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Abstract Neural field equations are used to describe the spatio-temporal evolution
of the activity in a network of synaptically coupled populations of neurons in the
continuum limit. Their heuristic derivation involves two approximation steps. Under
the assumption that each population in the network is large, the activity is described
in terms of a population average. The discrete network is then approximated by a
continuum. In this article we make the two approximation steps explicit. Extending a
model by Bressloff and Newby, we describe the evolution of the activity in a discrete
network of finite populations by a Markov chain. In order to determine finite-size
effects—deviations from the mean-field limit due to the finite size of the popula-
tions in the network—we analyze the fluctuations of this Markov chain and set up an
approximating system of diffusion processes. We show that a well-posed stochastic
neural field equation with a noise term accounting for finite-size effects on traveling
wave solutions is obtained as the strong continuum limit.

1 Introduction

The analysis of networks of neurons of growing size quickly becomes involved from
a computational as well as from an analytic perspective when one tracks the spiking
activity of every neuron in the network. It can therefore be useful to zoom out from
the microscopic perspective and identify a population activity as an average over a
certain group of neurons. In the heuristic derivation of such population models it is
usually assumed that each of the populations in the network is infinite, such that, in
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the spirit of the law of large numbers, the description of the activity in each population
reduces to a description of the mean. By considering a spatially extended network and
letting the density of populations go to infinity, neural field equations are obtained as
the continuum limit of these models. Here we consider the voltage-based neural field
equation, which is a nonlocal evolution equation of the form

∂

∂t
u(x, t) = −u(x, t) + w ∗ F

(
u(·, t))(x), x ∈ R, t ≥ 0, (1)

where u(x, t) describes the average membrane potential in the population at x at time
t , w : R → [0,∞) is a kernel describing the strengths of the synaptic connections
between the populations, and the gain function F :R → [0,1] relates the potential to
the activity in the population.

Neural field equations were first introduced by Amari [1] and Wilson and Cowan
[2, 3] and have since been used extensively to study the spatio-temporal dynamics of
the activity in coupled populations of neurons. While they are of a relatively simple
form, they exhibit a variety of interesting spatio-temporal patterns. For an overview
see for example [4–8]. In this article we will concentrate on traveling wave solutions,
modeling the propagation of activity, which were proven to exist in [9].

The communication of neurons is subject to noise. It is therefore crucial to study
stochastic versions of (1). While several sources of noise have been identified on
the single neuron level, it is not clear how noise translates to the level of populations.
Since neural field equations are derived as mean-field limits, the usual effects of noise
should have averaged out on this level. However, the actual finite size of the popula-
tions leads to deviations from the mean-field behavior, suggesting finite-size effects
as an intrinsic source of noise.

The (heuristic) derivation of neural field equations involves two approximation
steps. First, the local dynamics in each population is reduced to a description of the
mean activity. Second, the discrete network is approximated by a continuum. In this
article we make these two approximation steps explicit. In order to describe devia-
tions from the mean-field behavior for finite population sizes, we set up a Markov
chain to describe the evolution of the activity in the finite network, extending a model
by Bressloff and Newby [10]. The transition rates are chosen in such a way that we
obtain the voltage-based neural network equation in the infinite-population limit. We
analyze the fluctuations of the Markov chain in order to determine a stochastic cor-
rection term describing finite-size effects. In the case of fluctuations around traveling
wave solutions, we set up an approximating system of diffusion processes and prove
that a well-posed stochastic neural field equation is obtained in the continuum limit.

In order to derive corrections to the neural field equation accounting for finite-size
effects, in [11], Bressloff (following Buice and Cowan [12]) sets up a continuous-
time Markov chain describing the evolution of the activity in a finite network of
populations of finite size N . The rates are chosen such that in the limit as N → ∞ one
obtains the usual activity-based network equation. He then carries out a van Kampen
system size expansion of the associated master equation in the small parameter 1/N

to derive deterministic corrections of the neural field equation in the form of coupled
differential equations for the moments. To first order, the finite-size effects can be
characterized as Gaussian fluctuations around the mean-field limit.
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The model is considered from a mathematically rigorous perspective by Riedler
and Buckwar in [13]. They make use of limit theorems for Hilbert-space valued piece-
wise deterministic Markov processes recently obtained in [14] as an extension of
Kurtz’s convergence theorems for jump Markov processes to the infinite-dimensional
setting. They derive a law of large numbers and a central limit theorem for the Markov
chain, realizing the double limit (number of neurons per population to infinity and
continuum limit) at the same time. They formally set up a stochastic neural field
equation, but the question of well-posedness is left open.

In [10], Bressloff and Newby extend the original approach of [11] by including
synaptic dynamics and consider a Markov chain modeling the activity coupled to a
piecewise deterministic process describing the synaptic current (see also Sect. 6.4 in
[8] for a summary). In two different regimes, the model covers the case of Gaussian-
like fluctuations around the mean-field limit as derived in [11], as well as a situation
in which the activity has Poisson statistics as considered in [15].

Here we consider the question how finite-size effects can be included in the
voltage-based neural field equation. We take up the approach of describing the dy-
namics of the activity in a finite-size network by a continuous-time Markov chain and
motivate a choice of jump rates that will lead to the voltage-based network equation
in the infinite-population limit. We derive a law of large numbers and a central limit
theorem for the Markov chain. Instead of realizing the double limit as in [13], we
split up the limiting procedure, which in particular allows us to insert further approx-
imation steps. We follow the original approach by Kurtz to determine the limit of
the fluctuations of the Markov chain. By linearizing the noise term around the travel-
ing wave solution, we obtain an approximating system of diffusion processes. After
introducing correlations between populations lying close together (cf. Sect. 5.1) we
obtain a well-posed L2(R)-valued stochastic evolution equation, with a noise term
approximating finite-size effects on traveling waves, which we prove to be the strong
continuum limit of the associated network. Further results concerning (stochastic)
stability of travelling waves and a corresponding multiscale analysis for the stochas-
tic neural field equations derived in this paper are contained in the references [16,
17], see also the PhD-thesis [18].

The article is structured as follows. We recall how population models can be de-
rived heuristically in Sect. 2 and summarize the work on the description of finite-size
effects that can be found in the literature so far. In Sect. 3 we introduce our Markov
chain model for determining finite-size effects in the voltage-based neural field equa-
tion and prove a law of large numbers and a central limit theorem for our choice of
jump rates. We use it to set up a diffusion approximation with a noise term account-
ing for finite-size effects on traveling wave solutions in Sect. 4. Finally, in Sect. 5, we
prove that a well-posed stochastic neural field equation is obtained in the continuum
limit.

1.1 Assumptions on the Parameters

As usual, we take the gain function F : R → [0,1] to be a sigmoid function, for
example F(x) = 1

1+e−γ (x−κ) for some γ > 0, 0 < κ < 1. In particular we assume that

(i) F ≥ 0, limx↓−∞ F(x) = 0, limx↑∞ F(x) = 1,
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(ii) F(x) − x has exactly three zeros 0 < a1 < a < a2 < 1,
(iii) F ∈ C3 and F ′, F ′′ and F ′′′ are bounded,
(iv) F ′ > 0, F ′(a1) < 1, F ′(a2) < 1, F ′(a) > 1.

Our assumptions on the synaptic kernel w are the following:

(i) w ∈ C1,
(ii) w(x,y) = w(|x − y|) ≥ 0 is nonnegative and homogeneous,

(iii)
∫ ∞
−∞ w(x)dx = 1, wx ∈ L1.

Assumption (iv) on F implies that a1 and a2 are stable fixed points of (1), while a

is an unstable fixed point. It has been shown in [9] that under these assumptions there
exists a unique monotone traveling wave solution to (1) connecting the stable fixed
points (and, in [19], that traveling wave solutions are necessarily monotone). That is,
there exist a unique wave profile û : R → [0,1] and a unique wave speed c ∈ R such
that uTW(t, x) = uTW

t (x) := û(x − ct) is a solution to (1), i.e.

−c∂xu
TW
t (x) = ∂tu

TW
t (x) = −uTW

t (x) +
∫ ∞

−∞
w(x − y)F

(
uTW

t (y)
)
dy

= −uTW
t (x) + w ∗ F

(
uTW

t

)
(x),

and

lim
x→−∞ û(x) = a1, lim

x→∞ û(x) = a2.

As also pointed out in [9], we can without loss of generality assume that c ≥ 0. Note
that ûx ∈ L2(R) since in the case c > 0
∫

û2
x(x) dx =

∫
ûx(x)

1

c

(
û(x) − w ∗ F(û)(x)

)
dx

≤ 1

c

(
‖û‖∞ + ‖F‖∞

∫
w(x)dx

)∫
ûx(x) dx = 1

c
(a2 + 1)(a2 − a1),

and in the case c = 0
∫

û2
x(x) dx =

∫
ûx(x)wx ∗ F(û)(x) dx ≤ ‖wx‖1(a2 − a1).

2 Finite-Size Effects in Population Models

2.1 Population Models

In population models, or firing rate models, instead of tracking the spiking activ-
ity of every neuron in the network, neurons are grouped together and the activity is
identified as a population average. We start by giving a heuristic derivation of popu-
lation models, distinguishing as usual between an activity-based and a voltage-based
regime.
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We consider a population of N neurons. We say that a neuron is ‘active’ if it is
in the process of firing an action potential such that its membrane potential is larger
than some threshold value κ . If � is the width of an action potential, then a neuron
is active at time t if it fired a spike in the time interval (t − �, t]. We define the
population activity at a given time t as the proportion of active neurons,

aN(t) = # neurons that are active at time t

N
∈

{
0,

1

N
,

2

N
, . . . ,1

}
. (2)

We assume that all neurons in the population are identical and receive the same input.
If the neurons fire independently from each other, then, for a constant input current I ,

aN(t)
N→∞−−−−→ F(I),

where F(I) is the probability that a neuron receiving constant stimulation I is active.
In the infinite-population limit, the population activity is thus related to the input
current via the function F , called the gain function. Sometimes one also defines F

as a function of the potential u, assuming that the potential is proportional to the
current as in Ohm’s law. F is typically a nonlinear function. It is usually modeled as
a sigmoid, for example

F(x) = 1

1 + e−γ (x−κ)

for some γ > 0 and some threshold κ > 0, imitating the threshold-like nature of
spiking activity.

Sometimes a firing rate is considered instead of a probability. We define the pop-
ulation firing rate λN as

λδ,N (t) = # spikes in the time interval (t − δ, t]
δN

.

If δ = �, then �λδ,N(t) = aN(t). At constant potential u, limδ→0 limN→∞ λδ,N (t) =
λ(u), where λ(u) is the single neuron firing rate. Note that λ ≤ 1

�
. The firing rate is

related to the probability F(u) via

F(u) ≈ λ(u)�.

If the stimulus varies in time, then the activity may track this stimulus with some
delay such that

a(t + τa) = F
(
u(t)

)

for some time constant τa . Taylor expansion of the left-hand side gives an approxi-
mate description of the (infinite-population) activity in terms of the differential equa-
tion

τaȧ(t) = −a(t) + F
(
u(t)

)
, (3)

to which we refer as the rate equation.
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We now consider a network of P populations, each consisting of N neurons. We
assume that each presynaptic spike in population j at time s causes a postsynaptic
potential

h(t − s) = 1

N
wij

1

τm

e
− 1

τm
(t−s)

in population i at time t . Here the (wij ) are weights characterizing the strength of
the synaptic connections between populations i and j , and τm is the membrane time
constant, describing how fast the membrane potential relaxes back to its resting value.

Under the assumption that all inputs add up linearly, the potential in population i

at time t is given as

uN
i (t) =

P∑

j=1

wij

∫ t

−∞
1

τm

e
− 1

τm
(t−s)

aN
j (s) ds,

or, in differential form,

τmu̇N
i (t) = −uN

i (t) +
P∑

j=1

wija
N
j (t). (4)

In the infinite-population limit we therefore obtain the coupled system

τmu̇i(t) = −ui(t) +
P∑

j=1

wijaj (t),

τaȧi(t) = −ai(t) + F
(
ui(t)

)
, i = 1, . . . P .

(5)

The behavior of (5) depends on the two time constants, τm and τa . Two different
regimes can be identified in which the model can be reduced to just one of the two
variables, u or a.

2.1.1 Case 1: τm 
 τa → 0

Setting τa = 0 yields ai(t) = F(ui(t)) and thus (5) reduces to

τmu̇i(t) = −ui(t) +
P∑

j=1

wijF
(
uj (t)

)
, (6)

which we will call the voltage-based neural network equation.

2.1.2 Case 2: τa 
 τm → 0

Setting τm = 0 yields ui(t) = ∑P
j=1 wijaj (t) and thus (5) reduces in this case to

τaȧi(t) = −ai(t) + F

(
P∑

j=1

wijaj (t)

)

, (7)

which we will call the activity-based neural network equation.



Journal of Mathematical Neuroscience  (2017) 7:5 Page 7 of 35

Throughout this paper we will be interested in the former regime of the voltage-
based neural network equation, thereby assuming τa small. Our aim is to derive
stochastic differential equations in a first step for the infinite-population limit N → ∞
and subsequently for the continuum limit P → ∞, describing the asymptotic fluctu-
ations.

2.2 Finite-Size Effects

The rate equation discussed in the previous subsection depends crucially on the way,
how activity is measured. Starting from the definition (2) for given δ > 0, the value
will depend on the relation between the value of δ and the width � of an action
potential. In [10], a model for the evolution of the activity in a network of finite
populations is set up, based on the definition

a
δ,N
j (t) = # spikes in (t − δ, t] in population j

δN

of the activity in population j . Here, δ is a time window of variable size. If δ is chosen
as the width of an action potential �, one obtains the original notion of the activity,
�a�,N = aN . Note that the number of spikes in the time interval (t − δ, t] is limited
by nmax := N ∨ [ δN

�
].

The dynamics of aδ,N is modeled as a Markov chain with state space {0, 1
δN

, . . . ,
nmax
δN

}P and jump rates

qN
a

(
x, x + 1

δN
ei

)
= 1

τa

δNλ
(
uN

i (t)
)

if x(i) <
nmax

δN
,

qN
a

(
x, x − 1

δN
ei

)
= 1

τa

δNx(i).

(8)

Here ei denotes the ith unit vector, λ(u) is the firing rate at potential u, related to the
probability F(u) via �λ(u) = F(u), and uN evolves according to (4)

u̇N
i (t) = 1

τm

(

−uN
i (t) +

P∑

j=1

wija
N
j (t)

)

.

The idea for these transition rates is that the activation rate should be proportional to
λ(u), while the inactivation rate should be proportional to the activity itself.

The following two regimes are then considered in [10].

2.2.1 Case 1: δ = 1, τa 
 τm → 0

In the first regime, the size of the time window δ is fixed, say δ = 1. If τa 
 τm → 0,
then as in Sect. 2.1, uN

i (t) = ∑P
j=1 wija

δ,N
j (t). The description of the Markov chain

can thus be closed in the variables a
δ,N
i , leading to the model already considered in

[11]. In the limit N → ∞ one obtains the activity-based network equation

τaȧ
N
i (t) = −aN

i (t) + λ

(
P∑

j=1

wija
N
j (t)

)

. (9)
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By formally approximating to order 1
N

in the associated master equation, they derive
a stochastic correction to (9), leading to the diffusion approximation

da
δ,N
i (t) ≈ 1

τa

(

−a
δ,N
i (t) + λ

(

wij

P∑

j=1

a
δ,N
j (t)

))

dt

+ 1√
τaN

(

a
δ,N
i (t) + λ

(
P∑

j=1

wija
δ,N
j (t)

)) 1
2

dBj (t)

for independent Brownian motions Bj .
In [13], Riedler and Buckwar rigorously derive a law of large numbers and a cen-

tral limit theorem for the sequence of Markov chains as N tends to infinity. Note that
the nature of the jump rates is such that the process has to be ‘forced’ to stay in its
natural domain [0, nmax

N
] by setting the jump rate to 0 at the boundary. As they point

out, this discontinuous behavior is difficult to deal with mathematically. They there-
fore have to slightly modify the model and allow the activity to be larger than nmax

N
.

They embed the Markov chain into L2(D) for a bounded domain D ⊂ R
d and derive

the LLN in L2(D) and the CLT in the Sobolev space H−α(D) for some α > d .

2.2.2 Case 2: δ = 1
N

, τm 
 τa

In the second regime, the size of the time window δ goes to 0 as N goes to infinity
such that δN = 1. In this case,

a
δ,N
i (t) = # spikes in (t − δ, t] in pop. i

δN
≈ λ(uN

i (t))δN

δN
= λ

(
uN

i (t)
)
.

The corresponding Markov chain has state space {0,1,2, . . . , nmax}P . Since τa � τm,
changes in ui(t) are slow in comparison to changes of the activity, and for fixed volt-
age u, the Markov chain in fact has a stationary distribution that is approximately
Poisson with rate λ(u) (see e.g. [10]). This corresponds to the regime considered
in [15].

Note that we cannot expect to have a deterministic limit for the activity as N → ∞
in this case, so we do not have a deterministic limit for the voltage. We will there-
fore consider a third regime with δ > 0 fixed in this paper and study its asymptotic
behavior in the large population limit N → ∞.

2.2.3 Case 3: δ = �, τm 
 τa → 0

We can expect in this case to have a law of large numbers, i.e. a deterministic limit
for the activity. Since ai(t) ≈ F(ui(t)) we also obtain a law of large numbers for the
voltage. In order to derive an appropriate diffusion approximation, we will have to
reconsider the transition rates of the Markov chain (8).

Going back to our original definition of the activity let us fix the time window δ to
be the length of an action potential �. We assume that the potential evolves slowly,
τm 
 0. Speeding up time, we define

ũN
i (t) = uN

i (tτm).
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Then

ũN
i (t) =

P∑

j=1

wij

∫ tτm

−∞
1

τm

e
− 1

τm
(tτm−s)

aN
j (s) ds

=
P∑

j=1

wij

∫ t

−∞
e−(t−s)aN

j (sτm)ds.

For some large n,

ũN
i (t) ≈

P∑

j=1

wij

[tn]−1∑

k=−∞
e−(t− k

n
)

∫ k+1
n

k
n

aN
j (sτm)ds.

The potentials ũN
i therefore only depend on the time-averaged activities given for

k
n

≤ t < k+1
n

as

ãN
i (t) = n

∫ k+1
n

k
n

aN
i (sτm)ds.

We have

ũN
i (t) ≈

P∑

j=1

wij

[tn]−1∑

k=−∞

1

n
e−(t− k

n
)ãN

j

(
k

n

)
≈

P∑

j=1

wij

∫ t

−∞
e−(t−s)ãN

j (s) ds.

Since the relaxation rate τa approaches zero, the time-averaged activity ãN
i (t) ap-

proximates F(ũN
i (t)) and thus

ãN
i (t) ≈ F

(
ũN

i (t)
) ≈ F

(
P∑

j=1

wij

∫ t

−∞
e−(t−s)ãN

j (s) ds

)

, (10)

with equality in the limit N → ∞. Differentiating (10) w.r.t. t therefore yields

d

dt
ãi(t) = d

dt
F

(
ũi (t)

)

= F ′(ũi (t)
)
(

−ũi (t) +
P∑

j=1

wijF
(
ũj (t)

)
)

= F ′(F−1(ãi (t)
))

(

−F−1(ãi (t)
) +

P∑

j=1

wij ãj (t)

)

. (11)

If N < ∞, then the finite size of the populations causes deviations from (11). In
order to determine these finite-size effects, in the next section we will set up a Markov
chain XP,N to describe the evolution of the time-averaged activity ãN .
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3 A Markov Chain Model for the Activity

We will model the time-averaged activity by a Markov chain XP,N on the state space
EP,N = {0, 1

N
, 2

N
, . . . ,1}P . To this end consider the following jump rates:

qP,N

(
x, x + 1

N
ei

)
= NF ′(F−1(xi)

)
(

−F−1(xi) +
P∑

j=1

wijxj

)

+
,

qP,N

(
x, x − 1

N
ei

)
= NF ′(F−1(xi)

)
(

−F−1(xi) +
P∑

j=1

wijxj

)

−
,

(12)

for x ∈ EP,N with xi ∈ { 1
N

, . . . ,1 − 1
N

}. Here, we used the notation x+ := x ∨ 0,
x− := (−x) ∨ 0, and ei denotes the ith unit vector.

Note that, for N ∈ N large, the interior (EP,N)◦ := { 1
N

, . . . ,1 − 1
N

}P will be in-
variant, hence the Markov chain, when started in (EP,N)◦ stays away from the bound-
ary. Indeed, for large N ∈N it follows that

qP,N

(
x, x + 1

N
ei

)
= 0

(
resp. qP,N

(
x, x − 1

N
ei

)
= 0

)

for x ∈ (EP,N)◦ with xi = 1 − 1
N

(resp. xi = 1
N

), because F−1(1 − 1
N

) > 1 − 1
N

≥
∑P

j=1 wijxj , hence q(x, x + 1
N

ei) = 0, (resp. F−1( 1
N

) < 1
N

≤ ∑P
j=1 wijxj , hence

q(x, x − 1
N

ei) = 0) for large N , using the limiting behavior limx↑1 F−1(x) = ∞
(resp. limx↓0 F−1(x) = −∞).

The idea behind the choice of our rates is the following: the time-averaged activity
tends to jump up (down) if the potential in the population, which is approximately
given by F−1(xi), is lower (higher) than the input from the other populations, which
is given by

∑P
j=1 wijxj . The probability that the activity jumps down (up) when the

potential is lower (higher) than the input is assumed to be negligible. The jump rates
are proportional to the difference between the two quantities, scaled by the factor
F ′(F−1(xi)). They are therefore higher in the sensitive regime where F ′ 
 1, that is,
where small changes in the potential have large effects on the activity. If aN

i = F(uN
i )

in all populations i, then the system is in balance.
We will see in Proposition 1 below that the Markov chain converges to the solution

of (11) for increasing population size N ↑ ∞.
In [11] a different choice of jump rates was suggested in analogy to (8):

q̃

(
x, x + 1

N
ei

)
= NF ′(F−1(xi)

) P∑

j=1

wijxj ,

q̃

(
x, x − 1

N
ei

)
= NF ′(F−1(xi)

)
F−1(xi).

Also this choice leads to (11) in the limit. With these rates, however, the jump rates
are high in regions where the activity is high. Since, as explained above, one should
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think of the Markov chain as governing a slowly varying time-averaged activity, (12)
seems like a more natural choice.

The generator of QP,N of XP,N is given for bounded measurable f : EP,N → R

by

QP,Nf (x) = N

P∑

k=1

F ′(F−1(xk)
)
((

−F−1(xk) +
P∑

j=1

wkjxj

)

+

×
(

f

(
x + 1

N
ek

)
− f (x)

)

+
(

−F−1(xk) +
P∑

j=1

wkjxj

)

−

(
f

(
x − 1

N
ek

)
− f (x)

))

.

Let N0 be such that for N ≥ N0 the interior (EP,N)◦ is an invariant set for XP,N .
The jump rates out of the interval [ 1

N0
,1 − 1

N0
] are 0.

Proposition 1 Let XP be the (deterministic) Feller process on [1/N0,1 − 1/N0]P
with generator

LP f (x) =
P∑

k=1

F ′(F−1(xk)
)
(

−F−1(xk) +
P∑

j=1

wkjxj

)

∂kf (x).

If XP,N(0)
d−−−−→

N→∞ XP (0), then XP,N d−−−−→
N→∞ XP on the space of càdlàg functions

D([0,∞), [1/N0,1 − 1/N0]P ) with the Skorohod topology (where
d−→ denotes con-

vergence in distribution).

Proof By a standard theorem on the convergence of Feller processes (cf. [20],
Thm. 19.25) it is enough to prove that for f ∈ C∞([1/N0,1 − 1/N0]P ) there

exist bounded measurable fN such that ‖fN − f ‖∞
N→∞−−−−→ 0 and ‖QP,NfN −

LP f ‖∞
N→∞−−−−→ 0.

Let thus f ∈ C∞([1/N0,1 − 1/N0]P ) and set fN(x) = f ( [x1N ]
N

, . . . , [xP N ]
N

). Then
it is easy to see that

QP,NfN(x)
N→∞−−−−→ LP f (x)

uniformly in x. �

4 Diffusion Approximation

We are now going to approximate XP,N by a diffusion process. To this end, we
follow the standard approach due to Kurtz and derive a central limit theorem for the
fluctuations of XP,N . This will give us a candidate for a stochastic correction term
to (11).
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4.1 A Central Limit Theorem

The general theory of continuous-time Markov chains implies the following semi-
martingale decomposition:

X
P,N
k (t) = X

P,N
k (0) +

∫ t

0
QP,Nπk

(
XP,N(s)

)
ds + M

P,N
k (t),

where πk : (0,1)P → (0,1), x �→ xk , is the projection onto the kth coordinate,
QP,Nπk(X

P,N(s)) = ∑
y∈EP,N qP,N(XP,N(s), y)yk is the (signed) kernel QP,N ap-

plied to the function πk evaluated at the state XP,N(s), and

M
P,N
k (t) := X

P,N
k (t) − X

P,N
k (0) −

∫ t

0
QP,Nπk

(
XP,N(s)

)
ds

is a zero mean square-integrable martingale (with right-continuous sample paths hav-
ing left limits in t > 0). Moreover,

(
M

P,N
k (t)

)2 −
∫ t

0

∑

y∈EP,N

qP,N
(
X

P,N
k (s), y

)(
X

P,N
k (s) − yk

)2
ds

is a martingale too (see [21]). The general theory of stochastic processes states that
for any square-integrable right-continuous martingale Mt , t ≥ 0, having left limits in
t > 0, there exists a unique increasing previsible process 〈M〉t starting at 0, such that
M2

t − 〈M〉t , t ≥ 0, is a martingale too. We can therefore conclude that

〈
MP,N

〉
t
=

∫ t

0

∑

y∈EP,N

qP,N
(
X

P,N
k (s), y

)(
X

P,N
k (s) − yk

)2
ds.

The bracket process will be crucial to determine the limit of the fluctuations as seen
in the next proposition.

Proposition 2
(√

NM
P,N
k

)

d−−−−→
N→∞

(∫ t

0

(

F ′(F−1(XP
k (s)

))
∣∣∣∣∣
−F−1(XP

k (s)
) +

P∑

j=1

wkjX
P
j (s)

∣∣∣∣∣

) 1
2

dBk(s)

)

on D([0,∞),RP ), where B is a P -dimensional standard Brownian motion, and XP

is the Feller process from Proposition 1.

Proof Using

〈
M

P,N
k

〉
t
=

∫ t

0

∑

y∈EP,N

qP,N
(
XP,N(s), y

)(
X

P,N
k (s) − yk

)2
ds

= 1

N

∫ t

0
F ′(F−1(XP,N

k (s)
))

((

−F−1(XP,N
k (s)

) +
P∑

j=1

wkjX
P,N
j (s)

)

+
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+
(

−F−1(XP,N
k (s)

) +
P∑

j=1

wkjX
P,N
j (s)

)

−

)

ds

= 1

N

∫ t

0
F ′(F−1(XP,N

k (s)
))

∣∣
∣∣∣
−F−1(XP,N

k (s)
) +

P∑

j=1

wkjX
P,N
j (s)

∣∣
∣∣∣
ds.

Thus,

〈√
NM

P,N
k

〉
t

N→∞−−−−→
∫ t

0
F ′(F−1(XP

k (s)
))

∣∣∣∣∣
−F−1(XP

k (s)
) +

P∑

j=1

wkjX
P
j (s)

∣∣∣∣∣
ds

in probability. For k �= l,

〈
M

P,N
k ,M

P,N
l

〉
t
=

∫ t

0

∑

y

qP,N
(
XP,N(s), y

)(
X

P,N
k (s) − yk

)(
X

P,N
l (s) − yl

)
ds = 0,

since for y with qP,N(XP,N(s), y) > 0 at least one of X
P,N
k (s)−yk and X

P,N
l (s)−yl

is always 0. Now

E
(

sup
t

√
N

∥∥MP,N(t) − MP,N(t−)
∥∥

2

)
≤ 1√

N

N→∞−−−−→ 0,

and the statement follows by the martingale central limit theorem; see for example
Theorem 1.4, Chap. 7 in [22]. �

This suggests to approximate XP,N by the system of coupled diffusion processes

da
P,N
k (t)

= F ′(F−1(aP,N
k (t)

))
(

−F−1(aP,N
k (t)

) +
P∑

j=1

wkja
P,N
j (t)

)

dt

+ 1√
N

(

F ′(F−1(aP,N
k (t)

))
∣∣
∣∣∣
−F−1(aP,N

k (t)
) +

P∑

j=1

wkja
P,N
j (t)

∣∣
∣∣∣

) 1
2

dBk(t),

1 ≤ k ≤ P .
Using Itô’s formula, we formally obtain an approximation for u

P,N
k := F−1(a

P,N
k ),

du
P,N
k (t) =

(

−u
P,N
k (t) +

P∑

j=1

wkjF
(
u

P,N
j (t)

)

− 1

2N

F ′′(uP,N
k (t))

F ′(uP,N
k (t))2

∣
∣∣∣∣
−u

P,N
k (t) +

P∑

j=1

wkjF
(
u

P,N
j (t)

)
∣
∣∣∣∣

)

dt

+ 1√
N

( | − u
P,N
k (t) + ∑P

j=1 wkjF (u
P,N
j (t))|

F ′(uP,N
k (t))

) 1
2

dBk(t). (13)
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Since the square root function is not Lipschitz continuous near 0, we cannot apply
standard existence theorems to obtain a solution to (13) with the full multiplicative
noise term. Instead we will linearize around a deterministic solution to the neural
field equation and approximate to a certain order of 1√

N
.

4.2 Fluctuations around the Traveling Wave

Let ū be a solution to the neural field equation (1). To determine the finite-size ef-
fects on ū, we consider a spatially extended network, that is, we look at populations
distributed over an interval [−L,L] ⊂ R and use the stochastic integral derived in
Proposition 2 to describe the local fluctuations on this interval.

Let m ∈ N be the density of populations on [−L,L] and consider P = 2mL popu-
lations located at k

m
, k ∈ {−mL,−mL + 1, . . . ,mL − 1}. We choose the weights wkl

as a discretization of the integral kernel w : R → [0,∞),

wm
kl =

∫ l+1
m

l
m

w

(
k

m
− y

)
dy, −mL ≤ k, l ≤ mL − 1. (14)

Since we think of the network as describing only a section of the actual domain R,
we add to each population an input F(ūt (−L)) and F(ūt (L)), respectively, at the
boundaries with corresponding weights

w
m,+
k =

∫ ∞

L

w

(
k

m
− y

)
dy,

w
m,−
k =

∫ −L

−∞
w

(
k

m
− y

)
dy.

(15)

Fix a population size N ∈N. Set ūk(t) = ū( k
m

, t) and for u ∈ R
P ,

b̂m
k (t, u) = −uk(t) +

mL−1∑

l=−mL

wm
klF

(
ul(t)

) + w
m,+
k F

(
ū(L, t)

) + w
m,−
k F

(
ū(−L, t)

)
.

We write

uk = ūk + vk (16)

and assume that vk is of order 1/
√

N . Linearizing (13) around (ūk) we obtain the
approximation

duk(t) = b̂m
k (t, u) dt + 1√

NF ′(ūk(t))

∣∣b̂m
k (t, ū)

∣∣
1
2 dBk(t)

to order 1/
√

N .
Note that b̂m

k (t, ū) ≈ ∂t ūk(t) = 0 for a stationary solution ū, with equality if ū

is constant. The finite-size effects are hence of smaller order. Since the square root
function is not differentiable at 0 we cannot expand further.



Journal of Mathematical Neuroscience  (2017) 7:5 Page 15 of 35

However, the situation is different if we linearize around a moving pattern. We
consider the traveling wave solution uTW

t (x) = û(x − ct) to (1) and we assume with-
out loss of generality that c > 0. Then b̂m

k (t, ū) ≈ ∂t ūk(t) = −c∂xu
TW
t < 0. This

monotonicity property allows us to approximate to order 1/N in (13). Indeed, note
that since û and F are increasing,

−b̂m
k

(
t, uTW

t

)

= uTW
t

(
k

m

)
−

∑

l

wm
klF

(
uTW

t

(
l

m

))

− w
m,+
k F

(
uTW

t (L)
) − w

m,−
k F

(
uTW

t (−L)
)

≥ uTW
t

(
k

m

)
−

∫ ∞

−L

w

(
k

m
− y

)
F

(
uTW

t

)
(y) dy

−
∫ −L

−∞
w

(
k

m
− y

)
F

(
uTW

t (−L)
)
dy

= cûx

(
k

m
− ct

)
−

∫ −L

−∞
w

(
k

m
− y

)(
F

(
uTW

t (−L)
) − F

(
uTW

t (y)
))

dy

≥ cûx

(
k

m
− ct

)
− (

F
(
uTW

t (−L)
) − F(a1)

)

L→∞−−−→ cûx

(
k

m
− ct

)
> 0. (17)

So for L large enough, −b̂m
k (t, uTW

t ) > 0 and we have, using Taylor’s formula and
(16),

( |b̂m
k (t, u)|

F ′(uk(t))

) 1
2 =

(−b̂m
k (t, uTW

t )

F ′(uTW
t ( k

m
))

) 1
2 + 1

2
√

−b̂m
k (t, uTW

t )F ′(uTW
t ( k

m
))

×
(

F ′′(uTW
t ( k

m
))

F ′(uTW
t ( k

m
))

b̂m
k

(
t, uTW

t

)
vk(t)

+ vk(t) −
∑

l

wklF
′
(

uTW
t

(
l

m

))
vl(t)

)
+ O

(
1

N

)
.

As a possible diffusion approximation in the case of traveling wave solutions we
therefore obtain the system of stochastic differential equations

duk(t) =
(

b̂m
k (t, u) + 1

2N

F ′′(uTW
t ( k

m
))

F ′(uTW
t ( k

m
))2

b̂m
k

(
t, uTW

t

))
dt

+ 1√
N

[(−b̂m
k (t, uTW

t )

F ′(uTW
t ( k

m
))

) 1
2 + 1

2
√

−b̂m
k (t, uTW

t )F ′(uTW
t ( k

m
))
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×
(

F ′′(uTW
t ( k

m
))

F ′(uTW
t ( k

m
))

b̂m
k

(
t, uTW

t

)
vk(t)

+ vk(t) −
∑

l

wklF
′
(

uTW
t

(
l

m

))
vl(t)

)]
dBk(t), (18)

for which there exists a unique solution as we will see in the next section.

5 The Continuum Limit

In this section we take the continuum limit of the network of diffusions (18), that is,
we let the size of the domain and the density of populations go to infinity in order to
obtain a stochastic neural field equation with a noise term describing the fluctuations
around the deterministic traveling wave solution due to finite-size effects.

We thus have to deal with functions that ‘look almost like the wave’ and choose
to work in the space S := {u : R → R : u − û ∈ L2}. Note that since for u1, u2 ∈ S ,
‖u1 − u2‖ < ∞, the L2-norm induces a topology on S .

5.1 A Word on Correlations

Recall the definition of the Markov chain introduced in Sect. 3. Note that as long as
we allow only single jumps in the evolution, meaning that there will not be any jumps
in the activity in two populations at the same time, the martingales associated with
any two populations will be uncorrelated, yielding independent driving Brownian
motions in the diffusion limit (cf. Proposition 2).

This only makes sense for populations that are clearly distinguishable. In order to
determine the fluctuations around traveling wave solutions, we consider spatially ex-
tended networks of populations. The population located at x ∈ R is to be understood
as the ensemble of all neurons in the ε-neighborhood (x − ε, x + ε) of x for some
ε > 0. If we consider two populations located at x, y ∈ R with |x − y| < 2ε, then
they will overlap. Consequently, simultaneous jumps will occur, leading to correla-
tions between the driving Brownian motions.

Thus the Markov chain model (and the associated diffusion approximation) is
only appropriate as long as the distance between the individual populations is large
enough. When taking the continuum limit, we therefore adapt the model by introduc-
ing correlations between the driving Brownian motions of populations lying close
together.

5.2 The Stochastic Neural Field Equation

We start by defining the limiting object. For u ∈ S and t ∈ [0, T ] set

b(t, u)(x) = −u(x) +
∫ ∞

−∞
w(x − y)F

(
u(y)

)
dy = −u(x) + w ∗ F(u)(x).

Let WQ be a (cylindrical) Q-Wiener process on L2 with covariance operator
√

Q

given as
√

Qh(x) = ∫ ∞
−∞ q(x, y)h(y) dy for some symmetric kernel q(x, y) with
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q(x, ·) ∈ L2 ∩ L1 for all x ∈ R and supx∈R(‖q(x, ·)‖ + ‖q(x, ·)‖1) < ∞. (Details
on the theory of Q-Wiener processes can be found in [23, 24].) We assume that
the dispersion coefficient is given as the multiplication operator associated with σ :
[0, T ] × S → L2(R), which we also denote by σ , where σ is Lipschitz continuous
with respect to the second variable uniformly in t ≤ T , that is, we assume that there
exists Lσ > 0 such that, for all u1, u2 ∈ S and t ∈ [0, T ],

∥∥σ(t, u1) − σ(t, u2)
∥∥ ≤ Lσ ‖u1 − u2‖. (19)

The correlations are described by the kernel q . For f , g in L2(R),

E
(〈
f,WQ

t

〉〈
g,WQ

t

〉) =
∫

f (x)Qg(x)dx

=
∫

f (x)

∫
q(x, z)

∫
q(z, y)g(y) dy dz dx,

so formally,

‘E
(
WQ

t (x)WQ
t (y)

) = E
(〈
δx,WQ

t

〉〈
δy,WQ

t

〉) = q ∗ q(x, y)’,

where we denote by q ∗q(x, y) the integral
∫

q(x, z)q(z, y) dz. We could for example
take

q(x, y) = q(x − y) = 1

2ε
1(−ε,ε)(x − y) (20)

for some small ε > 0 (cf. Sect. 5.1).
The definition of the stochastic integral

∫ t

0 σ(s,us) dWQ
s (x) w.r.t. the Q-Wiener

process WQ requires in particular that the operator σ(t, v) ◦ Q
1
2 is Hilbert–Schmidt.

In the following, let L0
2 be the space of all linear operators L on L2 for which L ◦Q

1
2

is Hilbert–Schmidt and denote with ‖L‖L0
2

the Hilbert–Schmidt norm of L ◦ Q
1
2 .

With the above assumptions on Q and σ it then follows that σ(t, v) ∈ L0
2 since by

Parseval’s identity

∥∥σ(t, v)
∥∥2

L0
2
=

∑

k

∥∥σ̄ (t, v)Q
1
2 ek

∥∥2
2

=
∫

σ(t, v)2(x)
∥∥q(x, ·)∥∥2

dx

≤ sup
x

∥∥q(x, ·)∥∥2∥∥σ(t, v)
∥∥2

< ∞.

Note that, for uncorrelated noise (i.e. Q = E), this is not the case. Therefore, in
[13] Riedler and Buckwar derive the central limit theorem in the Sobolev space
H−α . Splitting up the limiting procedures, N → ∞ and continuum limit, allows
us to incorporate correlations and finally to work in the more natural function
space L2.
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Proposition 3 For any initial condition u0 ∈ S , the stochastic evolution equation

dut (x) =
(

−ut + w ∗ F(ut ) + 1

2N

F ′′(uTW
t )

F ′(uTW
t )2

∂tu
TW
t

)
dt

+ σ(t, ut ) dWQ
t (x),

u0 = u0,

(21)

has a unique strong S-valued solution. u has a continuous modification. For any
p ≥ 2,

E
(

sup
t∈[0,T ]

∥∥ut − uTW
t

∥∥p
)

< ∞.

For a proof see for example Prop. 6.5.1 in [18].

5.3 Embedding of the Diffusion Processes

As a next step we embed the systems of coupled diffusion processes (18) into L2(R).
Let m ∈ N be the population density and Lm ∈ N the length of the domain with
Lm ↑ ∞ as m → ∞. For k ∈ {−mLm,−mLm + 1, . . . ,mLm − 1} set Im

k = [ k
m

, k+1
m

)

and Jm
k = ( k

m
− 1

4m
, k

m
+ 1

4m
), and let

Wm
k (t) = 2m

〈
WQ

t ,1Jm
k

〉

be the average of WQ
t on the interval Jm

k . Then the Wm
k are one-dimensional Brow-

nian motions with covariances

E
(
Wm

k Wm
l

) = 4m2〈√Q1Jm
k

,
√

Q1Jm
l

〉 = 4m2
∫

Jm
k

∫

Jm
l

q ∗ q(y, z) dy dz.

Note that the Brownian motions are independent as long as m < 1
4ε

.
For m ∈N let σ̂ m : [0, T ] ×R

P → R
P and assume that there exists Lσ̂m > 0 such

that, for any t ∈ [0, T ] and u1, u2 ∈R
P ,

∥
∥σ̂ m(t, u1) − σ̂ m(t, u2)

∥
∥

2 ≤ Lσ̂m‖u1 − u2‖2.

Consider the system of coupled stochastic differential equations

dum
k (t) =

[
b̂m
k

(
t,

(
um

k

)) + 1

2N

F ′′(uTW
t ( k

m
))

F ′(uTW
t ( k

m
))2

b̂m
k

(
t,

(
uTW

t

(
k

m

)))

+ w
m,+
k F

(
uTW

t

(
Lm

)) + w
m,−
k F

(
uTW

t

(−Lm
))

]
dt

+ σ̂ m
k

(
t, um(t)

)
dWm

k (t), −mLm ≤ k ≤ mLm − 1,

with weights as in (14) and (15).
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We identify u = (uk)−mLm≤k≤mLm−1 ∈ R
P with its piecewise constant interpola-

tion as an element of L2 via the embedding

ιm(u) =
mLm−1∑

k=−mLm

uk1Im
k
.

For u ∈ C(R) set

πm(u) =
mLm−1∑

k=−mLm

u

(
k

m

)
1Im

k
.

Then um
t := ιm((um

k (t))k) satisfies

dum
t (x) = bm

(
t, um

t

)
(x) dt

+ 1

2N
πm

(
F ′′(uTW

t )

F ′(uTW
t )2

)
bm

(
t, πm

(
uTW

t

))
dt

+ σm
(
t, um

t

) ◦ Φm dWQ
t (x), (22)

where bm : [0, T ] × L2(R) → L2(R) and Φm : L2(R) → L2(R) are given as

bm(t, u) = −ut +
∑

k

[∫ Lm

−Lm

w

(
k

m
− y

)
F(ut )(y) dy

+w
m,+
k F

(
uTW

t

(
Lm

)) + w
m,−
k F

(
uTW

t

(−Lm
))]

1Im
k
,

Φm(u) = 2m

mLm−1∑

k=−mLm

〈u,1Jm
k

〉1Im
k
,

and where σm : [0, T ] × L2(R) → L2(R) is such that, for u ∈ R
P , σm(t, ιm(u)) =

σ̂ m
k (t, u) on Im

k . We assume joint continuity and Lipschitz continuity in the second
variable uniformly in m and t ≤ T , that is, there exists Lσ > 0 such that for u1, u2 ∈
L2(R) and t ≤ T ,

∥∥σm(t, u1) − σm(t, u2)
∥∥ ≤ Lσ ‖u1 − u2‖.

Proposition 4 For any initial condition u0 ∈ L2(R) there exists a unique strong
L2-valued solution um to (22). um admits a continuous modification. For any
p ≥ 2,

E
(

sup
t≤T

∥∥um
t

∥∥p
)

< ∞.
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Proof Again we check that the drift and diffusion coefficients are Lipschitz continu-
ous. Note that

∑

k

1

m
w

(
k

m
,y

)
=

∫ Lm

−Lm

w(x − y)dx +
∑

k

∫ k+1
m

k
m

w

(
k

m
− y

)
− w(x − y)dx

≤ ‖w‖1 +
∑

k

∫ k+1
m

k
m

∫ k+1
m

k
m

∣∣wx(z − y)
∣∣dzdx

= 1 +
∑

k

1

m

∫ k+1
m

k
m

∣∣wx(z − y)
∣∣dz

≤ 1 + 1

m
‖wx‖1. (23)

Therefore, for u1, u2 ∈ L2(R),

∥∥bm(t, u1) − bm(t, u2)
∥∥2

2

≤ 2‖u1 − u2‖2 + 2
∥∥F ′∥∥2

∞
∫ Lm

−Lm

∑

k

1

m
w

(
k

m
− y

)(
u1(y) − u2(y)

)2
dy

≤ 2‖u1 − u2‖2 + 2
∥∥F ′∥∥2

∞

(
1 + 1

m
‖wx‖1

)
‖u1 − u2‖2

and for an orthonormal basis (ek) of L2(R) we obtain, using Parseval’s identity,

∥∥(
σm(t, u1) − σm(t, u2)

) ◦ Φm
∥∥2

L0
2

=
∑

k

∥∥∥∥
(
σm(t, u1) − σm(t, u2)

)∑

l

2m〈ek,
√

Q1Jm
l

〉1Im
l

∥∥∥∥

2

=
∫ (

σm(t, u1) − σm(t, u2)
)2

(x)
∑

l

4m2
∫ (∫

Jm
l

q(z, y) dy

)2

dz1Im
l
(x) dx

≤
∫ (

σm(t, u1) − σm(t, u2)
)2

(x)
∑

l

2m

∫ ∫

Jm
l

q(z, y)2 dy dz1Im
l
(x) dx

=
∫ (

σm(t, u1) − σm(t, u2)
)2

(x)
∑

l

2m

∫

Jm
l

∥∥q(y, ·)∥∥2
dy 1Im

l
(x) dx

≤ sup
x

∥∥q(x, ·)∥∥2
L2

σ ‖u1 − u2‖2. �

5.4 Convergence

We are now able to state the main convergence result. We will need the following
assumption on the kernel w.
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Assumption 5 There exists Cw > 0 such that, for x ≥ 0,

∫ ∞

x

w(y)dy ≤ Cww(x). (24)

That assumption is satisfied for classical choices of w such as w(x) = 1
2σ

e− |x|
σ or

w(x) = 1√
2πσ 2

e
− x2

2σ2 .

Theorem 6 Fix T > 0. Let u and um be the solutions to (21) and (22), respectively.
Assume that

(i) supk supx∈Im
k

‖2m
√

Q1Jm
k

− q(x, ·)‖ m→∞−−−−→ 0,
(ii) for any u : [0, T ] → S with supt≤T ‖ut − û‖ < ∞,

sup
t≤T

∥∥σm(t, ut1(−Lm,Lm)) − σ(t, ut )
∥∥ m→∞−−−−→ 0.

Then, for any initial conditions um
0 ∈ L2(R), u0 ∈ S such that

∥∥um
0 − u0

∥∥
L2((−Lm,Lm))

m→∞−−−−→ 0,

and for all p ≥ 2,

E

(
sup

t∈[0,T ]

∥∥um
t − ut

∥∥p

L2((−Lm,Lm))

)
m→∞−−−−→ 0.

We postpone the proof to the Appendix.

Remark 7 Let ε > 0. The kernel q(x, y) = 1
2ε

1(x−ε,x+ε)(y) satisfies assumption (i)
of the theorem. Indeed, note that, for x, z with |x − z| ≤ 1

m
, |{y : 1(x−ε,x+ε)(y) �=

1(z−ε,z+ε)(y)}| ≤ |z − x| ≤ 1
m

. Therefore we obtain, for all k and for any x ∈ Im
k ,

∥∥2m
√

Q1Jm
k

− q(x, ·)∥∥2
2 = 4m2

∫ ∞

−∞

(∫

Jm
k

q(z, y) − q(x, y) dz

)2

dy

≤ 2m

∫ ∞

−∞

∫

Jm
k

(
q(z, y) − q(x, y)

)2
dzdy

≤ 2
∫

Jm
k

1

4ε2
dz ≤ 1

4ε2m

m→∞−−−−→ 0.

Theorem 6 can now be applied to the asymptotic expansion of the fluctuations
around the traveling wave derived in Sect. 4.2. In order to ensure that the diffusion
coefficients are in L2(R), we cut off the noise outside a compact set {∂xu

TW
t ≥ δ},

δ > 0. Note that the neglected region moves with the wave such that we always retain
the fluctuations in the relevant regime away from the fixed points.
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Theorem 8 Assume that the wave speed is strictly positive, c > 0. Fix δ > 0. The
diffusion coefficients as derived in Sect. 4.2,

σ(t, u) = 1√
N

(
α(t) + β(t)

(
u − uTW

t

)

− γ (t)w ∗ (
F ′(uTW

t

)(
u − uTW

t

)))
1{∂xuTW

t ≥δ},

σm(t, u) = 1√
N

(
αm(t) + βm(t)

(
u − πm

(
uTW

t

))

− γ m(t)πm
(
w ∗ (

πm
(
F ′(uTW

t

))(
u − πm

(
uTW

t

)))))
1{∂xuTW

t ≥δ},

where

α(t) =
√

| − uTW
t + w ∗ F(uTW

t )|
F ′(uTW

t )
=

√
c∂xu

TW
t

F ′(uTW
t )

,

β(t) = 1

2
√

c∂xu
TW
t F ′(uTW

t )

(
−F ′′(uTW

t (x))

F ′(uTW
t (x))

c∂xu
TW
t + 1

)
,

γ (t) = 1

2
√

c∂xu
TW
t F ′(uTW

t )

,

αm(t) =
√

−bm(t,πm(uTW
t ))

πm(F ′(uTW
t ))

1[−Lm,Lm),

βm(t) = 1

2
√

−bm(t,πm(uTW
t ))πm(F ′(uTW

t ))

×
(

−πm(F ′′(uTW
t ))

πm(F ′(uTW
t ))

(−bm
(
t, πm

(
uTW

t

))) + 1

)
1[−Lm,Lm),

γ m(t) = 1

2
√

−bm(t,πm(uTW
t ))πm(F ′(uTW

t ))

1[−Lm,Lm),

are jointly continuous and Lipschitz continuous in the second variable with Lipschitz
constant uniform in m and t ≤ T , and satisfy condition (ii) of Theorem 6.

For a proof see Thm. 6.5.5 in [18].

6 Summary and Conclusions

In this paper we have investigated the derivation of neural field equations from de-
tailed neuron models. Following a common approach in the literature, we started from
a phenomenological Markov chain model that yields the neural field equation in the
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infinite-population limit and allows one to obtain stochastic or deterministic correc-
tions for networks of finite populations. As one novelty to the existing literature we
considered a new choice of jump rates, given in the activity-based setting as

qP,N

(
x, x ± 1

N
ei

)
= N

(

−xi + F

(
P∑

j=1

wijxj

))

±
, (25)

and showed that it leads to qualitatively different results in dynamical states with high
(resp. low) activity in comparison with the rates

q̃

(
x, x + 1

N
ei

)
= NF

(
P∑

j=1

wijxj

)

,

q̃

(
x, x − 1

N
ei

)
= Nxi,

(26)

considered in the literature so far (see for example [11, 13]).
The following two major reasons make us believe that the rates (25) provide a

better description of finite-size effects in neural fields.

1. The neural field equations evolve on a different time scale than single neuron
activity. In the activity-based setting they describe a coarse-grained time-averaged
population activity and in the voltage-based setting they are derived under the
assumption that the activity in each population is slowly varying such that one can
assume that it is related to the population potential via a = F(u). The rates (25)
reflect this property more than the rates (26), in particular in regimes with high
(resp. low) activity.

2. Fluctuations due to finite-size effects should be strong where F ′ 
 1, and there-
fore small changes in the synaptic input lead to comparably large changes in the
population activity. They should become small, however, where F ′ � 1, so in par-
ticular around the stable fixed points of the system. This is captured in the jump
rates (25), whereas in case (26), fluctuations are high where the activity is high.

The corrections to the neural field equation derived in this setting are of a qual-
itatively different form than the ones previously considered. As a consequence, one
should reconsider effects of intrinsic noise due to finite-size effects as studied for
example in [25]. In particular the lowest order correction to the moment equations,
or the additive part of the stochastic correction, vanishes when linearizing around a
stationary solution. The noise is therefore of smaller order than previously assumed.

This is not the case for stable moving patterns like traveling fronts or pulses, sug-
gesting the movement as a main source of noise. We have for the first time rigor-
ously derived a well-posed stochastic continuum neural field equation with an ad-
ditive noise term that can be used to study the finite-size effects on these kinds of
solutions. It is particularly suitable for the analysis of traveling wave solutions, since
the monotonicity of the solution allows one to consider a multiplicative noise term as
derived in Sect. 4.2.
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Appendix: Proof of Theorem 6

Set vt = ut − uTW
t and vm

t = um
t − πm(uTW

t ). Note that

∫ Lm

−Lm

(
πm

(
uTW

t

)
(x) − uTW

t (x)
)2

dx

≤
∑

k

∫ k+1
m

k
m

(∫ k+1
m

k
m

∂xu
TW
t (z) dz

)2

dx

≤ 1

m2

∑

k

∫ k+1
m

k
m

(
∂xu

TW
t (z)

)2
dz ≤ 1

m2
‖ûx‖2. (27)

For the proof of the theorem it therefore suffices to show that

E
(

sup
t≤T

∥∥vt − vm
t

∥∥p

2

)
m→∞−−−−→ 0,

since this will imply that

E
(

sup
t≤T

∥∥ut − um
t

∥∥p

L2((−Lm,Lm))

)

≤ const ×
[
E

(
sup
t≤T

∥∥uTW
t − πm

(
uTW

t

)∥∥p

L2((−Lm,Lm))

)
+ E

(
sup
t≤T

∥∥vt − vm
t

∥∥p

2

)]

m→∞−−−−→ 0.

By Itô’s formula,

1

2
d
∥∥vm

t − vt

∥∥2
2

= 〈
bm

(
t, vm

t + πm
(
uTW

t

)) − b
(
t, vt + uTW

t

) − πm
(
∂tu

TW
t

) + ∂tu
TW
t , vm

t − vt

〉
dt
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+ 1

2N

〈
πm

(
F ′′(uTW

t )

F ′(uTW
t )2

)
bm

(
t, πm

(
uTW

t

)) − F ′′(uTW
t )

F ′(uTW
t )2

∂tu
TW
t , vm

t − vt

〉
dt

+ 1

2

∥∥σm
(
t, vm

t + πm
(
uTW

t

)) ◦ Φm − σ
(
t, vt + uTW

t

)∥∥2
L0

2
dt

+ 〈
vm
t − vt ,

(
σm

(
t, vm

t + πm
(
uTW

t

)) ◦ Φm − σ
(
t, vt + uTW

t

))
dWQ

t

〉
.

In order to finally apply Gronwall’s lemma, we estimate the terms one by one.

A.1 The Drift

We start by regrouping the terms in a suitable way. We have

∥∥vm
t − vt + bm

(
t, vm

t + πm
(
uTW

t

)) − b
(
t, vt + uTW

t

) − πm
(
∂tu

TW
t

) + ∂tu
TW
t

∥∥2

=
∫ ∞

−∞

[∑

k

(∫ Lm

−Lm

w

(
k

m
− y

)
F

(
vm
t (y) + πm

(
uTW

t

)
(y)

)
dy

+
∫ ∞

Lm

w

(
k

m
− y

)
F

(
uTW

t

(
Lm

))
dy

+
∫ −Lm

−∞
w

(
k

m
− y

)
F

(
uTW

t

(−Lm
))

dy

)
1Im

k
(x)

−
∫ ∞

−∞
w(x − y)F

(
vt (y) + uTW

t (y)
)
dy

− πm
(
w ∗ F

(
uTW

t

)) + w ∗ F
(
uTW

t

)
(x)

]2

dx

≤ 6
∫ ∞

−∞

[∑

k

∫ Lm

−Lm

w

(
k

m
− y

)(
F

(
vm
t (y) + πm

(
uTW

t

)
(y)

)

− F
(
vt (y) + uTW

t (y)
))

dy1Im
k
(x)

]2

+
[∑

k

∫ Lm

−Lm

(
w

(
k

m
− y

)
− w(x − y)

)(
F

(
vt (y) + uTW

t (y)
)

− F
(
uTW

t (y)
))

dy1Im
k
(x)

]2

+
[∑

k

∫ ∞

Lm

w

(
k

m
− y

)(
F

(
uTW

t

(
Lm

)) − F
(
uTW

t (y)
))

dy1Im
k
(x)

]2

+
[∑

k

∫ −Lm

−∞
w

(
k

m
− y

)(
F

(
uTW

t

(−Lm
)) − F

(
uTW

t (y)
))

dy1Im
k
(x)

]2



Page 26 of 35 E. Lang, W. Stannat

+
[(∫ ∞

Lm

+
∫ −Lm

−∞

)
w(x − y)

(
F

(
vt (y) + uTW

t (y)
) − F

(
uTW

t (y)
))

dy

]2

+
[∫ Lm

−Lm

w(x − y)
(
F

(
vt (y) + uTW

t (y)
)

− F
(
uTW

t (y)
))

dy1(−∞,−Lm)∪[Lm,∞)(x)

]2

dx

=: 6(S1 + S2 + S3 + S4 + S5 + S6).

Using the Cauchy–Schwarz inequality we get

S1 ≤ ∥∥F ′∥∥2
∞

∫ Lm

−Lm

∑

k

1

m
w

(
k

m
− y

)

× (
vm
t (y) + πm

(
uTW

t

)
(y) − vt (y) − uTW

t (y)
)2

dy

(23)≤ 2

(
1 + 1

m
‖wx‖1

)∥∥F ′∥∥2
∞

×
(∥∥vm

t − vt

∥∥2
2 +

∫ Lm

−Lm

(
πm

(
uTW

t

)
(y) − uTW

t (y)
)2

dy

)
.

With (27) it follows that

S1 ≤ 2

(
1 + 1

m
‖wx‖1

)∥∥F ′∥∥2
∞

(∥∥vm
t − vt

∥∥2
2 + 1

m2
‖ûx‖2

2

)
.

Another application of the Cauchy–Schwarz inequality yields

S2 =
∑

k

∫ k+1
m

k
m

(∫ Lm

−Lm

(
w

(
k

m
− y

)
− w(x − y)

)

× (
F

(
vt (y) + uTW

t (y)
) − F

(
uTW

t (y)
))

dy

)2

dx

≤
∑

k

1

m

(∫ Lm

−Lm

∫ k+1
m

k
m

∣∣wx(z − y)
∣∣dz

(
F

(
vt (y) + uTW

t (y)
) − F

(
uTW

t (y)
))

dy

)2

≤
∑

k

1

m

∫ Lm

−Lm

∫ k+1
m

k
m

∣∣wx(z − y)
∣∣dzdy

×
∫ Lm

−Lm

∫ k+1
m

k
m

∣∣wx(z − y)
∣∣dz

(
F

(
vt (y) + uTW

t (y)
) − F

(
uTW

t (y)
))2

dy

≤ 1

m2
‖wx‖2

1

∥∥F ′∥∥2
∞‖vt‖2

2.
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Using integration by parts, (23), and assumption (24), we obtain

S3 =
∑

k

1

m

([
−

∫ ∞

y

w

(
z − k

m

)
dz

(
F

(
uTW

t

(
Lm

)) − F
(
uTW

t (y)
))]∞

y=Lm

︸ ︷︷ ︸
=0

−
∫ ∞

Lm

∫ ∞

y

w

(
z − k

m

)
dzF ′(uTW

t (y)
)
∂xu

TW
t (y) dy

)2

≤ C2
w

∑

k

1

m

(∫ ∞

Lm

w

(
y − k

m

)
F ′(uTW

t (y)
)
∂xu

TW
t (y) dy

)2

≤ C2
w

(
1 + 1

m
‖wx‖1

)∥∥F ′∥∥2
∞

∫ ∞

Lm

(
∂xu

TW
t (y)

)2
dy.

Analogously,

S4 ≤ C2
w

(
1 + 1

m
‖wx‖1

)∥∥F ′∥∥2
∞

∫ −Lm

−∞
(
∂xu

TW
t (y)

)2
dy.

Finally we observe that

S5 ≤ ∥∥F ′∥∥2
∞

(∫ ∞

Lm

+
∫ −Lm

−∞

)
v2
t (y) dy

and

S6 ≤ ∥∥F ′∥∥2
∞

(∫ ∞

Lm

+
∫ −Lm

−∞

)(∫ Lm

−Lm

w(x − y)
∣∣vt (y)

∣∣dy

)2

dx

≤ ∥∥F ′∥∥2
∞

(∫ ∞

Lm

+
∫ −Lm

−∞

)(
w ∗ |vt |(x)

)2
dx.

Finally we consider

S7 :=
∥∥
∥∥

F ′′(uTW
t )

F ′(uTW
t )2

∂tu
TW
t − πm

(
F ′′(uTW

t )

F ′(uTW
t )2

)
bm

(
t, πm

(
uTW

t

))
∥∥
∥∥

2

≤ 4

[(∫ −Lm

−∞
+

∫ ∞

Lm

)(
F ′′(uTW

t )(y)

F ′(uTW
t )2(y)

∂tu
TW
t (y)

)2

dy

+
∥∥∥∥

(
F ′′(uTW

t )

F ′(uTW
t )2

− πm

(
F ′′(uTW

t )

F ′(uTW
t )2

))
∂tu

TW
t 1(−Lm,Lm)

∥∥∥∥

2

+
∥∥∥∥πm

(
F ′′(uTW

t )

F ′(uTW
t )2

)(
∂tu

TW
t − πm

(
∂tu

TW
t

))
1(−Lm,Lm)

∥∥∥∥

2

+
∥∥∥∥πm

(
F ′′(uTW

t )

F ′(uTW
t )2

)(
πm

(
w ∗ F

(
uTW

t

)) − πm
(
w ∗ πm

(
F

(
uTW

t

)))
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−
∑

k

(
w

m,+
k F

(
uTW

t

(
Lm

)) + w
m,−
k F

(
uTW

t

)(−Lm
))

1Im
k

)∥∥∥∥

2]

= 4(S7,1 + S7,2 + S7,3 + S7,4).

We have

S7,2 ≤
∥∥∥∥
F (3)(û)ûx

(F ′(û))2
− 2(F ′′(û))2ûx

(F ′(û))3

∥∥∥∥

2

∞
1

m2

∥∥∂tu
TW
t

∥∥2

and, as in (27),

S7,3 ≤
∥∥∥∥

F ′′(uTW
t )

F ′(uTW
t )2

∥∥∥∥

2

∞

∥∥(
∂tu

TW
t − πm

(
∂tu

TW
t

))
1(−Lm,lm)

∥∥2

≤ 1

m2
c2

∥∥∥∥
F ′′(uTW

t )

F ′(uTW
t )2

∥∥∥∥

2

∞
‖ûxx‖2.

The last summand satisfies, using (23) and (27),

S7,4 ≤ 3

∥∥
∥∥

F ′′(uTW
t )

F ′(uTW
t )2

∥∥
∥∥

2

∞

×
[∑

k

1

m

(∫ Lm

−Lm

w

(
k

m
− y

)(
F

(
uTW

t (y)
) − πm

(
F

(
uTW

t

))
(y)

)2
dy

)2

+ S3 + S4

]

≤ 3

∥∥∥∥
F ′′(uTW

t )

F ′(uTW
t )2

∥∥∥∥

2

∞

[(
1 + 1

m
‖wx‖1

)∥∥F ′∥∥2
∞

1

m2
‖ûx‖2 + S3 + S4

]
.

A.2 The Itô Correction

We have

∥∥σm
(
t, vm
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(
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t

)) ◦ Φm − σ
(
t, vt + uTW

t

)∥∥2
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2
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(
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∥∥2
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2

+ ∥∥σ
(
t, vt + uTW

t

) ◦ Φm − σ
(
t, vt + uTW

t

)∥∥2
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2

)

=: 3(S8 + S9 + S10).
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Let (ek) be an orthonormal basis of L2(R). Note that by Parseval’s identity

∑

k

(
Φm(

√
Qek)

)2

=
∑

k

(∑

l

2m〈√Qek,1Jm
l

〉1Im
l

)2

=
∑

l

∑

k
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l
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l

=
∑

l

4m2‖√Q1Jm
l
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l

=
∑

l

4m2
∫ (∫
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q(x, y) dy

)2
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l

≤
∑

l

2m

∫ ∫
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l

≤ sup
x

∥∥q(x, ·)∥∥21[−Lm,Lm).

Thus,

S8 =
∑

k

∫ ∞

−∞
(
σm

(
t, vm

t + πm
(
uTW

t

))

− σm
(
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(
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t

)
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))2
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(
Φm(

√
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(x) dx
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x

∥∥q(x, ·)∥∥2
L2

σ
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(
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t
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)
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σ
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.

Thus,

S8 =
∑

k

∫ ∞
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(
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(
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(
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√
Qek)

)2
(x) dx

≤ sup
x
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m2
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)

and
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(
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(
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)
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t

)
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(
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t
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Using Parseval’s identity again we get

S10 =
∫ ∞

−∞
σ
(
t, vt + uTW

t

)2
(x)

×
∑

k

(∑

l
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l
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l
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=
∑

l
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m

l
m

σ
(
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×
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k

(
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∫

Jm
l
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(
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)
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+
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+
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)
σ
(
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t
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l
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m

l
m

σ
(
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t
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(x)
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∫
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l

(
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∥∥∥∥

2
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+
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∫ ∞
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(
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t
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k
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(
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t
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l
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l
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∫
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2
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x
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−∞
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)
σ
(
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t
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A.3 Application of Gronwall’s Lemma

We use K , K1, K2, K̃ , etc. to denote suitable constants that may differ from step to
step. Summarizing the previous steps and using Young’s inequality we arrive at

1

2
d
∥∥vm

t − vt

∥∥2

≤
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∥∥2 + 1

2

∥∥vm
t − vt

∥∥2

+ 1

2

∥∥vm
t − vt + bm

(
t, vm

t + πm
(
uTW

t

)) − b
(
t, vt + uTW

t

)

− πm
(
∂tu

TW
t

) + ∂tu
TW
t

∥∥2
2 + 1

4N

∥∥vm
t − vt

∥∥2

+ 1

4N

∥∥∥∥
F ′′(uTW

t )

F ′(uTW
t )2

∂tu
TW
t − πm

(
F ′′(uTW

t )

F ′(uTW
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2]
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+ 1

2

∥∥σm
(
t, vm

t + πm
(
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t
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(
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(
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t
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(
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t

))
dWQ

t

〉
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∥∥vm
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∥∥2
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where
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k
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√
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0
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(
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(
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s + πm
(
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s
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(
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s
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s

〉

is a martingale with quadratic variation process

[M]t =
∫ t

0

∑

k
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vm
s − vs,

(
σm

(
s, vm

s + πm
(
uTW

s

)) ◦ Φm

− σ
(
s, vs + uTW

s
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Qek

〉2
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≤
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0
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s − vs
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(
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s + πm
(
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s
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− σ
(
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s
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2
ds. (28)

Applying Itô’s formula to the real-valued stochastic process ‖vm
t − vt‖2 we obtain

for p ≥ 2

d
∥∥vm

t − vt

∥∥p

= p

2

∥∥vm
t − vt

∥∥p−2
d
∥∥vm

t − vt

∥∥2

+ p(p − 2)

8

∥∥vm
t − vt

∥∥p−4
d
[∥∥vm
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∥∥2]
t

(28)≤ K1p
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t − vt

∥∥p
dt + K2p
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t − vt

∥∥p−2
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+ p
∥∥vm

t − vt

∥∥p−2
dMt + p(p − 2)

2

∥∥vm
t − vt

∥∥p−2

× ∥∥(
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(
t, vm

t + πm
(
uTW

t

)) ◦ Φm − σ
(
t, vt + uTW

t

))∥∥2
L0

2
dt.

Estimating the last term as above and using Young’s inequality we obtain

d
∥∥vm

t − vt

∥∥p

≤ K̃1
∥∥vm

t − vt

∥∥p
dt + K̃2

∥∥vm
t − vt
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dMt

≤
(
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p
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∥∥p
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2

p
R(t, vt ,m)

p
2 dt
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t − vt
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dMt .

Integrating, maximizing over t ≤ T , and taking expectations we get

E
(

sup
t≤T

∥
∥vm

t − vt

∥
∥p

)
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0 − v0
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(
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p
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0
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p
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(
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0
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)
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∥
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p
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(
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∥
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∥
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2
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(
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0
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)
. (29)

We estimate the last term using the Burkholder–Davis–Gundy inequality, (28), and
Young’s inequality:
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(
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×
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2
)
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s
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s
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2
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2

.

Bringing the first summand to the left-hand side of (29) this implies that

E
(
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t≤T
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∥∥p
)

≤ 2
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(
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(
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2
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2
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We estimate the last term as before and obtain

E
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0

∥∥(
σm

(
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(
uTW

s
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0
sup
s≤t
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)
.

Altogether we arrive at

E
(
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t≤T
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)
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E

(
sup
s≤t

∥∥vm
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An application of Gronwall’s lemma yields

E
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The sequence of continuous functions f m : [0, T ] → R

f m(t) =
((∫ ∞

Lm

+
∫ −Lm

−∞
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v2
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)2
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) p
2

is decreasing and converges pointwise to 0 since all the integrands are in L2(R).
By Dini’s theorem the convergence is uniform. This together with the facts that
‖σ(t, vt )‖2

2 ≤ K(1 + ‖vt‖2) and E(supt≤T ‖vt‖2) < ∞ by Proposition 3, assump-
tions (i) and (ii), and dominated convergence implies that
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and hence
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