
size N (r) of the virtual clusters is chosen uniformly at random from the set {10, . . . , 30}. The bandwidth
db(r) is chosen uniformly at random between 20% to 100% of the available bandwidth of a single (unused)
substrate link. To impose an initial system load, requests are embedded within the first 45 time units
(three generations of requests) using VC-ACE if possible. Then, a single data point is generated by
embedding the next given request, using VC-ACE and HVC-ACE. Here HVC-ACE denotes the best
solution found for the cost parameter λ ∈ {1, 5, 10,∞}.

We evaluate two metrics: the acceptance ratio and the relative resource footprint. The acceptance ratio
captures the ratio of requests that can be successfully embedded. The relative resource footprint is the
quotient of the embedding costs of the solutions of HVC-ACE and VC-ACE, if VC-ACE found a solution.
As we consider unit node and edge costs, the cost is proportional to the edge usage.

Figure 8.4 (left) shows a significant advantage of HVC-ACE in terms of acceptance ratio: starting from 13
nodes, VC-ACE can only embed roughly 40% of the requests. At 25 nodes, the acceptance ratio drops,
to roughly 20%. The acceptance ratio of HVC-ACE remains close to 100% for up to 23 nodes. The
drops of the acceptance ratio are related to the number of ports of the switches (12 port switches in the
fat tree). Figure 8.4 (right) shows the impact of using HVC-ACE instead of VC-ACE on the footprint
(when VC-ACE found a solution). The x-axis plots the relative footprint of HVC-ACE normalized by
the footprint of VC-ACE. By adopting the hose model (i.e., when using HVC-ACE) the footprint can
be reduced for roughly a quarter of all requests by up to 30%. Note that for 20% of the requests, the

0
2

0
4

0
6

0
8

0
1

0
0

Request Size

A
c
c
e
p
ta

n
c
e
 R

a
ti
o
 [
%

]

10 15 20 25 30

VC−ACE

HVC−ACE

60 70 80 90 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Footprint Change [%]

E
C

D
F

(R
e
q
u
e
s
ts

)

Figure 8.4: Experiments on a 432 server fat tree. Acceptance ratio of VC-ACE and HVC-ACE (left)
and footprint benefits of HVC-ACE compared to VC-ACE (right).

0
2

0
4

0
6

0
8

0
1

0
0

Request Size

A
c
c
e
p
ta

n
c
e
 R

a
ti
o
 [
%

]

10 15 20 25 30

VC−ACE

HVC−ACE

60 80 100 120 140

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Footprint Change [%]

E
C

D
F

(R
e
q
u
e
s
ts

)

Figure 8.5: Experiments on a 576 server MDCube. Acceptance ratio of VC-ACE and HVC-ACE (left)
and footprint benefits of HVC-ACE compared to VC-ACE (right).

122



8.5 Summary and Novelty of Contributions

footprint was reduced by at least 10%.

The advantages of the HVC interpretation on hypercubic topologies are depicted in Figure 8.5: although
HVC-ACE does not yield lower footprints than VC-ACE (if a solution was found), HVC-ACE can still
provide an average improvement of 30% in the acceptance ratio, for N (r) ≥ 14.

8.5 Summary and Novelty of Contributions

In this chapter the virtual cluster embedding problem, i.e., a specific online VNEP instantiation, was
considered. We showed that the problem is not NP-hard, but can be solved in polynomial-time even on
arbitrary topologies using our algorithm VC-ACE. Moreover, we have introduced the hose interpretation
of virtual clusters and proposed the efficient embedding algorithm HVC-ACE. Our evaluation shows that
the splittable hose abstraction can generally greatly improve the acceptance ratio and may yield better
solutions in terms of resource utilization on fat trees.

Considering the novelty of our approach, we note that Bansal et al. independently and unbeknownst to
of us gave an informal description of the VC-ACE algorithm in their paper [Ban+11]. Yet, the idea to
frame the virtual cluster abstraction as a hose model is novel and independent of their result. Based on
the results described in this paper, Fattohi derived a first competitive online algorithm for virtual cluster
embeddings in his master thesis [Fat18].

123



“Industrial production, the flow of resources in the economy, the exertion of military effort
in a war, the management of finances –all require the coordination of interrelated activities.
What these complex undertakings share in common is the task of constructing a statement
of actions to be performed, their timing and quantity (called a program or schedule) ...”

– George Dantzig 9
The Temporal Offline VNEP

As already noted in the above chapter, today’s data center networks are often largely oversubscribed,
rendering network bandwidth a scarce resource shared across many tenants. Additionally, many appli-
cations cycle through different phases, only some of which are network-intensive (e.g., the MapReduce
shuffle phase). The traffic patterns for example measured in [Xie+12] indicate that popular cloud appli-
cations only generate substantial traffic during only 30%-60% of the entire execution. Accordingly, virtual
networks should support temporally varying specifications.

Besides the changing requirements over time, applications (and hence virtual network requests) may also
differ in their scheduling requirements: while some applications must be started immediately upon request,
others may come with certain flexibilities on when they are executed, e.g., when combined with a corre-
sponding price incentive [Hen+10; MKC13] or adaptive resource and spot market pricing schemes [AKK12;
PH13].

In this chapter we initiate the study of the Temporal Virtual Network Embedding Problem (TVNEP)
formally introduced in Definition 2.12: requests must be embedded for a given duration and within a
specified time interval. Hence, the TVNEP conceptually consists of three tasks: (1) deciding which of
the requests to embed, (2) finding good embeddings for the requests, and (3) scheduling the requests in
such a fashion, according to their temporal specification, that no resource capacities are exceeded.

Furthermore note that the TVNEP is not only relevant for data-centers and high performance computing
applications, but also for wide-are networks. For example, Google’s B4 network [Jai+13] connects roughly
a dozen data centers using a Software-Defined Networking (SDN) approach: the bandwidth-intensive
data copies from one site to another, are planned from the logically centralized perspective of the SDN
controller. This allows to run the network at higher utilizations and to prioritize interactive applications
during periods of failure or resource constraints. According to the authors, no more than a few dozen data
center deployments are anticipated in the near future, which renders such a central control of bandwidth
feasible.

Overview. We present multiple mathematical programming formulations, and devise techniques to re-
duce the problem’s complexity to enable solving the TVNEP on moderately sized instances to optimality.
As we are interested mainly in the potential benefits of harnessing temporal flexibilities, a restricted model
is considered: we assume splittable edge embeddings (cf. Definition 2.14) and will assume in the evalu-
ation that the virtual nodes have been already mapped. On the one hand, these restrictions render the
VNEP significantly easier to solve. On the other hand, embeddings of flows and corresponding scheduling
decisions have to be made, still enabling the analysis of the benefit of temporal flexibilities.

With respect to the presented Mixed-Integer Programming formulations for the TVNEP, we make the
following contributions:

1. We show that the TVNEP can be formulated as a continuous-time model, which in contrast to
discrete models facilitates a compact and accurate representation of time. We present two different

124



9.1 The Continuous-Time Approach

Mixed Integer Program (MIP) formulations for this continuous model: the first, the so-called ∆-
model, is based on state change representations at events and the second, the Σ-model, is based
on explicit state representations. We discuss the (dis)advantages of either of these approaches, and
argue that Σ formulations give much better relaxations, hence speeding up the branch-and-bound
algorithm employed to solve the model.

2. Our main technical contribution is the cΣ-model: a compact and improved Σ-model which is based
on rigorous state-space and symmetry reductions. The model clearly outperforms the other formu-
lations, and enables us to solve moderately sized instances in the first place.

3. We report on our computational evaluation, and show that using the cΣ approach, solving the
TVNEP to optimality is feasible for reasonable problem instances, and for different objectives,
including access control, load balancing and makespan minimization. Furthermore, the cΣ-model
significantly outperforms the ∆- and the simple Σ-model.

The remainder of this chapter is structured as follows. We discuss the two main approaches to formulate
continuous-time programs in Section 9.1: an event based model and a state based model. Based on the
state model, in Section 9.2 the compact state formulation is introduced and in Section 9.3 additional
objectives under temporal flexibilities are discussed. We report on our computational experiments in
Section 9.4 and conclude in Section 9.5.

9.1 The Continuous-Time Approach

As noted above, within this chapter splittable edge mappings are considered. We adapt the respective
integer MCF Formulation 6.3 accordingly and present the complete formulation as parts of the formulation
will be used throughout this section. In particular, we employ the MCF base formulation for the VNEP to
compute time-invariant embeddings (see MIP 9.1). The splittable edge mappings are realized by relaxing
the edge mapping variables z⃗: these are now real valued.

As stated above, we will show that the TVNEP problem can be modeled using a continuous-time approach.
This is attractive as it avoids inaccuracies due to time discretizations and therefore allows us to solve the

Mixed-Integer Program 9.1: Base for Computing Time-Invariant Splittable Embeddings∑︂
u∈V r,i

S

yu
r,i= xr ∀r ∈ R, i ∈ Vr (9.1)∑︂

u∈VS\V r,i
S

yu
r,i= 0 ∀r ∈ R, i ∈ Vr (9.2)∑︂

(u,v)∈δ+(u)

zu,v
r,i,j −

∑︂
(v,u)∈δ−(u)

zv,u
r,i,j= yu

r,i − yu
r,j ∀r ∈ R, (i, j) ∈ Er , u ∈ VS (9.3)

zu,v
r,i,j= 0 ∀r ∈ R, (i, j) ∈ Er , (u, v) ∈ ES \ Er,i,j

S (9.4)∑︂
i∈Vr

dr(i) · yu
r,i= au

r ∀r ∈ R, u ∈ VS (9.5)∑︂
(i,j)∈Er

dr(i, j) · zu,v
r,i,j= au,v

r ∀r ∈ R, (u, v) ∈ ES (9.6)

xr ∈ {0, 1} ∀r ∈ R (9.7)
yu

r,i∈ {0, 1} ∀r ∈ R, i ∈ Vr , u ∈ VS (9.8)
zu,v

r,i,j ∈ [0, 1] ∀r ∈ R, (i, j) ∈ Er , (u, v) ∈ ES (9.9)
ax

r≥ 0 ∀r ∈ R, x ∈ GS (9.10)

125



Chapter 9 The Temporal Offline VNEP

event1 event2 event3 event4

state1 state2 state3

Event Order

Substrate

Local Mapping
on Substrate

event5 event6

state4 state5
State

R1

R2

R3

Figure 9.1: Shown are local substrate allocations of requests R1, R2, R3 on a three node substrate. By
assigning the start and end of requests to event points, states between events can be reconstructed to
check the feasibility of allocations.

continuous VNEP as stated in Definition 2.12. We begin by discussing the conceptual model of abstract
event points, and then derive two complementary ways to model the TVNEP in our continuous-time
framework: the ∆-model and the Σ-model. While the ∆-model only represents state changes and therefore
requires less variables, the Σ-model introduces explicit state variables to improve the LP-relaxations. We
will argue that the latter is preferable, and it will also build the basis of our optimized cΣ-model presented
in the subsequent section.

Our mathematical programming formulations rely on the event point model introduced in the following,
which will allow to check the feasibility of possible solutions to the TVNEP.

9.1.1 The Abstract Event Point Model

To check whether resource capacities are obeyed at each point in time t ∈ [0, T ], it suffices to con-
sider the 2 · |R| − 1 many intervals in which resource allocations are invariant. Denoting by t+

r , and t−
r

the start and end times of request r ∈ R and by T ± = {t+
r , t−

r | r ∈ R} all points in time in which
resource allocations change, the respective intervals in which resource allocations are invariant equal
{[t−, t+] | t−, t+ ∈ T ±, (t−, t+) ∩ T ± = ∅}, where (t−, t+) is to be read as time interval. Our models
compute these time-invariant states using an event point model illustrated in Figure 9.1. Formally, we
define the set of events E = {e1, . . . , e2·|R|} and the set of states S = {s1, . . . , s2·|R|−1}.

In the following, we detail our core temporal model, which is based on this event point model, as Mixed-
Integer Program 9.2. For modeling the assignment of the start of a request r ∈ R to an event point ei ∈ E
the binary variables χ+

r,ei
∈ {0, 1} are used (cf. Constraint 9.21). Analogously, to map the end of a request

r to an event point ei the variables χ−
r,ei
∈ {0, 1} are employed (cf. Constraint 9.22). Constraints 9.12 to

9.14 model the bijection between event points and the start and end of requests, such that only a single
request event may be mapped to each event point ei ∈ E .

Furthermore, the time tei
of event ei ∈ E and the starting t+

r and ending time t−
r of requests r ∈ R are

introduced (cf. Constraints 9.23 to 9.25). While Constraint 9.15 enforces the monotonicity of the event
point times, Constraints 9.17 to 9.20 set the requests’ start and end times according to the event mapping
variables χ⃗+ and χ⃗−. Concretely, the start time t+

r and the end time t−
r for request r ∈ R are lower and

upper bounded by the respective event time tei such that equality holds when χ+
r,ei

= 1 or χ−
r,ei

= 1 holds,
as then the second summand equals 0. Lastly, Constraint 9.16 enforces that the duration of any request
equals the request’s duration.

126



9.1 The Continuous-Time Approach

Importantly, the Mixed-Integer Program 9.2 does only map the requests’ start and end to events, assigns
point in times to each event and links these with the start and end of the respectively mapped requests.
Accordingly, MIP 9.2 does not enforce feasibility of the states between event points. In the following two
complementary approaches to reconstruct the states and enforce the respective feasibility are introduced.

Mixed-Integer Program 9.2: General Temporal Extension Without Enforcing Feasibility

Constraints and Variables (9.1) - (9.10) (9.11)
1=

∑︂
ei∈E

χ+
r,ei

∀r ∈ R (9.12)

1=
∑︂
ei∈E

χ−
r,ei

∀r ∈ R (9.13)

1=
∑︂
r∈R

χ+
r,ei

+ χ−
r,ei

∀ei ∈ E (9.14)

tei≤ tei+1 ∀ei ∈ E : i < |E| (9.15)
td
r= t−

r − t+
r ∀r ∈ R (9.16)

t+
r ≤ tei + (1−

∑︂
j=1,...,i

χ+
r,ej

) · T ∀r ∈ R, ei ∈ E (9.17)

t+
r ≥ tei

− (1−
∑︂

j=i,...,|E|

χ+
r,ej

) · T ∀r ∈ R, ei ∈ E (9.18)

t−
r ≤ tei

+ (1−
∑︂

j=1,...,i

χ−
r,ej

) · T ∀r ∈ R, ei ∈ E (9.19)

t−
r ≥ tei

− (1−
∑︂

j=i,...,|E|

χ−
r,ej

) · T ∀r ∈ R, ei ∈ E (9.20)

χ+
r,ei
∈ {0, 1} ∀r ∈ R, ei ∈ E (9.21)

χ−
r,ei
∈ {0, 1} ∀r ∈ R, ei ∈ E (9.22)

tei ∈ [0, T ] ∀ei ∈ E (9.23)
t+
r ∈ [0, T ] ∀r ∈ R (9.24)

t−
r ∈ [0, T ] ∀r ∈ R (9.25)

9.1.2 ∆-Model: Representing only State Changes

A first and intuitive way to formulate the continuous-time program, is to represent state allocations (at
states S), by encoding only the state differences or changes ∆x

ei
∈ R at event points ei ∈ E for substrate

resource x ∈ GS . We will refer to this model as the ∆-model. Given these changes, the state allocations
at state si for resource x ∈ GS compute to

∑︁i
j=1 ∆x

ei
. However, to compute the ∆⃗ variables, conditional

assignments of the following form are necessitated for all requests rj ∈ R and all substrate resources
x ∈ VS ∪ ES :

∆x
ei

=
{︄

+ax
rj

, if χ+
rj ,ei

= 1
−ax

rj
, if χ−

rj ,ei
= 1

These selective assignments can be modeled by the respective Constraints 9.27 to 9.30 of Mixed-Integer
Program 9.3, yielding the ∆-model for the TVNEP. The feasibility of the allocations over all states is
guaranteed by computing the respective allocations at each state (cf. Constraint 9.31) and enforcing that
these allocations respect the resource capacities by the allocation variable bounds (cf. Constraint 9.33).

127



Chapter 9 The Temporal Offline VNEP

Mixed-Integer Program 9.3: ∆-Model for the TVNEP

Core Model: Constraints and Variables (9.11) to (9.25) (9.26)
∆x

ei
≤+ax

r + dS(x) · (1− χ+
r,ei

) ∀r ∈ R, ei ∈ E , x ∈ GS (9.27)
∆x

ei
≥+ax

r − dS(x) · (1− χ+
r,ei

) · 2 ∀r ∈ R, ei ∈ E , x ∈ GS (9.28)
∆x

ei
≤−ax

r + dS(x) · (1− χ−
r,ei

) · 2 ∀r ∈ R, ei ∈ E , x ∈ GS (9.29)
∆x

ei
≥−ax

r − dS(x) · (1− χ−
r,ei

) ∀r ∈ R, ei ∈ E , x ∈ GS (9.30)∑︂
ej∈E:j≤i

∆x
ej

= ax
si

∀x ∈ GS , si ∈ S (9.31)

∆x
ei
∈R≥0 ∀ei ∈ E , x ∈ GS (9.32)

ax
si
∈ [0, dS(x)] ∀si ∈ S, x ∈ GS (9.33)

Mixed-Integer Program 9.4: Σ-Model for the TVNEP

Core Model: Constraints and Variables (9.11) to (9.25) (9.34)
χΣ

r,ei
=

∑︂
j=1,...,i

χ+
r,ej
−

∑︂
j=1,...,i

χ−
r,ej

∀r ∈ R, ei ∈ E (9.35)

ax
r,si
≥ ax

r − dS(x) · (1− χΣ
r,ei

) ∀r ∈ R, si ∈ S, x ∈ GS (9.36)
ax

si
=
∑︂
r∈R

ax
r,si

∀si ∈ S, x ∈ GS (9.37)

χΣ
r,ei
∈ [0, 1] ∀r ∈ R, ei ∈ E (9.38)

ax
r,si
∈R≥0 ∀r ∈ R, si ∈ S, x ∈ GS (9.39)

ax
si
∈ [0, dS(x)] ∀si ∈ S, x ∈ GS (9.40)

As shown in the computational evaluation, the utilization of these constraint types yields very weak Linear
Programming relaxations. In the following we discuss this weakness using an insightful example.

In the branch-and-bound process used to solve MIP formulations, non-fixed binary variables can attain any
value in the range [0, 1]. Assume now that, besides other requests, two long lasting requests rj , j ∈ {1, 2}
consisting of single nodes (Vrj

= {ij}), are to be embedded on a single node substrate (VS = {u}) and
that both require all resources on this node (drj

(ij) = dS(u)). Clearly, such an embedding is not possible
if r1 and r2 overlap temporally. The relaxation of the event mapping variables however allows for the
following setting: χ+

r1,el
= χ+

r2,el
= 0.5 for l ∈ {1, 2}. Under this assignment, the above Constraints (9.27)

and (9.28) reduce to 0 ≤ ∆u
el
≤ dS(u) for l ∈ {1, 2}. Thus, in the relaxation the variables ∆u

ej
can attain

the value 0 and therefore no state allocations for the requests rj , j ∈ {1, 2}, will ever become visible in
the substrate’s state. Furthermore, considering the mapping of the requests’ ends, we note that when
χ−

rj ,el
= χ−

rj ,el+1
= 0.5 holds for j ∈ {1, 2} and some arbitrary l, then the constraints (9.29) and (9.30)

reduce to −dS(u) ≤ ∆u
el
≤ 0. Thus, all previous resource allocations accounted for at state sl on node u

can effectively be nullified.

The above consideration motivates our next approach, namely, the explicit state representation of the
Σ-model.

9.1.3 Σ-Model: Representing States Explicitly

As discussed above, the linear relaxations of the ∆-model may fail to account for any resource allocations
previously made. To ensure better relaxations, we will now present the Σ-model that explicitly represents
states at the cost of introducing O(|S| · |R|) additional variables to represent local state allocations made
by each request. In Section 9.2 we will then show how the state-space can be effectively reduced.

128



9.2 The Compact State Model cΣ

event1 event2 event3

state1 state2

Event Order

Substrate

Local Mapping
on Substrate

event4

state3
State

R1

R2

R3

Figure 9.2: The example of Figure 9.1 revisited. By using only |R|+1 many event points and allowing
to map multiple requests’ ends on events, the state model can be compactified.

To compute the local allocations, we introduce the variables χ⃗Σ (cf. Constraints 9.35 and 9.38). Intuitively,
χΣ

r,ei
denotes for each event point ei ∈ E to which extent request r ∈ R is embedded at the respective point

in time. This allows us to compute resource allocations per request as defined in Constraint 9.36: if request
r ∈ R is not embedded at event ei, i.e., χΣ

r,ei
= 0, then the local state allocations a⃗ are not constrained and

can be set to 0, while if χΣ
r,ei

= 1 holds, the local state allocations are lower bounded by the actual resource
usage. Finally, the Constraint 9.37 together with the variable bounds (cf. Constraint 9.40) guarantees
feasibility of all state allocations.

Revisiting the single substrate example from the above section, we note that by the above model χΣ
rj ,el

= 1
will hold for i = {1, 2} and k = {3, . . . , 100}, implying that ax

ri,sk
≥ 2 · dS(x) holds. Hence, the respective

variable setting yields an infeasible relaxation. The Σ-model is therefore provably stronger than the ∆-
model, as it excludes linear relaxation that are feasible for the ∆-model. Since the superiority of this model
is based on the ability to derive state allocation directly using χ⃗Σ, we refer to this model as Σ-model.

9.2 The Compact State Model cΣ

Based on the Σ-model discussed in the previous section, we now present an optimized version of it, the
cΣ-model (cf. Mixed-Integer Program 9.5). Concretely, the cΣ-model employs only |R| + 1 event points
compared to the 2 · |R| event points used in the ∆- and Σ-model, which not only reduces the state-space
significantly but also acts as symmetry reduction. Furthermore, we introduce temporal dependency graph
cuts to strengthen the cΣ-model.

9.2.1 Compactification

The major enhancement of the cΣ- over the Σ-model lies in the following observation: to check whether
a state is feasible, it suffices to consider only the states originating from the start of a request. The truth
of this is immediate, as the ending of a request may only reduce state allocations. Figure 9.2 visualizes
this new approach using the same example as of Figure 9.1. In this new event point model each start of
a request must be assigned uniquely to one event point. As the ordering of the ends of requests does not
change the feasibility, we allow for the assignment of multiple requests’ ends to the same event point. The
semantic of our model will be the following: if the end of a request is mapped onto an event point ei, then
it must have ended between event points ei−1 and ei.

129



Chapter 9 The Temporal Offline VNEP

Mixed-Integer Program 9.5: cΣ-Model for the TVNEP

Constraints and Variables (9.1) - (9.10) (9.41)
1=

∑︂
ei∈E:i<|E|

χ+
r,ei

∀r ∈ R (9.42)

1=
∑︂

ei∈E:i>1
χ−

r,ei
∀r ∈ R (9.43)

1=
∑︂
r∈R

χ+
r,ei

∀ei ∈ E : i < |E| (9.44)

t+
r ≤ tei + (1−

∑︂
j=1,...,i

χ+
r,ej

) · T ∀r ∈ R, ei ∈ E (9.45)

t+
r ≥ tei

− (1−
∑︂

j=i,...,|E|

χ+
r,ej

) · T ∀r ∈ R, ei ∈ E (9.46)

t−
r ≤ tei

+ (1−
∑︂

j=1,...,i

χ−
r,ej

) · T ∀r ∈ R, ei ∈ E : i > 1 (9.47)

t−
r ≥ tei−1 − (1−

∑︂
j=i,...,|E|

χ−
r,ej

) · T ∀r ∈ R, ei ∈ E : i > 1 (9.48)

tei
≤ tei+1 ∀ei ∈ E : i < |E| (9.49)

td
r= t−

r − t+
r ∀r ∈ R (9.50)

χΣ
r,ei

=
∑︂

j=1,...,i

χ+
r,ej
−

∑︂
j=1,...,i

χ−
r,ej

∀r ∈ R, ei ∈ E (9.51)

ax
r,si
≥ ax

r − dS(x) · (1− χΣ
r,ei

) ∀r ∈ R, si ∈ S, x ∈ GS (9.52)
ax

si
=
∑︂
r∈R

ax
r,si

∀si ∈ S, x ∈ GS (9.53)

1=
|R|+1−|dist−

max(v)|∑︂
i=|dist+

max(v)|+1

χ(ei, v) ∀v ∈ Vdep
⋆(9.54)

0≤
i−distmax(v,w)∑︂

j=1
χ(ej , v)−

i∑︂
j=1

χ(ej , w) ∀v ∈ Vdep, w ∈ dist+
max(v), ei ∈ E :

distmax(v, w) + 1 ≤ i ≤ |E|
⋆(9.55)

χ+
r,ei
∈ {0, 1} ∀r ∈ R, ei ∈ E (9.56)

χ−
r,ei
∈ {0, 1} ∀r ∈ R, ei ∈ E (9.57)

tei
∈ [0, T ] ∀ei ∈ E (9.58)

t+
r ∈ [0, T ] ∀r ∈ R (9.59)

t−
r ∈ [0, T ] ∀r ∈ R (9.60)

χΣ
r,ei
∈ [0, 1] ∀r ∈ R, ei ∈ E (9.61)

ax
r,si
∈R≥0 ∀r ∈ R, si ∈ S, x ∈ GS (9.62)

ax
si
∈ [0, dS(x)] si ∈ S, x ∈ GS (9.63)

130



9.2 The Compact State Model cΣ

Accordingly, for the cΣ-model, the event set E = {e1, . . . , e|R|+1} together with the state set
S = {s1, . . . , s|R|} is employed and the mapping to event points is changed accordingly (cf. Constraints 9.42
to 9.44). The respective constraints now state that the request starts must be bijectively mapped on all
but the last event point (Constraint 9.42 and 9.44), while the requests’ end must be mapped on any of
the event points except the first one (cf. Constraint 9.43).

Due to the changed event point semantics, slight modifications for the computation of the request end
times are necessitated. While Constraints 9.45 to 9.47 are essentially identical to the ones of the Σ-model,
the Constraint 9.48 now lower bounds the end time of a request by the time of the previous event point.

The Constraints 9.49 to 9.53 are the same as in the Σ-model (cf. MIP 9.4), while the Constraints 9.54
and 9.55 are valid inequalities: while not necessary for the correctness of the model, they strengthen it as
shown in the next section.

9.2.2 Temporal Dependency Graph Cuts

Considering the cΣ-model presented above, one finds that both temporal as well as state allocation vari-
ables are only constrained using the event mapping variables χ⃗+, χ⃗−. To yield good LP relaxations, the
event mapping variables should therefore be as less smeared as possible, i.e., that requests’ starts and
ends should be assigned fractionally only to as few event points as possible. In this section, we therefore
introduce Temporal Dependency Graph Cuts: these cuts are valid constraints that can be a priori derived
from the requests’ temporal specification and strengthen the model.

We introduce the directed temporal dependency graph Gdep(R) = (Vdep, Edep) that will reflect temporal
dependencies. We define the graph as follows. The set of nodes represents the set of abstract start and end
points for each request: Vdep = R× {start, end}. We define the following functions to help in calculating
the earliest possible start and the latest possible end time.

earliest((r, t) ∈ Vdep) =
{︄

ts
R , if t = start

ts
r + td

r , if t = end

latest((r, t) ∈ Vdep) =
{︄

te
r − td

r , if t = start
te
r , if t = end

A directed edge (v, w) ∈ Vdep × Vdep will be contained in Edep iff. v must take place before w:

Edep = {(v, w) ∈ Vdep × Vdep | latest(v) < earliest(w)}.

Having defined the dependency graph, we can now start to derive cuts, i.e., valid inequalities. First
convince yourself that Gdep(R) is acyclic. For (v, w) ∈ Edep, we define the weight of (v, w) to be 1, if v
represents the start of a request and 0 otherwise. As Gdep(R) is acyclic, we can compute maximal distances
by negating the weights and applying the Floyd-Warshall algorithm [Cor+09]. Let distmax : Vdep×Vdep → N
denote the maximal distances between any two nodes. We set distmax(v, w) = 0 if w is not reachable from
v in Gdep(R). We make the following observations:

1. If a node v ∈ Vdep is reachable from n many nodes of the signature (ri, start), then v cannot be
mapped on either one of the first n event points.

2. Similarly, if a node v ∈ Vdep reaches n other nodes of the signature (ri, start), then all these must
occur after v. Furthermore, if v itself is a start event, then its corresponding end event must be
mapped after the start. Therefore, if v = (r, start), then v cannot be mapped on the last n+1 events
and otherwise, if v = (r, end) then v cannot be mapped on the last n events.

131



Chapter 9 The Temporal Offline VNEP

3. Let v, w ∈ Vdep, such that 0 < distmax(v, w) = d holds. Assuming that w is mapped on ei then v
must be mapped on {e1, ..., ei−d}.

Note that the first two above observations can be formulated in the following graph theoretical way: given
a node v ∈ Vdep consider the maximal subgraph (with respect to nodes and edges) of Gdep such that all
nodes within this subgraph reach v or can be reached by v respectively. Counting the number of edges
attributed with 1 then directly gives the number of leading and trailing event points on which the request
of v cannot be embedded. We denote these values by dist+

max(v) and dist−
max(v), respectively. To formalize

the temporal dependency cuts, we additionally introduce the following function to obtain the respective
event mapping variable for a temporal dependency node.

χ(ei ∈ E , (r, t) ∈ Vdep) =
{︄

χ+
r,ei

if t = start
χ−

r,ei
if t = end

Constraint 9.54 effectively restricts the mapping of the start and end of requests to a limited range given
the number of event points that must precede and follow it, respectively. The constraint can also effect
further state-space reductions as follows. Let E+

r = {ei, ..., ej} and E−
r = {ej+k, ..., el} denote the event

ranges for the start and end of r respectively with k > 0. Clearly, χΣ
r,en

= 1 holds for i ≤ n < j + k (cf.
Constraint 9.51). Thus, the state allocations a⃗r,sn

must equal the respective time-invariant allocations a⃗r

as computed by Constraints 9.5 and 9.6 and the respective state variables can be removed.

Constraint 9.55 effectively reduces variable smearings by implementing the intuition of point (3) above.
Concretely, it considers a node w ∈ Vdep that must occur at least distmax(v, w) event points before v ∈ Vdep.
Considering an event point ei, the subtrahend computes the extent to which w was mapped until (and
including) it. As v must precede w by at least distmax(v, w) many event points, v must be mapped
accordingly at least to the same extent on the events {e1, . . . , ei−distmax(v,w)}.

9.2.3 Symmetry Reductions

We will now show that the compactification of the Σ-model into the cΣ-model also represents a symmetry
reduction. Consider the scenario of k requests R = {r1, . . . , rk} of duration td

i = 1 + 1/2i for 1 ≤ i ≤ k
which are to be embedded in the interval [0, 2]. Clearly, a priori, the only possible event order is to first
start all requests and then end them (this is indeed implied by the temporal dependency graph cuts). We
will now show that the number of possible solutions can be reduced by a factor of 2k using the cΣ-model in
comparison to the ∆- and Σ-model. Assume that the requests’ starts are assigned in the order of ascending
durations: χ+

ri,ei
= 1. Based on the chosen durations, request ri+1 can either be scheduled to complete

before ri by setting t−
ri+1

= t−
ri
− 1/2k+1 or after ri by setting t−

ri+1
= t−

ri
+ 1/2k+1. Importantly, setting

these times does not interfere with the assumption that the start of request ri is to be mapped on event
point ei. Therefore, having fixed the requests’ start variables, there might be as much as 2k many possible
combinations to order the requests’ ends. In contrast, the cΣ-model allows only for a single solution, in
which all requests’ ends are mapped on the last event point, hence showing that the cΣ-model indeed
reduces symmetries.

9.3 Objective Functions

We will now present the objective functions used in the evaluation of our approach.

132



9.4 Computational Evaluation

Access Control. The task is to maximize the revenue of the substrate’s provider. We choose the revenue
to be the sum of requested virtual node resources over time:

max
∑︂
r∈R

xr · td
r ·
∑︂
i∈Vr

dr(i)

Maximize Earliness. Given a fixed set of requests to embed, the provider may charge an additional fee
depending on how soon the request is embedded. We assume that this fee is proportional to the duration
of the request, such that if the request is started at the earliest possible time, the fee is td

r and if the
request starts at the latest possible time, the fee is 0.

max
∑︂
r∈R

td
r · (1−

t+
r − ts

r

te
r − ts

r − td
r

)

Balance Node Load over Time. Given a fixed set of requests to embed, the provider may try to
schedule and embed the given requests in such a way, that during the span of time under consideration,
the number of nodes never being used more than some fraction of their capacity is maximized. To this
end, we introduce additional binary variables Fu ∈ {0, 1} for u ∈ VS , deciding whether a substrate node
is never used more than f % of its capacity, for f ≥ 0.

max
∑︂

u∈VS

Fu , subject to

(1− Fu)·(1− f) · dS(u) ≥ au
si
− f · dS(u) ∀u ∈ VS , si ∈ S

Disable Links for Energy Savings. Given a fixed set of requests to embed, another goal one may
pursue with is the conservation of energy. Concretely, one may want to turn off as many links (i.e., switch
or router ports) as possible for as long as possible [See10]. To model this objective function, we introduce
decision variables Du,v ∈ {0, 1} for (u, v) ∈ ES , such that Du,v = 1 iff. (u, v) can be disabled over the
whole time span [0, T ].

max
∑︂

(u,v)∈ES

Du,v , subject to

au,v
si
≤ dS(u, v) · (1−Du,v) ∀(u, v) ∈ ES , si ∈ S

9.4 Computational Evaluation

This section presents our computational evaluation of the algorithms to solve TVNEP, and focuses on
the following questions: (1) How do the ∆, Σ and cΣ formulations perform in comparison? (2) To
which extent can we compute optimal solutions to the TVNEP using the cΣ formulation? (3) What are
the benefits of allowing for temporal flexibility?

As underlying scenario we have chosen a synthetic workload on a data-center topology. The task is to
solve the TVNEP for a day of work, represented by twenty requests spread over the day. We consider
twenty-four of such workloads independently to allow for qualitative conclusions. As our main focus is how
well our algorithms can cope with temporal flexibilities, we increment the temporal flexibility (initially
there are none) in steps of 30 minutes until each request is equipped with a temporal flexibility of 300
minutes (5 hours). For each of the resulting 24 × 11 = 264 scenarios, we compute solutions using the
∆-, Σ-, and the cΣ-model with the access control objective.

After having presented the results under the access control objective, the performance of the cΣ-model
under the three other objectives presented above is discussed.

133



Chapter 9 The Temporal Offline VNEP

9.4.1 Methodology

As substrate for our experiments we have chosen a directed 4 × 5 grid graph, with |VS | = 20 nodes and
|ES | = 62 directed edges. Capacities on the substrate are set to be 3.5 for nodes and to 5 for links. As
request topologies, we use five node stars consisting of a single center and four surrounding nodes, such
that either all links are directed towards the center or away from the center. This topology may represent
a classical master-slave relationship, or a Virtual Cluster. The requests’ required resources are chosen
uniformly at random from the interval [1, 2], such that with high probability only two nodes can be mapped
on the same substrate node. We generate 20 requests from a Poisson arrival process with exponentially
distributed inter-arrival time of 1 hour. The duration of requests is sampled from the (heavy-tailed)
Weibull distribution with shape parameter two and scale parameter four, giving an expected duration
of approximately 3.5 hours. As our focus in this work is to compare different continuous-time models,
we fix node mappings a priori: for each virtual node we select uniformly at random a substrate node on
which this node is to be embedded. Importantly however, the virtual links are not fixed beforehand; our
algorithms therefore do not only need to find a subset of requests to embed, but furthermore need to decide
when these requests are to be scheduled, compute the embeddings of the virtual links and guarantee that
no substrate capacities are exceeded.

All experiments were conducted on Intel Xeon L5420@2,5 Ghz servers with 8 GB of RAM using Gurobi
5.60. Experiments were terminated after one hour of execution. All model and data files as well as the
logs are available at [RS13].

9.4.2 Results
Access Control Objective. We start by comparing the different MIP formulations. Figure 9.3 depicts
the runtime of the ∆-, Σ-, and cΣ-model as a function of the time flexibility. As we terminate experiments
after one hour of execution, Figure 9.4 shows the objective gap (the relative difference between upper and
lower bound in the branch-and-bound process) after one hour. First, note that the ∆-model is unable
to generate solutions already for 90 minutes of flexibility, as only for 1 of the 24 scenarios, a solution is
found. Considering the Σ- and cΣ-model, both always yield feasible solutions. However, the runtime as
well as the gaps of the cΣ-model are on average one magnitude lower than for the Σ-model. We therefore
conclude that our optimizations presented in Section 9.2 significantly reduce the runtime and improve the
quality of solutions: the runtime of the cΣ-model lies one order of magnitude below the runtime of the
Σ-model until 210 minutes of flexibility, where the runtime of the cΣ-model also approaches the time limit,
and the objective gap is approximately one order of magnitude less when using the cΣ-model.

temporal flexibility [min]

ru
n

ti
m

e
 [

s
]

∆

Σ

cΣ

0 30 60 90 120 150 180 210 240 270 300

1
1

0
1

0
0

3
6

0
0

1
1

0
1

0
0

3
6

0
0

Figure 9.3: Runtime of MIP formulations as a function of the time flexibility. As computations were
terminated after one hour, a runtime of 3600 implies, that no optimal solution has been found. Note the
logarithmic y-axis.

134



9.4 Computational Evaluation

temporal flexibility [min]

o
b

je
c
ti
v
e

 g
a

p
 [

%
] ∆

Σ

cΣ

0 30 60 90 120 150 180 210 240 270 300

1
1

0
1

0
0

∞

1
1

0
1

0
0

∞

Figure 9.4: Objective gap of the formulations as a function of the time flexibility. The value ∞ denotes
that not a single solution was found. Note the logarithmic y-axis.

temporal flexibility [min]

ru
n

ti
m

e
 [

s
]

maximize earliness
balance node load
minimize active links

0 30 60 90 120 150 180 210 240 270 300

1
1

0
1

0
0

3
6

0
0

1
1

0
1

0
0

3
6

0
0

Figure 9.5: Runtime of the cΣ-model under the objectives presented in Section 9.3. Note the log. y-axis.

temporal flexibility [min]

o
b

je
c
ti
ve

 g
a

p
 [

%
]

maximize earliness

balance node load

minimize active links

0 30 60 90 120 150 180 210 240 270 300

0
1

1
0

1
0

0

0
1

1
0

1
0

0

Figure 9.6: Gap of the cΣ-model under the objectives presented in Section 9.3.

0 60 120 210 300 

8
1

0
1

4
1

8

temporal flexibility [min]

#
 a

c
c
e

p
te

d
 r

e
q

u
e

s
ts

8
1

2
1

6
2

0

Figure 9.7: Number of requests embed-
ded by the cΣ-model.

Figure 9.8: Relative improvement of the access control
objective compared with the objective at flexibility 0.

135



Chapter 9 The Temporal Offline VNEP

Performance of cΣ-Model under Different Objectives. We will now consider the performance of
the cΣ-model under objectives not containing access control, but for maximizing earliness, the number of
free nodes and the number of disabled links. To this end, we reuse the results from the access control
computation (from the cΣ-model) and remove all requests that could not be embedded while forcing the
other requests to be embedded. Figure 9.7 depicts a boxplot of the number of embedded requests for the
different temporal flexibilities.

Figures 9.5 and 9.6 present the runtime and objective gap respectively. While the objective to maximize
energy savings by disabling links seems to be the hardest of these, note that only at temporal flexibilities
of 270 and 300 minutes, many scenarios did not yield optimal solutions within one hour of execution time.
Furthermore, considering the runtime, optimal solutions for all three objectives can be computed within
close to 3 minutes up to a temporal flexibility of 210 minutes, which equals the expected duration of the
requests. Note that for the objective of balancing the node load the parameter f was set to 2/3.5 = 4/7,
such that a node was considered ‘balanced’ when the resource allocations do not exceed 2 at any point in
time. As for virtual nodes the demands are chosen uniformly at random from the range [1, 2], this means,
that at any point in time at most one virtual node is mapped onto any substrate node.

9.5 Summary and Novelty of Contributions

As today’s networks are becoming more virtualized, enabling a flexible service allocation and resource
sharing, it is important that a predictable performance is ensured by resource isolation. Virtual networks
can provide such guarantees. However, for an optimal resource allocation, virtual network requests should
not only be mapped in a flexible and efficient manner, but temporal flexibilities should be harnessed.

Accordingly, within this chapter several Mixed-Integer Programs to solve the TVNEP to (near-)optimality
were presented. In particular, the cΣ-model was presented that incorporates state-space and symmetry
reductions. Furthermore, valid inequalities called temporal dependency graph cuts were introduced that
additionally strengthen the model. The presented approach is universal in the sense that it can be easily
adapted to cater for different objectives or additional constraints. In fact, in our technical report [RS13]
we also introduce time-dependent virtual networks whose resource allocation rate does depend on the
request’s duration. This sort of abstraction might be especially useful to realize delay-tolerant background
data transfers [Lao+09].

With respect to the novelty of our approach, we note that this work is the first one to study scheduling
aspects for the VNEP. Furthermore, our formulations differ vastly from related work. Specifically, also
in other fields with time-critical applications, mathematical programming solutions have been proposed to
solve these. In particular, the spatio-temporal composition of distributed multimedia objects is considered
in [Shi+98], and more remotely similar tasks arise in chemical production planning [LF01]. Indeed, several
concepts introduced in the chemical production literature also apply to the VNEP [FL04]. However, the
focus in chemical production planning lies on the sequential planning of production processes, where
tasks can only be performed after the completion of predecessor tasks whose output is needed as input;
time and specification flexibilities play only a secondary role. We are not aware of any results on more
complex objective functions with time-dependent variables, whose state (e.g., resource allocations) and
state differences needs to be tracked over time, as it is achieved with our approach.

136



“It is not enough to be in the right place at the right time.
You should also have an open mind at the right time.”

– Pál Erdős 10
Concluding Remarks

The advent of (network) virtualization has allowed to share both computational and network resources.
To provide performance guarantees for abstractions as virtual networks, several new resource allocation
problems arose. Among these, the Virtual Network Embedding Problem plays a central role. However,
given both the flexibility in mapping nodes and routing flows, solving the VNEP (and its siblings) is highly
challenging. This thesis has provided a broad theoretical foundation for the VNEP while also bridging
the gap towards practical applications. In the following we first summarize our major findings and then
briefly discuss future work.

10.1 Summary

We have firstly given a comprehensive set of hardness results for the VNEP, showing that the VNEP
is NP-complete and inapproximable (unless P =NP) under any combination of node and edge mapping
restrictions. Furthermore, we have shown that these hardness results also pertain to computing approxi-
mate embeddings and still hold when restricting request graphs to be planar. The latter result paved the
way for an important insight: to theoretically capture the mapping flexibility introduced by the VNEP
the structure of the request graphs has to be taken into account. This lead us to the parametrized Linear
Programming formulations presented in Chapter 6.

Specifically, in Chapter 6 several LP formulations to solve the fractional offline VNEP were presented.
Starting by analyzing the classical MCF formulation, it was shown to yield optimal solutions for the frac-
tional VNEP only for tree request graphs. In contrast, for cyclic requests, the MCF formulation generally
yields no meaningful results. This, in turn, led to novel Linear Programming formulations to capture the
inherent structure of the request graphs: one formulation based on the novel notion of extraction width and
one based on the well-known notion of treewidth, with the latter being more promising. Specifically, based
on dynamic programming on tree decompositions, the efficient XP-time algorithm DynVMP to solve the
Valid Mapping Problem was proposed. Applying the parametrized DynVMP algorithm as separation
oracle, the first XP-time algorithms for solving the fractional offline VNEP were obtained. Even more,
extending the DynVMP algorithm to perform the separation approximately when considering latencies,
also the first XP-approximations for the fractional offline VNEP in the presence of latency constraints
were obtained.

The ability to solve the fractional offline VNEP has then been proven in Chapter 7 to be sufficient
to obtain the first XP-time approximation algorithms for the profit and cost offline VNEP under any
combination of mapping restrictions. Our approximations provide strict quality guarantees while their
runtime is parametrized by either the extraction width or the treewidth. The approximations are obtained
by employing the well-known technique of randomized rounding of LP solutions. While the theoretic
analysis has shown that the resource violations depend on the maximal allocation to capacity ratio of any
valid mapping and might be high in the worst-case, our computational study has shown that employing
our heuristical rounding approaches provide a valuable basis for XP-time heuristics. Concretely, our

137



Chapter 10 Concluding Remarks

extensive evaluations have shown that heuristical rounding performs well compared to optimal baseline
solutions and can outperform greedy heuristics like ViNE consistently and significantly when the demand
to capacity ratio is sufficiently small.

In addition to studying the algorithmic foundations of the VNEP, this thesis also presented results on
the embedding of virtual clusters and a temporal extension of the VNEP. In particular, for the specific
incarnation of virtual clusters, the polynomial-time solvability of the online embedding problem was shown.
Beyond this important result, we also proposed a hose-based interpretation of virtual cluster embeddings
which bears the potential to significantly reduce bandwidth usage while coming at the cost of being
computationally hard to solve. Hence, focusing on the hose model with splittable edge mappings, a
polynomial-time heuristic for the splittable hose model was presented and its benefits were thoroughly
evaluated.

Lastly, for the scheduling of virtual networks under temporal flexibilities several continuous-time Mixed-
Integer Programming models were proposed. Analyzing the shortcomings of the initial model, which
only represents state changes, a compact state-based model with additional state-space and symmetry
reductions was derived. Our computational evaluation has shown that the latter model is sufficiently strong
to compute near-optimal solutions for various objectives, while clearly outperforming the preliminary
mathematical programming models.

10.2 Future Work

We believe that this thesis opens up many interesting directions for both theoretical and practical future
research.

Considering the computational complexity of the VNEP, we note that our results on approximate em-
beddings only consider the relaxation of a single type of mapping restriction. no hardness results when
relaxing several mapping restrictions at the same time were given. Furthermore, given our parametrized
approximation algorithms, a parametrized complexity analysis of the VNEP would be of interest to study
to which extent our results can be improved.

The XP-time algorithms to solve or approximate the fractional offline VNEP rely either on the notions
of the extraction width or the treewidth. As discussed in Section 6.3.6 the extraction width approach can
be extended and may eventually lead back to the notion of treewidth and seems hence less promising. For
the column generation oriented treewidth approach, we are confident that the theoretical results can – in
general – not be improved significantly. However, refinements of the implementation should be studied to
further speed up computations. For example, it would be interesting to study the impact of the number
of valid mappings added during the separation process per request. Furthermore, the separation process
could be parallelized to scale the separation to significantly more requests.

Our XP-time approximation results are comprehensive as they also pertain to the most general setting
⟨VE |NRL ⟩ and we believe that the resource augmentation analysis is optimal up to constant factors.
Nevertheless, the potentially large resource augmentation factors might impede its practical application.
In fact, based on the intriguing results of Bansal et al. [Ban+15], who use a Sherali-Adams inspired hi-
erarchy, the resource augmentation factors could potentially be improved significantly. While directly
applying this approach will likely prove impractical due to the resulting formulation sizes, iterative round-
ing schemes or iterative refinements of an initially small LP formulation might yield similar results for
practical applications. Such improved approximations could also pave the way towards competitive online
algorithms for the VNEP, which could then rely on much smaller resource augmentation factors for single
requests.

Independently of the potential development of such improved approximations, we believe to have already
provided an interesting starting point for competitive online algorithms. Specifically, our DynVMP

138



10.2 Future Work

algorithm is the first algorithm to optimally solve the VMP. As the VNEP reduces to the VMP when
the resource demands are small compared to the substrate capacities, the framework for competitive
online algorithms of Even et al. [Eve+13] can readily be applied in this case, yielding the first competitive
online algorithms for the VNEP in this case. Secondly, even when demands are not small, the DynVMP
algorithm always provides lower bounds on the cost of optimal VNEP solutions and this might be used
to heuristically reject requests according to some cost measure. In addition to the above, we also believe
that one might derive well-performing heuristics for the online VNEP from the DynVMP algorithm. For
example, one may iteratively compute optimal valid mappings under varying cost measures which penalize
resource augmentations, thereby potentially yielding feasible embeddings.

Lastly, we also note that the ability to approximate valid mappings under latency constraints will hopefully
lead to novel results and applications in the realm of service chaining, where request graphs are naturally of
limited complexity while requiring tight latency bounds in many use cases. Here, one interesting extension
of our model would be the consideration of latency constraints which span over several virtual edges.

139



“In review, I feel that I lacked some of the abilities that are important for an applied statis-
tician who has to handle problems on a daily basis. I lacked the library of rough and ready
techniques to produce usable results. However, I found that dealing with real applied prob-
lems, no matter how unimportant, without this library, required serious consideration of the
issues and was often a source of theoretical insight and innovation.”

– Herman Chernoff A
Derivation of Chernoff Bounds

In the following, probabilistic tail bounds known as Chernoff bounds are derived. Specifically, the following
probabilistic upper and lower bounds are derived for the sum X =

∑︁
i∈[N ] Xi of N ∈ N independent random

variables with Xi ∈ [0, 1] for i ∈ [N ] and µi = E[Xi] denoting the expected value.

Theorem A.1. Let X be the sum of N random variables X1, . . . , Xn with Xi ∈ [0, 1] for i ∈ [N ]. Denoting
by µ̂i ≥ µi = E[Xi] upper bounds on the expected value of random variable Xi, i ∈ [N ], the following
holds for any δ > 0 and µ̂ =

∑︁
i∈[N ] µ̂i:

Pr[X ≥ (1 + δ) · µ̂] ≤
(︃

eδ

(1 + δ)1+δ

)︃µ̂

≤ e−δ2·µ̂/3 . (A.1)

Theorem A.2. Let X be the sum of N random variables X1, . . . , Xn with Xi ∈ [0, 1] for i ∈ [N ]. Denoting
by µ̃i ≤ µi = E[Xi] lower bounds on the expected value of random variable Xi, i ∈ [N ], the following
holds for any δ ∈ (0, 1) and µ̃ =

∑︁
i∈[N ] µ̃i:

Pr[X ≤ (1− δ) · µ̃] ≤
(︃

e−δ

(1− δ)1−δ

)︃µ̃

≤ e−δ2·µ̃/2 . (A.2)

Theorem A.3. Let X =
∑︁

i∈[N ] Xi be the sum of N ∈ N independent random variables with Xi ∈ [0, 1]
and let µi = E[Xi] denote their respective expected value for i ∈ [N ]. Let µ̂i ≥ µi be an upper bound on
the expected value of Xi ∈ [0, 1], i ∈ [N ], and let µ̂ =

∑︁
i∈[N ] µ̂i such that,

µ̂ =
∑︂

i∈[N ]

µ̂i ≥ 1 . (A.3)

Denote by c, n, λ, ρ, ξ constants, such that,

c ≥2 (A.4)
n ≥3 (A.5)
ρ ≥2 (A.6)

ρ · c ≥e (A.7)
ξ ≥ ln ln n/ ln n (A.8)
λ =ρ · c · ξ · ln n/ ln ln n . (A.9)

The following holds:

Pr[X ≥ λ · µ̂] ≤ 1/nc·µ̂·ξ . (A.10)

140



A.1 Prerequisites

While similar results are contained in any textbook on randomized algorithms [MR95; DP09; WS11; AS16;
MU17], most textbooks either do not consider upper and lower bounds of the expectation, leave parts of
the proofs to the reader, or state the results only for binary random variables Xi ∈ {0, 1}, i ∈ [N ].

In Section A.1 some prerequisites for the proofs are given, while the proofs for the above stated Theo-
rems A.1 and A.2 are given in Section A.2 and in Section A.3 Theorem A.3 is proven. Henceforth, our
presentation is mostly based on the textbook of Williamson and Shmoys [WS11], while lecture notes of
Nick Harvey and Chandra Chekuri were of equal importance to fill in details in the respective proofs.

A.1 Prerequisites

In the following elementary lemmas are proven, which often rely on the analysis of convex functions.

Lemma A.4. The following holds for any t ∈ R and x ∈ [0, 1]:

exp(t · x) ≤ 1 + (exp(t)− 1)

Proof. The function f(x) = cx is convex as f ′′(x) = ln2(c) · cx > 0 holds for any c > 0 and any x ∈ R. As
f is convex, the following holds for any z ∈ [x1, x2]

f(z) ≤ f(x2)− f(x1)
x2 − x1

· (z − x1) + f(x1)

Setting c = exp(t), x1 = 0, and x2 = 1, the result is obtained for all z ∈ [0, 1]:

exp(t · z) ≤ (exp(t)− 1) · z + 1 . ■

Lemma A.5. The following holds for any t ∈ R and x ∈ [0, 1]:

1 + (exp(t)− 1) · x ≤ exp((exp(t)− 1) · x)

Proof. The inequality follows from the observation that 1+ z ≤ exp(z) holds for z ∈ R, which follows from
the convexity of f(z) = exp(z). By substituting z with (exp(t)− 1) · x the result is obtained for any t ∈ R
and x ∈ [0, 1]. ■

Lemma A.6. Let Xi ∈ [0, 1] denote a single random variable of expectation µi = E[Xi]. For any t ∈ R,
the following holds for the random variable Yi = exp(t ·Xi):

E[Yi] ≤ exp((exp(t)− 1) · µi) (A.11)

Proof. As the function f(x) = exp(t · x) is convex for any t ∈ R, the following holds:

E[Yi] =E [exp(t ·Xi)]
≤E [1 + (exp(t)− 1) ·Xi] (by Lemma A.4)
=1 + (exp(t)− 1) · E[Xi] (by linearity of expectation)
≤ exp((exp(t)− 1) · E[Xi]) (by Lemma A.5)
= exp((exp(t)− 1) · µi) (by definition of E[Xi] = µi)

■

Lemma A.7. The following inequality holds for any x ∈ [0, 1]:

(1 + x) ln(1 + x)− x ≥ x2/3 . (A.12)

141



Appendix A Derivation of Chernoff Bounds

Proof. To start off, we note that the above inequality is satisfied for x = 0 and that the inequality is
preserved as long as the derivative of the left-hand side is greater than or equal to the derivative of the
right-hand side. Considering the derivatives d

dx ((1 + x) ln(1 + x)− x) = ln(1+x) and d
dx

(︁
x2/3

)︁
= 2/3 ·x,

we note again that for x = 0 the respective derivatives have the same value. However, as the function
f(x) = ln(1 + x) is concave and we have ln(2) > 2/3, the function f(x) must always lie above the line
g(x) = 2/3 · x in the interval [0, 1]. Hence, as the derivative of the left-hand side is always greater than or
equal to the derivative of the right-hand side, the statement follows. ■

Lemma A.8. The following inequality holds for any x ∈ [0, 1):

−x− (1− x) ln(1− x) ≤ −x2/2 . (A.13)

Proof. We apply an analogous argument as in the proof of Lemma A.7. To start off, we note that
the above inequality is satisfied for x = 0 and that the inequality is preserved as long as the deriva-
tive of the left-hand side is less than the derivative of the right-hand side. Considering the derivatives
d

dx (−x− (1− x) ln(1− x)) = ln(1−x) and d
dx

(︁
−x2/2

)︁
= −x, we note again that for x = 0 the respective

derivatives have the same value. Repeating the argument, the derivative of the left-hand side is smaller
than the derivative of the right-hand side if the second derivative of the left-hand side is always smaller
than the second derivative of the right-hand side. Hence, as d2

dx (−x− (1− x) ln(1− x)) = −1/(1 − x),
d2

dx

(︁
−x2/2

)︁
= −1, and −1/(1 − x) ≤ −1 holds for x ∈ (0, 1), the second and first derivatives of the

left-hand side are smaller than the respective derivatives of the right-hand side. Hence, Inequality A.13
holds for any x ∈ [0, 1). ■

Lemma A.9. The following inequality holds for any x > 0:

ln ln x− ln ln ln x ≥ 0.5 · ln ln x . (A.14)

Proof. To prove the above inequality, we consider the function f(z) = 0.5 · z − ln z with f ′(z) = 0.5− 1/z
for z > 0. Setting f ′(z0) = 0, the unique root z0 = 2 is obtained. As f ′(z) ≥ 0 for z ≥ 2 and
f(z0) = 1 − ln(2) > 0 holds, we obtain that f(z) > 0 holds for x ≥ 2. Furthermore, it is easy to check
that f(z) ≥ 0 holds for z ∈ (0, 1), as in this case the natural logarithm is negative. Hence, as the function
f is continuously differentiable on (0,∞), and as the function is positive on the intervals (0, 1) and [2,∞)
while f ′ has a single root at z0 = 2, the function must be always positive on (0,∞). Thus, f(z) ≥ 0 holds
for z > 0.

Substituting z = ln ln x then yields 0.5 · ln ln x− ln ln ln x ≥ 0⇔ ln ln x− ln ln ln x ≥ 0.5 · ln ln x. ■

A.2 Proofs of Chernoff Bounds

We now prove the correctness of the two Chernoff bounds.

Theorem A.1. Let X be the sum of N random variables X1, . . . , Xn with Xi ∈ [0, 1] for i ∈ [N ]. Denoting
by µ̂i ≥ µi = E[Xi] upper bounds on the expected value of random variable Xi, i ∈ [N ], the following
holds for any δ > 0 and µ̂ =

∑︁
i∈[N ] µ̂i:

Pr[X ≥ (1 + δ) · µ̂] ≤
(︃

eδ

(1 + δ)1+δ

)︃µ̂

≤ e−δ2·µ̂/3 . (A.1)

Proof. Let Yi = exp(t · Xi) for some value t ∈ R, i ∈ [N ]. As the variables X1, . . . , XN are pairwise
independent, the variables Yi are also pairwise independent. Considering Y = exp(t · X), the following
holds due to the pairwise independence of the variables Y1, . . . , YN :

E[Y ] = E[exp(t ·X)] = E
[︂
exp(t ·

∑︂
i
Xi)
]︂

= E
[︂∏︂

i
exp(t ·Xi)

]︂
=
∏︂

i
E[Yi] . (A.15)

142



A.2 Proofs of Chernoff Bounds

By Lemma A.6 the Inequality A.11 holds. Assuming that t > 0 holds, the exponential function
f(z) = exp((exp(t)− 1) · z) is monotonically increasing. Using the upper bound µ̂i ≥ µi = E[Xi] on
the expectation of Xi, i ∈ [N ], with µ̂ =

∑︁
i∈[N ] µ̂i, the following is obtained:

E[Yi] ≤ exp((exp(t)− 1) · µ̂i) . (A.16)

Using Equations A.15 and A.16 together with Markov’s inequality, the left inequality of the Chernoff
bound A.1 is obtained for any δ > 0 by setting t = ln(δ + 1) > 0:

Pr[X ≥ (1 + δ) · µ̂]
=Pr[exp(t ·X) ≥ exp(t · (1 + δ) · µ̂)]

≤ E[exp(t ·X)]
exp(t · (1 + δ) · µ̂) (by Markov’s inequality)

=
∏︁

i∈[N ] E[Yi]
exp(t · (1 + δ) · µ̂) (by Equation A.15)

≤
∏︁

i∈[N ] exp((exp(t)− 1) · µ̂i)
exp(t · (1 + δ) · µ̂) (by Equation A.16)

= exp
(︃(︁ ∑︂

i∈[N ]

(exp(t)− 1) · µ̂i

)︁
−
(︁
t · (1 + δ) · µ̂

)︁)︃
(one exponent)

= exp
(︃(︁ ∑︂

i∈[N ]

((1 + δ)− 1) · µ̂i

)︁
−
(︁

ln(1 + δ) · (1 + δ) · µ̂
)︁)︃

(t = ln(δ + 1))

= exp
(︃(︁

δ · µ̂
)︁
−
(︁

ln(1 + δ) · (1 + δ) · µ̂
)︁)︃

(definition of µ̂ =
∑︁

i∈[N ] µ̂i)

=
exp

(︃
δ · µ̂

)︃
exp

(︃
ln(1 + δ) · (1 + δ) · µ̂

)︃
=
(︃

eδ

(1 + δ)1+δ

)︃µ̂

This completes the proof of the first inequality. The second inequality, namely
(︂

eδ

(1+δ)1+δ

)︂µ̃

≤ eδ2·µ̃/3, is a
corollary of Lemma A.7. Specifically, by Lemma A.7 the following holds for δ ∈ [0, 1]

x− (1 + δ) ln(1 + δ) ≤ −δ2/3 . (A.17)

Multiplying both sides with µ̃ and exponentiating both sides yields the desired result. ■

Theorem A.2. Let X be the sum of N random variables X1, . . . , Xn with Xi ∈ [0, 1] for i ∈ [N ]. Denoting
by µ̃i ≤ µi = E[Xi] lower bounds on the expected value of random variable Xi, i ∈ [N ], the following
holds for any δ ∈ (0, 1) and µ̃ =

∑︁
i∈[N ] µ̃i:

Pr[X ≤ (1− δ) · µ̃] ≤
(︃

e−δ

(1− δ)1−δ

)︃µ̃

≤ e−δ2·µ̃/2 . (A.2)

Proof. We first prove the inequality Pr[X ≤ (1−δ) · µ̃] ≤
(︂

e−δ

(1−δ)1−δ

)︂µ̃

for δ ∈ (0, 1). The proof is analogous
to the one of Equation A.1 of Theorem A.1. Specifically, we again let Yi = exp(t ·Xi), i ∈ [N ], for some
t. Specifically, for any δ ∈ (0, 1), we now choose t = ln(1− δ), such that t < 0 holds.

143



Appendix A Derivation of Chernoff Bounds

Note that Inequality A.11 of Lemma A.6 still holds. As exp(t)−1 = −δ < 0 holds for t < 0, the exponential
function f(z) = exp((exp(t)− 1) · z) is monotonically decreasing. Using the lower bound µ̃i ≤ µi = E[Xi]
on the expectation of Xi, i ∈ [N ], and µ̃ =

∑︁
i∈[N ] µ̃i the following is obtained:

E[Yi] ≤ exp((exp(t)− 1) · µ̃i) (A.18)

As Equation A.15 holds independently of the choice of t, the result is obtained analogously to Equation A.1:

Pr[X ≤ (1− δ) · µ̃]
=Pr[exp(t ·X) ≥ exp(t · (1− δ) · µ̃)] (as t < 0)

≤ E[exp(t ·X)]
exp(t · (1− δ) · µ̃) (by Markov’s inequality)

=
∏︁

i∈[N ] E[Yi]
exp(t · (1− δ) · µ̃) (by Equation A.15)

≤
∏︁

i∈[N ] exp((exp(t)− 1) · µ̃i)
exp(t · (1− δ) · µ̃) (by Equation A.18)

= exp
(︃(︁ ∑︂

i∈[N ]

(exp(t)− 1) · µ̃i

)︁
−
(︁
t · (1− δ) · µ̃

)︁)︃
(one exponent)

= exp
(︃(︁ ∑︂

i∈[N ]

((1− δ)− 1) · µ̃i

)︁
−
(︁

ln(1− δ) · (1− δ) · µ̃
)︁)︃

(using t = ln(1− δ))

= exp
(︃(︁
− δ · µ̃

)︁
−
(︁

ln(1− δ) · (1− δ) · µ̃
)︁)︃

(definition of µ̃ =
∑︁

i∈[N ] µ̃i)

=
exp

(︃
− δ · µ̃

)︃
exp

(︃
ln(1− δ) · (1− δ) · µ̃

)︃
=
(︃

e−δ

(1− δ)1−δ

)︃µ̃

This completes the proof of the first inequality. The second inequality, namely
(︂

e−δ

(1−δ)1−δ

)︂µ̃

≤ e−δ2·µ̃/2 is
a corollary of Lemma A.8. Specifically, by Lemma A.8 the following holds for δ ∈ (0, 1)

−δ − (1− δ) ln(1− δ) ≤ −δ2/2 . (A.19)

Multiplying both sides with µ̃ and exponentiating both sides yields the desired result. ■

A.3 A Generalized Balls-and-Bins Bound

In this section an often used corollary of the Chernoff bound of Theorem A.1 is proven. Specifically, the
corollary can be used to show that for any sufficiently large values n, c ∈ N the probability that the sum
X = X1+. . . , XN exceeds the expected value E[X] by a factor of O(ln n/ ln ln n) is upper bounded by 1/nc.
This result is commonly used when (lower and upper) bounding the number of balls randomly placed in
bins as well as for bounding congestion in networks. However, concise proofs are either left to the reader or
only more specific cases are studied by, e.g., considering binary random variables Xi ∈ {0, 1}, i ∈ [N ], not
considering upper bounds, or not proving specific values for the constants used in the construction [RT85;
MR95; DP09; WS11; AS16; MU17]. Furthermore, we slightly generalize the result to allow to obtain
better bounds when E[X] ≈ ln n/ ln ln n holds.

144



A.3 A Generalized Balls-and-Bins Bound

Theorem A.3. Let X =
∑︁

i∈[N ] Xi be the sum of N ∈ N independent random variables with Xi ∈ [0, 1]
and let µi = E[Xi] denote their respective expected value for i ∈ [N ]. Let µ̂i ≥ µi be an upper bound on
the expected value of Xi ∈ [0, 1], i ∈ [N ], and let µ̂ =

∑︁
i∈[N ] µ̂i such that,

µ̂ =
∑︂

i∈[N ]

µ̂i ≥ 1 . (A.3)

Denote by c, n, λ, ρ, ξ constants, such that,

c ≥2 (A.4)
n ≥3 (A.5)
ρ ≥2 (A.6)

ρ · c ≥e (A.7)
ξ ≥ ln ln n/ ln n (A.8)
λ =ρ · c · ξ · ln n/ ln ln n . (A.9)

The following holds:

Pr[X ≥ λ · µ̂] ≤ 1/nc·µ̂·ξ . (A.10)

Proof. First note that ln n/ ln ln n ≥ 1 holds for all n ≥ 3 (by Equation A.5). Accordingly, λ ≥ e holds by
Equations A.7 to A.9. Setting δ = λ− 1 and applying Theorem A.1, the following is obtained:

≤
(︃

eδ

(1 + δ)1+δ

)︃µ̂

(by Theorem A.1)

=
(︃

eλ−1

λλ

)︃µ̂

(substituting λ = δ + 1)

≤
(︂ e

λ

)︂λ·µ̂
(increasing numerator of fraction < 1)

=
(︃

e · ln ln n

ρ · c · ξ · ln n

)︃(ρ·c·ξ·ln n/ ln ln n)·µ̂

(plugging in definition of λ)

=
(︃

ρ · c
e
· ξ−1 · ln n

ln ln n

)︃−(ρ·c·ξ ln n/ ln ln n)·µ̂

((a/b)1 = (b/a)−1)

=
(︃

exp
(︃

ln
(︃

ρ · c
e
· ξ−1 · ln n

ln ln n

)︃)︃)︃−(ρ·c·ξ·ln n/ ln ln n)·µ̂

=
(︂

exp
(︁

ln(ρ · c/e) + ln ξ−1 + ln ln n− ln ln ln n)
)︁)︂−(ρ·c·ξ·ln n/ ln ln n)·µ̂

≤
(︂

exp
(︁

ln(ρ · c/e) + ln ln n− ln ln ln n
)︁)︂−(ρ·c·ξ·ln n/ ln ln n)·µ̂

(as ξ−1 ≥ 1)

=
(︃

exp
(︂
− ρ · c · ln n/ ln ln n ·

(︁
ln(ρ · c/e) + (ln ln n− ln ln ln n)

)︁)︂)︃ξ·µ̂

≤
(︃

exp
(︂
− ρ · c · ln n/ ln ln n ·

(︁
ln(ρ · c/e) + (0.5 · ln ln n)

)︁)︂)︃ξ·µ̂

(by Lemma A.9)

≤
(︃

exp
(︂
− ρ · c · ln n/ ln ln n · (0.5 · ln ln n)

)︂)︃ξ·µ̂

(by Equation A.7)

≤
(︃

exp
(︂
− c · ln n

)︂)︃ξ·µ̂

= 1/nc·ξ·µ̂ (by Equation A.6)

■

145



“Ever since I switched from economics to probability and statistics in
my early student days, this area has continued to absorb my interests.
The very idea that the seeming chaos of chance obeys mathematical
laws is immensely attractive.”

– Wassily Hoeffding B
Randomized Rounding Analysis

using Hoeffding Bounds

In Sections 7.1 and 7.2 the performance of the different VNEP approximations was analyzed. Specifically,
Chernoff bounds were used for bounding the resource allocations. Within this Chapter, we now derive
resource bounds by employing the following Hoeffding bound.

Theorem B.1 (Hoeffding’s inequality [DP09]). Let X =
∑︁N

i=1 Xi, Xi ∈ [ai, bi], be a sum of N independent
random variables. The following holds for any t ≥ 0:

Pr[X − E(X) ≥ t] ≤ exp

⎛⎝−2t2/

⎛⎝∑︂
i∈[n]

(bi − ai)2

⎞⎠⎞⎠
In Section B.1 we first derive a general lemma similar to Lemma 7.5 and then apply this result to the
different approximations. In Section B.2 we compare the obtained results with the ones based on the
Chernoff bounds.

B.1 Bounding Resource Allocations using Hoeffding

In the following, we analyze the probability that a rounded solution exceeds substrate capacities by
a certain factor. We first recapitulate the notation used in Chapter 7. Allocations on resource x ∈
GS by request r ∈ R are modeled as random variable Ar,x ∈ [0, Amax(r, x)]. By definition, we have
Pr[Ar,x = A(mk

r , x)] = fk
r and Pr[Ar,x = 0] = 1−

∑︁
k fk

r . Furthermore, we denote by Ax =
∑︁

r∈R Ar,x the
random variable capturing the overall allocations on resource x ∈ GS . By definition E[Ax] =

∑︁
r∈R

∑︁
k fk

r ·
A(mk

r , x) holds. We employ Hoeffding’s inequality to upper bound Ax as follows.

Lemma B.2. Consider a resource x ∈ GS and let ∆x > 0 be chosen in such a way that ∆x · dS(x)
is an upper bound on the expected allocations on x, i.e., ∆x · dS(x) ≥ E(Ax) holds. Furthermore, let
µ̂r,x = Amax(r, x)/dS(x), Γ(x) =

∑︁
r∈R µ̂2

r,x, and δ(x, λ) =
√︁

c · Γ(x) · ln λ. Then the following holds for
any λ, c ≥ 1:

Pr(Ax ≥ (∆x + δ(x, λ)) · dS(x)) ≤ λ−2·c . (B.1)

Proof. We apply the Hoeffding bound (cf. Theorem B.1) with t = δ(x, λ) · dS(x):

Pr
(︃

Ax − E(Ax) ≥ δ(x, λ) · dS(x)
)︃
≤ exp

⎛⎝−2 · c · Γ(x) · ln λ · d2
S(x)∑︁

r∈R
(Amax(r, x))2

⎞⎠

146



B.1 Bounding Resource Allocations using Hoeffding

= exp

⎛⎝ −2 · c · Γ(x) · ln λ∑︁
r∈R

(Amax(r, x)/dS(x))2

⎞⎠
= exp

(︃
−2 · c · Γ(x) · ln λ

Γ(x)

)︃
= λ−2·c (B.2)

As we assume E(Ax) ≤ ∆x · dS(x) to hold, Equation B.1 follows directly from Equation B.2. ■

Given Lemma B.2, we obtain the following corollary.

Corollary B.3. Let ∆V , ∆E > 0 be chosen minimally s.t. ∆V ·dS(u) ≥ E[Au] and ∆E · dS(u, v) ≥ E[Au,v]
hold for u ∈ VS and (u, v) ∈ ES , respectively. Furthermore, let Γ(X) = maxx∈X Γ(x) = maxx∈X

∑︁
r∈R µ̂2

r,x

for a set of substrate resources X ⊆ GS with µ̂r,x = Amax(x)/dS(x). Considering a substrate graph of n
nodes, i.e., n = |VS |, the following holds for any c ≥ 1:

Pr
[︃

∃u ∈ VS : Au ≥ (∆V +
√︁

c · Γ(VS) · ln n) · dS(u)
∨ ∃(u, v) ∈ ES : Au,v ≥ (∆E +

√︁
c · Γ(ES) · ln n) · dS(u, v)

]︃
≤ n2−2·c . (B.3)

Proof. First, note that Γ(VS) ≥ Γ(u) and Γ(ES) ≥ Γ(u, v) hold for u ∈ VS and (u, v) ∈ ES , respectively.
By applying Lemma B.2 for each of the n node resources and each of the at most n · (n−1) edge resources
while setting λ = n, the result is obtained via a union bound. ■

The performance analysis of the (randomized) approximation algorithms can be easily adapted by using the
above corollary instead of the probabilistic resource bounds stated in Corollaries 7.6 (for the cost VNEP
⟨VE |NR ⟩ approximation) and 7.10 (for the profit VNEP ⟨VE |NR ⟩). Accordingly, the following
approximation results are obtained when using Hoeffding:

Theorem B.4. By using the above derived Hoeffding bounds, Theorems 7.7, 7.8, 7.11, and 7.13 can be
adapted to obtain the resource allocation bounds stated in Tables B.1 and B.2.

Objective/

Setting

Resource Approximation Factors

β − β′ = γ − γ′ max{β, γ}

C
os

t ⟨VE |NR ⟩ 2 2 + δmax · κmax ·
√︁

3/2 · |R| · ln n

⟨VE |NRL ⟩ 2 · (1 + εL) 2 · (1 + εL) + δmax · κmax ·
√︁

3/2 · |R| · ln n

Table B.1: Resource approximation factors of Theorems 7.7 and 7.8 for the cost offline VNEP when
using the Hoeffding inequality; β′ =

√︁
3/2 · Γ(VS) · ln n and γ′ =

√︁
3/2 · Γ(ES) · ln n.

Objective/

Setting

Resource Approximation Factors

β − β′ = γ − γ′ max{β, γ}

P
ro

fit ⟨VE |NR ⟩ 1 1 + δmax · κmax ·
√︁

2 · |R| · ln n

⟨VE |NRL ⟩ 1 + εL 1 · (1 + εL) + δmax · κmax ·
√︁

2 · |R| · ln n

Table B.2: Resource approximation factors of Theorems 7.11 and 7.13 for the profit offline VNEP when
using the Hoeffding inequality; β′ =

√︁
2 · Γ(VS) · ln n and γ′ =

√︁
2 · Γ(ES) · ln n.

Within the tables, again the following notation is used. δmax denotes the maximal demand to capac-
ity ratio, i.e., δmax = maxx∈GS

dmax(x)/dS(x), κmax denotes the maximal request size, i.e., κmax =

147



Appendix B Randomized Rounding Analysis using Hoeffding Bounds

maxr∈R{|Vr|, |Er|}, εL > 0 denotes the approximation factor for the LCSP FPTAS, |R| denotes the
number of requests, and n = |VS | denotes the number of substrate nodes.

Proof. To obtain the results, note the following. The probability to violate capacities in the proofs of
Theorems 7.7 and 7.8 was upper bounded by 1/n for n ≥ 3. Accordingly, setting c = 3/2 in Corollary B.3,
the respective results in Table B.1 are obtained by setting ∆V and ∆E to 2 (for the approximation without
latencies) and ∆V and ∆E to 2 · (1 + εL) (for the approximation with latencies). Similarly, the resource
bounds β and γ for the profit approximation are obtained by setting c = 2 and ∆V and ∆E to 1 (for
the approximation without latencies) and ∆V and ∆E to 1 + εL (for the approximation with latencies) in
Corollary B.3.

To obtain the respective bounds on max{β, γ}, note the following. By definition of Γ(X) =
∑︁

r∈R µ̂2
r,x

and using Amax(x) ≤ δmax · κmax · dS(x), the following bounds for Γ(VS) and Γ(ES) are obtained:

Γ(VS) ≤max
x∈VS

∑︂
r∈R

(Amax(x)/dS(x))2≤|R| · δ2
max · κ2

max (B.4)

Γ(ES) ≤ max
x∈ES

∑︂
r∈R

(Amax(x)/dS(x))2≤|R| · δ2
max · κ2

max (B.5)

Plugging these bounds in, the maximal resource augmentation factors are readily obtained. ■

B.2 Comparison of Chernoff and Hoeffding Bounds

Given the alternative resource bounds derived above, the question arises which of these bounds yield the
lowest resource augmentations. In the following we focus on the comparison of the resource bounds for
the profit approximation without latencies. Given the bounds stated in Tables 7.1 and B.2, the resource
augmentations according to the Chernoff and Hoeffding bounds are bounded by O(κmax ·δmax · ln n/ ln ln n)
and O(κmax · δmax ·

√︁
|R| · ln n), respectively. As ln n/ ln ln n only grows negligibly faster than

√
ln n, the

bounds mainly differ by the Hoeffding bound including the factor
√︁
|R|.

While the above suggests that the Chernoff bounds are much tighter than the Hoeffding bound (disregard-
ing the factor

√
ln n/ ln ln n which lies below 2 for n ≤ 1032), the Chernoff bound contains larger constant

factors. As accurate bounds on the resource augmentations are of importance to obtain the least resource
violations, e.g., when employing derandomization, Figure B.1 depicts the actual quotient of the respective
bounds. For small number of requests, the resource bounds obtained by the Hoeffding inequality may
improve over the Chernoff bounds by a factor of roughly 10, while starting with roughly 200 requests and
for values µ̂ ≥ 0.25, the Chernoff bound improves over the Hoeffding one. The Chernoff bound improves
over the Hoeffding bound by a factor of 103 for 5 ·108 many requests. Considering small resource demands,
i.e., µ̂ ≤ 2 · 10−2 for n = 10−2 and µ̂ ≤ 4 · 10−3 for n = 109, the Chernoff and the Hoeffding bounds yield
nearly identical results up to roughly 10k requests.

Summarizing, the resource bounds based on the Hoeffding inequality are generally more accurate for up
to 200 requests, while afterwards the additional factor O(

√︁
|R|) renders the bounds based on the Chernoff

inequality more accurate.

148



B.2 Comparison of Chernoff and Hoeffding Bounds

100 101 102 103 104 105 106 107 108 109

#requests ||

10−3

10−2

10−1

100

101

102

103

re
so

ur
ce

 d
em

an
d 
μ̂

10−3

10−2

10−1

100

101

Ch
er

no
ff/

Ho
ef

fd
in

g

Resource Bound Comparison: Chernoff vs. Hoeffding (n= 102)

100 101 102 103 104 105 106 107 108 109

#requests ||

10−3

10−2

10−1

100

101

102

103

re
so

ur
ce

 d
em

an
d 
μ̂

10−3

10−2

10−1

100

101

Ch
er

no
ff/

Ho
ef

fd
in

g

Resource Bound Comparison: Chernoff vs. Hoeffding (n= 109)

Figure B.1: Comparison of the Chernoff and Hoeffding resource allocation bounds for the profit approx-
imation without latencies, i.e., ∆V = ∆E = 1, in dependence of the number of requests and the resource
demand µ̂ = δmax · κmax for n = 102 and n = 109. Depicted is the quotient of the resource bounds based
on the Chernoff bound and the ones based on the Hoeffding bound. Depicted are also the contour lines for
the values 101, 100, . . . , 10−3. Note that the three distinct horizontal bands are due to the three branches
of the function Λprof (cf. Corollary 7.10). Given the definition of Λprof , the size of the middle bands slightly
increases when increasing the number of nodes.

149



List of Algorithms

5.1 VNEP Decision Variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1 Enumerative Formulation for the Profit Fractional Offline VNEP . . . . . . . . . . . . . . . 44

6.2 Enumerative Formulation for the Cost Fractional Offline VNEP . . . . . . . . . . . . . . . . 45

6.3 Multi-Commodity Flow Base Formulation for the VNEP . . . . . . . . . . . . . . . . . . . . 46

6.4 Decomposition algorithm of MCF solutions for Tree Requests . . . . . . . . . . . . . . . . . . 48

6.5 Base Formulation for Cactus Request Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.6 Novel Decomposable Base Formulation for the VNEP . . . . . . . . . . . . . . . . . . . . . . 58

6.7 Decomposition algorithm for solutions to the novel LP formulation 6.6 . . . . . . . . . . . . . 60

6.8 DynVMP: Computing Optimal Valid Mappings . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.9 Dual Enumerative Formulation for the Profit Offline VNEP . . . . . . . . . . . . . . . . . . 71

6.10 Dual Enumerative Formulation for the Cost Offline VNEP . . . . . . . . . . . . . . . . . . . 71

6.11 Primal Enumerative LP for Warmstarting the Primal Cost LP . . . . . . . . . . . . . . . . . 72

6.12 Dual Enumerative LP for Warmstarting the Primal Cost LP . . . . . . . . . . . . . . . . . . 72

7.1 Randomized Rounding Approximation for the Offline Cost VNEP ⟨VE |NR ⟩ . . . . . . . . 76

7.2 Randomized Rounding Approximation for the Offline Profit VNEP ⟨VE |NR ⟩ . . . . . . . 80

7.3 Randomized Rounding Approximation for the Offline Profit VNEP ⟨VE |NRL ⟩ . . . . . . 82

7.4 Generic Deterministic Rounding using the Method of Conditional Expectations . . . . . . . . 90

7.5 Heuristical Rounding (without LP Recomputations) . . . . . . . . . . . . . . . . . . . . . . . 98

7.6 Heuristical Rounding with LP Recomputation . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.7 Optimal Rounding of Solutions – Multi-Dimensional Knapsack . . . . . . . . . . . . . . . . . 99

8.1 VC-ACE Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.2 HVC-OSPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.3 Hose Multi-Path Routing (HMPR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.4 HVC-ACE Embedding Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.1 Base for Computing Time-Invariant Splittable Embeddings . . . . . . . . . . . . . . . . . . . 126

9.2 General Temporal Extension Without Enforcing Feasibility . . . . . . . . . . . . . . . . . . . 128

9.3 ∆-Model for the TVNEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.4 Σ-Model for the TVNEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.5 cΣ-Model for the TVNEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

150



List of Figures

1.1 Exemplary embedding of a virtual network on a physical network . . . . . . . . . . . . . . . 1

1.2 Exemplary physical networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Exemplary virtual network requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Visualization of considered mapping restrictions . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1 Visualization of 3-SAT construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Transformation of a CP3B-3-SAT formula graph into a planar request graph . . . . . . . . 41

6.1 Non-decomposability example for the MCF formulation . . . . . . . . . . . . . . . . . . . . 50

6.2 Exemplary labeled GX
r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Visualization of constructions to prove edge label properties . . . . . . . . . . . . . . . . . . 56

6.4 Visualization of variable relation in the extraction width LP formulation . . . . . . . . . . . 59

6.5 Example virtual networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.6 Half wheel graph with several extraction orders . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.7 Tree decompositions of exemplary virtual network requests . . . . . . . . . . . . . . . . . . 67

7.1 Characteristics of cactus request generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2 Overview of baseline solutions (feasibility and acceptance ratio) . . . . . . . . . . . . . . . . 102

7.3 Overview of baseline solutions (objective gap) . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.4 Overview of baseline and MDK runtimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.5 Overview of cactus LP runtimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.6 Overview of baseline solutions (node and edge loads) . . . . . . . . . . . . . . . . . . . . . . 104

7.7 Overview of baseline solutions (maximal node and edge loads) . . . . . . . . . . . . . . . . . 105

7.8 Vanilla rounding performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.9 Overview of resource loads and achieved profits (ECDFs) . . . . . . . . . . . . . . . . . . . 106

7.10 Performance of heuristical rounding (heatmap) . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.11 Performance of the MDK solutions (heatmap) . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.12 Empirical evaluation of formulation strengths . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.13 Study of computing tree decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.14 Runtime comparison of the cactus LP and the column generation LP formulation . . . . . . 110

7.15 Performance of WiNE and RR heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.16 Overview of relative profit achieved by the randomized rounding heuristics . . . . . . . . . . 111

7.17 Comparison of WiNE and randomized rounding solutions . . . . . . . . . . . . . . . . . . . 111

7.18 Runtime of the column generation LP and heuristics with LP recomputations . . . . . . . . 112

7.19 Performance of DynVMP algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

151



LIST OF FIGURES

8.1 Example of undirected virtual cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.2 Extended network construction for VC-ACE . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.3 Hose-model example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.4 Comparison of acceptance ratios HVC-ACE and VC-ACE . . . . . . . . . . . . . . . . . . 123

8.5 Changes in resource footprint under HVC-ACE . . . . . . . . . . . . . . . . . . . . . . . . 123

9.1 Visualization of event point model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9.2 Simplification of event point model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.3 Runtime of MIP formulations (access control objective) . . . . . . . . . . . . . . . . . . . . 135

9.4 Objective gap of MIP formulations (access control objective) . . . . . . . . . . . . . . . . . 136

9.5 Runtime of the cΣ-model (other objectives) . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.6 Objective gap of MIP formulations (other objectives) . . . . . . . . . . . . . . . . . . . . . . 136

9.7 Acceptance ratio cΣ-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.8 Relative improvement in access control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B.1 Comparison of Chernoff and Hoeffding based resource augmentation bounds . . . . . . . . . 151

152



List of Tables

3.1 Graph Classes of Bounded Treewidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1 Overview on obtained computational complexity results for the VNEP. . . . . . . . . . . . 29

7.1 Summary of deterministic approximation results for the offline VNEP. . . . . . . . . . . . . 94

7.2 Definition of functions used in Table 7.1 to bound capacity violations β and γ. . . . . . . . 94

7.3 Overview of symbols used in Table 7.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.4 Summary of deterministic approximation results for the profit offline VNEP under scaling . 96

7.5 Summary of Substrate Networks Used in the Evaluation . . . . . . . . . . . . . . . . . . . . 100

B.1 Resource approximation factors using Hoeffding for the cost VNEP . . . . . . . . . . . . . 149

B.2 Resource approximation factors using Hoeffding for the profit VNEP . . . . . . . . . . . . . 149

153



Bibliography

[AB09] S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge University
Press, 2009.

[Ach09] T. Achterberg. “SCIP: solving constraint integer programs”. In: Mathematical Programming
Computation 1.1 (July 2009), pp. 1–41. issn: 1867-2957. doi: 10.1007/s12532-008-0001-1.

[AKK12] V. Abhishek, I. A. Kash, and P. Key. “Fixed and market pricing for cloud services”. In: 2012
Proceedings IEEE INFOCOM Workshops. Mar. 2012, pp. 157–162. doi: 10.1109/INFCOMW.
2012.6193479.

[Alt+07] A. Altın, E. Amaldi, P. Belotti, and M. Ç. Pınar. “Provisioning virtual private networks under
traffic uncertainty”. In: Networks 49.1 (Jan. 2007), pp. 100–115. doi: 10.1002/net.20145.

[ALV08] M. Al-Fares, A. Loukissas, and A. Vahdat. “A Scalable, Commodity Data Center Network
Architecture”. In: Proceedings of the ACM SIGCOMM 2008 Conference on Data Communi-
cation. SIGCOMM ’08. Seattle, WA, USA: ACM, 2008, pp. 63–74. isbn: 978-1-60558-175-0.
doi: 10.1145/1402958.1402967.

[Ama+16] E. Amaldi, S. Coniglio, A. M. Koster, and M. Tieves. “On the computational complexity of
the virtual network embedding problem”. In: Electronic Notes in Discrete Mathematics 52
(2016), pp. 213–220.

[Amo+13] A. Amokrane, M. F. Zhani, R. Langar, R. Boutaba, and G. Pujolle. “Greenhead: Virtual
Data Center Embedding across Distributed Infrastructures”. In: IEEE Transactions on Cloud
Computing 1.1 (Jan. 2013), pp. 36–49. issn: 2168-7161. doi: 10.1109/TCC.2013.5.

[And+05] T. Anderson, L. Peterson, S. Shenker, and J. Turner. “Overcoming the Internet impasse
through virtualization”. In: Computer 38.4 (Apr. 2005), pp. 34–41. issn: 0018-9162. doi:
10.1109/MC.2005.136.

[And02] D. G. Andersen. “Theoretical Approaches to Node Assignment”. [Online]. Available: http:
//repository.cmu.edu/compsci/86/. Dec. 2002.

[Ans99] K. M. Anstreicher. “Linear programming in O ([n3/ln n] L) operations”. In: SIAM Journal
on Optimization 9.4 (1999), pp. 803–812.

[AS16] N. Alon and J. H. Spencer. The Probabilistic Method. 4th. Wiley Publishing, 2016. isbn:
9781119061953. doi: 10.1002/0471722154.

[Bal+11] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. “Towards Predictable Datacenter Net-
works”. In: Proceedings of the ACM SIGCOMM 2011 Conference. SIGCOMM ’11. Toronto,
Ontario, Canada: ACM, 2011, pp. 242–253. isbn: 978-1-4503-0797-0. doi: 10.1145/2018436.
2018465.

[Ban+11] N. Bansal, K.-W. Lee, V. Nagarajan, and M. Zafer. “Minimum Congestion Mapping in a
Cloud”. In: Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing. PODC ’11. San Jose, California, USA: ACM, 2011, pp. 267–276.
isbn: 978-1-4503-0719-2. doi: 10.1145/1993806.1993854.

[Ban+15] N. Bansal, K. Lee, V. Nagarajan, and M. Zafer. “Minimum Congestion Mapping in a Cloud”.
In: SIAM Journal on Computing 44.3 (2015), pp. 819–843. doi: 10.1137/110845239.

[Bas+17] A. Basta, A. Blenk, K. Hoffmann, H. J. Morper, M. Hoffmann, and W. Kellerer. “Towards
a Cost Optimal Design for a 5G Mobile Core Network Based on SDN and NFV”. In: IEEE
Transactions on Network and Service Management 14.4 (Dec. 2017), pp. 1061–1075. issn:
1932-4537. doi: 10.1109/TNSM.2017.2732505.

[Bay+13] L. R. Bays, R. R. Oliveira, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary. “Security-aware
Optimal Resource Allocation for Virtual Network Embedding”. In: Proceedings of the 8th
International Conference on Network and Service Management. Las Vegas, Nevada: IFIP,
2013.

154

https://doi.org/10.1007/s12532-008-0001-1
https://doi.org/10.1109/INFCOMW.2012.6193479
https://doi.org/10.1109/INFCOMW.2012.6193479
https://doi.org/10.1002/net.20145
https://doi.org/10.1145/1402958.1402967
https://doi.org/10.1109/TCC.2013.5
https://doi.org/10.1109/MC.2005.136
http://repository.cmu.edu/compsci/86/
http://repository.cmu.edu/compsci/86/
https://doi.org/10.1002/0471722154
https://doi.org/10.1145/2018436.2018465
https://doi.org/10.1145/2018436.2018465
https://doi.org/10.1145/1993806.1993854
https://doi.org/10.1137/110845239
https://doi.org/10.1109/TNSM.2017.2732505


Bibliography

[BE05] A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cambridge Uni-
versity Press, 2005. isbn: 9780521619462.

[Beg+17] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, K. Samdanis, and X. Costa-Perez.
“Optimising 5G infrastructure markets: The business of network slicing”. In: IEEE INFOCOM
2017 - IEEE Conference on Computer Communications. May 2017. doi: 10.1109/INFOCOM.
2017.8057045.

[Bha+16] D. Bhamare, R. Jain, M. Samaka, and A. Erbad. “A survey on service function chaining”.
In: Journal of Network and Computer Applications 75 (2016), pp. 138–155. issn: 1084-8045.
doi: https://doi.org/10.1016/j.jnca.2016.09.001.

[Bie+14] M. Bienkowski, A. Feldmann, J. Grassler, G. Schaffrath, and S. Schmid. “The Wide-Area
Virtual Service Migration Problem: A Competitive Analysis Approach”. In: IEEE/ACM
Trans. Netw. 22.1 (Feb. 2014), pp. 165–178. issn: 1063-6692. doi: 10.1109/TNET.2013.
2245676.

[BN09] N. Buchbinder and J. ( Naor. “The Design of Competitive Online Algorithms via a Pri-
mal–Dual Approach”. In: Foundations and Trends R⃝ in Theoretical Computer Science 3.2–3
(2009), pp. 93–263. issn: 1551-305X. doi: 10.1561/0400000024.

[Bod96] H. L. Bodlaender. “A linear-time algorithm for finding tree-decompositions of small treewidth”.
In: SIAM Journal on computing 25.6 (1996), pp. 1305–1317.

[Bod97] H. L. Bodlaender. “Treewidth: Algorithmic techniques and results”. In: Proceedings of Math-
ematical Foundations of Computer Science 1997. Ed. by I. Pŕıvara and P. Ružička. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1997, pp. 19–36. isbn: 978-3-540-69547-9.

[Bod98] H. L. Bodlaender. “A partial k-arboretum of graphs with bounded treewidth”. In: Theoretical
Computer Science 209.1 (1998), pp. 1–45. issn: 0304-3975. doi: https://doi.org/10.1016/
S0304-3975(97)00228-4.

[Bou+15] M. Bouet, J. Leguay, T. Combe, and V. Conan. “Cost-based placement of vDPI functions
in NFV infrastructures”. In: International Journal of Network Management 25.6 (2015),
pp. 490–506. doi: 10.1002/nem.1920.

[CB09] N. M. M. K. Chowdhury and R. Boutaba. “Network virtualization: state of the art and
research challenges”. In: IEEE Communications Magazine 47.7 (July 2009), pp. 20–26. issn:
0163-6804. doi: 10.1109/MCOM.2009.5183468.

[Cha+01] P. Chandra, Y.-h. Chu, A. Fisher, J. Gao, C. Kosak, T. S. E. Ng, P. Steenkiste, E. Taka-
hashi, and H. Zhang. “Darwin: customizable resource management for value-added network
services”. In: IEEE Network 15.1 (Jan. 2001), pp. 22–35. issn: 0890-8044. doi: 10.1109/65.
898819.

[Che+11] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang. “Virtual Network
Embedding Through Topology-aware Node Ranking”. In: SIGCOMM Comput. Commun.
Rev. 41.2 (Apr. 2011), pp. 38–47. issn: 0146-4833. doi: 10.1145/1971162.1971168.

[Chi+12] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen, W. Khan, M. Fargano,
C. Cui, H. Deng, J. Benitez, U. Michel, H. Damker, K. Ogaki, T. Matsuzaki, M. Fukui,
K. Shimano, D. Delisle, Q. Loudier, C. Kolias, I. Guardini, E. Demaria, R. Minerva, A.
Manzalini, D. López, F. J. R. Salguero, F. Ruhl, and P. Sen. “Network functions virtualisation:
An introduction, benefits, enablers, challenges and call for action”. In: SDN and OpenFlow
World Congress. Oct. 2012. url: https://portal.etsi.org/NFV/NFV_White_Paper.pdf
(visited on Sept. 19, 2019).

[Cho+11] N. M. K. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica. “Managing Data
Transfers in Computer Clusters with Orchestra”. In: Proceedings of the ACM SIGCOMM
2011 Conference. SIGCOMM ’11. Toronto, Ontario, Canada: ACM, 2011, pp. 98–109. isbn:
978-1-4503-0797-0. doi: 10.1145/2018436.2018448.

155

https://doi.org/10.1109/INFOCOM.2017.8057045
https://doi.org/10.1109/INFOCOM.2017.8057045
https://doi.org/https://doi.org/10.1016/j.jnca.2016.09.001
https://doi.org/10.1109/TNET.2013.2245676
https://doi.org/10.1109/TNET.2013.2245676
https://doi.org/10.1561/0400000024
https://doi.org/https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1002/nem.1920
https://doi.org/10.1109/MCOM.2009.5183468
https://doi.org/10.1109/65.898819
https://doi.org/10.1109/65.898819
https://doi.org/10.1145/1971162.1971168
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://doi.org/10.1145/2018436.2018448


Bibliography

[Chu+07] J. Chuzhoy, V. Guruswami, S. Khanna, and K. Talwar. “Hardness of Routing with Congestion
in Directed Graphs”. In: Proceedings of the Thirty-ninth Annual ACM Symposium on Theory
of Computing. STOC ’07. San Diego, California, USA: ACM, 2007, pp. 165–178. isbn:
978-1-59593-631-8. doi: 10.1145/1250790.1250816.

[CLN04] Y. Cui, B. Li, and K. Nahrstedt. “On Achieving Optimized Capacity Utilization in Application
Overlay Networks with Multiple Competing Sessions”. In: Proceedings of the Sixteenth Annual
ACM Symposium on Parallelism in Algorithms and Architectures. SPAA ’04. Barcelona,
Spain: ACM, 2004, pp. 160–169. isbn: 1-58113-840-7. doi: 10.1145/1007912.1007937.

[Coh+15] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz. “Near optimal placement of virtual
network functions”. In: 2015 IEEE Conference on Computer Communications (INFOCOM).
Apr. 2015, pp. 1346–1354. doi: 10.1109/INFOCOM.2015.7218511.

[Cor+09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Third
Edition. 3rd. The MIT Press, 2009. isbn: 9780262033848.

[Cor08] G. Cornuéjols. “Valid inequalities for mixed integer linear programs”. In: Mathematical
Programming 112.1 (Mar. 2008), pp. 3–44. issn: 1436-4646. doi: 10.1007/s10107-006-
0086-0.

[CRB09] N. M. M. K. Chowdhury, M. R. Rahman, and R. Boutaba. “Virtual Network Embedding with
Coordinated Node and Link Mapping”. In: IEEE INFOCOM 2009. Apr. 2009, pp. 783–791.
doi: 10.1109/INFCOM.2009.5061987.

[CRB12] N. M. M. K. Chowdhury, M. R. Rahman, and R. Boutaba. “ViNEYard: Virtual Network
Embedding Algorithms with Coordinated Node and Link Mapping”. In: IEEE/ACM Trans.
Netw. 20.1 (Feb. 2012), pp. 206–219. issn: 1063-6692. doi: 10.1109/TNET.2011.2159308.

[Dai+15] X. Dai, Y. Wang, J. M. Wang, and B. Bensaou. “Energy Efficient Virtual Cluster Embedding
in Public Data Centers”. In: 2015 IEEE Global Communications Conference (GLOBECOM).
Dec. 2015, pp. 1–6. doi: 10.1109/GLOCOM.2015.7416982.

[DF13] R. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Springer-Verlag
London, 2013. isbn: 978-1-4471-5558-4. doi: 10.1007/978-1-4471-5559-1.

[DKM18] S. Dräxler, H. Karl, and Z. Á. Mann. “JASPER: Joint Optimization of Scaling, Placement,
and Routing of Virtual Network Services”. In: IEEE Transactions on Network and Service
Management 15.3 (Sept. 2018), pp. 946–960. issn: 1932-4537. doi: 10.1109/TNSM.2018.
2846572.

[DL05] J. Desrosiers and M. E. Lübbecke. “A Primer in Column Generation”. In: Column Generation.
Ed. by G. Desaulniers, J. Desrosiers, and M. M. Solomon. Boston, MA: Springer US, 2005,
pp. 1–32. isbn: 978-0-387-25486-9. doi: 10.1007/0-387-25486-2_1.

[Döh+19] E. Döhne, A. Elvers, T. Koch, and M. Rost. GitHub Organization containing the Projects
for the Evaluation of the Randomized Rounding Algorithms. https://github.com/vnep-
approx/. 2019.

[Döh18] E. Döhne. “Virtual Network Embedding via Decomposable LP Formulations: Orientations of
Small Extraction Width and Beyond”. MA thesis. Technische Universität Berlin, Oct. 2018.
url: https://arxiv.org/abs/1810.11280 (visited on Sept. 19, 2019).

[DP09] D. P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized
Algorithms. Cambridge University Press, 2009. doi: 10.1017/CBO9780511581274.

[DPS02] J. Diaz, J. Petit, and M. Serna. “A Survey of Graph Layout Problems”. In: ACM Comput.
Surv. 34.3 (Sept. 2002), pp. 313–356. issn: 0360-0300. doi: 10.1145/568522.568523.

[DS18] Y. Disser and M. Skutella. “The Simplex Algorithm Is NP-Mighty”. In: ACM Trans. Algo-
rithms 15.1 (Nov. 2018). issn: 1549-6325. doi: 10.1145/3280847.

156

https://doi.org/10.1145/1250790.1250816
https://doi.org/10.1145/1007912.1007937
https://doi.org/10.1109/INFOCOM.2015.7218511
https://doi.org/10.1007/s10107-006-0086-0
https://doi.org/10.1007/s10107-006-0086-0
https://doi.org/10.1109/INFCOM.2009.5061987
https://doi.org/10.1109/TNET.2011.2159308
https://doi.org/10.1109/GLOCOM.2015.7416982
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1109/TNSM.2018.2846572
https://doi.org/10.1109/TNSM.2018.2846572
https://doi.org/10.1007/0-387-25486-2_1
https://github.com/vnep-approx/
https://github.com/vnep-approx/
https://arxiv.org/abs/1810.11280
https://doi.org/10.1017/CBO9780511581274
https://doi.org/10.1145/568522.568523
https://doi.org/10.1145/3280847


Bibliography

[Duf+99] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan, and J. E. van der
Merive. “A Flexible Model for Resource Management in Virtual Private Networks”. In:
Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication. SIGCOMM ’99. Cambridge, Massachusetts, USA: ACM, 1999,
pp. 95–108. isbn: 1-58113-135-6. doi: 10.1145/316188.316209.

[EMP16] G. Even, M. Medina, and B. Patt-Shamir. “On-Line Path Computation and Function Place-
ment in SDNs”. In: Stabilization, Safety, and Security of Distributed Systems. Ed. by B.
Bonakdarpour and F. Petit. Cham: Springer International Publishing, 2016, pp. 131–147.
isbn: 978-3-319-49259-9.

[Epp02] D. Eppstein. “Subgraph Isomorphism in Planar Graphs and Related Problems”. In: Graph
Algorithms and Applications I. 2002, pp. 283–309. doi: 10.1142/9789812777638_0014.

[ERS16a] G. Even, M. Rost, and S. Schmid. “An Approximation Algorithm for Path Computation and
Function Placement in SDNs”. In: Structural Information and Communication Complexity.
Ed. by J. Suomela. Cham: Springer International Publishing, 2016, pp. 374–390. isbn:
978-3-319-48314-6. doi: 10.1007/978-3-319-48314-6_24.

[ERS16b] G. Even, M. Rost, and S. Schmid. “An Approximation Algorithm for Path Computation and
Function Placement in SDNs”. In: CoRR abs/1603.09158 (2016). url: http://arxiv.org/
abs/1603.09158 (visited on Sept. 19, 2019).

[Eve+13] G. Even, M. Medina, G. Schaffrath, and S. Schmid. “Competitive and deterministic em-
beddings of virtual networks”. In: Theoretical Computer Science 496 (2013). Distributed
Computing and Networking (ICDCN 2012), pp. 184–194. issn: 0304-3975. doi: https :
//doi.org/10.1016/j.tcs.2012.10.036.

[Fat18] F. Fattohi. “Competitive Online Virtual Cluster Embedding Algorithms”. MA thesis. Tech-
nische Universität Berlin, Oct. 2018. url: https://arxiv.org/abs/1810.03162 (visited on
Sept. 19, 2019).

[Fel+95] M. R. Fellows, J. Kratochvil, M. Middendorf, and F. Pfeiffer. “The complexity of induced
minors and related problems”. In: Algorithmica 13.3 (Mar. 1995), pp. 266–282. issn: 1432-
0541. doi: 10.1007/BF01190507.

[FF10] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton, NJ, USA: Princeton University
Press, 2010. isbn: 9780691146676.

[FG06] J. Flum and M. Grohe. Parameterized complexity theory. Springer-Verlag Berlin Heidelberg,
2006. isbn: 978-3-540-29952-3. doi: 10.1007/3-540-29953-X.

[FIC19] FICO. Xpress Optimization. 2019. url: https://www.fico.com/en/products/fico-
xpress-optimization (visited on Sept. 19, 2019).

[Fis+13] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach. “Virtual Network Em-
bedding: A Survey”. In: IEEE Communications Surveys Tutorials 15.4 (Apr. 2013), pp. 1888–
1906. issn: 1553-877X. doi: 10.1109/SURV.2013.013013.00155.

[FL04] C. A. Floudas and X. Lin. “Continuous-time versus discrete-time approaches for scheduling of
chemical processes: a review”. In: Computers & Chemical Engineering 28.11 (2004), pp. 2109–
2129. issn: 0098-1354. doi: https://doi.org/10.1016/j.compchemeng.2004.05.002.

[Fou+17] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina. “Network Slicing in 5G: Survey
and Challenges”. In: IEEE Communications Magazine 55.5 (May 2017), pp. 94–100. issn:
0163-6804. doi: 10.1109/MCOM.2017.1600951.

[Gle+18] A. Gleixner, M. Bastubbe, L. Eifler, T. Gally, G. Gamrath, R. L. Gottwald, G. Hendel, C.
Hojny, T. Koch, M. E. Lübbecke, S. J. Maher, M. Miltenberger, B. Müller, M. E. Pfetsch,
C. Puchert, D. Rehfeldt, F. Schlösser, C. Schubert, F. Serrano, Y. Shinano, J. M. Viernickel,
M. Walter, F. Wegscheider, J. T. Witt, and J. Witzig. The SCIP Optimization Suite 6.0. eng.
Tech. rep. 18-26. Takustr. 7, 14195 Berlin: ZIB, 2018.

157

https://doi.org/10.1145/316188.316209
https://doi.org/10.1142/9789812777638_0014
https://doi.org/10.1007/978-3-319-48314-6_24
http://arxiv.org/abs/1603.09158
http://arxiv.org/abs/1603.09158
https://doi.org/https://doi.org/10.1016/j.tcs.2012.10.036
https://doi.org/https://doi.org/10.1016/j.tcs.2012.10.036
https://arxiv.org/abs/1810.03162
https://doi.org/10.1007/BF01190507
https://doi.org/10.1007/3-540-29953-X
https://www.fico.com/en/products/fico-xpress-optimization
https://www.fico.com/en/products/fico-xpress-optimization
https://doi.org/10.1109/SURV.2013.013013.00155
https://doi.org/https://doi.org/10.1016/j.compchemeng.2004.05.002
https://doi.org/10.1109/MCOM.2017.1600951


Bibliography

[GLS81] M. Grötschel, L. Lovász, and A. Schrijver. “The ellipsoid method and its consequences in
combinatorial optimization”. In: Combinatorica 1.2 (1981), pp. 169–197.

[GLS88] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial optimiza-
tion. Springer-Verlag Berlin Heidelberg, 1988. isbn: 978-3-642-97883-8. doi: 10.1007/978-
3-642-97881-4.

[Goo19] Google. OR-Tools. 2019. url: https://developers.google.com/optimization/ (visited
on Sept. 19, 2019).

[GOS08] N. Goyal, N. Olver, and F. B. Shepherd. “The VPN Conjecture is True”. In: Proceedings
of the Fortieth Annual ACM Symposium on Theory of Computing. STOC ’08. Victoria,
British Columbia, Canada: ACM, 2008, pp. 443–450. isbn: 978-1-60558-047-0. doi: 10.
1145/1374376.1374440.

[Gre+09] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel,
and S. Sengupta. “VL2: A Scalable and Flexible Data Center Network”. In: Proceedings of
the ACM SIGCOMM 2009 Conference on Data Communication. SIGCOMM ’09. Barcelona,
Spain: ACM, 2009, pp. 51–62. isbn: 978-1-60558-594-9. doi: 10.1145/1592568.1592576.

[Guo+09] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu. “BCube:
A High Performance, Server-centric Network Architecture for Modular Data Centers”. In:
Proceedings of the ACM SIGCOMM 2009 Conference on Data Communication. SIGCOMM
’09. Barcelona, Spain: ACM, 2009, pp. 63–74. isbn: 978-1-60558-594-9. doi: 10.1145/
1592568.1592577.

[Gup+01] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yener. “Provisioning a Virtual Private
Network: A Network Design Problem for Multicommodity Flow”. In: Proceedings of the
Thirty-third Annual ACM Symposium on Theory of Computing. STOC ’01. Hersonissos,
Greece: ACM, 2001, pp. 389–398. isbn: 1-58113-349-9. doi: 10.1145/380752.380830.

[Gur19] Gurobi Optimization. Gurobi Solver. 2019. url: https://www.gurobi.com (visited on
Sept. 19, 2019).

[HB16] J. G. Herrera and J. F. Botero. “Resource Allocation in NFV: A Comprehensive Survey”.
In: IEEE Transactions on Network and Service Management 13.3 (Sept. 2016), pp. 518–532.
issn: 1932-4537. doi: 10.1109/TNSM.2016.2598420.

[Hen+10] T. A. Henzinger, A. V. Singh, V. Singh, T. Wies, and D. Zufferey. “A Marketplace for
Cloud Resources”. In: Proceedings of the Tenth ACM International Conference on Embedded
Software. EMSOFT ’10. Scottsdale, Arizona, USA: ACM, 2010, pp. 1–8. isbn: 978-1-60558-
904-6. doi: 10.1145/1879021.1879022.

[HLZ08] I. Houidi, W. Louati, and D. Zeghlache. “A Distributed Virtual Network Mapping Algorithm”.
In: 2008 IEEE International Conference on Communications. May 2008, pp. 5634–5640. doi:
10.1109/ICC.2008.1056.

[HP15] J. M. Halpern and C. Pignataro. Service Function Chaining (SFC) Architecture. RFC 7665.
Oct. 2015. doi: 10.17487/RFC7665.

[IBM19] IBM. ILOG CPLEX Optimization Studio. 2019. url: https://www.ibm.com/en- us/
products/ilog-cplex-optimization-studio (visited on Sept. 19, 2019).

[IR11] J. Inführ and G. R. Raidl. “Introducing the Virtual Network Mapping Problem with Delay,
Routing and Location Constraints”. In: Network Optimization. Ed. by J. Pahl, T. Reiners,
and S. Voß. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 105–117. isbn: 978-3-
642-21527-8.

158

https://doi.org/10.1007/978-3-642-97881-4
https://doi.org/10.1007/978-3-642-97881-4
https://developers.google.com/optimization/
https://doi.org/10.1145/1374376.1374440
https://doi.org/10.1145/1374376.1374440
https://doi.org/10.1145/1592568.1592576
https://doi.org/10.1145/1592568.1592577
https://doi.org/10.1145/1592568.1592577
https://doi.org/10.1145/380752.380830
https://www.gurobi.com
https://doi.org/10.1109/TNSM.2016.2598420
https://doi.org/10.1145/1879021.1879022
https://doi.org/10.1109/ICC.2008.1056
https://doi.org/10.17487/RFC7665
https://www.ibm.com/en-us/products/ilog-cplex-optimization-studio
https://www.ibm.com/en-us/products/ilog-cplex-optimization-studio


Bibliography

[Jai+13] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer,
J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. “B4: Experience with a
Globally-deployed Software Defined Wan”. In: Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM. SIGCOMM ’13. Hong Kong, China: ACM, 2013, pp. 3–14. isbn:
978-1-4503-2056-6. doi: 10.1145/2486001.2486019.

[JK15] A. Jarray and A. Karmouch. “Decomposition Approaches for Virtual Network Embedding
with One-shot Node and Link Mapping”. In: IEEE/ACM Trans. Netw. 23.3 (June 2015),
pp. 1012–1025. issn: 1063-6692. doi: 10.1109/TNET.2014.2312928.

[JP13] R. Jain and S. Paul. “Network virtualization and software defined networking for cloud
computing: a survey”. In: IEEE Communications Magazine 51.11 (Nov. 2013), pp. 24–31.
issn: 0163-6804. doi: 10.1109/MCOM.2013.6658648.

[Kar72] R. M. Karp. “Reducibility among Combinatorial Problems”. In: Complexity of Computer
Computations: Proceedings of a symposium on the Complexity of Computer Computations.
Ed. by R. E. Miller, J. W. Thatcher, and J. D. Bohlinger. Boston, MA: Springer US, 1972,
pp. 85–103. isbn: 978-1-4684-2001-2. doi: 10.1007/978-1-4684-2001-2_9.

[KM98] T. Koch and A. Martin. “Solving Steiner tree problems in graphs to optimality”. In: Networks
32.3 (Dec. 1998), pp. 207–232. doi: 10.1002/(SICI)1097-0037(199810)32:3<207::AID-
NET5>3.0.CO;2-O.

[Kni+11] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. “The Internet Topology
Zoo”. In: IEEE Journal on Selected Areas in Communications 29.9 (Oct. 2011), pp. 1765–
1775. issn: 0733-8716. doi: 10.1109/JSAC.2011.111002.

[Kot+15a] V. Kotronis, R. Klöti, M. Rost, P. Georgopoulos, B. Ager, S. Schmid, and X. Dimitropoulos.
“Investigating the Potential of the Inter-IXP Multigraph for the Provisioning of Guaranteed
End-to-End Services”. In: Proceedings of the 2015 ACM SIGMETRICS International Con-
ference on Measurement and Modeling of Computer Systems. SIGMETRICS ’15. Portland,
Oregon, USA: ACM, 2015, pp. 429–430. isbn: 978-1-4503-3486-0. doi: 10.1145/2745844.
2745877.

[Kot+15b] V. Kotronis, R. Klöti, M. Rost, P. Georgopoulos, B. Ager, S. Schmid, and X. Dimitropoulos.
Investigating the Potential of the Inter-IXP Multigraph for the Provisioning of Guaranteed
End-to-End Services. Tech. rep. 360. ETH Zurich, Laboratory TIK, Feb. 2015. url: ftp:
//ftp.tik.ee.ethz.ch/pub/publications/TIK-Report-360.pdf (visited on Sept. 19,
2019).

[Kot+16a] V. Kotronis, R. Klöti, M. Rost, P. Georgopoulos, B. Ager, S. Schmid, and X. Dimitropoulos.
“Stitching Inter-Domain Paths over IXPs”. In: Proceedings of the Symposium on SDN Re-
search. SOSR ’16. Santa Clara, CA, USA: ACM, 2016, 17:1–17:12. isbn: 978-1-4503-4211-7.
doi: 10.1145/2890955.2890960.

[Kot+16b] V. Kotronis, R. Klöti, M. Rost, P. Georgopoulos, B. Ager, S. Schmid, and X. A. Dimitropoulos.
“Investigating the Potential of the Inter-IXP Multigraph for the Provisioning of Guaranteed
End-to-End Services”. In: CoRR abs/1611.03407 (2016). url: http://arxiv.org/abs/
1611.03407 (visited on Sept. 19, 2019).

[Kot+16c] V. Kotronis, R. Klöti, M. Rost, P. Georgopoulos, B. Ager, S. Schmid, and X. A. Dimitropoulos.
“Stitching Inter-Domain Paths over IXPs”. In: CoRR abs/1611.02642 (2016). url: http:
//arxiv.org/abs/1611.02642 (visited on Sept. 19, 2019).

[KS97] S. G. Kolliopoulos and C. Stein. “Improved approximation algorithms for unsplittable flow
problems”. In: Proceedings 38th Annual Symposium on Foundations of Computer Science.
Oct. 1997, pp. 426–436. doi: 10.1109/SFCS.1997.646131.

[Kum+02] A. Kumar, R. Rastogi, A. Silberschatz, and B. Yener. “Algorithms for Provisioning Virtual
Private Networks in the Hose Model”. In: IEEE/ACM Trans. Netw. 10.4 (Aug. 2002), pp. 565–
578. issn: 1063-6692. doi: 10.1109/TNET.2002.802141.

159

https://doi.org/10.1145/2486001.2486019
https://doi.org/10.1109/TNET.2014.2312928
https://doi.org/10.1109/MCOM.2013.6658648
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1002/(SICI)1097-0037(199810)32:3<207::AID-NET5>3.0.CO;2-O
https://doi.org/10.1002/(SICI)1097-0037(199810)32:3<207::AID-NET5>3.0.CO;2-O
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1145/2745844.2745877
https://doi.org/10.1145/2745844.2745877
ftp://ftp.tik.ee.ethz.ch/pub/publications/TIK-Report-360.pdf
ftp://ftp.tik.ee.ethz.ch/pub/publications/TIK-Report-360.pdf
https://doi.org/10.1145/2890955.2890960
http://arxiv.org/abs/1611.03407
http://arxiv.org/abs/1611.03407
http://arxiv.org/abs/1611.02642
http://arxiv.org/abs/1611.02642
https://doi.org/10.1109/SFCS.1997.646131
https://doi.org/10.1109/TNET.2002.802141


Bibliography

[KV18] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms. Springer-Verlag
Berlin Heidelberg, 2018. isbn: 978-3-662-56038-9. doi: 10.1007/978-3-662-56039-6.

[Lao+09] N. Laoutaris, G. Smaragdakis, P. Rodriguez, and R. Sundaram. “Delay Tolerant Bulk Data
Transfers on the Internet”. In: SIGMETRICS Perform. Eval. Rev. 37.1 (June 2009), pp. 229–
238. issn: 0163-5999. doi: 10.1145/2492101.1555376.

[LF01] X. Lin and C. Floudas. “Design, synthesis and scheduling of multipurpose batch plants via an
effective continuous-time formulation”. In: Computers & Chemical Engineering 25.4 (2001),
pp. 665–674. issn: 0098-1354. doi: https://doi.org/10.1016/S0098-1354(01)00663-9.

[Liu+19] M. Liu, A. W. Richa, M. Rost, and S. Schmid. “A Constant Approximation for Maxi-
mum Throughput Multicommodity Routing And Its Application to Delay-Tolerant Network
Scheduling”. In: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications.
Apr. 2019, pp. 46–54. doi: 10.1109/INFOCOM.2019.8737402.

[LK09] J. Lischka and H. Karl. “A Virtual Network Mapping Algorithm Based on Subgraph Isomor-
phism Detection”. In: Proceedings of the 1st ACM Workshop on Virtualized Infrastructure
Systems and Architectures. VISA ’09. Barcelona, Spain: ACM, 2009, pp. 81–88. isbn:
978-1-60558-595-6. doi: 10.1145/1592648.1592662.

[LR01] D. H. Lorenz and D. Raz. “A simple efficient approximation scheme for the restricted shortest
path problem”. In: Operations Research Letters 28.5 (2001). issn: 0167-6377. doi: https:
//doi.org/10.1016/S0167-6377(01)00069-4.

[LRS16] T. Lukovszki, M. Rost, and S. Schmid. “It’s a Match!: Near-Optimal and Incremental Mid-
dlebox Deployment”. In: SIGCOMM Computer Communication Review (CCR) 46.1 (Jan.
2016), pp. 30–36. issn: 0146-4833. doi: 10.1145/2875951.2875956.

[LRS17] T. Lukovszki, M. Rost, and S. Schmid. “Approximate and Incremental Network Function
Placement”. In: CoRR abs/1706.06496 (2017). url: http://arxiv.org/abs/1706.06496
(visited on Sept. 19, 2019).

[LRS18] T. Lukovszki, M. Rost, and S. Schmid. “Approximate and incremental network function
placement”. In: Journal of Parallel and Distributed Computing 120 (2018), pp. 159–169.
issn: 0743-7315. doi: https://doi.org/10.1016/j.jpdc.2018.06.006.

[Lud+14] A. Ludwig, M. Rost, D. Foucard, and S. Schmid. “Good Network Updates for Bad Packets:
Waypoint Enforcement Beyond Destination-Based Routing Policies”. In: Proceedings of the
13th ACM Workshop on Hot Topics in Networks. HotNets-XIII. Los Angeles, CA, USA:
ACM, 2014, 15:1–15:7. isbn: 978-1-4503-3256-9. doi: 10.1145/2670518.2673873.

[Lud+16] A. Ludwig, S. Dudycz, M. Rost, and S. Schmid. “Transiently Secure Network Updates”. In:
Proceedings of the 2016 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Science. SIGMETRICS ’16. Antibes Juan-les-Pins, France: ACM,
2016, pp. 273–284. isbn: 978-1-4503-4266-7. doi: 10.1145/2896377.2901476.

[Lud+18] A. Ludwig, S. Dudycz, M. Rost, and S. Schmid. “Transiently Policy-Compliant Network
Updates”. In: IEEE/ACM Transactions on Networking 26.6 (Dec. 2018), pp. 2569–2582.
issn: 1063-6692. doi: 10.1109/TNET.2018.2871023.

[Men27] K. Menger. “Zur allgemeinen Kurventheorie”. ger. In: Fundamenta Mathematicae 10.1 (1927),
pp. 96–115. url: http://eudml.org/doc/211191 (visited on Sept. 19, 2019).

[MG07] J. Matousek and B. Gärtner. Understanding and Using Linear Programming. Springer-Verlag
Berlin Heidelberg, 2007. isbn: 978-3-540-30697-9. doi: 10.1007/978-3-540-30717-4.

[Mij+16] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. D. Turck, and R. Boutaba. “Network Func-
tion Virtualization: State-of-the-Art and Research Challenges”. In: IEEE Communications
Surveys Tutorials 18.1 (2016), pp. 236–262. issn: 1553-877X. doi: 10.1109/COMST.2015.
2477041.

160

https://doi.org/10.1007/978-3-662-56039-6
https://doi.org/10.1145/2492101.1555376
https://doi.org/https://doi.org/10.1016/S0098-1354(01)00663-9
https://doi.org/10.1109/INFOCOM.2019.8737402
https://doi.org/10.1145/1592648.1592662
https://doi.org/https://doi.org/10.1016/S0167-6377(01)00069-4
https://doi.org/https://doi.org/10.1016/S0167-6377(01)00069-4
https://doi.org/10.1145/2875951.2875956
http://arxiv.org/abs/1706.06496
https://doi.org/https://doi.org/10.1016/j.jpdc.2018.06.006
https://doi.org/10.1145/2670518.2673873
https://doi.org/10.1145/2896377.2901476
https://doi.org/10.1109/TNET.2018.2871023
http://eudml.org/doc/211191
https://doi.org/10.1007/978-3-540-30717-4
https://doi.org/10.1109/COMST.2015.2477041
https://doi.org/10.1109/COMST.2015.2477041


Bibliography

[MKC13] L. Mai, E. Kalyvianaki, and P. Costa. “Exploiting Time-Malleability in Cloud-based Batch
Processing Systems”. In: Workshop on Large-Scale Distributed Systems and Middleware
(LADIS’13). ACM, Nov. 2013. url: https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/mai13exploiting.pdf (visited on Sept. 19, 2019).

[MKK14] S. Mehraghdam, M. Keller, and H. Karl. “Specifying and placing chains of virtual network
functions”. In: 2014 IEEE 3rd International Conference on Cloud Networking (CloudNet).
Oct. 2014, pp. 7–13. doi: 10.1109/CloudNet.2014.6968961.

[MP12] J. C. Mogul and L. Popa. “What We Talk About when We Talk About Cloud Network
Performance”. In: SIGCOMM Comput. Commun. Rev. 42.5 (Sept. 2012), pp. 44–48. issn:
0146-4833. doi: 10.1145/2378956.2378964.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. New York, NY, USA: Cambridge
University Press, 1995. isbn: 9780521474658.

[MT14] H. Moens and F. D. Turck. “VNF-P: A model for efficient placement of virtualized network
functions”. In: 10th International Conference on Network and Service Management (CNSM)
and Workshop. Nov. 2014, pp. 418–423. doi: 10.1109/CNSM.2014.7014205.

[MU17] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomization and Probabilistic
Techniques in Algorithms and Data Analysis. 2nd. New York, NY, USA: Cambridge University
Press, 2017. isbn: 9781107154889. doi: 10.1017/cbo9780511813603.

[Nap+16] J. Napper, W. Haeffner, M. Stiemerling, D. R. Lopez, and J. Uttaro. Service Function Chain-
ing Use Cases in Mobile Networks. Internet-Draft. Apr. 2016. 26 pp. url: https://tools.
ietf.org/html/draft-ietf-sfc-use-case-mobility-06 (visited on Sept. 19, 2019).

[Ném+16] B. Németh, B. Sonkoly, M. Rost, and S. Schmid. “Efficient service graph embedding: A
practical approach”. In: 2016 IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN). Nov. 2016, pp. 19–25. doi: 10.1109/NFV-SDN.
2016.7919470.

[Ném+18] B. Németh, M. Szalay, J. Dóka, M. Rost, S. Schmid, L. Toka, and B. Sonkoly. “Fast and
efficient network service embedding method with adaptive offloading to the edge”. In: IEEE
INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). Apr. 2018, pp. 178–183. doi: 10.1109/INFCOMW.2018.8406882.

[Pap81] C. H. Papadimitriou. “On the Complexity of Integer Programming”. In: J. ACM 28.4 (Oct.
1981), pp. 765–768. issn: 0004-5411. doi: 10.1145/322276.322287.

[PH13] R. Pal and P. Hui. “Economic models for cloud service markets: Pricing and Capacity plan-
ning”. In: Theoretical Computer Science 496 (2013). Distributed Computing and Networking
(ICDCN 2012), pp. 113–124. issn: 0304-3975. doi: https://doi.org/10.1016/j.tcs.
2012.11.001.

[Pop+13] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and J. R. Santos. “Elastic-
Switch: Practical Work-conserving Bandwidth Guarantees for Cloud Computing”. In: Proceed-
ings of the ACM SIGCOMM 2013 Conference on SIGCOMM. SIGCOMM ’13. Hong Kong,
China: ACM, 2013, pp. 351–362. isbn: 978-1-4503-2056-6. doi: 10.1145/2486001.2486027.

[QN15] P. Quinn and T. Nadeau. Problem Statement for Service Function Chaining. RFC 7498. Apr.
2015. doi: 10.17487/RFC7498.

[Rab+13] M. G. Rabbani, R. P. Esteves, M. Podlesny, G. Simon, L. Z. Granville, and R. Boutaba.
“On tackling virtual data center embedding problem”. In: 2013 IFIP/IEEE International
Symposium on Integrated Network Management (IM 2013). May 2013, pp. 177–184.

[Räc08] H. Räcke. “Optimal Hierarchical Decompositions for Congestion Minimization in Networks”.
In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing. STOC ’08.
Victoria, British Columbia, Canada: ACM, 2008, pp. 255–264. isbn: 978-1-60558-047-0. doi:
10.1145/1374376.1374415.

161

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/mai13exploiting.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/mai13exploiting.pdf
https://doi.org/10.1109/CloudNet.2014.6968961
https://doi.org/10.1145/2378956.2378964
https://doi.org/10.1109/CNSM.2014.7014205
https://doi.org/10.1017/cbo9780511813603
https://tools.ietf.org/html/draft-ietf-sfc-use-case-mobility-06
https://tools.ietf.org/html/draft-ietf-sfc-use-case-mobility-06
https://doi.org/10.1109/NFV-SDN.2016.7919470
https://doi.org/10.1109/NFV-SDN.2016.7919470
https://doi.org/10.1109/INFCOMW.2018.8406882
https://doi.org/10.1145/322276.322287
https://doi.org/https://doi.org/10.1016/j.tcs.2012.11.001
https://doi.org/https://doi.org/10.1016/j.tcs.2012.11.001
https://doi.org/10.1145/2486001.2486027
https://doi.org/10.17487/RFC7498
https://doi.org/10.1145/1374376.1374415


Bibliography

[Rag86] P. Raghavan. “Randomized Rounding And Discrete Ham-Sandwich Theorems”. dissertation.
Berkeley, CA, USA: University of California at Berkeley, 1986. url: http://digitalassets.
lib.berkeley.edu/techreports/ucb/text/CSD-87-312.pdf (visited on Sept. 19, 2019).

[Rag88] P. Raghavan. “Probabilistic construction of deterministic algorithms: Approximating packing
integer programs”. In: Journal of Computer and System Sciences 37.2 (1988), pp. 130–143.
issn: 0022-0000. doi: https://doi.org/10.1016/0022-0000(88)90003-7.

[RAL03] R. Ricci, C. Alfeld, and J. Lepreau. “A Solver for the Network Testbed Mapping Problem”.
In: SIGCOMM Comput. Commun. Rev. 33.2 (Apr. 2003), pp. 65–81. issn: 0146-4833. doi:
10.1145/956981.956988.

[RDS19] M. Rost, E. Döhne, and S. Schmid. “Parametrized Complexity of Virtual Network Embed-
dings: Dynamic & Linear Programming Approximations”. In: SIGCOMM Comput. Commun.
Rev. 49.1 (Feb. 2019), pp. 3–10. issn: 0146-4833. doi: 10.1145/3314212.3314214.

[RFS15] M. Rost, C. Fuerst, and S. Schmid. “Beyond the Stars: Revisiting Virtual Cluster Embed-
dings”. In: SIGCOMM Computer Communication Review (CCR) 45.3 (July 2015), pp. 12–18.
issn: 0146-4833. doi: 10.1145/2805789.2805792.

[RS13] M. Rost and S. Schmid. Technical Report and Simulation Results for the Paper “It’s About
Time: On Optimal Virtual Network Embeddings under Temporal Flexibilities”. Oct. 2013.
doi: 10.5281/zenodo.1490172.

[RS16] M. Rost and S. Schmid. “Service Chain and Virtual Network Embeddings: Approximations
using Randomized Rounding”. In: CoRR abs/1604.02180 (2016). url: http://arxiv.org/
abs/1604.02180 (visited on Sept. 19, 2019).

[RS18a] M. Rost and S. Schmid. “Charting the Complexity Landscape of Virtual Network Embed-
dings”. In: 2018 IFIP Networking Conference (IFIP Networking). May 2018, pp. 1–9. doi:
10.23919/IFIPNetworking.2018.8696604.

[RS18b] M. Rost and S. Schmid. “NP-Completeness and Inapproximability of the Virtual Network
Embedding Problem and Its Variants”. In: CoRR abs/1801.03162 (2018). url: http://
arxiv.org/abs/1801.03162 (visited on Sept. 19, 2019).

[RS18c] M. Rost and S. Schmid. “Virtual Network Embedding Approximations: Leveraging Random-
ized Rounding”. In: 2018 IFIP Networking Conference (IFIP Networking). May 2018, pp. 1–
9. doi: 10.23919/IFIPNetworking.2018.8696623.

[RS18d] M. Rost and S. Schmid. “Virtual Network Embedding Approximations: Leveraging Random-
ized Rounding”. In: CoRR abs/1803.03622 (2018). url: http://arxiv.org/abs/1803.03622
(visited on Sept. 19, 2019).

[RS19a] M. Rost and S. Schmid. “On the Hardness and Inapproximability of Virtual Network Em-
beddings”. In: IEEE/ACM Transactions on Networking (under submission) (2019).

[RS19b] M. Rost and S. Schmid. “Virtual Network Embedding Approximations: Leveraging Random-
ized Rounding”. In: IEEE/ACM Transactions on Networking (to appear) (2019).

[RSF14] M. Rost, S. Schmid, and A. Feldmann. “It’s About Time: On Optimal Virtual Network
Embeddings under Temporal Flexibilities”. In: 2014 IEEE 28th International Parallel and
Distributed Processing Symposium. May 2014, pp. 17–26. doi: 10.1109/IPDPS.2014.14.

[RT85] P. Raghavan and C. D. Thompson. “Provably Good Routing in Graphs: Regular Arrays”.
In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing. STOC
’85. Providence, Rhode Island, USA: ACM, 1985, pp. 79–87. isbn: 0-89791-151-2. doi:
10.1145/22145.22154. (Visited on Sept. 19, 2019).

[RT87] P. Raghavan and C. D. Tompson. “Randomized rounding: A technique for provably good
algorithms and algorithmic proofs”. In: Combinatorica 7.4 (Dec. 1987), pp. 365–374. issn:
1439-6912. doi: 10.1007/BF02579324.

162

http://digitalassets.lib.berkeley.edu/techreports/ucb/text/CSD-87-312.pdf
http://digitalassets.lib.berkeley.edu/techreports/ucb/text/CSD-87-312.pdf
https://doi.org/https://doi.org/10.1016/0022-0000(88)90003-7
https://doi.org/10.1145/956981.956988
https://doi.org/10.1145/3314212.3314214
https://doi.org/10.1145/2805789.2805792
https://doi.org/10.5281/zenodo.1490172
http://arxiv.org/abs/1604.02180
http://arxiv.org/abs/1604.02180
https://doi.org/10.23919/IFIPNetworking.2018.8696604
http://arxiv.org/abs/1801.03162
http://arxiv.org/abs/1801.03162
https://doi.org/10.23919/IFIPNetworking.2018.8696623
http://arxiv.org/abs/1803.03622
https://doi.org/10.1109/IPDPS.2014.14
https://doi.org/10.1145/22145.22154
https://doi.org/10.1007/BF02579324


Bibliography

[SA90] H. Sherali and W. Adams. “A Hierarchy of Relaxations between the Continuous and Convex
Hull Representations for Zero-One Programming Problems”. In: SIAM Journal on Discrete
Mathematics 3.3 (1990), pp. 411–430. doi: 10.1137/0403036.

[Sah+15] S. Sahhaf, W. Tavernier, M. Rost, S. Schmid, D. Colle, M. Pickavet, and P. Demeester.
“Network service chaining with optimized network function embedding supporting service
decompositions”. In: Computer Networks 93 (2015). Cloud Networking and Communications
II, pp. 492–505. issn: 1389-1286. doi: https://doi.org/10.1016/j.comnet.2015.09.035.

[See10] S. Seetharaman. “Energy Conservation in Multi-tenant Networks Through Power Virtualiza-
tion”. In: Proceedings of the 2010 International Conference on Power Aware Computing and
Systems. HotPower’10. Vancouver, BC, Canada: USENIX Association, 2010, pp. 1–8.

[She+12] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar. “Making
Middleboxes Someone else’s Problem: Network Processing As a Cloud Service”. In: SIG-
COMM Comput. Commun. Rev. 42.4 (Aug. 2012), pp. 13–24. issn: 0146-4833. doi: 10.
1145/2377677.2377680.

[Shi+98] T. K. Shih, A. Y. Chang, H.-J. Lin, S.-H. Yen, and C.-F. Chiu. “Interval algebra for spatio-
temporal composition of distributed multimedia objects”. In: Proceedings 1998 International
Conference on Parallel and Distributed Systems (Cat. No.98TB100250). Dec. 1998, pp. 308–
315. doi: 10.1109/ICPADS.1998.741088.

[SIB03] W. Szeto, Y. Iraqi, and R. Boutaba. “A multi-commodity flow based approach to virtual
network resource allocation”. In: GLOBECOM ’03. IEEE Global Telecommunications Con-
ference (IEEE Cat. No.03CH37489). Vol. 6. Dec. 2003, 3004–3008 vol.6. doi: 10.1109/
GLOCOM.2003.1258787.

[Sin+12] A. Singla, C. Hong, L. Popa, and P. B. Godfrey. “Jellyfish: Networking Data Centers Ran-
domly”. In: Proceedings of the 9th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2012, San Jose, CA, USA, April 25-27, 2012. 2012, pp. 225–238.
url: https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final82.pdf
(visited on Sept. 19, 2019).

[Skö+14] P. Sköldström, B. Sonkoly, A. Gulyás, F. Németh, M. Kind, F.-J. Westphal, W. John, J.
Garay, E. Jacob, D. Jocha, J. Elek, R. Szabó, W. Tavernier, G. Agapiou, A. Manzalini, M.
Rost, N. Sarrar, and S. Schmid. “Towards Unified Programmability of Cloud and Carrier
Infrastructure”. In: 2014 Third European Workshop on Software Defined Networks. Sept.
2014, pp. 55–60. doi: 10.1109/EWSDN.2014.18.

[Soa+15] J. Soares, C. Gonçalves, B. Parreira, P. Tavares, J. Carapinha, J. P. Barraca, R. L. Aguiar,
and S. Sargento. “Toward a telco cloud environment for service functions”. In: IEEE Com-
munications Magazine 53.2 (Feb. 2015), pp. 98–106. issn: 0163-6804. doi: 10.1109/MCOM.
2015.7045397.

[Sou+14] R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer, and N. Foster. “Merlin:
A Language for Provisioning Network Resources”. In: Proceedings of the 10th ACM Inter-
national on Conference on Emerging Networking Experiments and Technologies. CoNEXT
’14. Sydney, Australia: ACM, 2014, pp. 213–226. isbn: 978-1-4503-3279-8. doi: 10.1145/
2674005.2674989.

[SSF12] G. Schaffrath, S. Schmid, and A. Feldmann. “Optimizing Long-Lived CloudNets with Migra-
tions”. In: 2012 IEEE Fifth International Conference on Utility and Cloud Computing. Nov.
2012, pp. 99–106. doi: 10.1109/UCC.2012.7.

[Tam17] H. Tamaki. “Positive-Instance Driven Dynamic Programming for Treewidth”. In: 25th An-
nual European Symposium on Algorithms (ESA 2017). Ed. by K. Pruhs and C. Sohler.
Vol. 87. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, 68:1–68:13. isbn: 978-3-95977-049-
1. doi: 10.4230/LIPIcs.ESA.2017.68.

163

https://doi.org/10.1137/0403036
https://doi.org/https://doi.org/10.1016/j.comnet.2015.09.035
https://doi.org/10.1145/2377677.2377680
https://doi.org/10.1145/2377677.2377680
https://doi.org/10.1109/ICPADS.1998.741088
https://doi.org/10.1109/GLOCOM.2003.1258787
https://doi.org/10.1109/GLOCOM.2003.1258787
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final82.pdf
https://doi.org/10.1109/EWSDN.2014.18
https://doi.org/10.1109/MCOM.2015.7045397
https://doi.org/10.1109/MCOM.2015.7045397
https://doi.org/10.1145/2674005.2674989
https://doi.org/10.1145/2674005.2674989
https://doi.org/10.1109/UCC.2012.7
https://doi.org/10.4230/LIPIcs.ESA.2017.68


Bibliography

[WS11] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms. 1st. New
York, NY, USA: Cambridge University Press, 2011. isbn: 9780521195270.

[Wu+09] H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang. “MDCube: A High Performance Network
Structure for Modular Data Center Interconnection”. In: Proceedings of the 5th International
Conference on Emerging Networking Experiments and Technologies. CoNEXT ’09. Rome,
Italy: ACM, 2009, pp. 25–36. isbn: 978-1-60558-636-6. doi: 10.1145/1658939.1658943.

[Xie+12] D. Xie, N. Ding, Y. C. Hu, and R. Kompella. “The Only Constant is Change: Incorporating
Time-varying Network Reservations in Data Centers”. In: Proceedings of the ACM SIGCOMM
2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication. SIGCOMM ’12. Helsinki, Finland: ACM, 2012, pp. 199–210. isbn: 978-1-
4503-1419-0. doi: 10.1145/2342356.2342397.

[YLH17] F. Yan, T. T. Lee, and W. Hu. “Congestion-Aware Embedding of Heterogeneous Bandwidth
Virtual Data Centers With Hose Model Abstraction”. In: IEEE/ACM Trans. Netw. 25.2
(Apr. 2017), pp. 806–819. issn: 1063-6692. doi: 10.1109/TNET.2016.2606480.

[Yu+08] M. Yu, Y. Yi, J. Rexford, and M. Chiang. “Rethinking Virtual Network Embedding: Substrate
Support for Path Splitting and Migration”. In: SIGCOMM Comput. Commun. Rev. 38.2 (Mar.
2008), pp. 17–29. issn: 0146-4833. doi: 10.1145/1355734.1355737.

[Zha+14] Q. Zhang, M. F. Zhani, M. Jabri, and R. Boutaba. “Venice: Reliable virtual data center
embedding in clouds”. In: IEEE INFOCOM 2014 - IEEE Conference on Computer Commu-
nications. Apr. 2014, pp. 289–297. doi: 10.1109/INFOCOM.2014.6847950.

164

https://doi.org/10.1145/1658939.1658943
https://doi.org/10.1145/2342356.2342397
https://doi.org/10.1109/TNET.2016.2606480
https://doi.org/10.1145/1355734.1355737
https://doi.org/10.1109/INFOCOM.2014.6847950

	Title Page
	Abstract
	Zusammenfassung
	Acknowledgements
	Publications
	Contents
	Introduction
	Problem Statement
	Contributions of this Thesis
	Overview of this Thesis

	Formal Problem Statement
	General Notation
	Input and Basic Definitions
	Core Problem Definitions
	Variants of the VNEP
	Undirected VNEP
	VNEP with Splittable Edge Mappings
	Additional Mapping Restrictions

	Approximate Embeddings
	VNEP Taxonomy

	Algorithmic Background
	Big O Notation
	Classic Computational Complexity
	Parametrized Complexity and Tree Decompositions
	Linear Programming
	(Mixed-)Integer Programming
	(Randomized) Approximation Algorithms
	Competitive Online Algorithms

	Related Work
	Computational Complexity of the VNEP
	Online Algorithms
	Heuristics
	Approximation Algorithms
	Competitive Online Algorithms.

	Offline Algorithms
	Heuristics
	Approximations
	Exact Methods


	Computational Complexity of the Virtual Network Embedding Problem
	Integer Programming Formulation
	Reduction Framework
	3-SAT: Notation and Problem Statement
	General VNEP Instance Construction
	The Base Lemma

	Hardness of the VNEP
	Hardness of Computing Approximate Embeddings
	Hardness under Graph Restrictions
	Hardness of the VMP and the Fractional Offline VNEP
	Summary and Novelty of Contributions

	XP-Algorithms for the Fractional VNEP and the VMP
	The Classic Multi-Commodity Formulation and Its Limits
	The Multi-Commodity Formulation
	Decomposing Solutions to the MCF Formulation
	Limitations of the MCF Formulation

	LP Formulation for Cactus Request Graphs
	Cactus Request Graph Decomposition and Notation
	LP Formulation for Cactus Request Graphs
	Decomposing Solutions to the Cactus LP Formulation

	LP Formulations Based on Extraction Width
	Idea and Definitions
	Structure of Edge Labels
	Decomposable Extraction Width LP Formulation
	Decomposition Algorithm for the Extraction Width LP Formulation
	Extraction Width: Graph Classes and Complexity
	Graph Classes of Bounded Extraction Width
	Hardness of Computing Extraction Orders.

	Concluding Remarks and Known Extraction Width Extensions

	LP Formulations Based on Tree Decompositions
	Tree Decompositions of Request Graphs
	Dynamic Program DynVMP
	Solving the Fractional Offline VNEP via Column Generation

	Summary and Novelty of Contributions

	XP-Approximations for the Offline VNEP and Evaluation of Derived Heuristics
	Approximations for the Offline Cost VNEP
	Deterministic Guarantee for the Cost
	Bounding Resource Allocations
	Cost Approximation without Latencies
	Cost Approximation with Latencies

	Approximating the Profit Variant
	Bounding the Profit
	Probabilistic Guarantee for Resource Augmentations
	Profit Approximation without Latencies
	Profit Approximation with Latencies
	Trading Off Capacity Violations with the Obtained Profit

	Derandomization: Deterministic Approximations
	Overview on the Method of Conditional Expectation
	Pessimistic Estimators: Idea and Application
	Generic Pessimistic Estimator for Resource Augmentations
	Pessimistic Estimator for the Obtained Profit

	Deterministic Approximation Results

	Summary and Discussion of Approximation Results
	Derived Heuristics for the Offline Profit VNEP
	Computational Evaluation
	General Evaluation Methodology
	Validation and Evaluation based on LP for Cactus Requests
	Cactus Request Graph Topology Generation
	Instance Parameter Space
	Baseline Performance and Validation
	Performance of Randomized Rounding Heuristics
	Optimal Rounding Solution RRMDK
	Comparison of Formulation Strengths

	Evaluation of Column Generation Based Heuristics
	Qualitative and Quantitative Analysis of the Treewidth
	Comparison of LP Runtimes
	Performance of Heuristics


	Summary and Novelty of Contributions

	Optimal Virtual Cluster Embeddings and the Hose Based Model
	Overview of Virtual Clusters and Related Work
	Optimal VC Embeddings
	Hose-Based VC Embeddings
	Problem Definition and Motivation
	Computational Complexity
	Exact Unsplittable Hose Algorithm
	Algorithm for the Splittable Hose-Model

	Evaluation
	Summary and Novelty of Contributions

	The Temporal Offline VNEP
	The Continuous-Time Approach
	The Abstract Event Point Model
	Δ-Model: Representing only State Changes
	Σ-Model: Representing States Explicitly

	The Compact State Model cΣ
	Compactification
	Temporal Dependency Graph Cuts
	Symmetry Reductions

	Objective Functions
	Computational Evaluation
	Methodology
	Results

	Summary and Novelty of Contributions

	Concluding Remarks
	Summary
	Future Work

	Derivation of Chernoff Bounds
	Prerequisites
	Proofs of Chernoff Bounds
	A Generalized Balls-and-Bins Bound

	Randomized Rounding Analysis using Hoeffding Bounds
	Bounding Resource Allocations using Hoeffding
	Comparison of Chernoff and Hoeffding Bounds

	List of Algorithms
	List of Figures
	List of Tables
	Bibliography

