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ABSTRACT

The shallow water model with anisotropic porosity conceptually takes into account the unresolved
subgrid-scale features, e.g. microtopography or buildings. This enables computationally efficient simula-
tions that can be run on coarser grids, whereas reasonable accuracy is maintained via the introduction of
porosity. This article presents a novel numerical model for the depth-averaged equations with anisotropic
porosity. The porosity is calculated using the probability mass function of the subgrid-scale features in
each cell and updated in each time step. The model is tested in a one-dimensional theoretical benchmark
before being evaluated against measurements and high-resolution predictions in three case studies: a
dam-break over a triangular bottom sill, a dam-break through an idealized city and a rainfall-runoff event
in an idealized urban catchment. The physical processes could be approximated relatively well with the
anisotropic porosity shallow water model. The computational resolution influences the porosities calcu-
lated at the cell edges and therefore has a large influence on the quality of the solution. The computa-
tional time decreased significantly, on average three orders of magnitude, in comparison to the

classical high-resolution shallow water model simulation.

1. Introduction

In shallow water modeling of river hydraulics (Ozgen et al.,
2013; Kesserwani and Liang, 2015), urban flooding (Liang, 2010;
Mignot et al., 2006), urban runoff (Cea et al., 2010; Liang et al.,
2007; Liang et al., 2015) and rainfall-runoff on natural environ-
ments (Miigler et al., 2011; Ozgen et al., 2015; Simons et al.,
2014; Viero et al. 2014), the topographical features have a large
influence on the numerical results. The availability of digital eleva-
tion data has increased significantly due to recent improvements in
surveying technology, notably laser scanning and light detection
and ranging (LIDAR) technologies, which provide high-resolution
data sets at relatively low cost (Gessner et al, 2014;
Gourbesville, 2009). However, mainly due to computational con-
straints, incorporating these data sets into shallow water models
is challenging (McMillan and Brasington, 2007; Dottori et al.,
2013). The difficulty arises from multiple scales in the physical
processes. For example, in a small natural catchment with a scale
of around a square kilometer, local depressions and microtopogra-
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phy with horizontal scales less than a square meter influence the
flow field significantly (Bloschl and Sivapalan, 1995; Dunne et al.,
1991; Thompson et al.). Similarly, in urban flood models the city
may spread up to several hundred square kilometers but the flood
flow can be diverted, slowed down or completely blocked by man-
made structures, e.g. buildings, bridges or walls, whose character-
istic scale are in meters. In order to accurately capture the effect of
microtopography or buildings, they have to be included in the dis-
cretization. Due to the co-existence of multiple scales, this leads to
extremely large computational mesh, which requires large data
storage, large number of operations per time step, small time step
size and thus large computational effort. In fact, the computational
cost is inversely proportional to the third power of the cell size
(Kim et al., 2014). Therefore, practical applications have to compro-
mise between spatial accuracy and computational efficiency
(Lacasta et al., 2014) and are often carried out on super-
computers (Smith and Liang, 2013).

For super-computers, high-performance parallel computation
methods on shared or distributed memory have been developed
in literature (Hinkelmann, 2005) and very recently graphic pro-
cessing units have been exploited for scientific computation (e.g.,
Lacasta et al., 2014; Lacasta et al,, 2015; Smith and Liang, 2013).

A different approach to speed up simulations is to conceptually
account for small scale ground variations without explicitly dis-



cretizing them (McMillan and Brasington, 2007). This allows to run
the simulations on coarser meshes. In this context, the shallow
water equations with porosity have been initially developed by
Defina et al. (1994) and Defina (2000) to account for microtopogra-
phy in partially inundated cells. Here, a single porosity is assigned
to each cell, which represents the fraction of the cell that con-
tributes to the flow. The porosity is calculated by a distribution
function, which returns the porosity depending on the water depth
in the cell. The distribution function is defined for the whole
domain. In Viero et al. 2014, Defina’s porous shallow water equa-
tions are applied to coupled simulations of surface and subsurface
flows in natural catchments.

The porosity concept was also applied to urban flood modeling
by Hervouet et al. (2000) to account for buildings. Significant con-
tribution to the porosity concept in the context of urban flood
modeling was made by Guinot and Soares-Frazdo (2006),
Soares-Frazao et al. (2008) and Guinot (2012). Because the build-
ings in urban flood models are usually not fully submerged dur-
ing the flood event, the area available for the flow stays
constant during the simulation. Consequently, most porous urban
flood models assign a constant porosity to each cell which only
depends on the fraction of the cell occupied by buildings. An
exception is the urban flood model presented in Henonin et al.
(2015), wherein the authors calculate the inundated area of each
cell according to the water elevation and use it in the mass bal-
ance. Although the authors do not explicitly use porosity terms,
the model in Henonin et al. (2015) is essentially equivalent to a
single porosity model with a depth-dependent porosity. The same
strategy for porosity calculation is followed in this work. Further
studies regarding the shallow water equations with single poros-
ity in the context of urban flooding were carried out in Cea and
Vazquez-Cendén (2009), Garrido et al. (2011), Mohamed (2014),
Soares-Frazdo et al. (2008) and Velickovic et al. (2010). Single
porosity shallow water models can not differentiate between spa-
tial directions. The flow in all directions is governed by the same
porosity. However, buildings in urban flood models usually have a
directionality which leads to preferential flow paths of the water.
Therefore, Sanders et al. (2008) introduced the anisotropic poros-
ity shallow water model, wherein a volumetric porosity inside the
cell is defined to account for the fraction of the cell available for
water. In addition an areal porosity is assigned to each cell edge
which describes the conveyance there (Sanders’ model). The
equations were derived using the integral form of the shallow
water equations, thus these equations can be solved only by a
finite volume method. Sanders’ model was further investigated
in Kim et al. (2015, 2014) and Schubert and Sanders (2012). In
Ozgen et al. (2016) a modified version of Sanders’ model that
allows full submergence of unresolved topographic features by

introducing a mutual dependency between water depth and
porosity is derived.

This article presents a numerical model to solve the equations
derived in Ozgen et al. (2016) on Cartesian grids. The main differ-
ence from Sanders’ model is that submergence of unresolved
topography leads to a different formulation of the porosities
depending on the water depth in the cell. The main contribution
of this work is the discussion on discretizing the porosity terms
in the cell and at the edge and the illustration of the model’s
behavior via detailed case studies. In the present model, each cell
and each edge are automatically assigned an individual porosity
that depends on the water depth and the underlying topography.
Thus, the model is automatically adjusted based on the computa-
tional mesh. The model performance is investigated in a theoretical
test case. Then, case studies of laboratory experiments are pre-
sented to further investigate the model’s behavior.

2. Governing equations

The two-dimensional shallow water equations with anisotropic
porosity can be written in integral-differential form as:

9/mm+%mmhjﬁm+%yw (1)
at-Q JoQ Q J o

Here, Q is the total base area of the control volume, 9Q is the
boundary of the control volume, r is the path along the boundary
0Q,0Q" is the boundary between the fluid and the solid inside the
control volume and r* is the path along this boundary (cf. Sanders
et al.,, 2008; Ozgen et al., 2016). i is the so-called phase function,
defined as:

1, nxy) >z(xy)
0, else

i(x.y) = { 2)
n is the water elevation, z, is the bottom elevation, q is the vector of
conserved variables, s is the source term vector, F is the flux vector
and n = [n,, ny]T is the normal vector of the boundary, with n, and
n, are the components of the normal vector in x- and y-directions of
the Cartesian coordinate system, respectively. Fig. 1 illustrates the
phase function,  and z,. The vectors q and s are expressed as:

h iy
q= qx y S = Sb,x + Sf,x (3)
qy Sb-}’ + Sf\y

Here, h =  — z, stands for water depth, g, and g, are the unit dis-
charges in x- and y-directions, respectively. i, is the mass source
term, e.g. rainfall intensity; sy, S, are the bed slope source terms

----- water elevation n
— bottom elevation z,

Zy

zero datum

Fig. 1. Definition of phase function i, water elevation # (dashed), bottom elevation z, (black) and zero datum z, in a vertical section through a control volume.



in x- and y-directions, respectively which account for variations in
bottom, s;, s, are the friction source terms in x- and y-directions,
respectively:

0z, 0z,
Shx = fgha—)f, Shy = fgha—;v (4)
NL Rl V@45
Sf,x = _qux h2 Sf.y = _quy? (5)

cr is the Chézy roughness coefficient, which can be expressed via
Manning's law:

¢ =gn*h'? (6)

n is Manning’s roughness coefficient and g is the gravitational accel-
eration. The flux vector is often split into its x- and y-component:

Fn = fn, + gn, (7)
f and g are defined as:
Ay ay
f= |ug,+05gh’ |, g= vqy 8)
uq, vq, + 0.5gh?

Here, u and v are the velocities in x- and y-directions, respectively.
Finally, s* is the source vector accounting for fluid pressure along
the interface 9Q". The calculation of s* is non-trivial and will be
addressed in the next section.

3. Numerical model
3.1. Finite volume formulation of the equations

The integral-differential form of the shallow water equations
can be solved with the finite volume method. However, the phase
function i can not be evaluated explicitly in the finite volume cell,
because the bottom elevation inside the cell is not resolved. There-
fore, the integral terms on the left hand side of Eq. (1) have to be
calculated with the concept of porosity.

In Ozgen et al. (2016), the volumetric porosity is defined as:

_ Joiln —z)de
fsz (n ’ZO)dQ

The areal porosity is calculated as:

¢ 9)

_ $o0 (1 — zp)dr

v faQ (’7 - zO)dr

(10)

Here, z, is the elevation of the lowest point inside the control vol-
ume with regard to a datum. Both are illustrated in Fig. 1. Evaluat-
ing the integral terms leads to modified flux and storage vectors
(Ozgen et al., 2016). Rewriting the line integral as a sum over the
finite volume edges transforms Eq. (1) to:

0 _ = )
—(¢Qq) + reFrm, :/1sd9+7{ sdr 11
8t(¢ q) ;Wk By = | P (11)

k is the index of the path integral and ry is the length of the integra-
tion path. The storage vector q in Equation 3 is rewritten as:

(M - 20)
q=|u-2) (12)
v( — 20)

The bar over a variable indicates volume-averaged variables which
are constant within the cell:

_ Joind@

i J,,ihvdQ
T=ida

V= inde

(13)

If i = 0 over the whole control volume, the averaging is not carried
out and the volume-averaged variables are taken to be # = 0 and
vV = 0. The flux vector in Eq. (3) is rewritten as:

(i) — zo)ny + (i — z0)ny
wil(i) — zo)ny + 0.58 (17 — zo) Ny + UD(i) — Zo)n, (14)
viL(iy — zo)ny + V(1] — z0)n, + 0.5g(1] — 20)°n,

Fn =

The circumflex over a variable indicates area-averaged variables at
the edge:

i J, ihdr ~ Jyindr

i J,ihvdr
~ e T

As before, if i = 0 over the whole edge the averaging is not carried
out and all variables are taken to be nil. Then, Eq. (11) can be solved
with a suitable time integration method.

3.2. Porosity computation

In order to calculate the porosities, the Probability Mass Func-
tion (PMF) of the unresolved bottom elevation inside the cell is cal-
culated in the pre-processing step. The PMF is defined as the
probability density function with discrete variables and can be
computed by sampling the bottom elevation at a resolution much
higher than the computational mesh. This assumes that the bottom
elevation data is resolved at the finer resolution than the computa-
tional mesh resolution. The PMF is calculated for each cell and each
edge seperately. In the context of this work, the PMF value of a cer-
tain elevation corresponds to the fraction of area below this eleva-
tion over the total area of the cell or the fraction of length of the
edge below the specified elevation over the total length. Then,
for any given water elevation #, the volumetric porosity ¢ can be
calculated as:

N
o) = ’71_921: min (0,7 — z;)PMF (25) ; (16)

Here, i is the index of bottom elevation z,;. PMF(z,;) is the value of
the PMF evaluated at z,;. In the present numerical model, the class
index increases as the bottom elevation increases, i.e. the lowest
bottom elevation corresponds to the smallest class index and the
highest bottom elevation corresponds to the largest class index. N
denotes the total number of classes. Similarly, the areal porosity y
at one edge is computed as:

N 1 & . )
W) = WZ: min (0, 7] — z;)PMF (z,) Ak; (17)

Ak is the length of the edge. The PMF for the edge is sampled from
the subgrid cells adjacent to the edge under consideration. Because
the adjacent neighbor cell also contributes to the porosity of the
edge. The samples at the edges are modified as:

L _ R H L R
zy; =z, if zp; <zp;
(18)

R _ L if R
zy; =2z if 75, >z,

Here, the superscripts L and R denote the left and right sides of the
edge, respectively. The idea is to take clustering effects and cell
blockage which have been reported in Yu and Lane (2006) and Yu
and Lane (2006) into account. The PMF is computed for each cell
and edge once in the pre-processing step and is stored. Once the
PMF is obtained, the mesh used for sampling is discarded and there-
fore the information of the high-resolution bottom elevation is not
available anymore. The bottom elevation of each computational cell



is set at the lowest value found from the high-resolution mesh.
Additionally, the elevation at each edge is stored and used in the
subsequent computation. The porosities are updated at the begin-
ning of each time step according to Eqs. (16) and (17). It is noted
that in Equation 16 and 17 each sample is weighted equally. This
assumes that each sample represents an equal amount of area. This
is easy to assume for either square-shaped or rectangular-shaped
grid cells if the subgrid-scale elevations are evenly distributed.
For a triangular cell, evenly distributed subgrid-scale bottom eleva-
tions would not represent equal areas and the equations must be
further modified to account for this. One approach would be to per-
form a Voronoi-tessellation in each cell to calculate weights for
each sample. In this study, only structured grids with square-
shaped cells are used.

3.2.1. Choice of water elevation for areal porosity calculation

The areal porosity at the edge is calculated according to the
water elevation at the edge. Because the edge is an interface
between two neighboring cells, a choice between two water eleva-
tions has to be made to calculate the areal porosity, namely the
water elevation at the left 7, and the water elevation at the right
ijr of the edge. In this work, the upstream water elevation is chosen
for porosity calculation. For example, if the case illustrated in Fig. 2
is considered, the areal porosity y will be computed according to
the water elevation on the left side of the edge #;,. In Fig. 2, 2, is
the bottom elevation at the edge. The calculation of 2, is discussed
in the next section (Section 3.3).

3.3. Flux computation

The numerical scheme is a Godunov-type explicit finite volume
scheme with second order MUSCL reconstruction (van Leer, 1979).
Values at cell center are linearly extrapolated to the edges,
whereby the slope of the extrapolation function is limited by a
min-mod slope limiter (Hou et al., 2012). The reconstructed values
are used to calculate the numerical fluxes over the cell edge by
solving the Riemann problem at the edge using a Harten, Lax and
van Leer approximate Riemann solver with the contact wave
restored (HLLC) (Toro et al., 1994). As suggested in Audusse et al.

(2004), only 7, q and h are extrapolated. At wet-dry interfaces,
the MUSCL reconstruction is omitted to ensure numerical stability
(Liang, 2010; Hou et al., 2013; Liang and Borthwick, 2009).

The reconstruction of the bottom elevation at the edge differs
slightly from most reconstructions (e.g., Audusse et al., 2004;
Hou et al., 2013). In a first step, the bottom elevation at the edge
zj7§ is calculated as

7% = il — hy (19)

water elevation

— edge
cell under F_, e
consideration ~ neighbouring
N cell

min. z,
in cell

min. z,
at edge

Fig. 2. Side view of two neighboring cells for the choice of the water elevation to
calculate , the cell under consideration is on the left side, water elevation is dashed
line, definitions of Az, n, 7, and 7.

In an additional second step the difference between the lowest bed
elevation at the edge and the bottom elevation of the cell is
calculated:

__ edge 11
Az = Z% — Z° (20)

2, refers to the lowest elevation at the edge and z¢' refers to the
bottom elevation of the cell on the left or right side of the edge (cf.
Fig. 2). Then, Az; is added to zj:

Zhi =27 + Az (21)

The reconstruction carried out for the left and right side of the edge

gives 7., q, hy, Zp 1, TR, Gr, hr, 2, r. Hereinafter, the cell on the left side
of the edge is assumed to be the cell under consideration. Then, the
non-negative water depth reconstruction (Audusse et al., 2004) is
carried out as follows: The bottom elevation at the edge is defined
as:

21, = Max (2”_,2“3) (22)

Water elevation on the left side of the edge and the bottom eleva-
tion at the edge are compared and the lower value is set as the
new bottom elevation.

2[, = min (2b7 f]L) (23)
Water depths are reconstructed as:
hR = mMax (O, ﬁR — Zb) — Mmax (O,Qb,R — Qb), fll_ = ﬁ]_ — 2[, (24)

The vector of velocities at the left and right sides of the edge
(Vi = [, i/,-]T) are calculated as:

‘}l_{O, h,‘<€ (25)
i =€

€ is a threshold to avoid division by 0 and further indicates whether
a cell is considered wet or dry. In this work it is chosen € = 10~° m.

Finally, flL, VL,ER and vy are used by the HLLC Riemann solver to
compute the flux over the edge.

3.4. Source term computation

3.4.1. Bed slope and friction source term computation

In Eq. (1), three source terms have to be numerically solved: the
bed slope source term, the friction source term and the solid-fluid
interfacial pressure source term. The first two source terms occur
as a result of depth-averaging and can be found also in the classical
two-dimensional shallow water equations. The last term results
from the ground unevenness not resolved by the computational
mesh and is discussed in Sanders et al. (2008) and Ozgen et al.
(2016).

The bed slope source term can be written as

0
Sh = | Shx (26)
Sb'y
where the definitions of the terms are given in Eq. (4). In Valiani and
Begnudelli (2006), the divergence form for bed slope is presented,

which transforms the bed slope source term within the cell into a
flux term over its edges:

/ is,dQ — ¢ iF,ndr 27)
Q aQ

The integral is evaluated and the line integral is approximated by
the algebraic expression:



% iFyndr = 3 yrFymy (28)
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Hou et al. (2013) propose an extension of this approach to higher
order accuracy by dividing the integral over the cell into integrals
over subcells. This allows non-linear variations of bed elevation,
which is suitable for the model presented in this work because sep-
arate bottom elevations are defined at the cell edges. The vector of
bed slope flux at edge k is written as:

0
Founy = | —0.5m,g(he + iil) (Zos — 2) (29)
—0.5nyg(hk + h) (ib,k — 2b)

Using Eq. (10), the evaluation of the integral in Eq. (28) over edge k
in x-direction gives:

/ —0.5inxg(hk + Fl) <2b,k — Zb)dr
29,

— 05g(20s — 2) / g(ihy + ih)dr

09

= —0.5g(Zpx —2p) Wil — 20)Tx +/

filen

ihdr> (30)
The latter integral in Eq. (30) is approximated with:

/ ihdr ~ yhr (31)
0

The evaluation of the integral in y-direction is similar. Then, the

evaluated bottom slope flux vector fb_knk over the edge k can be
written as:

0
Fpene = | —0.5m8(7k — 2o + h) (2o — Zp) (32)
70.5nyg(f]k —2Zo + h) (2b‘k - Zb)
For the friction source term, the standard expression of the fric-

tion source vector as introduced in Eq. (5) is used. The term is dis-
cretized in a point implicit way as shown in Simons et al. (2014).

3.4.2. Solid-fluid interfacial pressure source term computation

The solid-fluid interfacial pressure source term treatment fol-
lows the modeling concept in Sanders et al. (2008). The term is
split into a stationary and non-stationary part:

f s*dr:y{ s;dr+/ is; dQ (33)
Q" Q" Q

The stationary part balances the pressure and flux terms as the flow
converges to a stationary state and the non-stationary part results
from the water elevation fluctuation inside the computational cell
that can not be resolved (Sanders et al., 2008). The non-stationary
term s;, is integrated over the cell. In Sanders et al. (2008) and
Ozgen et al. (2016), this term follows a generalized drag law pro-
posed in Nepf (1999):

0
Sy = | cpuVU? + 72 (34)
Cplv/ u? + 12
cp is the dimensionless drag coefficient, which is calculated with:
cp = 0.5c)a - min (h,z™ — z") (35)

The parameter a represents the projected width of the obstruction
facing the flow per unit planform area and depends on the angle
of attack and width of the obstacle (Sanders et al., 2008). cJ is a ref-
erence drag coefficient obtained by calibration, and a is a modifica-

tion coefficient. In theory, it is possible to determine a exactly from
the geometry data and calibrate only ¢, yet this is not done in this
work. Instead, the model is calibrated using the product cJ - a. The
reason for this is that calculating the angle of attack for the value
of a during the simulation is not trivial. In addition, the value of
¢Y depends on the Reynolds number and the shape of the obstacle.
In Nepf (1999) and Sanders et al. (2008), it is suggested that the
value of a should be estimated in a predictor step and then updated
in a corrector step based on the flow values of the predictor step.
This approach is not followed in this work, because it requires extra
knowledge of the subgrid-scale obstacles beyond the porosity func-
tion, i.e. information about the shape and the directionality of the
obstacles have to be stored. An additional challenge is that the val-
ues of a and ¢ depend on the water depth in the cell, as the geom-
etry of the obstacles might vary in the vertical direction. The full
assessment of the present approach requires additional research.
Additionally, the value ¢ -a is assumed constant over the whole
domain, because the cases investigated are relatively simple. How-
ever, each cell could also be assigned a separate cj - a. This would
allow a better representation of the heterogeneity in the domain,
but the drawback is that the model calibration becomes very com-
plicated and requires large quantities of data. This further suggests
that a more precise definition of both a and ¢ is required. Overall,
the calculation of the non-stationary term needs further research.

The stationary part of the interfacial pressure source term is
essential, as it well-balances the scheme. Here, the vector of the
stationary interfacial pressure source term is derived by evaluating
the C-property of the scheme. This leads to the same formulation
as in Sanders et al. (2008):

f sidr = > "y Fmr (36)
o0 r
with:
0
F., = | 0.52m;, (37)
O.SEZH/CLV

The proof of C-property is trivial and omitted for sake of brevity.
3.5. Time integration

A two-stage total variation diminishing Runge-Kutta method
(Gottlieb and Shu, 1996) is used. The values at next time step
n+ 1 are calculated in two stages. The first stage is

QT = " — ALY YL my + AL (ST + 53 Q (38)
k
and the final value is then calculated as

¢n+1qn+1 =05 (bnqn +(z)n+1fln+1 —Atzwﬂfﬁg}(rknk+&$”*l (§n+1 +s;.§n+1)g>
k
(39)

Here, Fioux = Fy — o — F, . The first term of the vector ¢™'q"!,
ie. ¢"1(51 — o)™ expresses the volume of water inside the cell.
In order to determine the individual value of ¢™*! and ", a corre-
sponding water depth has to be calculated. In literature, tabulated
values are used to map water volume to a certain water elevation
(Panday and Huyakorn, 2004). In this work, the exact values of
¢™ and ( — zo)"*" are calculated from the water volume in an iter-
ative way. Once (77 —20)""" is calculated, ¢"*',q, and g, can be
determined. Using an iterative solution significantly increases the
computational cost. In the current model implementation, the eval-
uation of porosities, i.e. Eqs. (16) and (17), turns out to be the most



expensive part of the code, taking up to 15% of the total CPU time. It
is important to note that this is not the one-off evaluation of poros-
ity, but all evaluations summed up. The reason for the high cost is
that, due to their dependency on water depth, the porosity values
have to be evaluated several times for different water depths during
one time step. Eq. (16) is solved at the beginning of the time step in
each cell. During MUSCL reconstruction Eq. (17) is solved at each
edge. Then, Eq. (16) is solved repeatedly during the iterative proce-
dure to determine the new water depth and porosity in the next
time step. For a two-stage Runge-Kutta method all these calcula-
tions have to be carried out twice in each time step.

A more efficient, approximate solution for this problem is pre-
sented in Yu and Lane (2006). However, in our opinion the calcula-
tion of the water depth should have very high accuracy, so the
mass conservation is strictly satisfied.

The presented scheme is of explicit nature and therefore its sta-
bility is restricted by the Courant-Friedrichs-Lewy criterion (CFL),
although the theoretical analyses of the stability constraint are
very complicated for the present equations. The CFL criteria given
in Sanders et al. (2008) is

. At
Cr= l/mArd)—Q <1 (40)
where 2 = |un, + vny| + +/gh is the largest wavespeed at the cell
edge. Numerical experiments show that Eq. (40) degenerates the
time step in cases with small porosity such that in the worst case
the simulation comes to a halt.

In this work, the CFL number is heuristically calculated as

Cr:W (41)

For the presented cases, Cr < 0.3 gives satisfactory results.
3.6. Boundary conditions

Boundary conditions are imposed on the boundary edge of the
cell according to the theory of characteristics proposed in Song
et al. (2011). State variables at the boundary edge can be computed
using Riemann invariants. The porosities are mirrored from the cell
inside the domain.

4. Computational examples

Kim et al. (2015) noted three types of errors of the porous shal-
low water model: (1) structural model errors, (2) scale errors and
(3) porosity model errors. Errors of type 1 refer to the limitations
of the mathematical model concept of the shallow water equations
and are defined by the difference between measurement and high-
resolution model (HR) results. Errors of type 2 are associated with
the lack of sufficient grid resolution. In Kim et al. (2015) it is sug-
gested to study the difference between HR model results and the
HR model results which have been averaged over each porosity
model grid cell (CR, standing for coarse-resolution). Errors of type
3 are the errors introduced by the porosity concept and are defined
as the difference between the porosity model results (AP, standing
for anisotropic porosity) and the CR model results.

Following the studies presented in Kim et al. (2015), the errors
are computed using an L;-norm:

1 N
L :N]; | wij —waj | (42)

Here, N is the number of points compared, w stands for a variable,
e.g. h or g, w;; and wy; are results of two different models and j is
the point index. The AP model is first calibrated by minimizing

the L;-norm in a manual calibration process. In a second step the
fine calibration is automated using the SciPy library (Jones et al.,
2001). In the following examples, the errors of type 1, 2 and 3 as
well as the differences between HR model and AP model, and AP
model and measurement data are presented.

The classical shallow water model used for obtaining the
reference results is the model presented in Simons et al. (2014).
All simulations are run in parallel with 8 threads of an Intel® Core™
i7-2600 CPU (3.40 GHz).

All triangular meshes are generated using the mesh generator
Gmsh (Geuzaine and Remacle, 2006).

4.1. Idealized test case: dam-break flow through artificial street
network

The first test case is a test case which is initially proposed in
Guinot (2012). The HR model is used to generate the reference
solution. The aim of this test case is to assess the sensitivity of
the porosities ¢ and s to the mesh. Thus, different meshing strate-
gies for the AP model are compared against each other. A second
objective is to test the sensitivity of the model to the proposed drag
coefficient a - ¢2. For this purpose, the drag coefficient is varied and
the results are compared.

4.1.1. Domain description, initial and boundary conditions

The computational domain is an infinitely long, frictionless
street with periodical structures as shown in Fig. 3. The initial
water elevation on the left is #, =10 m and on the right side
g =0.25m. The discontinuity of water elevation located at
x =0, which is the middle of the domain.

The HR model is two-dimensional and uses triangular cells with
a characteristic length of 1 m. The AP model is one-dimensional
with a cell length of 40 m.

4.1.2. Influence of different meshes and areal porosity

The AP model is expected to be sensitive to the mesh, because
the areal porosity  depends on the position of the cell edge.
Two configurations are investigated: (1) the cell edge is located
at the narrow section of the street network (cf. Fig. 3 (bottom left)),
i.e. y =1/7, (2) the cell edge is located in the wider section of the
street network (cf. Fig. 3 (bottom right)), i.e. v = 1. The volumetric

n=10m R=0-25m

-------- street network
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i | | ‘,7' ‘
1 | | ‘
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mesh 1 mesh 2

Fig. 3. Idealized test case: dam-break flow through periodic structures: top view on
domain (not correctly scaled) (Guinot, 2012) (top), meshing strategies (bottom).



porosity in both cases is the same and is calculated to be
¢ = 11/14. Thus, the difference in results can be directly related
to the different areal porosities.

Comparison of model results at t =50s are plotted in Fig. 4
(top). The AP model with = 1/7 (mesh 1) produces the blockade
effects of the structure better than the AP model with yy = 1 (mesh
2). Because both models do not resolve the street network explic-
itly, they can not reproduce the local fluctuations in the water ele-
vation. In both models, the right-traveling shock wave as well as
the left-traveling rarefaction wave are not captured accurately. If
the edge is placed at the narrow section of the street network
(mesh 1), introduces correct amount of resistance to the flow. In
upstream direction, the water depth is slightly underpredicted.
While the agreement is not perfect, the AP model results resemble
the HR model solution. If the edge is placed at the wide section, the
model is equivalent to the isotropic porosity shallow water model
of Guinot and Soares-Frazdo (2006) and Soares-Frazao et al. (2008).
Here, the shock and rarefaction waves advance too quickly, and the
AP model results are completely different from the HR model
results.

The CR model is compared with the AP model with = 1/7 in
Fig. 4 (middle left) and with the AP model with =1 in Fig. 4
(middle right). The CR model is more diffusive than the HR model.
Local water depth fluctuations are averaged out. The AP model
with y = 1/7 shows better agreement with the CR model results
than the AP model with = 1.

This shows that the AP model results are very sensitive to the
areal porosity y and therefore are very sensitive to the mesh.
Results indicate that the mesh should be constructed in such

way that the cell edges are located on the blocking structures to
capture their influence. If a structure is located completely inside
a cell, its influence on the flow is only modeled by the volumetric
porosity which can not model its obstruction to the flow
sufficiently.

The right traveling shock wave in the AP model advances too
slow. The reason for this might be that the local acceleration at
narrow sections can not be taken into account by the AP model,
which leads to an underestimation of the mass and momentum
fluxes.

A/maxA

a-c) (m™!)

Fig. 5. Idealized test case: dam-break flow through periodic structures: sensitivity
of the AP model results for different values of a-cf at t=50s with
Ai = Li[AP(acd), — AP(acd), ).
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Fig. 6. Dam-break over triangular bottom sill: side view on domain (not correctly
scaled) (Soares-Frazao, 2007).
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4.1.3. Influence of drag coefficient

The value a- ¢ is now varied to study its influence on the AP
model. Beginning from a - ¢§ = 0, the value is increased with a step
size of 0.25 m~! until a - ¢§ = 10 m~". Fig. 4 (bottom left) shows the
AP model with ¢ = 1/7, while Fig. 4 (bottom right) shows the AP
model results with ¢ = 1. In both cases, increasing the drag coeffi-
cient improves the agreement until a critical value a-c% > 1 is
exceeded. After that, the drag coefficient does not change the result
anymore. For the AP model with ¢ = 1/7, the value a- ¢} = 0.25
gives the best agreement. For the AP model with iy = 1 the agree-
ment improves for a - c$ > 1 but stays overall poor.
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Fig. 7. Dam-break over triangular bottom sill: snapshots at different time steps of HR model results for water elevation and AP model mesh plotted over HR model bed

elevation (bottom right).



Fig. 5 compares the sensitivity of both models to the drag coef-
ficient. For this purpose, A is calculated as

A = Ly (AP((ach),). AP((acB),,,) *3)

where (acd), = 0, (ac}), = 0.25, (ac}), = 0.5, and so on, and AP(x) is
the result of the AP model for the drag coefficient x. For a meaning-
ful comparison, Fig. 5 shows a normalized value obtained by divid-
ing each A; by the maximum A, i.e.
T maxA;

ni (44)
Fig. 5 shows, that the AP model with y = 1/7 is less sensitive to
the drag coefficient than the AP model with y = 1. This implies that
the areal porosity effect dominates the flow such that the influence
of the drag force on the momentum is less significant. For values
acY > 1, the influence of the increasing drag coefficient is negligi-
ble. This is because the numerical scheme limits the drag force
source term in such way that the flow direction is not reversed.
If the areal porosities are large, the numerical flux is not limited
as strictly and blocking effects of the obstructions are not repro-
duced as well as for smaller areal porosities. In this case, increasing
the drag coefficient has larger influence on model results. The drag
force depends only on the volumetric porosity, which is the same
for both cases. Increasing the drag coefficient has a similar effect
as increasing the friction coefficient and the results are similar to

0.0 IGauge 1|
E 0.08 .
K
£ 006 i
[)]
T 004 ]
£ o o experiment
= 0.02 i
— HR
000 1 1 1 1
0 10 20 30 40 50
time (sec)
- IGauge 21
g 0.08 .
£ 006 _
Q.
[¢]
T o004 ,
2 o o experiment
= 0.02 i
— HR
000 1 1 1 1
0 10 20 30 40 50
time (sec)
010 o . IGauge 3. .
‘€ o008t .
= o]
‘S 006} ) .
()] ( (o]
ke o 5
5 0041 -
*g -l o o experiment
el — HR i
OOO 1 1 1 |
0 10 20 30 40 50

time (sec)

the findings by Liang et al. (2007) who capture the effect of build-
ings to some extent using an increased roughness coefficient. If the
areal porosities are small, the flow is blocked more severely at the
edges and the flow velocity is not as high as in the unobstructed
flow. Therefore, changing the value of a-c) does not effect the
results as much.

4.2. Dam-break flow over a triangular bottom sill

Herein, the depth-dependent porosity is demonstrated by repli-
cating a laboratory experiment conducted at the Université catho-
lique de Louvain, Belgium (Soares-Frazao, 2007).

4.2.1. Domain description, initial and boundary conditions

The experiment was carried out in a 5.6 m long and 0.5 m width
channel. The peak of the triangular bottom sill is located at
X =4.45m and is 0.065 m high. The sill is symmetrical and has a
base length of 0.9 m. The initial conditions and the geometry is
given in Fig. 6. An initial water elevation of 77,,, = 0.111 m is pond-
ing in the reservoir before the gate is opened. The gate is located at
x = 2.39 m. On the downstream side of the sill, water is at rest with
an initial water elevation of 77 = 0.02 m.

The HR model uses square shaped cells with a side length of
0.01 m. It is noted that this test case is essentially one-
dimensional. However, the domain was discretized in two dimen-
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Fig. 8. Dam-break over triangular bottom sill: HR model results for water depth compared with experimental data (Soares-Frazdo, 2007) (left), CR model results for water
depth compared with HR model results, dotted lines denote the minimum and maximum values inside the coarse cell (right).



sions, resulting in a mesh with 28,000 cells. The AP model uses
square shaped cells with side length of 0.4 m, which gives a mesh
with 56 cells. The bottom of the AP model is completely flat and
the sill is accounted for only by the porosity terms. Fig. 7 (bottom
right) shows a sideview of the AP model mesh with the HR model
bed elevation plotted for reference.

Measured water depth over time is available at 3 measurement
gauges, located at x=5.575m (G1), x=4.925m (G2) and
x =3.935 m (G3). The locations of the gauges are given in Fig. 6.

The roughness of the channel is quantified in Soares-Frazdao
(2007) with a Manning’s coefficient of n = 0.011 s m~'/3, This value
is used both in the HR and the AP model.

4.2.2. Model calibration and run time

The AP model is calibrated by changing the value a- ¢ in Eq.
(35). Calibration is carried out manually using the CR model as ref-
erence. Good agreement has been achieved witha - ¢} = 5 m~!. The
HR model takes about 4000 s to finish, while the AP model takes
only 3.5 s. This corresponds to a speedup of about 1140.

4.2.3. Error analysis

4.2.3.1. Structural model errors. This test case features an obstruc-
tion that is unsubmerged at the beginning of the simulation, com-
pletely submerged by the dam-break wave in the middle of the
simulation, partially submerged towards the end of the simulation.
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In Fig. 7, snapshots of the HR model results at various times are
shown. The HR model shows excellent agreement with the exper-
imental results, as seen in Fig. 8 (left), especially at gauge 2 and
gauge 3. The larger discrepancy at gauge 1 might be explained by
the splashing of water in the experiment which can not be repro-
duced by the shallow water equations.

4.2.3.2. Scale errors. Scale errors are calculated by mapping the HR
model results to a coarser grid, which in this study is the grid of the
AP model. The value at a low resolution cell is determined by arith-
metic averaging the values over all the high-resolution cells lying
inside the low resolution cell. The CR model results show very good
agreement with the HR model results, as seen in Fig. 8 (right),
where the comparison at the three gauges is shown. The dotted
lines show the maximum and minimum water depths sampled
inside the coarse grid. It can be seen that at gauge 1 and gauge 3,
the difference between the minimum and the maximum water
depth is low. At gauge 2, which is located just behind the sill, the
deviation is high. Owing to the reflected waves, the flow at gauge
2 is more complex than at the other gauges. Consequently, here
the agreement between CR model and HR model is not as close
as at the other gauges. It is observed that the CR model introduces
some diffusion to the results and the curves are smoother than the
HR model results.

t (sec)

Fig. 9. Dam-break over triangular bottom sill: AP model results for water depth compared with CR model results (left), AP model results for water depth compared with

experimental data (Soares-Frazdo, 2007) (right).
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4.2.3.3. Porosity model errors. The porosity model errors are
assessed by comparing AP model results to CR model results, as
shown in Fig. 9 (left). The AP model shows good agreement with
the CR model at all gauges. At gauge 1, which is located furthest
away from the gate the predicted wave arrives a bit late. However,
after 5 s the arrival time of the second peak is captured despite the
slightly undershot peak water level. The third peak is captured
accurately. After that, the AP model does not predict as much fluc-
tuation as the CR model but the average water elevation does not
differ much. The agreement at gauge 2 and gauge 3 is much better.
Especially at gauge 3 all waves are captured with good agreement.
At gauge 2, the rise of the curve starts correctly but the AP model
overshoots the CR model at about 8 s. A comparison between AP
model result with experimental data is shown in Fig. 9 (right).
The AP model reproduces the experimental data well.

Table 1

Dam-break over triangular bottom sill: summary of shallow water model formula-
tions and corresponding meshes (HR: High-resolution, CR: averaged HR model, AP:
anisotropic porosity); L;-norm is calculated with regard to the experimental results.

Model Mesh type Cell size (m) Cell nr. Time (s) Ly (m)

HR Square 0.01 28000 4000 0.0024

CR Square 0.01 28000 4000 0.0031

AP Square 0.4 56 35 0.0035
Table 2

Dam-break over triangular sill: model error (E;), scale error (E,) and porosity error
(E3).

4.2.3.4. Summary. The L,-errors are listed in Tables 1 and 2. In both
tables, the errors are calculated as the arithmetic mean of the
errors at the 3 gauges. Table 1 shows a summary of the cell sizes
and L;-errors for HR model, CR model and AP model. Here, the
errors are calculated using the experimental data as a reference.
Overall, the errors are two orders of magnitude smaller than the
initial water elevation in the reservoir (#,,, = 0.111 m). The L;-
errors for structural, scale and porosity model errors are summa-
rized in Table 2. All errors are in the same order of magnitude,
which is one order of magnitude smaller than the maximum mea-
sured water depth. The porosity model (E3) error is the largest, fol-
lowed by the structural model error (E; ). The scale error (E,) is the
smallest error. It is concluded that in this example, the error intro-
duced by the coarse grid is the smallest. The mathematical model
limitation of the shallow water equations introduces larger errors
than the grid coarsening, but the largest error is introduced by
not resolving the sill explicitly.

4.3. Dam-break flow through an idealized city

In this computational example, results of a dam-break experi-
ment conducted at the Université catholique de Louvain, Belgium
(Soares-Frazdo and Zech, 2008) are numerically reproduced.

4.3.1. Domain description, initial and boundary conditions

The domain is a 35.8 m long and 3.6 m wide channel with hor-
izontal bed. The idealized city consists of 5 x 5 buildings, each of
them being a square block with a side length of 0.30 m. The dis-
tance between the blocks is 0.10 m. The center of the building
block is placed 5.95 m away from the gate and rotated 22.5° in

Type b (m) counter-clockwise direction around its center. The dam-break is
Ey 0.0024 constructed by opening a 1 m gate, which initially seperates the
Z g'gg;g reservoir, where water is ponding at 0.40 m, from the rest of the
: channel, where a very thin layer of 0.011 m water is reported.
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Fig. 10. Dam-break through idealized city: top view on domain (not correctly scaled) (Soares-Frazao and Zech, 2008) (top left), position of all 87 gauges (black), results are
plotted for 8 gauges (indicated by their numbers), the boundary of the building block is plotted for reference (top right), comparison of HR model mesh (triangular) and CR
and AP model mesh (square), meshing of the building block (bottom left), mesh detail between houses (bottom right).
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For further details on the experimental setup and employed
measurement techniques, the reader is referred to Soares-Frazio
and Zech (2008). The domain is illustrated in Fig. 10 (top left),
where the reservoir is colored in gray.

The computational domain only includes the reservoir and the
first 16 m of the channel. For the duration of the simulations,
t =15.5 s, the shock wave does not travel further than this length.
The downstream boundary is an open boundary and all other
boundaries are closed boundaries.

The HR model uses a triangular mesh with variable cell sizes:
the reservoir is discretized with cells with a characteristic length
of I.; = 0.3 m. The area inside the channel which is sufficiently
far away from the building blocks is discretized with a characteris-
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tic length of I.; =0.1 m. The space between the buildings is
discretized with a characteristic length of I.5 = 0.01 m. The build-
ings are represented as holes in the mesh, which is a method com-
monly used in urban flood modeling (Schubert et al., 2008). Hence,
the gap between two buildings is discretized with about 10 cells
and the total cell number is 96339. The AP model uses square-
shaped cells with side length 0.25 m, whereby the volumetric
porosity is calculated using 125 subgrid cells, resulting in a mesh
with 1272 cells. The HR mesh is compared to the AP model mesh
in Fig. 10 (bottom). Both meshes in the region of the building block
is shown in Fig. 10 (bottom left), while in Fig. 10 (bottom right) a
close-up view is shown. A building is in general contained in 4
AP model cells. The buildings do not align with the cell edges. As
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Fig. 11. Dam-break through idealized city: HR model results for water depth compared with experimental data of Soares-Frazdo and Zech (2008).
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discussed in Section 4.1, the blocking effect of buildings is not cap-
tured accurately if the building is positioned inside the cell instead
of at the edge, but this is inevitable for some fron-row houses (cf.
Fig. 10 (bottom)).

Experimental data are available at 87 measurement gauges dis-
tributed inside the channel (Soares-Frazdo and Zech, 2008). The
positions of these gauges are given in Fig. 10 (top right). In the dis-
cussion, results are plotted for 8 gauges, namely gauges 3, 13, 25,
35, 40, 59, 67 and 85.

The roughness of the channel has been estimated in Soares-
Frazdo and Zech (2008) with a Manning’s coefficient of
n =0.01 s m!3. This value is used for both the HR and the AP
model.
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4.3.2. Model calibration and run time

The AP model is calibrated with the value a - ¢} in the drag law,
given in Eq. (35). Calibration is carried out with regard to the CR
model results using Brent’s algorithm for minimization (Brent,
1973). Brent's search returns a - ¢ = 1.9 m~! with a corresponding
Lq-error of 0.025 m. The HR model simulation takes about 3000 s to
finish. The AP model requires about 4 s. Consequently, the speedup
is calculated as 750.

4.3.3. Error analysis

4.3.3.1. Structural model errors. The HR model makes overall an
acceptable prediction of the water depth at the evaluated gauges.
In Fig. 11, the water depth calculated by the HR model at the
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Fig. 12. Dam-break through idealized city: CR model results for water depth compared with HR model results, dotted lines denote the minimum and maximum values inside

the coarse cell.
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Fig. 13. Dam-break through idealized city: AP model results for water depth compared with CR model results.
Table 3
Dam-break through idealized city: summary of shallow water model formulations Table 4
and corresponding meshes (HR: High-resolution, CR: averaged HR model, AP: Dam-break through idealized city: model error (E;), scale error (E,) and porosity error
anisotropic porosity); L;-norm is calculated with regard to the experimental results. (E3).
Model Mesh type Cell size (m) Cell nr. Time (s) Ly (m) Type Ly (m)
HR Triangular 0.01-0.3 95975 3000 0.020 E; 0.020
CR Triangular 0.01-0.3 95975 3000 0.021 E; 0.018
AP Square 0.25 1272 4 0.026 E3 0.025

aforementioned gauges is plotted together with the measured arrival. Larger deviations between the results occur at the later
water depth. The arrival time of the wave is predicted correctly stages of the simulation, where the HR model results undershoot
at all gauges, although the HR model predicts a slightly later the experimental data. For this test case, Soares-Frazdo and Zech
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(2008) report lower computed water depths as well. The deviations
might partly be caused by the frictionless wall-boundaries
imposed at the buildings and the wave reflections that can not
be modeled by the shallow water equations. The model overesti-
mates the flow velocities, leading to overall lower water depths.
As time passes, this effect becomes more significant. Gauge 67 is
located in front of the houses. Overall, the characteristics of the
experimental data set are captured by the HR model, i.e. the small
peak at around t = 2 s and the rise at around t = 4 s, however the
first peak is delayed and the second rise at t = 4 s is too early. In
general, the HR model appears to overpredict the steepness of
the water level variations. This is especially distinct at the sharp
rise of the HR model curve at t = 4 s in comparison to the smoother

rise of the experimental curve. As in Soares-Frazdo and Zech
(2008), this indicates that the entrance contraction can not be
reproduced by the mathematical model. This is also indicated by
the discrepancies at gauge 3, which is located at the entrance of
the building block. The rise of the water level is again delayed.
The drop in water depth at around t = 6 s is not observed in the
experiment. Gauge 13, located slightly behind gauge 3, shows good
agreement. Here, the front of the wave is captured accurately in
time. The agreement at gauges 25, 35 and 59, which are all located
between the buildings, is very well.

Gauge 40, which is also located between the buildings, shows
worse agreement than the aforementioned gauges. As at gauge 3,
the general shape of the experimental data is reproduced. Finally,
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Fig. 14. Dam-break through idealized city: AP model results for water depth compared with experimental data of Soares-Frazdo and Zech (2008).
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at gauge 85, which is outside of the building block, good agreement
is achieved.

Overall, this is a challenging test case for the mathematical
model. The angled position of the buildings that are not aligned
with the flow direction coupled with the hydraulic jump at the
entrance of the building block increases the difficulty. In addition,
wave reflections and turbulent eddies are not accounted for in the
model. Consequently, the structural model error is relatively high.

4.3.3.2. Scale errors. In Fig. 12, the averaged water depth is plotted
against the HR model water depth at the four gauges. The mea-
sured water depth is omitted to avoid cluttering the figure. Maxi-
mum and minimum values of the high-resolution cells lying
inside the low-resolution cell are plotted as well. Overall, the aver-
aging process smooths out the HR model results. Local fluctuations
are not captured by the CR model. It is noted that a large difference
between the minimum and the maximum in a coarse cell indicates
complex flows. As expected, the location of the gauge can be
related to the complexity of the flow. Gauges 67 and 85 are located
outside of the building block and the minimum and maximum of
the values at these gauges do not differ much. Conversely for the
other gauges located between the buildings, the local fluctuation
is high. In general, the difference between the minimum and max-
imum gives a good indication for the difference between HR and
CR model. If the flow in a coarse cell is complex, there exist high
differences between minimum and maximum water levels inside
the cell. This complex flow can not be resolved on the scale of
the CR model, thus it introduces an error due to scale to the CR
model result. Consequently, the difference between HR and CR
model is high at, e.g. Gauge 3, positioned at the front of the build-
ing block where the flow is complex, and at Gauge 40, located at a
crossroad. In contrast, if the flow inside a coarse cell is relatively
smooth, the loss of information due to low resolution is not that
severe. This is seen, e.g. at Gauge 85, located outside of the building
block.

4.3.3.3. Porosity model errors. The AP model shows acceptable
agreement with the CR model, although some gauges observe less
good agreement, e.g. gauge 85 the agreement is poor. In general,
the results of the AP model are smoother and more “smeared” than
the CR model results. In Fig. 13, AP and CR model results are plot-
ted for eight gauges. The AP model water depth at gauge 3 shows
similarities to the maximum value at this gauge. Gauges 13, 25 and
67 show good agreement. At gauge 35, the shape of the curve is
reproduced but the AP model underestimates the water depth.
Gauge 85, which is located behind the building block, shows the
worst agreement among the eight presented gauges. The AP model
is unable to reproduce the CR model result, with underestimated
peak water level and delayed arrival time. Overall, the general
properties of the AP model results, i.e. the lack of local and spatial
fluctutations, are consistent with the findings in Kim et al. (2015).

4.3.3.4. Summary. An overview of the results of this computational
study is given in Table 3 and 4. The L;-errors in Table 3 are calcu-
lated by taking the measured data by averaging the L;-errors of all
87 gauges. Moreover, the AP model results are plotted against the
measurement data in Fig. 14. The errors are as expected: the HR
model has the lowest error, the CR model comes second and the
AP model shows the largest error. However, the errors have the
same order of magnitude and are one order of magnitude smaller
than the initial water depth in the reservoir (hy = 0.4 m). Table 4
shows the structural, scale and porosity errors E;, E, and Es, respec-
tively. The values are again averaged over 87 gauges. In this exam-
ple, the error due to coarser cells is smaller than the structural and
porosity errors. Indeed, the CR model results show good agreement

with the HR model (cf. Fig. 12), while the difference between CR
model and AP model is larger.

4.4. Rainfall-runoff in an idealized urban catchment

A series of experiments regarding pluvial flooding in urban
catchments were carried out at the Universidad de A Coruna, Spain
(Cea et al., 2010). One of these experiments is studied in this com-
putational example.

4.4.1. Domain description, initial and boundary conditions

Constant rainfall with an intensity of i = 300 mm/h is applied
for 20 s to a 2.5 m long and 2 m wide rectangular inclined domain
with a slope of 0.05. Inside of the domain, a simplified urban dis-
trict is built using 0.30 m x 0.20 m wooden blocks as houses. The
configuration of the houses is plotted in Fig. 15 (top). The domain
is initially dry. Further details regarding the experimental setup
and more building configurations can be found in Cea et al.
(2010). In the numerical models, the outlet of the domain is an
open boundary and all other boundaries are closed. The simulation
runs for 150 s.

The HR model discretises the domain with a triangular mesh
with varying cell size, starting at I.; = 0.05 m at the boundary of
the domain to I, = 0.01 m between the buildings, which are again
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Fig. 15. Rainfall-runoff in an idealized urban catchment: bottom elevation in the
domain and configuration of houses (top), CR and AP model mesh of the whole
domain (middle), comparison of HR model mesh (triangular) and CR and AP model
mesh (square) between houses (bottom).
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represented as holes in the mesh. The resulting mesh has 62058
cells. The AP model uses square shaped cells with a side length
of 0.125 m, which results in a mesh with 320 cells. The two meshes
are compared in Fig. 15. The whole domain is plotted in Fig. 15
(middle) with the houses marked out as reference and in Fig. 15
(bottom) the region between houses. One building can be con-
tained in approximately 6 AP model cells. Again, the alignment
of the buildings does not match the AP model mesh cells.

In contrast to the previous examples, no measurement data
inside the domain is available, Cea et al. (2010) measured the total
discharge at the outlet of the domain.

4.4.2. Model calibration and run time

The roughness of the domain is reported in Cea et al. (2010) in
form of a Manning’s coefficient of 0.016 s m~'/3. The results of the
HR model agree well with the experimental data, thus no further
calibration is required. The HR simulation takes about 5340 s.
The AP model uses the same roughness coefficient (0.016 s m~1/3)
and a drag force with a-c} =0.5m™"! (determined with Brent’s
method). In each cell, 400 subgrid-cells are used to calculate the
porosity. The AP model simulation runs for about 43 s, which is a
speedup of about 124. The lower speedup in comparison to the first
test case is because the stability criterion has to be set to Cr = 0.1
in this example. The numerical simulation of rainfall is prone to
instabilities because of small water depths and the presence of
the mass source (Murillo et al., 2007).

4.4.3. Error analysis

4.4.3.1. Structural model errors. The HR model shows good agree-
ment with the experimental data. The discharge at the outlet of
the domain as calculated by the HR model is plotted against the
measured discharge in Fig. 16 (top left). In the first 10 s of the sim-
ulation, the model discharge overshoots the measured discharge.
This has been also observed in Cea et al. (2010), and is most likely
because at the beginning of the experiment the shear stress on the
thin water film in the domain is holding the water back. This can
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not be reproduced by the shallow water model. After the first
10 s, both hydrographs show very good agreement.

4.4.3.2. Scale errors. The CR model agrees with the HR model, yet
the agreement is not as good as in the first test case, especially
at the beginning of the simulation. In Fig. 16 (top right), the max-
imum and minimum values of the subgrid-cells are also plotted. It
is seen that the peak of the curve of maximum values is about 3
times larger than the peak of the CR model while the curve of min-
imum values is close to zero. Generally, it can be concluded that
the scale error underestimates the retention effect of the domain.

4.4.3.3. Porosity model errors. The AP model results are plotted
against the CR model results in Fig. 16 (bottom left) and against
the experimental results in Fig. 16 (bottom right). The AP model
results show a similar evolution as the CR model results. The major
difference between both curves is at the beginning of the simula-
tion. The AP model undershoots the CR model results. Yet, as can
be seen in Fig. 16 (bottom right), it better matches the measured
discharge at the end of the domain. Fig. 17 shows a sensitivity anal-
ysis with regard to the subgrid-cell number, from which it is con-
cluded that the model is sensitive to the subgrid-cell number.
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Fig. 17. Rainfall-runoff in an idealized urban catchment: Sensitivity of the subgrid-
cell number on the AP model results.
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Fig. 16. Rainfall-runoff in an idealized urban catchment: HR model results for discharge at the outlet of the domain compared with experimental data (Cea et al., 2010) (top
left), CR model results for discharge at the outlet compared with HR model results, dotted lines denote the minimum and maximum values inside the coarse cell (top right),
AP model results for discharge at the outlet compared with CR model results (bottom left), AP model results for discharge at the outlet compared with experimental data (Cea

et al.,, 2010) (bottom right).
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Fig. 18. Rainfall-runoff in an idealized urban catchment: Model validation with rainfall intensity i = 180 mm/h, HR model results for discharge at the outlet of the domain
compared with experimental data (Cea et al., 2010) (top left), CR model results for discharge at the outlet compared with HR model results, dotted lines denote the minimum
and maximum values inside the coarse cell (top right), AP model results for discharge at the outlet compared with CR model results (bottom left), AP model results for
discharge at the outlet compared with experimental data (Cea et al., 2010) (bottom right).

Apparently, a grid convergence test should be carried out for the
subgrid-cell number for each simulation. The subgrid-cell number
required to reach subgrid convergence increases if the subgrid-
scale obstacles are not aligned with the edges. Yet, even with a
small number of subgrid-cells, reasonable results can be obtained
(cf. Fig. 17).

4.4.3.4. Model validation. In order to show that the calibrated model
is valid for different hydraulic conditions, the rainfall intensity is
decreased to i = 180 mm/h and its duration is increased to 40 s.
The same mesh and model parameters are used.

Results are plotted in Fig. 18. The HR model results are com-
pared with the experimental data in Fig. 18 (top left). The hydro-
graph of the HR model is very similar to the previous simulation
with i = 300 mm/h, as it overshoots the experimental data in the
beginning but shows good agreement during the later stage of
the simulation. Similarly, the CR model results overshoot the HR
model at the beginning and undershoot it at later times (Fig. 18
(top right). The AP model results, plotted in Fig. 18 (bottom left)
shows good agreement with the CR model, only the first 20 s show
significant discrepancy. In Fig. 18 (bottom right), the AP model is
compared to the experimental data. The agreement between the
AP model and the experimental data is good. Comparing Fig. 18
to Fig. 16 shows that the AP model behavior is consistent for vary-
ing hydraulic conditions.

The errors, summarized in Tables 7 and 8, support that the
model results are consistent with the first simulation. The struc-
tural error is the smallest, the second smallest error is the scale
error and the largest error is the porosity error (cf. Table 8). How-
ever, if model results are compared to experimental results
(Table 7), the AP model error is less than the CR model error.

4.4.3.5. Summary. A summary is listed in Table 5. The total rainfall
discharge is calculated by multiplying rainfall intensity with the
area of the domain, which gives Q,u, =4.2-10"* m3/s. The HR
model error is two orders of magnitude smaller than Q,y,, but
the CR and AP model errors are only one order of magnitude smal-

Table 5

Rainfall-runoff in an idealized urban catchment: summary of shallow water model
formulations and corresponding meshes (HR: High-resolution, CR: averaged HR
model, AP: anisotropic porosity); Li-norm is calculated with regard to the exper-
imental results.

Model Mesh type Cell size (m) Cell nr. Time (s) Ly (m3/s)
HR Triangular 0.01-0.05 62,058 5340 6.0-10°°
CR Triangular 0.01-0.05 62,058 5340 24-107°
AP Square 0.125 320 43 20-10°°
Table 6
Rainfall-runoff in an idealized urban catchment: model
error (E;), scale error (E,) and porosity error (E3).
Type Ly (m?fs)
E; 6.0-10°°
E; 2.2-107°
Es 2.4-107°
Table 7

Rainfall-runoff in an idealized urban catchment: validation: summary of shallow
water model formulations and corresponding meshes (HR: High-resolution, CR:
averaged HR model, AP: anisotropic porosity); L;-norm is calculated with regard to
the experimental results.

Model Mesh type Cell size (m) Cell nr. Time (s) Ly (m3[s)
HR Triangular 0.01-0.05 62058 5340 13.107°
CR Triangular 0.01-0.05 62058 5340 26-107°
AP Square 0.125 320 43 1.7-107°

ler. The errors of type 1, 2 and 3 are given in Table 6. The structural
error (E;) is about two orders of magnitude smaller than the exper-
imental results and both scale (E;) and porosity (E3) errors are
about one order of magnitude smaller than the experimental
results. Although E3 is greater than E,, in this test case the scale
error seems to be the most significant error and the porous model
somehow negates the scale errors. Simulation runs with larger
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Table 8
Rainfall-runoff in an idealized urban catchment: validation:
model error (E;), scale error (E;) and porosity error (E3).

Type Ly (m?/s)
E 13.10°°
E, 20-10°5
Es 55-10°°

cells, e.g. Ax = 0.25 m, which are not shown here, fail to calculate
good results. The main reason is that blockage effects, which have
a big influence on the flow field, are underestimated for too large
cells. If the coarse cell is too large such that the building lies com-
pletely inside the cell, it is not taken into account for the edge
porosity and thus, its blockage effects can not be reproduced. This
model limitation might give a good upper bound for the size of the
coarse cell: it should be possible to capture the significant blockage
effects via the edge porosities. If the coarse cell length is chosen too
large, the subgrid obstacles can not occupy a significant portion of
the edge and their influence on the flow will be underestimated.
The authors suggest to use an edge length of about the obstacle
size if the obstacles are not arranged densely. For dense building
arrays, such as the first example, larger cells might be chosen. It
is noted that in Chen et al. (2012), a method to represent this type
of building blockage effects is shown which does not depend on
edge porosities. This method requires additional pre-processing
and is not used in this work.

5. Conclusions

A two-dimensional shallow water model with depth-dependent
anisotropic porosity is tested in four test cases. The main novelty of
the proposed model is the calculation of the porosities that
depends on the water depth.

The formulation of the porosities suggests that the model is
sensitive to the computational mesh. The model is tested in a the-
oretical test case to assess the sensitivity of the model to different
meshes and the drag coefficient a-c3. The computational mesh
determines the values of the volumetric and the areal porosities.
The areal porosities are the terms that introduce anisotropy to
the model. It is found that the mesh has to be constructed such that
the main obstructions are located at the cell edges. Otherwise, their
influence on the flow diminishes significantly. The sensitivity of
the drag coefficient is related to the areal porosities. If the flow is
mainly influenced by obstructions that block and divert the flow,
the head loss due to drag is not as significant. This means that in
cases where the areal porosities affect the flow significantly, the
model is less sensitive to the drag coefficient. However, if the
obstructions are located mainly inside the cells, the drag coefficient
becomes a more influential parameter. In all cases, the model
needs to be calibrated to determine the value a - c?.

In three case-studies, where measured data are available, three
types of errors are presented in L;-norm, as shown in Kim et al.
(2015). In all cases, the porosity model error has the same order
of magnitude as the scale error. The results are in agreement with
the case study conducted in Kim et al. (2015). Good agreement has
been achieved between the porosity model and the reference
solution.

The model was calibrated using the drag coefficient a - c3. Based
on the research in Sanders et al. (2008) and Ozgen et al. (2016) and
the current results, a value up to 10 m~! seems reasonable. After
this value, the drag coefficient does not change the simulation
results anymore. In the investigated cases, especially the range
between 0 and 1 m~! is found to alter the results significantly. It
is noted that this claim is based solely on the authors’ experience.
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Using the porosity model concept allows to run simulations on
significantly coarser grids. The speedup in all investigated cases is
significant, the anisotropic porosity model is about three orders of
magnitude faster than the high-resolution model. The main reason
behind the speedup is of course the reduced cell number.

Limitations of the presented porosity model are its mesh depen-
dency, which means that different results may be obtained for the
same case if different meshes are used and the ambiguity of the
drag coefficient approximation. Further systematic research that
addresses these issues would certainly improve these type of mod-
els’ accuracy and reliability.
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