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Abstract
We study the thermodynamic properties induced by non-reciprocal interactions between
stochastic degrees of freedom in time- and space-continuous systems. We show that, under fairly
general conditions, non-reciprocal coupling alone implies a steady energy flow through the system,
i.e., non-equilibrium. Projecting out the non-reciprocally coupled degrees of freedom renders
non-Markovian, one-variable Langevin descriptions with complex types of memory, for which we
find a generalized second law involving information flow. We demonstrate that non-reciprocal
linear interactions can be used to engineer non-monotonic memory, which is typical for, e.g.,
time-delayed feedback control, and is automatically accompanied with a nonzero information flow
through the system. Furthermore, already a single non-reciprocally coupled degree of freedom can
extract energy from a single heat bath (at isothermal conditions), and can thus be viewed as a
minimal version of a time-continuous, autonomous ‘Maxwell demon’. We also show that for
appropriate parameter settings, the non-reciprocal system has characteristic features of active
matter, such as a positive energy input on the level of the fluctuating trajectories without global
particle transport.

1. Introduction

Fundamental physical interactions between mutually coupled particles, such as atoms or molecules, are
typically reciprocal. They are derivable from a Hamiltonian (i.e., conservative) and thus fulfill, automatically,
Newton’s third law, actio = reactio. In the absence of driving forces or (temperature) gradients, systems
with reciprocal interactions equilibrate and are well described by traditional thermodynamics. This holds
even on the mesoscale, that is, when instead of the full microscopic dynamics, only few representative
(stochastic) variables are considered by integrating out all other degrees of freedom (d.o.f.). This is the key
idea of the celebrated Mori–Zwanzig approach [1] yielding a generalized Langevin equation (LE), which
involves noise and a memory kernel satisfying a fluctuation–dissipation relation (FDR), and may
stochastically describe the motion of a colloid in a complex environment (e.g., a viscoelastic fluid [2–5]).

However, the idea of reciprocal couplings and its thermodynamic implications breaks down in many
living and artificial complex systems, where more general interactions, in particular, non-reciprocal
couplings between mesoscopic subsystems, or (stochastic) d.o.f., naturally emerge [6–10]; as, e.g., in
pedestrian dynamics [11–13], in complex plasmas [14–18], or in bio-chemical systems [19–21]. Moreover,
state-of-the-art experimental techniques enable the realization of almost arbitrary interactions between
colloidal particles [22, 23], including non-reciprocal ones [24]. Tuning the interactions opens up the
possibility to experimentally explore fundamental principles, and to manufacture artificial systems on the
fluctuating scale, like Brownian molecules [22, 23]. Recently, also in quantum systems it was demonstrated
that the implementation of non-reciprocal couplings can be used to build new types of devices, e.g.,
directional amplifiers [25–29]. Further, non-reciprocal couplings between (effective) variables are present in
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various models for active matter. For example, to describe active self-propelled motion [30–34], the
temporal evolution of the particle’s position is assumed to be affected by the orientation (due to the flagella
or asymmetric flow field), but there is no backcoupling.

While some models which involve non-reciprocal interactions have already been studied from a
thermodynamic perspective [35–42], the general thermodynamic and information-theoretical implications
of non-reciprocity itself have, to our knowledge, not been discussed so far. This is the first major goal of this
paper. To this end, we will review and reinterpret some results from the literature (for systems with two
d.o.f.), and derive new formulae for larger systems. In particular, we consider (mostly) overdamped
Markovian systems of n + 1 non-reciprocally coupled subsystems X0,1,...,n with white noise. Each subsystem
can represent, e.g., the position of a colloid in an experiment (accordingly, we will assume that the variables
are even under time-reversal, like positions or angles). By considering different thermodynamic quantities,
we investigate the following questions: can non-reciprocal systems reach a state of thermal equilibrium? Is
there a crucial difference between nonequilibrium states induced by non-reciprocity, vs external drivings?
Indeed, we show here that, except for some specific cases, non-reciprocal systems are inherently out of
equilibrium, even in the absence of external forces or (temperature) gradients. In order to discuss the
fundamental consequences of non-reciprocity on a purely analytical basis, we will consider linear models.
However, as we will discuss, several conclusions take over to non-linear models. As different representatives
of non-reciprocal coupled systems that share some crucial features we will consider, on the one hand, active
systems and, on the other hand, feedback-controlled systems. The second main goal of this paper is to
explain why, under certain conditions, a setup with non-reciprocal linear couplings can be used to build a
‘microswimmer’, a ‘feedback controller’, or a ‘Maxwell demon’. For microswimmers, thermodynamic
notions are already a huge topic [32, 35–41, 43, 44]. Here, we calculate the information and energy flow
between the particle (here X0) and its propulsion mechanism (here represented by at least one subsystem
X1), confirming general expectations, e.g., the active swimmer heats up its environment but never cools it
down. In contrast, in the context of time- and space-continuous feedback [45–49], the connection to
non-reciprocal coupling is rather uncommon and new. Therefore, we dedicate a more detailed analysis to
this point. We show that linear non-reciprocal couplings can be used to construct a time-delayed feedback
loop, and clarify under which conditions a non-reciprocal coupled d.o.f. can extract energy from a single
heat bath, making it a ‘Maxwell demon’. We further find conditions under which thermal fluctuation
suppression (or enhancement), i.e., ‘isothermal compression or expansion’ of a single-particle gas are
possible.

While some of the questions and connections discussed here may seem to be intuitively clear, almost
representing ‘common wisdom’, there are only few studies where these issues are formally addressed.
Moreover, we also detect counter-intuitive phenomena. For example, non-Markovian processes can exhibit
a nonequilibrium steady state (NESS) without dissipation, where the entropy is exported purely in the form
of information, implying that information and entropy are transported without accompanying energy flow
(while in total sustaining this process relies on external energy supply). Furthermore, we show that, under
certain conditions, a system of two isothermal subsystems with non-reciprocal coupling can be mapped
onto a reciprocal system with a temperature gradient, building a bridge to other active matter models [44,
50, 51]. In this context, we also consider the underdamped case. In addition, we provide a detailed
derivation of the relevant information flows, which is, so far, a quantity that is not well-established for time-
and space-continuous systems.

From a conceptual viewpoint it is important to also think about situations, where a portion of the d.o.f.
might be invisible to a (‘marginal’) observer. Even more, in some theoretical models, a portion of the d.o.f.
has no direct physical interpretation. Then, the dynamics can be equivalently formulated as a
non-Markovian, one-variable equation (for X0) with a memory kernel and colored noise, upon projecting
out Xj>0. In such a situation, the interpretation of thermodynamic quantities must be treated with care, and
is indeed subject of a recent debate [35, 37, 40, 47, 48]. To account for this fact, we will pay special attention
to the different measures of (non)equilibrium on the levels of the Markovian and non-Markovian
description, and also explicitly consider the entropy balance of an individual subsystem. We will further
comment on the connection to so-called ‘effective thermodynamic’ descriptions [52, 53].

We close this introduction with a brief outline. After introducing the model in section 2, we will
investigate under which conditions detailed balance (DB) and the FDR are satisfied (section 3). Then, we
will calculate the total entropy production of the entire system and the dissipation of an individual
subsystem in section 4. Thereafter we will consider the entropy balance of an individual sub-system and
derive explicit expressions for the information flows through the system (section 5). In section 6, we show
that, under certain conditions, a non-reciprocal (overdamped) system can be mapped onto a reciprocal one.
This is also possible for the corresponding underdamped case, as discussed in section 7. There, we also
consider the heat flow in a non-reciprocal system with inertia. We finally conclude in section 7.
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2. Model

We consider time- and space-continuous systems described by Markovian overdamped LE

γ Ẋ =

⎛⎜⎜⎜⎝
a00 a01 . . . a0n

a10 a11 . . . a1n

...
an0 an1 . . . ann

⎞⎟⎟⎟⎠X +

⎛⎜⎜⎜⎝
f0

0
...
0

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
ξ0

ξ1

...
ξn

⎞⎟⎟⎟⎠ (1)

with the vector X = (X0, X1, . . . , Xn)T ∈ R
n+1 involving n + 1 stochastic d.o.f. We will discuss

thermodynamic properties of both, the entire system {X0, X1, . . . , Xn}, and of the individual Xj. To set the
focus, we will occasionally call {X0, X1, . . . , Xn} the ‘super-system’, while an individual Xj will be called a
‘sub-system’. Further, ξj denote zero-mean, Gaussian white noises with 〈ξi(t)ξj(t′)〉 = 2kBTjγj δijδ(t − t′) at
temperatures Tj � 0, j ∈ {0, 1, . . . , n}, with kB, γj being the Boltzmann and friction constants that also
appear in the diagonal friction matrix γ with γ jj = γ j. f0 is an, in general, nonlinear force. The coupling

matrix a defines the strength of the couplings aij, and gives the timescale γ j/ajj of the exponential relaxation
dynamics of each d.o.f., due to the restoring forces ajjXj. We will focus on cases where the motion of X0 is
confined, i.e., a00 < 0, and consider natural boundary conditions, i.e., the probability to find the particle
vanishes at X0 →±∞. Further, we will focus on situations, where a stable steady state exists, which is the
case whenever the real part of the largest eigenvalue of the coupling matrix a is negative.

At this point, we may already note one apparent difference between reciprocal system (aij = aji∀i, j) and
those that involve non-reciprocal couplings (aij 
= aji), that is, only the purely reciprocal coupled equations
can be expressed as derivatives of a Hamiltonian, plus noise terms (and, if present, plus non-conservative
forces f0). In that case, (1) can be written as γjẊj = − ∂H

∂Xj
+ ξj, with the Hamiltonian

H =

n∑
j=0

⎡⎣Vj(Xj) +
∑
i>j

Hint(|Xi − Xj|)

⎤⎦ =

n∑
j=0

⎡⎣−ajj

2
X2

i +
−aij

2

∑
i>j

(Xi − Xj)
2

⎤⎦ , (2)

where the last term in (2) represents the interaction part, Hint. In contrast, non-reciprocal couplings appear

as a non-conservative force (like f0). In that case, (1) corresponds to γjẊj = − ∂Vj

∂Xj
+
∑

i
=jaijXi + ξj.

Equivalently to (1), one can describe the dynamics of one d.o.f., say X0, by a one-variable LE

γ0Ẋ0(t) = a00X0(t) +

∫ t

0
K(t − t′)X0(t′)dt′ + f0 + ν(t) + ξ0(t), (3)

which can be derived by projecting the Xj>0 onto X0, as described in [1, 54] and in appendices A and B.
Generally (unless the time-scales of X0 and Xj>0 are well-separated), (3) is a non-Markovian LE, i.e., it
comprises memory. In particular, it involves a time-nonlocal force depending on the past trajectory,
weighted with a memory kernel K, and ν is a zero-mean, Gaussian colored noise (both depend on the
topology of the coupling matrix, concrete examples are given below). For Tj>0 ≡ 0, there is no colored noise
in (3). We aim to emphasize that the dynamics of X0 is identical to (1). Using (3) instead of (1) can be
regarded as a coarse-graining or marginalization, because the dynamics of Xj is not explicitly considered.
However, it does not imply loss of information about, or approximation of, X0. One should note that, in
reverse, for a non-Markovian process (3), a corresponding Markovian representation (1) is not unique.
Thus, a specific memory can be realized by different Markovian networks [this can be seen, e.g., from
equation (4) by the fact that a01 and a10 only arise as product, a01a10].

For the sake of generality, we deliberately do not focus on a specific model, and rather offer different
interpretations for the involved d.o.f.; explicit examples will be given below. However, a situation of special
interest is that the observer only sees parts of the system (say only X0), while the other d.o.f. are ‘hidden’.
Even more, in some cases, only certain d.o.f. (say only X0), represent actual, physical d.o.f. (such as the
position of a colloid), whereas the others (say Xj>0) are effective (or auxiliary) variables representing those
parts of the complex environment which generate a feedback loop or active motion. In such a situation, a
non-Markovian description (3), which only involves X0, may be the more fundamental one. We will discuss
both situations, only X0 or all Xj being observed, in this paper.

Before we start with investigating the thermodynamic consequences of non-reciprocity, we first aim to
discuss the relationship between non-reciprocal coupling in (1) and resulting memory in (3) and then give
some examples for systems that can be modeled by (1) and (3).
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Figure 1. (a) Ring of three d.o.f. For reciprocal coupling κ = p, when this corresponds to a mechanical system, the memory
kernel is exponentially decaying. Non-reciprocal coupling κ 
= p yields non-monotonic memory (5). (b) and (c) Memory kernels
K(T) (solid black lines) and noise correlations νn (gray dashed lines) generated by systems with the coupling topologies as shown
in the insets, (b) n = 1, (c) n = 2, and k = 1, τ = 1/2, Tj>0 = 1.

2.1. Memory induced by non-reciprocally coupled systems
We begin by considering the smallest version of (1) with n = 1. While various aspects of this case have been
studied previously [35, 37, 40, 55–58], the full implications of non-reciprocity have so far, to the best of our
knowledge, not been discussed. For n = 1, the memory kernel K and the noise correlations
Cν(T) := 〈ν(t)ν(t + T)〉 are both found to decay exponentially for reciprocal as well as non-reciprocal
coupling, and read

K(T) = (a01a10/γ1)ea11T/γ1 ,

Cν(T) = kBT1(a2
01/a11)ea11T/γ1 . (4)

An exemplary plot of both functions is given in figure 1(a).
Let us now investigate the effect of adding more sub-systems Xj to the super-system (1), such that there

may be an interplay of multiple non-reciprocal interactions. Most importantly in the present context, this
leads to complex types of memory beyond the single exponential decay. To illustrate this, let us consider a
ring of three d.o.f., where all (counter-)clockwise couplings are set to (p) κ, (with ajj−1 = κ, ajj+1 = p,
−ajj = p + κ), as sketched in figure 1(a). This super-system generates the memory kernel

K(t − t′) =
e(−

√
pκ+p+κ)t′−t(

√
pκ+p+κ)

2
√

pκ

[(
p3/2 + κ3/2

)2
e2

√
pκt −

(
p3/2 − κ3/2

)2
e2

√
pκt′
]

, (5)

(see appendix A for a derivation). For reciprocal, i.e., conservative couplings, κ = p, (5) simplifies to an
exponential decay K(T = |t − t′|) = 2κ2 e−κT. In contrast, if the coupling is non-reciprocal, we find that the
super-system (1) generates a non-monotonic memory kernel, despite the linearity of all couplings. In the
present example, the memory kernel (5) has a maximum at a finite time difference. In the limit of
unidirectional coupling p → 0, the memory kernel (5) converges to a Gamma-distribution
K(T) = κ3T e−κT, which has a pronounced maximum near κ/3, see figure 1(b). Noteworthy, in this limit,
the kernel vanishes at T = 0, i.e., the instantaneous position does not contribute to the integral∫

X0(t′)K(t − t′)dt′ in (3) [while the integral is dominated by the instantaneous position for reciprocal
coupling]. In appendix A, we discuss the general case where all couplings are different, yielding very
cumbersome expressions while the overall characteristics are the same.

Playing around with different coupling topologies and system sizes, we generally find that
non-reciprocal coupling is a crucial ingredient to generate non-monotonic memory, while reciprocal
couplings always yield monotonic kernels. With an appropriate coupling topology, it is also possible to
generate memory kernels with multiple maxima. We observe that a kernel with n extrema can be
represented via (at least) n d.o.f.

On the other hand, we observe that the correlation Cν(T) of the colored noise produced by Markovian
systems with ring topology [of type (5)] is always monotonically decreasing with T (see, e.g., figure 1). This
implies a broken FDR, as we will discuss below in section 3.2. For other coupling topologies, linearly and
non-reciprocally coupled d.o.f. can also induce non-monotonic noise correlations. We have performed a
systematic study of the connections between coupling topology, generated memory, and the resulting
correlation functions in [59].

2.2. Examples
Let us now consider some exemplary systems of type (1) with non-reciprocal interactions. We start with a
brief summary of models known from the literature and then introduce our new models with feedback.
Figure 2 provides an overview for the case n = 1.
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Figure 2. Overview of various systems describable by the generic model (1) with n = 1. Left: for unidirectional coupling
(a01 = 0), X1 corresponds to a ‘cellular sensor’ in the model [21], and X0 to a d.o.f. measured by that sensor (e.g., a ligand
concentration), see equation (7) and text below. Center: for reciprocal coupling (a01 = a10), X0,1 correspond to the angles of two
mechanically coupled vanes [60]. Right: for unidirectional coupling (a10 = 0), X0 corresponds to the position of a
microswimmer within the AOUP model, while X1 represents the self-propulsion velocity [35, 37, 40, 55, 56, 61], see (6) and
below. In the intermediate cases with bidirectional non-reciprocal coupling, X1 corresponds to a feedback controller acting on a
colloid at position X0.

For reciprocal coupling, the dynamics of the two d.o.f. X0 and X1, corresponds to the angles of two vanes
that rotate in two different heat baths at T0 and T1, and are coupled by a torsion spring with spring constant
a01 = a10. At T0 
= T1 this setup was considered as a minimal model for heat conducting through
mechanical motion, as discussed in [60] (see p 154). Further, for unidirectional coupling a10 = 0, a01 > 0,
a11 < 0, our model (1) reduces to the active Ornstein–Uhlenbeck particle (AOUP) model with transitional
noise [35, 37, 40, 55, 56, 61], reading

γ0Ẋ0 = a00X0 + f0 + X1 + ξ0, Ẋ1 = −X1/τ + ξ1/(γ1τ), (6)

which corresponds to (1) with τ = γ1/|a11| � 0, and a01 = 1. This is a simple (overdamped) model for
active swimmers, where X0 corresponds to the position of a microswimmer in an harmonic trap with
stiffness a00 � 0, while X1 represents the ‘self-propulsion velocity’ [61], pushing X0 away from it. In a real
system, the propulsion could be created by the flagella of a bacterium, or the asymmetric flow field around a
Janus colloid. In the corresponding non-Markovian representation (3), the colored noise (which is here the
only type of memory, as K ≡ 0 when a10 = 0) yields the persistence of the motion, and τ quantifies the
‘persistence’ of the ‘active noise’ [61]. Next, the super-system with reversed unidirectional coupling (i.e.,
a01 � a10), was recently suggested as a model for a cellular sensor [21]

γ0Ẋ0 = a00X0 + ξ0, Ẋ1 = (a11/γ1)[X1 − X0] + ξ1/γ1, (7)

with a00 < 0, a11 < 0, which corresponds to (1) with a11 = −a01 < 0. Thereby, the cellular sensor is
described by a one-dimensional variable X1 (giving the state of the sensor at time t, which is, according to
[21], related to the number of bound receptors). The purpose of the sensor is to measure a certain external
d.o.f., X0, which could be the concentration of some ligand [21]. Last, we aim to note that the model for a
cellular sensor with memory from reference [21], corresponds to the case n = 2, where X2 represents the
past state of the sensor, i.e., the memory (related to the number of phosphorylated internal proteins [21]).
Then, X0 → X1, and X1 → X2 are coupled unidirectionally, and there is no direct link between X0 and X2.

As we will show in this paper, the generic system (1) with non-reciprocal couplings also includes cases
where the d.o.f., Xj>0, can be regarded as a feedback controller continuously operating with the force Fc on a
system X0, yielding a dynamical equation of the colloid

γ0Ẋ0 = a00X0 + Fc + f0 + ν + ξ0, (8)

which is a special type of (3). A characteristic aspect of feedback control is the occurrence of a time delay
between ‘measurement’ and ‘control action’. In experimental setups, this delay either emerges naturally due
to finite signal transmission or information processing times (e.g., think of optical feedback with the help of
videomicroscopy [45, 62–65]), or may be implemented intentionally (e.g., in Pyragas control [66, 67]),
because it is known to induce interesting dynamical and thermodynamical behavior, such as particle
oscillations [62, 68, 69], transport [69], or a net energy extraction from the bath [45]. The controller model
with n = 1 and bidirectional non-reciprocal coupling can be interpreted as a minimal realization of such a
controller. However, it yields an exponentially distributed delay with maximum at t − t′ = 0. In contrast,
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the feedback loop often has a typical finite duration, i.e., the control action depends on X0(t − τ ), with a
distinct characteristic delay time, τ > 0, implying that the equation of the controlled system (here X0)
involves a memory kernel with a maximum around τ . It now becomes clear that a unidirectional ring with
n = 2 can describe such a controller with preferred delay time. Specifically, setting
a10 = a21 = −a11 = −a22 = γ1/τ , T1 = T2, γ1 = γ2, k = a0n yields a kernel

K(T) = (k/τ 2)T e−T/τ ,

Cν(T) = [kBT1/(2γ1)]k2 (3τ + T) e−T/τ , (9)

with a pronounced maximum at τ . The feedback force in the non-Markovian equations (8) or (3) is
Fc =

∫ t
0 X0(t′)K(t − t′)dt′, and, in the Markovian description the feedback force is kXn, respectively. Note

that, due to this setting, the only remaining free controller parameters are the time delay τ and the feedback
gain k. To better compare the controllers with n = 1 and n = 2, we analogously set a10 = −a11 = γ1/τ , and
a01 = k in the case with n = 1, obtaining from (4),

K(T) = (k/τ)e−T/τ ,

Cν(T) = (kBT1/γ1)k2τ e−T/τ . (10)

In this paper, we focus on the cases n = 1, 2, a generalization toward higher n will be discussed in a future
publication by the same authors. We note that the limit n →∞ yields a δ-distributed memory kernel
around τ [45, 54], i.e., K ∝ δ(T − τ ). Such stochastic delay differential equations are infinite-dimensional,
which makes their treatment very involved, especially when it comes to thermodynamics [47, 48, 70, 71]. In
comparison, the model proposed here has in total three d.o.f. and is thus, quite handy.

3. Intrinsic non-equilibrium

Now we turn to the thermodynamic properties induced by the occurrence of non-reciprocal interactions,
focusing on the long-time behavior t →∞, when transient dynamics due to the initial conditions have
decayed and the system has approached a steady state.

We start by clarifying whether thermal equilibrium can exist despite non-reciprocity. As mentioned
before, non-reciprocal interactions are non-conservative. One might therefore guess that a system with
non-reciprocal interactions cannot reach thermal equilibrium. To investigate this question, we check the DB
condition on the level of the Markovian representation (1). Since the latter is only meaningful when all
d.o.f. have a physical interpretation, we also discuss the FDR on the level of the non-Markovian description
(3).

Since we are interested in analytical solutions, we will focus on the linear case, i.e., f0 = 0. We stress,
however, that the framework is readily adaptable to cases where a nonlinear force act on X0, then requiring
numerical solutions.

3.1. Detailed balance
To investigate whether the super-system (1) can approach thermal equilibrium, we check the DB condition.
To this end, we consider the flow of the (n + 1)-point joint probability density function (pdf), ρn+1(x, t), of
x = (x0, . . . , xn)T. To access this quantity, we utilize the closed, multivariate Fokker–Planck equation (FPE)
[54] corresponding to (1), which reads

∂tρn+1(x) = −∇[γ−1ax − D∇]ρn+1(x)︸ ︷︷ ︸
=J

, (11)

with the probability current J and diagonal diffusion matrix D
jj
= kBTj/γj. We note that J is generally

constant in steady states, and zero in equilibrium. Using the identity ∂xρ = [∂x ln(ρ)]ρ, we rewrite (11) as
∂tρn+1 = −∇

[
vρn+1

]
, with the (n + 1)-dimensional phase space velocity [72]

v = γ−1ax − D∇ ln ρn+1(x), (12)

which is connected to the probability current by J = vρn+1. DB means that all probability currents vanish,
hence, vj = 0 ∀j. From (12), we obtain the condition D−1γ−1ax = ∇ ln ρn+1, which implies that the vector
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D−1γ−1ax is the gradient of a scalar function. This, in turn, is true if and only if ∇× (D−1γ−1ax) = 0.

Noting that γ and D are diagonal, this brings us to

aijTj = ajiTi, (13)

for all pairwise coupling constants between every two mutually coupled sub-systems. We stress that this
condition is irrespective of the coupling topology, or system size. Remarkably, (13) shows that
non-reciprocal systems that fulfill DB do exist, as long as aijaji > 0. However, unidirectional super-systems
are by construction pure nonequilibrium models, including the (AOUP) microswimmer, or the controller
with non-monotonic memory (n = 2), see equation (9).

Condition (13) further implies that non-reciprocal systems can reach equilibrium despite Ti 
= Tj.
Below, we will show that also the total entropy production vanishes at this point, as well as the heat and
information flows [see equations (23), (24) and (37)]. This is in sharp contrast to reciprocally coupled (or
‘passive’) systems, which generally never equilibrate when being simultaneously coupled to heat baths of
different temperatures. This has been shown, e.g., in [73, 74]. We, however, do not think that our results
contradict the previous findings, which exclusively refer to reciprocally coupled systems, like mechanical
ones. The non-reciprocal coupling considered in this paper does not correspond to a mechanical coupling,
and is typically only realizable with the help of some external apparatus acting on the system (for an
example of non-reciprocal coupling realized by light, see [24]).

3.2. Fluctuation–dissipation relation
Let us now turn to the corresponding non-Markovian process (3) in x0-space, which is more appropriate
for models where Xj>0 have no direct physical interpretations or if a marginal observer only sees X0. On this
level of description, the definition of a probability current is less clear, as there is, in general, no
corresponding closed FPE [54]. However, from the non-Markovian LE (3) [at f0 = 0] alone, we can
immediately deduce that the probability current in this marginalized space must vanish by a simple
symmetry argument: on an ensemble-averaged level, the non-Markovian system has no preferred direction.
In other words, the ensemble average of equation (3) is completely symmetric w.r.t. a coordinate inversion
x0 →−x0. Consequentially, the probability current cannot have any direction. Thus, naively repeating the
analysis from section 3.1, the system would always appear to be in equilibrium. This is, however, not true, as
we see by instead considering the FDR [75], which describes a balance between the friction kernel γ and
thermal noise μ

〈μ(t)μ(s)〉 = kBT0 γ(|t − s|). (14)

As well known for, e.g., viscoelastic fluids, the validity of an FDR would imply that the system equilibrates
in the absence of external driving [4, 75].

To check (14) for the present model, we rewrite (3) in the form of a generalized LE by converting the
time-integral with K in (3) via partial integration into a friction-like integral that involves the ‘velocity’ Ẋ0

and the friction kernel γ(|t − s|). This yields∫ t

0
γ(|t − s|)Ẋ0(s) ds = a00X0 + f0 + K̃(0)X0(t) + K̃(t)X0(0) + μ(t), (15)

involving the noise μ(t) = ξ0(t) + ν(t), the integrated kernel K̃, and the friction kernel
γ(t − s) = 2γ0 δ(t − s) + K̃(t − s). For the case n = 1, the integrated kernel reads
K̃(T) = (a01a10/a11)ea11T/γ1 . It can easily be verified (using (4) for the noise correlations) that the FDR
holds only if

a10T0 = a01T1, (16)

which agrees with the DB condition (13). Thus, the non-Markovian process is out of equilibrium unless
(16) holds. This is, for example, never the case for the active microswimmer (where a10 = 0). For our n = 2
controller (9), we find K̃(T) = k

(
1 + T/τ

)
e−T/τ , and FDR thus amounts to

T0k
(
1 + T/τ

)
e−T/τ = T1k (τk/2γ1)

(
3 + T/τ

)
e−T/τ . (17)

There is no pair of k, τ that simultaneously obeys T02γ1 = T13τk and T02γ1 = T1τk, which would be
necessary to fulfill FDR. Thus, in this case, FDR (and DB) are never fulfilled (except for the trivial cases,
where k or τ nullify, or tend toward ∞).

For other coupling schemes and n > 1, we observe that a non-reciprocal system may fulfill FDR, but
violate DB. We present a detailed investigation, which is beyond the scope of this paper, in [59].
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In this section, we have seen that non-reciprocity implies an intriguing property of the corresponding
non-Markovian stochastic process, i.e., the existence of NESS with zero probability currents. This, in turn,
also implies the absence of global particle transport, thus, intrinsic nonequilibrium. Such states have been
considered, e.g., in [76]. They commonly occur in active systems [77–80], but can also be found in
feedback-controlled systems [45]. The reason is that, in both cases, the ‘driving’ occurs directly on the level
of the stochastic trajectories, yielding, e.g., persistence, but it does not come in the form of a global
gradient, i.e., there is no global symmetry breaking (using the language of control theory, one might say
that the driving is in a ‘closed-loop’ form [62, 69, 81]). In particular, in the present case, the driving is
hidden in the coupling forces. To further investigate this, we will next reconsider the system from an
energetic perspective.

4. Energy & entropy

To further unravel the nature of the intrinsic non-equilibrium, we consider the energy flows. Sekimoto’s
framework [60] tells us that the fluctuating heat exchange between each Xj and its heat bath along a
stochastic trajectory of length dt is given by

δqj(t) = (γjẊj(t) − ξj(t)) ◦ dXj(t), (18)

yielding for the entire super-system a total dissipated energy of δq =
∑n

j=0 δqj. Here, ◦ indicates
Stratonovich calculus. Note that we employ the sign convention that a positive heat flow corresponds to
energy flowing from the particle to the heat bath, different from [60]. Using the LE (1), we can write the
ensemble average of the heat rate, denoting Q̇ = 〈δq/dt〉, Q̇j = 〈δqj/dt〉, as

Q̇(t) =
n∑

j=0

Q̇j(t) = 〈
n∑

j=0

(γjẊj(t) − ξj(t)) ◦ Ẋj(t)〉 =
n∑

j=0

ajj〈Xj(t)Ẋj(t)〉+
∑
i
=j

aji〈Xi(t)Ẋj(t)〉 (19)

(recall that f0 = 0). Now we utilize the steady-state identity 〈XkẊl〉 = −〈XlẊk〉 ∀ k, l, which readily follows
from the fact that the correlations 〈Xk(t)Xl(t)〉 are time-independent and thus d

dt 〈Xk(t)Xl(t)〉 =
〈Ẋk(t)Xl(t)〉+ 〈Xk(t)Ẋl(t)〉 = 0. Using these identities, we immediately obtain from (19),

Q̇ =

n−1∑
j=0

n∑
i>j

(aji − aij)〈XiẊj〉 � 0. (20)

Accordingly, if all couplings are reciprocal, the rate of total dissipated energy Q̇ is zero, as expected.
Equation (20) further reveals that, in contrast, a non-reciprocal interaction aij = aji leads to a net
dissipation. Let us discuss this in more depth.

First, we realize that Q̇ is nonnegative, as follows from the connection to the total entropy production
rate (EP) [82]

Ṡtot =

n∑
j=0

Q̇j/Tj + Ṡsh � 0, (21)

with Ssh being the ensemble average of the fluctuating multivariate (joint) Shannon entropy
ssh = −kB ln[ρn+1(x)], and Ṡsh ≡ 0 in steady states. Noteworthy, (21) describes the actual total
thermodynamic EP only when all d.o.f. have a physical interpretation. In other cases its meaning is
debatable. However, in any case, the second law Ṡtot � 0 holds (as formally shown below in (32)), where
Ṡtot = 0 in thermal equilibrium.

Second, according to the first law of thermodynamics, δq = δw + du, the net dissipation associated with
each non-reciprocal interaction (20), must result from work 〈δw〉 applied to the system, while the internal
energy is conserved in steady states, 〈du〉 = 0. In other words, the total entropy production is due to a
positive energy input at rate Ẇ = Q̇ � 0 (20) into the system. Where does this energy come from? Because
fundamental physical interactions are generally reciprocal, in order to realize a non-reciprocal coupling
some (external) mechanism is necessary, which is here not explicitly modeled but ‘hidden’ in the equations
within the non-reciprocity. The positive energy input Ẇ = Q̇ � 0 (20) gives the minimal energy needed (by
this mechanism) to sustain the non-reciprocal coupling. We also note that a positive energy input on the
level of the fluctuating trajectories is considered a defining property of active systems [30–32, 83, 84]. As we
see here, it can be introduced in the form of a non-reciprocal interaction.
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Next, we take a closer look at the individual heat flow between X0 and its bath. We focus on Q̇0, as it is a
characteristic thermodynamic quantity and it is independent of whether all d.o.f. have a clear physical
interpretation, or not, and independent of the employed description (Markovian or non-Markovian). To
calculate the steady-state ensemble average, we again utilize 〈XjẊj〉 = 0 and 〈Xlξj〉 = 0 for all j 
= l, and
therewith find from (18) directly

Q̇0 =
n∑

j>0

a0j〈XjẊ0〉 =
n∑

i=0

n∑
j>0

a0ja0i

γ0
〈XjXi〉 = Ẇ0. (22)

Likewise, one can calculate the heat flows of the other d.o.f. Q̇l =
∑n

i=0

∑
j
=l

aljali

γl
〈XjXi〉. It should be noted

that by writing down this expression for the dissipation of Xj>0 and the total EP (21), we implicitly assume
that all Xj are even under time-reversal, that means, position-like variables. In contrast, odd variables would
not contribute to the total EP, see [35]. We note that for active matter models the parity of Xj>0 is in fact a
nontrivial aspect, and subject of an ongoing debate, see e.g., [35, 37, 85, 86].

Together with the correlations 〈XiXj〉 that are derived in appendix C, equations (21), (22) represent
analytical expressions for heat flow and entropy production for any n. For example, in the case n = 1
(which was also discussed in [57]), where the expression significantly simplifies, we find from (22), (21) in
combination with (C5)

Ṡtot =
kB

T0T1

(a10T0 − a01T1)2

−a00γ1 − a11γ0
� 0, (23)

Q̇0 = kB
a01(a10T0 − a01T1)

(a00γ1 + a11γ0)
. (24)

From (23) one immediately sees that the EP vanishes if, and only if, DB (13) and FDR (16) are fulfilled
(as one shall expect). Thus, all three notions of equilibrium are consistent. Further, if (13) is fulfilled, also
the heat flow vanishes. As we show in section 7, this also holds for the corresponding underdamped model,
see equation (50). Thus, now we have convinced ourselves that the non-reciprocal systems which are
simultaneously coupled to baths at different temperatures can really reach states of thermal equilibrium, if
(13) holds.

Let us now take a closer look at the heat flow (24) for different coupling schemes, shown in figure 3 for
T0 = T1, a00 = a11 and n = 1. Note that these isothermal conditions allow to better investigate the effect of
non-reciprocity and, at the same time, are most realistic in regard to experimental realizations. For example,
this could represent a system of two colloidal particles trapped in a harmonic potential of stiffness
|a00| = |a11| and coupled with each other with the help of an external setup similar to [22, 24]. When the
system is reciprocally coupled (along the dotted diagonal), it equilibrates and the heat flow nullifies. Then,
the EP (23) is zero as well. The heat flow also vanishes in the trivial case a01 = 0, i.e., when X0 does not ‘see’
X1 (dashed horizontal line), as is the case when X1 corresponds to a sensor [21]. As one would expect, being
measured does not bring X0 out of equilibrium. If the unidirectional coupling is reversed (a10 = 0), the heat
flow is strictly nonnegative (dashed vertical line). This suits to the idea that X0 is an active swimmer: the
swimmer eventually heats up the surrounding fluid, but never has a net cooling effect. Remarkably, for cases
with bidirectional non-reciprocal coupling, we observe that, Q̇0 can also become negative. We will discuss
this in more depth in the next section.

4.1. Conditions for reversed, i.e., negative heat flow
When Q̇0 is negative (as in the blue regions of figure 3), heat is constantly flowing out of the bath (on
average). This happens due to the coupling with another (or multiple) subsystem(s) X1, although the other
subsystem is not colder, which would be a trivial case of heat extraction. Let us take a moment and think
about the meaning of this observation. We aim to remind the reader that a steady-state heat flow induced
by an non-conservative external force (e.g., a constant, a time-dependent, or a space-dependent driving
force) acting on a passive, Markovian system is strictly nonnegative, as dictated by the second law,
Q̇0/T0 = Ṡtot � 0. Loosely speaking: ‘stirring a particle from outside will eventually heat up the
environment.’ Here we find that, in contrast, the non-conservative force a01X1, or Fc in the notation (8), can
induce a negative i.e., reversed heat flow, Q̇0 < 0. Thus, Fc can be viewed as an external force, which stirs
the particle in a clever way, and thereby cools down the particle’s environment. (The underlying reason is
the usage of extracted information, see section 5.) The negative sign of Q̇0 implies a steady extraction of
energy from the bath, which is converted into work Ẇ0, i.e., a (potentially useful) form of energy. It is, of
course, well-known that such an energy extraction can be realized by ‘Maxwell-demon’-type of devices [87,
88]. Here we see that the non-reciprocally coupled d.o.f. represents a minimal, time-continuous version of
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Figure 3. Left: steady-state mean heat flow Q̇0 (24) for (4) at n = 1. Along the diagonal a01 = a10, the super-system is
reciprocally coupled, and X0,1 may model the angles of vanes coupled by a spring [60]. For unidirectional coupling a01 = 0, X1

correspond to a cellular sensor (7) measuring the d.o.f. X0. Along the other unidirectional coupling line a10 = 0, X0 corresponds
to the position of an active swimmer in the AOUP model (6). (For further details, see in the main text above and below
equations (6), (7).) For bidirectional non-reciprocal coupling, X1 may model a feedback controller acting on a colloid at X0 (the
model (10) with k = a01, τ = 1 lies on the line a10 = 1). Here and in the following plots, a11 = a00 = −1, kB and all other
parameters are set to unity. Center: information flow to X0. Right: thermal fluctuations of X0 measured by the second moment
compared to the uncoupled case (a01 = 0), 〈X2

0〉 − 〈X2
0〉a01=0. The gray areas indicate unstable regions (where 〈X2

0〉 →∞).

Figure 4. (a) Mean heat flow Q̇0 from X0 to its bath (22), (24), and (b) information flow İ→0 from all other d.o.f. to X0 (39); in
the controller models with n = 1 (10), and n = 2 (9), vs feedback gain k and time delay τ . Further, a00 = −1 and all other
parameters are set to unity. For n = 1, DB and FDR (13) hold at k = 1/τ (dotted lines), i.e., the system is in equilibrium. We
have added a corresponding thin line also in the n = 2 plot of the information flow, serving as a guide to the eye. Trivially, in the
uncoupled case (k = 0), the subsystem X0 is equilibrium as well (for arbitrary n). Note that the (n = 1)-controller with τ = 1,
corresponds to the system in figure 3 along the (dashed) line a10 = 1 with a01 = k.

such a device, where the control action is automatically encoded in the non-reciprocity of the coupling.
Note that the total EP, which is proportional to the sum over both heat flows, Q̇0 + Q̇1, is strictly positive
also in this case, i.e., the isothermal ‘Maxwell demon’ X1 must heat up its own environment.

To find out under which conditions the negative heat flow occurs for n = 1 and 2 [with the parameter
setting from (9), (10)], we vary the two important parameters, the feedback gain k and delay time τ .
Figure 4 reveals that the heat flow Q̇0 is qualitatively and quantitatively similar for n = 1 and 2. The
similarity of the two cases is indeed striking, given the differences between both systems. In particular, we
here compare systems with monotonic memory kernel K(t = t′), vs non-monotonic K(t = t′) which
nullifies at t = t′ (for n = 2). At n = 1, the feedback force k

∫
K(t − t′)X0(t′)dt′ mostly depends on the

instantaneous position X0(t), while at n = 2 it is independent of the latter, and mostly depends on t − τ .
Further, in regard to the Markovian super-system, there is a direct coupling from X1 to X0 in the case n = 1,
while this coupling is only indirect (via a third sub-system) in the case n = 2. Nevertheless, the (blue) area
of reversed heat flow lies in the same region of the (τ , k)-plane and is of similar size. Also, in both cases, it
only occurs if k > 0.

In the context of control theory, it is common to characterize feedback loops as positive or negative
feedback, according to the question whether a small perturbation (from the desired state) is enhanced, or
reduced by the feedback [62]. In the present case, k < 0 corresponds to positive feedback, while k > 0 is
negative feedback, see appendix D for an explanation on the terminology and an illustration. Thus, in both
models, only negative feedback may induce a negative heat flow.
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Besides the trivial case, k = 0, there is, for both n, a second line in figure 4 along which the heat flow
vanishes. For n = 1, this line corresponds to parameters where DB and the FDR (13) are fulfilled (dashed
line), i.e., the system is in equilibrium. For n = 2, DB and the FDR are generally broken for all (τ , k). This
second line hence reveals another interesting property of non-Markovian systems: they may be out of
equilibrium without exhibiting dissipation (zero heat flow), in sharp contrast to reciprocal systems. In our
system, such a state is found for n > 1 and non-reciprocal coupling only. From the viewpoint of the
non-Markovian process X0 this is indeed a bit puzzling. If X0 is in a true nonequilibrium steady-state, there
must be an associated entropy production. However, the zero heat flow indicates zero medium entropy
production. Thus, where does the entropy go? To answer this question, we shall consider the entropy
balance of the individual subsystem X0, as we will do the next section.

We note that an NESS with zero heat flow and regimes of negative heat flow may also occur in systems
with δ-distributed memory, which are, moreover, nonlinear, as we have reported in [45]. Further, such
states may also occur in Markovian (reciprocal) systems with non-Gaussian noise. As was shown in [89],
the presence of nonlinear forces is then a necessary condition, different from the reversed heat flow induced
by non-reciprocal coupling or time-delayed feedback.

5. Information

Now we turn to an information-theoretical investigation of non-reciprocal coupling. The motivation of this
is two-fold. First, it will help us better understand the previous observations, for example: why is heat
extraction only possible for negative feedback (see figure 4), and only if |a10| > |a01| (figure 3)? Until now,
these conditions seem arbitrary. Second, by also considering information flows, we will be able to describe
the entropy balance of an individual subsystem whereas, so far, we have studied entropic properties of the
entire super-system only. This is especially important in situations where only one part of the system is
observable (or has a direct physical interpretation).

It has been established in previous literature [21, 90, 91] that the entropy flow associated with the
exchanged information between two coupled subsystems (say X0 and X1), is associated with the information
flows between them. This quantity is closely connected to the mutual information [40, 91], which describes
the total amount of information exchange in the entire supersystem, but is, in contrast to the information
flows, not directed. While information flows are already common to investigate discrete systems [87,
91–93], this quantity is less established for time- and space-continuous systems (with time-continuous
feedback) [92]. First steps in this direction have been undertaken in [21, 91] and in [90] (where the
reciprocally coupled n = 1 case was studied). It should be noted that there are various other notions of
information flows and information exchanges, which are more appropriate in other contexts, see [94] for an
educational overview.

However, the previously developed framework based on information flows, and the definition of the
mutual information itself, are only applicable for situations where two subsystems exchange information
(n = 1). Here we will generalize this framework to arbitrary system sizes and topologies.

We start by considering the total temporal derivative of the Shannon entropy (21), i.e.,

ṡsh

kB
=

−∂tρn+1

ρn+1
+

n∑
j=0

−
(
∂xjρn+1

)
Ẋj

ρn+1
. (25)

In steady states, the first term naturally vanishes. To calculate the ensemble average of the second term, we
use 〈ẊjA(xj, t)〉 =

∫
JjA(xj, t)dxj [82, 95], with the probability currents Jj. We consider natural boundary

conditions limx→±∞ ρ(x) = 0, and denote improper integrals limr→∞
∫ r
−r simply as

∫
. With these tools, we

find the ensemble average of each summand of (25)〈−
(
∂xjρn+1

)
Ẋj

ρn+1

〉
=

∫ −
(
∂xjρn+1

)
Jj

ρn+1
dx = −

∫ [
ln(ρn+1)Jj

]∞
−∞︸ ︷︷ ︸

→0

dxi
=j +

∫
ln ρn+1(x)∂xj Jj dx

=−
∫

ln
ρ1(xj)

ρn+1(x)
∂xj Jj dx︸ ︷︷ ︸

=İ→j

+

∫
ln ρ1(xj) ∂xj Jj dx, (26)

where we have introduced the multivariate information flow İ→j to Xj. We note that when applied to the
case n = 1, the here defined İ→j reduces to the information flow from [90, 91], with the sign convention as
in [90]. We stress that the involved information flow is from all other d.o.f. {Xl
=j} to Xj. Even if not directly
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coupled with each other, two d.o.f. can exchange information through a third d.o.f. Furthermore, we recall
that thermal equilibrium is characterized by vanishing probability current. Thus, from the definition (26),
one can see that in equilibrium all individual information flows are necessarily zero.

To further proceed, we utilize the closed, multivariate FPE (11), and find

. . . = −İ→j +

∫
ln ρ1(xj)

⎧⎨⎩−∂tρn+1 +
∑
i
=j

∂xi Ji

⎫⎬⎭ dx − İ→j +
Ṡj

sh

kB
−
∑
i
=j

∫
ln ρ1(xj) [Ji]

∞
−∞︸ ︷︷ ︸

→0

dxl 
=i, (27)

where we have introduced the change of the Shannon entropy of the marginal pdf ρ1(xj)

Ṡj
sh = −kB

∫
ln ρ1(xj)∂tρ1(xj) dxj. (28)

In sum, we have shown that

Ṡsh = −kB

n∑
j=0

İ→j + Ṡj
sh. (29)

Let us now consider the multivariate information flows defined in (26) in more detail. For the case
n = 1, it has been shown that İ→0 + İ→1 = İ [90], i.e., the individual information flows sum up to the
temporal derivative of the mutual information. As we show in appendix F, for systems with multiple
subsystems (n � 1), the individual information flows sum up to the multivariate generalization of the
mutual information

I(x) =

∫
ρn+1(x) ln

ρn+1(x)

ρ1(x0)ρ1(x1) . . . ρ1(xn)
dx. (30)

For n = 1, this reduces to the usual mutual information. Just like the latter, we have, on the one hand,∑n
j=0 İ→j = İ, and, on the other hand, İ = 0 in steady states (because the pdfs are time-independent). (We

note that there is not a unique way of generalizing the mutual information to systems with more than two
subsystems, see [96–99]).

Since I = 0, the information flows among all d.o.f. Xj in total cancel each other out (thus, from an
information-theoretical point of view, the super-system as a whole is ‘closed’). However, they constitute an
important contribution to the entropy balance, when an individual subsystem is considered.

To see this, we reconsider the summands of (25), and rewrite them using the FPE (11) as

−
(
∂xjρn+1

)
Ẋj

k−1
B ρn+1

=
γj Jj(x, t)Ẋj

Tj ρn+1︸ ︷︷ ︸
:= kB ṡ

j
tot

− q̇j

Tj
. (31)

Combining (25), (26), (31), we obtain the entropy balance of each subsystem

Ṡj
tot = Ṡj

sh − kB İ→j +
Q̇j

Tj
=

∫
γJj(x, t)2

Tj ρn+1
dx � 0, (32)

Ṡtot
(21)
=

n∑
j=0

Q̇j

Tj
+ Ṡsh

(29,32)
=

n∑
j=0

Ṡj
tot � 0. (33)

With (33) we have recovered the mean total EP (21).
Further, equation (32) may be seen as a generalized second law for each d.o.f., giving the entropy

balance of an individual sub-system. In steady states, where Ṡj
sh = 0, it implies

Q̇j � kBTj İ→j, (34)

consistent with [90, 91].
Equation (34) states that a negative steady heat flow, Q̇0 < 0, is only possible, if İ→0 < 0, i.e.,

information is flowing from the X0 to the rest of the system. The more information about X0 is gathered by
the other Xj>0 (the controller d.o.f.), the more heat can be extracted from the bath. Figure 5 shows (for
n = 1) the information and heat flows, as well as the total EP, which are all connected via (32), (33). It also
illustrates that, in the reciprocal and isothermal case, there is no ‘entropic cost’ (zero EP), but, at the same
time, no net information extraction is achieved, nor is a heat flow induced.
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Figure 5. Information İ→j (38) and heat Q̇j (24) flows vs a01/a10, for n = 1. The heat flow (solid red and gray lines) of each d.o.f.
is bounded from below by the information flow (dashed lines), as predicted by (34). The total EP is given by the sum over∑

j=0,1Q̇j − İ→j . The plots pertain to a11 = a00 = −1, and all other parameters and kB are set to unity.

Due to the linearity of the model, we can calculate the information flows analytically. The steady-state
pdfs are multivariate Gaussians with zero mean and with the covariance matrix (Σ)i j = 〈XiXj〉, which are
described in appendix C. To derive explicit expressions for the steady-state information flows, it turns out to
be most convenient to start with (26). Using the general property of normal distributions,
∂xjρn+1(x) = −(Σ−1X)jρn+1 (and recalling Ṡj

sh = 0), we find

İ→j =

〈(
∂xjρn+1

)
Ẋj

ρn+1

〉
= −

〈
(Σ−1X)jẊj

〉
. (35)

Inserting the LE (1), utilizing 2〈XlẊl 〉 = d〈X2
l 〉/dt = 0 and 〈Xlξj〉 = 0 for j 
= l, we obtain the general

formula

İ→j = −
n∑

l 
=j

(Σ−1)jl〈XlẊj〉 = −
n∑

i=0

n∑
l 
=j

aji

γj

(
Σ−1
)

jl

(
Σ
)

li
= −ajj

γj
+

1

γj

(
Σ−1
)

jj

(
aΣ
)

jj
. (36)

Equation (36) represents in combination with (C3), an analytic expression for the steady-state information
flow to any sub-system in (super-)systems of arbitrary sizes.

5.1. A single non-reciprocal interaction, n = 1
We are now in the position to clarify the information-thermodynamic implications of non-reciprocal
coupling. First we start with n = 1, where we find from (36) in combination with (C5)

İ→0 = −a00

γ0
− 〈X2

1〉(a00〈X2
0〉+ a01〈X0X1〉)

γ0(〈X0X1〉2 − 〈X2
0〉〈X2

1〉)
=

[a01T1 − a10T0][a00a01/T0 + a11a10γ0/(T1γ1)]

T0(a00γ1 + a11γ0)2 +
a2

01T1

γ0γ1
− 2T0a01a10 + a2

10
T 2

0
T1

. (37)

Equation (37) explicitly shows that the information flow vanishes in thermal equilibrium when DB holds,
Tiaji = Tjaij, as already follows from its definition (26). Furthermore, it trivially vanishes if the
cross-correlations nullify. If a01 
= 0, the information flow can be expressed as

İ→0 =
(
Σ−1
)

01

Q̇0

γ0 a01T0
=

−〈X1X0〉
〈X1X0〉2 − 〈X2

1〉〈X2
0〉

Q̇0

γ0 a01T0
, (38)

revealing that the information flow out of and into X0 necessarily nullifies, if the heat flow is zero (if
a01 
= 0).

The information flow is shown in figure 3 together with the heat flow. Along the unidirectional coupling
axis a01 = 0, there is net information flow from X0 to X1, but no net work applied to X0 (Q̇0 = Ẇ0 = 0).
Thus, it is indeed sensible to consider X1 a ‘sensor’ and the coupling a ‘sensing interaction’. If the
unidirectional coupling is reversed (a10 = 0), the heat flow is always positive, Q̇0 > 0, i.e., an active
swimmer eventually heats up its surrounding. In this case, there is as well a nonzero information flow,
which is directed from the source of propulsion (e.g., the flagella) to the particle. This is also reasonable, as
the propulsion force ‘carries’ information: one could, on average, reconstruct the position of the flagella by
only monitoring X0.

For non-reciprocal, bidirectional coupling, the information flow can be positive or negative, depending
on whether the ‘sensing’, or the ‘active force’ is stronger. It seems intuitive to consider X0 a
feedback-controlled system, only if the net information flow out of X0 is positive, i.e., the controller ‘knows’
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more about X0 then vice versa. According to this definition, the control regime is given if |a10| > |a01| (blue
regions in the middle panel of figure 3). This is exactly the regime where we have detected the negative heat
flow, i.e., here the controller may extract energy from a single heat bath (under isothermal conditions).
Note that this observation is consistent with the generalized second law (34) which does not predict, but
allow for a negative heat flow in this very regime only.

Interestingly, we find that another intriguing phenomenon may occur (only) when the information flow
is negative, namely, the suppression of thermal fluctuations. The latter can be measured by a reduced second
moment 〈X2

0〉 < 〈X2
0〉a01=0, which we have displayed in figure 3 (right panel). In the blue areas, the second

moment is reduced, thus, the feedback has the same effect as stiffening the trap. This resembles the situation
in a recent experiment involving colloids in an optical trap [64], where time-delayed feedback was used to
effectively stiffen a trap. Thermal fluctuation suppression can further be viewed as ‘isothermal compression’
of a single-molecule gas, which represents, for example, an important step in the cycle of a (colloidal) heat
engine [100, 101]. It also implies noise-reduction, which is desired in various experimental setups, and
indeed one of the main applications of feedback control [102–104]. Interestingly, by only varying a10

(which does not explicitly appear in the equation for X0), one can vary between fluctuation enhancement
(isothermal expansion), and fluctuation suppression (isothermal compression). The suppression of thermal
fluctuations is limited to the area where one direction of the coupling is attractive (aij < 0) while the revers
direction is repulsive (aij > 0). We find it quite remarkable that whenever İ→0 < 0, such that X1 can be
viewed as a controller, it either yields a suppression of the fluctuations of X0 (reduction of Shannon
entropy), or a heat flow from the bath to X0 (reduction of medium entropy).

Lastly, we detect a further counter-intuitive property appearing exclusively in non-reciprocal
super-systems: there are NESS, where all information flows nullify (note that İ→1 = −İ→0 for n = 1). Thus,
the subsystems may be driven out of equilibrium just due to their interaction (as signaled by finite
dissipation), but without exchanging any information with each other.

5.2. Two non-reciprocal interactions, n = 2
For higher n, the explicit expressions for the information flow are quite cumbersome. For example, for
n = 2,

İ→0 =
−a00

γ0
+

γ−1
0 (a00〈X2

0〉+ a01〈X0X1〉+ a02〈X0X2〉)(〈X1X2〉2 − 〈X2
1〉〈X2

2〉)
〈X2

0〉〈X1X2〉2 + 〈X2
1〉〈X0X2〉2 + 〈X2

2〉〈X0X1〉2 − 2〈X0X1〉〈X0X2〉〈X1X2〉 − 〈X2
0〉〈X2

1〉〈X2
2〉
.

(39)
Again, equation (39) reflects that the existence of a nonzero information flow necessarily implies that the
d.o.f. are cross-correlated among each other. However, different from the case n = 1, there is no
proportionality between heat and information flow. In contrast, we find that for n > 1, the relationship
between those quantities becomes more complicated. To better understand their relationship, let us consider
the cases n = 1, 2 again with the parameter setting from (9) and (10), shown in figure 4. Remarkably,
despite the different nature of the super-system and the different type of memory, the information flow
maps look almost identical for n = 1 and 2. This indicates that the information flow is almost exclusively
affected by the direct coupling (here from X0 to X1), which is, in principle, the same in both cases [given by
the force −(1/τ)X1]. Thus, different from the energy flows, the information exchange is not affected by the
additional indirect coupling though a third d.o.f. in the case n = 2. Furthermore, we again find that the
areas of negative heat flow (blue region in figure 4(a)) appear in the control regime of İ→0 < 0 (blue region
in figure 4(b)). We note that, as in the case n = 1, the regime of thermal fluctuation suppression (not
shown here) is limited to the area of negative information flow, i.e, to the control regime.

Apart from these similarities, we observe a phenomenon which only occurs for n > 1 and
non-reciprocal coupling, that is, the existence of NESS where X0 is out of equilibrium with broken FDR and
İ0→ < 0, but Q̇0 = 0. Considering the entropy balance (32), the entropy produced in X0 due to the
non-reciprocal coupling force, is transported only in the form of information. This state corresponds to the
aforementioned non-Markovian NESS with zero dissipation (see section 4.1).

6. Mapping non-reciprocity onto temperature gradients

In the course of this paper, we have demonstrated that non-reciprocal coupling introduces ‘activity’, or
more generally, intrinsic nonequilibrium. In contrast, there are several other recent publications

14



New J. Phys. 22 (2020) 123051 S A M Loos and S H L Klapp

which discuss (hidden) temperature gradients between reciprocally coupled stochastic d.o.f. as possible
mechanisms that fuel active motion, see, e.g., [44, 50, 51]. In this section we show that, in some cases,
non-reciprocal coupled systems can indeed be mapped onto a reciprocally coupled system with an internal
temperature gradient.

Consider the non-reciprocal system with n = 1 and a01a10 
= 0,

⎧⎨⎩γ0Ẋ0 = a00X0 + a01X1 + ξ0

γ1Ẋ1 = a10X0 + a11X1 + ξ1.
(40)

We now introduce new variables
√
|a01| X̃0 = X0,

√
|a10| X̃1 = X1, and |a01|T̃ 0 = T0, |a10|T̃ 1 = T1. We note

that if the Xj are position-like d.o.f., their scaling should indeed be accompanied by scaling of the
temperatures due to the connection between temperatures and the time-derivative of the positions. In this
way, we find ⎧⎨⎩γ0

˙̃X0 = a00X̃0 + sgn(a01)
√

a01a10X̃1 + ξ̃0

γ1
˙̃X1 = sgn(a10)

√
a10a01X̃0 + a11X̃1 + ξ̃1,

(41)

with 〈ξ̃ i(t)ξ̃j(t)〉 = 2kBT̃ jγjδijδ(t − t′). If a01a10 > 0, this system has reciprocal coupling. Further, even if
T0 = T1, it involves a temperature gradient. The symmetric system (41) could, for example, model the
angles of two vanes in different heat baths, coupled by a torsion spring [60].

As well-known [60, 73], such a reciprocally coupled system equilibrates if, and only if,
T̃ 1 = T̃ 0 ⇔ |a01|T1 = |a10|T0. The equilibrium condition found in this way is identical to the equilibrium
condition (13) found from DB and FDR. Importantly, these considerations are not restricted to the case
n = 1. In appendix E, we give an explicit example for a non-reciprocal system with n = 2 that can be
mapped onto a reciprocally coupled one, if aijaji > 0, ∀i, j ∈ {0, 1, 2}. Again, this mapping yields the
identical equilibrium conditions as (13), and the strategy can be generalized to larger n. Thus, here we have
shown that, when the equilibrium model with non-reciprocal coupling and temperature difference is
mapped onto a reciprocally coupled system—which is potentially realisable by a mechanical setup—the
temperature difference vanishes.

Now we turn to the impact of this scaling on the thermodynamic quantities, using n = 1 as an
illustration. For the heat flows, we find the relations

δq̃0 = (γ0
˙̃X0 − ξ̃0) ◦ dX̃0 = δq0/|a01|

δq̃1 = (γ1
˙̃X1 − ξ̃1) ◦ dX̃1 = δq1/|a10|. (42)

This further means

Δs̃tot = Δs̃sh +
δq̃0

T̃ 0

+
δq̃1

T̃ 1

= Δs̃sh +
δq0

|a01|T̃ 0

+
δq1

|a10|T̃ 1

= Δssh +
δq0

T0
+

δq1

T1
= Δstot, (43)

i.e., the EP in the scaled model is identical to the EP in the original model, while the energy flows in general
differ.

We conclude that the two ‘driving mechanisms’, that is, non-reciprocal coupling (with aijaji > 0), or a
temperature gradient, can formally not be distinguished on the level of EP. This mapping also builds a
bridge to active matter models where temperature gradients between reciprocally coupled stochastic d.o.f.
fuel the active motion [44, 50, 51]. It should be emphasized, however, that a scaling as employed here
cannot be found if aijaji � 0 (which, interestingly, includes unidirectional coupling, e.g., the AOUP model).
This suggests that non-reciprocal coupling is the more general way to introduce intrinsic non-equilibrium.

7. Underdamped dynamics

So far, we have focused on overdamped descriptions, which are appropriate when the inertia is negligible, or
if one is mainly interested in the dynamics above the ballistic timescale. However, in certain situations the
inertia terms might yield contributions to thermodynamic quantities that are crucial to obtain a physically
consistent description, even above the ballistic timescale. This is, e.g., the case for feedback systems with
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very short delay times [45]. More importantly in the present context, this is also true for Markovian systems
that are simultaneously coupled to multiple heat baths at different temperatures, since then energy may be
transferred between different heat baths via the kinetic energy of the system, see, e.g., [74]. Therefore, we
dedicate this last section to the consideration of inertia effects in the presence of non-reciprocal coupling.
We will pay special attention to the following two aspects: (i) does the equilibrium nature of the
non-reciprocal models which fulfill (13) persist when we account for inertia terms? (ii) Is our calculation of
the heat flow consistent with underdamped dynamics?

First, we revisit the mapping from section 6, now for underdamped dynamics. To this end, we add the
inertia terms to (40), i.e., ⎧⎨⎩m0Ẍ0 + γ0Ẋ0 = a00X0 + a01X1 + ξ0

m1Ẍ1 + γ1Ẋ1 = a10X0 + a11X1 + ξ1.
(44)

Again, we introduce the variables
√
|a01| X̃0 = X0,

√
|a10| X̃1 = X1, and |a01|T̃ 0 = T0, |a10|T̃ 1 = T1, and

obtain ⎧⎨⎩m0
¨̃X0 + γ0

˙̃X0 = a00X̃0 + sgn(a01)
√

a01a10X̃1 + ξ̃0

m1
¨̃X1 + γ1

˙̃X1 = sgn(a10)
√

a10a01X̃0 + a11X̃1 + ξ̃1.
(45)

As before, the mapping yields a reciprocal system, if a01a10 > 0.
Due to the explicit inclusion of the inertia terms in the underdamped case, we can now consider the

equipartition theorem, which represents yet another measure for equilibrium. If the reciprocal system (45)
is in equilibrium, traditional thermodynamics tells us that equipartition holds, thus

〈
p̃2

0

2m0

〉
=

〈
kBT̃ 0

2

〉
,

〈
p̃2

1

2m1

〉
=

〈
kBT̃ 1

2

〉
, (46)

with p0,1 = m0,1
˙̃X0,1, and that T̃ 0 = T̃ 1. Transforming back to the original variables, this corresponds to

〈
p2

0

2|a01|m0

〉
=

〈
kBT0

2|a01|

〉
,

〈
p̃2

1

2|a10|m1

〉
=

〈
kBT1

2|a10|

〉
. (47)

Hence, also the non-reciprocal (underdamped) system (44) fulfills the equipartition theorem if
T̃ 0 = T̃ 1 ⇒ a10T0 = a01T1. This condition is in agreement with the equilibrium condition from DB for
overdamped dynamics, equation (13). We emphasize that the arguments presented here (including the
mapping (45)) can readily be generalized to n > 1.

Next, we consider the heat flow in the presence of inertia. To this end, we consider as a specific example
the case m0,1 = m, γ0,1 = γ, a00 = a11 = − sgn(a10)

√
a10a01, and introduce the new variable

κ̃ = sgn(a10)
√

a10a01, to simplify the notation. Then, (45) reduces to

⎧⎨⎩m ¨̃X0 + γ ˙̃X0 = −κ̃(X̃0 − X̃1) + ξ̃0

m ¨̃X1 + γ ˙̃X1 = −κ̃(X̃1 − X̃0) + ξ̃1.
(48)

For this system, the heat flow between system X̃0 and its bath has been calculated in reference [73] (see
there equation (A16), and note the different sign convention). In our notation, it reads

˙̃Q0 = −kB
κ̃

2(γ + κ̃m/γ)
(T̃ 0 − T̃ 1). (49)

Transforming back to the original variables (and recalling (42) which also holds in the underdamped
description), this yields the heat flow (recall a01a10 > 0)

Q̇0 = − |a01|kB sgn(a10)
√

a10a01

2(γ + sgn(a10)
√

a10a01m/γ)

(
T0

|a01|
− T1

|a10|

)
=

−kB|a01|
2(γ + sgn(a10)

√
a10a01m/γ)

(
a10T0 − a01T1√

a10a01

)
.

(50)
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Thus, the heat flow vanishes if (13) is fulfilled. This exactly agrees with the condition that the heat flow in
the overdamped description vanishes.

Finally, we take the overdamped limit m/γ → 0 of (50), which yields

lim
(m/γ)→0

Q̇0 = −kB
|a01|
2γ

(
a10T0 − a01T1√

a10a01

)
. (51)

This is indeed identical to (24) for the given parameters, confirming the consistency of our considerations.

8. Conclusion

This paper addresses the thermodynamic implications of non-reciprocal coupling between stochastic d.o.f.,
which is a form of non-conservative interaction appearing in various artificial or natural complex systems
across the fields. The most important result is that the occurrence of a non-reciprocal coupling alone
implies nonequilibrium, as indicated by a broken DB and fluctuationdissipation relation, and is
automatically associated with a net energy and information flow. Remarkably, we found that under special
conditions (specifically if aijTj = ajiTi), non-reciprocal system can reach a state of thermal equilibrium,
despite begin simultaneously coupled to two heat baths at different temperatures. To prove the equilibrium
nature of this state, we have considered a variety of equilibrium measures, that is, the FDR, DB, the
equipartition theorem when we additionally include inertia terms, zero total entropy production, zero heat
and information flows. In these equilibrium situations, the non-reciprocal system with internal temperature
gradient can be formally mapped onto a reciprocal one at isothermal conditions, giving a mathematical
explanation for the observed exceptions. Another key result is that a non-reciprocal coupling between
isothermal d.o.f. may induce, for one of the two d.o.f., a negative heat flow (while the total dissipated energy
is always positive), meaning that energy is extracted from the bath. This shows a crucial difference between
the thermodynamic implications of a non-conservative (non-reciprocal) interaction vs a non-conservative
external force, which could only induce a positive heat flow (as dictated by the second law). Both, the
existence of isothermal systems with negative heat flow, and the existence of thermal equilibrium despite
temperature gradients, are intriguing phenomena, which significantly depart from the thermodynamic
behavior of reciprocal systems. Indeed, giving intuitive explanations appears to be challenging. We hope
that this manuscript will stimulate fruitful discussions and future research on this matter.

As different, exemplary representatives of non-reciprocal systems, we have considered active matter or
feedback-controlled systems. While a single unidirectional coupling makes X1 a ‘propulsion mechanism’
and X0 an ‘active swimmer’, a single non-reciprocal bidirectional coupling may make X1 a ‘feedback
controller’ that operates on X0. Moreover, when the controller knows more about the controlled system
than vice versa (indicated by an information flow to the controller), some major goals of feedback control
can be achieved, including thermal fluctuation suppression, and energy extraction of the heat bath (i.e., a
negative heat flow) making X1 a minimal version of a continuously operating ‘Maxwell demon’. The latter
can only be achieved if (i) the information flow is directed from the system to the controller and (ii) the
controller applies negative feedback, i.e., a feedback force pointing away from the delayed position
of X0.

Whereas one non-reciprocal coupling (n = 1) only induces exponentially decaying memory in the
corresponding non-Markovian equation for the single d.o.f. (e.g., X0), the interplay of multiple linear
non-reciprocal interactions (n > 1) allows to generate non-monotonic memory, which, in turn, is typical
for time-delayed feedback control. From a thermodynamic point of view, the cases n = 1 and n = 2 share
the main characteristics. However, there is indeed a crucial difference, that is, the heat and information
flows are not proportional to each other, if n > 1. Thus, one can find for n = 2 some interesting NESS
which only occur for n > 1 and non-reciprocal coupling. On the one hand, mutually coupled systems can
be driven out of equilibrium due to their interaction, without at the same time exchanging any information.
On the other hand, for a different non-reciprocal coupling topology, one can also find a state where one of
these subsystems is in an NESS where it exports the entropy exclusively in the form of information without
displaying a heat flow (no entropy is exported to the bath).

We close this paper by giving some perspectives on future research.
In our present paper, we have shown that, under certain conditions, non-reciprocal forces can be

mapped onto temperature gradients. Moreover, it is known that non-reciprocal couplings may result from
gradients of chemical potentials [10, 105, 106]. This is, e.g., the case in the cellular sensor model [21], used
as an example in this paper (section 2). Thus, it seems worth to systematically explore in the future whether,
and under which conditions, a mapping onto other thermodynamic ‘forces’ is feasible.
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A major focus of recent research is the search of meaningful thermodynamic descriptions for active
systems. This is indeed not the topic of the present work, and we have here merely scratched the surface of
this issue. For example, it is generally not possible to access the full dissipation of a complex living system,
as long as not all underlying bio-chemical processes are fully known, understood, and also observable. The
last point, i.e., the observability is related to another main problem in this context, that is, the
thermodynamic treatment of auxiliary, or effective variables, which lack of a clear physical interpretation, as
it is the case for the variable X1 in the AOUP model. As we have pointed out several times throughout the
paper, in such a situation the meaning of, e.g., the total EP is questionable. To account for this fact, we have
discussed the different measures of (non)equilibrium on the Markovian and non-Markovian level of
description. However, the DB condition or the FDR only yield a binary classification (equilibrium or not),
but cannot quantify the distance from equilibrium. Finding out an appropriate way to do this is discussed,
e.g., in [44]. An interesting line of research in the context of observability and auxiliary variables, is the
search of ‘effective thermodynamic’ descriptions [52, 53, 86]. For a similar underdamped model with n = 1,
different ways to obtain an ‘effective thermodynamic’ description, were recently compared in [52]. A
generalization toward higher n (and overdamped models) represents a nontrivial but certainly worthwhile
direction for future research. It would also be interesting to investigate the here observed special types of
NESS, e.g., with zero dissipation but nonzero information flow, from this perspective.

Also, regarding the different measures for (non)equilibrium, our preliminary observations indicate that
for n > 1, there are non-reciprocal systems that fulfill FDR but violate DB, i.e., are nonequilbrium models
with FDRs. It might be interesting to study the corresponding information flows for these cases.

In this paper, we have analyzed the thermodynamic properties of small stochastic systems of few colloids
with non-reciprocal couplings. As a next step, one could think about the implications of our findings for
larger systems with numerous non-reciprocal couplings, which are, as a matter of fact, already realized in
recent experiments [24]. Indeed, the non-reciprocity is found to yield intriguing clustering collective
behavior. At this point, we also aim to note that in non-linear dynamics and network science, studying the
effects of symmetry-broken coupling on the collective behavior is already a well-established research field
[107]. For example, the existence of chimera states, a special type of clustering, was linked to
symmetry-broken coupling [108], and shown to persist in the presence of discrete delay [109] and
Gamma-distributed memory [110].

Lastly, the unidirectionally coupled ring system studied here is very similar to the reservoir computers
investigated in [111, 112]. A reservoir computer of this type may be experimentally realized by a laser
network [113, 114], or by coupled RC circuits [115, 116]. Another link to machine learning is the similarity
between the unidirectional ring and recurrent neural networks [117], used for example for reinforcement
learning. In these contexts, the connection between non-reciprocal coupling and information flow discussed
here might be of particular importance. Noteworthy, the architecture of the unidirectional ring considered
here also resembles the architecture of a Brownian clock [118], which, in contrast, has discrete dynamics.
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Appendix A. Memory kernel for up to three coupled systems

Here we derive the memory kernel for the case n = 1 and n = 2 by projecting the equations for Xj>0 onto
X0. To this end, we solve the equations for Xj∈{1,2} in frequency space, making use of their linearity (we want
to emphasize that their linearity is irrespective of the question whether the equation of X0 is linear, thus, is
result also applies to cases with nonlinear f0). First, we apply the Laplace transformation L[Xj(t)](s) =∫∞

0 Xj(t)e−st ds to the LE γjẊj =
∑1

l=0 aj lXl + ξj, which yields

− Xj(0)γj + sγjX̂j(s) =
n∑

l=0

ajlX̂l(s) + ξ̂j(s). (A1)
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Since we are interested in steady-state dynamics in this paper, we can safely set Xj(0) ≡ 0 without loss of
generality. We therewith obtain for all j,

X̂j(s) =
n∑

l 
=j

ajlX̂l(s)

(sγj − ajj)
+

1

(sγj − ajj)
ξ̂j(s). (A2)

Let us first consider the case n = 1. We plug (A2) for j = 1 into the equation (A1) for X0 and immediately
find

sγ0X̂0 = a00X̂0 +
a01a10

(sγ1 − a11)
X̂0 +

a01

(sγ1 − a11)
ξ̂1 + ξ̂0. (A3)

Now we make use of the convolution theorem and the linearity of the Laplace transformation to transform
back to real space, obtaining the non-Markovian process (3) with a memory kernel given by the inverse
Laplace transformation of a01a10

(sγ1−a11) , as explicitly given in (4). Analogously, one finds the Gaussian colored
noise in (3)

ν(t) =

∫ t

0

a01

γ1
ea11(t−t′)/γ1 ξ1(t′)dt′, (A4)

with correlation Cν(Δt) = 〈ν(t)ν(t +Δt)〉

Cν(Δt) =
a2

01

γ2
1

∫ t

0

∫ t+Δt

0
ea11/γ1[(t−t′)+(t−t′′)+Δt] 〈ξ1(t′)ξ1(t′′)〉dt′ dt′′ =

kBT1a2
01

a11
ea11Δt/γ1 [1 − ea112t/γ1 ].

(A5)
In the steady state (t →∞), the second term vanishes (if a11 < 0), yielding the correlation from (4).

Next, we derive the memory kernel for the case n = 2 yields

X̂1 =
a10X̂0

(sγ1 − a11)
+

a12[a20X̂0 + a21X̂2]

(sγ2 − a22)(sγ1 − a11)
+O(ξ̂1) +O(ξ̂1ξ̂2), (A6)

X̂2 =
a20X̂0

(sγ2 − a22)
+

a21[a10X̂0 + a12X̂1]

(sγ2 − a22)(sγ1 − a11)
+O(ξ̂2) +O(ξ̂1ξ̂2). (A7)

Note that because 〈ξ1ξ2〉 = 0, the terms O(ξ̂1ξ̂2) will not contribute in the end (see, e.g., equation (B5))
and can thus be neglected. We can further simplify the expressions to

X̂1 =

[
a10(sγ2 − a22) + a12a20

(sγ2 − a22)(sγ1 − a11) − a12a21

]
X̂0 +O(ξ̂1), (A8)

X̂2 =

[
a20(sγ1 − a11) + a21a10

(sγ2 − a22)(sγ1 − a11) − a21a12

]
X̂0 +O(ξ̂2). (A9)

Substituting (A8) in (A1) for j = 0, one obtains

γ0sX̂0 = a00X̂0 +

[
a01a10(sγ2 − a22) + a01a12a20

(sγ2 − a22)(sγ1 − a11) − a12a21
+

a02a20(sγ1 − a11) + a02a21a10

(sγ2 − a22)(sγ1 − a11) − a21a12

]
X̂0 +

2∑
j=0

O(ξ̂j)

= a00X̂0(s) + K̂(s)X̂0(s) +
2∑

j=0

O(ξ̂j). (A10)

Finally, transforming back to real space yields the non-Markovian process (3) with a memory kernel given
by the inverse Laplace transformation of K̂(s).

Specifically, for the unidirectionally coupled ring system with n = 2 illustrated in figure 1(a), which is
described by the set of equation (3) with ajj = −(p + κ), ajj+1 = p, aj+1 = κ, and γ j = 1 for j ∈ {0, 1, 2},
equation (A10) simplifies to

sX̂0 =

[
p3 + κ3 + 2pκ(s + p + κ)

(s + p + κ)2 − pκ

]
X̂0 − κX̂0 − pX̂0 +

2∑
j=0

O(ξ̂j). (A11)

In real space, this memory kernel (given in square brackets) reads (5).
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Appendix B. Memory kernel and noise correlations

We here derive the memory kernel and colored noise in the model (9), i.e., a unidirectional ring with n = 2.
Analogously to the derivation in appendix A, we first apply the Laplace transformation to the LE
Ẋj(t) = (1/τ)

[
Xj−1(t) − Xj(t)

]
+ ξj(t)/γ1 for j ∈ {1, 2}, and set Xj(0) ≡ 0, obtaining

X̂j(s) =
τ−1X̂j−1(s)

s + τ−1
+

γ−1
1 ξ̂ j(s)

s + τ−1
. (B1)

Iteratively substituting the solution (B1) for j = 1 into (B1) for j = 2 = n, yields

X̂2(s) =
τ−2

(s + τ−1)2
X̂0(s) +

τ−1

(s + τ−1)2

ξ̂1(s)

γ1
+

1

s + τ−1

ξ̂2(s)

γ1
. (B2)

Now we transform back to the real space via inverse Laplace transformation. In (B2) we identify the

Laplace-transform of the Gamma-distribution L
[
Kj(t)

]
(s) = τ−j

[s+τ−1]j with the Gamma-distributed kernels

Kj(t) = tj−1

τ j(j−1)!
e−t/τ , and find

X2(t) =

∫ t

0
K2(t − t′)X0(t′) dt′ + ν2(t) (B3)

with the Gaussian colored noise

ν2(t) =

∫ t

0

τ

γ1
K2(t − t′) ξ1(t′) +

τ

γ1
K1(t − t′) ξ2(t′)dt′. (B4)

Replacing X2(t) from (B3) in the Markovian LE γẊ0(t) = a00X0(t) + kX2(t) + ξ0(t), yields the
non-Markovian LE

γẊ0(t) = a00X0 +

∫ t

0
K(t − t′)X0(t′)dt′ + ξ0(t) + ν(t)

with the memory kernel K(T) = kK2(T) = k
τ2 T e−T/τ (as given in (9)) and the colored noise ν(t) = kν2(t).

The noise correlations Cν(Δt) = 〈ν(t)ν(t +Δt)〉 can be calculated exactly for an arbitrary Δt > 0, as
we will show in the following. First, we use the properties of the white noise, e.g, 〈ξ1(t′)ξ2(t′′)〉 = 0,
〈ξj(t′)ξj(t′′)〉 = 2kBT1γ1δ(t′ − t′′), and integrate out the Dirac delta distributions, yielding

Cν(Δt) =
τ 2k22kBT1

γ1

∫ t

0

∑
j=1,2

Kj(t − t′)Kj(t − t′ +Δt)dt′. (B5)

Plugging in, K1(T) = τ−1 e−T/τ and K2(T) = τ−2T e−T/τ , this can be further be simplified to

Cν(Δt) =
k22kBT1

γ1
e−Δt/τ

∫ t

0
[1 + τ−2(t − t′)(t − t′ +Δt)]e−2(t−t′)/τ dt′

u=2(t−t′)/τ
=

τ

2

k2 2kBT1

γ1
e−Δt/τ

∫ 2t/τ

0
[1 + (u/2) (Δt/τ) + u2/4]e−u du. (B6)

As we are interested in steady states, we now take the limit t →∞ and then perform the integration using∫∞
0 xp e−x dx = p!, which readily yields the noise correlation given in (9). We note that the transient

correlation could be calculated similarly by instead using the incomplete Gamma function.

Appendix C. Analytical solutions

As indicated by (22), (29), (21), (36), (38), various (thermo-)dynamic quantities can be calculated on the
basis of the correlations 〈XiXj〉. Further, the steady-state pdf ρn+1 is, due to the linearity of the model, a
Gaussian-distribution with zero mean and the covariance matrix (Σ)ij = 〈XiXj〉. Thus, it is fully determined
by all the correlations 〈XiXj〉.
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Here we sketch how analytical expressions for these correlations can be obtained for arbitrary system
sizes n. To this end, we transform equation (1) via the Fourier transformation X̃j(s) =

∫∞
−∞ Xj(t)e−iωt dt,

which readily yields

iωγ X̃(ω) = aX̃(ω) + ξ̃(ω) ⇒ X̃(ω) =
(

iωγ − a
)−1

︸ ︷︷ ︸
=λ̃ (ω)

ξ̃(ω), (C1)

with the Green’s function in Fourier-space λ̃(ω), determined by the inverse of the topology matrix a . Using
the well-known relationship between spatial correlations and the Green’s function from linear response
theory [119]

C(Δt) =
D0

π

∫ ∞

−∞
λ̃(−ω)λ̃(−ω)e−iωΔt dω, (C2)

one readily finds

〈X2
j 〉 =

n∑
p=0

kBTpγp

π

∫ ∞

−∞
λ̃jp(ω)λ̃jp(−ω) dω, (C3)

〈XjXl〉 =
n∑

p=0

kBTpγp

π

∫ ∞

−∞
λ̃jp(ω)λ̃lp(−ω)dω. (C4)

These are analytical expressions for all correlations for arbitrary system sizes n.
While this strategy in principle yields analytical expressions for various (linear) systems (which can, e.g.,

be numerically integrated), explicit closed-form solutions are only available for specific cases, where the
inverse Fourier transformation is known (see [23, 120] for some explicit results). For example, the
correlations for n = 1 read [57]

Σ =

(
〈X2

0〉 〈X0X1〉
〈X1X0〉 〈X2

1〉

)

= kB

⎛⎜⎜⎝
T1a2

01 − T0a01a10 + T0a11(a00 + a11γ0/γ1)

(a00 + a11γ0/γ1)(a01a10 − a00a11)

−T1a00a01 − T0a11a10γ0/γ1

(a00 + a11γ0/γ1)(a01a10 − a00a11)
−T1a00a01 − T0a11a10γ0/γ1

(a00 + a11γ0/γ1)(a01a10 − a00a11)

T0a2
10γ0/γ1 − T1a01a10γ0/γ1 + T1a00(a00 + a11γ0/γ1)

(a00 + a11γ0/γ1)(a01a10 − a00a11)

⎞⎟⎟⎠ .

(C5)

We could not find general closed-from solutions for the problem with n > 1.
The matrix inversion is indeed possible up to very large system sizes, if the coupling is sparse (e.g., for

unidirectionally coupled ring systems). To evaluate the integrals, the residue theorem can be used. However,
this requires finding the roots of a polynomial of order n + 1. Using computer algebra systems, this can be
done reasonably fast up to about n = 10. We also note, for the case Tj>0 = 0, solutions up to n ∼ 104 can be
found in this way.

Appendix D. On the terminology of positive and negative feedback

In control theory, it is common to characterize feedback loops as positive or negative feedback, according to
the question whether the force points toward, or away from the desired state once there is a perturbation
from it, see, e.g., [62]. In the following, we check of which type the feedback considered in this paper is. We
recall that in the present case, the control problem, which is given in (8) or, equivalently, in (3), reads

γ0Ẋ0(t) = a00X0(t) + Fc + f0 + μ(t),

with the feedback force Fc =
∫

K(t − t′)X0(t′)dt′. For the sake of illustration, let us explicitly consider the
limit n →∞, where the notation simplifies while the following reasoning is the same for any n. Thus,
Fc = kX0(t − τ ). This control problem can be alternatively expressed as

γ0Ẋ0(t) = (a00 + k)X0(t) − k[X0(t) − X0(t − τ)] + f0 + μ(t),
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suiting to the picture of a colloidal in a static harmonic trap of stiffness a00 + k < 0, and subject to a
co-moving feedback trap centered around X0(t − τ) and with stiffness k. When X0(t) ≡ X0(t − τ ), the
control term −k[X0(t) − X0(t − τ)] vanishes, thus, this is a ‘non-invasive’ control. In contrast, when the
system is perturbed from the delayed state, it may yield a positive or negative force on X0. Specifically, if
k > 0, we have a negative force −k[X0(t) − X0(t − τ)] < 0 whenever X0(t) > X0(t − τ ). On the other hand,
this force is positive, whenever X0(t) < X0(t − τ ).

Now, it is clear that the feedback with k > 0 is pointing toward the past state, X0(t − τ). Therefore, this
case is denoted positive feedback. On the contrary, the feedback force is always pointing away from
X0(t − τ ) if k < 0.

Appendix E. Mapping onto a reciprocal super-system

In section 6 we discuss the mapping of an non-reciprocal coupled system onto a reciprocal system (with
different temperatures) for systems with n = 1. In this appendix, we generalize this idea to larger system
sizes.

A specific type of non-reciprocal coupling topology, for which we could find a mapping, is

⎛⎝γ0Ẋ0

γ1Ẋ1

γ2Ẋ2

⎞⎠ =

⎛⎝a00 r v

p a11 v

p r a22

⎞⎠ Ẋξ , (E1)

i.e., the two outward connections of each sub-system are identical (e.g., the coupling from X0 to X1 and
from X0 to X2). Networks of type (E1) can be mapped onto a reciprocally coupled system via the coordinate
transformation X0 =

√
|p| X̃0, X1 =

√
|r| X̃1, X2 =

√
|v| X̃2, and T0 = |p|T̃ 0, T1 = |r|T̃ 1, T2 = |v|T̃ 2. The

corresponding reciprocal super-system reads

⎛⎜⎝γ0
˙̃X0

γ1
˙̃X1

γ2
˙̃X2

⎞⎟⎠ =

⎛⎝ a00 sgn(r)
√

rp sgn(v)
√
vp

sgn(r)
√

rp a11 sgn(r)
√

rv
sgn(v)

√
vp sgn(r)

√
rv a22

⎞⎠ ˙̃X ξ̃ , (E2)

with 〈ξ̃ i(t)ξ̃j(t)〉 = 2kBT̃ jγjδijδ(t − t′). As in the case n = 1, we cannot find such a mapping for general
cases, but only under certain conditions, specifically: aijaji > 0, ∀i, j ∈ {0, 1, 2}. As in the case n = 1, we use
the following argument: a reciprocally (i.e., ‘mechanical’) system equilibrates in the absence of temperature
gradients, i.e., T̃ 0 = T̃ 1 = T̃ 2, which in the original coordinates gives the same condition (13) as we found
from DB. The mapping presented in this appendix can straightforwardly be generalized to arbitrary n ∈ N.

Appendix F. Mutual information

Here we discuss the relation in steady states, between the information flow considered in section 5, and the
multivariate generalization of the mutual information given in (30). We start with considering the total
derivative of I from equation (30), that is,

·
I =

∫
∂tρn+1(x)︸ ︷︷ ︸

=(∗)

ln
ρn+1(x)

ρ1(x0) . . . ρ1(xn)
dx +

∫
ρn+1(x)

{
−∂tρn+1(x)

ρn+1(x)
− ∂t[ρ1(x0)ρ1(x1) . . . ρ1(xn)]

ρ1(x0)ρ1(x1) . . . ρ1(xn)

}
dx.

(F1)
We substitute (∗) by utilizing the multivariate FPE (11) ∂tρn+1 = −

∑n
j=0 ∂xj Jj, and find

·
I =

n∑
j=0

∫
∂xj Jj(x) ln

ρ1(x0) . . . ρ1(xn)

ρn+1(x)
dx −

∫
∂tρn+1︸ ︷︷ ︸

→0

dx −
∫

ρn+1

ρ1(x0) . . . ρ1(xn)
∂t[ρ1(x0) . . . ρ1(xn)]︸ ︷︷ ︸

→0

dx

=
n∑

j=0

∫
∂xj Jj(x) ln

ρ1(x0) . . . ρ1(xn)

ρn+1(x)
dx. (F2)
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Let us now consider the individual summands. By application of basic properties of the logarithm and the
natural boundary conditions, we find∫

∂xj Jj(x) ln
ρ1(x0)ρ1(x1)..ρ1(xn)

ρn+1(x)
dx =

∫∫
ln

ρ1(xj)ρ1(xi
=j)

ρn+1(x)
∂xj Jj dx −

∫∫
ln ρ1(xi)

[
Jj

]∞
−∞︸ ︷︷ ︸

→0

dx 
=j

=

∫∫
ln

ρ1(xj)

ρn+1(x)
∂xj Jj dx = İ→j. (F3)

Thus, the change of mutual information is given by the sum over all information flows,
∑n

j=0 İ→j =
·
I. (As

was shown in [90], the information flow İ→j is actually the ‘time-shifted mutual information’ with the time
shift applied to Xj.)

ORCID iDs

Sarah A M Loos https://orcid.org/0000-0002-5946-5684

References

[1] Zwanzig R 1973 Nonlinear generalized Langevin equations J. Stat. Phys. 9 215
[2] Zwanzig R 2001 Nonequilibrium Statistical Mechanics (Oxford: Oxford University Press)
[3] Rouse P E Jr 1953 A theory of the linear viscoelastic properties of dilute solutions of coiling polymers J. Chem. Phys. 21 1272
[4] Maes C, Safaverdi S, Visco P and Van Wijland F 2013 Fluctuation-response relations for nonequilibrium diffusions with

memory Phys. Rev. E 87 022125
[5] Franosch T, Grimm M, Belushkin M, Mor F M, Foffi G, Forró L and Jeney S 2011 Resonances arising from hydrodynamic
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