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CHAPTER 1

Introduction

Artin L-series were introduced by Artin in his articles ”Über eine neue
Art von L-Reihen” (1923) and ”Zur Theorie der L-Reihen mit allge-
meinen Gruppencharakteren” (1930) [3]. In the proof of his ”reci-
procity law” Artin showed that in the case of an Abelian extension of
number fields Artin L-functions are just Hecke L-functions. Therefore
the theory of those functions did directly apply to Abelian Artin L-
series. For example we know that Hecke L-functions with non-trivial
character are entire functions. Artin’s conjecture states the same for
general Artin L-functions with non-trivial character. Since Brauer [5]
it is known, that these functions have a meromorphic continuation to
C and a functional equation like Hecke L-functions. However it is un-
known if they have poles in the critical strip 0 < Re(s) < 1. Artin’s
conjecture on the holomorphy of the Artin L-functions has inspired
a lot of development in number theory [21], namely for example the
Langlands’ program to find a general reciprocity law for non-Abelian
extensions of number fields. For the analogue of those Artin L-functions
in the case of function fields Artin’s conjecture is known to be true and
this fact played a prominent role in Laurent Lafforgue’s proof of the
Langlands correspondence for function fields [17].
We report on the fundamentals of Artin L-series in the next chapter.

The study of the distribution of non-zero values of Riemann’s Zeta-
function starts with Harald Bohr’s [4] work. He investigated the value
distribution of the Zeta-function for Re(s) > 1. An exposition on this
subject can be found in Titchmarsh’s ”The Theory of the Riemann
Zeta-Function” [30]. The work of Voronin [14] extends this investiga-
tion to the investigation of the distribution of non-zero values in the
strip 1/2 < Re(s) < 1. He gets a quite new type of theorems, which
are called ”Universality” theorems in the literature. Generalizations of
these theorems to other Dirichlet series exist, for example to Dedekind
Zeta-functions [26] and to the Lerch Zeta-function [10]. Further gener-
alizations are concerned with the joint distribution of non-zero values
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of Dirichlet L-functions ([14], [11]) and with the joint distribution of
non-zero values of Lerch Zeta-functions [18].

Our approach generalizes the theorem on the joint distribution of non-
zero values of Dirichlet L-series [14] to Artin L-series of an arbitrary
normal extension K/Q. It is unconditional, i.e. we do not presup-
pose Artin’s conjecture to be true. It is more than a theorem on the
joint distribution of non-zero values, since it states that we may ap-
proach jointly n arbitrary non-zero holomorphic functions by n Artin
L-functions (Theorem 5.1).

To prove this result we need a mean value theorem. This theorem
(Theorem 4.1) does not apply to Artin L-functions, since we do not
know if they are holomorphic in the critical strip. However it is valid for
Hecke L-functions and Dedekind Zeta-functions (Remark 4.1), because
they only possess a limited number of poles. The method we use for
this purpose is known as Carlson’s method [30], and was applied to
the k-th power moment of the Riemann Zeta-function.

A theorem of Davenport and Heilbronn [8] states that Hurwitz Zeta-
functions and Zeta-functions attached to positive definite quadratic
forms of discriminant d, such that the class number h(d) is greater
than 1, have zeros with Re(s) > 1. It was proved by Voronin [14], that
those functions do have zeros in the strip 1/2 < Re(s) < 1. We prove
(Theorem 6.4) that this is true for every partial zeta-function attached
to a class of a ray class group of any algebraic number field, provided
that this group has cardinality greater than 1. This especially applies
to the class group of a number field with class number greater than
1. The zeta-functions of every class of the class group of a number
field have a functional equation like the Riemann Zeta-function [16,
p.254], and therefore we have found other functions for which ”the
analogue of the Riemann hypothesis is false” [30, p.282]. If we take
the generalized Riemann hypothesis for granted, then the sum of all
these partial zeta-functions should have no zeros in the strip 1/2 <
Re(s) < 1, although each of its summands has infinitely many zeros.
Thus these zeros must be at different places. We recall, that these
zeta-functions play a prominent role in class field theory (Hasse [13],
Stark [28]).

It is known, that the Dedekind Zeta-functions of different normal ex-
tensions differ. We show to which extend Zeta-functions of different
normal extensions are really different (Theorem 6.6). The theorems in
the last chapter are applications of Theorem 5.1 on Artin L-functions.
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1. Notations

We use the big O-notation (Landau symbol) in the following way:
By f(t) = O(g(t)) we mean that f is a function with the property
|f(t)| ≤ Cg(t) for all t. The constant C depends only on f and g. By
f(t) = Oa(g(t)) we emphasize, that C > 0 depends on a. The notation
vol(M) for some set M ⊂ Rn denotes the Lesbegue-measure of this
set, which has volume 1 on the unit cube. Γ(s) is the Gamma function
[2]. The Greek letters Γ and γ are also used for curves in the complex
plane or in Rn. Re(z) and Im(z) are the real part and the complex
part of z ∈ C.

If α ∈ R is a real number, then {α} := α− [α]. [α] denotes the largest
integer n ∈ Z with n ≤ α. gcd(a, b) is the greatest common divisor of
integers in Z or of ideals, if defined. For a finite set M we denote by
#M its cardinality. Algebraic number fields [20] are denoted by small
or big Latin letters k, K, L. The Galois group of a normal extension
K/k is denoted by G(K/k). For a finite algebraic extension K/k we
denote by [K : k] its relative degree. The trace of an algebraic number
α is denoted by Trace(α), its norm by N(α) or NK/k(α), if relative
to the subfield k. Ok denotes the ring of integers of the number field
k. Ideals are denoted by a or b. Those letters may also denote the
modulus of a class group in the sense of class field theory [13]. The
norm of an ideal a is denoted by N(a). P is the set of all rational
primes. Pk is the set of prime ideals of Ok. The exponent k of the
exact power pk dividing a rational integer d, i.e. gcd(pk+1, d) = pk, will
be denoted by vp(d), i.e. vp(d) := k. 1 denotes also the neutral element
of a group. It may as well be used for the identity element of a Galois
group G and for the character χ : G → C with χ(g) = 1 ∈ C for all
g ∈ G. The group of characters of an Abelian group G is denoted by
G∗.

GLk(C) is the group of all k×k-matrices, which have an inverse. For a
matrix A we denote by Tr(A) or Trace(A) its trace and by det(A) its
determinant. The restriction of a map f : M → T to a subset U ⊂ M
will be denoted by f|U , i.e. f|U : U → T .
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CHAPTER 2

Fundamentals

1. Linear Representation of Finite Groups and Artin
L-Series

By a class function on a finite group G we mean a function f : G 7→ C
such that f(τgτ−1) = f(g) for all τ, g ∈ G. In other words: The value
of a class function depends only on the conjugacy classes of the group.

Definition 1. Let G be a finite group, ρ : G 7→ GLk(C) a group
homomorphism. ρ is called a representation of G. Then χ : G 7−→ C
with χ(g) := Trace(ρ(g)) is called a character of G. The degree of this
character is k.

Obviously every character is a class function and the degree of a char-
acter is equal to χ(1).
We call this kind of characters also a non-Abelian character if we
want to distinguish them from the usual Abelian characters of Abelian
groups.

Definition 2. An irreducible representation of the group G is a group
homomorphism ρ : G −→ GLk(C) that can not be decomposed into
the direct sum of two representations. An irreducible character is the
character of an irreducible representation.

Theorem 2.1. [27, p.18] The irreducible characters of a finite group
G form an orthonormal basis of the vector space of class functions on
G with respect to the scalar product

(

χ, ψ
)

:= 1
#G

∑

g∈G
χ(g)ψ(g). The

dimension of the vector space of class functions is equal to the number
of conjugacy classes of G.

Every character on a group G is the sum of (not necessarily different)
irreducible characters of this group.
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Definition 3 (induced character).
Let U be a subgroup of the finite group G and χ a character of U . Then
for every g ∈ G we have the induced character of χ defined by

χ∗(g) :=
1

#U

∑

v∈G

χ(vgv−1)

where χ(a) := 0 if a 6∈ U .

An induced character is a character in the sense of the above definition
of characters.

Theorem 2.2 (Frobenius reciprocity). [27, p.86] Let U be a subgroup
of G. If ψ is a class function on U and φ a class function on G, we
have (with the scalar product above)

(

ψ, φ|U
)

U =
(

ψ∗, φ
)

G.

Theorem 2.3 (Brauer). [23, p.544] Every character on a finite group
G is a finite linear combination χ =

∑

l
nlϕ∗l −

∑

l
mlψ∗l , where ϕ∗l and

ψ∗l are induced from characters ϕl, ψl of degree 1 of subgroups of G and
nl,ml ∈ Z≥0.

Let K be a normal extension of k with Galois group G(K/k). Denote
by IP the inertia group and by DP the decomposition group of the
Galois group G(K/k) corresponding to the prime ideal P with p ⊂ P,
prime ideal p ⊂ Ok and P | pOK ([12, p.33] and [20, p.98]).

If IP = {1}, the Frobenius-Automorphism σ := (P, K/k) ∈ DP is
defined by [20, p.108]

σα ≡ αN(p) mod P

for any α ∈ OK and p ⊂ P. If we exchange the prime ideal P by
the prime ideal P′ with p ⊂ P′, then the corresponding Frobenius-
Automorphisms (P, K/k) and (P′, K/k) are conjugate.

Let ρ be any finite linear representation of G(K/k). Denote the char-
acter of ρ by χ. Set Lp(s, χ,K/k) := det

(

E −N(p)−sρ((P, K/k))
)−1,

where E is the unit matrix. Obviously this definition is independent
of the choice of the prime ideal P with p ⊂ P. Also it is clear that
this definition depends only on χ and not on the specific representation
ρ with χ(σ) = Tr(ρ(σ)), since the value of a determinant is invariant
under conjugation.
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If IP 6= {1}, then set V IP := {x ∈ Ck | ∀τ∈IP : ρ(τ)(x) = x}. Then
replace E − N(p)−sρ((P, K/k)) in the definition of Lp(s, χ, K/k) by
the restriction E −N(p)−sρ((P, K/k)) |V IP to the subspace V IP .

We may write σp instead of (P, K/k), since class functions and
Lp(s, χ, K/k) only depend on the conjugacy classes of a given group
element. We write Lp(s, χ) for Lp(s, χ, K/Q).

Definition 4 (Artin L-Series). [23, p.540] The Artin L-series of a
character χ on the group G(K/k) is defined by

L(s, χ, K/k) :=
∏

p∈Pk

Lp(s, χ, K/k) for all s ∈ C with Re(s) > 1.

The function L(s, χ, K/k) has a meromorphic continuation to C.

In [3, p.169] Artin defines the Artin L-series by its logarithm:

log L(s, χ, K/k) =
∑

ph

χ(ph)
hN(p)hs for Re(s) > 1.

We do not describe the details of this definition. However we remark
that the Dirichlet-coefficients χ(p)

h of this Dirichlet series log L(s, χ,K/k)
are dominated by the Dirichlet-coefficients of χ(1) log L(s, 1, K/k). Ac-
cording to the next theorem L(s, 1, K/k) is identical with the Dedekind
Zeta-function.

We write L(s, χ) for L(s, χ,K/Q). An Artin L-series L(s, χ, K/k) is
called primitive if χ is an irreducible character of the Galois group of
K/k.

Artin’s conjecture says, that L(s, χ,K/k) is an entire function for all
irreducible characters χ 6= 1 [23, p.547]. However it is unproven until
now. Therefore we do not know if Artin L-Series are entire or if they
have poles in the critical strip 0 < Re(s) < 1.
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Theorem 2.4. [23, p.544]

1. L(s, 1, K/k) = ζk(s).
2. If k ⊂ K ⊂ L are Galois extensions of k, and χ is a character

of G(K/k), which may be viewed as a character of G(L/k) by
applying the restriction map, then
L(s, χ, K/k) = L(s, χ, L/k).

3. Let L/k be a Galois extension and K any subfield with
k ⊂ K ⊂ L. Then for a character χ of G(L/K) we have
L(s, χ, L/K) = L(s, χ∗, L/k).

4. L(s, χ + ψ, K/k) = L(s, χ, K/k)L(s, ψ, K/k).

Remark 2.1. All the proofs in the last Theorem are done for the Euler-
factors Lp(s, χ, K/k). So these statements hold ”locally”:

1. Lp(s, 1, K/k) =
(

1−N(p)−s
)−1.

2. Lp(s, χ, K/k) = Lp(s, χ, L/k).
3.

∏

p|qOK
Lp(s, χ, L/K) = Lq(s, χ∗, L/k).

4. Lp(s, χ + ψ,K/k) = Lp(s, χ, K/k)Lp(s, ψ, K/k).

Corollary 2.1. [23, p.547]
If k ⊂ K is a finite Galois extension with Galois group G := G(K/k),
then

ζK(s) = ζk(s)
∏

χ6=1

L(s, χ, K/k)χ(1).

Denote the conjugacy classes of the Galois group G(K/Q) by C1, . . . , CN .
Then

Theorem 2.5 (Artin). [3, p.122] Denote by π(Cj, x) the number of
rational primes p ≤ x with σp ∈ Cj. Then

π(x,Cj) =
hj

k

x
∫

2

dt
log t

+ O(xe−a log1/2 x)

where a is some positive constant, k := #G and hj := #Cj.

For a more effective and also unconditional version, see the article of
Lagarias and Odlyzko [15].
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2. Theorems from Complex Analysis and Hilbert Space
Theory

A series an, n ∈ N of real numbers is called conditionally convergent,
if

∑

n∈N
|an| is unbounded and

∑

n∈N
an converges for an appropriate re-

arrangement of the terms an. The following Theorem generalizes Rie-
mann’s Rearrangement Theorem, which states that a series of real num-
bers is conditionally convergent if and only if it can be rearranged such
that its sum converges to an arbitrary preassigned real number.

Theorem 2.6. [14, p.352] Suppose that a series of vectors
∞
∑

n=1
un in a

real Hilbert space H satisfies
∞
∑

n=1
‖un‖2 < ∞ and for every e ∈ H with

e 6= 0 the series
∞
∑

n=1
〈un, e〉 converges conditionally. Then for any v ∈ H

there is a permutation π of N such that
∞
∑

n=1
uπ(n) = v in the norm of

H.

Theorem 2.7 (Paley-Wiener). [24, p.13] Let F be an entire function.
Then the following statements are equivalent:

(1)
∫ ∞

−∞
|F (x)|2dx < ∞ and lim sup

z∈C
|F (z)e−(σ+ε)|z|| < ∞

for every ε > 0
(2) there is a function f ∈ L2(−σ, σ) such that

F (z) =
1√
2π

∫ σ

−σ
f(u)eiuzdu

This theorem has the following consequence.

Corollary 2.2. Suppose that an entire function g 6≡ 0 has a series

expansion g(z) =
∞
∑

n=0

an
n! z

n and the sequence {|an|}n∈N is bounded. Then

for every c > 1 there is an unbounded sequence {uk}k∈N of positive real
numbers such that |g(uk)| > exp(−cuk).

In other words: The function g(z) is not only bounded by exp(cz) from
above but also in a certain sense from below.

Proof: Suppose the converse. Then we have |g(u)| < A exp(−cu) for
some A > 0 and all positive real u. Then
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|g(u) exp((1 + δ)u)| < A exp(−δu) for δ := (c − 1)/2. Due to the
conditions on the coefficients an we have |g(−u)| < B exp(u) for some
B > 0 and positive real u. Therefore again
|g(−u) exp(−(1 + δ)u)| < B exp(−δu) and for the maximum C of A
and B it follows |g(u) exp((1 + δ)u)| < C exp(−δ|u|) for all u ∈ R.

Set F (z) := g(z) exp((1 + δ)z). Then lim supz∈C |F (z)e−(2+δ+ε)|z|| < ∞
for every ε > 0. We have |F (u)|2 < C2 exp(−2δ|u|). Therefore condi-
tion (1) of the preceeding Theorem is satisfied. Then we have a func-
tion f ∈ L2(−(δ + 2), δ + 2) such that F (z) = 1√

2π

∫∞
−∞ f(u)eiuzdu.

According to Plancherel’s Theorem [24, p.2] we find that f(x) =
1√
2π

∞
∫

−∞
F (u)e−iuxdu almost everywhere inR. Since |F (u)| < C exp(−δ|u|),

the function defined by the integral is analytic in a strip near the real
line. However the support of f(x) lies inside a compact interval. There-

fore the analytic function defined by 1√
2π

∞
∫

−∞
F (u)e−iuxdu is zero outside

of this interval for real x. Therefore it must be zero everywhere, which
is a contradiction to g 6≡ 0. 2

Theorem 2.8 (Markov). [1, p.314] Let P be a polynomial of degree
≤ n with real coefficients. Then max|x|≤1 |P ′(x)| ≤ n2 max|x|≤1 |P (x)|.

Theorem 2.9. [30, p.303] Suppose that f(z) is holomorphic on
|z − z0| ≤ R. Then for |z − z0| ≤ R′ < R

|f(z)|2 ≤

∫

|z−z0|≤R
|f(x + iy)|2dxdy

π(R−R′)2 .

As an obvious consequence we get:

Corollary 2.3. Suppose that f1, . . . , fN are functions continuous on
|z− z0| ≤ R and holomorphic for all z with |z− z0| < R. Suppose that
for a sequence of holomorphic functions {φl,n}n∈N for 1 ≤ l ≤ N

lim
n→∞

∫

|z−z0|≤R

N
∑

l=1

|φl,n(z)− fl(z)|2dxdy = 0.

Then for every ε > 0 there is a number n0 ∈ N such that for a fixed
R′ < R and all n ≥ n0, |z − z0| ≤ R′ and all 1 ≤ l ≤ N

|fl(z)− φl,n(z)| < ε.
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Definition 5 (Hardy-space). The vector space H2 of functions f(s),
which are analytic on the disc |s| < R and with

lim
r→R

∫

|z|≤r

|f(z)|2dxdy < ∞

is a real Hilbert space with norm

‖f‖2 :=
(

lim
r→R

∫

|z|≤r

|f(z)|2dxdy
)1/2

and scalar product

〈f, g〉 := lim
r→R

Re
∫

|z|≤r

f(z)g(z)dxdy.

The general theory of such Hilbert spaces is developed in [9, p.257].

It is well known, that every function f analytic on |s| < R has an

convergent Taylor series f(z) =
∞
∑

n=0
anzn. This series is absolutely

convergent and lim sup
n≥0

|an|1/n ≤ 1/R. Likewise for |z| = r < R we have
∞
∑

n,m=0
|anbmznzm| =

∞
∑

n,m=0
|an||bm|rn+m =

∞
∑

n=0
|an|rn

∞
∑

m=0
|bm|rm < ∞ for

every two functions analytic on |z| < R. Therefore
∫

|z|≤r

f(z)g(z)dxdy =
∞

∑

n,m=0

anbm

∫

|z|≤r

znzmdxdy

=
∞

∑

n,m=0

anbm

2π
∫

0

r
∫

0

ρn+m+1ei(n−m)ϕdρdϕ = π
∞

∑

n=0

anbn
r2(n+1)

(n + 1)
.

Therefore our space consists just of those functions with
∞

∑

n=0

|an|2
R2n

(n + 1)
< ∞

and has the scalar product

〈f, g〉 = πR2
∞

∑

n=0

Re(anbn)
R2n

(n + 1)
.
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Theorem 2.10 (Rouché). [2] Let the curve γ be homologous to zero in
a domain Ω and such that n(γ, z) is either 0 or 1 for any point z ∈ Ω
not on γ. Suppose that f(z) and g(z) are analytic in Ω and satisfy the
inequality |f(z) − g(z)| < |f(z)| on γ. Then f(z) and g(z) have the
same number of zeros enclosed by γ.

We have n(γ, z) := 1
2πi

∫

γ

1
ζ−zdζ.

Theorem 2.11. [29, p.304.(9.51)] Suppose that f(s) is regular and for
some A > 0 and all σ := Re(s) ≥ α we have |f(s)| = O

(

|Im(s)|A
)

,
whereas α ∈ R is fixed. Suppose that for σ > σ0 with some σ0 ∈ R

∞
∑

n=1

|an|
nσ < ∞ and f(s) =

∞
∑

n=1

an

ns .

If for σ > α

1
2T

T
∫

−T

|f(σ + it)|2dt

is bounded for T −→∞, then for σ > α

lim
T−→∞

1
2T

T
∫

−T

|f(σ + it)|2dt =
∞

∑

n=1

|an|2

n2σ

uniformly in every strip α < σ1 ≤ σ ≤ σ2.

Lemma 2.1. [30, p.151] Let f(s) =
∞
∑

n=1
ann−s be absolutely convergent

for Re(s) > 1. Then

∞
∑

n=1

an

ns eδn =
1

2πi

c+i∞
∫

c−i∞

Γ(w − s)f(w)δs−wdw

for δ > 0, c > 1, c > Re(s).

Lemma 2.2. [30, p.140] δ > 0 and 1/2 < σ < 1. Then
∑

0<m<n<∞

e−(m+n)δ

mσnσlog(n/m)
= O

(

δ2σ−2 log
1
δ
)

.
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Theorem 2.12 (Phragmen-Lindelöf). [16, p.262] Let f(s) be holomor-
phic in the upper part of the strip: a ≤ σ ≤ b, and t ≥ t1 > 0. Assume
that f(s) is O(etα) with 1 ≤ α, and t → ∞ in this strip, and f(s) is
O(tM) for some real number M ≥ 0, on the sides of the strip, namely
σ = a and σ = b. Then f(s) is O(tM) in the strip. In particular, if f
is bounded on the sides, then f is bounded on the strip.

We state a consequence of Cauchy’s integral formula.

Theorem 2.13. [2, p.122] For any analytic function we have

|f (n)(0)| ≤ n!
rn max

|z|=r
|f(z)|

if f is continuous on |z| ≤ r and analytic in the disc |z| < r.

3. Theorems from Number Theory

Let x ∈ RN , γ ⊂ RN . The notation x ∈ γ mod Z means that there
is a vector y ∈ ZN such that x − y ∈ γ. Fix a real number θ0 ∈ R
and ε > 0. We use the notation |θ0 − θ mod Z| < ε to denote those
numbers θ ∈ R which have a representative number θ′ ∈ R such that
|θ0 − θ′| < ε and θ − θ′ ∈ Z.

Theorem 2.14. [30, p.301],[14] Let α1, . . . , αN be real numbers which
are Q-linear independent, and let γ be a subregion of the unit cube of
RN with Jordan volume Γ. Denote by Iγ(T ) the measure of the set
{t | t ∈ (0, T ) and (α1t, . . . , αN t) ∈ γ mod Z}. Then

lim
T−→∞

Iγ(T )
T

= Γ

A curve γ : R −→ RN is said to be uniformly distributed mod Z if for

every parallelepiped Π =
N
∏

j=1
[aj, bj] with aj, bj ∈ [0, 1] for 1 ≤ j ≤ N

lim
T→∞

vol{t | t ∈ (0, T ), γ(t) ∈ Π mod Z}
T

=
N
∏

j=1

(bj − aj)

According to the preceeding Theorem 2.14 the curve γ(t) := (α1t, . . . , αN t)
is uniformly distributed.
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Theorem 2.15. [14, p.362] Suppose that the curve γ(t) =
(

γ1(t), . . . , γN(t)
)

is uniformly distributed mod Z and continuous as a function R>0 →
RN . Let the function F be Riemann integrable on the unit cube in RN .

Then

lim
T→∞

1
T

T
∫

0

F ({γ1(t)}, . . . , {γN(t)})dt =

1
∫

0

· · ·
1

∫

0

F (x1, . . . , xN)dx1 · · · dxN .

Theorem 2.16. [14, p.362] Suppose that D is a Jordan measurable
and closed subregion of the unite cube in RN . γ is a continuous and
uniformly distributed mod Z curve. Ω is a family of complex-valued
functions, which are uniformly bounded and equicontinuous on D.

Then the following relation holds uniformly with respect to F ∈ Ω:

lim
T→∞

1
T

∫

(0,T )∩AD

F ({γ1(t)}, . . . , {γN(t)})dt =
∫

D

F (x1, . . . , xN)dx1 · · · dxN

where AD := {t | γ(t) ∈ D mod Z}.
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CHAPTER 3

Fundamental Lemmata

Denote by P the set of rational primes.

Definition 6. Suppose that

F (s) =
∏

p∈P
fp(p−s)

where fp(z) is a rational function and the product converges absolutely
for Re(s) > 1.

Then for any finite set M ⊂ P of primes and for any θ ∈ RP we define

FM(s, θ) :=
∏

p∈M

fp(p−se−2πiθp).

This definition applies to Artin L-Series defined over Q.
According to Definition 4 we have L(s, χ, K/Q) =

∏

p∈P
Lp(s, χ) for

Re(s) > 1 with Lp(s, χ) = det(E − ρ(σp)p−s |V IP )−1. Then

fp(z) = det(E − ρ(σp)z |V IP ))−1.

It is independent of the specific representation ρ of the character χ.
Thus LM(s, χ, θ) is well defined for every Artin L-Series L(s, χ, K/Q)
defined over Q.

In the case of Hecke L-series L(s, χ) we have

fp(p−s) :=
∏

p∈p

(

1− χ(p)
N(p)s

)−1

for the prime ideals p lying above p ∈ P. This is obviously a rational
function in the argument p−s since N(p) = pf(p/p) with f(p/p) ∈ Z≥1.

17



Lemma 3.1. Suppose that F1(s), . . . , Fn(s) are analytic functions which
are represented by absolutely convergent products

Fl(s) =
∏

p∈P
fp,l(p−s)

for Re(s) > 1,where fp,l(z) = 1 +
∞
∑

m=1
a(m)

p,l zm are rational functions of

z without poles in the disc |z| < 1. Set ad,l :=
∏

p∈P
a(vp(d))

p,l . For all ε > 0

there are constants c(ε) > 0 with

|ad,l| ≤ c(ε)dε.

Further suppose that they have an analytic continuation to the plane
Re(s) > 1−1/2k with at most one simple pole at s = 1 for some k ≥ 1.

Assume that

1
T

T
∫

−T

|Fl(σ + it)|2dt

is bounded for σ ∈ (α, 1) and T ∈ R+, if α ∈ (1− 1
2k , 1) is fixed.

Let M1 ⊂ M2 ⊂ . . . be finite sets of primes with P =
⋃∞

j=1 Mj.
Suppose lim

j−>∞
Fl,Mj(s, θj) = fl(s) uniformly in |s − (1 − 1

4k )| ≤ r < 1
4k

for fixed r > 0.

Then for any ε > 0 there exists a set Aε ⊂ R such that for all
l = 1, . . . , n and all t ∈ Aε

max
|s−(1− 1

4k )|≤r−ε
|Fl(s + it)− fl(s)| < ε

and

lim inf
T−→∞

vol(Aε ∩ (0, T ))
T

> 0.

18



Corollary 3.1. Let

Gm(s) :=
∏b=Nm

b=1 Fm,b(s)
∏b=N∗

m
b=1 F ∗

m,b(s)
for m = 1, . . . , m0.

Suppose that the functions Fm,b(s), F ∗
m,b(s) satisfy all the conditions of

Lemma 3.1 for m = 1, . . . ,m0 and 1 ≤ b ≤ Nm resp. 1 ≤ b ≤ N∗
m.

Assume that lim
j→∞

Gm,Mj(s, θj) = fm(s) and lim
j→∞

Fm,b,Mj(s, θj) = fm,b(s)

uniformly in |s− (1− (4k)−1)| ≤ r. Under the further conditions that

max
m,b,|s|≤r

|fm,b(s)| > 0

and

fm(s) =
∏b=Nm

b=1 fm,b(s)
∏b=N∗

m
b=1 f ∗m,b(s)

for |s| ≤ r

we have:
For any ε > 0 there is a set Bε ⊂ R such that for all m = 1, . . . , m0

and all t ∈ Bε

max
|s−(1− 1

4k )|≤r−ε
|Gm(s + it)− fm(s)| < ε

and

lim inf
T−→∞

vol(Bε ∩ (0, T ))
T

> 0.

Proof: (of Lemma 3.1)
Notation: Dk,r := {s ∈ C | |s− (1− (4k)−1)| ≤ r}.
‖f(s)‖r := max

s∈Dk,r
|f(s)|.

Basically we follow the proof of Voronin [14, p.256]:
Fl,Mj(s, θ) depends continuously on the finite vector (θp)p∈Mj . There-
fore there exists for all ε > 0 a δ(ε) > 0 such that

‖Fl,Mj(s, θ
(1))− Fl,Mj(s, θ

(2))‖r ≤ ε

if |θ(1)
p − θ(2)

p | ≤ δ for all p ∈ Mj.

According to the conditions of the Lemma we have for j ∈ N large
enough and all l:

‖Fl,Mj(s, θj)− fl(s)‖r < ε

Therefore |θp − θp,j| < δ = δ(j, ε) for all p ∈ Mj implies:
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‖Fl,Mj(s, θ)− fl(s)‖r < 2ε

If θ(τ) := τ
2π

(

log(p)
)

p∈P, τ ∈ R, then by the definition of Fl,M(s, θ)
we have the equality Fl,M(s, θ(τ)) = Fl,M(s + iτ, 0). The symbol 0 in
Fl,M(s + iτ, 0) denotes the zero in the space RP.

Hence if we have for all p ∈ Mj

|τ log p
2π

− θj,p mod Z| < δ, (1)

then

‖Fl,Mj(s + iτ, 0)− fl(s)‖r < 2ε. (2)

Let Aδ be the set of all τ satisfying (1) and T0 > 1.

Set B :=
1
T

∫

Aδ∩[T0,T ]

∫

Dk,r

n
∑

l=1

|Fl(s + iτ)− Fl,Mj(s + iτ, 0)|2dσdtdτ

Set Q := P ∩ (0, z], with z > p for all p ∈ Mj. Then

B ≤ 2(S1 + S2)

with

S1 :=
1
T

∫

Aδ∩[T0,T ]

∫

Dk,r

n
∑

l=1

|Fl,Q(s + iτ, 0)− Fl,Mj(s + iτ, 0)|2dσdtdτ

and

S2 :=
1
T

∫

Aδ∩[T0,T ]

∫

Dk,r

n
∑

l=1

|Fl(s + iτ)− Fl,Q(s + iτ, 0)|2dσdtdτ.

To estimate S1 notice, that
|Fl,Q(s + iτ, 0)− Fl,Mj(s + iτ, 0)| = |Fl,Q(s, θ(τ))− Fl,Mj(s, θ(τ))|

Since the numbers log(p), p ∈ P are linearly independent over Q, the
curve γ(τ) := τ

2π (log(p))2≤p≤z is uniformly distributed mod Z.
(Theorem 2.14).
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For fixed z and Mj the family of functions {gs}s∈Dk,r

gs(θ) := |Fl,Q(s, θ)− Fl,Mj(s, θ)|2

is uniformly bounded and equicontinuous in (θp)p≤z, and it depends
only on (θp)p≤z mod Z.

Therefore because of Theorem 2.16

lim
T→∞

1
T

∫

Aδ∩(T0,T )

|Fl,Q(s, θ(τ))− Fl,Mj(s, θ(τ))|2dτ

=
∫

D
|Fl,Q(s, θ)− Fl,Mj(s, θ)|2dθ,

uniformly in s ∈ Dk,r. We have

D = {(θp)p≤z | ∀p ∈ Mj : |θp−θj,p mod Z| < δ and ∀p ≤ z : 0 ≤ θp ≤ 1}.

Because of Fl,Q(s, θ) = Fl,Mj(s, θ)Fl,Q\Mj(s, θ) and equation (2) we have

∫

D
|Fl,Q(s, θ(τ))− Fl,Mj(s, θ(τ))|2dθ

≤ (max
l
‖fl‖r + 2ε)2

∫

D

|Fl,Q\Mj(s, θ)− 1|2dθ

The functions Fl,Q\Mj(s, θ) − 1 do not depend on the variables θp for
p ∈ Mj. So

(

dθ :=
∏

p∈P
p≤z

dθp, dθ′ :=
∏

p∈Q\Mj

dθp and dθ′′ :=
∏

p∈Mj

dθp
)

∫

D

|Fl,Q\Mj(s, θ)− 1|2dθ

≤
∫

D∩(θp)p∈Mj

(

∫

∀p∈Q\Mj
:0≤θp≤1

|Fl,Q\Mj(s, θ)− 1|2dθ′
)

dθ′′

≤ vol(D)
∫

∀p∈Q\Mj
:0≤θp≤1

|Fl,Q\Mj(s, θ)− 1|2dθ′.
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Since Fl,Q\Mj(s, θ) =
∏

p∈Q\Mj

fl,p
(

p−s exp(−2πiθp)
)

we get

Fl,Q\Mj(s, θ)− 1 =
∑

m>1

bm(θ)m−s

where bm(θ) =
∏

p∈Q\Mj

a(vp(m))
p,l e−2πivp(m)θp and so

|Fl,Q\Mj(s, θ)−1|2 =
∑

m>1

|bm(θ)|2m−2Re(s)+
∑

m1 6=m2

bm1(θ)bm2(θ)m
−s
1 m−s

2 .

Both series are absolutely convergent. Therefore the integration may
be done term by term. Since the values of the bm(θ) depend on θ, the
integral over the second series is zero. The first series is independent
of θ. Therefore

∫

∀p∈Q\Mj
:0≤θp≤1

|Fl,Q\Mj(s, θ)− 1|2dθ′ =
∑

m>1

|bm|2m−2Re(s)

with |bm|2 =
∏

p∈Q\Mj

|a(vp(m))
p,l |2. For an arbitrary small ε1 > 0 one has

|b(m)|2 ≤ c(ε1)mε1 because of the conditions on ad,l in the Lemma.

Set η := 2r + 1
2k − 1. Then η < 0 since r < 1

4k and k ≥ 1. Choose
numbers ε1 > 0 and δ1 > 0 such that ε2 := ε1 + δ1 + η < 0. If Mj

contains all primes smaller than yj, then
∑

m>1

|b(m)|2m−2Re(s)

≤ c(ε1)
∑

m>yj

mε1−2+ 1
2k +2r

= c(ε1)
∑

m>yj

mε1−1+δ1+ 1
2k +2rm−1−δ1

≤ c(ε1)
∑

m>yj

mε2m−(1+δ1)

≤ c(ε1)ζ(1 + δ1)yε2
j .

We have
∑

m>1

|b(m)|2m−2Re(s) ≤ c(ε1)ζ(1 + δ1)yε2
j .
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Then (δ1 and ε2 are fixed):

S1 ≤ n(max
l
‖fl‖r + 2ε)2vol(D)c(ε1)ζ(1 + δ1)yε2

j .

We choose a fixed j large enough (the choice of ε2 and δ1 depends only
on r and k) such that

4n(max
l
‖fl‖r + 2)2c(ε1)ζ(1 + δ1)

1
ε2 < y−ε2

j

This is possible since
⋃∞

j=1 Mj = P and Mj ⊂ Mj+1 and because we may
choose δ sufficiently small such that ε = ε(δ, j) ≤ 1 in max

l
‖fl‖r + 2ε.

Then
S1 < 1/4 vol(D)ε2.

From now on j is fixed, thus also vol(D). Now we estimate S2:

S2 =
1
T

∫

Aδ∩[T0,T ]

∫

Dk,r

n
∑

l=1

|Fl(s + iτ)− Fl,Q(s + iτ, 0)|2dσdtdτ

=
∫

Dk,r

n
∑

l=1

1
T

∫

Aδ∩[T0,T ]

|Fl(s + iτ)− Fl,Q(s + iτ, 0)|2dτdσdt.

To cancel the pole at s = 1 we multiply by φ(s) = 1 − 21−s. This
function has a simple zero at s = 1. We get for 1 − 1

2k < Re(s) ≤
1− 1

4k + r < 1:

0 < a(r) < |φ(s)| < c(r) for some numbers a(r), c(r) ∈ R.

This implies for s ∈ Dr,k:

1
T

T
∫

−T

|φ(s + iτ)Fl(s + iτ)− φ(s + iτ)Fl,Q(s + iτ, 0)|2dτ

≤ c(r)
1
T

T
∫

−T

|Fl(s + iτ)− Fl,Q(s + iτ, 0)|2dτ.

Since 1
T

T
∫

−T
|Fj(σ + it)|2dt is bounded for σ ∈ (α, 1) with

fixed α > 1− 1
2k and T ∈ R+, the same applies to the function

φ(s + iτ)Fl(s + iτ)− φ(s + iτ)Fl,Q(s + iτ, 0).
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So we can apply Theorem 2.11 to get:

lim
T−→∞

1
2T

T
∫

−T

|φ(s+iτ)Fl(s+iτ)−φ(s+iτ)Fl,Q(s+iτ, 0)|2dτ =
∞

∑

m=1

|cm|2m−2Re(s),

where
∞
∑

m=1
cmm−s (Re(s) > 1) is the Dirichlet series of

φ(s)(Fl(s)− Fl,Q(s, 0)).

Therefore we have for z and T > T (z) sufficiently large (remember
Q = P ∩ (0, z] and z > yj )

1
2T

T
∫

−T

|Fl(s + iτ)− Fl,Q(s + iτ, 0)|2dτ ≤ 1
8n

vol(D)ε2,

since in this case cm = 0 for all m with prime divisors less than z. Then

S2 =
1
T

∫

Aδ∩[T0,T ]

∫

Dk,r

n
∑

l=1

|Fl(s + iτ)− Fl,Q(s + iτ, 0)|2dσdtdτ

≤ 2
∫

Dk,r

1
8
vol(D)ε2dσdt

≤ 1
4
vol(D)ε2.

This gives (B ≤ 2(S1 + S2)) for large T and z

B =
1
T

∫

Aδ∩[T0,T ]

∫

Dk,r

n
∑

l=1

|Fl(s+ iτ)−Fl,Mj(s+ iτ, 0)|2dσdtdτ ≤ vol(D)ε2.

Remember that

D = {(θp)p≤z | ∀p ∈ Mj : |θp−θj,p mod Z| < δ and ∀p ≤ z : 0 ≤ θp ≤ 1}
and

Aδ = {τ | |τ log p
2π

− θj,p mod Z| < δ},

where δ depends only on ε and j. We get because of Theorem 2.14

lim
T→∞

vol(Aδ ∩ [T0, T ])
T

= vol(D) = (2δ)#Mj > 0. (3)
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Then for every T sufficiently large there is a set Y ⊂ Aδ ∩ [T0, T ] with
vol(Y ) > 1

4vol(D)T and for all τ ∈ Y :

∫

Dk,r

n
∑

l=1

|Fl(s + iτ)− Fl,Mj(s + iτ, 0)|2dσdt ≤ 2ε2.

To see this define Y := {τ | |g(τ)| ≤ 2ε2} ∩ Aδ ∩ [T0, T ] with

g(τ) :=
∫

Dk,r

n
∑

l=1
|Fl(s+iτ)−Fl,Mj(s+iτ, 0)|2dσdt. Denote its complement

in Aδ ∩ [T0, T ] by Y c. Then

2ε2vol(Y c)
T

≤ 1
T

∫

Y c
|g(τ)|dτ ≤ 1

T

∫

Aδ∩[T0,T ]
|g(τ)|dτ ≤ vol(D)ε2.

Therefore

2
vol(Aδ ∩ [T0, T ])− vol(Y )

T
≤ vol(D)

and with equation (3) we conclude vol(Y ) > 1
4vol(D)T for large T .

Because of the definition of Aδ we have ‖Fl,Mj(s+ iτ, 0)− fl(s)‖r < 2ε.
This gives

(
∫

Dk,r

|Fl(s + iτ)− fl(s)|2dσdt)1/2 ≤ 4ε.

As both functions Fl and fl are holomorphic in the interior of Dk,r for
s = σ + it, continuous on the border of Dk,r and ε is arbitrary, the
Lemma follows from Theorem 2.9.

2

Recall the definition of LM(s, χ, θ) and Lp(s, χ, θ) at the beginning of
this chapter.

Lemma 3.2. Let χ1, . . . , χn be linearly independent non-Abelian char-
acters of G := G(K/Q), where K is a finite normal algebraic extension
of Q. Let k := #G and 0 < r < 1

4k .
Suppose that f1(s), . . . , fn(s) are analytic for |s| < r and continuous
for |s| ≤ r and not zero on the disc |s| ≤ r. Then for every pair ε > 0
and y ∈ R+ there exists a finite set of primes M containing all primes
smaller than y and θ ∈ RP such that:

n
max
j=1

max
|s|≤r

|LM(s + 1− 1
4k

, χj, θ)− fj(s)| < ε.
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Proof:

Choose γ > 1 such that γ2r < 1
4k and

∀j : max
|s|≤r

|fj(s)− fj(s/γ2)| < ε/2.

Because fj(s) 6= 0 we can write

fj(
s
γ2 ) = exp(gj(s)) for some gj(s) analytic in |s| < γ2r.

Hence it is sufficient to prove the Lemma for the logarithms of the
functions.
Remember that the Euler-factors (all but finitely many) of Artin L-
series L(s, χj) are defined by 1/ det(Ekj − ρj(σp)p−s), where σp is one
of the conjugate Frobenius-Automorphisms over p ∈ P and
ρj : G → GLkj(C) is a representation of G with χj(σ) = trace(ρj(σ))
for σ ∈ G.
For the Euler-factors of LM(s′, χj, θ) we get:

log Lp(s′, χj, θ) =
trace(ρj(σp)) exp(−2πiθp)

ps′ +
∑

m≥2

am,pp−ms′ .

The first term is equal to χj(σp) exp(−2πiθp)
ps′ . Therefore

log LM(s′, χj, θ) =
∑

p∈M

χj(σp)e(−2πiθp)

ps′ +
∑

p∈M

∑

m≥2

am,pp−ms′ .

The second term is a uniformly and absolutely convergent series for all
primes in Q, since its coefficients are dominated by the coefficients of
χj(1) log ζ(s) as remarked on page 9.

We define a real Hilbert space H(R)
n of vectors of functions holomorphic

on the disc |s| < R. The scalar product is (always R′ < R)

〈(hj)n
j=1, (fj)n

j=1〉 := lim
R′→R

Re
∫

|s|≤R′

n
∑

j=1

fj(s)hj(s)dσdt.

The functions hj and fj, j = 1, . . . n are holomorphic in |s| < R and
satisfy (setting g := hj or g := fj),

lim
R′→R

∫

|s|≤R′

|g(s)|2dσdt < ∞.

This Hilbert space is n times the product of the Hilbert space H2 (Def.
5, p.13).
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Set R := γr (γ > 1) and ηp(s) :=
(χj(σp) exp(−2πiθp)

ps′

)n
j=1, where

s′ = s + 1− 1
4k with |s| ≤ R.

Denote the different conjugacy classes of the group G by C1, . . . , CN .
Obviously n ≤ N , since N is the dimension of the vector space of class
functions on G.

Denote the different prime classes by Pj := {p | σp ∈ Cj}.
To define θ: In the natural order of each set Pj ⊂ Z denote the primes
p ∈ Pj by pj,l such that pj,1 < pj,2 < pj,3 . . . < pj,l < pj,l+1 < . . . .
Set θpj,l := l

4 . Thereby θp is defined for all but finitely many primes
p ∈ P. For the primes ramified in K set θp := 0.

We will use Theorem 2.6 on conditionally convergent series in real
Hilbert spaces.

We only need to show that the series ηp, p ∈ P fulfills the conditions of
this Theorem:

∑

p∈P
‖ηp‖2 ≤ C

∑

p∈P
p

1
2k−2+2R < ∞ with C = n

n
max
j=1

{χj(1)2}.

(obviously 1
2k − 2 + 2R < −1)

For e (as in Theorem 2.6) we can choose any ϕ(s) ∈ HR
n with ‖ϕ‖ :=

〈ϕ, ϕ〉1/2 = 1.
Now we have to show that

∑

p∈P
〈ηp, ϕ〉

is conditionally convergent, or equivalently:
lim
p→∞

〈ηp, ϕ〉 = 0 and there exist two sets of primes P+ and P− such that

∀p∈P+ : 〈ηp, ϕ〉 > 0,
∑

p∈P+

〈ηp, ϕ〉 = ∞, and

∀p∈P− : 〈ηp, ϕ〉 < 0,
∑

p∈P−
〈ηp, ϕ〉 = −∞.
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We compute:

〈ηp, ϕ〉 = lim
R′→R

Re
∫

|s|≤R′

n
∑

j=1

ηp,j(s)ϕj(s)dσdt

= lim
R′→R

Re
∫

|s|≤R′

n
∑

j=1

χj(σp)e−2πiθpp−s′ϕj(s)dσdt

= lim
R′→R

Re
(

e−2πiθp

∫

|s|≤R′

p−(s+1− 1
4k )(

n
∑

j=1

χj(σp)ϕj(s)
)

dσdt
)

.

It follows that

lim
p→∞

|〈ηp, ϕ〉| = 0.

Since the characters χj are linearly independent and ϕ 6= 0, there is a

conjugacy class Cl in G such that ϕ0(s) :=
n
∑

j=1
χj(σp)ϕj(s) 6≡ 0 for all

σp ∈ Cl.

As the functions ϕj are holomorphic in the disc |s| < R, we have

ϕ0(s) =
∞

∑

m=0

αmsm.

For p ∈ Cl we get

〈ηp, ϕ〉 = lim
R′→R

Re
(

e−2πiθp

∫

|s|≤R′

exp
(

− log(p)(s + 1− 1
4k

)
)

ϕ0(s)dσdt

= Re
(

e−2πiθp∆(log p)
)

.

Here ∆(x) := lim
R′→R

∫

|s|≤R′
exp

(

− x(s + 1− 1
4k )

)

ϕ0(s)dσdt.

Therefore
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∆(x) = exp
(

− x(1− 1
4k

)
)

lim
R′→R

∫

|s|≤R′

exp(−xs)ϕ0(s)dσdt

= πR2 exp
(

− x(1− 1
4k

)
)

∞
∑

m=0

(−1)mαm(xR2)m

(m + 1)!
.

We have

‖ϕ0‖2 = lim
R′→R

∫

|s|≤R′

|ϕ0|2dσdt = πR2
∞

∑

m=0

|αm|2R2m

m + 1
.

Using the continuous linear mapping L((fj)n
j=1) :=

n
∑

j=1
χj(Cl)fj we get

‖ϕ0‖2 = ‖L(ϕ)‖2 ≤ ‖L‖2‖ϕ‖2 = ‖L‖2 < ∞.
This gives:

πR2
∞

∑

m=0

|αm|2R2m

m + 1
= ‖ϕ0‖2 ≤ ‖L‖2.

Setting βm := (−1)mRmαm/(m + 1) we get
∞
∑

m=0
|βm|2 ≤ ‖L‖2/(πR2),

which gives us an upper bound for all |βm|.
Set

F (u) :=
∞

∑

m=0

βm

m!
um.

F (u) is an entire function and F 6≡ 0 since ϕ0 6= 0. For any δ > 0 there
is a sequence of positive real numbers with un −→∞ such that

|F (un)| > exp
(

− (1 + 2δ)un
)

.

This is a consequence of Corollary 2.2. We have
∆(x) = πR2 exp

(

− x(1− 1
4k )

)

F (xR). Set xn := un/R. Then

|∆(xn)| > exp
(

− (1− δ0)xn
)

for δ0 > 0 sufficiently small and xn sufficiently large.
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As a consequence we find subintervals In of [xn − 1, xn + 1] of length
greater than 1

2x8
n

in which one of the inequalities

|Re∆(x)| >
e−(1−δ0)x

200
or (4)

|Im∆(x)| >
e−(1−δ0)x

200
(5)

holds.

To prove this we approximate ∆ by polynomials. Set N := [xn] + 1.
Let B be an upper bound for the |βm|. This gives |F (xR)| ≤ BexR.
For x ∈ [xn − 1, xn + 1] we have (remember R < γ2r < 1/4k)

|
∞

∑

m=N2

βm

m!
(xR)m| ≤ B

∞
∑

m=N2

1
m!

(xR)m ≤ B
(xR)N2

N2!

∞
∑

m=0

1
m!

(xR)m

≤ B
NN2

N2!
eN ≤ B

( N
N2/e

)N2

eN ≤ B
eN2+N

NN2 ≤ e−2xn

if xn is sufficiently large.
For x ∈ [xn − 1, xn + 1] we also have

(

(1− 1
4k ) < 1

)

.

∞
∑

N2=m

(

− (1− 1
4k )x

)m

m!
≤ e−2xn

Hence F (xR) = P1(x) + O(e−2xn) and exp (−(1− 1
4k )x) = P2(x) +

O(e−2xn), where P1 and P2 are polynomials of degree N2−1. This gives
∆(x) = Pn(x) + O(e−xn) for all N = [xn] + 1 and x ∈ [xn − 1, xn + 1],
where Pn(x) is a polynomial of degree less than N4.

Thus we also have Re∆(x) = Re(Pn(x)) + O(e−xn) and Im∆(x) =
Im(Pn(x))+O(e−xn). However if x ∈ R, then Re(Pn(x)) and Im(Pn(x))
are polynomials with real coefficients.
We may suppose that either |Re∆(xn)| > 1

2 exp
(

− (1 − δ0)xn
)

or
|Im∆(xn)| > 1

2 exp
(

− (1− δ0)xn
)

, since |∆(xn)| > exp
(

− (1− δ0)xn
)

.

Suppose that |Re∆(xn)| > 1
2 exp

(

−(1−δ0)xn
)

. Denote the polynomial
Re(Pn(x)) again by Pn(x). Since |Re∆(xn)| > 1

2 exp
(

− (1− δ0)xn
)

we
have 1

4e
−(1−δ0)xn ≤ |Pn(xn)| for large n. Set a := max|x−xn|≤1 |Pn(x)|.

Then there exists a ξ ∈ [xn − 1, xn + 1] such that a = |Pn(ξ)|. There
exists a κ ∈ (ξ, x) or κ ∈ (x, ξ) such that
|Pn(ξ)− Pn(x)| = |P ′

n(κ)(x− ξ)|. Set τ := N8|ξ − x|. Then because of
Theorem 2.8 we have |Pn(ξ)− Pn(x)| ≤ τa. If τ ≤ 1/2 then
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|1 − Pn(x)
Pn(ξ) | ≤ 1/2, therefore |Pn(x)| ≥ a

2 ≥
|Pn(xn)|

2 ≥ 1
8e
−(1−δ0)xn for all

x with |x− ξ| ≤ 1
2N8 . It follows that

|Re∆(x)| ≥ 1
16

e−(1−δ0)xn ≥ 1
16e2 e−(1−δ0)x ≥ 1

200
e−(1−δ0)x

for large n and |x− ξ| ≤ 1
2N8 .

The same argumentation applies to Im∆(x) if
|Im∆(xn)| > 1

2 exp
(

− (1− δ0)xn
)

.

In the natural order of the set Pl we have for pr ∈ Pl, and p1 < p2 <
. . . < pr < . . . that θpr = r/4 by the definition of θ. Thus we get
e−2πiθpr = (−i)r. Therefore

〈ηpr , ϕ〉 = Re
(

(−i)r∆(log(pr))
)

.

One of the inequalities (4), (5) is satisfied infinitely often. Consider the
interval In := [α, α + β] such that on In one of the inequalities
|Im(∆(x))| ≥ 1

200e
−(1−δ0)x or |Re(∆(x))| ≥ 1

200e
−(1−δ0)x holds and

β ≥ 1
2x8

n
.

According to Theorem 2.5 the number of primes p ∈ Pl for which
log p ∈ In is (hl := #Cl):

π(eα+β, Cl)− π(eα, Cl) =
hl

k

eα+β
∫

eα

dt
log t

+ O(eα+βe−aα1/2
)

≥ hl

k
eα

(

eβ − 1
α + β

+ O(
eβ

eaα1/2 )
)

.

Since 2 ≥ β ≥ 1
2x8

n
, we get eβ − 1 ≥ 1

2x8
n

and eβ−1
α+β ≥ eβ−1

xn+2 ≥
1

2x9
n+4x8

n
.

Next eβ

eaα1/2 ≤ e2

ea
√

xn−1 and eα ≥ exn/e. Thus for xn sufficiently large we
get

π(eα+β, Cl)− π(eα, Cl) ≥
hl

k
exn

x10
n

.

The number of primes p with log p ∈ In and exp(−2πiθp) = 1,
exp(−2πiθp) = −1, exp(−2πiθp) = i, or exp(−2πiθp) = −i is there-
fore greater than hl

k
exn

4x10
n

.

Therefore
∑

p∈Pl,log p∈In

Re(e−2πiθp∆(log p))>0

〈ηp, ϕ〉 > c1eδ0xn/2
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for some positive constant c1. The same holds for a subset of primes
with Re(e−2πiθp∆(log p)) < 0. The sum is less than −c1eδ0xn/2.
As xn →∞ the corresponding series diverge to +∞ and −∞.

The rest of the proof is a consequence of Corollary 2.3:
R/γ = r < R. According to Theorem 2.6 we can order P such that we
get a sequence of finite subsets Mn ⊂ P with Mn ⊂ Mn+1,

⋃

n∈N
Mn = P

and uniformly in |s| ≤ r lim
n→∞

log LMn(z, χj, θ) = gj(s) for z = s+1− 1
4k .

Therefore

|fj(s)−LM(s+1− 1
4k

, χj, θ)| ≤ |fj(s)−fj(s/γ2))|+|egj(s)−LM(z, χj, θ)| < ε

for some n ∈ N sufficiently large, |s| ≤ r and M := Mn. Because of
⋃

n∈N
Mn = P we may choose n ∈ N such that all primes less than a given

y ∈ R+ are contained in P. 2

Remark 3.1. In the preceeding Lemma we may replace the set P by
P \ {p1, . . . , pd}, where p1, . . . , pd are primes. The set M may be re-
placed by a finite set of primes M ⊂ P \ {p1, . . . , pd} containing all
primes smaller than y. Also we may replace for a finite number of
primes the factors Lp(s, χ) by different Euler-factors satisfying the con-
ditions of Lemma 3.1 and its Corollary 3.1.

The proof of the Remark is obvious because of the proof of the Lemma,
since it was proved that the series ηp is conditionally convergent and
this persists if we only change a finite number of the ηp.
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CHAPTER 4

A Mean Value Theorem

Theorem 4.1. Assume that a Dirichlet series
∞
∑

n=1
ann−s satisfies

an = Oε(nε) for every ε > 0. Suppose that this series converges for
Re(s) > 1 absolutely and can be analytically continued to the complex
plane and has no pole except a simple pole at s = 1. Denote this
function by f(s). Suppose further that |f(s)|2 = O(|t|M) for some
M := M(a0, b0) ∈ R and s = σ + it where |t| ≥ 1 and σ ∈ [a0, b0] with
a0, b0 ∈ R and a0 < 0, b0 > 1. Then

1
T

T
∫

−T

|f(s + it)|2dt

is bounded for every s with Re(s) > max{1− 1
M+1 , 1/2}. We can choose

M = inf{m : |f(s)|2 = O(|t|m)}.

Proof: Obviously there is a ξ > 0 such that

1
T

T
∫

−T

|f(s + it)|2dt = O(T ξ)

(take for example ξ := M).

Set µ := inf{M : |f(s)|2 = O(|t|M)}.

Using Lemma 2.1, we get for Re(s) > 1, (δ > 0, c > 1, c > σ)

∞
∑

n=1

an

ns e−δn =
1

2πi

c+i∞
∫

c−i∞

Γ(w − s)f(w)δs−wdw.

Because of the condition an = Oε(nε) the series on the left side of the
equation is absolutely convergent for all Re(s) > 0 and therefore it is

33



a holomorphic function in this plane. Using Stirling’s formula on the
Γ-function we get |Γ(s)| ≤ C[a,b]|t|σ−1/2 exp(−π

2 |t|), where s = σ + it
and σ ∈ [a, b] for every interval [a, b].
Therefore and because of |f(s)|2 = O(|t|M) the function
1

2πi

c+i∞
∫

c−i∞
Γ(w − s)f(w)δs−wdw is an analytic function for all c > 0 and

b0 > Re(s) > 0. If σ > α > σ − 1, we have

1
2πi

c+i∞
∫

c−i∞

Γ(w − s)f(w)δs−wdw =

1
2πi

α+i∞
∫

α−i∞

Γ(w − s)f(w)δs−wdw + f(s) + Resw=1Γ(w − s)f(w)δs−w

because of the Residue Theorem. Set B := Ress=1f(s). Then we find
for f the expression

f(s) =
∞

∑

n=1

an

ns e−δn − 1
2πi

α+i∞
∫

α−i∞

Γ(w − s)f(w)δs−wdw −BΓ(1− s)δs−1,

where Re(s) ≥ 1/2, σ > α > σ − 1.

Set Z1 :=
∞
∑

n=1

an
ns e−δn and Z2 := 1

2πi

α+i∞
∫

α−i∞
Γ(w − s)f(w)δs−wdw.

We have Z3 := BΓ(1− s)δs−1 = O(|t|1−σ−1/2e−
π
2 |t|δσ−1). This implies

BΓ(1− s)δs−1 = O(δσ−1e−
π
2 |t|), if |t| ≥ 1 and 1/2 ≤ σ ≤ 1.

For x, y ∈ C we have |x + y|2 ≤ 2(|x|2 + |y|2), therefore
|Z1 + Z2 + Z3|2 ≤ 4(|Z1|2 + |Z2|2 + |Z3|2).
If σ ≥ a > 1/2, then using Lemma 2.2, we get

T
∫

T/2

|Z1|2dt = O(T
∞

∑

m=1

|am|2

m2a e−2δm) + O
(

∑

m6=n

|am||an|e−(m+n)δ

mσnσ| log(m/n)|

)

= Oa(T ) + O(δ2σ−2−ε)

for some small ε > 0
(

since an = O(nε)
)

.

Set w := α + iv. We obtain
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|Z2| ≤ δσ−α

2π

∞
∫

−∞

|Γ(w − s)f(s)|dv

≤ δσ−α

2π

(

∞
∫

−∞

|Γ(w − s)|dv

∞
∫

−∞

|Γ(w − s)f 2(w)|dv
)1/2

.

Since the first integral is just an integral over the Γ-function, it is
bounded. Assume T ≥ |t| (recall that s = σ+it). Set IT := (−∞, 2T ]∪
[2T,∞):

∫

IT

|Γ(w − s)f2(w)|dv = O
(

∫

IT

e−
π
2 |v−t||v − t|−1/2|v|Mdv

)

= O
(

e−
π
3 T )

.

Hence

T
∫

T/2

|Z2|2dt = O
(

δ2σ−2α T
2

O(e−
π
3 T ) + δ2σ−2α

2T
∫

−2T

|f(w)|2(
T

∫

T/2

|Γ(w − s)|dt)dv
)

= O(δ2σ−2α) + O
(

δ2σ−2α

2T
∫

−2T

|f(w)|2dv
)

= O
(

δ2σ−2αT 1+M)

.

For Z3 we get
T

∫

T/2

|Z3|2dt = O
(

δ2(σ−1)

T
∫

T/2

exp(−2π
2
|t|)dt

)

= O(δ2(σ−1)).

This gives (M = µ + ε):

T
∫

T/2

|f(s)|2dt = Oa(T ) + O(δ2σ−2−ε) + O(δ2σ−2αT 1+µ+ε) + O(δ2(σ−1)).

Set δ := T− γ
2 with γ := ε+µ

1−α . Then γ > 0 and δ > 0 is well defined.
For σ > max{1− 1−α

µ+1+ε , a, 1/2} we get
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δ2(σ−2)−ε = O(T ), δ2(σ−2) = O(T ) and δ2σ−2αT 1+µ+ε = O(T ).
Taking the limits α → 0 and ε → 0, we get

T
∫

T/2

|f(s)|2dt = Oa(T )

for σ > max{1− 1
µ+1 , a}.

Adding up
T
∫

T/2
|f(s)|2dt +

T/2
∫

T/4
|f(s)|2dt +

T/4
∫

T/8
|f(s)|2dt + . . . gives

T
∫

1
|f(s)|2dt = Oa(T ) and analogously

1
∫

−T
|f(s)|2dt = Oa(T ) for the fixed

a > 1/2.

Since a > 1/2 can be chosen arbitrary, we have
Re(s) > max{1− 1

µ+1 , 1/2} as a sufficient condition for

1
T

T
∫

−T
|f(s + it)|2dt to be bounded. 2

Remark 4.1. For Hecke L-series over a field k with Q ⊂ k ⊂ K, where
K is a finite normal extension of Q, the conditions of Theorem 4.1 are
satisfied with M = [K : Q].

Proof: Denote the Dirichlet-coefficients of the Hecke-L-series L(s, χ) by
an(χ) and the Dirichlet coefficients of the Dedekind Zeta-function ζk(s)
by an. Then we have |an(χ)| ≤ an, where an is the number of ideals of
norm n in the ring of integers of k. Therefore we have |an| = Oε(nε)
[22, p.152].

Every Hecke L-series satisfies a functional equation.
Λ(s, χ) := CsΓ( s+1

2 )aΓ( s
2)

r1−aΓ(s)r2L(s, χ),
where r1 is the number of real embeddings of k, r2 the number of com-
plex embeddings of k, a is the number of infinite places of the conductor
of χ and C ∈ R>0 is a constant. Then r1 +2r2 = [k : Q] ≤ [K : Q]. We
have Λ(s, χ) = WΛ(1 − s, χ), where W is a root of unity. L(s, χ) is a
holomorphic function for all s ∈ C if L(s, χ) 6= ζk(s). If L(s, χ) = ζk(s)
there is a simple pole at s = 1.

According to a Theorem of Lavrik [19, (p.133: Lemma 2.1)] we have:
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Λ(s, χ) = c
s(1−s) +

∞
∑

n=1
(anf(C

n , s) + Wānf(C
n , 1 − s)), where c is a con-

stant for ζk and zero in all other cases.

We have f(x, s) = 1
2πi

δ+i∞
∫

δ−i∞
xzΓ( z+1

2 )aΓ( z
2)

r1−aΓ(z)r2 dz
z−s , where δ ∈ R

and δ > max{Re(s), 0}. If we take δ > max{Re(s) + 1, 0}, then

|f(x, s)| ≤ xδ

2π

∞
∫

−∞
|Γ( δ+it+1

2 )|a|Γ( δ+it
2 )|r1−a|Γ(δ + it)|r2dt = Cδxδ.

This means for Re(s) ∈ [−1, 2] that for some constant C ′
δ and δ > 3

we have |Λ(s, χ)| ≤ C ′
δ2

∑

n∈N
|an(χ)| 1

nδ .

Therefore |Λ(s, χ)| ≤ 2C4C ′
4ζk(4). The same holds for ζk if we sup-

pose that |Im(s)| is large enough, such that we can ignore c
s(1−s) . Be-

cause of the well known properties of the Γ-function we therefore get
L(s, χ) = O(exp(A|t|) and ζk(s) = O(exp(A|t|) for every fixed strip
Re(s) ∈ [a, b], Im(s) = t and some A ∈ R>0. To apply the Phragmen-
Lindelöf-principle 2.12, we must show that L(s, χ) = O(|t|M) on the
borders Re(s) = −ε and Re(s) = 1 + ε for large t = Im(s) and every
fixed small ε > 0. This would imply that L(s, χ) = O(|t|M) for all
Re(s) ∈ [−ε, 1 + ε] and |Im(s)| = |t| > 1.

The series L(s, χ) and ζk(s) converge absolutely for all s with Re(s) =
1 + ε and we have |L(s, χ)| ≤ ζk(1 + ε) and |ζk(s)| ≤ ζk(1 + ε). This is
an absolute constant independent of Im(s) = t. Using the functional
equation we find that |L(s, χ)| = Oε

(

g(|t|)
)

and |ζk(s)| = Oε
(

g(|t|)
)

for
s with Re(s) = −ε, where

g(|t|) =
|Γ(1−s+1

2 )aΓ(1−s
2 )r1−aΓ(1− s)r2 |

|Γ( s+1
2 )aΓ( s

2)
r1−aΓ(s)r2|

.

Stirling’s formula gives |Γ(s)| = O
(

|t|σ−1/2 exp(−π
2 |t|)

)

, where the con-
stant in the big O depends only on the interval σ ∈ [a, b] with s = σ+it.
Therefore g(|t|) = O

(

|t|r1
1−2σ

2 |t|r2(1−2σ)
)

= O
(

|t|(1−2σ)[k:Q]/2
)

follows.
We have Re(s) = −ε. Thus we get in the strip σ ∈ [−ε, 1 + ε]
L(s, χ) = O(|t|Mε) and ζk(s) = O(|t|Mε) with Mε = (1 + 2ε) [k:Q]

2 . The
infimum is obviously [k : Q]/2. 2
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CHAPTER 5

Main Theorem

We prove the following statement on Artin L-functions over Q:

Theorem 5.1. Let K be a finite Galois-extension of Q and χ1, . . . , χn

linearly independent characters of the group G := G(K/Q). Let k :=
#G and f1(s), . . . , fn(s) be holomorphic functions on |s| < r and con-
tinuous on |s| ≤ r, where r is a fixed number with 0 < r < 1

4k . Further
suppose fj(s) 6= 0 on |s| ≤ r.

Then for every ε > 0 there is a set Aε ⊂ R such that

lim inf
T−→∞

vol(Aε ∩ (0, T ))
T

> 0

and for j = 1, . . . , n

∀t∈Aε∀|s|≤r : |L(s + 1− 1
4k

+ it, χj, K/Q)− fj(s)| < ε,

where L(z, χj, K/Q) denotes the Artin L-function corresponding to the
non-Abelian character χj.

Proof: The Theorem 2.3 of Brauer states that every character is a finite
linear combination χ =

∑

l
nlϕ∗l −

∑

l
mlψ∗l , where ϕ∗l , and ψ∗l are in-

duced from characters ϕl, ψl of degree 1 of subgroups of G. According to

Theorem 2.4 we get that L(z, χ,K/Q) =
m1
∏

l=1
L(z, ϕl)nl

/ n1
∏

l=1
L(z, ψl)ml ,

where the series L(z, ϕl) and L(z, ψl) are Hecke-L-series over number
fields contained in K. These are entire functions with the only excep-
tion of the Dedekind ζ-functions which have a simple pole at z = 1.
Therefore one of the conditions of Lemma 3.1 is satisfied by Remark 4.1:

The mean values 1
T

T
∫

−T
|f(σ + it)|2dt are bounded even for σ > 1− 1

k+1 ,

where k = [K : Q] and f(z) is a Hecke L-function of a number field con-
tained in K. Obviously 1− 1

k+1 ≤ 1− 1
2k . For the Dirichlet-coefficients
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an(χ) of Hecke L-functions we have: |an(χ)| = Oε(nε).
We have to show that the conditions in Corollary 3.1 are fulfilled.

We notice Theorem 2.4 and its Remark. If the characters χ1, . . . , χn

are not yet a basis of the class functions of G, then add some more char-
acters (for example from the set of irreducible characters of G). Choose
additional holomorphic functions fj, for example constants 6= 0, which
then satisfy the conditions of Lemma 3.2.
As we now have a basis of class functions, every character χ∗l , ψ

∗
l can

be expressed as a linear combination of this basis.

Choose γ > 1 such that γ2r < 1
4k and max

|s|≤r
|fj(s) − fj( s

γ2 )| < ε/2 for

j = 1, . . . , n. Apply Lemma 3.2 for the functions fj( s
γ2 ) and |s| ≤ rγ.

Now choose a sequence εm := 1/m, ym := max Mm−1 + 1 (y0 := 1),
θm = (θm,p)p∈P ∈ RP and Mm ⊂ P such that Lemma 3.2 with ε = εm,
y = ym and M = Mm is satisfied. Mm ⊂ Mm+1 is a consequence.
The series expansion of the logarithm gives

LMm(s + 1− 1
4k

, θm, χj) =

∑

p∈Mm

χj(σp)e−2πiθm,p

ps+1− 1
4k

+
∑

p∈Mm,κ≥2

ap(χj, θm, κ)p−κ(s+1− 1
4k ).

Then because of lim
m→∞

LMm(s + 1− 1
4k , θm, χj) = fj( s

γ2 ) uniformly in

|s| ≤ rγ and fj( s
γ2 ) 6= 0, we get for the logarithms of these functions:

lim
m→∞

(

∑

p∈Mm

χj(σp)e−2πiθm,p

ps+1− 1
4k

+
∑

p∈Mm,κ≥2

ap(χj, θm, κ)p−κ(s+1− 1
4k )

)

= log fj(
s
γ2 ),

where the second sum represents an absolutely convergent series for all
p ∈ P:
∑

p∈P,κ≥2

|ap(χj, θm, κ)p−κ(s+1− 1
4k )| =

∑

p∈P,κ≥2

|ap(χj, κ)|p−κ(Re(s)+1− 1
4k ) < ∞,

since |ap(χj, κ)| ≤ χj(1)ap(1, κ) = χj(1)
κ as remarked on page 9. There-

fore

lim
m→∞

∑

p∈Mm

χj(σp)e−2πiθm,p

ps+1− 1
4k

converges uniformly in |s| ≤ rγ to an analytic function for every χj.
For every character χ := χj we have (Theorem 2.4 and Remark)
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LMm(s + 1− 1
4k

, θm, χ) =
∏m1

l=1 LMm(s + 1− 1
4k , θm, ϕ∗l )

∏n1
l=1 LMm(s + 1− 1

4k , θm, ψ∗l )
.

The last statement uses essentially Lp(s, θ, φ1+φ2) = Lp(s, θ, φ1)Lp(s, θ, φ2),
which is a consequence of the definitions.

log
(

LMm(s + 1− 1
4k

, θm, ϕ∗l )
)

=
∑

p∈Mm

ϕ∗l (σp)e−2πiθm,p

ps+1− 1
4k

+
∑

p∈Mm,κ≥2

ap(ϕ∗j , θm, κ)p−κ(s+1− 1
4k ).

Since the series
∑

p∈P,κ≥2
ap(ϕ∗j , θm, κ)p−κ(s+1− 1

4k ) is absolutely convergent,

we only have to show the convergence of

lim
m→∞

∑

p∈Mm

ϕ∗l (σp)e−2πiθm,p

ps+1− 1
4k

.

However since ϕ∗l is a class function on G and χ1, . . . , χk is a basis of
the class functions we get a linear combination ϕ∗l =

∑k
j=1 rj,lχj and

therefore

lim
m→∞

∑

p∈Mm

ϕ∗l (σp)e−2πiθm,p

ps+1− 1
4k

=
k

∑

j=1

rj,l
(

lim
m→∞

∑

p∈Mm

χj(σp)e−2πiθm,p

ps+1− 1
4k

)

.

converges uniformly in |s| ≤ rγ. This proves that

lim
m→∞

log LMm(s+1− 1
4k

, θm, ϕ∗l ) and lim
m→∞

log LMm(s+1− 1
4k

, θm, ψ∗l )

converge uniformly on |s| ≤ rγ to some analytic functions gϕ∗l (
s
γ2 ), gψ∗l (

s
γ2 ).

Thus it is clear that the functions LMm(s + 1− 1
4k , θm, ϕ∗l ) and

LMm(s+1− 1
4k , θm, ψ∗l ) converge to some holomorphic functions fϕ∗l (

s
γ2 )

and fψ∗l (
s
γ2 ) with fϕ∗l 6= 0 and fψ∗l (s) 6= 0 on |s| ≤ rγ.

Therefore the conditions in Corollary 3.1 are fulfilled and we find a set
Aε such that lim inf

T−→∞
vol(Aε∩(0,T ))

T > 0 and for |s| ≤ rγ − ε/2 and t ∈ Aε

|L(s + 1− 1
4k

+ it, χj, K/Q)− fj(
s

rγ2 )| < ε/2.

If ε > 0 is chosen sufficiently small, such that r ≤ rγ − ε/2, then for
t ∈ Aε, |s| ≤ r and j = 1, . . . , n

|L(s + 1− 1
4k

+ it, χj, K/Q)− fj(s)| < ε.

2
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Remark 5.1. As in Remark 3.1 we may again replace P by some set
P \ {p1, . . . , pd} with primes p1, . . . , pd. Thus the statement of the last
Theorem remains true if we replace the Artin L-Series by those series,
where the Euler product is just extended over the set P \ {p1, . . . , pd}.

These Artin L-Series just differ by a a finite product
d
∏

j=1
Lpj(s, χ) from

the original ones.
We may even change a finite number of Euler-factors to get the same
result.

This follows from Remark 3.1.
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CHAPTER 6

Consequences

1. Artin L-Series

We know from Artin [3, p.122], that there is no multiplicative relation
of the form

∏

j
L(s, χj)cj = 1 between the primitive Artin L-series of a

normal extension of Q.

Theorem 6.1. Suppose that for a continuous function f : Ck −→ C
and the primitive Artin L-series L(s, χj) there is a relation of the form

f(L(s, χ1), . . . , L(s, χk)) = 0

for all s ∈ C where these Artin L-series are defined.
Then we have f ≡ 0.

Proof: Suppose that f 6≡ 0. Then there is an open set U ⊂ Ck such
that f(z) 6= 0 for all z ∈ U . Because U is open we may find a point
a ∈ U with aj 6= 0 for j = 1, . . . , k. According to Theorem 5.1 there is a
complex number s ∈ C such that |L(s, χj)−aj| < ε for every ε > 0 and
all j = 1, . . . , k. So we may suppose that the point b ∈ Ck with bj :=
L(s, χj) is contained in U , and therefore f(L(s, χ1), . . . , L(s, χk)) 6= 0,
contradicting the assumption of the Theorem. 2

Theorem 6.2. Let χ1, . . . , χn be linearly independent characters of the
Galois group of a normal extension K/Q. Then the map
γ : R→ Cn(m+1) given by

γ(t) =
(

L(σ+it, χ1), L′(σ+it, χ1), . . . , L(m)(σ+it, χ1), . . . , L(m)(σ+it, χn)
)

is everywhere dense in Cn(m+1), if 1− 1
2[K:Q] < σ < 1. For a given point

a ∈ Cn(m+1) the set of numbers t ∈ R>0 such that ‖γ(t) − a‖ < ε for
some fixed ε > 0 is unbounded.

This is a straight forward generalization of Voronin’s Theorem [14,
p.270] on Dirichlet L-functions.
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Proof: Let (a0(χ1), . . . , am(χ1), a0(χ2), . . . , am(χ2), . . . , am(χn)) be any
point in Cn(m+1). If one of the a0(χj) is zero, then replace it by some
b0(χj) 6= 0 with |b0(χj)− a0(χj)| < ε for some small ε > 0.
Because of Theorem 2.13 we only need to approximate the polynomials
pχj(s) := a0(χj) + a1(χj)

1! s + . . . + ak(χj)
k! sk simultaneously by

L(s + σ + it, χj) for appropriate values t ∈ R. This is possible because
of Theorem 5.1. Take r small enough such that pχj(s) 6= 0 on the disc
|s| ≤ r and such that 1 − 1

2[K:Q] < σ + Re(s) < 1 for all |s| ≤ r. We
know by Theorem 5.1 that the set Aε is unbounded since

lim inf
T−→∞

vol(Aε ∩ (0, T ))
T

> 0.

2

For general Artin L-functions L(s, φ, K/k) with normal extension K/k,
Galois group G(K/k) and k 6= Q we do not get a joint ”universality”
theorem for linearly independent characters like Theorem 5.1. For ex-
ample let k be a quadratic number field with class number divisible
by a prime p > 2 and Hk its Hilbert class field. Then the irreducible
characters of G(Hk/k) are all of degree one and also Abelian. We may
get L(s, χ, Hk/k) = L(s, χ,Hk/k) [3, p.122/123].

Theorem 6.3. Let K/k be an arbitrary normal extension with Galois
group G(K/k) and φ an arbitrary character on G(K/k). Let L with
K ⊂ L be a normal extension of Q and set κ := [L : Q]. r with
0 < r < 1

4κ is fixed. Let f(s) be any function, which is holomorphic on
|s| < r, continuous for |s| ≤ r and f(s) 6= 0 for |s| ≤ r. Then we get
a set Aε ⊂ R such that

lim inf
T−→∞

vol(Aε ∩ (0, T ))
T

> 0

and
∀t∈Aε∀|s|≤r : |L(s + 1− 1

4κ
+ it, φ, K/k)− f(s)| < ε

for the Artin L-function L(s, φ, K/k).

Proof: Since L/Q is a normal extension, the same holds for L/k. There-
fore we may use Theorem 2.4 (2). We get L(s, φ,K/k) = L(s, φ, L/k).
The group G(L/k) is a subgroup of G(L/Q). Because of Theorem 2.4
(3) we get L(s, φ, L/k) = L(s, φ∗, L/Q). Since φ∗ is a character of

G(L/Q), we have φ∗ =
n
∑

j=1
mjφj, where the φj, j = 1, . . . , n, are the

irreducible characters of G(L/Q), mj ∈ Z≥0 and one mj ≥ 1. Let this
be m1, i.e. m1 ≥ 1. We may apply Theorem 5.1 to L(s,mjφj, L/Q) for
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those mj with mj 6= 0. Set f1(s) := f(s) and fj(s) := 1 for 2 ≤ j ≤ n.
According to Theorem 2.4 (4) we get

L(s, φ, K/k) =
n

∏

j=1
mj 6=0

L(s,mjφj, L/Q).

Therefore the last theorem is a consequence of Theorem 5.1 applied to
the Artin L-functions L(s,mjφj, L/Q) with mj 6= 0. 2

2. Zeros of Zeta-Functions

Davenport and Heilbronn [8] showed that the ζ-function of an ideal
class of a complex quadratic number field has infinitely many zeros in
the region Re(s) > 1, provided that this number field has class number
greater than 1. Voronin proved that these ζ-functions have infinitely
many zeros in the strip 1/2 < Re(s) < 1 [14, p.283]. We generalize this
result to arbitrary partial ζ-functions attached to any class group of an
arbitrary number field, provided that this class group has cardinality
greater than 1.

Suppose that G := I(f)/Hf is a class group of an arbitrary number field
k in the sense of class field theory ([13, I; p.4] or [12, p.63]). I(f) is
the group of fractional ideals of Ok prime to f. Hf ⊂ I(f) is a subgroup
with conductor f containing the ray of principal ideals
Sf := {αOk | α ∈ k and α ≡ 1 mod ∗f}.
We remember the definition of the zeta-function of an ideal classA ∈ G
[12, p.100]:

ζ(s,A) :=
∑

a∈A
a⊂Ok

1
N(a)s , where Re(s) > 1.

This function may be continued to the entire complex plane C and has
a simple pole at s = 1. We get for Hecke L-functions with the Abelian
character χ of G [12, p.87]

L(s, χ) =
∑

A∈G

χ(A)ζ(s,A),

where χ(A) := χ(a) for some a ∈ A. We may extend the sum defining
the Hecke L-function to a sum over all ideals prime to the conductor
of χ and, like in the definition of Artin L-series, to all ideals. However
since we wish to use the formula ζ(s,A) = 1

#G

∑

χ∈G∗
χ(a)L(s, χ) with
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a ∈ A, we must presuppose that the integral ideals in the classes A are
prime to f.

Theorem 6.4. Suppose that k is a number field, Ok its ring of inte-
gers. Let Hf be an ideal group with conductor f, and I(f) the group of
fractional ideals of Ok prime to f. If I(f)/Hf contains more than one
ideal class, then the partial ζ-function ζ(s,A) over any of those classes
A ∈ I(f)/Hf has infinitely many zeros in the strip 1/2 < Re(s) < 1.

If T > 0 is sufficiently large, then there is a number c > 0 such that
there are at least cT zeros of ζ(s,A) in the region with 1/2 < Re(s) < 1
and |Im(s)| < T .

Proof: From class field theory we know that there is a unique Abelian
extension L of k with Galois group G(L/k) and a unique isomorphism
I(f)/Hf −→ G(L/k), called the Artin-Isomorphism. Using this iso-
morphism Artin proved that every Abelian Artin L-series is a Hecke
L-series and vice versa [3, p.131, p.171].

So we may proceed by proving our theorem on those Artin L-series
attached to G(L/k). There is a unique normal extension K/Q with
L ⊂ K. Every irreducible character χ of G(L/k) may be regarded as
a character of G(K/k) by applying the restriction map
σ ∈ G(K/k) 7→ σ|L ∈ G(L/k), i.e. σ ∈ G(K/k) 7→ χ(σ|L) ∈ C.
According to Theorem 2.4 (2) we know that L(s, χ,K/k) = L(s, χ, L/k).
Further G(K/k) ⊂ G(K/Q) is a subgroup of G(K/Q). Once again be-
cause of Theorem 2.4 (3) we find L(s, χ, K/k) = L(s, χ∗, K/Q). The
group of all different characters of I(f)/Hf are linearly independent, as
well as the characters of G(L/k). The same does not necessarily apply
to the induced characters χ∗ of the group G(K/Q). However we may
prove that the dimension of the subspace spanned by these induced
characters is larger than 1:

Suppose that χ 6= 1 is an irreducible character of G(L/k), that is an ir-
reducible character of G(K/k) if we apply the restriction map. Because
of Theorem 2.2 we know that

(

χ∗, 1
)

G(K/Q) =
(

χ, 1|G(K/k)
)

G(K/k) =
(

χ, 1
)

G(K/k) = 0. The last equation is obvious since χ 6= 1 are both
irreducible characters of G(K/k) (they both have degree 1). If we de-
note the irreducible characters of G(K/Q) by φ1 := 1, φ2, . . . , φh, then

for every nontrivial character of G(L/k) we have χ∗ =
h
∑

j=2
mjφj with

mj ∈ Z≥0. For the induced character 1∗ of the trivial character
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1 ∈ G∗(L/k) we get
(

1∗, 1
)

G(K/Q) =
(

1, 1|G(K/k)
)

G(K/k) =
(

1, 1
)

G(K/k) =

1. Therefore we have 1∗ = φ1 +
h
∑

j=2
njφj with nj ∈ Z≥0.

So we get

L(s, 1) = L(s, 1∗, K/Q) = L(s, φ1, K/Q)
h

∏

j=2

L(s, φj, K/Q)nj

and for the non-trivial Abelian characters

L(s, χ) =
h

∏

j=2

L(s, φj, K/Q)mj .

Since the irreducible characters φj are linearly independent, we may
apply Theorem 5.1 and Remark 5.1 to L(s, φ1, K/Q) and L(s, φj, K/Q)
with 2 ≤ j ≤ h. Set κ := #G(K/Q). We may therefore find for every
ε1 > 0 a set Aε1 such that for every t ∈ Aε1 and for fixed r < 1

4κ
we get |L(s + it + 1 − 1

4κ , φj, K/Q) − 1| < ε1 for all 2 ≤ j ≤ h and
|L(s + it + 1− 1

4κ , φ1, K/Q)−
(

s−
∑

χ 6=1
χ(a)

)

| < ε1, if |s| ≤ r. We have

s −
∑

χ 6=1
χ(a) 6= 0 for |s| < 1/2 since

∑

χ 6=1
χ(a) = −1, if a is not in the

principal class of I(f)/Hf and
∑

χ 6=1
χ(a) ≥ 1 if a ∈ Hf [12, p.86].

This gives |L(s + it + 1− 1
4κ , 1)−

(

s−
∑

χ 6=1
χ(a)

)

| < ε and for χ 6= 1

|L(s + it + 1− 1
4κ , χ)− 1| < ε for all |s| ≤ r and all t ∈ Aε in some set

Aε.

Take some integral ideal a from the class A. We have ζ(s,A) =
1

#G

∑

χ∈G∗
χ(a)L(s, χ). Therefore |ζ(s + it + 1 − 1

4κ ,A) − s
#G | < ε for

all |s| ≤ r and all t ∈ Aε as a result of the preceeding.

Suppose that ε < r
#G . Then

|ζ(s + it + 1− 1
4κ

,A)− s
#G

| < | s
#G

|

on the circle |s| = r. Inside the disc |s| < r there is exactly one zero
of the function s 7→ s. According to Theorem 2.10 we obtain the same
number of zeros for the function ζ(s+ it+1− 1

4κ ,A) in the disc |s| < r
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and every fixed t ∈ Aε. Noting that c := lim inf
T−→∞

vol(Aε∩(0,T ))
T > 0 we

have completed the proof. 2

Suppose that a number field k has class number greater than 1. Its sig-
nature is r1, r2 and its degree N := [k : Q]. Denote its discriminant by

Dk and its different by Dk. Set Z(s,A) :=
√

Dk
4r2πN

s
Γ( s

2)
r1Γ(s)r2ζ(s,A),

where A is an arbitrary class of the class group of Ok. Denote by
A′ the class with the property AA′ = Dk in the class group. The
function Z(s,A) has the following well known functional equation:
Z(s,A) = Z(1 − s,A′) [16, p.254]. Because of the preceeding theo-
rem this ζ-function has zeros in the strip 1

2 < Re(s) < 1.

3. Dedekind Zeta-Functions and Hecke L-Functions

Theorem 6.5. Let K1, . . . , Kr be finite normal extensions of Q with
Ki ∩Kj = Q for i 6= j .
If for a continuous function f(x1, . . . , xr) the equation

∀s∈C\{0}f(ζK1(s), . . . , ζKr(s)) = 0

holds, then
f ≡ 0.

Proof: We have according to Corollary 2.1

ζK(s) = ζ(s)
∏

χ6=1

L(s, χ)χ(1),

where the product is taken over all non-trivial irreducible characters of
the Galois group of the normal extension K/Q.
These characters χ and the character 1 = idG(K/Q) are a basis of the
class functions on the group G := G(K/Q).

Let K be the smallest field that contains all K1, . . . , Kr. K is a fi-
nite normal extension of Q. The corresponding irreducible charac-
ters of G(Kj/Q) may be regarded as characters of G(K/Q) by us-
ing the restriction maps σ ∈ G(K/Q) 7→ σ|Kj ∈ G(Kj/Q). Since
G(K/Q) ∼=

∏r
j G(Kj/Q) is a direct product, they are linearly indepen-

dent. Let a ∈ Cr be any point for which f(a1, . . . , ar) 6= 0, then there
is an open subset U ⊂ Cr containing a, on which f(x1, . . . , xr) 6= 0
for all x ∈ U . Therefore we may suppose that aj 6= 0. According
to Theorem 5.1 we find for every ε > 0 a value s ∈ C, such that
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r
max
j=1

|ζKj(s)−aj| < ε, that is (ζK1(s), . . . , ζKr(s)) ∈ U for small ε. This

completes the proof. 2

In general we cannot prove that for different Galois extensions Kj of Q
the corresponding Dedekind-ζ-functions are algebraically independent.
For example let K := Q(ξ) be the field, where ξ is a primitive 8th root
of unity. This extension has 3 different subextensions Kj of degree 2
over Q. We find the algebraic relation ζKζ2Q = ζK1ζK2ζK3 .
More generally as ζK(s) = ζ(s)

∏

χ 6=1 L(s, χ)χ(1) for every normal field
it is clear that if GK := G(K/Q) has more normal subgroups than con-
jugacy classes, then there is a non-trivial algebraic relation between
the corresponding ζ-functions.
Further algebraic relations are discussed in the article of Richard Brauer
[6].

Theorem 6.6. Suppose that we have finite normal extensions Kj/Q,
j = 1, . . . , n and the corresponding Dedekind Zeta-functions ζKj do not
satisfy any non-trivial algebraic relation.
Then for every continuous function f(x1, . . . , xn) on Cn the relation
f(ζK1 , . . . , ζKn) ≡ 0 implies f ≡ 0.

Proof: To prove this, let K be the minimal subfield of C containing
all K1, . . . , Kn. This field K is a normal extension of Q. We may
regard all the characters as characters of G := G(K/Q) by using the
restriction map σ ∈ G(K/Q) 7→ σ|Kj ∈ G(Kj/Q). The kernel of this
homomorphism is a normal subgroup Nj �G. Then for the ζ-functions
we have ζKj(s) = ζ(s)

∏

χ 6=1 L(s, χ)χ(1), where the product is taken over
all characters χ with χ(x) = χ(1) for all x ∈ Nj. (Theorem 2.4 (2) and
Corollary 2.1.)

According to Theorem 5.1 we can approximate all values y1 6= 0, yχ 6= 0
simultaneously by ζ(s) and L(s, χ) for χ 6= 1 by taking a suitable
s ∈ C \ {1}.
To prove the theorem it has to be shown that the same holds for the
XKj := y1

∏

χ6=1,Kj
yχ (the index Kj indicates that the product is taken

over the characters χ with χ(x) = χ(1) for all x ∈ Nj): i.e., every set of
non-zero values XKj , j = 1, . . . , n can be simultaneously approximated.

Taking the logarithms log XKj = log y1 +
∑

χ6=1,Kj
log yχ (each sum is

taken over all χ with χ(x) = χ(1) for all x ∈ Nj) we get n linear equa-
tions in the variables log y1, log yχ for χ 6= 1. The variables Xj can be
simultaneously approximated if the right sides of these equations are
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linearly independent.
However if these equations were not linearly independent, then there

would be a relation 0 =
n
∑

j=1
mj

(

log y1 +
∑

χ,Kj
log yχ

)

with inte-

gers mj 6= 0 for some j. This would result in an algebraic relation
∏n

j=1 ζmj
Kj

(s) = 1 between the ζKj(s). 2

Theorem 6.7. Let K be a number field, ζK the corresponding Dedekind-
ζ-function. Let f(x1, . . . , xm) be a continuous function, then the dif-
ferential equation f(ζK , ζ ′K , . . . , ζ(m)

K ) ≡ 0 implies f ≡ 0.

Proof: Denote by HK the Hilbert class field of K. Denote the principal
character on G(HK/K) by 1. Then ζK(s) = L(s, 1, HK/K) because of
Theorem 2.4. Denote by L the normal extension of HK over Q. We
know L(s, 1, HK/K) = L(s, 1, L/K) = L(s, 1∗, L/Q) as a consequence
of Theorem 2.4. We have 1∗ =

∑

φ
nφφ, where the φ’s are the irreducible

characters of G(L/Q), nφ ∈ Z≥0 and at least one nφ ≥ 1. Denote this
character by φ0 and set n0 := nφ0 . We get

ζK(s) =
∏

nφ 6=0

L(s, nφφ, L/Q).

If f 6≡ 0, then there is an open set U such that f(a) 6= 0 for all a ∈ U .
We may suppose that a0 6= 0, since the set is open, and that all points
b with |bj − aj| < ε are also in U . Set P (s) := a0 + a1s + . . . + am

m! s
m.

We may suppose that P (s) 6= 0 on a disc |s| ≤ r for some small r since
a0 6= 0. Set σ := 1− 1

4[L:Q] . According to Theorem 5.1 we may find for
every ε1 > 0 numbers t ∈ R, such that |L(s+σ+it, nφφ, L/Q)−1| < ε1

and |L(s + σ + it, n0φ0, L/Q)− P (s)| < ε1. Therefore for every ε2 > 0
we find values t ∈ R such that |ζK(s + σ + it)− P (s)| < ε2. For ε2 > 0
sufficiently small we thus get |ζ(j)

K (σ + it)− aj| < ε as a consequence of
Theorem 2.13 for j = 0, . . . , m. Therefore f(ζK(s′), . . . , ζ(m)

K (s′)) 6= 0
for this point s′ := σ + it. 2

This theorem was already proved by Reich [26] by different means. We
may prove the analogous statement for arbitrary Hecke L-functions.
The only difference in the proof is, that we replace the trivial ray
character 1 by an arbitrary ray character χ of a general class group
I(f)/Hf and the Hilbert class field HK is replaced by the class field
attached to this class group I(f)/Hf [13, I,p.9]:
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Theorem 6.8. Let K be a number field, I(f)/Hf a general class group
in the sense of class field theory [13] and χ an Abelian character on
this group. Denote by L(s, χ) the corresponding Hecke L-function. If
f(x1, . . . , xm) is any continuous function, then the differential equation
f(L(s, χ), L′(s, χ), . . . , L(m)(s, χ)) ≡ 0 implies f ≡ 0.

Theorem 6.9. Let L(s, χ) be a Hecke L-function of a number field K
attached to ray class character χ. Suppose that the equation

N
∑

k=0

skFk(L(s, χ), L′(s, χ), . . . , L(m)(s, χ)) = 0

holds for all s ∈ C and fixed continuous functions Fk : Cm+1 → C.
Then we get Fk ≡ 0 for k = 0, . . . , N .

Proof: Denote by Kχ the class field attached to the character χ
[7, p.219].

(

This is the class field of the ideal group
Hχ := {a | χ(a) = 1} [12, p.88].

)

Then we have L(s, χ, Kχ/K) =
L(s, χ). The character χ may be regarded as a character of G(Kχ/K)
by using the Artin-Isomorphism. Denote the normal extension of Q,
which contains Kχ, by L. Then because of Theorem 2.4

L(s, χ, Kχ/K) = L(s, χ, L/K) = L(s, χ∗, L/Q).

We have χ∗ =
∑

φ
nφφ, where the φ’s are the irreducible characters of

G(L/Q), nφ ∈ Z≥0 and at least one nφ 6= 0. Let this be nφ0 with the
character φ0. Set n0 := nφ0 . Then

L(s, χ) = L(s, χ∗, L/Q) =
∏

nφ 6=0

L(s, nφφ,K/Q).

Suppose that FN 6≡ 0. We get an open set U such that |F (a)| > c
for some positive constant c > 0 and all a ∈ U . Since this set is
open we may even suppose that the first coordinate of points in U
satisfy a0 6= 0. Further we may suppose that U is contained in a
compact set. Set P (s) := a0 + a1s + . . . + am

m! s
m. We may suppose

that P (s) 6= 0 for all |s| ≤ r for some small r > 0 since a0 6= 0. Set
σ := 1 − 1

4[L:Q] . According to Theorem 5.1 we find for every ε1 > 0 a

set Aε1 with lim inf
T−→∞

vol(Aε1∩(0,T ))
T > 0, such that for all t ∈ Aε1 we have

|L(s+σ+it, n0φ0, L/Q)−P (s)| < ε1 and |L(s+σ+it, nφφ, L/Q)−1| < ε1

for all |s| ≤ r. Then |L(s + σ + it, χ) − P (s)| < ε2 for some set
Aε1 , if we choose ε1 sufficiently small, and because of Theorem 2.13
|L(j)(σ + it, χ)− aj| < ε for j = 0, . . . ,m.
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Thus we have |FN(L(σ + it, χ), . . . , L(m)(σ + it, χ))| > c for small ε > 0
and for all t ∈ Aε1 . Then

c < |FN(L(σ + it, χ), . . . , L(m)(σ + it, χ))|

= |
N−1
∑

k=0

(σ + it)k−NFk(L(σ + it, χ), . . . , L(m)(σ + it, χ))|.

Since (L(σ + it, χ), . . . , L(m)(σ + it, χ)) ∈ U is contained in a compact
set, the values of the functions Fk are bounded on the set U . However
the set Aε1 is unbounded and we get an infinite sequence of values
tl ∈ Aε1 with tl → ∞. Taking the limit, we get 0 < c ≤ 0 as a
contradiction.

2
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Symbols

Z rational integers
Z≥0 rational integers ≥ 0
x ∈ γ mod Z page 15
|x− x0 mod Z| < ε page 15
Q rational numbers
P rational primes
R real numbers
R+ real numbers > 0
RP functions θ : P→ R
θ ∈ RP (θp)p∈P
[α] greatest integer such that [α] ≤ α
{α} {α} := α− [α]
C complex numbers
#M cardinality of a finite set M
Y c the complement of a set Y ⊂ M
M \ Y {x ∈ M | x 6∈ Y }
(a, b] a, b ∈ R, interval a < x ≤ b
k, K algebraic number fields
Ok ring of integers of the number field k
Hk Hilbert class field of k
Kχ ray class field of the ray character χ [7, p.219]
G(K/k) Galois group of K/k
[K : k] degree of K relative to k
Trace(α) trace of the algebraic number α
N(α) norm of the algebraic number α
N(a) norm of the ideal a
I(f) group of fractional ideals prime to f
Sf ray mod f
Hf ideal group with conductor f
(P, K/k) Frobenius Automorphism
σp Frobenius Automorphism
χ∗ induced character of χ
f|U map f restricted to U
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(φ, ψ) scalar product of the class functions φ, ψ
f = O(g) Landau symbol
Re(z) real part of z ∈ C
Im(z) imaginary part of z ∈ C
vol(M) Lesbegue-measure of a set
H Hilbert space
〈x, y〉 scalar product of x, y ∈ H
‖x‖ norm of a vector
‖x‖ for a scalar product: ‖x‖ =

√

〈x, x〉
‖L‖ = sup‖x‖=1 ‖L(x)‖ for continuous linear operator L
L(s, φ,K/k) Artin L-function of the non-Abelian character φ
ζk(s) Dedekind Zeta-function of the number field k
L(s, χ) Hecke L-function for ray characters χ or
L(s, χ) = L(s, χ,K/Q) for non-Abelian character χ of G(K/Q)
LM(s, χ, θ) finite Euler-product, Def. 6, p.17
GLk(C) general linear group of k × k matrices
det(A) determinant of a matrix A
E unit matrix
U � G U is a normal subgroup of G
L2(a, b) space of square integrable functions with support in (a, b)
Ress=s0f(s) residue of the function f at s = s0

vp(d) p-valuation of d for p ∈ P
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