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To Ruth





When one hundred millions, or more, of the circulation we now have
shall be withdrawn, who can contemplate without terror the distress, ruin,
bankruptcy, and beggary that must follow?. . .

The general distress thus created will, to be sure, be temporary, because,
whatever change may occur in the quantity of money in any community, time
will adjust the derangement produced. . . .

—A. Lincoln; Springfield, Illinois; December 20, 1839
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Summary

This study presents three essays covering restrictions on monetary policy to deliver a unique
equilibrium and computational methods for the recursive formulation and estimation of such
an equilibrium. The study is linked by the common theme of informational imperfections, in
the first and third chapters preventing the realization of a fully flexible equilibrium and in the
second preventing the use of standard recursive solution and estimation methods.

Chapter 2 derives restrictions on monetary policy to deliver a unique bounded equilib-
rium for a three equation New Keynesian model with sticky information à la Mankiw and
Reis (2002). The analysis finds tighter bounds on the coefficients in the Taylor rule than in
sticky-price models, irrelevance of the degree of output-gap targeting for determinacy, and
independence of determinacy regions from parameters outside monetary policy. The long-
run verticality of the Phillips curve plays the decisive role in explaining the differences to
sticky-price models. Consequences for optimal monetary policy and difficulties presented
by the infinite-dimensional sticky-information model are discussed.

Chapter 3 contains a solution and an estimation method for linear rational-expectations
models with lagged expectations. The solution method is a synthetic approach, combining
state-space and infinite-MA representations with a simple system of linear equations. The
advantage lies in the particular combination of methods from the literature, providing
faster execution, more general applicability, and more straightforward usage than existing
algorithms. Bayesian estimation methods are employed without the Kalman filter using a
recursive algorithm to evaluate the likelihood function and are used to compare small-scale
sticky-information and sticky-price DSGE models. Standard truncation methods are shown
to not generally be innocuous.

Chapter 4 reiterates that the monetary authority can reasonably be held responsible for
inflation. The bounds on monetary policy to ensure determinacy in a class of models that
satisfy Lucas’s (1972a) natural rate hypothesis (NRH) are shown to be identical for all supply
specifications, save isolated singularities. This follows, as is argued, from determinacy being
a criterion of the long run when all NRH supply specifications coincide. Thus, no specific
knowledge of the supply side beyond its fulfillment of the NRH is necessary to assess whether
a particular monetary policy will ensure determinacy and, under the standard dynamic
IS-equation, determinacy is solely a function of the parameters in the interest rate rule.
Cochrane’s (2007) criticism of determinacy for selecting equilibrium is verified and shown to
be associated with reckless money growth accommodating the associated explosive inflation.
Monetary policy’s inability to control the nominal interest rate in the long run is to blame and
appending policy with a credible commitment to stable long-run money growth suffices to
rule out these otherwise accommodated nominal explosions.

x



Zusammenfassung

In dieser Studie werden drei Aufsätze vorgelegt, die sich auf geldpolitische Beschränkungen
zur Herbeiführung eines eindeutigen Gleichgewichtes und auf numerische Methoden für
die rekursive Formulierung und Schätzung eines solchen Gleichgewichtes konzentrieren.
Das Leitthema der Studie ist imperfekte Information, die im ersten und im dritten Kapitel
die Realisation eines vollkommen flexiblen Gleichgewichtes verhindert und die im zweiten
Kapitel die Nutzung üblicher rekursiver Lösungs- und Schätzmethoden erschwert.

In Kapitel 2 werden geldpolitische Beschränkungen für die Herbeiführung eines ein-
deutigen Gleichgewichtes in einem Neu-Keynesianischen Dreigleichungsmodell mit starrer
Information nach Mankiw and Reis (2002) hergeleitet. In der Analyse wird festgestellt, dass
engere Schranken für die Koeffizienten der Taylorregel als in herkömmlichen Modellen mit
starren Preisen vorhanden sind, dass das Gewicht auf die Produktionslücke für die Determi-
niertheit des Modells irrelevant ist und dass die Determiniertheitsschranken von Parametern
außerhalb der Geldpolitik unabhängig sind. Dabei spielt die langfristige Vertikalität der
Phillipskurve die entscheidene Rolle bei der Erklärung der Unterschiede zu herkömmlichen
Modellen mit starren Preisen. Ferner werden die Konsequenzen für optimale Geldpolitik
sowie die Schwierigkeiten diskutiert, die durch das unendlich-dimensionale Modell mit
starrer Information entstehen.

Kapital 3 stellt eine Lösungs- und Schätzmethode für lineare Modelle rationaler Er-
wartungen mit verzögerten Erwartungen vor. Die Lösugsmethode ist ein synthetischer An-
satz, der übliche Zustandsraumabbildungen und Abbildungen durch unendliche gleitende
Durchschnitte mit einem einfachen System linearer Gleichungen kombiniert. Die spezielle
Kombination von Methoden aus der Literatur ermöglicht eine schnellere Ausführung, einen
höheren Grad an Allgemeinheit und eine unkompliziertere Anwendung als die jeweiligen
Methoden für sich genommen. Bayesianische Schätzmethoden werden mit Hilfe eines re-
kursiven Algorithmus für die Berechnung der logarithmierten Likelihood-Funktion ohne den
Kalmanfilter angewandt; als Beispiel werden einfache DSGE-Modelle mit starrer Information
und starren Preisen verglichen. Überdies wird gezeigt, dass die Anwendung herkömmlicher
Trunkierungsmethoden durchaus problematische Folgen zeitigen kann.

Kapital 4 schließlich betont, dass die Geldpolitik für Inflation verantwortlich gemacht
werden kann. Gegenstand der Analyses ist eine Klasse von Modellen, welche die Hypothese
der natürlichen Arbeitslosenquote (HnA) erfüllen. Es wird gezeigt, dass für alle Angebots-
spezifikationen in dieser Modellklasse, mit Ausnahme isolierter Singularitäten, die geld-
politischen Beschränkungen für die Herbeiführung eines determinierten Gleichgewichtes
identisch sind. Dies ergibt sich aus der Tatsache, dass Determiniertheit ein Kriterium der
langen Frist ist, bei welcher alle HnA-Angebotsspezifikationen zusammenfallen. Demzufolge
ist außer der Einhaltung der HnA kein weiteres Wissen bezüglich der Angebotsspezifikation
notwendig, um feststellen zu können, ob eine spezifische Geldpolitik ein determiniertes
Gleichgewicht gewährleistet. Ferner ist die Determiniertheit unter der Annahme einer übli-
chen dynamischen IS-Gleichung ausschließlich eine Funktion der Parameter in der Zinsregel.
Die Kritik von Cochrane (2007) bezüglich Determiniertheit als Gleichgewichtsauswahlme-
chanismus wird bestätigt. Die zusätzlichen Gleichgewichte werden durch maßloses Geld-
mengenwachstum erzeugt, das die assozierte explosive Inflation akkommodiert. Ursächlich
dafür ist die Unfähigkeit der Geldpolitik, den nominalen Zinssatz in der langen Frist kon-
trollieren zu können. Die Erweiterung der Geldpolitik um eine glaubwürdige Bindung zum
stabilen langfristigen Geldmengenwachstum reicht aus, um diese sonst akkommodierten
nominalen Explosionen auszuschließen.

xi





Chapter 1

Introduction

1.1 Scope and Outline of the Study

This study is concerned with the uniqueness and calculation of equilibrium paths in dy-

namic macroeconomic models: specifically, on the bounds on monetary policy to ensure

determinacy, the numerical calculation, simulation, and estimation of such a determinate

equilibrium path, and on the limitations of determinacy as a selection mechanism. First, I

examine the role of monetary policy and determinacy with Mankiw and Reis’s (2002) sticky-

information Phillips curve. Then, I extend and combine numerical solution and estimation

methods to be able to efficiently and accurately treat models with lagged expectations

including methods to solve the infinite regress of lagged expectations found in the sticky-

information model. Finally, I expand the determinacy analysis to encompass an entire class

of models that satisfy the natural rate hypothesis before proceeding to verify the validity of

the explosive equilibria that determinacy rules out—as noted by Cochrane (2007)—and offer

a monetarist solution to overcome this additional multiplicity.

Chapter 2 derives the bounds on parameters in monetary policy’s interest rate rule to

ensure a determinate equilibrium in a three-equation New Keynesian model with Mankiw

and Reis’s (2002) sticky information. I examine a variety of interest rate targeting rules

common in the literature, covering current and forecasted inflation targeting, exogenous

interest rate rules, price-level targeting, interest rate smoothing, and output gap targeting. I

find that the bounds associated with determinacy in the sticky-information model are tighter

than in the literature-standard sticky-price model. The key to the results lies in the the sticky-

1



2 CHAPTER 1. INTRODUCTION

information Phillips curve’s asymptotic transition to verticality—which, for example, removes

the ability of the monetary authority to substitute reactions to the output gap for reactions to

inflation.

Due to the infinite dimensionality of Mankiw and Reis’s (2002) sticky-information Phillips

curve, standard eigenvalue counting methods cannot be applied. The analysis proceeds by

reformulating the problem as a system of deterministic time-varying (or non-autonomous)

difference equations in the variables’ unrestricted moving-average coefficients. The resulting

bounds to ensure determinacy are identical to those that would have been obtained from

eigenvalue counting á la Blanchard and Kahn (1980) using the asymptotic relations of the

model, as the coefficients of non-autonomous system converge quickly enough (i.e., the

system is almost time invariant or autonomous) to their limiting, asymptotic values.

Chapter 3 is concerned with the numerical solution and estimation of variables on a

determinate path. Thus, in contrast to the first chapter, this chapter asks not whether such

a unique path exists, but rather which numerical values do magnitudes of interest take

along such a path. Following current practice, the solution method provides a recursive

representation of the solution that resolves the rational expectations in the model into

functions of variables present in the information set. Aiming to provide such a method

for infinite-dimensional problems such as those in chapter 2, the method first provides a

solution method for intermediate cases. That is, it incorporates any finite collection of

lagged (i.e., outdated) expectations on variables into a canonical vector-valued second-order

expectational system.

While an exact method for the infinite-dimensional problem is not provided, the method

develops the insight from chapter 2 regarding quick-enough convergence to provide for

a truncation criterion that justifies a particular truncation method and can be used to

enable arbitrary accuracy (up to machine precision) of such a truncation. The particular
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truncation method, armed with the truncation criterion, provides a reference point that is

used to evaluate other solution methods in the literature in terms of accuracy and required

computing time. Finally, a recursive method to evaluate the log-likelihood function for

estimation is derived without use of the Kalman filter, enabling the truncated solution method

to maintain its numerical efficiency while bringing such models to the data. Highlighting the

use of the combined solution and estimation methods is a comparison of sticky-information

and sticky-price models, in which an arbitrary truncation method from the literature is shown

to reverse the likelihood ordering of the two models.

Chapter 4 returns to the question of equilibrium uniqueness. Instead of examining a

particular model, like the analysis in chapter 2, this chapter seeks to analyze the role of

monetary policy in ensuring a unique equilibrium for an entire class of models. Applying the

solution method for intermediate cases developed in chapter 3, I prove a general equivalence

of the determinacy bounds among all admissible models that satisfy a version of the natural

rate hypothesis, saving for isolated singularities. This extends current determinacy analyses

by examining an entire class of models rather than a single specific model and highlights some

misleading conclusions on the bounds on monetary policy that stem from non-verticalities

in standard New Keynesian models’ Phillips curves.

With a set of general bounds on monetary policy to ensure determinacy, the analysis

proceeds to question whether determinacy itself is sufficient to ensure a unique equilibrium.

Following the criticism of Cochrane (2007), I explore the explosive paths ruled out by

determinacy to deduce their permissibility. Constraining the analysis to the set of models that

satisfy the natural rate hypothesis examined for determinacy, these explosive paths display

explosiveness only in nominal variables. Thus, in essence, Cochrane’s (2007) criticism is

linked to earlier studies of speculative hyperinflation and, having added money to the analysis

following these studies, I confirm that these alternate paths with explosive inflation are

indeed permissible: along such a path, the monetary authority is engaged in reckless money
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creation, accommodating the nominal explosions. This conclusion brings more monetarist

criticisms to bear: it is a commitment to monetary restraint á la Friedman (1960) that restores

monetary stability, be the commitment only in the long run following Nelson (2008).

1.2 Placing the Study within the Literature

The literature of recursive solutions to rational-expectations problems can be traced back to

Muth (1961), who solves for the rational distributed lag expectation by relating endogenous

variables to exogenous disturbances through an infinite moving average. Having applied

rational expectations in a problem-specific manner—as in Muth (1961), Lucas (1972b),

Sargent (1973), Sargent and Wallace (1973), and Brock (1975), both the issue of the possibility

of multiple equilibria and the potential for a systematic method to solve general models

under rational expectations became apparent. Numerous methods emerged to select among

multiple equilibria: Taylor (1977) introduces a minimum variance criterion, Blanchard (1979)

explores the requirement of stationarity as a selection criterion, McCallum (1983) proposes

the minimum state variable method, and Evans (1985) expectational stability. Blanchard and

Kahn (1980) introduces the familiar practice of eigenvalue counting in search of saddle-point

stability, limiting the solution to unit-root stationarity. The first (1979) edition of Sargent

(1987a) as well as Hansen and Sargent (1980) and Hansen and Sargent (1981) lay out a solution

method using the Wiener-Kolmogorov prediction formula, laying the groundwork for the Z-

transform and frequency-domain methods employed by Futia (1981), Whiteman (1983), and

Sargent (1987a). Whiteman (1983) provides a detailed comparison of this method with the

infinite moving average of Muth (1961), state-space methods used by Lucas (1972a) and other

frequency- as well as time-domain methods. Additionally, Gourieroux, Laffont, and Monfort

(1982) and Broze, Gourieroux, and Szafarz (1985) provide solution characterizations in terms

of martingales and Evans and Honkapohja (1986) in terms of mixed autoregressions and

moving averages. Of particular importance for chapters 2 and 3 of this work is Taylor (1986),
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who provides a detailed exposition on the solution of rational-expectations models from the

perspective of an infinite moving average, following Muth (1961).

In their seminal real business cycle article, Kydland and Prescott (1982) approximate

their nonlinear model with a quadratic objective function and linear constraints leading

to linear first-order conditions. The linear quadratic framework places a direct relation-

ship between “transversality” conditions and restricting solutions to be stationary or non-

explosive.1 Uhlig (1999, pp. 32 & 46) partially avoids the issue of stability and transversality in

a linear setup, stating: “the reasons for concentrating on stable solutions are not discussed,”2

but continues later to say, “[t]he literature on solving linear rational expectations equilibria

typically assumes [the stability] condition to hold or shows it to hold in social planning

problems under reasonable conditions.” In the real-business-cycle paradigm, one could

generally rule out explosive solutions3 and the task at hand was, computationally, automating

the solution procedure to deliver Lucas’s (1980, pp. 709–710) FORTRAN program relating

economic policy as inputs to economic outcomes, i.e., time series, as outputs.4 Chapter 3

continues in this spirit, developing an automated solution and estimation method, expanding

on the generality of current methods.

Blanchard and Kahn (1980) develops and McCallum (1983) extends a set of procedures

to calculate the unique stable equilibrium path—should it exist—for variables of interest,

but the software associated with Anderson and Moore (1985) provides an set of computer

algorithms that automates the procedure.5 Subsequently, Binder and Pesaran (1995), King

1See, e.g., Hansen and Sargent (1980, pp. 11–12). Though, as the authors note, the restriction of stationarity
can actually be relaxed somewhat.

2In the extended version available on his webpage, however, he clearly states on page 9 that “[i]t is the
transversality condition which (essentially) rules out explosive solutions.”

3In a model with secular growth, of course, these would be explosive relative to a balanced growth path.
4This computational automation was a great feat in and of itself: noting the state-of-the-art in the mid

’70s, Brunner and Meltzer (1976, p. 153 of the same volume) dismiss the criticism that a complete dynamic
model is the appropriate means to assess the system, as “economists are so far from developing, estimating
and comparing nonlinear dynamic models that [such criticism] denies the usefulness of economics for most
contemporary macro policy issues.”

5Anderson (2010, p. 472) noted, a quarter-century after their development, that these algorithms remained
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and Watson (1998), Uhlig (1999), Klein (2000), Sims (2001), and Christiano (2002) have

all provided automated algorithms to solve dynamic rational-expectations models. The

algorithms vary in the canonical form of the model they solve, the manner in which they

treat non-singularities in certain coefficient matrices,6 and in their numerical properties.7

For the range of linear(ized) stochastic models in the literature above, the suite of programs

DYNARE8 combines the automated solution method of Sims (2001), Klein (2000), or Anderson

and Moore (1985) with estimation routines to automate the entire process of solving a model

and taking it to the data. The algorithms associated with chapter 3 extend this approach to

encompass models with lagged expectations or outdated information in a computationally

efficient manner.9

Even if attention is restricted to stable solutions, there need not be a unique stable

solution. This form of indeterminacy is the focus of the current strand of literature examining

multiple equilibria in mainstream macroeconomics. In fact, the alternate selection criteria

mentioned previously—Taylor’s (1977) minimum variance criterion, McCallum’s (1983) mini-

mum state variable method, and Evans’s (1985) expectational stability—have primarily found

use in selecting among stable solutions.10 McCallum (2003) provides a more recent overview,

examining some of the topics explored here in chapters 2 and 4 such as the Taylor Principle—

requiring a more than one-for-one increase in the nominal interest rate in response to an

essentially unknown outside of the Federal Reserve, despite their having proven “very durable and usable” for
economists there.

6For example, Klein (2000) uses a QZ method, Uhlig (1999) a Moore-Penrose pseudoinverse, Anderson and
Moore (1985) a shuffle method.

7See Anderson (2008) for a detailed comparison.
8See http://www.dynare.org for programs and documentation.
9Wang and Wen (2006) provide a solution method for models of this type and both Mankiw and Reis’s (2007)

and Trabandt (2007) develop model-specific solutions for models with an infinite regress of lagged expectations.
An extensive comparison can be found in chapter 3.

10Exceptions abound, though—e.g., McCallum (2004b) provides a model whose MSV solution and unique
stable solution differ and McCallum (2009b) uses LS learnability (a related concept of expectational stability,
see Evans and Honkapohja (2001)) to select an equilibrium among stable and unstable equilibria. McCallum
(2009d) argues that determinacy is neither necessary nor sufficient and that some form of learnability ought to
be preferred.
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increase in inflation, see Taylor (2001)—and forward-looking monetary policy along with

other topics related to indeterminacy not examined here such as the fiscal theory of the price

level and the zero lower bound on nominal interest rates.

In chapter 2, determinacy—or existence of a unique stable solution—is examined within

a canonical New Keynesian model with aggregate supply given by Mankiw and Reis’s (2002)

sticky-information Phillips curve. This equation possesses an infinite regress of lagged

expectations leading to a infinite state vector that prevents the model from being cast into

the first-order form of Blanchard and Kahn (1980) necessary for the eigenvalue-counting

method of ascertaining determinacy. This infinite dimensionality can be recast, as shown

by Mankiw and Reis’s (2002), into a nonstochastic problem by examining the infinite moving

average representation of Muth (1961) instead of the state-space representation of Lucas

(1972a). In models that can be cast into Blanchard and Kahn’s (1980) form, this is redundant,

as the underlying homogenous system of difference equations is the same with stability

a question of the size of the eigenvalues common to both specifications. In the infinite

dimensional model, however, the associated nonstochastic system of difference equations

is nonautonomous or time-varying. Although this frustrates the eigenvalue approach key to

the solution and hence stability analysis of constant coefficient or autonomous systems,11

stability can frequently still be assessed. So long as the model is “close” to being time

invariant, the eigenvalues of the asymptotic system are sufficient to ascertain stability—a

result established by Perron (1929).12

The observation of Phillips (1958) that there had been a seemingly stable negative

relationship between the rate of change of money wages and unemployment in the UK over

a century was celebrated for its contribution to the discussion at the time. As summarized by

11See Elaydi (2005, Ch. 3) for an introduction and overview and Ludyk (1985) for a compact collection of
theorems.

12Indeed, the analysis in chapter 2 can be performed entirely using Perron’s (1929) results as is done parallelly
to the approach here in an earlier working paper version of chapter 2 entitled “The Natural Rate Hypothesis and
Real Determinacy: A Sticky-Information Perspective.”
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Brunner and Meltzer (1993, p. 32), the Keynesian model of the day was incomplete and this

paper “filled the gap.” Friedman (1976, pp. 215–216) not only highlights that Fisher (1926) had

already noted the empirical relation between unemployment and inflation, but also interprets

that—in contrast to Phillips (1958), the Keynesian analysis of the day, and the New Keynesian

analysis of today as examined in detail in chapter 4 of this work—Fisher (1926) clearly had

the important distinction between anticipated and unanticipated changes in mind. That is,

Fisher’s (1926) original work anticipated the natural rate hypothesis, whereas Phillips’s (1958)

re-discovery did not.13

Friedman (1968) and Phelps (1967) independently proposed what became known as

the natural rate hypothesis. This hypothesis advances the notion that there exists some

rate of unemployment that would prevail under neutral monetary policy and to which

unemployment will converge in the long run regardless of monetary policy. The consequence

for stabilization policy as summarized by Friedman (1976, p. 232), “you cannot achieve an

unemployment target other than the natural rate by any fixed rule. The only way you can do

so is by continually being cleverer than all the people, by continually making up new rules [...]

This is not a very promising possibility.” By the late ’70s, Friedman (1977, p. 459) was able to

note that his and Phelps’s (1967) hypothesis was a widely accepted consensus.

Lucas (1980, p. 705) considers Muth’s (1961) rational expectations to be the natural way

to formalize the natural rate hypothesis of Friedman (1968) and Phelps (1967). Friedman

(1976, p. 230) goes further, calling the application of rational expectations to the natural

rate hypothesis “a more fundamental criticism” of the Phillips curve.14 In either case, Lucas

(1972b) and Sargent (1973) introduce models of rational expectations under the natural rate

hypothesis, in accords with the definition that “different time paths of the general price level

13Friedman (1976, p. 215) also remarks that the complete circuit from “truth” in 1926 to “error” thirty years
later and back to the original “truth” in the ’70s took about 50 years. One can only speculate as to whether the
circuit will be completed again before another 50 years are out.

14Certainly Lucas’s (1976) Phillips curve example highlights just such “a more fundamental criticism.”
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will be associated with time paths of real output that do not differ on average.” (Lucas 1972a,

p. 50) Succinctly, Friedman (1976, p. 231), “since you can’t fool all the people all the time, the

true long-run Phillips curve is vertical.”

A pertinent implication of the natural rate hypothesis for chapters 2 and 4 is a sort of

policy invariance reminiscent of the policy evaluation critique of Lucas (1976) and policy

ineffectiveness critique of Lucas (1972b).15 Evoking the natural rate hypothesis in a dynamic

model necessarily places restriction on properties of the model in the long-run16 where the

evaluation of stability for a unique path becomes decisive. As is examined in chapters 2 and

4, such an evocation renders some policy measures—like output-gap targeting—ineffective

for contributing to a unique equilibrium and highlights that the effectiveness of others—

inflation-forecast targeting, for example—follows from the implausible continuance into the

long-run of their empirically plausible short-run Phillips curves.17 A non-vertical Phillips

curve in the long-run violates Friedman’s (1976, p. 227) “absence of any long-run money

illusion” that led to long-run restrictions of the natural rate hypothesis.18

Rational-expectations macroeconomics went on to extend the long-run verticality to the

short run with the real business cycle literature, exemplified by Kydland and Prescott (1982).19

There is a complete separation between real and nominal magnitudes. King and Plosser

(1984) provide a detailed treatment of money in a prototypical model of real business cycles:

only after having fully determined the equilibrium of the real side of the economy is attention

turned to the nominal side where the sole purpose of the role of money and the institutional

provision thereof is to determine the price level. Sims (1980) reexamines the monetary

15See McCallum (1980) for an overview.
16I.e., the long-run Phillips curve must be vertical.
17Reminiscent of Lucas’s (1976, p. 39) charge that such a “‘long-run’ output-inflation relationship as calculated

or simulated in the conventional way has no bearing on the actual consequences of [...] a policy.”
18For the standard New Keynesian model, McCallum (2003, p. 1157) notes that its non-vertical Phillips curve

imbues the model with a form of “dynamic money illusion.”
19This is not to say that the monetarist insistence on the influence of money and prices on output over the

business cycle had disappeared, see, e.g., Brunner, Cukierman, and Meltzer (1983).
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causality of business cycles as advanced by Milton Friedman and Anna J. Schwartz20 and finds

that the role of money is substantially diminished with the inclusion of nominal interest rates

into his VAR, lending support to the reverse causality role assigned to money in real business

cycles. As noted by Brunner and Meltzer (1993, p. 59), the real business cycle literature

reached conclusions similar to those in the radical Keynesian literature regarding the relation

of output and money.

Cooley and Hansen (1995) conclude in their real business cycle model with a motive for

holding money and money wage rigidities that monetary shocks do play an important role

in the business cycle, restoring “the need to assign money an important role in a full theory

of business cycles.” (Friedman and Schwartz 1963, p. 49) Yun (1996) and Woodford (1996)

introduce Calvo (1983) contracts for price setting as a nominal rigidity into real business cycle

models, laying the foundation for the standard New Keynesian Phillips curve and restoring

non-verticality not only to the short-run but to the long-run Phillips curve as well. This

non-verticality—Wolman’s (2007, p. 1366) ‘awkward situation in monetary economics”—is

noted in textbook treatments of the New Keynesian model21 as well as in the seminal study of

Woodford (2003b)22. It has been criticized by McCallum (2004a, p. 21) as overturning a neu-

trality proposal that “by 1980 even self-styled Keynesian economists were agreeing to.” While

Andrés, López-Salido, and Nelson (2005) examine some consequences of the hypothesis for

models’ dynamics and Carlstrom and Fuerst (2002) examine determinacy for two special

interest rate rules in their own ad-hoc model that fulfills the hypothesis, the consequences of

this violation remain largely unknown and the violation itself has gone relatively unnoticed.23

That there might be general consequences of violating the hypothesis for determinacy—a

20See Friedman and Schwartz (1963).
21See Galí (2008, p. 78).
22See, for example, Woodford (2003b, p. 254). As a consequence, as is discussed in detail in chapter 2,

Woodford (2003b, pp. 254–255), “a large enough [response to] either [the output gap or inflation] suffices to
guarantee determinacy.” (Emphasis in the original)

23Relative, that is, to the attention given to such violations a few decades ago.
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subject of not insignificant interest24—has gone almost entirely unexplored and certainly

unproven.25

Whereas the cornerstone of aggregate supply in the standard New Keynesian model is

a mechanism whereby producers’ prices may be fixed for a period of time, Mankiw and

Reis’s (2002) sticky-information model postulates that it is not their prices but rather the

information upon which they condition their pricing decisions that may remain fixed. Pre-

supposing the standard Calvo (1983) mechanism26 and a simple quantity-equation demand

side with exogenous money growth, Mankiw and Reis (2002) show that this mechanism can

replicate three features of the data that the standard New Keyensian model cannot: the

contractionary nature of disinflation, the delayed response of inflation to monetary shocks,

and the positive correlation of the second derivative of prices with the level of economic

activity. While some later studies have confirmed these results, others have shown them

to be more fragile. Korenok and Swanson (2007) and Trabandt (2007) yield positive results

in models with firm-specific labor markets, yielding strategic complementarities in firms’

pricing decisions,27 while Keen (2007) and Andrés, López-Salido, and Nelson (2005), using

common labor markets that fail to yield strategic complementarities, deliver much more

negative results regarding the robustness of Mankiw and Reis (2002). Coibion (2006) also

demonstrates the sensitivity of the results to whether monetary policy is defined over the

24As McCallum (2009d, p. 26) notes, the subject appears on “75 different pages in Michael Woodford’s hugely
influential treatise Interest and Prices (Woodford 2003b). In addition, the number of new writings (books,
articles, and working papers) with both of the phrases ‘indeterminacy’ and ‘monetary policy’ appearing in their
text was 166 over the time span January 1995 through June 2008.”

25For example, Woodford (2003b, Ch. 2) examines determinacy within a model that satisfies the natural rate
hypothesis, but his analysis is concerned with price-level determination in a fully flexible model. Carlstrom
and Fuerst (2002) explicitly make the connection between price-level determination in fully flexible models and
determinacy in models with rigidities that satisfy the natural rate hypothesis. Unfortunately, their analysis is
limited to their specific model and no attempt is made to provide proofs for more general conclusions. Chapter
4 takes this issue up in more detail and provides the missing proofs—but with a proviso.

26A Poisson process stochastically controlling the rate of arrival of price-change signals in the standard sticky-
price setup or of information-update signals in Mankiw and Reis’s (2002) sticky-information model, resulting in
an exponential distribution of vintages of prices or information sets.

27See Woodford (2003b, Ch. 3).
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money supply or the nominal interest rate. Reis (2006) provides microfoundations for the

underlying mechanism of sticky information, including Mankiw and Reis’s (2002) assumed

exponential distribution of information sets following from the Calvo mechanism. Chapter

2 presents the first—to my knowledge—analysis of determinacy in the sticky-information

framework,28 enabling a comparison of the policy recommendations from sticky information

with those from sticky prices for parameter bounds on interest rate rules.

The empirical evaluation of sticky information DSGE models has focused on their likeli-

hood performance relative to a sticky-price benchmark and the literature has not yet come to

a definitive conclusion.29 Andrés, López-Salido, and Nelson (2005) favor both of their sticky-

information models for price setting over a fully dynamically indexed sticky-price model,

though they stress the tentativeness of their results due to their neglection of wage rigidities.

Paustian and Pytlarczyk (2006) strongly favor a sticky-price and -wage model with partial

indexation over their model with sticky information in price and wage setting, reversing

the results of Andrés, López-Salido, and Nelson (2005) with the inclusion of wage rigidities.

Laforte (2007) compares several specifications of sticky prices and sticky information with

a pricing model that abandons the exponential distribution of pricing/information updates,

noting that although the sticky information model is perhaps more consistent with micro

data on contract duration, it is almost wholly rejected both in in terms of posterior odds

and of one-period forecast errors. Coibion and Gorodnichenko (Forthcoming), in contrast

to Andrés, López-Salido, and Nelson (2005), favor sticky prices over sticky information

28Fries (2007) briefly examines determinacy in his sticky-information model, but his examination is predicated
on his assuming a supposition of Wang and Wen (2006) for determinacy in finite dimensional models be valid in
infinite settings. Chapter 2 emphasizes that this cannot be true in general for infinite-dimensional problems, as
eigenvalue analyses do not function in the associated time-varying difference system. And chapter 4 proves that
this supposition of Wang and Wen (2006) holds even in finite-dimensional cases only with a proviso.

29A notable exception is Reis (2009), whose focus is the effects of sticky information in consumption and wage
decisions along with price decisions. Reis (2009, pp. 19–20) also reviews the results from partial equilibrium
estimates of sticky information, exemplified by Klenow and Willis (2007)—who find evidence in support of
sticky information, Kiley (2007)—whose results are more mixed, and Korenok (2008)–who favors the sticky-price
approach. These analyses usually examine either professional forecast data to capture expectations or estimate
a reduced form VAR to capture the missing restrictions from general equilibrium.
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in a model without wage rigidities but with strategic complementarities in price setting

absent from Andrés, López-Salido, and Nelson (2005).30 Coibion and Gorodnichenko’s

(Forthcoming) main focus, however, is a model with multiple types of firms, including both

sticky-price and sticky-information firms, and their main result is that these two types of

firms—sticky-price and sticky-information—are necessary to match the data. In this vein,

Dupor, Kitamura, and Tsuruga (Forthcoming) examine a model of hybrid sticky information

and sticky prices, where—in contrast to Coibion and Gorodnichenko’s (Forthcoming)—the

firm space is not divided into sticky-price and sticky-information firms, but rather one unified

sector facing both types of rigidities simultaneously is examined. Importantly, they note

that this combination achieves the backward-looking behavior of inflation—emphasized by

Christiano, Eichenbaum, and Evans (2005) and introduced exogenously in many sticky-price

models through indexation—endogenously through the interaction of these two rigidities.

The analysis of chapter 3 shows that it would be premature in any case to draw definitive

conclusions in models with sticky information, as the methodology currently in widespread

use can suffer from bias resulting from an arbitrary truncation of the infinite regress in lagged

expectations. That chapter provides an automated method31 that overcomes this bias and

other difficulties that stem from such truncations.

Reintroducing a role for money and other nominal variables—be it through sticky-prices,

sticky-information, or some other rigidity—in business cycles alters the determinacy analysis.

With a complete dichotomy, as in the real business cycle literature, determinacy—a unique

stable solution—pertains only to real variables. Without any mention of nominal variables,

a standard real business cycle model cannot determine any nominal magnitude: that is, it

30It is noteworthy, I believe, that the presence of strategic complementarities, so important to replicating the
the delayed response of inflation to monetary shocks that favors sticky information in the impulse-response
analyses of the foregoing paragraph, would reverse the favoring of sticky information in full-information
likelihood analyses.

31At the risk of appearing vain, I should note that, in Reis’s (2009, p. 17) assessment, the programs
implementing the method of chapter 3 “hold the promise of further advancing [the sticky-information]
literature.”
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displays nominal indeterminacy. Nominal indeterminacy has a long tradition that predates

the real business cycle literature, from Wicksell (1898)32 to Patinkin (1965, p. 43) to Sargent and

Wallace (1975) to Obstfeld and Rogoff (1983). The criticism of Cochrane (2007) in the context

of the models that satisfy the natural rate hypothesis examined in chapter 4 provides another

example. The literature has an equally long-tradition in providing a means to overcome

this problem: a nominal anchor is necessary. Indeed, Wicksell (1898, pp. 68–73) certainly

implies that the pure credit economy has the difficult task of explaining how the price level is

determined, whereas in the pure cash and simple credit systems the quantity theory provides

the answer. Patinkin (1965, Ch. VIII:3) discusses at length invalid dichotomies that arise from

the confusion between accounting prices (in an abstract unit of account) and money prices

(in the medium of exchange): fixing the quantity of money fixes the absolute level of money

prices.

McCallum (2001a, pp. 27–28) and McCallum (2003, pp. 1156–1157) discuss nominal

indeterminacy and nonuniqueness, emphasizing the difference between the former with its

lack of a nominal anchor and the latter with its emphasis on stability. The indeterminacy

investigated by Obstfeld and Rogoff (1983), for example, is concerned with the determination

of the price level, yet this does not fall into McCallum’s category of nominal indeterminacy,

as the monetary authority provides a nominal anchor—a uniquely defined path for the

money supply. Obstfeld and Rogoff’s (1983) analysis is concerned with nonuniqueness: a

real variable—real balances—is not necessarily uniquely defined by requiring stability in their

model. In the standard New Keynesian world, this distinction has minimal content. Without

a complete dichotomy, as is the usual case in the New Keynesian literature today, it would be

32E.g., on the independence of the absolute level of money prices from the real economy on page 21:
“Es ergiebt sich hieraus die wichtige Thatsache, welche allerdings als selbstverständlich gelten könnte, deren
Nichtbeachtung aber immer und immer zu fehlerhaften Schlussfolgerungen verleitet hat, dass nämlich der
Warentausch als solcher und seine Vorbedingungen in den Verhältnissen der Produktion und Konsumtion der
Güter, nur für die Tauschwerte oder relativen Preise der Waren massgebend sein, auf die absolute Höhe des
Geldpreises aber gar keinen direkten Einfluss ausüben können.”
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the exception that a unique stable solution would exist for all real variables but no nominal

variables or vice versa. By the very nature of there not being a complete dichotomy, the

nominal and real sides are connected and interdependent.

While the determinacy (or in McCallum’s words nonuniqueness) literature is generally

concerned with the possibility of the existence of multiple stable solutions, Cochrane (2007)

has emphasized the possibility of unstable solutions being admissible. Cochrane’s (2007)

critique notes that while there are good reasons to focus on stable solutions to real variables

due to transversality conditions, there is less of a case to do so with regards to nominal

variables. In the transition from real business cycle models to New Keynesian models,

the literature kept the computational technique of linearizing and focusing on the stable

solution, but paid little attention to whether this focus was appropriate when a nominal

sector is readmitted into the model. Cochrane (2007) criticizes the determinacy analysis

in New Keynesian models with interest rate rules as designing monetary policy so as to

induce instability, rendering all equilibrium paths but one unstable. The monetary authority

produces a unique equilibrium by committing to hyperinflationary policy, which is then ruled

out by the assumption of stability. In terms of expectations management, Cochrane (2007,

p. 15) states

If you are observing an unstable dynamic system, and you see a small change

today, the fact of that change causes a large change in your expectations of the

future. If you see the waiter trip, it’s a good bet the stack of plates he is carrying

will crash. [...T]here is nothing that prevents agents from seeing [a] disturbance,

knowing the Fed will feed back on its own past mistakes, thinking “oh no, here we

go,” and radically changing their expectations of the future.

One could interpret Cochrane’s (2007) criticism of rules for nominal interest rates in the

New Keynesian literature as Friedman’s (1960, p. 23) “monetary passenger [...who] lean[s]
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over and giv[es] the steering wheel a jerk that threatens to send the car off the road.” In

essence, monetary policy in the New Keynesian world delivers a unique equilibrium by firstly

assuming the car cannot go off the road and secondly ensuring that the monetary passenger is

constantly jerking at the wheel, and on that basis concluding that the car must not be moving

as it would otherwise tumble off the road.

The reasons for the possible admissibility and type of indeterminacy or nonuniqueness

in Cochrane’s (2007) critique are considered in chapter 4. The introduction of standard money

demand functions into the otherwise “cashless” model common to New Keynesian analysis

allows for the assessment of the explosive nominal paths in the context of Friedman’s (2008)

famous dictum, “inflation is always and everywhere a monetary phenomenon in the sense

that it is and can be produced only by a more rapid increase in the quantity of money than

in output. Many phenomena can produce temporary fluctuations in the rate of inflation, but

they can have lasting effects only insofar as they affect the rate of monetary growth.” To assess

sustained (or in Cochrane’s (2007) case a sustained explosion in) inflation, one cannot avoid

this incorporation of money, contradicting what McCallum (2001b, p. 145) has termed the

“virtually standard practice” of conducting “monetary policy analysis in models that include

no reference to any monetary aggregate.” Reinstating a more monetarist perspective on

the critique of Cochrane (2007) allows the analysis to confirm the validity of the alternate

explosive paths as they are being accommodated by reckless money growth and to diagnose

the cause as being the definition of monetary policy solely over the nominal interest rate.

The difficulties of using the nominal interest rate alone to judge the stance of monetary

policy was a central critique of Friedman’s (1968) pivotal presidential address emphasizing

that the Fisher effect, which attributes high nominal interest rates to loose monetary policy,

obscures the standard practice of viewing the operation of nominal interest rate control solely

through the liquidity effect, by which higher nominal interest rates are associated with tighter

monetary policy. To complete monetary policy, some relation of monetary policy to money is
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deemed necessary, extending the determinacy result of Sargent and Wallace (1975) to interest

rate feedback rules. The proposal in chapter 4, based on Nelson (2008), notes that some

form of a commitment to stable money growth at the very latest in the long run—as can be

attributed to many central banks in practice—provides the missing anchor to rule out the

unstable additional equilibria from Cochrane (2007).

The addition of an interest rate rule to a longer term commitment to stable money

growth captures what Nelson and Schwartz (2008, p. 848) label the faute de mieux of

Friedman’s (1960) constant money growth rule within the flexibility of an interest rate target

rule. As Friedman (1960, p. 98) made clear, the case for a constant money growth rule is

entirely that it would work in practice: central banks can fulfill a policy regarding a monetary

aggregate over the longer run, while deviating from a constant money supply rule over

the shorter run. Although we have made much progress in understanding the monetary

mechanism in the past 50 years, chapter 4 emphasizes that the core of Friedman’s (1960)

policy analysis is still fully pertinent and a central bank would be ill-advised in practice to

wholly abandon its monetary pillars.





Chapter 2

Monetary Policy and Determinacy

A Sticky-Information Perspective

2.1 Introduction

Considerable attention has been given in the literature to the role of monetary policy in

determining a unique equilibrium,1 because the model is otherwise potentially subject

to welfare-reducing sunspots with arbitrary volatility. Mankiw and Reis’s (2002) sticky-

information model is particularly challenging with respect to determinacy, as the dynamic

relationships change with the horizon. In the near term, the model posits a trade-off between

inflation and output, yet transitions in the infinite horizon to a model without such a trade-

off. This relationship in the infinite horizon allows the model to satisfy Lucas’s (1972a)

natural rate hypothesis (NRH), which postulates that monetary policy, however formulated,

cannot indefinitely keep output above its natural level. Thus, the output gap must be zero on

average, regardless of monetary policy, and the long-run Phillips curve is accordingly vertical.

This long-run property is important, even for the analysis of short-run dynamics, as an

equilibrium is an entire path for a variable and such long-run relationships between variables

are relevant for determining whether a single or many locally bounded equilibrium paths for

variables exist. If monetary policy must be restricted so as to deliver a unique equilibrium,

long-run relationships cannot be ignored when considering bounds on monetary policy.

This chapter provides the relevant bounds on monetary policy to ensure a unique equi-

librium in a simple New Keynesian model with Mankiw and Reis’s (2002) sticky-information

1McCallum (2009a, p. 26) notes the subject is “ubiquitous in the literature” and can be found on no fewer than
75 pages in Woodford (2003b).
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Phillips curve. For the purposes here, the relevant difference to Calvo (1983)-style sticky-price

models is “that it survives the McCallum critique” (Mankiw and Reis 2002, p. 1300); that is,

it fulfills the NRH. Unlike the sticky-information model, the sticky-price model imposes a

systematic relationship between inflation and output, stable even in the long run.2 This trade

off can be exploited by monetary policy to widen the parameter spaces associated with unique

equilibria. For example, a reaction of the nominal interest rate to the output gap serves as

a substitute for a reaction to inflation, allowing the (direct) response to inflation to be less

than one while still adhering to the Taylor principle. Woodford (2003b, pp. 254–255), “...

indeed, a large enough [response to] either [the output gap or inflation] suffices to guarantee

determinacy.”3 As is shown here, the long-run verticality of Mankiw and Reis’s (2002) sticky-

information Phillips curve precludes such a substitutability.

The analysis here is most closely related to that of Carlstrom and Fuerst (2002), who

analyze determinacy and E-stability in an ad-hoc sticky-price model that satisfies the NRH

in a finite horizon. Their determinacy analysis is extended here in two main aspects. First,

the sticky-information model satisfies the NRH only asymptotically. Thus, Mankiw and Reis’s

(2002) sticky-information model cannot be analyzed directly with the finite-horizon approach

of Carlstrom and Fuerst (2002, p. 80). Second, the set of interest rate rules is expanded to

allow for output-gap targeting, price-level targeting, and interest rate feedback. The latter

is shown here to restore determinacy by its inclusion of history-dependence for inflation-

targeting rules that Carlstrom and Fuerst (2002) had found to be indeterminate.4

The degree of output-gap targeting is irrelevant for determinacy in the sticky-infor-

mation model. Simply put: via the NRH, the output gap must be zero asymptotically

regardless of inflation and monetary policy. With the demand side defined by a dynamic

2See, e.g., Woodford (2003b, p. 254) or Galí (2008, p. 78).
3Emphasis in the original.
4Due to a different timing convention, Carlstrom and Fuerst’s (2002) backward-looking Taylor rule is

analogous to the contemporaneous rule and their current-looking one to the forward-looking rule in the analysis
here.
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IS curve, the convergence of the output gap implies convergence of the real interest rate

regardless of monetary policy. Thus, a permanent increase in inflation will not yield a

long-run change in the nominal interest rate through feedback from output-gap targeting.

Determinacy then rests on the determinacy of nominal variables through a Fisher-type

equation, with no relation to parameter values in the dynamic IS or aggregate supply

equations.5 This has a further implication: determinacy is independent of parameter values

outside the interest rate rule.

The specific results for the sticky-information model follow from the derivation of con-

ditions for saddle-path stability in the system of time-varying homogenous linear difference

equations that describe the dynamic response of the model to an endogenous fluctuation.

The form of the time-variance is shown to be such that the familiar eigenvalue accounting of

Blanchard and Kahn (1980) can be applied to the system using the asymptotic coefficients to

ascertain determinacy. For comparison with the sticky-price literature,6 an inventory of rules

comprising inflation-forecast and contemporaneous inflation targeting, price-level targeting,

output-gap targeting, interest-rate smoothing, as well as exogenous interest rate rules is

examined. A strict interpretation (i.e., the irrelevance of output-gap targeting) of the Taylor

Principle is shown to be a necessary condition for determinacy in all the rules considered.

A pure inflation-forecast rule is shown to be indeterminate everywhere with the inclusion of

interest-rate smoothing opening a small window for determinacy, clearly demonstrating the

need for history dependence in monetary policy advocated by Woodford (2000). For the set

of rules examined here, the bounds on monetary policy are shown to be (weakly) tighter in

the sticky-information model than in the sticky-price model, with the latter’s violation of the

NRH being the driving force behind this result.

5Carlstrom and Fuerst (2002) reach the same conclusion in their finite-horizon NRH model.
6E.g., Bullard and Mitra (2002) analyze inflation and output-gap targeting at different horizons, Woodford

(2003b, Ch. 4) provides the literature-standard inventory of determinacy results, or Lubik and Marzo (2007)
presents a more recent compendium of determinacy results in a standard sticky-price model.
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The rest of the chapter is organized as follows: in section 2.2, I shall discuss the basic

sticky-price and sticky-information models to motivate the modeling framework. In section

2.3, conditions for determinacy in the sticky-information model for various interest rate

rules will be presented. Section 2.4 discusses the results along with alternative equilibrium

selections and optimal monetary policy and section 2.5 concludes.

2.2 A Sticky-Information Model

Abstracting from exogenous driving processes, the basic sticky-price New Keynesian model is

given (in log-deviations) by 7

yt = E t

�

yt+1
�

−a 1Rt +a 1E t [πt+1] (2.1)

πt =βE t [πt+1]+κyt (2.2)

where yt is the output gap, πt inflation , and Rt the nominal interest rate. Equation (2.1)

is an expectational IS-curve derived from the first-order conditions of the household for

intertemporal utility maximization and equation (2.2) is the New Keynesian Phillips curve

derived from Dixit-Stiglitz aggregators of individual firms’ intertemporal discounted profit

maximization with Calvo (1983)-style price stickiness.

Both Woodford (2003b, pp. 243 & 245) and Bullard and Mitra (2002, p. 1110) restrict both

κ and a 1 to be strictly positive and a positive a 1 is assumed here throughout. Lubik and

Marzo (2007, p. 17) emphasize that the derivation of these parameters from first principles is

essential due to “cross-equation restrictions”. A main result of this chapter is that the specific

parameter values in the sticky-information model are irrelevant for determinacy.

In Mankiw and Reis’s (2002) variant of the New Keynesian model, equation (2.2) is

7See, e.g., Woodford (2003b, p. 246), equations (1.12) and (1.13).
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replaced by the sticky-information Phillips curve

πt =
1−λ
λ
ξyt +(1−λ)

∞
∑

i=0

λi E t−i−1
�

πt +ξ
�

yt − yt−1
��

(2.3)

where ξ is Woodford’s (2003b, pp. 160–161) measure of strategic complementarities, and

1− λ is the probability that a firm receives an information update. Equation (2.3) results

from firms’ pricing decisions being the expectation of the optimal price conditional on their

(potentially) out-dated information set. A derivation of (2.1) and (2.3) based on first principles

analogous to Woodford (2003b, Ch. 4) can be found in Trabandt (2007). In any case, despite

the similarities to the model examined by Carlstrom and Fuerst (2002), their model lacks the

infinite regress in the information structure of the Phillips curve found in (2.3). This makes

their model isomorphic to a flex-price model in finite time such that E t−N

�

yt

�

= 0, whereas

this only holds asymptotically in the sticky-information model—i.e., l i mN→∞E t−N

�

yt

�

= 0.

The dynamics of inflation as presented by Mankiw and Reis (2002) have been criticized

by, e.g., Keen (2007) as the assumption of 0 < ξ < 1 drives the results of the former and

the latter find a specification larger than unity to be more plausible. Though the degree of

strategic complementarities may be crucial for the dynamics of the model, I find that it will

be irrelevant for determinacy. So long as it can be accepted that, ceteris paribus, an increase in

the deviation of aggregate output from its “natural” level induces firms to want to raise their

prices (ξ > 0), no further restriction is necessary for the results that follow. This is certainly

a mild assumption and covers the entire parameter space considered by Woodford (2003b,

pp. 162–164).

A specification of monetary policy is needed to close the model. “With the interest rate

as the policy instrument, the central bank adjusts the money supply to hit the interest rate

target.” (Clarida, Galí, and Gertler 1999, p. 1667) Thus, following Woodford (2003b) among

many, I shall focus on interest-rate setting rules. Monetary policy will be initially described by
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the following rule

Rt =φR Rt−1+φπ
��

1−ψπ
�

E t [πt+1]+ψππt

�

+φy yt

0≤φπ <∞, 0≤φy <∞, 0≤φR < 1, 0≤ψπ ≤ 1 (2.4)

where φR describe the degree of interest-rate smoothing,φπ of inflation targeting, and φy of

output-gap targeting. The coefficientψπ nests contemporaneous inflation targeting (ψπ = 1)

and inflation forecast targeting (ψπ = 0) into the rule.

2.3 Indeterminacy and the Nominal Interest Rate

After introducing the methods of the analysis and the results for the interest-rate rule (2.4),

a set of special cases found in Woodford (2003b, Ch. 4) will be examined in the context of

equilibrium determinacy. After first analyzing output-gap targeting rules (with exogenous

rules presented as a special case), I shall proceed to inflation targeting. Finally, I shall replace

(2.4) with an rule that allows for price-level targeting.

2.3.1 Endogenous Fluctuations and Determinacy

Following, e.g., Theorem 3.15 of Elaydi (2005, p. 130), the solution to a system of difference

equations can be split into a particular and a homogenous solution. Only the homogenous

solution of the system of difference equations is relevant for the examination of determinacy.8

Following Taylor (1986), the bounded solution will be unique for any given bounded exoge-

nous sequence of shocks if and only if the homogenous solution is uniquely determined by

the boundedness conditions on the endogenous variables.9 For that reason, I abstract from

exogenous driving forces without loss of generality.

8See also the analysis of Lubik and Marzo (2007).
9Analogous conclusions can be found in, e.g., Woodford (2003b, pp. 252, & 636).
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By examining the infinite moving average representation of the model in response

to endogenous fluctuations (i.e., to sunspot shocks), the system of difference equations

originating from the model of sticky information yields a non-autonomous or time-varying

system of homogenous difference equations. Appendix 2.A shows the derivation of the

system of difference equations that arise from the infinite moving average representation of

the model’s variables to sunspot shocks and Appendix 2.B provides the necessary theorems

for the analysis of determinacy. With the system of difference equations, the theorems in

Appendix 2.B essentially show that the stability of the original system can be determined from

associated system using the asymptotic coefficients.10

Equation (2.14) in Appendix 2.A gives the time-varying difference equation described by

the sticky-information Phillips curve (2.3). This equation can also be interpreted as a perfect-

foresight version of the model with all expectations formed before the initial period equal to

zero. That is, consider (2.3) for t = 0,1, ... with E s [x t ] = 0, ∀s < 0 and E s [x t ] = x t , ∀s = 0,1, ...,

this yields

λt+1πt =
�

1−λt+1
�

)ξyt −ξλ
�

1−λt
�

yt−1 (2.5)

As t → ∞, the foregoing converges to the “unrestricted” perfect-foresight version of the

model, given by yt = λyt−1 as all outdated information sets are updated. The lagged

expectations in Mankiw and Reis’s (2002) sticky-information serve to “transition” the Phillips

curve from having a positive trade-off at time 0, given by λπ0 = (1−λ))ξy0, to being vertical

with no trade-off in the limit. This is starkly contrasted with the the standard sticky-price

Phillips curve in (2.2), which always posits the same dynamic trade-off between inflation

and output: πt − βπt+1 = κyt under perfect foresight. Focusing on the impulse responses

of the sticky-information model to sunspot shocks, makes explicit that the model itself is

time-invariant, but that the response of a variable to a shock is time-varying. That is, the

equilibrium relationships between the responses of endogenous variables to a shock change

10See, analogously, chapter 3.
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as the shock becomes more outdated. The model will be determinate (sunspots can be ruled

out), if the only sequence of impulse responses to a sunspot shock that remains bounded is

the trivial sequence of zeros for all variables at all horizons; i.e., if the only bounded response

of endogenous variables to sunspots is no response at all.

Assume without loss of generality that a sunspot shock occurs at time t and denote with

δx
i the response of the variable x i periods after the sunspot. The impulse response of the

model, defined by (2.1), (2.3), and (2.4), to a sunspot shock can be summarized by the system

of deterministic time-varying difference equations found in Appendix 2.A. Determinacy of

the models is established by the uniqueness of this representation through the following

Lemma 2.3.1. The uniqueness of the impulse response is determined by the existence of unique

bounded sequences
¦

δ
y

i ,δR
i

©∞

i=0
that solve the following non-autonomous recursion:11

�

λi+2 (1−a 1ξ)+a 1ξ −λi+2a 1

−φπ
�

1−ψπ
�

ξ (1−λ) λi+2+a 1ξ(λ−λi+2)[1−φπ(1−ψπ)]

��

δ
y

i+1
δR

i

�

=
�

λi+2 (1−a 1ξ)+λa 1ξ
�

�

1 0

φy +
φπψπξ(1−λ)

λi+1(1−a 1ξ)+λa 1ξ
φR +

φπψπξa 1(λ−λi+1)
λi+1(1−a 1ξ)+λa 1ξ

�
�

δ
y

i

δR
i−1

�

(2.6)

i = 0,1,2, ...

δR
−1 = 0

Proof. See Appendix 2.C.1.

The foregoing system has one initial condition, δR
−1 = 0, requiring that the nominal

interest rate not be a function of future innovations (here, sunspots), but two variables.

Certainly, one solution is δy

i ,δR
i = 0, i = 0,1, ..., but it may not be the only bounded solution.

There is one “missing” initial condition, δy

0 ; if the system (2.6) is stable, then it will remain

bounded for any finite δy

0 and, thus, the sunspots cannot be ruled out. If the system, however,

is unstable, then the boundedness requirement will provide the missing initial condition in

11Equation (2.20) gives the response of inflation given the responses of the other two variables.
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terms of a linear relationship between δy

0 and δR
−1, admitting only the trivial, zero solution

without sunspots.

Proposition 2.3.2. The model given by (2.1), (2.3), and (2.4) is determinate iff | φR+φπψπ

1−φπ(1−ψπ)
|> 1.12

Proof. See Appendix 2.C.2.

The restriction on monetary policy given by (2.3.2), ensures that the system is unstable,

yielding the missing initial condition and ruling out sunspot equilibria. Figure (2.1) plots the

regions of determinacy and indeterminacy that follow from (2.3.2). With this proposition, I

can proceed to analyze specific cases of the interest-rate rule (2.4) as derived for sticky-prices

models in, e.g., Woodford (2003b, Ch. 4).

2.3.2 Output-Gap Targeting and Exogenous Interest Rates

In this section, I shall examine interest-rate rules with feedback solely from the output gap.

As a special case, a constant interest rate (i.e., no feedback) is considered.

Consider the model defined by (2.1) and (2.3) with an output-gap targeting interest-rate

rule:

Rt =φy yt , 0≤φy <∞ (2.7)

Using proposition 2.3.2, withφR , φπ = 0, leads to the following

Proposition 2.3.3. The model given by (2.1), (2.3), and (2.7) is indeterminate for all 0≤φy <∞.

Proof. Following (2.3.2), for φR , φπ = 0, it follows immediately that | φR+φπψπ

1−φπ(1−ψπ)
|= 0< 1.

12It is to be understood that the analysis will be abstracting from cases where the relevant eigenvalues lie on
the unit circle. Following Woodford (2003b, p. 254), in such a case, the linearized models examined here are
insufficient to address the question of local determinacy.
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Figure 2.1: Determinacy Regions from Proposition 2.3.2

Thus, contrary to Woodford (2003b, p. 254), if the feedback from endogenous variables

is limited to the output gap, no degree of output-gap targeting will suffice to ensure real

determinacy. This difference between the sticky-information and sticky-price models is due

to the long-run slope of the Phillips curve. The non-verticality in the latter allows monetary

policy to substitute output-gap targeting for inflation targeting so as to satisfy the Taylor

Principle, a possibility not available in the former, a model without a systematic, long-rung

relationship between inflation and output.13

13Fries (2007) also notes the independence of determinacy from the degree of output-gap targeting in a
sticky-information model, but his conclusion is based on Wang and Wen’s (2006) conjecture for finite lagged
expectations and not directly applicable to the true, infinite specification of the sticky information model.
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With a bounded, exogenous interest rate, the system defined by (2.1) and (2.3) is

extended by a bounded exogenous process for Rt . As determinacy is related solely to

the homogenous part of the system of difference equations, the addition of any bounded

stochastic process in the interest rate rule will not affect the results. Thus, determinacy with a

bounded exogenous interest rate will be obtained under the same conditions as for a constant

interest rate. Therefore, without loss of generality, the model is closed by the following interest

rate rule:

Rt = 0 (2.8)

This is simply a special case of proposition 2.3.3 and, thus, any constant or bounded

exogenous interest rate rule is necessarily associated with indeterminacy. This corresponds

to Woodford (2003b, p. 253) and confirms that a nominal interest rate rule must involve

feedback from endogenous variables, if sunspot equilibria are to be avoided. This extends

Sargent and Wallace’s (1975, p. 251) conclusion in their model, where their “Phillips curve

is not vertical [in the short run], but Wicksell’s indeterminacy [i.e., indeterminacy with an

exogenous interest rate] still arises,” to hold in the model here where the Phillips curve is

vertical only asymptotically.

2.3.3 Forward-Looking Inflation Targeting

Consider the model defined by (2.1) and (2.3), with an extended inflation-forecast Taylor-type

rule:

Rt =φR Rt−1+φπE t [πt+1] +φy yt (2.9)

Using proposition 2.3.2, withψπ = 0, leads to the following

Proposition 2.3.4. The model given by (2.1), (2.3), and (2.9) is determinate iff 1−φR < φπ <

1+φR .
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Proof. Following (2.3.2), for ψπ = 0, it follows that | φR+φπψπ

1−φπ(1−ψπ)
| = | φR

1−φπ
| > 1 must be satisfied.

But this is equivalent to 1−φR <φπ < 1+φR .

It is instructive to begin with the special case φy = φR = 0, the case of pure inflation-

forecast targeting. Note that according to proposition 2.3.4, the determinacy region collapses

to an empty set: a pure inflation-forecast targeting rule is necessarily indeterminate.

Thus, despite the fact that the sticky-information does not satisfy Carlstrom and Fuerst’s

(2002) more stringent natural-rate hypothesis (i.e., the model is not isomorphic to its flexible-

price equivalent in finite time), the same result (except for the alternate timing-convention)

for indeterminacy is obtained. Contrary to sticky-price models,14 there is no region of

determinacy for pure inflation-forecast targeting rules. In Carlstrom and Fuerst’s (2002)

world of finite stickiness, the model displays real determinacy only if it possesses nominal

determinacy. The latter is fulfilled only if the inflation rate is uniquely determined at the

dawn of the flexible-price world, which itself cannot hold if inflation forecasts are the sole

feedback variable for nominal interest rate rules. Here, the flexible-price world is relevant

only at the end of time, yet the asymptotic vertically of the Phillips curve suffices to prevent

determinacy under the rule considered here. This would certainly seem to be more consistent

with Woodford’s (2000) discussion of the non-optimality of purely forward-looking monetary

policy rules than the analogous analysis in sticky-price models: the purely forward-looking

rule considered here will always be indeterminate and, thus, opens the model to potentially

welfare-reducing arbitrary fluctuations.

The driving force behind this result can be seen by first examining the sticky price model.

Lubik and Marzo (2007, pp. 23–24) derive a lower bound for φπ corresponding to the Taylor

Principle, which rules out monotonic sunspot behavior, and an upper bound which rules out

non-monotonic sunspot dynamics. A key insight from their analysis is: “that the determinacy

14See, e.g., Bullard and Mitra (2002) or Woodford (2003b).
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region disappears as [...] prices become perfectly flexible.”(Lubik and Marzo 2007, p. 23) As

the Phillips curve becomes perfectly vertical in the long run, the upper bound converges to

the lower bound.

Like in sticky-price models, the sticky information models posits both a lower bound

and an upper bound on the determinacy region, likewise associated with monotonic and

non-monotonic sunspot paths.15 The lower bound requires the interest rate to follow the

Taylor Principle, necessitating an active interest rate. The upper bound, however, requires

that the interest rate not be overly aggressive, lest “the output gap and inflation [be] projected

to converge back to the steady state regardless of their values in the current period.”16 (Levin,

Wieland, and Williams 2003, p. 628) The difference is that the two bounds collapse, meaning

every interest rate rule of this type is either too aggressive or not aggressive enough.

Turning to the general case, the history dependence in the interest-rate rule induced

by interest-rate smoothing (φR > 0) is enough to open a window of determinacy for a

forward-looking Taylor-type rule. That there exists an upper and a lower bound on the

elasticity of the nominal interest rate with respect to expected inflation is consistent with

sticky-price models as discussed above. The lower bound conforms to Woodford’s (2003b,

p. 96) inertial modification of the Taylor Principle: the cumulative response of the nominal

interest rate must react more than one-to-one to a sustained deviation in inflation (saving for

the irrelevance of output-gap targeting as discussed previously). Woodford (2003b, p. 259)

remarks that with “coefficients in the range that is likely to be of practical interest, [the upper

bound does] not seem likely to be a problem”; likewise Galí (2008, p. 79). These assurances

are far from convincing in the sticky-information model. Indeed, allowing for interest rate

smoothing (0 < φR < 1), the coefficient on inflation must be less than two: a value which is

certainly not far above the reasonable range.

15Examining figure (2.1) withψπ = 0 andφR = 0, the eigenvalue is positive left of one and negative to the right.
16Emphasis in the original.
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2.3.4 Contemporaneous Inflation Targeting

Consider again the model (2.1) and (2.3). If monetary policy pursues an extended contempo-

raneous inflation target, the model will be closed by the following Taylor-type rule:

Rt =φR Rt−1+φππt +φy yt (2.10)

Using proposition 2.3.2, withψπ = 1, leads to the following

Proposition 2.3.5. The model given by (2.1), (2.3), and (2.10) is determinate iff 1−φR <φπ.

Proof. Following (2.3.2), forψπ = 1, it follows that | φR+φπψπ

1−φπ(1−ψπ)
|= |φR+φπ|> 1 must be satisfied.

But this is equivalent to 1−φR <φπ.

In the special case of pure inflation targeting φy = φR = 0, the same result for determi-

nacy as in Carlstrom and Fuerst (2002) is obtained, even though the sticky-information model

does not satisfy their more stringent, “finite-time” natural-rate hypothesis. The celebrated

Taylor Principle is a necessary (as discussed in the previous section) and, now, sufficient

condition for determinacy.

Thus, contrary to Woodford (2003b, p. 255), determinacy is independent of the degree of

output-gap targeting, as discussed in section 2.3.2. Examining the caseφR = 0, this condition

reduces to that of a pure inflation target, and, for φR 6= 0, determinacy requires the nominal

interest rate to move cumulatively more than one-to-one in response to a permanent change

in inflation, Woodford’s (2003b, pp. 95–96) “eventual” Taylor Principle.

The equivalence (up to cumulative effects) of the two interest-rate feedback rules

examined here, reiterate the conclusion from previous sections that output-gap targeting is

irrelevant for determinacy. The absence of parameters besides those of monetary policy has

the convenient attribute that determinacy can be evaluated solely on the merits of the interest

rate rule. Thus, Woodford’s (2003b, p. 255) slightly complicated interpretation of Taylor
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(2001), requiring parameter estimations of the sticky-price Phillips curve is not applicable

in the sticky-information world. Indeed, if one is to take Woodford’s (2003b, p. 255) analysis

seriously, indeterminacy pre-Volker era was not necessarily due to too weak of a reaction to

inflation, a higher reaction to the output gap would have also sufficed; a conclusion which

cannot be reached here.

2.3.5 Price-Level Targeting

As an alternative to inflation targeting, monetary policy could pursue a price-level target.

Incorporating feedback from the output gap into such a rule replaces (2.4) with the following

Rt =φp p t +φy yt , 0≤φp ,φy <∞ (2.11)

Lemma 2.3.6. The uniqueness of the impulse response under price-level targeting is deter-

mined by the existence of unique bounded sequences
¦

δ
y

i ,δR
i

©∞

i=0
that solve the following non-

autonomous recursion:




ξ+λi+2
�

1
a 1
−ξ
�

0
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a 1
−φy 1
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�
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ξλ+λi+2
�

1
a 1
−ξ
�

−λi+2φR
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φp
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�

1+φp

�





�

δ
y

i

δR
i

�

, i = 0,1,2, ...

δR
0 =

�

1−λ
λ
ξφp +φy

�

δ
y

0 (2.12)

Proof. See Appendix 2.C.3.

As before, the requirement of boundedness will provide an additional restriction on the

recursion only if the system in (2.12) is unstable.

Proposition 2.3.7. The model given by (2.1), (2.3), and (2.11) is determinate iff φp > 0.

Proof. See Appendix 2.C.4.

Any non-zero response to the price level will ensure determinacy. This corresponds

to sticky-price models and follows from the Taylor Principle. With a zero response to the
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price level, however, the the model is indeterminate regardless of the degree of output-

gap targeting. This stands again in contrast to Woodford (2003b, p. 261) and is an obvious

consequence of the irrelevance of the degree of output-gap targeting as discussed in the

previous sections. Woodford (2003b, p. 261) notes the attractiveness of a price-level target on

the basis that determinacy is independent of the degree of output-gap targeting. This feature

holds not only under price-level target but throughout this chapter.

2.4 Discussion

Woodford’s (2003b, pp. 252–259) conclusion that an interest-rate setting rule which does

not directly (i.e., with respect to inflation only) satisfy the Taylor principle need not be

associated with indeterminacy does not carry over to the sticky-information model. Whereas

the standard sticky-price model exhibits a non-vertical long-run Phillips curve that allows

for both “substitution” of output-gap targeting for inflation targeting and a pure inflation-

forecast target to ensure uniqueness, the sticky-information model’s vertical long-run Phillips

curve precludes both possibilities. This yields tighter bounds (lower and, in the case of

forward-looking policy rules, upper) on the coefficients of interest-rate setting rules for the

sticky-information model. The bounds on interest-rate rules as derived here are juxtaposed

in table 2.1 with the bounds derived in Woodford (2003b, Ch. 4)17 for the sticky-price model.

These tighter bounds have two important features relative to the looser ones derived

by Woodford (2003b). Firstly, they are independent of model-specific parameter values.

Regardless of the calibration, the Taylor principle is only satisfied if the direct (cumulative)

reaction of the nominal interest rate to a (permanent) deviation in inflation is greater than

one: φπ > 1 − φR is necessary under sticky information. This corresponds neatly to the

conclusions of Taylor (2001) with regards to the pre-Volcker and the Volcker-Greenspan eras

17Note that the output gap is expressed quarterly here, thus Woodford’s (2003b, Ch. 4) φx

4
corresponds to my

φy .
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Table 2.1: Determinacy Regions: Comparison of Sticky Information and Sticky Prices

Interest Rate Rule Sticky Prices Sticky Information
Non-Price-Related Feedback

Rt = 0 ; ;
Rt =φy yt φy >

κ

1−β
;

Inflation-Forecast Feedback

Rt =φπE t [πt+1] 1<φπ < 1+2 1+β
a 1κ

;

Rt =φR Rt−1+φπE t [πt+1]+φy yt
φπ > 1−φR −

1−β
κ
φy φπ > 1−φR

φπ < 1+φR +
1+β
κ

�

φy +2 1+φR

a 1

�

φπ < 1+φR

Contemporaneous Inflation Feedback

Rt =φππt φπ > 1 φπ > 1
Rt =φR Rt−1+φππt +φy yt φπ > 1−φR −

1−β
κ
φy φπ > 1−φR

Price-Level Feedback

Rt =φp p t +φy yt φp > 0 orφy >
κ

1−β
φp > 0

that the elasticity of the nominal interest rate with respect to inflation was less than one in

the former implying an instability in inflation and greater than one in the latter implying

stable inflation. Secondly, the tighter bounds derived here are more robust, as they would

also deliver determinacy in the comparable sticky-price model.

The bounds for determinacy derived in section 2.3 coincide with those for nominal

determinacy in the associated RBC model, as was also shown by Carlstrom and Fuerst (2002)

for their finite NRH model. To see this, letting yt = 0, ∀t (i.e., the output gap is always closed)

yields from (2.1) Rt = E t [πt+1] and the condition | φR+φπψπ

1−φπ(1−ψπ)
| > 1 using (2.4) for nominal

determinacy follows straightforwardly from Blanchard and Kahn (1980). This equivalence has

nothing to do with a “folk theorem” difference between finite and infinite games as suggested

by Carlstrom and Fuerst (2002, p. 81), as the sticky-information mechanism uses the same,

infinite Calvo mechanism as in the standard sticky-price model. The decisive factor is the

fulfillment of the NRH, be it in finite time as in Carlstrom and Fuerst (2002) or asymptotically

as here. Both models converge to their respective RBC counterparts regardless of monetary

policy and boundedness of equilibria does not require this convergence at any finite horizon.
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Discomforting is the conclusion that the upper bound, present under a forward-looking

interest-rate setting rule, is significantly lower than would be concluded from a sticky-price

model. Indeed, without interest-rate smoothing, the model is necessarily indeterminate.18

The estimated values from Clarida, Galí, and Gertler (2000), however, are such that the

period 1982-96 would be associated with a unique equilibrium in the sticky-information

model, as in a sticky-price model of Woodford (2003b, p. 260). The sticky-information model

serves to strengthen conclusions drawn from empirical examinations of monetary policy,

as determinacy results directly and solely from the form and parameter values of monetary

policy.

The upper bound on determinacy with forward-looking rules has been criticized as

not being consistent with McCallum’s (1983) “minimum state variable” solution19 or Evans

and Honkapohja’s (2001) E-stability20. As the sticky-information model has a state vector of

infinite dimension, E-stability would seem difficult to ascertain; the analysis of E-stability by

Carlstrom and Fuerst (2002, p. 83), though, indicates that forward-looking monetary policy

can result in learnable sunspots. The MSV approach proposes to select a solution using the

minimum number of state variables, but this is necessarily infinite with sticky-information.

Additionally, however, “the MSV solution involves a procedure that makes it unique by

construction.”(McCallum 1999, p. 627) The bubble-free solution in the model considered here

would be the trivial solution zero for all variables, as no exogenous forces were postulated.

That this solution is readily identifiable here is not very useful when confronted with a model

containing such exogenous forces. Investigation of the MSV solution and E-stability in sticky-

information models, though clearly desirable, will have to be left for further research.

18As can be seen in figure (2.1), a region of determinacy without interest-rate smoothing also exists when
both contemporaneous and forecasted inflation are targeted. There continues to be an upper bound on the
reaction coefficients so long as ψπ <

1
2

, but not for ψπ ≥ 1
2

. The upper bound will only completely disappear if
contemporaneous inflation is given more weight.

19See, e.g., McCallum (2001b).
20See, e.g., Bullard and Mitra (2002) or McCallum (2009a).
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Woodford’s (2003b, p. 258) Figure 4.1 shows, for his parameter set, that the upper bound

in sticky-price models is so high that the discussion of, e.g., McCallum (2003) and Woodford

(2003a) regarding this upper bound is empirically irrelevant. Yet, this discussion is of pressing

importance in the sticky-information model, as its upper bound 1+φR is not far from the

range of relevant parameter values for φπ. Should the upper bound not be found to be “of

dubious merit” (McCallum 2003, p. 1154), a pure inflation-forecast rule should be avoided

rather generally by monetary policy and implemented only with caution and some form of

history dependence such as interest-rate smoothing. Even then, the lower bound derived

here would still prescribe a more stringent interpretation of the Taylor Principle than in sticky-

price models due to the irrelevance of output-gap targeting for determinacy.

Some conclusions about optimal monetary policy can be derived from the foregoing

determinacy analysis despite the lack of a first-principles derivation. Equations (2.3) and

(2.2) possess Blanchard and Galí’s (2007, p. 36) “divine coincidence” property; that is,

stabilizing inflation also stabilizes output. In the absence of exogenous forces, an equilibrium

exists where inflation and the output gap are always zero. If policy makers are concerned

with variations in these variables, this equilibrium is clearly attractive. The desirability of

determinacy would be that it renders this the only equilibrium. Even if one were to append

(2.1) with some stationary stochastic variable z t , the interest rate given by Rn e w
t
= 1

a 1
z t +Rol d

t

with Rol d
t

given by (2.4), would reduce the system to the one analyzed here where one

equilibrium for inflation and the output gap has both always equal to zero. Following

Svensson and Woodford (2004, p. 44), the component 1
a 1

z t is the “decision procedure that

is consistent with an optimal equilibrium” and the Rol d
t

component ensures, so long as the

bounds are fulfilled, that this equilibrium is the only consistent one. For any common IS

specification, “the decision procedure” component will be the same regardless of whether

(2.3) or (2.2) describes the supply side. When the divine coincidence property breaks down

and additional—e.g., cost-push—exogenous components leak into the supply side, “the
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decision procedure” components will surely differ. Nonetheless, the restrictions on the

“determinacy” component that follow from this model are preferable from the point of view

of Svensson and Woodford’s (2004, p. 25) robustness.

2.5 Conclusion

Inflation targeting does work in bringing about a unique equilibrium, even with Mankiw and

Reis’s (2002) sticky-information Phillips curve. Yet this analysis shows that some conclusions

reached thus far on the basis of the sticky-price model might be premature. As argued in

Sargent (1973, p. 480), “right or wrong, the long-run natural rate [hypo]thesis has imme-

diate relevance because it says something important about the impact of systematic and

predictable changes on the economic system.” The sticky-information fulfills the natural rate

hypothesis and, if one is unwilling to accept the systematic, long-run relationship between

inflation and output in the standard sticky-price model, the tighter parameter bounds for

interest rate rules derived here ought to be heeded.



Appendix

2.A Model Appendix

In this appendix, I derive the non-autonomous system of difference equations that character-

izes the response of (2.1) and (2.3) to a sunspot.21

Equation (2.1) can be rewritten as

δ
y

i =δ
y

i+1−a 1δ
R
i
+a 1δ

π
i+1 (2.13)

As the system’s response to a perturbation at time t from equilibrium is being examined,

the response of all variables and all expectations dated before t are equal to zero (i.e., the

model is starting from the equilibrium steady-state solution).22 Equation (2.3) can thus be

rewritten as

δπ
i
=

1−λ
λ
ξδ

y

i +(1−λ)
i−1
∑

j=0

λj
�

δπ
i
+ξ
�

δ
y

i −δ
y

i−1

��

collecting terms yields

λi+1δπ
i
=
�

1−λi+1
�

)ξδ
y

i −ξλ
�

1−λi
�

δ
y

i−1 (2.14)

The system defined by (2.13) and (2.14) is closed by the equation

δR
i
=φRδ

R
i−1+φπ
�
�

1−ψπ
�

δπ
i+1+ψπδ

π
i

�

+φyδ
y

i (2.15)

2.B Time-Varying Difference Equations

In this appendix, I shall present the necessary theorems for (locally) unique bounded

solutions to the model in the text. The systems of difference equations that describe

21Compare Taylor’s (1986) method for solving for the infinite moving average coefficients of endogenous
variables.

22See Mankiw and Reis’s (2002) Appendix.
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the solutions to the sticky-information Phillips curve are non-autonomous (time-varying)

difference equations.23 Unfortunately, following Elaydi (2005, p. 191), “eigenvalues do

not generally provide any information about the stability of nonautonomous difference

equations.” This would appear to preclude the standard eigenvalue counting method of

Blanchard and Kahn (1980). However, the time-variance in coefficient matrices disappears

in the limit—i.e., the coefficient matrices converge to limiting matrices—and the variation in

the coefficient matrices is bounded. This convergence and boundedness will prove sufficient

to allow the familiar eigenvalue accounting of Blanchard and Kahn (1980).

2.B.1 Stability of Nearly Time-Invariant Systems

Here, I shall present necessary conditions for the stability (and therefore boundedness)24 of

nearly time-invariant linear systems by repeating Theorem 3-29 in Ludyk (1985, p. 61).

Consider the system given by xk+1 = [C +D(k )]xk

Theorem 2.B.1. Assume (1) C is stable and (2)
∑∞

k=k0
||D(k )||<∞.

Then xk+1 = [C +D(k )]xk is stable.

Proof. See Ludyk (1985, pp. 61–62).

This theorem suffices to establish that the unstable manifold needed for determinacy

is absent. A system that is stable will remain bounded for any bounded initial conditions.

Requiring the system to remain bounded will fail to provide any additional restrictions and,

hence, will be unable to determine the “missing” initial condition. If the system is not

stable (i.e., C is not stable), then the requirement of boundedness will provide the missing

restriction, as is shown through the one-to-one correspondence in the following theorem.

23See also chapter 3.
24See Theorem 3-12 of Ludyk (1985, p. 39).
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2.B.2 Asymptotically Constant Systems of Difference Equations

Here, I shall present an application of a variation of constants formula to establish the

correspondence between bounded solutions of the the system of interest and its diagonalized

constant-coefficient counterpart.

Consider the system given by xk+1 = A(k )xk , where A(k ) =C +D(k )

Theorem 2.B.2. Assume (1) C contains as many distinct, non-zero eigenvalues as its dimension

and (2)
∑∞

k=k0
||D(k )||<∞.

Then there exists a one-to-one correspondence between bounded solutions of xk+1 =

A(k )xk , Θk+1 = ΛΘk + D̃(k )Θk , and Ξk+1 = ΛΞk , where Λ= P−1C P is the matrix of eigenvalues,

P the corresponding right eigenvectors, D̃(k ) = P−1D(k )P, and Θk+1 = P−1xk+1.

Proof. Given the assumption of distinct eigenvalues, the set of eigenvectors is linearly

independent and there is a one-to-one correspondence between bounded solutions of x t

and Θt given by Θk+1 = P−1xk+1. Following Theorem 8.19 of Elaydi (2005, pp. 360–361), there

exists a one-to-one correspondence between bounded solutions ofΘk+1 =ΛΘk +D̃(k )Θk and

Ξk+1 =ΛΞk if the eigenvalues of the diagonal matrix Λ are all non-zero given by

Θk =Ξk +

k−1
∑

j=k0

Φ1(k )Φ
−1(j +1)D̃(j )Θj −

∞
∑

j=k

Φ2(k )Φ
−1(j +1)D̃(j )Θj (2.16)

where Φ(k ) is the solution map of Ξk , Φ2(k ) is the solution map of Ξk with regards to unstable

eigenvalues, and Φ1(k )with regards to stable eigenvalues.

2.C Proofs

2.C.1 Proof of Lemma 2.3.1

Proof. Equation (2.13) can be rewritten as

δ
y

i−1 =δ
y

i −a 1δ
R
i−1+a 1δ

π
i

, for i = 1,2, ... (2.17)
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Equation (2.14) is

λδπ0 = (1−λ)ξδ
y

0

λi+1δπ
i
=
�

1−λi+1
�

)ξδ
y

i −ξλ
�

1−λi
�

δ
y

i−1, for i = 1,2, ... (2.18)

Inserting (2.17) into (2.18) and solving for δπi yields25

δπ0 =
1−λ
λ
ξδ

y

0

δπ
i
=

ξ (1−λ)
λi+1 (1−ξa 1)+λa 1ξ

δ
y

i +
a 1ξ
�

λ−λi+1
�

λi+1 (1−ξa 1)+λa 1ξ
δR

i−1, for i = 1,2, ... (2.19)

Which is the same as,

δπ
i
=

ξ (1−λ)
λi+1 (1−ξa 1)+λa 1ξ

δ
y

i +
a 1ξ
�

λ−λi+1
�

λi+1 (1−ξa 1)+λa 1ξ
δR

i−1, for i = 0,1, ... (2.20)

Replacingδπi andδπi+1 in (2.15) and in (2.13) with the foregoing yields (2.6). A solution for (2.6)

yields
¦

δ
y

i ,δR
i

©∞

i=0
, which delivers

¦

δπi
©∞

i=0
from (2.20).

2.C.2 Proof of Proposition 2.3.2

Proof. The system of difference equations in (2.6) can be inverted to yield

�

δ
y

i+1
δR

i

�

= (C +D(i ))

�

δ
y

i

δR
i−1

�

(2.21)

25Note that as a 1, ξ> 0 and 0<λ< 1, λi+1 (1−ξa 1)+λa 1ξ= λi+1+λa 1ξ
�

1−λi
�

> 0, for i ≥ 0.
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so long as φπ
�

1−ψπ
�

6= 1+ λi+2

(1−λi+2)ξa 1
, ∀i ≥ 0. Where

C =





λ 0
a 1λφy+φπ(1−ψπ)(1−λ)λ+φπψπ(1−λ)

a 1λ(1−φπ(1−ψπ))
φR+φπψπ

1−φπ(1−ψπ)





D(i ) = α1(i )D1+α2(i )D2+α3(i )D3

α1(i ) =
λi+2

�

1−λi+2
�

a 1ξ
�

1−φπ
�

1−ψπ
��

+λi+2

α2(i ) =
α1(i )

λi+1 (1−a 1ξ)a 1ξ+λa 1ξ

α3(i ) = λ
i+1α2(i )
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



(1−λ)
�

1−a 1ξ
�

1−φπ
�

1−ψπ
���

+a 1φyφR

−
φyφπ(1−ψπ)+[φπ(1−ψπ)λ+φπψπ] 1−λ

λ
1

a 1
[1−a 1ξ(1−φπ(1−ψπ))]
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a 1
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φπψπξ (1−λ)a 1 a 1φπψπa 1ξλ
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φπψπ
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0 −φπψπa 1ξ
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Using the ratio test,
∑∞

i=0 |α1(i )|<∞,
∑∞

i=0 |α2(i )|<∞, and
∑∞

i=0 |α3(i )|<∞, so

∞
∑

i=0

||D(i )|| ≤ ||D1||
∞
∑

i=0

|α1(i )|+ ||D2||
∞
∑

i=0

|α2(i )|+ ||D3||
∞
∑

i=0

|α3(i )|<∞

Thus, D(i ) satisfies the second assumption of theorems 2.B.1 and 2.B.2.

Examining the eigenvalues of C , z 1 = λ, z 2 =
φR+φπψπ

1−φπ(1−ψπ)
, the first of which is necessarily

inside the unit circle.

If |z 2| < 1, the system satisfies theorem 2.B.1 and is stable for any set of bounded

initial conditions. In this case, the boundedness condition will be insufficient to pin down

the missing initial condition and one cannot rule out sunspot equilibria (i.e., the model is

indeterminate).

Should, however, z 2 be outside the unit circle, then z 1 and z 2 are necessarily distinct

and, as 0 < z 1 < 1, are both non-zero. Applying theorem 2.B.2, there is a one-to-one
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correspondence between bounded solutions of the system in question and its diagonalized

constant-coefficient counterpart. The latter is saddle-path stable |z 1| < 1 and |z 2| > 1 and

hence the requirement of boundedness will provide the system with an additional restriction

to pin down the missing initial condition and rule out sunspot equilibria (i.e., the model is

determinate).

Should φπ
�

1−ψπ
�

= 1+ λi+2

(1−λi+2)ξa 1
for some i (say iτ), then the system does not fulfill

the second assumption of theorem (2.B.2) for k0 = 0. The singularity of the coefficient

matrix at i = iτ combined with the initial condition δR
−1 = 0 implies that δR

i−1 = δ
y

i =

0, i ≤ iτ. Using either of the two equations in the recursion delivers a new initial condition,
�

1−λiτ+2
�

ξδ
y

iτ+1 =
λiτ+2

φπ
δR

iτ
, which results in a non-singular recursion for i = iτ+ 1, iτ+ 2, ...,

with the same stability characteristics as in the recursion without the singularity.

Therefore, the requirement of a locally bounded solution will provide the “missing”

initial condition (i.e., the system is determinate) when | φR+φπψπ

1−φπ(1−ψπ)
|> 1.

2.C.3 Proof of Lemma 2.3.6

Proof. The system defined by (2.13) and (2.14) is now closed by a monetary policy described

by

δR
i
=φpδ

p

i +φyδ
y

i (2.22)

First differencing the foregoing, recalling that δπi = δ
p

i −δ
p

i−1, and substituting appropriately

yields the recursion in (2.12). Noting that δp

−1 = 0, equations (2.13) and (2.22) for i = 0 yield

the initial condition in (2.12).
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2.C.4 Proof of Proposition 2.3.7

Proof. Consider first the caseφp = 0 andφy ≥ 0. This is the same as the special case examined

in section (2.3.2) and, thus, the system is indeterminate for allφy ≥ 0.

Consider now the case that φp > 0. The system of difference equations in (2.12) can be

inverted, as both a 1 and ξ are finite and positive and 0<λ< 1, to yield

�
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Using the ratio test,
∑∞

i=0 |α1(i )| <∞ and thus
∑∞

i=0 ||D(i )|| <∞, so D(i ) satisfies the second

assumption of theorems 2.B.1 and 2.B.2.

Turning to the the eigenvalues of C , z 1 and z 2, z 1 = λ, z 2 = 1+φp . As attention here

is restricted to the case φp > 0, z 2 is necessarily outside and z 1 is necessarily is inside the

unit circle. As such, z 1 and z 2 are necessarily distinct and, as 0 < z 1 < 1, are both non-zero.

Applying theorem 2.B.2, there is a one-to-one correspondence between bounded solutions

of the system in question and its diagonalized constant-coefficient counterpart. The latter

is saddle-path stable |z 1| < 1 and |z 2| > 1 and hence the requirement of boundedness will

provide the system with an additional restriction to pin down the missing initial condition

and rule out sunspot equilibria (i.e., the model is determinate).

Combining the two cases, the requirement of a locally bounded solution will provide the

“missing” initial condition (i.e., the system is determinate) whenφp > 0.
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2.D Translating the Given Initial Condition

Following Klein (2000), even if there are exactly as many backward-looking variables as given

initial conditions, it need not be the case that the arbitrary initial condition associated with

the stable manifold can be “translated” into the given initial condition. With potentially

singular time-varying coefficient matrices, a definitive answer to this translatability cannot

be given analytically. Thus, although regions of indeterminacy greater than those in standard

sticky-price models are analytically proven to exist, regions of determinacy are contingent

upon translatability, confirmed for broad parameter spaces numerically.

The missing initial condition that ensures the system lies on the stable manifold can be

found by applying theorem 2.B.2 to two-dimensional systems.

Proposition 2.D.1. For a two-dimensional system xk+1 = A(k )xk that satisfies the assumptions

of theorem 2.B.2 with eigenvalues |z 1|< 1< |z 2|, then xk is bounded iff

[P−1]2






I2x 2+

∞
∑
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z
−(j+1)
2 D(j )

j−1
∏

i=0

A(j − i −1)






x0 = 0 (2.24)

where P2 is the second row of the matrix of (right) eigenvectors of C .

Proof. Let A(k ) satisfy the assumptions of theorem 2.B.2. Then C can be diagonalized to yield

the system Θk+1 = ΛΘk + D̃(k )Θk with constant-coefficient diagonal counterpart Ξk+1 = ΛΞk .

Assume the lower right entry in Λ lies outside the unit circle. The only bounded solution to Ξ2
k

(the second element of Ξk ) is thusly Ξ2
k = 0∀k . Using (2.16),

Θ0 =Ξ0−
∞
∑

j=0

d i a g (0,z
−(j+1)
2 )D̃(j )Θj (2.25)

As the solution of Ξ1
k (the first element of Ξk ) was stable by construction, Ξ1

k is indeterminate

with respect to boundedness, and, therefore, does not provide a restriction. Thus

Θ0 =

�

c
0

�

−
∞
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�

0 0
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−(j+1)
2

�

D̃(j )Θj (2.26)
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for some initial condition c . With the definitions PΘk = xk and xk+1 = A(k )xk ,
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∑

j=0

�

0 0
0 z

−(j+1)
2

�

P−1D(j )

j−1
∏

i=0

A(j − i −1)x0 (2.27)

The second row of which is

[P−1]2






I2x 2+

∞
∑

j=0

z
−(j+1)
2 D(j )

j−1
∏

i=0

A(j − i −1)






x0 = 0 (2.28)

For |z 2| > 1 from Appendix 2.C to be a sufficient condition, the additional restriction

resulting from boundedness must be “translatable” into the missing initial condition.26 This

requires (2.28) to be linearly independent from the other initial condition. Numerical

calculations confirm that (2.28) provides a linearly independent relationship generically.

Thus, only the trivial, sunspot-free equilibrium will satisfy the boundedness condition (i.e.,

the model is determinate) when |z 2|> 1.

26Klein (2000) shows this in the standard case, requiring his Z11 matrix to be invertible. Unfortunately, this
necessity is often overlooked. For example, Woodford’s (2003b, p. 255) Proposition 4.4 implies that an interest
rate rule with no feedback on inflation or output (φπ = φy = 0) can still result in determinacy so long as the
interest rate process itself is explosive (φR > 1). This is analogous to the example worked through by Klein (2000,
p. 1419): that the backward-looking interest rate in this case is explosive is insofar useless as this explosiveness
cannot be translated away from the backward-looking variable to either of the forward-looking variables.





Chapter 3

Linear Rational-Expectations Models with Lagged

Expectations

A Synthetic Method1

3.1 Introduction

This chapter presents a method for solving and estimating linear rational-expectations mod-

els with lagged expectations. Though the method itself contains little novelty, it contributes

to the literature by combining several different methods established in the literature into

one coherent approach. The resulting algorithm performs at least as well as each individual

method while maintaining generality. The freely available software2 strives to minimize

computing and preprocessing time. I estimate simple sticky-information and sticky-price

models using Bayesian methods, evaluating the likelihood function with an alternative to

the Kalman filter. Two new contributions of this chapter are the explicit consideration of

models with infinite lagged expectations and the examination of truncation methods from

the literature for such cases. The method and software should be of special interest to those

interested in sticky information à la Mankiw and Reis (2002).

The solution method starts with the method of Taylor (1986), analyzing an infinite

moving average solution. The undetermined coefficients approach yields a deterministic

non-autonomous system of difference equations. After the largest expectational lag has been

included, the system of difference equations becomes autonomous. Standard algorithms for

1Published as “Linear Rational-Expectations Models with Lagged Expectations: A Synthetic Method,” Journal

of Economic Dynamics and Control, 34(5), May 2010, pp. 984–1002.
2MATLAB R© software and examples are available on the author’s website.
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solving potentially singular systems of difference equations are employed for the coefficients

thereafter. Using the infinite moving average solution, the method will provide the unique,

stable solution of the problem should it exist. The software provides the option of using the

QZ method of Klein (2000) or the shuffle and eigenvalue method of Anderson and Moore

(1985). The remaining coefficients are then determined by solving a block version of Mankiw

and Reis’s (2007) tridiagonal system. This particular synthesis eliminates the need for any

manual reformulation and provides a computationally efficient algorithm that draws on

preexisting algorithms with established properties.

For models with an infinite number of lagged expectations, e.g., models with the sticky-

information Phillips curve of Mankiw and Reis (2002), the method of this chapter uses an

explicit convergence criterion to determine when and how to truncate. This is advantageous

as current analyses of models containing infinite lagged expectations generally truncate

either arbitrarily or through a process of trial and error. The appropriate truncation point will

depend not only on the specific model, but also on the specific choice of parameter values.

Using an arbitrary truncation point can provide potentially misleading results and using the

truncation point derived from one particular parameter combination is unlikely to be suitable

when parameter values are changed.

I estimate a simple New Keynesian model with Bayesian likelihood methods, comparing

a sticky-information Phillips curve with its sticky-price equivalent. I treat the entire sample as

a single draw from a multivariate normal distribution and obtain the covariance matrix using

spectral methods. Evaluating the likelihood function requires the determinant and inverse

of this matrix, which are calculated recursively using Akaike’s (1973) Levinson method for

block Toeplitz matrices. I am able to avoid the use of the Kalman filter, which is desirable due

to the potentially prohibitive size of the state space underlying the filter when many lagged

expectations are present. A similar Levinson algorithm, familiar in the time series literature

for the solution of the Yule–Walker equations and other aspects of ARMA estimation, (for a
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review, see Morettin 1984) was also used by Leeper and Sims (1994, p. 99) to evaluate the

likelihood function. The resulting estimates show that the sticky-information model can fare

favorably in comparison with the standard sticky-price model, especially in reproducing the

empirical lead of the output gap over inflation, and that arbitrary truncation can reverse this

assessment.

Many solution methods for solving linear rational-expectation models can be found

in the literature. For the analysis here, they can be split into two groups: those that

explicitly allow for lagged expectations and those that do not. An incomplete list of the

latter includes Blanchard and Kahn (1980), McCallum (1983), Anderson and Moore (1985),

Binder and Pesaran (1995), King and Watson (1998), Uhlig (1999), Anderson (2010), Klein

(2000), Sims (2001), and Christiano (2002). Although these methods can solve models with a

finite number of lagged expectations, this requires the manual definition of dummy variables

(see Binder and Pesaran (1995) or Sims (2001)) to bring the system into canonical form.3

The disadvantage is twofold. First, defining dummy variables is tedious and prone to user

error. Second, the computational burden from the increased number of variables can become

prohibitive.

There are several solution methods that operate directly with lagged expectations.

Taylor (1986) analyzes solutions that take the form of an infinite moving average and

Mankiw and Reis (2002) demonstrate how this solution form can be applied to models

with lagged expectations in the absence of forward-looking variables. Zadrozny (1998)

provides a general method for solving systems with a finite number of lagged expectations,

but the absence of a software implementation, as noted by Anderson (2008, p. 96), would

require substantial work on behalf of the modeler to use his method. Wang and Wen’s

(2006) method solves models with lagged expectations by combining standard state-space

3Christiano (2002, p. 23) does allow for the information set to vary across equations, but dummy definitions
would still be necessary to have varying information sets within one equation.
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techniques with a fixed-point approach for expectational errors. Requiring the modeler to

manually reformulate lagged expectations as expectational errors reintroduces the potential

for user error. Their fixed-point approach is unnecessarily complicated and computationally

burdensome. Finally, Mankiw and Reis (2007) provide a method that works entirely on the

infinite moving average representation. By reducing the system of equations to a scalar

second-order non-autonomous difference equation and imposing a boundary condition at

a finite horizon, they reduce the problem to solving a tridiagonal system. While the method

could be altered to avoid the reformulation into a scalar system, it is unclear how and when

the boundary conditions for a vector of variables should be imposed in more general settings.

None of these methods give an explicit criterion for how to proceed when lagged expectations

reach back into the infinite past.

The chapter is organized as follows. Section 3.2 presents the model to be analyzed.

Section 3.3 derives the solution method. Section 3.4 examines the dangers associated with

truncations. Section 3.5 compares the method and its performance with alternate methods.

Section 3.6 presents the method used for estimation and section 3.7 examines the importance

of lagged expectations using estimated sticky-information and sticky-price New Keynesian

models. Finally, section 3.8 concludes.

3.2 Statement of the Problem

Log-linearized economic models can typically be represented by a system of linear expecta-

tional difference equations:

0=
I
∑

i=0

A i E t−i [Yt+1]+

I
∑

i=0

Bi E t−i [Yt ]+

I
∑

i=0

C i E t−i [Yt−1]

+

I
∑

i=0

Fi E t−i [Wt+1]+

I
∑

i=0

G i E t−i [Wt ] (3.1)
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Wt =

∞
∑

j=0

N jεt−j , εt ∼ i .i .d .N (0,Ω) (3.2)

lim
j→∞

ξ−j E t

�

Yt+j

�

= 0, ∀ξ∈R s .t . ξ> g u , where g u ≥ 1 (3.3)

where Yt is a k ×1 vector of endogenous variables of interest, Wt an n×1 vector of exogenous

processes stable4 with respect to ξ and with given moving average coefficients
¦

N j

©∞

j=0
, and

where I ∈ N0. It is assumed that there are as many equations, k , as endogenous variables in

(3.1). Variables dated t are in the information set dated t .

Equation (3.1) represents the collection of log-linearized equilibrium equations. Equa-

tion (3.2) specifies the exogenous process Wt as a vector M A(∞) process. Equation (3.3)

may be interpreted as a transversality condition derived as a condition from intertemporal

maximization, where g u is the maximal growth rate of endogenous variables (see Sims (2001)

or Burmeister (1980) for discussions on the limitations of this interpretation).

3.3 Solution of the Problem

In the following, I shall differentiate between three cases: (i) I = 0, (ii) 0< I <∞, and (iii) I →

∞. The distinction between the first two serves to compare the solution here with methods in

the literature for standard (i.e., without lagged expectations) formulations. The infinite case

will need to be handled separately and provides a justification and criterion for appropriate

truncations.

Following Muth (1961) and Taylor (1986), the solution will take the form

Yt =

∞
∑

j=0

Θjεt−j . (3.4)

4E.g., for g u = 1, unit roots in both the endogenous and exogenous variables are allowed.
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Inserting (3.4) and (3.2) into (3.1) yields

0=
∞
∑

j=0





m i n (I ,j )
∑

i=0

A i



Θj+1εt−j +

∞
∑

j=0





m i n (I ,j )
∑

i=0

Bi



Θjεt−j

+

∞
∑

j=0





m i n (I ,j+1)
∑

i=0

C i



Θjεt−j−1+

∞
∑

j=0





m i n (I ,j )
∑

i=0

Fi



N j+1εt−j

+

∞
∑

j=0





m i n (I ,j )
∑

i=0

G i



N jεt−j (3.5)

Defining M̃ j =
∑m i n (I ,j )

i=0 M i , for M = A, B ,C , F,G , one can rewrite the foregoing as

0=
∞
∑

j=0

Ã jΘj+1εt−j +

∞
∑

j=0

B̃ jΘjεt−j +

∞
∑

j=0

C̃ j+1Θjεt−j−1

+

∞
∑

j=0

F̃j N j+1εt−j +

∞
∑

j=0

G̃ j N jεt−j (3.6)

Comparing coefficients, this yields the non-stochastic linear recursion

0= Ã jΘj+1+ B̃ jΘj + C̃ jΘj−1+ F̃j N j+1+G̃ j N j (3.7)

with initial conditions, Θ−1 = 0, and terminal conditions from (3.3), limj→∞ξ−jΘj = 0. The

initial conditions require Yt−1 to be independent of εt (i.e., variables from yesterday cannot

respond to innovations today), leaving an additional k restrictions for the terminal conditions

to determine.

3.3.1 Case 1: I = 0

This is the standard case without lagged expectations. Here M̃ j = M 0, for M = A, B ,C , F,G ,

and thus (3.7) reduces to a recursion with constant coefficients

0= A0Θj+1+ B0Θj +C0Θj−1+ F0N j+1+G0N j (3.8)

This system of deterministic difference equations can be solved using standard methods. In

3.A, I follow Klein (2000) and note how his approach can be adapted to the deterministic and

potentially non-stationary system.
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The QZ method of Klein (2000) or Anderson and Moore’s (1985) AIM method yields

Θj =αΘj−1+βΞ
u
j

(3.9)

a recursive form, along with the initial conditions, for the MA-coefficients of Yt .5

Following Blanchard and Kahn (1980), the solution will be unique if the system has

exactly k eigenvalues greater than g u in modulus, non-unique if there are more than k such

eigenvalues, and non-existent if there are fewer than k such eigenvalues. With exactly k

eigenvalues greater than g u in modulus, the terminal conditions (3.2) should provide the

missing k linear restrictions needed to complete the recursion.6

The algorithm uses standard recursive methods for potentially singular difference equa-

tion systems. Whereas current standard methods (e.g., Uhlig (1999) or Klein (2000)) solve

for a recursive form for the endogenous variables themselves, the solution form here yields

a recursive form for the infinite-MA coefficients, following the representations proposed by

Muth (1961) and Taylor (1986). This approach transforms the stochastic system of difference

equations into a deterministic system in the impulse responses of endogenous variables to

exogenous shocks εt . Both non-existence and non-uniqueness of the fundamental solution

will be indicated by the non-existence or non-uniqueness of the stable manifold. The

algorithm is mute on the form of the solution(s), should the MA representation be non-

unique or non-existent. The infinite-MA representation and associated deterministic system

of difference equations avoids any expansion of the state space (see Mankiw and Reis 2002,

p. 1325) and still admits the use of standard methods when lagged expectations are present.

The following section will develop this case.

5Where Ξu
j is a convolution of the unstable manifold and the exogenous moving average, see appendix 3.A.

6A caveat is noted by Klein (2000): the explosive eigenvalues have to be “translatable” to the missing initial
conditions. If the upper-left k × k block of Z from the QZ decomposition in 3.A is invertible, however, this will
not be a problem.
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3.3.2 Case 2: 0< I <∞

This is a deviation of the standard case examined in the literature. Here M̃ j = M̃ I , for M =

A, B ,C , F,G and ∀j ≥ I , and thus (3.7) reduces to a recursion with constant coefficients∀j ≥ I .

0= Ã IΘj+1+ B̃ IΘj + C̃ IΘj−1+ F̃I N j+1+G̃ I N j (3.10)

Analogously to the previous section, if s = k and if the k restrictions can be associated

with the “missing” initial conditions,

Θj =α(I )Θj−1+β (I )Ξ
u
j
(I ), ∀j ≥ I (3.11)

a recursive solution for all MA-coefficients from I onward.7

The remaining coefficients can then be obtained as the solutions to



















B̃0 Ã0 0 . . . 0
C̃1 B̃1 Ã1 0 . . . 0
0 C̃2 B̃2 Ã2 0 . . . 0
...

...
0 . . . 0 C̃ I−1 B̃ I−1 Ã I−1
0 . . . 0 −α(I ) I



































Θ0
Θ1
Θ2
...
ΘI−1
ΘI

















=



















−F̃0N1−G̃0N0

−F̃1N2−G̃1N1

−F̃2N3−G̃2N2
...

−F̃I−1N I −G̃ I−1N I−1
β (I )Ξu

I (I )



















(3.12)

The left-hand side is a block extension of Mankiw and Reis’s (2007) tridiagonal structure,

readily exploitable numerically. (See Golub and van Loan 1989, p. 170)

As in the case when I = 0, the method here provides a linear recursion for the infinite

MA coefficients for j ≥ I . So long as I is finite, the inclusion of lagged expectations extends

standard solution methods by a sparse system of equations for all coefficients up to I .

Standard state-space methods, however, would extend the state space with dummy variables

to capture the effects of lagged expectations.

7Where Ξu
j (I ) is given by (3.36), see 3.A to compare with the solution from section 3.3.1.
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3.3.3 Case 3:I →∞

Unlike the previous two cases, (3.7) cannot be reduced to a linear recursion with constant

coefficients for j ≥ I . Assuming that (where l and m denote row and column)

lim
j→∞

�

M̃ j

�

l ,m
=
�

M̃∞
�

l ,m
, for M = A, B ,C , F,G ; and ∀l ,m (3.13)

exists and is finite, then there exists, by the definition of a limit in R1, some I (δ)M ,l ,m for each

M , l , and m , such that

∀δ> 0, ∃I (δ)M ,l ,m s .t . n > I (δ)M ,l ,m ⇒ |
�

M̃ n

�

l ,m
−
�

M̃∞
�

l ,m
|<δ (3.14)

and, thus, there exists some maximal I (δ)m ax =m ax {I (δ)M ,l ,m } such that

∀δ> 0, ∃I (δ)m ax s .t . n > I (δ)m ax ⇒ |
�

M̃ n

�

l ,m
−
�

M̃∞
�

l ,m
|<δ; ∀M , l ,m (3.15)

Therefore, (3.7) can be approximated as

0= Ã jΘj+1+ B̃ jΘj + C̃ jΘj−1+ F̃j N j+1+G̃ j N j , 0≤ j < I (δ)m ax (3.16)

0= Ã∞Θj+1+ B̃∞Θj + C̃∞Θj−1+ F̃∞N j+1+G̃∞N j , j ≥ I (δ)m ax (3.17)

This system is now analogous to the system in the previous section where I now equals

I (δ)m ax and can be solved using the methods presented there.

The main distinction is that the autonomous recursion is defined by the limiting

coefficients (I → ∞) and not by the finite I = I (δ)m ax coefficients. As the behavior of the

system in the limit is decisive for the application of (3.3) to ascertain whether additional

restrictions to determine the system exist, the use of coefficients other than those of the

limiting case can produce spurious results regarding asymptotic stability.

The existence and uniqueness of the stable manifold now depends on the eigenvalues

of the system of these limiting coefficients. The assumption of element-wise limits in
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the coefficient matrices rules out the possibility of asymptotically periodic coefficients and

ensures that any desired degree of accuracy, through an appropriate choice of δ, can be

achieved without endangering the asymptotic behavior of the recursion.

3.3.4 A Recursive Law of Motion

For a recursive law of motion, the infinite-MA solution can be rewritten as

Yt =

∞
∑

j=0

Θjεt−j =

I−1
∑

j=0

Θjεt−j +

∞
∑

j=I

Θjεt−j (3.18)

Assuming the MA coefficients of the exogenous process Wt follow the simple recursion N j+1=

N N j with all eigenvalues of N less than or equal to g u ,8 a recursive law of motion can be

derived as all MA coefficients after I follow an autonomous recursion.9 From equations (3.11)

and (3.36), as well as Klein (2000, p. 1423),

Θj =α(I )Θj−1+β (I )M (I )N
j , j ≥ I (3.19)

where v e c (M (I )) = (N ′⊗S22(I )− I ⊗T22(I ))
−1 v e c

�

Q2(I )

�

F̃I N +G̃ I

0

��

.

Defining Ut =
∑∞

j=I
Θjεt+I−j , the solution with a VAR(1) exogenous process is

Yt =

I−1
∑

j=0

Θjεt−j +Ut−I

Ut−I =α(I ) (Ut−I−1+ΘI−1εt−I )+β (I )M (I )N
I Wt−I

Wt =N Wt−1+εt (3.20)

with Ut−I being the same as E t−I [Yt ]. Note that if I = 0, the foregoing reduces to

Yt =α(0)Yt−1+β (0)M (0)Wt

Wt =N Wt−1+εt (3.21)

a standard form for the recursive law of motion.
8I.e., Wt is a stable VAR(1) process.
9Recalling from the foregoing section that I = I (δ)m ax with infinitely lagged expectations.
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3.4 The Perils of Premature Truncation

Solving linear rational-expectations models when many lagged expectations appear in the

structural equations generally entails a truncation of the number of lagged expectations

included in the model. In this section, I shall explore the implications of two methods of

truncation to show that truncation is not generally innocuous.

The sticky-information model of Mankiw and Reis (2002), incorporating an infinite sum

of lagged expectations, has presented the literature with an alternative to the sticky-price

Phillips curve. Andrés, López-Salido, and Nelson (2005), Keen (2007), and Wang and Wen

(2006) are a few examples of models that combine forward-looking agents and an infinity

of lagged expectations: all of them truncate this infinity with the truncation point ranging

from 3, Andrés, López-Salido, and Nelson (2005), to 50, Wang and Wen (2006). Kiley (2007,

p. 112) compares sticky prices and sticky information empirically and notes,“ [i]n practice,

the longest information lag is truncated at four quarters.” Using a truncated version to draw

inference on the infinite specification requires that the former yield results that do not differ

substantially from the latter. The methods in the previous section allow for a clear picture (to

machine precision) of the infinite specification, allowing for the assessment of the generally

arbitrary truncations found in the literature. These arbitrary truncations can distort the

dynamics of the model, even to an extent apparent by visual inspection.

The sticky-information Phillips curve of Mankiw and Reis (2002) is10

πt =
λα

1−λ
yt +λ

∞
∑

j=0

(1−λ)j E t−j−1
�

πt +α∆yt

�

(3.22)

with πt , ∆yt , and yt being the gross inflation rate, the growth of the output gap, and the

output gap itself. Equation (3.22) is the sticky-information Phillips curve and, as it is the

only equation here to contain lagged expectations, will be the focus of the examination of

10The system is closed by an AR(1) process for the growth of money and the quantity equation in first-
difference form.
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the consequences of truncation. Note that this model does not contain any forward-looking

variables. As Mankiw and Reis (2002) show, this allows the MA coefficients to be solved for

directly. This yields an analytical solution that facilitates comparison of truncation methods.

Andrés, López-Salido, and Nelson (2005, p. 1033) note that to make the model tractable,

“[they] approximate it by truncating [lagged expectations in the Phillips curve] at three

quarters.”11 Using this truncation12 alters equation (3.22) to

πt =
λα

1−λ
yt +λ

3
∑

j=0

(1−λ)j E t−j−1
�

πt +α∆yt

�

(3.23)

Kiley (2007, p. 112) follows a different truncation technique and states, “the probabilities

of information arrival are constant in each period up to the truncation period, with the

remaining mass of the probability distribution placed on the last period.” Following this

truncation, equation (3.22) is rewritten as

πt =
λα

1−λ
yt +λ







2
∑

j=0

(1−λ)j E t−j−1
�

πt +α∆yt

�

+
(1−λ)3

λ
E t−4
�

πt +α∆yt

�






(3.24)

Figure 3.1, clockwise from the upper-left panel, shows the impulse responses of inflation

to a negative shock to the money growth rate, the impulse responses of the output gap to

the same, the cross-correlations of the output gap with contemporary inflation, and the

autocorrelation of inflation for the two approximations and the original specification of

Mankiw and Reis (2002).13 As the model does not contain any forward-looking behavior, the

initial responses of inflation and the output gap are the same in all three versions. The second

truncation, equation (3.24), displays a sharp jump in the response of inflation four periods

11Note that Andrés, López-Salido, and Nelson (2005, p. 1038) interpret the parameter for the probability of the
arrival of new information according to the non-truncated version and concludes that its estimated value “leads
to an average duration slightly higher than six quarters” despite their truncation point.

12I extend the truncation point to four quarters as in Kiley (2007) for comparability.
13The solutions in this section not labeled as a truncation are implemented using the method developed here

with δ (see section 3.3.3) set to floating point accuracy. This level of tolerance implies that the computer is no
longer capable of distinguishing between the autonomous recursion from the limiting coefficients and the non-
autonomous recursion continued past I (δ)m ax , see equation (3.16). As an anonymous referee pointed out, the
results derived thusly for Mankiw and Reis’s (2002) model are indistinguishable from their original results.
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(a) Impulse Response of Inflation to a
Shock in Money Growth
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(b) Impulse Response of the Output Gap to
a Shock in Money Growth
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(c) Autocorrelation of Inflation
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(d) Cross-correlation of the Output Gap at
t + j with Inflation at t

Figure 3.1: Consequences of Truncation in the Model of Mankiw and Reis (2002); Solid Line - Method
Here, Dashed - Truncation Type 1, Dotted - Truncation Type 2

after the shock, due to the large weight attached to lagged expectations at this horizon.

Neither of the truncations can reproduce the maximal response of inflation at seven quarters.

The impulse response of the output gap shows the transition of the rate of convergence

of the output gap from the first truncation, equation (3.23), to the second. The second

truncation underestimates the cross-correlation of the output gap with inflation and the

autocorrelation of the latter. The first specification matches the autocorrelation of inflation

within the displayed horizon remarkably well, though it misses the horizon of the lead of the

output gap in the cross-correlation.
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When forward-looking behavior is added to the model, responses will depend on future

trajectories. The first example of Wang and Wen (2006) will serve to illustrate the issue.

They present a simple model with sticky information and monopolistic competition on the

supply side (leading to a sticky-information Phillips curve) and capital accumulation, a cash-

in-advance constraint, bond holdings, and labor and consumption decisions maximized

intertemporally on the demand side.
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(a) Impulse Response of Inflation, θ = 0.8

−2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Years since Shock Realization

%
 D

ev
ia

tio
ns

 f
ro

m
 S

te
ad

y−
St

at
e

 

 

(b) Impulse Response of Marginal Costs,
θ = 0.8
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(c) Impulse Response of Inflation, θ = 0.9
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(d) Impulse Response of Inflation, θ = 0.95

Figure 3.2: Consequences of Truncation (I=20) in the First Model of Wang and Wen (2006); Impulse
Responses to a Shock in Money Growth; Solid Line - Method Here, Dashed - Truncation
Type 1, Dotted - Truncation Type 2

Using the truncations presented above, the first row of figure 3.2 shows the impulse

responses of inflation and marginal costs, replacing the output gap in (3.22), to a positive
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unit innovation in the money growth rate. Both truncation methods14 fail to match the peak

response of inflation, with responses differing now both before and after truncation. The

impulse responses of marginal costs demonstrate similar short-comings.

Wang and Wen (2006, p. 10) note, for their sticky-information model, that a truncation

point of 20 provides “very good results.” Trabandt (2007) draws the same conclusion in his

model—though with an explicit convergence criterion, see section 3.5. There is, of course,

nothing intrinsically special about a truncation point of 20. The second row of figure 3.2 shows

the consequences of the two truncation methods with truncation points of 20 for the impulse

response of inflation to a shock in money growth in the sticky-information model of Wang

and Wen (2006) when θ 15 is increased from 0.8 to 0.9, figure 3.2c, and to 0.95, figure 3.2d.

Both truncations miss the peak response of inflation and either over- or underestimate the

autocorrelation of inflation.

Mankiw and Reis (2007) analyze a DSGE model with pervasive inattention. Their

aggregate supply curve is given in terms of the price level instead of inflation:

p t =λ

∞
∑

j=0

(1−λ)j E t−j

�

p t +x t

�

(3.25)

where p t is the price level and x t is a composite term comprising real marginal costs and

desired markups. In their appendix, they show that the price level displays unit-root behavior

in the limit. Figure 3.3 shows the impulse response of the price level to a shock in aggregate

demand for the two truncation types with differing truncation points. Notice that first type of

truncation fails to deliver the unit root, whereas the second type does not. Examining (3.25),

if the infinite sum is simply truncated (i.e., type-one truncation) without correcting for the

remaining probability mass (i.e., type-two truncation), the supply curve would imply a long-

run relation between the price level and the composite term. As both real marginal costs and

desired markups are stationary, this forces the price level itself to become stationary. Using

14Again, truncation is imposed at four quarters.
15Their equivalent to 1−λ from (3.22)—the probability of not receiving an information update.
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type-two truncation delivers the unit root in prices regardless of the truncation point, as the

limiting coefficients which contain the unit root are imposed after truncation. Premature

truncation with the type-two method, however, can still lead to an erroneous new steady state

of the price level.
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Figure 3.3: Impulse Response of the Price Level in the Model of Mankiw and Reis (2007); Truncation
Type 2 (Solid Line - I=100, Dashed - I=10), Truncation Type 1 (Dotted - I=20, Dash-Dotted
- I=10)

Different truncation methods can have different consequences, which themselves might

differ when applied to different models or parameter settings. Both of the truncation methods

presented above, as found in the literature, will converge to the true model as the truncation

point is extended towards infinity. Knowing a priori when and how to truncate would seem

difficult to ascertain. The method presented in this chapter automatically calculates the

truncation point given the tolerance parameter δ. As the setting changes, so too will the

truncation point, eliminating the need for arbitrary truncations or processes of trial and error

to deliver a clear picture of the model’s dynamics.

3.5 Comparison of Solution Methods

In this section, I compare the solution method presented in section 3.3 with three alternate

methods in the literature for solving models with lagged expectations. The method dominates
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all three alternative solution methods in terms of computation time and/or implementation

time on behalf of the user for given error tolerances. In the absence of lagged expectations, the

method here collapses to the method of Klein (2000)16 and a comparison of its performance

with other methods can be found in Anderson (2008).

For the comparison that follows, computation times and relative errors, following Golub

and van Loan (1989, p. 54) and using the Euclidean norm, of impulse responses between the

alternative solution methods and the method here are reported. Trabandt (2007) provides

computation times but his software is not publicly available, so the comparison is restricted to

comparing computation time across platforms. For both Wang and Wen (2006) and Mankiw

and Reis (2007), software is publicly available from the authors’ websites and is used to

compare computation times and calculated impulse responses on the same platform.17

Trabandt (2007) uses the QZ implementation of Uhlig (1999) to solve a model with sticky

information by expanding the state vector. That is, a variable E t−1 [x t ] is modeled by defining

x 1
t−1 = E t−1 [x t ] and adding the additional equation x 1

t
= E t [x t+1]. While this method has

the advantage of using standard methods, it requires the definition of an ever-increasing

state vector by including additional variables and equations. This increases not only the

dimension of the problem but also the programming time, as these lagged expectations must

be manually redefined using additional variables. Notably, Trabandt’s (2007) method is the

only method besides the one presented here that works with an explicit convergence criterion

for imposing truncation. The criterion adds additional lagged expectations one-by-one, re-

solving the model until the solution does not change more than a specified tolerance. While

preferable to an arbitrary truncation, this is computationally expensive compared with the

criterion in section 3.3.3, which determines the truncation point before solving the model,

and it is not clear whether his method can be applied in other settings. Trabandt (2007,

16Or of Anderson and Moore (1985) if the option to solve using AIM is chosen.
17Platform used: Pentium R© IV 3 GHz machine with 2 GB of RAM running MATLAB R© version R2007a under

Windows R© XP 2002 SP 2.



66 CHAPTER 3. SOLVING MODELS WITH LAGGED EXPECTATIONS

p. 18) requires three minutes to solve his model with twenty lagged expectations included;

the method here requires about one-and-a-half hundredths of a second to do the same.

The computational disadvantage of methods based on state-vector expansion is due to

the computation costs associated with a QZ decomposition, a function of the cube of the

state vector. (Golub and van Loan 1989, p. 404) Anderson and Moore’s (1985) AIM method

presents an alternative method and their method generally entails significant reductions

in computation times.18 Mathias Trabandt19 notes that using the AIM method reduces his

computation time to 1.75 seconds. Though an improvement, this is still more than two

orders of magnitude slower than the method developed here. One advantage of the method

presented in this chapter, as with Wang and Wen (2006) and Mankiw and Reis (2007), comes

from its division of the problem into an autonomous and a non-autonomous part. The

dimensions of the autonomous recursion of section 3.3.3 are invariant to the inclusion of

lagged expectations.

Wang and Wen (2006) present a method for solving linear rational-expectations models

with lagged expectations that is similar to the solution presented here in several ways. In

contrast to the method here, however, the authors work directly with a recursion in state

variables and solve for the forecast errors induced by lagged expectations. By approximating

models with lagged expectations reaching back into the infinite past with a finite number

of forecast errors, Wang and Wen (2006) impose the same condition that is imposed in the

method presented here.20 The method in their paper, however, requires the modeler to

reformulate lagged expectations into expectation errors, opening a window for user error.

Furthermore, the combination of the recursion in state variables with forecast errors poses

a more complicated fix-point problem than the tridiagonal problems posed by Mankiw and

18See Anderson (2008, p. 102).
19Personal communication.
20As pointed out by an anonymous referee, the software of Wang and Wen (2006) uses a different method than

presented in their paper, truncating the lagged expectations themselves rather than the expectation errors.
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Reis (2007) working with the innovations representation. The fix-point problem seems to limit

Wang and Wen’s (2006) method in terms of accuracy and is also a likely culprit for the rather

excessive increase in computation time as nl a g , the authors’ parameter for the number of

lagged expectations included, is increased.
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(a) Solid Line - Method Here (QZ), Dotted -
Wang and Wen (2006)
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(b) Solid Line - Method Here (QZ), Dashed
- Method Here (AIM), Dotted Mankiw
and Reis (2007)

Figure 3.4: Computation Time versus Accuracy, Log Scale

In figure 3.4a, for varying values of δ (see section 3.3.3) and nl a g , the computation

time and relative errors associated with the first example in Wang and Wen’s (2006) paper

are compared. The relative errors contrast the impulse responses of the model’s variables

to a shock to the rate of money growth with varying truncation points against the impulses

obtained when using δ equal to floating-point accuracy and nl a g = 252. This value of nl a g

is used, as Wang and Wen’s (2006) method required more than one hour with this value to

calculate the solution. As can be seen in the figure, the method proposed here solves the

model for a given relative error at least 100 times more quickly than the method of Wang and

Wen (2006).

The methods proposed by Trabandt (2007) and Wang and Wen (2006) differ subtly.

Wang and Wen (2006) propose a solution for a finite number of lagged expectation errors,

whereas Trabandt’s (2007) algorithm applies to a finite number of lagged expectations. When
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a truncation is necessary, Trabandt’s (2007) solution is equivalent to (3.23) and Wang and

Wen’s (2006) to (3.24).21 Truncating the lagged expectations themselves does not preserve the

asymptotic qualities of the recursion. The methods proposed by Wang and Wen (2006) and

implemented by this chapter, by contrast, do preserve these asymptotic qualities. Although,

in the limiting case when the truncation points go to infinity, all three approaches are

theoretically equivalent, a method that preserves these asymptotic qualities would seem more

appropriate for numerical application.

Mankiw and Reis (2007) develop a solution method from the MA representation that

differs in two major respects from the method presented here. Firstly, they reduce the

problem to a univariate second-order non-autonomous difference equation. Secondly,

Mankiw and Reis (2007) solve the model by imposing a boundary condition prematurely (i.e.,

in finite time). Reducing the system to a scalar system requires considerable work on behalf of

the modeler and, as such, is liable to user error. Furthermore, it is not clear that every model

can be reduced to a scalar second-order difference equation and, absent such a reduction, it

is not obvious that all the boundary conditions ought to be imposed at the same point. The

method developed here neither requires manual reduction nor does it impose a univariate

structure. Both the method of Mankiw and Reis (2007) and the method here exploit readily

available and fast implementations of Gaussian elimination to solve a (block) tridiagonal

system. That the autonomous recursion consistent with the limiting coefficients is imposed

instead of the boundary conditions themselves allows fewer non-autonomous coefficients to

be added to achieve a given relative error.

In figure 3.4b, for varying values of δ (see section 3.3.3) and N , the authors’ parameter

for the number of MA coefficients included before the boundary conditions are imposed,

the computation time and relative errors associated with solving the model in Mankiw and

21The method actually implemented by Wang and Wen (2006) in their software, however, is equivalent to
(3.23), see footnote 20.
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Reis (2007) are compared. The method of this chapter entirely avoids the several pages of

“tedious algebra” from the technical appendix of Mankiw and Reis (2007) to arrive at their

solution. That Mankiw and Reis’s (2007) method solves the model more quickly than the

method presented here for large relative errors is likely due to the initial fixed costs of the

higher level of generality of the method here. The method presented in this chapter, however,

requires a smaller increase in computational time for a given increase in the level of accuracy;

at some level of accuracy, the method here surpasses that of Mankiw and Reis (2007) in

terms of computation time. Numerical limitations on the QZ decomposition, as discussed by

Anderson (2008, p. 103), can be reduced by solving for the limiting recursion using Anderson

and Moore’s (1985) AIM method, as can be seen in figure 3.4b. Less than two seconds are

needed to solve the model using the convergence criterion δ = e p s (0), including thrice as

many lagged expectations in half as much time. As the method derived here is not model

specific and does not require any manual reformulation on behalf of the user, it appears to be

at an advantage.

When the model to be analyzed possesses no lagged expectations, the method here fits

within the class of solution methods used throughout the literature. For models with lagged

expectations, the method derived in this chapter is superior to current models with respect

to computation and/or implementation times. The method here is non-model-specific and

can be readily applied to existing and new DSGE models both with and without lagged

expectations efficiently.

3.6 Likelihood Estimation

The use of Bayesian likelihood methods to explore the unknown posterior distribution of

DSGE models’ parameters given the data and the researcher’s prior beliefs has been gaining

popularity. (See An and Schorfheide, (2007), for an overview) The iterative nature of the
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methods highlights the advantages of having a fast solution method: the solution will need

to be recalculated thousands if not millions of times.

One difficulty in implementing likelihood methods, aside from the calculation of a

recursive solution as presented in section 3.3, lies in the evaluation of the likelihood func-

tion. The Kalman filter, frequently used to obtain a prediction error decomposition of the

likelihood function, is undesirable here. Using the Kalman filter would require the state

space of the recursive laws of motion in section 3.3.4 to be expanded to accommodate a first-

order form. The resulting recursion would calculate products and inverses on a dimension

equal to the expanded state space. An alternative approach is developed here based on the

Toeplitz structure of the covariance of stationary time series to yield an iterative method for

evaluating the likelihood function by treating the sample as a single draw from a multivariate

normal distribution.22 It should be noted that as the standard model (i.e., without lagged

expectations) is included as a special case of the class of models considered here, the method

can be used as an alternative to the Kalman filter for the likelihood estimation of standard

DSGE models.23

The recursive laws of motion in section 3.3.4 will provide the basis for estimation.

The block-Levinson-type algorithm in 3.B relies on there being a stationary innovations

representation of the observables as discussed in Anderson and Moore (1979, Ch. 9), so I

restrict the eigenvalues of α(I ) and N in the recursive law of motion (3.20) to lie inside the

unit circle. Given this assumption of stationarity and that of n ≥ p mean-zero, serially

independent, normal innovations εt , T observations on X t , a p × 1 linear function of Yt

given by X t = HYt , are normally distributed with mean zero and non-singular block Toeplitz

22Similarly to Leeper and Sims (1994), though the authors truncate their calculations. Additionally, details on
the algorithm are provided here to make it more accessible to the literature.

23Whether or under what conditions this would actually be desirable remains a subject of future research. In a
preliminary work, Schmitt-Grohé and Uribe (2007) express the likelihood of a standard DSGE model in a format
compatible with this section - but without guidance as to how it might be evaluated numerically.
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covariance matrix

Ψ=













Γ0 Γ′1 . . . Γ′T−2 Γ′T−1
Γ1 Γ0 . . . Γ′T−3 Γ′T−2
...

.. .
...

ΓT−2 ΓT−3 . . . Γ0 Γ′1
ΓT−1 ΓT−2 . . . Γ1 Γ0













(3.26)

where Γk is the k th autocovariance matrix given by E
�

X t X ′t−k

�

= E
�

X t+k X ′
t

�

.24

The log-likelihood of a vector of underlying parameters ϑ given the data is thus

L (ϑ|X ) =−0.5p T l n (2π)−0.5l n (d e t (Ψ(ϑ)))−0.5X ′Ψ(ϑ)−1X (3.27)

where X = [X ′1X ′2...X ′T ]
′.

If a prior density P (ϑ) for the underlying parameters is given, the log of the posterior

density of the underlying parameters given the data is

l n (P (ϑ|X ))∝L (ϑ|X )+ l n (P (ϑ)) (3.28)

Given (3.26) andP (ϑ), only two potentially challenging quantities need to be calculated:

l n (d e t (Ψ(ϑ))) and X ′Ψ(ϑ)−1X . 3.B provides details of the recursive algorithm used to

calculate these two quantities. The algorithm incorporates the calculations into Akaike’s

(1973) iterative method for the inversion of block Toeplitz matrices. Neither Ψ nor its inverse

is either stored or calculated in full and the dimensions of the calculations are invariant to the

size of the underlying state space.

All that remains, then, is a method of deriving the sequence of autocovariance matrices

needed for the likelihood calculations. Under the stationarity assumptions, (3.20) can be

rewritten using the lag operator L as

Yt =
�

Θ (L)+ (Ik −αL)−1
�

αΘI−1+βM N I (In −N L)−1
�

L I
�

εt

Wt = (In −N L)−1εt (3.29)

24See Hamilton’s (1994, pp. 261–262) equations 10.2.1 and 10.2.2.
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whereΘ (L) =
∑I−1

j=0Θj L j , Ik and In are k×k and n×n identity matrices, andα, β , and M refer

to α(I ), β (I ), and M (I ).25 Thus, the autocovariance-generating function of X t = HYt is given

by

GX (z ) =H
�

Θ (z )+ (Ik −αz )−1
�

αΘI−1+βM N I (In −N z )−1
�

z I
�

Ω (3.30)

×
h

Θ

�

z−1
�

+
�

Ik −αz−1
�−1
�

αΘI−1+βM N I
�

In −N z−1
�−1
�

z−I
i′

H ′

whence the spectrum (Hamilton 1994, pp. 268–269) and, through an inverse Fourier trans-

form, the autocovariance matrices can be calculated. (Uhlig 1999, p. 49)

3.7 Estimating Sticky Information and Sticky Prices

A simple example will illustrate the estimation method.26 As a baseline, consider the following

basic New Keynesian model27

πt =
1−λ
λ

�

ξyt +w
p c
t

�

+(1−λ)
∞
∑

j=0

λj E t−j−1

�

πt +ξ∆yt +∆w
p c
t

�

(3.31)

yt = E t

�

yt+1
�

+a 1 (Rt − E t [πt+1])+w i s
t

(3.32)

Rt =φR Rt−1+
�

1−φR

�
�

φππt +φy yt

�

+w
m p
t (3.33)

where πt denotes inflation, yt the output gap and Rt the nominal interest rate. The first

equation is Mankiw and Reis’s (2002) sticky-information Phillips curve, the second a standard

dynamic IS-curve derived from the Euler equation associated with household intertemporal

optimization, and the third a Taylor rule with interest rate smoothing. w
p c
t and w i s

t
are AR(1)

25It is to be understood here and in the following that all matrices are potentially functions of the underlying
parameters ϑ.

26Comparing estimation methods and results for sticky information from the literature is beyond the scope of
this chapter- The interested reader is directed to the overview provided by Reis (2009, pp. 18–19).

27See Trabandt (2007) for a first principles’ derivation; here, monetary policy is defined here through control
of the nominal interest rate and a markup shock has been added to the Phillips curve.
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processes with persistence parameters ρp c and ρi s and innovation variances σ2
p c

and σ2
i s .

w
m p
t is serially uncorrelated with variance σ2

m p
. All three of the exogenous processes are

assumed to be mutually independent and normally distributed.

The parameters outside the exogenous processes are λ the probability for price setters

of not receiving an information update, ξ the degree of strategic complementarities in price

setting, a 1 whose inverse for the purposes here can be interpreted as the coefficient of relative

risk aversion, φR the degree of interest rate smoothing, φπ the degree of inflation targeting,

andφy the degree of output-gap targeting.

Two additional variants of the model will also be estimated. First, a version of (3.31) trun-

cated according to the first type of truncation in section 3.4 after three lagged expectations,

following Andrés, López-Salido, and Nelson (2005, p. 1033). Second, a sticky-price model will

also be estimated, replacing (3.31) with the sticky-price Phillips curve

πt =
(1−λ)
�

1−βλ
�

λ

�

ξyt +w
p c
t

�

+βE t [πt+1] (3.34)

where λ now refers to the probability for price setters of not being able to update their prices

and β the discount factor. (E.g., Woodford, (2003b)) As the latter is present only in the sticky-

price model, it is fixed at 0.99 and not included in the estimation procedure. The baseline

version uses the solution method from section 3.3.3 with the tolerance parameter δ set to

1e-5 and the truncated variant and sticky-price model will serve the investigation of the

importance of sticky information and lagged expectations.

The priors used are identical in all specifications, coincide primarily with those found

in Smets and Wouters (2007), and can be found in table 3.1. λ is centered at 0.5, implying

an average information or price update every two quarters; the mean of ξ is set at 0.25,

conservative with respect to the value set by Mankiw and Reis (2002) and those discussed

by Woodford (2003b, Ch. 3), and is restricted to imply strategic complementarities;28 and a 1

28As noted by Keen (2007), this is not a wholly innocuous assumption, as the hump-shaped behavior of
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is set with mean one (log utility) and a wide variance.

The data used is taken from Smets and Wouters (2005) for the United States for 1970:1-

2002:2. The observables are: the effective federal funds rate expressed on a quarterly basis

(Rt ), 100 times the log difference of the implied deflator of GDP (πt ) and the HP-filtered series

of 100 times the log of real GDP divided by the civilian population over 16 (yt ). All series are

demeaned.

The estimation procedure follows the Random-Walk Metropolis Algorithm from An and

Schorfheide (2007, p. 131) with the likelihood evaluated with the algorithm in section 3.6

instead of the Kalman filter. For each model following Mankiw and Reis (2007), I generate

five chains of 50,000 draws discarding the first 30,000. This gives, for each model, a total of

250,000 draws calculated and 100,000 draws kept and mixed after checking the chains for

convergence.29 The truncation point varies in the baseline model with the minimum and

maximum over all the draws being 17 and 184, respectively.

The algorithms presented here are able to obtain these 250,000 draws in just under seven

hours for the baseline sticky-information model, requiring less than one-tenth of a second

to solve the model, calculate the sequence of autocovariance matrices, and calculate the

log-likelihood for each draw. These seven hours were split roughly equally between these

three operations. Obtaining the draws for the sticky-price model required five hours. More

computational time is required with lagged expectations, but not prohibitively so.

The differences in terms of computation times presented in section 3.5 are starkly

highlighted by the estimation example here. From section 3.5, the method of, e.g., Wang and

Wen (2006) is two orders of magnitude slower than the method of this chapter. This would

translate to well over a week to replicate the estimation and, as the computation time required

inflation in Mankiw and Reis (2002) disappears if price-setting decisions are strategic substitutes. See Woodford
(2003b, Ch. 3) for a defense of the assumption of strategic complementarities in price setting.

29The chains for the truncation did not appear to have converged. The covariance matrix was recalculated
using the 100,000 draws and five new chains that indicated convergence were generated.
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by their method increases quickly in the truncation point, likely much longer. Trabandt (2007,

p. 22), in a robustness exercise, recalculates his solution for some 5,000 draws from uniform

parameter spaces and notes that “somewhat more than two weeks” are required. When facing

such computational burdens, the option of truncating after just a few lagged expectations

would seem appealing. However, as the comparison of the baseline results with those from

the truncated model will show, this can bias the estimates and is, with the methods here,

unnecessary.

As was shown in section 3.4, the accuracy of a truncation can deteriorate as λ is

increased. The methods provided in this chapter automatically adjust the truncation point

as needed based on the tolerance parameter. Estimating the truncated model with a higher

but still fixed truncation point might still be inaccurate for some parameter combination,

producing an erroneous likelihood calculation; and might use too high a truncation point for

other combinations, unnecessarily burdening the computations.

The estimates can be found in table 3.1. The data is generally informative about the

parameters, the main exception being ξ. The primary differences between the two sticky-

information models occur in the estimates in the Phillips curve: λ,ρp c , andσp c . This is not at

all surprising given the potentially altered persistence of variables due to truncation, as shown

in section 3.4, and that it is the Phillips curve that is being truncated here. The priors and

posteriors under the three specifications can be found in figure 3.5 for these parameters. The

posterior mean of the truncated model implies that firms, on average, receive an information

update about once every four quarters, whereas the estimate in the baseline model is about

once every three quarters. The posterior distribution of truncated model is skewed to the

right with many accepted draws with a high degree of information rigidity; exactly the region

for this parameter where the truncation is most likely to give inaccurate results. Truncation

induces varying degrees of inaccuracy as different regions are explored by the estimation

procedure.
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Table 3.1: Priors and Posteriors of Parameters

Prior Posterior (Baseline) Posterior (Truncation) Posterior (Sticky Prices)

Type Mean Std. Mean 5% Median 95% Mean 5% Median 95% Mean 5% Median 95%

λ B 0.5 0.2 0.69 0.63 0.69 0.75 0.76 0.67 0.76 0.85 0.74 0.66 0.75 0.81
ξ B 0.25 0.05 0.23 0.16 0.22 0.31 0.25 0.17 0.24 0.33 0.22 0.14 0.22 0.30

1
a 1

N 1 0.75 3.40 2.60 3.38 4.27 3.39 2.57 3.37 4.26 3.49 2.70 3.48 4.33

φπ N 1.5 0.125 1.32 1.16 1.32 1.49 1.31 1.14 1.31 1.48 1.33 1.16 1.33 1.50
φy N 0.125 0.05 0.25 0.18 0.25 0.31 0.25 0.19 0.25 0.32 0.26 0.19 0.26 0.32
ρi s B 0.5 0.2 0.88 0.84 0.89 0.93 0.88 0.82 0.88 0.94 0.84 0.78 0.84 0.89
ρp c B 0.5 0.2 0.76 0.72 0.76 0.81 0.81 0.75 0.81 0.87 0.88 0.82 0.88 0.94
ρR B 0.5 0.2 0.76 0.72 0.76 0.80 0.77 0.72 0.77 0.81 0.78 0.73 0.78 0.81
σεi s G−1 0.1 2 0.16 0.12 0.16 0.21 0.16 0.11 0.16 0.22 0.20 0.15 0.20 0.27
σε

p c
G−1 0.1 2 0.66 0.49 0.64 0.89 1.03 0.62 0.95 1.74 0.52 0.23 0.49 0.94

σε
m p
G−1 0.1 2 0.27 0.24 0.26 0.30 0.26 0.24 0.26 0.30 0.26 0.24 0.26 0.29

Log Marginal Data Density -230.398 -234.0005 -233.1548

Note: Data comprises 1970:1-2002:2; N - Normal,B - Beta, G−1 - Inverse Gamma; Std. - Standard Deviation; The effective prior is truncated at the

determinacy boundary and appropriately normalized. The log marginal densities are calculated using Geweke’s (1999) modified harmonic mean with

the 100,000 posterior draws.
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(b) Prior and Posterior Densities of ρp c
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(c) Prior and Posterior Densities ofσp c
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(d) Prior and Posterior Densities of ρi s
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(e) Prior and Posterior Densities ofσi s

Figure 3.5: Selected Priors and Posterior Densities; Solid - Prior, Dashed - Baseline Model, Dotted -
Truncation, Dash-Dotted - Sticky Prices

The notable differences in the estimates for the sticky-price model are ρi s and ρp c , with

the sticky-price model placing more persistence into the PC shocks and less into the IS shocks.

The priors and posteriors for these parameters are shown in figure 3.5. The estimate of λ
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implies that firms update their prices once every four quarters on average.

Overall, the posterior estimates for all three specifications are similar. Relative risk

aversion, the inverse of a 1, is consistently estimated to be about 3.4, between the estimates of,

say, Rabanal and Rubio-Ramirez (2005) and Smets and Wouters (2005). The degree of interest-

rate smoothing is consistent with the estimates of Smets and Wouters (2005) and Clarida, Galí,

and Gertler (2000), with the elasticities with respect to inflation and the output gap within

standard estimates. The models predict a degree of persistence in the exogenous processes

similar to Rabanal and Rubio-Ramirez (2005), but without any of near unit-roots in Smets and

Wouters (2005) or Smets and Wouters (2007).

Turning to the second moments, the autocorrelations of inflation, the output gap, and

the nominal interest rate can be found in figure 3.6. The baseline sticky-information model

fairs best, but not appreciably so, in replicating the autocorrelations of inflation and the

output gap, but substantially overestimates the autocorrelation of the nominal interest rate.

The truncated sticky-information and sticky-price models deliver very similar results in this

dimension. In terms of the cross-correlations, only the baseline sticky-information model

replicates the observed lead of the output gap over inflation, with the truncated and sticky-

price models failing to generate the hump shape in the cross-correlelogram. The sticky-price

model is the only model that generates the negative correlation between current inflation

and future output gaps, but it maintains this prediction at all horizons. All three models

replicate the shape of the the cross-correlelogram of inflation and the nominal interest rate,

but the baseline model overestimates the degree of cross-correlation throughout. Both the

baseline and the truncated sticky-information models do a reasonable job replicating the

cross-correlation of the output gap with the nominal interest rate, but they miss the negative

lead of the interest rate over the output gap. The sticky price model predicts much less

correlation than is found in the data.
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(a) Autocorrelation of Inflation
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(b) Cross-correlation of Inflation at t + j

with the Output Gap at t
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(c) Autocorrelation of the Output Gap
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(d) Cross-correlation of Inflation at t + j

with the Nominal Interest Rate at t
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(e) Autocorrelation of the Nominal Interest
Rate
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(f) Cross-correlation of the Output Gap at
t + j with the Nominal Interest Rate at
t

Figure 3.6: Selected Empirical and Posterior Statistics; Solid - Data, Dashed - Baseline Model, Dotted -
Truncation, Dash-Dotted - Sticky Prices
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(a) Impulse Response - Baseline Model
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(b) Impulse Response - Truncation
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(c) Impulse Response - Sticky Prices

Figure 3.7: Impulse Responses of Inflation to a Unit IS Shock; Heavier Weighted Lines - Evaluated at
the Posterior Mean, Lighter Weighted Lines - 10% and 90% Bounds on the Credible Set of
Impulse Responses

The source of the lead of the output gap over inflation can be seen in figure 3.7, the

impulse response of inflation to a unit IS shock. In the baseline model, the maximal impact

of a demand shock on inflation occurs about eight quarters after impact.30 With truncation

after three lagged expectations, the truncated model is not even capable of creating such

a delay despite the higher degree of information persistence implied by its estimates. The

posterior estimates put the maximal response on impact of the shock and the upper bound

of the credible set displays a sharp peak at the truncation point, a visual cue to a distortive

truncation. The internal propagation method of the sticky-information model relies on the

30The maximal response of the output gap for all three specifications occurs on impact.
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moving average terms generated by the lagged expectations. On impact of the shock, those

firms receiving an information update set their pricing plans realizing that as time progresses

more firms will become aware of the persistent shock—it is the interplay between the shock’s

persistence and the degree of information rigidity that produces the hump shape. Instead of

front-loading future desired price increases, as in the sticky-price model, firms fix a plan for

future prices given current information. In the truncated model, current information includes

the fact that inflation will begin returning to its zero steady-state at an exponential rate after

the truncation point, severely limiting the potential inertia in inflation.
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(b) The Output Gap
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(c) The Nominal Interest Rate

Figure 3.8: Impulse Responses to Unit Shocks in the Baseline Model; Solid - IS, Dashed - PC, Dotted -
MP; Evaluated at the Posterior Mean

Apart from the IS shock, all three models display qualitatively identical impulse re-

sponses; the impulse responses for the baseline model can be found in figure 3.8. The
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maximal response of inflation to a monetary shock occurs on impact. All three models are

unable to reproduce the hump-shaped responses to a monetary shock with output leading

inflation as found by Christiano, Eichenbaum, and Evans (2005). As Coibion (2006) shows,

the hump-shaped response of inflation to a monetary shock in the sticky-information model

found by Mankiw and Reis (2002) is sensitive to whether monetary policy is defined over

the money supply or the nominal interest rate. In their model with pervasive information

stickiness, Mankiw and Reis (2007) find that a monetary shock can produce a hump-shaped

response of inflation even under an interest-rate rule. As Reis (2009) illustrates, however, this

requires substantial persistence in the monetary shock itself, and a much greater degree of

interest-rate smoothing than was estimated would be needed here.31 The failure to reproduce

the hump shapes should not be taken as too serious a failure, as Christiano, Eichenbaum, and

Evans (2005, pp. 2–3) note that wage rigidity is the critical nominal friction and the inclusion

of variable capital utilization is crucial for this result—neither of which are present in the

estimated models. Trabandt (2007) notes that Mankiw and Reis’s (2002) monetary shock can

be interpreted as a nominal income shock and, in that sense, the estimates here confirm the

results of Mankiw and Reis (2002), albeit not directly through the monetary shock.

By and large, the baseline sticky-information and sticky-price models agree as to the

relative contribution of shocks in the forecast variances. The variance decompositions can

be found in table 3.2 and the PC shock is the primary driver of inflation, the IS shock of

the output gap, and the MP shock of the interest rate at lower forecast horizons. Through

the high persistence of the PC and IS shocks, the MP shock loses importance as the horizon

is increased. In the sticky-price model, the PC shock is more persistent than the IS shock

and gains importance relative to the latter at higher horizons for the output gap and the

nominal interest rate. In the sticky-information model, the internal propagation of IS shocks

31Though a higher degree of interest-rate smoothing would counteract the momentum in the response to
the other shocks. Likewise for the PC shock, a higher degree of persistence in the exogenous process than was
estimated would produce a humped-shaped response in inflation.
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Table 3.2: Variance Decompositions

Sticky Information (Baseline Model)

Inflation Output Gap Nominal Interest Rate

Horizon IS PC MP IS PC MP IS PC MP

1 8.59 90.68 0.74 90.87 1.33 7.80 8.57 9.86 81.57
(5.1,14) (85,94) (0.4,1.3) (88,93) (0.5,2.5) (5.9,11) (5.8,12) (7.2,12) (77,86)

2 10.03 89.31 0.66 90.59 2.43 6.98 16.98 17.82 65.21
(5.9,16) (83,94) (0.4,1.2) (87,93) (1.1,4.1) (5.2,9.6) (12,23) (13,21) (59,73)

5 16.05 83.46 0.49 88.76 5.61 5.63 36.21 29.41 34.38
(8.6,27) (72,91) (0.3,0.9) (84,92) (3,8.7) (4.1,7.9) (27,46) (22,35) (28,43)

10 28.00 71.63 0.37 86.36 8.58 5.06 51.99 28.86 19.15
(13,47) (53,87) (0.2,0.8) (80,91) (4.6,13) (3.6,7.1) (38,66) (19,40) (14,27)

15 34.03 65.64 0.33 85.68 9.33 4.99 58.94 25.71 15.35
(16,57) (43,84) (0.2,0.7) (79,91) (5,15) (3.6,7) (42,74) (14,39) (10,23)

∞ 36.63 63.06 0.32 85.57 9.45 4.98 62.66 23.51 13.83
(16,64) (36,83) (0.1,0.7) (79,91) (5,15) (3.5,7) (43,80) (11,37) (7.7,21)

Sticky Prices

Inflation Output Gap Nominal Interest Rate

Horizon IS PC MP IS PC MP IS PC MP

1 5.92 93.79 0.29 90.77 1.50 7.73 7.72 10.77 81.52
(2.9,13) (86,97) (0.1,0.8) (87,93) (0.3,3.0) (5.8,11) (5.2,11) (7.1,12) (78,87)

2 5.52 94.24 0.25 89.82 2.94 7.24 14.01 20.34 65.64
(2.6,12) (87,97) (0.1,0.7) (86,93) (1,5.0) (5.5,10) (9.9,20) (14,22) (61,74)

5 4.73 95.08 0.19 85.94 7.80 6.26 24.12 38.90 36.99
(2.1,11) (89,98) (0.1,0.6) (81,91) (3.5,12) (4.7,9.0) (18,33) (28,42) (32,47)

10 4.21 95.64 0.16 81.32 13.06 5.62 26.74 49.08 24.18
(1.8,10) (89,98) (0.0,0.5) (74,89) (6.2,19) (4.1,8.2) (20,39) (35,55) (20,33)

15 4.05 95.81 0.15 79.56 14.99 5.45 26.46 52.05 21.49
(1.7,10) (89,98) (0.0,0.5) (71,88) (7.0,23) (3.9,8) (19,40) (36,60) (17,30)

∞ 3.98 95.88 0.15 78.77 15.84 5.39 25.98 53.44 20.58
(1.5,10) (89,98) (0.0,0.5) (68,88) (7.3,26) (3.8,7.8) (17,41) (36,65) (15,29)

Note: Entries are given in percent. The main entries were evaluated at the posterior mean and may not add up to 100 due to rounding. The entries in

parentheses give the 5% and 95% bounds for the posterior credible set and were calculated cell-by-cell.
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in inflation, and thereby in the nominal interest rate, drives the difference to the sticky-price

model. At the posterior mean, the IS shock is more important relative to the sticky-price

model and its relative importance is increasing as the the horizon is increased. The width

of the credible sets indicate, however, that there is a high degree of variability in this internal

propagation method with results much closer to those of the sticky-price model contained

within the 90% credible set.

Log marginal data densities can be found in the last line of table 3.1. Though not

conclusive, the results are striking, with the ranking of sticky information and sticky prices

reversed by truncation. Although the baseline model reproduced the lead of the output gap

over inflation, it was less successful than the sticky-price model in other dimensions. It is not

surprising that the baseline model does not fare overwhelmingly better than the sticky-price

model in terms of posterior odds. Additionally, the sticky-information model reveals a greater

degree of uncertainty in the dynamics, reflected in the wider credible sets for the responses to

an IS shock and in the variance decompositions.

Truncation can alter the dynamics predicted by a model with lagged expectations and

estimates that try to match these dynamics are vulnerable to making biased inferences. The

estimates here have shown that taking the sticky-information model seriously can lead to a

different assessment of the model’s ability to match the data and that, using the methods

developed here, sticky-information models can be readily analyzed.

3.8 Conclusion

I have derived a method for solving linear rational-expectations models with lagged expec-

tations using standard methods for the autonomous recursion of the MA coefficients and

a sparse block tridiagonal system of equations for the non-autonomous coefficients, thus

combining several known methods into one coherent approach. The method explicitly
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allows for models with lagged expectations reaching back into the infinite past, providing a

formal justification for when and how to truncate based on a convergence criterion. The

method performs favorably in comparison with existing methods, minimizing computing

and preprocessing time, while avoiding the problems associated with an arbitrary truncation.

I have also presented likelihood methods for estimation that avoid the Kalman filter.

This is desirable as lagged expectations makes the state space necessary for the use of the

Kalman filter prohibitively large, negating the gains made with the solution method. The

comparison of simple New Keynesian models with sticky information and prices favored

sticky information marginally with truncation reversing the ordering.

The solution and estimation methods derived here allow researchers to analyze models

with lagged expectations quickly and easily. As such, they should facilitate the further

investigation of models such as the sticky-information model.



Appendix

3.A Application of Klein’s (2002) QZ Method

Use the QZ decomposition to find unitary matrices Q and Z and upper-triangular matrices

S and T such that
�

Q1
Q2

��

0 −A0
I 0

��

Z11 Z12
Z21 Z22

�

= S and
�

Q1
Q2

��

C0 B0
0 I

��

Z11 Z12
Z21 Z22

�

= T . The decomposition

will be arranged such that the first s eigenvalues are those less than or equal to g u , satisfying

(3.3), and the remaining ones, given by the generalized eigenvalues of S22z − T22 following

Klein (2000, p. 1415), are greater than g u . Assuming s = k and Z11 is of full rank,

Ξu
j
=−

∞
∑

k=0

�

T −1
22 S22

�k
T −1

22 Q2

�

F0N j+1+k+G0N j+k

0

�

(3.35)

and, following Theorem 5.1 of Klein (2000, p. 1417) where α=Z21Z−1
11 and β =Z22−Z21Z−1

11 Z12,

this delivers (3.9).

For section 3.3.2, the system (3.8) is replaced by the system (3.10). This yields, analogous

to the foregoing, (3.11), where

Ξu
j
(I ) =−

∞
∑

k=0

�

T22(I )
−1S22(I )
�k

T22(I )
−1Q2(I )
�

F̃I N j+1+k+G̃ I N j+k

0

�

(3.36)

Klein (2000) demonstrates, with a stationary VAR(1) exogenous process, that (3.35) can

be reduced to a geometric sum. To meet the assumption in his appendix, the exogenous

process need not be stationary. To see this, assume that N j+1 =N N j and define

Hk =Φ
k∆N k , Φ= T−1

22 S22, ∆= T −1
22 Q2

�

F̃I N j+1+G̃ I N j

0

�

(3.37)

then Hk+1 = ΦHk N ⇒ v e c (Hk+1) = (N ′⊗Φ)v e c (Hk ). The stability of this recursion is

determined by e i g (N ′⊗Φ) = v e c
�

e i g (N ′)′ e i g (Φ)
�

. As, by definition, |e i g (Φ) | < 1
g u then

|e i g (N ′⊗Φ) | < 1 so long as |e i g (N ′) | ≤ g u . Thus, if the moving-average coefficients of the

exogenous process follow a recursion that itself satisfies the uniform growth restriction, then

(3.35) and (3.36) meet Klein’s (2000) assumption and are well defined.
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3.B Recursive Algorithm for Computing the Log-Likelihood

Akaike (1973) provides a recursive algorithm for inverting block Toeplitz matrices. As

Ψ, defined in (3.26), is additionally symmetric, the first block column contains all the

information necessary for the calculations. Following Akaike (1973, p. 237), define

ΨT =
�

ΨT−1 â T−1
˜̂rT−1 Γ0

�

=
�

Γ0 ã T−1
rT−1 ΨT−1

�

(3.38)

where ˜̂rT−1 = [ΓT−1 ΓT−2 ... Γ1 ], â T−1 = ˜̂r ′T−1, ã T−1 = [Γ
′
1 ... Γ′T−2 Γ

′
T−1 ], rT−1 = ã ′T−1. The inverse of

ΨT can be likewise defined recursively, noting symmetry, as

Ψ−1
T
=

�

Ψ−1
T−1+ ĵT−1s−1

T−1
˜̂i T−1 ĵT−1

˜̂i T−1 sT−1

�

=

�

Ψ−1
T−1+

˜̂i ′T−1s−1
T−1

˜̂i T−1
˜̂i ′T−1

˜̂i T−1 sT−1

�

(3.39)

From Akaike (1973, p. 239), the determinant of Ψ≡ΨT is calculated recursively with

l n (d e t (ΨT )) = l n (d e t (ΨT−1))+ l n
�

d e t
�

s−1
T−1

��

(3.40)

and the quadratic form X ′Ψ−1X ≡ X̃ ′TΨ
−1
T X̃T , using (3.39), with

τT ≡ X̃ ′
T
Ψ−1

T
X̃T = [ X̃ ′T−1 X ′T ]

�

Ψ−1
T−1+

˜̂i ′T−1s−1
T−1

˜̂i T−1
˜̂i ′T−1

˜̂i T−1 sT−1

�

�

X̃T−1
XT

�

where X̃T = [X ′1X ′2...X ′T ]
′. Multiplying out yields

τT=τT−1+X̃ ′T−1
˜̂i ′T−1s−1

T−1
˜̂i T−1X̃T−1+X ′T

˜̂i T−1X̃T−1+X̃ ′T−1
˜̂i ′T−1XT+X ′T sT−1XT (3.41)

Equations (3.40) and (3.41) along with the recursions from Akaike (1973, p. 238)32 provide

a recursive algorithm for calculating the log-likelihood, requiring as input only the data and

the sequence of autocovariances.

32Note that Akaike (1973, p. 238) provides recursions for and using s−1
T ĩ T and q−1

T
˜̂f T . Postmultiplying his

equations 3.18 and 3.20 with ET , defined by his equation 2.2, and redefining his equations 3.23 and 3.24 in

terms of s−1
T

˜̂i T and q−1
T f̃ T provide the necessary recursions.





Chapter 4

A Natural Rate Perspective on Equilibrium Selection

and Monetary Policy

4.1 Introduction

This chapter has two main results. First, in extending the determinacy analysis to Lucas’s

(1972a) natural rate hypothesis (NRH)—the proposition that monetary policy cannot perma-

nently induce a non-zero output gap— following Carlstrom and Fuerst (2002), I establish that

all supply equations that satisfy the NRH for a given demand function yield the same bounds

on determinacy, save isolated singularities. Second, I provide a monetarist interpretation for

the admissibility of Cochrane’s (2007) explosive nominal equilibria; namely that the monetary

authority is accommodating these equilibria with exploding money growth rates.

The first result implies that one can reasonably expect the monetary authority to know

when its interest rate policy will admit many stable equilibria (indeterminacy) or a single

stable equilibrium (determinacy), even if it has no specific knowledge regarding the supply

side beyond that it satisfies the NRH. The analysis attempts to provide the proofs missing from

the general claim of Carlstrom and Fuerst (2002) that there is a one-to-one correspondence

between determinacy in models that satisfy the NRH and their corresponding frictionless

counterparts. Specifically, I prove the necessity of determinacy in the latter for determinacy

in the former, but disprove the sufficiency. Fortunately, the cases of insufficiency can be

characterized as singular parameterizations. Applying the result to the standard dynamic

IS curve with monetary policy defined as any finite linear relationship between the nominal

interest rate, inflation, and the output gap, I prove that indeterminacy is solely a function of

89
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the parameters in monetary policy.

I provide further insight into Cochrane’s (2007) criticism of determinacy as being an arbi-

trary elimination of explosive nominal equilibria by demonstrating that a tenet of the quantity

theory provides support to his critique. Adding a standard money-demand specification, I

find that the explosive paths for inflation are being accommodated by the money supply. I.e.,

the hyperinflationary paths are consistent with the monetarist view that, “sizable changes

in the rate of change in the money stock are a necessary and sufficient condition for sizable

changes in the rate of change in money income,” (Friedman and Schwartz 1963, p. 63) and

thus that monetary restraint is a necessary and sufficient condition for controlling inflation.

(See Nelson and Schwartz (2008, p. 838)) Note that this does not rule out hyperinflation

per se: it rules out hyperinflations that are speculative—i.e., non-fundamental to the money

supply. The alternate, explosive equilibria of Cochrane (2007) are indeed fully valid monetary

equilibria, with the monetary authority increasing the money growth rate exponentially

commensurate with the explosive path for inflation.

The standard sticky-price New Keynesian model with Calvo (1983) contracts is known to

violate the NRH. This violation is “an awkward situation in monetary economics” (Wolman

2007, p. 1366) and contradicts the consensus widely accepted by the late ’70s (Friedman 1977,

p. 459). My first result implies that the standard New Keynesian model’s determinacy results

and violation of the NRH are inextricably linked. This has immediate consequences as deter-

minacy is concerned with the admissibility of multiple short-run equilibria. Determinacy

analyses in standard New Keynesian models1 must either disavow the relevance of their

bounds on monetary policy or defend their models’ violation of the NRH. Additionally, the

sticky-price model’s violation of the NRH actually frees it from Cochrane’s (2007) critique:

nominal explosions go hand in hand with real explosions that Cochrane (2007) admits

1See Bernanke and Woodford (1997), Clarida, Galí, and Gertler (1999), Bullard and Mitra (2002) and Woodford
(2003b), among many others.
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economics can rule out. Yet this result, as it too rests on the violation of the NRH, is dubious.

The main focus for Cochrane’s (2007) analysis, however, is a frictionless model—i.e., a

model that satisfies the NRH in the most extreme sense and that forms the basis for my

determinacy analysis. In this model, pinning down the inflation rate when monetary policy

controls the nominal interest rate requires a particular constellation for the interest rate rule

and the elimination of explosive paths. This constellation is one that ensures determinacy

and, from my first result, these are the same across a class of NRH models with a common

demand specification. Remaining is then the elimination of explosive paths and thusly,

for models that satisfy the NRH, Cochrane’s (2007) critique does apply. The analysis of the

frictionless model is directly applicable as it behaves identically in the long run to the rest of

the class of NRH models, where the uniqueness of a path for real variables (should supply pose

a short-run tradeoff between inflation and output) depends on the uniqueness of a path for

inflation. This coincidence of determinacy follows from the frictionless model being a model

where there is no liquidity effect, only the Fisher effect; and for a model to satisfy the NRH,

the liquidity effect must eventually disappear,2 leaving only the Fisher effect in the long run.

Thus, monetary policy has the same effects in all NRH models in the long run, impacting the

economy only through the Fisher effect, where “high interest rates are a sign that monetary

policy has been easy.” (Friedman 1968, p. 7)

Aside from Cochrane’s (2007) non-Ricardian fiscal solutions along the lines of Benhabib,

Schmitt-Grohé, and Uribe (2001a) and Sims (1994), McCallum (2009b) and Minford and

Srinivasan (2009) have attempted to answer the Cochrane’s (2007) critique. The analysis here

provides an answer similar in vein to Minford and Srinivasan’s (2009) by examining money.

Minford and Srinivasan (2009, p. 15) examine the question illustratively within an unrelated

Cagan model and ultimately “appeal to an optimizing government [...] that sets the inflation

tax” to rule out explosions in inflation. I show this to be an unnecessary and misleading

2See Nelson (2008, p. 1804).
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detour: the underlying NRH model reduces to a specific Cagan model, viz. that of Sargent

and Wallace (1973), and the speculative hyperinflation literature—e.g., Obstfeld and Rogoff

(1983) and Gray (1984)—links Cochrane’s (2007) explosive equilibria unequivocally to reckless

money growth. McCallum (2009b) rules these equilibria out by appealing to LS learning. The

interpretation of LS learning in the context of my analysis is not very satisfying: McCallum

(2009b) rules out hyperinflation caused by an ever-increasing growth rate of money supply as

the associated inflation is increasing too quickly for it to be learnable in a least-squares sense.

Additionally, I argue that McCallum (2009b) misintreprets his model with money within the

speculative hyperinflation literature. Upon closer inspection, his model confirms my claim:

the explosive paths of inflation that his model cannot rule out are necessarily associated with

explosive paths of money growth.

The quantity theory also provides the way out of these hyperinflationary equilibria for

the monetary authority: do not accommodate such equilibria and commit credibly to not

do so beforehand. But this assumption is already implicit in the New Keynesian analysis as

defended by Nelson (2008). If one defines monetary policy solely over the nominal interest

rate, it should come as no surprise that this opens up the potential for problems in the long

run, as “the monetary authority cannot treat the nominal interest rate as an instrument in

the long run [—a position] widely shared.” (Nelson 2008, p. 1805) Yet, monetary policy can

be completed through the specification of a steady-state money growth rate, and the steady-

state inflation rate specified in most New Keynesian models can be interpreted as such an

average money growth rate. The off-equilibrium “threat” of the monetary authority to rule out

the explosive equilibria of Cochrane (2007), therefore, is nothing more than to keep money

growth finite.

The importance of monetary aggregates for monetary policy has found support recently

in Nelson (2003), Svensson (2003), McCallum and Nelson (2005), Nelson (2008), McCallum

(2008), McCallum and Nelson (2009b). Woodford (2008) presents the case for interest rate
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feedback rules, as opposed to the pegging of interest rates criticized by Sargent and Wallace

(1975), in the spirit of Taylor (1993). Taking nonlinearities seriously, Benhabib, Schmitt-

Grohé, and Uribe (2001b) show the dangers of assessing Taylor rules in a linear framework.

Additional support of interest rate rules using Evans and Honkapohja’s (2001) E-Stability can

be found in Bullard and Mitra (2002) and McCallum (2003). McCallum and Nelson (2009a)

provide a recent overview of the money in current analyses of inflation without dismissing

the lessons of the quantity theory.

Both Woodford (2002) and Woodford (2003b) acknowledge the nonverticality of the

standard New Keynesian Phillips curve in the long run, which McCallum (2004a) formulates

into a critique of the model’s violation of the NRH. Andrés, López-Salido, and Nelson (2005)

examine the NRH and New Keynesian models both theoretically and empirically. Levin and

Yun (2007) bring the standard model closer to the NRH by endogenizing the contract length.

This chapter is organized as follows, section 4.2 sets the stage intuitively, section 4.3

assesses determinacy in a class of models that satisfy the NRH, section 4.4 links Cochrane’s

(2007) critique to money, section 4.5 examines several nonlinear money-demand specifica-

tions, section 4.6 provides a monetarist context for interpretation, and section 4.7 concludes.

4.2 Linking the NRH, the Long-Run, and Determinacy

To establish the necessary intuition for the mechanisms at work in the analysis and specific

results, I shall build a conceptual link between the NRH, the long run, and determinacy in

this section. First, I shall review the two different forms of the NRH emphasized by McCallum

(2004a, pp. 21–22) and argue that the stricter, or Lucas version, ought to be used in analyzing

determinacy. Requiring the NRH to hold imposes restrictions only in the long-run—a stable

short-run Phillips curve tradeoff does not contradict the hypothesis. Finally, I shall argue that

ascertaining whether many (indeterminacy) or only one (determinacy) equilibrium paths are
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non-explosive is an inherently long-run exercise, though with short-run consequences (i.e.,

which equilibrium path prevails). Thus, intuitively, the long-run restrictions imposed by the

NRH should be relevant for analyzing determinacy and, therefore, the NRH is pertinent for

the short-run despite its long-run nature.

In bringing attention to the standard New Keynesian Phillips curve’s violation of the

NRH, McCallum (2004a, pp. 21–22) draws a distinction between “Friedman’s weaker version”

and the “stronger Lucas version” of the NRH. The former states that a higher, but constant,

rate of inflation cannot permanently affect output and the latter that no path for prices,

inflation, inflation growth, etc., can permanent keep output above its natural level. The

association of the weaker version with Milton Friedman is unfortunate in any case, as

Friedman (1977, p. 274) made his preference for the stronger version clear by noting the

discrepancy between these two versions: “some substitute a stable relation between the

acceleration of inflation and unemployment for a stable relationship between inflation and

unemployment—aware of but not concerned about the possibility that the same logic that

drove them to a second derivative will drive them to even higher derivatives.” It would take

an infinite number of steps to get a weaker-version-NRH model to satisfy the stronger version,

incorporating all possible higher derivatives. Adapting the New Keynesian Phillips curve with

indexation, to either steady state or lagged inflation, is subject to Friedman’s criticism above:

neither adaptation brings the model in line with the Lucas version.

This workhorse of the literature, the standard New Keynesian sticky-price model with

Calvo (1983)-style overlapping contracts in general equilibrium, is given (in log-deviations

and abstracting from exogenous driving processes) by 3

yt = E t

�

yt+1
�

−a 1Rt +a 1E t [πt+1] (4.1)

πt =βE t [πt+1]+κyt (4.2)

3Cf. McCallum (2001b, p. 152), equations (2.7) and (2.14), Woodford (2003b, p. 246), or Galí (2008, p. 49).
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and an as of yet unspecified rule for monetary policy, where yt is the output gap, πt inflation ,

and Rt the nominal interest rate. Equation (4.1) is a dynamic IS-curve resulting from the Euler

equation of households’ intertemporal maximization and equation (4.2) is the New Keynesian

Phillips curve derived from Dixit-Stiglitz aggregators of individual firms’ intertemporal profit

maximization reflecting the probability that prices set today remain in effect into the future.

First, one can confirm that (4.2) does not satisfy Lucas’s (1972a) NRH by taking uncondi-

tional expectations

E
�

yt

�

=
1

κ

�

E [πt ]−βE [πt+1]
�

6= 0 (4.3)

Note that even in the extreme parameterization β = 1, E
�

yt

�

6= 0 should inflation be

nonstationary. Requiring inflation to be stationary a priori precludes the possibility of an

entire class of potential monetary policies, including pernicious hyperinflationary policies.

As made explicit by McCallum (1998), the NRH requires that “[, o]n average, output should

be equal to potential output, for any monetary policy.” Nothing in this statement excludes

nonstationary policies. The only way for this Phillips curve to satisfy the NRH, is if κ → ∞,

making the Phillips curve always4 vertical.

The sticky-price Phillips curve has been indexed, either to steady-state inflation,5

πt − π̄=βE t [πt+1− π̄]+κyt (4.4)

or past inflation6

πt =
γ

1+γβ
πt−1+

β

1+γβ
E t [πt+1]+

κ

1+γβ
yt (4.5)

but both of these modifications still fail to satisfy the strict version of the NRH,7 for the same

reason above. Only those monetary policies that lead to a stationary path for inflation allow

4I.e., at every expectational horizon.
5See Yun (1996).
6See Christiano, Eichenbaum, and Evans (2005) for γ= 1 and Smets and Wouters (2003) for 0<γ≤ 1.
7See McCallum (2004a, pp. 21–22) and McCallum and Nelson (2009a, pp. 6–7).
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the the output gap to be equal, on average, to zero. Certainly, indexation to steady-state

inflation is meaningless, should inflation be nonstationary. As pointed out by Nelson (2008),

it is monetary policy that determines steady-state inflation, or indeed whether it should exist,

and without having specified monetary policy, it is almost vacuous to speak of such a value. As

above, these Phillips curves can be made to satisfy the NRH, but this requires κ→∞, making

them always vertical.

Consider a definition of the NRH, due to Carlstrom and Fuerst (2002), that holds in finite

time8

E t−k

�

yt

�

= 0∀t (4.6)

This allows us to trivially express any supply function that fulfills this hypothesis as

yt =

k−1
∑

j=0

�

E t−j

�

yt

�

− E t−j−1
�

yt

�
�

(4.7)

Non-zero output gaps can be represented wholly as innovations or forecast errors without

making any conjecture as to admissible solutions, in the words of Friedman (1977, p. 456),

“[o]nly surprises matter.” Note that the effect of a surprise need not disappear immediately

after impacting the output gap, it can have a lasting—but not permanent—effect. That is,

there can be a stable short-run tradeoff between the output gap and inflation, but this tradeoff

cannot be permanent if the model is to satisfy the NRH.

8The list of models that satisfy this version of the NRH include: Andrés, López-Salido, and Nelson’s (2005,
p. 1034) “Sticky information, staggered á la Taylor”; the Mussa-McCallum-Barro-Grossmann “P-bar model”—
see McCallum (1994) and McCallum and Nelson (2001); models of staggered predetermined prices such as
Fischer (1977) and Blanchard and Fischer (1989, pp. 390–394); Carlstrom and Fuerst’s (2002, p 81-82) model
in the spirit of Fischer (1977); as well as the expectational Phillips curve of Lucas (1973)—see also Sargent and
Wallace (1975)—that formalized the rational expectations revolution. Though one might argue that a NRH in
finite time is overly restrictive, this subset covers every model to my knowledge that purports to satisfy Lucas’s
(1972a) NRH with one exception: Mankiw and Reis’s (2002) sticky-information model staggered á la Calvo, whose
determinacy properties are examined separately here in chapter 2 and coincide with those of this analysis for
the demand and monetary policy specifications examined there. In any case, k is completely arbitrary here,
it makes no difference for the conclusions whether the long run sets in after four quarters, four years, or four
millennia.
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In the frictionless counterpart model, there is no impediment to firms’ setting the

optimal, full-information price every period. It follows by definition that the output gap is

always zero, which can be viewed as an extreme version of the NRH

yt = 0∀t (4.8)

the special case of k = 0 in (4.6). In this case, (4.1) reduces to

Rt = E t [πt+1] (4.9)

this is identical to the Fisher-type equation in Woodford’s (2003b, Ch. 2) analysis of nominal

(price-level) determinacy in a frictionless economy, as well as the simple model found in

the discussion of Cochrane (2007) and McCallum (2009b) regarding the appropriateness

of determinacy as an equilibrium criterion in monetary models. After k periods have

passed since some disturbance from equilibrium, the supply side described by (4.6) behaves

identically to that of (4.8), i.e., applying the conditional expectations operator to the LHS

of both supply sides yields zero—E t−k [ (4.8) ] = E t−k [(4.6) ] = 0. Hence, given a common

specification for the remainder of the model, any two models that satisfy (4.6) for some k

are identical in the long-run (or indeed, after k ).

Determinacy is most frequently ascertained by the eigenvalue counting method of

Blanchard and Kahn (1980). Roughly speaking, a model is brought into first-order form

E t [G t+1] = HG t , where some variables in G t might be predetermined, and is said to be

determinate if the number of stable eigenvalues in H is exactly equal to the number of these

predetermined variables. Thus, the instantaneous reaction of G t to some disturbance is

sufficient to ascertain whether some equilibrium path will lead to explosive or stable behavior.

While this remains technically true of the models that satisfy (4.6),9 it is easy to forget that

the explosiveness being ruled out need not occur instantaneously in the variables of interest

9By defining sufficient dummy variables to capture the information structure. See, e.g., Sims (2001).
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(i.e., a subset of G t ) and, in general, any finite value at any finite horizon is permissable.10

Determinacy rules out paths that would lead to explosive, i.e., infinite values of, variables of

interest.

To illustrate, assume that inflation is required to be stable. That is, inflation must

converge back to equilibrium following any disturbance. Examining figure 4.1a, all the paths

pictured (here with initial log-deviations of inflation to some unit exogenous disturbance

in demand between 0.54 and 0.56) certainly appear to be uniformly explosive (within five

periods, inflation on all paths exceeds the initial deviations), violating the required stability.

Yet this is deceiving: there is nothing that violates the requirement of stability for inflation in

the figure but for one’s own imagined extrapolation of the behavior depicted into the infinite

future. To see this, examine figure 4.1b, the same picture as before, but now extended out

to thirty periods after the initial disturbance. The initial common explosiveness dissipates

rather swiftly as some variables are below their initial values and some are above. One could

imagine now that some path, here highlighted as a more heavily weighted line, is uniquely

convergent, with all paths that started above diverging to positive infinity and all that started

below diverging to negative infinity. Again, this is the result of one’s extrapolation of the first

thirty periods on out into the infinite future, the same “shift” that occurred between figures

4.1a and 4.1b could certainly occur again at a more distant horizon. It is the behavior in the

long run that establishes whether a particular path is diverging, yet the particular path chosen

by the long-run is associated with specific short run reactions of variables. That is, the long

run is decisive for the short run through the selection of valid equilibrium paths.

The eigenvalue counting method, by bringing the model into a first order form, ensures

that the system described by E t [G t+1] = HG t behaves instantaneously exactly as it would

asymptotically. This is convenient, but upon reflection highlights an important shortcoming

10Exceptions would be, e.g., finite but negative values for prices, but assuming that variables are transformed,
as they usually are, appropriately to allow the range of the transformed variable to encompass the reals, e.g., for
prices, the log of the price would be included in the system.
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Figure 4.1: Impulse Responses of Inflation to a Demand Shock for Different Initial Conditions

of the standard New Keynesian model: it behaves in the short run as is does in the long run

with the same stable tradeoff between output and inflation.11 Allowing a short-run tradeoff

in this model implies a long-run tradeoff that can impact determinacy, admitting a single

path (determinacy) for some parameter regions where a NRH model might admit many

(indeterminacy). Of course and as was seen in figure 4.1, different paths are usually associated

with different instantaneous reactions of variables to disturbances as well. NRH models of the

class satisfying (4.6) can also be brought into first-order form by defining dummy variables.

The variables of interest, like inflation in the illustration, are a subset of G t and may differ in

their behavior before and after k . Thus, all models that differ only in their supply side and

that satisfy the NRH will display the same behavior after k and thusly ought to have identical

determinacy regions in parameters, regardless of their behavior in the short run.

11To see this, simply note that (4.2) is already in first-order form. The relation between the output gap and
current and future inflation is the same no matter what horizon is examined, a very stable tradeoff indeed.
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4.3 Determinacy in Natural Rate Models

Here, I shall establish an equivalence between nominal determinacy in the frictionless model

with (4.8) and real determinacy in the general model with any supply side satisfying (4.6).

This equivalence was asserted, but without proof, by Carlstrom and Fuerst (2002) to be one-

to-one. I shall prove that nominal determinacy in the frictionless model is a necessary but

not a sufficient condition: one must guard against singular cases. Saving for such cases, the

equivalence alluded to intuitively in the previous section is established and this intuition

is extended. Additionally, the questionability of existing determinacy analyses using the

standard New Keynesian model is highlighted.

In what follows, I will analyze linear rational-expectations models of the following class:

0=
p
∑

i=0

n
∑

j=−m

Q(i , j )E t−i X t+j , X t =





Rt

πt

yt



 , 0≤ p ,m ,n <∞ (4.10)

where the Q(i , j )’s are matrices of dimensions 3× 3. That is, the model is composed of three

structural equations determining the supply side, demand side, and monetary policy. The

class encompasses all linear rational-expectations models in the three variables of interest

that (i) have a finite number of leads (given by n), (ii) have a finite number of lags (given by

m ), and (iii) have expectations formed at differing horizons from t into the finite past t −p .12

This, of course, encompasses the models discussed in section 4.2.

To close out any of the models of the previous section, monetary policy needs to be

specified. The only restriction I shall impose on monetary policy is that it fits into the class

defined in (4.10). Accordingly, let monetary policy be the third equation of (4.10),13 given by

0=
p
∑

i=0

n
∑

j=−m

Q3,.(i , j )E t−i

�

X t+j

�

(4.11)

12Note that the absence of exogenous driving forces in (4.10) is not restrictive. The conditions for determinacy
remain the same if (4.10) is appended with stationary driving forces—i.e., I am investigating the properties of the
homogenous component of the system of difference equations, but one has the additional task of associating
the exogenous driving forces with the expectation errors—see Sims (2001).

13Where Q3,.(i , j ) is the row vector given by the the third row of Q(i , j ).
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This captures a wide range of interest rate rules found in the literature, including the current

and forward-looking inflation targeting, interest rate smoothing, and output-gap targeting as

examined in Woodford (2003b) and all the rules of Bullard and Mitra (2002).

Lemma 4.3.1. For the system (4.10) to be determinate, i.e., to have a unique stationary solution,

1. The model

0=
n
∑

j=−m

Q̃ j X t+j (4.12)

where Q̃ j =
∑p

i=0Q(i , j ), must have a unique saddle-point stable solution.

2. The square matrix

�

Q
B

�

(4.13)

must be non-singular. Q and B are block matrices of dimensions 3p ×3(p +n ) and 3n ×

3(p +n ) respectively with blocks of dimension 3×3. The s th block row of Q is given by

�

0m ax (0,s−1−m ) Q̃ (s −1,−m i n (s −1,m ),n ) 0p−s

�

(4.14)

where 0i is a 3×3i block vector of zeros andQ̃ (a ,b ,c ) =
�

Q̃(a ,b ) Q̃(a ,b +1) . . .Q̃(a ,c )
�

with Q̃(a ,b ) =
∑m i np ,a

i=0 Q(i ,b ). The s th block row of B is given by

�

0m ax (0,s+p−m−1) −B̃
�

m i n (p + s −1,m )
�

I 0n−s

�

(4.15)

where I is a 3× 3 identity matrix and B̃ (a ) being the last 3× 3a elements of the 3× 3m

matrix B that forms Anderson’s (2010, p. 7) convergent autoregressive solution to (4.12).

Proof. See Appendix

The first condition requires that the model be determinate if all lagged expectations are

replaced with time t expectations and the second condition requires additionally that one can
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uniquely resolve the lagged expectations. Whiteman (1983, pp. 29–36) shows that resolving

lagged expectations, “withholding” constraints in his language, is not generally a trivial task.

Carlstrom and Fuerst (2002, p. 82) make a quite general claim, without proof, regarding

the conditions under which a model that satisfies the NRH is determinate: “[I]n a model that

satisfies the NRH, there is real determinacy if and only if there is nominal determinacy in the

corresponding flexible-price economy.” In the two propositions that follow, I will substantiate

the necessity component of their claim but refute the sufficiency component.

Proposition 4.3.2. Consider a model in (4.10) that satisfies the NRH defined in (4.6). The

model is determinate only if the corresponding frictionless model—i.e., one that satisfies (4.8)—

is determinate.

Proof. See Appendix

Thus, a necessary condition for determinacy in any model that satisfies the NRH

is that the corresponding frictionless model is determinate. In the latter, real variables

are determinate by definition, so the question of determinacy pertains only to nominal

variables. In the former, the output gap is jointly determined with nominal variables and

thus determinacy relates to real as well as nominal variables. So the foregoing proposition

corroborates the “only if” component of Carlstrom and Fuerst’s (2002) claim, showing

essentially that the eigenvalue counting method of Blanchard and Kahn (1980) is the same

regardless of actual value of k .

Proposition 4.3.3. Consider a determinate frictionless model—i.e. one that satisfies (4.8) in

(4.10). There exist corresponding NRH models—i.e., that satisfy (4.6) for k > 0—that are not

determinate.

Proof. See Appendix
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Therefore, it does not necessarily follow that a model that satisfies the NRH is deter-

minate when its frictionless counterpart is, refuting the sufficiency component of Carlstrom

and Fuerst (2002). Lemma (4.3.1) shows that, while necessary, Blanchard and Kahn’s (1980)

saddle-point property of the underlying matrix polynomial is insufficient to conclusively

establish determinacy. As Whiteman (1983, p. 33) points out, “the conditions for existence

and uniqueness of solutions to withholding equations are quite different from those for

the general expectational difference equation.” The class of models in (4.10) combines the

latter—i.e., forward looking difference equations—with withholding equations—i.e., lagged

expectations—and, thus, it is not surprising that one has to take both the standard—i.e.,

saddle-point—and these quite different conditions into account.

Fortunately, it should be more the exception than the rule that the “if” is not fulfilled.

This pertains to the non-singularity of the matrix
�

Q′ B′
�′, which cannot be guaranteed due

to the generality of the class of models specified in (4.10). Yet, there is nothing in the class of

models to induce this matrix to be singular in general. Even should one encounter a particular

model parameterization leading to singularity, it should be expected that a minor pertubation

of the model or its parameterization will lead to non-singularity. This is reminiscent of King

and Watson’s (1998, p. 1017) “mundane source” of indeterminacy, requiring here the structure

of the model to be such that it leaves no linear combination of forecast errors unrestricted.

Moving past this additional source of mundanity, the close relationship between deter-

minacy under the NRH and determinacy in the corresponding frictionless model has some

strong implications. Indeed, if one restricts attention to models that satisfy the condition of

non-singularity in (4.3.1), the following proposition can be made

Proposition 4.3.4. Consider a model in (4.10) restricted to rule out the singularity of (4.13) and

fix the demand equation and monetary policy.

1. If the model is determinate under one supply equation that satisfies (4.6), it is determinate
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under all supply equations that satisfy (4.6).

2. If the model is not determinate under one supply equation that satisfies (4.6), it is not

determinate under all supply equations that satisfy (4.6).

In other words, for any given demand specification, the bounds on monetary policy to ensure

determinacy are same for all supply equations that satisfy (4.6).

Proof. See Appendix

With demand given by (4.1), restricting supply equations to satisfy the NRH (4.6), but

leaving monetary policy still generically specified as in (4.11), a more specific statement can

be made

Corollary 4.3.5. Consider a model in (4.10) with demand given by (4.1) and any supply

equation satisfying (4.6) and restricted to rule out the singularity of (4.13). Determinacy is a

function solely of the parameters in the interest rate rule (4.11) pertaining to inflation and the

interest rate.

Proof. See Appendix.

If the model satisfies the NRH, then the output gap must on average be equal to zero

independent of monetary policy (see McCallum (1998, p. 359)). From (4.1):

E
�

yt − yt+1
�

= a 1E [πt+1−Rt ] (4.16)

which posits a relationship between the average output gap and monetary policy (defined

over the nominal interest rate Rt ). One could certainly specify a process for the nominal

interest rate such that the average output gap would be equal to zero, but the NRH requires

that this hold regardless of monetary policy. Thus, that the output gap on average is equal to

zero must follow from the supply side equation and must hold independently of (4.1).
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The NRH delivers, then, the existence but not necessarily the uniqueness of a bounded

path for the output gap irrespective of the existence and uniqueness of bounded paths for

inflation and the nominal interest rate. However, from (4.16) it must then be the case that

the real interest rate Rt − E t [πt+1] also converges. Furthermore, if the bounded path for the

real interest rate is uniquely determined, then so is the bounded path for the output gap and

vice-versa.

The uniqueness of a bounded path for inflation and the nominal interest rate is, thus,

given by the rule for monetary policy and (4.9).14 Determinacy, therefore, corresponds to

nominal determinacy in the frictionless counterpart.

Were k = 0, there would be complete separation between the real and nominal sides

of the economy and monetary policy (through a rule for the nominal interest rate) would

serve only to establish nominal determinacy. Otherwise, if k > 0, the lack of a complete

separation but fulfillment of the NRH by assumption links nominal and real determinacy:

without a unique path for the nominal side, the link between the output gap and the nominals

at horizons less than k implies that although every path for the output gap be bounded, a

unique path for the output gap cannot be pinned down. If a unique path for the nominal side

can be determined by (4.9) and monetary policy, this path selects, through the link at horizons

less than k , a single path for the output gap.

Therefore, there is a unique convergent path for the output gap if and only if there is a

unique convergent path for inflation and the nominal interest rate in the counterpart model

(4.9).15

The situation is exemplified graphically in figure 4.2. All the different paths of the output

gap in figure 4.2a converge even though all but one of the paths for inflation, depicted in

14I.e., the Fisher-type equation with the real interest rate normalized to zero or as derived from the dynamic
IS equation (4.16) with the output gap always closed.

15Saving, of course, for the caveat of the singularity of (4.13).
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figure 4.2b, diverge. If one has reason, say by requiring inflation to be stable, to select among

the different paths for inflation, the selected path for inflation corresponds to a particular

path for the output gap, thus determining both through consideration solely over inflation.

0 5 10 15 20 25 30
−10

−5

0

5

10

15

Quarters after Shock

Lo
g−

D
ev

ia
tio

ns
 fr

om
 S

te
ad

y 
S

ta
te

(a) Output Gap

0 5 10 15 20 25 30
−100

−80

−60

−40

−20

0

20

40

60

80

Quarters after Shock

Lo
g−

D
ev

ia
tio

ns
 fr

om
 S

te
ad

y 
S

ta
te

(b) Inflation

Figure 4.2: Impulse Responses to a Demand Shock for Different Initial Conditions

A few comments are in order here. Real business cycle models are generally of the type

that the NRH holds but does so already at k = 0, as complete flexibility in prices is assumed.16

In the sticky-price New Keynesian model, the NRH does not hold at any horizon. As a

consequence, the sticky-price model is not even asymptotically isomorphic to its frictionless

equivalent, and there is no reason to expect a general equivalence between determinacy

conditions in the two models. With there being a permanent link between the nominal and

real side of the economy, nominal and real determinacy must be simultaneously ascertained.

As discussed previously, many modifications of the standard sticky-price model do satisfy the

NRH assuming inflation is stationary. Since we are only interested in stationary equilibria,

there would not seem to be a contradiction. This is mistaken as establishing determinacy

requires one to look at all possible equilibria, including explosive equilibria, in the hope that

only one is non-explosive. Thus, in assessing determinacy in the standard New Keynesian

16See Woodford (2003b, p. 6).
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model, one is forced to look at paths along which both the NRH is violated and its violation is

consequential for the ensuing path.

When the NRH does not hold at every horizon (i.e., k > 0), nominal and real determinacy

are linked as in standard sticky-price models. That the NRH holds at all, however, ensures that

this link dissolves such that conditions necessary to determine this determinacy are identical

to the conditions for nominal determinacy that would prevail were the NRH to hold at all

horizons. This conceptual link between nominal determinacy in RBC models and both real

and nominal determinacy in NRH models provides for a simple means to establish nominal

and real determinacy: one need only to examine the conditions for nominal determinacy in

the corresponding frictionless equivalent. This is generally a much simpler task.

Table 2.1 in chapter 2 juxtaposes the bounds on several standard interest rate rules both

with the standard sticky-price Phillips curve and Mankiw and Reis’s (2002) sticky-information

Phillips curve.17 As noted by its authors, the latter satisfies the NRH—but only asymptotically

as opposed to the k <∞ assumed here following Carlstrom and Fuerst (2002). The bounds

derived in chapter 2 for determinacy coincide with those required for nominal determinacy

in the frictionless model for the set of standard interest rate rules examined.

Thus a broad class of models, those satisfying Lucas’s (1972a) NRH, achieve determinacy

under the same conditions and do so independently of parameters outside of the monetary

policy rule. Wherefore, the bounds derived under the NRH pass the additional criticism of

Cochrane (2007, p. 27) that the bounds for determinacy ought to not be complex functions of

the entire parameter space of the model. This follows from the reduction of the system to the

interest rate rule and the Fisher-type equation, which makes no reference to any parameters

in either the demand or the supply side. The common trait is a long-run vertical Phillips

17It is astounding that Cochrane (2007, p. 24) claims, “Mankiw and Reis (2002) argue for a return to mechanical
or adaptive expectations, [...] though this means throwing out economic microfoundations.” Mankiw and Reis’s
(2002, p. 1297) model has fully rational expectations and is microfounded (see Reis (2006)).
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curve,18 that “by 1980 even self-styled Keynesian economists were agreeing to.” (McCallum

2004a, p. 21)

The analysis here should make one wary of the conclusions from determinacy analysis in

the New Keynesian literature: its policy recommendations or restrictions in terms of bounds

on monetary policy are a consequence of the New Keynesian Phillips curve’s violation of the

NRH. This does not mean that the literature-standard sticky-price model ought to be rejected,

merely that we should not ask it to perform tasks for which it was not intended. Among

these is the assessment of determinacy, a long-run question19 that requires the examination

of explosive paths, and when addressing it, we should use models whose long-run properties

are defensible.

4.4 Determinacy and the Cochrane (2007) Critique

With the general results for determinacy of models that satisfy the NRH, I shall confront the

issue, raised by Cochrane (2007), of whether determinacy is an appropriate means to justify a

unique equilibrium. The equilibria ruled out by determinacy are in fact legitimate monetarist

equilibria resulting from the deficiency of defining monetary policy solely over the nominal

interest rate. Interpreting steady-state inflation as a long run monetary target provides the

missing mechanism to select the determinate equilibrium as the only permissible one.

Cochrane (2007) has challenged the determinacy analysis in the New Keynesian liter-

ature. It notes that explosive paths are ruled out for both nominal and for real variables.

One can generally rule out explosive paths for real variables by appealing to a transversality

condition, but such a condition is lacking for nominal variables. In the previous section, I

imposed saddle-point stability on a real variable, the output gap, and two nominal variables,

18The NRH and vertical Phillips curves are central to the rational expectations revolution, see Lucas (1972a)
and Sargent (1973), with Sargent (1987b, p. 7) calling Friedman’s (1968) address its “opening shot”.

19Emphasized also in chapter 2.
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the nominal interest rate and inflation. Cochrane’s (2007) critique is directly relevant for the

analysis of the foregoing section: if the model is determinate, there is one stable path and a

continuum of explosive paths; if the model is indeterminate there is a continuum of stable

paths. Conveniently, the model of dialogue between Cochrane (2007), Cochrane (2009) and

McCallum (2009b), McCallum (2009c) is the frictionless model of the previous section, upon

whose stability the determinacy analysis of all NRH models with the standard dynamic IS

equation depends.

Interestingly, Cochrane’s (2007) critique, however, does not actually apply to the standard

three equation New Keynesian model. As was laid out in previous section,20 the lack of a long-

run vertical Phillips curve implies quite generally that an explosive path for inflation implies

an explosive path for the output gap. Thus, if “[e]conomics can rule out real explosions”,

then a supply schedule that violates the NRH, by associating explosive paths for inflation

with explosive paths for the output gap, will give one the means to rule out the nominal

explosions as well. This situation, depicted by Cochrane (2007, p. 28), is reproduced in

figure 4.3: the explosiveness for the nominals is associated with explosiveness for the real

variables. Cochrane (2007, p. 25) admits that the output gap, a real variable, explodes in all

equilibria except for the equilibrium chosen in standard New Keynesian analysis, but softens

his distinction between real and nominal variables with the statement, “[n]o economic

consideration rules out the explosive solutions.” I believe he is mistaken with the claim that

the situation here is exactly the same as in the frictionless case. In the frictionless case, the

problem was the legitimate one of a nominal explosion without a real explosion, whereas here

the two go hand-in-hand. This permanent tradeoff makes the New Keynesian Phillips curve

ill-suited to examine or even exclude hyperinflationary paths, reiterating the analysis of the

foregoing sections. Long-run questions—like determinacy as well—require a model whose

20And, of course, within the linear(ized) framework of the previous section.
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long-run properties are defensible.21

Figure 4.3: Response of the Three-Equation New-Keynesian Model to a One-Percent Off-Equilibrium
Inflation Innovation, with No Change in Output. From Cochrane (2007, p. 28)

Returning to the NRH model of the previous sections to address Cochrane’s (2007)

critique within the NRH, temporarily replace the assumption of a Taylor rule with monetary

policy defined as control over the money supply. Append the model with a standard money

demand function22 in first difference form

µt −πt =ηy γt −ηR∆Rt +∆ε
m
t

(4.17)

where µt is the money growth rate, γt the growth rate of output, and εm
t

a money demand

shock. The output gap is necessarily stationary due to the NRH being fulfilled so we can

neglect both γt and εm
t

for the purposes of asymptotic behavior if it can be assumed that

21McCallum (2003, p. 1157) actually anticipates this discussion: “the [Calvo] form of sticky prices [...] is such
that the model continues to include nominal variables even when monetary policy supplies no nominal anchor,
because private behavior involves a type of dynamic money illusion [as the model violates the NRH.]”

22I adopt the notation of Woodford (2008) for ease. Note that as discussed in, e.g., Woodford (2008), McCallum
(2008), and Nelson (2008), adding a money demand relation does not alter the previous analysis. It adds one
variable and one equation and is ‘superfluous’ according to McCallum (2008, p. 1785) with monetary policy
defined over the interest rate or the previous analysis was ‘self-contained’ in its absence according to Nelson
(2008, p. 1799). The nonlinear origin of this standard equation is of importance only insofar as it provides
transversality conditions to rule out particular paths of variables or insofar as its linearization leads to spurious
artifacts. In the next section, some specific origins will be examined and an artifact of linearization will be
addressed.
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the natural rate of output and the money demand shock are at least difference stationary23

µt −πt =−ηR∆Rt (4.18)

Thus, (4.18), the Fisher equation Rt = E t [πt+1], and a process for the money supply constitute

a specification for inflation, money growth, and the nominal interest rate. This is identical to

the Cagan model under rational expectations of Sargent and Wallace (1973),24 but the focus

here—due to Cochrane (2007)—is on potentially explosive inflation and not just the price

level.

Consider the case of a constant money supply constant (µt = 0), reducing the system to

Rt =ηR E t [∆Rt+1] =
ηR

1+ηR

E t [Rt+1] (4.19)

One solution is Rt = πt = 0. McCallum (2001a, p. 26) labels this the “monetarist solution”.

But a whole continuum of solutions exists with Rt and πt diverging to positive or negative

infinity. These hyperinflations and hyperdeflations are speculative in nature, as they are not

accompanied by equivalent movements in the money supply. Although Sargent and Wallace

(1973) rule them out with an arbitrary terminal condition, this continuum of additional

solutions can be ruled out by economic theory. I shall address this in the next section by,

e.g., postulating that money is essential.25

But this, of course, does not mean that the model is incompatible with hyperinfla-

tion. Assume that the monetary authority follows an extraordinary money creation scheme,

23As emphasized by McCallum and Nelson (2009a, pp. 13–15), the key element for the quantity theory is the
unitary relation between money and prices—a stability of the money demand function with respect to other
parameters and variables is not necessary for the theory’s relations.

24See their Equation (4), where the only difference is the first difference of a “stochastic term with central
tendency equal to zero” that I have omitted here.

25Note that the essentiality of money rules out speculative hyperinflation. Speculative hyperdeflation can
typically be ruled out under weaker restrictions and I, like McCallum (2009b, pp. 1106–1107), will not dwell on
them in the following. Gray (1984) shows that such paths can always be ruled out in the class of money-in-the-
utility models she examines as they provide households with an open-ended arbitrage opportunity. Obstfeld
and Rogoff (1986, pp. 355–358) demonstrate that such paths can be ruled out in a transactions-technology model
and provide some intuition for off-equilibrium threats that can rule out speculative hyperdeflation even in some
extreme cases.
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whereby the growth rate of the money supply is increasing exponentially (µt = λµt−1, 1<λ<

1+ηR

ηR
).26 Thus,

Rt =ηR E t [∆Rt+1]+ E t

�

µt+1
�

=
ηR

1+ηR

E t [Rt+1]+
1

1+ηR

E t

�

µt+1
�

(4.20)

One equilibrium has Rt and πt increasing at the same rate as µt —the monetarist solution

πt =
1

1−ηR (λ−1)
µt , Rt =

λ

1−ηR (λ−1)
µt (4.21)

Defining π̃t and R̃t as the difference of inflation and the nominal interest rate from their

values in the monetarist solution, the system can be reduced to the case of a constant money

supply in the redefined variables and, thus, there is a whole continuum of solutions with Rt

and πt diverging from µt . All the paths off of the monetarist hyperinflation path can be ruled

out under the same conditions as before—e.g., the essentiality of money.

Cochrane’s (2007) critique need not, therefore, be referring to speculative abberations.

What, then, goes awry with interest rate rules? Define monetary policy over the nominal

interest rate,

Rt =φππt (4.22)

Given this rule, and the Fisher equation (πt =
1
φπ

E t [πt+1]) one solution is πt = Rt = 0, which

implies through (4.18) that µt = 0. But a whole continuum of solutions satisfying

πt =φππt−1 (4.23)

are also potential equilibria. Despite the similarity of the approach to the case of money

supply rules, it does not immediately follow that the first solution is the monetarist solution,

26The restriction on the growth rate of the money growth rate is required for “process consistency” reasons,
see Flood and Garber (1980a) and McCallum (1983). Essentially, the rate of money growth would be growing too
quickly to be commensurate with the (linearized) money demand function. Taking, e.g., Ball’s (2001) estimate for
the interest semi-elasticity of money demand, ηR = 0.05, the process consistency limit is equal to 21—limiting
the period-over-period change in the growth rate to a fantastical 2000%. The next section will show this to be an
artifact of linearization.
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and the remaining continuum can be ruled out as speculative. This classification rests

decisively on the relation of the behavior of prices to that of money, which has not yet been

introduced for the analysis with interest rate rules. Combining (4.18) with (4.22) and (4.23)

µt =
�

1−ηR

�

φπ−1
��

πt (4.24)

In the context of determinacy, one would require φπ > 1.27 A φπ > 1 means the potential

equilibria are characterized by explosive paths for inflation and the nominal interest rate.

But this implies that the money supply growth rate is increasing proportionally with the

inflation rate. Monetary policy accommodates these hyperinflationary equilibria, making

the continuum of explosive paths of inflation consistent “moneterist solutions” through

extraordinary money supply growth.28

This highlights where the New Keynesian sticky-price model breaks down: monetary pol-

icy cannot pursue the aggressively inflationary money-supply growth associated with these

explosive equilibria, as this policy, through the violation of the NRH, would be associated

with an explosion in the output gap, which can be ruled out by appealing to a transversality

argument. Cochrane (2007, p. 25) states, “sensible economic models work in hyperinflation

or deflation. If they don’t, it usually reveals something wrong with the model.” This statement

needs to be tempered, I believe, with the assessment that the New Keynesian model was never

intended as an explanation of hyperinflation. However, this certainly does mean that one

must be wary of drawing any conclusions that implicitly rest on the analysis of hyperinflation,

such as determinacy, in such models.

The sticky-price model was conceived as a model for short-term fluctuations. In the

background and in the back of the modelers’ minds is an RBC model with full neutrality in

the long run.29 Woodford (2008) shows that the standard sticky-price model fulfills a list of

27Assuming the interest rate react positively to inflation.
28As explained in footnote 26, a process consistency constraint is present here as well: φπ <

1+ηR

ηR
.

29See Woodford (2003b, Ch. 3, esp. p. 142).
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neutrality properties. What has not garnered attention is that these properties may only be

fulfilled by the determinate solution itself. Indeed, the examination of determinacy—though

short-run in its consequences through potential sunspot equilibrium—is an examination of

the long-run: does a particular equilibrium path converge asymptotically to the steady state

or does it diverge? The New Keynesian model through its violation of the NRH and inability to

give an accurate picture of equilibria on divergent (i.e., hyperinflationary) paths is not suitable

for such long-run analyses as determinacy.

Thus, Cochrane’s (2007) critique is wholly valid in the set of models examined in the

previous section. Should the model be associated with determinacy, all of the explosive

paths constitute fully valid equilibria. But the reasoning of Cochrane (2007)—the absence

of transversality conditions for nominal variables—obfuscates the real reason for the validity

of these equilibria. An equilibrium with inflation diverging towards infinity is valid precisely

because the monetary authority keeps increasing the growth rate of the money supply,

accommodating the ever increasing inflation rates.

McCallum (2009b) offers LS learning as a means to “select” the determinate solution.

If Cochrane’s (2007) explosive equilibria are legitimate, McCallum’s (2009b) argument must

have some defect. Reinterpreting the explosive equilibria in terms of an exogenous process

for the money growth as I have done, Cochrane’s (2007) explosive equilibria are associated

with explosive processes for money growth. But McCallum (2009b, p. 1103), following Evans

and Honkapohja (2001, pp. 198& 229), requires the exogenous processes to be stationary.

That is, McCallum’s (2009b) LS learning rules out Cochrane’s (2007) explosive equilibria

by assumption. With least-squares (LS) learning, agents’ expectation formation progresses

too slowly for explosive money growth: this is not a reassuring mechanism to prevent

hyperinflation.

With monetary policy defined solely over control of the short-run nominal interest rate,
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there is, therefore, an entire continuum of valid equilibrium paths in the absence of any

fundamental shock ranging from hyperinflation to hyperdeflation when the determinacy

conditions of the previous section are satisfied.30 That is, there must be some defect in

defining monetary policy solely in terms of the short-run nominal interest rate. This is

precisely the point made by Nelson (2008, p. 1805): “the monetary authority cannot treat

the nominal interest rate as an instrument in the long run.” What is his proposed solution?

“Long-run money growth determines long-run inflation,”

Though they no longer affect real interest rates, and no longer can affect nominal

rates via a liquidity effect, the central bank’s open market operations continue

in the long run to affect nominal money growth. So nominal money growth

is unambiguously and undeniably susceptible to central bank influence even

in the long run... Reaching [an] inflation target means a specified quantity of

open market operations in the steady state; specifically, open market operations

that deliver a steady-state money growth [consistent with the inflation target

and the secular growth]. There it is: the sense in which steady-state inflation

can be regarded as pinned down by steady-state money growth. Nelson (2008,

p. 1805)[emphasis in the original]

Let monetary policy be fully specified by adding a steady-state inflation rate, which can

be sensibly interpreted as an average growth rate for the money supply. Thus the main result:

Proposition 4.4.1. Consider the NRH model of the foregoing section appended with (4.18).

Monetary policy is specified by an interest rate rule and an average money growth rate. If the

interest-rate rule is associated with a determinate equilibrium, this equilibrium is the unique

equilibrium.

30When they are not, there is an additional dimension of indeterminacy.
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Proof. See Appendix

Cochrane’s (2007) “threat” of monetary policy is not hyperinflation, hyperdeflation, or

“to blow up the world”, but rather to simply keep money growth constant. All that is needed

here is the commitment on behalf of the central bank to ensure the unconditional expectation

of the money growth rate be equal to the steady-state value it selects. Note that this still

allows for the multiple equilibria in case of indeterminacy, not curing all the ills of interest

rate policy. All of the multiple equilibria in case of indeterminacy converge back to the steady

state allowing the average money growth rate to be satisfied and thusly cannot be ruled out.

Monetary policy is not bound by any restriction to accommodate the hyperinflationary

or hyperdeflationary paths. The threat that monetary policy will not keep increasing [decreas-

ing] the rate of money growth boundlessly would seem credible and is already incorporated

in the framework of several central banks. Most notably the monetary analysis pillar of

the ECB, but also Section 2a of the Federal Reserve Act requiring that the Federal Reserve

“shall maintain long run growth of the monetary and credit aggregates [...] so as to promote

effectively [...] stable prices.”31

Both of these central banks have committed, implicitly or explicitly, to keeping the rate

of growth of the money supply at very least finite. So long as this commitment is credible, no

explosive path for inflation can be an equilibrium. Following, e.g., Friedman and Schwartz

(1963), monetary restraint is necessary and sufficient for controlling inflation, at least in the

long-run. And, as emphasized by Nelson (2008), monetary policy if defined soley over control

of the nominal interest rate is incomplete, as the monetary authority cannot control this

variable in the long run. There is thusly, no contradiction between monetary policy being

defined over control of the nominal interest rate at all finite horizons and over the rate of

31Paraphrasing the Chairman of the Board of Governors slightly: Bernanke (2008, pp. 317 & 319) emphasizes
that although they have not played a central role in recent times, monetary data is and will continue to be
monitored by the Federal Reserve as a sensible part of the framework of monetary policy.
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money growth asymptotically.32

One immediately appealing equivalent measure to the average growth rate of the money

supply in proposition 4.4.1 is a direct inflation target. One could interpret proposition

4.4.1 as wholly consistent with such a form of direct inflation targeting: if the inflation

target is credible, any equilibrium path that diverges from the target contradicts the target’s

credibility.33 However, this is the “high-level assumption” that Nelson (2008, p. 1803) argues

is deceiving, as it assumes a permanent liquidity effect. It is exactly this permanent liquidity

effect that imbues the nominal interest rate with an always and everywhere stabilizing effect,

which Cochrane (2007) criticizes as the New Keynesian literature’s intuitive reliance on “old

Keynesian” thinking. Likewise Meltzer (1999, p. 268) notes that the reliance on the nominal

interest rate to indicate the expansiveness of monetary policy has misled the Federal Reserve

on a number of occasions. As one should not neglect the NRH and its short-run implications

in assessing determinacy, one should not neglect that monetary policy has no direct control

over the nominal interest rate or inflation in the long run.

However, keeping the foregoing reservations in mind, the notion of an inflation target

for the long run as being a key element of a well-formulated monetary policy is germane

to the “constrained discretion” interpretation of inflation targeting by Bernanke, Laubach,

Mishkin, and Posen (1999, p. 22), under which “inflation targets keep the economic ship

in the right area in the long term,” but where the interpretation of inflation targeting as a

strict rule is rejected. In sum, a particular inflation rate in the long-run is the target and the

commitment to keeping the money growth rate finite, monitoring mid-term developments in

the monetary aggregates, and/or a commitment to an average money growth rate consistent

32Indeed, Friedman (1960, p. 35) states, “[t]he sufficiency of open market operations as a tool for monetary
policy is not, of course, a decisive reason for relying on this tool alone.” Likewise, Brunner and Meltzer’s (1976,
pp. 98–99) analysis differentiates between the “accumulated effects of past policies” and one-off impulses.

33Such a policy was rejected half a century ago by Friedman (1960, p. 88): “[W]e will [...] further the ultimate
end of achieving a reasonably stable price level better by specifying the role of the monetary authorities in terms
of magnitudes they effectively control and for whose behavior they can properly be held responsible[...] In this
as in so many human activities what seems the long way round may be the short way home.”
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with the inflation target is the rule.34

4.5 Nonlinear Money Demand and the Monetarist Equilibrium

In this section, I wish to justify the selection of the monetarist equilibrium in the previous

section that validated Cochrane’s (2007) explosive inflation by reckless money growth. For

the sake of brevity, I would only note that significant price level movements in the absence of

corresponding movements in the money supply are inconsistent with the empirical evidence.

Yet, as Meltzer (1999, p. 262) notes, “[e]conomists are rarely satisfied with evidence that

something works in practice. They are inclined to be more interested in whether it works

in theory.” So despite the compelling reasons to dismiss speculative inflation and deflation a

priori, as conceded by Obstfeld and Rogoff (1986), I shall also offer formal arguments in the

context of the models presented by Cochrane (2007) and McCallum (2009b) that an explosive

equilibrium for inflation is only admissible with an associated explosive money growth rate.

As to practice, Friedman (1958, p. 172) noted,“[t]here is perhaps no empirical regularity

among economic phenomena that is based on so much evidence for so wide a range of

circumstances as the connection between substantial changes in the stock of money and in

the level of prices.” Flood and Garber (1980b) reject the hypothesis of a bubble in the German

hyperinflation of the ’20s and, in the face of such empirical evidence, Flood and Garber

(1980b, p. 760) state that “this artifact of dynamic models is unimportant; a special case of

these models adequately predicts behavior, and further elaboration of the model to explain

unobserved phenomena is unnecessary.” More recently, McCallum and Nelson (2009a, p. 37)

34Such a rule is easily implemented here as there are no impediments to the central bank committing to set
policy according to the interest rate rule along a determinate equilibrium and or by keeping money growth equal
to the target on off-determinate equilibrium paths—the “threat” from above. True welfare- or loss-function-
based assessments as to the credibility of such an immediate switch is beyond the analysis here. However, with
all off-determinate equilibrium paths associated with infinite divergence of inflation, there would seem to be
a great a priori incentive for the central bank to avoid such paths. Nelson (2008, p. 1806) also notes that “what
needs to be kept in mind is that such an approach is a shortcut or an abstraction that takes for granted the
underlying operations involving money on the part of the central bank.”
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conclude, “[n]ominal homogeneity of money demand is not rejected irrespective of the

inflation series used, the definition of money chosen, or sample period considered.”

Theoretically, explosive paths of inflation can be associated with explosive paths of the

money growth rate. The question at hand from the foregoing section is whether this must

be the case. Cochrane (2007, p. 22) mentions and McCallum (2009b, p. 1106) discusses

the literature that addresses this question, that of speculative hyperinflations, but both fail

to note the decisive role of money. This literature does not purport to address whether

explosions in inflation can be ruled out in general, as my reading of McCallum (2009b, p. 1106)

might lead one to believe, but seeks to address whether those explosions can be ruled out

that are “unrelated to monetary growth.” (Obstfeld and Rogoff 1983, p. 675) The question

of whether explosive price paths can exist without monetary growth cannot be equated

to the credibility of the “threat of the government to take the economy to a configuration

(hyperinflation or deflation) in which the [sic] we all know the economy will blow up on

its own.” (Cochrane 2007, pp. 22–23) In a nutshell, Scheinkman (1980), Obstfeld and Rogoff

(1983), Gray (1984) and Woodford (1994) demonstrate that the speculative hyperinflations in

separable money-in-the-utility-function, medium-of-exchange, and cash-in-advance setups

can be ruled out by requiring money to be essential or have intrinsic value. Intuitively, if

real balances are necessary or necessarily of worth, a hyperinflationary path initiated by a

whim and not accompanied by money growth would rob utility maximizers of this necessity,

bringing the rational origin of such a whim into question.

Turning to the specific discussion of Cochrane (2007) and McCallum (2009b), Cochrane

(2007, p. 22) lays out a two-equation nonlinear model under perfect foresight to address the

issue, whose necessary conditions are

1+ i t =β
−1Πt+1

u c (Y ,M t /Pt )

u c (Y ,M t+1/Pt+1)
(4.25)

M t /Pt = L (Y , i t ) (4.26)
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along with a specification of monetary policy. In his appendix, Cochrane (2007) solves for the

latter of the foregoing using a first-order condition relating bond and money holdings,

i t

1+ i t

u c (Y ,M t /Pt ) = u m (Y ,M t /Pt ) (4.27)

The foregoing, or more generally (4.26), can be linearized and first-differenced to yield (4.17).

Let us eliminate the only possibility mentioned by Cochrane (2007, pp. 21–23) to rule

out explosions with the extension to money, namely the possibility of the real interest

rate going to infinity due to monetary distortions—i.e., the passive “blow-up threat by the

government.” One easy way to do this is to assume separability (u c m = 0), reducing the model

to 1+ i t = β−1Πt+1 and i t

1+i t
u c (Y ) = u m (M t /Pt ). From the latter, it follows immediately that

l i m i t→∞u m (M t /Pt ) = u c (Y ). Thus, real balances must be constant if i t → ∞, necessarily

requiring the growth rate of money to be equal to inflation. If the interest rate follows an active

Taylor rule (i.e., i t = Φ(Πt ), with Φ′ > 0), explosive inflation leads to an explosive nominal

interest rate. In terms of the process consistency requirement of the preceding section, there

is no upper bound on the elasticity of the nominal interest rate with respect to inflation here.

More generally, the assumption that money is essential, following Obstfeld and Rogoff (1983,

p. 681) and Gray (1984, p. 100),

lim
m t→0

m t u m (Y ,m t )> 0 (4.28)

would suffice to ensure that any hyperinflation or deflation is necessarily associated with a

corresponding path of money.

Using a standard money-in-the-utility function from Galí’s (2008, p. 27),

U (C t ,
M t

Pt

, ...) =
C 1−σ

t

1−σ
+
(M t /Pt )

1−ν

1−ν
(4.29)

the foregoing condition holds for all ν > 1: i.e., for elasticities of utility with respect to real



4.5. NONLINEAR MONEY DEMAND AND THE MONETARIST EQUILIBRIUM 121

balances greater than unity—not a severe restriction.35 With these preferences, optimality

requires,

M t

Pt

=C
σ
ν

t

�

1−
1

Rt

�− 1
ν

(4.30)

which can be linearized, combined with market-clearing, and first-differenced to yield (4.17).

The process-consistency restrictions come from the interest elasticity of money demand, ηR ,

which is a constant after linearizing. In the nonlinear version, however, it is equal to 1
ν

1
Rt−1

and with an active interest rate rule, this elasticity will approach zero as inflation explodes,

again confirming the process-consistency restrictions to be an artifact of linearization.

The essentiality of money required by (4.28) might seem too much to require of a model.

Indeed, McCallum (2009b, p. 1106) cites Obstfeld and Rogoff’s (1983, p. 675) conclusion in

their money-in-the-utility framework that this constitutes an extreme restriction on prefer-

ences and goes on to claim that, “a model specification that drives consumption to zero (as

real money holdings decrease) implies that a barter economy would necessarily feature zero

consumption. That should be regarded as an inadmissible assumption.” (McCallum 2009b,

p. 1107) Yet, McCallum (2009b, p. 1107) adopts a transaction function that does just this.

Gray (1984, p. 106) requires the limit of real balances times the marginal transaction

cost to be negative infinity as real balances approach zero. McCallum (2009b) mistakenly

states that Gray’s (1984) analysis lacks an extension of a transaction-costs function dependant

on the quantity of transactions. Gray (1984), however, does not address the case that

combines this extended transaction-costs function with convex utility. Yet, her results extend

straightforwardly to this case, as I show in the appendix, and with the sufficiency conditions

fulfilled by McCallum’s (2009b) transaction function, Gray’s (1984, p. 113) requirement is

35Of course, this does not contradict Obstfeld and Rogoff’s (1983) assessment that this is an extreme restriction
on preferences. The functional form itself of preferences over real balances is what here might justifiably be
called “extreme.”
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necessarily fulfilled

lim
m→0

mΦ2 (C ,m ) = lim
m→0
−a 2a 1C 1+a 2m−a 2 =−∞< 0 (4.31)

as a 1, a 2 are both positive.36 So McCallum (2009b) does rule out speculative hyperinflations

and hyperdeflations. Implicitly, McCallum (2009b, p. 1107) finds the monetarist hyperinfla-

tion: “as inflation explodes, [... real balances do] not approach zero.” If inflation explodes, the

price level explodes at an exploding rate. With real balances approaching a constant, money

is exploding at the same exploding rate as prices. That is, inflation and the rate of money

growth are exploding together.

Beyond essentiality of money, Obstfeld and Rogoff (1983) show that if money has

some intrinsic value, however fleetingly small, speculative hyperinflations will be impossible.

Despite having technically ruled out the possibility, McCallum (2009b, p. 1107) reasons for the

existence of speculative hyperinflation, as their impossibility would require a barter economy

to be associated with zero consumption. Yet the return to a barter economy along such

paths is not an inexorable conclusion, as the transactions-chain approach to the medium-

of-exchange explanation of money in Brunner and Meltzer (1971, p. 801) demonstrates.37

Friedman and Schwartz (1970, p. 108) too, in their discussion of money as a medium

of exchange, note an “irreducible minimum [real-value quantity of money] necessary for

transactions purposes” that make the necessity of money absolute. One could, alternatively,

assert that there is a discontinuous difference between approaching a barter economy

through rampant hyperinflation and actually being in a functional barter economy.

Theoretical and empirical considerations aside, ruling out speculative hyperinflations

is necessary for maintaining the proposition that “the central bank can reasonably be held

accountable for controlling inflation.” (Woodford 2008, p. 1563) The central bank would

36Additionally, note that in McCallum’s (2009b, p. 1107) model, money demand is given by Φ2 (C t , m t ) =−
i t

1+i t

which, again, can be linearized, combined with market-clearing, and first-differenced to yield (4.17).
37Though this approach simultaneously appears to rule out all hyperinflations, speculative or monetary, as

new mediums of exchange are sought.
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certainly be relieved of this accountability if it were—at any moment of time—probable (or

even if it were merely possible) that the price-level or inflation could go spiralling out of

control despite a constant money supply or growth rate thereof.

Thus, in any sensible monetary description, it ought to hold that “[t]here is a one-to-

one relation between monetary changes and changes in [...] prices”—at very least in the

long run or for “major economic fluctuations”. (Friedman and Schwartz 1963, p. 50) This

requires ruling out non-monetary divergences. At the same time, accepting this one-to-one

relation and the empirical evidence that hyperinflations have occurred forces one to dismiss

specifications or equilibrium-selection devices that would rule out fundamental divergences.

The associated skepticism applies not only to the analyses where monetary policy drives the

real interest rate to infinity to rule out hyperinflations as argued in Cochrane (2007, pp. 22–

23) or to a transversality-based argument on real variables in a model like the standard New

Keynesian model with a non-vertical long-run Phillips curve, but also to the LS-learnability

analysis of McCallum (2009b, pp.3–13) that would rule out explosive money supply growth

rates as inflation in the associated equilibria would accelerate more quickly than could be

learned by least-squares agents.

4.6 The Nominal Interest Rate

From the previous sections, it should be clear that some mention of money is advantageous

in a monetary model. Monetary policy should make some reference, implicit or explicit,

to the money supply as a monetary policy defined solely over the nominal interest rate is

insufficient to control inflation. As Cochrane (2007, p. 42) rightfully criticizes, one cannot

“use old Keynesian stabilizing logic” to describe the mechanism of inflation control at work

with an interest rate rule in a New Keynesian model.38 The old Keynesian stabilizing logic

38Perhaps, the alternative nomenclature “New Neoclassical” noted again by McCallum (2009b, p. 1102) is
indeed more appropriate with the NRH supply of this chapter, reserving “New Keynsian” for those models that
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focuses on the liquidity effect and neglects the Fisher effect,39 leading to difficulties for New

Keynesian explanations of Friedman’s (1968, p. 7) observation that “low interest rates are

a sign that monetary policy has been tight—in the sense that the quantity of money has

grown slowly; high interest rates are a sign that monetary policy has been easy—in the sense

that the quantity of money has grown rapidly.” Raising the nominal interest rate once is

associated with tight monetary policy via the liquidity effect, but raising the nominal interest

rate continually must certainly be associated with easy monetary policy:

Add only one wrinkle to Wicksell—the Irving Fisher distinction between the

nominal and the real rate of interest. Let the monetary authority keep the

nominal market rate for a time below the natural rate by inflation. That in turn

will raise the nominal natural rate itself, once anticipations of inflation become

widespread, thus requiring still more rapid inflation to hold down the market rate.

(Friedman 1968, p. 8)

Cochrane’s (2007) explosive equilibria under an active interest rate rule (i.e., ∂ Rt /∂ πt > 0),

though caused by some exogenous shift in belief, can be brought into the reasoning of the

foregoing statement: (1) Let anticipations of inflation become widespread (E t [πt+1] > 0), (2)

this raises the nominal natural rate itself (Rt = E t [πt+1]), (3) meaning that monetary policy

kept the nominal market rate for a time below the natural rate by inflation (πt =
1

∂ Rt /∂ πt
Rt >

Rt−1 ≡ 0), (4) requiring now still more rapid inflation (E t [πt+2] = E t [Rt+1] =
∂ Rt

∂ πt
E t [πt+1] >

E t [πt+1]) to hold down the market rate. Thus, the multiple equilibria of Cochrane (2007) can

be interpreted as the Fisher effect of monetarism rearing its ugly head in the New Keynesian

model.

According to Bordo and Schwartz (1999, p. 193), “[t]he dangers of operating with an

interest rate instrument became clear when rising interest rates from the mid-1960s on

possess the stable long-run tradeoff.
39See, e.g., Nelson and Schwartz (2008, p. 844).
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reflected growing fears of inflation, not restrictive monetary policy. Rising interest rates were

accompanied by high money growth.” With the ameliorative policies of the Great Moderation

having dulled the memory of the Great Inflation, Issing (2008, p. 266) surmised, “[i]t is not

surprising that in a world of low inflation, the interest in ‘money’ in central banks as well as in

academia has declined, if not disappeared. I do, however, hope that the world does not have

to go through the same process of pathological learning as at the end of the last century.”

With the apparent end of the Great Moderation, Leijonhufvud (2009, p. 6) reiterates that “[i]t

is a dangerous illusion that you can always control the price level in an economy where the

money stock however measured is left to vary in purely endogenous fashion.”

Though monetary restraint is necessary for monetary policy to control inflation, the

framework of interest rate rules need not be discarded. Nelson (2008) has given a very

appealing justification for the use of an interest rate rule by appending the rule with steady

state money growth. Combining this with the determinacy bounds of section 4.3 provides

clear guidance to the monetary authority on the interest rate independent of the actual short-

run mechanism at work on the supply side.

4.7 Conclusion

It should be clear that Cochrane’s (2007) critique is substantially correct: there are explosive

nominal paths associated with interest rate rules that cannot be ruled out. The requirement

that the economy ought to fulfill Lucas’s (1972a) NRH means, through determinacy, that

Cochrane’s (2007) critique applies—for a given demand specification—to all non-degenerate

models at the same policy specifications. As a consequence, the monetary authority needs

no knowledge of the supply side to ascertain whether its policy will ensure determinacy.

Indeed, in the case of the literature-standard dynamic IS equation, no parameters of the

model other than those in the interest rate rule can affect whether determinacy is achieved.
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Asserting additionally that monetary policy can be held reasonably accountable for inflation

demands monetary restraint and thus the hyperinflations or hyperdeflations of Cochrane

(2007) can only occur if the monetary authority allows them to. These explosive equilibrium

paths are admissible not for lack of LS-learnability (McCallum 2009b) nor of a non-Ricardian

fiscal regime (Cochrane 2007), but simply because the monetary authority is increasing or

decreasing the growth rate of money commensurate with accelerating inflation or deflation.

Monetary policy associated with a determinate equilibrium, therefore, must additionally

credibly commit to “prevent[ing] money itself from being a major source of economic

disturbance,” (Friedman 1968, p. 12) and a commitment to an average money growth rate

following Nelson (2008) is offered as a means to that end. Thus money still plays a decisive

role for the short run even when relegated to the very long run for monetary policy.
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4.A Appendix

4.A.1 Proof of Lemma 4.3.1

By the Wold theorem,40 any stationary process can be represented as

X t =

∞
∑

l=0

θlεt−l +Ξt , where Eεt = 0 and Eεt ε
′
t+j
= 0, ∀j 6= 0 (4.32)

and Ξt is an orthogonal linearly deterministic process, forecastable perfectly from its own

history. Starting with the indeterministic part,41 and inserting into (4.10)

0=
n
∑

j=0





∞
∑

l=0





m i n (p ,l )
∑

i=0

Q(i , j )



θl+jεt−l



+

m
∑

j=1





∞
∑

l=0





m i n (p ,l+j )
∑

i=0

Q(i , j )



θl εt−l−j



 (4.33)

Using the definition of Q̃(i , j ) yields

0=
n
∑

j=0





∞
∑

l=0

Q̃(l , j )θl+jεt−l



+

m
∑

j=1





∞
∑

l=0

Q̃(l + j , j )θl εt−l−j



 (4.34)

This must hold for all realizations of εt . Comparing coefficients yields

0=
n
∑

j=0

Q̃(l , j )θl+j +

m
∑

j=1

Q̃(l , j )θl−j (4.35)

a time-varying system of difference equations with initial conditions
∑m

j=1θ−j = 0. But as

Q̃(p+i , j ) = Q̃(p , j ), ∀i ≥ 0, the system of difference equations has constant coefficients, after

and including p . This system can be written as (4.12) and coincides with Anderson’s (2010)

canonical form. If the solution to this system is unique, its stable solution can be written as

θl = B







θl−m

...
θl−1






, ∀l ≥ p (4.36)

40See, e.g., Sargent (1987a, pp. 286–290), as well as Priestley (1981, pp. 756–758).
41Whittle (1983, p. 31) and Sargent (1987a, p. 290) focus primarily on the purely indeterministic case. This

forms the basis for the time-domain solution methods of Muth (1961) and Taylor (1986).
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The first p (block) equations—remembering the initial conditions—can be gathered into

Q







θ0
...

θn+p−1






= 0 (4.37)

giving 3p equations in 3(p+n ) variables. (4.36) yields 3n more equations that can be gathered

into

B







θ0
...

θn+p−1






= 0 (4.38)

stacking the two yields (4.13).42

The system (4.35) is homogenous. Thus, one stationary solution is given by θl = 0, ∀i ,

the fundamental solution in the absence of exogenous driving forces. If (4.13) is invertible

and if (4.12) is saddle-point stable, then this is the only solution.

Only Ξt remains. Inserting it into (4.10), it follows that this can also be written as (4.12).

If there is a unique solution in past values of Ξt , the solution can be written in the same form

as (4.36), which must be zero when taken to its remote past from the stability of (4.36).

4.A.2 Proof of Proposition 4.3.2

Assume the opposite is true. Thus, the NRH model is determinate and the frictionless

model is not. From the former, according to lemma 4.3.1, (4.13) is invertible and the system

(4.12) is saddle-point stable. But the system (4.12) is the same for both models and (4.13) is

lower triangular for the frictionless model. Thus, the frictionless model that satisfies (4.8) is

determinate, a contradiction.

4.A.3 Proof of Proposition 4.3.3

As the frictionless model is determinate, the system (4.12) is saddle-point stable. This system

is the same for the NRH (4.6) model. The second requirement (4.13) is lower triangular for the

42This extends 3.12 in chapter 3 to Anderson’s (2010) higher leads and lags.
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frictionless model, but is unrestricted for the NRH model. Thus, there exist NRH models with

a singular (4.13) that are thusly indeterminate, even though the corresponding frictionless

model is determinate.

4.A.4 Proof of Proposition 4.3.4

Ruling out the singularity of (4.13), proposition 4.3.3 has been ruled out by assumption. Thus,

a model in this class that satisfies the NRH defined in (4.6) is determinate if and only if the

corresponding model that satisfies (4.8) is determinate. This must hold for all k and thus

holds for all k̃ < k . Any supply equation that satisfies the NRH at a horizon k̃ < k , necessarily

satisfies it at the horizon k as well. Thus, for a given k , all supply equations that satisfy the

NRH are determinate if and only if the corresponding frictionless model is determinate.

4.A.5 Proof of Corollary 4.3.5

It follows from proposition (4.3.4) that one may choose any supply equation to establish

determinacy. Choosing (4.8) reduces the demand equation to (4.9), thus eliminating the

parameters in the demand equation. Additionally, (4.8) removes the parameters in monetary

policy pertaining to the output gap. Furthermore, from proposition (4.3.4), it follows that

the parameters in the supply equation are irrelevant. Thus the only parameters in the model

remaining that can affect determinacy are those in the interest rate rule pertaining to inflation

and the interest rate.

4.A.6 Proof of Proposition 4.4.1

If the interest-rate rule induces determinacy, all nominal paths but one diverge. Thus, the

money growth rate diverges for all paths but one. All divergent paths for the money growth

rate contradict the assumption that monetary policy chose the average money growth rate.
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Therefore, the only consistent path is the non-divergent one, which is unique following from

determinacy.

4.A.7 Extension of Gray (1984)

Gray (1984, pp. 101–116) provides criteria to rule out speculative hyperinflation and hyperde-

flation with a transactions cost model of money assuming linear utility from consumption

and a transaction cost function that depends solely on real balances. Gray (1984, p. 118)

relaxes the two assumptions individually, but not jointly. In the following, I will allow

for diminishing marginal utility and the generalization of the transaction cost function to

include the quantity of transactions—i.e., the level of consumption. This entails neither great

difficulty nor significant insight and is thusly relegated to the appendix here.

Following Gray (1984, p. 102), the representative household seeks to maximize its lifetime

discounted utility

Z =

∫ ∞

0

e−ρt U (c t )d t (4.39)

subject to

Pt y = Pt c t +Ptφ (c t ,m t )+ Ṁ t (4.40)

where φ (c t ,m t ) is McCallum’s (2009b) transaction cost function with φc > 0, φc c < 0, φm < 0

and φm m > 0. Additionally, Uc > 0 and Uc c ≤ 0. Finally, c t is consumption, ρ the rate of time

preference, Pt the price level, y real income “rain[ing] from heaven at a fixed rate of y units

per period” (Gray 1984, p. 97), and M t nominal and m t =M t /Pt real money balances.

The resulting optimization problem produces the following Euler equation

Uc c (c t )

Uc (c t )
ċ t −ρ =φm (c t ,m t )+

Ṗt

Pt

+
φc c (c t ,m t ) ċ t +φc m (c t ,m t )ṁ t

1+φc (c t ,m t )
(4.41)
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Holding nominal balances constant43 yields

ṁ t =−m t

Ṗt

Pt

(4.42)

and subsequently differentiating the budget constraint with respect to time yields,

ċ t =−
φm (c t ,m t )

1+φc (c t ,m t )
ṁ t (4.43)

Combining the foregoing three yields

Ṗt

Pt

=−
ρ+φm

1+ m t

1+φc

h

φmφcc

1+φc
− φm Ucc

Uc
−φc m

i (4.44)

For Gray’s (1984, p. 106) condition on the transaction function to rule out speculative

hyperinflation under her assumptions of linear utility and transaction costs only dependent

on real balances

l i mm t→0m tφm < 0 (4.45)

to carry over to this more general case, it suffices that the denominator of (4.44) not be

negative.44

Note, firstly, that settingφc = 0 yields

Ṗt

Pt

=−
ρ+φm

1−m t
φm Ucc

Uc

(4.46)

i.e., the special case of transaction costs independent of the level of transactions, but with

nonlinear utility. This corresponds to Gray’s (1984, p. 118) Equation (36). As she notes, a

condition to ensure the denominator always be positive is for−φmUc c to be positive, which is

contradicted by assumption. Gray (1984, p. 118) interprets this compound term as, “the effect

43This is the assumption maintained throughout Gray (1984). The issue at hand is whether speculative

hyperinflation and hyperdeflation can be ruled out.
44See Gray (1984, pp. 117–118). The numerator in (4.44) gives the rate of inflation for Gray’s (1984, p. 103)

simple model, and if the denominator remains positive, “[t]he dynamics of the more general model will be the
same as the dynamics of the simpler model.” (Gray 1984, p. 118)
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on the marginal utility of consumption of the change in consumption generated by a change

in real balances.”

Also examined by Gray (1984, p. 118) is the special case of linear utility, but with the

general transaction function. Setting Uc c to zero yields

Ṗt

Pt

=−
ρ+φm

1+ m t

1+φc

h

φmφcc

1+φc
−φc m

i (4.47)

which corresponds to the equation in Gray’s (1984, p. 118) Footnote 30. As interpreted there,

a sufficient condition is now φc m < 0. McCallum (2001b, p. 148) argues for setting this “cross

partial derivative negative, so that the marginal benefit of holding money—i.e., the reduction

in transaction costs—increases with the volume of consumption spending.” And indeed the

transaction function in both McCallum (2001b) and McCallum (2009b) does this.45

Using the foregoing two special cases, a sufficient condition would be that the marginal

benefit of holding money increase sufficiently with an increase in consumption spending

to outweigh the associated decrease in marginal utility from such a consumption spending

increase. I.e., −φc mUc >φmUc c . Thus, the cross partial derivative being sufficiently negative

constitutes a sufficient condition.

As this cross partial derivative is in no way constrained by the general transaction

function of McCallum (2009b), assume the foregoing condition is fulfilled, and hence it

suffices that

l i mm t→0m tφm < 0 (4.48)

for speculative hyperinflation to be ruled out.46 As noted in the main text, this assumption is

fulfilled by McCallum’s (2009b, p. 1107) specific transaction function.

45Nevermind that this function does not satisfy McCallum’s (2009b, p. 1106) own requirement that φc c < 0 as
Gray (1984, p. 118) too requires.

46Note that speculative hyperdeflation is ruled out with a transversality condition that would be violated along
such a path given that the saddle-point property is ensured by the assumption −φc mUc >φmUc c .
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