## Effekte der spezifischen Oberfläche von Li/MgO-Katalysatoren bei der oxidativen Kopplung von Methan

vorgelegt von Dipl.-Ing. Yunfei Kuo Jiang-Xi (China)

Von der Fakultät III – Prozesswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften – Dr.-Ing. –

genehmigte Dissertation

Promotionsausschuss

Vorsitzender: Univ.-Prof. Dr.-Ing. Jörg SteinbachGutachter: Univ.-Prof. Dr. rer. nat. Frank BehrendtGutachter: Univ.-Prof. Dr. rer. nat. Martin Lerch

Tag der wissenschaftlichen Aussprache: 17.Juni 2005

# Danksagung

Da eine solche Arbeit nicht ohne Hilfe durchgeführt werden kann, möchte ich mich bei allen bedanken, die zu ihrem Gelingen beigetragen haben.

Insbesondere bedanke ich mich bei Herrn Prof. Dr. rer. nat. Frank Behrendt für die Betreuung dieser Arbeit, das stets freundliche Arbeitsklima und seine ständige Diskussionsbereitschaft.

Weiterhin gilt mein Dank Herrn Prof. Dr. rer. nat. Martin Lerch für die Durchführung der XRD-Messungen sowie die Übernahme des Koreferats.

Für die Übernahme des Vorsitzes im Promotionsausschuss danke ich Herrn Prof. Dr.-Ing. Jörg Steinbach.

Auch den Mitarbeitern des RDH sei an dieser Stelle gedankt. Ein besonderer Dank gilt Frau Birgit Wilmes und Herrn Nico Zobel wegen ihrer wissenschaftlichen und kollegialen Unterstützung. Darüber hinaus möchte ich mich bei allen Mitarbeiterinnen des chemischen Labors bedanken. Insbesondere geht mein Dank an Frau Felicitas Dietrich, Frau Ingrid Niehuus und Frau Birgit Packeiser für die Durchführung der BET-Messungen.

# Inhaltsverzeichnis

| 1        | Ein | leitung                                          | 1  |
|----------|-----|--------------------------------------------------|----|
|          | 1.1 | Nutzungsmöglichkeiten von Erdgas                 | 2  |
|          | 1.2 | Oxidative Kopplung von Methan                    | 3  |
|          | 1.3 | Aufgabenstellung                                 | 4  |
| <b>2</b> | Der | $\cdot Li/MgO-Katalysator$                       | 7  |
|          | 2.1 | Reaktionsmechanismus                             | 7  |
|          | 2.2 | Primärreaktionen                                 | 11 |
|          |     | 2.2.1 Methanaktivierung                          | 11 |
|          |     | 2.2.2 Sauerstoffaktivierung                      | 15 |
|          |     | 2.2.3 Ethanbildung                               | 17 |
|          |     | 2.2.4 $CO_2$ -Bildung                            | 18 |
|          | 2.3 | Sekundärreaktionen                               | 19 |
|          |     | 2.3.1 Ethan zu Ethen                             | 20 |
|          |     | 2.3.2 $C_2$ -Kohlenwasserstoffe zu $CO_x$        | 21 |
|          |     | 2.3.3 CO-Entstehung und Weiterreaktion zu $CO_2$ | 23 |
| 3        | Ver | suchsanlage                                      | 25 |
|          | 3.1 | Reaktoreinheit                                   | 26 |
|          | 3.2 | Durchführung                                     | 27 |
| 4        | Kat | alysatorcharakterisierung                        | 29 |
|          | 4.1 | Präparation                                      | 29 |
|          | 4.2 | Charakterisierung                                | 32 |
|          |     | 4.2.1 BET-Messungen                              | 32 |
|          |     | 4.2.2 REM-Aufnahmen                              | 33 |

|          |                                       | 4.2.3                      | Lithiumbestimmung                              | 34 |  |  |
|----------|---------------------------------------|----------------------------|------------------------------------------------|----|--|--|
|          |                                       | 4.2.4                      | XRD-Messungen                                  | 36 |  |  |
|          | 4.3                                   | Löslic                     | hkeit von Lithium in MgO                       | 38 |  |  |
| <b>5</b> | Kat                                   | alysat                     | orscreening                                    | 43 |  |  |
|          | 5.1                                   | Einflu                     | ss der Vorläuferkomponenten                    | 43 |  |  |
|          | 5.2                                   | Einflu                     | ss der Kalzinierungsbedingungen                | 47 |  |  |
|          |                                       | 5.2.1                      | Kalzinierungsatmosphäre                        | 47 |  |  |
|          |                                       | 5.2.2                      | Kalzinierungstemperatur                        | 49 |  |  |
|          | 5.3                                   | Einflu                     | ss des Lithiumgehalts                          | 51 |  |  |
|          |                                       | 5.3.1                      | Versuche mit konstanter Katalysatoreinwaage    | 52 |  |  |
|          |                                       | 5.3.2                      | Versuche mit konstantem Katalysatorfüllvolumen | 54 |  |  |
|          |                                       | 5.3.3                      | Stabilität                                     | 56 |  |  |
| 6        | Variation der Reaktionsbedingungen 59 |                            |                                                |    |  |  |
|          | 6.1                                   | Verwe                      | ilzeit                                         | 59 |  |  |
|          | 6.2                                   | $\mathrm{CH}_4/\mathrm{C}$ | $\mathcal{D}_2$ -Verhältnis                    | 62 |  |  |
|          | 6.3                                   | $\rm CO_2$ -Z              | Zudosierung                                    | 64 |  |  |
|          |                                       | 6.3.1                      | Einfluss auf die Katalysatoraktivität          | 66 |  |  |
|          |                                       | 6.3.2                      | Einfluss auf die Katalysatorstabilität         | 70 |  |  |
| 7        | Effekte der Katalysatoroberfläche 73  |                            |                                                |    |  |  |
|          | 7.1                                   | Präpa                      | ration und Charakterisierung                   | 75 |  |  |
|          | 7.2                                   | Aktivi                     | tätsmessungen                                  | 81 |  |  |
| 8        | $\beta$ -N                            | MR                         |                                                | 87 |  |  |
|          | 8.1                                   | Prinzi                     | p der $\beta$ -NMR                             | 87 |  |  |
|          | 8.2                                   | <sup>8</sup> Li-So         | ndenkern                                       | 89 |  |  |
|          | 8.3                                   | In-situ                    | ı Reaktor                                      | 91 |  |  |
|          |                                       | 8.3.1                      | Reaktorgeometrie                               | 92 |  |  |
|          |                                       | 8.3.2                      | Reaktorwerkstoff                               | 93 |  |  |
|          |                                       | 8.3.3                      | Reaktorheizung                                 | 98 |  |  |
|          |                                       | 8.3.4                      | Wärmedämmung                                   | 98 |  |  |
|          |                                       | 8.3.5                      | Inbetriebnahme                                 | 99 |  |  |

\_\_\_\_\_

| 9 Zusammenfassung und Ausblick | 103 |
|--------------------------------|-----|
| Nomenklatur                    | 107 |
| Abkürzungsverzeichnis          | 109 |
| Werkstoffe                     | 111 |
| Literaturreferenzen            | 115 |

# Abbildungsverzeichnis

| 1.1 | Weltweite Erdgasreserven und ihre Reichweite                                                                                                                             | 1  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1.2 | Konversionsmöglichkeiten zur stofflichen Nutzung von Methan $\ .\ .$ .                                                                                                   | 2  |
| 2.1 | Katalytischer Zyklus für das Li/MgO Katalysator<br>system $\ .$                                                                                                          | 8  |
| 2.2 | Gittergeometrie von Johnson et al.                                                                                                                                       | 9  |
| 2.3 | Sauerstoff-Reaktionspfad während der OKM an Li/MgO $~\ldots~\ldots~\ldots$                                                                                               | 17 |
| 3.1 | Fließbild der Versuchsanlage zur Aktivitätsmessung                                                                                                                       | 25 |
| 3.2 | Skizze der Komponenten des Wirbelkammerreaktors                                                                                                                          | 26 |
| 4.1 | REM-Aufnahmen von reinem MgO und K-CO-L7                                                                                                                                 | 33 |
| 4.2 | REM-Aufnahmen von reinem $Mg(OH)_2$ und K-HH-L7                                                                                                                          | 34 |
| 4.3 | REM-Aufnahmen von reinem $Mg(NO_3)_2$ und K-NN-L7-1                                                                                                                      | 34 |
| 4.4 | XRD-Untersuchungen der Li/MgO-Katalysatoren                                                                                                                              | 36 |
| 4.5 | Mögliche Interaktionen zwischen den Lithiumspezies                                                                                                                       | 37 |
| 4.6 | Methan- und Sauerstoffumsatz von SiC und ${\rm Li}_2{\rm CO}_3$                                                                                                          | 40 |
| 4.7 | Produktausbeute von SiC und $Li_2CO_3$                                                                                                                                   | 41 |
| 5.1 | Vorläuferkomponenten, Methan- und Sauerstoffumsatz                                                                                                                       | 44 |
| 5.2 | Vorläuferkomponenten, C <sub>2</sub> -Ausbeute und C <sub>2</sub> -Selektivität $\ldots \ldots \ldots$                                                                   | 45 |
| 5.3 | Vorläuferkomponenten, $\mathrm{C}_{2}\mathrm{H}_{4}\text{-}\mathrm{Ausbeute}$ und $\mathrm{C}_{2}\mathrm{H}_{4}/\mathrm{C}_{2}\mathrm{H}_{6}\text{-}\mathrm{Verhältnis}$ | 46 |
| 5.4 | Kalzinierungsatmosphäre, Methan- und Sauerstoffumsatz                                                                                                                    | 48 |
| 5.5 | Kalzinierungsatmosphäre, C <sub>2</sub> -Ausbeute und C <sub>2</sub> -Selektivität                                                                                       | 48 |
| 5.6 | Kalzinierungstemperatur, Methan- und Sauerstoffumsatz                                                                                                                    | 49 |
| 5.7 | Kalzinierungstemperatur, C <sub>2</sub> -Ausbeute und C <sub>2</sub> -Selektivität $\ldots \ldots$                                                                       | 50 |
| 5.8 | Einfluss des Lithiumgehalts auf den Methanumsatz                                                                                                                         | 53 |
| 5.9 | Selektivität/Ausbeute in Abhängigkeit vom Lithiumgehalt $\ .\ .\ .\ .$                                                                                                   | 54 |

| 5.10 | Aktivitäten als Funktion des Lithiumgehalts                                                                                              | 55  |
|------|------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.11 | Aktivität über Versuchsdauer                                                                                                             | 56  |
| 5.12 | Ausbeute und $\mathrm{C_2H_4/C_2H_6}\text{-}\mathrm{Verh\"ältnis}$ über Versuchsdauer                                                    | 58  |
| 6.1  | Einfluss der mod. Verweilzeit für T=700°C                                                                                                | 60  |
| 6.2  | Produkt-Selektivitäten als Funktion der mod. Verweilzeit                                                                                 | 60  |
| 6.3  | Einfluss der mod. Verweilzeit auf C <sub>2</sub> -Ausbeute und Selektivität                                                              | 61  |
| 6.4  | Effekt des CH <sub>4</sub> /O <sub>2</sub> -Verhältnisses für T=750°C $\hdots$                                                           | 63  |
| 6.5  | Einfluss des CH <sub>4</sub> /O <sub>2</sub> -Verhältnisses auf C <sub>2</sub> H <sub>4</sub> /C <sub>2</sub> H <sub>6</sub> -Verhältnis | 64  |
| 6.6  | Effekt des $CO_2$ -Partialdrucks auf die Umsätze $\ldots \ldots \ldots \ldots \ldots \ldots$                                             | 66  |
| 6.7  | Einfluss des $CO_2$ -Partialdrucks auf Produktselektivitäten                                                                             | 67  |
| 6.8  | Effekt des $CO_2$ -Partialdrucks auf die Aktivitäten                                                                                     | 68  |
| 6.9  | Effekt des $CO_2$ -Partialdrucks auf die Aktivitäten                                                                                     | 69  |
| 6.10 | Umsatz über Versuchdauer                                                                                                                 | 70  |
| 6.11 | C <sub>2</sub> -Selektivität und C <sub>2</sub> -Ausbeute über Versuchsdauer $\hdots$                                                    | 70  |
| 6.12 | Produktselektivitäten über Versuchsdauer                                                                                                 | 71  |
| 7.1  | Methanumsatz als Funktion der Oberfläche                                                                                                 | 74  |
| 7.2  | Aktivität als Funktion der Oberfläche                                                                                                    | 75  |
| 7.3  | BET-Oberfläche in Abhängigkeit vom Aktivkohlegehalt                                                                                      | 77  |
| 7.4  | REM-Bilder von Li/MgO-Katalysatoren mit Aktivkohlezusatz $\ .\ .\ .$                                                                     | 78  |
| 7.5  | XRD-Untersuchungen an Li/MgO-Katalysatoren mit Aktivkohlezusatz                                                                          | 79  |
| 7.6  | Li-Konzentration in Abhängigkeit der BET-Oberfläche                                                                                      | 81  |
| 7.7  | Aktivitäten als Funktion der BET-Obetfläche bei $725^{\circ}\mathrm{C}$                                                                  | 82  |
| 7.8  | Methanum<br>satz<br>rate als Funktion der BET-Oberfläche bei $725^{\circ}\mathrm{C}$ .<br>                                               | 82  |
| 7.9  | Effekt der BET-Oberfläche auf die Katalysatoraktivität                                                                                   | 83  |
| 7.10 | OKM-Aktivitäten von Li/MgO-Katalysatoren $\ .$                                                                                           | 84  |
| 7.11 | Ethen/Ethan-Verhältnis als Funktion der BET-Oberfläche $\ .\ .\ .\ .$                                                                    | 85  |
| 7.12 | Methanum<br>satz<br>rate als Funktion der BET-Oberfläche bei $800^{\circ}\mathrm{C}$ .<br>                                               | 86  |
| 8.1  | Funktionsprinzip der $\beta$ -NMR                                                                                                        | 88  |
| 8.2  | $\beta\text{-Zerfall}$ eines <sup>8</sup> Li-Kernes                                                                                      | 90  |
| 8.3  | Lichtpunkt-Aufnahme des <sup>8</sup> Li-Zerfalls an einen Szintillator $\ . \ . \ . \ .$                                                 | 90  |
| 8.4  | Seitenansicht des in-situ Reaktors                                                                                                       | 91  |
| 8.5  | Seiten- und Frontansicht der Reaktionskammer                                                                                             | 93  |
| 8.6  | Aktivität als Funktion der Temperatur                                                                                                    | 100 |

# Tabellenverzeichnis

| 3.1 | Zusammensetzung und Reinheit der verwendeten Gase                | 27  |
|-----|------------------------------------------------------------------|-----|
| 3.2 | Mit dem GC erfasste Spezies und ihre Retentionszeit              | 28  |
| 4.1 | BET-Oberfläche der MgO-Vorläufer und der Katalysatorprobe        | 32  |
| 4.2 | Lithiumgehalt der verschiedenen Katalysatorproben                | 35  |
| 5.1 | BET-Oberfläche und Lithiumanteil sowie XRD-Phasen der Li/MgO $$  | 51  |
| 5.2 | Einfluss des Lithiumanteils auf die Katalysatoraktivität         | 52  |
| 5.3 | Lithiumanteil vor und nach dem Dauerversuch                      | 57  |
| 6.1 | Lithiumanteil ohne und mit $\rm CO_2$ -Zugabe                    | 72  |
| 7.1 | Daten der mit Aktivkohle hergestellten Li/MgO-Katalysatoren      | 76  |
| 7.2 | Chemische Zusammensetzung der Li/MgO-Katalysatoren               | 80  |
| 8.1 | Materialien und ihre charakteristischen Größen                   | 97  |
| A.1 | Chemische Zusammensetzung des Heizleiters                        | 111 |
| A.2 | Materialzusammensetzung des TS 1.4828 Stahls $\ .\ .\ .\ .\ .$ . | 111 |
| A.3 | Materialeigenschaften des Isolierungsmaterials                   | 112 |
| A.4 | Zusammenfassung der Materialeigenschaften                        | 113 |
|     |                                                                  |     |



# Einleitung

Dem Erdgas und seiner Hauptkomponente Methan  $CH_4$  wurde im letzten Jahrzehnt ein beständig steigendes Interesse entgegengebracht, da es zum einen als Grundlage für flüssige Antriebsstoffe dienen kann, zum anderen aber die Umwelt belastet, wenn es ungenutzt austritt oder abgefackelt wird.



Abb. 1.1: Weltweite Erdgasreserven und ihre statische Reichweite [1]

Schon seit Ende der achtziger Jahre übertrifft die Menge der bekannten Erdgasvorkommen die der Erdölreserven, weshalb Erdgas als Energieträger und Rohstoff eine sehr wichtige Stellung in Forschung und Praxis erhalten hat. Zudem wurden in jüngster Zeit riesige Gashydratvorkommen entdeckt, die unter dem Meeresgrund in kristalliner Form lagern. Unter Normaldruck schmelzen sie zu Wasser und gasförmigem Methan. In Abbildung 1.1 sind die weltweit gesicherten Erdgasreserven wiedergegeben. Sie erstrecken sich auf etwa 160 Bill.  $Nm^3$  und besitzen eine statische Reichweite<sup>1</sup> von ca. 60 Jahren.

Prinzipiell kann Erdgas leicht mittels Pipelines zum Verbraucher transportiert werden, oft lassen geographische oder politische Gegebenheiten dies jedoch nicht zu. In solchen Fällen kann dieser Rohstoff momentan nicht genutzt werden, genauso wenig wie Erdgas, das bei der Rohölförderung frei wird. Es wird normalerweise abgefackelt und stellt mit den entstehenden Schadstoffen eine nicht vertretbare ökologische Belastung dar. Um solches Erdgas zu nutzen, wurden in den letzten Jahren verstärkt Bemühungen unternommen, es zu höheren Kohlenwasserstoffen umzuwandeln, die energetisch wertvoller sind. Dies sind derzeit meist Ethen, Ethan oder Methanol.

## 1.1 Nutzungsmöglichkeiten von Erdgas

Zur Konversion von Methan werden zwei grundsätzlich verschiedene Wege, wie sie in Abbildung 1.2 dargestellt sind, verfolgt. Zum einen wird mittels gut erprobter Technologien Erdgas zu einem Synthesegas konvertiert, welches sich wiederum zu Methanol oder zu anderen Kohlenwasserstoffen (z. B. über die Fischer-Tropsch-Synthese) wandeln läßt.



Abb. 1.2: Konversionsmöglichkeiten zur stofflichen Nutzung von Methan [2-6]

<sup>&</sup>lt;sup>1</sup>Die statische Reichweite ist das Verhältnis der heute als wirtschaftlich abbaubar und bekannten Reserven zu dem heutigen jährlichen Verbrauch.

Das Problem hierbei ist, dass bei solchen sogenannten indirekten Verfahren mehrere Prozessschritte und somit komplizierte und teure Anlagen notwendig sind, um das Endprodukt zu erhalten. Bei der Vorortverwertung von Erdgas sind direkte Verfahren, die ein Synthesegas vermeiden, einfacher zu realisieren. Aus diesem Grund befasst sich die Forschung insbesondere mit der direkten Konversion von Methan zu Ethan und der Dehydrierung zu Ethen, die unter dem Begriff "Oxidative Kopplung von Methan" (OKM) zusammengefasst sind. In den letzten Jahren entstanden auch einige Vorschläge für Prozessschemata zur direkten Konversion von Methan zu Ethen und leichten Benzinen. Allerdings sind diese direkten Verfahren unter den heutigen Marktbedingungen noch unwirtschaftlich, da zum einen zusätzlich Sauerstoff eingesetzt werden muss, zum anderen die Raum-Zeit-Ausbeute der verwendeten Katalysatoren für eine technische Realisierung noch zu gering ist (ca. 20 % an Ethan und Ethen) [7,8].

Aber als eigentliches Problem ist hierbei die Totaloxidation zu Kohlenstoffdioxid anzusehen, wie sich aus den Reaktionsenthalpien der Hauptreaktionen der oxidativen Methankopplung ergibt:

$$2 \operatorname{CH}_4 + \frac{1}{2} \operatorname{O}_2 \to \operatorname{C}_2 \operatorname{H}_6 + \operatorname{H}_2 \operatorname{O} \qquad \Delta \operatorname{H}_{\mathrm{R}}^{\circ} = -177 \text{ kJ/mol}$$
(1.1)

$$C_2H_6 + \frac{1}{2} O_2 \rightarrow C_2H_4 + H_2O \qquad \Delta H_R^\circ = -106 \text{ kJ/mol}$$
(1.2)

$$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O \qquad \Delta H_R^\circ = -803 \text{ kJ/mol}$$
(1.3)

$$C_2H_6 + \frac{7}{2} O_2 \to CO_2 + 3 H_2O \qquad \Delta H_R^\circ = -1429 \text{ kJ/mol}$$
(1.4)

Dies führt nicht nur zu Ineffizienz des Prozesses, sondern stellt wegen der Exothermie der Oxidationsreaktion auch den Anlagenbau vor Schwierigkeiten.

## 1.2 Oxidative Kopplung von Methan

Man ist sich heute einig, dass die Oxidative Kopplung von Methan ein komplexes Netzwerk zahlreicher Teilreaktionen ist, die zum Teil auf der Katalysatoroberfläche und zum Teil in der freien Gasphase abläuft. Diese Komplexität beruht auch darauf, dass einerseits eine reaktive Spezies aus verschiedenen, homogenen und/oder heterogenen Reaktionsschritten gebildet werden kann, andererseits sind einige Radikale in einer Vielzahl von Elementarreaktionen involviert. Die Funktion der Katalysatoren besteht dabei, vereinfacht gesprochen, darin, durch Wasserstoffabspaltung von Methan an bestimmten Oberflächenzentren Methylradikale zu erzeugen und in die Gasphase freizusetzen. Durch Rekombination dieser Radikale wird Ethan als primäres Reaktionsprodukt gebildet. Ein Katalysator, der in der Lage ist, Methan durch Aufspaltung der C-H-Bindung zu aktivieren, wird auch Ethan ( $E_{Bind, Ethan} = 410,62 \text{ kJ/mol}$ ) in analoger Weise umsetzen, und zwar wegen der niedrigeren Bindungsenergie sogar leichter als Methan ( $E_{Bind, Methan} = 435,76 \text{ kJ/mol}$ ). Als Konsequenz werden neben Methylradikalen auch Ethylradikale erzeugt, die im Weiteren durch Abspaltung von Wasserstoff zu Ethen abreagieren. Anders als Ethan ist die C-H-Bindungsstärke von Ethen ( $E_{Bind, Ethen} = 443,56 \text{ kJ/mol}$ ) wegen der C=C-Doppelbindung größer als bei Methan, so dass Ethen an geeigneten Katalysatoren nur in untergeordnetem Umfang durch Spaltung der C-H-Bindung aktiviert wird.

Neben den gewünschten Reaktionen treten sowohl in der Gasphase als auch am Katalysator eine Reihe von konkurrierenden Nebenreaktionen auf, die zur Bildung von Totaloxidationsprodukten führen. Zum einen können die erzeugten Kohlenwasserstoffradikale sowie die Produkte Ethan und Ethen in der Gasphase durch molekularen Sauerstoff oder durch verschiedene, im Verlauf der Reaktion entstandene, Radikale oxidiert werden. Auch eine Sekundäraktivierung von Methan, das unter den üblichen Bedingungen gegenüber molekularem Sauerstoff weitgehend beständig ist, ist durch solche reaktive Spezies denkbar. Zum anderen besteht die Möglichkeit, dass die gebildeten Kohlenwasserstoffe erneut in Wechselwirkung mit der Katalysatoroberfläche treten und dort durch aktivierte Sauerstoffspezies angegriffen werden.

Um die oxidative Methankopplung wirtschaftlich konkurrenzfähig zu gestalten, muss insbesondere die Selektivität bei einem hohen Umsatzgrad gesteigert werden. Dazu ist es notwendig, genaue quantitative Kenntnisse über die ablaufenden chemischen Vorgänge zu haben. Hierbei ist ein detailliertes Verständnis solcher Prozesse basierend auf experimentellen Untersuchungen wie auch der mathematischen Modellbildung und Simulation unverzichtbar. Dies ist die Motivation für eine intensive wissenschaftliche Beschäftigung mit den Konversionsprozessen des Methans.

## 1.3 Aufgabenstellung

Das Erschließen der Zusammenhänge zwischen Aktivität und Selektivität eines Katalysators und seiner Zusammensetzung sowie seiner Präparation sind wichtige Schritte auf dem Weg zur Herstellung und Optimierung geeigneter Katalysatoren. Dabei nimmt die spezifische Oberfläche des Katalysators bei der heterogenen Katalyse eine Schlüsselposition ein. In der vorliegenden Arbeit soll speziell der Li/MgO-Katalysator im Hinblick auf seine katalytischen Eigenschaften bei der Methankopplung untersucht werden. Dabei gilt das Li/MgO-System neben zahlreichen anderen oxidischen Katalysatoren (Mn, Cd, Sm, Pt, Ce, Pb, Bi, Nd, La) als eines der aktivsten unter der Erdalkalimetalloxiden. Ziel ist es, durch Parametervariation bei der Synthese die Leistung des Li/MgO-Katalysators für die OKM-Reaktionen zu steigern. Von Interesse ist hierbei insbesondere die Änderung der spezifischen Oberfläche und die sich daraus ergebenden Effekte auf die Katalysatorleistung. Daneben werden geeignete Reaktionsbedingungen für die Durchführung der OKM sowie der Einfluss einer  $CO_2$ -Zugabe auf die katalytische Aktivität und Stabilität ermittelt.

Außerdem wird ein Mikroreaktor für die Methode der in-situ  $\beta$ -strahlungsdetektierten kernmagnetischen Resonanz ( $\beta$ -NMR) konzipiert und getestet. Durch die in-situ  $\beta$ -NMR-Messungen können die strukturellen und dynamischen Auswirkungen der Li-Dotierung unter Reaktionsbedingungen erfasst werden.

# Kapitel 2

# Der Li/MgO-Katalysator

Von den unterschiedlichen Katalysatorsystemen für die OKM wurde das Li/MgO-Katalysatorsystem bisher wohl am eingehendsten untersucht. Dieses Katalysatorsystem geht auf Arbeiten von *Ito* und *Lunsford et al.* [9–11] zurück. Sie führten sehr detaillierte Untersuchungen an den mit Lithium dotierten MgO-Katalysatoren durch und konnten damit Ausbeuten an C<sub>2</sub>-Kohlenwasserstoffen (C<sub>2</sub>H<sub>6</sub> und C<sub>2</sub>H<sub>4</sub>) in der Größenordnung von etwa 20 % erzielen. Sie testeten aber nicht nur die Aktivität und Selektivität ihrer Katalysatoren, sondern bemühten sich außerdem, Einblicke in den Mechanismus der oxidativen Methankopplung zu erhalten.

#### 2.1 Reaktionsmechanismus

Für das Li/MgO-Katalysatorsystem schlugen *Ito* und *Lunsford et al.* für den Primärschritt der Ethenbildung aus Methan folgenden Mechanismus vor:

$$\left[\mathrm{Li}^{+}\mathrm{O}^{-}\right] + \mathrm{CH}_{4} \rightarrow \left[\mathrm{Li}^{+}\mathrm{O}^{-}\right]\mathrm{H} + \mathrm{CH}_{3}^{\cdot}$$

$$(2.1)$$

$$CH_3^{\bullet} + CH_3^{\bullet} \to C_2H_6 \tag{2.2}$$

$$2\left[\mathrm{Li}^{+}\mathrm{O}^{-}\right]\mathrm{H} \rightarrow \left[\mathrm{Li}^{+}\mathrm{O}^{2-}\right] + \left[\mathrm{Li}^{+}\mathrm{V}_{\mathrm{O}}\right] + \mathrm{H}_{2}\mathrm{O}$$
(2.3)

$$[\mathrm{Li}^{+}\mathrm{O}^{2-}] + [\mathrm{Li}^{+}\mathrm{V}_{\mathrm{O}}] + \frac{1}{2} \mathrm{O}_{2} \to 2 [\mathrm{Li}^{+}\mathrm{O}^{-}] , \qquad (2.4)$$

wobei  $V_O$  eine Sauerstoff-Leerstelle darstellt. Im Folgenden werden Oberflächendefekte in eckigen Klammern dargestellt, die außerhalb der Klammern stehenden Komponenten werden als Adsorbat angesehen. Die Reaktion (2.4) darf hier aber nicht als Elementarreaktion verstanden werden, sondern sie beinhaltet noch zahlreiche Reaktionen wie die O<sub>2</sub>-Dissoziation, Elektronenübertragung, Ionenwanderung, etc. Der erste Schritt besteht in der Bildung aktiver Zentren, die hier mit an Lithium-Kationen stabilisierten O<sup>-</sup>-Ionen identifiziert werden. Dieser Prozess erfolgt thermisch durch Diffusion von Li<sup>+</sup> zu substituierbaren Mg<sup>2+</sup>-Gitterstellen, dabei entsteht wegen der geringeren Wertigkeit des Lithiums eine Sauerstoff-Leerstelle, welche mit Gasphasensauerstoff zu der Bildung von [Li<sup>+</sup>O<sup>-</sup>]-Zentren führt.

In einem nächsten Schritt wird ein Methylradikal durch Abspaltung eines Wasserstoffatoms von Methan an den aktiven  $[Li^+O^-]$ -Zentren erzeugt. Die Regeneration der aktiven Zentren kann über die Bildung eines Wassermoleküls ablaufen. Ethan entsteht aus der Rekombination zweier Methylradikale in der Gasphase nahe der Katalysatoroberfläche und kann anschließend an einem  $[Li^+O^-]$ -Zentrum zu Ethen dehydriert werden. In Abbildung 2.1 ist der Reaktionszyklus für dieses Katalysatorsystem bildlich dargestellt.



Abb. 2.1: Katalytischer Zyklus für das Li/MgO Katalysatorsystem nach Ito und Lunsford

 $[Li^+O^-]$ -Zentren wurden tatsächlich mit Electron Paramagnetic Resonance (EPR) beobachtet und besitzen nach Literaturangaben eine maximale Dichte von  $10^{16}$ - $10^{17}$  cm<sup>-3</sup> (bzw. g<sup>-1</sup>, das sind etwa 1 ppm aller O-Atome in MgO) [12–14]. Die Voraussetzung hierfür war jedoch, dass die Proben (frisch oder nach Reaktion) eine vorgeschaltete Behandlung mit Luft bei 650°C erfuhren. Die unter Reaktionsbedingungen bei 470°C entstehenden Methylradikale wurden in einer Argon-Matrix aufgefangen und wurden u. a. von *Lunsford et al.* [9, 11, 12, 15] experimentell nachgewiesen. Zwischen der Anzahl dieser Spezies und der Intensität des EPR-Signals von [Li<sup>+</sup>O<sup>-</sup>]-Zentren bestand eine sehr gute Korrelation [10–12]. Ein direkter Zusammenhang zwischen der [Li<sup>+</sup>O<sup>-</sup>]-Konzentration auf der Oberfläche und dem Methanumsatz lieferten X-ray Photoelectron Spectroscopy-Untersuchungen (XPS) von *Peng et al.* [16]. Daraus folgerten die Autoren, dass Methan an diesen Zentren aktiviert werden muss. Bei der kritischen Beurteilung des von *Ito* und *Lunsford et al.* vorgeschlagenen Modells sollte jedoch folgendes berücksichtigt werden:

- Neben den heterogen katalysierten Reaktionen laufen in der Gasphase auch homogene Reaktionen ab, deren Ausmaß mit steigender Temperatur an Bedeutung gewinnt. Aus diesem Grund sollte deren Nachweis nicht als endgültiger Beweis für den durchaus als wahrscheinlich anzusehenden Mechanismus gewertet werden.
- Die Regeneration der aktiven Zentren bedingt die Entfernung eines Gittersauerstoffs aus dem Gittersystem, welche als hoch endotherm angesehen wird (z. B. das Entfernen eines Sauerstoffatoms aus der MgO(100)-Oberfläche wird mit einem theoretischen Energiewert von 712,30 kJ/mol angenommen [17,18]). Folglich ist das Entfernen des Sauerstoffs, im Gegensatz zu experimentellen Daten, der geschwindigkeitsbestimmende Schritt in diesem katalysierten Reaktionsnetz und nicht etwa die Wasserstoffabspaltung [19, 20].
- Die bei der Regenerierung postulierte Wanderung eines Protons (H<sup>+</sup>) benötigt eine beträchtliche Energie, um die elektrostatische Anziehungskraft zwischen den gegensätzlich geladenen Spezies zu überwinden.

Diese Kritikpunkte wurden bei neueren Mechanismen wie den von Johnson et al. [21] vermieden. Wie oben ausgeführt, geschieht die Regenerierung des Li/MgO-Katalysators im Ito-Lunsford Mechanismus durch das Zusammenwirken zweier aktiver Zentren mit anschließender H<sub>2</sub>O-Abspaltung. Hierbei ist das Entfernen eines Gittersauerstoffs notwendig, welches als hoch endotherm angesehen wird.

Um diese Annahme zu vermeiden, führten Johnson et al. mit Hilfe einer ab initio Berechnung, wo die Geometrie der aktiven Zentren und die Energie der relevanten Zwischenspezies bestimmt werden, einen neuen Mechanismus für den Li/MgO ein [21]. In ihrem Modell wird das Li<sup>+</sup>-Ion in der zweiten Ebene der MgO(001)-Oberfläche eingebaut, direkt darüber befindet sich das O<sup>-</sup>-Ion. Diese Anordnung des Lithium-Kations wird von den meisten Autoren vertreten [18,22–25]. Das Lithium dient in erster Linie der Stabilisierung der aktiven O<sup>-</sup>-Spezies. Ba-



Abb. 2.2: Gittergeometrie von Johnson et al. [21]

sierend auf dieser Modellgeometrie wird der energetische Zustand der verschiedenen Spezies optimiert und die Reaktionsenthalpie der einzelnen Schritte berechnet. Aufgrund dieser Berechnungen kamen sie zu dem folgenden Mechanismus:

$$\left[\mathrm{Li}^{+}\mathrm{O}^{-}\right] + \mathrm{O}_{2} \ (\mathrm{g}) \to \left[\mathrm{Li}^{+}\mathrm{O}^{-}\right]\mathrm{O}_{2} \tag{2.5}$$

$$\operatorname{Li}^{+}\operatorname{O}^{-}]\operatorname{O}_{2} + \operatorname{CH}_{4}(g) \rightarrow \left[\operatorname{Li}^{+}\operatorname{O}^{-}\right]\operatorname{O}_{2}\operatorname{H} + \operatorname{CH}_{3}^{\cdot}(g)$$
(2.6)

$$\left[\mathrm{Li}^{+}\mathrm{O}^{-}\right]\mathrm{O}_{2}\mathrm{H} + \mathrm{CH}_{4}\ (\mathrm{g}) \rightarrow \left[\mathrm{Li}^{+}\mathrm{O}^{-}\right]\mathrm{O} + \mathrm{H}_{2}\mathrm{O} + \mathrm{CH}_{3}^{\bullet}\ (\mathrm{g}) \tag{2.7}$$

$$\left[\mathrm{Li}^{+}\mathrm{O}^{-}\right]\mathrm{O} + \mathrm{CH}_{4}(\mathrm{g}) \rightarrow \left[\mathrm{Li}^{+}\mathrm{O}^{-}\right]\mathrm{OH} + \mathrm{CH}_{3}^{\mathbf{\cdot}}(\mathrm{g})$$
(2.8)

$$\left[\mathrm{Li}^{+}\mathrm{O}^{-}\right]\mathrm{OH} + \mathrm{CH}_{4}\left(\mathrm{g}\right) \rightarrow \left[\mathrm{Li}^{+}\mathrm{O}^{-}\right] + \mathrm{H}_{2}\mathrm{O} + \mathrm{CH}_{3}^{\prime}\left(\mathrm{g}\right) \,. \tag{2.9}$$

Im Unterschied zum Ito-Lunsford Mechanismus kann dieser katalytische Zyklus mit einem aktiven Zentrum durchlaufen werden. Auch das Entfernen eines Gittersauerstoffs bei der Regenerierung entfällt und steht damit im Einklang mit dem experimentellen Befund, wonach der geschwindigkeitsbestimmende Schritt bei der OKM die C-H-Spaltung ist. Der Regenerierungszyklus ist dem auf Seite 16 dargestellten ähnlich. Neben den bekannten aktiven  $[Li^+O^-]$  können bei diesem Mechanismus auch andere Oberflächen-Defekte wie  $[Li^+O^-]O$  und  $[Li^+O^-]O_2$  für die H-Abspaltung wirksam sein [21]. Nach Meinung der Autoren wird dieser katalytische Zyklus durch experimentelle Befunde hinsichtlich des geschwindigkeitsbestimmenden Schritts und die Aktivierungsenergie für die Methanumsetzung gestützt. In früheren Arbeiten von *Roos et al.* leiteten die Autoren aus experimentellen Daten ein ähnliches Modell her, wobei sie im Gegensatz dazu von adsorbiertem Methan ausgingen [26].

Alternativ wurden auch sogenannten F-Zentren (Sauerstoff-Fehlstellen mit ein oder zwei Elektronen) vorgeschlagen, an welchen die C-H-Abspaltung stattfindet [14, 27, 28]. Das Lithium fördert hierbei die Bildung der F-Zentren. Dieser Ansatz hat sich aber nicht durchsetzen können, einerseits aufgrund fehlender experimenteller Befunde und andererseits sind die F-Zentren verschiedener Berechnungen zufolge energetisch ungünstiger als die O<sup>-</sup>-Zentren für die Wasserstoffabstraktion [29,30].

Eine Vielzahl von wissenschaftlichen Arbeiten beschäftigte sich in der Vergangenheit mit den Reaktionsmechanismen der OKM. Die in der Literatur beschriebenen Studien umfassen theoretische Arbeiten zur Aktivierung von Methan [18,31–36], spezifische Untersuchungen zum Nachweis aktiver Zentren an verschiedenen Katalysatoren sowie wichtiger Zwischenprodukte [9–12,37–39]. Auch sind Arbeiten mit isotopen-markierten Edukten [19, 20, 40–48] zur Aufklärung der wesentlichen Reaktionspfade und der Rolle des Gittersauerstoffs der Katalysatoren [20, 41, 49, 50], sowie vor allem klassische kinetische Untersuchungen, bei denen Umsätze, Ausbeuten oder auch Stoffmengenänderungsgeschwindigkeiten der beteiligten Reaktionspartner in Abhängigkeit der Versuchsbedingungen ermittelt wurden [33, 51–53], zu finden. Andererseits gibt es nur wenige Kinetikstudien, die sich speziell mit den Oberflächenprozessen der OKM befassen, entweder aufgrund der sich ergebenden Schwierigkeiten bei der Verknüpfung mit Gasphasen-Chemie oder aufgrund fehlender in-situ Techniken. Zwar sind einige spektroskopische Techniken wie EPR, XPS oder Laser-Raman-Spektroskopie für die Oberflächencharakterisierung im Einsatz, aber es fehlen vor allem direkte und effektive in-situ Messmethoden, die es erlauben, physikalische und chemische Untersuchungen des Katalysators unter verschiedenen Reaktionsbedingungen durchführen zu können. Konsequenz dessen sind Fehleinschätzungen von relevanten Daten und Zwischenspezies.

#### 2.2 Primärreaktionen

Verweilzeit-Experimente und Kinetikstudien belegen, dass Primär- und Sekundärreaktionen in dem komplexen Reaktionsnetzwerk der OKM koexistieren. Als Primärreaktionen werden die Methan- und Sauerstoffaktivierung sowie die Ethan- und Teile der Kohlenstoffdioxidbildung angesehen.

#### 2.2.1 Methanaktivierung

Obwohl die Aktivierung von gasförmigem Methan durch einen OKM-Katalysator Thema einer Vielzahl von Veröffentlichungen war, herrschen immer noch gegensätzliche Ansichten. Fragen, ob z. B. das Methan zunächst an die Katalysatoroberfläche adsorbiert wird und dann erst die Wasserstoffabspaltung stattfindet oder ob die Wasserstoffabspaltung nach einen Eley-Rideal Mechanismus verläuft, sind bis heute nicht eindeutig geklärt. Zwar ist man sich darüber einig, dass die Methanaktivierung über eine Spaltung einer C-H-Bindung erfolgen muss, aber es bleibt offen, ob die Spaltung

- (a) heterolytisch mit der Bildung von Methyl-Ionen  $\mathrm{CH}_3^+$ bzw.  $\mathrm{CH}_3^-$  [54,55] oder
- (b) homolytisch mit der direkten Bildung von Methylradikalen, welche dann in die Gasphase gelangen [11, 56, 57],

erfolgt.

Tatsächlich werden ohne jegliche kinetische Daten zwei Arten von Methanaktivierung diskutiert, entweder als voneinander abhängige oder unabhängige elementare Reaktionspfade:

 (i) die reversible Aktivierung, welche die chemische Aktivierung eines CH<sub>4</sub>-Moleküls durch die Spaltung einer C-H-Bindung mit anschließender Rekombination in der Gasphase zu Methan beinhaltet,  (ii) die irreversible Aktivierung, wobei die Bildung der Zwischenspezies (Methylradikal) und der Endprodukte (CO<sub>x</sub> und C<sub>2</sub>) oder eine Anreicherung von adsorbiertem Methan auf der Oberfläche kennzeichnend ist.

#### Reversible Methanaktivierung

Die einfachste und auch informativste Methode, um die reversible Methanaktivierung zu quantifizieren, ist das Messen des  $CH_4/CD_4$ -Isotopen-Gleichgewichtes unter OKM-Reaktionsbedingungen. Dabei wird eine äquimolare Gasmischung aus  $CH_4$  und  $CD_4$ in der Anwesenheit von O<sub>2</sub> über einen OKM-Katalysator geführt und anschließend die isotopen-markierten Produkte  $CH_3D$ ,  $CH_2D_2$  und  $CHD_3$  detektiert. Bei diesem Versuch wurde hauptsächlich singulärer Austausch während der Anfangsphase der Reaktion beobachtet:

$$CH_4 + CD_4 \rightarrow CH_3D + CHD_3$$
. (2.10)

Dieser schrittweise Austausch wurde dann auch durch die schnelle Pulsmethode in einem Temporal Analysis of Products-Reaktor (TAP) bestätigt [58]. In Versuchen unter niedrigen Drücken (sog. Knudsen-Region) mit einem  $CD_4$ -Puls war hauptsächlich die Umwandlung zu  $CHD_3$  zu beobachten, andere H-D-Kombination konnten nicht gefunden werden. Dieses Ergebnis deutet darauf hin, dass die vor der Pulsbeaufschlagung vorhandenen OH-Moleküle auf der Oberfläche in den Austausch involviert sind. Somit gilt es als sehr wahrscheinlich, dass die Initialisierung dieser reversiblen Methanaktivierung durch eine heterolytische Abstraktion eines H<sup>+</sup>-Ions an einem basischen  $O^{2-}$ -Zentrum auf der Oberfläche erfolgen muss. Das zurückgebliebene Methyl-Anion verbindet sich dann mit dem Oberflächen-Kation M<sup>n+</sup> gemäß:

$$CH_4 + M^{n+} + O^{2-} \rightleftharpoons CH_3^- M^{n+} + OH .$$
(2.11)

Für diesen Mechanismus ist auch die konkurrierende Adsorption von  $O_2$  und  $CO_2$ , welche ebenfalls im Reaktionsgemisch vorhanden sind, charakteristisch. Es bleibt aber offen, ob diese reversible Methanaktivierung eine Vorstufe der irreversiblen Methanumsetzung oder einfach eine Nebenreaktion darstellt.

#### Irreversible Methanaktivierung

Dass für die selektive Route zu  $C_2$ -Produkten Methan in Form eines Methylradikals aktiviert werden muss, welches dann in die Gasphase gelangt, ist unstrittig. In der Tat konnten seit den früheren Arbeiten von *Lunsford et al.* Radikale fernab der Oberfläche eindeutig mit Techniken wie Electron Spin Resonance (ESR) [59, 60], Matrix Isolation Electron Spin Resonance (MIESR) [15, 50, 61, 62] und Photoionisations-Massenspektrometrie [57] nachgewiesen werden. Hierbei stellt sich die Frage, wie die Methanaktivierung zu Methylradikalen verläuft, homolytisch oder heterolytisch?

Bei der **heterolytischen Spaltung** wird von einer bei der reversiblen Aktivierung gebildeten  $CH_3^-$ -Spezies ausgegangen, welche an Elektronenakzeptoren zu Methylradikalen reagieren:

$$\operatorname{CH}_{3}^{-} \to \operatorname{CH}_{3}^{\bullet} + \mathrm{e}^{-}$$
 (2.12)

Uber die Natur solcher Elektronenakzeptoren herrscht aber immer noch Unklarheit. Aus verschiedenen Untersuchungen geht lediglich hervor, dass nicht-reduzierbare Oxide wie das MgO als elektrophile Spezies fungieren können, welche dann in der Lage sind, dem  $CH_3^-$  ein Elektron zu entziehen.

Ein interessanter Punkt dieser Untersuchungen ist das relative Verhältnis der reversiblen Aktivierung (Schritt 1) zur irreversiblen Aktivierung (Schritt 2) und deren Anderung mit der Konzentration der Elektronenakzeptor-Zentren. Daraus geht der sogenannten Kinetische-Isotopen-Effekt (KIE) hervor, welcher das Verhältnis der CH<sub>4</sub>zur CD<sub>4</sub>-Umsetzungsgeschwindigkeit wiedergibt. Dieser Aspekt kann durch die Ergebnisse von Nelson et al. [19] veranschaulicht werden, sie haben für das Verhältnis der Umsetzungsgeschwindigkeit von CH<sub>4</sub>/CD<sub>4</sub>-Spaltung (Schritt 1) zur Reaktionsgeschwindigkeit der Methankopplung (Schritt 2) für den Li/MgO-Katalysator einen KIE-Wert von 1,60 (bei T =  $750^{\circ}$ C) gemessen. Ein KIE größer als Eins wird dann erwartet, wenn der geschwindigkeitsbestimmende Schritt die Spaltungsreaktion einer C-H- oder O-H-Bindung ist. Der KIE tendiert gegen Eins, falls andere Reaktionen geschwindigkeitsbestimmend sind [44, 50]. Kritisch muss man hier anmerken, dass bei den hohen Temperaturen (800°C) solche KIE-Effekte eigentlich nicht zu erwarten sind. Außerdem beziehen sich die KIEs auf ein komplexes Reaktionsnetzwerk von selektiven  $(C_2)$  und nicht-selektiven  $(CO_x)$  Reaktionspfaden, so dass eine Aussage bezüglich der Beschaffenheit eines Katalysators kaum möglich ist.

Nichtzuletzt konnten *Martin* und *Mirodatos* [58] nachweisen, dass kein direkter Zusammenhang zwischen der irreversiblen Kopplungsgeschwindigkeit des Methans und der reversiblen  $CH_4/CD_4$ -Isotop-Gleichgewichtseinstellungsgeschwindigkeit existiert. Andere Vertreter der heterolytischen Spaltung gehen von einer heterolytischen H-Abstraktion an einem wenig koordinativen Ionenpaar mit anschließender Folgereaktion des Methyl-Anions mit Gasphasen-Sauerstoff als Elektronenakzeptor aus

$$CH_3^- + O_2 \to CH_3^{\bullet} + O_2^-$$
 (2.13)

Es wird angenommen, dass die Superoxid-Spezies dann infolge zahlreicher Oberflächengleichgewichte weiter zu Gitteroxid  $O^{2-}$  umgesetzt wird und somit auch in die  $CO_x$ -Bildung involviert sein kann.

Zusammenfassend läßt sich für das heterolytische Spaltungsmodell sagen, dass, obwohl einige überzeugende Belege für einen Zusammenhang zwischen der katalytischen Aktivität und der Basizität eines Katalysators erbracht wurden, seine Gültigkeit in der Literatur sehr umstritten ist. Vor allem die Reaktionsbedingungen, unter welchen die Ergebnisse gewonnen wurden, sind weit entfernt von denen der OKM. Ein weiteres Gegenargument ist die, unter Berücksichtigung des KIE gezogene, Schlussfolgerung, welche die reversible Spaltung der C-H-Bindung als den geschwindigkeitsbestimmenden Schritt erachtet. Dieses ist aber nicht im Einklang mit der aufgrund experimenteller Befunde (unter Betrachtung des CH<sub>4</sub>/CD<sub>4</sub>-Isotop-Gleichgewichtes) gemachten Annahme, dass Schritt 1 eine schnelle Gleichgewichtsreaktion ist. Außerdem setzt die Einbeziehung von molekularem Sauerstoff als Elektronenakzeptor die Anwesenheit von Sauerstoff bei der Bildung von C<sub>2</sub>-Produkten voraus. Versuche mit der TAP-Methode ergaben zwar eine Verzögerung zwischen Sauerstoffzugabe und  $C_2$ -Entstehung, was auf die Notwendigkeit einer Sauerstoffaktivierung für die Bildung der aktiven Zentren hindeutet. An diesen Zentren können dann Methylradikale erzeugt werden und letztendlich  $C_2$ -Kohlenwasserstoffe entstehen, aber es unterstützt offensichtlich nicht die in Gleichung (2.13) gemachte Hypothese.

Die **homolytische Spaltung** wurde ursprünglich von *Lunsford et al.* [9] eingeführt und erfährt als Mechanismus für die irreversible Methanaktivierung zur Bildung von Methylradikalen immer mehr Zustimmung (vgl. Mechanismus auf Seite 7).

Es konnte bezüglich der Oberflächenchemie die Kenntnis gewonnen werden, dass die im homolytischen Modell vorgeschlagenen aktiven Zentren offensichtlich vom Verlauf der Sauerstoffadsorption auf der Oberfläche abhängen. Daraus resultiert die Frage nach dem Adsorptionsverhalten von Methan unter Reaktionsbedingungen.

Wenn man die ungewöhnlichen Ergebnisse von *Ekstrom* und *Lapszewicz* [63] außer Acht läßt, dann wurde in keiner Studie eine signifikante Verzögerung des Methans über 650°C an einem OKM-Katalysator [64–66] mittels der mit isotopen-markierten Substanzen durchgeführten Versuche festgestellt. Das bedeutet, dass das Methan nicht mit dem Katalysator wechselwirkt und für eine Aktivierung ein Vorhandensein von Methan auf der Katalysatoroberfläche nicht notwendig ist. Bei Temperaturen unter 650°C konnten reversible Methanmoleküle detektiert werden, die nicht als experimentelle Artefakte - etwa resultierend aus Porendiffusionseffekten - angesehen werden können. Aufgrund des großen Volumenstroms des Methans und der Unsicherheit der Methode ist eine verlässliche Aussage über die Oberflächenbesetzung jedoch nicht möglich.

Letztendlich konnte durch TAP-Untersuchungen [50, 67–71] und Steady-State Transient Isotopic Kinetics-Versuche (SSTIKA) [20] gezeigt werden, dass die Bildung der Methylradikale nach einem Eley-Rideal Mechanismus verläuft. Trotz des Fehlens einer signifikanten Methanadsorption kann die schnelle heterolytische und reversible Wechselwirkung mit der Katalysatoroberfläche, welche das  $CH_4/CD_4$ -Gleichgewicht beeinflusst, nicht gänzlich ausgeschlossen werden.

#### 2.2.2 Sauerstoffaktivierung

SSTIKA-Untersuchungen von Mallens et al. [50] bestätigten frühere Vermutungen, wonach auf der Li/MgO-Oberfläche zwei Arten von Oberflächen-Gittersauerstoff vorhanden sind. Die erste ist aktiv für die selektive Bildung von Methylradikalen, während die zweite in die Methanoxidation zu  $CO_2$  involviert ist. Die Aktivität für die selektive Route ist dabei niedriger als die der nicht-selektiven Totaloxidation [42]. Für die schwach adsorbierte Sauerstoffspezies ist ihrer Meinung nach die Wechselwirkung von  $O_2$  mit der MgO-Phase verantwortlich, dagegen muss für die stark adsorbierte Sauerstoffspezies der Grund in der Anwesenheit einer lithiumhaltigen Phase liegen. Unter Reaktionstemperatur interagiert der Sauerstoff stark mit der selektiven Katalysatoroberfläche. Ferner ist die Sauerstoff-Verweilzeit proportional der eingesetzten Katalysatormenge.

Dass der Sauerstoff bei der OKM in einer starken, dissoziativen und reversiblen Wechselwirkung mit der Katalysatoroberfläche steht, wird allgemein anerkannt und steht damit im Einklang mit dem homolytischen Modell. Sowohl die Oberflächen-Sauerstoffspezies als auch der Gittersauerstoff in der Bulk-Phase beteiligen sich an der Reaktion [20,50]. Durch die Dotierung des MgO mit Lithium und die darauf folgende Bildung von Gitterdefekten [42,50] wird die Sauerstoffmobilität in der Bulk-Phase erhöht und gleichzeitig die Aktivierungsenergie für die Diffusion von 266,07 kJ/mol für reines MgO auf 61,17 kJ/mol für Li/MgO gesenkt. Gleichzeitig ist eine Aktivitätssteigung des Katalysators zu beobachten. Darüber hinaus tritt eine Verzögerung des Sauerstoffsignals am Ausgang proportional zur Beladung auf, was wiederum den Befund eines schnellen Adsorption/Desorption-Gleichgewichtes bestätigt.

Für das Gasphase/Oberfläche-Gleichgewicht schlugen *Lunsford et al.* [56] folgende Mechanismen vor:

$$V_{O} \rightleftharpoons V_{O}^{\prime} + h^{+} \tag{2.14}$$

$$O_2(g) + V'_O \rightleftharpoons \left[O_2^-\right] \tag{2.15}$$

$$\left[\mathcal{O}_{2}^{-}\right] + \mathcal{V}_{\mathcal{O}}^{'} \rightleftharpoons \left[\mathcal{O}^{-} - \mathcal{O}^{-}\right]$$

$$(2.16)$$

$$\left[\mathbf{O}^{-} - \mathbf{O}^{-}\right] \rightleftharpoons 2\left[\mathbf{O}^{-}\right] \tag{2.17}$$

 $V_O$  kennzeichnet hierbei eine Sauerstoff-Leerstelle mit der Fähigkeit zwei Elektronen aufzunehmen.  $V'_O$  stellt eine Sauerstoff-Leerstelle mit einem Elektron und h<sup>+</sup> einen positiven Ladungsträger dar. Das Oberfläche/Bulk-Gleichgewicht kann dann wie folgt beschrieben werden:

$$\left[\mathbf{O}^{-}\right] + \mathbf{V}_{\mathbf{O}}^{'} \rightleftharpoons \left[\mathbf{O}^{2-}\right] + \mathbf{V}_{\mathbf{O}} . \tag{2.18}$$

Für die Regenerierung des Li/MgO-Systems wurde unter anderem, basierend auf der Berechnung der energetischen Zustände der Oberflächen-Zwischenspezies, folgender Mechanismus in der Anwesenheit von Sauerstoff vorgeschlagen [72]:

$$\left[\mathrm{Li}^{+}\mathrm{O}^{-}\right]\mathrm{H} + \mathrm{O}_{2} \ (\mathrm{g}) \rightarrow \left[\mathrm{Li}^{+}\mathrm{O}^{-}\right] + \mathrm{HO}_{2}^{\bullet} \tag{2.19}$$

$$\mathrm{HO}_{2}^{\bullet} + \left[\mathrm{Li}^{+}\mathrm{O}^{-}\right]\mathrm{H} \rightarrow \left[\mathrm{Li}^{+}\mathrm{O}^{-}\right] + \mathrm{H}_{2}\mathrm{O}_{2} \tag{2.20}$$

$$\mathrm{H}_2\mathrm{O}_2 \to 2 \ \mathrm{OH}^{\bullet} \tag{2.21}$$

$$OH' + [Li^+O^-] H \rightarrow [Li^+O^-] + H_2O . \qquad (2.22)$$

Die Bruttoreaktionsgleichung dieses Regenerationszyklus' ist zwar identisch mit der von *Ito* und *Lunsford* vorgeschlagenen, aber hier ist die Annahme eines energieintensiven Entfernens des Gittersauerstoffs nicht nötig.

Aus den oben dargestellten Ergebnissen kann Folgendes festgehalten werden:

- (i) In der Abwesenheit von Methan stellt sich ein schnelles dissoziatives Adsorption/Desorption-Gleichgewicht zwischen der Gasphase und der Oberfläche ein. Gleichzeitig findet ein langsamer Gittersauerstoff-Austausch zwischen der Oberflächen- und Bulk-Phase statt [20, 58].
- (ii) In der Anwesenheit von Methan, d. h. unter Reaktionsbedingungen, geht sowohl der schnelle Gas-zu-Oberfläche-Austausch als auch der Gittersauerstoff-Austausch merklich zurück [58].

Das bedeutet, dass ein hemmender Effekt der OKM-Reaktion die mit Sauerstoff konkurrierende Adsorption anderer Spezies (z. B. CO<sub>2</sub>) ist.



Abb. 2.3: Sauerstoff-Reaktionspfad während der OKM an Li/MgO

Zusammenfassend läßt sich entnehmen, dass aufgrund der Ergebnisse der unterschiedlichen Versuche die dissoziative Sauerstoffadsorption eine notwendige Voraussetzung für die irreversible Methanaktivierung zu Methylradikalen ist. Darüber hinaus kann das Gas/Oberfläche- und Oberfläche/Bulk-Gleichgewicht zwischen molekularen Sauerstoffmolekülen und Gitterionen als erwiesen angesehen werden. Diese Gleichgewichte verlagern sich offensichtlich, unabhängig davon, ob Methan vorhanden ist oder nicht, mit der Adsorption und Anreicherung des Nebenproduktes  $CO_2$  auf den basischen Zentren an der Oberfläche.

#### 2.2.3 Ethanbildung

Wenn auch andere Zwischenspezies wie Carbene zu der C<sub>2</sub>-Produktbildung einen Beitrag leisten [73,74], so ist man sich doch einig, dass das Ethan als Primärprodukt durch Rekombination von zwei Methylradikalen gebildet wird [9, 12, 19, 21, 52, 71, 75]. Andere wie *Behrenbeck* [76] weisen aber auch auf die Möglichkeit der Ethanbildung durch die Reaktion des Methylradikals mit Methan hin. In seiner Arbeit beschreibt *Behrenbeck* Versuche, wonach die Bildungsgeschwindigkeit von Ethan nicht nur vom Partialdruck der Methylradikale, sondern auch vom Partialdruck des Methans abhängig ist. Daraufhin hat er folgende Ethanentstehungsgleichung hinzugefügt:

$$CH_3 + CH_4 \to C_2H_6 + \frac{1}{2} H_2 .$$
 (2.23)

Er ist der Ansicht, dass thermodynamisch zwar die Kombinationsreaktion begünstigt wird, aber aufgrund der viel größeren Konzentration an Methanmolekülen die Gleichung (2.23) durchaus vorstellbar wäre. Zwei Argumente sprechen aber gegen diesen Ethanbildungsmechanismus. Erstens findet die Rekombination von zwei Methylradikalen zu Ethan nahe der Katalysatoroberfläche statt und unter dieser Annahme sollte die Konzentration der Methylradikalen in diesem Bereich relativ hoch sein. Zweitens sollte nach Gleichung 2.23 eine signifikante Menge an Wasserstoff zu sehen sein, was aber bei Versuchen im niedrigen Temperaturbereich, wo nur Ethan zu sehen ist, nicht gefunden werden konnte.

Dass Ethan aus der Rekombinationsreaktion von zwei Methylradikalen in der Gasphase entsteht, zeigen eindeutig Versuche mit isotopen-markierten Substanzen [19,40,44,62]. Außerdem wurden in Versuchen mit einem Gasgemisch aus  $CH_4$ ,  $CD_4$  und  $O_2$  ausschließlich  $C_2H_6$ ,  $CH_3CD_3$  und  $C_2D_6$  beobachtet, so dass die meisten Autoren die Auffassung vertreten [8,11,26,77,78], dass Ethan durch Rekombination von zwei Methylradikalen in der Gasphase gebildet und darüber hinaus bei erhöhten Gasdrücke begünstigt wird. Weitere Bestätigung dieser Annahme lieferten Versuche bei niedrigen Drücken, bei denen die Gasphasenreaktion von Methan gehemmt ist. Zwar bilden sich weiterhin Methylradikale, aber es konnte kein Ethan nachgewiesen werden [58,79].

#### 2.2.4 CO<sub>2</sub>-Bildung

Wie zuvor erwähnt, ist das Hauptproblem der OKM die Totaloxidation der Edukte  $(CH_4)$  und Produkte  $(C_2$ -Kohlenwasserstoffe) zu CO<sub>2</sub>. Aus diesem Grund ist es wichtig, die involvierten chemischen Mechanismen dieser Reaktionsroute zu untersuchen und zu verstehen.

Es ist bis heute nicht geklärt, welche Rolle die nicht-selektive Gasphasenoxidation bei der CO<sub>2</sub>-Bildung spielt. Eine homogene Oxidation der Methylradikale mit Gasphasen-Sauerstoff bei niedrigeren Temperaturen ( $\leq 650^{\circ}$ C) ist über die Zwischenspezies Methylperoxidradikal (CH<sub>3</sub>OO<sup>•</sup>) [56,80] möglich

$$\operatorname{CH}_{3}^{\bullet} + \operatorname{O}_{2} \to \operatorname{CH}_{3}\operatorname{O}_{2}^{\bullet}$$
 (2.24)

$$CH_3O_2 \rightarrow CH_2O + OH$$
 (2.25)

$$CH_2O + 2 OH' + \frac{1}{2} O_2 \to CO_2 + 2 H_2O$$
 (2.26)

und ist somit auch vom Sauerstoffpartialdruck abhängig. Aber dieser Reaktionsroute wird von den meisten Autoren eher eine geringe Rolle zugeschrieben [9, 52, 62, 81], besonders bei erhöhten Temperaturen, wo die Zerfallsrate von CH<sub>3</sub>OO<sup>•</sup> stark ansteigt

$$\operatorname{CH}_3\operatorname{O}_2^{\bullet} \to \operatorname{CH}_3^{\bullet} + \operatorname{O}_2$$
. (2.27)

Eine zweite, viel wahrscheinlichere Reaktionsroute für die Bildung von  $CO_2$  ist die Oberflächenreaktion von Methylradikalen mit koordinativ ungesättigten Oberflächen-Spezies wie dem  $O^{2-}$ -Anion

$$\operatorname{CH}_{3}^{\bullet} + \left[\operatorname{O}^{2^{-}}\right] \rightarrow \left[\operatorname{O}^{-}\right] \operatorname{CH}_{3} + \operatorname{V}_{O}^{\prime}$$
 (2.28)

$$[O^{-}] CH_3 + 2 [O^{-}] \rightarrow [O^{2-}] CO_2 + [O^{-}] H + V_O + H_2$$
 (2.29)

$$\left[\mathrm{O}^{2^{-}}\right]\mathrm{CO}_{2} \rightleftharpoons \mathrm{CO}_{2} \left(\mathrm{g}\right) + \left[\mathrm{O}^{2^{-}}\right] \tag{2.30}$$

$$2 [O^{-}] H \to H_2 O + [O^{2-}] + V_O .$$
 (2.31)

Die in Gleichung (2.28) gebildete Sauerstoff-Leerstelle kann dann mit molekularem Sauerstoff nach Gleichungen (2.14)-(2.17) zu der aktiven Sauerstoff-Spezies umgesetzt werden.

Dass die Totaloxidation von Methylradikalen zu  $CO_2$  auf der Katalysatoroberfläche geschieht, konnte durch SSTIKA-Versuche [58] bestätigt werden. Denn unter Annahme einer hinreichendgroßen Konzentration von Methylradikalen im Katalysatorbett kollidiert ein Methylradikal 10<sup>5</sup>-mal mit der Katalysatoroberfläche, bevor es mit einem anderen Methylradikal rekombiniert [82]. Das dabei entstandene  $CO_2$  wechselwirkt mit der Oberfläche unter Bildung von kurzlebigen Carbonat-Spezies, welche durch XPS-Messungen nachgewiesen werden konnten [65]. Somit gilt es als sehr wahrscheinlich, dass die einmal gebildeten  $CO_2$ -Moleküle verschiedene Desorptions- und Adsorptionsprozesse eingehen, bevor sie am Reaktorausgang als solche detektiert werden.

Da es sich hier um eine Oberflächenreaktion handelt, sind die meisten Autoren der Auffassung, dass eine kleinere spezifische Katalysatoroberfläche diese nicht-selektive Reaktion herabsetzt und damit günstig wäre für die  $C_2$ -Selektivität [56, 72, 75].

## 2.3 Sekundärreaktionen

Es ist allgemein anerkannt, dass Ethen als Sekundärreaktionsprodukt aus Ethan gebildet wird. Zwar wurde die mögliche Bildung von Ethen über Methylradikale an einem Li/MgO-Katalysator von *Mirodatos et al.* [73] und *Hutchings et al.* [83] experimentell nachgewiesen, doch scheint die Bildungsgeschwindigkeit bei diesem Teilschritt wesentlich niedriger zu sein als bei der oxidativen Dehydrierung von Ethan. Die zweite wichtige Sekundärreaktion ist sicherlich die Totaloxidation der C<sub>2</sub>-Reaktionsprodukte zu  $CO_x$ und beeinflusst damit maßgeblich die Ausbeute der Gesamtreaktion.

#### 2.3.1 Ethan zu Ethen

Für die Quantifizierung des Ethens als Folgeprodukt wurden verschiedene Experimente durchgeführt. Versuche mit Zugabe von  $C_2H_6$  an einem Li/MgO-Katalysator bei 800°C führten zu einer Abnahme des Methanumsatzes bei gleichzeitiger Zunahme der Ethenkonzentration [79]. Dies deutet auf die Ethenbildung aus Ethan hin. Eindeutigere Hinweise lieferten Experimente an Li/MgO mit verschiedenen Verweilzeiten und Sauerstoffpartialdrücken, hier war ein mit der Verweilzeit ansteigendes  $C_2H_4/C_2H_6$ -Verhältnis [76,84] zu beobachten. Das ist dann der Fall, wenn Ethen aus Folgereaktionen entsteht.

Bei Versuchen mit isotopen-markierten Gasgemischen wie  $CH_4$ ,  $CD_4$  und  $O_2$  konnte für das Ethan nur  $C_2H_6$ ,  $CD_3CH_3$  und  $C_2D_6$  und  $C_2H_4$ ,  $CD_2CH_2$ ,  $C_2D_4$  für Ethen detektiert werden, d. h. die gemessene relative  $C_2$ -Konzentration stimmte danach mit der aus den  $CH_3^{\cdot}$  und  $CD_3^{\cdot}$  unter Beachtung des KIE berechneten relativen Konzentration überein und wird als weiteres Indiz für die Ethenbildung aus Folgereaktionen angesehen [40,44]. Bei einer anderen Versuchsvariante wurde der <sup>13</sup>C-Gehalt von  $C_2H_6$  und  $C_2H_4$  aus einem Gasgemisch von <sup>13</sup>C\_2H\_6, CH<sub>4</sub> und  $O_2$  gemessen. Wenn die Hauptbildungsquelle für Ethen Ethan ist, dann müsste der <sup>13</sup>C-Gehalt der beiden Komponenten identisch sein. Für den Li/MgO-Katalysator wurde in der Tat dieser Zusammenhang beobachtet und bestätigte damit die gemachte Annahme [62,65].

Seit der Beobachtung der Gasphasen-Spaltung von Ethan zu Ethylradikalen und der anschließenden Reaktion zu Ethen aus der Isotopenverteilung, wird auch die Ansicht vertreten, dass Ethen zum Teil aus der Gasphasenreaktion von Ethan gebildet wird [40]. In der Gasphase kann Ethan nach folgenden Reaktionen zu Ethen umgesetzt werden:

$$C_2H_6 \to C_2H_5^{\bullet} + H^{\bullet} \tag{2.32}$$

$$C_2H_5^{\bullet} + H^{\bullet} \to C_2H_4 + H_2 \tag{2.33}$$

$$C_2H_6 + O_2 \rightarrow C_2H_5^{\cdot} + HO_2^{\cdot}$$
(2.34)

$$C_2H_5^{\bullet} + O_2 \rightarrow C_2H_4 + HO_2^{\bullet} . \qquad (2.35)$$

Ethylradikale wurden auch tatsächlich von *Lunsford et al.* an einem Li/MgO-Katalysator bei 620°C am Reaktorausgang mit der MIESR-Methode nachgewiesen [60,61]. Des Wei-

teren konnten *Mortazavi et al.* experimentell belegen, dass hierbei Gasphasen-Sauerstoff für die Ethenbildung eine wichtige Rolle spielt [65]. Im Gegensatz zu Methylradikalen, die bevorzugt in der Gasphase rekombinieren, reagieren die Ethylradikale aufgrund der kürzeren Lebensdauer schnell mit Sauerstoff zu Ethen, so dass ein Rekombinieren zweier Ethylradikale unwahrscheinlich wird [85]. Eine Beteiligung der Katalysatoroberfläche kann hierbei aber nicht gänzlich ausgeschlossen werden [40].

Andererseits, wie oben beschrieben, beinhaltet der Primärreaktionsschritt bei der OKM an einem Li/MgO-Katalysator die Methanaktivierung durch Wasserstoffabspaltung. In analoger Weise sollte auch eine Aktivierung des Ethans möglich sein und aufgrund der niedrigeren Bindungsenergie sogar leichter als Methan

$$C_2H_6 + \left[Li^+O^-\right] \to C_2H_5^{\cdot} + \left[Li^+O^-\right]H$$
(2.36)

$$C_2 H_5^{\cdot} + \left[ Li^+ O^{2-} \right] \rightarrow OC_2 H_5^- + \left[ Li^+ V_O^{\prime} \right]$$

$$(2.37)$$

$$OC_2H_5^- \to C_2H_4 + OH^-$$
. (2.38)

Dieser Befund wurde dann auch experimentell bestätigt [58].

(

Grob zusammengefasst, läßt sich die oxidative Dehydrierung von Ethan an einem Li/MgO-Katalysator als eine von der Oberfläche abhängige Umsetzung des Ethans in Ethylradikale verstehen.

## 2.3.2 C<sub>2</sub>-Kohlenwasserstoffe zu CO<sub>x</sub>

Wie eingangs beschrieben, ist die Folgeoxidation der gebildeten C<sub>2</sub>-Produkte das eigentliche Problem bei der OKM. Untersuchungen von Nelson und Cant am Li/MgO-Katalysator offenbarten, dass bei 740°C etwa 30-60 % der CO<sub>x</sub> infolge der Weiteroxidation von C<sub>2</sub>-Kohlenwasserstoffen entstanden sind [62]. Dies wird als ein Hauptgrund für die sinkende C<sub>2</sub>-Selektivität bei erhöhten Temperaturen angesehen. Des Weiteren führte die Zugabe von <sup>13</sup>C<sub>2</sub>H<sub>4</sub> zu einem stärkeren Anstieg der CO<sub>x</sub>-Bildung als die Zugabe entsprechender Mengen an <sup>13</sup>C<sub>2</sub>H<sub>6</sub> und belegte damit, dass die Zunahme der CO<sub>x</sub>-Bildung hauptsächlich auf die Ethenoxidation zurückzuführen ist. Ein Grund dafür ist die zuvor genannte kurze Lebensdauer der auf der Oberfläche gebildeten Ethylradikale, so dass sie sehr schnell selektiv zu Ethen umgesetzt werden, bevor sie mit der Oberfläche wechselwirken und oxidiert werden [85]. Bei erhöhten Temperaturen (780°C) nahm dieser CO<sub>x</sub>-Anteil infolge der Weiteroxidation von C<sub>2</sub>-Kohlenwasserstoff weiter zu, während bei niedrigeren Temperaturen (T < 700°C) die Oxidationsprodukte von C<sub>2</sub>-Kohlenwasserstoffen nur einen kleinen Teil (10 %) an dem gesamten CO<sub>x</sub> ausmacht. Neben der Temperaturabhängigkeit wird die C<sub>2</sub>-Totaloxidation noch stark vom Sauerstoff-, Ethan- und Ethen-Partialdruck beeinflusst [84]. Während die homogene Gasphasenoxidation von Ethen, welche zwischen 600-680°C abläuft, in erster Linie zu CO führt, wird in der Gegenwart eines Li/MgO-Katalysators auch nennenswerte CO<sub>2</sub>-Bildung beobachtet [86].

Beim Versuch mit isotopen-markierten Substanzen an Li/MgO fanden *Shi et al.* [82] heraus, dass die Ethenoxidation 3-5 mal schneller abläuft als die Methanoxidation. Diese Beobachtung scheint auf dem ersten Blick etwas überraschend zu sein, denn die C-H-Bindungsenergie des Ethens ist bekanntlich größer als die des Methans. Wenn aber solche Gesamtreaktionsgeschwindigkeit betrachtet wird, sollte berücksichtigt werden, dass der Prozess verschiedene Elementarreaktionsschritte beinhaltet. So durchlaufen die nach der H-Abspaltung gebildeten Methyl- und Vinylradikale ( $C_2H_3^{-}$ ) weitere Reaktionen bevor sie zu CO<sub>2</sub> umgesetzt werden. Im Gegensatz zu Vinylradikalen, welche bekanntermaßen in Gegenwart von Gasphasen-Sauerstoff sehr schnell zu CO<sub>x</sub> umgesetzt werden, sind die Methylradikale vergleichsweise unreaktiv. Außerdem sind alle oberflächeninvolvierenden Reaktionen von CH<sub>3</sub><sup>-</sup> zu CO<sub>2</sub> nach Modellrechnung von *Su et al.* [87] endotherm. Deswegen läuft auch die Ethenoxidation schneller als die Methanoxidation ab, obwohl der erste Schritt bei beiden fast identisch ist.

Untersuchungen hinsichtlich einer hemmenden bzw. beschleunigenden Wirkung des Li/MgO-Katalysators auf die Weiteroxidation von Ethan konnten kein eindeutiges Ergebnis liefern. Während einige Studien eine hemmende Wirkung festgestellt [88] haben wollen, belegen andere Studien genau das Gegenteil [58]. Aber die Ethanoxidation spielt, wie oben ausgeführt, nur eine untergeordnete Rolle bei der  $CO_x$ -Bildung.

Durch experimentelle Daten gestützt, wurde für die Ethenoxidation eine komplexe Wechselwirkung zwischen der Katalysatoroberfläche und den Gasphasenreaktionen postuliert. In der Anwesenheit von Sauerstoff wird die Gasphasen-Ethenoxidation gegenüber der des Ethans bevorzugt [58]. Über eine hemmende Wirkung des Li/MgO-Katalysators auf die destruktive Oxidation von Ethen berichteten *Roos et al.* [89] und *Martin et al.* [58,85,86], diese geschieht nach Meinung der Autoren durch den Einfang von kettenübertragenden Radikalen (z. B. OH<sup>•</sup>, HO<sup>•</sup><sub>2</sub>).

In der Literatur werden zwei Mechanismen für die  $C_2$ -Oxidation diskutiert [62]:

(a) die C<sub>2</sub> konkurrieren mit Methan um den Sauerstoff zur Produktion von  $CO_x$  in einer oberflächeinvolvierenden Reaktion,

(b) die C<sub>2</sub> konkurrieren um die bei der Methanspaltung gebildeten Methylradikale mit der Rekombinationsreaktion zur COx-Bildung in der Gasphase gemäß:

$$CH_3 + C_2H_6 \rightarrow CH_4 + C_2H_5$$

$$(2.39)$$

$$\mathrm{CH}_{3}^{\bullet} + \mathrm{C}_{2}\mathrm{H}_{4} \to \mathrm{CH}_{4} + \mathrm{C}_{2}\mathrm{H}_{3}^{\bullet} . \tag{2.40}$$

#### 2.3.3 CO-Entstehung und Weiterreaktion zu CO<sub>2</sub>

Die Aufführung von  $CO_2$  als Primärprodukt und CO als Sekundärprodukt mag auf den ersten Blick verwundern, aber wenn man das CO als Reaktionsprodukt der C<sub>2</sub>-Oxidation ansieht, ist es einleuchtend. Auch Untersuchungen bei verschiedenen Verweilzeiten an Li/MgO belegen, dass CO kein Primärprodukt ist [84]. Die aus der C<sub>2</sub>-Oxidation nach Gleichung (2.40) gebildeten Vinylradikale reagieren weiter zu CO:

$$C_2H'_3 + O_2 \to HCO' + CH_2O \tag{2.41}$$

$$\text{HCO}^{\cdot} \rightarrow \text{CO} + \text{H}^{\cdot}$$
 (2.42)

$$CH_2O \rightarrow CO + H_2$$
. (2.43)

In einer Arbeit von Nelson und Cant über die OKM an einem Li/MgO-Katalysator wurde fast identischer <sup>13</sup>C-Gehalt in CO und CO<sub>2</sub> bei den Temperaturen 670-780°C gemessen, eine Auftragung der Verhältnisse von <sup>13</sup>CO<sub>2</sub>/CO<sub>2</sub> zu <sup>13</sup>CO/CO ergab einen Wert von 0,8 [62]. Ein Wert von Eins würde bedeuten, dass CO Primärprodukt ist und CO<sub>2</sub> als Folgeprodukt aus der Weiteroxidation von CO entsteht. Die aufgetretene Abweichung ist entweder durch einen systematischen Fehler bedingt oder es existiert ein direkter Reaktionspfad zu CO<sub>2</sub> ohne das Mitwirken von CO als Zwischenprodukt. Wobei die zweite Variante die direkte Oxidation von Methan zu CO<sub>2</sub> an einem Katalysator darstellt und somit wahrscheinlicher ist [19, 52].

Die Frage, ob die CO-Oxidation zu  $CO_2$  homogen oder katalytisch verläuft, ist bis heute nicht geklärt. Unter Berücksichtigung, dass die Oxidation von Kohlenwasserstoffen in der Gasphase in erster Linie zu CO führt und  $CO_2$  nur in der Gegenwart eines Li/MgO-Katalysators zu beobachten ist [58, 71], wird der Katalysatoroberfläche eine wichtige Rolle bei der Aufklärung der  $CO_2$ -Bildungsmechanismen zugeschrieben. Zu einem ähnlichen Ergebnis kommt auch die Gruppe um *Al-Zahrani* und *Lobban* [52, 71]. Sie vermuten, dass das infolge der C<sub>2</sub>-Oxidation gebildete CO zunächst auf der Katalysatoroberfläche adsorbiert und dann mit Gittersauerstoff zu chemisorbiertem  $CO_2$ umgesetzt wird.
# Kapitel 3

# Versuchsanlage

Die experimentellen Untersuchungen werden in einem durchströmten Festbettreaktor unter isothermen Bedingungen und bei Normaldruck durchgeführt. Die Temperatur wird dabei zwischen 675°C und 800°C in 25 K Schritten variiert. Abbildung 3.1 stellt die verwendete Versuchsapparatur dar, welche aus folgenden Hauptkomponenten besteht:

- Gasdosierung
- Reaktoreinheit
- Analytik



Abb. 3.1: Fließbild der Versuchsanlage zur Aktivitätsmessung

## 3.1 Reaktoreinheit

Hierbei wird ein bestehender mikrokatalytischer Quarzglas-Rohrreaktor mit einer Sand-Wirbelkammer-Heizung, welcher schematisch in Abbildung 3.2 dargestellt ist, eingesetzt.



Abb. 3.2: Skizze der Komponenten des Wirbelkammerreaktors

Der Reaktor ist vollständig aus Quarzglas gefertigt und besteht aus zwei Teilen. Der innere Reaktor ist als U geformt. Gasein- und Gasauslass befinden sich an den oberen Enden der Schenkel. Im linken Schenkel ist kurz vor der Krümmung eine Fritte eingeschmolzen, auf der die Katalysatorschüttung platziert wird. Nach der Fritte verengt sich das Quarzrohr von vorher 6 mm auf 2 mm Innendurchmesser. Dadurch werden die post-katalytischen Gasphasen-Reaktionen der Produktgase in der beheizten Zone minimiert. Der Wirbelkammerofen ist auf einer Länge von 230 mm beginnend an der Unterkante mit einem Heizband umwickelt, das eine max. Heizleistung von 1500 W hat. Auf der eingeschmolzenen Fritte liegt ein Quarzsandbett, in das der innere Reaktor im Betrieb eingetaucht wird. Das Sandbett wird von unten mit Druckluft durchströmt und dadurch fluidisiert. Durch die gute Vermischung innerhalb der Wirbelschicht wird eine homogene Temperaturverteilung erzielt. Zur Temperaturregelung wird ein Thermoelement in einer Quarzglashülse in die Schicht eingetaucht. Die tatsächliche Temperatur in der Katalysatorschüttung wird mittels einem in der Längsachse beweglichen Thermoelement erfasst.

# 3.2 Durchführung

Die Mengenströme der Reaktionsgase/Reaktanden werden mit Massendurchflussregler der Fa. BRONKHORST elektronisch geregelt. Die von der Fa. AIR LIQUIDE und LINDE bezogenen Gase haben folgende Zusammensetzung und Reinheit:

| Gase         |                                | Volumenanteil in $\%$ | Reinheit |
|--------------|--------------------------------|-----------------------|----------|
| Prüfgas      |                                |                       |          |
|              | CO                             | 9,98                  | 1.8      |
|              | $\rm CO_2$                     | 9,82                  | 4.5      |
|              | $\mathrm{C}_{2}\mathrm{H}_{4}$ | 9,92                  | 3.0      |
|              | $C_2H_6$                       | 9,90                  | 2.5      |
|              | $\mathrm{CH}_4$                | 60,38                 | 2.5      |
| Eduktgase    |                                |                       |          |
| armth Inft   | $N_2$                          | 80                    | 5.0      |
| synth. Luft  | $O_2$                          | 20                    | 5.0      |
|              | $\mathrm{CH}_4$                | 100                   | 3.5      |
|              | $\mathrm{CO}_2$                | 100                   | 4.5      |
| GC-Trägergas |                                |                       |          |
|              | He                             | 100                   | 5.0      |

Tab. 3.1: Zusammensetzung und Reinheit der verwendeten Gase

Die Bestimmung der Zusammensetzung von Produkt- und Eduktgasen erfolgt mit Hilfe eines Gaschromatographen (GC) der Fa. HP (Typ 5890 Series II). Hierbei wird das zu analysierende Gasgemisch aufgetrennt und die einzelnen Komponenten werden detektiert. Der GC ist mit einer Kapillarsäule der Fa. HP (Typ CP-Carboplot P7 mit aufgebrachter Kieselerde) und einem Wärmeleitfähigkeitsdetektoren (WLD) bestückt. Als Trägergas dient Helium, da Wasserstoff aus Sicherheitsgründen ausscheidet und Argon wegen seiner dem Sauerstoff sehr ähnlichen Wärmeleitfähigkeit nicht eingesetzt werden kann. In Tabelle 3.2 sind die mit dem GC quantitativ erfassbaren Reaktionsspezies und deren Retentionszeit wiedergegeben.

| Spezies    | Molmasse in $g/mol$ | Retentionszeit in min |
|------------|---------------------|-----------------------|
| $O_2$      | $32,\!00$           | 1,556                 |
| $N_2$      | 28,01               | $1,\!604$             |
| CO         | 28,00               | 1,951                 |
| $CH_4$     | 16,01               | 3,235                 |
| $\rm CO_2$ | 44,01               | 6,343                 |
| $C_2H_4$   | 28,05               | 11,714                |
| $C_2H_6$   | $30,\!07$           | 14,049                |

Tab. 3.2: Mit dem GC erfasste Spezies und ihre Retentionszeit

Zwar ist Stickstoff nicht in den Reaktionen involviert, aber er wird trotzdem als interner Standard mit erfasst. Das bei der Reaktion entstandene Wasser wird vor der Analyseeinheit auskondensiert und somit nicht quantitativ festgestellt. Wasserstoff wird ebenfalls nicht detektiert, da er für die Aufklärung der wichtigsten Reaktionspfade nur von untergeordneter Bedeutung ist. Zudem ist dessen Konzentration i. d. R. vergleichsweise sehr niedrig, weshalb eine quantitative Analyse des Wasserstoffs die gesamte Analyse sehr erschweren würde.

Zur Durchführung der Versuche wird der Katalysator in den Reaktor gefüllt, bei strömender synthetischer Luft auf Reaktionstemperatur gebracht und bei der Reaktionstemperatur etwa eine halbe Stunden belassen. Nach dieser Vorbehandlung wird das Reaktionsgemisch bestehend aus synthetischer Luft und Methan durch die Katalysatorschüttung geleitet. Der Stickstoff dient dabei als Inertgas. Das Produktgas wird nach Entfernung des darin enthaltenen Wassers mittels einer Kühlfalle im GC dosiert und analysiert.

# Kapitel

# Katalysatorcharakterisierung

Im Hinblick auf einen Einsatz im  $\beta$ -NMR-Spektrometer sollte der verwendete Li/MgO-Katalysator, unter Beachtung der Aktivität und Selektivität, vorzugsweise mit einem hohen Lithiumanteil dotiert sein (dadurch sind kürzere Versuchszeiten und ein besseres Signal möglich). Darüber hinaus ist es von Interesse, dass der Katalysator möglichst als einphasiges System vorliegt. D. h. der eingesetzte Li/MgO-Katalysator sollte keine anderen Lithiumverbindungen als das im MgO-Gitter eingebaute Lithium aufweisen, damit eine Verfälschung der Signale vermieden wird. Die Phasenzusammensetzung eines Katalysators hängt sowohl von den verwendeten Vorläuferkomponenten als auch von den Kalzinierungsbedingungen ab. Die in der Literatur angegebene optimale Beladung des Li/MgO-Katalysators mit Lithium reicht von 0,2 wt-% [16,83] über 7 wt-% [9] bis hin zu 13,5 wt-% [11].

# 4.1 Präparation

Für die Vorab-Charakterisierung werden Katalysatoren mit einem Lithiumanteil von 7 % Massenanteil aus unterschiedlichen Vorläuferkomponenten und unter verschiedenen Kalzinierungsbedingungen hergestellt. Ziel dieser Variation der Vorläuferkomponenten und Kalzinierungsbedingungen ist die Selektion von langzeitstabilen und aktiven Katalysatoren, die für die nachfolgenden Versuche dann einheitlich behandelt werden. Alle verwendeten Chemikalien werden von der Fa. MERCK bezogen.

Die in  $\beta$ -NMR-Messungen zu verwendenden Katalysatoren müssen aus isotopenreinen <sup>7</sup>Li-Vorläufern hergestellt werden, da <sup>6</sup>Li ein starker Neutronenabsorber ist.

Der Lithiumgehalt des Li/MgO-Katalysators wird als Massenanteil in % angegeben und läßt sich wie folgt berechnen:

$$wt_{\rm Li} = \frac{m_{\rm Li}}{m_{\rm Li} + m_{\rm MgO}} * 100 \% .$$
 (4.1)

Zur Kennzeichnung der Katalysatorprobe wird die folgende Konvention verwendet:



#### K-CO-Katalysator

Handelsübliches MgO (Reinheit  $\geq 98,0$  %) wird mit handelsüblichem Li<sub>2</sub>CO<sub>3</sub> (Reinheit  $\geq 99,0$  %) vermengt und mit destilliertem Wasser aufgefüllt. Diese Suspension wird im Wasserbad bei 70°C unter Rühren eingedampft, bis nur noch eine Paste übrig bleibt. Im Anschluss wird der Probe über Nacht bei 106°C im Trockenschrank das restliche Wasser entzogen. Die Probe wird dann für 5 h bei 800°C (bzw. 825°C oder 850°C) unter Luftatmosphäre (bzw. Stickstoffatmosphäre) im Ofen kalziniert. Nach der Kalzinierung wird die Probe aus dem Ofen entnommen und unter Luftatmosphäre bzw. Stickstoffatmosphäre abgekühlt.

#### K-CH-Katalysator

Für diese Katalysatorgruppe wird das MgO aus handelsüblichem Magnesiumhydroxid  $Mg(OH)_2$  (Reinheit: 95-100 %) gewonnen.  $Mg(OH)_2$  und  $Li_2CO_3$  werden vermengt und mit destilliertem Wasser versetzt. Nach Eindampfung bei 70°C im Wasserbad unter Rühren wird die Probe im Trockenschrank über Nacht bei 106°C getrocknet. Die Kalzinierung des Katalysators erfolgt im Ofen bei 800°C unter Luftatmosphäre. Hierbei wird die Probe erst dann in den Ofen gestellt, wenn der Ofen schon eine Innentemperatur von 800°C erreicht hat. Nach 5-stündiger Kalzinierung wird die Probe aus dem Ofen entnommen und unter Luftatmosphäre abgekühlt.

#### K-HH-Katalysator

Mg(OH)<sub>2</sub> wird mit 70 ml destilliertem Wasser versetzt, bei 80°C temperiert und gerührt. Als Li-Vorläufer wird LiOH (Reinheit ≥ 98,0 %), welches mit 30 ml 80°C warmem destillierten Wasser aufgefüllt ist, verwendet. Diese Mischung wird dem wässrigen Magnesiumhydroxid zugegeben. Danach erfolgt ein Eindampfen dieser Probe im Wasserbad bei 80°C unter Rühren. Anschließend wird die Probe über Nacht bei 106°C im Trockenschrank getrocknet. Die Kalzinierung der Probe erfolgt bei 800°C unter Luftatmosphäre (bzw. Stickstoffatmosphäre) im Ofen. Nach einer 5-stündigen Kalzinierung wird die Probe aus dem Ofen entnommen und unter Luftatmosphäre bzw. Stickstoffatmosphäre abgekühlt.

#### K-NH-Katalysator

Bei dieser Gruppe wird LiNO<sub>3</sub> als Li-Vorläufer verwendet. Das LiNO<sub>3</sub> (Reinheit  $\geq$  99,995 %) wird mit 70°C warmem destillierten Wasser aufgefüllt und eine Suspension aus handelsüblichem Mg(OH)<sub>2</sub> (in 80°C warmem destillierten Wasser) zugegeben. Unter Rühren wird die Probe bei 80°C eingedampft und über Nacht bei 80°C getrocknet. Es wird zunächst bei 400°C für 3 h und anschließend bei 800°C für 5 h unter Luftatmosphäre kalziniert. Nach der Kalzinierung wird der Katalysator aus dem Ofen herausgenommen und unter Luftatmosphäre abgekühlt.

#### K-NN-Katalysator

Im Gegensatz zu der K-HN-Gruppe wird als MgO-Vorläufer handelsübliches Magnesiumnitrat-Hydrat  $Mg(NO_3)_2$ \*6H<sub>2</sub>O (Reinheit: 99-100 %) eingesetzt. Das Magnesiumnitrat-Hydrat wird mit LiNO<sub>3</sub> vermengt und in destilliertem Wasser bei 70°C imprägniert. Die Lösung wird dann unter Rühren bei 80°C im Wasserbad eingedampft und anschließend über Nacht bei 80°C getrocknet. Die Probe wird zuerst bei 400°C für 3 h und anschließend bei 800°C für 5 h unter Luftatmosphäre kalziniert. Nach der Kalzinierung wird der Katalysator aus dem Ofen herausgenommen und unter Luftatmosphäre abgekühlt.

# 4.2 Charakterisierung

Um den Einfluss der Katalysatoroberflächenstruktur auf die Katalysatoraktivität zu quantifizieren, werden verschiedene ex-situ Oberflächencharakterisierungsmethoden herangezogen.

### 4.2.1 BET-Messungen

Die spezifischen Oberflächen frischer und gebrauchter Katalysatorproben werden mit Hilfe der BET-Methode (Stickstoffadsorption bei 77 K) ermittelt. Hierbei wird ein Gerät des Typs AREAmeter der Fa. Ströhlein Instruments eingesetzt.

Die Lithiumdotierung bewirkt, wie auch von vielen Autoren berichtet [39,90–92], eine Verringerung der spezifischen Oberfläche. Der Grund hierfür ist die bei der Herstellungsmethode angewandte hohe Kalzinierungstemperatur ( $T_K = 800-850^{\circ}C$ ) und das daraus resultierende Schmelzen der Lithium-Vorläufer [93,94]. Diese ist jedoch notwendig, um eine möglichst einphasige Probe zu gewährleisten. Außerdem kann dadurch eine weitere Sinterung des Katalysators während der Reaktion ausgeschlossen werden.

| Katalysator | Li-Vorläufer   | MgO-Vorläufer | BET-Oberfläche in $m^2/g$ |                                              |                                                 |
|-------------|----------------|---------------|---------------------------|----------------------------------------------|-------------------------------------------------|
|             |                |               | MgO-Vorläufer             | $\operatorname{Kat}_{\operatorname{frisch}}$ | $\operatorname{Kat}_{\operatorname{gebraucht}}$ |
| K-CO-L7     | $\rm Li_2CO_3$ | MgO           | 20,8                      | 0,8                                          | 0,7                                             |
| K-CO-N7     | $\rm Li_2CO_3$ | MgO           | 20,8                      | $0,\!5$                                      | $0,\!4$                                         |
| K-CH-L7     | $\rm Li_2CO_3$ | $Mg(OH)_2$    | 6,7                       | $^{0,2}$                                     | 0,2                                             |
| K-HH-L7     | LiOH           | $Mg(OH)_2$    | $^{6,7}$                  | $0,\!5$                                      | $0,\!4$                                         |
| K-HH-N7     | LiOH           | $Mg(OH)_2$    | 6,7                       | $0,\!3$                                      | $0,\!3$                                         |
| K-NH-L7     | $LiNO_3$       | $Mg(OH)_2$    | $^{6,7}$                  | $^{0,4}$                                     | 0,3                                             |
| K-NN-L7     | $LiNO_3$       | $Mg(NO_3)_2$  | $\_a$                     | $1,\!1$                                      | $1,\!0$                                         |

Tab. 4.1: BET-Oberfläche der MgO-Vorläufer und der Katalysatorprobe

 $^a$ aufgrund des Kristallwassers nicht bestimmbar

In Tabelle 4.1 sind die spezifischen Oberflächen der MgO-Vorläufer und der Katalysatoren vor und nach dem Gebrauch wiedergegeben. Bei allen Katalysatoren bewirkt die Lithiumdotierung eine Verringerung der BET-Oberfläche des kommerziellen MgO-Vorläufers auf weniger als 2 m<sup>2</sup>/g. Nach dem Gebrauch weist die spezifische Oberfläche der Katalysatoren keine nennenswerte Abweichung auf, d. h. durch den Einsatz unter Reaktionsbedingungen tritt keine weitere Änderung der BET-Oberfläche mehr ein [95].

### 4.2.2 REM-Aufnahmen

Durch die Lithiumdotierung wird die Porenverteilung ebenfalls beeinflusst, so konnten an den Katalysatorproben nahezu ausschließlich Makroporen gefunden werden. Dies ist auch deutlich an den Rasterelektronenmikroskopie-Aufnahmen (REM) zu sehen. Die REM-Bilder werden an einem Rasterelektronenmikroskop der Fa. Hitachi Modell S-2700 bei einem Beschleunigungspotential von 20 kV aufgenommen. Dazu wird die pulverförmige Probe auf einen Probenhalter aufgebracht und fixiert. Anschließend erfolgt das Bedampfen mit einer dünnen Goldschicht, um die Leitfähigkeit der Probe sicherzustellen.



(a) MgO







(c) K-CO-L7: gebraucht

Abb. 4.1: REM-Aufnahmen von reinem MgO und daraus hergestelltem Katalysator (8.000:1)

In Abbildung 4.1 sind die REM-Aufnahmen an MgO und an K-CO-L7, welcher aus Li<sub>2</sub>CO<sub>3</sub> und MgO hergestellt ist, wiedergegeben. Im Vergleich zu reinem MgO (Abb. 4.1 (a)) ist nach der Lithiumdotierung eine signifikante Veränderung der Mikrostruktur festzustellen. Anstelle der feinen Strukturen des MgO haben sich auf der Oberfläche infolge Agglomeration kleine rissige Kügelchen mit unterschiedlicher Färbung und Grö-

ße gebildet (Abb. 4.1 (b)). Diese Kügelchen sehen aus wie eine lockere Sandschüttung. Nach dem Gebrauch (ca. 8 h unter Reaktionsbedingungen) liegen sie dann kompakter beieinander (Abb. 4.1 (c)). Auch ist die Oberfläche der einzelnen Kügelchen glatter und die Konturen runder geworden.

Weitere REM-Aufnahmen von den Ausgangssubstanzen  $Mg(OH)_2$  und  $Mg(NO_3)_2$  sowie der dazugehörigen Katalysatoren finden sich in den Abbildungen 4.2 und 4.3.

(a)  $Mg(OH)_2$  (b) K-HH-L7: frisch (c) K-HH-L7: gebraucht

Abb. 4.2: REM-Aufnahmen von reinem Mg(OH)<sub>2</sub> und daraus hergestelltem Katalysator (8.000:1)





### 4.2.3 Lithiumbestimmung

Um dem in einigen Studien [16,96] berichteten Lithiumverlust eines Li/MgO-Katalysators bei der Kalzinierung an die oxidierende Atmosphäre nachzugehen, wird der Lithiumgehalt der hier untersuchten Katalysatoren mit der Flammenphotometrie (Modell FCM 6341 von der Fa. EPPENDORF) vor und nach der Reaktion bestimmt. Für diese Analysemethode müssen die Katalysatorproben in wässriger Lösung vorliegen. Dazu werden 50 mg einer Katalysatorprobe in 100 ml 3,25 %-iger Salpetersäure (HNO<sub>3</sub>) gelöst. Die Eichung des Flammenphotometers geschieht mit einem Lithium-Standard der Fa. EPPENDORF. In Tabelle 4.2 sind beispielhaft einige Ergebnisse vorgestellt.

| Katalysator | Li-Vorläufer   | Li-Ma    | ssenante | Li-Verlust in % |          |                             |
|-------------|----------------|----------|----------|-----------------|----------|-----------------------------|
|             |                | nominell | frisch   | gebraucht       | fri/nom  | $\mathrm{geb}/\mathrm{fri}$ |
| K-CO-L7     | $\rm Li_2CO_3$ | 7,0      | 4,58     | $3,\!07$        | $34,\!6$ | 33,0                        |
| K-CO-N7     | $\rm Li_2CO_3$ | $^{7,0}$ | $3,\!98$ | $2,\!97$        | 43,1     | 25,4                        |
| K-CH-L7     | $\rm Li_2CO_3$ | $^{7,0}$ | $3,\!07$ | 2,81            | 56,1     | $^{8,5}$                    |
| K-HH-L7     | LiOH           | $^{7,0}$ | $3,\!39$ | $3,\!03$        | $51,\!9$ | $10,\!6$                    |
| K-HH-N7     | LiOH           | $^{7,0}$ | $3,\!28$ | 2,79            | 53,1     | 14,9                        |
| K-NH-L7     | $LiNO_3$       | $^{7,0}$ | $4,\!42$ | $2,\!62$        | 36,9     | 40,7                        |
| K-NN-L7     | $LiNO_3$       | $^{7,0}$ | $4,\!65$ | $3,\!38$        | $33,\!6$ | 27,3                        |

Tab. 4.2: Lithiumgehalt der verschiedenen Katalysatorproben

Unter Berücksichtigung der erzielbaren Genauigkeit liegt der Lithiumgehalt aller frisch kalzinierten Katalysatoren unter dem eingewogenen Lithiumanteil und zwar unabhängig von dem eingesetzten Lithium-Vorläufer. Diese Differenz/Abweichung kann seine Ursache einerseits in einem tatsächlichen Lithiumverlust während des Herstellungsprozesses haben, andererseits ist es auch denkbar, dass aufgrund des unvollständigen Lithiumeinbaus, Lithiumreste als Oxid- bzw. Carbonatphase vorliegen und so eine Herabsetzung des Lithiumanteils im fertigen Katalysator bewirken. Diese Ergebnisse werden sowohl von *Couwenberg* [53] als auch von *Hargreaves et al.* [91] bestätigt. Sie zeigten anhand von Atomemissionsspektroskopie-Messungen an Li/MgO, dass etwa ein Drittel der Lithium-Atome während der Präparation der Katalysatorproben ausgetragen wird. Bei einigen Katalysatorproben ist der Lithiumverlust sogar noch größer, der Grund ist aber nicht ersichtlich.

Nach dem Gebrauch unter Reaktionsbedingungen nimmt der Lithiumgehalt weiter ab. Diese Lithiumverarmung läßt sich wie folgt erklären: Li<sub>2</sub>CO<sub>3</sub> (Schmelztemperatur: 720°C) beginnt ab 700°C zu schmelzen und geht schließlich oberhalb von 750°C in Li<sub>2</sub>O über

$$\text{Li}_2\text{CO}_3 \rightleftharpoons \text{Li}_2\text{O} + \text{CO}_2$$
. (4.2)

Bei Anwesenheit von Wasserdampf wird die Gleichgewichtslage dieser Reaktion verschoben, da die Hydroxidbildung nach

$$Li_2O + H_2O \rightleftharpoons 2 LiOH$$
 (4.3)

in Konkurrenz zur Carbonatbildung tritt. Mit zunehmender Temperatur sinkt der Lithiumgehalt wegen der leichten Flüchtigkeit des LiOH. Außerdem diffundiert das Lithium unter Reaktionsbedingungen in den Quarzreaktor und bildet dabei  $\text{Li}_2\text{SiO}_3$ , was zu einem weiteren Lithiumverlust führt [97].

#### 4.2.4 XRD-Messungen

Wie zuvor erwähnt, sollten bei der  $\beta$ -NMR nur Li/MgO-Katalysatoren verwendet werden, die frei von störenden Lithiumverbindungen (Li<sub>2</sub>CO<sub>3</sub>, Li<sub>2</sub>O und LiOH) sind.

Mit der Röntgendiffraktometrie (XRD) kann die Kristallphase und somit die Lithiumverbindungen der Katalysatoren qualitativ untersucht werden. Diese Untersuchungen werden an einem Röntgendiffraktometer der Fa. Siemens Modell D5000 (Cu-K<sub> $\alpha$ 1</sub> Strahlung, Bragg-Brentano Anordnung) durchgeführt. Aufgrund der weitgehend übereinstimmenden Ionenradien von Lithium (Ionenradius: 0,73 Å bei Koordinationszahl 4) und Magnesium (Ionenradius: 0,71 Å bei Koordinationszahl 4) kann die Gitterkonstante für die Beurteilung, ob Li- anstelle von Mg-Atomen in das MgO-Gitter eingebaut sind, nicht herangezogen werden. Andererseits würde ein fehlendes Signal aller Lithiumverbindungen und unter Berücksichtigung der aus der Lithiumbestimmung gewonnenen Ergebnisse auf einen praktisch vollständigen Einbau des Lithiums in das MgO-Gitter hindeuten.

An dem in Abbildung 4.4 dargestellten Diffraktogramm ist deutlich zu erkennen, dass alle Katalysatoren neben MgO mehr oder minder noch Li<sub>2</sub>CO<sub>3</sub>-Phase aufweisen. Die relativ schwachen Peaks des  $Li_2CO_3$  deuten daraufhin, dass nur geringe Mengen an Li<sub>2</sub>CO<sub>3</sub> in der Probe vorliegt. Bei K-HH-N7, welcher aus den Vorläuferkomponenten LiOH und Mg(OH)<sub>2</sub> und unter Stickstoffatmosphäre hergestellt wurde, kann wider Erwarten auch Li<sub>2</sub>CO<sub>3</sub> nachgewiesen werden. Das Auftreten von  $Li_2CO_3$  in diesem Fall kann nur dadurch erklärt werden, dass der frisch kalzinierte Katalysator unter Raumbedingungen  $CO_2$  aus der Umgebung adsorbiert, welches dann weiter mit Lithium zu Li<sub>2</sub>CO<sub>3</sub> umgesetzt wird [92, 98]. Bei Katalysatoren,



Abb. 4.4: XRD-Untersuchungen der Li/MgO-Katalysatoren

die  $Li_2CO_3$  als Vorläufer haben, wird neben MgO nur noch  $Li_2CO_3$  detektiert. Die Kalzinierungsatmosphäre übt anscheinend keinen Einfluss auf die Phasenzusammensetzung im Katalysator aus. Dies ist anhand der XRD-Signale von K-CO-L7 und K-CO-N7, ersterer unter Luftatmosphäre und letzterer unter Stickstoffatmosphäre kalziniert, zu sehen. Sie unterscheiden sich praktisch nicht voneinander. Daraufhin ist vermutet worden, dass die Kalzinierungstemperatur von  $800^{\circ}$ C eventuell nicht ausreicht, um einen vollständigen Abbau des Li<sub>2</sub>CO<sub>3</sub> zu erzielen. Aber auch eine XRD-Messung am bei  $850^{\circ}$ C kalzinierten Katalysator weist identische Signale von Li<sub>2</sub>CO<sub>3</sub> auf.

Im Gegensatz zu den aus Li<sub>2</sub>CO<sub>3</sub> hergestellten Katalysatoren wird bei den anderen Katalysatoren neben Li<sub>2</sub>CO<sub>3</sub> vor allem Li<sub>2</sub>O detektiert. Diese beiden Phasen wurden auch von *Camino et al.* [98, 99] und *Bothe-Almquist et al.* [39] bei der Verwendung unterschiedlicher Lithium-Vorläufer nachgewiesen. Das Auftreten von Li<sub>2</sub>O rührt von den niedrigen Schmelztemperaturen von LiOH und LiNO<sub>3</sub> her. Diese zersetzen sich bereits bei Temperaturen von 400-600°C zu Li<sub>2</sub>O.

Dass Li<sub>2</sub>O an kalzinierten Li/MgO-Katalysatoren detektiert wird, widerspricht aber den Ergebnissen von Korf et al. [97] sowie von Andersen und Norby [93]. Ihrer Meinung nach sollte Li<sub>2</sub>O unter Raumbedingungen mit CO<sub>2</sub> bzw. H<sub>2</sub>O gemäß den Gleichungen (4.2) und (4.3) in Li<sub>2</sub>CO<sub>3</sub> bzw. LiOH übergehen. Hierbei ist das Li<sub>2</sub>CO<sub>3</sub> die thermodynamisch stabilere Spezies, aber aufgrund des um Größenordnungen höheren Wassergehalts in der Luft (ca. 2 %, im Vergleich zu 0,033 % für CO<sub>2</sub>) ist die Bildung der Zwischenspezies LiOH auch denkbar.

Insgesamt lassen sich die möglichen Interaktionen der Lithiumspezies in der Abbildung 4.5 abstrahieren. Demzufolge dürfte bei allen Li/MgO-Katalysatoren, wenn überhaupt, nur Li<sub>2</sub>CO<sub>3</sub> und LiOH zu sehen sein. LiOH-Verbindungen können aber an den hier beschriebenen Li/MgO-Katalysatoren im Gegensatz zu den Untersuchungen von *Camino et al.* [98] überhaupt nicht nachgewiesen werden. Ein Grund kann in dem kurzen Zeitraum zwischen Kalzinieren und XRD-Messung liegen, so dass sich noch kein thermodynamisches Gleichgewicht einstellen kann. Eine weitere Ursache kann im geringen H<sub>2</sub>O-Partialdruck, welcher



Abb. 4.5: Mögliche Interaktionen zwischen den Lithiumspezies

in dem geschlossenen Aufbewahrungsbehälter vorherrscht, liegen.

Nach den dargestellten Ergebnissen ist es offensichtlich nicht möglich, einphasiges Li/MgO mit einer nominellen Lithiumdotierung von 7 *wt*-% herzustellen. Es drängt sich demnach die Frage nach der maximalen Löslichkeit von Lithium im MgO-Gitter auf.

# 4.3 Löslichkeit von Lithium in MgO

In der 70er Jahren stellten Abraham et al.  $[Li^+O^-]$ -Zentren in MgO-Einkristallen aus  $Li_2CO_3$  mit der Leuchtbogen-Schmelzmethode (arc-fusion) bei tiefen Temperaturen her [100], dabei bildete sich eine stabile  $[Li^+O^-]$ -Konzentration von etwa 0,03-0,05 at-% bzw. 0,01-0,02 wt-% aus. Anfang der 90er Jahre kamen Andersen und Norby [93] aufgrund von Leitfähigkeitsmessung an Li/MgO-Proben auf eine Löslichkeit in der Größenordnung von 0,05 at-%, was in hervorragender Weise mit den Ergebnissen von Abraham et al. übereinstimmt.

Wang und Lunsford folgerten aus den EPR-Spektren von Li/MgO-Proben, dass die antizipierten aktiven [Li<sup>+</sup>O<sup>-</sup>]-Zentren etwa 8-10 Å voneinander entfernt sind [12]. Unter der Annahme, dass die Lithium-Atome gleichmäßig über das MgO-Gitter verteilt sind und dass die Kristalle eine mittlere Korngröße von 400 nm (vgl. Abb. 4.1) aufweisen, läßt sich daraus ein Lithiumgehalt von 0,02 at-% (0,01 wt-%) abschätzen. Eine neuere Studie von Leveles et al. befasst sich mit dem Verhalten von Li/MgO hinsichtlich der  $CO_2$ -Adsorption-Desorption sowie dem Sauerstoffentzug. Aus der Oberflächenkonzentration von austauschbarem Sauerstoff sowie der Konzentration der Zentren, an welchen  $CO_2$  reversibel adsorbieren kann, schlossen sie eine mit dem Lithiumanteil proportional steigende [Li<sup>+</sup>O<sup>-</sup>]-Konzentration bis zu einem Massenanteil von 0,014 % [101]. Diese Werte stimmen größenordnungsmäßig mit den Ergebnissen von Abraham et al. und Andersen et al. überein.

Peng et al. untersuchten die Oberfläche von Li/MgO-Katalysatoren mit Hilfe von XPS-Messungen [16]. Sie interpretierten ihre Ergebnisse dahingehend, dass der maximale Anteil an [Li<sup>+</sup>O<sup>-</sup>] auf der Katalysatoroberfläche bei einem Lithiumgehalt von etwa  $0,2 \ wt$ -% erreicht ist [16]. Allerdings bildet sich bereits bei einem Lithiumgehalt von mehr als  $0,1 \ wt$ -% eine Carbonatphase auf der Oberfläche. Wenn alle MgO bei der Lithiumsubstitution einbezogen werden, entspricht ein Lithiumgehalt von  $0,2 \ wt$ -% einem Atomanteil von etwa  $0,6 \ \%$ , was um eine Größenordnung größer ist als der von Abraham et al. berichtete Wert. Eine Erhöhung des Lithiumanteils führt demnach ausschließlich zur Bildung einer separaten lithiumreichen Phase (Li<sub>2</sub>CO<sub>3</sub>), welche sich an der Oberfläche anreichert [16, 102].

Die oben dargestellten Ergebnisse stehen aber im Widerspruch zu den EPR-Messungen von Lunsford et al., wonach die  $[Li^+O^-]$ -Konzentration bis zu einem Lithiumgehalt von 13,5 wt-% ansteigt [11]. Diese Beladung ist wesentlich größer als die von Peng et al. angegebene 0,2 wt-%. Außer den verwendeten Vorläuferkomponenten kann ein Erklärungsansatz für diese unterschiedlichen Beobachtungen in den angewandten Kalzi-

nierungsbedingungen liegen. Dadurch ist ein anderer Mechanismus für die Lithiumsättigung möglich, nämlich Diffusion in dem MgO-Bulk. Diese Neigung wurde auch von Aritani et al. bei hoher Lithiumdotierung (> 2,5 wt-%) angenommen [36].

Tendenziell kann aus XRD-Daten in Verbindung mit quantitativer Lithiumbestimmung indirekt auf die Löslichkeit von Lithium in MgO geschlossen werden. Es stellt sich hier die Frage, ab welchem Lithiumgehalt eine lithiumreiche Phase zu beobachten ist. Die am häufigsten nachgewiesene lithiumreiche Phase in Li/MgO nach der Kalzinierung ist die Carbonatphase, welche nach Andersen und Norby auch thermodynamisch die stabilere ist.

Wie oben erwähnt, konnten *Peng et al.* bereits bei einem Lithiumgehalt von 0,1%Massenanteil Li<sub>2</sub>CO<sub>3</sub> infolge einer Oberflächensättigung nachweisen. *Dai et al.* untersuchten Li/MgO mit einem Lithiumgehalt im Bereich von 0,2 - 5,4 wt-% [102]. Die von ihnen durchgeführten XRD-Messungen belegen, dass Li<sub>2</sub>CO<sub>3</sub> in den Proben mit einem Lithiumanteil größer als 0,9 wt-% vorhanden ist. Allerdings ließen PA-Studien (positron annihilation) den Schluss zu, dass auch in den Proben mit 0,5 bzw 0,2 wt-% Li<sub>2</sub>CO<sub>3</sub> zu finden ist. Bei etwas höherem Lithiumgehalt konnten sowohl *Korf et al.* (1,7-5,4 wt-%) [97] als auch *Couwenberg* (3,9 wt-%) [53] eine Carbonatphase im unbenutzten Li/MgO anhand von XRD-Messungen erkennen. Mit Hilfe von XPS-Messungen beobachteten *Ito et al.*, dass beim mit 7 wt-% Li dotierten MgO bis zu 50 % der Oberfläche mit Li<sub>2</sub>CO<sub>3</sub> bedeckt ist [9]. Im Widerspruch dazu zeigen die XRD-Ergebnisse von *Aritani et al.* keinerlei lithiumreiche Phase bei mit 2,5 sowei 5,0 und 7,5 wt-% dotiertem Li/MgO [36]. Dieser Umstand ist womöglich anhand folgender Überlegung zu erklären:

- (a) Während Dai et al., Korf et al. und Couwenberg von experimentell ermittelten Lithiumanteilen der Proben ausgingen, verwendeten Aritani et al. die eingewogenen Lithiumanteile als Bezugsgrößen. Da im Verlauf des Herstellungsprozesses ein Lithiumaustrag zu verzeichnen ist, sind die Konzentrationsangaben von Aritani et al. mit hoher Wahrscheinlichkeit zu groß.
- (b) Aus den Untersuchungen von Dai et al. läßt sich entnehmen, dass die XRD-Methode bei kleinen Volumenanteilen einer Phase nicht sensitiv genug ist.

Das alles erklärt aber nicht den Befund von *Lunsford et al.*, wonach die optimale Lithiumdotierung eines Li/MgO-Katalysators bei etwa 7 *wt-*% liegen soll [9]. Bei dieser hohen Lithiumdotierung ist davon auszugehen, dass der Katalystor neben dem im MgO-Gitter eingebauten Lithium noch andere lithiumreiche Phasen besitzt. Es stellt sich dann die Frage nach den katalytischen Aktivitäten der verschiedenen möglichen lithiumreichen Phasen im Li/MgO bezüglich der OKM. Da sich LiOH bereits ab 400°C zersetzt, reduziert sich die Frage auf die Aktivität von  $Li_2O$  und  $Li_2CO_3$ . Nach den Untersuchungen von *Lunsford et al.* weist reines  $Li_2O$  nur eine geringe Aktivität für die partielle Oxidation von Methan bei 700°C auf. Aufgrund der geringen  $Li_2O$ -Konzentration sei aber dessen Beitrag vernachlässigbar [103].

Die Aussagen hinsichtlich der katalytischen Aktivität des Li<sub>2</sub>CO<sub>3</sub> reichen von gänzlich "inaktiv" [16, 95, 98] über "deutlich weniger aktiv als [Li<sup>+</sup>O<sup>-</sup>]-Zentren" [9] bis hin zu "sehr aktiv" [86, 94, 97]. Messungen zufolge besitzt das Li<sub>2</sub>CO<sub>3</sub> unter OKM-Bedingung eine Aktivität von etwa 1/10 der [Li<sup>+</sup>O<sup>-</sup>]-Zentren und ist somit nicht zu vernachlässigen [94]. Nach Meinung verschiedener Autoren [94, 97] sollte deswegen ein guter Li/MgO-Katalysator neben dem eingebauten Lithium auch noch Li<sub>2</sub>CO<sub>3</sub> aufweisen, da das Li<sub>2</sub>CO<sub>3</sub> auf der Oberfläche entscheidend für das Aktivitätsverhalten des Katalysators ist. Neben der Vorratsfunktion, welche durch die fortlaufende Bildung neuer aktiver Zentren durch die Reaktion von Li<sub>2</sub>CO<sub>3</sub> mit Sauerstoff gewährleistet wird und somit den Lithiumverlust in Form von LiOH kompensiert, erfüllt das Li<sub>2</sub>CO<sub>3</sub> auch die Rolle einer OKM-aktivierenden Spezies [94]. Hierbei konnten Bhumkar und Lobban mittels der Diffuse Reflectance Fourier Transform Infrarot-Spektroskopie (DRIFTS) nachweisen, dass unter konstanter Aktivität Li/MgO-Katalysator während der OKM tatsächlich einem Nettoverlust an Li<sub>2</sub>CO<sub>3</sub> unterliegt [95].



**Abb. 4.6:** Methan- und Sauerstoffumsatz von SiC und Li<sub>2</sub>CO<sub>3</sub> in Abhängigkeit der Temperatur.  $\dot{V}_{qes} = 6 \ l/h; \ CH_4/O_2 = 5:1; \ F \ddot{u} llvolumen = 1,2 \ ml.$ 

Um die Literaturergebnisse zu verifizieren, werden Versuche an reinem  $Li_2CO_3$  durchgeführt. Abbildung 4.6 zeigt den Methan- und Sauerstoffumsatz von reinem  $Li_2CO_3$  und als Vergleich von SiC in Abhängigkeit der Temperatur. Im Fall von  $Li_2CO_3$  wird SiC als Inertpartikel im Massenverhältnis 1:4 beigemischt, da sonst reines  $Li_2CO_3$  bei Temperaturen über 700°C zusammenbackt. Während an der Inertschüttung aus SiC über den ganzen Temperaturbereich praktisch keine Methanumsetzung stattfindet, wird an  $Li_2CO_3$  das Methan schon bei 670°C umgesetzt und dieser Umsatz steigt mit zunehmender Temperatur auf 5,7 % bei 800°C. Sowohl an SiC als auch an  $Li_2CO_3$  wird Sauerstoff umgesetzt, wobei der Sauerstoffumsatz für  $Li_2CO_3$  wesentlich höher ist als der des SiC. Auffallend ist hierbei der große Ausschlag des Sauerstoffumsatzes für  $Li_2CO_3$  bei 725°C. Dies ist wahrscheinlich auf eine sauerstoffbedingte Zersetzung des  $Li_2CO_3$  zurückzuführen, wie später an der  $CO_2$ -Ausbeute noch gezeigt wird.



**Abb. 4.7:** Produktausbeute von SiC und Li<sub>2</sub>CO<sub>3</sub> in Abhängigkeit der Temperatur.  $\dot{V}_{ges}=6$  l/h; CH<sub>4</sub>/O<sub>2</sub>=5:1; Füllvolumen=1,2 ml.

Aus der linken Darstellung von Abbildung 4.7 ist ersichtlich, dass, abgesehen von geringen Mengen CO und C<sub>2</sub>H<sub>6</sub> bei hoher Temperatur, weder C<sub>2</sub>H<sub>4</sub> noch CO<sub>2</sub> an SiC gebildet werden. Im Gegensatz dazu entstehen an Li<sub>2</sub>CO<sub>3</sub> schon bei 675°C CO, CO<sub>2</sub> sowie C<sub>2</sub>H<sub>6</sub> und ab 750°C auch C<sub>2</sub>H<sub>4</sub>. Für die erhöhte Bildung der Produkte CO, CO<sub>2</sub> und C<sub>2</sub>H<sub>6</sub> bei Temperaturen unter 725°C sollte in der Tat das Li<sub>2</sub>CO<sub>3</sub> verantwortlich sein, denn bei diesen Temperaturen dürfte Li<sub>2</sub>CO<sub>3</sub> noch weitgehend als Verbindung vorliegen. Die dann weiter ansteigende Aktivität ab 750°C, insbesondere auch die einsetzende C<sub>2</sub>H<sub>4</sub>-Bildung, kann aber nicht mehr auf das Li<sub>2</sub>CO<sub>3</sub> zurückgeführt werden, sondern muss vielmehr dem Li<sub>2</sub>O zugeschrieben werden. Diese Vermutung wird durch die Untersuchungsergebnisse von *DeBoy* und *Hicks* gestützt [104]. Bekanntlich zersetzt sich Li<sub>2</sub>CO<sub>3</sub> ab 720°C unter Bildung von Li<sub>2</sub>O [93]. Der Ausschlag der CO<sub>2</sub>-Ausbeute bei 725°C fällt mit dem des Sauerstoffumsatzes zusammen und kennzeichnet den einsetzenden Zersetzungsprozess des Li<sub>2</sub>CO<sub>3</sub> mit Sauerstoff zu CO<sub>2</sub> und Li<sub>2</sub>O<sub>2</sub>

$$\operatorname{Li}_2\operatorname{CO}_3 + \frac{1}{2}\operatorname{O}_2 \rightleftharpoons \operatorname{Li}_2\operatorname{O}_2 + \operatorname{CO}_2.$$
 (4.4)

Schlussfolgernd läßt sich über die in der Literatur angegebene optimale Lithiumdotierung vermuten, dass die meisten Autoren primär nicht an einer einphasigen Struktur des Katalysators interessiert waren, sondern viel mehr unter Aktivitäts- und Stabilitätsgesichtspunkten Katalysatoren beurteilten. Somit ist es nicht verwunderlich, wenn die meisten angegebenen Werte deutlich über der maximalen Löslichkeit von Lithium im MgO liegen, denn für die Stabilität ist es offensichtlich von Vorteil, den Katalysator mit mehr Lithium zu beladen, welches dann während der Reaktion zu den aktiven [Li<sup>+</sup>O<sup>-</sup>]-Zentren umgewandelt werden kann. Für die Abweichung der angegebenen Werte sind verschiedene Gründe denkbar. Einerseits ist es möglich, dass die tatsächliche Konzentration der Oberflächen-Lithiumspezies infolge einer Migration in die Bulk-Phase und/oder auch einer Freisetzung in die Gasphase unter Reaktionsbedingungen mit der angegebenen Lithiumkonzentration nicht mehr übereinstimmt. Andererseits ist die Bestrebung, einen Zusammenhang von Methanumsatz mit irgendwelchen Oberflächeneingenschaften herzustellen, aufgrund der Bulk-Sensitivität der verwendeten Analysentechniken sehr schwierig.

# Kapitel 5

# Katalysatorscreening

Im Zusammenhang mit den katalytischen Eigenschaften werden Fragen des Einflusses der unterschiedlichen Vorläuferkomponenten sowie Kalzinierungsbedingungen (Temperatur und Atmosphäre) bei der Herstellung der Katalysatoren auf deren Umsatz- und Selektivitätsverhalten sowie der angewandten Reaktionsbedingungen diskutiert. Wenn nicht anders beschrieben, wird dazu 1 g Katalysator mit der Korngröße von 0,25-0,45 mm eingewogen und bei einem kontinuierlichen Gesamtvolumenstrom von 10 l/h b. N. im Temperaturbereich 675-800°C getestet. Die modifizierte Verweilzeit (W/F) beträgt dann 0,1 g·h/l und ergibt sich aus dem Verhältnis der eingesetzten Katalysatormasse (W) zum Volumenstrom (F).

# 5.1 Einfluss der Vorläuferkomponenten

Mit der Variation der Vorläuferkomponenten soll zunächst basierend auf Aktivitätsmessungen ein Li/MgO-System für die weiteren Untersuchungen ausgewählt werden. Abbildung 5.1 zeigt den Methan- und Sauerstoffumsatz der aus verschiedenen Vorläuferkomponenten hergestellten Li/MgO-Katalysatoren in Abhängigkeit der Temperatur. Der Einfluss der Temperatur auf den Umsatz des Methans und Sauerstoffs ist für alle Katalysatoren tendenziell gleich. Eine Erhöhung der Reaktionstemperatur bewirkt eine Steigerung der Reaktionsgeschwindigkeit und damit des Umsatzes.



**Abb. 5.1:** Einfluss der Vorläuferkomponenten auf den Methan- und Sauerstoffumsatz in Abhängigkeit<br/>der Temperatur.  $\dot{V}_{ges} = 10 \ l/h; \ CH_4/N_2/O_2 = 5:4:1; \ W/F = 0,1 \ g\cdot h/l.$ 

Auffällig ist hierbei, dass der Methanumsatz der Katalysatoren K-NN-L7 und K-CO-L7 zunächst stark mit der Temperatur bis 750°C bzw. 775°C ansteigt. Danach fällt der Anstieg des Methanumsatzes geringer aus. Dies ist auch darauf zurückzuführen, dass der Sauerstoffumsatz für die beiden Katalysatoren am Anfang der Messreihe relativ hoch ist und entsprechend bei 750°C bzw. 775°C schon weit über 80 % liegt. So ist bei einer weiteren Temperaturerhöhung keine starke Zunahme des Methanumsatzes möglich, da nur noch wenig Gasphasensauerstoff vorhanden ist.

Der Methanumsatz der anderen drei Katalysatoren erreicht auch bei 800°C nicht das Niveau der beiden zuvor genannten, obwohl alle Katalysatoren bei der Anfangstemperatur fast identische Methanumsätze aufweisen. Ab 750°C steigt aber der Methanumsatz dieser drei Katalysatoren stark an.

Infolge des steigenden Methanumsatzes nimmt auch die C<sub>2</sub>-Ausbeute mit größer werdender Temperatur zu (Abb. 5.2), denn eine Erhöhung der Reaktionstemperatur bewirkt eine vermehrte Bildung der Methylradikale und, als Konsequenz, auch der Kopplungsprodukte. Dabei ähneln die Kurvenverläufe denen der Methanumsätze, d. h. sie werden im Wesentlichen durch den Methanumsatz bestimmt. Die maximale C<sub>2</sub>-Ausbeute von ca. 20 % wird von den Katalysatoren K-CO-L7, K-NH-L7 und K-NN-L7 bei 775°C bzw. 800°C erreicht. Es ist zwar anzunehmen, dass die C<sub>2</sub>-Ausbeute von K-CH-L7 und K-HH-L7 bei einer weiteren Temperaturerhöhung über 800°C hinaus noch ansteigen wird, da jedoch gleichzeitig die C<sub>2</sub>-Selektivität sinkt, ist dieser Schritt nicht sinnvoll. Hinsichtlich der C<sub>2</sub>-Selektivität kann für die verschiedenen Katalysatoren ein nahezu identisches Verhalten bezüglich des Temperatureinflusses festgestellt werden. Sie durchlaufen alle im Bereich von 725°C bis 775°C ein Maximum.



Abb. 5.2: Einfluss der Vorläuferkomponenten auf die C<sub>2</sub>-Ausbeute und C<sub>2</sub>-Selektivität in Abhängigkeit der Temperatur.  $\dot{V}_{ges}$ =10 l/h; CH<sub>4</sub>/N<sub>2</sub>/O<sub>2</sub>=5:4:1; W/F=0,1 g·h/l.

Die höchste C<sub>2</sub>-Selektivität wird von K-CH-L7 bei 775°C mit 77 % erreicht. Die am Anfang stark zunehmende C<sub>2</sub>-Selektivität mit steigender Temperatur läßt sich dadurch veranschaulichen, dass die Aktivierungsenergie der Methylradikalerzeugung im Vergleich zur Radikaloxidation höher liegt [76]. Mit der Erhöhung der Temperatur bilden sich pro Zeiteinheit mehr Methylradikale als durch Oxidation verbraucht werden, dadurch ist eine höhere Methylradikalkonzentration möglich und folglich auch eine höhere C<sub>2</sub>-Selektivität.

Die dann einsetzende Abnahme der C<sub>2</sub>-Selektivität bei einem weiteren Temperaturanstieg ist auf eine Weiterreaktion der C<sub>2</sub>-Produkte zu CO und CO<sub>2</sub> zurückzuführen. Die Ursache für dieses Verhalten kann einerseits an Gasphasenreaktionen und andererseits in der Lithium-Verarmung des Katalysators liegen. Mit Erhöhung der Reaktionstemperatur steigt der Einfluss der Gasphasenoxidation, da bei sehr hoher Temperatur eindeutig die Gasphasenoxidation für den größten Teil der Totaloxidationsprodukte verantwortlich ist [62]. Eine zweite Ursache liegt in der während der Reaktion fortschreitenden Verarmung des Katalysators an Lithium. Wie im Abschnitt 4.2.3 dargestellt, kann Lithiumoxid mit Wasser, welches als Reaktionsprodukt anfällt, zu LiOH umgesetzt werden. LiOH ist bei einer Temperatur von 720°C bereits in merklichem Ausmaß flüchtig und wird somit aus dem Katalysator ausgetragen. Da Lithium ein entscheidendes Dotierungselement zur Erhöhung der C<sub>2</sub>-Ausbeute ist, läßt sich die Abnahme der C<sub>2</sub>-Selektivität zum Teil auch auf diese Weise erklären.

Da die OKM vornehmlich die Produktion von Ethen zum Ziel hat, ist es sinnvoll, die Ausbeute für Ethen sowie das Verhältnis von Ethen zu Ethan zu betrachten. Der Temperatureinfluss auf die  $C_2H_4$ -Ausbeute folgt derselben Charakteristik wie der des Methanumsatzes, d. h. mit zunehmender Temperatur steigt die  $C_2H_4$ -Ausbeute. Die höchste  $C_2H_4$ -Ausbeute wird von K-CO-L7 bei 800°C mit ca. 13 % erreicht.



**Abb. 5.3:** Einfluss der Vorläuferkomponenten auf die  $C_2H_4$ -Ausbeute und das  $C_2H_4/C_2H_6$ -Verhältnis in Abhängigkeit der Temperatur.  $\dot{V}_{ges} = 10 \ l/h; \ CH_4/N_2/O_2 = 5:4:1; \ W/F = 0,1 \ g\cdot h/l.$ 

Das in Abbildung 5.3 wiedergegebene Verhältnis von Ethen zu Ethan steigt für alle Katalysatoren kontinuierlich mit zunehmender Reaktionstemperatur und ist damit auch im Einklang mit Literaturergebnissen [65,84,89]. Dieser Sachverhalt ist auch nicht weiter verwunderlich, da Ethen hauptsächlich als Sekundärprodukt aus Ethan gebildet wird. Außerdem setzt ab einer Temperatur von 750°C die thermische Zersetzung ein, wodurch ebenfalls Ethen produziert wird. Des weiteren gewinnt die in Gegenwart eines Katalysators ablaufende oxidative Dehydrierung des Ethans bei höherer Temperatur an Bedeutung. Über den Gesamttemperaturbereich gesehen, liegt das  $C_2H_4/C_2H_6$ -Verhältnis von K-CO-L7 oberhalb der übrigen Katalysatoren, dies wird nur noch von K-HH-L7 bei 800°C übertroffen. Die hier erzielten  $C_2H_4/C_2H_6$ -Verhältnisse stimmen gut mit Literaturdaten überein [75].

Aus den oben dargestellten Ergebnissen kann Folgendes fest gehalten werden:

- (a) Li/MgO-Katalysatoren, die aus Li<sub>2</sub>CO<sub>3</sub> und MgO sowie LiNO<sub>3</sub> und Mg(NO<sub>3</sub>)<sub>2</sub> hergestellt sind, weisen im Vergleich zu den anderen Katalysatoren eine höhere Aktivität bezüglich der OKM auf. Dies wird zum Teil auch von *Hutchings et al.* [83] so gesehen. Sie zeigten, dass die durch thermische Zersetzung der Basiscarbonate hergestellten Li/MgO-Katalysatoren am aktivsten sind. Der aus Li<sub>2</sub>CO<sub>3</sub> und Mg(OH)<sub>2</sub> hergestellte Li/MgO-Katalysator hat die schlechtesten Eigenschaften aller hier getesteten Katalysatoren.
- (b) Bei Katalysatoren, die aus LiNO<sub>3</sub> hergestellt wurden, können am Anfang weder CO noch CO<sub>2</sub> im Produktgas gemessen werden. Laut XRD-Messung liegt das nicht im MgO-Gitter eingebaute Lithium als Li<sub>2</sub>O vor, sodass vermutet werden kann, dass das am Anfang gebildete CO/CO<sub>2</sub> mit dem im Katalysator vorhandenen Li<sub>2</sub>O zu Li<sub>2</sub>CO<sub>3</sub> umgewandelt wird [13, 103]. Da der Li/MgO-

Katalysator bekanntlich basische Eigenschaften aufweist, ist die Interaktion zwischen  $CO_2$  und Li/MgO durchaus nachvollziehbar. Diese Annahme wird durch XRD-Untersuchungen gestützt.

- (c) Es ist nicht nur die Wahl des Lithium- oder des Magnesiumoxid-Vorläufers für die Aktivität entscheidend, sondern vielmehr die Kombination dieser beiden.
- (d) Obwohl es aufgrund der relativ geringen Unterschiede in der BET-Oberfläche schwierig ist, eine direkte Korrelation zwischen BET-Oberfläche und Aktivität herzustellen, kommt es dennoch nicht von ungefähr, dass gerade K-CH-L7 mit der kleinsten BET-Oberfläche auch am inaktivsten ist. Im Gegensatz dazu weisen die beiden aktivsten K-CO-L7 und K-NN-L7 auch die größte BET-Oberfläche in dieser Gruppe auf.
- (e) Die aktiveren Li/MgO-Katalysatoren weisen im Vergleich zu den weniger aktiven Li/MgO-Proben einen höheren Lithiumverlust während der Reaktion auf (vgl. Tab. 4.2).

# 5.2 Einfluss der Kalzinierungsbedingungen

#### 5.2.1 Kalzinierungsatmosphäre

Aus den XRD-Messungen ist ersichtlich, dass es weder unter Luftatmosphäre noch unter Stickstoffatmosphäre möglich ist, einphasiges Li/MgO mit einem Lithiumgehalt von 7 wt-% herzustellen. Im Falle des Li<sub>2</sub>CO<sub>3</sub> als Lithiumvorläufer geht aus verschiedenen Untersuchungen (z. B. mit der XPS-Methode) hervor, dass für deren Abbau nach Gleichung (5.1) die Anwesenheit von Sauerstoff notwendig ist [16,65,97]

$$\text{Li}_2\text{CO}_3 + \frac{1}{2} \text{ O}_2 \rightleftharpoons 2 \text{ Li}_{\text{Mg}}^+ + 2 \text{ O}^{2-} + \text{CO}_2 + 2 \text{ h}^+ .$$
 (5.1)

Zur Abbauatmosphäre der anderen Lithiumvorläuferkomponenten finden sich keine Bemerkungen, nur dass eine andere Kalzinierungsatmosphäre wie z. B. He,  $H_2/Ar$  oder CH<sub>4</sub> sich nachteilig auf die Katalysatoraktivität auswirkt [97]. Nachfolgend werden die Ergebnisse der unter Luft- bzw. Stickstoffatmosphäre kalzinierten Katalysatoren kurz wiedergegeben.

Aus Abbildung 5.4 ist zu entnehmen, dass sowohl der beobachtete Methan- als auch der Sauerstoffumsatz der Katalysatoren nach Kalzinieren an Luft deutlich größer ist als nach entsprechender Kalzinierung unter Stickstoffatmosphäre.



Abb. 5.4: Einfluss der Kalzinierungsatmosphäre auf den Methan- und Sauerstoffumsatz in Abhängigkeit der Temperatur.  $\dot{V}_{ges}$ =10 l/h; CH<sub>4</sub>/N<sub>2</sub>/O<sub>2</sub>=5:4:1; W/F=0,1 g·h/l.

Diese große Abweichung ist insofern bemerkenswert, als dass alle Katalysatoren denselben Vorbehandlungen ausgesetzt wurden. Sie werden nämlich bei kontinuierlichem synthetischen Luftstrom auf Reaktionstemperatur gebracht und dort für eine halbe Stunde belassen, bevor die eigentliche Messung startet. Falls dieser Vorbehandlungsschritt nicht durchgeführt wird, ist ein weitaus stärkerer Einfluss der Kalzinierungsatmosphäre auf die Katalysatoraktivität zu erwarten.

Mit der C<sub>2</sub>-Ausbeute, welche in Abbildung 5.5 dargestellt ist, verhält es sich ähnlich. Auch hier weisen die unter Stickstoffatmosphäre kalzinierten Katalysatoren einen geringeren Wert auf. Die Abweichung in dem Temperaturbereich von 675°C bis 725°C ist sowohl auf eine geringere Methanumsetzung als auch auf eine niedrigere C<sub>2</sub>-Selektivität zurückzuführen. Ab 750°C, wo die kalzinierungsatmosphäre-bedingte Abweichung der C<sub>2</sub>-Selektivität zurück geht, ergibt sich die kleinere C<sub>2</sub>-Ausbeute vor allem aus dem niedrigeren Methanumsatz. Im Falle von K-CO-N7 übersteigt die C<sub>2</sub>-Selektivität ab 750°C die des K-CO-L7.



Abb. 5.5: Einfluss der Kalzinierungsatmosphäre auf die C<sub>2</sub>-Ausbeute und C<sub>2</sub>-Selektivität in Abhängigkeit der Temperatur.  $\dot{V}_{ges}$ =10 l/h; CH<sub>4</sub>/N<sub>2</sub>/O<sub>2</sub>=5:4:1; W/F=0,1 g·h/l.

Aufgrund der dargestellten Ergebnisse ist es offensichtlich, dass das Kalzinieren unter Stickstoffatmosphäre einen negativen Einfluss auf die Katalysatoraktivität ausübt und zwar unabhängig von den hier eingesetzten Vorläuferkomponenten. Die am Anfang starke Abweichung in der C<sub>2</sub>-Selektivität deutet daraufhin, dass neben einer verminderten Methanumsetzung, welche vor allem aus einer zahlenmäßigen Verringerung der aktiven Zentren resultiert, auch die Eigenschaften der aktiven [Li<sup>+</sup>O<sup>-</sup>]-Zentren durch das Kalzinieren an N<sub>2</sub>-Atmosphäre beeinflusst werden. Dies kann daran liegen, dass die Oberfläche dieser Katalysatoren zum Beginn der Messung meist mit nicht-selektivem Li<sub>2</sub>CO<sub>3</sub> bzw. Li<sub>2</sub>O bedeckt ist. Bei erhöhter Temperatur wird die Zersetzung von Li<sub>2</sub>CO<sub>3</sub> in der Anwesenheit von Gasphasensauerstoff begünstigt. Auf diese Weise werden mehr aktive Zentren gebildet und das nicht-selektive Li<sub>2</sub>CO<sub>3</sub> wird abgebaut. Als Folge steigt die C<sub>2</sub>-Selektivität.

### 5.2.2 Kalzinierungstemperatur

Um die Auswirkung der Kalzinierungstemperatur auf die Aktivität zu quantifizieren, werden 5 Katalysatoren, die im Bereich von 750°C bis 850°C kalziniert sind, eingesetzt. BET-Messungen zufolge sinkt die BET-Oberfläche der Katalysatoren mit steigender Kalzinierungstemperatur. Aus dem in Abbildung 5.6 dargestellten Methanumsatz geht hervor, dass die bei einer niedrigeren Temperatur kalzinierten Li/MgO-Katalysatoren eine höhere Aktivität bei niedriger Reaktionstemperatur aufweisen als jene, die bei einer höheren Temperatur kalziniert sind. Anhand der Sauerstoffumsätze wird dieser Effekt noch deutlicher; je höher die Kalzinierungstemperatur, desto kleiner der Sauerstoffumsatz. Entsprechend wird die größte Abweichung mit über 20 % zwischen den mit 850°C und 750°C kalzinierten Katalysatoren bei 800°C registriert.



Abb. 5.6: Einfluss der Kalzinierungstemperatur auf den Methan- und Sauerstoffumsatz in Abhängigkeit der Temperatur.  $\dot{V}_{ges}$ =10 l/h; CH<sub>4</sub>/N<sub>2</sub>/O<sub>2</sub>=5:4:1; W/F=0,1 g·h/l.

Aus der fast identischen C<sub>2</sub>-Selektivität, welche neben der C<sub>2</sub>-Ausbeute in Abbildung 5.7 dargestellt ist, kann der Schluss gezogen werden, dass die Kalzinierungstemperatur keinen Einfluss auf die Eigenschaften der aktiven  $[Li^+O^-]$ -Zentren ausübt. Da die Ausbeute das Produkt von Umsatz und Selektivität ist, kann hinsichtlich der C<sub>2</sub>-Ausbeute dieselbe Tendenz wie die des Methanumsatzes festgestellt werden. Generell gilt auch hier, je niedriger die Kalzinierungstemperatur der Katalysatoren, desto höher die C<sub>2</sub>-Ausbeute.



**Abb. 5.7:** Einfluss der Kalzinierungstemperatur auf die C<sub>2</sub>-Ausbeute und C<sub>2</sub>-Selektivität in Abhängigkeit der Temperatur.  $\dot{V}_{ges}=10 \ l/h; \ CH_4/N_2/O_2=5:4:1; \ W/F=0,1 \ g\cdot h/l.$ 

Die Ursache für die beobachteten Ergebnisse kann im unterschiedlich stark gebundenen Li<sub>2</sub>CO<sub>3</sub> liegen. Falls ein Li/MgO-Katalysator bei niedrigen Temperaturen kalziniert wird, sollte das Li<sub>2</sub>CO<sub>3</sub> nur schwach in dem Li/MgO gebunden sein [97]. Das hat zur Folge, dass neben der größeren BET-Oberfläche auch das schwach gebundene Li<sub>2</sub>CO<sub>3</sub> dann leichter mit Sauerstoff zu aktiven [Li<sup>+</sup>O<sup>-</sup>]-Zentren zersetzt werden kann. XRD-Messungen zeigen, dass die Li<sub>2</sub>CO<sub>3</sub>-Signalintensität mit abnehmender Kalzinierungstemperatur steigt. Das Ergebnis ist eine vermehrte Bildung aktiver [Li<sup>+</sup>O<sup>-</sup>]-Zentren und damit eine höhere Aktivität [97]. Dieser Effekt dürfte mit kleiner werdender Kalzinierungstemperatur noch ausgeprägter sein, aber eine Kalzinierungstemperatur kleiner als 750°C wäre nicht sinnvoll, da der Katalysator aufgrund des Li<sub>2</sub>CO<sub>3</sub> während der Reaktion einem Sinterungsprozess unterworfen wird. Bei hoher Reaktionstemperatur gleichen sich die Katalysatoraktivitäten aufgrund einer Abnahme der BET-Oberfläche wieder an.

## 5.3 Einfluss des Lithiumgehalts

Aufgrund der Mehrphasigkeit sind die bisher getesteten Katalysatorproben für den Einsatz in der  $\beta$ -NMR-Messung nicht geeignet, da die Signale der separaten lithiumreichen Phasen die der interessierenden reaktiven Li-Spezies überdecken und verfälschen können. Basierend auf dieser Erkenntnis und den Aktivitätsmessungen werden hier Katalysatoren, die aus Li<sub>2</sub>CO<sub>3</sub> und MgO sowie unter Luftatmosphäre hergestellt sind, näher untersucht. Dabei werden Li/MgO-Katalysatoren mit unterschiedlichen Lithiumdotierung präpariert, charakterisiert und getestet.

Zwar wurde, wie im Kapitel 2 berichtet, die Abhängigkeit zwischen der  $[Li^+O^-]$ -Konzentration und der Anzahl der Methylradikale nachgewiesen, aber eine mit der Lithiumdotierung steigende Methanumsetzung bei hoher Lithiumdotierung konnte nicht einheitlich beobachtet werden. Die höchste  $[Li^+O^-]$ -Konzentration wurde von *Lunsford et al.* [11] bei einem Lithiumgehalt von 13,5 *wt*-% gemessen. Während der maximale Methanumsatz im Bereich zwischen 0,2 und 26 *wt*-% bei etwa 1 *wt*-% gefunden wurde, blieb die Aktivität von 7 bis 26 *wt*-% relativ konstant [9]. Die Frage, warum eine maximale  $[Li^+O^-]$ -Konzentration nicht mit einem Maximum des Methanumsatzes einhergeht, ist nicht ersichtlich.

Die Daten der hier eingesetzten Li/MgO-Katalysatoren sind in Tabelle 5.1 wiedergegeben.

| Katalysator | Li-Ma    | Li-Massenanteil in $\%$ |           | BET-Oberfläche | XRD    | -Phasen   |
|-------------|----------|-------------------------|-----------|----------------|--------|-----------|
|             | nominell | frisch                  | gebraucht | in $m^2/g$     | frisch | gebraucht |
| K-CO-L0.1   | $^{0,1}$ | $0,\!11$                | 0,08      | $7,\!8$        | Μ      | М         |
| K-CO-L0.25  | $0,\!25$ | $0,\!24$                | $0,\!19$  | $^{2,1}$       | М      | Μ         |
| K-CO-L0.5   | $0,\!5$  | $0,\!29$                | $0,\!25$  | $1,\!1$        | М      | М         |
| K-CO-L1     | $1,\!0$  | 0,79                    | 0,72      | 0,9            | M, LC  | M, LC     |
| K-CO-L2     | $^{2,0}$ | 1,75                    | $1,\!42$  | 0,7            | M, LC  | M, LC     |
| K-CO-L3     | $^{3,0}$ | $2,\!18$                | $2,\!12$  | $0,\!6$        | M, LC  | M, LC     |
| K-CO-L5     | $^{5,0}$ | $3,\!59$                | $3,\!04$  | $0,\!4$        | M, LC  | M, LC     |
| K-CO-L7     | $^{7,0}$ | $4,\!58$                | 3,07      | $0,\!4$        | M, LC  | M, LC     |

Tab. 5.1: BET-Oberfläche und Lithiumanteil sowie XRD-Phasen der Li/MgO

M: MgO-Phase; LC: Li<sub>2</sub>CO<sub>3</sub>-Phase

Aus der Lithiumbestimmung geht hervor, dass alle Katalysatoren sowohl während der Kalzinierung als auch während der Reaktion einer Lithiumverarmung unterliegen. Bei Katalysatoren mit hohem Anfangslithiumgehalt fällt der Lithiumverlust höher aus als bei Katalysatoren, die eine geringere Lithiumdotierung aufweisen, was mit dem postulierten Lithiumverlust nach Gleichung (4.3) im Einklang steht. XRD-Messungen an frischen und gebrauchten Proben offenbaren, dass sich bereits ab einer Lithiumdotierung von nominell 1 % Massenanteil eine lithiumreiche Phase bildet. Hinsichtlich der BET-Oberfläche ruft die Lithiumdotierung eine Sinterung der MgO-Oberfläche hervor. Im Gegensatz zu den Untersuchungen von *Peng et al.* [16] besteht hier eine direkte Beziehung zwischen Lithiumdotierung und BET-Oberfläche; je höher die Beladung mit Lithium, desto größer ist die Verminderung der MgO-Oberfläche.

#### 5.3.1 Versuche mit konstanter Katalysatoreinwaage

In Tabelle 5.2 sind die Aktivitätskennzahlen der unterschiedlich dotierten Li/MgO-Katalysatoren für verschiedene Temperaturen wiedergegeben.

| Katalysator | Temperatur              | $\mathrm{U}_{\mathrm{CH}_4}$ | $U_{O_2}$ | Selektivität in $\%$ |           |                            | C <sub>2</sub> -Ausbeute |
|-------------|-------------------------|------------------------------|-----------|----------------------|-----------|----------------------------|--------------------------|
|             | in $^{\circ}\mathrm{C}$ | in $\%$                      | in $\%$   | $C_2H_4$             | $C_2H_6$  | $\mathrm{CO}_{\mathrm{x}}$ | in %                     |
| K-CO-L0.1   | 700                     | 23,8                         | 94,6      | $20,\!6$             | 25,1      | $54,\!3$                   | 10,9                     |
|             | 750                     | 23,4                         | 95,7      | $21,\!8$             | 19,5      | 58,7                       | $9,\!6$                  |
|             | 800                     | 24,7                         | $95,\!9$  | $28,\!8$             | 18,9      | $52,\!3$                   | 11,8                     |
| K-CO-L0.25  | 700                     | $16,\!8$                     | $58,\!5$  | $23,\!5$             | $_{36,5}$ | $40,\!0$                   | 10,1                     |
|             | 750                     | 26,3                         | 96,0      | 31,7                 | 26,2      | 42,1                       | 15,2                     |
|             | 800                     | 27,1                         | 97,1      | $35,\!3$             | $23,\!3$  | $41,\!4$                   | $15,\!9$                 |
| K-CO-L0.5   | 700                     | 13,5                         | 40,3      | $23,\!8$             | 49,3      | $26,\!9$                   | 9,8                      |
|             | 750                     | 25,7                         | $83,\!3$  | 35,2                 | 32,5      | 32,3                       | 17,5                     |
|             | 800                     | 29,2                         | $96,\!3$  | $38,\!8$             | $25,\!8$  | $35,\!4$                   | $18,\! 6$                |
| K-CO-L1     | 700                     | 10,0                         | $28,\!5$  | 20,9                 | 56,1      | $23,\!0$                   | $^{7,6}$                 |
|             | 750                     | 23,1                         | 71,2      | $38,\!6$             | 35,4      | 26,0                       | 17,2                     |
|             | 800                     | 28,9                         | 96,2      | $43,\!3$             | 25,7      | $31,\!0$                   | $20,\!6$                 |
| K-CO-L2     | 700                     | $^{6,0}$                     | $17,\!2$  | $13,\!5$             | 65,3      | $21,\!2$                   | 4,7                      |
|             | 750                     | 16,9                         | $47,\!4$  | $33,\!0$             | 46,0      | 21,0                       | $13,\!3$                 |
|             | 800                     | 29,7                         | $96,\!0$  | $45,\!4$             | 25,9      | 28,7                       | 21,2                     |
| K-CO-L3     | 700                     | 4,9                          | 12,2      | $^{7,1}$             | 61,2      | 31,7                       | 3,4                      |
|             | 750                     | 12,1                         | 33,0      | 27,9                 | $53,\!5$  | $18,\! 6$                  | 9,8                      |
|             | 800                     | $27,\!6$                     | $82,\!5$  | 45,7                 | $28,\!6$  | 25,7                       | 20,5                     |
| K-CO-L5     | 700                     | $^{4,0}$                     | 8,8       | $^{5,3}$             | 65,3      | $29,\!4$                   | 2,9                      |
|             | 750                     | 6,9                          | 20,5      | $18,\!0$             | 61,2      | 20,8                       | $^{5,5}$                 |
|             | 800                     | 19,4                         | $57,\! 6$ | $41,\!5$             | 35,2      | $23,\!3$                   | 14,9                     |
| K-CO-L7     | 700                     | $^{2,2}$                     | $^{4,2}$  | $^{4,6}$             | 65,7      | 29,7                       | 1,5                      |
|             | 750                     | $^{5,9}$                     | $13,\!2$  | $14,\!8$             | $64,\!5$  | 20,7                       | $^{4,5}$                 |
|             | 800                     | 16,0                         | $42,\!3$  | $35,\!8$             | $43,\!8$  | 20,4                       | $12,\!6$                 |

Tab. 5.2: Aktivität der Li/MgO-Katalysatoren mit unterschiedlichem Lithiumanteil

 $\dot{V}_{ges} = 10 \ l/h; \ CH_4/N_2/O_2 = 5:4:1; \ W/F = 0,1 \ g\cdot h/l.$ 

Auffallend ist hierbei der hohe Sauerstoffumsatz für den mit 0,1 wt-% dotierten Katalysator bei 700°C, so dass sich der Umsatz mit einem weiteren Temperaturanstieg nur noch marginal erhöht. Infolge dessen stagniert der Methanumsatz bei seinem hohen Anfangsniveau von etwa 24 %, wobei über die Hälfte des Methans zu CO<sub>x</sub> umgesetzt wird. Das mit 0,25 wt-% dotierte Li/MgO weist ebenso eine hohe Methan- und Sauerstoffumsetzung auf, aber auch hier wird ein großer Teil des Methans für die Bildung von CO<sub>x</sub> verbraucht. Der höchste Methanumsatz und die größte C<sub>2</sub>-Ausbeute mit 21,2 % wird von dem mit 2 wt-% dotierten Li/MgO bei 800°C erreicht. Die steigende Lithiumdotierung führt nicht nur zu einer Abnahme der BET-Oberfläche (vgl. Tab. 5.1), sondern auch zu einer sinkenden Katalysatoraktivität. Als Ursache dafür könnte das im Li/MgO gebundene Li<sub>2</sub>CO<sub>3</sub> in Frage kommen, welches dann eine höhere Temperatur notwendig macht, um den Katalysator zu aktivieren [32]. Da die Anreicherung der Katalysatoroberfläche mit Li<sub>2</sub>CO<sub>3</sub> stetig mit der Li-Beladung zunimmt, ist davon auszugehen, dass die katalytische Aktivität mit der Li-Dotierung abnimmt.

In Abbildung 5.8 ist der auf die Katalysatoreinwaage sowie die BET-Oberfläche bezogene Methanumsatz in Abhängigkeit des nominellen Lithiumanteils bei 750°C dargestellt. Der auf die Katalysatoreinwaage bezogene Methanumsatz fällt nach einem kurzen Anstieg stetig mit steigendem Lithiumanteil ab. Dagegen steigt der auf die BET-Oberfläche bezogene Methanumsatz zunächst bis zu einem Lithiumanteil von 1 wt-% an, danach sinkt der Methanumsatz mit größer werdendem Lithiumanteil.



Abb. 5.8: Methanumsatzrate in Abhängigkeit vom Lithiumgehalt bezogen auf die Katalysatormasse sowie die BET-Oberfläche bei 750° C.  $\dot{V}_{ges}$ =10 l/h; CH<sub>4</sub>/N<sub>2</sub>/O<sub>2</sub>=5:4:1; W/F=0,1 g·h/l.

Der Einfluss des Lithiumgehalts auf die Selektivität und die C<sub>2</sub>-Ausbeute für die Temperatur 750°C ist in Abbildung 5.9 wiedergegeben. Die C<sub>2</sub>H<sub>6</sub>-Selektivität steigt mit zunehmender Lithiumdotierung bis zu einem Lithiumanteil von 7 wt-%, danach fällt sie wieder leicht. Identisch mit dem auf die BET-Oberfläche bezogenen Methanumsatz durchläuft auch die C<sub>2</sub>H<sub>4</sub>-Selektivität ein Maximum bei 1 *wt-*% Lithiumgehalt, gefolgt von einer kontinuierlichen Abnahme mit zunehmendem Lithiumanteil. Ähnlich dazu verläuft die C<sub>2</sub>-Ausbeute, wobei hier der Höchstwert bei 0,5 *wt-*% erreicht wird. Da sowohl die C<sub>2</sub>H<sub>4</sub>- als auch die C<sub>2</sub>H<sub>6</sub>-Selektivität der gering dotierten Li/MgO (< 0,5 *wt-*%) im unteren Bereich liegen, ist die CO<sub>x</sub>-Selektivität dieser Katalysatoren am größten. Mit steigendem Lithiumanteil sinkt die CO<sub>x</sub>-Selektivität auf 18,6 % für K-CO-L3, danach schwankt sie um einem Wert von 20 %. Insgesamt stimmen die hier erzielten Aktivitäten gut mit den Ergebnissen von *Dai et al.* überein [102].



**Abb. 5.9:** Selektivität und C<sub>2</sub>-Ausbeute in Abhängigkeit vom Lithiumgehalt bei 750° C.  $\dot{V}_{ges} = 10 \ l/h;$ CH<sub>4</sub>/N<sub>2</sub>/O<sub>2</sub>=5:4:1; W/F=0,1 g·h/l.

#### 5.3.2 Versuche mit konstantem Katalysatorfüllvolumen

Wie in Tabelle 5.1 zu sehen ist, führt eine Erhöhung der Lithiumdotierung zu einer Abnahme der BET-Oberfläche. Aufgrund der dargestellten Ergebnisse ist zu vermuten, dass eine "optimale" BET-Oberfläche existiert, bei der die Totaloxidation von C<sub>2</sub>-Produkten auf ein Minimum reduziert und dadurch ein Maximum an C<sub>2</sub>-Selektivität erreicht wird. Dementsprechend wird die maximale C<sub>2</sub>-Selektvitität bei 3 *wt-*% Lithiumdotierung, wo die  $CO_x$ -Selektivität am kleinsten ist, erreicht. Im Gegensatz hierzu wurden von *Ito und Lunsford et al.* die maximale C<sub>2</sub>-Selektivität bei 7 % Lithiumdotierung gefunden [9]. Aufgrund des Einflusses der Lithiumdotierung auf die BET-Oberfläche weisen die niedrig dotierten Katalysatoren eine im Vergleich zu höher dotierten Katalysatoren größere Porosität und BET-Oberfläche auf, mithin haben sie auch ein größeres Volumen bei konstanter Einwaage. Aus diesem Grunde sind die beobachteten Effekte nicht allein auf eine unterschiedliche Lithiumdotierung zurückzuführen, sondern sind auch eine Folge der unterschiedlichen Verweilzeit. Um diesen Einfluss gering zu halten, wird das Katalysatorfüllvolumen konstant gehalten. Dadurch ändert sich natürlich die Einwaage, aber die Verweilzeit sollte konstant bleiben. Das Ergebnis ist in Abbildung 5.10 dargestellt.



**Abb. 5.10:** OKM-Aktivitäten als Funktion des Lithiumgehalts bei 750°C.  $\dot{V}_{ges}=10$  l/h;  $CH_4/N_2/O_2=5:4:1$ ; Katalysatorfüllvolumen=1,2 ml.

Es ist unschwer zu erkennen, dass die neuen auf Grammbasis bezogenen Methanumsatzraten für die gering dotierten Li/MgO sehr viel höher liegen als im Falle konstanter Einwaage. Denn aufgrund der größeren Porosität dieser Proben ist eine wesentlich kleinere Einwaage nötig, um dasselbe Füllvolumen herzustellen. Dagegen steigt die in mol pro Quadratmeter und Sekunde angegebene Methanumsatzrate nur unwesentlich und weist jetzt bei  $0.5 \ wt$ -% Lithiumdotierung ein Maximum auf. Der Anstieg dieser Methanumsatzrate mit dem Lithiumanteil in dem gering dotierten Bereich weist auf einen Zusammenhang zwischen Methanaktivierung und der aktiven, auf der Oberfläche befindlichen Lithiumkonzentration hin. Aufgrund der Tatsache, dass ab einem Lithiumgehalt von nominell 1 wt-% die Katalysatoroberflächen zum Teil mit Li<sub>2</sub>CO<sub>3</sub> bedeckt sind (vgl. Tab. 5.1), ist die nachfolgende Abnahme der Methanumsatzrate nachvollziehbar. Erstaunlicherweise stimmen diese Ergebnisse gut mit den Beobachtungen von Peng et al. [16] überein. Die Autoren fanden heraus, dass die Katalysatoroberfläche bei einem Lithiumanteil von etwa 0.2 wt-% mit den  $[\text{Li}^+\text{O}^-]$ -Spezies gesättigt ist. Darüber hinaus gehende Dotierung mit Lithium führt zur Bildung von lithiumreichen Phasen. Wie in Tabelle 5.1 dargestellt, weist die Probe K-CO-L0.5 vor der Reaktion einen Lithiumgehalt von 0,29 wt-% auf und kommt damit dem Wert von Peng et al. sehr nahe.

Bedingt durch die nunmehr geringeren Füllvolumina und die dadurch verringerten Verweilzeiten steigt die Selektivität für die Wertprodukte und gleichzeitig sinkt die  $CO_x$ -Selektivität. Sowohl die  $C_2$ -Ausbeute als auch die  $C_2H_4$ -Selektivität durchläuft wie die auf die BET-Oberfläche bezogene Methanumsatzrate ein Maximum bei einer Lithiumdotierung von 0,5 wt-%.

#### 5.3.3 Stabilität

Die Stabilität eines Katalysatorsystems ist sowohl für Kinetikmessungen als auch für eine industrielle Umsetzung des katalytischen Prozesses von enormer Bedeutung. Hinsichtlich der Stabilität des Li/MgO-Katalysators sind widersprüchliche Literaturdaten zu finden. Während in einigen Literaturstellen keine der untersuchten Li/MgO-Katalysatoren stabil sind [97], weisen andere Untersuchungen eine stabile Aktivität über mehrere Stunden auf (27 h [103] bis 150 h [105]). Da der Beladungsgrad von Lithium entscheidend für die Stabilität ist, sind die widersprüchlichen Literaturdaten nicht wirklich mit einander vergleichbar. Um den Einfluss der Lithiumbeladung auf die Katalysatorstabilität zu untersuchen, werden hier Dauerversuche mit drei unterschiedlich dotierten Li/MgO-Katalysatoren durchgeführt.

Die bei den Dauerversuchen erhaltenen Aktivität- und Selektivitätdaten in Abbildung 5.11 zeigen, dass Katalysatoren mit geringer Lithiumdotierung schneller deaktivieren als die höher dotierten Katalysatoren.



**Abb. 5.11:** Methanumsatz und C<sub>2</sub>-Selektivität über Versuchsdauer.  $T=750^{\circ}C$ ;  $\dot{V}_{ges}=10$  l/h; CH<sub>4</sub>/N<sub>2</sub>/O<sub>2</sub>=5:4:1; Katalysatorfüllvolumen=1,2 ml.

Es ist leicht zu entnehmen, dass, während der Methanumsatz für K-CO-L3 über die gesamte Versuchsdauer von 24 Stunden konstant bleibt, der Methanumsatz von K-CO-L1 und K-CO-L0.5 mit der Versuchsdauer abnimmt. Auffällig ist dabei die anfänglich starke Abnahme des Methanumsatzes für K-CO-L1. Da dieser mehr als den doppelten Anteil an Lithium als K-CO-L0.5 aufweist (vgl. Tab. 5.1), wäre zu erwarten, dass er langsamer deaktiviert. Tatsächlich aber scheint K-CO-L0.5 in den ersten 5 Stunden stabiler zu sein als K-CO-L1. Aufschlussreich sind hierbei die Ergebnisse von Korf et al. [97] und Ito et al. [9]. Diese Daten zeigen, dass ein Li/MgO-Katalysator nach der Kalzinierung mindestens noch ca. 2 wt-% an Lithium aufweisen sollte, um eine

schnelle Deaktivierung zu vermeiden. Der Grund dafür ist aber nicht ersichtlich. Im Gegensatz zum Methanumsatz bleibt die C<sub>2</sub>-Selektivität für alle drei Katalysatoren über die gesamte Versuchsdauer konstant, wobei die höchste C<sub>2</sub>-Selektivität mit dem kleinsten Methanumsatz einhergeht.

Die Ursache für den zeitlichen Aktivitätsverlust hinsichtlich der Methanumsetzung wird vor allem in einer fortlaufenden Verarmung des Dotierungselements Lithium gesehen. Das während der Reaktion gebildete  $CO_2$  kann auch unter stationären Bedingungen mit dem Katalysator zu Li<sub>2</sub>CO<sub>3</sub> reagieren. Das dabei entstehende Li<sub>2</sub>CO<sub>3</sub> wiederum kann im weiteren Verlauf mit dem Reaktionsprodukt H<sub>2</sub>O zu LiOH umgesetzt werden, welches dann leicht bei dieser Temperatur ausgetragen wird. Daneben kann das Li<sub>2</sub>CO<sub>3</sub> mit der Quarz-Reaktorwand reagieren und Li<sub>2</sub>SO<sub>3</sub> bilden, welches für die Methanaktivierung inaktiv ist. Daher unterliegt der Li/MgO-Katalysator einer fortlaufenden Lithiumverarmung, was zu einer zeitlichen Deaktivierung des Katalysators führt. Die Lithium-Konzentration vor und nach den Dauerversuchen ist in Tablle 5.3 wiedergegeben.

| Katalysator | Li-Massenanteil in $\%$ |          |           | Lithiumverlust | XRD-Phasen        |
|-------------|-------------------------|----------|-----------|----------------|-------------------|
|             | nominell                | frisch   | gebraucht | in $\%$        | nach der Reaktion |
| K-CO-L0.5   | $0,\!5$                 | $0,\!29$ | 0,16      | 44,83          | MgO               |
| K-CO-L1     | $1,\!0$                 | 0,79     | 0,32      | $59,\!49$      | MgO               |
| K-CO-L3     | $^{3,0}$                | $2,\!10$ | $1,\!13$  | $46,\!19$      | MgO, $Li_2CO_3$   |

Tab. 5.3: Lithiumanteil vor und nach dem Dauerversuch

Es ist zu sehen, dass während K-CO-L0.5 und K-CO-L3 einen Lithiumverlust von ungefähr 45 % aufweisen, beträgt der Lithiumverlust für K-CO-L1 fast 60 %. Diese Beobachtung wird unterstützt durch die XRD-Messungen an gebrauchten Proben. Auker K-CO-L3 weisen die anderen beiden Katalysatoren im benutzten Zustand nur noch Signale für MgO-Phasen auf. Das bedeutet, dass während der Reaktion tatsächlich Li<sub>2</sub>CO<sub>3</sub> abgebaut wird. Denn während an der K-CO-L1-Probe vor der Reaktion noch signifikante Li<sub>2</sub>CO<sub>3</sub>-Signale zu beobachten sind, kann nach dem Dauerversuch keinerlei Li<sub>2</sub>CO<sub>3</sub> festgestellt werden. In allen drei Katalysatoren ist aber der Lithiumanteil nach dem Dauerversuch trotz allem fast immer noch um eine Größenordnung höher als die in der Literatur berichtete maximale Löslichkeitskonzentration von 0,05 wt-%. Danach dürften diese Katalysatoren gar nicht so schnell deaktivieren. Eine mögliche Erklärung für diese Beobachtung könnte sein, dass die Katalysatoren nach den Dauerversuchen zwar immer noch einen signifikanten Anteil an Lithium aufweisen, dieser befindet sich aber während der Reaktion hauptsächlich in der Bulk-Phase. Die eigentliche aktive Li-Spezies auf der Katalysatoroberfläche wird während der Reaktion einerseits durch CO<sub>2</sub>-Adsorption blockiert und andererseits durch den fortlaufenden Lithiumaustrag verringert. Dieser Lithiumaustrag kann aber in dem kurzen Zeitraum während der Reaktion nicht durch das Lithium im Bulk kompensiert werden. Somit tritt eine zeitliche Deaktivierung der Katalysatoren ein.

Da sich die Deaktivierung des Li/MgO-Katalysators nur in einem gesunkenen Umsatzgrad niederschlägt und die C<sub>2</sub>-Selektivität über der Versuchsdauer fast konstant ist, wird diese Beobachtung dahingehend interpretiert, dass während der Reaktion nur eine zahlenmäßige Verringerung der aktiven Zentren stattfindet. Die Beschaffenheit/Eigenschaft der aktiven Zentren aber sollte sich dabei nicht ändern [97, 106].

In Abbildung 5.12 ist die C<sub>2</sub>-Ausbeute sowie das Ethen/Ethan-Verhältnis über der Versuchsdauer aufgetragen.



**Abb. 5.12:**  $C_2$ -Ausbeute sowie  $C_2H_4/C_2H_6$ -Verhältnis über Versuchsdauer.  $T=750^{\circ}C$ ;  $\dot{V}_{ges}=10$  l/h;  $CH_4/N_2/O_2=5:4:1$ ; Katalysatorfüllvolumen=1,2 ml.

Aufgrund der konstanten C<sub>2</sub>-Selektivität wird der Verlauf der C<sub>2</sub>-Ausbeute nur noch vom Methanumsatz bestimmt. Die zum Ende hin höhere C<sub>2</sub>-Ausbeute (ab der 20. Stunde) für K-CO-L3 resultiert aus der größeren C<sub>2</sub>-Selektivität. Die Verläufe der Ethen/Ethan-Verhältnisse ähneln denen der C<sub>2</sub>-Ausbeute. Da die oxidative Dehydrierung von Ethan zu Ethen über die aktiven Zentren verläuft, führt eine zahlenmäßige Verringerung der aktiven Zentren zu einer Abnahme der Ethenbildung und folglich einem kleineren Ethen/Ethan-Verhältnis.

# Kapitel 6

# Variation der Reaktionsbedingungen

Die OKM erfordert spezifische Reaktionsbedingungen, um Totaloxidation zu vermeiden. Durch die Variation der Reaktionsbedingungen sollen wichtige Einflussparameter quantifiziert sowie geeignete Betriebsbedingungen ermittelt werden. Diese Untersuchungen werden an nominell mit 3 wt-% dotierten Li/MgO-Katalysatoren durchgeführt.

## 6.1 Verweilzeit

Bekanntlich koexistieren in dem komplexen Reaktionsnetzwerk der OKM Primär- und Sekundärreaktionen nebeneinander. Insofern spielt die Verweilzeit bei der OKM eine entscheidende Rolle für das Selektivitätsverhalten der Produkte.

Für die Versuche zum Einfluss der modifizierten Verweilzeit wird der Gesamtvolumenstrom bei 6 l/h konstant gehalten und die Katalysatoreinwaage variiert, sodass noch von einer Pfropfenströmung ausgegangen werden kann. Dadurch können Reaktionen, die in so genannten "post-katalytischen Volumina" (Totaloxidation der C<sub>2</sub>-Produkte) stattfinden, bei diesem Volumenstrom vernachlässigt werden [84]. Außerdem ist damit im Gegensatz zu Experimenten, in denen die unterschiedlichen modifizierten Verweilzeiten (W/F) durch Variation der Volumengeschwindigkeit bei Konstanz der Katalysatormasse erreicht werden, ein Übergang des Strömungsprofils - von einer Pfropfenströmung zu einer ideal durchmischten Strömung - nicht zu erwarten.

Der Einfluss der modifizierten Verweilzeit läßt sich am besten bei der Temperatur von 700°C beobachten. In Abbildung 6.1 sind die Umsätze von Methan und Sauerstoff sowie die  $C_2$ -Selektivität und  $C_2$ -Ausbeute dargestellt.



**Abb. 6.1:** Umsatz, C<sub>2</sub>-Selektivität und C<sub>2</sub>-Ausbeute als Funktion von mod. Verweilzeit.  $V_{ges}=6 l/h$ ; CH<sub>4</sub>/N<sub>2</sub>/O<sub>2</sub>=5:4:1; T=700° C.

Wie erwartet, steigt sowohl der Methan- als auch der Sauerstoffumsatz mit zunehmender Verweilzeit. Während die C<sub>2</sub>-Selektivität nur unwesentlich mit größer werdender Verweilzeit abnimmt, erhöht sich die C<sub>2</sub>-Ausbeute infolge des steigenden Methanumsatzes fast linear über den ganzen Bereich. Unerklärlich ist hierbei, warum die C<sub>2</sub>-Ausbeute nicht durch den Ursprung verläuft. Eine Diffusionslimitierung ist aufgrund der kleinen spezifischen Oberfläche des Katalysators (< 1 m<sup>2</sup>/g) und der damit verbundenen Abwesenheit von Mikroporen eher unwahrscheinlich.

Eine Auftragung der verschiedenen Produkt-Selektivitäten über der modifizierten Verweilzeit findet sich in Abbildung 6.2.



**Abb. 6.2:** Produkt-Selektivitäten als Funktion der mod. Verweilzeit.  $\dot{V}_{ges} = 6 l/h$ ;  $CH_4/N_2/O_2 = 5:4:1$ ;  $T = 700^{\circ} C$ .

Hiernach sind sowohl  $C_2H_6$  als auch  $CO_2$  als Primärprodukte anzusehen. Dies gilt aber nicht für  $C_2H_4$  und CO. Der horizontale Einlauf der beiden Komponenten in den
Ursprung veranschaulicht, dass unter den gegebenen Reaktionsbedingungen diese Produkte offenbar in einer Folgereaktion gebildet werden und somit keine Primärprodukte sind. Während die  $C_2H_6$ -Selektivität mit steigender Verweilzeit infolge der Weiterreaktion zu  $C_2H_4$  abnimmt, ändert sich die CO<sub>2</sub>-Selektivität kaum. Auch eine geringe Menge an CO wird detektiert.

Hinsichtlich des Reaktionsablaufs wird allgemein anerkannt, dass die Ethanbildung durch Rekombination zweier Methylradikale erfolgt (vgl. Abschnitt 2.2.3). Dabei wird die Entstehung der Methylradikale selbst als der geschwindigkeitsbestimmende Schritt angesehen. Infolge dessen und unter der Annahme, dass CO bzw. CO<sub>2</sub> aus einer einzigen CH<sub>3</sub>-Spezies gebildet werden, sollte die Bildung der C<sub>2</sub>-Verbindungen quadratisch mit der CH<sub>3</sub>-Konzentration ansteigen. Die CO<sub>x</sub>-Bildung sollte in diesem Fall eine vergleichweise niedrigere Ordnung bezüglich der CH<sub>3</sub>-Konzentration haben. Eine Zunahme an Katalysatoreinwaage bei konstantem Volumenstrom hat eine vermehrte CH<sub>3</sub>-Produktion zur Folge, das wiederum sollte zu einer erhöhten C<sub>2</sub>-Bildung führen. Dies würde sich aber nur dann bemerkbar machen, falls die Folgeoxidation der C<sub>2</sub>-Kohlenwasserstoffe unwesentlich ist. Nach den in Abbildung 6.1 und 6.2 dargestellten Ergebnissen ist das hier offensichtlich nicht der Fall. Vielmehr bestätigen sie die Beobachtungen von Nelson und Cant [62], wonach die Hauptquelle der CO<sub>x</sub> die Weiteroxidation von C<sub>2</sub>-Kohlenwasserstoffen ist, insbesondere bei erhöhten Temperaturen (vgl. Abb. 6.3).

Bei der Temperatur von 775°C lassen sich ähnliche Abhängigkeiten wie bei 700°C verfolgen. Allerdings liegen die Umsätze bei dieser Temperatur wesentlich höher. In Abbildung 6.3 sind die Selektivitäten und die  $C_2$ -Ausbeute dargestellt.



**Abb. 6.3:** Einfluss der mod. Verweilzeit auf C<sub>2</sub>-Ausbeute und Produktselektivitäten.  $\dot{V}_{ges}=6$  l/h; CH<sub>4</sub>/N<sub>2</sub>/O<sub>2</sub>=5:4:1; T=775°C.

Aufgrund der Ergebnisse von Hutchings et al. [107] ist erwartet worden, dass die C<sub>2</sub>-Selektvität bei dieser Temperatur infolge einer Totaloxidation der Produkte bei größeren Verweilzeiten stark abnehmen wird. Das ist hier offensichtlich nicht der Fall. Dieser Umstand ist wahrscheinlich auf die hohe Sauerstoffumsetzung zurückzuführen, dadurch dürfte die Sauerstoffkonzentration am Ende der Katalysatorschüttung sehr gering sein, was folglich eine Folgeoxidation der C<sub>2</sub>-Produkte zur CO<sub>x</sub> minimiert. Verglichen mit den Messungen bei 700°C ist die C<sub>2</sub>-Selektivität in diesem Fall kleiner. Im Widerspruch hierzu stehen die Ergebnisse von Korf et al. [84]. Sie beobachteten eine steigende C<sub>2</sub>-Selektivität mit zunehmender Verweilzeit. Der Grund für dieses Phänomen wird in einer Anreicherung des Methylradikals in einem laminaren Gasfilm nahe der Oberfläche angesehen, welcher bei geringen Verweilzeit steigt die laminare Grenzschicht, d. h. es steht mehr Zeit für die Kettenverzweigungsreaktion zur Verfügung. Damit verbunden ist eine Erhöhung der Methylradikal-Konzentration.

Anders als bei der Temperatur von 700°C bilden sich auch bei niedrigen Verweilzeiten schon  $C_2H_4$  und CO. Außerdem nimmt die CO<sub>2</sub>-Selektivität aufgrund der Weiteroxidation von  $C_2H_4$  mit steigender Verweilzeit zu.

# 6.2 $CH_4/O_2$ -Verhältnis

Für die Methylradikalbildung an  $[Li^+O^-]$ -Zentren wird allgemein die Anwesenheit einer Oberflächen-Sauerstoffspezies vorausgesetzt. Insofern spielt das  $CH_4/O_2$ -Verhältnis eine entscheidende Rolle bei der OKM, da es die Verfügbarkeit von Sauerstoff beschreibt. Ferner ist das Ausmaß der Gasphasenreaktionen auch stark von der Konzentration des Sauerstoffs abhängig. Um den Einfluss der Gasphasenzusammensetzung zu bestimmen, werden im Rahmen dieser Arbeit Versuche an einem mit 3 *wt*-% dotierten Li/MgO-Katalysator bei unterschiedlichen  $CH_4/O_2$ -Verhältnissen durchgeführt.

Der Effekt des  $CH_4/O_2$ -Verhältnisses bei konstanter Temperatur und Verweilzeit ist in Abbildung 6.4 zu sehen. Während der Methanumsatz mit steigendem Verhältnis sinkt, nehmen sowohl der Sauerstoffumsatz als auch die C<sub>2</sub>-Selektivität zu. Diese Beobachtung deutet auf eine nachteilige Wirkung einer erhöhten Sauerstoffkonzentration für die C<sub>2</sub>-Selektivität hin. Die Abnahme des Methanumsatzes läßt sich dadurch erklären, dass die Reaktion zunehmend durch Sauerstoff limitiert wird. Wegen des höheren Methanumsatzes bei kleineren  $CH_4/O_2$ -Verhältnissen werden höhere C<sub>2</sub>-Ausbeuten erzielt, allerdings unter Verlust an Selektivität, d. h. unter Bildung von höheren Anteilen an  $CO_x$ . Die höchste C<sub>2</sub>-Ausbeute wird bei einem  $CH_4/O_2$ -Verhältnis von 3 erreicht, da in diesem Fall ein höherer Methanumsatz mehr Einfluss hat als eine geringere C<sub>2</sub>-Selektivität. Außer der Wirkung auf die Ausbeute hat das  $CH_4/O_2$ -Verhältnis entscheidenden Einfluss auf die Reaktionsgeschwindigkeit sowie die Selektivität und folglich auch auf die Wärmeentwicklung während der Reaktion. Aufgrund dieser ist es eventuell erforderlich, die industrielle Umsetzung des Prozesses in einem Festbett-Reaktor bei hohem  $CH_4/O_2$ -Verhältnis zu betreiben. Diese Ergebnisse stimmen gut mit Literaturdaten überein [108].



Abb. 6.4: Einfluss des CH<sub>4</sub>/O<sub>2</sub>-Verhältnisses auf Umsatz, C<sub>2</sub>-Selektivität und C<sub>2</sub>-Ausbeute. V<sub>ges</sub>=10 l/h; W/F=0,1 g·h/l; T=750° C.

Die sinkende C<sub>2</sub>-Selektivität mit abnehmendem  $CH_4/O_2$ -Verhältnis läßt sich wie folgt erklären: mit steigendem O<sub>2</sub>-Partialdruck sinkt die -OH-Bedeckung durch schnellere Regenerierung der "H-besetzten" aktiven Zentren wie die des [Li<sup>+</sup>O<sup>-</sup>]H. Die dadurch zustandekommende größere Aktivität des Katalysators wird aber durch den höheren  $CO_2$ -Partialdruck (infolge der gesteigerten Gasphasen-Reaktionen) und die daraus resultierende Anreicherung der Oberfläche mit  $CO_2$  wieder abgeschwächt. Mit dem Ergebnis, dass eine Erhöhung des O<sub>2</sub>-Partialdrucks zu einer Minderung der C<sub>2</sub>-Selektivität führt [95].

Verbunden mit der ansteigenden Ausbeute an C<sub>2</sub>-Kohlenwasserstoffen bei sinkendem  $CH_4/O_2$ -Verhältnis ist ein steigendes  $C_2H_4/C_2H_6$ -Produktverhältnis zu beobachten, welches wahrscheinlich aus der hohen Verfügbarkeit des Sauerstoffs für die folgenden Reaktionen resultiert:

$$C_2H_6 + O_2 \rightarrow C_2H_5 + HO_2$$
(6.1)

$$C_2H_5 + O_2 \rightarrow C_2H_4 + HO_2 . \tag{6.2}$$

In Abbildung 6.5 ist das Verhältnis von Ethen zu Ethan als Funktion des  $CH_4/O_2$ -Verhältnisses bei 750°C und 775°C aufgetragen.



**Abb. 6.5:** Einfluss des  $CH_4/O_2$ -Verhältnisses auf  $C_2H_4/C_2H_6$ -Verhältnis.  $\dot{V}_{ges}=10 \ l/h$ ; W/F=0,1 $g\cdot h/l$ ;  $T=750^{\circ}C$  und  $T=775^{\circ}C$ .

Besonders an den Daten für 775°C ist deutlich zu sehen, dass sich mit sinkendem CH<sub>4</sub>/O<sub>2</sub>-Verhältnis, also steigendem Sauerstoffpartialdruck, das Verhältnis der Selektivität von Ethan zu Ethen zugunsten des letzteren verschiebt. Da für die Ethanbildung lediglich Sauerstoff an der Katalysatoroberfläche benötigt wird, und die Chemisorption des Sauerstoffs in Bezug auf die Bildung von Methylradikalen schnell verläuft, genügen für die Ethanbildung bereits geringste Partialdrücke an Sauerstoff. Dadurch erklärt sich auch die hohe C<sub>2</sub>-Selektivität bei geringem Sauerstoffangebot. Dass die Totaloxidation bei der OKM durch geringe Sauerstoffpartialdrücke unterdrückt werden kann, ist eine Trivialität. Damit ergeben sich zwangsläufig auch Hinweise für die Reaktionsführung, die darauf abzielen sollte, das Sauerstoffangebot jeweils auf die Sättigung der Katalysatoroberfläche zu begrenzen. Diese Schlussfolgerung kann aber nicht ohne Betrachtung der Ethenbildung gesehen werden, da Ethen das eigentlich gewünschte Produkt ist. Verschiedene Untersuchungen zeigen [76], dass für die Ethenbildung Sauerstoff notwendig ist. Außerdem erfolgt diese Reaktion mit wesentlich höherer Geschwindigkeit als die Ethanbildung, weshalb ein höherer Bedarf an Sauerstoff besteht, um die Katalysatoroberfläche zu sättigen. Dies würde auch das höhere Ethen/Ethan-Verhältnis bei höherem Sauerstoffpartialdruck erklären.

## 6.3 CO<sub>2</sub>-Zudosierung

Die in der Literatur berichteten Effekte von  $CO_2$  auf das Verhalten des Li/MgO-Katalysators umfassen die Vergiftung [26, 33, 61] und die Stabilisierung der aktiven Zentren [14,84], die Erhöhung der Aktivierungsenergie für die Methylradikal-Bildung und Methanumsetzung [33] sowie die Steigerung der C<sub>2</sub>-Ausbeute oder -Selektivität.

Dass die Zudosierung von  $CO_2$  die Reaktionsgeschwindigkeit der OKM über einem Li/MgO-Katalysator herabsetzt, wurde zuerst von *Korf et al.* [26, 84, 106] berichtet. Die Autoren führten dies auf die konkurrierende Adsorption von  $CO_2$  an den aktiven Zentren und die anschließende Bildung stabiler Oberflächencarbonate zurück.

$$2\left[\mathrm{Li}^{+}\mathrm{O}^{-}\right] + \mathrm{CO}_{2} (\mathrm{g}) \rightarrow \left[\mathrm{Li}_{2}^{+}\mathrm{CO}_{3}^{-}\right] + \frac{1}{2} \mathrm{O}_{2}$$

$$(6.3)$$

Nach der Gleichung ist das Ausmaß der Deaktivierung abhängig von den Partialdrücken des CO<sub>2</sub> und O<sub>2</sub>. Zu einer ähnlichen Schlussfolgerung kommen auch *Coulter et al.* [14] sowie *Xu et al.* [33]. Während *Coulter et al.* dies mit einer gestiegenen Aktivierungsenergie (von 168 kJ/mol auf 213 kJ/mol) für die Ethanbildung in Gegenwart von Sauerstoff begründeten, führten *Xu et al.* die erhöhte intrinsische Aktivierungsenergie (von 104,67 kJ/mol auf 209,34 kJ/mol) für die Methylradikal-Bildung an der Katalysatoroberfläche in der Anwesenheit von CO<sub>2</sub> als Argument an. Damit lieferten diese beiden Gruppen den Nachweis für die O<sub>2</sub>- und CO<sub>2</sub>-Abhängigkeit der Deaktivierung.

Wang et al. berichteten von einer Selektivitätserhöhung bei der Zugabe einer geringen Menge an  $CO_2$  in den Eduktgasen [109]. Dabei übt das  $CO_2$  einen mindernden Effekt auf die Sekundärreaktionen zwischen Alkylradikalen einerseits und der durch die Anwesenheit von  $CO_2$  modifizierten Oberfläche andererseits aus.

Ein anderer in der Literatur häufig berichteter Aspekt ist die stabilisierende Wirkung der Li<sub>2</sub>CO<sub>3</sub>-Bildung auf das Li/MgO-System. Bei den üblichen OKM-Reaktionstemperaturen desorbiert das flüchtige Li<sub>2</sub>O in der Abwesenheit von CO<sub>2</sub>. Die Aktivität der Li/MgO-Katalysatoren bleibt so lange konstant, bis eine kritische Menge an Li auf der Oberfläche nicht unterschritten wird. Wenn aber die Li-Konzentration unter diese Grenze fällt, dann sinkt die Aktivität rapide. Diese kritische Li-Konzentration liegt nach Meinung einiger Autoren deutlich unter der der üblichen hergestellten Li/MgO-Katalysatoren [14, 84]. Im Hinblick auf den Lithiumverlust ist das Vorhandensein von CO<sub>2</sub> vorteilhaft, weil durch die CO<sub>2</sub>-Adsorption und die anschließende Bildung des stabileren Li<sub>2</sub>CO<sub>3</sub> eine schnelle Lithiumverarmung verhindert wird. Im Laufe der Reaktion wird das gebildete Li<sub>2</sub>CO<sub>3</sub> schrittweise über Zwischenstufen zu den aktiven [Li<sup>+</sup>O<sup>-</sup>]-Zentren umgewandelt, so dass der Katalysator länger aktiv bleibt [95].

Gestützt auf Thermisch programmierten Desorptions-Messungen sind Chang et al. [110] der Meinung, dass CO<sub>2</sub> an vier verschiedenen Zentren eines Li/MgO-Katalysators adsorbiert werden kann. Das erst bei höheren Temperaturen ( $\geq 640^{\circ}$ C) desorbierende  $CO_2$  sollte in Form von Li<sub>2</sub>CO<sub>3</sub> vorliegen. MgCO<sub>3</sub> kann ausgeschlossen werden, da es oberhalb der Temperatur von 350°C nicht stabil ist. Qualitativ werden bei niedriger Temperatur mehr aktive Zentren durch die CO<sub>2</sub>-Adsorption blockiert als bei hoher Temperatur. Bei 600°C wurde nach 30 h immer noch kein vollständiges CO<sub>2</sub>-Desorptionsgleichgewicht erreicht, bei 700°C dagegen geschieht das schon nach wenigen Minuten [78, 111].

Nach Untersuchungen von Galuszka [78] wird durch die Zugabe von Wasser in den Eingangsstrom das an Li/MgO adsorbierte  $CO_2$  bei 600°C vollständig entfernt. Wenn Li/MgO einem Gemisch aus  $CH_4/O_2$  ausgesetzt ist, konnte der Autor mit Hilfe der FTIR- und TPD-Methode nachweisen, dass das  $CO_2$  bei 400°C anfängt, sich auf dem Katalysator anzureichern. Dieser Anreicherungsprozess setzt sich bis etwa 680°C fort, danach nimmt die adsorbierte  $CO_2$ -Menge mit steigender Temperatur ab.

Aber es ist bis jetzt nicht ganz klar, wie sich das  $CO_2$  auf das Katalysatorsystem auswirkt bzw. wie die Wechselwirkung mit den Edukten und Produkten ist. Dabei stellt die genaue Isolierung des  $CO_2$  das eigentliche Problem dar.

## 6.3.1 Einfluss auf die Katalysatoraktivität

Um die berichteten Effekte zu überprüfen bzw. zu quantifizieren, werden Versuche mit Zugabe von  $CO_2$  durchgeführt. Die Variation des  $CO_2$ -Partialdrucks wird erreicht, indem eine äquivalente Menge an N<sub>2</sub> durch  $CO_2$  ersetzt wird. Abbildung 6.6 stellt die Ergebnisse einer Variation des  $CO_2$ -Partialdrucks bei konstanten Partialdrücken von Methan und Sauerstoff dar, wobei der  $CO_2$ -Partialdruck dem Eingangspartialdruck des  $CO_2$  entspricht.



**Abb. 6.6:** Umsatz, C<sub>2</sub>-Selektivität und C<sub>2</sub>-Ausbeute als Funktion des CO<sub>2</sub>-Partialdrucks.  $V_{ges}=10$  l/h; CH<sub>4</sub>/O<sub>2</sub>=5:1; W/F=0,1 g·h/l; T=775° C.

Hieran ist deutlich zu erkennen, dass sich die Zugabe von  $CO_2$  nachteilig auf die Katalysatoraktivität auswirkt. Sowohl der Methan- als auch der Sauerstoffumsatz sinkt mit steigender  $CO_2$ -Konzentration und bestätigen damit die Untersuchungsergebnisse von Korf et al..

Aus den dargestellten Ergebnissen geht auch hervor, dass die C<sub>2</sub>-Selektivität mit dem  $CO_2$ -Partialdruck ansteigt. *Wang et al.* begründeten dieser Effekt mit der gesunkenen Tendenz des Li/MgO für die Totaloxidation der Methylradikale aufgrund der Blockade der aktiven Zentren infolge der Carbonatbildung [109]. Die Abnahme der C<sub>2</sub>-Ausbeute resultiert aus dem gesunkenen Methanumsatz.

Die einzelne Produktselektivität ist in Abbildung 6.7 zu sehen. Während die Selektivität für Ethan mit steigendem  $CO_2$ -Partialdruck zunimmt, sinkt sie für Ethen.



**Abb. 6.7:** Einfluss des CO<sub>2</sub>-Partialdrucks auf Produktselektivitäten.  $\dot{V}_{ges}=10$  l/h; CH<sub>4</sub>/O<sub>2</sub>=5:1; W/F=0,1 g·h/l; T=775°C.

Da im allgemeinen die oxidative Dehydrierung von Ethan zu Ethen als ein oberflächeninvolvierter Prozess angesehen wird (siehe Abschnitt 2.3.1), ist diese Beobachtung nicht überraschend. Durch Adsorption von  $CO_2$  werden die aktiven Zentren blockiert. Als Folge dessen tritt eine verminderte Weiterreaktion von Ethan zu Ethen ein. Die gesunkene  $C_2H_4$ -Selektivität führt dann über die Zwischenspezies CO zu einer niedrigeren  $CO_2$ -Selektivität. Die Gründe für den leichten Anstieg der CO-Selektivität mit zunehmendem  $CO_2$ -Partialdruck sind einerseits bedingt durch eine verminderte Weiteroxidation des CO zu  $CO_2$  infolge der  $CO_2$ -Adsorption. Dieser Reaktionsschritt wird allgemein als heterogen katalysiert anerkannt [52, 58, 71]. Andererseits haben Untersuchungsergebnisse an Li/MgO-Katalysator gezeigt, dass bei erhöhtem  $CO_2$ -Partialdruck die Umsetzung von Methan über die folgende Reaktion ablaufen kann [13, 71].

$$CH_4 + CO_2 \rightarrow 2 H_2 + CO \tag{6.4}$$

Dadurch wird weiteres CO gebildet und die CO-Selektivität steigt. Eine ähnliche Darstellung der einzelnen Produktselektivitäten hinsichtlich der CO<sub>2</sub>-Problematik lassen sich in keiner Literatur finden. Es wird stets von C<sub>2</sub>- und CO<sub>x</sub>-Gesamtselektivität ausgegangen.

Bei 800°C ist die Auswirkung einer  $CO_2$ -Zudosierung auf die katalytischen Aktivitäten längst nicht mehr so ausgeprägt wie bei 775°C. Während bei 775°C und 15 kPa  $CO_2$ ein Rückgang des Methanumsatzes von knapp 61 % zu verzeichnen ist, beträgt dieser bei 800°C nur noch 25 %. Der Grund ist die geringe Adsorptionsfähigkeit des  $CO_2$  bei dieser Temperatur. TPD-Untersuchungen von Xu et al. [33] an Li/MgO-Katalysatoren zeigen, dass  $CO_2$  bei 800°C ein 15 minütiges Desorptionsmaximum aufweist.



**Abb. 6.8:** Methanumsatz und Produktselektivitäten als Funktion des  $CO_2$ -Partialdrucks.  $V_{ges}=10 l/h$ ;  $CH_4/O_2=5:1$ ; W/F=0,1 g·h/l;  $T=800^{\circ}C$ .

Bemerkenswert ist hierbei die steigende  $C_2H_4$ -Selektivität mit dem  $CO_2$ -Partialdruck, welche in Abbildung 6.8 zusehen ist. Verantwortlich dafür ist wahrscheinlich eine verminderte Folgeoxidation des Ethens zu  $CO_2$ . Die CO-Selektivität steigt in diesem Fall noch stärker an als bei 775°C.

Es stellt sich als nächstes die Frage, ob die Auswirkung einer  $CO_2$ -Zugabe auf die katalytische Aktivität auch reversibel ist. Um diese nachzuvollziehen, wird inmitten eines Versuches geringer Mengen  $CO_2$  (6 kPa) in das Reaktionssystem geleitet. Nach drei Stunden wird der  $CO_2$ -Strom durch eine äquivalente Menge an Stickstoff wieder ersetzt. Das Ergebnis dieser Untersuchung ist in Abbildung 6.9 zusammengefasst.



**Abb. 6.9:** Methanumsatz und C<sub>2</sub>-Selektivität sowie C<sub>2</sub>-Ausbeute über Versuchsdauer.  $\dot{V}_{ges} = 10 \ l/h;$ CH<sub>4</sub>/O<sub>2</sub>=5:1; W/F=0,1 g·h/l; T=750° C.

Am dargestellten Methanumsatz wird deutlich, dass durch das zudosierte  $CO_2$  tatsächlich die aktiven Zentren blockiert werden. Denn die Umsetzung von Methan findet fortan auf einem niedrigeren Niveau statt und verbleibt dort für den gesamten Zeitraum der  $CO_2$ -Zugabe. Andererseits deutet dieser Umstand auch daraufhin, dass die aktiven Zentren nicht vollständig blockiert sind. Vielmehr liefert es Hinweise für ein Ad- und Desorptionsgleichgewicht des  $CO_2$  auf der Katalysatoroberfläche. Nach Beendigung der  $CO_2$ -Zugabe kehrt der Methnumsatz fast wieder auf sein ursprüngliches Niveau zurück. Somit kann die Herabsetzung der Katalysatoraktivität durch  $CO_2$ -Zugabe größtenteils als reversibel betrachtet werden.

Eine Verbesserung der C<sub>2</sub>-Selektvität infolge einer CO<sub>2</sub>-Zugabe wurde oben schon beschrieben. Interessant ist hierbei der Ausschlag der C<sub>2</sub>-Selektivität kurz nach der CO<sub>2</sub>-Zugabe bzw. kurz nach Beendigung der CO<sub>2</sub>-Zudosierung. Das System reagiert anscheinend sehr empfindlich auf plötzliche Änderung der Reaktionsbedingungen. Der Ausschlag nach oben kurz nach der CO<sub>2</sub>-Zugabe resultiert aus einer gestiegenen C<sub>2</sub>H<sub>6</sub>-Selektivität und einer gesunkenen CO<sub>2</sub>-Selektivität. Für den Ausschlag nach unten sind eine erhöhte CO<sub>2</sub>-Selektivität und eine niedrigere C<sub>2</sub>H<sub>6</sub>-Selektivität maßgebend. Damit deuten die Verläufe der C<sub>2</sub>-Selektivität auf eine heterogene Folgeoxidation der C<sub>2</sub>-Produkte auf der Katalysatoroberfläche hin. Aber andererseits, wie zuvor schon erwähnt, ist die C<sub>2</sub>-Selektivität stark an den Methanumsatz gekoppelt. Eine hohe C<sub>2</sub>-Selektivität wird meist bei einem niedrigen Methanumsatzniveau erzielt. Insofern sind die beobachteten Effekte nicht zwangsläufig auf die CO<sub>2</sub>-Zugabe zurückzuführen. Die C<sub>2</sub>-Ausbeute verläuft ähnlich wie der Methanumsatz.

## 6.3.2 Einfluss auf die Katalysatorstabilität

Die stabilisierende Wirkung einer  $CO_2$ -Zudosierung auf den Li/MgO-Katalysator wird in Dauerversuchen über 24 Stunden untersucht. Es werden zwei Versuche an einem mit nominell 0,5 *wt*-% Lithium dotierten Li/MgO-Katalysator durchgeführt. Bei einem der Versuche wird geringer Mengen an  $CO_2$  (6 kPa) in den Eduktstrom zugegeben. Abbildung 6.10 zeigt den Methan- sowie den Sauerstoffumsatz über der Versuchsdauer.



Abb. 6.10: Effekt einer CO<sub>2</sub>-Zugabe auf den Methan- und Sauerstoffumsatz über Versuchsdauer.  $\dot{V}_{ges}$ =10 l/h; CH<sub>4</sub>/O<sub>2</sub>=5:1; W/F=0,082 g·h/l; T=750° C.

Erstaunlicherweise ist der Methanumsatz in den ersten drei Stunden bei einer  $CO_2$ -Zudosierung höher als ohne  $CO_2$ -Zugabe. Danach aber sinkt der Methanumsatz unter das Niveau des ohne  $CO_2$ -Falls. Ähnlich ist der Sauerstoffumsatzverlauf.

Der Effekt einer  $CO_2$ -Zugabe auf die  $C_2$ -Selektivität und die  $C_2$ -Ausbeute ist in Abbildung 6.11 dargestellt.



**Abb. 6.11:** Effekt einer CO<sub>2</sub>-Zugabe auf die C<sub>2</sub>-Selektivität und C<sub>2</sub>-Ausbeute über Versuchsdauer.  $\dot{V}_{ges} = 10 \ l/h; \ CH_4/O_2 = 5:1; \ W/F = 0.082 \ g \cdot h/l; \ T = 750^{\circ} C.$ 

Wie zuvor beschrieben, hat die CO<sub>2</sub>-Zugabe einen positiven Effekt auf die C<sub>2</sub>-Selektivität. Während eine steigende C<sub>2</sub>-Selektivität über der Versuchsdauer im Falle der CO<sub>2</sub>-Zugabe zu beobachten ist, sinkt die C<sub>2</sub>-Selektivität leicht bei dem Versuch ohne CO<sub>2</sub> im Eduktstrom. Bei der C<sub>2</sub>-Ausbeute ist die Abweichung nicht so ausgeprägt. Die am Anfang höhere C<sub>2</sub>-Ausbeute mit CO<sub>2</sub>-Zugabe ergibt sich aus einem größeren Methanumsatz. Danach gleicht sich die C<sub>2</sub>-Ausbeute infolge der gesunkenen CO<sub>2</sub>-Bildung mit einem gleichzeitigen Anstieg der C<sub>2</sub>-Selektivität wieder an. Am Ende der Messung beträgt die Abweichung nur noch 3,5 % (12,84 % zu 12,38 %).

Hinsichtlich der Produktverteilung übt die  $CO_2$ -Zugabe einen großen Einfluss aus, was an den in Abbildung 6.12 dargestellten Produktselektivitäten zu sehen ist.



**Abb. 6.12:** Effekt einer  $CO_2$ -Zugabe auf die Produktselektivitäten über Versuchsdauer.  $V_{ges}=10 \ l/h$ ;  $CH_4/O_2=5:1$ ;  $W/F=0,082 \ g \cdot h/l$ ;  $T=750^{\circ}C$ .

Dies ist vor allem an den stark variierenden Selektivitäten für  $C_2H_6$  und  $CO_2$  festzumachen. Im Falle einer  $CO_2$ -Zugabe nimmt die Selektivität von Ethan stark zu, begleitet von einer abnehmenden  $CO_2$ -Selektivität. Ohne  $CO_2$ -Zugabe dagegen steigt die  $C_2H_6$ -Selektivität nur unwesentlich, aber was noch wichtiger ist, die Selektivität hinsichtlich  $CO_2$  bleibt über die gesamte Versuchsdauer fast konstant auf einem hohen Niveau.

Nach den wiedergegebenen Ergebnissen kann von einer stabilisierenden Wirkung einer CO<sub>2</sub>-Zugabe auf das Li/MgO-System nicht gesprochen werden. Gründe für diese im Widerspruch zur Literaturmeinung stehenden Beobachtung können einerseits in einer zu geringen Lithiumdotierung und andererseits in der Reaktionstemperatur liegen. Es ist durchaus möglich, dass die CO<sub>2</sub>-Zugabe nur dann einen stabilisierenden Effekt auf das Li/MgO-System ausübt, wenn der Li/MgO-Katalysator von vornherein einen hohen Anteil an Lithium aufweist. Dieses "überschüssige" Lithium, meist in Form von

Li<sub>2</sub>CO<sub>3</sub>, kann dann während der Reaktion zu der aktiven Lithiumspezies abgebaut werden. Um diese Überlegung zu validieren, werden Dauerversuche an einem mit nominell 3 *wt-*% Lithium dotierten Katalysator untersucht. Hierbei zeigt sich, dass dieser Li/MgO-Katalysator über 24 Stunden sowohl mit CO<sub>2</sub> als auch ohne CO<sub>2</sub> im Eduktgemisch stabil ist. Somit konnte die stabilisierende Wirkung einer CO<sub>2</sub>-Zudosierung auf das Li/MgO-System auf diese Weise nicht eindeutig bestätigt werden. Andererseits zeigen die nach der Reaktion bestimmten Lithiumkonzentrationen, welche in Tabelle 6.1 dargestellt sind, dass durch die CO<sub>2</sub>-Zugabe der Lithiumaustrag vermindert wird. Insbesondere bei der Probe K-CO-L3 ist dieser Effekt deutlich zu erkennen. Während der Lithiumverlust im Falle ohne CO<sub>2</sub>-Zugabe fast 50 % beträgt, liegt der Lithiumverlust bei einer CO<sub>2</sub>-Zudosierung unter 10 %.

| Katalysator |          | Li-Mass  | Li-Verlu        | Li-Verlust in % |                 |                |
|-------------|----------|----------|-----------------|-----------------|-----------------|----------------|
|             | nominell | frisch   | ohne $\rm CO_2$ | mit $CO_2$      | ohne $\rm CO_2$ | mit $\rm CO_2$ |
| K-CO-L0.5   | $0,\!5$  | 0,29     | $0,\!16$        | $0,\!17$        | 44,83           | 41,38          |
| K-CO-L3     | $_{3,0}$ | $2,\!10$ | $1,\!13$        | $1,\!97$        | $46,\!19$       | $6,\!19$       |

Tab. 6.1: Lithiumanteil ohne und mit CO<sub>2</sub>-Zugabe

Interessanterweise wird im Falle K-CO-L3 eine höhere  $Li_2CO_3$ -Intensität an der gebrauchten Probe mit CO<sub>2</sub>-Zugabe als bei der frischen Probe mittels der XRD-Methode gefunden. Das bedeutet, dass durch die CO<sub>2</sub>-Zugabe eine vermehrte Bildung an  $Li_2CO_3$  auf der Oberfläche stattfindet.

Ein anderer Aspekt ist die angewandte Reaktionstemperatur. Aufgrund der hohen Temperatur von 750°C wird das Adsorptions/Desorptions-Gleichgewicht des  $CO_2$  zu Gunsten der Desorption verschoben, sodass bei dieser Temperatur nur wenig  $CO_2$  auf der Oberfläche adsorbieren kann.

# Kapitel

# Effekte der Katalysatoroberfläche

Der folgenden Reaktion nach sollte die Bildungsgeschwindigkeit für Ethan proportional zum Quadrat der  $CH_3$ -Konzentration ansteigen.

$$CH_3^{\bullet} + CH_3^{\bullet} \to C_2H_6 \tag{7.1}$$

Eine steigende spezifische Katalysatoroberfläche würde eine vermehrte Bildung von  $CH_3$  zur Folge haben, wodurch die Ethanbildung begünstigt wird. Es ist somit zu erwarten, dass Katalysatoren mit den größten spezifischen Aktivitäten hinsichtlich der  $CH_3$ -Erzeugung auch die besten C<sub>2</sub>-Selektivitäten aufweisen. Denn aufgrund der Nähe ihrer Bildung ist eine Rekombination der Methylradikale wahrscheinlicher. Andererseits kann mehreren Studien entnommen werden, dass eine kleinere spezifische Oberfläche gewöhnlich eine höhere C<sub>2</sub>-Selektivität infolge der unterdrückten  $CO_x$ -Bildung nach sich zieht [9, 112, 113].

Basierend auf Untersuchungsergebnissen an MgO-Katalysatoren sahen  $Aika \ et \ al.$  die Funktion der Alkalimetall-Ionen nun in der Einstellung einer optimalen Katalysatoroberfläche durch Sinterung [112]. Zwar sollte die Bildungsgeschwindigkeit der Methylradikale mit der spezifischen Oberfläche des Katalysators zunehmen, aber gleichzeitig sollte auch die Kollisionswahrscheinlichkeit der Radikalen mit der Oberfläche und als Folge die  $CO_x$  Bildung ansteigen. Dieses Verhalten beobachteten auch *Leveles et al.* [101] bei der oxidativen Umsetzung von Propan über Li/MgO-Katalysatoren (höhere BET-Oberflächen resultieren in einer kleineren Olefine-Selektivität, aber größerer  $CO_x$ -Selektivität). Gewiss ruft die Lithiumdotierung eine Verringerung der spezifischen Oberfläche des Katalysators hervor und auch die C<sub>2</sub>-Ausbeute steigt, aber wie zuvor beschrieben, können durch den Einbau von Lithiumatomen auch aktive Zentren gebildet werden.

Im Gegensatz dazu deuten die Ergebnisse von Lunsford et al. [103] an, dass sich eine große spezifische Oberfläche nicht nachteilig auf die  $C_2$ -Selektivität auswirkt. Ihre Un-

tersuchungsergebnisse am Li/MgO-System zeigen sogar, dass die Ethanbildung über der Kopplungsreaktion genau proportional zum Quadrat der  $CH_3$ -Konzentration ist und damit Reaktion (7.1) entspricht. Außerdem weist in ihren Versuchen die Probe mit der größten spezifischen Oberfläche sogar die höchste C<sub>2</sub>-Ausbeute auf. Auch *Choudhary et al.* [75] fanden keinen direkten Zusammenhang zwischen den spezifischen Oberflächen (0.5 - 8.4 m<sup>2</sup>/g) und den Aktivitäten der Li/MgO-Katalysatoren.

Eine andere Erklärung für die gestiegene C<sub>2</sub>-Selektivität bei kleinen BET-Oberflächen lieferten Korf et al. [84]. Ihrer Meinung nach ist das Alkali-Carbonat unter den gegebenen Bedingungen flüchtig und würde als Radikalfänger agieren. Auf diese Art können sie reaktive Zwischenspezies, die in die nicht-selektive Oxidation von  $CH_3$ -Radikalen und C<sub>2</sub>-Produkten involviert sind, einfangen und verhindern damit deren Weiterreaktionen.

Aufgrund der bislang geringen Anzahl der vorhandenen Daten ist hierbei keine abschließende Schlussfolgerung über die Rolle der BET-Oberfläche möglich. Es ist aber zu erwähnen, dass die Werte der untersuchten BET-Oberflächen von *Aika* um eine Größenordnung größer sind als die von *Lunsford* untersuchten Werte.

Im Abschnitt 5.3 konnte nachgewiesen werden, dass die BET-Oberfläche der Katalysatoren mit steigender Lithiumdotierung abnimmt. Eine Darstellung der Methanumsätze über die gesamte, für die Reaktion zur Verfügung stehende Oberfläche findet sich in Abbildung 7.1.



**Abb. 7.1:** Methanumsatz als Funktion der Oberfläche bei 725°C und 750°C.  $\dot{V}_{ges}=10$  l/h; CH<sub>4</sub>/N<sub>2</sub>/O<sub>2</sub>=5:4:1; Katalysatorfüllvolumen=1,2 ml.

Der Methanumsatz bei 750°C steigt zunächst mit zunehmender Oberfläche an und erreicht bei etwa 1 m<sup>2</sup> ein Maximum. Mit größer werdender Oberfläche bleibt der Methanumsatz fast unverändert. Diese Konstanz des Methanumsatzes resultiert höchst wahrscheinlich aus der nahezu vollständigen Sauerstoffumsetzung und deutet damit auf eine Sauerstoff-Limitierung der Reaktion in diesem Bereich hin. Diese Folgerung wird durch den Methanumsatz bei 725°C unterstützt, welcher stetig mit zunehmender Oberfläche ansteigt.

Der Einfluss der Oberfläche auf die  $C_2$ -Ausbeute sowie die  $C_2$ -Selektivität ist in Abbildung 7.2 veranschaulicht.



Abb. 7.2: C<sub>2</sub>-Ausbeute sowie C<sub>2</sub>-Selektivität als Funktion der Oberfläche bei 750°C. V<sub>ges</sub>=10 l/h; CH<sub>4</sub>/N<sub>2</sub>/O<sub>2</sub>=5:4:1; Katalysatorfüllvolumen=1,2 ml.

Während die C<sub>2</sub>-Selektivität mit der Oberfläche abnimmt, durchläuft die C<sub>2</sub>-Ausbeute bei etwa 1 m<sup>2</sup> ein Maximum. Die anschließende Abnahme der C<sub>2</sub>-Ausbeute ist sowohl auf eine gesunkene C<sub>2</sub>-Selektivität als auch auf einen Rückgang des Methanumsatzes zurückzuführen.

Diese Ergebnisse bestätigen zunächst scheinbar die Behauptung von Aika et al. und würden deren These von einer optimalen Oberflächengröße unterstützen. Aber in Anbetracht der Tatsache, dass die Änderung der spezifischen Oberfläche durch eine Variation der Lithiumbeladung erreicht worden ist, können die oben beobachteten Effekte nicht einzig und allein auf die Größe der Katalysatoroberfläche zurückgeführt werden (vgl. Abb. 5.10). Um den eigentlichen Einfluss der spezifischen Oberfläche auf die katalytischen Aktivitäten zu untersuchen, sollten Katalysatoren mit gleicher chemischer Zusammensetzung aber unterschiedlichen spezifischen Oberflächen eingesetzt werden.

## 7.1 Präparation und Charakterisierung

In dieser Arbeit wird erstmalig versucht, die spezifische Oberfläche der Li/MgO-Katalysatoren durch Beimischen von Aktivkohle zu vergrößern, welche während des Kalzinierungsprozesses abbrennen sollte. Vorteil dieses Verfahrens gegenüber dem Einsatz kommerzieller Trägermaterialien ist, dass die Aktivkohle bei der Kalzinierung rückstandlos abbrennt und somit keine sonstigen Wechselwirkungen, außer einer Oberflächenvergrößerung, mit dem Katalysator vollzieht. Bei der Verwendung kommerzieller Trägermaterialien wie z. B. Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub> oder auch ZrO<sub>2</sub> konnten *Choudhary et al.* einen negativen Einfluss des Trägermaterials auf die katalytischen Aktivitäten des Li/MgO-Systems nachweisen [35]. Dieser ist nach Meinung der Autoren auf die starken chemischen Interaktionen zwischen dem Katalysator und der Trägersubstanz während des Kalzinierungsprozesses und der daraus resultierenden Absenkung der Oberflächen-Basizität zurückzuführen.

Durch unterschiedliche Präparationsverfahren kann ebenso die spezifische Katalysatoroberfläche variiert werden. Hierbei ergibt sich auch das Problem, dass die chemische Zusammensetzung der Li/MgO-Katalysatoren aufgrund der unterschiedlichen Präparationsverfahren nicht wirklich identisch sein können. Damit ist ein Vergleich hinsichtlich des Effektes der spezifischen Katalysatoroberfläche nicht zielführend.

Die Herstellung der Li/MgO-Katalysatoren mit Aktivkohlezusatz erfolgt auf die selbe Weise, wie sie auf Seite 30 für die K-CO-Katalysatoren beschrieben wurde mit der Ausnahme, dass am Anfang noch Aktivkohle (Merck p.A.) beigemischt wird. Während des Kalzinierungsprozesses, der bei 800°C und für eine Dauer von 5 h in einem Muffelofen unter Luftatmosphäre stattfindet, sollte die beigemischte Aktivkohle vollständig abgebrannt sein. Auf diese Weise werden folgende Li/MgO-Katalysatoren mit einem nominellen Lithiumanteil von 3 % Massenanteil hergestellt:

| Katalysator | Menge an         | Li-Ma    | ssenant  | eil in %  | Katalysatoroberfläche |                           |  |
|-------------|------------------|----------|----------|-----------|-----------------------|---------------------------|--|
|             | $Aktivkohle^{a}$ | nominell | frisch   | gebraucht | $gemessen^b$          | $\operatorname{real}^{c}$ |  |
| K-ACO-L300  | 0,00             | $_{3,0}$ | 2,22     | 2,10      | 0,6                   | 0,60                      |  |
| K-ACO-L310  | $0,\!10$         | $^{3,0}$ | $1,\!97$ | $1,\!45$  | 0,8                   | $0,\!61$                  |  |
| K-ACO-L325  | $0,\!25$         | $^{3,0}$ | $2,\!04$ | $0,\!91$  | 1,2                   | $0,\!59$                  |  |
| K-ACO-L350  | $0,\!50$         | $^{3,0}$ | $2,\!14$ | 1,70      | 1,5                   | $0,\!59$                  |  |
| K-ACO-L375  | 0,75             | $^{3,0}$ | $2,\!26$ | 1,84      | 1,8                   | $0,\!63$                  |  |
| K-ACO-L3100 | $1,\!00$         | $^{3,0}$ | $2,\!13$ | 0,70      | $^{2,2}$              | $0,\!68$                  |  |
| K-ACO-L3125 | $1,\!25$         | $^{3,0}$ | $2,\!18$ | $1,\!25$  | 2,5                   | $0,\!68$                  |  |
| K-ACO-L3150 | 1,50             | $^{3,0}$ | $1,\!97$ | $1,\!27$  | $^{2,8}$              | $0,\!67$                  |  |

Tab. 7.1: Daten der mit Aktivkohle hergestellten Li/MgO-Katalysatoren

<sup>*a*</sup>wird als Massenverhältnis berechnet:  $m_{Aktivkohle}/(m_{Li}+m_{MgO})$ 

<sup>b</sup>spez. Oberfläche in m<sup>2</sup>/g

<sup>c</sup>die tatsächlich für die Reaktionen zur Verfügung stehende Oberfläche in m<sup>2</sup> (m<sub>Kat</sub>\*A<sub>gemessen</sub>)

Die in Tabelle 7.1 dargestellten Resultate zeigen, dass die beigemischte Menge an Aktivkohle einen starken Einfluss auf die spezifische Oberfläche der Li/MgO-Katalysatoren ausübt. Eine Erhöhung der Aktivkohlemenge führt zu einem Anstieg der spezifischen Katalyatoroberfläche. Als Konsequenz ist eine immer kleinere Einwaage nötig, um das gleiche Füllvolumen bei der Aktivitätsuntersuchungen zu erhalten. Katalysatorproben mit einem Massenverhältnis Aktivkohle zu Li/MgO von 2,0 bzw. 2,5 zeigen, dass die spezifische Oberfläche weiter ansteigt (7,1 bzw 8,0 m<sup>2</sup>/g). Eine Aktivitätsuntersuchung an diesen beiden Proben ist aber aufgrund deren Pulverform und der daraus resultierenden Schwierigkeit, eine wohldefinierte Kornfraktion zu erhalten, nicht möglich.

Graphisch ist der Zusammenhang zwischen der spezifischen Oberfläche und der beigemischten Menge an Aktivkohle in Abbildung 7.3 veranschaulicht. Hieran ist ersichtlich, dass die spezifische Oberfläche der Katalysatoren linear mit der beigemischten Aktivkohlemenge ansteigt. Bekanntlich verursacht die Li-Dotierung eine Sinterung der spezifischen Oberfläche des Katalysators infolge des Schmelzens der Li-Vorläuferkomponente. Durch Beimischen von Aktivkohle wird dieser Prozess abgemildert.



Abb. 7.3: Spezifische Oberfläche der Li/MgO-Katalysatoren in Abhängigkeit der beigemischten Aktivkohlemenge.

Eine mögliche Erklärung für die gestiegene BET-Oberfläche kann darin liegen, dass die beigemischte Aktivkohle die Ausbildung von großen Kristallen infolge der Li<sub>2</sub>CO<sub>3</sub>-Schmelze unterdrückt. Stattdessen werden viele kleinere Partikel gebildet. Während des Kalzinierungsprozesses brennt die Aktivkohle rückstandslos ab. Zurück bleibt die makroporöse Struktur des Katalysators. Diese Annahme wird durch die REM-Bilder, welche in Abbildung 7.4 dargestellt sind, unterstützt.



(d) K-ACO-L300: (10.000:1) (e) K-ACO-L350: (10.000:1) (f) K-ACO-L3100: (10.000:1)
 Abb. 7.4: REM-Bilder von Li/MgO-Katalysatoren mit unterschiedlichem Anteil an Aktivkohle

An den REM-Bildern ist deutlich zu sehen, dass die Partikel der Li/MgO-Katalysatoren mit steigendem Massenverhältnis von Aktivkohle zu Li/MgO kleiner werden. Parallel dazu bilden sich immer mehr Hohlräume zwischen den Partikeln aus. Diese Hohlräume können auf das Vorhandensein der Aktivkohle, welche während des Kalzinierungsprozesses langsam abbrennt, zurückgeführt werden. Die Form- und Größenverteilung der Partikel ist hierbei repräsentativ für die gesamte Katalysatorprobe. Im Vergleich sind die Partikel des Katalysators K-ACO-L300, welcher ohne den Zusatz von Aktivkohle hergestellt ist, größer und weisen auch eine breitere Größenverteilung auf als die mit Aktivkohlezusatz hergestellten Katalysatoren. Während der Reaktion ist keine weitere Sinterung des Katalysators zu erwarten, da an REM-Aufnahmen von gebrauchten Proben keinerlei Unterschiede festzustellen sind.

In Abbildung 7.5 sind die Ergebnisse der XRD-Messungen an den in diesem Abschnitt verwendeten Li/MgO-Katalysatoren vor und nach der Reaktion dargestellt. Für alle Proben sind typische Reflexe von MgO deutlich zu erkennen. Daneben weisen die Katalysatorproben vor der Reaktion auch noch signifikante Intensitätslinien für Li<sub>2</sub>CO<sub>3</sub> auf (Teilabbildung (a)), welche nach dem Gebrauch deutlich schwächer sind (Teilabbildung (b)). Bei der Probe K-ACO-L3100 sind nach dem Gebrauch sogar überhaupt keine Li<sub>2</sub>CO<sub>3</sub>-Peaks mehr zu sehen, was wiederum mit dem in Tabelle 7.1 dargestellten Lithiumgehalt übereinstimmt.



Abb. 7.5: XRD-Untersuchungen an Li/MgO-Katalysatoren mit Aktivkohlezusatz.

Das Auftretten von  $Li_2CO_3$ -Peaks ist in so fern erwartet worden, als das  $Li_2CO_3$  selbst als Lithiumvorläufer verwendet wird und auch aufgrund der geringen Löslichkeit der Li-Ionen in dem MgO-Gitter. Infolge der relativ schwachen Peaks kann angenommen werden, dass nur eine geringe Menge an  $Li_2CO_3$  auf der MgO-Oberfläche vorliegt. Des weiteren sind keine Anzeichen für eine Drittkomponente zu finden.

Tabelle 7.2 fasst die chemische Zusammensetzung sowie die Atomzahlverhältnisse der Katalysatoren mit unterschiedlichem Aktivkohlezusatz zusammen. Infolge der geringen Variation in der C-Konzentration ist die Annahme gerechtfertigt, dass die zu Beginn des Herstellungsprozesses beigemischte Aktivkohle während des Kalzinierungsprozesses rückstandslos abgebrannt ist. Diese wird auch durch Abbrandversuche mit Aktivkohle unter gleichen Bedingungen bestätigt. Das O/Mg-Atomverhältnis des nicht reagierenden MgO weist einen höheren Wert auf als der erwartete Wert 1. Dieser Umstand deutet daraufhin, dass in dem Katalysator noch eine weitere sauerstoffhaltige Verbindung vorliegt. Hierbei kann es sich nur um Li<sub>2</sub>CO<sub>3</sub> handeln, welches auch durch XRD-Messungen nachgewiesen wurde.

| Katalysator | Massenanteil in % |           |          | Atomanteil in $\%^a$ |           |           | Atomverhältnis |          |          | $\mathrm{Li}_{\mathrm{ein}}{}^{b}$ |          |          |
|-------------|-------------------|-----------|----------|----------------------|-----------|-----------|----------------|----------|----------|------------------------------------|----------|----------|
|             | Li                | Mg        | 0        | С                    | Li        | Mg        | 0              | С        | O/Mg     | $\mathrm{Li/C}$                    | Li/Mg    | at-%     |
| K-ACO-L300  | 2,22              | $55,\!5$  | 40,4     | 1,90                 | $6,\!05$  | 43,2      | 47.8           | $2,\!99$ | 1,11     | 2,02                               | 0,14     | 0,07     |
| K-ACO-L310  | $1,\!97$          | 57,0      | $39,\!4$ | $1,\!62$             | $^{5,53}$ | $44,\!9$  | $47,\!1$       | $2,\!58$ | $1,\!06$ | $2,\!10$                           | $0,\!12$ | $0,\!30$ |
| K-ACO-L325  | $2,\!04$          | 56,0      | 40,1     | $1,\!64$             | $5,\!61$  | $43,\!9$  | $47,\!8$       | $2,\!61$ | $1,\!09$ | $2,\!15$                           | $0,\!13$ | $0,\!45$ |
| K-ACO-L350  | $2,\!14$          | 54,2      | 40,5     | $1,\!65$             | $5,\!90$  | $42,\!8$  | $48,\! 6$      | 2,81     | $1,\!13$ | $2,\!11$                           | $0,\!14$ | $0,\!36$ |
| K-ACO-L375  | $2,\!26$          | 55,7      | 40,2     | 1,73                 | $6,\!17$  | $^{43,5}$ | $47,\! 6$      | 2,73     | $1,\!10$ | $2,\!26$                           | $0,\!14$ | $0,\!81$ |
| K-ACO-L3100 | $2,\!13$          | $55,\!8$  | $39,\!6$ | 1,71                 | $5,\!88$  | 44,0      | $47,\!4$       | 2,73     | $1,\!08$ | $2,\!15$                           | $0,\!13$ | $0,\!48$ |
| K-ACO-L3125 | $2,\!18$          | $56,\! 6$ | $37,\!9$ | $1,\!62$             | $6,\!10$  | $45,\!3$  | 46,0           | $2,\!62$ | $1,\!02$ | $2,\!33$                           | $0,\!13$ | $0,\!94$ |
| K-ACO-L3150 | 1,97              | 56,7      | 38,1     | $1,\!49$             | $5,\!54$  | $45,\!6$  | 46.5           | $2,\!42$ | 1,02     | $2,\!29$                           | $0,\!12$ | 0,76     |

Tab. 7.2: Chemische Zusammensetzung der Li/MgO-Katalysatoren

<sup>*a*</sup>Der Atomanteil läßt sich aus den Massenanteilen der vier Elemente (Li, Mg, O, C) berechnen. <sup>*b*</sup>Li-Konzentration, welche als in das MgO-Gitter eingebaut angesehen wird.

Ein weiteres Indiz für diese Annahme spiegelt sich in den ermittelten Li/C-Atomverhältnissen wider. Andererseits übersteigt das Li/C-Verhältnis regelmäßig den erwarteten Wert von 2 für Li<sub>2</sub>CO<sub>3</sub>, weswegen vermutet werden kann, dass sich ein Teil des Li<sub>2</sub>CO<sub>3</sub> während der Kalzinierung bei 800°C zersetzt hat.

Die Konzentration des im MgO-Gitter eingebauten Lithium (Li<sub>ein</sub>) kann unter der Annahme, dass die auftretenden, unerwünschten Lithium-Verbindungen nur in der Form vom Li<sub>2</sub>CO<sub>3</sub> vorliegen, abgeschätzt werden. Hierbei muss die gesamte Lithium-Konzentration um die Menge vermindert werden, welche für das Li<sub>2</sub>CO<sub>3</sub> benötigt wird. Zuvor wird angenommen, dass die gesamte Menge an Kohlenstoff nur als Li<sub>2</sub>CO<sub>3</sub> in dem Katalysator gebunden wird. Wie aus der Tabelle 7.2 zu sehen, liegen die auf diese Weise berechneten Lithium-Konzentrationen um eine Größenordnung höher als die maximalen Löslichkeitswerte von 0,03-0,05 *at-*%, welche von *Abraham et al.* [100] bestimmt wurden. Andererseits korrespondieren die Werte mit dem von *Peng et al.* [16] gefundenen Wert von 0,6 *at-*%. Auch wenn die so berechneten Lithium-Konzentrationen aufgrund der zahlreichen Annahmen und Messungenauigkeiten nicht exakt sein können, so geben sie doch die Größenordnung der in das MgO-Gitter eingebauten Lithiummenge wieder. In Anbetracht der unterschiedlichen Ausgangsmaterialien (Einkristall vs. amorphes MgO) und der chemischen Umgebung zwischen der Studie von *Abraham et al.* und dieser Arbeit ist diese Abweichung durchaus denkbar.

Die Auftragung der auf diese Weise abgeschätzten Lithium-Konzentration über die spezifische Oberfläche ist in Abbildung 7.6 dargestellt. Tendenziell nimmt die Lithium-Konzentration mit der spezifischen Oberfläche zu, welches aufgrund der in der Literatur beschriebenen Anreicherung der reaktiven Lithiumspezies an der Katalysatoroberfläche auch zu erwarten war [16, 36, 91, 94].



Abb. 7.6: Im MgO-Gitter eingebaute Li-Konzentration als Funktion der BET-Oberfläche.

Mit anderen Worten: Je größer die spezifische Oberfläche, desto mehr Lithiumatome können an der Katalysatoroberfläche angelagert werden. Hiermit wird erstmals ein direkter Nachweis für die Anreicherung der aktiven Spezies auf der Katalysatoroberfläche geliefert. In dieser Hinsicht ist auch der vergleichsweise niedrige Wert von 0,07 *at-*% für die Probe K-ACO-L300 nachvollziehbar.

## 7.2 Aktivitätsmessungen

Die Ergebnisse der katalytischen Untersuchungen für 725°C sind in Abbildung 7.7 dargestellt. Aufgrund der Verwendung eines konstanten Füllvolumens bei den Aktivitätsmessungen und wegen der daraus resultierenden, fast identischen Gesamtoberfläche (vgl. Tab. 7.1) werden die Aktivitäten als Funktion der BET-Oberfläche abgebildet. Die C<sub>2</sub>-Ausbeute steigt zunächst bis zu einer BET-Oberfläche von 1,5 m<sup>2</sup>/g an und bleibt dann konstant bis 2,5 m<sup>2</sup>/g. Die höchste C<sub>2</sub>-Ausbeute wird aber bei dem Katalysator mit der größten BET-Oberfläche erzielt. Aber was noch wichtiger ist: Sowohl die C<sub>2</sub>-Selektivität als auch die Selektivität für die Nebenprodukte CO<sub>x</sub> verlaufen fast konstant über den gesamten Bereich. Damit deutet dieses Ergebnis daraufhin, dass keinerlei Abhängigkeit zwischen der CO<sub>x</sub>-Produktion und der spezifischen Oberfläche besteht.



**Abb. 7.7:**  $C_2$ -Ausbeute und Produktselektivitäten als Funktion der BET-Oberfläche bei 725°C.  $V_{ges} = 10 \ l/h; \ CH_4/N_2/O_2 = 5:4:1; \ Katalysatorfüllvolumen = 1,2 \ ml.$ 

Hierbei ist anzumerken, dass die C<sub>2</sub>-Selektivität stark vom Methanumsatz abhängt; je höher der Methanumsatz, desto geringer die C<sub>2</sub>-Selektivität. Im vorliegenden Fall werden die C<sub>2</sub>-Selektivitäten der Katalysatoren bei verschiedenen Methanumsätzen erzielt, aufgrund dessen ist es nicht möglich, die Katalysatoren anhand deren C<sub>2</sub>-Selektivität bzw. Methanumsatz für die Eignung bei der OKM zu beurteilen. Grundsätzlich aber stimmen diese Ergebnisse mit den Beobachtungen von *Lunsford et al.* überein, wonach sich eine große spezifische Oberfläche nicht negativ auf die C<sub>2</sub>-Selektivität auswirkt.

Abbildung 7.8 zeigt die spezifischen Umsatzraten von Methan bei 725°C. Unter Berücksichtigung der experimentellen Unsicherheiten kann die in Mol pro Quadratmeter und Sekunde angegebene Methanumsatzrate als konstant betrachtet werden.



**Abb. 7.8:** Methanumsatzrate als Funktion der BET-Oberfläche bei 725°C.  $\dot{V_{ges}}=10$  l/h;  $CH_4/N_2/O_2=5:4:1$ ; Katalysatorfüllvolumen=1,2 ml.

In Anbetracht der fast identischen, für die Reaktion zur Verfügung stehenden Oberfläche und unter der Annahme, dass die Oberfläche an sich gleich beschaffen ist, stellt dieses Ergebnis keine Überraschung dar. Trotz der Dichteunterschiede der Oberflächenzentren sollte die Aktivität pro Oberflächenzentrum konstant sein. Daraus folgt, dass die Bildungsraten für die Radikale identisch sein müssen. Im Vergleich dazu steigt die Methanumsatzrate auf ein Grammbasis infolge der immer kleineren Einwaage kontinuierlich im gesamten Bereich an.

Um die oben dargestellten Resultate zu überprüfen, werden Versuche mit anderen Katalysatorfüllvolumina (d.h. bei anderen Verweilzeiten) durchgeführt. In Abbildung 7.9 sind die Ergebnisse für die Versuchsreihe mit 0,7 ml Katalysator dargestellt.



Abb. 7.9: C<sub>2</sub>-Ausbeute und Produkt-Selektivitäten sowie Methanumsatzrate als Funktion der BET-Oberfläche bei 725°C. V<sub>ges</sub>=10 l/h; CH<sub>4</sub>/N<sub>2</sub>/O<sub>2</sub>=5:4:1; Katalysatorfüllvolumen=0,7 ml.

An diesen Resultaten wird noch deutlicher, dass sich eine große spezifischen Oberfläche nicht nachteilig auf die C<sub>2</sub>-Selektivität auswirkt. Auch hier bleibt sowohl die C<sub>2</sub>-Selektivität als auch die  $CO_x$ -Selektivität über den aufgetragenen Bereich konstant. Die höchste C<sub>2</sub>-Ausbeute wird wiederum beim Katalysator mit der größten BET-Oberfläche erzielt. Die oberflächenbezogene Methanumsatzrate weist die selbe Tendenz auf wie im Falle der Versuche mit 1,2 ml Katalysator.

Dieser Verlauf konnte aber bei der Versuchsreihe mit 1,7 ml Katalysator nicht beobachtet werden. Ursache ist hierbei der hohe Sauerstoffumsatz infolge der gestiegenen Verweilzeit, dadurch ist das Reaktionssystem insgesamt sauerstofflimitiert.

Im Gegensatz zu den Ergebnissen von *Aika et al.* [112] übt die spezifische Katalysatoroberfläche anscheinend keinen Einfluss auf die Katalysatoraktivität für die OKM aus. Eine mögliche Erklärung könnte in der unterschiedlichen Katalysatoreinwaage liegen, welche in dieser Studie eingesetzt wurde, um ein konstantes Füllvolumen bei den Versuchen zu gewährleisten. Die Aktivitätsdaten aus der Studie von *Aika et al.* wurden aber unter einer konstanten Katalysatoreinwaage von 2 g erzielt, was eine Änderung des Füllvolumens und der Verweilzeit zur Folge hat. Dementsprechend sind die dort bei Aika et al. beobachteten Effekte wahrscheinlich auf die unterschiedlichen Verweilzeiten zurückzuführen und nicht etwa auf den Einfluss der spezifischen Katalysatoroberfläche. Als Indiz für diese Begründung kann die Untersuchung von Lunsford et al. [103] herangezogen werden. In deren Versuchen setzten die Autoren auch unterschiedliche Katalysatormengen ein, um in etwa die gleichen Oberflächen bei der Reaktion zu erhalten. Wie oben schon dargestellt, fanden sie, dass die Oberfläche an sich die C<sub>2</sub>-Selektivität nicht nachteilig beeinflusst.

Zur Klärung dieser Frage werden Versuche mit konstanter Katalysatoreinwaage unter ansonsten konstanten Versuchsbedingungen durchgeführt.



**Abb. 7.10:** OKM-Aktivitäten von Li/MgO-Katalysatoren als Funktion der BET-Oberfläche bei 725° C.  $\dot{V_{ges}}=10$  l/h; CH<sub>4</sub>/N<sub>2</sub>/O<sub>2</sub>=5:4:1; W/F=0,1 g·h/l.

Die Resultate sind in Abbildung 7.10 zusammengefasst. Ähnlich wie bei Aika et al. sinkt die C<sub>2</sub>-Selektivität in der Tat mit größer werdender spezifischer Oberfläche der Katalysatoren, während die  $CO_x$ -Selektivität ansteigt. Steigende  $CO_x$ -Selektivität bei zunehmenden spezifischen Oberflächen deutet auf Reaktionspfade entlang der nichtselektiven MgO-Zentren hin. Die gestiegene  $CO_x$ -Selektivität kann zum Teil aus den Sekundärreaktionen der Olefine und/oder der Umsetzung von nicht nachweisbaren, mit Sauerstoff angereicherten Kohlenwasserstoffen zu  $CO_x$  auf der Katalysatoroberfläche resultieren. Über die Selektivitätsabnahme infolge der Interaktionen von Zwischenspezies mit der Katalysatoroberfläche wurde auch in früheren Veröffentlichungen [82] berichtet. Der dargestellte Methanumsatz steigt auf ein relativ hohes Niveau, damit verbunden ist eine hohe C<sub>2</sub>-Ausbeute. Das Ethen/Ethan-Verhältnis für beide Versuchsreihen, konstante Katalysatoreinwaage und konstantes -füllvolumen, ist in Abbildung 7.11 dargestellt. Es ist allgemein anerkannt, dass Ethen hauptsächlich aus der Folgereaktion von Ethan gebildet wird. Infolgedessen würde eine größere Verweilzeit auch die Selektivität für Ethen nachhaltig erhöhen. Während sich das Ethen/Ethan-Verhältnis für den Fall mit konstantem Füllvolumen nur marginal ändert, steigt es bei konstanter Einwaage kontinuierlich an. Dieser Umstand bestätigt somit die oben gemachte Vermutung, dass die von *Aika et al.* beobachteten Effekte höchst wahrscheinlich von der Verweilzeit herrühren und nicht etwa von der spezifischen Katalysatoroberfläche.



**Abb. 7.11:** Ethen/Ethan-Verhältnis als Funktion der BET-Oberfläche bei 725°C.  $V_{ges}=10$  l/h;  $CH_4/N_2/O_2=5:4:1.$ 

Ein weiteres Indiz dafür ist die auf die Oberfläche bezogene Methanumsatzrate, welche in Abbildung 7.12 zu sehen ist. Im Falle konstanten Füllvolumens (d. h. gleicher Verweilzeit) ist die Methanumsatzrate im Wesentlichen gleich bleibend, während die Methanumsatzrate bei konstanter Einwaage (d. h. variierender Verweilzeit) mit der spezifischen Katalysatoroberfläche abnimmt. Zwar steht in diesem Fall, absolut gesehen, mehr BET-Oberfläche für die Reaktion zur Verfügung und es wird auch insgesamt mehr Methan umgesetzt. Aber wenn der Methanumsatz auf die Oberfläche bezogen wird, fällt die Methanumsatzrate mit steigenden BET-Oberflächen. Diese Abnahme resultiert höchst wahrscheinlich aus den konkurrierenden Oberflächenreaktionen der Primärprodukte an den aktiven Zentren. Steigende Verweilzeiten begünstigen diese Reaktionen.



**Abb. 7.12:** Methanumsatzrate als Funktion der BET-Oberfläche bei 800°C.  $\dot{V_{ges}}=10$  l/h;  $CH_4/N_2/O_2=5:4:1.$ 

Dennoch können diese Daten die Möglichkeit einer optimalen spezifischen Oberfläche nicht gänzlich ausschließen. Sie zeigen nur, dass nicht generell von einem inversen Zusammenhang zwischen spezifischen Oberflächen und katalytischen Aktivitäten ausgegangen werden kann und sind damit im Einklang mit den Beobachtungen von *Lunsford et al.* [103]. Andererseits konnte auch gezeigt werden, dass die gegensätzlichen Literaturauffassungen hinsichtlich der Effekte der spezifischen Oberfläche auf die katalytische Aktivität bei der OKM größtenteils aus einer unterschiedlichen Versuchsführung resultieren.

Der Methanumsatz hängt vielmehr von der gesamten Katalysatoroberfläche im Reaktor ab, welche für die Reaktion zur Verfügung steht. Eine adäquate Oberfläche (vielleicht besser: verweilzeitjustierte Einwaage) würde die Oxidation der C<sub>2</sub>-Komponenten zu  $CO_x$  unterdrücken und damit die C<sub>2</sub>-Selektivität ansteigen lassen.

Diese Versuche machen aber auch deutlich, dass experimentelle Untersuchungen, wie die Abhängigkeit zwischen spezifischen Oberflächen und katalytischen Aktivitäten betreffend, schwierig sind. Zunächst muss sicher gestellt werden, dass sich tatsächlich nur die spezifische Oberfläche der Katalysatoren ändert und nicht etwa auch die chemische Zusammensetzung. Außerdem ist es aufgrund der sich mit der Oberfläche ändernden Dichte kaum möglich, bei den Aktivitätsuntersuchungen nur die Oberfläche zu variieren und alle anderen Parameter konstant zu halten. Mit einer Oberflächenvariation geht meistens auch eine Verweilzeitänderung einher.

# Kapitel 8

# $\beta$ -NMR

Im Rahmen eines DFG-Forschungsprojektes, welches zum Thema Katalyse die erstmalige Anwendung der Methode der in-situ  $\beta$ -strahlungsdetektierten kernmagnetischen Resonanz ( $\beta$ -NMR) vorsieht, wird in dieser Arbeit ein in-situ Mikroreaktor konzipiert und getestet. Dieser in-situ Reaktor kann dann in einen bestehenden  $\beta$ -NMR-Versuchsstand implementiert werden. Durch die in-situ  $\beta$ -NMR-Messungen können die strukturellen und dynamischen Auswirkungen der Li-Dotierung unter Reaktionsbedingungen erfasst werden. Von Interesse sind dabei insbesondere die Festkörper- und Oberflächenrekonstruktionsvorgänge, die durch Wechselwirkung des Katalysators mit Edukten und Produkten eintreten.

## 8.1 Prinzip der $\beta$ -NMR

Die  $\beta$ -NMR ist eine spezielle Form der NMR (Nuclear Magnetic Resonance). Im Gegensatz zu der klassischen NMR, wo die Kernspinpolarisation durch den Kern-Zeeman-Effekt im äußeren Magnetfeld erzeugt wird, dient das Magnetfeld bei der  $\beta$ -NMR nur dazu, eine Vorzugsrichtung zu definieren, entlang derer sich die Spins ausrichten. Die Polarisation selbst wird hingegen durch Bestrahlung der Probe mit spinpolarisierten Neutronen erzeugt.

Prinzip der  $\beta$ -NMR ist die Nutzung der Asymmetrie der  $\beta$ -Zerfallsstrahlung kurzlebiger Sondenkerne in der Probe zum Nachweis der Kernpolarisation. Infolge der Paritätsverletzung bei der schwachen Wechselwirkung ist die Winkelverteilung der von polarisierten  $\beta$ -aktiven Kernen emittierten Elektronen anisotrop und gibt Auskunft über die Polarisation des Kernspin-Ensembles. Dabei interessiert bei der  $\beta$ -NMR nicht die Paritätsverletzung selbst, sondern nur der sichtbare Effekt: beim  $\beta$ -Zerfall polarisierter Kerne werden die emittierten Elektronen bevorzugt entgegen der Richtung des Spins des zerfallenden Kerns ausgesendet. Auch eine Bevorzugung der Emission in Spinrichtung ist möglich. Welche Richtung bevorzugt wird, hängt von der Art des Kerns ab. Aufgrund dieses Effektes kann durch ortsaufgelöste Messung der  $\beta$ -Elektronen die Spinpolarisation der zerfallenen Kerne zum Zeitpunkt des Zerfalls bestimmt werden. In der Abbildung 8.1 ist das Prinzip der  $\beta$ -NMR bildlich dargestellt.



 $\beta$ -Strahlung tritt ganz allgemein auf bei Kernen mit relativem Neutronenüberschuss. Sie besteht aus Elektronen ohne einheitliche Geschwindigkeit (bis 0,999 c) und Energie. Das Elektron entsteht aus der Umwandlung eines Neutrons in ein Proton. Der durch den Zerfall entstehende Tochterkern ist energetisch stärker gebunden und daher stabiler (d. h. er hat eine größere Lebensdauer). Zusätzlich zum Elektron wird noch ein Antineutrino frei. Dieses besitzt keine Ruhemasse und keine Ladung, es nimmt jedoch einen Teil der Zerfallsenergie auf.

Die kurzlebigen Sondenkerne werden in-situ durch Einfang polarisierter thermischer Neutronen aus Wirtskernen in der Probe erzeugt. Änderungen der Kernpolarisation durch innere oder äußere, statische oder fluktuierende Felder spiegeln sich in Änderungen der Asymmetrie der  $\beta$ -Strahlung wider.

Die  $\beta$ -Winkelverteilung ist nach Wu et al. [114]:

$$W(\Theta) = 1 + \frac{\vec{\nu}}{c} * A * f_1 * \cos\Theta$$
(8.1)

mit  $\vec{\nu}$  = mittlere Elektronengeschwindigkeit

c = Vakuumlichtgeschwindigkeit

 $A = Asymmetriekoeffizient des \beta$ -Zerfalls

 $f_1 =$ dipolare Polarisation

 $\Theta$  = Winkel zwischen Polarisationsrichtung und  $\beta$ -Emisionsrichtung .

Damit läßt sich aus der relativen Differenz zwischen paralleler und antiparalleler Emission zur Polarisationsrichtung die  $\beta$ -Asymmetrie  $a_{\beta}$  definieren:

$$a_{\beta} = \frac{W(0^{\circ}) - W(180^{\circ})}{W(0^{\circ}) + W(180^{\circ})} = \frac{\vec{\nu}}{c} * A * f_1 .$$
(8.2)

Die  $\beta$ -Zählratenasymmetrie  $a_{\beta}$  ist eine zur dipolaren Polarisation  $f_1$  proportionale Größe. Eigentliche Messgrößen sind die Gesamtzahlen  $Z_i$  der in einem vorgegebenen Zeitintervall im jeweiligen Detektor registrierten Elektronen. Die Szintillationsdetektoren sind paarweise unter  $\alpha = 0^{\circ}$  und unter  $\alpha = 180^{\circ}$  an den Polschuhen montiert. Jedes Zählerpaar wird zur Untergrundeliminierung in Koinzidenz betrieben. Die experimentelle Asymmetrie ergibt sich aus den Ergebniszahlen  $Z(0^{\circ})$  und  $Z(180^{\circ})$  und ist dann:

$$a = \frac{Z(0^{\circ}) - Z(180^{\circ})}{Z(0^{\circ}) + Z(180^{\circ})} \propto a_{\beta} \propto f_1$$
(8.3)

mit 
$$Z(0^{\circ})$$
 = Summe der Ereignisse in Zähler  $0^{\circ}$   
 $Z(180^{\circ})$  = Summe der Ereignisse in Zähler  $180^{\circ}$ .

Die auf diese Weise experimentell bestimmte Asymmetrie ist um einen Faktor 5-10 kleiner als die theoretische aus Gleichung (8.2), weil viele der Elektronen vor dem Verlassen der Probe zurück gestreut werden.

## 8.2 <sup>8</sup>Li-Sondenkern

Polarisierte <sup>8</sup>Li-Kerne entstehen durch Einfang polarisierter Neutronen aus <sup>7</sup>Li in dem Target und erhalten selbst eine gewisse Polarisation. Es folgt nach kurzlebigen  $\gamma$ -Übergängen ein  $\beta$ -Zerfall in den entsprechenden Tochterkern.

Für das System Li/MgO gilt z. B. :

$$^{7}\text{Li} + \vec{n} \to {}^{8}\vec{\text{Li}}$$
 (T<sub>1/2</sub> = 0,84 s) (8.4)

$$^{26}Mg + \vec{n} \rightarrow ^{27}Mg$$
 (T<sub>1/2</sub> = 9,46 min) (8.5)

dabei ist rechts die Halbwertszeit des jeweiligen  $\beta$ -Zerfalls angegeben [115]. Bei den  $\gamma$ -Übergängen zum Grundzustand <sup>8</sup>Li wird die Polarisation nur gering geschwächt. In



Abb. 8.2: Zum Zeitpunkt t=0 existiert ein polarisierter <sup>8</sup>Li-Kern mit Gesamtspin  $\vec{S}$ (linke Seite). Eine kurze Zeit  $\Delta t$  später ist der Kern unter Aussendung eines Elektrons in einen <sup>8</sup>Be-Kern zerfallen (rechte Seite). Dabei wird das Elektron mit größerer Wahrscheinlichkeit entgegen der Richtung des Spins des <sup>8</sup>Li-Kerns mit der Geschwindigkeit  $\vec{\nu}$  emittiert.

dem starken, homogenen Magnetfeld, in dem sich die <sup>8</sup>Li-Kerne befinden, tritt Energieaufspaltung durch den Kern-Zeeman-Effekt auf. Die Polarisation der <sup>8</sup>Li-Kerne bedeutet eine andere Besetzung dieser Energiezustände, als es die Boltzmann-Verteilung erwarten läßt und bewirkt eine Asymmetrie der  $\beta$ -Strahlung. <sup>8</sup>Li zerfällt mit einer Halbwertszeit von etwa 0,84 s in einen angeregten Zustand von <sup>8</sup>Be<sup>\*</sup>, der seinerseits in zwei  $\alpha$ -Teilchen zerfällt:

$${}^{8}\text{Li} \to e^{-} + \vec{\nu_{e}} + {}^{8}\text{Be}^{*}$$
(8.6)

$${}^{8}\mathrm{Be}^{*} \to 2 \ \alpha \ . \tag{8.7}$$

Die Endpunktsenergie der  $\beta$ -Elektronen beträgt 12,45 MeV. Abbildung 8.3 zeigt eine Aufnahme der bei dem <sup>8</sup>Li-Zerfall in Form von  $\alpha$ -Teilchen freigesetzten Energie an einen Szintillator.



Abb. 8.3: Lichtpunkt-Aufnahme des <sup>8</sup>Li-Zerfalls an einen Szintillator [116]

Aufgrund der hohen Endpunktsenergie ist  $\vec{\nu}/c$  in guter Näherung Eins. Der Asymmetrieparameter A beträgt beim <sup>8</sup>Li-Zerfall -1/3 [117]. Der Effekt aus den Raten der parallel und der antiparallel zum Magnetfeld emittierten Elektronen,  $Z(0^{\circ})$  und  $Z(180^{\circ})$ , die

von den Detektoren gemessen werden, ist aufgrund der Wahrscheinlichkeitsverteilung proportional zur Vektorpolarisation des Kernspinensembles:

$$a = \frac{Z(0^{\circ}) - Z(180^{\circ})}{Z(0^{\circ}) + Z(180^{\circ})} = -\frac{1}{3} * f_1 .$$
(8.8)

# 8.3 In-situ Reaktor

Der neu zu konstruierende in-situ Mikroreaktor muss neben den Anforderungen an einen Katalysereaktor vor allem die Spezifikationen des  $\beta$ -NMR-Spektrometers einhalten. Es sind aktive Heiz- und Kühlelemente vorzusehen, die einerseits die Bedingungen für die katalytische Reaktion schaffen, andererseits den Betrieb des Spektrometers nicht gefährden (vgl. Abb. 8.4).



Abb. 8.4: Seitenansicht des in-situ Reaktors

Die Aspekte, die bei der Konstruktion des Reaktors berücksichtigt werden müssen, umfassen die geometrischen und betriebsbedingten Vorgaben sowie die zu verwendenden Werkstoffe und Materialien, damit ein reibungsloser Einsatz in der  $\beta$ -NMR gewährleistet wird. Diese sind:

(1) Breite des Katalysereaktors  $\leq 50.8$  mm.

- (2) Die Temperatur der äußeren Seitenflächen darf nicht mehr als 80°C betragen, um eine Schädigung der  $\beta$ -Detektoren zu vermeiden.
- (3) Der Reaktor, und damit das verwendete Material, darf die Homogenität des Magnetfeldes nicht stören und muss, der Zieltemperatur der Probe von ca. 800°C entsprechend, hitzebeständig sein.
- (4) Die Heizung darf kein Magnetfeld verursachen.
- (5) Eine Störung des polarisierten Neutronenstrahls sowie der vom Target seitlich emittierten  $\beta$ -Strahlen ist minimal zu halten.
- (6) Die Temperatur innerhalb der Probe soll homogen sein. Sie soll von außen registrierbar und langzeitig konstant sein.

Für den prinzipiellen Aufbau des katalytischen in-situ Mikroreaktors sind besonders die Forderungen 1 bis 4 entscheidend. Außerdem sollte der Reaktor aus reaktionstechnischer Sicht so konzipiert sein, dass die folgenden in der Literatur oft erwähnten Probleme vermieden werden:

- Reaktionen mit der Reaktorwand (katalytische Wirkung des Reaktormaterials),
- Axiale Rückvermischung (Axialdispersion) und
- Homogene Weiterreaktion des Reaktionsgemisches hinter der Katalysatorschüttung (Post-katalytische Reaktion).

### 8.3.1 Reaktorgeometrie

Die Geometrie des in-situ Gesamtreaktors und damit auch der Reaktionskammer wird maßgeblich durch die Vorgabe des  $\beta$ -NMR-Spektrometers festgelegt. Aus Platzgründen ist die Reaktionskammer so klein wie möglich zu konstruieren, so dass genügend Raum für die Heizung und Wärmedämmung zur Verfügung steht. Andererseits benötigt die  $\beta$ -NMR ein ausreichend großes Probevolumen, um ein auswertbares Signal zu erhalten. Da der Neutronenstrahl mit der Fläche von 5 x 40 mm<sup>2</sup> auf die Katalysatorprobe trifft, wird die Reaktionskammer, wie in Abbildung 8.5 dargestellt, so konzipiert, dass ein Katalysatorfülvolumen von 5 x 40 mm<sup>3</sup> gegeben ist. Die Tiefe von 40 mm soll eine vermehrte Aktivierung von <sup>7</sup>Li-Isotopen durch Einfang von Neutronen und dadurch ein besseres Signal ermöglichen. Daher ist die Ausgestaltung der Reaktionskammer unsymmetrisch.

Die infolge der stark exothermen Reaktionen auftretende Wärmetönung dürfte zum einen bei dieser geringen Katalysatoreinsatzmenge und zum anderen durch die Verwendung von Verdünnungsgas keine Wärmetransportprobleme hervorrufen, so dass von isothermen Bedingungen ausgegangen werden kann.



Abb. 8.5: Seiten- und Frontansicht der Reaktionskammer

## 8.3.2 Reaktorwerkstoff

In der Literatur sind Untersuchungen mit verschiedenen Reaktormaterialien, wie z. B. Edelstahl, Quarz und  $\alpha$ -Aluminiumoxid, beschrieben. Während bei Reaktoren aus Edelstahl die Bildung von CO<sub>2</sub> begünstigt wird, reagieren in Quarzreaktoren Katalysatoren auf der Basis von Alkali- und Erdalkalimetalloxiden bei höheren Temperaturen mit dem Reaktormaterial, was zu einer Zerstörung des Reaktors führen kann [118]. Bartsch stellt in einer Reihe von Versuchen mit verschiedenen Reaktormaterialien fest, dass  $\alpha$ -Aluminiumoxid unter den üblichen Versuchsbedingungen (700-800°C) als praktisch inert bezeichnet werden kann und auch nach längerer Betriebszeit keine nennenswerten Alterungserscheinungen zeigt. Speziell für das Li/MgO-Katalysatorsystem wurden verschiedene Reaktormaterialien von Phillips und Eastman [119] sowie von Slagtern et al. [120] untersucht.

Die Einflüsse unterschiedlicher Reaktormaterialien (darunter auch der Stahl 316  $SS^1$ ) auf die Aktivitäten (Methanumsatz, C<sub>2</sub>-Selektivität) eines Li/MgO-Katalysators waren Untersuchungsziel von *Slagtern et al.* [120]. Außer Al<sub>2</sub>O<sub>3</sub> wechselwirken alle andere

 $<sup>^1 \</sup>rm Zusammensetzung in \%$  Massenanteil: 10 % Ni, 16 % Cr, 2 % Mo, Rest Fe

Materialien mehr oder minder mit dem Li/MgO-Katalysator und beeinflussen damit maßgeblich die Aktivität des Katalysators. Der Stahl 316 SS zeigt zwar während der ersten 130 Betriebsstunden einen konstanten Methanumsatz, aber die C<sub>2</sub>-Selektivität nahm signifikant ab. Diese Beobachtung machten auch *Phillips* und *Eastman*. Da der Stahl 316 SS Chrom enthält, welches als Katalysator für die vollständige Oxidation bekannt ist, interagiert das Reaktormaterial mit dem Li/MgO-Katalysator und fördert damit die Totaloxidation zu CO<sub>2</sub>. Das Reaktormaterial verliert im Verlauf des Experiments nach und nach seine physikalische Integrität und chemische Passivität. Diese Beobachtungen konnten aber bei anderen ähnlichen Reaktionen nicht gemacht werden, somit gelangen die Autoren zu dem Schluss, dass das in dem Katalysator enthaltene Lithium dafür verantwortlich sein muss.

Neben den reaktionstechnischen Gesichtspunkten müssen aber vor allem die Einschränkungen seitens des  $\beta$ -NMR-Spektrometers bei der Werkstoffwahl berücksichtigt werden. Da sich der Reaktor samt der Probe zwischen den Polschuhen eines starken Elektromagneten befindet, der ein homogenes Magnetfeld erzeugt, dürfen nur nicht-magnetische Werkstoffe eingesetzt werden, um Magnetfeldinhomogenitäten zu vermeiden. Insbesondere sind aber die unumgänglichen Wechselwirkungen der Reaktormaterialien mit den Neutronen- und  $\beta$ -Strahlen so gering wie möglich zu halten.

#### Störung des polarisierten Neutronenstrahls

Beim Passieren des polarisierten Neutronenstrahls durch die Wände des Reaktors kommt es zu verschiedenen Wechselwirkungen der Neutronen mit den Kernen des Reaktormaterials, die den Strahl verändern.

Durch Absorption von Neutronen wird der Strahl geschwächt; gleichzeitig werden aber auch Kerne aktiviert, die unter radioaktiver Strahlung zerfallen. Glücklicherweise existieren nur wenige Isotope, die signifikant große Absorptionsquerschnitte haben. Viele andere Elemente dagegen schwächen einen Neutronenstrahl beim Durchgang durch cm-dicke Schichten nur unwesentlich. Es ist daher einfach möglich, komplizierte Probenumgebungen mit mehrschichtigen Wänden wie Außenmantel, Isolierung, Öfen, Probenhalter etc. zu verwenden.

Aber das eigentliche Problem stellt der anschließende radioaktive Zerfall der aktivierten Kerne dar. Hier ist es wichtig, dass die Kerne der verwendeten Materialien nach Aktivierung mit Neutronen keine  $\beta$ -Übergänge ( $\beta$ -Zerfall) machen, deren Halbwertszeit von derselben Größenordnung ist wie die des <sup>7</sup>Li. Andernfalls ist eine Messung infolge der überlappenden Signale kaum möglich. Im Übrigen sollte der Absorptionsquerschnitt  $\sigma_{abs}$ , der die Wahrscheinlichkeit einer Absorption von Neutronen durch den Kern angibt, für das Reaktormaterial klein sein.  $\sigma_{abs}$  ist eine Materialkonstante und wird in Barn (1 b = 10<sup>-24</sup> cm<sup>2</sup>) gemessen.

Abgesehen von der Absorption wird der Strahl aber auch durch Streuung der Neutronen an Kernen geschwächt. Diese Streuung tritt mit der Spinflip-Wahrscheinlichkeit Q der Neutronen auf und ist damit statistisch, dabei wird der Neutronenstrahl depolarisiert.

Für Q gilt:

$$Q = \frac{2}{3} \left( \frac{\sigma_{\rm inco}}{\sigma_{\rm S}} \right) . \tag{8.9}$$

 $\sigma_{\rm S}$  ist der totale Streuquerschnitt und gibt die Wahrscheinlichkeit für die Streuung der Neutronen an dem Kern an. Die Streuung kann kohärent, mit der Wahrscheinlichkeit  $\sigma_{\rm co}$ , und inkohärent mit  $\sigma_{\rm inco}$  erfolgen. Die Streuung heißt kohärent, wenn das Streuvolumen als Ganzes das gestreute Wellenfeld bestimmt, d. h. der Streuprozess kann nicht lokalisiert werden. Bei kohärenter Streuung werden die Streuamplituden addiert, während bei inkohärenter Streuung Intensitäten addiert werden müssen. Die Streuquerschnitte sind Materialkonstanten, die von Kerneigenschaften, von Gitterabständen und anderen Größen abhängen und es gilt:

$$\sigma_{\rm S} = \sigma_{\rm inco} + \sigma_{\rm co} \ . \tag{8.10}$$

Bei der Materialauswahl ist folglich auf kleinen Wirkungsquerschnitt zu achten, besonders auf kleines  $\sigma_{inco}$ , da diese Größe nach der Gleichung (8.9) wesentlich für die Depolarisation von Q verantwortlich ist. Für die im Reaktor verwendeten Materialien sind die Werte dieser Größe im Anhang Tabelle A.4 auf Seite 113 zusammengefasst.

#### Absorption von $\beta$ -Strahlung

Die Wechselwirkung geladener Teilchen wie der  $\beta$ -Teilchen mit Materie ist relativ stark. Daher ist ihre Reichweite bzw. ihr Durchdringungsvermögen gering; sie werden relativ schnell absorbiert.  $\beta$ -Strahlen haben - je nach ihrer Energie - im Wesentlichen drei verschiedene Möglichkeiten mit Materie zu wechselwirken:

- (a) β-Strahlen mit extrem hohen Energien (MeV GeV-Bereich, z. B. aus Beschleunigern) erzeugen beim Auftreffen auf Materie Röntgenstrahlung (Wechselwirkung mit Atomkernen);
- (b) β-Strahlen, wie sie von Radionukliden ausgesandt werden, ionisieren die umgebende Materie (Wechselwirkung mit Elektronen);

(c) β-Strahlen können besonders an Atomen mit hohen Ordnungszahlen (wie z. B. Blei) gestreut werden (Rückstreuung). Abschirmung von β-Teilchen erfolgt deshalb vorzugsweise durch Materialien niederer Ordnungszahl.

Entstehen beim  $\beta$ -Zerfall eines Radionuklids schnelle Elektronen, so bewegen sich diese auf eher zickzackförmigen Bahnen, da sie wegen der relativ kleinen Masse insbesondere bei Materialien höherer Ordnungszahl oft an den vielen Hüllenelektronen des Materials abgelenkt werden. Durch die elastische Streuung an den Kernen geraten die Elektronen aus ihrer Bahn. Ein scharf kollimierter Elektronenstrahl weitet sich daher beim Durchgang durch Materie infolge Vielfachstreuung an den Kernen auf. Es ist deshalb nicht mehr wie im Fall schwerer Teilchen mit einer klar definierbaren Reichweite der Elektronen zu rechnen, selbst nicht bei Verwendung monoenergetischer Elektronen. Man kann jedoch die Reichweite derjenigen Elektronen angeben, die am weitesten in das Material vordringen. Die Absorption in Abhängigkeit der Schichtdicken ergibt eine monoton fallende Funktion, deren extrapolierter Endpunkt die maximale Reichweite der Elektronen angibt. Im Fall des  $\beta$ -Spektrums mit einer kontinuierlichen Energieverteilung der Elektronen ist die Absorption der  $\beta$ -Strahlung exponentiell abhängig von der Dichte und der Wandstärke des Materials, das von den  $\beta$ -Strahlen durchquert werden muss.

Es gilt:

$$N = N_0 * \exp^{-\mu x} \tag{8.11}$$

| $\operatorname{mit}$ | N            | : Anzahl der Teilchen nach der Absorption                                          |
|----------------------|--------------|------------------------------------------------------------------------------------|
|                      | $N_0$        | : Anzahl der Teilchen vor der Absorption                                           |
|                      | $\mu$        | : Massen<br>absorptionskoeffizient = 17 $\rm E_{max}^{-3/2}~cm^2/g$                |
|                      |              | : $\mathbf{E}_{\max}$ ist die Maximalenergie des $\beta\text{-Spektrums}$ (in MeV) |
|                      | $x = \rho *$ | $d$ : Flächenbelegung gemessen in $g/cm^2$ .                                       |

Dieser einfache Zusammenhang ist rein empirisch und ist durch die Form des  $\beta$ -Spektrums einerseits und durch die Vielfachstreuung andererseits bedingt.

Ein immer wieder gebrauchter Begriff ist die sogenannte Halbwertsdicke bzw. Halbwertsschicht  $x_{1/2}$ . Analog zur Halbwertszeit versteht man darunter die Dicke einer absorbierenden Schicht, durch die die Strahlung auf die Hälfte vermindert wird.

Es gilt:

$$N_{x_{1/2}} = \frac{N_0}{2} = N_0 * \exp^{-\mu x_{1/2}} .$$
(8.12)
Für die Flächenbelegung  $x_{1/2}$ , bei der nur noch die Hälfte der Teilchen die Materialschicht durchdringt, gilt:

$$x_{1/2} = \frac{\ln 2}{\mu} \ . \tag{8.13}$$

Demzufolge sollten die verwendeten Materialien eine geringe Flächenbelegung besitzen. Das Lenardsche Gesetz sagt aus, dass der Massenabsorptionskoeffizient  $\mu$  für eine bestimmte  $\beta$ -Strahlung näherungsweise stoffunabhängig ist. Unter dieser Voraussetzung ist ein Material mit geringer Dichte sowie geeigneter chemischer Zusammensetzung auszuwählen. In der Tabelle 8.1 sind für einige Materialien, die als Reaktorwerkstoff oder Wärmeisolierung bzw. als Probenhalter in Frage kommen, die charakteristischen Größen aufgeführt. Dabei wird eine mittlere  $\beta$ -Energie von  $E_{max} = 13$  MeV angenommen  $(\mu = 0.363 \text{ cm}^2/\text{g}).$ 

$$d_{1/2} = \frac{x_{1/2}}{\rho} \tag{8.14}$$

| Material         | Dichte $ ho$ in g/cm <sup>3</sup> | $x_{1/2}$ in g/cm <sup>2</sup> | $d_{1/2}$ in mm |
|------------------|-----------------------------------|--------------------------------|-----------------|
| TS 1.4828        | $7,\!90$                          | 1,91                           | 2,418           |
| TS 1.7742        | 8,47                              | $1,\!91$                       | $2,\!255$       |
| Fe               | 7,86                              | 1,91                           | $2,\!430$       |
| $Al_2O_3$ (99,7) | $3,\!85$                          | 1,91                           | 4,961           |
| Graphit          | $2,\!24$                          | $1,\!91$                       | 8,527           |
| Cu               | 8,92                              | $1,\!91$                       | 2,141           |
| SILCAPOR Ultra   | $0,\!23$                          | 1,91                           | 83,043          |

Tab. 8.1: Materialien und ihre charakteristischen Größen

Aus den oben dargestellten Gründen wäre  $\alpha$ -Aluminiumoxid bzw. generell Keramik als Werkstoff für den in-situ Reaktor ideal, da diese Werkstoffgruppe zum einen keine katalytischen Nebenreaktionen hervorrufen und zum anderen eine gute Strahlendurchlässigkeit garantieren. Doch aufgrund des mangelnden Raumangebots scheidet Keramik als Werkstoff aus, auch weil dieses Material sich sehr schwierig verarbeiten läßt und eine Reaktionskammer von dieser Größe kaum zu realisieren ist. Deswegen wird die Reaktionskammer aus einem austenitischen, hitzebeständigen Stahl, welcher eine Dauereinsatztemperatur von 1050°C standzuhalten vermag, angefertigt. Außerdem bietet der Stahl eine gute Wärmeübertragung.

### 8.3.3 Reaktorheizung

Für die Reaktorheizung sind Heizdrahtmaterialien zu verwenden, die eine Störung der Neutronen- und  $\beta$ -Strahlen gering halten. Daneben muss die Heizung natürlich die geforderte maximale Dauereinsatztemperatur von 800°C garantieren können. Der verwendete Heizdraht besteht aus einer Cr/Ni-Heizader mit Inconel 600 als Mantelmaterial und ist mit einem Gesamtdurchmesser von 1,0 mm sehr flexibel und biegsam. Die Gesamtleistung beträgt 130 W und gewährleistet die geforderte maximale Einsatztemperatur.

Hinsichtlich des Wärmetransports wäre es vorteilhaft, wenn der Heizdraht direkt an der Außenwand der Reaktionskammer aufgewickelt wird. Aber durch den direkten Kontakt zwischen Heizung und Reaktionskammer entständen Querströme, die die koaxiale magnetfeldfreie Stromführung zunichte machen würden. Außerdem würde dadurch der Austausch der Reaktionskammer bei Schäden und das Befüllen mit Katalysatormaterial erschwert. Aus diesen Gründen wird der Heizdraht an einem Stahlrahmen um den Reaktor befestigt (siehe Abb. 8.4), so dass der Wärmetransport rein über die Wärmestrahlung stattfindet. Die bifilare Aufwicklung vermeidet eine Magnetfeldinhomogenität infolge des Heizdrahtes. Zur Vermeidung einer Weiterreaktion hinter der Katalysatorschüttung wird der Reaktor nur auf einer Länge von etwa 48 mm im Bereich der Katalysatorschüttung beheizt. Die Reaktortemperatur wird manuell mittels einer Kalibrierungskurve an einem Netzgerät eingestellt. Ein in der Katalysatorschüttung befindliches Thermoelement registriert dann die Ist-Temperatur im Katalysatorbett.

### 8.3.4 Wärmedämmung

Wie oben schon erwähnt, sind die  $\beta$ -Detektoren relativ temperaturempfindlich und Temperaturen oberhalb 80°C würden zu einer Schädigung der Detektoren führen. Die große Herausforderung ist hierbei, auf einen so engen Raum (15 mm) die Innentemperatur von ca. 820°C bei einer Außenwandtemperatur von 80°C mit einem geeigneten Isolierungskonzept zu realisieren. Außerdem sind die starken Wechselwirkungen der  $\beta$ -Strahlen mit den Wärmedämmungsmaterialien zu berücksichtigen, damit eine Messung überhaupt noch möglich wird.

Man kann zwar durch Evakuieren des Reaktors (zwischen Außenmantel und Heizpatronen) die Wärmekonvektion ausschalten und die Wärmeleitung stark reduzieren, da aber bei diesem Temperaturniveau der Wärmetransport hauptsächlich über Wärmestrahlung stattfindet, würde dieser Schritt die Reaktorkonstruktion unnötig verkomplizieren. Um die Wärmestrahlung nach außen zu unterbinden, können Folien mit hohem Strahlungsreflexionskoeffizienten wie z.B. Aluminiumfolie eingesetzt werden. Hierbei ergibt sich das Problem, dass diese Materialien in der Regel starke  $\beta$ -Absorber und nicht hitzebeständig sind.

Nach Gleichung (8.11) und dem Lenardschen Gesetz ist die Reichweite eines  $\beta$ -Strahls nur von der Wandstärke und der Dichte des Materials abhängig. Die Wandstärke des Isolierungsmaterials ist gewissermaßen durch die Konstruktion schon festgelegt, so dass die Suche nach einem Wärmedämmungsmaterial mit niedrigen Wärmeleitfähigkeitswerten und geringer Dichte sowie geeigneter chemischer Zusammensetzung beschränkt werden kann. Das verwendete Wärmedämmungsmaterial hat eine Rohdichte von 230 kg/m<sup>3</sup> und einen Wärmeleitfähigkeitskoeffizient von 0,038 W/mK bei 800°C. Weitere Eigenschaften und chemische Zusammensetzung sind im Anhang auf Seite 112 Tabelle A.3 dargestellt.

### 8.3.5 Inbetriebnahme

Für die Beurteilung, ob der in-situ Mikroreaktor bei den  $\beta$ -NMR-Messungen eingesetzt werden kann, wird der Mikroreaktor zunächst allgemein auf Dichtheit und Aufheizverhalten getestet. Darüber hinaus ist von Interesse, ob die Katalysatoraktivität des neuen Reaktors mit der des Quarzreaktors zu vergleichen ist. Der Aufbau der Gesamtanlage, welcher in Kapitel 3 beschrieben ist, ändert sich dadurch nur unwesentlich, da nur die Reaktoreinheit ausgetauscht wird.

Wie in Abbildung 8.5 dargestellt, besteht die eigentliche Reaktionskammer aus zwei Teilen, die miteinander verschraubt werden. Diese Verbindung ist entsprechend zu dichten. Als Dichtungsmaterial wird hierbei eine Isolationsplatte aus Keramikfaser von der Firma FRENELIT verwendet, welche unter dem Handelsnamen ISOPLAN 1100 zu beziehen ist.

Die Einstellung der Reaktortemperatur geschieht, wie zuvor beschrieben, mittels eines Heizdrahtes, welcher an einem Stromnetzgerät angeschlossen ist. Hierbei kann entweder die Netzspannung oder die Stromstärke manuell variiert werden. In der Katalysatorschüttung wird dann die Ist-Temperatur erfasst. Generell kann damit die Reaktortemperatur gezielt angesteuert werden, wobei die Aufheizzeit bis zum stationären Wert relativ lang ist (über 2 Stunden).

Die Außenwandtemperatur des Reaktors wird bei einer Innentemperatur von 810°C mit 78°C registriert. Damit wird der zulässige Temperaturhöchstwert, welcher zum

Schutze des Detektors im Falle eines Einsatzes bei der  $\beta$ -NMR unbedingt einzuhalten ist, unterschritten.

Für die Aktivitätsuntersuchungen wird ein mit nominell 3 *wt-*% Lithium dotierter Li/MgO-Katalysator eingesetzt. In Abbildung 8.6 sind die Aktivitätsdaten in Abhängigkeit der Temperatur aufgetragen.



**Abb. 8.6:** Umsatz, C<sub>2</sub>-Selektivität und C<sub>2</sub>-Ausbeute als Funktion der Temperatur.  $V_{ges}=10$  l/h; CH<sub>4</sub>/N<sub>2</sub>/O<sub>2</sub>=5:4:1; m<sub>Kat</sub>=3,4 g.

Sowohl der Sauerstoff- als auch der Methanumsatz sind stark temperaturabhängig. Bei Temperaturen über 790°C wird der Sauerstoff fast vollständig umgesetzt. Somit wird das Reaktionssystem in diesem Bereich durch die Sauerstoffverfügbarkeit limitiert. Der Methanumsatz ab 790°C wird dementsprechend auf einem konstanten Niveau gehalten. Die C<sub>2</sub>-Selektivität durchläuft bei 715°C ein Maximum und sinkt dann mit steigender Temperatur. Parallel dazu nimmt die  $CO_x$ -Selektivität zu. Die C<sub>2</sub>-Ausbeute steigt zunächst aufgrund des zunehmenden Methanumsatzes stark mit der Temperatur. Ab 790°C nimmt aber die C<sub>2</sub>-Ausbeute infolge der immer kleiner werdenden C<sub>2</sub>-Selektivität wieder ab.

Im Vergleich zu Aktivitätsdaten aus der Messreihe mit dem Quarzreaktor fällt die  $C_2$ -Selektivität niedriger aus. Ein Grund liegt höchst wahrscheinlich in der gestiegenen Verweilzeit, welche aufgrund der Reaktorgeometrie zu erwarten ist. In Versuchen mit höherem Volumenstrom (d.h. kleinerer Verweilzeit) werden höhere  $C_2$ -Selektivitäten bei kleineren Methanumsätzen erzielt und unterstützen damit das Verweilzeitargument. Ansonsten stimmt das Aktivitätsverhalten des Mikroreaktors gut mit dem des Quarzreaktors überein. Wenn auch zu betonen ist, dass ein Vergleich der Aktivitätsdaten aus diesen beiden Reaktoren aufgrund der unterschiedlichen Geometrien problematisch ist.

Nach den bisherigen Testergebnissen ist der in-situ Mikroreaktor, soweit möglich, hinsichtlich eines Einsatzes bei den  $\beta$ -NMR Messungen als geeignet zu beurteilen. Vor allem die geforderte maximale Außenwandtemperatur, welche aufgrund des geringen Platzangebots schwer zu realisieren ist, wird durch das verwendete Isolierungskonzept unterschritten. Als Katalysereaktor für die OKM weist der neue in-situ Mikroreaktor vergleichbares Aktivitätsverhalten wie das des Qurazreaktors auf.

# Kapitel **9**

# Zusammenfassung und Ausblick

Das Li/MgO-System ist als Katalysator für die oxidative Kopplung von Methan in dieser Arbeit intensiv untersucht worden. Die Aktivität des Li/MgO-Katalysators hinsichtlich der Methanaktivierung ist auf die Dotierung mit Lithium zurückzuführen. Bereits geringe Mengen an Lithium genügt, um einen aktiven und selektiven Katalysator hervorzubringen.

Insgesamt konnten durch diese Versuche wertvolle Informationen, wenn auch manche nur qualitativer Natur, über Einflussgrössen und Betriebsbedingungen für die Beurteilung der Katalysatoren erzielt werden. Bei der Herstellung und dem Testen der Li/MgO-Katalysatoren mit verschiedenen Vorläufern zeigt sich, dass sowohl Herstellungsmethoden und -bedingungen als auch Vorläufersubstanzen die Eigenschaften des Li/MgO-Katalysators entscheidend beeinflussen.

Wesentliche Teilschritte bei der oxidativen Methankopplung sind die Aktivierung des Methans am Katalysator durch das Aufbrechen der C-H-Bindung, die Rekombination der dabei gebildeten Methylradikale in der Gasphase zu Ethan und die anschließende Dehydrierung des Ethans zu Ethen. Hierbei wird die heterogene Methylradikalbildung an der katalytischen Oberfläche in der Literatur einheitlich als der geschwindigkeitsbestimmende Schritt angesehen. Aus dieser Betrachtung läßt sich ableiten, dass die Größe der spezifischen Katalysatoroberfläche eine entscheidende Rolle bei der OKM spielt. Eine Vergrößerung der spezifischen Oberfläche des Li/MgO-Katalysators sollte eine vermehrte Bildung an Methylradikalen nach sich ziehen. Und durch die gesteigerte Methylradikal-Konzentration wiederum ist eine erhöhte Ethanbildung zu erwarten. D.h. nach der folgenden Reaktion

$$CH_3 + CH_3 \to C_2H_6 \tag{9.1}$$

sollte die Ethanbildungsgeschwindigkeit genau proportional zu dem Quadrat der  $CH_3^-$ -Konzentration verlaufen. Somit sollten Katalysatoren mit den größten spezifischen Aktivitäten hinsichtlich der  $CH_3^-$ -Erzeugung auch die besten C<sub>2</sub>-Selektivitäten aufweisen.

Diese Ansicht wird aber nicht einheitlich von Literaturmeinungen geteilt. Die Gruppe um Aika et al. [112] z.B. sah die Funktion der Li-Ionen in der Einstellung einer optimalen Katalysatoroberfläche durch Sinterung. Ihrer Meinung nach sollte zwar die Bildungsgeschwindigkeit der Methylradikalen mit der spezifischen Oberfläche des Katalysators zunehmen, aber gleichzeitig sollte auch die Kollisionswahrscheinlichkeit der Radikalen mit der Oberfläche und als Folge die  $CO_x$  Bildung ansteigen. Eine andere Meinung dazu vertrat die Lunsford-Gruppe [103]. Sie zeigte anhand von Messergebnissen, dass die Ethanbildung an Li/MgO-Katalysator genau proportional zu dem Quadrat der Methylradikal-Konzentration verläuft. Zudem erzielten sie die höchste C<sub>2</sub>-Ausbeute bei der Probe mit der größten BET-Oberfläche. Ihre Schlussfolgerung war, dass eine große BET-Oberfläche an sich nicht nachteilig für die C<sub>2</sub>-Selektivität ist.

Grundsätzlich kann die spezifische Oberfläche des Li/MgO-Katalysators durch den Beladungsgrad an Lithium, durch den Einsatz verschiedener Präparationsverfahren und durch die Verwendung von Trägermaterialien variiert werden. Dabei treten aber unterschiedliche Probleme auf. Bei einer Variation der Li-Dotierung können große BET-Oberflächen nur bei sehr geringer Li-Beladung erzielt werden. Geringe Li-Beladung aber wiederum führt zur schnellen Deaktivierung des Katalysators aufgrund einer Li-Verarmung während der Reaktion. Außerdem würden die Katalysatoren eine unterschiedliche chemische Zusammensetzung aufweisen und somit einen Vergleich hinsichtlich des Oberflächengrößeneffektes unmöglich machen. Das gleiche Problem ergibt sich auch bei der Anwendung verschiedener Präparationsverfahren. Auch hier weisen die Li/MgO-Katalysatoren unterschiedliche chemische Zusammensetzung auf. Die Verwendung von kommerziellen Trägermaterialen für das Li/MgO-System zum Erzielen einer größeren Oberfläche wurde auch in der Literatur untersucht. Hierbei wechselwirkt das Trägermaterial mit dem Li/MgO-Katalysator. Das führt dazu, dass der Katalysator nicht mehr die Eigenschaften aufweist, die das reine Li/MgO-System hat.

Das Ziel dieser Arbeit ist, die spezifische Oberfläche des Li/MgO-Katalysators durch Beimischen von Akivkohle bei der Synthese zu erhöhen. Diese einfache Vorgehensweise erlaubt die Synthese von Li/MgO-Katalysatoren mit unterschiedlichen spezifischen Oberflächen, aber gleicher chemischer Zusammensetzung. Die spezifische Oberfläche der Li/MgO-Katalysatoren nimmt dabei linear mit der beigemischten Aktivkohlemenge zu. Außerdem ist es dadurch erstmals gelungen, die Änderung der spezifischen Oberfläche von der Lithiumdotierung abzukoppeln, und ein direkter Nachweis für die Anreicherung der aktiven Lithiumspezies auf der Katalysatoroberfläche konnte geliefert werden.

Messungen an diesen Li/MgO-Katalysatoren zeigen, dass nicht generell von einem inversen Zusammenhang zwischen spezifischer Oberfläche und katalytischer Aktivität ausgegangen werden kann. Ferner konnte nachgewiesen werden, dass die konträren Literaturauffassungen hinsichtlich der Effekte der spezifischen Oberfläche auf die katalytische Aktivität bei der OKM größtenteils aus einer unterschiedlichen Versuchsführung resultieren. Für den Methanumsatz, und damit die Methylradikalbildung, wurde vielmehr ein linearer Zusammenhang zu der gesamten Katalysatoroberfläche im Reaktor, welche für die Reaktion zur Verfügung steht, gefunden. Eine adäquate Gesamtoberfläche (vielleicht besser: verweilzeitjustierte Einwaage) würde die Oxidation der C<sub>2</sub>-Komponenten zu CO<sub>x</sub> unterdrücken und damit die C<sub>2</sub>-Selektivität ansteigen lassen.

Zur endgültigen Klärung dieser Thesen sind aber Informationen über die aktiven Zentren bei Reaktionsbedingungen notwendig. Eine Methode, mit der diese Aufgabenstellung bewerkstelligt werden kann, ist die  $\beta$ -strahlungsdetektierte kernmagnetische Resonanz ( $\beta$ -NMR) an Lithiumkernen. In dieser Arbeit wird dazu ein in-situ Mikroreaktor konzipiert und getestet, welcher dann in einem bestehenden  $\beta$ -NMR-Versuchsstand implementiert werden kann.

Auf der experimentellen Seite ist das Thema der oxidativen Kopplung von Methan mehr oder minder erschöpfend untersucht worden, so dass vor allem wegen der fehlenden in-situ Techniken auf diesem Gebiet keine nennenswerten neuen Erkenntnisse zu erwarten sind. Andererseits bieten die in den letzten Jahren stark angestiegenen Rechnerkapazitäten die Möglichkeit, immer detailliertere Modelle zu implementieren und zu berechnen. Demzufolge sind neue Erkenntnisse eher aus theoretischen Arbeiten zu erwarten.

# Nomenklatur

### Lateinische Buchstaben

| Formelzeichen | Einheit                                  | Beschreibung                                |
|---------------|------------------------------------------|---------------------------------------------|
| a             | -                                        | adsorbiert                                  |
| a             | -                                        | $\beta$ -Asymmetrie                         |
| A             | -                                        | Asymmetriekoeffizient des $\beta$ -Zerfalls |
| at            | -                                        | Atomanteil                                  |
| В             | Т                                        | Magnetfeldstärke                            |
| С             | m/s                                      | Vakuumlichtgeschwindigkeit                  |
| d             | m                                        | Durchmesser                                 |
| E             | J                                        | Energie des $\beta$ -Spektrums              |
| $f_1$         | -                                        | dipolare Polarisation                       |
| F             | $\mathrm{m^3/s}$                         | Volumenstrom                                |
| g             | -                                        | gasförmig                                   |
| Ι             | А                                        | Stromstärke                                 |
| m             | kg                                       | Masse                                       |
| N             | _                                        | Anzahl der Teilchen                         |
| Р             | $\mathrm{J/s}$                           | elektrische Leistung                        |
| Q             | _                                        | Kernquadrupolmoment                         |
| q             | $\mathrm{W}/\mathrm{m}^2$                | Wärmestromdichte                            |
| R             | $\mathrm{m}^2/(\mathrm{s}^2~\mathrm{K})$ | ideale Gaskonstante                         |
| Т             | Κ                                        | Temperatur                                  |
| t             | S                                        | Zeit                                        |
| U             | J/(A s)                                  | elektrische Spannung                        |
| W             | -                                        | Winkelverteilung                            |
| W             | kg                                       | Katalysatormasse                            |
| wt            | kg/kg                                    | Massenanteil                                |
| x             | $\rm kg/m^2$                             | Flächenbelegung                             |
| Ζ             | -                                        | Zählrate                                    |

| Formelzeichen | Einheit                    | Beschreibung                                   |
|---------------|----------------------------|------------------------------------------------|
| α             | 0                          | Winkel                                         |
| $\lambda$     | W/(m K)                    | Wärmeleitfähigkeitskoeffizient                 |
| $\mu$         | $\mathrm{m}^2/\mathrm{kg}$ | Massenabsorptionskoeffizient                   |
| $\vec{ u}$    | m/s                        | mittlere Geschwindigkeit der $\beta$ -Teilchen |
| Θ             | 0                          | Polarwinkel                                    |
| ρ             | $\mathrm{kg}/\mathrm{m}^3$ | Dichte                                         |
| σ             | $\mathrm{m}^2$             | Absorptionsquerschnitt                         |
| au            | S                          | Halbwertszeit                                  |

### Griechische Buchstaben

### Indizes unten rechts

| Index | Beschreibung      |
|-------|-------------------|
| abs   | Absorption        |
| eta   | $\beta$ -Strahlen |
| со    | kohärent          |
| ges   | gesamt            |
| inco  | inkohärent        |
| Κ     | Kalzinierung      |
| min   | minimal           |
| max   | maximal           |
| S     | Streuung          |

# Abkürzungsverzeichnis

| $\operatorname{BET}$ | Adsorptions<br>modell von Brunauer, Emmet und Teller                 |
|----------------------|----------------------------------------------------------------------|
| DRIFTS               | Diffuse Reflection Infrared Fourier Transform Spectroscopy           |
| EPR                  | Electron Paramagnetic Resonance                                      |
| ESR                  | Electron Spin Resonance                                              |
| FTIR                 | ${f F}$ ourier Transform Infrarot-Spektroskopie                      |
| GC                   | GasChromatograph                                                     |
| HP                   | $\mathbf{H}$ ewlett- $\mathbf{P}$ ackard                             |
| ICP                  | Inductively Coupled Plasma: Atomemissions<br>spektroskopie           |
| KIE                  | Kinetic Isotopic Effect                                              |
| MIESR                | Matrix Isolation Electron Spin Resonance                             |
| MTG                  | $\mathbf{M} ethanol \ \mathbf{T} o \ \mathbf{G} a soline$            |
| NMR                  | Nuclear Magnetic Resonance                                           |
| OKM                  | $\mathbf{O}$ xidative $\mathbf{K}$ opplung von $\mathbf{M}$ ethan    |
| REM                  | $\mathbf{R}$ aster $\mathbf{e}$ lektronen $\mathbf{m}$ ikroskopie    |
| SSTIKA               | Steady-State Transient Isotopic Kinetics                             |
| TAP                  | $ {\bf T} emporal \ {\bf A} nalysis \ of \ {\bf P} roducts $         |
| TPD                  | Thermisch programmierte Desorption                                   |
| WLD                  | $\mathbf{W}$ ärmeleitfähigkeits $\mathbf{d}$ etektor                 |
| XPS                  | $\mathbf{X}$ -ray $\mathbf{P}$ hotoelectron $\mathbf{S}$ pectroscopy |
| XRD                  | $\mathbf{X}$ -ray- $\mathbf{D}$ iffraction: Röntgendiffraktometrie   |
| ZSM                  | Zeolite Socony Mobil                                                 |

### Werkstoffe

### Heizleiter: THERMOCOAX Einadriger Mantel-Heizleiter

- Spannung U = 28 V
- Widerstand R = 3,1 Ohm
- $\bullet$ Stromstärke I = 5,5 A  $\bullet$ el. Leistung P = 130 W
- Durchmesser d = 1,0 mm Oberflächenbelastung  $\approx 8,0 \text{ W/cm}^2$

| Komponente          | Elemente            | Massenanteil in $\%$ |
|---------------------|---------------------|----------------------|
| Heizader            | Cr                  | 80                   |
|                     | Ni                  | 20                   |
| Isolierung          | MgO                 | 100                  |
| Mantel: Inconel 600 | Ni                  | min. 72,0            |
| (TS 1.7742)         | $\operatorname{Cr}$ | 14,0 - 17,0          |
|                     | Fe                  | 6,0 - 10,0           |
|                     | Mn                  | max. 1,0             |
|                     | Cu                  | max. $0,5$           |
|                     | Si                  | $0,\!5$              |
|                     | С                   | max. 0,15            |
|                     | S                   | 0,015                |

Tab. A.1: Chemische Zusammensetzung des Heizleiters

### Austenitischer hitzebeständiger Stahl TS 1.4828

- Werkstoff-Nummer: 1.4828
- Max. Dauereinsatztemperatur: 1050°C

Tab. A.2: Materialzusammensetzung des TS 1.4828 Stahls

| Che      | misch | e Zus    | amme     | nsetzun   | g in % l  | Massen              | anteil    |          |
|----------|-------|----------|----------|-----------|-----------|---------------------|-----------|----------|
| Elemente | С     | Si       | Mn       | Р         | S         | $\operatorname{Cr}$ | Ni        | Ν        |
| min.     | -     | $^{1,5}$ | -        | -         | -         | $19,\! 0$           | $11,\! 0$ | -        |
| max.     | 0,2   | $^{2,5}$ | $^{2,0}$ | $0,\!045$ | $0,\!015$ | $21,\!0$            | $13,\!0$  | $0,\!11$ |

### Wärmeisolation: SILCAPOR-ULTRA 100-23

| Max. Anwendungstemperatur in °C                 |                         | 1000      |
|-------------------------------------------------|-------------------------|-----------|
| Rohdichte in kg/m <sup>3</sup>                  |                         | 230       |
| Chemische Zusammensetzung:                      | $\mathrm{SiO}_2$        | 80        |
| (Massenanteil in %)                             | $\operatorname{SiC}$    | 15        |
|                                                 | Andere                  | 5         |
| Wärmeleitfähigkeit $\lambda$ in W/mK            | $20^{\circ}\mathrm{C}$  | 0,019     |
| nach DIN 51046 bei $\mathrm{T}_\mathrm{m}$      | $200^{\circ}\mathrm{C}$ | $0,\!021$ |
|                                                 | $400^{\circ}\mathrm{C}$ | 0,025     |
|                                                 | $600^{\circ}\mathrm{C}$ | 0,030     |
|                                                 | $800^{\circ}\mathrm{C}$ | 0,038     |
| Spezifische Wärmekapazität (20-800°C) in kJ/kgK |                         | 0,8       |

Tab. A.3: Materialeigenschaften des Isolierungsmaterials

| Elemente      | Dichte in $g/cm^3$ | $\sigma_{\rm abs}$ in b | $\sigma_{\rm S}$ in b | $\sigma_{\rm co}$ in b | $\sigma_{\rm inco}$ in b | Q -   | $H_{\rm I_S}$ in b | $\sigma_{\rm I_S}$ in b | $	au_{\rm Is}$ in b                 | $\beta$ -Energie in MeV |
|---------------|--------------------|-------------------------|-----------------------|------------------------|--------------------------|-------|--------------------|-------------------------|-------------------------------------|-------------------------|
| $\mathrm{Cr}$ | 7,2                | 3,1                     | 4,1                   | 1,56                   | 2,54                     | 0,4   | 2,38               | 0,38                    | $3,6 \mathrm{~m}$                   | 2,5                     |
| Ni            | 8,91               | 4,6                     | 18,0                  | 13,4                   | 4,6                      | 0, 17 | 3,66/1,08          | 15/1,52                 | $92 \mathrm{~a/2,} 56 \mathrm{~h}$  | 0,07/2,1                |
| Mo            | 10,22              | 2,7                     | 6,1                   | 5,6                    | 0,5                      | 0,055 | 23,78/9,63         | 0,15/0,2                | $66,7  \mathrm{h}/14,6  \mathrm{m}$ | 1,2/0,7                 |
| Fe            | 7,87               | 2,55                    | 11,8                  | 11,4                   | 0, 4                     | 0,028 | 0,33               | 1,2                     | 45 d                                | 0,5                     |
| Ti            | 4,505              | 6,1                     | 4,0                   | 1, 4                   | 2,6                      | 0,43  | 5,34               | 0,14                    | $5,8 \mathrm{~m}$                   | 2,1                     |
| Mg            | 1,741              | 0,063                   | 3,7                   | 3,6                    | 0,1                      | 0,018 | 11, 17             | 0,034                   | $9,46 \mathrm{~m}$                  | 1,8                     |
| Si            | 2,3263             | 0,16                    | 2,4                   | 2,0                    | 0,4                      | 0, 11 | 3,09               | 0,12                    | $2,62~{ m h}$                       | 1,5                     |
| 0             | 1,4289             | $< 0,2 { m ~mb}$        | 4,24                  | 4,2                    | 0,04                     | 0,013 | 0,2039             | 0,00021                 | $27 \ { m s}$                       | 3,2;4,6                 |
| Al            | 2,698              | 0,235                   | 1,53                  | 1,5                    | 0,03                     | 0,013 | 100                | 0,235                   | $2,3 \mathrm{~m}$                   | 2,5                     |
| C             | 2,2                | 0,0034                  | 5,5                   | 5,45                   | 0,05                     | 0,006 | 1,107              | 0,0009                  | 5730 a                              | 0,2                     |
| Mn            | 7,43               | 13, 3                   | 2,0                   | 1,7                    | 0,3                      | 0,1   | 100                | 13,3                    | $2,57~{ m h}$                       | 2,9                     |

## Literaturreferenzen

- BP: Statistical Review of World Energy June 2003. http://www.bp. com/liveassets/bp\_internet/globalbp/STAGING/global\_assets/downloads/N/ Natural\_gas\_section\_print\_version.pdf. Zugriffsdatum: 10. Januar 2004
- [2] LUNSFORD, J. H.: Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. *Catalysis Today* **63** (2-4) (2000), 165–174
- [3] GESSER, H. D.; HUNTER, N. R.: A review of C-1 conversion chemistry. *Catalysis Today* 42 (1998), 183–189
- [4] GRADASSI, M. J.; GREEN, N. W.: Economics of natural gas conversion processes. *Fuel Processing Technology* 42 (1995), 65–83
- [5] MALONE, R. D.; KOMAR, C. A.; HEADLEY, L. C.: Natural Gas to Liquids Coversion Technology Status - An Overview - / U.S. Department of Energy. 1997. – Forschungsbericht
- [6] HACKWORTH, J.; KOCH, R.: Economics of Natural Gas Upgrading / K&M Engineering and Consulting Corp. 1995 (DE-AC21-90MC27346). – Forschungsbericht
- [7] LEE, A. L.; EREKSON, E.; BARONE, P.: C1-Catalysis / Insitute of Gas Technology. 1989. – Forschungsbericht
- [8] SHI, C.; HATANO, M.; LUNSFORD, J. H.: A Kinetic Model for the Oxidative Coupling of Methane over Li<sup>+</sup>/MgO Catalysts. *Catalysis Today* 13 (2-3) (1992), 191–199
- [9] ITO, T.; WANG, J.-X.; LIN, C.-H.; LUNSFORD, J. H.: Oxidative dimerization of methane over a lithium-promoted magnesium oxide catalyst. *Journal of the American Chemical Society* **107** (18) (1985), 5062–5068
- [10] DRISCOLL, D. J.; LUNSFORD, J. H.: Gas-phase radical formation during the reactions of methane, ethane, ethylene, and propylene over selected oxide catalysts. *Journal of Physical Chemistry* 89 (21) (1985), 4415–4418
- [11] DRISCOLL, D. J.; MARTIR, W.; WANG, J.-X.; LUNSFORD, J. H.: Formation of gas-phase methyl radicals over magnesium oxide. *Journal of the American Chemical Society* **107** (1) (1985), 58–63

- [12] WANG, J.-X.; LUNSFORD, J. H.: Characterization of [Li<sup>+</sup>O<sup>-</sup>] Centers in Lithium-Doped MgO Catalysts. *Journal of Physical Chemistry* **90** (22) (1986), 5883–5887
- [13] LUNSFORD, J. H.: The Catalytic Conversion of Methane to Higher Hydrocarbons. Catalysis Today 6 (1990), 235–257
- [14] COULTER, K.; SZANYI, J.; GOODMAN, D. W.: Pretreatment Effects on the Active-Site for Methane Activation in the Oxidative Coupling of Methane over MgO and Li/MgO. *Catalysis Letters* **35** (1-2) (1995), 23–32
- [15] CAMPBELL, K. D.; MORALES, E.; LUNSFORD, J. H.: Gas-phase coupling of methyl radicals during the catalytic partial oxidation of methane. *Journal of the American Chemical Society* **109** (1987), 7900–7901
- [16] PENG, X. D.; RICHARDS, D. A.; STAIR, P. C.: Surface-Composition and Reactivity of Lithium-Doped Magnesium-Oxide Catalysts for Oxidative Coupling of Methane. *Journal of Catalysis* **121** (1) (1990), 99–109
- [17] SHLUGER, A. L.; GALE, J. D.; CATLOW, C. R. A.: Molecular properties of the magnesia surface. *Journal of Physical Chemistry* **96** (25) (1992), 10389–10397
- [18] ACKERMANN, L.; GALE, J. D.; CATLOW, C. R. A.: Interaction of methane with a [Li]<sup>0</sup> center on MgO(100): HF, Post-HF, and DFT cluster model studies. *Journal* of Physical Chemistry B 101 (48) (1997), 10028–10034
- [19] CANT, N. W.; LUKEY, C. A.; NELSON, P. F.: Oxygen Isotope Transfer Rates During the Oxidative Coupling of Methane over a Li/MgO Catalyst. *Journal of Catalysis* **124** (2) (1990), 336–348
- [20] NIBBELKE, R. H.; SCHEEROVA, J.; DECROON, M.; MARIN, G. B.: The Oxidative Coupling of Methane over MgO-Based Catalysts - a Steady-State Isotope Transient Kinetic-Analysis. *Journal of Catalysis* 156 (1) (1995), 106–119
- [21] JOHNSON, M. A.; STEFANOVICH, E. V.; TRUONG, T. N.: An ab Initio Study on the Oxidative Coupling of Methane over a Lithium-Doped MgO Catalyst: Surface Defects and Mechanism. *Journal of Physical Chemistry B* 101 (16) (1997), 3196–3201
- [22] ORLANDO, R.; CORA, F.; MILLINI, R.; PEREGO, G.; DOVESI, R.: Hydrogen abstraction from methane by Li doped MgO: A periodic quantum mechanical study. *Journal of Chemical Physics* 105 (19) (1996), 8937–8943
- [23] BIRKENHEUER, U.; CORA, F.; PISANI, C.; SCORZA, E.; PEREGO, G.: Embeddedcluster study of core-level binding energies of magnesium and alkali impurities at the surface of MgO. *Surface Science* **373** (2-3) (1997), 393–408
- [24] LU, X.; XU, X.; WANG, N. Q.; ZHANG, Q. N.: N<sub>2</sub>O decomposition on MgO and Li/MgO catalysts: A quantum chemical study. *Journal of Physical Chemistry B* 103 (17) (1999), 3373–3379

- [25] COLERA, I.; DE SEGOVIA, J. L.; GONZALEZ, R.: Influence of Li impurities on the adsorption of  $D_2O$  on MgO(100). Vacuum **64** (3-4) (2002), 439–443
- [26] ROOS, J. A.; KORF, S. J.; VEEHOF, R. H. J.; VANOMMEN, J. G.; ROSS, J. R. H.: Kinetic and Mechanistic Aspects of the Oxidative Coupling of Methane over a Li/MgO Catalyst. *Applied Catalysis* 52 (1-2) (1989), 131–145
- [27] WU, M. C.; TRUONG, C. M.; COULTER, K.; GOODMAN, D. W.: Role of F-Centers in the Oxidative Coupling of Methane to Ethane over Li-Promoted MgO Catalysts. Journal of the American Chemical Society 114 (19) (1992), 7565–7567
- [28] WU, M. C.; TRUONG, C. M.; COULTER, K.; GOODMAN, D. W.: Nature of Active-Sites in the Oxidative Coupling of Methane to Ethane over Li/MgO Catalysts. *Journal of Vacuum Science & Technology A* **11** (4) (1993), 2174–2178
- [29] DASH, L. K.; GILLAN, M. J.: Assessment of competing mechanisms of the abstraction of hydrogen from  $CH_4$  on Li/MgO(001). Surface Science 549 (3) (2004), 217–226
- [30] ORLANDO, R.; MILLINI, R.; PEREGO, G.; DOVESI, R.: Catalytic properties of F-centres at the magnesium oxide surface: Hydrogen abstraction from methane. Journal of Molecular Catalysis A: Chemical 119 (1-3) (1997), 253–262
- [31] VIRUELAMARTIN, P. M.; VIRUELAMARTIN, R.; ZICOVICHWILSON, C. M.; TO-MASVERT, F.: Theoretical EHT Study of Oxidative Coupling of Methane on Pure MgO and MgO Doped with Li and Na. *Journal of Molecular Catalysis* 64 (2) (1991), 191–200
- [32] COULTER, K.; GOODMAN, D. W.: Kinetic-Studies of the Oxidative Dimerization of Methane on Thin-Film MgO and Li/MgO. *Catalysis Letters* 16 (1-2) (1992), 191–196
- [33] XU, M. T.; SHI, C. L.; YANG, X. M.; ROSYNEK, M. P.; LUNSFORD, J. H.: Effect of Carbon-Dioxide on the Activation-Energy for Methyl Radical Generation over Li/MgO Catalysts. *Journal of Physical Chemistry* **96** (15) (1992), 6395–6398
- [34] STANSCH, Z.; MLECZKO, L.; BAERNS, M.: Comprehensive kinetics of oxidative coupling of methane over the La<sub>2</sub>O<sub>3</sub>/CaO catalyst. *Industrial & Engineering Chemistry Research* **36** (7) (1997), 2568–2579
- [35] CHOUDHARY, V. R.; MULLA, S. A. R.; UPHADE, B. S.: Influence of support on surface basicity and catalytic activity in oxidative coupling of methane of Li-MgO deposited on different commercial catalyst carriers. *Journal of Chemical Technology and Biotechnology* 72 (2) (1998), 99–104
- [36] ARITANI, H.; YAMADA, H.; NISHIO, T.; SHIONO, T.; IMAMURA, S.; KUDO, M.; HASEGAWA, S.; TANAKA, T.; YOSHIDA, S.: Characterization of Li-doped MgO catalysts for oxidative coupling of methane by means of MgK-edge XANES. *Jour*nal of Physical Chemistry B 104 (44) (2000), 10133–10143

- [37] MURPHY, D.; GIAMELLO, E.; ZECCHINA, A.: A Novel Li Ionic Cluster at the Surface of MgO. Journal of Physical Chemistry **97** (9) (1993), 1739–1742
- [38] BOLDU, J. L.; MUNOZ, E.; BOKHIMI, X.; NOVARO, O.; LOPEZ, T.; GOMEZ, R.: Spectroscopic studies of sol-gel Li/MgO catalysts. *Langmuir* **15** (1) (1999), 32–35
- [39] BOTHE-ALMQUIST, C. L.; ETTIREDDY, R. P.; BOBST, A.; SMIRNIOTIS, P. G.: An XRD, XPS, and EPR study of Li/MgO catalysts: Case of the oxidative methylation of acetonitrile to acrylonitrile with CH<sub>4</sub>. Journal of Catalysis **192** (1) (2000), 174–184
- [40] NELSON, P. F.; LUKEY, C. A.; CANT, N. W.: Isotopic Evidence for Direct Methyl Coupling and Ethane to Ethylene Conversion During Partial Oxidation of Methane over Li/MgO. Journal of Physical Chemistry 92 (22) (1988), 6176–6179
- [41] PEIL, K. P.; GOODWIN, J. G.; MARCELIN, G.: An Examination of the Oxygen Pathway During Methane Oxidation over a Li/MgO Catalyst. *Journal of Physical Chemistry* 93 (16) (1989), 5977–5979
- [42] PEIL, K. P.; GOODWIN, J. G.; MARCELIN, G.: Surface Phenomena During the Oxidative Coupling of Methane over Li/MgO. Journal of Catalysis 131 (1) (1991), 143–155
- [43] LAPSZEWICZ, J. A.; JIANG, X. Z.: Investigation of Reactivity and Selectivity of Methane Coupling Catalysts Using Isotope Exchange Techniques. *Catalysis Letters* 13 (1-2) (1992), 103–116
- [44] CANT, N. W.; KENNEDY, E. M.; NELSON, P. F.: Magnitude and Origin of the Deuterium Kinetic Isotope Effect During Methane Coupling and Related Reactions over Li/MgO Catalysts. *Journal of Physical Chemistry* 97 (7) (1993), 1445–1450
- [45] DRISCOLL, S. A.; OZKAN, U. S.: Transient Isotropic Labeling Using (O<sub>2</sub>/O<sub>2</sub>)<sup>16</sup>O <sup>18</sup>O over Alkali-Metal-Promoted Molybdate Catalysts in Oxidative Coupling of Methane. Journal of Physical Chemistry 97 (44) (1993), 11524–11529
- [46] DRISCOLL, S. A.; GARDNER, D. K.; OZKAN, U. S.: Transient Isotopic Labeling Studies Using (CH<sub>4</sub>)-<sup>12</sup>C/(CH<sub>4</sub>)-<sup>13</sup>C over Alkali-Promoted Molybdate Catalysts in the Oxidative Coupling of Methane. *Catalysis Letters* **25** (3-4) (1994), 191–199
- [47] LACOMBE, S.; ZANTHOFF, H.; MIRODATOS, C.: Oxidative Coupling of Methane over Lanthana Catalysts .2. A Mechanistic Study Using Isotope Transient Kinetics. *Journal of Catalysis* 155 (1) (1995), 106–116
- [48] KARASUDA, T.; AIKA, K.: Isotopic oxygen exchange between dioxygen and MgO catalysts for oxidative coupling of methane. *Journal of Catalysis* 171 (2) (1997), 439–448

- [49] EFSTATHIOU, A. M.; PAPAGEORGIOU, D.; VERYKIOS, X. E.: The Role of Lattice Oxygen During the Oxidative Coupling of Methane over Li<sup>+</sup>-Doped TiO<sub>2</sub> Catalysts. Journal of Catalysis 144 (1) (1993), 352–357
- [50] MALLENS, E. P. J.; HOEBINK, J. H. B. J.; MARIN, G. B.: An investigation of the oxygen pathways in the oxidative coupling of methane over MgO-based catalysts. *Journal of Catalysis* 160 (2) (1996), 222–234
- [51] HOLGADO, M. J.; RIVES, V.; SANROMAN, S.: Li/MgO Catalyst .3. Effect of Precursor Salts on the Catalytic Activity in Methane Oxidative Coupling. *Reaction Kinetics and Catalysis Letters* 48 (2) (1992), 455–460
- [52] TUNG, W. Y.; LOBBAN, L. L.: Oxidative Coupling of Methane over Li/MgO -Kinetics and Mechanisms. Industrial & Engineering Chemistry Research 31 (7) (1992), 1621–1625
- [53] COUWENBERG, P. M.: Gas-phase Chain Reactions Catalyzed by Solids: The Oxidative Coupling of Methane. Eindhoven University of Technology, Diss., 1995
- [54] MAITRA, A. M.: Critical Performance Evaluation of Catalysts and Mechanistic Implications for Oxidative Coupling of Methane. Applied Catalysis A: General 104 (1) (1993), 11–59
- [55] HATANO, M.; OTSUKA, K.: The Oxidative Coupling of Methane on Lithium Nickelate(III). Faraday Transactions I 85 (1989), 199–206
- [56] LUNSFORD, J. H.: The Catalytic Conversion of Methane to Oxygenates and Higher Hydrocarbons. Studies in Surface Science and Catalysis 75 (1993), 103– 126
- [57] FENG, Y.; NIIRANEN, J.; CUTMAN, D.: Kinetic studies of the catalytic oxidation of methane: 1. Methyl radical production on 1 % Sr/La<sub>2</sub>O<sub>3</sub>. Journal of Physical Chemistry 95 (17) (1991), 6558–6563
- [58] MARTIN, G. A.; MIRODATOS, C.: Surface Chemistry in the Oxidative Coupling of Methane. *Fuel Processing Technology* 42 (2-3) (1995), 179–215
- [59] MAKSIMOV, N. G.; SELYUTIN, G. E.; ANSHITS, A. G.; KONDRATENKO, E. V.; ROGULEVA, V. G.: The influence of defect nature on catalytic performance of Li, Na-doped MgO, CaO and SrO in the oxidative coupling of methane. *Catalysis Today* 42 (3) (1998), 279–281
- [60] LUNSFORD, J. H.: The role of surface-generated gas-phase radicals in catalysis. Langmuir 5 (1) (1989), 12–16
- [61] CAMPBELL, K. D.; LUNSFORD, J. H.: Contribution of gas-phase radical coupling in the catalytic oxidation of methane. *Journal of Physical Chemistry* **92** (20) (1988), 5792–5796

- [62] NELSON, P. F.; CANT, N. W.: Oxidation of C<sub>2</sub> Hydrocarbon Products During the Oxidative Coupling of Methane over a Li/MgO Catalyst. *Journal of Physical Chemistry* 94 (9) (1990), 3756–3761
- [63] EKSTROM, A.; LAPSZEWICZ, J. A.: A Study of the Mechanism of the Partial Oxidation of Methane over Rare Earth Oxide Catalysts Using Isotope Transient Techniques. *Journal of Physical Chemistry* **93** (13) (1989), 5230–5237
- [64] PEIL, K. P.; GOODWIN, J. G.; MARCELIN, G.: Surface Concentrations and Residence Times of Intermediates on Sm<sub>2</sub>O<sub>3</sub> During the Oxidative Coupling of Methane. Journal of the American Chemical Society **112** (16) (1990), 6129–6130
- [65] MORTAZAVI, Y.; HUDGINS, R. R.; SILVESTON, P. L.: Dynamics of catalytic methane coupling. *Industrial & Engineering Chemistry Research* 36 (8) (1997), 2970–2975
- [66] LACOMBE, S.; SANCHEZ, J. G.; DELICHERE, P.; MOZZANEGA, H.; TATIBOUET, J. M.; MIRODATOS, C.: Total Oxidation Pathways in Oxidative Coupling of Methane over Lanthanum Oxide Catalysts. *Catalysis Today* **13** (2-3) (1992), 273–282
- [67] BUYEVSKAYA, O. V.; BAERNS, M.: Transient Studies on Oxygen Activation on a Sm<sub>2</sub>O<sub>3</sub> Surface in the Oxidative Coupling of Methane. *Catalysis Today* **21** (2-3) (1994), 301–308
- [68] BUYEVSKAYA, O. V.; ROTHAEMEL, M.; ZANTHOFF, H. W.; BAERNS, M.: Transient Studies on Reaction Steps in the Oxidative Coupling of Methane over Catalytic Surfaces of MgO and Sm<sub>2</sub>O<sub>3</sub>. Journal of Catalysis 146 (2) (1994), 346–357
- [69] KONDRATENKO, E. V.; BUYEVSKAYA, O. V.; SOICK, M.; BAERNS, M.: Transient kinetics and mechanism of oxygen adsorption over oxide catalysts from the TAPreactor system. *Catalysis Letters* 63 (3-4) (1999), 153–159
- [70] MALLENS, E. P. J.; HOEBINK, J. H. B. J.; MARIN, G. B.: The Oxidative Coupling of Methane over Tin Promoted Lithium Magnesium-Oxide - A TAP Investigation. In: *Natural Gas Conversion II* Bd. 81. Amsterdam: Elsevier Science Publ B V, 1994, 205–210
- [71] AL-ZAHRANI, S.; SONG, Q.; LOBBAN, L. L.: Effects of CO<sub>2</sub> During Oxidative Coupling of Methane over Li/MgO - Mechanisms and Models. *Industrial & Engineering Chemistry Research* 33 (2) (1994), 251–258
- [72] LEVELES, L.; SESHAN, K.; LERCHER, J. A.; LEFFERTS, L.: Oxidative conversion of propane over lithium-promoted magnesia catalyst - I. Kinetics and mechanism. *Journal of Catalysis* **218** (2) (2003), 296–306
- [73] MARTIN, G. A.; MIRODATOS, C.: Evidence of Carbene Formation in Oxidative Coupling of Methane over Lithium-Promoted Magnesium-Oxide. Journal of the Chemical Society - Chemical Communications (18) (1987), 1393–1394

- [74] EDWARDS, J. H.; TYLER, R. J.; WHITE, S. D.: Oxidative Coupling of Methane over Lithium-Promoted Magnesium-Oxide Catalysts in Fixed-Bed and Fluidized-Bed Reactors. *Energy & Fuels* 4 (1) (1990), 85–93
- [75] CHOUDHARY, V. R.; MULLA, S. A. R.; PANDIT, M. Y.; CHAUDHARI, S. T.; RANE, V. H.: Influence of precursors of Li<sub>2</sub>O and MgO on surface and catalytic properties of Li-promoted MgO in oxidative coupling of methane. *Journal of Chemical Technology and Biotechnology* **75** (9) (2000), 828–834
- [76] BEHRENBECK, K.: Untersuchungen zur Kinetik der oxidativen Methankopplung an lithiumdotiertem Magnesiumoxid. Universität Karlsruhe, Diss., 1990
- [77] TJATJOPOULOS, G. J.; VASALOS, I. A.: A Mechanistic Kinetic-Model for Oxidative Coupling of Methane over Li/MgO Catalysts. *Catalysis Today* 13 (2-3) (1992), 361–370
- [78] GALUSZKA, J.: Carbon-Dioxide Chemistry During Oxidative Coupling of Methane on a Li/MgO Catalyst. *Catalysis Today* **21** (2-3) (1994), 321–331
- [79] VAN KASTEREN, J. M. N.: Oxidative Coupling of Methane over Lithium promoted Magnesia. Eindhoven University of Technology, Diss., 1990
- [80] APARICIO, L. M.; ROSSINI, S. A.; SANFILIPPO, D. G.; REKOSKE, J. E.; TREVINO,
   A. A.; DUMESIC, J. A.: Microkinetic analysis of methane dimerization reaction. Industrial & Engineering Chemistry Research 30 (9) (1991), 2114–2123
- [81] ZANTHOFF, H.; BAERNS, M.: Oxidative Coupling of Methane in the Gas-Phase
   Kinetic Simulation and Experimental Verification. Industrial & Engineering Chemistry Research 29 (1) (1990), 2–10
- [82] SHI, C. L.; ROSYNEK, M. P.; LUNSFORD, J. H.: Origin of Carbon Oxides During the Oxidative Coupling of Methane. *Journal of Physical Chemistry* 98 (34) (1994), 8371–8376
- [83] HUTCHINGS, G. J.; SCURRELL, M. S.; WOODHOUSE, J.: Oxidative Coupling of Methane Using Li/MgO Catalyst: Re-Appraisal of the Optimum Loading of Li. *Catalysis Letters* 5 (3) (1990), 301–308
- [84] KORF, S. J.; ROOS, J. A.; DERKSEN, J.; VREEMAN, J. A.; VANOMMEN, J. G.; ROSS, J. R. H.: Oxidative Coupling of Methane over Ba/CaO Catalysts - A Comparison with Li/MgO. Applied Catalysis 59 (2) (1990), 291–309
- [85] MARTIN, G. A.; BERNAL, S.; PERRICHON, V.; MIRODATOS, C.: Heterohomogeneous Processes Involved in Oxidative Conversion of Methane, Ethane and Hydrocarbon Mixtures over Basic Oxides. *Catalysis Today* **13** (4) (1992), 487– 494

- [86] SANCHEZ-MARCANO, J.; MIRODATOS, C.; WOLF, E. E.; MARTIN, G. A.: Inhibition of the Gas-Phase Oxidation of Ethylene by Various Solids and Influence of Their Addition on the Catalytic Properties of Lanthanum Oxide Towards the Oxidative Coupling of Methane. *Catalysis Today* **13** (2-3) (1992), 227–235
- [87] SU, Y. S.; YING, J. Y.; GREEN, W. H.: Upper bound on the yield for oxidative coupling of methane. *Journal of Catalysis* **218** (2) (2003), 321–333
- [88] BURCH, R.; CHALKER, S.; SQUIRE, G. D.; TSANG, S. C.: Oxidative Coupling of Methane over Manganese Oxide Catalysts. *Faraday Transactions* 86 (9) (1990), 1607–1614
- [89] ROOS, J. A.; KORF, S. J.; VEEHOF, R. H. J.; VANOMMEN, J. G.; ROSS, J. R. H.: Reaction-Path of the Oxidative Coupling of Methane over a Lithium-Doped Magnesium-Oxide Catalyst Factors Affecting the Rate of Total Oxidation of Ethane and Ethylene. *Applied Catalysis* 52 (1-2) (1989), 147–156
- [90] NAGAOKA, K.; KARASUDA, T.; AIKA, K.: The effect of SnO<sub>2</sub> addition to Li/MgO catalysts for the oxidative coupling of methane. *Journal of Catalysis* 181 (1) (1999), 160–164
- [91] HARGREAVES, J. S. J.; HUTCHINGS, G. J.; JOYNER, R. W.; KIELY, C. J.: Relationship between Morphology and Catalytic Performance of Lithium and Gold Doped Magnesium-Oxide Catalysts for the Oxidative Coupling of Methane. *Catalysis Today* **13** (2-3) (1992), 401–407
- [92] CHOUDHARY, V. R.; RANE, V. H.; PANDIT, M. Y.: Comparison of alkali metal promoted MgO catalysts for their surface acidity/basicity and catalytic activity/selectivity in the oxidative coupling of methane. *Journal of Chemical Tech*nology and Biotechnology 68 (2) (1997), 177–186
- [93] ANDERSEN, A. G.; NORBY, T.: Liquid Phases in Li/MgO as Studied by Thermoanalytical Methods, Electron Microscopy and Electrical Conductivity Measurements. *Catalysis Today* 6 (1990), 575
- [94] MIRODATOS, C.; MARTIN, G. A.; SAINTJUST, J.; BERTOLIMI, J. C.: The Nature, Role and Fate of Surface-Active Sites in Li/MgO Oxidative Coupling Catalysts. *Catalysis Today* 4 (1989), 301–310
- [95] BHUMKAR, S. C.; LOBBAN, L. L.: Diffuse Reflectance Infrared and Transient Studies of Oxidative Coupling of Methane over Li/MgO Catalyst. Industrial & Engineering Chemistry Research **31** (8) (1992), 1856–1864
- [96] BITTNER, M.: Charakterisierung von Mischoxid-Katalysatoren für die oxidative Kopplung von Methan. Universität Erlangen-Nürnberg, Diss., 1994
- [97] KORF, S. J.; ROOS, J. A.; DEBRUIJN, N. A.; VANOMMEN, J. G.; ROSS, J. R. H.: Lithium Chemistry of Lithium Doped Magnesium-Oxide Catalysts Used in the Oxidative Coupling of Methane. *Applied Catalysis* 58 (1) (1990), 131–146

- [98] CAMINO, J. I.; HOLGADO, M. J.; RIVES, V.: Li/MgO Catalysts .1. Effect of Precursor Salts on Their Structural and Surface-Properties. *Reaction Kinetics* and Catalysis Letters 44 (2) (1991), 469–473
- [99] CAMINO, J. I.; HOLGADO, M. J.; RIVES, V.: Li/MgO Catalysts .2. A DTA and TG Study of Precursors. *Reaction Kinetics and Catalysis Letters* 45 (1) (1991), 35–39
- [100] ABRAHAM, M. M.; CHEN, Y.; BOATNER, L. A.; REYNOLDS, R. W.: Evidence for suppression of radiation-damage in Li-doped MgO. *Journal of the American Chemical Society* 59 (1976), 101–103
- [101] LEVELES, L.; SESHAN, K.; LERCHER, J. A.; LEFFERTS, L.: Oxidative conversion of propane over lithium-promoted magnesia catalyst - II. Active site characterization and hydrocarbon activation. *Journal of Catalysis* **218** (2) (2003), 307–314
- [102] DAI, G. H.; YAN, Q. J.; WANG, Y.; LIU, Q. S.: Li-Doped MgO as Catalysts for Oxidative Coupling of Methane - a Positron-Annihilation Study. *Chemical Physics* 155 (2) (1991), 275–284
- [103] LUNSFORD, J. H.; CISNEROS, M. D.; HINSON, P. G.; TONG, Y. D.; ZHANG,
   H. S.: Oxidative Dimerization of Methane over Well Defined Lithium-Promoted Magnesium-Oxide Catalysts. *Faraday Discussions* (87) (1989), 13–21
- [104] DEBOY, J. M.; HICKS, R. F.: The Oxidative Coupling of Methane over Alkali, Alkaline-Earth, and Rare-Earth Oxides. *Industrial & Engineering Chemistry Research* 27 (9) (1988), 1577–1582
- [105] HOOGENDAM, G. C.; SESHAN, K.; VANOMMEN, J. G.; ROSS, J. R. H.: Oxidative Coupling of Methane over Doped Li/MgO Catalysts. *Catalysis Today* **21** (2-3) (1994), 333–340
- [106] KORF, S. J.; ROOS, J. A.; DE BRUIJIN, N. A.; VAN OMMEN, J. G.; ROSS, J. R. H.: Influence of CO<sub>2</sub> on the Oxidative Coupling of Methane over a Lithium Promoted Magnesium Oxide Catalyst. *Journal of the Chemical Society -Chemical Communications* **19** (1987), 1433–1434
- [107] HUTCHINGS, G. J.; SCURRELL, M. S.; WOODHOUSE, J. R.: Comparison of Ethene and Ethane Primary Selectivities with Li/MgO and MgO Catalysts for Oxidative Coupling of Methane - Comments on the Role of Lithium. *Journal of the Chemical Society - Chemical Communications* (24) (1987), 1862–1863
- [108] GU, Y.; DAI, C.; CAI, Q.; SHAN, Y.: Highly Efficient Oxidative Coupling of Methane over LiCl-B<sub>2</sub>O<sub>3</sub>/MnO<sub>2</sub> and Li<sub>2</sub>SO<sub>4</sub>-Mn<sub>x</sub>O<sub>y</sub>/TiO<sub>2</sub> Catalysts. Journal of Natural Gas Chemistry 12 (2003), 247–253
- [109] WANG, D. J.; XU, M. T.; SHI, C. L.; LUNSFORD, J. H.: Effect of Carbon-Dioxide on the Selectivities Obtained During the Partial Oxidation of Methane and Ethane over Li<sup>+</sup>/MgO Catalysts. *Catalysis Letters* 18 (4) (1993), 323–328

- [110] CHANG, Y. F.; SOMORJAI, G. A.; HEINEMANN, H.: A Temperature-Programmed Isotope-Exchange Study of Ca-Ni-K and Mg-Li Oxide Catalysts Used for Oxidative Coupling of Methane. *Journal of Catalysis* 142 (2) (1993), 697–707
- [111] MACHOCKI, A.: Oxidative Coupling of Methane at Moderate (600-650°C) Temperatures. Catalysis Letters 26 (1-2) (1994), 85–93
- [112] IWAMATSU, E.; MORIYAMA, T.; TAKASAKI, N.; AIKA, K.: Importance of the Specific Surface-Area of the Catalyst in Oxidative Dimerization of Methane over Promoted Magnesium-Oxide. Journal of the Chemical Society - Chemical Communications (1) (1987), 19–20
- [113] MATSUURA, I.; DOI, T.; UTSUMI, Y.: Oxidative Coupling of Methane over a Li<sub>2</sub>O-BeO System Catalyst. *Chemistry Letters* (7) (1987), 1473–1476
- [114] WU, C. S.; AMBLER, E.; HAYWARD, R. W.; HOPPES, D. D.; HUDSON, R. P.: Experimental Test of Parity Conservation in Beta Decay. *Physical Review* 105 (4) (1957), 1413–1415
- [115] WINNEFELD, H.:  $\beta$ -NMR an <sup>8</sup>Lithium adsorbiert auf Silizium(111)7x7 und den naßchemisch sowie in situ-präparierten wasserstoffterminierten Oberflächen. Philipps-Universität Marburg, Diss., 2000
- [116] MORRIS, G. D.: β-detected Nuclear Magnetic Resonance and spin relaxation for materials science. http://www.lanl.gov/orgs/t/workshop/Proceedings/ morris.pdf. Zugriffsdatum: 29. Oktober 2003
- [117] DE GROOT, S. R.; TOLHOEK, H. A.; HUISKAMP, W. J.; SIEGBAHN, K. G. (Hrsg.): Alpha, Beta and Gamma Ray spectroscopy. 2. Edition. North-Holland, Amsterdam, 1965
- [118] KELLER, G. E.; BHASIN, M. M.: Synthesis of Ethylene Via Oxidative Coupling of Methane .1. Determination of Active Catalysts. *Journal of Catalysis* 73 (1) (1982), 9–19
- [119] PHILLIPS, M. D.; EASTMAN, A. D.: Effect of Li/MgO Methane Coupling Catalyst on Alonized Steel Reactors. *Catalysis Letters* 13 (3) (1992), 157–174
- [120] SLAGTERN, A.; DAHL, I. M.; JENS, K. J.; HANSEN, E.; SEIERSTEN, M.: Reactor Materials for Use with the Li/MgO Methane Coupling Catalyst. Applied Catalysis A: General 91 (1) (1992), 13–25
- [121] DER BUNDESMINISTER FÜR WISSENSCHAFTLICHE FORSCHUNG (Hrsg.): Nuklidkarte. 3. Auflage. Bonn: Gersbach und Sohn Verlag, 1968
- [122] KRAUSS, E.: Planung und Konstruktion eines Hochtemperaturofens f
  ür Kernresonanzuntersuchungen an neutronenaktivierten Kernen. Universit
  ät Heidelberg, Diss., 1972

# Lebenslauf

### Yunfei Kuo

geboren am 16.05.1977 in China, Provinz Jiang-Xi

### Schulausbildung

| 1983 - 1985:     | Besuch der Grundschule in China                             |
|------------------|-------------------------------------------------------------|
| 1985 - 1989:     | Schlüter-Grundschule in Berlin                              |
| 1989 - 1993:     | Sophie-Charlotte-Oberschule in Berlin                       |
| 1993–1996:       | Oberstufenzentrum für Recht in Berlin (Abitur)              |
| Studium          |                                                             |
| 10/1996-10/2002: | Studium an der Technischen Universität Berlin in der        |
|                  | Fachrichtung Wirtschaftsingenieurwesen (DiplIng.)           |
| PROMOTION        |                                                             |
| 11/2002-06/2005: | Wissenschaftlicher Mitarbeiter an der Technischen Univer-   |
|                  | sität Berlin; Institut für Energietechnik; Fachgebiet Ener- |
|                  | gieverfahrenstechnik und Umwandlungstechniken regene-       |
|                  | rativer Energien; Prof. Dr. rer. nat. F. Behrendt           |



- [739] JÖRG LANGOHR: Zur Oxidativen Kopplung von Methan Dissertation (2003)
- [740] NILS PAUST: Implementierung eines Ascheablagerungsmodells in den kommerziellen CFD-code  $FLUENT^{TM}$ Diplomarbeit (2004)
- [741] NIKOLAS ROMMEISS: Zur Verwendung von Bindemitteln in der Pelletproduktion Diplomarbeit (2004)
- [742] ARMIN MUGGLI: Genehmigungsvorbereitende Untersuchungen zu einem Holzheizwerk unter Berücksichtigung von Brennstoff und Emissionen Diplomarbeit (2004)
- [743] SEBASTIAN MATERA: On reactive diffusive flows in porous media with regard to gasification of biomass Studienarbeit (2005)
- [744] YUNFEI KUO: Effekte der spezifischen Oberfläche von Li/MgO-Katalysatoren bei der oxidativen Kopplung von Methan Dissertation (2005)