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Abstract
Due to its high temporal resolution and relatively low costs, electroencephalography (EEG)
is a widespread tool in neuroscientific research and clinical diagnosis. However, EEG signals
suffer from low signal-to-noise ratio and are contaminated by artifacts, which are undesired
signals that do not originate from the brain. Therefore, sophisticated data analysis methods
are needed to extract information from EEG data.

This cumulative thesis contributes to the development of multivariate methods for the
analysis of EEG data in several ways. First, it addresses necessary pre-processing steps for
EEG signal analysis. An open-source toolbox that automates the time-consuming process
of manually identifying artifactual signal components by EEG practitioners is developed
and validated on several data sets. Second, the extraction of oscillatory signal components
which explain behavioral variables is addressed. As causal information flow in time series
data is often operationalized by the statistical concept of ’Granger causality’, a method
which directly optimizes this quantity is developed and compared to state-of-the-art meth-
ods on simulated and real EEG data. Third, problems of spurious Granger causality in
the presence of measurement noise are addressed in a theoretical contribution. Drawing
on results from time series analysis, this thesis provides more theoretical guarantees for
time-reversed Granger causality, a recently proposed approach which is more robust with
respect to noise.

Zusammenfassung
Die Elektroenzephalografie (EEG) ist eine Methode zur nicht-invasive Messung der elek-
trischen Aktivität des Gehirns, welche in der medizinischen Diagnostik und der neurowis-
senschaftlichen Forschung angewandt wird. Die Auswertung der EEG Signale wird jedoch
durch deren niedriges Signal-Rausch-Verhältnis und deren Kontaminierung durch Artefakte
erschwert. Daher werden fortgeschrittene datenanalytische Methoden benötigt.

Diese kumulative Doktorarbeit besteht aus Beiträgen, die sich mit der Entwicklung mul-
tivariater Methoden für die Analyse von EEG Signalen beschäftigen. Zuerst geht es um
notwendige Vorverarbeitungsschritte. Es wird eine open-source Toolbox zur automatis-
chen Klassifikation von Artefaktkomponenten des EEGs entworfen, implementiert, und
auf mehreren großen Datensätzen getestet. Danach beschäftigt sich diese Arbeit mit der
Extrahierung von oszillatorischen EEG Komponenten, die Verhaltensvariablen erklären.
In der Zeitreihenanalyse wird ein kausaler Informationsfluss häufig durch das statistis-
che Konzept der ’Granger-Kausalität’ operationalisiert. In dieser Arbeit wird daher eine
Methode entwickelt, welche direkt die Granger-Kausaliät optimiert. Die vorgeschlagene
Methode wird in umfangreichen Simulationen und auf mehreren EEG Datensätzen mit
state-of-the-art Methoden verglichen. In einem letzten theoretischeren Beitrag geht es
um das Problem, welches Rauschen für Granger-Kausalität darstellt. Für das vor kurzem
vorgeschlagene, robustere Verfahren ’zeit-invertierte Granger-Kausalität’ werden theoretis-
che Garantien bewiesen.
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1 Introduction

1.1 Scope of this thesis

According to the state of current neuroscientific research, human information pro-
cessing is based on the communication between individual brain cells (Bear et al.,
2015). This communication is mediated by electrical and chemical signals, the ob-
servation of which is very difficult. Electroencephalography (EEG) is a method that
makes it possible to non-invasively measure broad activity patterns of the cerebral
cortex by recording voltage fluctuations from electrodes on the scalp surface. In hu-
mans, EEG signals were first recorded by Hans Berger in the 1920s (Berger, 1929).
Since then, EEG has become a standard tool for cognitive neuroscientific research
and for the diagnosis of certain neurological conditions, most importantly epilepsy.

The widespread use of EEG in neuroscientific research is due to the following key
advantages: it is non-invasive, can be obtained with high temporal resolution and the
hardware costs are low compared to most other neuroimaging techniques. However,
EEG signals suffer from a low signal-to-noise ratio and are spatially smeared, because
the activity measured at a given electrode is a mixture of contributions from several
neuronal sources (Baillet et al., 2001; Parra et al., 2005; Nunez and Srinivasan,
2006). EEG signals are also contaminated by artifacts, which are undesired signals
that do not originate from the brain. Such artifacts are caused by eye movements or
muscle activity, or by external technical sources (Iwasaki et al., 2005; Goncharova
et al., 2003; Urigüen and Garcia-Zapirain, 2015).

Therefore, advanced multivariate methods are needed for the data analysis of
EEG signals. This cumulative thesis contains methodological contributions, which
address several issues: the removal of artifacts from EEG signals, the extraction of
neuronal components of interest, and problems that measurement noise poses for
causal inference.

Several publications included in this thesis are concerned with the removal of
artifacts from EEG signals. One of the most common approaches for artifact removal
is the transformation of EEG signals into a space of independent source components
(ICs) using Independent Component Analysis (ICA) (Makeig et al., 1996; Vigário,
1997; Jung et al., 2000; Vigário et al., 2000; Ziehe et al., 2000; Hyvärinen and
Oja, 2000; Vigário and Oja, 2008; Urigüen and Garcia-Zapirain, 2015). Ideally ICA
separates artifactual and neuronal activity into distinct ICs, so that artifactual ICs
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1 Introduction

can be identified and a cleaner EEG can be constructed without them. However, the
identification of artifactual components is a non-trivial task which requires expert
knowledge, is often done manually and is therefore time-consuming. In this thesis,
we develop an open-source toolbox which automatizes this process, and we evaluate
the effectiveness of ICA-based artifact removal in several scenarios.

While ICA is a state-of-the art method for the extraction of neuronal phenomena
of interest, a number of alternative methods turned out to be very useful in specific
contexts (e.g. (Blankertz et al., 2008b; Gómez-Herrero et al., 2008; Haufe et al.,
2010; Hyvärinen et al., 2010a; Nikulin et al., 2011; Dmochowski et al., 2012; Dähne
et al., 2014a; Dähne et al., 2014b; Blythe et al., 2014; Fazli et al., 2015)). Many
of theses methods focus on the extraction of neuronal oscillations, which have been
linked to a wide range of brain functions and whose extraction relies on interesting
algorithmic solutions. As the causal effects of oscillatory activity on behavior are a
field of intense research (Buzsáki and Draguhn, 2004; Thut and Miniussi, 2009), this
thesis explores alternatives of ICA for the extraction of oscillatory activity which
displays weak evidence of causal links to behavior. We make use of the statistical
concept of ’Granger causality’ (Granger, 1969), which is based on the idea that the
cause should precede its effect and is a standard approach for causal inference in
time series analysis.

A problem for the estimation of directed interaction with Granger causality is that
spurious causality can occur due to measurement noise (Nalatore et al., 2007; Nolte
et al., 2008), which is especially problematic for the study of interconnected brain
areas using EEG (Gómez-Herrero et al., 2008; Schoffelen and Gross, 2009; Haufe
et al., 2013). In recent years, several compelling ideas for more robust causality
measures have therefore been developed (Nolte et al., 2008; Vicente et al., 2011;
Vinck et al., 2015). However, theoretical guarantees for these techniques are scarce.
In this thesis, we provide a proof of the correctness of one recently proposed tech-
nique (Haufe et al., 2012; Haufe et al., 2013) for a relatively general class of time
series models.

1.2 Outline and published work

Following this introduction, we discuss relevant background information in Chap-
ter 2. The main contributions of this cumulative thesis are then presented in three
chapters as follows.

Automatic artifact reduction for EEG signals: Chapter 3
[1] Irene Winkler, Stefan Haufe and Michael Tangermann. Automatic Classifi-

cation of Artifactual ICA-Components for Artifact Removal in EEG Signals.
Behavioral and Brain Functions, 7:30, 2011
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1.2 Outline and published work

Summary: In this paper, we develop an automatic method for the classifica-
tion of artifactual independent components. This includes a thorough feature
selection procedure. We later call this method MARA (Multiple Artifact Re-
jection Algorithm). The classifier’s performance and generalization ability is
demonstrated on data of different EEG studies.

Parts of this work were presented at two TOBI (Tools for Brain-Computer
Interaction) workshops in Rome, Italy in 2009 and 2010.

[2] Irene Winkler, Stephanie Brandl, Franziska Horn, Eric Waldburger, Carsten
Allefeld and Michael Tangermann. Robust artifactual independent component
classification for BCI practitioners. Journal of Neural Engineering, 11(3),
035013, 2014.

Summary: This paper presents a number of changes to MARA that make it
more useful for practitioners. First, we make sure that the method general-
izes to different electrode setups. Second, we validate the method on more
data sets, notably a data set of 4473 components from a cooperation with
Carsten Allefeld from the neuroimaging lab of Prof. Haynes. Third, we inves-
tigate the effect of artifact removal on the performance of a Brain-Computer-
Interface (BCI) system on data from 101 users and 3 paradigms. Last but
not least, we make MARA available as an open-source plug-in for EEGLAB
(Delorme and Makeig, 2004), which is an interactive Matlab toolbox used by
many EEG practitioners.

Parts of this work were presented at the 5th International Brain-Computer
Interface Meeting 2013 in Asilomar, USA and the 30th International Congress
on Clinical Neurophysiology (ICCN) 2014 in Berlin, Germany.

[3] Irene Winkler, Stefan Debener, Klaus-Robert Müller and Michael Tanger-
mann. On the influence of high-pass filtering on ICA-based artifact reduction
in EEG-ERP. Engineering in Medicine and Biology Society (EMBC), Annual
International Conference of the IEEE, 2015. In press.

Summary: Successful ICA-based artifact removal crucially depends on the
quality of the obtained ICA decomposition. In turn, the ICA decomposition
crucially depends on pre-processing steps, notably high-pass filtering. In this
paper we use MARA to systematically evaluate the effects of high-pass filtering
at different frequencies, which allows us to give practical recommendations.
We also show that artifact reduction based on ICA and MARA outperforms
a regression-based artifact removal method on the analyzed data set of 21
participants.

This work was presented at the 37th conference of the IEEE Engineering in
Medicine and Biology Society (EMBC) 2015 in Milan, Italy.
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[4] Irene Winkler, Stefan Haufe, Klaus-Robert Müller. Removal of muscular arti-
facts for the analysis of brain oscillations: Comparison between ICA and SSD.
ICML Workshop on Statistics, Machine Learning and Neuroscience, 2015.

Summary: This paper presents preliminary work, in which we explore an al-
ternative for ICA when we are interested in clean oscillatory EEG activity. We
compare ICA with the recently proposed spatio-spectral decomposition (SSD)
method (Nikulin et al., 2011). Results indicate that SSD recovers cleaner
signals than ICA on a data set of 18 subjects performing self-paced foot move-
ments.

This work was presented at the Workshop on Statistics, Machine Learning
and Neuroscience (STAMLINS) of the International Conference of Machine
Learning (ICML) in 2015 in Lille, France.

Extracting brain oscillations which Granger cause experimental variables:
Chapter 4

[5] Irene Winkler, Stefan Haufe, Anne Porbadnigk, Klaus-Robert Müller, and
Sven Dähne. Identifying Granger causal relationships between neural power
dynamics and variables of interest. NeuroImage, 111: 489-504, 2015.

Summary: In this paper, we are interested in Granger causal links between
oscillatory brain activity and behavior. Using both real and simulated EEG
data, we compare Granger causal analysis on power dynamics obtained from
a) sensor directly, b) state-of the art multivariate methods (e.g. ICA) and
c) a novel method that directly optimizes for Granger causality, which we
call GrangerCPA (Granger Causal Power Analysis). We find that computing
Granger causality on channel-wise spectral power suffers from a poor signal-
to-noise ratio, while all analyzed multivariate approaches alleviate this issue.
GrangerCPA may or may not yield improvements over ICA, depending on the
analyzed data set.

Parts of this work were presented at the BBCI Workshop 2012 in Berlin,
Germany and at the Organization of Human Brain Mapping’s (OHBM) annual
meeting 2014 in Hamburg, Germany.

Time reversal for Granger causality: Chapter 5

[6] Irene Winkler, Danny Panknin, Daniel Bartz, Klaus-Robert Müller and Stefan
Haufe. Validity of time reversal for testing Granger causality. Submitted -
available as arXiv preprint arXiv:1509.07636.

Summary: To address problems of Granger causality in the presence of mea-
surement noise, (Haufe et al., 2013) suggested to compare causality metrics
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1.2 Outline and published work

obtained from the original time series agains those from time-reversed sig-
nals. The intuitive idea is that, if temporal order is crucial to identify cause
and effect, causality results should change if the temporal order is reversed.
This manuscript develops theory (based on time series analysis/autoregressive
modeling) which shows that this is indeed the case. Furthermore, simulations
confirm that time-reversed Granger causality testing is able to infer correct
directionality with high statistical power while being relatively robust with
respect to measurement noise.

Chapter 6 concludes with a summary and a discussion of directions of future work.

Additional publications not included in this thesis

The following list contains all additional publications that I have (co-)authored, but
which are not included in this thesis. Items are ordered chronologically. They are
all peer-reviewed conference articles.

[7] Michael Tangermann, Irene Winkler, Stefan Haufe, Benjamin Blankertz. Clas-
sification of artifactual ICA components. International Journal of Bioelectro-
magnetism, 11(2):110-114, 2009.

[8] Irene Winkler, Mark Jäger, Vojkan Mihajlović and Tsvetomira Tsoneva. Frontal
EEG asymmetry based classification of emotional valence using common spa-
tial patterns. World Academy of Science, Engineering and Technology, 45:373-
378, 2010.

[9] Irene Winkler and Michael Tangermann. Artifact-Insensitivity of CSP in Mo-
tor Imagery BCI. International Journal of Bioelectromagnetism, 13(2):72-73,
2011.

[10] Sofie Therese Hansen, Irene Winkler, Lars Kai Hansen, Klaus-Robert Müller
and Sven Dähne. Fusing Simultaneous EEG and fMRI Using Functional and
Anatomical Information. Workshop on Pattern Recognition in NeuroImaging
(PRNI), IEEE, pages 33-36, 2015.

[11] Irene Winkler, Mamta Mehra, Sarah Favrichon, Vaibhav Sharma and Nihar
Jangle. Assessing the applicability of NDVI data for the design of index-based
agricultural insurance in Bihar, India. Annual International Geoscience and
Remote Sensing Symposium (IGARSS), IEEE, 2015. In press.

[12] Laura Frølich, Irene Winkler, Klaus-Robert Müller and Wojciech Samek. In-
vestigating effects of different artefact types on Motor Imagery BCI. Engineer-
ing in Medicine and Biology Society (EMBC), Annual International Confer-
ence of the IEEE, 2015. In press.
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2 Fundamentals

In this chapter, we provide an overview of the important characteristics of EEG sig-
nals (Section 2.1), and cover machine learning methods for Blind Source Separation
(Section 2.2) and causal inference (Section 2.3). As we introduce these methods, we
also link the contributions in this thesis to the field.

A good introduction to machine learning methods for brain imaging can be found
in the tutorial paper by (Lemm et al., 2011). For a comprehensive introduction
into the field of machine learning we refer the reader to (Bishop, 2006; Hastie et al.,
2009). Introductions to parametric and non-parametric statistics can be found in
(Field, 2009; Casella and Berger, 2002; Manly, 2007).

2.1 Electroencephalography (EEG)

Electroencephalography (EEG) records electrical activity from electrodes placed on
the scalp. EEG signals are typically measured at several, approximately equidistant
electrodes which cover the whole scalp. They are placed at specific locations accord-
ing to the international 10-20 system (Klem et al., 1999) as visualized in Figure 2.1.
The electrodes are also referred to as channels or sensors.

A conductive gel is used between the electrode and the scalp in order to reduce
impedance, and the recorded signals go through amplifiers. Resulting EEG signals
are about 10 to 100 µV in amplitude. EEG signals are always the difference between
the voltages at two electrodes. They are therefore defined with respect to a reference.
Typical choices for reference electrodes are the ear-lobes, the nose, the mastoids (the
bone behind the ear) or the ’average reference’, that is the average over all electrodes.

Typical sampling rates are between one hundred and several thousand Hz. This is
very high compared to methods which measure blood flow like functional magnetic
resonance imaging (fMRI) and near infrared spectroscopy (NIRS). However, EEG
suffers from low spatial resolution. Localizing the source of measured activity is a
challenging problem (Baillet et al., 2001; Haufe et al., 2008; Shahbazi et al., 2015).

In the following, we will briefly cover the underlying neurophysiology of EEG sig-
nal generation. We then review pre-processing methods for the removal of artifacts
from EEG signals. Furthermore, we describe two common neurophysiological signa-
tures that can be extracted from EEG signals, Event-Related Potentials (ERP) and
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T
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otor

sensory

O

P F

Figure 2.1: (Left) Schematic representation of the major sectors of the cerebral cor-
tex: F is frontal, P is parietal, O is occipital and T temporal. (Right)
example electrode montage and electrode labels according to the interna-
tional 10-20-system. Figures are taken from the lecture ’Brain Computer
Interfacing’ of Benjamin Blankertz, with permission.

rhythmic activity. Finally, we give a short introduction on how these signatures can
be used to control Brain-Computer-Interface (BCI) systems.

2.1.1 Neurons and their electrical activity

The two principal categories of cells in the nervous system are nerve cells, or neurons,
and glia cells (Rosenzweig et al., 2002; Bear et al., 2015). Each human being has
about 100 billion to 150 billion neurons and about nine times that number of glia
cells. Neurons are electrically excitable cells and are recognized to be the basic
information processing unit of the nervous system. Glia cells are thought to mainly
provide support, protection and nutrients for neurons. In the following, we will give
a short overview on a single neuron’s structure and function.

Neurons have diverse forms that vary between different parts of the brain and the
function they perform. However, most of them have three distinct structural parts
illustrated in Figure 2.2: The cell body, dendrites and one axon. Information flows
from the dendrites through the cell body to the axon. The majority of neurons have
exactly one axon. An axon might be only a few micrometers long, but can reach
more than a meter in length, for example in spinal and motor neurons. Towards
its end, an axon typically divides into numerous branches. It forms connections to

8
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Axon

Axon Terminal

Cell body

Dendrite

Figure 2.2: The structure of a typical neuron. Taken from (Wikipedia, 2015).

other neurons via specialized structures called synapses.

The information that travels along a neuron is encoded in a flow of electrical
current. The basis of this electrical activity is the movement of ions through the
neuron’s cell membrane. A typical undisturbed human neuron has a membrane
potential of -70 mV, that is, the inside of the cell is negatively charged relative to the
outside. Neurons communicate with each other via so-called action potentials: brief
reversals of the membrane potential that travel rapidly along the axon. When the
cell depolarizes to a certain threshold potential of about -50 mV, an action potential
is generated. The cell membrane depolarizes, then becomes positive reaching a
value of +40 mV and rapidly returns to its resting potential. This process takes
only about 1 millisecond. It is caused by voltage-gated ion channels in the cell’s
membrane which allow a brief, large influx of sodium ions followed by a brief, large
efflux of potassium ions.

When an action potential reaches the synapse, chemicals are released which trig-
ger so-called postsynaptic potentials at the next neuron. As the next neuron also
has numerous synaptic inputs but only one axon, it integrates the information re-
ceived. Whether or not the neuron will generate an action potential depends on the
strength of the excitatory and inhibitory postsynaptic potentials. Note that the size
of the action potential is independent from the amount of current that produced
it. It either occurs or does not occur, a characteristic referred to as the all-or-none
property. Thus, the information of, for example which color was perceived, cannot
be represented by just one action potential. It is rather encoded in the complex
interaction of several action potentials.

9
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Figure 2.3: Schematic illustration of the generative model of EEG. Electrodes on
the scalp record a linear mixture of the source activity. Each source is
associated with a spatial pattern, which describes the influence of the
source on the recorded signals. Machine learning methods can be used
to learn a spatial filter, which gives a weighting of EEG electrodes to
recover the sources. In contrast to the spatial pattern, the spatial filter
is in general not directly interpretable in terms of the spatial origin of the
extracted source. The figure is taken from the lecture ’Brain Computer
Interfacing’ of Benjamin Blankertz, with permission

2.1.2 EEG signal generation and its generative model

The transmission of electric or magnetic fields from an electric current source through
biological tissue towards measurement sensors is termed ’volume conduction’. Due to
volume conduction, neuronal signals generated inside the brain are spatially smeared
while propagating to the sensors. Because the potentials generated by a single neu-
ron are too small to be detected on the scalp, EEG signals reflect the superposed
activity of many neurons with similar spatial location (Baillet et al., 2001; Nunez and
Srinivasan, 2006), as illustrated in Figure 2.3. Structured arrangements of cortical
pyramidal neurons are believed to be the main EEG signal generator.

Because the superposition of neuronal sources is instantaneous and linear in the
sources (Baillet et al., 2001; Parra et al., 2005; Nunez and Srinivasan, 2006), the
electrophysics of EEG can be modeled as

X = A · S + η. (2.1)

Here X ∈ RM×T denotes the surface potentials measured at M sensors over T time
points, S ∈ RK×T denotes the time-courses of K underlying neuronal sources, and
the matrix A ∈ RM×K describes the influence of each source on each sensor. Each

10



2.1 Electroencephalography (EEG)

column of A is called a spatial pattern of the respective source. It depends on the
spatial location of the source and the conductivity of different brain tissues. Any
contribution that is not described by A is summarized in an additive sensor noise
term η ∈ RM×T .

The data sets analyzed in this thesis contain between M = 50 and M = 110
electrodes. The number of time points T depends on the sampling rate and the
length of the recording. If EEG signals are recorded at 200Hz over one hour, this
results in T = 200 · 60 · 60 = 720000 data points.

When analyzing a neuronal phenomenon of interest, it is beneficial to try to
recover the unknown neuronal signals S from the sensor measurements X. To do so,
various multivariate signal processing algorithms have been proposed that linearly
combine channels to extract signals of interest Ŝ = ŴX. Here Ŵ ∈ RK×M denotes
the demixing matrix and its rows are called spatial filters. The spatial filters give a
weighting of EEG channels to recover the sources. They are in general not directly
interpretable in terms of the spatial origin of the extracted sources (Haufe et al.,
2014b).

We will describe mathematical methods for the estimation of Ŵ in Section 2.2.

2.1.3 Artifacts

EEG measurements of brain activity are contaminated by artifacts. Typical artifacts
of the EEG are caused either by the non-neuronal physiological activities of the
subject or by external technical sources. Eye blinks, eye movements, muscle activity
in the vicinity of the head (e.g. face muscles, jaws, tongue, neck), and the heart
beat are examples for physiological artifact sources. Swaying cables in the magnetic
field of the earth, line humming, power supplies or transformers can be the cause of
technical artifacts.

The two most common physiological artifacts are ocular (EOG) and muscle (EMG)
artifacts. Figure 2.4 shows example time courses. Electrooculographic (EOG) activ-
ity is either caused by rolling of the eyes or by eye blinks which occur about 20 times
per minute (Iwasaki et al., 2005). Both result in a low-frequency activity which is
most prominent over the frontal head regions, with maximal frequencies below 4 Hz.
In contrast, electromyographic (EMG) activity, caused by chewing, swallowing, head
or tongue movements, is usually a high-frequency activity (> 20 Hz) (Goncharova
et al., 2003).

Artifacts are problematic in clinical applications and in neuropsychological re-
search, because they can be mistaken for brain activity and distort analysis. The
removal of artifacts from EEG signals is therefore an important issue for EEG signal
processing. In the following, we provide a short overview of the methods used for
this purpose. A more extensive review can be found in (Fatourechi et al., 2007;
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Figure 2.4: Example EEG signals from five electrodes contaminated by (top) blinks,
(bottom left) a downward followed by an upward eye movement, and
(bottom right) chewing.

Urigüen and Garcia-Zapirain, 2015).
One common solution to the artifact problem is to remove artifactual segments

of data. However, this leads to a loss of data. Methods which remove the artifacts
while preserving the underlying neuronal activity are often desirable.

Ocular activity can be partially removed by regression-based methods, which sub-
tract a part of the activity measured at additional electrooculogram (EOG) channels
from the EEG (see (Croft and Barry, 2000) for a review). Regression-based methods
require the reliable recording of additional EOG channels. They are also limited by
the fact that the EOG is contaminated by brain activity which is removed as well.

A widely used technique for the removal of general types of artifacts is based on
techniques of Blind Source Separation (BSS), most importantly Independent Com-
ponent Analysis (ICA) (Makeig et al., 1996; Vigário, 1997; Jung et al., 2000; Vigário
et al., 2000). ICA linearly transforms EEG signals into independent source compo-
nents (ICs) (cf. Section 2.2.2). If artifactual and neuronal activity are contained in
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separate components, artifactual components can be identified and a cleaner EEG
can be reconstructed without them. Even though assumptions for the application
of ICA methods are only approximately met in practice, their application usually
leads to a good separation of artifactual and neuronal signals (Fitzgibbon et al.,
2007; Romero et al., 2008; Crespo-Garcia et al., 2008; McMenamin et al., 2010).

While some studies argued for the use of regression-based methods for the removal
of eye artifacts (Wallstrom et al., 2004; Schlögl et al., 2007; Schlögl et al., 2009),
cumulating evidence suggests that ICA-based artifact removal yields cleaner signals
(Romero et al., 2008; Hoffmann and Falkenstein, 2008; Ghaderi et al., 2014; Winkler
et al., 2015a). The state of current research on artifact removal in EEG signals has
been nicely summarized in a recent review by (Urigüen and Garcia-Zapirain, 2015):

During the last decade only a few novel methods have been proposed in
the artifact removal area, in addition to classic existing approaches such
as regression, ocular artifact correction, filtering or the more widely used
blind source separation (BSS) techniques. Rather, the area has evolved
with authors either improving on existing algorithms, combining different
methods or trying to make the denoising process automatic [...] In our
opinion, this seems to indicate that in fact most of the modern artifact
removal methods converge in terms of results

[...]

Despite the fact that some contradictory studies exist, ICA-based proce-
dures are the main accepted solution to obtain clean EEG of improved
signal quality, even if they do not always completely separate artifactual
from cerebral sources.

The typical process chain for ICA artifact rejection consists of the following steps:

1. A rough pre-cleaning of the data by channel rejection and trial rejection may
be performed. This step is usually helpful for obtaining a good ICA decom-
position. It is possible but not always necessary to run ICA twice, first to
reject epochs based on the IC time courses, second to obtain a good ICA
decomposition for the cleaner data.

2. As ICA decomposition is known to be sensitive to slow drifts, high pass filtering
the data can improve the quality of the decomposition (Hyvärinen et al., 2001;
Pignat et al., 2013).

3. The ICA decomposition is computed. For discussions on which ICA algorithm
is best suited for artifact removal, we refer the interested reader to (Meinecke
et al., 2002; Kierkels et al., 2006; Fitzgibbon et al., 2007; Romero et al., 2008;
Delorme et al., 2012).
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Figure 2.5: Three example independent source components. Time series (first col-
umn), spectrum (second column), filter (third column) and pattern
(fourth column) of three components. The first row (a) shows a neuronal
component. The second row (b) shows a rare muscle artifact component
with an increased spectrum in higher frequencies. The third row (c)
shows an eye artifact component that appears regularly, has an increases
spectrum in lower frequencies and a typical front-back distribution in the
pattern. Taken from (Winkler et al., 2011).

It is possible to perform a dimensionality reduction prior to ICA computa-
tion. This is typically done with Principal Component Analysis (PCA) (cf.
Section 2.2.1). Such a step can reduce the noise level and avoid an unnatural
splitting of sources. It also makes ICA computation faster and reduces the
number of components that have to be visually inspected.

4. Artifactual ICA components are identified. This identification of artifactual
component is a non trivial task and requires time and expert knowledge. To
do so, EEG practitioners typically inspect the time course, the spectrum, and
the scalp pattern of all independent component (Chaumon et al., 2015). What
makes the identification task difficult is that some components are not clearly
interpretable and may contain both, artifactual and neuronal activity.

Prototypical examples of a neuronal, a muscle, and an eye blink component are
displayed in Figure 2.5. Neuronal components (Figure 2.5a) typically display
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Figure 2.6: Example ICA decomposition of EEGLAB sample data. The plot shows
the spatial pattern of each ICA component and the labels computed by
MARA (red: artifact/reject, green: neuronal/accept).

a peak in the spectrum around 10 Hz (the so-called alpha peak) and a dipolar
scalp map. Muscular components (Figure 2.5b) are often characterized by
spatially localized activity and comparatively high power above 20 Hz. Eye
blink artifacts (Figure 2.5c) are characterized by a strong frontal activation in
the scalp map and a steep power spectrum without an alpha peak.

5. After artifactual ICs have been identified, the EEG can be reconstructed with-
out them.

Contributions of this thesis. In Chapter 3 of this thesis, we address point 4 and
point 2 of the ICA-based artifact processing pipeline outlined above.

Most of our work on artifact rejection addresses point 4. We develop and test
an open-source EEGLAB-plugin MARA (Multiple Artifact Rejection Algorithm)
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which avoids the time-consuming hand-rating process of independent components
by automatically classifying them into artifactual and non-artifactual components
(Winkler et al., 2011; Winkler et al., 2014). It is based on a linear classifier which
is easy to understand (cf. (Müller et al., 2003)), and has been used in our group
(Höhne and Tangermann, 2014; Hwang et al., 2015) and by others (Gomez Rojas,
2012; Nagya et al., 2014; Ho et al., 2015; Alday, 2015; Tóth, 2015; Wang et al.,
2015). While other available EEGLAB-plugins mostly focus on eye artifacts (Viola
et al., 2009; Mognon et al., 2011; Bigdely-Shamlo et al., 2013), MARA solves the
binary classification problem ’artifact vs. not an artifact’. It is therefore also able
to handle muscle artifacts (see Figure 2.6). A multi-class method which can also
classify muscle artifacts has only recently been made available as an EEGLAB-plugin
(Frølich et al., 2015a).

We further used MARA to address point 2 of the artifact pipeline. Without prior
high-pass filtering, ICA often produces visibly poor separation of artifactual and
non-artifactual activity. Recent research also indicates that high-pass filtering im-
proves reliability (Groppe et al., 2009) and measures of independence and dipolarity
(Zakeri et al., 2014) of the estimated independent components. The question then
arises which cut-off frequency to use in practice. This is an empirical question, that
probably depends on the type of data one wants to analyze. We address this ques-
tion in Section 3.3 (Winkler et al., 2015a) in one Event-Related Potential (ERP)
study.

2.1.4 Event Related Potentials (ERPs)

An Event-Related Potential (ERP) is computed by averaging EEG activity after the
presentation of visual, somatosensory or auditory stimuli. Currently, ERP is one of
the most widely used methods in cognitive neuroscience research (Fabiani et al.,
2000) and is extensively used for brain-computer-interfacing (Farwell and Donchin,
1988; Treder and Blankertz, 2010; Höhne et al., 2011; Blankertz et al., 2011) and
mental state monitoring (Blankertz et al., 2010b; Müller et al., 2008).

As an example, Figure 2.7 depicts event-related potentials occurring during visual
stimulation administrated to closed eye lids (Hwang et al., 2015). Twelve healthy
participants were asked to attend one of three different visual stimuli which were
flashed sequentially. The stimuli that participants attend to are called the target
stimulus, while the unattended stimuli are called the non-target stimuli. We can see
a characteristic P300 ERP component, which is a peak that occurs approximately
250 to 500 ms post stimulus. It is thought to reflect an attention-dependent cognitive
component.

When no artifact removal is performed, the ERP is contaminated by stimulus-
specific eye movements as evidenced by activity in the frontal electrodes (Fig-
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(a) Without artifact removal

(b) After ICA-based artifact removal with MARA

Figure 2.7: Grand-average ERPs for target and non-target stimuli of 12 subjects of
a study in which visual stimuli were administered on closed eyelids, with
and without prior ICA-based artifact removal with MARA. Plots show
the time courses at two electrodes and average activation scalp maps in
the five marked intervals. Figures are taken from (Hwang et al., 2015),
with permission. 17
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Figure 2.8: Idealized spectrum of EEG activity. Taken from the lecture ’Brain Com-
puter Interfacing’ of Benjamin Blankertz, with permission.

ure 2.7a). Eye activity is removed by ICA-based artifact removal using MARA
(Figure 2.7b). In this thesis, we contribute further evidence that ICA-based artifact
removal using MARA may be a beneficial for ERP computation in Section 3.3.

2.1.5 Oscillatory Activity

EEG signals demonstrate oscillations in characteristic frequency ranges. This rhyth-
mic neuronal activity is a fundamental property of neuronal networks. Brain rhythms
correlate with particular states of mind (such as level of attentiveness or sleeping),
vary considerably over time, and occur in certain characteristic forms during seizures
and coma. Reviews on EEG rhythms can be found in (Buzsáki and Draguhn, 2004;
Klimesch et al., 2007; Uhlhaas et al., 2008; Wang, 2010).

Oscillatory EEG activity is commonly divided in 5 frequency bands, the delta (0-
3Hz), theta (4-7 Hz), alpha (8-13Hz), beta (14-30Hz), and gamma-band (30-80 Hz).
The EEG power spectrum is inversely proportional to frequency, and may exhibit
spectral peaks in the characteristic frequency bands (Figure 2.8). Most prominent
is the alpha-peak, which is the dominant frequency in the human EEG of adults.

EEG reflects the activity of numerous neurons that are spatially aligned and dis-
charge synchronously. The amplitude of EEG signals thus strongly depends on
how synchronous the underlying neuronal activity is. Synchrony may change in
response to certain tasks. This phenomenon is called Event-Related Desynchro-
nization (ERD). ERD is computed as the relative difference in band power during
the performance of a task compared to a reference period (Pfurtscheller and Arani-
bar, 1979). Neurophysiologically, ERD indicates that neurons no longer discharge
synchronously.

The functional role of oscillations is far from being understood and an active area
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of neuroscientific research. The following extract of the recent textbook by Bear,
Paradiso & Conners (Bear et al., 2015) summarizes:

Cortical rhythms are fascinating to watch in an EEG, and they parallel
so many interesting human behaviors that we are compelled to ask: Why
so many rhythms? More importantly, do they serve a purpose? There
are no satisfactory answers yet. Ideas abound, but definitive evidence
is scarce. One hypothesis for sleep-related rhythms is that they are the
brain’s way of disconnecting the cortex from sensory input. [...] A func-
tion for fast rhythms in the awake cortex has also been proposed. One
scheme for understanding visual perception takes advantage of the fact
that cortical neurons responding to the same object are synchronously
active. Walter Freeman, a neurobiologist at the University of California,
Berkeley, pioneered the idea that neuronal rhythms are used to coordi-
nate activity between regions of the nervous system. [...] The evidence
for this idea is indirect, far from proven, and understandably controver-
sial. For now, the functions of rhythms in the cerebral cortex are largely
a mystery. One plausible hypothesis is that most rhythms have no direct
function. Instead, they may be intriguing but unimportant by-products
of the tendency for brain circuits to be strongly interconnected, with
various forms of excitatory feedback.

Contributions of this thesis. An intriguing way to investigate the functional role
of oscillations is to induce them with brain stimulation techniques such as repetitive
Transcranial Magnetic Stimulation (rTMS) and Transcranial Alternating Current
Stimulation (TACS) (Thut et al., 2012; Herrmann et al., 2013).

In Chapter 4 of this thesis, we explore a fundamentally different approach that
does not require direct intervention in the nervous system, by using statistical meth-
ods for the inference of cause-effect relations. We use the concept of ’Granger causal-
ity’ (Granger, 1969), which operationalizes causality in time series based on the idea
that the cause should precede its effect (cf. Section 2.3.3 for definition and limits).
More specifically, we consider the case in which we simultaneously measure EEG
band power ϕ and a behavioral target variable of interest z over time. For example,
an actively researched question in the field of Brain-Computer Interfaces (BCIs) is
whether (and how) oscillatory sources influence the control performance of a user
during a BCI experiment (Grosse-Wentrup et al., 2011; Maeder et al., 2012). In
the Granger causal setting, the target variable z would be the BCI’s control per-
formance per trial, and the goal is to identify a neuronal source whose power time
course Granger causes z.

The simplest approach to testing for Granger causality is to compute the band-
power and test for Granger causality separately for each electrode. However, we
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Figure 2.9: Problem setting in Chapter 4. In this simple cartoon example, there are
two active brain sources (s1 and s∗). The power dynamics of source s∗

are causally related to an externally observed target variable z, while the
power dynamics of s1 are unrelated to z. EEG sensors record a linear
mixture of the source activity, resulting in channel signals x1 and x2. The
appropriate course of action is to recover the time course of s∗ before
the computation of band power. Information contained in the target
variable z can be used to recover s∗. Taken from (Winkler et al., 2015b)

achieve a higher signal-to-noise ratio by recovering the underlying signals from scalp
recordings prior to the computation of band-power (Figure 2.9). In Chapter 4,
we therefore investigate which signal processing methods are best suited to extract
rhythmic activity of interest from the sensors measurements according to the linear
generative model of EEG given in (2.1). We develop a method, referred to as
GrangerCPA (Granger Causality Power Analysis), which makes use of the assumed
dependency to the target variable z, and we compare it to state-of-the art methods
such as ICA in simulated and real EEG recordings.

2.1.6 Brain-Computer-Interfacing (BCI)

An interesting use-case of EEG is Brain-Computer-Interfacing. Brain-computer in-
terfaces (BCI) are systems that allow a direct connection between brain and com-
puter without the use of the extremities (Dornhege et al., 2007; Wolpaw and Wolpaw,
2012). BCIs are based on the single-trial classification of the ongoing EEG signal,
and are developed with the goal to improve the life quality of disabled individuals
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Figure 2.10: The two phases of a BCI system based on machine learning techniques.
During the calibration phase the user is required to perform certain pre-
defined mental tasks. Meaningful features are extracted from the EEG
data and are used to train a classifier. This classifier is then used in
the second phase, allowing the user to control a feedback application.
The figure is taken from the lecture ’Brain Computer Interfacing’ of
Benjamin Blankertz, with permission.

(del R. Millán et al., 2010; Acqualagna and Blankertz, 2013; Höhne et al., 2014).
Research on non-medical application scenarios investigates whether it is possible

to continuously monitor fatigue, attention, emotional engagement and mental work-
load in operational environments or during driving (Berka et al., 2008; Müller et al.,
2008; Winkler et al., 2010; Blankertz et al., 2010b; Venthur et al., 2010; Haufe et al.,
2011). Furthermore, machine learning methods which were successful in the field
of Brain-Computer-Interfacing have been used in other applications domains, for
example to investigate the subconscious processing of speech quality (Porbadnigk
et al., 2013; Porbadnigk et al., 2015; Görnitz et al., 2014) and in prosthetic device
control (Hahne et al., 2012; Vidovic et al., 2014; Hwang et al., 2014; Kauppi et al.,
2015).

A BCI system based on machine learning techniques typically requires two phases,
as illustrated in Figure 2.10. During the calibration or training phase the user is
required to perform certain pre-defined mental tasks. The collected EEG data is
then used to train a classifier, which enables the user to communicate via the system
in the feedback phase (Blankertz et al., 2002).

BCI systems can be based on different neurophysiological phenomenon. ERP-
based systems can be used for attention-based typewriting. In a typical application,
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several symbols or letters are displayed on the screen. During each trial, the user
is instructed to focus on one symbol or letter, while the symbols are intensified
(’flashed’) one after another in random order. The attended letter induces a different
ERP than the non-attended letters. ERPs can thus be distinguished by machine
learning methods, which are well described in the tutorial by (Blankertz et al., 2011).

BCI systems can also be based on Motor Imagery, in which imagined movements
(typically left hand, right hand, foot) are detected by the system. These systems
exploit spatially localized event-related desynchronization patterns that occur during
Motor Imagery. To extract these patterns with an acceptable signal-to-noise ratio,
the Common Spatial Patterns (CSP) method is typically employed. CSP finds
a linear combination of signals from several electrodes in order to maximize the
spectral power differences of the classes. The mathematical details are well described
in (Blankertz et al., 2008b).

Contributions of this thesis. If a BCI system developed and tested on healthy
subjects is (unconsciously) controlled by artifacts, it will be of little use in patients
who may not be physically capable to produce these artifacts. Even in healthy
subjects, artifacts may reduce the signal-to-noise ratio and impact negatively on the
BCI’s performance, especially if the stimulus during training induces other artifacts
than those from online use (Frølich et al., 2015b; Brandl et al., 2015). Strategies to
overcome this problem include the use of regularization methods for CSP (Blankertz
et al., 2008a; Kawanabe et al., 2009; Samek et al., 2012; Samek et al., 2014) and
the explicit removal of outlier trials or electrodes.

ICA-based artifact cleaning might also help to improve BCI performance. As a
first proof-of-concept, Halder et al. (Halder et al., 2007) applied ICA-based artifact
cleaning to data from three participants who performed motor imagery. Depending
on whether artifacts were systematically co-activated with the task or not, opposite
effects of artifact cleaning on BCI classification performance were demonstrated.
To the best of our knowledge, only small data sets of one or two participants had
been analyzed since then. In Section 3.2 we therefore analyze the effect of ICA-
based artifact removal with MARA both in an ERP-based (21 participants) and a
Motor Imagery based BCI-study (80 participants). We find that, while we might be
more sure that artifacts are not used for BCI control, the overall performance of the
analyzed BCI paradigms did not benefit from ICA-based cleaning.

2.2 Blind Source Separation (BSS)

The blind source separation (BSS) problem consists of recovering a set of source
signals S ∈ RK×T from a set of mixed signals X ∈ RM×T . The goal is to invert the
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linear model

X = A · S (2.2)

with little prior knowledge on the source signals S or the mixing matrix A ∈ RM×K .
Here K denotes the number of source signals, M denotes the number of sensors
and T denotes the number of available time points. Without loss of generality, it is
assumed that the observed variables X and the hidden sources signals S have zero
mean.

Note that for most BSS applications, it would be more realistic to assume an
additive measurement noise term as in the generative model of EEG in (2.1). How-
ever, the BSS problem is typically formulated without the noise term, because the
noise-free model is difficult enough to estimate and it performs reasonably well in
many applications (Hyvärinen and Oja, 2000).

The BSS-problem is in general highly underdetermined, but useful solutions can
be derived under a variety of assumptions. A demixing matrix Ŵ ∈ RK×M is
estimated such that the estimated sources

Ŝ = Ŵ ·X (2.3)

best fulfill pre-defined assumptions. The rows of Ŵ are called spatial filters.
Numerous algorithms exist to estimate Ŵ . We will describe Principal Compo-

nent Analysis (PCA), Independent Component Analysis (ICA) and Spatio-Spectral
Decomposition (SSD) in the next sections.

2.2.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a wide-spread pre-processing step used for
the dimensionality reduction of multivariate data. The data is projected onto a
lower-dimensional subspace in a way that minimizes the information lost in terms
of mean squared error. This is done by finding directions in the data which explain
most of its variance. PCA is computed by solving an eigendecomposition of the
covariance matrix of the data (see e.g. (Bishop, 2006)). The resulting spatial filters
are orthogonal to each other.

2.2.2 Independent Component Analysis (ICA)

In the field of neuroscience, one of the most popular BSS algorithms is Independent
Component Analysis (ICA; (Jutten and Herault, 1991)), which solves the Blind
Source Separation problem under the assumption that the sources S are mutually
independent. In contrast to PCA, ICA methods generally yield non-orthogonal
filters, as illustrated in Figure 2.11.
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Figure 2.11: Illustrative comparison between ICA and PCA. The mixed signals
X ∈ R2×T (left) should be linearly transformed into sources Ŝ = ŴX.
The orthogonal filters of PCA are indicated with red arrows, the typi-
cally non-orthogonal filters of ICA are blue arrows. (middle) PCA finds
uncorrelated sources sPCA1, sPCA2, the first of which explains maximal
variance. Resulting sources are uncorrelated, but not necessarily inde-
pendent. (right) ICA finds independent sources sICA1, sICA2.

Multiple ICA algorithms exist, because a number of measures can be used to
assess whether two time series are statistically independent. Two broad classes of
algorithms can be distinguished: (1) methods which rely on higher-order statistics
to define independence, and (2) methods which rely on second-order statistics only
by taking temporal dependencies in the time series into account. Note that the term
ICA is sometimes used to refer to the first model class only.

Higher-order methods. Following (Hyvärinen and Oja, 2000; Hyvärinen et al.,
2001), the sources S can be recovered by relying on higher-order statistics under the
following assumptions:

1. The sources S = (s1, . . . , sK)
⊤ are mutually independent.

This assumption is stronger than requiring the sources not to be correlated.
The sources s1, . . . , sK are uncorrelated when their covariances are 0, that
is, when their second order moments are 0. They are statistically indepen-
dent when a component si does not contain any information about another
component sj (i ̸= j), that is, when moments of arbitrary order are 0.

2. The sources s1, . . . sK are not normally distributed.
Intuitively, normally distributed components are ’too simple’. They can be
described solely by their first and second order moments, while all higher
order moments are 0.
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3. It is typically assumed that the mixing matrix A is square.

Note that it is not possible to determine the variance of the independent source
components. This is because S and A are unknown, and every scalar factor in one
source can be compensated by dividing the corresponding column in the mixing
matrix (the pattern) by this factor. Also, the order of the components is arbitrary.

The demixing Ŵ is estimated by maximizing some criterion of independence (Car-
doso and Souloumiac, 1993; Comon, 1994; Bell and Sejnowski, 1995; Amari et al.,
1996; Pham and Garat, 1997; Hyvärinen and Oja, 1997; Hyvärinen, 1999; Müller
et al., 1999). A good overview can be found in (Hyvärinen and Oja, 2000; Hyvärinen
et al., 2001; Comon and Jutten, 2010).

Second-order methods. Second-order methods take the temporal structure of the
time series into account and enforce decorrelation over time (Molgedey and Schuster,
1994; Belouchrani et al., 1997; Ziehe and Müller, 1998). In this thesis, we use TDSEP
(Temporal Decorrelation source SEParation) (Ziehe and Müller, 1998; Ziehe et al.,
2004), which is equivalent to SOBI (Second Order Blind Identification) (Belouchrani
et al., 1997). TDSEP/SOBI amount to finding a demixing W which leads to minimal
cross-covariances over several time-lags between all pairs of components of S . The
assumption is therefore that the sources s1, . . . , sK have non-zero autocovariances.
Non-Gaussianity is not required.

TDSEP/SOBI is based on the following steps:

1. Whitening of the data. Whitening is a linear transformation U which decor-
relates and scales the data X such that the covariance matrix of the whitened
data X ′ := UX equals the identity. A solution is given by

U := Λ−1/2ΦT . (2.4)

where the column of Φ are the eigenvectors of the covariance matrix 1
T
XX⊤

and Λ is a diagonal matrix which contains the corresponding eigenvalues. (It is
easy to see that indeed 1

T
X ′X ′⊤ = U 1

T
XX⊤U⊤ = Λ−1/2ΦTΦΛΦTΦΛ−1/2 = I

holds.)

Whitening is a useful pre-processing step for ICA algorithms because it re-
duces the BSS problem to finding an orthogonal demixing matrix. We are
now searching for a new demixing matrix W ′ such that W ′X ′ = S, which is
orthogonal: W ′W ′⊤ = W ′ 1

T
X ′X ′⊤W ′⊤ = 1

T
SS⊤ = I. For the last equality, we

assumed without loss of generality that the independent source components
are each scaled to 1.
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2. Time-lagged cross-covariance matrices are simultaneously diagonalized. De-
note with

ĈX′(τ) :=
1

T

T∑

t=1

X ′(t)X ′⊤(t− τ) and ĈS(τ) :=
1

T

T∑

t=1

S(t)S⊤(t− τ) (2.5)

the empirical cross-covariance matrices at time lag τ ∈ Z, where X ′(t) and
S(t) are the t-th column of X ′ and S. Now, note that (1) W ′CX′(τ)W ′ equals
the cross-covariance matrix ĈS(τ) of the source components S at time-lag
τ ; and (2) The independence assumptions yields that this cross-covariance
matrix of the source components S at time-lag τ is a diagonal matrix. W ′ can
thus be computed as the matrix that jointly diagonalizes a set of whitened
cross-covariances CX′(τ). Throughout this thesis, we use τ = 1, . . . , 99.

3. Finally we obtain W = W ′ · U .

2.2.3 Spatio-spectral decomposition (SSD)

The purpose of spatio-spectral decomposition (SSD) (Nikulin et al., 2011) is to
extract brain oscillations in a frequency band of interest. It is based on the as-
sumption that noise sources produce signals in a relatively broad frequency range,
while the brain oscillations of interest are contained in a narrow spectral band. Al-
gorithmically, it maximizes the signal power in a frequency band of interest while
simultaneously minimizing it at neighboring frequencies. That is, SSD seeks spatial
filters w ∈ RM which maximize

SNR(w) =
w⊤Σsigw

w⊤Σnoisew
(2.6)

where Σsig is the covariance of the data filtered in the frequency band of interest
and Σnoise is the covariance of the data filtered in the sidebands.

The entire SSD demixing matrix can be computed by solving a generalized eigen-
value problem in a matter of seconds (Nikulin et al., 2011). SSD has been shown to
be an effective tool for preprocessing, because it extracts a low dimensional subspace
which captures oscillatory activity in the frequency range of interest (Haufe et al.,
2014a).

2.3 Causal inference

The learning of cause-effect relationships is a challenging task, for which controlled
randomized experiments are necessary. However, such experiments are often un-
ethical, expensive or just impossible. For example, research on brain connectivity
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tries to identify which brain region communicates with another brain region in the
brain’s normal activity.

The scientific methodology for the inference of cause-effect relationships from
uncontrolled observational data is subject to intense research. While some methods
incorporate specific domain knowledge into the model (e.g. (Friston et al., 2003;
Patel et al., 2006)), most statistical methods fall into one of the following three
classes. First, Causal Bayesian Networks use conditional independence relationships
between variables in order to infer a set of possible causal models. For a second class
of models, so-called additive noise models, it is possible to show that the causal model
can be fully identified under mild conditions (non-linearity or non-gaussianity). For
the analysis of time series a third class of models, which is based on temporal
precedence, is very popular.

2.3.1 Causal Bayesian Networks

In the framework of Causal Bayesian Networks, cause-effect relations are represented
as a graph in which the nodes represent random variables and directed edges depict
causal influences (Spirtes et al., 2000; Pearl, 2009; Mumford and Ramsey, 2014). The
variables are assumed to have a causal ordering, that is, they can be represented as
a directed acyclic graph (DAG).

Knowledge about causal relations of the variables can be gained by identifying
conditional independence relationships in the data. Such causal inference is based
on theoretical insights, which state that some conditional independency relations
characterize certain causal directionalities. Consider for example the following de-
pendencies of three random variables x, y and e: x and e are dependent, y and e
are dependent, but x and y are independent. The only natural explanation is that
x and y are a common cause of e, that is x→ e← y.

Various methods exist for the identification of Causal Bayesian Networks, most
of which assume independent and identically distributed (iid) data, an assumption
which is violated for EEG data. Note also that several possible models may dis-
play the same conditional independence relations. For example, the three models
x→ e→ y, x← e← y and x← e→ y all imply that x is independent of y condi-
tional on e. Causal Bayesian Network methods may therefore only result in a set of
equally likely models.

2.3.2 Acyclic causal models with additive noise

It is possible to uniquely identify a causal model without the use of temporal infor-
mation by placing additional assumptions on the data generation process. A popular
model is the Linear Non-Gaussian Acyclic Model (LiNGAM) (Shimizu et al., 2006),
which assumes that
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1. the observed variables can be represented as a directed acyclic graph with
additive non-Gaussian noise,

2. the data generating process is linear, and

3. there are no unobserved hidden causes.

Under these assumptions, the causal model can be completely identified by relying
on higher order distributional statistics (Shimizu et al., 2006).

The mathematical model can be written as

X = B ·X + υ (2.7)

where X ∈ RM×T contains T data points of M observed variables, υ ∈ RM×T con-
tains mutually independent, non-gaussian innovations (noise), and B ∈ RM×M is
a square matrix that could be permuted to strict lower triangularity if one knew a
causal ordering. For example, for two variables x→ y, the model reads

[
x
y

]
=

[
0 0
b 0

]
·
[
x
y

]
+

[
υx
υy

]
(2.8)

with b ∈ R.
Now, the key insight is that the observed variables X are a linear combination

of the innovations. That is, Equation (2.7) can be rewritten as X = A · υ where
A := (I −B)−1. We can thus compute A using ICA, and then infer the causal
ordering in B from it. Note that it may be more efficient to estimate LiNGAM
with procedures other than ICA (Shimizu et al., 2011; Hyvärinen and Smith, 2013).
Extensions of the framework consider for example temporal structure

(Hoyer et al., 2009; Zhang and Hyvärinen, 2009; Peters et al., 2014) provided a
generalization of additive noise models to nonlinear models. They show that non-
linearities can in fact help to identify the causal model. To illustrate the procedure,
let us again consider two variables, x and y, which now stem from the causal model
y = f(x)+υy, where f is an arbitrary function and x is independent from υy. (Hoyer
et al., 2009) show that, even if both x and υy are Gaussian, the joint probability
distribution of x and y could only arise from a backward model x = g(y) + υx (with
y independent of υx), if f is linear.

In brief, the causal model x→ y can then be tested as follows:

1. Perform a non-linear regression of y on x to estimate a function f such that
y ≈ f(x),

2. Perform a significance check whether the residuals υy = y − f(x) are inde-
pendent of x. Accept the causal model x → y only if the null hypothesis of
independence cannot be rejected.
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This methods is not directly applicable to time series, because it assumes iid data.
Time series data typically exhibit strong autocorrelation structure, which have to be
taken into account in most analysis (cf. (Bartz and Müller, 2014)). An interesting
extension of additive noise models which allow nonlinear and instantaneous effects
to time series has recently been proposed (Peters et al., 2013).

2.3.3 Granger causality and other time-lagged measures

In time-series analysis, inference about cause-effect relationships is commonly based
on the principle that the cause should precede its effect. Particularly, the concept
of Granger causality (GC) has gained popularity as a simple testable definition
of causality based on temporal precedence. Since its introduction in 1969 many
extensions have proposed, but we will focus here on the simple bivariate linear case.
We will also mention the shortcoming of Granger causality and related measure, and
outline two proposed remedies, the Phase Slope Index (PSI) (Nolte et al., 2008) and
time reversal testing (Haufe et al., 2013).

Linear Granger causality (GC). In its original formulation, a time series xt is
said to Granger-cause a time series yt, if the past of xt helps to predict yt above
what can be predicted by using ‘all other information in the universe’ besides xt

(Granger, 1969). In practical situations in which only two time series are available,
it is common to consider only the information contained in the past of xt and yt
(Hamilton, 1994).

The standard Granger causality test is given by the comparison of the goodness
of fit of two autoregressive (AR) models. First, yt is modeled as a function of a pre-
defined number p of its most recent past values. Second, yt is modeled as a function
of both its own past values and the past values of xt. Finally, Granger causality
tests whether the second regression model explains significantly more variance of yt
than the first regression model.

Granger causality is grounded in the theory of autoregressive modeling. We as-
sume the data has been generated by a stable bivariate vector autoregressive process

of lag order p (VAR(p) process), zt =
[
xt

yt

]
∈ R2,

zt = A1zt−1 + . . .+ Apzt−p + ϵt , (2.9)

where ϵt ∈ R2 is a 2-dimensional white noise process (that is, ⟨ϵt⟩ = 0, ⟨ϵtϵ⊤t−h⟩ = 0
for h ̸= 0, and ⟨ϵtz⊤t−h⟩ = 0 for h ∈ N \ {0}, ⟨·⟩ denotes expectation) with residual
covariance matrix

Σ = ⟨ϵtϵ⊤t ⟩ =
[
Σxx Σxy

Σxy Σyy

]
. (2.10)
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Figure 2.12: Example of a simulated VAR(5) process where xt Granger causes yt.

The noise variables ϵt are also called innovations or residuals. Stability requires that
det(I − A1λ − . . . − Apλ

p) ̸= 0 for all λ ∈ C with |λ| ≤ 1, and ensures that the
process is stationary.

Note that VAR models are able to capture a surprisingly large range of time
series dynamics (see Figure 2.12 for an example). In fact, a fundamental result
from time series analysis, Wold’s decomposition theorem (Wold, 1938), implies that
‘under quite general conditions, every stationary, purely nondeterministic, process
(without a deterministic component) can be approximated well by a finite order
VAR process’ (Lütkepohl, 2007).

Following (Geweke, 1982), xt and yt possess themselves autoregressive (AR) rep-
resentations, which we denote by

xt =
∞∑

k=1

akxt−k + ξxt , Var(ξxt ) =: Σx and (2.11)

yt =
∞∑

k=1

bkyt−k + ξyt , Var(ξyt ) =: Σy . (2.12)

where the residuals ξxt and ξyt of these two univariate processes are each serially
uncorrelated. Directed Granger-causal information flow is then defined as (Geweke,
1982)

Fy→x := log

(
Σx

Σxx

)
and Fx→y := log

(
Σy

Σyy

)
. (2.13)

For an information flow from x to y it holds that Fx→y > 0. Under the assumption
of Gaussian-distributed residuals, Fy→x and Fx→y are asymptotically χ2 distributed,
giving rise to an analytical test of their significance (Geweke, 1982). An asymptoti-
cally equivalent test is given by an F-test of the goodness-of-fit of the two models,
cf. (Hamilton, 1994; Bressler and Seth, 2011). If the distribution of the residuals
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is unknown, non-parametric methods such as permutation testing can be used for
significance testing (Anderson and Robinson, 2001).

As variables in physical systems often mutually influence each other, it is also of
interest to determine the net driver of the interaction by assessing whether more
information is flowing from xt to yt then from yt to xt or vice versa. Following (Nolte
et al., 2008; Nolte et al., 2010), net Granger causality is defined as the difference
Granger causality scores, that is

F (net)
x→y := Fx→y − Fy→x (2.14)

Because the analytical distributions of these differences are unknown, statistical
significance of net Granger causality scores needs to be assessed using resampling
methods.

Related measures. As the concept of Granger causality has received a great deal
of attention, several extensions to non-linear and multivariate models have been
proposed (Marinazzo et al., 2008; Barrett et al., 2010; Vicente et al., 2011). Im-
portant is also the extension to the spectral domain (Geweke, 1982), in which we
can obtain a representation of Granger causality indices as a function of frequency.
This feature is helpful in some neuroscientific applications, because neurophysio-
logical interaction often depends on synchronous oscillatory activity in well-known
frequency bands. Several other measures related to spectral Granger causality, such
as the Directed Transfer Function (DTF) (Kaminski and Blinowska, 1991) and the
Partial Directed Coherence (PDC) (Baccalá and Sameshima, 2001) have also gained
popularity.

Limitations of Granger causality. While being a widespread tool, Granger causal-
ity and related measures suffer from several limitations:

• Temporal precedence does not necessarily imply causality. Consider the fol-
lowing example from economics: interest rates or consumer confidence ratings
predict economic development, but they reflect human forward-looking behav-
ior and a causal relationship cannot necessarily be inferred (Hamilton, 1994).
Similarly, a rooster who crows before sunrise does not cause the sunrise.

• Hidden common drivers cannot be detected. Already Granger pointed out that
standard Granger causality can lead to spurious results if not all all relevant
variables are incorporated in the model (Granger, 1969).

• Granger causality is susceptible to measurement noise. If two sensors measur-
ing the same signal are superposed with noise, they mutually help predicting
each other’s future (Nalatore et al., 2007; Nolte et al., 2008). This is a problem
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for example in the study of brain connectivity with EEG, because the activity
at a given sensor is a mixture of contributions from several neuronal sources
(Gómez-Herrero et al., 2008; Schoffelen and Gross, 2009; Haufe et al., 2010;
Ewald et al., 2012; Haufe et al., 2013).

• Spurious Granger causality has also been reported to arise due to downsam-
pling and temporal aggregation (Tiao and Wei, 1976; McCrorie and Chambers,
2006; Zhou et al., 2014). This may pose serious problems for example in func-
tional magnetic resonance imaging (fMRI) (Seth et al., 2013; Smith et al.,
2011).

• Like most other methods, Granger causality requires the signals to be wide-
sense stationary, meaning that the mean and cross-covariance are not allowed
to vary with respect to time. To deal with non-stationarity in the mean, a
widely-used remedy is to test for so-called ’cointegration’ (Engle and Granger,
1987), a technique which received the Nobel prize of economics in 2003.

Due to these above mentioned limitations, Granger referred to a positive outcome
of his test as the identification of a ’prima facie’ cause, meaning ’at first sight’ or
’until revoked’.

In the last years, the problem of spurious Granger causality in the presence of
measurement noise received more attention. Novel causality metrics or remedies
which are more robust with respect to measurement noise and volume conduction
have been proposed (Nalatore et al., 2007; Nolte et al., 2008; Vicente et al., 2011;
Haufe et al., 2013; Vinck et al., 2015). In the following, we will review the Phase
Slope Index (PSI) (Nolte et al., 2008), and time-reversed causality testing (Haufe
et al., 2013).

Phase-SIope-Index (PSI). One measure which is also based on the idea of tem-
poral precedence, but in contrast to Granger causality not on predictability, is the
Phase Slope Index (PSI) (Nolte et al., 2008). PSI has been proposed as a more
noise-robust metric of information flow and is based on the slope of the phase of
cross-spectra between two time series.

To define PSI, let us first introduce the following quantities. The empirical cross-
spectrum Ĝxy of two time series xt and yt is a complex number computed as the
mean over L data segments

Ĝxy(f) :=
1

L

L∑

l=1

x̄(l, f)ȳ∗(l, f) (2.15)
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where x̄(f, l) is the Fourier transform of x in data segment l, and ∗ denotes complex
conjugation. The auto-spectra of the two signals

Ĝxx(f) :=
1

L

K∑

k=1

x̄(l, f)x̄∗(l, f) and Ĝyy(f) :=
1

L

L∑

l=1

ȳ(l, f)ȳ∗(l, f) (2.16)

are real numbers which corresponds to the mean power of x and y at frequency f .
The complex coherency γxy is then defined as the normalized cross-spectrum

γxy(f) :=
Ĝxy(f)√

Ĝxx(f)Ĝyy(f)
(2.17)

and describes the linear relationship of two time series at a specific frequency f .
The Phase Slope Index (PSI) Ψx→y is now defined as

Ψx→y := Im

(∑

f∈F
γ∗
xy(f)γxy(f + δf)

)
(2.18)

where F is the set of frequencies over which the slope is summed, δf is the frequency
resolution and Im(·) denotes taking the imaginary part. Typically, F contains
all frequencies, but it can be restricted to a specific band if desired. Statistical
significance can be assessed using resampling techniques.

PSI corresponds to an average of the slope of the phase spectrum. As with Granger
causality, PSI is based on the idea that interactions require time. If two waves travel
at similar speed, then the phase difference between driver and recipient increases
with frequency and we expect a positive slope of the phase spectrum. One advantage
of PSI over Granger causality is that it robustly rejects causal interpretations for
mixtures of non-interacting signals such as correlated noise sources, because mixtures
of independent sources do not induce an imagery part of coherency (Nolte et al.,
2004).

Time reversal and contributions of this thesis. Another remedy to avoid false
detections of causal interactions was recently proposed by (Haufe et al., 2012; Haufe
et al., 2013). They proposed to contrast causality measures applied to the original
time series zt with the same measures obtained from time-reversed signals z̃t := z−t.

Let us formalize time reversal for Granger causality. Theoretical results of (Andel,
1972) state that the time-reversed signal of any VAR(p) process has again a VAR(p)
representation that can be expressed analytically in terms of the original process.
That is, any stable VAR(p) process (2.9) zt has a time-reversed representation

zt = Ã1zt+1 + Ã2zt+2 + . . .+ Ãpzt+p + ϵ̃t (2.19)
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that is again of order p with uniquely defined autoregressive coefficients Ã1, . . . Ãp

and residual covariance matrix

Σ̃ =

[
Σ̃xx Σ̃xy

Σ̃xy Σ̃yy

]
. (2.20)

In analogy to the original time series, let us define the time-reversed Granger scores
as

F̃ỹ→x̃ := log

(
Σ̃x

Σ̃xx

)
and F̃x̃→ỹ := log

(
Σ̃y

Σ̃yy

)
, (2.21)

where Σ̃x and Σ̃y denote the residual variances from the time-reversed restricted
models

xt =
∞∑

k=1

ãkxt+k + ξ̃xt , Var(ξ̃xt ) =: Σ̃x and (2.22)

yt =
∞∑

k=1

b̃kyt+k + ξ̃yt , Var(ξ̃yt ) =: Σ̃y . (2.23)

The net Granger causality scores are defined as

F̃
(net)
x̃→ỹ := F̃x̃→ỹ − F̃ỹ→x̃ . (2.24)

Finally, we define the differences of the Granger scores obtained on original and
time-reversed signals as

D̃(net)
x→y := F (net)

x→y − F̃
(net)
x̃→ỹ . (2.25)

In Difference-based time-reversed Granger causality (TRGC), we then infer a net
information flow from xt to yt if

D̃(net)
x→y > 0 , (2.26)

that is, we require that net Granger causality from xt to yt is reduced on the time-
reversed signals.

(Haufe et al., 2013) showed that TRGC robustly rejects causal interpretations
for mixtures of independent noise sources. The mathematical basis for the noise
robustness property of time-reversal are the following simple observations:

1. The transpose of the cross-covariance matrices Cz(·) of zt is equal to the cross-
covariance matrices C̃z̃(·) of the time-reversed series z̃t, that is

C̃z̃(h) = ⟨z̃tz̃⊤t−h⟩ = ⟨ztz⊤t+h⟩ = Cz(−h) =
(
Cz(h)

)⊤ (2.27)

where h ∈ Z, ⟨·⟩ denotes expectation, and z resp. z̃ are assumed to have been
transformed to have zero mean.
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2. If a series ηt only contains a mixture of independent noise sources, all its
cross-covariance matrices will be symmetric, that is

(
Cη(h)

)⊤
= Cη(h) ∀h ∈ Z

(Nolte et al., 2006).

For mixtures of independent noise sources, any causality measure that is solely
based on a series’ cross-covariance matrices (such as standard linear Granger causal-
ity) therefore yields the same result on the original and the time-reversed signals.
Their difference equals zero.

Time-reversed Granger causality (TRGC) thus displays an intriguing noise robust-
ness property. Furthermore, it also yielded very encouraging results in simulations
(Haufe et al., 2013; Vinck et al., 2015) and is fast to compute. However, its behavior
in the presence of causal interactions was still poorly understood. In particular, it
was unclear how Granger causality scores computed on time-reversed signals link
to the causal interactions on the original time-series, and therefore whether TRGC
correctly indicates the direction of causality.

The intuitive idea behind time reversed testing is that, if temporal order is crucial
to tell a driver from a recipient, directed information flow should be reduced if the
temporal order is reversed. However, a mathematical proof for this intuition is
required. Theoretical guarantees have only been derived for special cases in which
either the signal’s auto- and cross-covariances are very small in magnitude, or in
which both signals have very similar autocorrelations (Vinck et al., 2015).

In Chapter 5, we study the time-reversal of (linear) finite-order VAR processes to
prove that, in the case of unambiguous unidirectional information flow from x to y,
difference-based TRGC indeed yields the correct result D̃

(net)
x→y ≥ 0 (Winkler et al.,

2015c).
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2.4 List of abbreviations

AR autoregressive
BCI Brain-Computer-Interface
BSS Blind Source Separation
EEG Electroencephalography
EMG Electromyography
EOG Electrooculography
ERP Event-Related Potential
ERD Event-Related Desynchronization
fMRI functional Magnetic Resonance Imaging
GrangerCPA Granger Causal Power Analysis
ICA Independent Component Analysis
IC Independent Component
LDA Linear Discriminant Analysis
MARA Multiple Artifact Rejection Algorithm
PCA Principal Component Analysis
PSI Phase Slope Index
SNR Signal-to-noise ratio
SPoC Source Power Correlation
SSD Spatio-Spectral Decomposition
CSP Common Spatial Patterns
SVM Support Vector Machine
TRGC Time-reversed Granger causality
VAR(p) process Vector autoregressive process of order p
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3 Automatic artifact removal for
EEG signals

3.1 Automatic Classification of Artifactual
ICA-Components for Artifact Removal in EEG
signals

Irene Winkler, Stefan Haufe and Michael Tangermann. Automatic Classification of
Artifactual ICA-Components for Artifact Removal in EEG Signals. Behavioral and
Brain Functions, 7:30, 2011
http://www.behavioralandbrainfunctions.com/content/7/1/30/

Short summary. We constructed a linear component classification method that
automates the process of hand-selection of artifactual independent components. We
later call this algorithm MARA (Multiple Artifact Rejection Algorithm). The core
of MARA is a linear classifier based on six features from the spatial, the spectral
and the temporal domain. Features were optimized to solve the binary classification
problem ’reject vs. accept’. Thus, the classifier is not limited to a specific type of
artifact, and should be able to handle eye artifacts, muscular artifacts and loose
electrodes equally well.

The paper describes the feature selection procedure and the validation of the
classifier in detail. After the construction of the classifier on labeled ICA components
from a reaction time experiment, its performance was validated on new components
of the same study and two other EEG studies.

Contributions. This was my first scientific paper, and the adopted research method-
ology was closely supervised by Michael Tangermann. I wrote the majority of the
paper and carried out all implementations, except for the current density norm
feature provided by Stefan Haufe.
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METHODOLOGY Open Access

Automatic Classification of Artifactual ICA-
Components for Artifact Removal in EEG Signals
Irene Winkler*, Stefan Haufe and Michael Tangermann

Abstract

Background: Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the
algorithmic processing and analysis (e.g. for Brain-Computer Interfaces (BCI) or for Mental State Monitoring). While
hand-optimized selection of source components derived from Independent Component Analysis (ICA) to clean EEG
data is widespread, the field could greatly profit from automated solutions based on Machine Learning methods.
Existing ICA-based removal strategies depend on explicit recordings of an individual’s artifacts or have not been
shown to reliably identify muscle artifacts.

Methods: We propose an automatic method for the classification of general artifactual source components. They
are estimated by TDSEP, an ICA method that takes temporal correlations into account. The linear classifier is based
on an optimized feature subset determined by a Linear Programming Machine (LPM). The subset is composed of
features from the frequency-, the spatial- and temporal domain. A subject independent classifier was trained on
640 TDSEP components (reaction time (RT) study, n = 12) that were hand labeled by experts as artifactual or brain
sources and tested on 1080 new components of RT data of the same study. Generalization was tested on new
data from two studies (auditory Event Related Potential (ERP) paradigm, n = 18; motor imagery BCI paradigm, n =
80) that used data with different channel setups and from new subjects.

Results: Based on six features only, the optimized linear classifier performed on level with the inter-expert
disagreement (<10% Mean Squared Error (MSE)) on the RT data. On data of the auditory ERP study, the same pre-
calculated classifier generalized well and achieved 15% MSE. On data of the motor imagery paradigm, we
demonstrate that the discriminant information used for BCI is preserved when removing up to 60% of the most
artifactual source components.

Conclusions: We propose a universal and efficient classifier of ICA components for the subject independent
removal of artifacts from EEG data. Based on linear methods, it is applicable for different electrode placements and
supports the introspection of results. Trained on expert ratings of large data sets, it is not restricted to the
detection of eye- and muscle artifacts. Its performance and generalization ability is demonstrated on data of
different EEG studies.

Background
Signals of the electroencephalogram (EEG) can reflect
the electrical background activity of the brain as well as
the activity which is specific for a cognitive task during
an experiment. As the electrical field generated by
neural activity is very small, it can only be recognized
by EEG if large assemblies of neurons show a similar
behavior. Resulting neural EEG signals are in the range
of micro volts only and can easily be masked by

artifactual sources. Typical artifacts of the EEG are
caused either by the non-neural physiological activities
of the subject or by external technical sources. Eye
blinks, eye movements, muscle activity in the vicinity of
the head (e.g. face muscles, jaws, tongue, neck), heart
beat, pulse and Mayer waves are examples for physiolo-
gical artifact sources, while swaying cables in the mag-
netic field of the earth, line humming, power supplies or
transformers can be the cause of technical artifacts.
Brain-Computer Interfaces (BCI) are based on the sin-

gle trial classification of the ongoing EEG signal and can
improve the life quality of disabled individuals especially

* Correspondence: irene.winkler@tu-berlin.de
Machine Learning Laboratory, Berlin Institute of Technology, Franklinstr. 28/
29, 10587 Berlin, Germany

Winkler et al. Behavioral and Brain Functions 2011, 7:30
http://www.behavioralandbrainfunctions.com/content/7/1/30

© 2011 Winkler et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.



in combination with other assitive technology [1]. The
exclusion of artifacts is of special interest for BCI appli-
cations, as the intended or unconscious use of artifacts
for BCI control are usually not desirable when the BCI
system is tested on healthy subjects. Furthermore, as
averaging methods have to be avoided, these real-time
systems BCIs rely on relatively clean EEG signals. The
same holds true for other Mental State Monitoring
applications, that monitor a subject’s mental state con-
tinuously and on a fine granular time resolution to
detect changes e.g. of wakefulness, responsiveness or
mental workload as early as possible [2].
The two physiological artifacts most problematic for

BCI applications are ocular (EOG) and muscle (EMG)
artifacts. EOG activity is either caused by rolling of the
eyes or by eye blinks which occur approx. 20 times per
minute [3]. Both result in a low-frequency activity most
prominent over the anterior head regions, with maximal
frequencies below 4 Hz. In contrast, EMG activity
(caused by chewing, swallowing, head or tongue move-
ments) is usually a high-frequency activity (>20 Hz)
which ranges from rather small to very large amplitudes
[4].
For an extensive review of artifact reduction techni-

ques in the context of BCI-systems, the reader can refer
to Fatourechi et al. [5]. Since the rejection of artifactual
trials amounts to a considerable loss of data, a method
that removes the artifacts while preserving the underly-
ing neural activity is needed. For example, linear filter-
ing is a simple and effective method if artifactual and
neural activity are located in non-overlapping frequency
bands. Unfortunately, artifacts and the brain signal of
interest do usually overlap. Nevertheless, ocular activity
can be partially removed by regression-based methods,
which subtract a part of the activity measured at addi-
tional electrooculogram (EOG) channels from the EEG
(see [6] for a review). Regression-based methods require
the reliable recording of additional EOG channels and
are limited by the fact that the EOG is contaminated by
brain activity which is removed as well. Furthermore,
they cannot eliminate non-eye activity.
If artifactual signal components and neural activity of

interest are not systematically co-activated due to a dis-
advantageous experimental design, methods of Blind
Source Separation (BSS) like Independent Component
Analysis (ICA) are promising approaches for their
separation [7,8]. A common approach is the transforma-
tion of the EEG signals into a space of independent
source components, the hand-selection of non-artifac-
tual neural sources and the reconstruction of the EEG
without the artifactual components (for an example of
independent source components, see Figure 1). While
assumptions for the application of ICA methods are
only approximately met in practice (linear mixture of

independent components, stationarity of the sources and
the mixture, and prior knowledge about the number of
components), their application usually leads to a good
separation, with only a small number of hybrid compo-
nents that contain both, artifacts and neural signals
[9-12].
Existing methods for artifact rejection can be sepa-

rated into hand-optimized, semi-automatic and fully
automatic approaches. Semi-automatic approaches
require user interaction for ambiguous or outlier com-
ponents [13,14]. While fully automated methods were
proposed for the classification of eye artifacts [15,16],
these methods do not easily generalize to non-eye arti-
facts or even require the additional recording of the
EOG [17,18]. Viola et al. and Mognon et al. [19,20] both
developed an EEGLAB plug-in which finds artifactual
independent components. Both plug-ins have a fully
automatic mode that has been shown to recognize and
reject major artifacts like eye blinks, eye movements and
heart beats, while the detection of muscular or more
subtle artifacts has not been reported. The plug-in
developed by Viola et al. relies on a user-defined tem-
plate, while Mognon’s approach does not require user
interaction.
Existing more flexible approaches for the general clas-

sification of different artifact types were reported for
EEG data of epileptic patients [21], where the authors
report a Mean Squared Error (MSE) of approx. 20% for
their system based on a Bayesian classifier. Halder et al.
[22] report a classification error below 10% for their
Support Vector Machine (SVM) based system for a
fixed number of electrodes if dedicated artifact record-
ings are available for the classifier training. But even if
such optimized conditions are present, difficulties of
separating muscle artifact components from neural com-
ponents are common [22].
The review of the existing literature did not reveal a

systematic screening of potentially discriminant features
for the general task of artifact detection/removal. More-
over, most approaches restrict themselves to part of the
available information, e.g. rely on spatial patterns only
[19], or spatial patterns and spectral features [22], or
spatial pattern and temporal features [20].
Our proposed solution for a general artifact detection

method is motivated by the needs of EEG practitioners.
First, it is desirable that a method efficiently and reliably
detects all classes of artifacts, e.g. is not restricted to
eye-, heart beat-, or muscle artifacts. Second, a practical
method must be applicable post-hoc, i.e. without the
need of dedicated artifact recordings at the time of the
experiment. Third, it is difficult to convince EEG practi-
tioners to use a method of artifact rejection if it is a
black box and refuses introspection. As the goal must
be to develop a method, that delivers interpretable and
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easy to understand results, we decided for a linear clas-
sification method. Luckily, linear methods have proven a
high performance for a number of classification tasks in
the field of EEG-based BCI systems. However, to be able
to estimate the performance loss compared to a poten-
tially better, but difficult to interpret, non-linear classifi-
cation method, the results of a Gaussian SVM are
reported in parallel.
We decided to use a sparse approach (sparsity in the

features) although it is a mixed blessing. It leads to a
trade-off between efficiency and interpretability, as
redundant but slightly less discriminative features are
removed with high probability from the overall set of
features. This has to be kept in mind during the analysis
of results. To reach the goal of a sparse method that
delivers physiologically interpretable results, we decided
to incorporate a thorough feature selection procedure in
combination with a linear classification method that is
based on features of all three available information
domains of EEG data: the spatial domain (e.g. patterns
of independent components), the frequency domain and
the temporal domain.
The paper is organized as follows: In the methods sec-

tion, a reaction time (RT) paradigm is introduced, as
data from this study forms the basis for the construction
of the proposed artifact detection method. After the

signal pre-processing methods (including a temporal
variant of ICA) are introduced, we describe 38 features
that are candidates for the artifact discrimination task.
Based on labels provided by EEG experts, a thorough
feature selection procedure is described, that is used to
condense the 38 features to a small subset. Furthermore,
classification methods are introduced. The methods sec-
tion ends with a description of two other EEG para-
digms (auditory Event Related Potential (ERP) and
motor imagery for BCI), that will be used to validate the
generalization approach of the proposed artifact classi-
fier. In the results section, the outcome of the feature
selection procedure is given, together with the artifact
classification performance on unseen data of the RT
paradigm, data of a unseen auditory ERP paradigm.
Finally the method is applied in the context of a motor
imagery BCI setup, before the paper closes with a
discussion.

Methods
In the following subsections, we will describe how the
proposed new artifact classification method is set up.
Then we will introduce two further studies that are uti-
lized to test the classifier’s generalizability.
Participants of the studies described below provided

verbal and written informed consent and were free to

Figure 1 Three example independent source components. Time series (first column), spectrum (second column), filter (third column) and
pattern (fourth column) of three components. The first row (a) shows an alpha generator in the occipital lobe. The second row (b) shows a rare
muscle artifact component with an increased spectrum in higher frequencies. The third line (c) shows an eye artifact component that appears
regularly, has an increases spectrum in lower frequencies and a typical front-back distribution in the pattern.
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stop their participation at any time. All collected data
was anonymized before any subsequent analysis or pre-
sentation took place.

Classifier Construction using a RT study
The artifact classifier is set up based on labeled indepen-
dent components gained from a reaction time (RT)
study.
Experimental Setup
Data from 12 healthy right-handed male subjects were
used to train and to test the proposed automated com-
ponent classification method. Every subject participated
in one EEG recording session of approx. 5 hours dura-
tion. EEG was recorded from 121 approx. equidistant
sensors and high pass filtered at 2 Hz. During this ses-
sion, 4 repeated blocks of 3 different conditions (C0, C1,
C2) were performed. Each block lasted approx. 45 min-
utes. During all three conditions, subjects performed a
forced-choice left or right key press reaction time task
upon two auditory stimuli in an oddball paradigm. The
key press actions were performed with micro switches
attached to the index fingers. During condition C0 sub-
jects had to gaze at a fixation cross without any further
visual task. Condition C1 introduced an additional dis-
traction, as a video of a driving scene had to be watched
passively on a screen. Condition C2 introduced an addi-
tional second task: subjects infrequently had to follow
simple lane change instructions and control a steering
wheel. By design, EEG recordings under condition C2
were inevitably more prone to muscle and eye artifacts,
while C1 possibly stimulated eye movement artifacts,
but not muscle artifacts. However, all subjects had been
instructed during all conditions to avoid producing
artifacts.
Unmixing and data split
To avoid the artificial split of signal components due to
the high dimensionality of the data, the separation of
the EEG signals by an ICA method was preceded by a
dimensionality reduction by Principal Component Ana-
lysis (PCA) from 121 EEG channels in the sensor space
into k = 30 PCA components. This choice of k was
based on previous experience, but was probably not the
optimal choice. The TDSEP algorithm (Temporal Dec-
orrelation source SEParation) [23] was used to trans-
form the 30 PCA components into 30 independent
source components. PCA and TDSEP were applied in a
subject specific way, i.e. PCA and TDSEP matrices were
calculated seperately for each subject.
TDSEP is a BSS algorithm to estimate a linear demix-

ing

WX = S (1)

of a given multivariate time series X = (x1,..., xk)
T into

unknown, assumed mutually independent source com-
ponents S = (s1,..., sk)

T. Note that both the demixing W
and the source components S are unknown, and that
BSS algorithms differ in the definition of independence
between components. While ICA algorithms exploit
higher order statistics, TDSEP relies on second-order
statistics by taking the temporal structure of the time
series into account. TDSEP amounts to finding a demix-
ing W which leads to minimal cross-covariances over
several time-lags between all pairs of components of S.
For a mathematical discussion, let

�(τ ) := E(Xw(t)XT
w(t − τ )) be the cross-covariance

matrix of the whitened data Xw at time-lag τ, where the
whitening transformation linearly decorrellates and
scales the data such that Σ(0) = I. Consider now that (1)
Whitening reduces the BSS problem to finding an
orthogonal demixing matrix W̃; (2) W̃�(τ )W̃T equals
the cross-covariance matrix of the source components S
at time-lag τ; and (3) The independence assumption
yields that the cross-covariance matrix of the source
components S at time-lag τ is a diagonal matrix. TDSEP
thus computes W̃ as the matrix that jointly diagonalizes
a set of whitened cross-covariances Σ(τ). Here we use τ
= 1,..., 99.
In the context of EEG signals, TDSEP finds k indepen-

dent components contributing to the scalp EEG. They
are now characterized by their time course, a spatial
pattern given by the respective column of the mixing
matrix A := W-1, and a spatial filter given by the respec-
tive row of the demixing matrix W. The pattern con-
tains the projection strengths of the respective
component onto the scalp electrodes, whereas the filter
gives the projection strength of the scalp sensors onto
the source component (see, e.g [24]). All resulting
source components were hand labeled into artifactual
and non-artifactual components by two experts who
each labeled one half of the ICA components based on
four plots per component, namely the time series, the
frequency spectrum and one scalp plot of the compo-
nent’s filter and one of its pattern. Not all components
were unambigious but instead contained a mixture of
neural and artifactual activity. Discarding all those com-
ponents which contain traces of artifacts would remove
too much of the relevant neural activity. Therefore, only
those mixed components were labeled as artifacts, that
revealed a relatively small amount of neural activity
compared to the strength of the artifact contained.
For the training of the proposed automated classifica-

tion method, 23 EEG recordings of 10 minutes duration
were taken from the first experimental block only, lead-
ing to 690 labeled source components. Neural
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components and artifact components were approx.
equally distributed (46% vs. 54%). Figure 1 shows typical
examples of two artifacts and one neural component.
The trained classifier was tested on 36 unseen EEG

recordings from the third experimental blocks. Among
these 1080 source components were 47% neuronal com-
ponents and 53% artifact components.
Feature Extraction
In order to provide substantial information to an auto-
mated classification method, we construct an initial fea-
ture set that contains 13 features from a component’s
time series, 9 features from its spectrum and 16 from its
pattern. Based on this collection of 38 features a subset
of the most discriminative features is determined in a
feature selection procedure.
Features derived from a component’s time series

1. Variance of a component’s time series. It is not
possible to determine the variances of the indepen-
dent components, as both S and A := W-1 are
unknown, and the solution is thus undetermined up
to scaling. We estimate the impact one independent
component si has on the original EEG by calculating
Var(std(Ai) · si) where Ai denotes the respective pat-
tern. The idea here is to calculate the standard
deviation of one independent component when its
corresponding pattern has unit variance.
2. Maximum Amplitude
3. Range of the signal amplitude
4. Max First Derivative, approximated for the dis-

crete signal s(t) in ti by s′(ti) ≈ s(ti+1)−s(ti)
1

5. Kurtosis
6. Shannon Entropy
7. Deterministic Entropy, a computationally tract-
able measure related to the Kolmogorov complexity
of a signal [25]
8. Variance of Local Variance of time intervals of 1
s and of 15 s duration (2 separate features)
9. Mean Local Variance of time intervals of 1 s
duration, and of 15 s duration (2 separate features)
10. Mean Local Skewness, the mean absolute local
skewness of time intervals of 1 s and 15 s duration
(2 separate features)

The above 13 features were all logarithmized in a last
step. With exception of the Variance feature all were
calculated after standardization of the time series to var-
iance 1. These features describe outliers in terms of
unusual high amplitude values, as they are typically pre-
sent in blinks and muscle artifacts. Furthermore, they
are sensitive to non-stationarities and non-normal
higher order moments in the time series signal, as they
can be expected by muscle activity which typically is not
present equally strong over the full duration of 10 min.

Features derived from a component’s spectrum
1. k1, l, k2 and Fit Error describe the deviation of a
component’s spectrum from a prototypical 1/fre-
quency curve and its shape. The parameters k1, l, k2
>0 of the curve

f �→ k1

f λ
− k2 (2)

are determined by three points of the log spectrum:
(1) value at 2 Hz, (2) local minimum in the band 5-
13 Hz, (3) local minimum in the band 33-39 Hz.
The logarithm of k1, l, k2 and of the mean squared
error of the approximation to the real spectrum are
used as features.
The spectrum of muscle artifacts, characterized by
unusual high values in the 20-50 Hz range, are thus
approximated by a comparatively steep curve with
high l and low k1.
2. 0-3 Hz, 4-7 Hz, 8-13 Hz, 14-30 Hz, 31-45 Hz,
the average log band power of the δ (0-3 Hz), θ (4-7
Hz), a (8-13 Hz), b (14-30 Hz) and g (31-45 Hz)
band.

Features derived from a component’s pattern
1. Range Within Pattern, logarithm of the differ-
ence between the minimal and the maximal activa-
tion in a pattern
2. Spatial Distance of Extrema, logarithm of the
Euclidean norm of the 2D-coordinates of the mini-
mal and maximal activation in a pattern
3. Spatial Mean Activation Left, Left Frontal,
Frontal, Right Frontal, Right, Occipital, Central,
logarithm of the average activation in 7 groups of
electrodes as depicted in Figure 2
4. 2DDFT. Pattern without a “smooth” activity dis-
tribution do not originate from an easily traceable
psychological source and are thus artifacts or mixed
components. The spatial frequency of a pattern can
be described by means of a two-dimensional discrete
Fourier transformation. As a first step, the pattern is
linearly interpolated to a quadratic 64x64 pattern
matrix. The feature 2DDFT is the average logarith-
mic band power of higher frequencies of the 1st and
4th quadrant (see Figure 3) of the 2D-Fourier spec-
trum of the pattern matrix.
5. Laplace-Filter. Laplace-filtering leads a second
way of finding spatially high frequent patterns, as
these have more defined edges. Similar to the
2DDFT-Feature, the pattern is linearly interpolated
to a quadratic 64 × 64 pattern matrix. Then, a 3 × 3
Laplace filter is applied. The feature is defined as the
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logarithm of the Frobenius norm of the resulting
matrix.
6. Border Activation. This binary feature captures
the spatial distribution at the borders of a pattern. It
is defined as 1 if either the global maximum of the
pattern is located at one of the outmost electrodes
of the setup in Figure 4 (right), or if the local maxi-
mum of an electrode group in Figure 4 (left) is
located at the outmost electrode of the group and if
that local maximum deviates at least 2 standard
deviations from the group average. Otherwise the
feature is defined as -1. The idea behind this feature
is that a pattern with maximal activation at its bor-
der is unlikely to be generated by a source inside the
brain - it thus indicates an artifact.
7. Current Density Norm of estimated source distri-
bution and strongest source’s position x, y, z. ICA
itself does not provide information about the

locations of the sources S. However, ICA patterns
can be interpreted as EEG potentials for which a
physical model is given by a = Fz. Here, z Î ℝ3m are
current moment vectors of unknown sources at m
locations in the brain and F Î ℝk× 3 m describes the
mapping from sources to k sensors, which is deter-
mined by the shape of the head and the conductiv-
ities of brain, skull and skin tissues. We consider m
= 2142 sources which are arranged in a 1 cm grid.
Source estimation can only be done under additional
constraints since k ≪ m. Commonly, the source dis-
tribution with minimal l2-norm (i.e., the “simplest”
solution) is sought [26]. This leads to estimates

min
z

||Fz − a||2 + λ||�z||2 = (FTF + λ�T�)−1FTa := Jλa (3)

where Γ approximately equalizes the cost of dipoles
at different depths [27] and l defines a trade-off
between the simplicity of the sources and the fidelity
of the model.

Since Eq. 3 models only cerebral sources, it is nat-
ural that noisy patterns and patterns originating out-
side the brain can only be described by rather
complicated sources, which are characterized by a
large l2-norm. For an example, see Figure 5. We pro-
pose to use f := log||�z|| = log||�Jλã|| as a feature
for discriminating physiological from noisy or arti-
factual patterns. Here ã := a/||a|| are normalized ICA
patterns and l = 100 was chosen from
{0,1,10,100,1000} by cross-validation. To allow for a
meaningful comparison of different f values over set-
tings of varying numbers of electrodes, we pre-calcu-
lated ΓJl on 115 electrodes and used only those rows
that corresponded to the recorded electrodes. Note
that while this approach is simple, it may not be the
optimal choice when the set of electrodes varies.
Assuming a pattern is generated by only one source,
we can estimate its 3D-coordinates x, y, z as the

Figure 2 Scalp electrode sets. Mean activation in the 7 colored
electrode groups are used as features.

Figure 3 The feature 2DDFT. The feature 2DDFT is the average
logarithmic band power of higher frequencies of the 1st and 4th
quadrant of the 2D-Fourier spectrum of the pattern matrix.

Figure 4 The feature Border Activation. Electrode groups (left)
and electrodes (right) used to determine the feature Border
Activation.
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location of maximal current density. Note that this is
only a very simple source localization method.

Feature Selection and Classification
We conduct an embedded feature selection by using the
weight vector of a Linear Programming Machine (LPM)
[28]. Like all binary linear classifiers it finds a separating
hyperplane H : ℝd ∋ x ↦ sign(wT · x + b) Î {-1, 1} char-
acterized by a weight vector w and a bias term b. If the
features are zero-mean and have same variance, their
importance for the classification task can be ranked by
their respective absolute weights |wi|. The LPM is
known to produce a sparse weight vector w by solving
the following minimization problem:

min ||w||1 + C
n∑

i=1

ξi

s.t. yi(wT · x + b) ≥ 1 − ξi (i = 1, . . . , n)

ξi ≥ 0 (i = 1, . . . , n)

(4)

We thus apply a LPM to the training data in a 5 × 10
cross-validation procedure with the goal to obtain a
ranking of the features according to |E(wi/||w||)|.
Beforehand, the LPM-hyperparameter C was set to C =
0.1 by a 5 × 10 cross-validation heuristic, such that
LPM yielded good classification results while using a
sparse feature vector, i.e. we selected C with the mini-
mal number of features essential for the classification

task (defined by |E(wi/||wi||)| >0.1) while the cross-vali-
dation error deviates less than one standard error from
the minimal cross-validation error.
Having obtained a ranking of the features, the addi-

tional information needed is how many of the best-
ranked features are optimal for classification. With the
goal in mind to find a good trade-off between feature
size and error we proceed as follows: For every rank
position, we compute the cross-validation error obtained
by a classification based on the best-ranked features.
Then the number of best ranked features is selected to
be the minimum number of features yielding a cross-
validation error which deviates less than one standard
error from the minimal cross-validation error.
Obviously, the number of features depends on the

classification method. We compare a LPM, a non-linear
Support Vector Machine (SVM) with Gaussian kernel
[29] and a regularized Linear Discriminant Analysis
(RLDA) [24], where we use a recently developed
method to analytically calculate the optimal shrinkage
parameter for regularization of LDA [30,31]. Since a
nested cross-validation is computational expensive, the
hyperparameters of SVM and LPM are set by an outer
cross-validation, i.e. they are estimated on the whole
training set which leads to a slight overfitting on the
training data.
As a last step, the final classifier was trained on the

full training data (690 examples) on the selected fea-
tures, and tested on unseen test data (1080 examples).

Validation in an auditory ERP study
To evaluate the artifact detection performance beyond
the training domain, data from 18 healthy subjects were
used to test the proposed automated component classifi-
cation method in a completely different setup of an
auditory ERP study.
Experimental Setup
A group of 18 subjects of 20 to 57 years of age (mean =
34.1, SD = 11.4) underwent an EEG recording of
approx. 30 min duration using 64 Ag/AgCl electrodes of
approx. equidistant sensors. EEG was band-pass filtered
between 0.1-40 Hz. Note that this setup differs from the
RT experiment, where EEG was recorded from 121 elec-
trodes and high-pass filtered at 2 Hz.
The subjects were situated in the center of a ring of

six speakers (at ear height). During several short trials
they listened to a rapid sequence (Stimulus Onset Asyn-
chrony = 175 ms) of six auditory stimuli of 40 ms dura-
tion. The six stimuli varied in pitch and noise. Each
stimulus type was presented from one speaker only, and
each speaker emitted one stimulus type only such that
direction was a discriminant cue in addition to the
pitch/noise characteristics. Subjects had to count the
number of appearances of a rare target tone, that was

Figure 5 The feature Current Density Norm. (a) Two example
patterns with high Current Density Norm f = log ||Γz||. (b) Two
example patterns with low Current Density Norm.
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presented in a pseudo-random sequence together with 5
frequent non-target tones (ratio 1:5).
Unmixing and Classification
A PCA reduced the dimensionality of the EEG channels
to 30 PCA components. Then, the TDSEP algorithm
was used to transform the 30 PCA components into 30
independent source components. The resulting 540
source components were hand labeled by two experts
into artifactual and non-artifactual source components.
One of the experts had participated in the rating of the
RT-study. Both experts rated all independent compo-
nents. On average, the experts identified 28% neuronal
components and 72% artifactual components (expert 1:
25% neuronal components, expert 2: 31% neuronal com-
ponents). The labeled data was used to test how the
artifact classifier generalizes to new data acquired in a
different experimental setup by training the classifier
solely on the training data from the RT experiment and
applying it to this unseen data set.

Application to Motor Imagery BCI
To investigate the possibility of removing relevant
neural activity, we incorporated our automatic ICA-clas-
sification step in a motor-imagery BCI system. In this
offine analysis we investigate how an ICA-artifact reduc-
tion step affects the classification performance of a
motor imagery BCI system based on the Common Spa-
tial Patterns (CSP) method. For a detailed discussion of
CSP the reader is referred to [32].
Experimental Setup
Eighty healthy BCI-novices performed first motor ima-
gery with the left hand, right hand and both feet in a
calibration (i.e. without feedback) measurement. Every 8
s one of three different visual cues (arrows pointing left,
right, down) indicated to the subject which type of
motor imagery to perform. Three runs with 25 trials of
each motor condition were recorded. A classifier was
trained using the pair of classes that provided best dis-
crimination: CSP filters were calculated on the band-
pass filtered signals and the log-variance of the spatially
filtered signals were used to train a LDA. In a feedback
measurement subjects could control a 1D cursor appli-
cation in three runs of 100 trials [33].
Motor Imagery BCI preceded by ICA-based artifact
reduction
The steps conducted to incorporate the artifact reduc-
tion are illustrated in Figure 6. The first step consists of
a dimensionality reduction from about 90 EEG channels
in the sensor space into k = 30 PCA components. As in
the previous experiments, TDSEP was used to transform
the 30 PCA components into 30 independent source
components. Then, the component classifier trained on
the RT experiment was applied. The components were
ranked based on the classifiers output, which was used

as a surrogate for the probability of being an artifact.
Retaining a smaller or larger number of sources corre-
sponds to an either very strict or soft policy for the
removal of potential artifactual sources. We retained 6
to 30 source components of the most probable true
neural sources, and removed the others. Further analysis
was performed on the remaining sources, i.e. CSP filters
were determined on the remaining independent source
components and the log-variance of the spatially filtered
signals were used to train an LDA.
Note that ICA artifact reduction methods usually

reconstruct the EEG from the remaining neural sources.
However, CSP solves an eigenvalue problem and
requires the covariance matrix of the data to have full
rank. Thus, CSP cannot be applied to the reconstructed
EEG.
The application to the feedback measurement in a

manner that allows for real-time BCI applications is
straightforward: After un-mixing the original data
according to the ICA filters determined on the calibra-
tion measurement, the previously determined 6 to 30
sources were selected for band-pass and CSP filtering
and log-variance determination in order to form the test
data features. To estimate the influence of the artifact
reduction step on BCI performance, we compared the
classification performance with artifact reduction
(depending on the number of selected sources) with the
standard CSP procedure using no artifact reduction.

Results
In the following subsections, the results of the classifier
model selection and its additional validation on new
data sets is presented.

Model Selection: RT study
The ranking of the features obtained by applying a LPM
to the training data set of the RT study is shown in
Table 1. Figure 7 shows the cross-validation errors for
SVM, RLDA and LPM plotted against the size of the
feature sub-set used for classification. The shape of the
three curves reveals that at first, classification perfor-
mance improves when adding features to the feature set.
These features contain necessary but not redundant
information. However, adding more than a certain num-
ber of features does not improve classification perfor-
mance - these features only contain redundant
information. Classification error slightly increases when
more features are used for the classification task, which
indicates that the classifier overfits on noisy and irrele-
vant features.
The fact that LPM performance is in the range of the

RLDA classifier indicates that the feature ranking was
suitable for our analysis (and not just for the LPM clas-
sifier). Given the ranking, the minimum number of
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features yielding a cross-validation error which deviates
less than one standard error from the minimal cross-
validation error is 9 for the SVM and only 6 for the
RLDA. The SVM classifier slightly outperforms the
RLDA classifier on the training data, but since our goal
is to construct a simple linear classifier, we decided to
use the RLDA classifier with the 6 best-ranked features.
Notice that while SVM outperforms RLDA on the train-
ing data, this effect might be due to overfitting and dis-
appears on the test data, as is shown in the next section.
The 6 best-ranked features are Current Density Norm,

Range Within Pattern, Mean Local Skewness 15 s, l, 8-
13 Hz and FitError. They incorporate information from
the temporal, spatial and frequency domain.

Validation 1: RT study
Testing the trained classifier on unseen data from the
RT study (1080 examples from experimental block 3)
leads to an mean-squared error (MSE) of 8.9% only,
which corresponds to a high agreement with the expert’s
labeling. Interestingly, testing a trained SVM classifier
(based on 9 selected features) leads to an error of 9.5%.
Thus, after feature selection, the RLDA classifier per-
forms as good as a SVM classifier on unseen test data.
Let’s take a moment to interpret the obtained classi-

fier: The weight vector w is given in Table 2. It shows

that a high current density norm of a component indi-
cates an artifactual component. Recall from the defini-
tion of the Current Density Norm feature that these
components are in fact difficult to explain by a promi-
nent source within the brain. Furthermore, components
with a high range within the pattern (i.e. outliers in the
pattern), a high local skewness (i.e. outliers in the time
series), high l (i.e. a steep spectrum typical for muscle
artifacts) and low spectral power in the 8-13 Hz range
(i.e. no prominent alpha peak) are rated as artifacts by
the classifier. Interestingly, a low FitError, i.e. a low
error when approximating the spectrum by a 1/f curve,
indicates an artifact for the classifier. This is due to the
fact that components which have no alpha peak in the
spectrum are most probably artifacts. Notice that the
FitError feature in itself is not very informative, because
a high FitError cannot distinguish between components
with a large alpha peak (which contain most probably
neural activity) and components with an unusual high
spectrum in higher frequency (which indicates muscle
activity). However, in combination with the other five
features, the FitError feature carries additional informa-
tion which improve classification performance.
It is interesting to take a closer look at the perfor-

mance of single features, which is also given in Table 2.
The best one, Current Density Norm, leads to a MSE of

Figure 6 Artifact reduction step included in the standard CSP-procedure. The linear artifactreduction transformation of the original EEG into
6 - 30 signal components is calculated in the calibration phase. This transformation is applied to the feedback data.
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14.1% on the test data of the RT study. The combina-
tion of the six features from all three domains improves
the error substantially compared to even the best single
feature. This shows that features which are far from
optimal in single classification have a positive contribu-
tion in combination with other features.
Looking at the complete test set of 1080 components,

75 of them were misclassified as artifacts and 21 compo-
nents were misclassified as neural sources. A detailed

visual analysis of these cases reveals, that most of them
were mixed components that contained both, artifacts
and brain activity. Out of the 21 components which
were misclassified as neural activity only two were eye
movements and none were blinks. In some rare cases,
examples which had been mislabeled by the expert
could be identified. Figure 8 shows an example of a mis-
classified mixed component.
To quantify the classification performance on muscle

artifacts, we asked one expert to review the 574 artifac-
tual components of the test set for muscle activity. The
expert identified 388 components which contained mus-
cle activity (which corresponds to 67.5% of the artifac-
tual components and 17.2% of all the components). Out
of the 21 artifactual components which were

Table 1 Ranking of features obtained by LPM.

Feature Weight

Current Density Norm

Range Within Pattern

Mean Local Skewness 15 s

l
8-13 Hz

FitError

Border Activation

2DDFT

Spatial Mean Activation Central

Max First Derivative

Variance

k2
Spatial Mean Activation Left

Spatial Mean Activation Left Frontal

Laplace-Filter

Mean Local Variance 15 s

14-30 Hz

4-7 Hz

Mean Local Variance 1 s

Spatial Distance of Extrema

Spatial Mean Activation Occipital

k1
Maximum Amplitude

y

Spatial Mean Activation Right

Kurtosis

x

0-3 Hz

Deterministic Entropy

Spatial Mean Activation Frontal

z

Variance of Local Variance 1 s

Range

Spatial Mean Activation Right Frontal

Variance of Local Variance 15 s

Mean Local Skewness 1 s

31-45 Hz

Shannon Entropy

The diameter of the black circles visualizes the absolute LPM weights |E(wi/||
w||)| per feature after learning on the training data set. (The LPM-
hyperparameter C had been set to C = 0.1 based on the cross-validation
performance.)
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Figure 7 Cross-validation error for SVM, RLDA and LPM against
the number of best-ranked features. A 10-fold cross-validation
was repeated 5 times and standard errors are plotted. The SVM and
LPM hyperparameters were selected by an outer cross validation.
The number of 6 best-ranked features was determined for building
the final classifier, as the estimated error of the RLDA starts to
increase significantly for higher numbers of features.

Table 2 Feature weight vector and test errors.

Feature Feature
weight

Test Error
RT

Test Error
ERP

Current Density Norm 0.342 0.141 0.488

Range Within Pattern 0.574 0.151 0.186

Mean Local Skewness
15 s

0.317 0.309 0.442

l 0.569 0.177 0.144

8-13 Hz -0.219 0.166 0.138

FitError -0.286 0.424 0.640

Combined 0.089 0.147

Feature weights wi for each feature xi of the classifier H : ℝ6 ∋ x a sign(wT · x
+ b) Î {-1, 1} with 1 ≙ Artifact and -1 ≙ Neuronal activity. Test error (MSE) for
the 6 single features and for the combined classification for the RT
experiment and the ERP experiment.
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misclassified as neuronal components, only 12 contained
muscle activity (57.1%). This indicates that muscle arti-
facts were handled equally well by the classifier as other
types of artifacts.
The performance of a system on the classification task

has to be judged in the light of the fact that inter-expert
disagreements on EEG signals are often above 10% [34].
For our data, we asked one expert to re-label the 690
components of the training set, two years after the origi-
nal labeling. The MSE between the new and the former
rating was 13.2%. Thus, the prediction performance of
our proposed classification method was comparable to
the ranking of an human expert.

Validation 2: Auditory ERP study
The classifier trained on RT data and applied to 540
components of the auditory ERP study leads to an aver-
age MSE of 14.7% only for the classification of artifacts
(expert 1: 15.7%, expert 2: 13.7%). On average over both
experts, 18 of the 540 components were misclassified as
artifacts and 61.5 components were misclassifed as
neural sources (expert 1: 12 - 73, expert 2: 24 - 50).
Table 2 also shows the classification results for every

single feature and for the combined classification for the
auditory ERP data. The classification performance of the
three features Range Within Pattern, l and 8-13 Hz is
comparable to those in the RT experiment. They general-
ize very well over different experimental setups. However,
the single feature classification performance for the
remaining three features, Current Density Norm, Mean
Local Skewness 15 s, and FitError, was close to chance
level. This does not imply, however, that these features
are unimportant for the classification tasks in the com-
bined feature set. To asses the relevance of each feature
in the combined feature set, we trained a RLDA on the
ERP data using the labels of expert 1 and report the fea-
ture weights of the weight vector - Current Density Norm
0.139; Range Within Pattern 0.355; Mean Local Skewness
15 s 0.255; l 0.531; 8-13 Hz -0.710; FitError 0.059. We
found that while the feature weight of Current Density
Norm and Mean Local Skewness 15 s slightly decreased
compared to the feature vector trained on the RT data,
these were still far away from zero and thus carry infor-
mation for the classification task.

Validation 3: Application to Motor Imagery BCI
Figure 9 (left) plots the BCI classification error (1-AUC)
against the number of remaining independent

Figure 8 Example for a misclassified component . Mixed
component that combines central alpha activity and slow Mayer
Waves [35]. The human expert considered the mixed component a
neural source, but the classifier labeld it as an artifact.

Figure 9 Influence of ICA-based artifact reduction in a motor imagery BCI tested with 80 subjects. Left: box plot of classifition errors (1-
AUC) against the number of remaining independent sources compared with no artifact reduction. Right: scatter plot of classification errors (1-
AUC) of each subject when removing 10 source components vs. using all 30 source components.
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components, including one entry for the standard proce-
dure without artifact reduction. Reducing the dimen-
sionality of the data to 30 dimensions by PCA does not
affect BCI performance. Moreover, consecutively remov-
ing components does not impair BCI performance at
first, as these are artifactual components according to
the classifier. Performance breaks down only when a
strict removing policy is applied and less than about 12
sources (out of ~90 original channels) are retained,
which have been ranked as neural sources by the classi-
fier. The ranking of the classifier was confirmed by a
visual analysis of the source components. Following the
ranking of very probable artifacts to less probable arti-
facts, the inspection resulted in clear artifactual compo-
nents to components that contained mixtures of neural
and artifactual activity.
Figure 9 (right) shows a scatter plot of classification

errors (1-AUC) for each subject when removing 10
source components vs. using all 30 source components.
For this soft policy for removing artifactual components
the variance between subjects is very small, especially
for subjects with good classification rates.

Discussion
To summarize, we have constructed a subject-indepen-
dent, fast, efficient linear component classification
method that automates the process of tedious hand-
selection of e.g. artifactual independent components.
The proposed method is applicable online and gener-
alizes to new subjects without re-calibration. It delivers
physiologically interpretable results, generalizes well
over different experimental setups and is not limited
to a specific type of artifact. In particular, muscle arti-
facts and eye artifacts (besides other types) are
recognized.
The proposed artifact classifier is based on six care-

fully constructed features that incorporate information
from the spatial, the temporal and the spectral domain
of the components and have been selected out of 38 fea-
tures by a thorough feature selection procedure. After
its construction on data from a reaction time experi-
ment, the classifier’s performance was validated on two
different data sets: (1) on unseen data of a second con-
dition of the original reaction time study - here the clas-
sifier achieved a classification error of 8.9%, while
disagreement between two ratings of experts was 13.2%.
(2) on unseen data of an auditory oddball ERP study -
here the classifier showed a classification error of 14.7%
in comparison to 10.6% of disagreement between
experts. The classification error is remarkable low given
that the second study has been recorded with half the
number of electrodes, under a completely different para-
digm, and contained a significantly higher proportion of
artifactual components.

We could show that the generalization over different
EEG studies is possible, which is in line with the find-
ings of Mognon et al. [20] who demonstrated the gener-
alization of an artifact classifier to a different laboratory
and to a different paradigm. Although their method is
simple and efficient, it so far does not recognize muscle
artifacts.
Compared to the classification results of Halder et al.

[22], who reported 8% of error for muscle artifacts and
1% error for eye artifacts, the classification error of our
solution is slightly higher. A major difference between
the two approaches is the way the training data was
generated. Halder et al. reported, that subjects had spe-
cifically been instructed to produce a number of artifacts
under controlled conditions for the classifier training. It
can be speculated that such a training set contains
stronger artifacts and less erroneous labels. Nevertheless,
the results of Halder et al. were generated based on EEG
recordings of only 16 electrodes. Without adjustments,
it can only be applied to EEG recordings with 16 elec-
trodes. In contrast, our method is applicable to different
EEG setups. However, we only tested the generalization
ability over different EEG studies on electrode sets that
covered the whole scalp with approx. equidistant sen-
sors. Whether the classifier is applicable to deal with
EEG data recorded with further reduced electrode sets
remains an open question that could be analyzed in the
future.
To assess the danger of false positives introduced by

our artifact detection method, we evaluated the influ-
ence of a strong artifact reduction on the classification
performance of a standard motor imagery BCI task. An
offline analysis of data acquired from 80 healthy subjects
demonstrated that removing up to 60% of the sources
(that were ranked according to their artifact classifier
rating) did not impair the overall BCI classification per-
formance. Note that we discarded the same number of
components per subject in order to analyse the effect of
false positives. In a practical BCI-system, it would prob-
ably be beneficial to apply a threshold on the propability
of being an artifact per component instead.
While the suitability of our approach to remove large

artifactual subspaces of the data is a welcome result, an
open question remains that addresses the potential per-
formance increase by careful artifact removal. Why
didn’t the removal of few artifactual sources improve
the average motor imagery BCI performance? It is
known that CSP is rather prone to outliers if the train-
ing data set is small [36]. Strategies to overcome this
problem include the use of regularization methods for
CSP (such as invariant CSP [37] or robust CSP [38]),
the explicit removal of outlier trials or channels and reg-
ularization in the following classification step. As the
standard evaluation procedures for motor imagery data
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contained counter measures already (channel rejection
and trial rejection based on variance), and the number
of training data was considerably large, the overall influ-
ence of artifacts on the motor imagery data set probably
was small. Furthermore, we observed, that for subjects
with very good motor imagery classification rates, arti-
facts did not play any role at all. We conjecture that in
the other subjects, artifacts either obstructed the rele-
vant neural activity (cases where a slight improvement
by artifact removal was obtained) or artifacts played
some role in the control of the BCI system (cases where
artifact removal slightly reduced the performance).
In addition to the construction of an efficient, sparse

and interpretable classifier, our feature-selection metho-
dology leads to valuable insights into the question of
which features are best suited for the discrimination of
artifactual and neuronal source components. However,
it needs to be kept in mind that while the six identified
features were arguably an exceptionally suitable feature
set, these features were probably not the overall optimal
choice. Furthermore, the question remains if the
selected features generalize to other EEG data. Single
feature classification performance drops on the ERP
data for three of the six features (Current Density Norm,
Mean Local Skewness 15 s and Fit Error). However, both
Current Density Norm and Mean Local Skewness 15 s
carry important information in the combined classifica-
tion (when used together with the other four features).
Still, the non-redundant information carried by the Cur-
rent Density Norm feature drops substantially – a pro-
blem that may be caused by the use of a fixed matrix
ΓJl which had been determined on the RT setup of 115
electrodes. We found no obvious explanation for the
importance change for the Fit Error feature, however.
In any case, several insights can be gained concerning

the construction of a suitable feature set for the classifi-
cation of artifactual components in general. First, the
spatial, the temporal and the spectral domain of the
components contain non-redundant information. Sec-
ond, features that quantify aspects of the pattern’s activ-
ity distribution, not its single values, are discriminative.
Features that were ranked high in our feature selection
procedure were the range within the pattern, a feature
based on the simplicity of a source separation, features
that analyzed the spatial frequency and a binary feature
which indicates if the maximal activation is on the bor-
der of the pattern. Third, features that model the shape
of the power spectrum as a 1/f-curve as well as the
absolute spectrum in the a range are discriminative.
Fourth, features that quantify outliers in the time series
such as kurtosis, entropy, and mean local skewness,
seem to be important but redundant. We analyzed 12
such features and only one obtained a high ranking in
the feature selection. Last but not least, a linear

classification method seems to be sufficient when the
feature set is carefully constructed.
The classification difficulties of expert raters and of

proposed automatic classification methods reflect the
fundamental fact that any ICA-based artifact reduction
method depends crucially on the quality of the source
separation into clear artifactual and neuronal source
components. A good source separation method avoids
mixed components that contain both, neural and artifac-
tual activity as well as arbitrary splits of a single source
into several components. In the following, both type of
errors are briefly discussed.
Blind source separation is a difficult problem by itself,

and various approaches have been proposed to solve it
(see, e.g. [39] for a review). In the context of EEG sig-
nals, the goal is to find a source separation that mini-
mizes the amount of mixed components. The choice of
TDSEP for the pre-processing of the EEG data was
motivated by the ability of the algorithm to utilize tem-
poral structure in the data. Although this is not a
unique feature of TDSEP, this approach seemed to be
suitable for the processing of EEG data, which is com-
posed of multidimensional time series signals with tem-
poral dependencies. Moreover, research indicates that
methods based on second-order statistics might outper-
form methods based on higher-order statistics in the
removal of ocular artifacts [10,22]. Although, as Fitzgib-
bon stated, “the quality of the separation is highly
dependent on the type of contamination, the degree of
contamination, and the choice of BSS algorithm” [9], a
thorough test of various ICA methods is out of the
scope of this paper.
The second kind of error, the arbitrary split of sources

into several components, can partially be compensated
by combining the ICA with a preceding PCA step for
the dimensionality reduction. This procedure has the
additional advantage of removing noise in the data. We
chose to project the original data into a 30 dimensional
space. The value of 30 was based on rough experience
and on a quick visual inspection of the data, and was
probably not the optimal choice. An improvement of
the quality of separation might be possible by optimiz-
ing the dimensionality reduction, but the effort was not
undertaken here. Future work is needed to analyze the
influence of dimensionality reduction on source
separation.
To conclude, we hope that the source component

classification method presented in this study delivers a
substantial contribution for the BCI community and the
EEG community in general, as a reliable and practical
tool for the removal of artifacts. To support the com-
munity, to encourage the reproduction of our results, or
allow for re-labeling of data we provide the readily
trained classifier, an implementation of the feature
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extraction routines together with example scripts, the
extracted features of the RT data, a visualization of 1770
components together with the expert labels used for the
classifier training, and a visualization of components
misclassified by our method (see Additional File 1 -
MatlabCode; Additional File 2 - TrainComponents;
Additional File 3 - TestComponents; Additional File 4 -
Misclassifications).

Additional material

Additional file 1: MatlabCode. A Matlab implementation of the feature
extraction routines together with example scripts, the readily trained
classifier and the extracted features for all the components of the RT
data set.

Additional file 2: TrainComponents. Visualization of the 690
independent components in the training RT data, together with the
expert’s labels.

Additional file 3: TestComponents. Visualization of the 1080
independent components in the RT test data, together with the expert’s
labels.

Additional file 4: Misclassifications. Visualization of the 75 + 21
misclassified components of the RT test data
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Short summary. This paper presents a number of changes to MARA that make
it more useful for practitioners. First, we present a simple strategy to make sure
that MARA generalizes better to reduced electrode setups: we re-train the classifier
using the desired electrode setup. Second, we validate the method on more data
sets, notably a data set of 4473 labeled ICA components which was provided by
Carsten Allefeld from the neuroimaging lab of Prof. Haynes. Third, we investigate
the effect of artifact removal on single-trial BCI classification from 101 users and 3
paradigms. It turns out that ICA artifact cleaning has little influence on average
BCI performance when analyzed by state-of-the-art BCI methods. Last but not
least, we implement MARA as an EEGLAB plug-in.

Contributions. I wrote the majority of the paper and carried out the majority of
the analysis. The EEGLAB plug-in was jointly developed by Eric Waldburger and
I. Stephanie Brandl analyzed the CNT data set, under the supervision of Carsten
Allefeld and I. Most of the LRP-MI-BCI analysis was carried out by Franziska Horn.
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Abstract
Objective. EEG artifacts of non-neural origin can be separated from neural signals by
independent component analysis (ICA). It is unclear (1) how robustly recently proposed
artifact classifiers transfer to novel users, novel paradigms or changed electrode setups, and (2)
how artifact cleaning by a machine learning classifier impacts the performance of
brain–computer interfaces (BCIs). Approach. Addressing (1), the robustness of different
strategies with respect to the transfer between paradigms and electrode setups of a recently
proposed classifier is investigated on offline data from 35 users and 3 EEG paradigms, which
contain 6303 expert-labeled components from two ICA and preprocessing variants. Addressing
(2), the effect of artifact removal on single-trial BCI classification is estimated on BCI trials
from 101 users and 3 paradigms. Main results. We show that (1) the proposed artifact classifier
generalizes to completely different EEG paradigms. To obtain similar results under massively
reduced electrode setups, a proposed novel strategy improves artifact classification. Addressing
(2), ICA artifact cleaning has little influence on average BCI performance when analyzed by
state-of-the-art BCI methods. When slow motor-related features are exploited, performance
varies strongly between individuals, as artifacts may obstruct relevant neural activity or are
inadvertently used for BCI control. Significance. Robustness of the proposed strategies can be
reproduced by EEG practitioners as the method is made available as an EEGLAB plug-in.

Keywords: EEG, artifact removal, independent component analysis (ICA), blind source
separation (BSS), brain–computer interface (BCI)

(Some figures may appear in colour only in the online journal)

1. Introduction

Artifacts are omnipresent in recordings of the
electroencephalogram (EEG) and other brain signals.
For neuroscientific or clinical purposes the interpretation of
EEG signals depends on relatively clean recordings. Thus,

Content from this work may be used under the terms of
the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

artifact avoidance during measurement and post-hoc artifact
removal are important steps to enhance the signal-to-noise
ratio (SNR) before scientific interpretation of the data. While
task-independent artifacts may mask an existing effect,
artifacts systematically locked to an experimental task are
even more problematic: they may lead to misinterpretation of
the data and spurious results.

The field of the brain–computer interface (BCI) not only
makes use of offline analyses, but strives to interpret mental
states on a single-trial basis in real-time and in closed-
loop scenarios [1]. BCI research is especially sensitive to
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task-locked artifacts, as the decoding of a user’s intent by
a BCI system should not rely on task-related non-neural
signals. This requirement is most important when conducting
research with healthy study participants on a novel paradigm
or analysis method which should be transferable to severely
motor-impaired patients, because they may not be physically
capable of producing those artifacts [2–4]. Understandably,
the role of artifacts is thus scrutinized during peer-reviewed
publication processes.

The exclusive use of brain signals in BCI must typically
be dropped when it comes to practical tests with end-users in
need, as hybrid BCI approaches [5, 6] provide a richer and
more reliable control than pure BCIs. Additionally, interest in
novel types of studies is growing amongst EEG researchers.
Such studies include users (inter-)acting in space [7–9] like
in collaborative and social paradigms (for a review see [10]),
the interaction between users and machines [11] and the non-
medical use of BCI methods [12, 13].

From an EEG practitioner’s point of view, a fully
automatic algorithmic solution for the treatment of artifacts
is desirable. It would put him or her in control of artifacts
and enable him or her to either remove them or check
their influence. Ideally, this would be realized by a global
classifier which could be trained once and then reliably
separates multiple types of artifactual components from
neural components. The classifier should work robustly across
data from different users and across domains. The latter
includes changing experimental paradigms and tasks, different
preprocessing methods and varying EEG electrode setups. It
should do so without any need of re-training, and it should not
require separate artifact recordings before it can be applied to
novel scenarios.

1.1. State-of-the-art IC artifact classification

For an extensive review of artifact reduction techniques
in the context of BCI-systems, we refer the reader to
[14]. In our work, we concentrate on a class of popular
artifact rejection approaches, which decompose the original
EEG into independent source components (ICs) using
independent component analysis (ICA). This method exploits
the assumption that artifactual signal components and neural
activity are generated independently. Artifactual ICs are hand-
selected and then discarded. The remaining neural components
are used to reconstruct the EEG [15, 16].

While assumptions for the application of ICA methods
are only approximately met in practice (no systematic co-
activation of artifactual and neural activity, linear mixture
of independent components (ICs), stationarity of the sources
and the mixture, prior knowledge about the number of
components), their application usually leads to a good, albeit
not perfect separation for common artifacts such as blinks, eye
movements or scalp muscles [17–20]. ICA has successfully
been applied to the removal of cochlea implant artifacts [21].
However, gait-related artifacts are reported to remain in most
of the ICs in EEG recorded during mobile activities [9, 22].

Because a thorough analysis of the achievable separation
performance is out of the scope of this paper, we refer the

reader to [17, 23, 24] on the question of which ICA variants are
well-suited for artifact rejection. Instead, we focus on practical
tools which avoid the time-consuming hand-rating process
of ICs by classifying ICs with the help of machine learning
methods into artifactual and non-artifactual components. Most
approaches concentrate on eye artifacts [25–31], but automatic
classification has also been successful for heart-beat artifacts
[28, 31], generic discontinuities [29], muscle artifacts [31–34]
and even very specialized artifacts such as cochlear implants
[21]. As most of these methods have a supervised basis, to
some degree they reflect the specific conditions of the training
set. The EEG practitioner is now faced with the question of
how well supervised methods generalize to his or her data
acquired under novel experimental conditions with different
preprocessing.

Unsupervised methods successfully circumvent this
problem for example by reverting to automatic thresholding
strategies [29]. However, these methods are often limited to
the use of one or two features and detect only certain types of
artifacts. It is unclear how to extend them to more complex
artifacts with a varying physiological fingerprint, such as
muscle artifacts. For supervised or template-based approaches,
first studies suggest that generalization to novel paradigms is
possible [28, 30, 31, 34]; however, efforts have concentrated
on eye artifacts [28, 30].

1.2. Robustness under novel paradigms and electrode setups

In this paper, we take a step forward by analyzing the
generalization ability of a state-of-the-art supervised IC
classification algorithm which we have recently proposed [34].
It is not restricted to the classification of eye or muscle artifacts,
but is equally well suited to detect other artifacts such as
loose electrodes. By comparing three strategies, we investigate
this multi-artifact classifier wrt. new electrode setups and
paradigms. We ask the following questions: How does a
change of the electrode setup impact the IC classification
performance? Is it necessary to hand-label components of the
new data set and retrain the classifier based on those? How
strong is the deterioration of IC classification performance
without re-training? We investigate these questions for three
data sets of 6303 labeled ICs from 35 participants in 3
experimental studies: a reaction time (RT) task embedded in
a simulated-driving task, an auditory event-related potential
study (ERP-BCI) and a study analyzing continuous EEG data
(CNT) of subjects instructed to listen to short stories.

1.3. Effect on BCI performance

After having demonstrated the robustness properties of the
IC classification, we are interested in the effects of automatic
ICA artifact cleaning on the classification of EEG trials in
BCI systems. As a first proof-of-concept, Halder et al [33]
applied artifact cleaning to data from three participants who
performed motor imagery. Depending on whether artifacts
were systematically co-activated with the task or not, opposite
effects of artifact cleaning on BCI classification performance
were demonstrated. To the best of our knowledge, only small
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data sets of one or two participants have been analyzed since
then [35, 36].

To fill this gap, we extend our analysis from [34] by
investigating the overall effect of ICA artifact cleaning on
BCI performance to data of 101 participants wrt. 3 BCI
paradigms: auditory event-related potentials, event-related
(de-)synchronization and slow motor-related potentials due
to motor imagery tasks.

1.4. Software for the EEG practitioner

Last but not least, we make our IC classification software
available as an EEGLAB plug-in ‘MARA’ (Multiple Artifact
Rejection Algorithm). EEGLAB [37] is a popular, Matlab-
based open-source tool and used by a growing community of
EEG researchers. As existing ICA-based plug-ins primarily
focus on the detection of eye artifacts [27–29], we hope this
will deliver a substantial contribution to the community by
assisting EEG practitioners with the rejection of multiple type
of artifacts.

2. Methods and materials

2.1. Processing chain for ICA artifact rejection

The typical process chain for artifact rejection with ICA
consists of the following steps: first, a rough pre-cleaning
of the data by channel rejection and trial rejection based on
variance criteria may be performed. Second, a dimensionality
reduction may help to avoid an unnatural splitting of (neural)
sources. Unfortunately, the optimal number of components
to extract remains unknown and has to be determined either
by visual inspection or by a heuristic, such as retaining 99%
of the explained variance or a fixed number of components.
Third, ICA methods decompose the observed EEG data x
into unknown source components s assumed to be mutually
independent and following the generative linear model
x = A · s. Finally, artifactual source components are identified
which allows the EEG signals to be reconstructed without
them.

In manual classification of ICs, experts ratings are
based on a component’s time series, its power spectrum
and spatial pattern (given by the respective column of A).
Unfortunately, ICA frequently results in mixed components
containing aspects of both neural and artifactual activity
which cannot be rated unambiguously [38]. Consequently,
such mixed components tend to be either retained or rejected
depending on the specific application. The subjective nature
of such expert decisions is reflected by the fact that experts
disagree with each other as well as with themselves over time
[39]. Nevertheless, the reliability of component classification
is often not reported, and if it is, researchers use one of many
metrics of inter-rater reliability statistics which are difficult
to compare directly (e.g. Krippendorff’s alpha in [20], inter-
class correlation coefficient in [40], degree of association phi
in [28], mean-squared error (MSE) or average agreement in
[34, 39]).

Automatic classification of ICs based on Machine
Learning methods offers a well-described algorithm which

rates consistently over time. However, this algorithm, too,
is of subjective nature in the sense that it is optimized to
predict labels similar to those labeling strategies applied by
human raters. The performance of the algorithm thus crucially
depends on the quality of the training set and its labels. For all
our IC data sets, experts were instructed to identify components
which are predominantly driven by artifacts.

In this paper, automatic IC classification is realized by
a linear pre-trained classifier. It is based on the following
six features which were determined in a feature selection
procedure described in [34]. One feature aims to detect outliers
in the time series of an IC, three features are extracted from
the spectrum, and two features extract information from the
scalp pattern of an IC—the latter depending directly on the
electrode layout.

(i) Current density norm. ICA itself does not provide
information about the locations of the sources s. However,
ICA patterns can be interpreted as EEG potentials for
which the location of the sources can be estimated. We
considered 2142 locations arranged in a 1 cm spaced
3D-grid, formulated the forward problem according to
[41–43] and sought the source distribution with minimal
l2-norm (i.e. the ‘simplest’ solution) [44, 45]. Since this
source distribution can model cerebral sources only, it
is natural that artifactual signals originating outside the
brain can only be modeled by rather complicated sources.
Those are characterized by a large l2-norm, which we use
as a feature.

(ii) Range within pattern. The logarithm of the difference
between the minimal and the maximal activation in a
pattern.

(iii) Mean local skewness. The mean absolute local skewness
of time intervals of 15 s duration. This feature aims to
detect outliers in the time series.

(iv) λ and fit error. These two features describe the deviation
of a component’s spectrum from a prototypical 1/ f curve
and its shape. The parameters k1, λ, k2 > 0 of the curve

f !→ k1

f λ
− k2 (1)

are determined by six points of the log spectrum: (1) the
log power at 2 Hz, (2) the log power at 3 Hz, (3) the
point of the local minimum in the band 5–13 Hz, (4)
the point 1 Hz below the third point of support, (5) the
point of the local minimum in the band 33–39 Hz, and (6)
the point 1 Hz below the fifth point of support. Finally,
the logarithm of λ and of the MSE of the approximation
of f to the real spectrum in the 8–15 Hz range are used as
features for the classifier.

(v) 8–13 Hz. The average log band power of the α band
(8–13 Hz).

2.2. Data sets and experimental paradigms

Data sets of four experimental EEG paradigms (named RT,
CNT, MI-BCI, ERP-BCI) were available for this study. For
three of them, RT, CNT and ERP-BCI, expert-labeled ICs
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(artifacts versus neural sources) were available. Two data sets
(MI-BCI, ERP-BCI) stem from BCI experiments. As the trial-
wise BCI tasks are known, the estimated single-trial BCI-
classification performance provides a metric for the influence
of a preceding artifact treatment.

RT. For this data set, labeled ICs were available. In a
simulated-driving study, participants performed a forced-
choice left or right key press RT task upon two auditory stimuli
in an oddball paradigm [34]. EEG data was recorded from
121 approx. equidistant sensors and high-noise channels were
rejected based on a variance criterion. We selected 43 runs of
10 min duration from eight participants that had 104 electrodes
in common. Prior to the IC computation via TDSEP [46], a
2 Hz high-pass filter was applied, and dimensionality was
reduced to 30 PCA components. Two experts hand-labeled the
resulting 30 ICs per run into artifactual and neural components
(1290 labeled ICs altogether).

Of these, 840 ICs (28 runs from 5 participants) were
used to train a linear classifier CRT to discriminate artifactual
from neural components. Another 450 ICs (15 runs from
3 remaining subjects) were available for estimating the
generalization performance of CRT. The training set contained
52% of artifactual ICs, the test set contained 59%.

CNT. For this data set, labeled ICs were available. Nine
participants continuously listened to audio–visual stories
during short runs of an average duration of 3.77 min [40]. The
resulting 71 recordings contained 62 EEG channels plus one
EOG channel. The recording of each run was appended with
a short eyes-closed and eyes-open recording and high-pass
filtered at 0.16 Hz. No dimensionality reduction was applied,
before ICs were estimated by FastICA [47] on the full set
of electrodes. This decomposition yielded 63 × 71 = 4473
components, which were hand-rated by three experts into 47%
artifactual and 53% neural source components.

ERP-BCI. For this data set, labeled ICs as well as
labeled BCI-trials were available. In a spatial auditory BCI
study which made use of auditory event-related potentials,
participants underwent a calibration run of approx. 30 min
duration and an online spelling run [48]. In the online run,
subjects were asked to write a sentence while auditory and
visual feedback was provided. EEG was recorded from 61
electrodes while the participants listened to a rapid sequence
of 6 auditory stimuli and were instructed to silently count the
number of appearances of a rare target tone.

For the classification of artifacts, data of 18 participants
was analyzed. Their EEG signals were band-pass filtered
between 0.1 and 40 Hz and the dimensionality was reduced
to 30 PCA channels. Subsequently 30 ICs were computed
per run using TDSEP. The resulting 540 source components
were hand-labeled into 72% artifactual and 31% neural source
components.

To assess the influence of artifact correction onto the
BCI classification performance, data of the 21 BCI novices
participating in the first session of the auditory ERP speller

study of Schreuder et al [48] was re-analyzed. Their calibration
measurement is used to train a shrinkage regularized linear
classifier based on spatio-temporal ERP features [48, 49]. BCI
performance evaluations are based on the re-analyzed online
data of these participants.

MI-BCI. For this data set, labeled BCI-trials were available,
but no labeled ICs. This data set was recorded with 119 EEG
channels from 80 healthy BCI novices, who first performed
motor imagery tasks (left hand, right hand and both feet)
in a calibration run (i.e. without feedback). Every 8 s, the
requested BCI task of the current trial was indicated by
a visual cue. A CSP-based BCI-classifier (see below) was
trained on the labeled calibration trials using the pair of classes
which provided best discrimination. During the three online
runs of 100 trials each participant controlled an application
which provided continuous visual feedback in the form of a
horizontally moving cursor [50].

Motor imagery data can be exploited by two different
types of EEG features.

(i) CSP-MI-BCI: the most common strategy makes use of
oscillatory features which describe event-related (de)-
synchronization (ERD/ERS) in the alpha- and beta band
of the EEG. After enhancing the SNR of these effects
by individual data-driven spatial filters, which are derived
by the common spatial patterns (CSP) analysis [51], CSP-
features can be classified by a shrinkage-regularized linear
classifier.

(ii) LRP-MI-BCI: the second strategy is based on slow motor-
related potentials (e.g. the lateralized readiness potential
(LRP)). Different classes of imagined movements are
distinguished with an ERP-type analysis [49, 52]: EEG
is band-pass filtered between 4 and 8 Hz, before a small
number of class-discriminative intervals is determined
on the calibration data. The average activity per interval
and channel is used as features for a binary shrinkage-
regularized linear classifier.

While the original online runs were performed with the
CSP-MI-BCI classifier, without artifact rejection, the offline
re-analysis makes use of both types of features in order to
assess the influence of a preceding artifact removal.

2.3. Robustness under novel paradigms and electrode setups

For the classification of artifactual IC components, three
classification strategies—fixed, adapted and study-specific—
were compared on the ERP-BCI and the CNT data set. Figure 1
visualizes the strategies. In the fixed scenario, classifier CRT is
trained once on features of labeled ICs of the RT data set,
and furthermore applied to ICs of any other data set. Neither
hand-labeling of novel ICs nor re-calculation of features or
any re-training of the classifier is necessary in this simplest
scenario. While hand-labeling of novel ICs is also avoided
successfully in the adapted strategy, a channel adaptation on
the RT-data is performed by cutting the training patterns to
the specific electrode layout of the test data set. Features then
need to be re-calculated based on the reduced patterns and a
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Figure 1. Schematic plot of the three transfer strategies fixed, adapted and study-specific. Expensive hand-labeling steps of ICs are marked
with red arrows, cheap channel reduction and classifier training steps in green and black. Note that any self-application of classifiers in the
study-specific strategy was performed exclusively in a leave-one-subject-out validation scenario.

re-training yields the adapted classifier CRT−A. All steps can
be performed automatically and do not require user input.
The third strategy, study-specific, requires the effort of experts
every time a novel study is performed. The ICs of at least
some subjects need to be hand-labeled, before a study-specific
classifier (e.g. CCNT or CERP) can be trained and applied to
novel subjects. It’s performance was evaluated by leave-one-
subject-out cross-validation.

To explore the robustness of the artifact classifier against
reduced EEG channel sets, we compared the fixed IC-classifier
CRT with the adapted IC-classifier CRT−A on the RT and
ERP-BCI test data sets with reduced setups (varying from
16 to 104 resp. 61 EEG channels). All electrode setups were
approximately equidistant and covered the whole scalp.

2.4. Effect on BCI performance

This offline re-analysis of three BCI paradigms described in
section 2.2 compares standard BCI performance with and
without a preceding ICA artifact cleaning. In both cases,
artifactual channel and trial rejection based on a variance
criterion was performed prior to BCI training. Training of
the BCI-classifiers is based on the calibration runs only, and
BCI performance tests are performed with the online runs of
the participants.

ICA artifact cleaning is included in a manner that
allows for real-time BCI applications. Prior to TDSEP, we
estimated whether a PCA pre-processing to 99% explained
variance would be useful via cross-validation on the calibration

data. This was the case only for the LRP-MI paradigm. IC
components were then derived by TDSEP and classified with
the adapted classifier CRT−A on the calibration data. The BCI
is set up on the remaining ICs. On the online runs, un-mixing
and component rejection is performed according to the de-
mixing determined on the calibration data. The BCI classifier
is applied to features extracted from the remaining components
of the online runs.

3. Results

3.1. Robustness under novel electrode setups

Figure 2 shows the classification error for the fixed classifier
CRT and the adapted classifier CRT−A for different channel
setups on both the RT and the ERP-BCI test sets. On the RT
test data with the full 104 channel setup, a classifier using
all six features achieves a MSE of 9.3% only, which slightly
outperforms the use of only four pattern-independent features
(12.4% MSE). While CRT generalizes robustly over the range
of 104 to 48 electrodes in the RT test sets, its error increases up
to 31.8% for the smallest set of 16 electrodes. On the ERP-BCI
data set, the use of only four pattern-independent features is
already outperforming the fixed classifier CRT on the full 61
electrode setup. Classification performance of CRT then breaks
down to 50% on the smallest set of 16 electrodes. In both the
RT and the ERP-BCI data set, the drop in overall performance
is due to the bad performance of both pattern-based features
of over 50%.
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(a) RT data set
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(b) ERP-BCI data set
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Figure 2. Mean classification error ± standard error estimated on (a) the RT and (b) the ERP-BCI test sets for different channel setups. The
left plot shows the results for a fixed classifier, the right plot for a classifier adapted to each channel setup.

For the adapted strategy (i.e. re-training the classifier on
the patterns cut to the specific electrode setup), the error of
the pattern features (range within pattern and current density
norm) was much less pronounced in both data sets. The overall
error of CRT−A for 16 electrodes remained at 11.3% on the
RT data set (compared with 9.3% on 104 channels) and at
15.9% for the ERP-BCI data set (compared with 13.3% on 61
channels). In both data sets, we slightly gain from using the
pattern features. On the reduced electrode setup, the classifier
weight of the range in pattern dropped, while the weight for
current density norm remained stable.

3.2. Robustness under novel paradigms

The results for the three proposed classification strategies on
the three labeled IC data sets are summarized in table 1. The
adapted classifier CRT−A (trained on the RT data set cut to the
specific electrode montage of the ERP-BCI or CNT data set)
achieves an error of 13.3% on the ERP-BCI data and an error
of 14.0% on the CNT data set.

The classification performance can be improved by a re-
training on labeled data from the same study, but the effect is

small. We observe an error of 9.3% on the RT data set, an error
of 9.6% on the ERP-BCI data set and an error of 13.1% on the
CNT data set. This improved performance is due to two effects:
first, adjusting feature thresholds for the specific study may
improve the performance of each feature. For example, a re-
training of the 8–13 Hz feature of the CNT data set decreased
its error from 33.3% to 18.0%. Second, feature weights adjust
such that more discriminative features obtain a higher weight.
Interestingly, after re-training both CERP and CCNT primarily
use one of the two pattern features—CERP focuses mostly on
the current density norm feature, while CCNT is strongly based
on the range within pattern feature.

3.3. Effect on BCI performance

The upper plots of figure 3 show scatter plots of BCI
performance with and without preceding ICA artifact cleaning
for the three analyzed BCI paradigms. For ERP-BCI, BCI
performance decreased slightly from 69.4% to 68.3% (t(20) =
−2.43, p = 0.03, d = 0.21). On average, 44 components were
retained and 16 artifactual components were removed. There
was no significant change in overall MI-CSP performance
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Figure 3. Upper plots: effect of artifact correction for three BCI paradigms. Dots over the diagonal indicate participants, whose data
improved in classification performance (in per cent correct trials), dots below indicate participants whose performance decreased by the
correction. Changes are strongest for the paradigm MI-LRP, which is most sensitive to eye artifacts. For this paradigm, participants (A) and
(B) are highlighted, which undergo relatively strong changes. Lower plots: effect of artifact cleaning for participants (A) and (B). Top row:
average activity of selected channels for left trials (blue) and right trials (green). The four upper scalp plots indicate the spatial distribution
of average activity (in µV ) for one or two time intervals (in columns) and for left and right trials (upper and lower scalp plots). Lowest scalp
plots indicate the spatial distribution of class-discriminative information (as signed r2 values) per interval. For participant A, a dominating
eye artifact could be removed, which lead to an increase in the SNR and of classification performance. For participant B, very little
class-discriminant signal remained after artifact cleaning.

Table 1. Feature weight vectors w and test errors (MSE) for three data sets (RT, ERP-BCI and CNT) and three classification strategies (fixed
classifier CRT, adapted classifier CRT−A and study-specific classifiers CERP, CCNT). Test errors are reported for the 6 single features and for the
combined classification. The fixed classifier is trained on the RT train data set. The adapted classifier is trained on the RT train data set cut to
the specific electrode montage. The study-specific classifiers are trained on data from the same study and evaluated with
leave-one-subject-out CV.

Current density Range within Local
norm pattern skewness λ 8–13 Hz FitError Combined

RT CRT w 0.485 0.511 0.404 0.155 −0.522 −0.210
MSE 0.144 0.151 0.355 0.158 0.171 0.173 0.093

ERP-BCI CRT MSE 0.296 0.289 0.459 0.244 0.154 0.357 0.185
CRT−A w 0.454 0.463 0.384 0.235 −0.563 −0.247

MSE 0.178 0.259 0.459 0.244 0.154 0.357 0.133
CERP w 0.533 0.085 0.363 0.359 −0.650 −0.009

MSE 0.244 0.289 0.376 0.237 0.150 0.298 0.096
CNT CRT MSE 0.421 0.198 0.275 0.190 0.323 0.489 0.167

CRT−A w 0.341 0.498 0.417 0.234 −0.587 −0.251
MSE 0.265 0.214 0.275 0.190 0.323 0.489 0.140

CCNT w 0.035 0.589 0.459 0.259 −0.602 −0.010
MSE 0.234 0.196 0.232 0.163 0.180 0.569 0.131

(t(79) = −0.50, p = 0.62, d = 0.04) which remained constant
at ≈72% after the removal of on average 18 artifactual
components (69 components were kept). In both BCI systems,
the effect per subject was small.

The strongest changes were observed for the MI-LRP
paradigm, which is most prone to eye artifacts due to the
focus on low-frequency signal components. Note that as
feedback was provided with a moving cursor, eye activity
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Figure 4. Screen shot of the MARA plug-in applied to EEGLAB sample data.

may be correlated with the two classes. On average, nine
components were retained and ten artifactual components were
removed. While the mean BCI accuracy remained constant at
≈60% (t(79) = 0.23, p = 0.82, d = 0.03), the performance
of each participant varied considerably. The lower plots
of figure 3 exemplarily highlight the effect of the artifact
rejection for two participants. Without artifact rejection, both
participants mainly use eye artifacts for BCI control (frontal
class-discriminative activation). The effect of artifact removal
can be twofold. For participant A, eye artifacts obstruct
the underlying neural activity, and the system’s accuracy
improved upon artifact cleaning from 66.3% to 73.6% due to
an improved signal-to-noise level. In participant B, very little
class-discriminant activity remained after the eye activity was
removed. BCI classification dropped considerably from 91.3%
to 64.0%.

4. Discussion

To summarize, we have analyzed the robustness properties
of our recently proposed artifact classification method and
proposed a strategy to handle a wide range of electrode
setups. The proposed adapted strategy fully automates the
time-consuming rating of artifactual ICs and reliably identified
multiple types of artifacts from 35 participants and 3 EEG
paradigms.

IC classification performance of three strategies was
evaluated against expert ratings. We showed that our simplest
automatic fixed strategy (train the classifier once, then apply
to other setups) exhibits sensitivity to drastically reduced
electrode setups. As a solution, we proposed the adapted

strategy which recomputes the training features based on the
specific electrode montage of the test sets. Using this relatively
inexpensive strategy—no hand-labeling is involved—artifact
classification generalizes well even on very reduced electrode
setups.

For comparison reasons, a re-training of the classifier
using labor-intensively gained hand-labeled ICs from every
new study was analyzed (strategy study-specific). While
avoiding some generalization issues in theory, it is
prohibitively expensive in most practical situations and only
achieved a performance gain of a few per cent compared with
the adapted strategy.

We therefore recommend the adapted strategy for artifact
classification. It generalized robustly even to completely novel
EEG paradigms, with its IC classification performance (13.3%
MSE on auditory ERP data and 14.0% MSE on auditory
listening data) staying on a similar level as inter-expert
disagreements (often above 10% [34, 39]). This classification
error is remarkably low given that the studies have been
recorded with half the number of electrodes, used different
ICA methods and contained different proportions of artifactual
components.

We provide the ready-to-use artifact classifier to the
community as an open-source EEGLAB plug-in called MARA
(multiple artifact rejection algorithm). MARA automatically
adapts to novel channel setups and its output is designed
to support the experimenter in his or her decisions:
a semi-automatic mode allows for visual inspection of
components and for changing the classifier’s proposed
ratings. Figure 4 shows an example screen shot of the
visual inspection menu. The plug-in is published under the

8
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General Public License (GPL) and can be downloaded from
www.user.tu-berlin.de/irene.winkler/artifacts/.

BCI practitioners may find the application of MARA on
BCI data sets of particular interest. We used the adapted
strategy to analyze how ICA artifact cleaning impacts on
single-trial BCI performance of three different BCI paradigms.
In all three paradigms, we were able to remove artifactual
activity while maintaining the average BCI performance.

On the single subject level the effect of artifact cleaning
depends on whether artifacts mask the relevant neural activity
or serve as a control signal for BCI. While artifact cleaning had
little influence on an auditory ERP speller and on oscillatory
motor imagery data analyzed with CSP, we observed strong
effects for a paradigm known to be heavily affected by eye
artifacts, the use of slow motor-related potentials. Here our
analysis suggests that artifact removal by MARA or similar
tools may drastically improve the safety and reliability of
results, as they guarantee that rejected artifacts are not utilized
mistakenly to control the BCI system.
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[25] Romero S, Mañanas M A, Riba J, Morte A, Giménez S, Clos S
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3 Automatic artifact removal

3.3 On the influence of high-pass filtering on
ICA-based artifact reduction in EEG-ERP

Irene Winkler, Stefan Debener, Klaus-Robert Müller, Michael Tangermann. On the
influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP. Engi-
neering in Medicine and Biology Society (EMBC), Annual International Conference
of the IEEE, 2015. c⃝IEEE. In press.

Short summary. Successful ICA-based artifact reduction relies on suitable pre-
processing. In this conference paper, we systematically evaluated the effects of
high-pass filtering at different frequencies, with the help of MARA. Analyses were
based on event-related potential (ERP) data from 21 participants performing a task
which induces well known auditory ERPs. As a pre-processing step for ICA, we
found that high-pass filtering between 1-2Hz consistently produced good results.
Furthermore, ICA-based artifact removal with MARA outperformed a regression-
based approach to remove eye artifacts.

Contributions. I wrote the majority of the paper and carried out all the analysis.
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On the influence of high-pass filtering on ICA-based artifact reduction
in EEG-ERP

Irene Winkler, Stefan Debener, Klaus-Robert Müller, and Michael Tangermann

Abstract— Standard artifact removal methods for electroen-
cephalographic (EEG) signals are either based on Independent
Component Analysis (ICA) or they regress out ocular activity
measured at electrooculogram (EOG) channels. Successful ICA-
based artifact reduction relies on suitable pre-processing. Here
we systematically evaluate the effects of high-pass filtering at
different frequencies. Offline analyses were based on event-
related potential data from 21 participants performing a
standard auditory oddball task and an automatic artifactual
component classifier method (MARA). As a pre-processing
step for ICA, high-pass filtering between 1-2 Hz consistently
produced good results in terms of signal-to-noise ratio (SNR),
single-trial classification accuracy and the percentage of ’near-
dipolar’ ICA components. Relative to no artifact reduction,
ICA-based artifact removal significantly improved SNR and
classification accuracy. This was not the case for a regression-
based approach to remove EOG artifacts.

I. INTRODUCTION

Electroencephalography (EEG) measurements of brain

activity are contaminated by undesired additional signals.

These artifacts are caused by non-neural physiological ac-

tivities of the subject, such as movements of the eyes and

muscles, heart beat and pulse, and by external technical

sources.

A common approach for artifact reduction is the transfor-

mation of EEG signals into a space of independent source

components (ICs) using Independent Component Analysis

(ICA). Ideally ICA separates artifactual and neural activity

into distinct ICs, so that artifactual ICs can be identified [1]

and a cleaner EEG can be constructed without them. In

practice, ICs are often mixtures of both neural and artifactual

sources. However, pre-processing of EEG data prior to ICA

can improve the quality of the artifact separation [2], e.g. by

removal of obvious, high-amplitude artifactual epochs, or by

dimensionality reduction with Principal Component Analysis

(PCA). Here we focus on the role of high-pass filtering.

Without prior high-pass filtering, ICA often produces

visibly poor separation, with many mixed components, such
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as the ones displayed in the right part of Fig. 2. Recent

research indicates that high-pass filtering improves reliability

[3] and measures of independence and dipolarity [4] of

the estimated independent components. Furthermore, trial-

by-trial fluctuations of the blood-oxygen-level dependent

(BOLD) signal were found to be positively correlated with

high EEG gamma power when ICA de-mixing was obtained

on gamma band-pass filtered EEG data, but not when 30 Hz

low-pass filtered data was fed into ICA [5]. In this paper,

we systematically analyze the effect of ICA-based artifact

reduction on Event-Related Potentials (ERPs), as well as

the percentage of ’near-dipolar’ ICA-components [6], as a

function of the high-pass filter frequency.

Our focus is not on how to obtain best classification

performance. Instead, we will use single-trial classification

performance as a proxy for successful artifact reduction. In

addition, we focus on the signal-to-noise ratio (SNR) of

ERPs. For varying cutoff frequencies, we train ICA on high-

pass filtered data, automatically classify the resulting ICs

with MARA [7], [8], and apply the obtained filter weights

on the original non high-pass filtered data (see Fig. 1).

Similar to an analysis presented in [9], we also compare

ICA-based artifact removal with a regression-based method,

which uses electrooculogram (EOG) signals to partially

remove ocular activity [10].

II. METHODS

A. Why high-pass filtering influences ICA decomposition

Given EEG signals x1, . . . , xK recorded from K elec-

trodes over time, ICA methods linearly decompose the data

into K source components s1, . . . , sK . To solve this blind

source separation problem, ICA assumes the mutual indepen-

dence of source components and a linear generative model

xj =
∑K

k=1 ak[j] · sk (j ∈ {1, . . . ,K}). Here ak ∈ R
K

denotes the spatial activation pattern of source k and ak[j]
its jth element.

High-pass filtering is a linear transformation of the signals.

Therefore, if the assumed generative model was true, filtering
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Fig. 1: Schematic workflow for high-pass filtering of EEG

data prior to ICA decomposition. IC filters are applied on

the unfiltered raw data before their classification by MARA.
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would not change the ICA model coefficients: Under the
model assumptions, it also holds for the filtered signals h(xj)

that h (xj) = h
(∑K

k=1 ak[j] · sk
)

=
∑K

k=1 ak[j] · h (sk),
where h(·) denotes linear filtering. The filtered source signals
h(sk) remain mutually independent, and the coefficients of
the mixing matrix ak[j] are unchanged. It is therefore valid
to use the filtered data for the estimation of ICA only, and
then apply the obtained demixing matrix to the unfiltered

data (see [2], [11] for more information).
In practice, high-pass filtering does make an important

difference. It is, however, not entirely understood why this
is the case. High-pass filtering can help ICA estimation
by increasing the independence between sources, because
slowly changing trends are not very independent [2], [11].
Furthermore, standard ICA assumptions such as the limited
number of sources are at best approximately met in practice.
Filtering ’guides’ the ICA decomposition towards extracting
the components that explain the activity we are interested in
and may help to better satisfy ICA’s stationarity assumption.
The low-frequency parts of an EEG signal contain a large
portion of its variance, that we are typically not so interested
in. It is thus often beneficial to remove them. A simple toy
example, which illustrates this point, is presented in Fig. 3.

B. Data

Data of 21 healthy subjects were recorded during a
standard auditory oddball paradigm as part of an auditory
Brain Computer Interface (BCI) study [12]. The experiment
was conducted according to the Declaration of Helsinki,
participants provided their written informed consent prior
to participation. They were asked to avoid blinking while
attending rare high-frequent target tones and disregard fre-
quent non-target tones. This measurement lasted approx.
10 minutes. Per participant, 400 non-target and 100 target
stimuli were presented in randomized order at a Stimulus
Onset Asychnrony (SOA) of 1 s. It can be expected, that
attended target tones lead to a more negative ERP compo-
nent around 100 ms post stimulus (N1) compared to non-
target responses, and to a positive ERP component (P3) at
approx. 300 ms post stimulus. EEG was recorded with nose
reference from 61 scalp channels and one electrode below
the right eye (EOGvu). Signals were downsampled to 100 Hz



and low-pass filtered at 45 Hz (forward-backward two-pass
5th order Butterworth filter) for all variants of the following
offline analysis. As no rejection of any epoch or channel was
performed, artifacts remained in the data.

C. Evaluation metrics

Visual inspection: The tested artifact removal variants
were independently applied to the continuous data. For
plotting grand average ERP responses and further ERP pro-
cessing, data was epoched around the stimulus, and baseline
activity was removed according to an interval of 150 ms
duration pre-stimulus.

SNR: Suitable artifact processing has the potential to
decrease single-trial noise around the average ERP response.
For each artifact removal variant, we assessed this effect by
computing the signal-to-noise ratio (SNR). We measure SNR
as proposed by [13]: Given N epochs, y1, . . . , yN ∈ RT ,
each measured over T time points at one channel, the SNR
is given as

SNR =
Vart{ȳ(t)}

1
N

∑N
n=1 Vart{yn(t)− ȳ(t)}

(1)

where ȳ(t) = 1
N

∑N
n=1 yn(t) is the ERP averaged over

epochs at time t. This defines the ratio of the variance of
the ERP (signal) and the mean variance of residual deviation
(noise).

We report SNR values for the N1–P2 complex at channel
FC3 in the interval [100–250 ms], and separately for target
and non-target epochs. We use the target class to compute
SNR for P3 at channel Cz in the interval [250–550 ms].

Classification: The accuracy for the binary target vs. non-
target classification task was estimated by chronological 10-
fold cross-validation of a linear classifier (shrinkage reg-
ularized Linear Discriminant Analysis) trained on features
which consist of windowed means derived from specific non-
overlapping consecutive intervals [14]. Classification was
performed in three conditions, which used different ERP
feature intervals (all values in ms): (1) the N1-P2 complex
(100–130, 140–170, 180–210, 220–250 ⇒ 4 · 61 = 244
features), (2) the P3 component (260–340, 350–430, 440–
550 ⇒ 3 · 61 = 183 features) and (3) combined (⇒
7 ·61 = 427 features). Accuracy is defined as the percentage
of correctly classified epochs and is reported class-wise
normalized, i.e. the accuracies were calculated for both
classes separately and the results were averaged.

Dipolarity: We also compare ICA decompositions with a
measure that does not depend on the classification of artifac-
tual components or subsequent EEG analysis: the percentage
of ’near-dipolar’ components as proposed by [6]. It is defined
as the percentage of components whose scalp patterns can be
explained by a single equivalent dipole (which we identify
with MUSIC [15]) with less than a specified error variance
(which we set to 20%). As discussed in [6] in detail, this
’dipolarity’ of the ICA decomposition is a very informative,
albeit simplistic measure of physiological plausibility.

D. ICA and the effect of high-pass filtering

To evaluate the effect of high-pass filtering, we computed
the ICA demixing on high-pass filtered data at 37 different
cutoff frequencies (0.1, 0.2, . . ., 2, 2.5, . . ., 6, 7, . . ., 10, 15,
. . ., 40 Hz). Filtering was carried out with a second order
Butterworth filter. We chose FastICA [16] as it is frequently
used ICA method for the analysis of EEG data.

The obtained de-mixing coefficients were then applied to
the unfiltered data, as proposed e.g. in [17] and illustrated in
Fig. 1. In this way, we only consider the effect of filtering on
the ICA decomposition. (Note that de-mixing coefficients are
often applied to the filtered data, in which case filtering af-
fects all subsequent analysis. Filtering may distort the shape
of ERP components, including peak amplitudes and onset
latencies [18], but can improve classification performance
[19], [20]. This is not the focus of our attention here.)

The resulting source components were labeled with
MARA [7], [8]. MARA is a heuristic, that solves the binary
classification problem ’reject vs. accept’ fast and objectively.
It is able to handle eye artifacts, muscular artifacts and
loose electrodes. When confronted with mixed components,
MARA decides conservatively and retains them in the data,
as shown in Fig. 2. Subsequently, (cleaner) EEG data was
reconstructed by omitting components labeled as artifacts.

E. Comparison with regression

We compare ICA-/MARA-based artifact cleaning (with
1 Hz and 2 Hz pre-filtering) to a regression approach for the
removal of eye activity measured at additional electroocu-
logram (EOG) channels [10]. A standard procedure is to
subtract part of the vertical (VEOG) and horizontal EOG
(HEOG) from each recorded EEG electrode xj as

zj(t) = xj(t)− α̂jV EOG(t)− β̂jHEOG(t)− γ̂j (2)

where zj denotes the ’cleaned’ EEG signal at electrode j,
and α̂j , β̂j and γ̂j are regression coefficients estimated by
ordinary least squares.

Regression-based methods are limited by the fact that
EOG is contaminated by brain activity which is removed as
well. To alleviate bidirectional contamination, EOG channels
are typically low-pass filtered prior to the regression step.
Motivated by [9], [21], we used a cut-off at 7.5 Hz.

For this analysis EOG was derived as a post-hoc bipolar
derivation from channels (F9, F10) for horizontal EOG and
(Fp2, EOGvu) for vertical EOG. Channels F9, F10 and Fp2
were excluded from the set of EEG channels.

III. RESULTS

A. ICA and the effect of high-pass filtering

Grand-average ERPs for several artifact removal variants
are depicted in Fig. 5. The influence of high-pass filtering on
the ICA decomposition is not strongly reflected in the shape
of ERPs. Peak amplitudes were only slightly attenuated even
when ICA was trained on 30 Hz high-pass filtered data.
Similarly, strong drifting components were removed both
when ICA was trained on filtered and unfiltered data.
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condition ’0’, according to a Wilcoxon signed rank test at p < 0.05. No multiple-testing corrections were applied.

0 200 400 600 800
−6

−4

−2

0

2

4

6

8

[ms]

[μ
V

]

Target

0 200 400 600 800
−6

−4

−2

0

2

4

6

8

[ms]

Non−Target

 

 

None
ICA (No Filt)
ICA 1 Hz
ICA 5 Hz
ICA 15 Hz
ICA 30 Hz

Fig. 5: Target- and non-target grand average (n=21) ERP

responses at channel Cz from either raw data or after

ICA-based cleaning. ICA weights were always applied to

the unfiltered data, however ICA was trained on high-pass

filtered data at different cutoff frequencies.

Obtained SNR values, classification performances and

percentages of near-dipolar components are depicted in Fig. 4

and Fig. 6. Values on the x-axis indicate the type of high-

pass filtering applied. For N1-P2 SNR (non-targets), P3 SNR

(targets) and the percentage of near-dipolar components we

see a consistent increase for small frequencies. The effect is

particularly strong (and highly significant) for the percentage

of near-bipolar ICA components, which ranges from 9%

without to 47% with 1.9 Hz pre-filtering. Similarly, best SNR

values are achieved between 1 and 5 Hz. ICA artifact removal

applied to high-pass filtered data in these ranges significantly

improves SNR as compared to no artifact reduction and

compared to ICA without high-pass filtering.

We observe no strong differences between early and

late ERP components. However, SNR values of the N1-

Fig. 6: Percentage of components whose scalp patterns can

be explained from the scalp projection of one equivalent

dipole with less than 20% error variance (± s.e.), as a

function of high-pass filtering frequency applied before ICA.

A yellow circle indicates values which significantly differ

from condition ’0’ (no high-pass filtering), as in Fig. 4.

P2 complex of the target class are less sensitive than for

the non-target class. This may be because there are four

times as many epochs in the non-target class, which allows

for a more accurate SNR estimate. Classification accuracy

is also not very sensitive to the artifact reduction variants

we analyzed. Nevertheless, ICA artifact removal significantly

improved over no artifact reduction mostly when applied to

high-pass filtered data in frequencies between 0.5 and 2 Hz.

B. Comparison with regression

A comparison of ICA-based (with 1 Hz and 2 Hz pre-

filtering) with regression-based artifact removal in terms

of SNR and classification performance is summarized in

Table I. ICA with 2 Hz pre-filtering yielded higher SNR and

classification accuracy than 1 Hz pre-filtering, however this



TABLE I: SNR and overall classification accuracy (mean ±
s.e.) for different artifact reduction methods. <,> indicate
significant differences (p < 0.05, Wilcoxon signed rank).

None (N) ICA (I1) ICA (I2) Regr. (R)
-1 Hz- -2 Hz-

Accuracy 84.2±1.0 85.3±0.9 85.7±0.7 84.7±1.0
(in %) < I1 I2 > N > N
SNR N1/P2 0.17±0.02 0.17±0.03 0.19±0.03 0.16±0.02
(Target) < I2 > I1 R < I2
SNR N1/P2 0.15±0.02 0.19±0.02 0.21±0.03 0.15±0.02
(Non-Target) < I1 I2 >N R , < I2 > N I1 R < I1 I2
SNR P3 0.15±0.02 0.17±0.03 0.17±0.03 0.15±0.02
(Target) < I1, I2 > N > N R < I2

effect is not consistently significant. Classification accuracy
increased after ICA for both pre-filtering variants, which was
not the case for the regression-based approach. In terms of
SNR, ICA with 2 Hz pre-filtering significantly improved over
regression-based artifact removal.

IV. DISCUSSION

In this paper, we have quantified the impact of high-pass
filtering on artifact reduction, focussing on ERPs obtained
from a standard auditory oddball task resulting in typical
target and non-target event-related responses. With adequate
pre-filtering, artifact cleaning based on ICA and MARA
improved both, classification accuracy and signal-to-noise
ratio (SNR). Consistent with [9], this was not the case for
the regression-based method we analyzed in addition.

In general, SNR was more sensitive to variations in
artifact removal than classification accuracy or the shape of
the ERP. As the obtained high classification rates are not
strongly influenced by cleaner data, we conjecture that a
relative large distance between class means dominates the
investigated classification problem. Of course, this situation
may be different with other ERP data sets. An example
is the data analyzed in [8], which was recorded under
much lower stimulus onset asynchrony (175 ms instead of
1000 ms in the oddball data). ICA-based artifact reduction
of this BCI data increased the classification error slightly,
but significantly. This result may be explained by the fact,
that target and non-target responses have lower amplitudes
and are not separated as clearly as in the oddball data. Thus
any class-discriminative activity may be contained in small-
variance signal components which are harder to separate
from artifactual components using ICA.

The fact that pre-filtering strongly influences the unmixing
quality of ICA is highlighted by its strong impact on the
percentage of near-dipolar ICA components. Consistent with
the results obtained from the SNR, the dipolarity measure
indicates that pre-filtering at very small frequencies < 0.5 Hz
may not be optimal. In our analysis, high-pass filtering
between 1 and 2 Hz consistently produced good results in
terms of SNR, classification accuracy, and ’dipolarity’ of
the ICA decomposition. If information is contained in slow
signal components, ICA can be trained on filtered data, and
the learned weights can be applied to the unfiltered data.
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Abstract
The electroencephalogram (EEG) is contami-
nated by undesired signals of non-neural origin,
such as movements of the eyes and muscles. The
most common approach for muscle artifact re-
duction is the linear transformation of EEG sig-
nals into source components using Blind Source
Separation (BSS) techniques, to separate artifac-
tual and neuronal sources.

Here we present a case study in which we
are interested in clean oscillatory EEG activ-
ity. We compare the frequently used Indepen-
dent Component Analysis (ICA) approach with
the recently proposed spatio-spectral decompo-
sition (SSD) method. SSD is designed to ex-
tract components that explain oscillations-related
variance, and is faster to compute than ICA.
We investigate EEG data from 18 subjects per-
forming self-paced foot movements with respect
to event-related desynchronization (ERD) in the
beta band. Results indicate that SSD recovers
cleaner signals than ICA on this data set.

1. Introduction
As the interpretation of electroencephalographic (EEG)
signals depends on relatively clean recordings, artifact re-
duction is an important step in EEG signal processing.
These artifacts are caused by non-neural physiological ac-
tivities of the subject, such as movements of the eyes and

ICML Workshop on Statistics, Machine Learning and Neuro-
science

muscles, heart beat and pulse, or by external technical
sources.

The most common approach for muscle artifact reduction is
the linear transformation of EEG signals into source com-
ponents with techniques of Blind Source Separation (BSS),
the most frequently used being Independent Component
Analysis (ICA). If artifactual and neural activity are con-
tained in separate components, artifactual components can
be identified and a cleaner EEG can be reconstructed.

The assumptions for the application of ICA methods are
only approximately met in practice (linear mixture of in-
dependent components, stationarity of the sources and the
mixture, no systematic co-activiation of artifacts and neu-
ronal signals). Nevertheless, their application usually leads
to a good separation. However, separation is usually not
perfect and a number of mixed components contain both
neural and artifactual activity. While several methods try
to alleviate this issue, ICA remains the state-of-the-art (see
e.g. (Vigario & Oja, 2008; Urigüen & Garcia-Zapirain,
2015) for a review).

In this paper, we are interested in obtaining clean oscil-
latory EEG activity. We present evidence that in some
cases, the recently developed spatio-spectral decomposi-
tion (SSD) method (Nikulin et al., 2011), which extracts
components explaining oscillations-related variance, may
achieve better artifact reduction than ICA.

We investigate Event-Related Desychronization (ERD),
that is, the suppression of brain rhythms in response to an
event, in a data set that is heavily contaminated by mus-
cle artifacts. 18 subjects performed self-paced foot move-
ments, which are well known to be preceded by an ERD of
8-13 Hz (mu band) and 15-30 Hz (beta band) rhythms over
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corresponding sensorimotor areas (Neuper & Pfurtscheller,
2001). Here we focus on beta ERD, which is thought to
be related to movement preparation and execution (Kilavik
et al., 2013).

2. Methods
2.1. Data

Data stem from a pre-measurement of a simulated driving
experiment described in (Haufe et al., 2011). 18 healthy
participants were instructed to perform self-paced right
foot movements (i.e. to press the brake pedal) once per
second for five minutes. EEG data were recorded with
64 Ag/AgCl electrodes at 1000 Hz. Furthermore, an elec-
tromyographic (EMG) signal was recorded using a bipo-
lar montage at the tibialis anterior muscle and the knee of
the right leg. For the presented offline-analysis, EEG data
were decimated to 200 Hz, broad-band filtered between 2
and 45 Hz, and artifactual electrodes were rejected using a
variance criterion.

2.2. Compared methods

We compare two methods of blind source separation (BSS)
for artifact reduction. BSS is the task of recovering un-
derlying signals S ∈ RK×T from multivariate recordings
X ∈ RM×T generated from the linear model X = AS,
with very little information about the underlying source
signals S or the mixing process A ∈ RM×K . Here K
denotes the number of source signals, M denotes the num-
ber of electrodes and T denotes the number of available
time points. The problem is underdetermined and can only
be solved using assumptions about the signals to be recov-
ered. A demixing matrix Ŵ ∈ RK×M is estimated such
that the estimated sources

Ŝ = ŴX (1)

best fulfill pre-defined assumptions.

In BSS-based artifact reduction we then hope that artifac-
tual and neuronal activity are contained in different source
components, so that cleaner EEG signals can be recon-
structed by omitting the artifactual signals.

2.2.1. ICA

The most common approach for artifact reduction is Inde-
pendent Component Analysis (ICA), which solves the BSS
problem under the assumption of mutually statistically in-
dependent sources. Here we use TDSEP (Ziehe & Müller,
1998), which relies on second-order statistics by taking the
temporal structure of the time series into account. TDSEP
amounts to finding a demixing Ŵ which leads to minimal
cross-covariances over several time-lags between all pairs
of components of Ŝ.

We applied TDSEP to EEG signals whose dimensionality
was reduced with Principal Component Analysis (PCA) to
99.9% explained variance. We then manually selected ar-
tifactual components, based on the pattern, spectrum and
time course of each component. On average per subject, 14
components were identified as artifacts, and cleaner EEG
signals were reconstructed with the remaining 17 compo-
nents. For a description of typical artifact components we
refer the reader to (Chaumon et al., 2015).

2.2.2. SSD

The purpose of spatio-spectral decomposition (SSD)
(Nikulin et al., 2011) is to extract brain oscillations in a
frequency band of interest. It maximizes the signal power
in a frequency band of interest (here: 15 - 30 Hz) while si-
multaneously minimizing it at the neighboring frequency
bins (here: 13-14 Hz, 31-32 Hz). SSD seeks spatial filters
w ∈ Rk which maximize

SNR(w) =
w>Σsigw

w>Σnoisew
(2)

where Σsig is the covariance of the data filtered in the fre-
quency band of interest and Σnoise is the covariance of the
data filtered in the sidebands. The entire SSD demixing
matrix can be computed by solving a generalized eigen-
value problem in a matter of seconds (Nikulin et al., 2011;
Haufe et al., 2014).

For the subsequent analysis, we retained the 10 components
with the highest SNR, as in (Dähne et al., 2014; Winkler
et al., 2015). This choice of 10 SSD components was based
on prior experience.

2.3. Event-Related Desynchronization

SSD and ICA were independently applied to the continuous
EEG data. To compare the methods, we plot grand-average
Event-related (de-)synchronization (ERD/ERS) in the beta
band (15 - 30 Hz), aligned to EMG peak activity.

ERD is computed as the relative difference in signal power
of a certain frequency band compared to a reference period
(Pfurtscheller & Aranibar, 1979; Blankertz et al., 2008):

ERD(t) =
Power(t)− Reference power

Reference power
(3)

where Power(t) denotes the average power over all trials at
time point t. We use the interval of [-1200 -800 ms] prior
to EMG peak activity as the reference interval.

3. Results
Grand-average ERDs for the three different preprocessing
variants (Nothing, SSD and ICA) are depicted in Fig. 1.
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Figure 1. Grand-average ERD/ERS for 18 subjects recorded during self-paced foot movements in the beta band (15-30 Hz), aligned to
EMG peak activity. The plots show time courses at channel Cz and series of ERD maps in the marked intervals ([-600 -300], [-300 -50],
[-50 50], [50 300]) for three conditions: No pre-processing, SSD pre-processing (10 components with highest SNR as defined in Eq. (2)
were retained) and ICA-based artifact removal (TDSEP; manually selected neural components were retained). The maps represent a top
view on the head with nose pointing upwards, + indicate electrodes.

Prior to foot movement, we see a typical foot ERD over
central sensorimotor areas as expected (cf. (Neuper &
Pfurtscheller, 2001)). During movement, the ERD is con-
taminated by a muscular artifact which spans the whole
scalp. This is probably due to subjects moving their heads
along with the fairly rhythmical foot movement once per
second.

This muscle artifact is reduced after a preceding ICA-based
artifact removal step. ERD is even cleaner when SSD was
applied. SSD is able to almost completely eliminate the
artifact, without removing neural beta activity.

The computational time was estimated on a MacBook 2.66
GHz, 8 GB RAM, using Matlab R2012a. For the presented
data set, computing SSD took on average 1.5 s (including

filtering). In contrast, the average computation time for
TDSEP was 4.0 s and FastICA (Hyvärinen & Oja, 1997)
took 36.5 s –both after the number of components was re-
duced to explain only 99.9% variance.

4. Discussion
We presented preliminary evidence that SSD may be a
powerful tool for the removal of artifacts in EEG data,
when the neural signals of interest are of oscillatory nature.
Compared to ICA, SSD is faster to compute, and recovered
a cleaner grand-average ERD on the self-paced movement
data set we analyzed here.

Our findings are in line with findings in Motor Imagery
based Brain-Computer-Interfaces (BCI), where SSD im-
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proved classification performance (Haufe et al., 2014). In
contrast, applying two different ICA methods (Bell & Se-
jnowski, 1995; Ziehe & Müller, 1998) in combination with
two different automatic artifactual component classifiers
(Frøhlich et al., 2015; Winkler et al., 2014) on the same
data set, did not (Winkler et al., 2014; Frølich et al., 2015).

SSD is especially designed to increase the signal-to-noise
ratio of oscillatory sources, and it is therefore not surpris-
ing that it can be more suitable to separate artifacts (=noise)
from oscillatory neuronal signals. In the EEG data pre-
sented here, the observed muscle artifacts are also not oc-
curring independently from motor planning neuronal activ-
ity, which violates ICA’s assumptions. However, the co-
activiation of artifacts and neuronal activity is quite com-
mon, and often poses the most serious problems in practice.
In those cases, ICA is often applied anyway, due to lack of
better alternatives and/or satisfactory performance. SSD
also assumes uncorrelated sources, but seemed to be able
to better separate correlated artifacts by using information
about the neuronal sources’ expected frequency content.

The findings presented here are subject to future research.
Interestingly, while SSD outperforms ICA in terms of iden-
tifying the subspace that contains the relevant neural activ-
ity, ICA was better at extracting a single motor preparatory
source component on the same data set (cf. (Winkler et al.,
2015)). Another point is that ICA separation quality de-
pends on pre-processing steps such as high-pass filtering.
It remains to be seen whether stronger high-pass filtering
would improve ICA’s performance. An open question is
also how many components to choose for SSD.
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3.5 Conclusion

Summary

In this chapter, we worked on signal processing techniques for the removal of artifacts
from EEG signals. We constructed the subject-independent component classification
method MARA (Multiple Artifact Rejection Algorithm) that automates the process
of tedious handselection of artifactual independent components (ICs). MARA deliv-
ers physiologically interpretable results, generalizes well over different experimental
setups, and has been made available as an open-source EEGLAB plugin. It is not
limited to a specific type of artifact and should be able to handle muscle artifacts,
eye artifacts, and loose electrodes equally well.

MARA realizes automatic artifactual independent component classification using
a linear pre-trained classifier. It is based on the following six features which were
determined in a feature selection procedure (Section 3.1):

1. Two features are extracted from the scalp pattern of an IC. They attempt
to quantify whether the pattern is neurophysiologically plausible. The first
feature, Current Density Norm, quantifies how easy it is to model the pattern
by an underlying source distribution over 2142 locations arranged in a 1 cm
spaced 3D-grid. The second feature, Range Within Pattern, is simply the
difference between the minimal and the maximal activation in a standardized
pattern. Spatially localized scalp maps stemming from muscle artifacts or
loose electrodes are typically characterized by a high Range Within Pattern.

2. One feature is extracted from the time series of an IC. The mean absolute
local skewness of time intervals of 15 s duration aims to detect outliers in the
time series.

3. Three features are extracted from the spectrum of an IC. One spectral feature,
λ, measures how steep the 1/f spectrum is. Muscle artifacts are characterized
by unusual high values in the 20-50 Hz range, which is reflected by a compar-
atively steep curve. Two spectral features aim to detect the typical α peak
in components of neuronal origin. One is the average log band power of the
α band (8-13 Hz), and one is the deviation of a 1/f approximation to the
spectrum in the 8-15 Hz range.

MARA is trained on labeled components of one study. Its generalization ability
has been thoroughly tested:

• On labeled IC components (Section 3.2): On data of the same study, MARA
misclassified 9.3% of 450 unseen tested components. On data of an audi-
tory ERP-BCI study (Schreuder et al., 2011), MARA misclassified 13.3% of
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540 tested components. On data from an auditory listening task (Kuhlen
et al., 2012), MARA misclassified 14.0% of 4473 tested components.

The performance of the classifier has to be judged in the light of the fact
that inter-expert disagreements on EEG signals can be above 10%. We asked
one expert to re-label 690 components of the training set, two years after the
original labeling. The disagreement between the new and the former rating
was 13.2%. For the auditory ERP-BCI data, two persons who labeled all
components disagreed on 10.6% of the components. This imperfect agreement
between human expert has also been reported by (Klekowicz et al., 2009; Viola
et al., 2009).

Thus, the classification error of MARA is relatively low, especially considering
that some studies have been recorded with half the number of electrodes,
used different ICA methods and contained different proportions of artifactual
components.

• Using well known ERPs (Section 3.3): We analyzed a data set of 21 healthy
subjects which performed a task that induces well-known ERPs. In a stan-
dard auditory oddball paradigm, participants were asked to attend rare high-
frequent target tones and disregard frequent non-target tones (Schreuder et al.,
2011). Artifact cleaning based on ICA and MARA improved single-trial clas-
sification accuracy (target vs. non-target) and a signal-to-noise ratio (SNR)
measure for ERPs proposed in (Lemm et al., 2006). It is also notable that
this was not the case for a regression-based method we analyzed, which is
consistent with a similar finding in (Ghaderi et al., 2014).

Furthermore, we used MARA to evaluate ICA-based artifact removal in the fol-
lowing settings:

• In BCI studies (Section 3.2): We analyzed how ICA artifact cleaning with
MARA impacts on single-trial BCI performance of three different BCI para-
digms using data from 101 participants (Blankertz et al., 2010a; Schreuder
et al., 2011).

ICA-based artifact removal had no significant influence on oscillatory mo-
tor imagery data analyzed with CSP. For offline data from an auditory ERP
speller, it increased the classification error slightly, but significantly.

However, we could show on an individual level the effect of artifact cleaning
can be very ambiguous — artifacts can either mask the relevant neuronal
activity, or serve as a control signal for BCI. We observed a strong influence
for a paradigm known to be strongly affected by eye artifacts: the use of slow
motor-related potentials. Here our analysis suggests that artifact removal by
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MARA or similar tools may improve the reliability of results, as they guarantee
that rejected artifacts are not utilized mistakenly to control the BCI system.

• Impact of high-pass filtering on ICA (Section 3.3): It has to be pointed out
that the success of ICA-based artifact removal strategies crucially depends on
the quality of the obtained decomposition. It is well known that pre-processing
of EEG data prior to ICA, such as high-pass filtering, can improve the qual-
ity of the artifact separation (Hyvärinen et al., 2001; Scheeringa et al., 2011;
Pignat et al., 2013). Using MARA, we systematically analyzed the effect of
ICA-based artifact reduction on Event-Related Potentials (ERPs), as well as
the percentage of ’near-dipolar’ ICA-components (Delorme et al., 2012), as a
function of the high-pass filter frequency. We found that, as a pre-processing
step for ICA, high-pass filtering between 1-2Hz consistently produced good re-
sults in terms of signal-to-noise ratio (SNR), single-trial classification accuracy
and the percentage of ’near-dipolar’ ICA components.

Limitations and Future Work

We would like to stress that ICA + MARA is not a black-box method. We call it
’fully automatic’, because it can be applied in a fully automatic mode. Nevertheless,
expert knowledge is needed to judge whether the algorithms perform well on the
particular data set at hand. The quality of the obtained ICA decomposition as well
as MARA’s classification should still be inspected at least for a few subjects of a
study. MARA, just like any other automatic IC classifier, is a heuristic, as there is
no guarantee that the correct components are identified.

From our experience, MARA works relatively well on ERP data sets. However,
on the self-paced braking data sets we analyzed for the workshop paper presented
in Section 3.4, MARA labeled components too conservatively. This is why we man-
ually labeled the components on this data set. In general, if the data are heavily
contaminated by artifacts, ICA will have problems with extracting clean neuronal
components. MARA then tends to label components conservatively, that is, mixed
components which contain both artifactual and neuronal activity tend to be retained
in the data. In this case, MARA may not reject enough components.

In summary, MARA yields sufficient performance for it to be a useful tool in
many cases. However, we have encountered data sets in which its performance
could be better. There are several factors which limit MARA’s performance. Since
artifacts are a major problem for EEG analysis, future work should improve upon
the following aspects:

• Limited number of training data points. At the moment, MARA is trained
on 1290 components which were labeled by only two persons in our group.
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This number is small, especially if we want to generalize over a large variety
of experimental setups, some of which may generate more artifactual signals
then others. Furthermore, labeling independent components is not a clear-cut
task, and is subject to human judgement. It would therefore be good to have
labels from different research groups.

MARA could be made more reliable if more training components were avail-
able. However, to the best of our knowledge, almost no labeled component
data is currently publicly available. For eye artifacts, an interesting plugin was
recently developed by (Bigdely-Shamlo et al., 2013). They provide a database
of 3452 eye-related IC scalp patterns, to which new input ICs are compared
against. These scalp maps were obtained by data-mining over half a million
IC scalp maps obtained from about 80 000 EEG datasets. Research efforts in
this direction seem very promising.

• Applicability to general electrode setups. The applicability of MARA to general
electrode setups is still an issue. So far, MARA is only applicable to EEG data
which have been recorded using electrode positions from the 10-20-system,
just as the training data. This is not always the case, as some researchers use
dense array EEG. An interpolation between the electrodes of the training data
is therefore desirable.

• A classification pipeline which identifies eye artifacts first. Eye artifacts are
much easier to identify than other types of artifacts (Halder et al., 2007; Win-
kler et al., 2011; Frølich et al., 2015a). This is because eye components have
characteristic scalp patterns, which do not vary strongly over subjects and
sessions. Also, eye components are typically quite high-variance signals with
very non-Gaussian distributions (due to many outliers in the time series), and
are therefore typically well extracted with ICA (cf. (Hyvärinen et al., 2010a)).

The classification problem ’eye artifact vs. not an eye artifact’ is therefore
an easier classification problem than ’artifact vs. not an artifact’. Thus, it
might be more reliable to solve the eye artifact classification problem sepa-
rately (for example with EyeCatch, the method developed by (Bigdely-Shamlo
et al., 2013)), before identifying other artifact components with a classifier like
MARA.

Last but not least, the key to BSS-based artifact removal is to obtain a good
decomposition into artifactual and neuronal components. Unfortunately, separation
is usually not perfect and a number of mixed components contain both neuronal
and artifactual activity. This existence of mixed components is the limiting factor
for BSS-based artifact removal in general, because the EEG researcher –or the auto-
matic classifier– is forced to decide between removing too much information (when
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removing a mixed component) or retaining artifacts in the data (when retaining a
mixed component).

While several methods try to alleviate this issue, ICA has been the state-of-the-art
for many years. This might indicate that it is not possible to drastically improve
over ICA in general. Nevertheless, decomposition may be improved using the right
preprocessing settings (Section 3.3), and interesting alternatives may exist for spe-
cial cases. For example, the recently proposed spatio-spectral decomposition (SSD)
method (Nikulin et al., 2011) seems very well suited for the removal of artifacts/noise
for the analysis of oscillatory signals (Haufe et al., 2014a).

In Section 3.4, we therefore compared ICA with SSD. SSD is designed to extract
components that explain oscillations-related variance (cf. Section 2.2.3). We in-
vestigate EEG data from 18 subjects performing self-paced foot movements (Haufe
et al., 2011) with respect to event-related desynchronization (ERD) in the beta
band. The data contain a typical foot ERD over central sensorimotor areas which
is clearly contaminated by an event-locked muscle artifact. This contamination is
probably due to subjects moving their heads along with the fairly rhythmical foot
movement once per second. The clearly visible artifact may allow us to investigate
the performance of more artifact removal methods in the future.

The results so far indicate that SSD recovers cleaner signals than ICA on this
data set. We therefore use SSD as a pre-processing step for the analysis of Granger
causal brain oscillations in the next chapter.
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4 Extracting Granger causal brain
oscillations

4.1 Identifying Granger causal relationships
between neural power dynamics and variables
of interest

Irene Winkler, Stefan Haufe, Anne Porbadnigk, Klaus-Robert Müller, and Sven
Dähne. Identifying Granger causal relationships between neural power dynamics
and variables of interest. NeuroImage, 111: 489-504, 2015.
http://www.sciencedirect.com/science/article/pii/S1053811914010647

Short summary. The functional role of oscillatory activity and its causal effects on
behavior is a field of intense research. In this paper, we investigate which methods
are best suited to reveal Granger causal links between the power of brain oscilla-
tions and experimental variables. Using both simulated and real EEG recordings,
we compare Granger causal analysis on power dynamics obtained from a) sensor
directly, b) two state-of-the-art multivariate methods and c) a novel multivariate
method, referred to as Granger Causal Power Analysis (GrangerCPA), that directly
optimizes for Granger causality.

We find that all three multivariate approaches are better suited than sensor anal-
ysis. For the multivariate approaches, comparison must be undertaken in more
detail. GrangerCPA slightly outperforms ICA in some data sets, but this is not
always the case. In general, both algorithms arrive at similar solutions using an
entirely different set of assumptions.

Contributions. I wrote the majority of the paper and carried out all the analysis.
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Power modulations of oscillations in electro- and magnetoencephalographic (EEG/MEG) signals have been
linked to awide range of brain functions. To date,most of the evidence is obtained by correlating bandpowerfluc-
tuations to specific target variables such as reaction times or task ratings, while the causal links between oscilla-
tory activity and behavior remain less clear. Here, we propose to identify causal relationships by the statistical
concept of Granger causality, and we investigate which methods are bests suited to reveal Granger causal links
between the power of brain oscillations and experimental variables.
As an alternative to testing such causal links on the sensor level, we propose to linearly combine the information
contained in each sensor in order to create virtual channels, corresponding to estimates of underlying brain os-
cillations, the Granger-causal relations of which may be assessed. Such linear combinations of sensor can be
given by source separation methods such as, for example, Independent Component Analysis (ICA) or by the re-
cently developed Source Power Correlation (SPoC) method.
Herewe compare Granger causal analysis on power dynamics obtained from i) sensor directly, ii) spatial filtering
methods that do not optimize for Granger causality (ICA and SPoC), and iii) amethod that directly optimizes spa-
tial filters to extract sources the power dynamics of which maximally Granger causes a given target variable. We
refer to this method as Granger Causal Power Analysis (GrangerCPA).
Using both simulated and real EEG recordings, we find that computing Granger causality on channel-wise spec-
tral power suffers from a poor signal-to-noise ratio due to volume conduction, while all three multivariate ap-
proaches alleviate this issue. In real EEG recordings from subjects performing self-paced foot movements, all
three multivariate methods identify neural oscillations with motor-related patterns at a similar performance
level. In an auditory perception task, the application of GrangerCPA reveals significant Granger-causal links be-
tween alpha oscillations and reaction times in more subjects compared to conventional methods.

© 2015 Elsevier Inc. All rights reserved.

Introduction

Oscillatory neural activity is a fundamental property of neuronal net-
works and has widely been linked with distinct brain functions (Jensen
et al., 2007; Nikulin et al., 2007; Rieder et al., 2011; Başar, 2012).
Bandpower fluctuations in electro- and magnetoencephalography
(EEG/MEG), as well as electrocorticography (ECoG), signals have been
shown to be correlated with behavioral measures of task performance
or perceptual experience in humans and have been related to a variety

of cognitive phenomena, including attention (Debener et al., 2003;
Bauer et al., 2006; Womelsdorf and Fries, 2007; Haegens et al., 2011),
memory (Klimesch, 1999; Osipova et al., 2006), vigilance (Oken et al.,
2006; Berka et al., 2008) and perception (Kaiser et al., 2006; Thut
et al., 2006; Babiloni et al., 2006; Schubert et al., 2009). As most of the
evidence is of correlative nature, the functional role of oscillatory activ-
ity and its causal effects on behavior remain a field of intense research
(Buzski and Draguhn, 2004; Thut and Miniussi, 2009).

An intriguing way to investigate the functional role of oscillations is
to induce them with brain stimulation techniques such as repetitive
Transcranial Magnetic Stimulation (rTMS) and Transcranial Alternating
Current Stimulation (TACS) (Thut et al., 2012; Herrmann et al., 2013).
Accumulating evidence suggests that rhythmic stimulation induces be-
havioral consequences, for instance on visual perception (Romei et al.,
2010), motor performance (Joundi et al., 2012), mental rotation
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(Klimesch et al., 2003), workingmemory (Zaehle et al., 2011), and sleep
stages (Massimini et al., 2007).

A fundamentally different approach to studying the causal effects of
oscillations that does not require direct intervention in the nervous sys-
tem is the following: identification of causal relationships based on tem-
poral precedence as revealed by a concept called ‘Granger causality’
(Granger, 1969). Granger causality is a standard statistical method
from the field of econometrics and has been applied in neuroscience
to infer functional brain connectivity (e.g. Roebroeck et al., 2005;
Astolfi et al., 2007; Bressler and Seth, 2011). Assumewe simultaneously
measure EEG bandpower ϕ and a target variable z over time. Then ϕ is
said to Granger cause z if ϕ helps to predict the future z above what is
predicted by the past of z alone. Here, z can be any signal of interest,
such as a behavioral output (e.g., reaction time, sensory detection, task
rating, evokedpotentials), a physiologicalmeasure (e.g.,muscular activ-
ity, heart rate variability) or a second power time course.

The advantage of non-invasiveness warrants further pursuit of the
Granger causality idea, as applied to power dynamics of EEG recordings.
For example, an actively researched question in the field of Brain–
Computer Interfaces (BCIs) is whether (andhow) oscillatory sources in-
fluence the control performance of a user during a BCIs experiment
(Grosse-Wentrup et al., 2011; Dähne et al., 2011; Maeder et al., 2012).
Existing results suggest a causal role of gammapower in themodulation
of BCIs control performance (Grosse-Wentrup, 2011). In the Granger
causal setting, the target variable z would thus be the BCIs control
performance per trial, while the goal would be to identify a neural
source whose power time course Granger-causes z. Due to high inter-
trial variability as well as low signal-to-noise ratio (particularly in
high-frequency ranges such as the gamma band), finding predictive
sources is a challenging task.

The simplest approach to testing for Granger causality is to consider
each channel separately. However, the physics of EEG implies that the
activity measured at a given channel is a mixture of contributions from
several neuronal sources, whose activity is spread across the EEG chan-
nels due to volume conduction in the head (Baillet et al., 2001; Parra
et al., 2005; Nunez and Srinivasan, 2006). This leads to a low signal-to-
noise (SNR) ratio and may hinder physiological interpretation of the re-
sults, because the activity of a Granger causal neural source is not guaran-
teed to be best observable even in the sensors that are closest to the
neural source. These considerations imply that testing Granger causality
on sensor-level computed power time courses is potentially suboptimal.

The complications outlined above can be avoided by recovering the
underlyingneural source signals from scalp recordings prior to the com-
putation of bandpower dynamics and the test for Granger causality. The
task of recovering underlying signals from multivariate recordings is
called (blind) source separation (BSS), and can only be solved using
prior knowledge about the signals to be recovered. In the field of neuro-
science, one of themost popular BSS algorithms is Independent Compo-
nent Analysis (ICA), which seeks maximally statistically independent
sources. However, here we are interested in recovering sources whose
power dynamics Granger cause an external variable. Thus, we might
benefit from basing the reconstruction of source activity exactly on
this assumed dependency. This is especially important since an
oscillatory source may Granger cause a behavioral output variable by
modulating other brain rhythms — which contradicts the assumption
of independence to all other sources. Moreover, a benefit of directly op-
timizing for the quantity of interest rather than statistical independence
has been demonstrated recently in the context of correlation analysis
(Dähne et al., 2013, 2014a,b).

In this paper, we investigate which methods are bests suited to re-
veal a Granger causal effect from neural oscillations to a given external
target variable. To this end, we compare channel-wise Granger causality
testing with three source separation methods. We propose a novel
analysis method which extracts a source whose bandpower maximally
Granger causes the target variable, and we compare it with ICA and the
recently proposed SPoC method (Dähne et al., 2014a) which extracts

neural sources whose bandpower is maximally correlated with the tar-
get variable. This comparison is carried out both in simulations and on
two real EEG data sets.

Methods

Granger causality

Granger causality (Granger, 1969) is a statistical method to infer
causality between time series based on the temporal argument that
the cause should precede the effect. It has been widely applied to the
study of economic variables and recently been adopted in the field of
neuroscience (Roebroeck et al., 2005; Astolfi et al., 2007; Bressler and
Seth, 2011). While Granger causality has gained popularity as a simple
testable definition of causality, note that the scientific methodology
for the inference of cause–effect relationships from data is subject to
intense research. A significant Granger test is often thought not to re-
flect ‘true causality’, butwhat is sometimes termed ‘predictive causality’
or simply ‘Granger causality’.

Let us consider two univariate time series ϕ and z (representing, for
example, the EEG power and target variable time course). According to
Granger's definition, ϕ is said to Granger cause z, if we are better able to
predict z using ‘all the information in the universe’ than if all informa-
tion apart from ϕ has been used (Granger, 1969). In practice, it is com-
mon to consider only the information in the past of ϕ and z (Hamilton,
1994; Bressler and Seth, 2011). The statistical test is then given by the
comparison of the goodness of fit of two autoregressive (AR) models.
First, z is modeled as a function of a predefined number P of its most re-
cent past values. Second, z is modeled as a function of both its own past
values and the past values of ϕ. Finally, Granger causality tests
whether the second regression model explains significantly more
variance of z than the first regression model.

In the linear case, the two regression models are given as

z tð Þ ¼
XP

p¼1

hres pð Þz t−pð Þ þ ϵres tð Þ ð2:1Þ

and

z tð Þ ¼
XP

p¼1
hfull pð Þz t−pð Þ þ

XP

p¼1
hfull P þ pð Þϕ t−pð Þ þ ϵfull tð Þ; ð2:2Þ

where P denotes the number of time lags, hres ∈ ℝP and hfull ∈ ℝ2P de-
note the regression coefficients, and ϵres and ϵfull denote the residuals.

ϕ is said to Granger cause z if the variance of the residuals ϵres of the
restrictedmodel is significantly larger than the variance of the residuals
ϵfull of the full model. Granger causality from ϕ to z can be capturedwith
Geweke's Granger causality index (Geweke, 1982), defined as

Gϕ→z ¼ log
VarðϵresÞ
Var ϵfull

! " : ð2:3Þ

Under the assumption of Gaussian distributed residuals, Gϕ→z is
asymptotically χ2 distributed. Under the same assumption, an exact
test is given by the F-test for regression (see Bressler and Seth, 2011,
for instance). Under the null hypothesis of no Granger causality,

Fϕ→z ¼
VarðϵresÞ−Var ϵfull

! "

Var ϵfull
! " % N−2P

P
ð2:4Þ

will have an F distributionwith (P,N− 2P) degrees of freedom,whereN
denotes the number of available data points. If the distribution of the re-
siduals is unknown, non-parametric methods such as permutation
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testing can be used for significance testing. In this paper, we use the
F-test for regression in our simulation study, and additionally a permu-
tation test for the real EEG data. For the permutation test, we use 500
random permutation sequences generated by the method of Freedman
and Lane (Freedman and Lane, 1983; Anderson and Robinson, 2001;
Barnett and Seth, 2011).

In the neuroscientific context considered here, z is a measured vari-
able of interest such as reaction time or task performance, which we
refer to as the ‘target variable’. Our goal is to find neural oscillations
whose power ϕ Granger causes the target variable. For example, ϕ
could be the power at one channel in a specific frequency band of mea-
sured EEG orMEG data. Throughout this paper, we will always consider
ϕ to be the logarithm of the power because logarithmized EEG power
time courses can assume negative values and are approximately Gauss-
ian distributed, which is more consistentwith autoregressivemodeling.

Generative model

Due to volume conduction, neural signals generated inside the brain
are spatially smeared while propagating to the sensors. In a simulation
study (Nunez et al., 1997), only half of the signals picked up by a scalp
electrode came from sourceswithin a 3 cm radius. Because the superpo-
sition of neural sources is instantaneous and linear in the sources
(Baillet et al., 2001; Parra et al., 2005; Nunez and Srinivasan, 2006),
the electrophysics of EEG and MEG can be modeled as

X ¼ A % Sþ η: ð2:5Þ

Here X denotes the surface potentials measured at M sensors, S
denotes the time-courses ofK underlying neural sources, and thematrix
A ∈ ℝM × K describes the influence of each source to each sensor. Each
column of A is called a spatial pattern of the respective source and de-
pends on both the spatial distribution and orientation of the source as
well as the geometry and conductivity of different brain tissues. Any
contribution that is not described by A is summarized in an additive
sensor noise term η.

Throughout this paper, we consider time-windowed and band-pass
filtered measurements X = (X1,…, XN) ∈ ℝM × (T ⋅ N) where M is the
number of channels,N is the number of timewindows and T is the num-
ber of data points per window. This notation allows to accommodate
trial-based as well as continuous data. For trial-based data, the time
windows may be defined in relation to the trial structure, i.e. the
window could encompass the entire trial or pre-trial time segments,
for example. For continuous data on the other hand, the time windows

can simply be consecutive data segments. From here on we refer to the
time-windowed and band-pass filtered data as epoched data.

The underlying sources are denoted S = (s1, s2,…, sK − 1, s∗)Τ

∈ ℝK × (T ⋅ N) and mixed into X via their corresponding patterns A =
(a1, a2,…, aK − 1, a∗)∈ ℝM × K. The external target variable z ∈ ℝN is ac-
quired once per epoch and the epoch-wise logarithmized bandpower of
s∗ is assumed to Granger cause z. As the data is band-pass filtered in a
band-of-interest already, we can use the logarithm of the variance of
the band-passed signal as a proxy for the log-power of the band-of-
interest. The log-variance is computed within epochs and thus results
in epoch-wise time courses of bandpower. The other biological sources
s1,…, sK − 1 may ormay not be related to z, but their power time courses
are assumed not to Granger cause z. Fig. 1 illustrates the generative
model.

Channel-wise Granger causality

Given EEG orMEG data X and an external target variable z, wewould
like to determinewhether oscillatory brain activity is Granger causing z.
The simplest approach is the univariate approach of computing epoch-
wise bandpower for each channel and testing for Granger causality for
each channel. However, the activity picked up from each sensor reflects
a superposition of several neural sources. Thus, the signal-to-noise ratio
at the sensor level is low, which may cause failure to detect Granger
causality.

Can the superposition of neural sources also introduce spurious cau-
sality in the sense that Granger causality that is only due to source
mixing is detected? Recent research points out problems of Granger
causality when studying connectivity: If only a single source is active,
and measured with noise at two channels, the channels Granger cause
each other. This is because the autoprediction of each channel is im-
proved if the prediction model is augmented by another channel that
measures the same signal with a different noise realization (Haufe
et al., 2013). Spurious causality is not as problematic in our application
scenario, because volume conduction is not affecting the external target
variable z. However, if both ϕ and z are driven by a third common cause,
the problem may occur.

Consider the following simple toy example. Suppose wemeasured a
linear superposition x of two bandpower time courses ϕ∗ and ϕ1,

x ¼ ϕ& þ c % ϕ1 ð2:6Þ

where c∈ℝ governs the signal-to-noise ratio. Note that this is a strong-
ly simplified case as bandpower computation is not a linear operation.

Fig. 1. Problem illustration. In this simple cartoon example, there are two active brain sources (s1 and s∗). The power dynamics of source s∗ are causally related to an externally observed
target variable z, while the power dynamics of s1 are unrelated to z. Sensors on the scalp record a linear mixture of the source activity, resulting in channel signals x1 and x2. Note that the
channel-wise computed envelopes are not simply a linear mixture of the source envelopes. Even if a causal relation between sensor power dynamics and z can be detected, the spatial
layout of such detected interaction may be misleading because the activity of source s∗ is present not only in sensors in close proximity. The appropriate course of action is to recover
the time course of s∗ before the computation of bandpower. Information contained in the target variable z can be used to recover s∗.
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Howdoes this linear superposition influence a test for Granger causality
from x to an external target variable z?

For different values of c, we simulated a target variable z and epoch-
wise bandpowerϕ∗ from a stable bivariate AR process of order P=1, for
N= 1000 epochs. ϕ1 is generated independently from a stable univari-
ate AR process of order P = 1. We consider two cases: (1) ϕ∗ Granger
causes z, but z does not Granger cause ϕ∗, and (2) ϕ∗ does not Granger
cause z, but z Granger causes ϕ∗. We perform 300 repetitions of the ex-
periment for each value of c.

The frequency of estimated Granger causal significant relationships
from x to z is shown in Fig. 2. We see that if ϕ∗ does not Granger cause
z, we will correctly infer no Granger causality for any value of the
signal-to-noise parameter c. There is no problem of spurious causality
here. This is because the additional noise in x will not help to predict z.
Note however, that we need to assume that the target variable z is
measured with a relatively low noise level to avoid spurious causality.

Ifϕ∗Granger causes z, wewill correctly identify Granger causality if c
is small. However, the power of theGranger causality test from x to z de-
creases when c increases. The Granger causal relationship is thus
masked by superimposed noise. This consideration implies that Granger
causality testing on channel-wise computed power time-courses is po-
tentially suboptimal. Wemay gain statistical power by trying to recover
ϕ∗ from the sensor measurements using multivariate source separation
approaches.

Multivariate approaches

When analyzing a neural phenomenon of interest, it is often
advisable to recover the unknown neural signals from the sensor
measurements X in the linearmodel in Eq. (2.5), as this leads to a higher
signal-to-noise ratio (Parra et al., 2005; Blankertz et al., 2008). To do so,
various multivariate signal processing algorithms have been proposed
that linearly combine channels to extract signals of interests. In this
paper, we analyze the ability of three multivariate algorithms to extract
neural oscillations whose power modulations Granger cause the exter-
nal target variable.

Independent Component Analysis (ICA)
The blind source separation (BSS) problem consists in recovering the

unknown neural signals S ∈ ℝK × (T ⋅ N) from the sensor measurements
X∈ℝM × (T ⋅ N), i.e. of inverting the linear model in Eq. (2.5). A common
approach is Independent Component Analysis (ICA), which solves the
BSS problem under the assumption of mutually statistically indepen-
dent sources. A demixing matrix W ∈ ℝK × M is estimated such that
the estimated sources

Ŝ ¼ W % X ð2:7Þ

are maximally statistically independent. Each row of W extracts one
source and is called a spatial filter.

A number ofmeasures can be used to assesswhether two time series
are statistically independent, and each lead to a different algorithm for
determining W (Hyvärinen and Oja, 2000). We chose FastICA
(Hyvärinen and Oja, 1997) as one ICA variant often used for the analysis
of EEG and MEG data. Granger causality from the bandpower of each
source to the target variable can then be computed.

ICA approaches are in line with the generative model of EEG and
MEG and have become a standard tool for the analysis of such data.
However, ICAmethods are unsupervised and do notmake use of the in-
formation of the target variable and typically assume the number of
sources to be equal to the number of channels. We thus may gain
from supervisedmethods that use the information in the target variable
to guide the decomposition.

Source Power Correlation (SPoC)
Source Power Correlation Analysis (SPoC) is a recently proposed

methodwhich extracts sources whose bandpowermaximally correlates
with an external target (Dähne et al., 2014a). Specifically, SPoC seeks a
spatial filter w ∈ ℝM such that the epoch-wise bandpower of the
projected signal w⊺X is maximally correlated with z. As X has been
band-pass filtered, this epoch-wise bandpower can be computed as
the variance of the projected signal Var(w⊺Xi) within each epoch i. We

denote the epoch-wise bandpower by ϕ
0
W ið Þ :¼ Var w⊺Xið Þ.

Here we consider an extension of SPoCwhere wemaximize the cor-
relation of the target variable with its prediction from the bandpower of
several time lags P. Its objective can be summarized as

maximize
w∈ℝM ;hspoc∈ℝP

Cov zðiÞ; ∑
P

p¼1
hspoc pð Þ % ϕ

0

w i−pð Þ
 !

subject to w⊺ % Cov Xð Þ %w ¼ 1
h⊺spoc % Bw % hspoc ¼ 1

ð2:8Þ

where ϕ
0
w ið Þ ¼ Var w⊺Xi

! "
is the bandpower of the projected signal in

epoch i, Cov(X) denotes the covariance of X and Bw denotes the autocor-
relationmatrix of Var(w⊺Xi) computed over P time lags. Themathemat-
ical details of the optimization can be found in Dähne et al. (2013).

Optimizing Granger causality
We propose to directly optimize the quantity of interest, namely

Granger causality rather than correlation. That is, given electrophysio-
logical data X (for example EEG recordings) and the target variable z,
we seek a spatial filter w ∈ ℝM such that the epoch-wise log power of
the estimated sourcew⊺Xmaximally Granger causes the target variable.
We refer to this algorithmas ‘GrangerCPA’ (Granger Causal Power Anal-
ysis). Combining channels to maximize Granger causality as measured
on the projected data has recently been proposed by Ashrafulla et al.
(2013); however, here we are interested in oscillatory phenomenon
and thus the power of the projected signals.
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Fig. 2. Simple illustrative example of Granger causality under linear superposition x =
ϕ∗ + c ⋅ ϕ1. We plot the frequency of estimated significant Granger causal relationships
from x to z depending on c in two scenarios: (1) ϕ∗ Granger causes z, but z does not
Granger cause ϕ∗ and (2) ϕ∗ does not Granger cause z, but z Granger causes ϕ∗.
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To derive GrangerCPA's objective function, we introduce the follow-
ing notation. Denote with

ϕ̌
w ið Þ :¼ log

Var w⊺Xi

! "

w⊺Cov Xð Þw

0

@

1

A ¼ log
w⊺Cov Xið Þw
w⊺Cov Xð Þw

 !

ð2:9Þ

the normalized log bandpower of the source extracted by the spatial
filter w in epoch i and let

ϕw ið Þ :¼ ϕ̌
w ið Þ− 1

N

XN

j¼1

ϕ ̌
w jð Þ ð2:10Þ

be themean-free log bandpower.We also assume that z has been trans-
formed to have zero mean. Let eZ∈ℝP' N−Pð Þ contain z along with its
lagged values, and let eΦw∈ℝP' N−Pð Þ contain ϕw along with its lagged
values, i.e.

eZ :¼
z Pð Þ ⋯ z Nð Þ
⋮ ⋮

z 1ð Þ ⋯ z N−Pð Þ

2

4

3

5; eΦw :¼
ϕw Pð Þ ⋯ ϕw Nð Þ

⋮ ⋮
ϕw 1ð Þ ⋯ ϕw N−Pð Þ

2

4

3

5 :

Denote with eTw :¼
eZ
eΦw

# $
∈ℝ2P'N−P the vertical concatenation of eZ

and eΦw .
We are now ready to calculate the coefficients of the restricted and

full autoregressive models given in Eqs. (2.1) and (2.2) using Ridge
Regression:

hres ¼ eZeZ⊺ þ λr I
! "−1eZz⊺ ð2:11Þ

hfull ¼ eTw
eT⊺
w þ λI

! "−1eTwz
⊺ ð2:12Þ

whereλr andλ denote the respective regularization parameters. Plugging
the regression's residuals, given as ϵres ¼ z−h⊺reseZ and ϵfull ¼ z−h⊺fulleTw, in
Eq. (2.3) yields a Granger causality index of

Gϕw→z ¼ log
VarðϵresÞ
Var ϵfull

! " ¼ log
z−zeZ⊺ eZeZ⊺ þ λrI

! "−1eZ
%%%

%%%
2

z−zeT⊺
w
eTw
eT⊺
w þ λI

! "−1eTw

%%%
%%%
2 : ð2:13Þ

Fortunately the numerator in Eq. (2.13) does not depend onw. Thus,
maximizing Gϕw→z with respect tow reduces to minimizing the follow-
ing cost function:

L wð Þ ¼ z−zeT⊺
w
eTw
eT⊺
w þ λI

! "−1eTw

%%%
%%%
2
: ð2:14Þ

This objective is a non-convex, higher order nonlinear function of
the spatial filter w and a local minimum can be obtained by means of
standard nonlinear optimization techniques such as the L-BFGS algo-
rithm. We use the minFunc function of Mark Schmidt (2012). For the
simulation and real world data analysis shown in this paper we restart
the procedure five times with different random initializations. The gra-
dient of Eq. (2.14) is given in Appendix A.

Optimizing the objective function stated in Eq. (2.14) yields a single
weight vector that extracts neural source activity. If desired, further
weight vectors can be obtained using a so-called deflation scheme
which is also outlined in Appendix A.

Two parameters have to be set at the start of the optimization: the
number of time lags P and the regularization parameter λ. We select
the number of lags P as the optimizer of Schwarz's Bayesian Information
Criterion (BIC) (Schwarz, 1978; Schneider and Neumaier, 2001) when
fitting the restricted model given in Eq. (2.1). The number of lags P

which optimizes the BIC will be a number as small as possible which
still achieves a low residual variance. The regularization parameter λ
used in Ridge Regression is needed to prevent overfitting on the training
data. We select λ in a 5-fold (nested) chronological cross-validation
procedure (see (Lemm et al., 2011), for instance) from {0, 103, 106} in
the simulation study and from {0, 103, 106, 109} in the real EEG analysis.

The runtime depends on the number of sensors M, the number of
epochsN, and the number of time lags P. On the realistic dimensionality
of our simulation study (M = 26, N = 600, P = 5) and for a given
regularization parameter λ, the runtime is in the order of seconds
only. However, λ has to be estimated by cross-validation. The 5-fold
cross-validation procedure from the simulation study took an average
processing time of 60.0 s (10.8 second standard deviation) on a
3.6 GHz cluster node.

Computation of the spatial pattern
While the spatial filterw extracts a source ŝ∗ =w⊺X, we need to de-

rive its corresponding spatial pattern â∗ to be able to interpret the neu-
rophysiological origin of this source. The pattern â∗ gives an estimate of
a∗ in the generative model in Eq. (2.5) and contains the projection
strength of ŝ∗ onto the scalp sensors. Visualizing the spatial filter w
can lead to misinterpretations, because filters aim to suppress noise
sources and thus depends on the spatial distribution of signal and
noise sources (Blankertz et al., 2011; Haufe et al., 2014b). The spatial
pattern â∗ is given by

â& ¼ Cov Xð Þ %w; ð2:15Þ

where Cov(X) denotes the covariance of X (Haufe et al., 2014b; Parra
et al., 2005; Blankertz et al., 2011).

Simulations

We compare the ability of channel-wise Granger causality testing,
ICA, SPoC and GrangerCPA to identify oscillatory signals whose power
modulation Granger causes an external target variable. We first carry
out simulations, where the target source is known, andwe can compare
the extracted source to the ground truth.

Data generation
We simulated epoched EEG recordings with 26 channels according

to the generative model in Eq. (2.5). A target variable z and epoch-
wise log bandpower ϕ∗ which Granger causes z were generated from a
stable bivariate AR process of order P= 5. The oscillatory target source
s∗ with log power modulation ϕ∗ and 150 additional oscillatory sources
were created and mixed into the simulated EEG. The signal-to-noise
ratio between them is controlled by a parameter denoted γ which is
approximately the percentage of variance explained by the target
source s∗. The simulation protocol is outlined in more detail in
Appendix B.

Simulation 1: one Granger-causal source
In Simulation 1, we compare the performance of channel-wise

Granger causality testing, ICA, SPoC and GrangerCPA in different noise
settings. We vary the variance explained by the target source γ while
keeping the number of training epochs N fixed at 600. Furthermore,
we vary the number of training epochs while keeping γ fixed at 6 %.
For each value of γ and N we generate 200 data sets. Using the setting
of N=600 and γ=6%we also analyze the effect of noise on the exter-
nal target variable z. We add varying degrees of measurement noise κ
according to z + κ · ϵ, where ϵ ( N 0;1ð Þ and z has been standardized
to variance 1.

In our noisy simulations, a perfect reconstruction of the target source
s∗ is in general not possible. While s∗ is not known in practice, we use it
in this simulation to quantify an upper limit of possible source recon-
struction accuracy, which we call ‘MSE optimum’. We compute a filter
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which yields a minimal mean square error (MSE) between the time
course of the target source s∗ and its reconstruction from the EEG data
w⊺X. This is done by Ordinary Least Squares regression of s∗ on the
EEG data X.

While SPoC and GrangerCPA directly compute a weight vector
which optimizes their respective objective functions, FastICA yields an
entire set of unordered weight vectors with no information about
which one extracts the target source. We identify the target source on
the training data by selecting the component whose power time course
shows strongest Granger causality to the target variable. Similarly, for
the channel-wise analysis, we select the channel whose power time
course shows strongest Granger causality to the target variable.

We measure the performance of the five methods on 100 unseen
test epochs as (1) the mean correlation between the log power of the
recovered and the true source and (2) the frequency of detecting the
Granger-causal relationship.

Simulation 2: one Granger-causal and one correlated source
We conduct a second simulation to analyze the ability of channel-

wise Granger causality, ICA, SPoC and GrangerCPA to identify causal
sources when a confounding, merely correlated source is also present.
To this end,we include a source scwhose log power is perfectly correlat-
ed with the target variable z to the components of the artificial EEG.
Note that this perfectly correlated source is not Granger-causal to z as
it does not contain any additional information about z. Therefore, we
expect GrangerCPA to identify the target source s∗, and SPoC to find
the higher correlated source sc. We investigate a setting of 600 training
epochs in which the Granger causal source s∗ and correlated source sc

each explain 6% of EEG variance.

Simulation 3: three Granger-causal sources
In a third simulation, we compare FastICA, deflation-based SPoC and

deflation-based GrangerCPA using simulated EEG data in which three
underlying sources are Granger causally connected to the external tar-
get variable. To do so, we generate the target variable z and epoch-
wise log bandpower ϕA

∗ , ϕB
∗ , ϕC

∗ from a stable 4-dimensional AR process
of order P = 5. By allowing the corresponding AR coefficients to be
non-zero, we investigate the following two scenarios: (1) ϕA

∗ , ϕB
∗ , and

ϕC
∗ are pairwise independent, but each Granger-causes z. (2) ϕC

∗ is
Granger causing ϕB

∗ , ϕB
∗ is Granger causing ϕA

∗ , and ϕA
∗ is Granger causing

z. For each scenario, we investigate a setting of 600 training epochs in
which the three target sources each explain 6% of EEG variance.

Real EEG data

Experiment 1: self-paced braking
We apply channel-wise Granger causality testing, ICA, SPoC and

GrangerCPA on data from 18 subjects performing self-paced foot move-
ments. It is well known that brief, self-paced movements of specific
body parts are preceded by an event-related desynchronization (ERD)
of 8–13 Hz (mu band) and 15–30 Hz (beta band) rhythms over corre-
sponding sensorimotor areas (Neuper and Pfurtscheller, 2001). Here
we focus on beta ERD which starts as much as 1.5–2 s prior to move-
ment onset and is thought to be related to movement preparation and
execution (Pfurtscheller, 1981; Kilavik et al., 2013).

The experimental data we use here stems from a pre-measurement
of a simulated driving experiment described in Haufe et al. (2011). 18
healthy participants were instructed to perform self-paced right foot
movement (i.e. press the brake pedal) once per second for 5 min. EEG
data were recorded with 64 Ag/AgCl electrodes at 1000 Hz. Further-
more, an electromyographic (EMG) signal was recorded using a bipolar
montage at the tibialis anterior muscle and the knee of the right leg.

For the following offline-analysis, EEG data were decimated to
200 Hz. Artifactual electrodes were rejected using a variance criterion.
As a subsequent preprocessing, the dimensionality of the data was re-
duced to 10 using spatio-spectral decomposition (SSD) (Nikulin et al.,

2011). SSD suppresses artifacts and increases the signal-to-noise ratio
of neuronal oscillations bymaximizing the signal power in the frequen-
cy band of interest, here the beta band, while simultaneously minimiz-
ing it at neighboring frequencies. This makes SSD an effective tool for
preprocessing, because it extracts a low dimensional subspace which
captures oscillatory activity in the frequency range of interest (Haufe
et al., 2014a). The choice of 10 SSD components was based on
experience.

After dimensionality reduction, EEG data were band-pass filtered
between 15 and 30 Hz (5th-order causal Butterworth filter) and
segmented into consecutive epochs of 20ms length yielding on average
17880 epochs per subject. Similarly, the EMG signal was band-pass
filtered between 2 and 45 Hz and segmented into consecutive epochs
of 20 ms length. We use the logarithm of the variance in each EMG
epoch as the target variable z, thus yielding a 50 Hz resolution for the
target function as well as the EEG power time-series.

We test the ability to detect a motor preparation source of SPoC,
GrangerCPA, FastICA and channel-wise statistical testing in a 5-fold
chronological cross-validation procedure (see e.g. Lemm et al., 2011).
On the training folds, eachmethod estimates a spatial filter as described
in Section 2.5. On the test fold, we test whether the log power of the es-
timated source Granger causes the target variable z. On each test fold,
Granger causality is evaluated at a lag order which is chosen as the op-
timizer of Schwarz's Bayesian Information Criterion (BIC) (Schwarz,
1978). We check for residual autocorrelation using a Ljung–Box test
(Ljung andBox, 1978), andwe increase the lag order in case of a remain-
ing significant autocorrelation at p b 0.05. The Ljung–Box statistic was
based on log(number of epochs) time lags, as recommended by Tsay
(2005).

The training/test split was repeated such that each fold became the
test fold once, yielding a p-value for each split. These five p-values
were then combined using the Z-transform test (Whitlock, 2005;
Stouffer et al., 1949). The Z-transform test converts the p-values from
each of the five tests, pj, into standard normal deviates Zj. Under the
null hypothesis of no Granger causality the sum of the five Zj's is normal
distributedwithmean zero and standard deviation

ffiffiffi
5

p
. The final p-value

of cumulative evidence for Granger causality over the five folds is thus

given by comparing the test statistic TZ ¼ ∑5
j¼1Z j=

ffiffiffi
5

p
to the standard

normal distribution.

Experiment 2: predicting reaction times
In the second real-world example, we demonstrate how Granger

causality analysis can be used to find oscillatory alpha components
that are predictive of reaction times. A large literature links performance
with ongoing alpha oscillations and reports effects that vary extensively
depending on the investigated task. Low reference alpha power is relat-
ed to low performance in cognitive and memory tasks (Klimesch et al.,
1999), but is also often associated with high perception performance
(Klimesch et al., 2007; Jensen and Mazaheri, 2010).

Here, we apply channel-wise Granger causality, ICA, SPoC and
GrangerCPA to data from an auditory perception task.While the ground
truth is not known, we expect to obtain physiological interpretable pat-
terns and we will compare the methods' abilities to discover significant
effects.

The behavioral and EEG data were recorded in series of studies
where participants were asked to assess the signal quality of auditory
signals (Antons et al., 2012; Porbadnigk et al., 2013). For the given
study, nine participants were presented with a forced choice task,
where they had to indicate by button press whether the presented
speech stimulus was of high quality or degraded. As stimulus material,
two words (‘Haus’ (engl. house) and ‘Schild’ (engl. sign)) were used,
spoken by two different speakers. These stimuli were presented in an
oddball paradigm, with a majority of stimuli in wideband quality
(non-targets), interspersed with stimuli that were degraded with four
different levels of bit rate reduction (targets). The inter-stimulus
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interval varied between 2000 and 2250 ms. An experimental session
lasted approximately 1.5 h (plus additional time for electrode applica-
tion and removal) during which on average 2388 stimuli were present-
ed. EEG data were recorded using a 64-channel EEG system at 1000 Hz.

For offline analysis, EEG data were downsampled to 100 Hz and ar-
tifactual electrodes were rejected using a variance criterion. The alpha
frequency band was individually defined in relation to the individual
alpha peak frequency (IAF) from IAF − 3 Hz to IAF + 2 Hz
(Doppelmayr et al., 1999; Klimesch, 1999). SSD was used to project
the data onto a 10 dimensional subspace that captures oscillatory activ-
ity in the individual alpha band.

Subsequently, EEG data were band-pass filtered in the individual
alpha band and divided into epochs ranging from 1500 ms to 2000 ms
with respect to stimulus onset. The reaction times are used as the target
variable z. We apply channel-wise Granger causality, ICA, SPoC and
GrangerCPA to test whether we can identify sources whose alpha
power predicts reaction times above and beyond its own past values.
The experimental setup is illustrated in Fig. 3. Given the inter-stimulus
interval of about 2 s, the resulting time series of reaction times as well
as the EEG (channel-/component-) power time-courses have a sam-
pling rate of about 0.5 Hz. Consequently, a single time-lag corresponds
to about 2 s. For significance testing, we use the same 5-fold cross-
validation scheme as in Experiment 1.

Results

Simulations

Simulation 1: one Granger-causal source
Fig. 4 depicts the scalp plots obtained from an example simulation

run using N = 600 training epochs with a target source explaining
γ= 6% of EEG variance. Note how little the channel-wise Granger cau-
sality p-values resembles the spatial pattern of the true target source.
The p-values for each electrode thus do not recover the pattern. On

average over 200 simulations, the mean correlation of the estimated
pattern with the true pattern is 0.94 for GrangerCPA, 0.87 for SPoC,
0.84 for FastICA, but only 0.29 for the channel-wise Granger-causality
p-values.

Fig. 5 shows the results from the simulations in which we vary the
noise in the data and the available number of training epochs and test
the ability of GrangerCPA, SPoC, FastICA, and electrode-wise Granger
causality to recover the target source. All reported correlations where
obtained on test data that was not used to train the algorithms. In
order to assess the specificity of this approach, we additionally per-
formed the simulation without any Granger causal source present
(γ = 0, N = 600 training epochs, 200 runs). As is to be expected, the
performance of the four methods did not differ significantly from each
other (p N 0.05, Wilcoxon signed rank tests on the z-transformed
achieved p-values). A Granger causal source was falsely detected with
p b 0.01 in 1.5% of runs by GrangerCPA, FastICA, and the most
Granger-causal electrode, and in 0.5% of runs for SPoC. This is close to
the theoretical expected value of 1%.

When the target source is present, the recovery of the source im-
proves for all methods as the signal-to-noise ratio increases and more
training epochs become available. For a target source explaining 6% of
EEG variance, GrangerCPA outperforms the other three methods when
at least 200 training epochs are available. For all methods, at least 200
training epochs are needed for a good reconstruction of the target
source. For GrangerCPA, SPoC and FastICA at least 500 training epochs
are recommendable. Out of all methods, FastICA is the most vulnerable
to an insufficient amount of training data, while channel-wise Granger
causality testing needs the least amount of data to reach its (low)
peak performance. As the number of training epochs increases,
GrangerCPA plateaus earlier than SPoC and FastICA.

For a target source explaining 6% of EEG variance, added measure-
ment noise on the external target variable z has only a small effect for
moderate noise levels of κ ≤ 20 %, with GrangerCPA being slightly
more vulnerable than the compared methods. As the noise level

X1 X2

Reaction time
z2

500 15001000 2000

z3z1

X3

ms

Fig. 3. Schematic illustration of Experiment 2. Participants had to ratewhether the presentedwords (‘Haus’, ‘Schild’) were ofmaximal quality or degraded by bit rate reduction.We use the
reaction time as a target variable, z=(z1, z2, z3…, zN), whichwe try to predict using epoched, alpha band-pass filtered EEG data X=(X1, X2, X3,…, XN). Finding a sourcewhose log power is
Granger causing z means that the log power of that source in X1 and X2 in addition to past reaction times z1 and z2 predicts z3 better than z1 and z2 alone.

Fig. 4. Example simulation run usingN=600 training epochs and a target source explainingγ=6%EEG variance. The left scalpmap shows the true spatial pattern of the simulated target
source. The second, third and fourth scalp maps show the estimated scalp pattern of GrangerCPA, SPoC and FastICA. The right scalp map shows the Granger-causality p-values between
channel-wise log bandpower and the target variable estimated on the test data. The cross indicates the electrode chosen on the training data. For eachmethod, the p-value related to the
Null Hypothesis of no Granger causality from the extracted bandpower to the target variable is computed on the test data and presented above the scalp map.
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increases, the Granger causal relationship of the target source starts to
break down, and so does the performance of all the considered
methods.

Concerning the signal-to-noise level γ of the target source, we can
see that all threemultivariate approaches outperform channel-wise sta-
tistical testing in all signal-to-noise regimes. GrangerCPA outperforms
FastICA and channel-wise Granger causality in all signal-to-noise
regimes, and SPoC for signal-to-noise levels above 1.5% of explained

variance. This is due to the fact that the Granger causal target source
power may only be very weakly correlated with the target variable,
making it difficult for SPoC to identify it.

Fig. 6 highlights the difference between SPoC and GrangerCPA. For a
source explaining 6% of EEG variance, we sorted the 200 simulation runs
according to the correlation between the target variable and its
prediction by past values of the true source power. In our simulation,
this correlation varies as a function of the randomly generated
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Fig. 5. Results of Simulation 1 in which we vary the variance explained by the target source γ (for N = 600), the number of training epochs N (for γ = 6%) and add varying degrees of
measurement noise κ to the target variable z (for N = 600, γ = 6%). (1st column) Mean ± standard error of the correlation of the log power of the extracted source with the log
power of the true source. (2nd column) frequency of estimated significant relationships.
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coefficients in the bivariate AR model, and Fig. 6 plots the performance
of channel-wise Granger causality testing, ICA, SPoC and GrangerCPA
against this correlation. We can see that SPoC performs well if this
correlation is high, but its performance declines when the correlation
decreases. In contrast, the performance of GrangerCPA, ICA and the
most Granger causal channel does not depend on this correlation.

This is to be expected because SPoC addresses the optimal extraction
of a neural source whose power modulation is highly correlated with
the target variable. However, a power modulation is Granger causal
only if it predicts the target variable above what is predicted by its
own past. For Granger causality, the bandpower itself does not need to
be strongly correlated with the target variable.

Simulation 2: one Granger-causal source and one correlated source
Fig. 7 depicts the result for our second simulation in which both the

target source (whose log power Granger causes the target variable) as
well as a confounding non-target source (whose log power is perfectly
correlated with the target variable) were mixed into the simulated
EEG. As expected, GrangerCPA extracted the target source in the major-
ity of cases (170 out of 200 simulation runs), while SPoC extracted the
correlated non-target source in 150 out of 200 runs. FastICA and the
most Granger causal channel are also not mislead by the correlated
source, however they identify the target source in much fewer cases
than GrangerCPA.

Simulation 3: three Granger-causal sources
Fig. 8 shows the results for the third simulation inwhich three target

sources were mixed into the simulated EEG.We see that in the scenario
of three sources whose power independently Granger causes z with
equal strength, GrangerCPA is able to retrieve all three sources and
their topographies with higher accuracy than SPoC or FastICA. SPoC is
more affected by the presence of several Granger causal sources, with
its performance now similar to FastICA. In comparison to the results
with one single target source, GrangerCPA's performance decreases
slightly (cf. Fig. 5). This might be due to the fact that each of the three
sources exhibits weaker Granger causality to the target variable z than
one single Granger-causal source, because the frequency of detectable
Granger causal relationships is also reduced.

In the second scenario, source power C Granger-causes source
power B, B Granger-causes source power A, and A Granger-causes the
external target variable z. Consequently, the three sources do not
Granger cause zwith equal strength, as is reflected by the decreasing fre-
quency of detectable Granger causal relationships. While GrangerCPA
and SPoC are able to reliably extract a first source, their performance de-
creases for the 2nd and the 3rd source. GrangerCPA slightly outperforms
SPoC and FastICA.

Real EEG data

Experiment 1: self-paced braking
Fig. 9 shows the results of applying channel-wise Granger causality,

ICA, SPoC andGrangerCPA to EEG data from18 subjects performing self-
paced braking. For each subject, the spatial activations pattern of the
source extracted by each method is displayed and the result of Granger
causality significance testing is indicated. Subjects are ordered by the
strength of Event-Related Desynchronization (ERD) over central elec-
trodes prior to EMG peak activity. We can see that, while only the first 5
subjects have a prominent ERD pattern over motor areas, both
GrangerCPA and FastICA are able to extract a motor-related source in 11
out 18 subjects. These sources are characterized by neurophysiologically
plausible patterns which suggest a source located in motor foot-related
areas and a power time course that significantly Granger causes motor
activity at p b 0.01 (i.e. predicts it better than what is predicted by its
own past). Granger causality analysis was based on average on 8 time
lags, corresponding to 160 ms.

For all spatialfilteringmethods, the correspondence betweenneuro-
physiologically plausible patterns andGranger causality of the extracted
sources is high: Sources whose power significantly Granger causes
motor activity are characterized by patterns that indicate a foot-
related area, while sources associated with unclassifiable or artifactual
patterns do not significantly Granger cause the EMG. The channel-
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Fig. 6. Results of Simulation 1: Extraction performance – measured as the correlation of
the estimated with the true source power – against the correlation of the target variable
with its prediction by the true source power on 200 simulations runs with a target source
explaining γ = 6% of EEG variance and using N = 600 training epochs.

Fig. 7. Results of Simulation 2. Both a target source (whose log power Granger causes the target variable) as well as a confounding non-target source (whose log power is perfectly cor-
relatedwith the target variable)weremixed into EEG toydata. (Left)Mean± standard error of the correlation of the log power of the extracted sourcewith the log power of the target and
the non-target source. (Right) Pie charts showingwhich sourcewas identified by the algorithms. The identified sourcewas classified as ‘no source extracted’when its estimated log power
correlated with neither the target nor the non-target source above 0.5.
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wise significant values show little resemblance with the spatial activa-
tion patterns obtained using multivariate methods.

In the following, we restrict our analysis to the 12 subjects for whom
at least one of the investigatedmethodswas able to identify a significant
motor source. We find that both GrangerCPA and FastICA yield a signif-
icantly larger additional effect of the power time course on EMG predic-
tion than channel-wise statistical testing or the most Granger-causal
filter from the SSD preprocessing (p b 0.01, Wilcoxon signed rank test
on the test statistic TZ). The performance of GrangerCPA, ICA and SPoC
is statistically indistinguishable. The achieved Granger causality of
each method is summarized in Table 1.

Nevertheless, we can identify subjects where GrangerCPA and
FastICA find more meaningful sources than SPoC, notably subject s4:
Both GrangerCPA and FastICA extract a motor related source, but SPoC
gets stuck on artifactual activity. The source extracted by SPoC does
not Granger cause the EMG signal, but is highly correlated with the
EMG signal. Here, looking for a source that contains information beyond
the autocorrelation of the target EMG signal, prevents us from
extracting artifactual sources that reflect muscular activity. Note that
EMG activity was significantly autocorrelated in each of the subjects,
with past values of EMG explaining 45.8% to 73.9% of its variance.

To summarize, the results obtained in this analysis show that the
multivariate approaches we analyzed significantly outperformed
channel-wise statistical testing and reliably extract motor-related
sources in subjects showing Event-Related Desynchronization prior to
motor activity.

Experiment 2: predicting reaction times
Fig. 10 depicts the results obtained in the reaction time analysis of

data acquired during an auditory perception task. For each subject, the
spatial patterns obtained by FastICA, SPoC and GrangerCPA are
displayed and the results of Granger causality significance testing are in-
dicated. It can be seen that GrangerCPA identifies a Granger causal
source in seven out of nine subjects at p b 0.05. In contrast, SPoC and
ICA were able to extract sources whose power significantly Granger
causes reaction times in three resp. four subjects. In sensor space,
channel-wiseGranger causality testingwas only able to extract a Grang-
er causal source in two subjects. The achieved Granger causality of each
method is summarized in Table 1.

GrangerCPA finds significant effects for the same subjects as the
other methods. However, it is capable to also identify additional ones.
Note that reaction times were significantly autocorrelated in each of
the subjects, with past reaction times explaining 1.9% to 37.2% of its
variance.

Themajority of spatial patterns seem neurophysiologically plausible
and suggest sources in the parietal and occipital areas. Please note
that the polarity of the spatial patterns is arbitrary. For each pattern,
the polarity of the pattern was set such that the maximal activity is
positive.

In 6 out of the 7 subjects in which GrangerCPA extracted a source
with significant Granger causality, high pre-stimulus alpha power pre-
dicted a slow reaction. This is in line with the results of SPoC and
FastICA, only that GrangerCPA reveals this effect for additional
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Fig. 8. Results of Simulation 3. Three sources A, B, and C are Granger-causally connected to the target variable z in two different schemes (1st column). For each scheme, the three most
Granger-causal FastICA components, and the first three extracted sources of SPoC and GrangerCPA are evaluated in terms of their correlation to the true source log power (2nd column),
their correlation to the true scalp topography/pattern (3rd column), and the frequency of detected Granger causal relationship (4th column).

Table 1
Test statistic of cumulative evidence TZ for Granger causality according to the F-test in both real EEG experiments (mean± standard error): (a) for subjects for whom at least onemethod
found a significant effect, and (b) for all subjects. A more negative test statistic TZ indicates higher Granger causality.

GrangerCPA SPoC FastICA Best channel SSD

Self-paced (a) −5.96 ± 1.3 −5.08 ± 1.6 −5.93 ± 1.4 −1.76 ± 0.4 −3.80 ± 1.0
(b) −3.95 ± 1.1 −3.37 ± 1.2 −4.42 ± 1.0 −1.30 ± 0.3 −2.62 ± 0.8

Reaction times (a) −2.69 ± 0.1 −1.94 ± 0.4 −1.64 ± 0.4 −1.01 ± 0.8 −1.41 ± 0.6
(b) −1.85 ± 0.4 −1.57 ± 0.3 −1.56 ± 0.3 −0.40 ± 0.5 −1.47 ± 0.4
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Fig. 9.Results on Self-pacedBraking data. Each column shows the result for a single participant. Participants are sorted according to the strength of Event-RelatedDesynchronization (ERD)
over central electrodes. 1st row: ERD in the [−400ms,−200ms] interval using EMGas a trigger. 2nd–4th row: Spatial patterns as obtained byGrangerCPA, SPoC and FastICA respectively.
5th row: Channel-wise p-values of Granger causality significance test. If estimated alpha power significantly Granger causes the EMG signal at p b 0.01 according to the permutation test,
the corresponding pattern is marked with a star.
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participants. Moreover, subject s7 which displays the opposite effect,
also has a deviant component topography over themotor cortex, rather
than the occipito-parietal cortex. Note that for each subject and each
method, Granger causality testing was based on average on two time
lags. This corresponds to information from the past 3 s, as only the last
500msof each epochwith length 2 s is used (cf. Fig. 3). For the extracted
sources whose power significantly Granger causes reaction times based
on several lags, all lags pointed in the same direction except for subject
8.

Summarizing, the analysis of reaction times during an auditory
perception task reveals that reaction times can be predicted by pre-
stimulus individual alpha power on a single-trial basis in the majority
of the subjects. GrangerCPA was able to discover such a significant rela-
tionship in considerably more subjects than any other method tested
here.

Discussion

In this paper, we have analyzed how to identify Granger causal links
from brain oscillations to target variables of interest. We have shown
that computing Granger causality in sensor space suffers from poor
signal-to-noise ratio, while multivariate spatial filtering approaches
such as ICA or SPoC alleviate this issue. Moreover, we presented a
novelmethod calledGrangerCPAwhich optimizes for Granger causality,
and demonstrated its ability to reliably extract oscillations that Granger
cause a given external target variable. Possible application scenarios in-
clude a wide range of target variables, such as behavioral output
(e.g., reaction times, sensory detection, task rating, evoked potentials),
another physiological measure (e.g., muscular activity, heart rate vari-
ability) or a second power time course.

Comparison of methods

We compared channel-wise Granger causality analysis with three
spatial filtering methods: FastICA, SPoC, and our newly proposed
GrangerCPA algorithm. Particularly striking is the poor performance of
channel-wise Granger causality testing. While neuronal oscillations
are often analyzed in sensor space, this approach disregards the physics
of EEG and yields a poor signal-to-noise ratio.

For the spatial filtering approaches, comparisonmust be undertaken
in more detail. SPoC is a method which reliably extracts a source whose
band-power maximally correlates with the target variable. Thus, if a
source is both Granger causal and highly correlated with the target var-
iable, SPoC will identify a causal source. However, if the Granger causal
source is only weakly correlated with the target variable or if a second
merely correlated source is present, SPoC fails to recover the causal
source.

ICA algorithms demix EEG data under the assumption that the un-
derlying sources are independent of each other and have been success-
fully applied to a wide range of EEG (as well as MEG) data analysis
problems. GrangerCPA outperformed FastICA both in our simulated
EEG data and on the reaction time EEG data set, while both methods
performed equally well on the self-paced braking EEG data set. Thus,
we see that both algorithmsmay arrive at similar solutions using an en-
tirely different set of assumptions. Yet, ICA algorithms are not explicitly
designed to find power modulations which Granger cause a given
external target variable. ICA essentially finds the most non-Gaussian
components. Thus, if the source of interest is approximately Gaussian
distributed, ICA will be less successful. Importantly, this can be the
case for amplitude-modulated oscillations. An interesting remedy,
which we have not explored further here, consists of applying ICA to
short-time Fourier transforms of EEG signals (Hyvärinen et al., 2010).
ICA optimization then translates into optimizing the sparseness of the
Fourier coefficients, which should separate oscillatory signals at differ-
ent frequencies. As ICA, Fourier-ICA is an unsupervised approach that
does not make use of the information in the target variable.

Experimental results on real EEG data

The first experiment (self-paced braking) served as a proof of con-
cept. We show that spatial filtering approaches outperform channel-
wise statistical testing and that all three spatial filtering approaches
reveal significant results with similar statistical power and for the
same subjects. We could show that sources whose power significantly
Granger causes the EMG show neurophysiologically plausible motor-
related patterns. In contrast, components with patterns that are ambig-
uous or artifactual do not significantly Granger cause themotor activity.

In the second experiment, we appliedGranger causal analysis tofind
oscillatory alpha components that are predictive of reaction times. As
reaction times are autocorrelated (cf. (Aue et al., 2009)), we can hope
to identify brain activity which reflect this variation. Indeed it has
been found that ongoing pre-stimulus alpha power modulates percep-
tion performance (see (Jensen and Mazaheri, 2010) for a review), and
is negatively correlated with subjective attentional state (Macdonald
et al., 2011). Recent studies also demonstrate increased alpha band
activity up to 20 resp. 10 s prior to the occurrence of an error
(O'Connell et al., 2009; Martel et al., 2014).

The reaction time experiment shows that GrangerCPA can be more
sensitive than the other spatial filteringmethods. GrangerCPA finds sta-
tistically significant effects for the same participants as the other
methods, but is also able to reveal effects in additional participants.
The direction of the identified effect is the same across all participants
except one (s7), who also shows a different pattern. We find that high
pre-stimulus alpha power predicts slow reaction times. This is in
line with findings that relate low pre-stimulus alpha to high percep-
tion performance of visual (Klimesch et al., 2007; van Dijk et al.,
2008; Romei et al., 2010) or somatosensory stimuli (Schubert
et al., 2009). However, the literature is not consistent in this respect
(Linkenkaer-Hansen et al., 2004; Babiloni et al., 2006). GrangerCPA
may prove helpful in this respect, allowing to (a) investigate such
effects with higher statistical power and (b) to take dependencies
of previous trials into account and (c) to find out how far back into
time this dependency lasts. Concerning the latter, GrangerCPA re-
veals a time lag of on average two trials for the given data set, sug-
gesting that the effect is not caused by longer-term changes in
vigilance, but rather by the immediate pastwhichmay reflectmodulation
of attentional processes.

Application scenarios and limitations

Most work on Granger causality in the field of neuroscience has
focused on understanding interactions of activated brain areas
(e.g., (Astolfi et al., 2007; Haufe et al., 2010, 2013; Michalareas
et al., 2013)). As sensor-level connectivity analysis is severely limit-
ed by volume conduction, it has often been suggested to study neu-
ronal interactions in source space (Schoffelen and Gross, 2009;
Gómez-Herrero et al., 2008). Conveniently, multivariate AR models
in sensor space can be related analytically to AR models in source
space through an inverse source reconstruction operator (Michalareas
et al., 2013).

In contrast to studying neuronal interactions, here we relate ampli-
tude modulated oscillations in one brain area to cognitive performance
or other target variables. This may allow us to gather further crucial ev-
idence to answer the question of whether rhythmic brain activity is
causally shaping (and not merely correlating with) perception and
cognition.

Causal and correlative relationships between two variables are not
mutually exclusive, as the co-occurrence of both can be caused by
auto-correlation. Thus, sources whose bandpower is highly correlated
with a target variablemay also have a causal influence on the target var-
iable. As an example, consider an oscillatory beta motor source, which
drives peripheral muscular activity as measured by the EMG. Now, if
beta power is auto-correlated, past beta power will influence both the
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present EMG signal as well as the present beta power, thereby in-
ducing a correlation between both. While it is mathematically
possible to construct cases in which a variable Granger-causes an-
other variable without being correlated to it, these are special cases
that may or may not arise in physiology. In fact, the power dynamics
of neural oscillations exhibit strong auto-correlations up to the range
of minutes (Linkenkaer-Hansen et al., 2001; Nikulin and Brismar,
2005). It is therefore likely that a neural source's power that
Granger-causes a target variable will also be correlated with that target
variable.

However, the framework of Granger causal analysis requires tempo-
ral precedence by definition. Since solely instantaneous effects cannot
be interpreted as causal, they are explicitly excluded, while non-
instantaneous effects are the focus of our considerations. Furthermore,
in order to use the power dynamics of extracted sources to predict the
target variable, temporal precedence is necessary.

Compared to stimulation techniques such as Transcranial Magnetic
Stimulation, the advantage of the Granger causality approach is that it
is simple and does not require intervention in the nervous system.How-
ever, it provides weaker evidence and suffers from some limitations:
First, temporal precedence does not necessarily imply causality.1 Fur-
thermore, as long as not all relevant variables are incorporated into
the autoregressive model, one cannot detect whether brain activity
and target variable are driven by a third common cause. Last but not
least, spurious results of Granger causality analysis can occur due to
noise, because two correlated signals superimposed with noise will
help to predict each other (Nalatore et al., 2007; Nolte et al., 2008).
Nevertheless, we consider Granger causality to be a useful tool if these
critical points are kept inmind.Moreover, some of thementioned short-
comings can be alleviated. GrangerCPA can easily be extended to find
sources predictive above and beyond several variables, and more
noise-robust causality statistics such as PSI (Nolte et al., 2008) or time
inversion testing (Haufe et al., 2012, 2013) can be applied to the extract-
ed source.

At the very least, a Granger-causality analysis tells us whether an
extracted neural source contains useful information for improving the
predictions of another variable. In some applications, this may be all
we care about. For example, a growing field of research tries to

continuously monitor fatigue, attention, task engagement and mental
workload in operational environments (Gevins et al., 1995; Berka
et al., 2008; Müller et al., 2008; Blankertz et al., 2010) or during driving
(Lal and Craig, 2001; Haufe et al., 2011; Dong et al., 2011). Here, it may
be desirable to find neural oscillations that aremaximally predictive be-
yondwhat can be predicted by other physiological sources and past task
performance.

Another potential application scenario is Brain–Computer Interfaces
(BCIs). Here an actively researched question is whether oscillatory
sources influence the control performance of a BCIs user during a BCIs
experiment (Grosse-Wentrup et al., 2011; Maeder et al., 2012).

Finally, the concept of Granger causality can be applied in the con-
text of functional connectivity to improve our understanding of the con-
certed activity of spatially distinct, yet functionally connected brain
areas. This is of particular interest with respect to bandpower dynamics
of neural oscillations, as these have been shown to form functional net-
works defined via correlation of bandpower time courses (Hipp et al.,
2012; Engel et al., 2013). Given a source bandpower time course of in-
terest obtained from, say, an unsupervised source separation method
such as ICA or SSD, GrangerCPA can be used to find a corresponding
source the bandpower of which maximally predicts the bandpower of
the first source. Such an analysis could help to unravel causal relations
between functional networks in the brain.

Future research

Future effort will be required to directly optimize statistics such as
PSI (Nolte et al., 2008), or to extend GrangerCPA to learn a weighting
ofmultivariate target variables such asNIRS or fMRImeasurements. Op-
timizing the weighting of a multivariate target variable is technically
challenging, because our current optimization is simplified by the fact
that the target variable is fixed (see Eq. (2.13)). Similarly, it would be
interesting to optimize spatial filters for the extraction of sources, the
power dynamics of which are causally influenced by an external target
variable. This represents the opposite causal direction of the
GrangerCPA method presented in this paper.

An open question is whether it is possible to reliably identify and
infer the causality structure of several sources. Herewe presented a pre-
liminary simulation, in which three sources A, B, and C were causally
connected to the target variable z in two different schemes, [A → z,
B → z, C → z] and [C → B → A → z]. In the first case, GrangerCPA was
often able to identify all three sources, while in the second scenario,

Fig. 10. Results of reaction time analysis: Spatial patterns as obtainedbyGrangerCPA, SPoC, and FastICA, respectively, and channel-wise p-values of Granger causality significance test. Each
column shows the result for a single participant. Sources whose alpha power significantly Granger cause reaction time according to the permutation test aremarkedwith one (p b 0.05) or
two (p b 0.01) arrows. ↘ indicates that high pre-stimulus alpha power correctly predicts a slow reaction.↗ indicates that high pre-stimulus alpha power correctly predicts a fast reaction.

1 Consider the following example from economics: interest rates or consumer confi-
dence ratings predict economic development, but they reflect human forward-looking be-
havior and a causal relationship cannot be inferred (Hamilton, 1994).
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performance decreased from A to B to C. The extraction performance
might improve if optimization was based on multivariate AR modeling,
rather than our deflation-based approach. However, the question that
should be tackled first is whether we can distinguish both scenarios in
case we found all three sources. While it is straightforward to apply
post-hoc multivariate AR modeling, A, B, and C will be estimated with
noise. The remaining volume artifactmay still generate spurious causal-
ity (Schoffelen and Gross, 2009; Haufe et al., 2013), the extent of which
will have to be analyzed in the future. Proposed remedies have so far fo-
cused on two variables (Nolte et al., 2008; Vicente et al., 2011; Haufe
et al., 2013), but might be applied pairwise. The development of multi-
variate causality techniques more robust to noise and volume conduc-
tion remains an important challenge in the future.

Finally, the data sets used in this paper were from EEG experiments
only. While we are optimistic that the results we have obtained carry
over to other imaging methods that are sensitive to neural oscillations
such as MEG or ECoG, further analysis is necessary to confirm this.

Conclusion

In summary, we analyzed which methods are best suited to reveal
Granger causal links from brain oscillations to target variables of inter-
est. Using both simulations and real EEG recordings, we showed that
computing Granger causality on channel-wise spectral power suffers
frompoor signal-to-noise ratio and thatmultivariate spatialfiltering ap-
proaches such as ICA or SPoC are suitable tools to alleviate this issue.
Moreover, we presented a novel method called GrangerCPA, which di-
rectly optimizes for Granger causality. We believe that GrangerCPA
will be a helpful tool for understanding the functional role of oscillations
in electrophysiological recordings.
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Appendix A. GrangerCPA Algorithm

Gradient

The gradient of the non-convex cost function Eq. (2.14) is obtained as

∂L wð Þ
∂w ¼ −4 z−zeT⊺

w
eTw
eT⊺
w þ λI

! "−1eTw

' (

%
XN

i¼1

Ji
! "⊺

ℭþD Jiz⊺−DeTw Ji
! "⊺

ℭ−D JieT⊺
wℭ

! "n

% XiX
⊺
iw

w⊺XiX⊺
iw

− 1
N

XN

j¼1

X jX
⊺
jw

w⊺X jX⊺
jw

0

@

1

A

9
=

;

ðA:1Þ

where ℭ :¼ eTw
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⊺ and D :¼ eT⊺

w
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eT⊺
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Ji ∈ ℝ2P × N − P denotes the vertical concatenation of a zero matrix of
size P× (N− P) with a Toeplitzmatrixwith ones on the i-th descending
diagonal and zero elsewhere, i.e. JP + 1,i − P + 1

i = JP + 2,i − P
i = … =

J2P,ii = 1.

Extraction of further sources

Optimizing the objective function stated in Eq. (2.14) yields a single
weight vectorw∈ℝM that extracts neural source activity. If desired, fur-
ther weight vectors can be obtained by a so-called deflation scheme. In
such a scheme, we assume without loss of generality that the input
data X ∈ ℝM × (T ⋅ N) has been whitened, i.e. all instantaneous correla-
tions between channels have been removed such that XX⊺ ∝ I. Then
the optimization of Eq. (2.14) is performed in this ‘whitened space’.

If q spatial filters W = (w1,…, wq) ∈ ℝM × q have already been
obtained, the next filter can be obtained according to the following steps:

1. Project X onto the space that is orthogonal to all previously obtained
weight vectors. The required projection matrix B ∈ RM × (M − q),
B⊺W=0, B⊺B= I, is the null space ofW⊺ and can be computed by sin-
gular value decomposition. Denote with X′ = B⊺X ∈ ℝ(M − q) × (T ⋅ N)

the projected data.
2. Optimize Eq. (2.14) on the projected data X′ to obtain wq + 1′

∈ ℝM − q.
3. Project the resulting weight vector wq + 1′ back into the original

space, wq + 1 = Bw q + 1′ ∈ ℝM.

The resulting filter now extracts the most Granger causal activity
that is orthogonal to the previous extracted activity, i.e. it holds
wq + 1

⊺ X= (wq + 1′ )⊺X′ and

W⊺X
! "

% w⊺
qþ1X

! "⊺
¼ W⊺XX⊺wqþ1 ¼ W⊺wqþ1 ¼ W⊺Bw0

qþ1 ¼ 0:

Appendix B. Simulated EEG

We simulated epoched EEG recordingswith 26 electrodes according
to the following steps. First, we generated the time course of the target
variable z∈ℝN and epoch-wise log band-powerϕ∗ ∈ℝN following a sta-
ble bivariate AR process of order P = 5. Granger-causality from ϕ∗ to z
was modeled by allowing the corresponding AR coefficients to be
non-zero. Additionally, we generated the log band-power fluctuations
of 150 additional sources according to univariate AR models of order 5.

Second, we constructed the band-pass filtered white noise sources
s∗ ∈ ℝT ⋅ N and s1,…, s150 ∈ ℝT ⋅ N such that their log power modulation
corresponds to the log power fluctuations generated in the first step.
We chose the alpha band as the frequency band of interest, i.e. 8 to
13 Hz. We considered epochs of 1 s length at sampling frequency
200 Hz (i.e. T = 200 data points per epoch).

Finally, these 151 sources time series were mapped into 26 EEG
channels. The sources were randomly placed as dipoles and plausible
patterns were generated via a realistic EEG forward model (Fonov
et al., 2011; Nolte and Dassios, 2005). The artificial EEG signal was gen-
erated according to

X ¼
ffiffiffi
δ
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where X ∈ ℝ26× (T ⋅ N) is the EEG signal, s∗ ∈ ℝT ⋅ N is the source whose
power is driving the target z, s1,…, s150 ∈ ℝT ⋅ N are the biological back-
ground sources, a∗ ∈ℝ26 and a1,…, a150∈ℝ26 are the spread patterns of
the dipolar sources evaluated at 26 electrodes, η∈ 26× (T ⋅ N) is Gaussian
sensor noise and 0 ≤ γ, δ ≤ 1 are parameters that adjust the signal-to-
noise level. The normalization terms ‖a∗s∗‖F, ‖∑i = 1

150 aisi‖F, and ‖η‖F are
used to equalize the variance of each of the system components,
where ‖ ⋅ ‖F denotes the Frobenius norm.

δ governs the ratio between the biological signals and the sensor
noise, while γ governs the ratio between the target source and the bio-
logical background sources. γ corresponds to the percentage of variance
of all biological sources explained by the target source. We kept the
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value of δ fixed in all simulations to 0.99 (i.e. 1% sensor noise), while we
varied γ and the number of training epochs N.
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4 Extracting Granger causal brain oscillations

4.2 Conclusion

Summary

In this paper, we have analyzed how to identify Granger causal links from brain
oscillations to behavioral variables of interest. We considered the case in which we
simultaneously measure EEG band power ϕ and a target variable z over time. Then
ϕ is said to Granger cause z if ϕ helps to predict the future z above what is predicted
by the past of z alone (cf. Section 2.3.3). Here, z can be any signal of interest, such
as a behavioral output (e.g., reaction time, sensory detection, task rating, evoked
potentials), a physiological measure (e.g., muscular activity, heart rate variability)
or a second power time course.

The simplest approach to testing for Granger causality is to consider each channel
separately. However, the physics of EEG implies that the activity measured at
a given channel is a mixture of contributions from several neuronal sources (cf.
Section 2.1.2). This leads to a low signal-to-noise (SNR) ratio and may hinder
physiological interpretation of the results.

It is therefore beneficial to attempt to recover the underlying neuronal source
signals from scalp recordings prior to the computation of band-power dynamics and
the test for Granger causality. Here, we compared channel-wise Granger causality
testing with three multivariate spatial filtering approaches:

• Independent Component Analysis (ICA), which seeks maximally statistically
independent sources, and is one of the most popular method for extracting
interesting neuronal sources from EEG data (cf. Section 2.2.2). Here we used
FastICA (Hyvärinen and Oja, 1997; Hyvärinen, 1999).

• The recently proposed SPoC method (Dähne et al., 2014a) which extracts
neuronal sources whose band-power is maximally correlated with the target
variable.

• A novel method which extracts a source whose band-power maximally Granger
causes the target variable, referred to as Granger Causal Power Analysis
(GrangerCPA). Because we are interested in recovering sources whose power
dynamics Granger cause an external variable, we might benefit from basing
the reconstruction of source activity exactly on this assumed dependency.

To state GrangerCPA’s objective function, let us introduce the following nota-
tion. We consider time-windowed and band-pass filtered EEG measurements
X = (X1, . . . , XNe) ∈ RM×(Te·Ne) where M is the number of channels, Ne is the
number of epochs and Te the number of data points per epoch. Given a target
variable z = (z1, . . . , zNe) ∈ R1×Ne , we seek a spatial filter w ∈ RM such that
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4.2 Conclusion

the epoch-wise log power of the estimated source w⊤X maximally Granger
causes the target variable z.

The log band-power of the source extracted by the spatial filter w in epoch i
can be computed as

ϕwi := log
(
Var(w⊤Xi)

)
= log

(
w⊤Cov(Xi)w

)
,

and we further transform z and ϕw to have zero mean. Granger causality from
ϕw to z is then defined as

log
Var(Residuals from regressing zi on zi−1, . . . , zi−p)

Var(Residuals from regressing zi on zi−1, . . . , zi−p and ϕwi−1, . . . , ϕwi−p)

where p is the number of considered time lags.

Fortunately the numerator does not depend on w. Thus, maximizing Granger
causality with respect to w reduces to minimizing the following cost function:

L(w) := Var(Residuals from regressing zi on zi−1, . . . , zi−p and ϕwi−1, . . . , ϕwi−p)

This objective is a non-convex, higher order nonlinear function of the spatial
filter w. A local minimum can be obtained by means of standard nonlin-
ear optimization techniques. We used an L-BFGS algorithm implemented by
(Schmidt, 2005).

A comparison of these methods was carried out both in simulations and on two
real EEG data sets:

• Self-paced braking. This data set stems from 18 subjects which performed
self-paced foot movements (Haufe et al., 2011), and it is the same data set we
analyzed in Section 3.4. It served as a proof of concept, since brief, self-paced
movements are preceded by a well-documented event-related desynchroniza-
tion (ERD) of 15-30 Hz (beta band) rhythms over corresponding sensorimotor
areas (Neuper and Pfurtscheller, 2001).

We applied all considered methods in order to extract oscillatory beta com-
ponents which predict subsequent muscle activity. Indeed, identified neuronal
sources whose power significantly Granger causes muscular activity showed
neurophysiologically plausible motor-related patterns. In contrast, compo-
nents with patterns that are ambiguous or artifactual did not significantly
Granger cause the motor activity.

• Reaction Times. In the second real EEG data set (Antons et al., 2012; Por-
badnigk et al., 2013), we applied Granger causal analysis to find oscillatory
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4 Extracting Granger causal brain oscillations

alpha components that are predictive of reaction times. As reaction times are
autocorrelated (cf. (Aue et al., 2009)), we can hope to identify brain activ-
ity which reflect this variation. It is known that ongoing pre-stimulus alpha
power modulates perception performance (Jensen and Mazaheri, 2010), and
is negatively correlated with subjective attentional state (Macdonald et al.,
2011).

The results show that computing Granger causality in sensor space suffers from
poor signal-to-noise ratio. The multivariate spatial filtering approaches we consid-
ered alleviated this issue. Their comparison must be undertaken in more detail:

• SPoC extracts a source whose band-power maximally correlates with the target
variable. Simulations showed that, if a source is both Granger causal and
highly correlated with the target variable, SPoC will identify a causal source.
However, if the Granger causal source is only weakly correlated with the target
variable or if a second merely correlated source is present, SPoC fails to recover
the causal source. Importantly, such cases can occur in real data. For example,
SPoC gets stuck on artifactual activity in one subject of the selfpaced braking
data set.

• FastICA was slightly outperformed by GrangerCPA both in our simulated
EEG data and on the reaction time EEG data set. However, both methods
performed equally well on the self-paced braking EEG data set. In general,
both algorithms may arrive at relatively similar solutions using entirely differ-
ent assumptions.

Limitations and Future Work

While the causal role of oscillatory neuronal activity is a very interesting research
question (Buzsáki and Draguhn, 2004; Thut and Miniussi, 2009), the main limitation
of this work is that Granger causality in fact offers only weak evidence for causality
(cf. Section 2.3.3). In the context of the paper, the following are the most serious
limitations:

• Hidden common drivers. Already Granger pointed out that standard Granger
causality can lead to spurious results if not all relevant variables are incor-
porated in the model (Granger, 1969). This poses serious issues: Suppose
GrangerCPA identified an oscillatory alpha component and we assess that it
Granger causes reaction times. We might argue that we found a causal source
because GrangerCPA optimizes over all possible alpha sources. However, we
cannot exclude the possibility that the alpha component and reaction times
are only correlated, because they may both be driven by an unobserved theta
rhythm or another unobserved confounder.
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• Measurement noise. Spurious Granger causality may arise due to measurement
noise: If two variables measure the same signal but are superposed with noise,
they mutually help predicting each other’s future (Nalatore et al., 2007; Nolte
et al., 2008).

Fortunately, spurious Granger causality cannot arise from noise on the neu-
ronal source in the way we applied Granger causality here. This is because
noise on the neuronal band power ϕ will never help to predict the future of
the target variable z.

However, spurious causality may arise if the target variable is strongly affected
by measurement noise. Consider a case in which ϕ and z are correlated, but
there is no causal influence from ϕ onto z. Suppose further that z is affected
by additive measurement noise ϵ′, and we only measure z′ := z + ϵ′. Now
ϕ may contain cleaner information about z′ than z′ itself and may therefore
help to predict future z′. We would infer Granger causality in the absence of
causality.

It is important to note here that the target variable z itself is allowed to be
noisy. That is, additive measurement noise ϵ′ on z and innovation noise in an
AR model of z have very different effects. It is only measurement noise that
poses a problem for Granger causal analysis. This is because measurement
noise implies that the AR model for z′ does not describe the underlying process
z that we are actually interested in. This issue refers to the interpretation
of a Granger causal finding: Suppose we found an alpha component which
Granger causes reaction times, and we somehow knew that there are no hidden
confounders. It might be valid to infer that the alpha component is causally
involved in determining the reaction times. However, we cannot infer that the
alpha component causes motivational shifts which we measure using reaction
times as a noisy proxy.

• Downsampling. Spurious Granger causality has been reported to arise due
to downsampling (McCrorie and Chambers, 2006; Zhou et al., 2014). This
may also be problematic in our scenario, since we estimate band-power as the
variance over some pre-defined, possibly long, time window.

• Non-Stationarity. Autoregressive modeling and Granger causality assumes
stationarity. However, EEG signals are intrinsically non-stationary (Dornhege
et al., 2007; von Bünau et al., 2009; Samek et al., 2012). When we record
data over a longer time interval, the autoregressive model may therefore be
inadequate, which might also induce spurious causality.

Stronger evidence for causal links may be gathered from intervention techniques
such as repetitive Transcranial Magnetic Stimulation (rTMS) and Transcranial Al-
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ternating Current Stimulation (TACS) (Thut et al., 2012; Herrmann et al., 2013).
Indeed, accumulating evidence suggests that rhythmic stimulation induces behav-
ioral consequences, for instance on visual perception (Romei et al., 2010), motor
performance (Joundi et al., 2012), working memory (Zaehle et al., 2011), and sleep
stages (Massimini et al., 2007).

Nevertheless, statistical methods offer the advantage of non-invasiveness and should
therefore be explored. Many other causal inference problems also suffer from similar
issues. Therefore, the development and validation of more robust causality scores
is an important research direction, and causal inference algorithms which are more
robust with respect to unobserved hidden variables (Hoyer et al., 2008; Entner and
Hoyer, 2011; Chen and Chan, 2013; Tashiro et al., 2014; Geiger et al., 2015), or
measurement noise (Nalatore et al., 2007; Nolte et al., 2008; Vicente et al., 2011;
Haufe et al., 2013; Vinck et al., 2015) are being developed. We explore a remedy
to the problem of measurement noise proposed in (Haufe et al., 2013) in the next
chapter.
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5 Time-reversal for Granger
causality

5.1 Validity of time reversal for testing Granger
causality

Irene Winkler, Danny Panknin, Daniel Bartz ,Klaus-Robert Müller, and Stefan
Haufe. Validity of time reversal for testing Granger causality. Submitted.
The manuscript is available online as arXiv preprint arXiv:1509.07636.
http://arxiv.org/abs/1509.07636

Short summary. To alleviate the problem of spurious causality due to measure-
ment noise, (Haufe et al., 2013) proposed to contrast causality scores on the original
against those from the time-reversed time series. The intuitive idea is that, if tem-
poral order is crucial to tell a driver from a recipient, causality results should change
if the temporal order is reversed. In a recent independent simulation study, (Vinck
et al., 2015) confirmed that this approach, time-reversed Granger causality (TRGC),
leads to a much smaller fraction of false positives as compared to original Granger
causality, and also compares favorably against another more noise-robust causality
metric, the Phase Slope Index (PSI) (Nolte et al., 2008).

While time-reversed Granger causality thus yields encouraging results in simula-
tion studies, it was not well understood why and how computing Granger causality
on the time-reversed signals links to the causal interactions on the original time-
series. In this manuscript, we prove that TRGC will indeed indicate the correct
directionality in finite order autoregressive processes with unidirectional informa-
tion flow.

Contributions. I wrote the majority of the paper and carried out all the simula-
tions. The proof in Appendix A-C stems from Danny Panknin (my previous version
relied on an additional assumption that Ap is invertible).
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Validity of time reversal for testing
Granger causality

Irene Winkler, Danny Panknin, Daniel Bartz, Klaus-Robert Müller, Member, IEEE, and Stefan Haufe

Abstract—Inferring causal interactions from observed data is a
challenging problem, especially in the presence of measurement
noise. To alleviate the problem of spurious causality, Haufe et
al. (2013) proposed to contrast measures of information flow ob-
tained on the original data against the same measures obtained on
time-reversed data. They show that this procedure, time-reversed
Granger causality (TRGC), robustly rejects causal interpretations
on mixtures of independent signals. While promising results have
been achieved in simulations, it was so far unknown whether
time reversal leads to valid measures of information flow in the
presence of true interaction. Here we prove that, for linear finite-
order autoregressive processes with unidirectional information
flow, the application of time reversal for testing Granger causality
indeed leads to correct estimates of information flow and its
directionality. Using simulations, we further show that TRGC is
able to infer correct directionality with similar statistical power
as the net Granger causality between two variables, while being
much more robust to the presence of measurement noise.

Index Terms—Granger causality, time reversal, noise, TRGC

I. INTRODUCTION

THE estimation of causal relations between time series
is a signal processing topic promising to enhance our

understanding of dynamical systems in numerous application
domains. For data with time structure, the concept of Granger
causality (GC) has gained popularity as a simple testable
definition of causality based on temporal precedence. Signal
processing techniques based on Granger-causality have been
studied in a variety of fields such as econometrics [1], neuro-
science [2], [3], [4], [5], and climate science [6], [7].

In its original formulation, a time series xt is said to
Granger-cause a time series yt, if the past of xt helps to predict
yt above what can be predicted by using ‘all other information
in the universe’ besides the past of xt [8]. In practice, it is
common to consider only the information contained in the past
of xt and yt (cf. [9]).

A serious problem for the estimation of information flow
using Granger causality is that spurious Granger causality can
occur due to measurement noise. On one hand, if two sensors
measuring the same signal are superimposed with noise, they

This work was supported by a Marie Curie International Outgoing Fel-
lowship (grant No. 625991) within the 7th European Community Framework
Program, the BMBF project ALICE II, Autonomous Learning in Complex
Environments (01IB15001B), and the Brain Korea 21 Plus Program as well
as the SGER Grant 2014055911 through the National Research Foundation
of Korea funded by the Ministry of Education.

I. Winkler, D. Panknin, D. Bartz, K.-R. Müller and S. Haufe are with
the Machine Learning Group, Technische Universität Berlin, Germany. K.-R.
Müller is also with the Department of Brain and Cognitive Engineering, Korea
University, Seoul, Republic of Korea. S. Haufe is also with the Laboratory for
Intelligent Imaging and Neural Computing, Columbia University, New York,
USA. Correspondence to: {i.winkler,stefan.haufe}@tu-berlin.de.

mutually help predicting each other’s future [10], [11]. This
is a problem especially in the study of brain connectivity
using non-invasive electrophysiology, where the activity at
a given sensor is typically a mixture of contributions from
several neuronal sources due to the volume conduction of
electric currents in the head [12], [13], [14], [15], [16]. On
the other hand, noise that is correlated across sensors has a
similar adverse effect on estimates of directed interaction even
if the actual signals-of-interest are not mixed into different
sensors [17], [18]. Such spurious causality can occur in any
measure based on the concept of Granger causality, including
multivariate [19], [20] and non-linear [21], [22], [23] variants.

Recently, a number of ways to make causality estimates
more robust to the presence of mixed signals and noise have
been proposed. These include novel measures of directed
information flow [12], [10], [11] as well as novel ways of
assessing their statistical significance [24], [23], [17], [16],
[18]. Recently, Haufe et. al [17], [16] suggested to contrast
causality scores obtained on the original time series to those
obtained on time-reversed signals. The intuitive idea behind
this approach is that, if temporal order is crucial to tell a driver
from a recipient, directed information flow should be reduced
(if not reversed) if the temporal order is reversed. In fact,
Haufe et al. showed that for correlated, but non-interacting
signals, the use of time reversal for testing Granger causality
scores (here referred to as time-reversed Granger causality,
TRGC) and other metrics based on cross-spectral estimates
or linear autoregressive modeling correctly leads to rejection
of causal interpretations. This was confirmed for Granger
causality in an independent simulation study [18] showing
that TRGC leads to a much smaller fraction of false positive
detections compared to the original Granger causality index,
and also compares favorably against the Phase Slope Index
(PSI) [11].

While time-reversed Granger causality thus displays an
intriguing noise robustness property, and yields very encour-
aging results in simulations, its behavior in the presence of
causal interactions is still poorly understood. In particular, it
is currently unclear how Granger causality scores computed
on time-reversed signals link to the causal interactions on the
original time-series, and therefore whether TRGC correctly
indicates the direction of causality. Theoretical guarantees have
only been derived for special cases in which either the signal’s
auto- and cross-covariances are very small in magnitude, or in
which both signals have very similar autocorrelations [18].

The aim of this paper is two-fold. In the theory section, we
provide new theoretical insights on time-reversal for testing
Granger causality. After introducing the concepts of linear
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autoregressive modeling, Granger causality, and time-reversed
Granger causality (Section II-A and II-B), we elaborate on the
existing result of Haufe et al. [16] showing that, for mixtures
of independent signals, causality measures based on cross-
covariances are invariant to the reversal of the temporal order
(Section II-C). This is the theoretical basis for the noise-
robustness property of time-reversal testing of causality scores.
We then investigate the time-reversal of a process fulfilling the
assumptions typically made by Granger causality estimators:
a finite-order vector autoregressive (VAR) process that is
unaffected by measurement noise. We review what is known
about the time-reversal of a VAR process (Section II-D),
based on what we provide an analytic description of Granger
causality scores of time-reversed signals in terms of their au-
toregressive coefficients (Section II-E) and a minimal example
(Section II-F). Using these insights, we prove our main result
stating that, in the case of unambiguous unidirectional infor-
mation flow from xt to yt, time reversal leads to a decrease of
the Granger-causal net information flow relative to the original
time series. The difference of net Granger causality scores
obtained on original and time-reversed data thus indicates the
correct direction of interaction (Section II-G).

In the second part of the paper (Section III), we revisit
scenarios known to cause problems for conventional Granger
causality. Using simulations, we illustrate when and how the
theoretical guarantees of TRGC lead to measurable perfor-
mance increases in practice. We point out the implications of
our theoretical and empirical results in Section IV, along with
a discussion of ambiguities in causal interpretation caused by
the presence of correlated residuals in VAR models.

II. THEORY

Vectors are considered to be column vectors (unless other-
wise stated), and are generally typed in bold. The symbol ·>
denotes the transpose operator, I the identity matrix, and [·, ·]
concatenation. The symbol ⊗ refers to the Kronecker product,
and vec(·) to the vectorization operator, which converts a ma-
trix into a column vector. The symbol 〈·〉 denotes expectation.
The cross-covariance matrices of a stationary process zt are
denoted by

Cz(h) :=
〈

(zt − 〈z〉)(zt−h − 〈z〉)>
〉

∀h ∈ Z .

We use the notation zt both for an observed time series and its
underlying data generating process. We denote all quantities
related to the time-reversed process z̃t := z−t with a tilde.

A process εt is said to be white noise if it is stationary with
mean zero, finite covariance and zero autocorrelation; that is, if
Cε(h) = 0 ∀h ∈ Z\{0}. Note that the covariance matrix Cε(0)
is not necessarily diagonal, and that neither independence nor
joint Gaussianity is required.

A. Granger causality and the linear VAR model

Consider a stable bivariate vector autoregressive process of

lag order p (VAR(p) process), zt =

[
xt
yt

]
∈ R2,

zt = A1zt−1 +A2zt−2 + . . .+Apzt−p + εt , (1)

where εt ∈ R2 is a 2-dimensional white noise process (that is,
〈εt〉 = 0, 〈εtε>t−h〉 = 0 for h ∈ Z \ {0}, and 〈εtz>t−h〉 = 0 for
h ∈ N \ {0}) with residual covariance matrix

Σ = 〈εtε>t 〉 =

[
Σxx Σxy
Σxy Σyy

]
. (2)

The noise variables εt are also called innovations or residuals.
Stability requires that det(I −A1λ− . . .−Apλp) 6= 0 for all
λ ∈ C with |λ| ≤ 1.

Following [25], xt and yt possess themselves autoregressive
(AR) representations, which we denote by

xt =

∞∑

k=1

akxt−k + ξxt , Var(ξxt ) =: Σx and (3)

yt =
∞∑

k=1

bkyt−k + ξyt , Var(ξyt ) =: Σy . (4)

The residuals ξxt and ξyt of these two univariate processes
are each serially uncorrelated, but may be correlated with each
other at various lags. Importantly, even though the bivariate
autoregressive process (1) is of finite order, the univariate
processes (3) and (4) are in general of infinite order. We refer
to (1) as the unrestricted or full model, while (3) and (4)
contain the restricted models.

Directed Granger-causal information flow is defined based
on the so-called Granger-scores [25]

Fy→x := log

(
Σx
Σxx

)
and Fx→y := log

(
Σy
Σyy

)
. (5)

Granger causality from xt to yt implies that information
from the past of xt improve the prediction of the present
of yt compared to what can be predicted by the past of yt
alone. That is, the residual variance Σyy of the unrestricted
model is required to be smaller than the residual variance Σy
of the restricted model. Under the assumption of Gaussian-
distributed residuals, Fy→x and Fx→y are asymptotically χ2

distributed, giving rise to an analytical test of their significance
[25]. An asymptotically equivalent test is given by an F-test of
the goodness-of-fit of the two models (cf. [9], [4]). We refer
to this approach as standard Granger causality (standard GC).

As variables in physical systems often mutually influence
each other, it is also of interest to determine the net driver of
the interaction by assessing whether more information is flow-
ing from xt to yt then from yt to xt or vice versa. Following
[11], [26], net Granger causality (Net-GC) is defined as the
difference of the Granger causality scores, that is

F (net)
x→y := Fx→y − Fy→x and F (net)

y→x := −F (net)
x→y . (6)

As the analytical distributions of these differences are un-
kown, statistical significance of Net-GC scores needs to be as-
sessed using resampling methods as outlined in Section III-A.

B. Time-reversed Granger causality (TRGC)

To avoid false detections of causal interactions, Haufe et
al. proposed to contrast causality measures applied to the
original time series with the same measures obtained from
time-reversed signals z̃t := z−t [17], [16]. Here, we formalize
this idea in the context of Granger causality.
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Given a bivariate VAR(p) process, its time-reversed process
z̃t also possesses a VAR(p) representation, which we derive
in Section II-D. We denote the residual covariance matrix of
the time-reversed process by

Σ̃ =

[
Σ̃xx Σ̃xy
Σ̃xy Σ̃yy

]
. (7)

The restricted AR models of the time-reversed data have
a simple structure, as they are concerned with univariate
time series. The autocovariance function of a univariate
time series is symmetric, i.e., we have Cx(h) = Cx(−h)
and Cy(h) = Cy(−h) for all h ∈ Z. As a result of this
and (19) (Section II-C), the time-reversed signals will have the
same autocovariances as the original series. Because the AR
representation is uniquely determined by the autocovariance
function (cf. Section II-D1), they also share the same AR
representation. The restricted models of the time-reversed
univariate processes are thus given by

xt =
∞∑

k=1

akxt+k + ξ̃xt , Var(ξ̃xt ) =: Σ̃x and (8)

yt =
∞∑

k=1

bkyt+k + ξ̃yt , Var(ξ̃yt ) =: Σ̃y (9)

with
Σ̃x = Σx and Σ̃y = Σy . (10)

In analogy to the original time series, we define the time-
reversed Granger scores as

F̃ỹ→x̃ := log

(
Σ̃x

Σ̃xx

)
and F̃x̃→ỹ := log

(
Σ̃y

Σ̃yy

)
, (11)

and the net Granger causality scores as

F̃
(net)
x̃→ỹ := F̃x̃→ỹ − F̃ỹ→x̃ and F̃

(net)
ỹ→x̃ := −F̃ (net)

x̃→ỹ . (12)

Finally, the differences of the Granger scores obtained on
original and time-reversed signals are given by

D̃y→x := Fy→x − F̃ỹ→x̃ , (13)

D̃x→y := Fx→y − F̃x̃→ỹ , and (14)

D̃(net)
x→y := F (net)

x→y − F̃ (net)
x̃→ỹ . (15)

Time-reversed Granger causality can be applied in the
following variants.

a) Conjunction-based time-reversed Granger causality
(Conj-TRGC): Here, net information flow from xt to yt is
inferred if

F (net)
x→y > 0 and F̃

(net)
x̃→ỹ < 0 , (16)

that is, if the directionality of net Granger causality reverses
for time-reversed signals. This variant has been investigated
in [18].

b) Difference-based time-reversed Granger causality
(Diff-TRGC): Here, net information flow from xt to yt is
inferred if

D̃(net)
x→y > 0 , (17)

that is, we require that net Granger causality from xt to yt is
reduced on the time-reversed signals. Note that this is a weaker
requirement than conjunction-based TRGC, as all signals for
which (16) holds also fulfill (17).

c) Conjunction of Net-GC and Diff-TRGC: Finally, we
can require both the time-reversed net difference and the net
Granger score to be significantly larger than zero in order to
infer net information flow from xt to yt, that is

D̃(net)
x→y > 0 and F (net)

x→y < 0 . (18)

Just as for Net-GC, statistical significance of Conj-TRGC
and Diff-TRGC, as well as the combination of Net-GC and
Diff-TRGC can be assessed using resampling techniques (see
Section III-A).

C. Robustness of time-reversed Granger causality (TRGC)

In [16] it is pointed out that time-reversed Granger causality
robustly rejects causal interpretations for mixtures of non-
interacting signals such as correlated noise sources. The math-
ematical basis for this noise robustness property is the fact
that the cross-covariance matrices C̃z̃(·) of the time-reversed
signals are equal to the transposed cross-covariance matrices
of the original signals, that is

C̃z̃(h) = 〈z̃tz̃>t−h〉 = 〈ztz>t+h〉 = Cz(−h) =
(
Cz(h)

)>
(19)

for all h ∈ Z. If a series ηt only contains a mixture of
independent signals, all its cross-covariance matrices are sym-
metric [27]: consider ηt = Mst where st contains a number
of independent sources. Then, for all h ∈ Z, Cs(h) = diag
and thus Cη(h) = MCs(h)M> is symmetric. For mixtures of
independent noise sources, any causality measure that is solely
based on a series’ cross-covariance matrices therefore yields
the same result on the original and the time-reversed signals.
This includes Granger causality, but also other popular variants
such as directed transfer function (DTF) [19] and partial
directed coherence (PDC) [20]. Given sufficient amounts of
data, the conditions for Conj-TRGC and Diff-TRGC cannot
be fulfilled for mixtures of independent sources using these
measures, preventing the detection of spurious interaction.

D. The VAR representation of a time-reversed process

There is so far no theoretical argument guaranteeing that
time-reversed Granger causality correctly indicates the pres-
ence of information flow as well as its direction in the presence
of actual interaction. In order to provide such a guarantee,
we here study the time-reversal of (linear) finite-order VAR
processes. Note that studying this case is sufficient since, as
a results of Wold’s decomposition theorem, every stationary,
purely nondeterministic, process can be approximated well by
a finite order VAR process [28], [1].

We start by briefly revisiting the link between cross-
covariance matrices and VAR representation, which we use
throughout the paper, in Section II-D1. In Sections II-D2 and
II-D3, we then review the theoretical result of Andel [29]
stating that the time-reversed signal of any VAR(p) process
has again a VAR(p) representation that can be expressed
analytically in terms of the original process. As the description
for p > 1 is mathematically involved, we only treat the case
p = 1 in the main paper, while the proof for arbitrary p is
presented in Appendix A.
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We use these results to provide an analytic description of
difference-based TRGC scores in terms of their autoregressive
coefficients (Section II-E), give a minimal example (Sec-
tion II-F), and prove our main result stating that, in the case of
unambiguous unidirectional information flow, difference-based
time-reversed Granger causality indeed yields the correct result
(Section II-G).

1) The cross-covariance function of a VAR process: Most
of the insights in this paper are based on the direct link
between autoregressive coefficient matrices A1, . . . , Ap and
residual covariance matrices Σ on one hand, and cross-
covariance matrix Cz(·) on the other hand. This link is
established by the Yule-Walker equations as follows (see e.g.
[1]). For a VAR(1) process

zt = A1zt−1 + εt , (20)

the Yule-Walker equations read

Cz(0) = A1 · Cz(0) ·A>1 + Σ and (21)
Cz(h) = A1 · Cz(h− 1) (∀h ∈ N \ {0}) . (22)

Given A1 and Σ, the cross-covariances are uniquely deter-
mined from (21) through

vec(Cz(0)) = (I −A1 ⊗A1)−1 vec Σ , (23)

while higher-order cross-covariances Cz(h) can be recursively
computed using (22). Conversely, A1 and Σ are uniquely
determined by the cross-covariances through

A1 = Cz(1)Cz(0)−1 and (24)

Σ = Cz(0)−A1Cz(0)A>1 . (25)

Results on VAR(1) processes can typically be extended to
higher-order VAR(p) processes by reducing VAR(p) processes
to their VAR(1) form. The VAR(1) representation of a VAR(p)
process as well as the Yule-Walker equations for general
VAR(p) processes are provided in Appendix A-A.

2) The VAR representation of a time-reversed VAR(1) pro-
cess: The time-reversed autoregressive representation of a
VAR(1) process zt has been derived by Bartlett in 1955 [30].
Suppose we generate an infinite sequence of zt according to
the VAR(1) process (20). The VAR representation of the time-
reversed or backward process is given by

zt = Ã1zt+1 + ε̃t , (26)

where
Ã1 = Cz(0) ·A>1 · Cz(0)−1 , (27)

and where the reversed residuals ε̃t are calculated from zt as

ε̃t := zt − Ã1zt+1 (28)

with residual covariance matrix

Σ̃ = 〈ε̃tε̃>t 〉 = Cz(0)−Cz(0)·A>1 ·Cz(0)−1 ·A1 ·Cz(0) . (29)

It is easy to show that the sequence ε̃t is indeed white noise,
that is for all h ∈ Z\{0}: 〈ε̃t·ε̃>t−h〉 = 0 and for all h ∈ N\{0}:
〈ε̃t · z>t+h〉 = 0.

From (27), we see that the time-reversed coefficient matrix
Ã1 is similar to A1, and thus shares some of its properties,

notably its eigenvalues, determinant, trace and rank. However,
in the context of Granger causality, it is important to note that
many properties of A1 do not transfer to Ã1. In particular, if
A1 is triangular, diagonal, or symmetric, this is not generally
the case for Ã1.

3) The VAR representation of a time-reversed VAR(p) pro-
cess: The result of Bartlett on the time-reversed VAR(1)
process has been generalized to VAR(p) processes by Andel
in 1972 [29], in a paper that received, so far, little attention.
Andel showed that any stable VAR(p) process (1) has a time-
reversed representation

zt = Ã1zt+1 + Ã2zt+2 + . . .+ Ãpzt+p + ε̃t (30)

that is again of order p with uniquely defined autoregressive
coefficients Ã1, . . . Ãp and residual covariance matrix Σ̃. We
reproduce this result in Appendix A-B. Note that, while
we only treat bivariate VAR processes in this paper, the
analytic description of the time-reversed VAR process holds
for processes of arbitrary dimensionality.

E. Analytic description of Diff-TRGC

Contrasting Granger scores obtained on original with those
obtained on time-reversed signals is simplified by the fact
that the AR representation of a univariate time series does
not depend on the direction of time. It follows immediately
from (10), that the differences of the Granger scores related to
original and time-reversed data do not depend on the restricted
models:

D̃y→x = Fy→x − F̃ỹ→x̃ = log Σ̃xx − log Σxx

D̃x→y = Fx→y − F̃x̃→ỹ = log Σ̃yy − log Σyy

D̃(net)
x→y = F (net)

x→y − F̃ (net)
x̃→ỹ

= (Fx→y − Fy→x)− (F̃x̃→ỹ − F̃ỹ→x̃)

= log Σ̃yy − log Σ̃xx − log Σyy + log Σxx .

(31)

The Granger score differences D̃y→x, D̃x→y , and D̃
(net)
x→y

thus only depend on the residual covariance matrices of the
full models of the original and time-reversed data. For the
VAR(1) process, these are given in (25) and (29). For VAR(p)
processes, the residual covariance matrices can be obtained
through (55) and (58) as described in Appendix A-A and A-B.

Please note that while (31) implies that the unrestricted
models can be neglected when computing Granger scores
differences, we might gain from including them in finite
sample settings. We investigate this issue through simulations
in Section III.

F. A minimal example

It is not intuitive to see how the residual variance of the
time-reversed process, and thus Granger causality, depends on
the autoregressive coefficients of the model. Interpretation is
made difficult by the occurrence of Cz(0)−1 in (29).

Let us therefore consider the following minimal case: a
VAR(1) process zt with Cz(0) = I . In that case, Cz(h) = Ah1
and C>z (h) = (A>1 )h for all h ∈ Z \ {0} (from (22)). All
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asymmetries in the cross-covariance matrices Cz(h) are thus
due to asymmetries in A1.

Furthermore, time-reversing the signal leads to transposition
of the autoregressive coefficient matrix Ã1 = A>1 as a result
of (27). The residual covariance matrices (25) and (29) are
now given by

Σ = I −A1 ·A>1 and Σ̃ = I −A>1 ·A1 .

Denote with A1 =

[
a11 a12
a21 a22

]
the autoregressive coeffi-

cients. We then have

Σxx = 1− a211 − a212 , Σ̃xx = I − a211 − a222 ,
and

D̃y→x = log Σ̃xx − log Σxx > 0⇔ Σxx < Σ̃xx

⇔ a212 > a221 .

The difference of the Granger scores computed on the
original and time-reversed time series thus indicates the correct
net direction of information flow. We will in general not be
able to infer whether xt has a Granger-causal influence on yt.
However, we will be able to tell whether xt Granger-causes yt
more than yt Granger-causes xt, or vice versa.

While this simple case will almost never occur in practice,
we give theoretical guarantees for more general cases in the
next section.

G. Validity of TRGC for unidirectional information flow
We now prove our main result, the validity of difference-

based time-reversed Granger causality in the presence of
unidirectional information flow. Consider a bivariate VAR(p)
process with unambiguous unidirectional information flow.
This is the case when all coefficient matrices are triangular
and the residual covariance matrix Σ is diagonal. Then the
following theorem holds.

Theorem 1. Let zt =

[
xt
yt

]
∈ R2 be a stable bivariate VAR(p)

process (1) with the time-reversed representation (30). Under
the assumptions
(A1) A1, . . . , Ap are lower triangular matrices (i.e., xt may

Granger-cause yt, but yt does not Granger-cause xt),
and

(A2) Σ is a diagonal matrix, i.e. Σxy = 0 (the residuals are
uncorrelated), and

(A3) Cz(0) is invertible ,
it holds that

Σ̃xx ≤ Σxx , (32)

and that

Σ̃yy ≥ Σyy . (33)

Corollary 1. Under assumptions (A1)-(A3), Theorem 1
and (31) immediately imply the following inequalities for the
differences of Granger scores:

D̃y→x = Fy→x − F̃ỹ→x̃ ≤ 0 (34)

D̃x→y = Fx→y − F̃x̃→ỹ ≥ 0 (35)

D̃(net)
x→y = (Fx→y − Fy→x)− (F̃x̃→ỹ − F̃ỹ→x̃) ≥ 0 . (36)

As a result of Corollary 1, net Granger-causal information
flow from xt to yt is reduced or remains the same when the
signal is time-reversed. Thus, in the case of unambiguous uni-
directional information flow, difference-based time-reversed
Granger causality yields the correct result. Note that it is not
true in general that the net flow between the time-reversed
signals x̃t and ỹt, F̃

(net)
x̃→ỹ , is negative (reverses compared to

the original series). That is, conjunction-based TRGC might
in some cases incorrectly reject the presence of true causal
interaction.

Corollary 1 states that each of the three difference scores,
D̃y→x, D̃x→y , and D̃

(net)
x→y alone is sufficient to infer the

correct directionality under assumptions (A1)–(A3). As (A1)
requires information flow to be unidirectional, the individual
scores D̃y→x and D̃x→y only indicate net information flow,
which is what is also observed in Section II-F.

The three scores will behave differently if the assumption
of uncorrelated residuals (A2) is violated. Then, Σ̃xx ≤ Σxx
and D̃y→x ≤ 0 still hold, but the inequalities Σ̃yy ≥ Σyy ,
D̃x→y ≥ 0 and D̃

(net)
x→y ≥ 0 do not. On average, the net dif-

ference D̃(net)
x→y (which equals D̃x→y − D̃y→x) is less affected

by the presence of correlations in the residuals than any of
the individual scores, which is why we defined difference-
based TRGC based on D̃(net)

x→y in (17). Nevertheless, all three
scores are valid measures for net information flow, as residuals
should be uncorrelated if the VAR model accurately describes
a physical process.

Sketch of the proof. The first inequality (32) is relatively
easy to prove. The intuition is the following: Since yt does
not Granger-cause xt, the prediction of xt is only based on
past xt. In contrast, the coefficient matrices Ã1, . . . , Ãp of
the time-reversed representation are in general not triangular.
This means that prediction of the time-reversed signals x̃t is
not only based on past x̃t, but can also use information from
past ỹt. We would thus expect that x̃t can be better predicted
than xt, and that the corresponding residuals are smaller.

The proof of the second inequality (33) is more involved.
The intuition is the following: we would expect that the
‘amount’ of unexplainable variance is the same for both the
original and the time-reversed process. Thus, since the residual
variance of xt decreases, the residual variance of yt should
increase. Mathematically, we prove that

det(Σ) = det(Σ̃) . (37)

The proof of (37) is the only part that requires the analytic
description of Σ̃, and is the main difficulty of the overall
proof. It is not straightforward, because Σ̃ depends on the
inverse of the covariance matrix Cz(0), while we only have
an analytic description of vecCz(0). From (37), it is easy to
infer Σ̃yy ≤ Σyy, which completes the proof. It is only in this
final step that we need assumption (A2) that Σ is diagonal.

Proof (Part 1: Proof that Σ̃xx ≤ Σxx):
As A1, . . . , Ap are lower triangular matrices (assumption

(A1)), xt is an autoregressive process of order p,

xt = a1xt−1+. . .+apxt−p+ξxt with Var(ξxt ) = Σxx (38)
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Its time-reversed representation (cf. Section II-B) is

xt = a1xt+1+. . .+apxt+p+ξ̃xt , with Var(ξ̃xt ) = Σxx (39)

Because the unrestricted (or full) model (30) extends the
restricted model by including yt, (32) follows:

Σ̃xx ≤ Var(ξ̃xt ) = Σxx . (40)

Proof (Part 2: Proof that Σ̃yy ≤ Σyy):
As mentioned in the proof sketch, we need to derive (37),

the equality of the determinants det Σ and det Σ̃ . To improve
readability, we here treat only the case p = 1, and derive (37)
for general p ∈ N \ {0} in Appendix A-C.

The proof relies on Sylvester’s determinant theorem [31],
which states that for any matrices K ∈ Rn×m, L ∈ Rm×n:

det(I +KL) = det(I + LK) . (41)

We then have:

det Σ
(21)
= det(Cz(0)−A1 · Cz(0) ·A>1 )

= det(Cz(0)) · det(I −A1 · Cz(0) ·A>1 · Cz(0)−1)
(41)
= det(Cz(0)) · det(I − Cz(0) ·A>1 · Cz(0)−1A1)

= det(Cz(0)− Cz(0) ·A>1 · Cz(0)−1A1 · Cz(0))
(29)
= det Σ̃ .

From the result of Part 1 (32), the equality of residual
covariance determinants (37) (derived for general p in Ap-
pendix A-C), and assumption (A2) of uncorrelated residuals
in Σ, we then obtain:

ΣxxΣyy
(A2)
= det Σ

(37)
= det Σ̃ = Σ̃xxΣ̃yy − Σ̃xyΣ̃xy

≤ Σ̃xxΣ̃yy
(32)
≤ ΣxxΣ̃yy

⇔ Σyy ≤ Σ̃yy .

III. EXPERIMENTS

In this section, we provide an empirical investigation of
model violations and other factors influencing the performance
of Granger causal measures using numerical simulations. Af-
ter describing the tested methods and performance measures
(Section III-A), we compare several variants of TRGC in
either the presence or absence of noise (Section III-B). We
then investigate the influence of common drivers, various
types of noise (Section III-C and III-D) and downsampling
(Section III-E) on standard Granger causality and Diff-TRGC.

A. Experimental setup

We consider bivariate time series in the presence of uni-
directional information flow (xt → yt) as well as in the
absence of causal interaction. Unless otherwise stated, time
series of length T = 2000 are generated from stationary
VAR(5) processes, whose autoregressive coefficients are drawn
from a normal distribution with mean 0 and standard deviation

σA = 0.2. The absence of causal interaction is modeled
by setting respective AR coefficients to zero. Residuals are
generated from a normal distribution with diagonal covariance
matrix, whose entries are drawn from the standard uniform
distribution.

We compare standard GC as well as Net-GC to Diff-
TRGC (see (17)). In Section III-B, we also include Conj-
TRGC (see (16)), the conjunction of Net-GC and Diff-TRGC
(see (18)), and a variation of Diff-TRGC, in which D̃(net)

x→y is
computed using only the full bivariate models according to
(31). This variant is denoted by Diff-TRGC (full).

All statistical tests are performed at significance level
α = 0.05. For standard GC, we perform two separate F-tests,
one to assess whether xt Granger-causes yt, and one to assess
whether yt Granger-causes xt. It is possible that both vari-
ables are estimated to Granger-cause each other. In contrast,
all other metrics indicate net directionality. We assess their
statistical significance by bootstrapping residuals from the
regression model: We regress zt on its past and future values
zt−p, . . . , zt−1, zt+1, . . . zt+p, and retain the fitted values ẑt
and residuals ε̂t := zt−ẑt. In each bootstrap repetition, causal-
ity metrics are computed on synthetic variables z∗t := ẑt + ε̂s,
where s is selected randomly for each t. Percentile confidence
intervals are then constructed from the bootstrap sampling
distribution. Significance is determined by evaluating if the
confidence interval does not contain 0. We use 500 bootstrap
samples and select the number of lags p as the optimizer of
Schwarz’s Bayesian Information Criterion (BIC) [32].

All experiments are repeated 300 times. In each run, a true
positive (TP) is defined as a significant detection of the true
direction of interaction. The true positive rate (TPR) is the
fraction of true positives among all runs. It is here also referred
to as the sensitivity or power. A false positive (FP) is defined
as a significant detection of the wrong direction of interaction,
or a significant detection of causal interaction in the absence
of any causal interaction. The false positive rate (FPR) is the
fraction of false positives among all tested runs.

B. Comparison of TRGC variants under interaction

We assess Granger causality and time-reversed Granger
causality in the presence of unidirectional interaction consid-
ering differing sample sizes, standard deviations of the AR
parameters, noise types and signal-to-noise ratios (SNR).

In a first experiment, we consider the noiseless case, and
vary the sample size from 400 to 4000 for a fixed standard
deviation σA = 0.2 of the AR coefficients. In a second
experiment, we vary the standard deviation σA at a constant
sample size of T = 2000. This experiment thus tests the
impact of the strength of the causal connections relative to
the innovation noise. The standard deviations tested are 0.05,
0.1, 0.2, ..., and 0.6. Finally, for a fixed standard deviation
σA = 0.2, and a fixed sample size T = 2000, we add linearly
mixed, autocorrelated measurement noise ηt ∈ R2 to each
system according to

[
xt
yt

]
= (1− γ)

[
x
(l)
t

y
(l)
t

]
+ γ · ηt , (42)
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Fig. 1. Performance of Granger causality and different variants of time-
reversed Granger causality (TRGC). (a) True positive rate in the noiseless
case as a function of the number of samples T for fixed standard deviation
σA = 0.2 of the AR coefficients, and as a function of σA for fixed T = 2000.
(b) True and false positive rates as a function of the SNR for additive mixed
autocorrelated noise (according to (42)) for T = 2000 and σA = 0.2.

where the subscript (l) denotes the underlying latent variables
and γ defines the signal-to-noise ratio (SNR). Noise ηt is
generated by multiplying two independent AR(5) time-series
with a random matrix B, with det(B) = 1. We consider the
signal-to-noise ratios 0, 0.25, 0.5, 0.75, 0.9 and 1.

The TP and FP rates attained in the three experiments
are depicted in Figure 1. From Figure 1(a), we see that
Diff-TRGC (full), which computes the difference score D̃(net)

x→y
only using the full model according to (31), seems to be
suboptimal for finite samples. While we have demonstrated
the equivalence of (31) to the original definition (15) for
infinite samples in Section II-E, this equivalence does not hold
for the finite samples studied here. Estimating residuals from
the restricted models increased the power of the test for all
investigated parameter settings.

Conj-TRGC has lower power relative to Diff-TRGC. This is
particularly so for high σA, which corresponds to a dominance
of the dynamical and causal aspects of the model comprised
in the AR coefficients relative to the innovation noise. This
result is not unexpected, as time-reversing the signals does
not necessarily reverse the direction of information flow. Note
that, on the other hand, Conj-TRGC is the more conservative
measure compared to Diff-TRGC and could be expected
to produce fewer spurious results in the presence of noise.

However, as we see in Figure 1(b), both variants yield almost
no spurious results in the presence of measurement noise. We
will therefore use Diff-TRGC in the remaining experiments.

C. Impact of latent variables and measurement noise in the
absence of causal interaction

Already Granger pointed out that standard Granger causality
can lead to spurious results if not all relevant variables are
incorporated in the model [8]. In a bivariate system, GC
cannot determine whether the observed variables xt and yt are
both driven by a third common cause. This argument extends
to multivariate systems, if a relevant confounding variable
is not part of the measurement. Furthermore, standard GC
is susceptible to measurement noise [33], [10], [11], [26],
[34], [18] and to instantaneous linear mixing of activity,
which is a major problem for example in the analysis of
electroencephalographic (EEG) recordings [13], [14], [16]. We
demonstrate these effects here in additional simulations, in
all of which no actual interaction occurs. We consider three
different scenarios.

(A) Linear mixing. The observed time series xt and yt are
a linear mixture of two independent signals x(l)t , y(l)t , that is

[
xt
yt

]
= M

[
x
(l)
t

y
(l)
t

]
, (43)

where M ∈ R2×2 denotes the mixing matrix. x(l)t and y
(l)
t

were generated as two independent univariate AR(5) pro-
cesses.

(B) Common hidden cause. The observed time series xt
and yt are driven by a common unobserved cause gt. Time
series xt, yt, and gt are generated from a three-dimensional
VAR(5) model with σA = 0.3, in which gt Granger-causes xt
and yt, with no causal interaction between xt and yt as
modeled by the respective AR coefficients being set to zero.

(C) Additive noise. The observed time series xt and yt
are a superposition of two independent univariate AR(5)
processes x

(l)
t , y(l)t and additive noise ηt as in (42), with

γ ∈ {0, 0.25, 0.5, 0.75, 0.9, 1} adjusting the SNR. We consider
three different types of noise. Independent white noise is
generated from a normal distribution with diagonal covariance
matrix, whose entries are drawn from the standard uniform
distribution. Mixed white noise is created by multiplying
independent noise with a random matrix B with det(B) = 1.
Mixed autocorrelated noise is created by multiplying two
independent AR(5) time-series with B.

Figure 2 illustrates the behavior of standard Granger causal-
ity, Net-GC and Diff-TRGC in the various simulation settings.
Values on the y-axis indicate the FP rate at significance level
α = 0.05. As all experiments are characterized by the absence
of any interaction between xt and yt, any significant detection
of information flow either from xt to yt or yt to xt is counted
as a false positive.

It is apparent from Figure 2 that standard GC and Net-GC
lead to spurious detection of causality in all tested scenarios.
Their behavior in the presence of noise (panel C) depends
on the properties of that noise. Mixed noise (left and center
plots of panel C) is generally very problematic, especially if
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Fig. 2. False positive rates of Granger causality (standard GC and Net-GC) and difference-based time-reversed Granger causality (Diff-TRGC) as a function
of the SNR for two signals lacking any causal connection. (A) Instantaneous linear mixture of two independent univariate AR(5) processes. (B) Common
unobserved cause. xt and yt. (C) Superposition of two independent univariate AR(5) processes with additive Gaussian noise.

it is also autocorrelated (left part). As xt and yt are already
independent, adding independent noise (obviously) does not
pose a problem here (right part of panel C).

In contrast to standard GC and Net-GC, time-reversed
Granger causality implemented through Diff-TRGC is insen-
sitive to mixtures of independent sources regardless of their
spatial and temporal correlation structure (see panels A and
C). This behavior thus reflects its known theoretical properties
discussed in Section II-C. The presence of a hidden common
confounder, however, cannot be ruled out by using time-
reversed Granger causality (panel B).

D. Impact of noise in the presence of causal interaction

We further study the behavior of standard GC, Net-GC and
Diff-TRGC in the presence of unidirectional causal interac-
tions superimposed with noise. Four different scenarios are
considered. In all cases, data are generated according to (42)
with x

(l)
t Granger-causing y

(l)
t . In the first three scenarios,

(A-C), interacting signals from bivariate VAR(5) models are
superimposed with noise. As in Section III-C, we use mixed
autocorrelated noise (scenario A), mixed white noise (B), and
independent white noise (C). The same signal to noise ratios
as in Section III-C are used.

In the fourth scenario, (D), we simulate the following
VAR(1) process with long memory:
[
x
(l)
t

y
(l)
t

]
=

[
0.95 0

1 0.5

] [
x
(l)
t−1
y
(l)
t−1

]
+ εt εt ∼ N (0, I)

xt = (1− γ) · x(l)t + γ · ηt ηt ∼ N (0, 1)

yt = y
(l)
t ,

(44)

adopted from [26], where N denotes the normal distribution.
True positive and false positive rates as estimated from 300

simulation runs are reported in Figure 3 (A-D). Just as in the
absence of causality (cf. Section III-C), we observe that lin-
early mixed, autocorrelated noise leads to the highest numbers
of false detections for standard GC, while independent white
noise leads to lowest FP rates. Diff-TRGC is characterized
by negligible amounts of false positives in all cases at the
cost of slightly decreased sensitivity as compared to standard
GC in scenarios (A-C). Interestingly, Net-GC behaves very
similar to Diff-TRGC in the presence of non-autocorrelated
noise both in terms of sensitivity and specificity (B-C). In these
settings, spurious causality could already be almost entirely
eliminated by testing for net Granger causality. This result,
however, does not imply that Net-GC cannot be affected by
non-autocorrelated noise in general. A counterexample is the
system with long memory studied in scenario (D). Here, Net-
GC (as well as standard GC) fails, because yt contains delayed
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Fig. 3. Performance of Granger causality (standard GC and Net-GC) and difference-based time-reversed Granger causality (Diff-TRGC) for two signals with
unidirectional information flow from xt to yt. Shown are the fractions of true positives (xt → y detected) and false positives (yt → xt detected), when
xt and yt are corrupted by noise (A-D), downsampling (E), and temporal aggregation (F). The underlying latent signals x(l) and y(l) were generated from
VAR(5) processes with random AR coefficients, except for D, in which signals follow a VAR(1) process with long memory according to (44).

but cleaner information about x(l)t than xt itself and thus
may help to predict future xt. Diff-TRGC, however, robustly
identifies xt as the driver.

Our examples show time-reversed Granger causality almost
completely eliminates spurious causalities arising from any
kind of additive noise. At the same time, it exhibits similar
statistical power as net Granger causality. We also observe that
net Granger causality is typically more robust with respect to
additive noise than standard Granger causality.

E. Impact of downsampling and temporal aggregation

Spurious Granger causality has also been reported to arise
due to downsampling and temporal aggregation [35], [36],

[37], posing serious problems, for example, in functional
magnetic resonance imaging (fMRI) [38], [39].

We generate data using a VAR(5) model with random
coefficients with σA = 0.3, in which xt Granger-causes yt.
These data are decimated at different factors τ in two ways. In
the downsampling scenario (E), causal measures are applied to
time series of length T = 2000 constructed from the original
time series by skipping τ − 1 time points in between sampled
data points. In the temporal aggregation scenario (F), time
series of length T = 2000 are constructed from the original
time series by averaging over τ data points. No noise was
added.

Figure 3 (E-F) depicts TP and FP rates attained in the two
scenarios as a function of τ . We see that Net-GC and Diff-
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TRGC are more robust then standard GC. Both Net-GC and
Diff-TRGC did not result in spurious causality.

IV. DISCUSSION

We established the theoretical guarantee that difference-
based time-reversed Granger causality (Diff-TRGC) indicates
the correct direction of causality in bivariate autoregressive
processes characterized by unambiguous unidirectional infor-
mation flow. Our results complement previous work by [16],
[17] showing that TRGC in general correctly rejects causal
interpretations for mixtures of non-interacting sources (thus,
in the absence of any causality). While further compelling
intuitive ideas for robust causality measures have been pre-
sented [11], [23], [18], our result provides, to the best of our
knowledge, the first proof of the correctness of one of such
techniques (Diff-TRGC) for a relatively general class of time-
series models.

Our theory is accompanied by simulations, in which we con-
firmed that time-reversed Granger causality robustly detects
the presence of true causal interactions in various realistic sce-
narios including mixed noise and downsampling. We showed
that Diff-TRGC is able to infer correct directionality with
similar power as net Granger causality, while at the same time
producing fewer (in most cases, negligible amounts of) false
alarms than Net-GC and standard GC. We therefore suggest
to use Diff-TRGC whenever the data under study are likely to
be corrupted by noise.

A. Correlated residuals

To define an unambiguous uni-directional information flow,
our theory assumes uncorrelated residuals, as is common
in the literature. Correlated residuals indicate instantaneous
effects that the variables exert on each other. While we would
not expect correlated residuals if the VAR model accurately
describes the data generating process, such effects are likely
to occur in practice (e.g., if the sampling rate of the acquired
data falls below the time scale of the causal interactions).
They pose severe problems for causal estimation, because they
can be explained by several possible data generating models,
the coefficients of which cannot be uniquely identified using
second order information only.

Data generating models. Instantaneous interactions can be
modeled implicitly through correlated residuals in classical
VAR processes, or explicitly, for example using so-called
‘structural’ VAR (SVAR) processes [1], [40], [41]. By aug-
menting the VAR model with an instantaneous mixing matrix
Γ0, the SVAR model

zt =

p∑

h=0

Γhzt−h + ε̄t , (45)

achieves that the residuals ε̄t are uncorrelated. Here, the
diagonal of Γ0 is assumed to be zero.

Correlated residuals emerge naturally in electrophysiolog-
ical neuroimaging data, where the signals observable at the
sensors (e.g., EEG electrodes) are a linear mixture of the latent
activity of possibly interacting neuronal populations within the

brain. A model for such mixtures of potentially interacting
sources is given by

zt = Mz
(l)
t , z

(l)
t =

p∑

h=1

Bhz
(l)
t−h + έt , (46)

where zt ∈ Rd denotes the observed data, z(l)t ∈ Rd denotes
the activity of underlying latent variables (e.g., brain sources)
following a VAR(p) process with uncorrelated residuals έt, and
M ∈ Rd×d is an unknown mixing matrix (representing, e.g.,
the volume conduction effect of the human head). We call (46)
the ‘mixture of interacting sources’ model.

Note that VAR models with correlated residuals, SVAR
models, and mixture of interacting sources models can be used
interchangeably to represent the same statistical process. For
example, an interacting sources model (46) can be equivalently
written as a VAR(p) process (1) with coefficients

Ah = MBhM
−1 , h ∈ {1, . . . , p} (47)

and correlated residuals εt = Mε̃t. Likewise, an SVAR(p)
process (45) can be converted into a VAR(p) process with
correlated residuals εt = (I − Γ0)−1ε̄t and coefficients

Ah = (I − Γ0)−1Γh , h ∈ {1, . . . , p} . (48)

The reverse transformations from VAR models to SVAR or
interacting source models, as well as the transformations
between SVAR and interacting source models, are, however,
not unique (see Model identifiability).

Ambiguous causal interpretations can emerge in cases where
one of the three models indicates time-delayed causal inter-
actions through non-zero off-diagonal coefficients in the Ah,
Bh or Γh, while another one does not. This ambiguity can in
general only be resolved if the model generating the data is
known a-priori. In case of EEG data, for example, (46) reflects
the true data-generating process. Therefore, only the param-
eters Bh of the source VAR process (46) permit meaningful
causal interpretation (wrt. to the source variables z

(l)
t ), while,

for example, the VAR parameters in (47) are distorted by the
mixing matrix M .

Model identifiability. A further complication in the presence
of instantaneous effects in the data is that for mixture of inter-
acting sources as well as SVAR models, the parameters are not
uniquely defined from second order information only. This can
be best seen for the latter model (46). Identifying the model
parameters requires the estimation of a full factorization of the
data into a mixing matrix M and source time series z

(l)
t . This

means that the estimation problem falls into the blind source
separation (BSS) setting, in which Gaussianity of the factors
is not sufficient for their identification. The classical approach
to BSS, independent component analysis (ICA) assumes sta-
tistical independence and non-Gaussianity of the sources z

(l)
t

to ensure identifiability. This concept can be adopted in the
context of source AR models by enforcing independence/non-
Gaussianity of the residuals of the source AR process in (46)
[13], [15], [42]. In a similar way, independence of residuals
has been used in the identification of SVAR models [40], [43].

Example. Consider the following VAR(1) process with cor-
related residuals:
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[
xt
yt

]
=

[
0.7 0
−0.12 0.9

] [
xt−1

yt−1

]
+ εt, 〈εtε>t 〉 =

[
1 0.6

0.6 1

]
.

This process can also be represented by the SVAR(1) model

[
xt
yt

]
=

[
0 0

0.6 0

] [
xt
yt

]
+

[
0.7 0
−0.54 0.9

] [
xt−1

yt−1

]
+ ε̄t

as well as the mixtures of interacting sources model

[
xt
yt

]
=

[
1 0

0.6 0.8

] [
x
(l)
t

y
(l)
t

]
,

[
x
(l)
t

y
(l)
t

]
=

[
0.7 0
0 0.9

][
x
(l)
t−1

y
(l)
t−1

]
+ έt,

with uncorrelated residuals 〈ε̄tε̄>t 〉 =

[
1 0
0 0.64

]
, 〈έtέ>t 〉 = I.

Note that both the VAR(1) and the SVAR(1) representation
indicate unidirectional causal interaction between the observed
variables xt and yt, whereas the mixture model suggests
that the observed data can also arise from a mixture of two
independent latent sources x

(l)
t and y

(l)
t . However, another

equivalent mixture model

[
xt
yt

]
=

[
−
√

0.2
√

0.8√
0.2
√

0.8

] [
x
(l)
t

y
(l)
t

]
,

[
x
(l)
t

y
(l)
t

]
=

[
0.86 0.08
0.08 0.74

] [
x
(l)
t−1

y
(l)
t−1

]
+ ˜̃εt

with 〈˜̃εt˜̃ε>t 〉 = I suggests bidirectional informational flow
on the source level. Similarly, the following SVAR(1) model
indicates bidirectional flow

[
xt
yt

]
=

[
0 0.6
0 0

] [
xt
yt

]
+

[
0.772 −0.54
−0.12 0.9

] [
xt−1

yt−1

]
+ ¯̄εt ,

〈¯̄εt¯̄ε>t 〉 =

[
0.64 0

0 1

]
.

B. Future work

Further effort is required to investigate the behavior of
TRGC in the presence of bidirectional information flow, and
to extend the theoretical analysis of time-reversal to general
multivariate signals. Furthermore, it would be desirable to
obtain theoretical guarantees for the performance of TRGC in
the presence of true interaction superimposed by noise in the
form of bounds on the false positive rate. A major difficulty
here is to obtain the residual covariance of the superposition
of a VAR process and additive noise. Analytically computing
Granger causality in the presence of noise is mathematically
involved even for special cases [44].

Finally, [16] showed that for any causality measure based
on cross-covariances, differences of the scores obtained on
the original and time-reversal signals correctly indicate the
absence of causality on mixtures of independent sources.
While we focused here on Granger causality, it remains to
be shown whether validity of time-reversal in the presence of
causal interaction can also be demonstrated for other causality
measures.

APPENDIX A
PROOFS FOR VAR(p)

A. The VAR(p) process and its cross-covariance function
Consider a stable bivariate VAR(p) process, zt ∈ Rd, as defined

in (1),

zt = A1zt−1 +A2zt−2 + . . .+Apzt−p + εt ,

where εt ∈ R2 is a 2-dimensional white noise process (i.e. 〈εt〉 = 0,
〈εtε>t−h〉 = 0 for h ∈ Z \ {0}, and 〈εtz>t−h〉 = 0 for h ∈ N \ {0} )
with residual covariance matrix Σ = 〈εtε>t 〉.

Many results on VAR(1) processes can be extended to higher order
VAR(p) processes by considering their VAR(1) form. Given the 2-
dimensional VAR(p) process zt, the corresponding 2p-dimensional
VAR(1) representation is defined as

Zt = AZt−1 + Et , (49)

with

Zt =




zt
zt−1

...
zt−p+1


 ,A =




A1 A2 · · · Ap−1 Ap

I 0 · · · 0 0
0 I · · · 0 0

. . .
...

0 0 · · · I 0



, Et =




εt
0
...
0


 ,

and residual covariance matrix

ΣE = 〈EtE
>
t 〉 =




Σ 0 · · · 0
0 0 · · · 0
...

. . .
...

0 0 · · · 0


 . (50)

The cross-covariances of Zt are linked to the cross-covariances of zt
through

CZ(h) =




Cz(h) Cz(h+1) · · · Cz(h+p−1)
Cz(h−1) Cz(h) · · · Cz(h+p−2)

...
...

. . .
...

Cz(h−p+1) Cz(h−p+2) · · · Cz(h)


 (51)

for all h ∈ Z. The Yule-Walker equations can then be expressed as

CZ(0) = A · CZ(0) ·A> + ΣE and (52)
CZ(h) = A · CZ(h− 1) ∀h ∈ N \ {0} . (53)

Given A1, . . . , Ap, and Σ, the cross-covariances
are uniquely determined: Equation (52) implies that
vec(CZ(0)) = (I −A⊗A)−1 vec ΣE , while CZ(h) for h > 1
can be recursively computed using (53). Conversely, A1, . . . , Ap

and Σ are uniquely determined by the cross-covariances through

[A1, A2, · · · , Ap] = [Cz(1), Cz(2), · · · , Cz(p)] · CZ(0)−1 (54)

and

Σ = Cz(0)− [A1, A2, · · · , Ap] · CZ(0) · [A1, A2, . . . , Ap]> . (55)

B. The time-reversed VAR(p) process
The results of Bartlett on the analytical description of time-

reversed VAR(1) processes have been generalized to VAR(p) pro-
cesses by Andel in 1972 [29]. Given a 2-dimensional VAR(p) process
zt as in (1), Andel considers a second VAR(p) process

zt = Ã1zt−1 + Ã2zt−2 + . . .+ Ãpzt−p + et , (56)

where et is white noise with covariance matrix Σ̃ = 〈ete>t 〉.
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Now, denote with Q := CZ(0)−1 the inverse of the covariance of
Zt, with block matrix notation

Q =: (Qlk)pl,k=1 =




Q1,1 Q1,2 · · · Q1,p

Q2,1 Q2,2 · · · Q2,p

...
...

. . .
...

Qp,1 Qp,p−1 · · · Qp,p


 ∈ R2p×2p ,

where Qlk are 2× 2 blocks.
Andel proves that Cz(h) = Cz(−h) for all h ∈ Z (that is, zt has

the same cross-covariance matrices as zt reversed in time), if and
only if Ã1, . . . , Ãp and Σ̃ are defined as follows: for 1 ≤ j ≤ p,

Ãj = −(Qpp +A>p Σ−1Ap)−1(Qp,p−j +A>p Σ−1Ap−j) (57)

and

Σ̃ = (Qpp +A>p Σ−1Ap)−1 , (58)

where Qp,0 := 0 and A0 := −I . Andel further proves that Ãp 6= 0,
if and only if Ap 6= 0 , and that, if zt is stable, so is zt.

Note that, while we only treat bivariate VAR processes in this
paper, the analytic description reviewed above holds for arbitrary
dimensionality.

C. Proof that det(Σ) = det(Σ̃) for general p – this completes
the proof of Theorem 1

Given Andel’s result, we can complete the proof for Theorem 1.
The only missing part of the proof (cf. Section II-G) is the proof of
(37), det(Σ) = det(Σ̃), for arbritrary p ∈ N \ {0}.

Preliminaries. We use that the following statements generally
hold for block matrices: Let K be a positive definite matrix with
L = K−1, and let

K =

[
K1,1 K1,2

K2,1 K2,2

]
, L =

[
L1,1 L1,2

L2,1 L2,2

]

the block matrix notations of L and K, where K1,1 is a square matrix
of the same size as L1,1. Then (see e.g. [45], p. 22),

L2,2 =
[
K2,2 −K2,1K

−1
1,1K1,2

]−1
. (59)

Let T and W be invertible matrices, then for all matrices U and V
of fitting size

det(T + UWV ) = det(W−1 + V T−1U) det(T ) det(W ) . (60)

This relation is known as the generalized matrix determinant lemma
and a straightforward extension of Sylvester’s determinant theo-
rem (41).

Let K be a matrix with block notation as above, and K1,1 be
invertible, then, (see e.g. [45], p. 22),

det(K) = det(K1,1) det(K2,2 −K2,1K
−1
1,1K1,2) . (61)

Let us also introduce the following notation for the blocks of
CZ(0):

CZ(0) =

[
CZ\p R>

R Cz(0)

]
=

[
Cz(0) R̄
R̄> CZ\p

]
,

where we define

R :=
[
Cz(p− 1)> Cz(p− 2)> · · · Cz(1)>

]
∈ R2×2(p−1)

R̄ :=
[
Cz(1) . . . Cz(p− 1)

]
∈ R2×2(p−1) ,

and

CZ\p :=




Cz(0) · · · Cz(p− 2)
...

. . .
...

Cz(2− p) · · · Cz(0)


 ∈ R2(p−1)×2(p−1) .

Step 1: Analytic expression for Cz(0)− R̄C−1

Z\pR̄
>.

We first prove that

Cz(0)− R̄C−1

Z\pR̄
> = Σ +ApQ

−1
pp A

>
p , (62)

that is, the residual variance when regressing zt on
zt−1, . . . , zt−(p−1) given by Cz(0) − R̄C−1

Z\pR̄
> can be expressed

as the sum of ApQ
−1
pp Ap and the residual variance when regressing

zt on zt−1, . . . , zt−(p−1), zt−p, given by Σ.
Recall the Yule-Walker equation (52)

CZ(0) = A · CZ(0) ·A> + ΣE .

and let us rewrite

ΣE =

[
Σ 0
0 0

]
and A =

[
A\p Ap

I 0

]
,

where we define

A\p :=
[
A1 . . . Ap−1

]
∈ R2×2(p−1) .

The Yule-Walker equation can then be written in blocks as
[
Cz(0) R̄
R̄> CZ\p

]
=

[
A\p Ap

I 0

] [
CZ\p R>

R Cz(0)

] [
A>\p I

A>p 0

]
+

[
Σ 0
0 0

]
.

We see from the top line that

R̄ = A\pCZ\p +ApR

⇔ ApR = R̄−A\pCZ\p , (63)

and that

Cz(0)

= A\pCZ\pA
>
\p +A\pR

>A>p +ApRA
>
\p +ApCz(0)A>p +Σ

(62)
= −A\pCZ\pA

>
\p +A\pR̄

>+R̄A>\p +ApCz(0)A>p +Σ (64)

from which we conclude that

Σ+ApQ
−1
pp A

>
p

(59)
= Σ+Ap

[
Cz(0)−RC−1

Z\pR
>
]
A>p

= Σ+ApCz(0)A>p −ApRC
−1

Z\pR
>A>p

(62)
= Σ+ApCz(0)A>p −

[
R̄−A\pCZ\p

]
C−1

Z\p
[
R̄−A\pCZ\p

]>

= Σ+ApCz(0)A>p −R̄C−1

Z\pR̄
>+A\pR̄

>+R̄A>\p−A\pCZ\pA
>
\p

(63)
= Cz(0)−R̄C−1

Z\pR̄
> .

Step 2. Derive det Σ = det Σ̃ from Andel and (??).
From Andel (58) we know that Σ̃ = (Qpp +A>p Σ−1Ap)−1. As

Q is positive definite, Qpp is invertible such that

1

det(Σ̃)
= det(Qpp +A>p Σ−1Ap)

(60)
= det(Σ+ApQ

−1
pp A

>
p )

det(Qpp)

det(Σ)
.

It therefore suffices to show that

det(Σ+ApQ
−1
pp A

>
p ) = det(Q−1

pp ) . (65)

Drawing on Step 1, Equation (64) can be proven as follows:

det(Σ+ApQ
−1
pp A

>
p ) = det(Q−1

pp )
(??),(59)⇔ det(Cz(0)−R̄C−1

Z\pR̄
>) = det(Cz(0)−RC−1

Z\pR
>)

(61)⇔ det

([
CZ\p R̄>

R̄ Cz(0)

])
det(C−1

Z\p) = det(CZ(0)) det(C−1

Z\p)

⇔ det

([
CZ\p R̄>

R̄ Cz(0)

])
= det(CZ(0)) .

Switching rows or columns of a matrix leaves its determinant
invariant up to a factor of (−1)i+j , where i and j are corresponding
row or column indices. In the following, we perform block-wise
rotation of a matrix block to the bottom, and to right, respectively.
This is a concatenation of several row and column switches giving
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us a factor (−1)r for a given r. Note that r is the same for both
operations due to their symmetric behavior. Therefore we have

det

([
CZ\p R̄>

R̄ Cz(0)

])
= (−1)r det

([
R̄ Cz(0)

CZ\p R̄>

])

= (−1)2r det

([
Cz(0) R̃

R̃> CZ\p

])

= det

([
Cz(0) R̄
R̄> CZ\p

])
= det(CZ(0)) ,

which completes the proof.
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5.2 Conclusion

Summary

In this manuscript, we established a theoretical guarantee for time-reversed Granger
causality (TRGC). Previous work by (Haufe et al., 2013) showed that TRGC cor-
rectly rejects causal interpretations for mixtures of non-interacting sources. Fur-
thermore, very promising results have been achieved in simulations (Haufe et al.,
2013; Vinck et al., 2015). However, it was unknown whether time reversal leads to
valid measures of information flow in the presence of true interaction.

We first reviewed the theoretical result of (Andel, 1972) stating that the time-
reversed signal of any VAR(p) process has again a VAR(p) representation that can
be expressed analytically in terms of the original process. We used these results
to prove our main result stating that, in the case of unambiguous unidirectional
information flow, TRGC indeed yields the correct result:

Corollary 1. Let zt =
[
xt

yt

]
∈ R2 be a stable bivariate VAR(p) process (2.9),

zt = A1zt−1 + . . .+ Apzt−p + ϵt ,

where ϵt ∈ R2 is a 2-dimensional white noise process with residual covariance matrix
Σ = ⟨ϵtϵ⊤t ⟩. Under the assumptions

(A1) A1, . . . , Ap are lower triangular matrices (i.e., xt may Granger-cause yt, but
yt does not Granger-cause xt), and

(A2) Σ is a diagonal matrix (i.e. the residuals are uncorrelated), and

(A3) the covariance matrix of zt is invertible ,

it holds that

D̃(net)
x→y ≥ 0 ,

where D̃
(net)
x→y denotes the differences of the Granger scores obtained on original and

time-reversed signals as defined in (2.25).

While further compelling intuitive ideas for robust causality measures have been
presented (Nolte et al., 2008; Vicente et al., 2011; Vinck et al., 2015), our result
provides, to the best of our knowledge, the first proof of the correctness of one of
such techniques for a relatively general class of time-series models.
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Our theoretical results were complemented by simulations, in which we confirm
that time-reversal testing yields robust causality estimates also in the case of true
causal interaction superposed with mixed measurement noise or under downsam-
pling. We showed that TRGC is able to infer correct directionality with similar
statistical power as net Granger causality (defined in (2.14)), while being more ro-
bust with respect to measurement noise.

Limitations and Future Work

We would like to comment on the following limiting or open aspects in our theory
which should be addressed in future work:

• Definiteness of TRGC? An open question, which we plan to address in the
future, is whether under the assumptions (A1), (A2), (A3) difference-based
TRGC is definite. That is, does equality D̃

(net)
x→y = 0 only hold if the A1, . . . , Ap

are diagonal? It is relatively easy to prove that definiteness holds for p = 1,
but the general p case is more involved.

Definiteness does not hold if the residuals are correlated, that is, if (A2) is
violated. Consider the following process where y Granger causes x:

[
xt

yt

]
=

[
0.4 −0.2
0 0

] [
xt−1

yt−1

]
+ ϵt ⟨ϵtϵ⊤t ⟩ =

[
0.88 0.5
0.5 1

]

The cross-covariance matrices C(·) of the process are completely symmetric

C(0) =

[
1 0.5
0.5 1

]
, C(1) =

[
0.3 0
0 0

]
, C(2) =

[
0.12 0
0 0

]
, . . .

In this case, the VAR representation of the time-reversed process will be ex-
actly the same as the original one, and the Granger causal flow will remain
the same. Time-reversed testing will thus infer no causality. This is because
mixed noise also exhibits symmetric covariance structures, and both scenarios
cannot be distinguished.

The example also illustrates that directed information flow as measured by
Granger causality can arise when all cross-covariance matrices are symmetric.
In fact, here there are no lagged cross-covariances at all, but still there is
information flow from y to x. yt−1 is not correlated with xt, but it is still
predictive of xt, because yt−1 correlates with (xt − xt−1).

• Instantaneous effects. Correlated residuals violate assumption (A2) of Corol-
lary 1. They encode instantaneous effects that the variables of interest have
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on each other. In this case, classical autoregressive modeling suffer from lack
of identifiability (cf. (Lütkepohl, 2007; Hyvärinen et al., 2010b; Moneta et al.,
2011)).

A VAR model can be seen as a ’reduced form’ model, from which the ’struc-
tural’ VAR model cannot uniquely be inferred using covariance information
only. A Structural VAR model (SVAR) is a VAR model ’augmented’ by the
present variables,

zt = Γ0zt + Γ1zt−1 + Γ2zt−2 + . . .+ Γpzt−p + ϵ̄t (5.1)

where Γ0 has zeros on its diagonal, and the residuals are expected to be un-
correlated. Notice that there are more unobserved parameters in the SVAR
model than in the VAR model. Deriving the SVAR from the VAR model thus
requires further assumptions regarding the relationships between the variables
(Lütkepohl, 2007; Hyvärinen et al., 2010b; Peters et al., 2013).

Consider, for example, the following VAR(1) process:
[
xt

yt

]
=

[
0.4 0
0 0.4

] [
xt−1

yt−1

]
+ ϵt, ⟨ϵtϵ⊤t ⟩ =

[
1 0.5
0.5 1

]

Pre-multiplying each side with a matrix L =

[
1 0
−0.5 1

]
and subtracting

(I − L)

[
xt

yt

]
from each side yields

[
xt

yt

]
=

[
0 0
0.5 0

] [
xt

yt

]
+

[
0.4 0
−0.2 0.4

] [
xt−1

yt−1

]
+ ϵ̄t, ⟨ϵ̄tϵ̄⊤t ⟩ =

[
1 0
0 0.75

]
.

Both processes have the same means and autocovariances, and thus charac-
terize the same joint distribution of x and y if the residuals are Gaussian.
However, the two representations have quite different causal interpretations.

Our theory is not applicable to instantaneous effects. However, we can argue
that residuals should be independent if the VAR model accurately describes
the data generating process (and is not effected by typical problems such as
common drivers, noise or temporal aggregation). According to Reichenbach’s
common cause principle (Reichenbach, 1956), a dependency between the two
residual variables would imply that one is causing the other or that both are
driven by a third unobserved cause. There should also be no instantaneous
interaction between xt and yt since physical interaction takes time which the
VAR process should capture if it correctly models the latency of the data
generating process.
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Nevertheless, correlated residuals do occur in practice, due to downsampling or
measurement noise. It might be interesting to try to incorporate instantaneous
effects in the modeling, and to apply time-reversed testing to an estimated
SVAR model.

• Directed interaction superimposed with noise. Our simulations showed that
TRGC is relatively robust with respect to measurement noise and downsam-
pling. Furthermore, we now have theoretical results both for the case of un-
corrupted unidirectional information flow, and for the case of no causal in-
teraction. Now it would be desirable to obtain theoretical guarantees for the
performance of TRGC in the presence of true interaction and noise. Unfor-
tunately, this might not be possible because false positives do in fact occur.
Nevertheless, bounds on the false positive rate would be interesting.

• Bidirectional information flow. Time-reversed Granger causality indicates the
net information flow between two variables. This is because the information
flow from x̃t to ỹt in the reversed signals depends on the flow from yt to xt in
the original signals.

However, our theory only considers unidirectional flow of information. A result
analogous to Corollary 1 for underlying bidirectional flows would be desirable.
However, in this case already the definition of a ‘true’ dominant (net) flow
direction is non-trivial, as whether xt causes yt more than yt causes xt cannot
be intuitively defined from the autoregressive coefficients. Vinck et al. use the
Net-GC score F

(net)
x→y of the ‘raw’ simulated system before adding any noise to

define the ground truth about net information flow (Vinck et al., 2015). This
definition has theoretical appeal, as GC is equivalent to the transfer entropy,
an information-theoretic measure of time-directed information transfer, for
Gaussian variables (Barnett et al., 2009). However, this definition naturally
introduces a bias towards Net-GC, as any measure deviating from it will be
penalized.

Conjecture for bidirectional information flow. Let us specify very restrictive
conditions, under which net information flow in bi-directional VAR systems
may be defined ’unambiguously’ from the AR coefficients. We define such ‘un-
ambiguous’ bidirectional flow from xt to yt through fulfillment of the following
conditions:

(B1) For the autoregressive coefficients A1, . . . Ap it holds that:

(B1.1) All autoregressive coefficients are non negative.

(B1.2) Diagonal autoregressive coefficients are the same. That is, for
all h ∈ {1, . . . , p} it holds that Ah(1, 1) = Ah(2, 2). Here Ah(i, j)
denotes the (i, j)th entry of Ap (i, j ∈ {1, 2}).
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(B1.3) Upper off-diagonal elements are smaller than lower off-diagonal el-
ements, i.e. for all i ∈ {1, . . . , p} it holds that Ai(1, 2) ≤ Ai(2, 1).

(B2) Σ = I, i.e. the residuals are uncorrelated and have variance 1.

(B3) The covariance matrix of zt is invertible.

We conjecture that Corollary 1 also holds under these conditions. Preliminary
simulations indicated that this is the case.

• Extension to the multivariate case. We showed through simulations that the
presence of a hidden common confounder cannot be ruled out by using time-
reversed Granger causality. In many cases, information about the confounder
may be available, and we would like to include it in the modeling. For example,
in the paper in Chapter 4 we presented a preliminary simulation, in which
three oscillatory neuronal sources A, B, C were causally connected to a target
variable z in two different schemes, [A→z, B→z, C→z] and [C→B→A→z].
The question arises whether it is possible to distinguish both scenarios in case
we are able to extract all three sources. While it is straightforward to apply
post-hoc multivariate AR modeling, A, B, and C will be estimated with noise.
The remaining volume artifact may therefore still generate spurious Granger
causality (Schoffelen and Gross, 2009; Haufe et al., 2013).

A challenging future research direction is therefore the development of robust
measures which are able to analyze directed information flow in more than
two variables. So far TRGC is only able to infer the causality structure two
variables. Other proposed noise-robust measures such as PSI (Nolte et al.,
2008) also focus on the two variables case. The extension of the theoretical
analysis of time-reversal to general multivariate signals would therefore be very
interesting.
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EEG signals as measured from electrodes placed on the scalp contain useful, but
noisy and spatially smeared information about the brain’s electrical activity. There-
fore, advanced signal processing techniques are needed to extract useful features and
to recover the underlying neuronal signals of interest. In this cumulative thesis, we
have contributed several methodological advances for EEG signal analysis.

Summary. First, we addressed necessary pre-processing steps. We developed the
open-source EEGLAB toolbox MARA (Multiple Artifact Rejection Algorithm),
which automatically identifies artifactual ICA components. MARA is a supervised
machine learning algorithm that learns from 1290 labeled ICA components by ex-
tracting six features which were optimized to solve the binary classification problem
’reject vs. accept’. Thus, MARA is not limited to a specific type of artifact, and
should be able to handle eye artifacts, muscular artifacts and loose electrodes equally
well. It has been thoroughly evaluated on several data sets, its graphical user inter-
face is relatively easy to use, and it is used in our group (Höhne and Tangermann,
2014; Hwang et al., 2015) and by others (Gomez Rojas, 2012; Nagya et al., 2014;
Ho et al., 2015; Alday, 2015; Tóth, 2015; Wang et al., 2015). We have also used
MARA to evaluate ICA-based artifact reduction in BCI systems, and to evaluate
pre-processing options that are necessary to obtain a good ICA decomposition.

Second, we have analyzed how to extract oscillatory neuronal sources which
Granger causally link to experimental variables of interest. The computation of
Granger causality in sensor space suffers from a poor signal-to-noise ratio, however
multivariate spatial filtering approaches such as ICA alleviate this issue. We pre-
sented a novel method called GrangerCPA which optimizes for Granger causality.
Its ability to reliably extract oscillations that Granger cause a given external target
variable was demonstrated both on simulated and real data.

Third, we contributed mathematical theory on possible solutions to problems that
measurement noise poses for causal inference. More specifically, we proved that time-
reversed Granger causality (TRGC) scores indicate the correct directionality in finite
order autoregressive processes with unidirectional information flow. While further
compelling intuitive ideas for robust causality measures have been presented, our
result provides, to the best of our knowledge, the first proof of the correctness of
one such technique for a relatively general class of time-series models. Furthermore,
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simulations confirmed that TRGC is able to infer correct directionality with high
statistical power, while being relatively robust with respect to measurement noise.
We hope that these insights provide a justification and/or incentive to use TRGC
to study directed interactions if the available data is corrupted by noise. This is the
case when studying brain connectivity using EEG.

Outlook. Inference of cause-effect relationships using only observational data is a
challenging task, for which the scientific methodology is subject to intense research.
In recent years many interesting causal inference techniques have been proposed,
which solve the causal inference problem under a variety of assumptions. The ques-
tion is then to what degree these assumptions hold on real-world data. For TRGC,
we have promising results on simulated data only. It would be very interesting to
evaluate its usefulness on real data in which the ground truth is known. For example,
many hobby cyclists post their GPS trails online. From GPS, noisy measurements
of slope and speed can be inferred, and we know that the slope (as well as other
factors) causally influences the speed, but the cyclist’s speed does not change the
slope. It would also be very interesting to compare and evaluate many causal infer-
ence algorithms on data from real-world problems. Steps in this direction have been
carried out for instance in (Guyon et al., 2011; Peters et al., 2013).

More data is also needed in order to improve artifactual independent component
classification. While MARA is a useful tool in many cases, we have encountered
data sets in which its performance could be better. MARA, as well as any super-
vised artifactual component classifier, could be made more reliable if more training
components were available. Because artifact removal with ICA is a very widespread
tool, many EEG research groups do in fact have manually labeled ICA components.
However, to the best of our knowledge, almost none of this data is currently pub-
licly available. This is a shame, since, in our opinion, the lack of data is the limiting
factor of artifact classification performance.

Most neuroscientific data sets are not openly available, which may slow down
advances in many subfields of neuroscience. Many researchers therefore advocate
open data neuroscience solutions, for example (Milham, 2012):

Countless data sets comprising both phenotypic and neuroimaging data
remain stored in laboratory archives long after publication and are often
lost to the scientific community forever. Such a loss commonly reflects a
lack of appreciation of the potential value of one’s data to others beyond
the primary study focus. Additionally, such a loss can arise from concerns
about losing a competitive advantage. Regardless of motive, the end
result is a missed opportunity to advance our understanding of brain-
behavior relationships and the methodologies required to successfully
characterize them.
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For the artifact classification problem, creating or collecting a useful large data set
might not be too difficult (although it requires a lot of work). This is because most
class-discriminative information is contained in the scalp pattern and the spectrum
of a component. These require a lot less disk space and contain less sensitive infor-
mation than the component’s time courses. In fact, even though features from the
time series contain some non-redundant information (Winkler et al., 2011; Frølich
et al., 2015a), many existing methods achieve good classification even thought they
ignore the component’s time series (Halder et al., 2007; Viola et al., 2009; Bigdely-
Shamlo et al., 2013). A worthwhile research project would therefore be to collect
or create a large data set of labeled independent components with scalp maps and
spectrum and make these publicly available.
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