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Abstract

The aim of this thesis is the study and characterization of a number of self-organized patterns
with potential relevance to biological systems and beyond. To this end we utilize the well-
established oscillating Belousov-Zhabotinsky (BZ) reaction in chemical experiments as well
as numerical simulations of the underlying model equations on graphics cards.

The first part of this thesis features experiments on spiral-shaped excitation waves in a three-
dimensional oscillatory medium. Their spatiotemporal evolution is governed by a circular
line singularity around which the waves rotate. In the absence of medium boundaries, the
singularity would contract and eventually vanish. Due to the interaction with the boundary, the
singularity may stabilize, such that it acts far beyond its theoretical life time as an autonomous
pacemaker. The influence can be taken into account in a semi-analytical kinematic model,
which is in good agreement with experiments and simulations. Related patterns of electrical
activity play a critical role in ventricular tachycardia, a life-threatening heart arrhythmia.

A small network of discrete BZ oscillators can support periodically spreading excitation
waves. For a small distribution of natural oscillation frequencies, the waves propagate
along the permutation symmetries. It is known, that comparable electric waves in neuronal
networks control rhythmic muscle contraction.

In the final part of the thesis, we verify the spiral wave chimera state, that was predicted
by Yoshiki Kuramoto in 2002. This particular state exhibits a coherent spiral wave rotating
around a core that consists of incoherent oscillators. Such patterns might play a role in
nonlocally coupled cardiac and cortical tissue as well as in the photoelectrodissociation
on doped silicon wafers and arrays of superconducting quantum interference devices and
opto-mechanical oscillators. The experimental setup, that we developed for this purpose,
furthermore allows for reproducible experiments under laboratory conditions on networks
with N > 2000 oscillators. It facilitates the free choice of network topology, coupling function
as well as its strength, range and time delay, which can even be chosen as time-dependent.





Zusammenfassung

Die Zielsetzung dieser Arbeit ist die Untersuchung selbstorganisierter Muster, die potentielle
Relevanz für biologische Systeme und darüber hinaus aufweisen.
Zu diesem Zweck werden chemische Experimente auf Basis der oszillierenden Belousov-
Zhabotinsky (BZ) Reaktion und numerische Simulation der zugrundeliegenden Modell-
gleichungen auf Grafikkarten durchgeführt.

Im ersten Teil der Arbeit werden spiralförmige Erregungswellen in einem dreidimensionalen
oszillatorischen Medium untersucht, die periodisch um eine kreisförmige Singularität rotieren
und dabei Wellenzüge aussenden. Ohne Wechselwirkung mit der Berandung des aktiven
Mediums, würde die Singularität kontrahieren und nach endlicher Zeit verschwinden. Unter
Einfluss der Randwechselwirkung lässt sich die Singularität stabilisieren, so dass sie weit
über ihre theoretische Lebenszeit hinaus als autonomer Schrittmacher fungiert. Der Effekt des
Randes lässt sich in einem semi-analytischen kinematischen Modell berücksichtigen, welches
gut mit den Ergebnissen der Experimente und Simulationen übereinstimmt. Verwandte
Muster elektrischer Aktivität spielen insbesondere auf dem Herzmuskel eine kritische Rolle
bei der ventrikulären Tachykardie, einer lebensbedrohlichen Herzrhythmusstörung.

Auf einem kleinen Netzwerk aus diskreten BZ Oszillatoren können sich periodisch Erre-
gungswellen ausbreiten. Bei enger Verteilung der natürlichen Oszillationsfrequenzen breiten
sich die Wellen entlang der Permutationssymmetrien aus. Es ist bekannt, dass vergleichbare
elektrische Wellen in neuronalen Netzwerken rhythmische Muskelkontraktion steuern.

Im letzten Teil der Arbeit weisen wir den von Yoshiki Kuramoto in 2002 vorhergesagten
Spiralwellen-Chimären Zustand nach. Dabei rotiert eine kohärente Spiralwelle um einen
Kern aus inkohärenten Oszillatoren. Dieses Muster könnte eine Rolle in nichtlokal gekop-
peltem Herz- und Nervengewebe spielen, in der Photoelektrodissoziation auf dotierten
Silizumscheiben, sowie auf Gittern aus supraleitenden Quanteninterferenzeinheiten und opto-
mechanischen Oszillatoren. Der zu diesem Zweck entwickelte experimentelle Aufbau erlaubt
es darüber hinaus, Muster auf Netzwerken mit N > 2000 Oszillatoren unter reproduzierbaren
Laborbedingungen zu untersuchen. Dabei lassen sich nach Bedarf Netzwerktopologie, Art
der Kopplungsfunktion sowie ihre Stärke, Reichweite und Zeitverzögerung einstellen, die
darüber hinaus auch zeitabhängig sein können.
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Chapter 1

Introduction

“... on the shoulders of giants”
– Bernard of Chartres

The second law of thermodynamics1 states, that during an irreversible process the total
entropy S in an isolated system always grows:

diS
dt

> 0. (1.1)

As time passes, matter will decay from an ordered, but improbable state to a disordered
and more probable state. Yet structures of high order, namely life forms, exist and very
successfully so: From the microscopic bacterium Pelagibacter ubique2 that measures just
about 5 µm but makes up for the largest cumulated species biomass worldwide to the orders
of magnitude larger blue whale (Balaenoptera musculus) reaching about 30 m in size3. Life
prevails despite inhospitable environments that are devoid of oxygen4, below freezing at
−20 ◦C5 or close to boiling temperatures6, to just give a few examples.
This paradox was addressed from the perspective of statistical physics by Erwin Schrödinger,
one of the pioneers of quantum mechanics, in his book "What Is Life?"7. He not only
argues for the existence of a biomolecular "asymmetric crystal" as a carrier of hereditary
information, which inspired Crick and Watts to search for the DNA double helix molecule8,
but also he makes the case that living matter attains an ordered state and remains in it, due to
consuming "negative entropy" from its environment,

diS
dt

+
deS
dt

> 0. (1.2)
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Put differently, a living being is an open system, which maintains a non-equilibrium state by
entropy exchange deS with its surroundings via nutrients and waste products. This notion
was formalized mathematically by Ilya Prigogine9,10 as a "dissipative structure", that exists
far from equilibrium and bifurcates off the equilibrium state.
Meanwhile, the dynamics of self-organized structures were elucidated from a macroscopic
viewpoint by Alan Turing and Arthur Winfree who had laid out in their respective seminal
papers the basis for spatial pattern formation11 and temporal synchronization of oscillators12.
Self-organized structures are not only restricted to life. Shortly after the first working laser13

was built, Hermann Haken successfully proposed a theory for its operation based on non-
equilibrium dynamics14. He and Werner Ebeling went on to found and popularize the new
field of "synergetics"15,16 in divided Germany and throughout the scientific world.
The common thread in all these endeavors is self-organization. Its defining feature is a
structure of high, life-like order that is attained due to its own internal, nonlinear dynamics.
No detailed, external control on the structure is required.
Its continuing success was underscored with two Nobel prizes. One in chemistry was
received by Gerhard Ertl in 2007 for developing the methods of surface chemistry in general
and for observing pattern formation on catalytic platinum surfaces during CO oxidation in
particular17. The other was awarded as recently as 2017, when the Nobel Prize in Physiology
or Medicine was shared by Jeffrey Hall, Michael Rosbash and Michael Young for revealing
the basic biomolecular machinery of chronobiology in virtually all living things, from
bacteria, fungi to plants and animals18,19.
It was recently proposed20,21, that far away from equilibrium the second law needs to be
adapted

deS
dt

⏐⏐⏐
a→b

+
d
dt

ln
(

pa→b

pb→a

)
+

diS
dt

> 0 (1.3)

to account for transition probabilities in and out of a given non-equilibrium state. This
means that the more irreversible a process is, pa→b≫ pb→a, the larger its associated internal
entropy production will be. Furthermore this allows for an engineered dissipative adaptation,
by placing suitable driving forces on the system, that will enable it to reach desired non-
equilibrium states, but not escape from them22.
Future developments in the field of self-organization can be expected to give insight into
life-like non-equlibrium phenomena as well as lead to new applications in smart materials23

and soft robotics24 founded on neuromorphic25,26 and biomimetic materials27, ultimately
opening the door to artificial life forms28,29 and new forms of medical therapies30,31.
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Figure 1.1 | Excitation wave patterns in different topologies. (a) Scroll ring in a 3d continuous
domain (b) target wave on a network with symmetry clusters (c) spiral wave chimera on a discrete 2d
grid.

An accessible test bed for predictions in the field of self-organization is the prototypical
chemical oscillator, the Belousov-Zhabotinsky reaction32. Its popularity is due to it giving
rise to concentration traces that are strikingly similiar to the biochemical activity of neurons33.
In spatially continuous systems it supports chemical patterns similar to electrical activity
patterns on the heart muscle that usurp its mechanical contraction before sudden cardiac
failure34–36.

In this thesis the overarching theme is elucidating the peculiar behavior of excitation waves
as stable temporally periodic patterns on different topologies. Unlike waves in a fluid or
conservative solitons37, excitation waves require an active medium, that shows excitability38

and is kept far from equilibrium due to energy influx like the gain medium in a laser15.
The excitable character manifests itself in the all-or-nothing response to an external per-
turbation: Small perturbations below a threshold have a negligible consequence, whereas
large superthreshold perturbations lead to an extensive and unique response. This definition
is inspired by biological neurons39,40, that remain quiescent in response to small current
fluctuations, but emit a voltage spike once sufficiently perturbed. Before another perturbation
can successfully trigger an excursion, the system must pass through its refractory stage
and return to its rest state. Such elements, connected in a chain, support the sequential
propagation of a spike from one end to the other: an excitation wave.
Chapter 2 is focused on the formation of a metastable pacemaker, a structure that acts as a
periodic wave source in three dimensions. For parameters where stable pacemakers were
previously thought impossible, it is shown that they can exist due to interaction with inherent
spatial boundaries that occur in any real system like the myocardium.
In chapter 3, the focus shifts to excitation waves on networks. It is found that underlying
network symmetries are intertwined with the way an excitation wave propagates over the
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network. During propagation, the nodes in each symmetry cluster synchronize, such that
they fire concurrently.
Finally in chapter 4, a large grid of discrete oscillators that are nonlocally coupled to each
other gives rise to a structure that was predicted 15 years ago by Yoshiki Kuramoto theo-
retically41, but never verified experimentally: the spiral wave chimera. The distinguishing
feature is that a coherent excitation wave rotates around a central region that consists of
seemingly incoherent oscillators even though all oscillators are coupled identically. This is
the first experimental example for the co-existence of ordered and disordered phases in a
robust and reproducible real setting without sensitive dependence on initial conditions.



Chapter 2

Confined Scroll Rings
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Figure 2.1 | Model for spiral wave formation. A forest consisting of trees that can catch fire, burn
and regrow (unnaturally) fast is a minimal model for an excitable medium. (a) An excitation wave in
the form of a planar flame front travels from left to right. In the back of the flame front, new trees are
already growing. A rain cloud located in the center of the medium prevents flames from spreading in
the top half, which breaks the front and creates an open end. (b) While the flame front propagates in
the bottom half, the rain cloud vanishes. The broken flame front continues onward to the right and
now also spreads in the upward direction. This is the genesis of the spiral wave. (c) After a sufficient
number of rotations, the full-fledged spiral wave pattern is observable. This cellular automaton-like
simulation was realized with the Star Craft II map editor42.

Among the different spatio-temporal patterns of propagating excitation waves, rotating spiral-
shaped waves are very common. This suggests, that their emergence must depend on general
rules, that transcend microscopic details. As depicted in Figure 2.1, an initially planar wave
front can break up due to interaction with inhomogeneities in an active medium. The resulting
wave features an open end far from any boundaries. Still, the excitation (fire) will spread from
the current excited region to any surroundings that are not in their refractory, unexcitable
(burnt) state. This means that the main front will continue forward, but at the wave tip
the excitation can spread upwards in addition. While the tip continues on its pirouette-like
motion, it becomes the source of the excitation waves, that are periodically emitted into
the medium. In this sense, the tip is the localized organizing center43 of the delocalized
spiral wave, that has a wavelength λ and rotation period T . Note that the oscillations at each
location outside the spiral core are entrained to the rotation period of the spiral wave. Here,
the non-equilibrium character manifests itself in the influx of external energy, that is required
to return oscillators to their rest state (unburnt) so a neighboring excitation can restart the
oscillation cycle.
Apart from this simple example, spiral waves have been observed in an astonishing variety of
biological, chemical and physical systems a : myocardium62–66, cardiac cell monolayers67,68,
optogenetically engineered cell layers69–71, giant honey bee colonies72, mammalian cortex73,

a Some vortex patterns in nature have spiral shape, but there is no underlying excitable medium. Some
examples range from Bose Einstein condensates44, spin spirals45, spiral crystal growth46–48, drop-induced
airflows49, fluid mixing50, Bernard convection in gas mixture51,52, Faraday experiments with vertically vibrated
viscous fluid and sand53,54, Kármán vortex street55, hurricanes56, extraterrestrial storms, such as the Great Red
Spot57 and polar vortices58 on Jupiter, galaxy formation59 and the recent binary black hole as well as neutron
star mergers, which emitted double spiral gravitation waves60,61.
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calcium waves in frog eggs74, chicken retina75, single cells and conglomerates of the social
amoeba Dictyostelium discoideum76,77, geographical tongue inflammation78, migratory
erythematous lesions79, human crowds80, synthetic somatic cell sheets81, uterus during
labor82,83, yeast glycolysis84, Min proteins85 and actin-proteins in electro-fused cell mem-
branes76,86, lichen growth87, cilia arrays88, Belousov-Zhabotinsky (BZ) reaction medium89,
BZ-surfactant mixtures90, BZ-infused Langmuir monolayers91, precipitation reactions92, CO
oxidation on Pt-110 surface93, electrodeposition of a binary alloy94, corrosion95, lasers96–98,
combustion99, liquid crystals100,101, plasma102, dielectric barrier gas-discharge103, trapped
ultracold ion arrays104, optomechanical oscillator arrays105, coupled map lattices106, and
Josephson junction arrays107.
Among the most striking examples are spiral waves on the heart muscle, where they are
also called rotors or reentry. During the healthy operation of the heart, the sinoatrial node
entrains the beating rhythms of all cells in the myocardium by emitting a propagating electric
excitation wave. Upon arrival at a heart cell, it expands and shortly after contracts again. This
synchronized, collective mechanical deformation underlies the vital heart beat that pumps
blood through the body108. Due to e.g. unexcitable109 or highly excitable110 obstacles,
spiral waves may nucleate. Since they are periodic wave sources, they directly compete with
the sinoatrial node for the entrainment of the myocardium. If multiple spiral waves form,
the ensuing wave chaos compromises the synchronized, collective deformation and leads to
life-threatening fibrillation36,65.
Due to the three-dimensional nature of the heart, the rotating patterns are actually scroll
waves, which are made up of spiral waves stacked up on each other. Accordingly, the center
of the spiral core is extended to a line first identified by Winfree as organizing center of the
scroll wave and named filament87,111–114.
One of the first reported experimental observations of a filament in the cardiac muscle, had
a ring-shaped form115. Indeed, connecting both ends of the filament and bending it into
a ring, leads to a simple structure called the scroll ring87,116 (see figure 2.2a). Curiously,
the periodic wave pattern of scroll rings was exploited in oil-immersed BZ drops to drive
autonomous periodic motion via changes in the surface tension117.
The dynamics of this structure in the presence of boundaries are the focus of this chapter.

2.1 Theoretical Background

The equations of motion for filaments were first derived in a mathematically rigorous way
by James Keener in 1988 employing techniques from singular perturbation analysis118. His
approach is reviewed briefly in appendix A.2 together with recent developments.
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Figure 2.2 | Unperturbed dynamics of an axisymmetric, untwisted scroll ring. (a) A scroll ring
is a toroid formed from a spiral wave. The tip of each spiral wave is attached to a ring with radius R,
called the filament (red). For clarity, here only a single isosurface of the continuous concentration
pattern is shown. (b) Without perturbations the scroll ring will either decay for filament tension α > 0
(blue) or grow for α < 0 (yellow), see (2.1). Time and space are scaled relative to the rotation period
T and wavelength λ of the waves emitted from the ring.

In the case of a closed filament loop, a scroll ring, the equations of motion simplify to

dR
dt

=−ακ, (2.1)

dz
dt

= βκ. (2.2)

While the ring drifts along its symmetry axis in z-direction, the radius R of the ring changes
depending on the ring curvature κ = 1/R b . It will either contract and vanish or expand
depending on the sign of the filament tension α , see Fig. 2.2b. In its later stages a growing
ring will undergo the negative line-tension instability120. This means it will break apart and
develop into a highly disorganized pattern known as Winfree turbulence121. The analytical
solution to the radius dynamics (2.1) is given by

R2(t) = R2
0−2αt. (2.3)

Thus unlike its two-dimensional counterpart, the spiral wave, a scroll ring is not a stationary
pattern. Intuitively the non-stationarity is clear: In two dimensions, a spiral wave will drift
under an external perturbation. This can be realized in the form of a time-periodic external
parameter field122, a parameter gradient123, an applied electric field124, feedback control125

b Note that this is a special case of an arbitrary closed curve r moving under mean curvature flow:
rt =−ακN , where N is the normal vector at each point of the curve r 119.
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or a Neumann boundary126,127. These perturbations lead to a periodic modulation of the
excitability in the core region. However, in three dimensions no external field is necessary,
since the periodic perturbation is due to the pattern itself. During one rotation period, the
filament loop will cycle between a large and a small radius, which have a small and large
curvature, respectively. In the same way the eikonal equation,

cn = c0−Dκ, (2.4)

dictates how non-planar excitation waves in two dimensions straighten out128–130, the rotation
speed of the filament increases when it goes from a large circumference to a small one and
decreases on its way back131. This periodic curvature-induced self-modulation forbids
stationary scroll ring patterns.
However, the dynamics of the unperturbed scroll ring can be complemented by considering
external perturbations, specifically the effect of Neumann boundaries that naturally limit the
spatial extent in a realistic setting.
To this end it is important to first understand how two-dimensional spiral waves interact
with Neumann boundaries. One approach is based on the convolution of perturbations with
spiral wave response functions132–134 (appendix A.2). While it is highly successful for weak
perturbations, such as spatiotemporal parametric inhomogeneities, it is not applicable to the
interaction with Neumann boundaries. Boundaries break the symmetries of the Euclidean
plane strongly and thus the Goldstone modes, whose adjoints are the response functions, do
not exist.
An alternative data-driven approach is described in the next section.
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2.2 Chemical Experiments

Figure 2.3 | Experimental setup for boundary stabilized scroll rings. (a) Pattern formation in the
active medium is monitored spectrophotometrically. Excitation waves of oxidized catalyst absorb less
light than the domains with reduced catalyst and thus the concentric waves of a scroll ring appear
in bright blue on an orange background, see photograph in (b). The white bar corresponds to 1cm.
(c) Absorption spectra of the reduced form of the catalyst (Fe3+) in orange and the oxidized form (Fe4+)
in blue.

While the Belousov-Zhabotinsky reaction has been utilized to study chemical oscillations in
time, it is also readily employed to study propagating patterns in a continuous medium in time
as well as space (see appendix C.1.3). The applicability of this approach is well-established
by a large body of experiments on scroll rings in BZ media, testing their existence116,
formation135, dynamics for positive and negative filament tension136,137, behavior influenced
by each other138, temperature and electrical gradients139,140 as well as defect sites141–143.
However, their interaction with medium boundaries is less well explored.
Here, chemical waves in the active medium are observed with a simple spectrophotometric
setup144 (see Fig. 2.3a). Excitation waves manifest themselves as narrow, propagating
domains of oxidized catalyst surrounded by large regions of reduced catalyst. Since the
absorption spectrum of the ferroin catalyst, Fe(o phen)3, depends on the oxidation state of
the Fe-ion (Fe3+/Fe4+), it is possible to optically record the concentration waves with a CCD
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Figure 2.4 | Scroll ring nucleation. Reproducible initialization of scroll rings consists of four stages;
(a) A silver wire is introduced at the liquid-gel interface of the active medium to (b) initiate a spherical
wave. (c) By shaking the medium strongly enough to erase any structures in the upper liquid layer, (d)
the spherical wave is converted into a scroll ring.

camera. Waves appear as bright blue on an orange background (Fig. 2.3b), because the re-
duced catalyst strongly absorbs blue and green parts of the VIS spectrum (λ = 380−560nm),
whereas the oxidized form is nearly transparent to all wavelengths, except for a weak ab-
sorption of red wavelengths with λ = 580−620nm (Fig. 2.3c). The optical contrast is
further enhanced with a bandpass filter that only transmits light into the camera with a
wavelength of λ = 400−500nm. Further details on the experiment instrumentation are
given in appendix B.1.1.
The chemical medium consists of two layers to allow for a reproducible nucleation protocol
of scroll rings141 (Fig. 2.4). On the solid BZ reagent-infused hydrogel layer rests another
layer of liquid BZ solution. The agarose hydrogel is solid enough to prevent convective
instabilities and also sufficiently porous, such that the diffusion of chemical species in both
layers is approximately identical. The first step of the initiation procedure is placing the
clean end of a pure silver wire (99% Ag) at the gel-liquid interface for about 15 s. Adding
silver to the BZ solution allows for the formation of small amounts of AgBr145. This locally
perturbs the chemical balance due to the removal of the inhibitor Br–. Thus shortly after the
silver wire is removed, a spherical wave starts to expand from the former location of the wire
end. Similar to the initiation of a spiral wave (Fig. 2.1), a spherical wave is cut by strongly
shaking the Petri dish, which holds the chemical medium. This removes any pattern in the
upper liquid layer. The structure in the bottom solid part remains intact. After the liquid
returns to rest, the wave resumes its propagation into the upper layer and forms the scroll
ring.
The behavior of scroll rings is analyzed via space-time plots also known as kymographs.
They are generated by plotting the intensity values of pixels taken along a line through the
ring center from each image of the camera image sequence collected during the experiment.
The space-time plots are processed further with a gradient filter to extract a parametrization
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Figure 2.5 | Experiments on boundary-influenced scroll ring dynamics. Space-time plots ex-
tracted from a horizontal line through the center of each ring show excitation waves (grayscale) and
filament dynamics (red) of representative cases: (a) collision of the scroll ring with the bottom bound-
ary, (b) contracting free scroll ring outside the interaction range of the boundaries, (c) contracting,
boundary-influenced scroll ring with reduced contraction rate, (d) quasi-stationary scroll ring, (e)
expanding scroll ring. The vertical space axis corresponds to 2.3 cm in all cases. The horizontal time
axis spans (a) 50 min, (b) 3 h, (c)–(e) 4 h. The heights of the solid layer h1 and of the liquid layer h2
were (a) 3 mm and 4 mm, (b) 4 mm and 4 mm, (c) 4 mm and 3 mm, (d) 4 mm and 2.5 mm, (e) 4 mm
and 1.25 mm. (f) - (g) Two camera images show the expansion of the circular filament from (e) over
the course of 3 h. The length of the white bar corresponds to 5 mm. (h) Radius dynamics extracted
from space-time plots (a)-(e). Open circles: (a), full circles: (b), triangles: (c), full squares: (d) and
open squares: (e). Error bars result from the measurement error of the spatial filament location.

for all wave trains. The intersection points of consecutive inward and outward traveling
waves allow for the calculation of the filament radius over time R(t). While a manual variant
of this procedure was used in the past146, it has been automatized for this thesis to analyze a
large body of experiments in a short time.
The experiments reveal that the bottom Neumann boundary has a profound impact on the
dynamics. Before summarizing the results of the experiments, note that in all presented
examples, special caution has been given as to detect any occasions of filaments pinning to
CO2 bubbles. Experimental runs where this occurred were discarded, as pinning is known to
lead to an increase in lifetime as well as stabilize filaments141,147. Successful experiments
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without defect interactions can be subdivided into five qualitatively different categories based
on their dynamics.
In the extreme case of initiating a scroll ring close to a boundary, the ring vanishes after few
periods (Fig. 2.5a). Instead of contracting, the ring collides with the boundary. The collision
does not happen concurrently along the filament: First a small fraction of the line singularity
disappears and one rotation later the rest follows. Note that the filament grows slightly before
colliding (Fig. 2.5h).
Sufficiently far away from any boundaries, d = 0.7λ , rings with positive filament tension α

simply contract following equation (2.1), see figure 2.5b. In this case the squared radius
decreases approximately linear with time in agreement with equation (2.3), as can be seen
in Figure 2.5h. The measurement of the filament tension yields α = 0.026λ 2T−1, which is
in good agreement with previous experiments148. As can be expected its measured lifespan
(2.6 hours) is in good agreement with its predicted lifetime

tL =
R2

0
2α
≈ 2.5 hours. (2.5)

At a distance of d = 0.5λ , the boundary influence already impedes the natural contraction
(Fig. 2.5c). This leads to a larger lifespan (2.8 hours) in comparison to what would have
been expected (2.0 hours) based on the initial radius R0 of the ring. Even though its initial
radius is smaller, it lives significantly longer than the unperturbed ring (see yellow and blue
markers in Fig. 2.5h).
In a small interval of boundary distances d, the contraction rate of rings effectively vanishes
(Fig. 2.5d). The radius R barely changed for 55 periods, lasting over 5 hours. Longer
measurements were inconclusive due to widespread nucleation of CO2 bubbles throughout
the active medium. However, given that the ring was expected to disappear after 2.9 hours due
to contraction in the absence of boundaries, its persistence distinguishes it as a self-organized
pacemaker.
Unexpectedly, scroll rings with positive filament tension, α > 0, may also expand under the
influence of a Neumann boundary (Fig. 2.5e-g). This behavior was previously assigned to
negative filament tension, α < 0, exclusively149. Expected to vanish after 1.8 hours, the ring
radius is at 7.2 mm after 3.0 hours and continues to expand with 0.5 mmh−1. During this
time the ring radius expanded by 40%. Also, the ring does not show angular deformations
during the expansion (Fig. 2.5f-g). Regular and deformed black circles correspond to CO2

bubbles that nucleated in the liquid and gel part, respectively. However, no pinning interaction
between bubbles and filament was observed.
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The last two cases strikingly illustrate that a Neumann boundary does not lead to a small
alteration of the contraction, but dramatically changes the expected behavior.

2.3 Numerical simulations and a kinematical model

Figure 2.6 | Perturbations to confined small scroll rings. (a) One half of a cross section through a
scroll ring is a spiral wave. (b) For a small scroll ring radius R, the spiral wave on the opposite site of
the ring induces a perturbation that is equivalent to one from a Neumann boundary at the symmetry
axis of the ring. Likewise when the scroll ring is close to a real bottom Neumann boundary, the
constituting spiral waves are perturbed by it. In both situations the boundary causes spiral wave drift.

How exactly the observed surprising dynamics (Fig. 2.5) emerge is investigated further in
numerical simulations. Especially the apparent contradiction of an expanding ring despite
positive filament tension is resolved by constructing a detailed, kinematical model that
accounts for Neumann boundaries.
From numerical simulations of three-dimensional excitable media, it is expected that bound-
aries may stabilize vortex patterns in systems with negative line tension α < 0150,151. This
was also recently confirmed experimentally with setup II152 (see appendix B.1.2). Intuitively
this behavior is clear. An inspection of the spatial setting of the bounded scroll ring reveals,
that it is equivalent to a two-dimensional spiral wave drifting at a Neumann boundary, since
one half of a cross section through the ring is a spiral wave (see Fig. 2.6). Furthermore, it is
well-established theoretically and experimentally that Neumann boundaries in two dimen-
sions cause a stable spiral wave drift at a fixed distance in parallel to the boundary with a
constant velocity c∥ due to resonant perturbations126,132,153. A simple dynamical system
for the behavior of a scroll ring in boundary proximity takes this drift attractor into account.
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Figure 2.7 | Numerically determined drift-velocity field components. (a) Trajectories of spiral
waves in the Neumann boundary-induced drift velocity field. The trajectories of the core centers (red)
are extracted from averaging over the spiral tip trajectories (blue). The size of the gray arrows is
scaled monotonically to visualize the direction and modulus of the vector field across different orders
of magnitude. (b) Both velocity components are plotted over distance. The normal component has
two fixed points. The velocity at the stable fixed point far from the boundary, zatt ≈ 0.824605λ , is too
small to cancel ring contraction. The unstable fixed point at zrep ≈ 0.2834785λ , is close enough to
the boundary to exert a potential influence on ring dynamics. The solid lines through the measurement
points are high-order spline interpolating functions.

Augmenting equation (2.1) leads to

dR
dt

=−α/R+ c∥ . (2.6)

The fixed point exists if the intrinsic radius dynamics and drift motion cancel each other. For
the case of negative line tension α < 0 this fixed point is stable. However, linear stability
analysis for positive line tension reveals an unstable fixed point, so the stationary dynamics
observed in the experiment (Fig. 2.3d) was not thought to be possible for α > 0.
To resolve this conundrum, a more detailed measurement of the boundary-induced drift
velocity field c(z) outside of the stable drift attractor is required. Numerical simulations
can be employed to easily exclude any unwarranted perturbations on the spiral wave but the
boundary. The chemical kinetics of the ferroin-catalyzed BZ reaction are well-described by
the Rovinsky model154 (see appendix C.2):

∂u
∂τ

=
1
ε

[
u(1−u)−

(
2qa

v
1− v

+b
)

u−µ

u+µ

]
+ Du∇

2u, (2.7)

∂v
∂τ

= u−a
v

1− v
+ Dv∇

2v. (2.8)
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Table 2.1 | Vortex properties. Comparison of characteristic properties of experimentally and numer-
ically observed vortex patterns.

property experiment simulation

wavelength λ 5.8mm 5.6mm
rotation period T 390s 372s

filament tension α 0.026λ 2T−1 0.024λ 2T−1

The parameters of this reaction diffusion system are derived from concentrations used in
the chemical experiments (see table C.4). Resulting pattern characteristics from numerical
simulations, such as wavelength, rotation period and filament tension, are in excellent
agreement with the experiments. A comparison of the characteristic properties is given in
table 2.1.
The drift velocity field induced by a planar Neumann boundary c = (c∥,c⊥) is measured
in simulations of a spiral wave in a two-dimensional domain, see Fig. 2.7. The spiral
tip trajectory is evaluated in such a way, that the tip rotation is averaged out and only the
trajectory of the core center remains. After a transient these trajectories are analyzed to
reconstruct the drift velocity field in dependence of the distance to the boundary. As can
be seen in figure 2.7a, the stable drift attractor is so far away from the Neumann boundary,
zatt ≈ 0.82λ , that the spiral wave motion is barely affected. All shown trajectories are
integrated over the same time duration of 300 unperturbed rotation periods. There is also
another attractor at zrep ≈ 0.28λ , but it is unstable. Any spirals that start very close to it, will
either be repelled away from the boundary or pushed into it. Due to the translation symmetry
of the drift field, c(x,z) = c(z), its components can be plotted over the distance z from the
boundary (Fig. 2.7b).
Now that the complete boundary-induced drift field is known, we can construct a detailed
kinematic model. To this end we will take into account the real bottom Neumann boundary
as well as the symmetry axis. Unless the ring is very large, each spiral wave feels its opposite
counterpart. Since the configuration is mirror symmetric about the z-axis, the concentration
gradient across the axis vanishes: ∇u = ∇v = 0. The same condition holds true at a Neumann
boundary (see Fig. 2.6b). Incorporating both boundaries into the kinematical model of a
free ring, (2.1) and (2.2), results in a semi-analytic model that accounts for the boundary
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Figure 2.8 | Visualization of a simulated scroll ring. All parts of the concentration field u(x,y,z)
are colorized in blue whose values are larger than 0.35. The red ring highlights the position of the
filament, which is the organizing center of the entire ring. A fraction of the ring is transparent to
visualize the inner parts.

influences:

dR
dt

= −α/R + c∥(z) + c⊥(R), (2.9)

dz
dt

= β/R + c⊥(z) − c∥(R). (2.10)

Variables R and z still describe the radius of the ring and its position along the symmetry axis.
The influences of a horizontal Neumann boundary at z = 0 and a virtual vertical Neumann
boundary at R = 0 (see Fig. 2.6) are introduced as additive perturbations. The perturbations
are the previously measured boundary-induced drift velocity fields in two dimensions c(z).
The minus sign in front of c∥(R) accounts for the z-axis being oriented in the opposite
direction in comparison to the setting it was measured in (Fig. 2.7a). The distance to the
boundary is not affected by the flip, so c⊥(R) is included with a positive sign.
The validity of the modified kinematical model is checked by comparing solutions of the
two-component ODE (2.9) with the filament dynamics extracted from the time evolution of a
full three dimensional partial differential equations, (2.7) and (2.8), that faithfully reproduces
the chemical dynamics in the Petri dish (see section 2.2). c

cNote that the azimuthal symmetry of the scroll ring could be exploited for fast simulations in a two-
dimensional domain of reduced cylindrical coordinates155. However, this approach would also suppress
potential instabilities along the azimuthal direction. For example, it is known, that an inclined orientation of the
filament plane relative to the Neumann boundary induces twist waves along the filament156,157.
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The reaction diffusion equations are solved on a three-dimensional Cartesian grid employing
a finite-difference explicit Euler scheme158 for speed reasons with a time step of ∆t = 0.05s.
The diffusion operator is evaluated over a 7-point Laplacian stencil with ∆x = 0.001cm. The
instantaneous filament location is determined as the set of points, which form the intersection
of two level sets of the activator variable u(x,y,z) = 0.2 from subsequent time steps. The
simulation domain is a large cuboid with length and width of 6λ and height of 1.5λ . The
bulk volume is bounded by Neumann boundaries. The spiral wave length λ is measured in
advance to compute the required lengths. The scroll rings in the simulations are initiated in
a similar manner to the experiments: They nucleate from an initial cylindrical wave whose
upper fraction is removed at the start of the simulation. The size of the deleted upper fraction
determines the initial distance z(t = 0) to the interacting, bottom Neumann boundary. The
top and lateral boundaries are placed sufficiently far away to neglect their influence on the
ring. A fully developed scroll ring is shown in figure 2.8. The three-dimensional numerical
simulations are parallelized for fast computation and are performed on a graphical processing
unit (Nvidia GTX 970), more implementation details and a speed comparison are in the
appendix B.2.
As can be seen in figure 2.9a, the observed filament dynamics of the PDE, (2.7) and (2.8), in
three spatial dimensions are in excellent agreement with the solutions of the semi-analytical
kinematical ODE model (2.9). Thus the influence of the boundaries is correctly incorporated
in the reduced ODE model (2.9). To facilitate the comparison with the experimental results,
distinctive numerical trajectories are labeled (A-E) corresponding to the subfigure labels (a-e)
in figure 2.5. All cases observed in the chemical experiments were reproduced in numerical
simulations of the underlying reaction diffusion equations and accounted for in the modified
kinematical model (2.9).
As in two dimensions (Fig. 2.7a), rings starting at a distance of z > 0.5λ are barely affected
by the bottom Neumann boundary (case B) and contract according to the unperturbed
dynamics (2.1). Only towards the end of their lifetime tL, when they reach a radius of
R < 0.5λ they are slightly pushed downwards, which is due to the mirror symmetry of the
ring.
The repelling line in the drift velocity field at z ≈ 0.28λ still plays an important role. It
separates rings that vanish by collision with the Neumann boundary at z = 0λ (A) from those
that contract R→ 0λ (C). The contraction rate of repelled rings is impeded initially by the
antagonistic influence of the boundary-induced drift c∥(z). However, due to the repulsion,
the impeding influence of the boundary lessens with increased distance from it (Fig. 2.7b).
Within the framework of the kinematic model (2.9) it is also possible to explain the unex-
pected observation of persistent and expanding scroll rings in the experiment (Fig. 2.5d,e).
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Figure 2.9 | Agreement between full three-dimensional simulations and kinematical model.
(a) Radius R and boundary distance z of the three-dimensional filament evolution (blue) are ex-
tracted to compare with the solutions (red) of the kinematical model (2.9). Trajectories highlighted
with capital letters (A-E) correspond to the five distinct cases observed in the experiment, which are
summarized in figure 2.5 (a-e). At the intersection of the R- and z-nullclines (dashed and solid) is an
unstable fixed point, which is marked by an unfilled circle. (b) A space time plot of the quasi-stationary
solution (D) shows the long-time stable behavior of the transient. Parameters for the reaction diffusion
system are as before and in the kinematic model α = 0.0245λ 2T−1 and β =−0.0004λ .

Expanding scroll rings (E) are a special case of rings that annihilate at the boundary (A).
However, they start closer to the repelling line and thus grow for a longer time before ulti-
mately colliding with the boundary as well. Note that the dashed R-nullcline in Figure 2.9a
reveals that expanding rings require a minimum initial radius R0.
Surprisingly, the fixed point in the modified kinematic model (2.9) is unstable, even though
experimental observation (Fig. 2.5d) suggests otherwise. This contradiction is resolved
by analyzing the behaviors of scroll rings that originate in a small region enclosed by the
R-nullcline from above and the z-nullcline from below at large radii (D). Before entering
the contraction phase, these rings undergo a long-lasting transient during which their radius
barely changes. An exemplary evolution of such a ring during its first 40 periods is depicted
in the space-time plot shown in figure 2.9b.
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Figure 2.10 | Scroll ring lifetimes. For different initial values of radius R0 and boundary distance z0
the lifetime of the contracting scroll ring is determined via the modified kinematical model (2.9). The
peak in the lifetime plane corresponds to the quasi-stationary solution. The saturation of the lifetime
for large z0 corresponds to the lifetime of a free ring. The flat plateau for small z0 corresponds to rings
that collide with the boundary.

Having validated the modified kinematical model (2.9), it is now possible to run a large
number of simulations in a very short amount of time to determine the lifetime tL of scroll
rings starting at different initial conditions (R0,z0). For a fixed initial distance from the
boundary z0, larger rings outlast smaller rings. Rings that start at a sufficient distance of
z0 > 0.5λ are not affected by the boundary. Their lifetime shows the expected quadratic
dependence (2.5) on the initial ring radius R0. Initial distances z0 closer to the repelling line
at zrep lead to rings with diminished ring contraction rates that live slightly longer. Expanding
and quasi-stationary rings contribute to the peak in figure 2.10. There, lifetimes are more
than tripled. If rings start too close to the boundary, their lifetimes are an order of magnitude
smaller in comparison to their unperturbed counterparts. This is in agreement with previous
explicit simulations155 of the reaction diffusion system.
The use of the modified kinematical model (2.9) is not limited to an accelerated exploration
of parameter space. It can also be used for a bifurcation analysis depending on the filament
tension α and drift coefficient β . Note that the right hand-sides of the dynamical system (2.9),
fR(R,z) and fz(R,z) are not known explicitly. Instead they are defined by spline interpolation
applied to the numerical measurements of the spiral wave drift velocity field c(z) (Fig. 2.7b).
The fixed points are found numerically as the roots of (2.9) using Newton’s method158. To
accelerate their detection, the initial estimate for each parameter set is based on the roots
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Figure 2.11 | Bifurcation analysis of the semi-analytical model. The fixed points of (2.9) and
their linear stability are evaluated numerically, since analytic expressions are not available. The
approximated right hand sides fR(R,z) and fz(R,z) of (2.9) are constructed from the interpolated
functions shown in figure 2.7b. The bifurcation dividing unstable from stable rings is revealed to be a
Hopf bifurcation, due to the non-vanishing imaginary part (b), while the real part (a) of the largest
eigenvalue changes its sign.

found previously. In figure 2.11 only fixed points with R0 ∈ [0.1,2.0]λ and z0 ∈ [0.1,1.0]λ
are taken into account. Values smaller than 0.1λ are unrealistic, since the spiral core, the
area around which the spiral tip rotates, has a radius of about 0.1λ . At larger distances than
z0 = 1.0λ , the boundary interaction vanishes. Also it is not feasible to initiate scroll rings
with radii larger than 2.0λ using the setup described in section 2.2.
In the next step, the linear stability of the detected fixed points is analyzed via their eigenval-
ues. The required Jacobian Df is evaluated numerically using central differences:

Df =

(
fR(R0+∆R,z0)− fR(R0−∆R,z0)

2∆R
fR(R0,z0+∆z)− fR(R0,z0−∆z)

2∆z
fz(R0+∆R,z0)− fz(R0−∆R,z0)

2∆R
fz(R0,z0+∆z)− fz(R0,z0−∆z)

2∆z

)
(2.11)

The analysis shows that the majority of parameter combinations (α,β ) yield unstable fixed
points (Fig. 2.11). However, there is a small region, which features stable fixed points
for very small values of positive filament tension α and drift coefficient β . Previously this
behavior was purely associated with negative line tension. Both domains are connected via a
Hopf bifurcation, since the imaginary part of the largest eigenvalue does not vanish during
the transition.
The attracting fixed point in the R-z phase space is due to a cusp in the R-nullcline (Fig. 2.12a).
In the back of the cusp the R-nullcline has a negative slope and the z-nullcline has a positive
slope allowing for a stable fixed point. The time series (Fig. 2.12b) shows that the transient
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Figure 2.12 | Time evolution of stable scroll ring. (a) Filament dynamics of a stable ring in the R-z
phase space. Shown in red is the solution of (2.9) for α = 0.002λ and β = 0λ . The trajectory starts
at (R0,z0) = (1.2,0.35)λ (red dot) and ends in the stable fixed point (black dot) located behind a cusp
in the dashed R-nullcline. (b) The radius R (blue) and boundary distance z (red) as a function of time t
show the long transient period before reaching the stable fixed point at (R,z)≈ (0.49,0.48)λ .

is very long: It takes 800 rotation periods before reaching the fixed point. For the purpose of
an experimental confirmation it would be advantageous to start closer to the fixed point.
This transition also plays a role in the dynamics of scroll rings, simulated with the Oregonator
model (C.2). Close to the bifurcation, breathing filaments exist, whose radius is a periodic
function of time152.
The interaction across the symmetry axis alone can also lead to stabilization of the scroll ring
(Fig. 2.13). After a transient of about 50 periods, the self-stabilized ring exhibits a constant
radius at R= 0.38λ and drifts with constant speed of vz = 0.13λT−1 along its symmetry axis.
While there are previous studies of this object134,159–161, so far none confirmed its existence
in full three-dimensional simulations over a long period of time. Here, the simulation was
performed with the three-component Oregonator model (C.2) in a cuboid with periodic
boundary conditions on all sides. Lateral boundaries are placed at sufficient distance to
exclude their influence. New initial conditions are required, as the cut cylinder used before
would give rise to a scroll ring pair due to the periodic boundary conditions. For this purpose,
we start from a planar excitation wave traveling in the z-direction. Then a circular hole of the
desired initial radius R0 is cut out of the planar wave. Along the open edge waves start to
curl in and give rise to the scroll ring.
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Figure 2.13 | Self-stabilized scroll ring. (a) The ring periodically traverses the simulation box with
constant velocity due to the periodic boundaries. (b) After a transient, the ring reaches its stable radius
of R = 0.38λ . The blue and red curves are the result of averaging over the fast filament oscillations
during each rotation period. (c) A snapshot of the planar filament (red) in the three-dimensional
simulation volume. The current position of the filament is highlighted by black projections on the
box faces. The model parameters of the simulation are: ε1 = 1/8,ε2 = 1/720,q = 0.002, f = 1.16,
φ = 0.0117 with ∆x = ∆y = ∆z = 0.3 and ∆t = 0.001. The filament was detected as the intersection
of the isoconcentration level sets u(x,y,z) = 0.3 and v(x,y,z) = 0.2.

2.4 Chapter summary

Neumann boundaries transform transient scroll rings into autonomous pacemakers in a
homogeneous medium. As such they act as a self-organized source of periodic excitation
waves. Unexpectedly, this is possible even for rings with positive filament tension, that would
contract and vanish far from any boundaries. Beyond stabilizing - if only for a long transient -
Neumann boundaries can invert the radial contraction, such that rings expand. This case was
previously associated with negative filament tension exclusively.
All these distinct scenarios of scroll ring evolution observed in the experiment (Fig. 2.5)
could be successfully reproduced with numerical simulations of the underlying reaction
diffusion equations (Fig. 2.9a) that are in excellent agreement with a kinematical model (2.9)
which is augmented to correctly account for boundary effects162.
With the semi-analytical, data-driven model (2.9) very fast explorations of parameter space
are possible (Fig. 2.10). In addition bifurcation analysis can be performed, even though
the explicit formulas for boundary influenced scroll ring evolution are unknown (Fig. 2.11).
This reveals the possibility of stable boundary-stabilized rings with positive filament tension
(Fig. 2.12). Last but not least, the existence of self-stabilized rings in the absence of
boundaries is also confirmed (Fig. 2.13).
Given that three-dimensional unperturbed scroll rings disappear on their own, the number of
different scenarios under which persistent rings may appear is remarkable.



24 Chapter 2

2.5 Future directions

Alternative strategies for the stabilization of scroll rings were previously investigated numer-
ically, but never verified experimentally. This includes parametric spatiotemporal fluctua-
tions163 or periodic forcing121,164,165. Feedback methods based on the readout of localized
detectors166,167 have not been used so far to stabilize rings. Due to the inherent difficulties of
applying a spatiotemporal parametric field in three dimensions, a more elegant method might
be to select the shape of boundaries in such a way that they stabilize rings at a predetermined
radius.
Measuring the boundary-induced drift velocity field in an experiment is difficult. The
first problem is a reliable detection of the spiral wave tip. Instead of detecting it by the
intersection of grayvalue-isolines from consecutive images, another more accurate option
is to train image recognition software on the shape of the spiral tip. The other problem is
measuring the velocity reliably. Even in simulations it is difficult to extract valid data points
close to the boundary, since the spiral wave will collide with it. To circumvent this problem,
one could apply an electric field. Spiral wave are known to drift in a voltage gradient124 with
constant velocity cE = (cE

x ,c
E
z ). Together with the boundary induced drift field, the equation

of motion for the spiral core are:

dx
dt

= c∥(z)+ cE
x (2.12)

dz
dt

= c⊥(z)+ cE
z (2.13)

After measuring the constant drift due to the electric field cE , it can be aligned to counteract
the component of the boundary-induced drift velocity field c⊥(z) that pushes spiral waves
away or into the boundary, such that:

dz
dt

= c⊥(z)+ cE
z = 0 (2.14)

While the spiral wave drifts slowly in parallel to the attractor, its drift speed c∥(z)+cE
x can be

measured reliably. This measurement can be repeated for different amplitudes or orientations
of the electric field, in order to counteract different strengths of the perpendicular compo-
nent c⊥(z). After subtracting the contribution from the electric field, one can reconstruct the
boundary-induced drift velocity field for both components c∥(z) and c⊥(z) with precision.
To further improve upon the modified kinematical model (2.9), it is necessary to take into
account drift velocity functions c(z;p) that depend on system parameters p, as does the
filament tension α(p) and the drift coefficient β (p).
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The strategy of stancing shapes out of a planar wave to nucleate a filament, can be developed
further. The approach is not limited to circular filaments. It is also possible to create initially
elliptic, square or heart-shaped filaments. The evolution of the latter case is interesting since
its curvature varies from κ →−∞ to κ →+∞ while traversing from one cusp to the other.
Another interesting case are yin-yang patterns, that keep their shape while rotating under
curvature flow119,168. The simulations can be validated in auto-completion experiments
with a photosensitive BZ reaction169, where the top layer of an active medium is uniformly
irradiated with light except at the edges of the desired shape.





Chapter 3

Target Wave Synchronization on a
Network
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Human brain activity is an enigma. There is no chance in the near future to unravel the
network of billions of neurons and trillions of connections between them170. To make matters
worse, this is only a static snapshot of a single instant in time. Discovered more than a century
ago by one of the pioneers of neurobiology, Santiago Ramón y Cajal, the brain connectome is
not static, but dynamic171,172. This plasticity allows for learning173–175, memorization176,177

and encompasses regeneration178,179.
One of the currently unsolved puzzles of inner brain mechanisms regards synchronization180.
Experiments showed its relevance in perception processing and motor control181,182, while
pathological enhanced synchronization underlies symptoms in Parkinson’s disease183, Tinni-
tus184,185 and epilepsy186,187. In a very simplified description, each neuron can be regarded
as an oscillator. Since the pioneering work of Norbert Wiener188 electroencephalographic
measurements revealed the occurrence of synchronization among nerve cells in the brain.
Further observations reveal that neurons tend to synchronize without a time-lag or in-phase
∆φ = 0189, even though they are far apart and communication speed is finite190. One ap-
proach is, that in-phase synchronization can be relayed via an intermediate191,192, other
options are lag synchronization193 and remote synchronization194.
This chapter features experimental results on lag synchronization with neuromorphic chem-
ical micro-oscillators. The notion of a target wave in a continuous medium is extended to
networks via an analysis of the underlying symmetries.

3.1 Theoretical Background

The last decade saw an increased theoretical interest in generalizing continuous pattern
formation terminology to discrete networks. The groups of Mikhailov and Schöll for example
generalized Turing195,196 and Benjamin-Feir197 instabilities as well as the eikonal equation
and propagation failure of excitation waves198,199 to networks. Likewise lag-synchronization
on a network is deeply connected to propagating excitation waves in an active medium. Once
the excitation threshold is crossed due to coupling to the surrounding medium or neighboring
oscillators, an oscillator emits a spike38. The spatial profile of these waves is determined by
initial conditions. In two dimensions the basic examples encompass planar, spiral and circular
waves, the last of which are known as target patterns38. In the same sequence, the wave
propagation of these patterns accumulates translation, rotation and reflection symmetries.
The target wave is special, because it conforms to all symmetries in the system, which
together form the Euclidean symmetry group E(2). Also note that in a suitable co-moving
reference frame, the concentration waves are stationary in time, c(r, t) = c(r−v t).
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Figure 3.1 | Symmetries in continuous media and discrete networks. (a) A target pattern in a
continuous BZ medium propagates, while preserving rotation (red), reflection (yellow) and translation
(blue) symmetry. (b) The symmetries on a network are permutation automorphisms highlighted by
identical edge colors. Under application of any of the corresponding permutation operators the pattern
stays invariant throughout its evolution. On a network, a target wave is harder to naively detect, since
the position of the drawn nodes does not necessarily reflect their distance form a pacemaker site. In
both subfigures symmetry operations are depicted as arrows.

On a network of discrete nodes200 the generalization of the target wave is not straightforward,
because the Euclidean symmetry group is not applicable. Instead, a network of identical
nodes features discrete permutation symmetries201. Permutation operations, defined by the
permutation matrix P , exchange up to N nodes of a network. The connections between the
nodes are given by the adjacency matrix A , whose elements follow:

Ai j =

⎧⎨⎩1 , node i is connected to node j

0 , node i is not connected to node j.
(3.1)

A given permutation operation is a symmetry or automorphism of the network, if it obeys194:

AP −PA = [P ,A ] = 0. (3.2)

This means, that the adjacency matrix A is invariant under the given permutation operation.
Furthermore, every network can be completely partitioned into symmetry clusters, which
are defined as sets of nodes, whose exchange leaves the network connectivity unaltered. A
symmetry cluster that contains only a single node is called a trivial symmetry cluster. The
only applicable permutation operation in this case is the identity operation: It can only be
exchanged with itself without changing the connectivity.
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Recently Lou Pecora and coworkers202 were able to generalize their Master Stability Func-
tion (MSF) formalism203,204 exploiting network symmetries. Their formalism applies to a
network, whose N nodes are oscillators, that communicate along the edges of the network:

dci

dt
= f(ci)+K

N

∑
j=1

Ai jH(ci,c j) (3.3)

The nc dynamical variables of each oscillator i evolve according to the local dynamics
f : Rnc → Rnc . The coupling to the network consists of two parts: The adjacency matrix
A ∈RN×N encodes what the neighbors of node i are and the coupling function H :Rnc→Rnc

determines how node i is coupled to its neighbors, for example diffusively or pulse-coupled205.
The accumulated signals of the neighbors are scaled with the coupling strength K.
In this setting, the MSF allows for calculating the linear stability of the fully in-phase syn-
chronized state, where ci(t) = csync(t) for all N oscillators in the network. This is achieved
by calculating the Lyapunov exponents of transversal perturbations to the synchronization
manifold. The longitudinal perturbation as the Goldstone mode has neutral stability206.
However, this analysis was only applicable to the complete network, but not subnetworks.
Furthermore the connectivity of all nodes is required to be identical, otherwise the synchro-
nization manifold is not stable: Once all nodes reach the synchronized state csync(t), they
need to receive the same input from their neighbors to remain synchronized.
Incorporating symmetries allows for decoupling the nodes, such that the synchronization
manifolds of the decoupled symmetry clusters can be investigated independently. Intuitively,
this approach works, because nodes in the same symmetry cluster can be exchanged without
alteration of the network. This implies that the nodes in a symmetry cluster are all coupled
identically to the rest of the network and vice versa. As an example, the evolution equations
for the two orange nodes in figure 3.1b, here in keeping with later notation labeled as i = 2,3,
are

dc2

dt
= f(c2)+K

(
2cmagenta +cgreen +ccyan−4c2

)
, (3.4)

dc3

dt
= f(c3)+K

(
2cmagenta +cgreen +ccyan−4c3

)
. (3.5)

In the above example, the coupling function was taken as the concentration difference
between two coupled oscillators, H(ci,c j) = c j−ci. The coupling term for both oscillators
consists of identical contributions from the other symmetry clusters. Given that the other
nodes are synchronized in their respective symmetry clusters, all orange nodes receive
the same input from the rest of the network and thus can be treated as an independent
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subnetwork. While previously, the applicability of the MSF was limited to the stability of
global synchronization of identically coupled nodes, the symmetry decomposition allows for
evaluating the stability of symmetric subnetworks, such as those found in power grids202.
Even introducing small parameter mismatches in the oscillators still allows for the successful
application of the MSF207. However, at sufficiently large parameter mismatches in-phase
synchronization ceases to exist. Instead one node will have the highest frequency in the
network. This node acts as the pacemaker and over time entrains the rest of the network.
Thus wave-like synchronization emerges, where all oscillators have the same frequency but
varying phases φ , following:

φ(i, t) = φ
(
d(i, i0)−∆φ · t

)
(3.6)

where d(i, i0) is the discrete network distance between nodes i and i0 as given by the
commonly employed shortest distance algorithm by Dijkstra208. Node i0 is the fastest
node in the network and thus the source of the wave. Phases φ(t) can be calculated from
concentration time series c(t) as described in appendix A.1. ∆φ is the constant phase
difference between neighboring oscillators with unequal distance to the source node i0.
Furthermore the phase difference is identical to the slope of the wave m = ∆φ/∆d, since the
distance measure is discrete, ∆d = 1.
This discrete wave is well-established in biological settings. There it emanates from a central
pattern generator (CPG) in neural networks, which controls locomotion209. One neuron
after another in a chain fires and periodically initiates muscle movement. This leads to
swimming in case of eels or walking gaits in hexapods. The CPG architecture has also been
successfully applied to construct robots that mimic the motion of animals, such as snakes210

or roaches211.

3.2 Experimental Results

In the experiment (Fig. 3.2), the network is realized with chemical micro-oscillators212 that
measure about 300 µm. Each oscillator consists of a porous cation-exchange bead that is
loaded with ruthenium-tris-bipyridine (Ru(bipy)3), the catalyst in the oscillating Belousov-
Zhabotinsky (BZ) reaction. A review of the chemical mechanism of the BZ reaction is given
in Appendix C. To enable chemical oscillations, the particles are immersed in a catalyst-free
BZ solution. Since the concentration oscillations require the presence of the catalyst, they are
confined in space to the locations of the beads (Fig. 3.2b). Thus in contrast to the experiment
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Figure 3.2 | Setup for network experiments with chemical micro-oscillators. (a) The chemical
oscillators are monitored with a camera. Based on the measured state of the oscillators they are
illuminated individually with light from a spatial light modulator. For completeness, the experimental
setup is shown here, but is given in more detail in appendix B.1.3. (b) The oscillation cycle is
conveniently tracked optically, because the absorption spectrum of the catalyst depends on its oxidation
state. In this snapshot the beads appear red (Ru2+) and green (Ru3+) due to contrast enhancement with
the bandpass filter (440 –460 nm) and a software filter. The length of the white bar corresponds to
1 cm. (c) The network (blue arrows) is established via light perturbations that depend on the state of
the selected neighbors.

in a spatially extended medium (chapter 2), the beads allow for discrete reaction sites that
serve as the oscillatory nodes in network experiments.
The oscillators are spaced at least 400 µm apart. This distance suffices to exclude diffusive
coupling. Instead the coupling between oscillators is mediated via light (Fig. 3.2c). For this
purpose, the catalyst in the reaction has two additional roles: Its visible color changes allow
for optically tracking the chemical oscillation cycle. Secondly, the catalyst is photosensitive.
Increased light application accelerates the oscillation, while a decrease slows the oscillation
cycle down. Thus, the catalyst can be employed to realize an autonomous network experiment
(Fig. 3.2a). The critical components are a camera that measures the oscillation state in the
form of grayvalues vi and a spatial light modulator that applies variable illumination levels Ii

on individual beads. Here grayvalue vi is short for the spatially averaged grayvalues across
an entire bead i. One complication is that the oscillators are not fixated spatially, so they can
move freely through the Petri dish. To measure at the right position and target the correct
location with light, each oscillator is tracked continuously throughout the experiment.



3.2 Experimental Results 33

The experiment proceeds in four stages. During the initial and last stage, the oscillators are
uncoupled. All individual illumination intensities are identical to the background illumination
level I0,

Ii = I0. (3.7)

This allows for the measurement of their free oscillation period T0 before and after the
experiment. In the second stage, the experiment is initialized to start from a state of in-phase
synchronization. This initial condition is enforced by exploiting the Kuramoto transition213,
where globally coupled oscillators synchronize in phase for a large enough coupling strength.
The corresponding illumination protocol is:

Ii(t) = I0 +K
N

∑
j=1

(
v j(t)− vi(t)

)
. (3.8)

Here every component in the adjacency matrix A equals 1 (compare (3.3)). After about 5
periods, the phases of all oscillators obey the initial condition. Directly after successfully
enforcing the initial condition, the coupling stage starts. The network coupling is given by:

Ii(t) = I0 +
K
ki

N

∑
j=1

Ai j
(
v j(t)− vi(t)

)
. (3.9)

Each node i receives a feedback Ii, that is based on the grayvalue differences between
neighboring nodes j and node i itself. The accumulated differences are weighted with the
coupling strength K that is normalized by the node degree ki. Real-world constraints motivate
the introduction of the illumination offset I0 and node degree ki. The intensity output range
of the spatial light modulator is bounded. Feedback values outside the bounds are clipped
to the minimum and maximum intensities. Clearly the minimum intensity is zero. This is
problematic in the case node i fires before its neighbors, because the sum in (3.9) yields a
negative value that would be clipped to zero. However, with an offset I0, this case still leads
to a non-vanishing feedback. Since it is smaller than the default value, it will decelerate
the oscillation. In the case of an oscillator with a high degree ki and not too small coupling
strength K, it may be constantly exposed to a large feedback value that is clipped to the
maximum intensity. Instead of being coupled to its neighboring oscillators via time-varying
perturbations, this oscillator just receives an increased, time-independent intensity offset.
Thus it is effectively decoupled from the rest of the network. The elevated offset might
even change the dynamic behavior of the node from oscillatory to excitable. Introducing
normalization by node degree ki prevents this scenario.
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Figure 3.3 | Wave synchronization via symmetry clusters. (a) Nodes of the network are colored
by their symmetry cluster affiliation. The numbering follows the path of the wave through the
network, starting from the pacemaker at node i = 1. (b) In a co-rotating phase plot with φ −ω1t,
the wave structure becomes apparent, as the wave travels from one shell, consisting of complete
symmetry clusters, to the next. Close to the end of the experiment, at t = 1423.0s, the histogram of
the accumulated relative phases reveals stable phase-locking.

After the network is coupled together and for sufficient coupling strengths K, it takes a few
periods for the fastest oscillator in the network to entrain38 the other oscillators. Once the
entrained nodes also oscillate with the frequency of the fastest oscillator, they in turn also
entrain their neighbors until the whole network is frequency-synchronized to the frequency
of the fastest oscillator (Fig. 3.3 and Fig. 3.4).
Nodes with the same network distance to the pacemaker node, also called shells198 (Fig. 3.4a),
are in-phase synchronized. This is similar to a target wave on a two-dimensional plane,
where all points with the same distance to the target center are in-phase synchronized as well
(Fig. 3.1a). Regarding the symmetry properties of the network, it turns out, that the wave
starts from one symmetry cluster and propagates further into the others. Each shell consists
of one or more complete symmetry clusters. The nodes of one symmetry cluster are not
distributed over different shells (Fig. 3.3 and Fig. 3.4).
The experimental results in figure 3.3 depict this ordered sequence. The pacemaker is labeled
as node 1. Node 1 occupies an entire symmetry cluster, colored in green (Fig. 3.3a). The
wave propagates from node 1 to its next neighbors which are nodes 2 and 3 as well as nodes
4 and 5, which constitute the orange and violet symmetry clusters, respectively. Then the
wave is relayed to the third and last shell, which consists of the complete magenta and cyan
symmetry clusters. This behavior repeats itself with the period of the pacemaker oscillator
T1 = 32.0s.
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Figure 3.4 | Target wave on a network. (a) The shells of the target wave on the network are
highlighted in red, blue and green. (b) In a frame co-rotating with ω1 the constant phase relationship
between the constituents of the shells over the course of the experiment becomes apparent. The
occurrence of each phase is proportional to its opacity. (c) Once the network coupling is activated
at t = 200s, the shells (red, blue, green) quickly approach in-phase synchronization while the total
network (black) does not, as quantified by the Kuramoto order parameter (3.12). (d) The color in the
node-time plot shows the measured grayscale values over time for each node. After a transient all
nodes oscillate with the same frequency but a phase difference depending on their shell (separated
by red lines). The colorbars on the left reveal the alignment between shells and symmetry clusters.
Coupling strength: K = 2.0.

The phase φ is calculated from linear interpolation between consecutive peaks at times ti in
the grayvalue time series (Fig. 3.4d):

φ(t) = 2π
t− ti

ti+1− ti
. (3.10)

Since the calculation of the phase φ during the interval t ∈ [ti, ti+1] requires the time points
of the most recent peak at ti and the upcoming one at ti+1, the phase is evaluated after the
completion of the experiment. The phase difference between consecutive shells, ∆φ = 0.67π ,
is constant (Fig. 3.3b and Fig. 3.4b).
Figure 3.4 shows the node dynamics with a focus on the shells. The nodes are colored by
their distance to the pacemaker and are numbered identically as in figure 3.3. A stationary
phase relationship between the shells is revealed (Fig. 3.4b) by plotting all phases of the
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constituent nodes during the experiment in a co-rotating frame:

φ = md +φ0. (3.11)

Here d ∈ N is the distance to the pacemaker node as well as the shell index. Thus the slope
m = ∆φ/∆d simplifies to the locked phase difference ∆φ = 0.67π , since ∆d = 1 between
consecutive shells. The parameter φ0 is an arbitrary phase offset in the co-rotating frame.
This observed linear dependence of the phase on the distance is a strong indicator for one
dominating excitation wave spreading on the network.
Another way to reliably detect target wave induced synchronization employs the Kuramoto
order parameter213. Once the target wave is established, for each shell, consisting of a set of
nodes S indexed by a variable s, the Kuramoto order parameter,

RS =
1
|S|

⏐⏐⏐⏐⏐∑s∈S
eiφs

⏐⏐⏐⏐⏐ , (3.12)

should approach unity to verify shell-wide in-phase synchronization. At the same time,
the global Kuramoto order parameter R for all nodes must not reach one. Otherwise the
whole network is in-phase synchronized with ∆φ = 0 between shells and does not show wave
synchronization with ∆φ ̸= 0. Both conditions are fulfilled in the experiment (Fig. 3.4c).
The space time plot analogue for a network (Fig. 3.4d) shows that the wave pattern quickly
develops after a short transient of five periods lasting ∆t = 150s and remains phase-locked
afterwards. The colorbars on the left indicate for each node the affiliated symmetry cluster
and shell. The nodes in each shell are in-phase synchronized and adjacent shells have constant
phase differences. Also each shell consists exclusively of complete symmetry clusters.
The emergence of a target wave on a network is conditional on the successful entrainment
between any two connected nodes in the network. However, complete entrainment is only
possible for a sufficiently high coupling strength K 213. For coupling strengths K below a
critical coupling strength Kc, wave propagation breaks down. Indeed, experiments with a too
small coupling strength K < Kc confirm that the pacemaker node can not entrain the whole
network (Fig. 3.5). In this case nodes affiliated with the same symmetry cluster lose in-phase
synchronization and thus the network-wide target wave disappears.
While lowering the coupling strength K below Kc, frequency synchronization gradually fails.
Entrainment first breaks down between those pairs of connected nodes, whose frequency
difference ∆ωi j is large. Furthermore the difference is amplified by the larger degree of both
nodes, max(ki,k j)∆ωi j, due to the node degree dependence in the coupling scheme (3.9).
This is similar to the pairwise synchronization transition of two coupled phase oscillators213.
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Figure 3.5 | Entrainment failure. (a) This experiment has a coupling strength of K = 0.6, which is
slightly below the critical coupling strength guaranteeing global entrainment. Nodes 1 and 9 coexist
as pacemakers in the network. Even though node 9 has the larger frequency, it can not entrain the
network, because the neighboring node 5 does not follow it. The rest of the network is entrained
by the node with the second highest frequency. (b) The oscillator frequencies are divided into two
groups with frequencies ω9 = 19mHz or ω1 = 17mHz. (c) At small coupling strength, K = 0.05,
no lasting entrainment occurs and aligned phases are only temporary. (d) The oscillators exhibit no
lasting frequency synchronization, but a collective parameter drift to higher frequencies.

After the first of these entrainment failures occurs, the network is divided into separate
hemispheres. Each domain is under the influence of its own respective pacemaker, nodes 1
and 9 (Fig. 3.5a). Interestingly, two pacemakers coexist, even though their frequencies are
different, ω9 > ω1 (Fig. 3.5b). In continuous media as well as on networks, this is due to
oscillators at the boundaries of the influence sphere of each pacemaker being less excitable
and spending more time in their refractory states. Thus, they neither respond to nor relay the
wave that originates at the pacemaker.
At very low coupling strengths K, no pairs of connected oscillators are entrained to each
other. The space time plot of an experiment regarding this case shows how the initially
in-phase synchronized oscillators slowly lose their phase alignment over time (Fig. 3.5c).
They do not oscillate with their natural periods, as they are still weakly coupled to each
other. Interestingly, the frequency of an oscillator is not constant over time. Whenever its
phase aligns with a neighbor it slows down until the phase alignment breaks up again. So
there is temporary frequency-locking between oscillators, but it is only transient. Overall the
frequencies are desynchronized and over time increase slightly (Fig. 3.5d) due to leakage of
the catalyst in the chemical experiment.
To determine the robustness of the wave pattern, a large number of numerical simulations
are performed with the ZBKE model of the photosensitive BZ reaction (C.5). The evolution



38 Chapter 3

Figure 3.6 | Arnold tongue for target wave synchronization. (a) Numerical simulations with (C.5)
for a range of coupling strengths K and node heterogeneities as quantified by the standard deviation σT0

of the natural period distribution relative to its mean T0. They reveal the existence region for
synchronization by a target pattern. The standard deviation of the periods σT during the coupled stage,
shows frequency-locking (purple domain) for sufficient coupling strength regardless of heterogeneities.
The transition line is highlighted in black as a guide for the eye. Each simulation started from a
slightly perturbed in-phase initial condition and lasted for 200 periods. (b) The time-averaged wave
order parameter (3.14) reveals that only a subset of the frequency-locked states is due to a target wave
(orange), once the heterogeneity is large enough. (c) Histograms and (d) phase distributions marked
in subplots a,b show representative cases. Node coloring and indices are the same as in figure 3.4.

equation for the network is:

dci

dt
= f(ci)+

(
Ku

Kv

)
K
ki

N

∑
j=1

Ai j
(
v j− vi

)
(3.13)

The two-component nonlinear node dynamics f(ci) supply the oscillations. Since the light
intensity Ii is an additive parameter in both components, the light-mediated coupling term
can be separated from the nonlinear kinetics f . Note that the dynamical equations (3.13)
apart from the nonlinear dynamics f are in a similar form to the consensus protocol, which
is a well-established model of distributed computing in computer science214. The dynam-
ical variables c = (u,v) are related to the bromous acid HBrO2 and the oxidized catalyst
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Ru(bipy) 3+
3 concentrations. In the coupling term, only variable v plays a role, since only the

catalyst is observable in the experiment (Fig. 3.2). The coupling term feeds back into both
components u and v via the vector of species-dependent susceptibilities (Ku,Kv).
The parameter space of the simulations is spanned by coupling strength K and oscillator
heterogeneity. A quantitative measure of the heterogeneity is given by the standard devia-
tion σT0 of the natural period distribution relative to the distribution mean T0. The period
distribution in the simulation fits to the distribution in the experiment by drawing random
samples from a suitable interval of values for parameter q ∈ [0.5,0.9].
The results of the numerical survey are shown in figure 3.6. The standard deviation of
oscillator periods during coupling σT is a good measure for evaluating frequency synchro-
nization. A vanishing σT requires the periods of all oscillators Ti to be identical, which is
the case during frequency synchronization. As can be clearly seen in subfigure 3.6a, there
exists a transition point from a desynchronized state to a synchronized state, whose critical
coupling strength grows approximately linear with oscillator heterogeneity. As such this is
the generalization of an Arnold tongue189 for a network of coupled oscillators. While this
structure is usually observed in the parameter space of oscillators, which are entrained to an
external periodic forcing, here we have the case of a fast oscillator which entrains the rest of
the network as a pacemaker.
Frequency-locking does not offer information about the phase alignment between the oscilla-
tors. As such a vanishing σT does not differentiate between global in-phase synchronization,
phase clusters189 or target waves (Fig. 3.4). To solve this problem, a modified Kuramoto
order parameter is introduced, that detects wave synchronization in a network of N oscillators:

Rwave =
1
N

⏐⏐⏐⏐⏐ N

∑
k=1

ei 2π

m φk

⏐⏐⏐⏐⏐ . (3.14)

As in figure 3.4b, the slope of the wave m = ∆φ must be determined from a linear regression
of the stationary phase pattern beforehand. Intuitively, this order parameter multiplies the
phase of each oscillator in such a way, that all phases converge to the same point if they
are synchronized in a wave with slope m. This is possible due to the 2π-periodicity of the
complex phase argument. However, the wave order parameter is not very robust against noise
and gives ambivalent results for too large noise levels. With the additional constraint, that the
shells of the wave align with the symmetry clusters (Fig. 3.4d), this order parameter can be
utilized to detect target waves on networks.
The simulations are all prepared in such a way, that the pacemaker occupies a complete
symmetry cluster (node 1 in figure 3.4a). This guarantees, that a wave propagating across the
entire network must be a target wave for sufficiently high coupling strengths K. Evaluating
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the wave order parameter (3.14) reveals, that target waves are the prevalent synchronization
mode in the network of heterogeneous ZBKE oscillators (Fig. 3.6b). A snapshot of its period
distribution and phase alignment is shown in the subplots of figure 3.6c,d) marked with a star:
The frequencies are identical and there are three shells, which are aligned with the symmetry
clusters (compare Fig. 3.1).
At the edges of the frequency-synchronized region, wave synchronization fails. For very
small heterogeneity, at the transition to in-phase synchronization at σT0 = 0 (marked with an
upside-down triangle), the wave pattern breaks apart. As can be seen in the subplot marked
with a diamond in figure 3.6d, there are still three separate shells as in the fully-developed
target wave. The difference to that case is, that fast oscillators join a shell that is ahead of the
one they should be in, based on the network distance (nodes 4 and 9). The opposite scenario
occurs for large heterogeneity (square marker). Here oscillators fire in a later shell. The
reason for this is that the wave does not follow the shortest path through the network, since
some links have too large a frequency heterogeneity ∆ωi j. Oscillators firing in the wrong
shell lead in both cases to an incorrect slope determination. This in turn results in a very
small order parameter Rwave, which correctly indicates the absence of wave synchronization
through shells.
As observed in the experiment (Fig. 3.5), the desynchronized domain is reproduced for low
coupling strengths K. Before complete desynchronization (circular marker) there is partial
synchronization (upright triangle). Here nodes 2 and 7 oscillate with a slower period than the
period of the pacemaker, node 1.
The findings on target waves in networks are not limited to the network examined so
far. Figure 3.7 shows target waves for additional network topologies: random densely-
connected202, scale-free215,216, random sparsely-connected217 and tree networks218. The
scale-free network shown in figure 3.7c,d) features a large number of trivial symmetry
clusters, which consist of just a single node. Thus target wave propagation on such networks,
given a random pacemaker location is highly probable.
Note that, if the wave does not originate from a complete symmetry cluster, the shells and
symmetry clusters will not align. This is the case when the pacemaker node is not a trivial
symmetry cluster or the pacemaker site consists of equally fast nodes that only form a subset
of a symmetry cluster. However, in the presence of a bottleneck node, whose removal would
separate the network into two disjoint networks, wave propagation through symmetry clusters
can recover. The necessary condition for this recovery is, that the bottleneck node is a
trivial symmetry cluster. In this way, once the wave is relayed via the bottleneck node it
acts as a pacemaker node for the remaining part of the network. This scenario is depicted
in figure 3.7e,f). Node 1 is only a subset of the magenta symmetry cluster. So, wave
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Figure 3.7 | Prevalence of target wave synchronization. Target wave synchronization was observed
on (a,b) random densely-connected network with N = 10, (c,d) scale-free network with N = 25, (e,f)
random sparsely-connected network with N = 20 nodes. (g,h) tree network with N = 40 nodes. The
left column shows the network and its symmetry clusters. The pacemaker node is highlighted with a
black dot. On the right are space-time plots of vi(t) for the last 10 periods.

propagation on the left part of the network is not a target wave. However, once it passes the
brown bottleneck node in the center it is relayed symmetrically, so it regains its target wave
character: The subsequent shells of the wave coincide with the symmetry clusters.
In experiments and simulations, it is striking that wave propagation follows the symmetry
clusters (Fig. 3.4 and Fig. 3.6). The reason for that is that all nodes of a symmetry cluster
have the same distance to all nodes of any other symmetry cluster. This is illustrated in
figure 3.8.
A wave on a network spreads from its source to the neighboring nodes and in the next step
continues on to their neighbors. At each step the wave front increases its distance208 to the
source node by ∆d = 1, since the network is discrete.
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Figure 3.8 | Relationship between symmetry clusters and shells. (a) Any network is given by a
set of nodes connected by a set of links. All nodes are assumed to be identical. (b) Every network can
be completely decomposed into symmetry clusters. (c) The quotient network is obtained by replacing
all nodes of a symmetry cluster with a single one. (d) Shells are defined by the shortest distance to
a reference node (red). Nodes with distance d = 1 are blue, with d = 2 are green. (e) Coloring the
nodes of the quotient network by distance to the reference node (red), reveals the same arrangement
of shells as in c).

The path of the wave coincides with the symmetry clusters, if the wave originates from all
nodes of a complete symmetry cluster. This can either be a single node of a trivial symmetry
cluster or more (e.g. the green node or the orange nodes in figure 3.8b). In continuing
forward the wave spreads to all neighboring nodes of that initial symmetry cluster. All of
these neighbors must also be complete symmetry clusters, because all nodes of the original
symmetry cluster are connected identically to the rest of the network. Otherwise the original
nodes would not constitute a complete symmetry cluster. Note that identical connectivity is
not implied to mean that all nodes have exactly the same neighbors. Instead they have the
same number of neighbors from the same symmetry clusters.
The above point is further clarified by eliminating the redundancy due to the symmetry
clusters. To this end, all nodes of a symmetry cluster are replaced by a single node with the
same connectivity resulting in a quotient network219 (Fig. 3.8c). Coloring the nodes in the
quotient graph by their distance to the green node (Fig. 3.8e), which is also the reference
node in figure 3.8d, reveals the same shell affiliations of nodes as in the full network. Thus all
nodes of any symmetry clusters will fire in unison in the case of target wave synchronization.
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3.3 Short summary

This chapter generalizes the notion of target waves from continuous media to discrete
networks utilizing symmetries. Target waves on the two-dimensional Euclidean plane
spread while adhering to all members of the Euclidean symmetry group E(2): translation,
rotation and reflection. Likewise target waves on networks obey all permutation symmetries
underlying the network topology. The source of the target wave is the pacemaker, a location
or node, which features the largest frequency in the entire system. After a sufficiently long
time, each element is entrained to the frequency ω1 of the pacemaker.
Target waves on networks are studied in an experiment with discrete photochemical oscillators
(Fig. 3.4) and reproduced in numerical simulations (Fig. 3.6)217. For this purpose, a wave
order parameter was developed (3.12) to reliably detect and distinguish target waves from
other synchronization modes. Experimentally and numerically the transition from networks,
which are frequency-locked by the target wave, to desynchronization is verified to occur by
entrainment failure along connected nodes i, j whose frequency difference ∆ωi j is too large.
An analysis of the network symmetries further reveals their intrinsic connection to the network
distance. This allows for the prediction of wave propagation using symmetry clusters.
The existence of travelling cortical excitation waves was recently observed in the motor
cortex of monkeys (Macaca mulatta)220. Here, the findings with neuromorphic chemical
oscillators reveal that target wave-induced synchronization may be responsible for robust in-
phase synchronization of distant nodes in a cortical network without a delayed transmission
node180.

3.4 Future directions

With the experimental setup presented in this chapter it was only possible to study the
transition from desynchronization to target waves at large heterogeneity. To study the
transition from in-phase to wave synchronization (Fig. 3.6) experimentally, it is necessary
to have precise control over the period distribution. For this purpose it is required to have
large reservoir of N > 2000 oscillators, which are available in the setup described in the next
chapter. Before the experiment runs, it is possible to select N = 10 oscillators with a desired
period distribution. Furthermore, the large reservoir allows for more than 200 experiments to
run in parallel. Thus a survey of the synchronization modes in the K-σT0 parameter space
can be completed quickly.
It would be interesting to employ weakly coupled oscillators as a first approximation of the
critical coupling strength Kc(σT0) at which a network transitions from the desynchronized to
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the synchronized state (Fig. 3.6). In the case of two mutually coupled oscillators, the critical
coupling strength Kc at which they frequency-lock is given by213

Kc =
∆ω

maxIF(∆φ)
. (3.15)

The critical coupling strength depends on the frequency difference ∆ω = ω1−ω2 between
both oscillators and the maximum of the interaction function IF(∆φ), which is defined as the
odd part of the phase response curve of an oscillator (see appendix A.1).
The case of a pacemaker sequentially entraining one oscillator after another, can be simplified
to two oscillators. One is entrained by the pacemaker and oscillates with its frequency ω1.
The other is not entrained yet and has a frequency ωi. Thus, accounting for the degree
normalization in (3.9), the critical coupling strength Kc at which every oscillator in the
network is entrained follows

Kc =
∆ωmax

max(IF(∆φ))
, with (3.16)

∆ωmax = max
i

(ki (ω1−ωi)) . (3.17)

Even though, this approximation neglects the influence of neighboring oscillators j, which
would alter ωi, it might still yield reasonable results. However, its applicability to ZBKE
oscillators might be limited, since their phase response curve depends nonlinearly on the
coupling strength (see appendix C.2).



Chapter 4

Spiral Wave Chimera
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A spiral wave chimera is the union of spiral waves87 and chimeras states221 - two paradigms
in spatial pattern formation and temporal synchronization222. Spiral waves have been
researched extensively in simulations as well as experiments during the last 70 years62 in
excitable media due to their spontaneous formation in a plethora of natural systems (see
the introduction of chapter 2 for examples). A spiral wave nucleates from the open end of
an excitation wave. The open end curls in and becomes the center of the spiral wave from
which waves are periodically emitted. The chimera state was numerically found by Yoshiki
Kuramoto about 15 years ago a , when he extended his model for synchronization in networks
from globally to nonlocally coupled oscillators. While dissipative oscillators with identical
frequencies in a globally coupled system trivially synchronize, this is not the case for nonlocal
coupling. Two groups emerge: One coherent group, which is frequency-synchronized and
another incoherent one, which is desynchronized.
Chimera states are theorized to play a role in cardiac tissue, where mechanical contraction
leads to an effective nonlocal coupling225, opinion formation in social groups226, beam
shaping in laser arrays227, computers based on arrays of optomechanical resonators228–230,
blackouts in power grids231, SQUID metamaterials232–234 and arrays of spin-torque oscilla-
tors for miniaturized antennae235,236, quantum systems of ultracold atoms in a Bose-Einstein
condensate237, cortical networks, where they might play a role in bump states238,239 and
epileptic seizures240–242, as well as hydrodynamically coupled cilia carpets88. The latter
control for example the flow of nutrients in the brain to sustain neuronal activity243.
Recently chimera states have been found in a variety of chemical, physical and biological
experiments with: coupled photochemical244,245 and electrochemical 246 oscillators, photo-
electrodissolution of a doped silicon layer247–249, mercury-beating heart250, electro-optical
coupled map lattices251,252, mechanical pendula253–255, time-delayed lasers256,257, field-
programmable gate arrays258, electronic circuits259,260 and cilia chains261. Even before
there was an experimental focus on finding chimera states, there were already experiments
which exhibited coexistence of coherent and incoherent behavior, e.g. in a globally coupled
photosensitive Belousov-Zhabotinsky (BZ) medium262 and in ferrofluidics263. However, the
spiral wave chimera remained elusive so far.
In this chapter, I will present the experimental verification of a spiral wave chimera in
a network of photocoupled chemical oscillators. Beyond the observation, a number of
unanticipated behaviors are discovered as well.

a In 2001 Kuramoto presented his findings on nonlocally coupled systems, that already encompassed one-
and two-dimensional problems, at a meeting named "Nonlinear Dynamics and Chaos: Where do we go from
here?" in Bristol, United Kingdom. Subsequently his work, on what later became known as chimera state223,
was published as a chapter41 in the accompanying conference monograph224.
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4.1 Theoretical Background

Inspired by bacterial biofilms264 as well as living cells in a body87, that instead of communi-
cating directly, do so via exchange of biochemical species with their surroundings, Kuramoto
analyzed the following model41:

du
dt

= f1(u,v)+K(w−u), (4.1)

dv
dt

= f2(u,v), (4.2)

dw
dt

=
1
ε
(u−w+Dw∆w) . (4.3)

The first two equations form a subsystem that exhibits a stable limit cycle. The third
variable w is the only species that may diffuse with diffusion coefficient Dw and couples
linearly into u (4.2). Adiabatically eliminating (ε → 0) the dynamics of the diffusing
variable (4.3) leads to an inhomogeneous ordinary differential equation in space for w,

Dw∆w−w = u (4.4)

that may be solved with the Green’s function method265. The solution is a nonlocal integral
operator,

w(r, t) =
+∞∫
−∞

d2r̃ G(|r− r̃|)u(r̃, t), (4.5)

whose exact form depends on the topology of the system41,266. For a one-dimensional ring,
the kernel G is a decaying exponential41,

G(r) =
1

2κ
e−r/κ , (4.6)

while for an infinite two-dimensional plane with Neumann boundaries, it is the zeroth
modified Bessel function of the second kind K0

267,

G(r) =
1

2πκ2 K0 (r/κ) , (4.7)

whose behavior resembles an exponential decay similar to (4.6). The characteristic coupling
length κ depends on the diffusion coefficient, κ =

√
Dw. Inserting the nonlocal operator (4.5)

with the Green’s function (4.7) into the original reaction-diffusion equation (4.1-4.2), leads
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to an equation for oscillators with nonlocal coupling266,267:

du
dt

= f1(u,v)+K
+∞∫
−∞

d2r̃
1

2πκ2 K0

(
|r− r̃|

κ

)(
u(r̃)−u(r)

)
, (4.8)

dv
dt

= f2(u,v). (4.9)

Depending on the interaction length κ , equation 4.8 can describe systems ranging from local
to global coupling. This point becomes clear268 by considering the nonlocal coupling in a
one-dimensional system:

du
dt

= f1(u,v)+
K
2κ

+∞∫
−∞

dx̃ exp
(
|x− x̃|

κ

) (
u(x̃)−u(x)

)
. (4.10)

To see how local coupling arises in the case of κ → 0, we expand u(x̃) in the neighborhood
of x as a Taylor series,

u(x̃) = u(x)+
∞

∑
n=1

1
n!

∂ nu
∂xn

⏐⏐⏐⏐⏐
x̃=x

(x̃− x)n, (4.11)

and plug it into (4.10). While the zeroth order cancels, the remaining terms lead to an integral
of the form

1
n!

+∞∫
−∞

dy yn exp
(
−|y|

κ

)
=

⎧⎨⎩κn+1

n! n even

0 n odd.
(4.12)

Since κ is small, it is possible to truncate the series after the second order. This approximation
reveals local diffusive coupling:

du
dt

= f1(u,v)+Kκ
2 ∂ 2u

∂x2 . (4.13)

Conversely the kernel function assumes identity as the coupling range grows, G κ→∞−−−→ 1.
Since each element is weighted identically, the coupling (4.10) is global:

du
dt

= f1(u,v)+ lim
κ→∞

K
2κ

+∞∫
−∞

dx̃
(

u(x̃)−u(x)
)
. (4.14)
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In this case, κ acts as a normalization constant for the diverging integral, such that the
coupling term results in a finite value.
Remarkably, nonlocal coupling with finite coupling range κ < ∞ (4.10) is well approximated
by local diffusion (4.13). The approximation is valid for small κ or equivalently for systems,
which exhibit patterns that vary on a length scale λp being much larger than the coupling
range41:

λp≫ κ. (4.15)

Put differently, the pattern is spatially smooth. The length scale λp of a smooth pattern
described by diffusive coupling (4.13) is related to the effective diffusion coefficient:

λp ∼
√

Kκ. (4.16)

Combining the preceeding arguments (4.15) and (4.16) leads to a consistency condition for
the local-coupling approximation:

√
Kκ ≫ κ. (4.17)

Thus, for large coupling strength K the approximation is valid. Both equations, (4.10)
and (4.13), describe smooth patterns. However, for sufficiently small K the peculiar effects
of nonlocal coupling dominate as non-smooth patterns emerge. These patterns break the
diffeomorphism269 between physical and phase space. Intuitively this means that two
infinitesimally close points in physical space exhibit states, which are not close in phase
space41.
An intuitive explanation of the underlying mechanism generating non-smooth, discontinuous
patterns is revealed during the analysis of nonlocally coupled oscillators. The limit cycle
dynamics of equations (4.1) and (4.2) can be simplified by introducing a scalar phase
variable ϕ via a phase reduction technique213 (see appendix A.1):

dϕ

dt
= ω +

K
2κ

+∞∫
−∞

dx̃ exp
(
|x− x̃|

κ

)
sin
(

ϕ(x̃)−ϕ(x)−α

)
(4.18)

Due to the phase reduction, the magnitude of the nonlocal coupling (4.18) does not depend
anymore on the difference of variables (4.10), but on the model-dependent 2π-periodic
interaction function. For weakly coupled prototypical Stuart Landau266 and FitzHugh-
Nagumo267 oscillators the interaction function closely resembles a simple harmonic. Taking
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one further step, Kuramoto’s mean field approach213 for studying the synchronization of
globally coupled networks of oscillators (A.32) can be extended to the nonlocal case. As a
result, the corresponding single-oscillator equation, which describes the interaction between
a single oscillator and the mean field via its modulus R and phase Ψ, becomes spatially
dependent266,267:

dϕ(x, t)
dt

= ω +KR(x)sin
(

Ψ(x, t)−ϕ(r, t)−α

)
. (4.19)

This shows that in the nonlocal case, coupling strength K is modulated by the local coherence.
The level of coherence is quantified by the spatially varying modulus R(x) of the order
parameter. This modulus is equivalent to a localized Kuramoto order parameter, which can
be approximated by

R(x) =
1

|Ω(x)|

⏐⏐⏐⏐∫
Ω(x)

dx̃ eiϕ(x̃)
⏐⏐⏐⏐ , (4.20)

measuring the level of in-phase synchronization189 in a nonlocal neighborhood of position x

Ω(x) = {x, x̃ ∈ R
⏐⏐ |x− x̃| ≤ ℓR}. (4.21)

The parameter ℓR ∈ R+ is chosen as to cover a sufficiently small neighborhood, such that the
localized order parameter is not smoothed out. If all oscillators move in unison, the effective
coupling strength KR(r) will be large. In turn this will recruit further neighboring oscillators
for near zero-lag synchronization. However, in an area with greatly varying phases, the
coupling KR(r) vanishes, leading to even lower synchronization levels (Fig. 4.1).
This also explains the robust structure of the spiral wave chimera. In the wave that rotates
around the core, there is only a small and smooth phase gradient. This leads to a large
order parameter and re-enforces the high synchronization level. In the core region, all
phases ranging from 0 to 2π occur simultaneously due to the phase singularity b . The
order parameter nearly vanishes here and the resulting coupling is so weak, that frequency-
entrainment fails. Thus, a spiral-shaped phase pattern naturally gives rise to incoherent region
under nonlocal coupling. Consequently, there is no sensitive dependence on initial conditions,
as is the case for the chimera state on a network with two subpopulations270 or a ring271.
In one dimension the mechanism is qualitatively different: Attractive difference coupling (4.18)
always leads to in-phase synchronization as it removes phase differences (appendix A.1). A

b Since the pattern is discontinuous, the phase singularity is not localized at a single point, as for regular
spiral waves with a continuous concentration field. Instead the singularity is spread out over the entire core
region.
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Figure 4.1 | Order in the phase field of a spiral wave. (a) A snapshot of the phase field for a rotating
spiral wave. In the center is the phase singularity, where all phases ϕ ranging from 0 to 2π meet. The
dashed square with sidelength 2ℓR +1 and ℓR = 2 is the nonlocal neighborhood of an oscillator close
to the phase singularity over which the localized Kuramoto order parameter (4.20) is evaluated. (b)
The resultant localized Kuramoto order parameter shows low order (R < 0.2) inside the core and high
order (R > 0.6) outside.

phase singularity, which might counteract this tendency, requires two spatial dimensions, so
it does not occur on a one-dimensional ring. In order to oppose eventual in-phase synchro-
nization the phase-frustration parameter α in the coupling function is utilized. Exploiting
trigonometric identities, the interaction function decomposes into two antagonistic parts, that
promote (sin(∆ϕ)) and oppose (cos(∆ϕ)) in-phase synchronization:

sin(∆ϕ−α) = cos(α)sin(∆ϕ)− sin(α)cos(∆ϕ) (4.22)

≈ ε sin(∆ϕ)− cos(∆ϕ). (4.23)

Approximating both parts (4.22) for α = π/2− ε , with ε small, leads to (4.23). In this
range chimera patterns are likely to be observed41. Comparing the coefficients of (4.23),
reveals that in-phase synchronization (∆ϕ = 0) is heavily penalized (1) and only weakly
encouraged (ε). In summary the desynchronized domains of the one-dimensional chimera
are re-enforced not due to a topological cause, as in two dimensions, but via suppression of
in-phase synchronization in the coupling.
Due to large theoretical interest over the last years in states of partial synchronization in
general and chimera states in particular, there is now a large body of research. Chimera
states were observed numerically in one271–276, two60,271,277–281 and three282–284 dimensions
as well as different network topologies285–289. They occur in a variety of discrete and
continuous dynamical systems exhibiting bistability290, oscillations41,291, excitability292
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and chaos293,294. In addition they also persist under detrimental influences such as time
delay295–297, noise298–300 and time-varying network topologies301. Beyond that the position
and lifetime of chimera states are amenable to control302–305. Consequently, the growing
variety of chimera states prompted the development of a classification scheme306. A more
detailed summary of endeavors in this direction also recently appeared221. The experimental
verification of these findings is often limited by the large number of oscillators required.
In regards to spiral wave chimeras, their existence and stability properties in a continuous
system were analyzed by Carlo Laing307,308. Utilizing the Ott-Antonsen ansatz309 allows for
calculating the evolution equation of the order parameter R(x) in the continuum limit, where
it was found that spiral wave chimeras persisted. Thus, they are not artifacts of numerical
discretization schemes.
Furthermore, Steven Strogatz and coworkers were able to calculate the size of the incoherent
core as well as the rotation frequency of the rotating wave in the case of Kuramoto phase
oscillators. They combined the known spiral phase field description310 and simplified the
nonlocal kernel operator to a Gaussian, which allowed for the analytic treatment of the
coupling integral311. They concluded their article by posing the following challenge:

The possibility of observing spiral wave chimeras in physical systems natu-
rally arises. [...] We leave the experimental observation of chimera states as a
challenge to others.
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4.2 Experimental Setup

Figure 4.2 | Experimental Setup. (a) A reservoir of chemical micro-oscillators is fixated on an
acrylic glass plate in a thermostatted reactor126. During their oscillation cycles they emit fluorescence
photons, which are recorded with a CMOS camera as grayvalues vi of each oscillator i. The values are
sent to a computer to determine the projected light intensity Ii according to (4.25). This feedback is
applied to the oscillators with a projector. (b) A camera snapshot of the reservoir of 2816 oscillators.
Each white dot corresponds to a single chemical oscillator. The black bar represents 1 cm and the
image is to scale at 1:2.2 (c) Spectral observation: The projector emits a spatiotemporal pattern
at a wavelength of 440 nm (filled blue curve); the light is absorbed (blue curve) and excites the
photosensitive catalyst, which leads to the emission of fluorescence light above 550 nm (red filled
curve). The light from the projector is filtered by a bandpass filter with a cut-off wavelength at 500 nm
(yellow line). Further details on the experimental setup can be found in appendix B.1.5.

The difficulties associated with the experimental verification of the spiral wave chimera and
how they are resolved is the content of this section. The main challenge is to overcome the
oscillator number limit. In addition it is required, that each oscillator can be controlled and
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Figure 4.3 | Fixation of chemical micro-oscillator. (a) A top-view photograph of an early prototype
of the acrylic glas plate with drilled wells. Each cylindrical well holds a spherical bead, that is loaded
with catalyst. The white bar corresponds to 200 µm. (b) A schematic side view of chemical beads
during the experiment. The BZ reagents required for the oscillatory reaction are exchanged through
the hydrogel layer (indicated by black arrows).

monitored individually. Setups used for previous experiments on synchronization focused
on small populations217,228,244,253,258,312–316. Scaling up the size of the network beyond
N > 1000 oscillators, is often unfeasible. However, numerical simulations indicate (see next
section 4.3), that an array of oscillators spanning N = 32×32 = 1024 nodes is required to
resolve the incoherent core and coherent rotating arm.
In principle, the catalyst-loaded cation-exchange beads previously utilized for studying
synchronization on small networks (chapter 3) are a good candidate. The problem with
the naive approach of simply increasing their number from N = 10 to N > 1000 in a Petri
dish (see Fig. 3.2) is that each bead is mobile. Tracking each oscillator location is not a
remedy anymore, since over time all beads will stick to each other after colliding and form a
continuous medium317.
The solution is to place each bead within the confines of a small cavity (Figs. 4.2 and 4.3).
For this purpose we utilize an acrylic glas plate that has 64×44 cylindrical wells drilled into
it (Fig. 4.2b). All wells have a depth of 150 µm, a diameter of 200 µm and are separated from
their respective next neighbors by 400 µm. Each well holds a cation-exchange bead that is
loaded with the photosensitive catalyst of the BZ-reaction (appendix C.1.3). Furthermore, the
wells are sealed off with a 200 µm high layer of silica hydrogel (Fig. 4.3b). Since the hydrogel
is microporous318, it allows for the passage of BZ reagents, such as hydrogen ions H+,
bromate BrO –

3 and malonic acid MA. They are required for the oscillatory reaction to occur
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at the bead sites. In addition, we employ a variant of the photosensitive catalyst, Ru(dmbipy)3,
with additional dimethylene ligands126. This sterically fixates the catalyst molecules inside
the bead polymer matrix, such that they can not escape. As a consequence, chemical aging
effects are greatly reduced, which extends the potential runtime of experiments to beyond 24
hours.
Another challenge is measuring the current state of the oscillation cycle. The traditional
method of absorption spectrophotometry144, where the optical contrast originates from the
difference in absorption spectra at varying oxidation states of the catalyst (chapter 2.2), is not
applicable here. There is only a vanishingly small contrast, because the amount of catalyst
on each oscillator is too miniscule. While the lacking contrast could be improved using
specialized image software, there is a better alternative. Instead of relying on absorption,
a highly enhanced optical contrast is obtained exploiting the fluorescence of the catalyst
(Fig. 4.2c). In the reduced form, Ru(dmbipy) 2+

3 , the catalyst emits fluorescence photons
with a wavelength of λ > 550nm whereas in the oxidized form, Ru(dmbipy) 3+

3 , it does not.
During the oscillation cycle, the catalyst will periodically switch between both oxidation
states. This allows for the direct observation of chemical oscillations with a grayscale camera
that records the fluorescence photons with spatial resolution.
Due to its photosensitivity, the catalyst can not only be exploited for observation of the oscil-
lation cycle, but also for its perturbation. Additional light intensity accelerates the oscillation,
while less decelerates it. These are the prerequisites for experiments on synchronization.
While the simplest cases of frequency-locking in periodic forcing and mutual coupling can
be successfully reproduced, the experimental possibilities are far from exhausted. The light
interaction opens the possibility for a very general coupling scheme involving N oscillators:

Ii(t) = I0 +
N

∑
j=1

(
Wi j(t) Hi j

(
vi(t,τ),v j(t,τ), t

))
+Di(t)ξi. (4.24)

There is a background intensity I0, which enables cumulated perturbations from the network
that reduce the applied light intensity. The topology of the system is defined by the weighted
adjacency matrix W . In addition to encoding the connectivity of the network, it also holds
information on the strength of each link. For identical coupling strength K across all links,
W simplifies to W = KA , where A is the adjacency matrix. Possible topologies include
one-, two- and three-dimensional grid networks as well as prototypical and real-world
networks, such as scale-free216, small-world319, sparsely and densely random networks with
symmetries202,217 as well as power grids320 and the complete connectome of the nematode C.
Elegans321,322. The coupling function Hi j may be different for each edge i→ j, but always
depends on the measured grayvalues vi at a current vi(t) or past time v j(t− τ). Furthermore
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the coupling strength and type are not stationary, but can be time-dependent and thus allow
for the implementation of control schemes. Last but not least it is also possible to include
additive noise, where each node has an individual noise intensity Di and white or colored
noise spectrum323,324 determining ξi .
The general coupling (4.24) includes as a special case the nonlocal coupling (4.8) required
for the verification of spiral wave chimeras. In a concise notation, the nonlocal coupling on a
two-dimensional grid network is given by

Ii(t) = I0 +K ∑
j∈Ωi

e−r(i,j)/κ

(
vj(t− τ)− vi(t)

)
, (4.25)

with a characteristic coupling range κ , a vector-valued node index,

i= (ix, iy), (4.26)

that accounts for two dimensions and a corresponding Euclidean distance function

r(i,j) = ∥i−j∥2 =
√
(ix− jx)2 +(iy− jy)2. (4.27)

The square area Ωi on which the discrete coupling integral is evaluated stems from the
maximum norm

Ωi =
{
i,j ∈ Z2

⏐⏐⏐ ∥j− i∥max ≤ ℓ
}
= [ix− ℓ, ix + ℓ]× [iy− ℓ, iy + ℓ], (4.28)

where 2ℓ+ 1 is the side length of the square as in (4.21). Furthermore a variety of initial
conditions are accessible, because each oscillator can be manipulated individually. Employing
periodic forcing close to the unperturbed oscillation period Tforcing ≈ T0,i, it is possible to
entrain a node i, such that it oscillates according to

dϕi

dt
= ω forcing +ϕ0,i (4.29)

with an oscillator-dependent phase offset ϕ0,i. This allows for global in-phase synchroniza-
tion, phase gradients, chimera states and more as initial conditions using light.
Still, the photosensitivity brings to the forefront yet another predicament: The heterogeneity
of the oscillators. Preliminary experiments with coupled oscillators revealed, that the distri-
bution of unperturbed periods T0,i was too broad, as to allow for frequency synchronization.
Without it, chimera states are unobservable, because they coexist with the globally in-phase
synchronized state270. A measurement of the bead diameters reveals that the bead sizes
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Figure 4.4 | Oscillator heterogeneity. (a) Comparison of oscillator bead diameters before (gray) and
after sieving procedure (green). (b) Comparison of catalyst loading for manual mixing (gray) and by a
vortex mixer (green). In both cases the occurrence is normalized to the initial size of the distribution.

are not monodisperse (Fig. 4.4a). The bead diameters approximately follow a Gaussian
distribution ranging from 75 –150 µm centered at 110 µm. Previously the size distribution
of beads was identified as a source of period heterogeneity325. The reason is that larger
beads feature a larger surface area allowing for a greater reactant flux. This influences the
resulting periods. In addition each bead – even of identical size – may hold different amounts
of catalyst (Fig. 4.4b).
With the root causes of the period heterogeneity identified, it is possible to rectify them.
To homogenize the size distribution, we built our own sieving machine. It consists of a
frequency generator, a car amplifier stage, a subwoofer speaker, different fine sieves and
tape. A detailed description of the sieve machine is in the appendix B.1.5. The mesh sizes
of the three stacked sieves are: 106 µm, 112 µm and 125 µm. The bead throughput is greatly
enhanced when adding tiny glas spheres with a diameter of 1 mm to each sieve, because their
kinetic energy pushes the beads through the holes. After the sieving procedure is finished,
the remaining beads are collected between sieves with meshes 106 µm and 112 µm.
Homogeneous catalyst loading of these beads is achieved by slowly adding the catalyst to a
vial of beads in water solution. It is critical that this is done while the vial is continuously
shaken by a vortex mixer.
The final result of this procedure is quantified under a light microscope. Utilizing image
recognition software to detect the beads as circles on a camera snapshot, it is possible to
subsequently extract their diameters d and average color saturation c (Fig. 4.4). In this way
their quality is automatically and quickly assessed. This reveals, that the beads have a very
narrow size distribution (100 –120 µm) and are loaded nearly identically with catalyst, such
that they are suitable for experiments on spiral wave chimeras.
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Taken together each immobile bead is a node in the reservoir of chemical oscillators. Depend-
ing on properties such as their natural period T0 and their phase response curve, all beads are
filtered. Suitable candidates are utilized as nodes in a network experiment that is connected
to its neighbors via light. Exploiting the fluorescence properties of the catalyst allows for a
simple yet compact experimental setup (Fig. 4.2).

4.3 Numerical Simulations

In order to guide the search for the spiral wave chimera in the experiments, a large number
of numerical simulations were performed to explore the space of coupling parameters.
The dynamics of the catalyst loaded beads can be reproduced qualitatively with the ZBKE
model326. It was originally devised by Zhabotinsky and Epstein in 1993 and later en-
hanced244,262,327 to account for the excitatory effect of light illumination328 (see appendix C.1.3
for a brief review of the derivation). Here, the model is adapted to describe the local dynamics
of an oscillator i= (ix, iy) in a network:

dui
dt

=
1
ε1

(
Ii+

µ−ui
µ +ui

(
β +qi

αvi
ε3 +1− vi

)
+ γε2w2

ss,i+(1− vi)wss,i−u2
i −ui

)
,

dvi
dt

= 2Ii+(1− vi)wss,i−
αvi

ε3 +1− vi
,

wss,i(ui,vi) =
1

4γε2

(√
16γuiε2 + v2

i −2vi+1+ vi−1
)
.

(4.30)

In this model the variables ui, vi and wss,i represent the dimensionless concentrations of
bromous acid [HBrO2], oxidized catalyst [Ru(dmbipy) 3+

3 ] and bromous acid radical in
equilibrium [HBrO +

2 ]ss, respectively. Chemical model parameters and their values are listed
in table 4.1 together with parameters of the coupling.
Two parameters stand out due to their special role: The period heterogeneity is introduced
heuristically244 by drawing the stoichiometric parameter qi of each bead from a uniform
distribution qi ∈ [0.5,1.0], which leads to a distribution of natural periods T0(qi) between
30.2 and 45.9. In relation to the reference period T0 = 34.4 at q = 0.7, the limits are 0.88T0

and 1.33T0. Note that, since the model is dimensionless, absolute time durations are given
without units. The resulting spread of periods in the simulations agrees well with the
experiments. Parameter Ii represents the light intensity applied on oscillator i. This is the
most important parameter, because it plays the central role of introducing nonlocal coupling.
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In the simulations the oscillators on a two-dimensional grid of nx× ny nodes are coupled
according to

Ii(t) = I0 +K ∑
j∈Ωi

e−r(i,j)/κ

(
vj(t− τ)− vi(t)

)
. (4.31)

This is the same coupling formula as used earlier for the experiments (4.25), since the light
interaction introduced via Ii is additive in the local dynamics (4.30). The time-delayed differ-
ences in grayvalues between the oscillator i and its nonlocal neighbor j are weighted with
an exponential kernel, that decreases with the Euclidean distance r (4.27). The parameter κ

is the characteristic coupling length. For small κ the coupling is very localized, while for
large κ it encompasses distant nonlocal neighbors. The neighbors are taken from a square
region Ωi with side length 2ℓ+1 centered on oscillator i (4.28).

Table 4.1 | ZBKE model. For a derivation of the values based on the reagent concentrations in the
experiment, see appendix C.2. Note that the stiff dynamics of the ZBKE model require the use of the
double precision datatype. Simulations with single precision floating point values develop numerical
artifacts, that lead to strong deviations from the original limit cycle.

variable / parameter value description

ui(t) dimensionless [HBrO2] on node i

vi(t) dimensionless [Ru(dmbipy) 3+
3 ] on node i

wss,i(ui,vi) dimensionless steady state [HBrO +
2 ] on node i

i= (ix, iy) two-dimensional index
Ii light intensity projected on node i
τ time delay
K 5.25×10−4 coupling strength
κ 2.5 coupling range parameter
ℓ 4 maximum coupling distance
∆t 1.0×10−4 integration time step
I0 5.25×10−4 background light intensity
qi 0.5-1.0 stoichiometric parameter of node i
ε1 0.11

⎫⎬⎭time scale parametersε2 1.7×10−5

ε3 1.6×10−3

α 0.1
⎫⎪⎪⎬⎪⎪⎭kinetic parametersβ 1.7×10−5

γ 1.2
µ 2.4×10−4
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Different types of nonlocal kernels, such as a constant277 or Gaussian311 did not show
qualitatively different results. For simplicity the employed kernel is not normalized as in
previous work267. Here, a possible normalization factor just rescales the coupling strength K.
Since the grid is finite, it is important to account for boundary effects. Generalizing the
nonlocal coupling in (4.31) by replacing the time-delayed grayvalue difference with a
coupling function H(vi,vj) leads to

Ii(t) = I0 +K
N

∑
j∈Ωi

e−r(i,j)/κH(vi,vj). (4.32)

At the boundary, the general coupling function H is modified as,

H(vi,vj) =

⎧⎨⎩vj(t− τ)− vi(t) ,1≤ jx ≤ nx∧1≤ jy ≤ ny

0 , else
, (4.33)

in order to omit non-existent nodes beyond the grid. This procedure is similar to Neumann
boundary conditions158. Whereas for periodic boundary conditions the modifications are:

H(vi,vj) = vjbc(t− τ)− vi(t) (4.34)

with the components of jbc obeying the grid periodicity,

jx,bc =
(
( jx−1) mod nx

)
+1, (4.35)

jy,bc =
(
( jy−1) mod ny

)
+1. (4.36)

Additive shifts are included in the cyclic modulo function to account for the row and column
indices starting at a node index of 1 instead of 0. Preliminary simulations with either
boundary conditions, (4.33) or (4.34), show the same patterns in the bulk area. This excludes
the possibility of spiral wave chimeras being a boundary induced artifact.
Note that instead of a phase frustration parameter α , as in the Kuramoto phase oscillator
model213, we employ time delay245,295,329. It can be shown, that small time delay τ plays a
similar role as α in coupled phase oscillators221. While α offsets the phase difference in the
sinusoidal interaction function,

sin
(

ϕj(t)−ϕi(t)−α

)
, (4.37)
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Figure 4.5 | Initial condition for spiral wave chimeras. (a) The initial phase distribution contains
a topological defect in the form of a phase singularity87 at its center. At this point, all phases
coincide. (b) From the periodic behavior in the time series of concentrations v (yellow) it is possible
to (c) calculate a phase variable ϕ , that increases linearly from 0 to 2π between consecutive peaks.

the time delayed phase ϕj(t−τ) can be linearized around vanishing delay τ ≈ 0, such that is
also leads to a phase offset:

sin
(

ϕj(t− τ)−ϕi(t)
)
, (4.38)

=sin
(

ϕj(t)−ϕi(t)− τ
dϕj(t)

dt

)
. (4.39)

Comparing (4.37) and (4.39) reveals α = τωj(t). Thus, in the time-delayed case the offset
depends on the rotation frequency ωj(t). In both cases the offset makes it more difficult to
attain stable in-phase synchronization, because the interaction does not vanish in this state.
Even though it has been demonstrated that it is also possible to encode phase frustration
in the coupling coefficient matrix330, using time delay τ is a more intuitive option, as it
naturally arises due to finite propagation speeds. Besides changing the chemical reaction
kinetics, the coupling coefficients Cv→v = 2 and Cv→u = 1/ε , which are the prefactors of the
light intensity Ii in (4.30), are not independently accessible.

Chimera states are known to depend very sensitively on initial conditions272. However, it
turns out that the spiral wave variant can be initiated very reliably. Inspired by the traditional
way of initializing spiral waves, an earlier approach245 required a meticulous protocol
that started with breaking a planar wave in a reaction-diffusion system. Subsequently the
interaction type was morphed incrementally from local diffusion to nonlocal coupling by
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slowly increasing the maximum coupling range l and time delay τ . Since this procedure
depends crucially on the occurrence of a planar wave and furthermore on the right duration
of each incremental stage, its success rate is not very high. Another approach282 requires no
specialized external interference: Spiral wave chimeras develop by chance from a random
initial condition. Testing this procedure in simulations with the ZBKE model (4.30) revealed,
that the probability for a successful spiral initiation was not high enough, in order to be applied
in the chemical experiment. The final and most reliable procedure applies a non-vanishing
topological charge Q ̸= 0 that is a feature of spiral waves38. Instead of concentrations ui
and vi, the initial condition is encoded in phases311,

ϕic(ix, iy) = arctan
(

iy− iy,0
ix− ix,0

)
, (4.40)

and contains a phase singularity at its center (ix,0, iy,0) (Fig. 4.5a). The function arctan is the
four-quadrant inverse of the tangent function tan. It produces a smooth gradient from 0 to 2π

while traversing a unit circle along the azimuthal direction. For its successful application
in the numerical simulation, the mapping ϕ → (u,v) is required, such that (4.40) can be
utilized for limit cycle oscillators. Because there is no analytic parametrization of the limit
cycle in the ZBKE model (4.30), the alternative is to measure the concentrations during a
full oscillation cycle and assign a phase variable to them, that increases linearly with time
(Fig. 4.5b,c). In the chemical experiment the initial phases can be set by utilizing individual
periodic forcing as described before (4.29). Even with modest amounts of heterogeneity
or noise, a spiral wave chimera always develops from initial condition (4.40) for suitable
parameter combinations.

The simulations reveal the existence of spiral wave chimeras over a large range of coupling
parameters K and τ (Fig. 4.6). A spiral wave chimera is reliably detectable by evaluating the
global topological charge Q = ∑iQi, where the local charge Qi is calculated via a discretized
line integral331:

Qi = ∑
k

mod(∆φk,2π). (4.41)

The indexed phase differences ∆φk are evaluated along a discretized loop enclosing oscil-
lator i. Measured far from the core region, a spiral wave as well as a spiral wave chimera
exhibits a topological charge of Q =±1 depending on the direction of rotation.
The detection of a spiral wave chimera is indicated in figure 4.6 with colored squares. If the
standard deviation of the topological charge fluctuates (σQ > 0.01), no stable spiral wave
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Figure 4.6 | Numerical phase diagram in the K-τ plane. Spiral wave chimeras are detected if
the topological charge (4.41) follows |Q| = 1 and its standard deviation is σQ < 0.01. Parameter
combinations which lead to spiral wave chimeras are colored from red to blue depending on the time-
averaged difference between the mean periods of oscillators inside, Tcore, and outside the core, Tspiral.
Gray squares indicate the absence of a spiral wave chimera. Fixed parameter values as in table 4.1.

pattern exists and the square is colored gray. Otherwise, the square is colored according to the
difference of the averaged periods inside the core, Tcore, and outside of it, Tspiral. This serves
to highlight the period difference of oscillators in the coherent and incoherent parts, which
is characteristic for chimera states332. It turns out that in contrast to phase oscillators311,
spiral wave chimeras in the ZBKE model (4.30) feature a core region with slower as well
as faster oscillators than its surroundings. In agreement with previous findings for phase
oscillators311 the overall existence region for spiral wave chimeras extends from zero to
small values τ < 0.25T0 of time delay τ . Furthermore, the interval of delay values in which
chimeras are observable shrinks for larger coupling strength K.
As a consequence, further exploration of parameter space is focused on a small value of
coupling strength K. Keeping K fixed at K = 5.25× 10−4, the impact of time delay τ is
explored for values spanning the natural rotation period from τ = 0 to τ = T0 (Fig. 4.7).
As the time delay τ is increased, a sequence of spiral wave chimeras, antiphase clusters,
global in-phase synchronization and eventually spiral wave chimeras again is observed on
the nonlocally coupled array of ZBKE oscillators (4.30). Representative samples from this
numerical phase diagram will later be plotted and compared to their experimental counterparts
shown in the next section (Figs. 4.10 and 4.11).
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Figure 4.7 | Numerical phase diagram for time delay τ . The sequence of patterns on the delay-
coupled nonlocal grid comprises: Spiral wave chimera with slow core (bright green), ordinary spiral
waves with no core (medium green), spiral wave chimera with fast core (dark green), core splitting and
fleeting coherence as discussed in the next section (orange), antiphase clusters (red), coexistence of
in-phase and antiphase clusters (orange), in-phase synchronization (yellow), spiral wave chimera (dark
green), core synchronization, as described in the next section (orange) and in-phase synchronization
again (yellow). The periods outside Tspiral and inside the core Tcore are given as solid black lines and
solid gray lines, respectively. In cluster regions only one of both periods is shown, because the other is
irrelevant. The dashed gray line represents the number of oscillators far from zero-lag synchronization.
Time delay τ and periods Tspiral, Tcore are normalized by the reference period T0 and the size Acore is
normalized by the total number of oscillators in the array N. Time delay range is resolved in 350
steps. Fixed parameter values as in table 4.1.

At each value of time delay τ the stability of the spiral and cluster patterns is evaluated by
starting from three suitable initial conditions. For spiral wave chimeras the initial condition
is given by a phase distribution with a phase singularity (4.40), whereas the d-clusters with
d = 1,2 are started from d-clusters overlayed with a small amount of noise. The case
d = 1 corresponds to in-phase and d = 2 to antiphase synchronization. After 60 periods
the perseverance of an initial state is evaluated by checking if the topological charge fulfills
Q =±1 for spiral wave chimeras or whether the generalized Kuramoto order parameter333,

Rd =
1
N

⏐⏐⏐⏐⏐ N

∑
j=1

eidϕ j

⏐⏐⏐⏐⏐ , (4.42)

satisfies Rd > 0.7 for d-clusters. The total number of oscillators in the grid is given by
N = nx×ny. This analysis reveals (Fig. 4.7), that the global in-phase synchronized state is
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stable for the entire range of time delay values (yellow, green, orange shading), except for a
small window τ ∈ [0.21,0.35]T0. In this interval only antiphase-synchronized states prevail
(red shading). Finally, in green regions the in-phase synchronized state coexists with the
different variants of the spiral wave chimera, as is typical for chimera states272.
Further details of the chimera states are revealed by evaluating the mean period inside Tcore

and outside the core Tspiral as well as its size Acore. Depending on a discretized local Kuramoto
order parameter,

Ri =
1
|ΩR,i|

⏐⏐⏐⏐⏐⏐ ∑
j∈ΩR,i

eiϕ j

⏐⏐⏐⏐⏐⏐ , (4.43)

oscillators are declared as elements of the core Ri < 0.4 or of the spiral Ri > 0.6. The set of
oscillators ΩR,i are defined similar to the square domain in equation 4.28,

ΩR,i =
{
i,j ∈ Z2

⏐⏐⏐ ∥j− i∥max ≤ ℓR

}
, (4.44)

with ℓR = 2. Comparing both periods Tcore and Tspiral shows (Fig. 4.6), that spiral wave
chimeras existing for small time delay τ can be divided into three qualitatively distinct
subclasses, where the core oscillators have a slower Tcore > Tspiral, approximately equal
Tcore ≈ Tspiral or faster period Tcore < Tspiral. Similar to previous results for phase oscilla-
tors311, the core size of fast core spirals grows with increasing time delay for τ ∈ [0.05,0.18]T0.
The growth continues throughout the orange transition domain until the core fills the entire
grid (red domain). Here, τ ∈ [0.21,0.35]T0, the oscillators are not incoherent, but instead
cover the grid with a random arrangement of oscillators in antiphase. For larger time delay,
τ ∈ [0.39,0.72]T0, antiphase clusters are superseded by global in-phase synchronization,
where all oscillators share the same phase (yellow domain). Remarkably, for large time delay,
τ ∈ [0.72,0.935]T0, there is a resurgence of spiral wave chimeras with a fast core (green
domain). Note that the dynamical behavior does not repeat itself at a delay value of the full
natural period τ = T0, because spiral wave chimeras transition into in-phase synchronization
(yellow domain) around τ ≈ 0.94.
The preceeding numerical evidence (Figs. 4.6 and 4.7) strongly suggests the possibility of
finding spiral wave chimera states in the chemical experiment with initial condition (4.40)
for suitable coupling parameters. Furthermore it will be shown in the next section how the
numerical findings on cluster states can be rationalized with the peculiar shape that the phase
response curve assumes for strong coupling.
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4.4 Results

Figure 4.8 | Experimental observation of a spiral wave chimera state. (a) Spiral wave chimera
in an array of N = 1600 photochemically coupled BZ oscillators. The gray value pattern vi is
from fluorescent light emitted by the reduced catalyst Ru(dmbpy) 2+

3 . The spiral rotates with a
period Tspiral = 33s around the incoherent core consisting of approximately 40 phase-randomized
oscillators. Image taken at t = 700s after initiation. (b) Oscillator phases obtained from the gray
values measured in (a). (c) Periods of the oscillators in (a) illustrating that oscillators in the spiral wave
are approximately frequency synchronized in the rotating spiral wave, while the asynchronous core
oscillators exhibit shorter periods. (d) Space-time plot of the spiral wave chimera from measurements
along a cross section xcore(t), that follows the core center during 14 rotational periods of the spiral.
The coloration combines information from grayvalues vi (a), which select the brightness, and the local
order parameter Ri (4.43), which determines the color. Coupling parameters in (4.25) are: K = 0.08,
κ = 3.1, τ = 2s, I0 = 0.06mWcm−2, ℓ = 4. Initial reactant concentrations: [H2SO4]0 = 0.77 M,
[NaBrO3]0 = 0.51 M, [NaBr]0 = 0.08 M, [malonic acid]0 = 0.16 M.

With the experimental setup described in section 4.2 and an informed choice of coupling
parameters (section 4.3), we successfully confirmed the existence of spiral wave chimeras
experimentally334 (Fig. 4.8). The chemical oscillators for the experiment are selected from a
reservoir of 2816 beads, whose period distribution has a mean of (78.3±23.6)s. Selecting
suitable beads based on their periods from the interval T ∈ [70,98]s, results in a narrow
period distribution with a mean of ⟨T ⟩= (85.7±7.1)s and a width of δT = 8.3% relative
to the mean period. Taken together the oscillators constitute a two-dimensional grid network
consisting of N = 40×40 = 1600 nodes.
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The initial condition (4.40) is enforced with individual periodic forcing (4.29) for a duration
of 200 s. On the two-dimensional grid this results in the feedback taking the shape of a
rotating, triangular-shaped wave with one corner centered at (x0,y0) = (20,20). To guarantee
entrainment, the forcing signal has a rectangular waveform and a period Tforcing = 48s that is
smaller than the lower bound of the selected period interval.
Directly afterwards, nonlocal photocoupling (4.25) between oscillators is initiated. During
the first two periods the spiral wave formed while the core turned incoherent. Over the
experiment, the size of the core fluctuated between 20 and 40 oscillators. A snapshot at
t = 700s of the fluorescence intensity emitted by the chemical beads and measured as
grayvalues vi by the camera is shown in figure 4.8a. To quantify synchronization with the
local Kuramoto order parameter (4.43), oscillator phases ϕi (Fig. 4.8b) are calculated by
linear interpolation between two consecutive peaks in the grayvalue time series (Fig. 4.5b,c)
via equation (3.10). Grayvalues and phases clearly exhibit the distinctive incoherence in
the core and the coherence of the spiral wave surrounding it. Both regions exhibit different
mean periods, Tspiral ̸= Tcore, (Fig. 4.8c), which is another characteristic feature of chimera
states332.
While the snapshots depict the spatiotemporal pattern at a fixed instant in time, the temporal
evolution is visualized with a kymograph or space-time plot (Fig. 4.8d). Here, we employ an
enhanced kymograph, that simultaneously offers information on the spatial structure of the
pattern as well as the local level of order (4.43). The grayvalues vi, which encode the spatial
details of the pattern, contribute to the brightness and the local Kuramoto order parameter Ri

determines the color. This has the advantage, that the incoherent firing events in the core
and the coherent rotating wave are resolved and colorized simultaneously. In addition, the
kymograph is not based on a fixed cross section xcore, but tracks the current core center. This
ensures that the object of interest, in this case the core, is not outside the cross section. This
reveals that the spiral wave chimera shares the characteristic feature of spiral waves: The
core region alternatingly emits waves in opposite directions. Eventually the motion of the
spiral wave chimera leads to its termination. In the experiment the core collided with the
boundary of the grid after lasting for 38 rotation periods.
The tip of a spiral wave in a reaction-diffusion system can be tracked by computing the
intersection point of different iso-concentration lines337 or the cross product of concentration
gradients338. Due to the non-smooth, incoherent core, these approaches are not applicable to
spiral wave chimeras. Instead the local order parameter Ri is utilized for reliable tracking. All
oscillators i with Ri ≤ Rthreshold are collected for Rthreshold = 0.4. Then each node is assigned
a weight wi = 1−Ri/Rthreshold that increases with declining order. Finally, the potentially
multiple core positions are calculated as the weighted centroids rcore =∑iwii of each simply-
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Figure 4.9 | Core trajectory. (a) Unlike a regular spiral wave, whose tip performs rigid rotation or
meandering335, the center of the incoherent core (Fig. 4.8) performs erratic motion as highlighted
by the superimposed white line. The starting and end points are marked with a black-dotted and an
unfilled circle, respectively. (b) In a logarithmic plot the mean-square displacement shows a roughly
linear increase as a function of the measurement time interval ∆t. The corresponding scaling exponent
was determined from a linear fit (red) as 1.05, which is characteristic for erratic Brownian motion336.

connected set of low-order oscillators. This method has proven robust against core size
fluctuations and even works reliably in cases when a single core splits into many cores. The
tracking algorithm is successfully employed (Fig. 4.9) to follow the core position of the
experiment presented in figure 4.8. The starting point of the trajectory (white line in figure
4.9a) at (x0,y0) = (20,20) is marked with a white circle overlaid with a black dot. Instead of
rigid rotation or meandering339 the core of the chimera spiral wave traverses an irregular path.
This random motion is quantified with the mean square displacement336 (MSD), which is a
measure for the erratic motion of individual particles. It is calculated from a single trajectory
by averaging in time over all squared displacements,

∆r2(∆t) = ∆x2(∆t)+∆y2(∆t), (4.45)

occurring for increasing time intervals ∆t:

MSD(∆t) = ⟨∆r2(∆t)⟩t =
1
N

N

∑
i=1

∆r2
i (∆t). (4.46)

Applied to the experimentally recorded core trajectory, this reveals a linearly increasing
MSD (Fig. 4.9b). The corresponding scaling exponent is 1.05, which is an indicator of
diffusive Brownian motion336. The random walk of the core is in agreement with previous
observations in one340,341 and two dimensions245,311.
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In the case of spiral wave chimeras, the random movement was suspected311 to be a conse-
quence of the neutral stability of spiral waves with regards to translational perturbations339.
It is known that random forcing leads to erratic motion of spiral waves342. Furthermore a
spiral wave is most vulnerable in the tip region133, which is where the incoherent core of
a spiral wave chimera is located at. Taken together, the random perturbations due to the
incoherent core are likely to drive the random motion of the spiral wave chimera.
Beyond the experimental verification of spiral wave chimeras, we further investigate what
patterns can emerge on an array of nonlocally delay-coupled oscillators (Figs. 4.10 and 4.11).
Guided by the exploratory numerical simulations (Fig. 4.7), we successfully found represen-
tative examples for every distinct dynamical behavior in the chemical experiment.
At small values of time delay τ , three spiral patterns exist, that can be differentiated by
the behavior of the core oscillators. In the order of increasing delay τ , first spiral wave
chimeras appear whose oscillators are slower in the core than the spiral wave Tcore > Tspiral

(Fig. 4.10a,b). The preliminary numerical simulations (Fig. 4.6) suggest, that this behavior is
more pronounced for large coupling strength K, so in the experiment we choose a small time
delay of τ = 1s with a larger K = 0.15 than previously (Fig. 4.8). The period heterogeneity is
T0 = (54.8±1.4)s. The slow core only consists of a small, but varying number of oscillators,
Acore = 2−10 with Tcore = 49.2s > Tspiral = 31.3s. The slow-down is due to the constant
perturbations from the surrounding rotating wave, which effectively increase the illumination
levels Ii, such that the periods Ti are prolonged. It drifts slowly on the grid until it eventually
vanishes after collision with a boundary after 61 rotation periods.
In a small interval of time delay τ spiral waves exist, whose core oscillators are neither
incoherent nor are their periods different from the surrounding spiral wave (Fig. 4.7 and
Fig. 4.10e,f). They exist at the intersection point, where decreasing core periods Tcore(τ) and
rising spiral wave periods Tspiral(τ) match as the time delay τ is increased. In the experiment
they were found for K = 0.1, κ = 2.5, T0 = (114.8±7.2)s and τ = 2s.
The spiral wave chimera with a fast core Tcore < Tspiral (Fig. 4.8 and Fig. 4.10e,f) is the
most prevalent representative in the experiments as its existence domain is the largest for
small coupling strength K (Fig. 4.7). Besides the example previously discussed (Figs. 4.8
and 4.9), it was also observed for values of delay τ = 3s and τ = 5s. Note that in all cases,
the spiral wave chimera terminates by collision with a boundary. After its disappearance,
global in-phase synchronization emerges. This verifies the characteristic coexistence332 of
the chimera state and in-phase synchronization.
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Figure 4.12 | Core Splitting. (a) t = 4T0: An initially small incoherent core of a spiral wave chimera
grows, until (b) at t = 19T0 the core has more than tripled in circumference. (c) t = 26T0: The spiral
tip is so slow in completing a lap around the core, that it enables the high-frequency core to emit a
new wave segment. This segment introduces two new spiral tips, which are highlighted with a thick
yellow annulus in contrast to a thin annulus for the pre-existing tip. (d) t = 31T0: Afterwards a part of
the incoherent core synchronizes in frequency and phase to the surrounding oscillators, which divides
the core into two parts. (e) t = 31T0: At the end of the splitting event there are three tips rotating
around two cores, which conserves the total topological charge in the system38. (f) t = 140T0: In a
larger grid with periodic boundary conditions (4.34), splitting events continue until merging events
balance the number of cores. The final state resembles a vortex glass343.

In the transition region between spiral wave chimeras and antiphase clusters, the core
size Acore exhibits a pronounced increase (Fig. 4.7). Due to the increased core size, it takes
longer for the spiral tip to complete a cycle around the core (Fig. 4.12a.b). This allows
for the nucleation of a wave segment at the far side of the core relative to the current tip
position (Fig. 4.12c). Note that the total topological charge Q (4.41) is conserved during the
nucleation, because the open ends of the wave segment are equivalent to two new spiral tips
with opposing chiralities, Qafter =+1−1+1 =+1 = Qbefore. Shortly afterwards, a portion
of the core oscillators frequency-locks to the surrounding spiral wave (Fig. 4.12d), such that
the core fractures into two disjoint entities. In total the number of cores increased by one and
the number of tips by two during the splitting event.
In later stages, further new cores nucleate via splitting while old existing ones can merge
together or collide with boundaries. The number of cores eventually reaches a stationary size,
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when the array is covered with the largest number of cores it can support simultaneously.
The spatial core arrangement (Fig. 4.12f) does not exhibit long-range crystal-like order, but
still retains the characteristic short-range order of an amorphous structure . A similar pattern
observed with spiral waves in a reaction-diffusion system was termed vortex glass343.
The observed behavior (Fig. 4.10g,h) is unlike similar spiral wave instabilities such as spiral
breakup344,345, where the wave speed depends on curvature in such a way that backfiring
in the core region leads to turbulence. Also Kapral et al. observed a similar scenario106 for
spiral waves on a coupled map lattice. In their case chaotic dynamics, that are localized at
the wave front, induce transversal wave instabilities346.
For slightly larger values of delay the core expands too quickly to allow for splitting, but
does not cover the entire array. The resulting pattern is a mixture of fleeting, intertwined
coherent and incoherent domains (Fig. 4.11i,j).
At large enough time delay τ (Fig. 4.7), spiral patterns are superseded by antiphase d = 2
(Fig. 4.11k,l) and in-phase d = 1 clusters (Fig. 4.11m,n). The phase difference between
oscillators constituting different clusters is ∆ϕd = 2π/d. Their spatial arrangement depends
sensitively on initial conditions. For an initial phase distribution in the shape of a target wave,
the clusters arrange in approximate concentric circles (Fig. 4.11k,l), while for random initial
conditions they are placed irregularly. The periods Td of the clusters are linear functions of
the time delay, Td(τ)∼ d · τ , whose slopes are given by the number of clusters d. Note that
in-phase synchronization is very robust, since it even emerged in an experiment with very
heterogeneous oscillators, whose mean period was T = (75.3±21.5)s. This amounts to a
spread of the period distribution that was 28.6% relative to the mean period.
For large time delay τ , spiral wave chimeras emerge again (Fig. 4.7). Their core oscillators ex-
hibit a faster oscillation cycle than the surrounding spiral wave Tcore < Tspiral. However, they
do not transition to antiphase clusters, but instead to in-phase synchronization. This transition
involves the formation of in-phase synchronized patches inside of the core (Fig. 4.11o,p).
These patches grow and push the wave rotating around them into the boundary where it
annihilates. When the value of the time delay coincides with the unperturbed oscillation
period, τ = T0, in-phase synchronization dominates with a period that is half of the time
delay, T (τ)∼ 0.5τ .

The mechanism behind cluster formation and their periods can be understood from the phase-
resetting character87,347–349 of the particular BZ oscillators, but extends to general strongly
coupled relaxation oscillators. In the absence of external perturbations, the phase ϕ of an
oscillator can be defined in such a way that it increases uniformly (A.4) during an oscillation
period (see appendix A.1). In response to a perturbation, the phase ϕ may be repulsed,
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Figure 4.13 | Comparison of experimental and numerical phase response curves. (a) Simulta-
neous measurements (full circles) of the phase change ∆ϕ on a reservoir of oscillators at varying
phases for different amplitudes Ip of the externally applied light perturbation: 0.09 mWcm−2 (yellow),
0.25 mWcm−2 (red) and 0.62 mWcm−2 (purple). The background intensity is I0 = 0.06mWcm−2.
Full lines are piecewise fits (4.48) to the experimental data. Shaded areas are bounds for all datapoints
corresponding to a given perturbation amplitude. (b) Perturbations at early phases in the limit cycle
lead to a vanishingly small phase recession ∆ϕ ≲ 0. Perturbations at a later stage induce a phase reset,
such that the oscillation cycle restarts. (c) Numerically obtained PRCs for ZBKE oscillators (4.30)
are in excellent agreement with the experimentally measured counterparts in (a). The results for three
different perturbation amplitudes Ip are plotted: 0.2×10−3 (yellow), 2.5×10−3 (red) and 5.0×10−3

(purple). The background illumination intensity is I0 = 5.25×10−4. (d) The phase response curve
of a strongly perturbed FitzHugh-Nagumo oscillator (C.7) resembles its counterpart of the ZBKE
oscillator in (c). The perturbation amplitudes Ip are 0.4, 1.5 and 2.0.

∆ϕ < 0, or advanced, ∆ϕ > 0. It is possible to quantify the effect of a given perturbation by
directly measuring the resulting period change from the unperturbed period T0, ∆T = T0−Tp,
due to applied perturbations at various phases ϕ during the oscillation cycle. The period
change ∆T is translated into a phase change ∆ϕ ,

∆ϕ =
2π

T0
∆T, (4.47)

which results in the phase response curve (PRC) ∆ϕ(ϕ). Measurements of the PRC for
a short rectangular intensity perturbation I0 → I0 + Ip are shown in figure 4.13. Results
from chemical experiments and simulations with the ZBKE model (4.30) are in excellent
agreement. They show that a perturbation at the beginning of the oscillation cycle very
slightly delays the phase ∆ϕ ≲ 0. At a certain critical transition point ϕ∗(Ip), which depends
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on the perturbation amplitude Ip, a discontinuous jump occurs. Beyond the jump point,
perturbations reset the oscillation cycle by inducing an immediate new spike87,350. Fitting
the experiments with a piecewise linear function,

PRC(ϕ) =

⎧⎨⎩0 ,ϕ < ϕ∗(Ip)

2π +m ·ϕ ,ϕ ≥ ϕ∗(Ip)
(4.48)

reveals, that the PRC in the second part decays with a slope of m = −1, since the current
phase ϕ changes by the remaining phase difference to 2π . For weak perturbations the fit is
biased by varying jump points of heterogeneous chemical oscillators (Fig. 4.13a).
This behavior has also been observed in various biological settings, such as canine Purkinje
fibers351, galline and leporine cardiac sinoatrial pacemaker cells352,353, interneurons respon-
sible for the respiratory cycle in lamprey fish Lampetra fluviatilis354, electrosensory pathway
neurons in electric fish Eigenmannia355, pyloric pacemaker neurons in lobsters Homarus
Americanus356 under electrical perturbation, circadian rhythm in Homo sapiens357, algae
Gonyaulax polyedra358, fruit flies Drosophilia melanogaster359 under light-stimulus.
Such discontinuous phase response curves were categorized as type zero by Winfree87

and are characteristic for strongly perturbed oscillators. In contrast to weakly perturbed
oscillators213, the phase response curve does not scale linearly with the perturbation strength
K,

PRC(K,ϕ) ̸= K ·PRC(ϕ), (4.49)

but changes its shape. In the case of BZ oscillators (Fig. 4.13), the jump point ϕ∗ moves to
smaller phases for larger perturbation strengths.

The shape of the PRC and its dependence on the perturbation strength (Fig. 4.13) are direct
consequences of the underlying phase portrait (Fig. 4.14a). While an oscillator traverses
the limit cycle in the ZBKE model (4.30), it moves with high speed during the excitation
and extremely slowly during recovery , when it is on the left half of the attractor. A light
perturbation I→ I +∆I is equivalent to an additive offset on the current oscillator position.
This offset is predominantly in the horizontal direction, because the light prefactor in the first
equation of the ZBKE model is larger than in the second one, 1/0.11 > 2. If the perturbation
is small, the state returns after a brief excursion through a slow phase space region. Large
perturbations push the oscillator beyond the black u-nullcline u0 (Fig. 4.14a), such that
they can not directly return without a large excursion in phase space. This explains why
perturbations early in the limit cycle are of little effect. During the excitation, states very
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Figure 4.14 | Phase space dynamics underlying phase reset behavior. (a) The phase portrait of
the ZBKE model (4.30) exhibits a stable limit cycle (yellow) around an unstable fixed point (unfilled
circle) at the intersection of the gray, dashed v-nullcline v0(u) and black, dashed u-nullcline u0(u).
Yellow arrowheads indicate the fast phase flow on the right part of the limit cycle and the vanishingly
slow one on the left part. A perturbation in u-direction that induces a phase reset is indicated with a
red arrow. (b) The distance ∆uLC−u0 between the limit cycle and the black u-nullcline u0 at varying
phases ϕ (orange, dashed) directly coincides with the phase jump point ϕ∗ in PRCs for positive
rectangular perturbations in u for different perturbation amplitudes (blue). The red dot corresponds to
the position and size of the red arrow in (a).

quickly return to the right part of the limit cycle. Once the state reaches the slow, right half of
limit cycle, perturbation-induced excursions are possible, but the distance from the limit cycle
to the nullcline ∆uLC−u0 is very large for early phases. At later phases the distance ∆uLC−u0

decreases exponentially. Hence a smaller perturbation can more easily cause an excursion,
which is equivalent to resetting the phase and initiating a new spike. This mechanism is
reasonable, because the distance ∆uLC−u0(ϕ) as a function of phase ϕ along the limit cycle
is identical to the phase jump point ϕ∗ in PRCs for perturbations of different amplitudes in
u-direction (Fig. 4.14b). Note that on a logarithmic scale the ZBKE model (4.30) resembles
the FitzHugh Nagumo (FHN) model (C.7), which is the prototypical model for neuronal
excitability type II348. Since the phase response curves of the ZBKE and FHN models agree
very well (Fig. 4.13d), they are expected to give rise to similar patterns on a nonlocally
coupled array of oscillators. Indeed, all behaviors discovered with the ZBKE model (Fig. 4.7)
were successfully reproduced with the FHN model334. Furthermore, core splitting (Fig. 4.12)
seems to be a behavior that is exclusively associated with type zero phase resetting, because
it could not be reproduced in simulations with phase or Stuart-Landau213 oscillators.
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Figure 4.15 | Antiphase cluster states. (a) Experimental snapshot of an antiphase pattern with one
group of oscillators at phase π/2 (blue) and the other ∆ϕ = π further at 3π/2 (orange). Oscillators
at the grid boundaries behave differently, because they have less nonlocal neighbors. (b) Schematic
mechanism of antiphase patterns, where reciprocal perturbations arrive after a travel time δ =∆trise+τ .
(c) The total period of the cluster state is the sum of travel times δ that is required to pass the jump
point t∗ = ϕ∗ T0/2π in the PRC.

Antiphase patterns (Fig. 4.15a) and more generally d-cluster patterns are a direct consequence
of strong, nonlocal coupling on an oscillator array. A strongly coupled oscillator responds
to perturbations in one of two ways: It is either unresponsive or it fires. If a perturbation
due to nonlocal coupling (4.25) is too small to cause a phase-reset, it is possible to either
increase the coupling strength K or wait for a time ∆t until the oscillator phase ϕ increased
past its phase-reset point ϕ∗(K) in order to successfully trigger a spike. In the case of an
array of oscillators with random initial phases, one part of the population will fire while the
other stays quiescent. However, given that the coupling strength K is sufficiently large, the
unresponsive population will fire after a time interval of ∆t = δ ··= ∆trise + τ . This is the
time duration for the perturbation from the group of the population that fired first to arrive.
The time interval δ is composed of ∆trise ≈ 1s, which is the time required for a peak in the
grayvalue time series to rise and the time delay τ in the coupling (4.25). Continuing in this
fashion, the first group will fire again a time ∆t = δ after the second group (Fig. 4.15b).
Ultimately this mechanism determines the periods of the oscillators in the array to be

Tantiphase(τ) = 2(∆trise + τ) = 2δ . (4.50)

The existence of the antiphase clusters depends on the coupling strength K. It is required to
be large enough, such that the accumulated travel times during one period exceed the jump
point t∗ = ϕ∗T0/2π after which a phase-reset is triggered: 2δ ≥ t∗(K) (Fig. 4.15c).
It is straightforward to generalize the mechanism behind antiphase clusters to d-clusters
with positive integers d ∈ N+. A d-cluster may emerge, if the time delay τ and coupling



78 Chapter 4

Figure 4.16 | d-Cluster states. (a) Theoretical prediction of periods (black line) and existence
intervals (colored background) of d-clusters. At the beginning of each interval, the period drops
sharply and then increases with a slope of d/∆d. The delay time τ is scaled, such that the jump
point agrees with the value measured in simulations, t∗ = 30.2. (b) Numerical simulations verify
the sequence of clusters and the qualitative behavior of periods. Simulations are performed on an
array of 64×64 oscillators with periodic boundary conditions. Each d-cluster state is identified with
a localized version of (4.42). The coupling strength K = 5.25×10−5 was chosen small enough to
allow for emergence of d-clusters with d > 3. The theoretical approach fails to predict the dynamics
in the gray regions, which feature chimera spots and stripes, consisting of different d-cluster states. In
addition the first region with wave synchronization up to τ = 5 was missed. Both shortcomings are
probably due to the negligence of oscillator heterogeneity and the phase-delaying part of the phase
response curve (Fig. 4.13).

strength K give rise to a sequence of d perturbations, that exceed the jump point t∗, such
that they obey: d ·δ ≥ t∗(K). Of all possible clusters satisfying this condition, the d-cluster
with the shortest firing sequence, min(d ·δ ), is established. This selection principle has an
intuitive reason: Oscillators in d-clusters with a longer firing sequence get recruited to the
fastest d-cluster over time.
In addition, it is possible that not all d oscillator clusters fire consecutively, but instead ∆d
clusters are skipped at each excitation. In the resulting d-cluster period Td(τ), this can be
accounted for by dividing over the number of omitted clusters:

Td(τ) =
d

∆d
(∆trise + τ). (4.51)
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Figure 4.17 | Segmentation of the pattern in physical space and phase space. (a) Numerical
simulation of a spiral wave chimera, where the phases in the spiral wave bunch together, such that the
profile of the wave breaks into d = 5 clusters. (b) Also in the u-v phase space of concentrations five
distinct groups of oscillators aggregate on the slow left part of the limit cycle. (c) The segmentation
into five separate groups is clearly visible on a circular phase histogram of core (blue) and spiral wave
oscillators (red). The core oscillators are attracted to the same segments, but can switch between them.

Following the same approach, the existence intervals for the clusters (Fig. 4.16a) can be
computed. For ∆d = 1, they assume a simple expression:

t∗

d−1
< τ +∆trise ≤

t∗

d
. (4.52)

As shown in the comparison with numerical simulations (Fig. 4.16b), the sequence of
d-cluster states can be correctly predicted as a function of time delay τ . This result is also
in agreement with simulations of nonlocally coupled BZ oscillators on a ring360. Note that
the above approach assumes global coupling between all oscillators. However, the two-
dimensional nonlocal coupling kernel with a side length of 2ℓ+1 = 11 takes into account
121 oscillators, which approximates global coupling.
Clustering also plays a role for the spiral pattern. The smooth wave profile divides into d
consecutive segments. This occurs due to the same reason driving the d-cluster states. In
experiments the segmentation is much less pronounced, since the jump points ϕ∗ are more
heterogeneous, than in the simulation (Fig. 4.13). Furthermore, the cluster mechanism also
explains the core synchronization at large values of the delay (Fig. 4.11o,p), where the
oscillators follow a period of period T = 0.5(τ +∆trise). The delay history of the coupling
(4.31), which encompasses nearly a complete period T0, contains peaks from the oscillator
itself and others at approximately half a period later. Over time all core oscillators share
the same delay history. As the core grows, eventually all oscillators in the entire array are
entrained and in-phase synchronized.
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4.5 Short summary

We establish that photocoupled catalyst-loaded microparticles in Belousov-Zhabotinsky
solution form a versatile experimental setup for experiments with relaxation oscillators on
large networks exceeding N = 1000 nodes.
As a first example of the experimental capabilities we experimentally investigated and verified
the spiral wave chimera334 (Fig. 4.8), which was predicted by Kuramoto in 2002271. Besides
verifying its existence, we also devised a core-tracking algorithm to characterize the erratic
motion of the core (Fig. 4.9).
Taking the time delay τ as a bifurcation parameter, we explored the phase diagram of a
two-dimensional array of nonlocally coupled oscillators numerically and experimentally
(Figs. 4.7, 4.10 and 4.11). We discovered previously unreported patterns and transitions, such
as spiral wave chimeras with a slow core (Fig. 4.10a,b), core splitting (Figs. 4.10g,h and
4.12) and core synchronization (Fig. 4.10o,p). Apart from spiral patterns, we also observed
d-cluster states and described a mechanism that explains their emergence based on time delay
τ and the type zero phase response curve (Fig. 4.15), that plays a role in neurobiology for
strongly perturbed nerve cells87.
Our findings are of significance beyond the chemical BZ oscillator (4.30), since they could be
reproduced in the canonical model for nerve excitation, the FitzHugh Nagumo model (C.7).
Thus we expect our findings might be of relevance to cardiac and cortical dynamics.

The experimental setup opens the door for a large number of future experiments. Some of
which are outlined in the next section.
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4.6 Future Directions

Figure 4.18 | Spiral Wave Chimera Control. (a) Spiral wave chimera after two laps on a forced
circular trajectory (white). (b) Time-dependent nonlocal kernel with spatial asymmetry for orienta-
tion (4.53).

The experimental setup allows for a plethora of future experiments. Without further modifi-
cations of the experimental soft- or hardware, it would be possible to also do experiments
on further chimera states in one, two and three dimensions, such as spots and scroll waves.
Three dimensional grids would be limited to small systems, such as 10×10×10 oscillators.
Chimera scroll rings could be studied nonetheless in a reduced two-dimensional array by
exploiting the azimuthal symmetry of the ring with reduced cylindrical coordinates.
On a one-dimensional ring different theoretically proposed control algorithms302–305 can be
implemented and tested. Furthermore control schemes for spiral wave chimeras could be
devised by generalizing their counterparts in one dimension. For example it is possible to
extend the asymmetric kernel in one dimension used previously303 to two dimensions

G(r,φ) = e−α(φ−φ0)r, (4.53)

α(φ −φ0) = α1 +
1
2
(α2−α1)(1+ cos(φ −φ0)). (4.54)

Here the asymmetric kernel is written in polar coordinates with an orientation angle φ0, which
can be externally manipulated to set the drift direction. The asymmetry of the kernel, α2−α1,
determines the speed of the drift. In figure 4.18 the orientation angle increases linearly in
time, leading to two circular laps. Without control, the core location would perform a very
slow Brownian motion around the array center.



82 Chapter 4

Another possibility is testing those schemes that have proven successful in the control of
ordinary spiral waves125,166,167. Further studies of spiral wave chimeras might reveal how
and if they pin to spatial or parameter heterogeneities, like their regular counterparts361,362.
Apart from chimera states, it would be interesting to verify that domains of large oscillator
heterogeneity act as natural pacemakers363.
One obstacle in the implementation of control algorithms will be the calculation of the
instantaneous phase variable. In the current system, the phase is only known retrospectively,
after the oscillator peaked again. One way around it, is to use a different order parameter306,
that is not derived from the instantaneous phase ϕ(t).
Beyond regular grids, chimera states can also be investigated in complex networks, such as
small world364 and scale-free286 networks. In addition connectomes known from biology,
such as the hermaphrodite soil worm Caenorhabditis elegans321 with 302 neurons, portions
of fruit fly Drosophilia melanogaster connectome365 with 380 neurons or coarse-grained
macaque cortical network366 can be implemented. In this venue it will be interesting
to see how neuronal time-dependent connectivity as shaped by spike timing dependent
plasticity174 contributes to the natural rise of chimera states as it reinforces synchronized
and desynchronized domains via potentiation and depression, respectively.
It seems feasible to experimentally verify the explosive synchronization transition367 as
well as symmetry cluster synchronization202 by selecting nodes with an appropriate period
distribution. Regarding the requirements of finding them, it is already possible to run experi-
ments on arbitrary networks with selectable coupling strength and time delay. Furthermore
appropriate oscillators can be drawn from the reservoir, such that the period distribution
exhibits multiple peaks213,368.
Apart from this, learning algorithms for artificial intelligence ranging from generations I-III
featuring units with binary and smooth sigmoidal transfer functions up to spiking units369

can be tested. The implementation of a XOR logic gate would serve as a first proof of
concept. An additional benefit of the experiment in comparison to a simulation is the inherent
heterogeneity, noise and aging in the experiment. Such obstacles would need to be overcome
in a working real-world neural net, too. Especially the role of noise in learning370 is an
interesting venue as it could play a constructive role as in stochastic371 and coherence
resonance372,373.
Changing the chemical BZ reagents appropriately allows for experiments with excitable
instead of oscillatory units (Fig. C.2). This opens the possibility for an experimental study
of bump states239, thought to play an important role in short-term memory374. Coupling
chemical oscillators together might also allow for chaotic units and possibly bistable elements.
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Spreading excitation waves are also commonly observed in central pattern generators209 (CPG)
that determine the locomotion of invertebrate and vertebrate species, such as lamprey fish375

and urodele amphibians376. Furthermore a CPG has been shown to successfully manage
the motion of a robot211 and adapt to external stimuli. This allows for the development of
a "chemical brain", consisting of chemical micro-oscillators, that learns and controls the
movement of a robot.
From a more general standpoint, it would be interesting to experimentally verify the curvature-
induced propagation failure together with the accompanying generalized eikonal equation198

on an network, where the front curvature κ is replaced by the node degree k: κ → k−2.
The experimental setup also opens the possibility for the synchronization and spreading of
waves in networks with time-dependent connectivities, as they are found in social contact377

and travel networks378. In the latter cases, excitation waves are related to the dissemination
of opinions379 and the proliferation of infectious pathogens.
Reducing the bead distance on the acrylic glass plate allows for experiments with local
diffusive coupling in addition to light-mediated nonlocal or global coupling. The interplay
between both coupling schemes might lead to the emergence of interesting dynamics, which
might resemble those in neuronal assemblies with nonlocal, biochemical synapses and local,
electrical gap junctions170,380.





Conclusion

In this thesis a number of self-organized patterns, that exhibit spatio-temporally periodic
synchronized activity, are elucidated in numerical simulations and chemical experiments.
Special focus is given to the propagation of excitation waves on different topologies.

In three spatial dimensions an unperturbed scroll ring far from any boundaries ordinarily
either contracts and vanishes or undergoes a negative line tension instability that ends in
Winfree turbulence. In chapter 2 we provide experimental and numerical evidence that a
scroll ring with positive filament tension in spatial confinement does not only contract, but
may also expand, which was previously associated with negative line tension exclusively.
Beyond this unexpected finding, we also observe that boundary interaction can stabilize the
ring radius for a long time, resulting in an effective autonomous pacemaker in a homoge-
neous medium without defects. To describe the experiments, we develop a semi-analytical
kinematical model that explicitly takes the boundary interaction into account. It succeeds in
accurately reproducing all numerical observations and illuminates the underlying mechanism
of boundary-mediated stabilization in the experiment162. These findings are relevant to
pathological scroll waves of electrical activity in the myocardium36, which are naturally
bounded by the spatial extent of the heart.

On a small network of relaxation oscillators, an excitation wave simply spreads from one
node to its neighbors. Surprisingly the wave propagation is also bound by the symmetry
properties of the network as elucidated in chapter 3. Those waves that spread on the network
between symmetry clusters exclusively are found to be the generalization of target waves
known from continuous active media. Both originate from the site of highest frequency in the
system, known as the pacemaker. Their emitted waves spread while satisfying all symmetries
of the underlying system, be it Euclidean symmetries or network automorphisms. Utilizing
discrete chemical oscillators and numerical simulations we find that the domain of target
wave synchronization in the space of coupling strength and oscillator mismatch resembles
an Arnold tongue217. Besides the generalization of target waves, these findings might be of
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relevance to assemblies of nerve cells, that support traveling cortical excitation waves220 and
neural central pattern generators that control rhythmic muscle movement209.

The final chapter 4 details our experimental and numerical endeavors regarding the suc-
cessful verification of spiral wave chimeras in a large array of nonlocally coupled chemical
micro-oscillators. To this end we developed an experimental setup that consists of more than
N = 2500 catalyst-loaded cation-exchange beads in Belousov-Zhabotinsky solution forming
a reservoir of chemical relaxation oscillators. Each oscillator can be monitored via fluores-
cence and independently addressed with light illumination from a spatial light modulator. A
self-built sieve machine facilitates the homogenization of the oscillator population in order to
perform experiments on synchronization. This enabled us to construct a two-dimensional
array of 40×40 oscillators to investigate the spiral wave chimera, predicted by Kuramoto in
2002271. Furthermore we elucidated the phase diagram of nonlocally delay-coupled oscilla-
tors on a two-dimensional grid. At the transition of spiral wave chimeras to incoherence, we
found that relaxation oscillators exhibit a unique scenario, which involves the splitting of the
incoherent core334. Further splitting events lead to the formation of a vortex glass consisting
of chimera cores. In addition to spiral patterns, we also found d-cluster states. Taking
into account the measured phase response curve of type zero87 we devised a theoretical
mechanism for the emergence of clusters in strongly coupled oscillators that we verified in
numerical simulations. Our findings are of significance beyond chemical oscillators, since
they apply to strongly coupled relaxation oscillators that are found in cardiac and cortical
ensembles239,353,359. Apart from biological relevance, nonlocally coupled oscillators also
play a role in physical systems, such as the photoelectrodissolution of doped silicon248,
arrays of opto-mechanical oscillators230 and ultracold atoms237 as well as metamaterials of
superconducting quantum interference devices234.



Appendix A

Dimension reduction of oscillators and
oscillatory patterns

Detailed dynamical systems for real-world oscillators may contain such a large number
of components, that they are difficult to analyze, see for example the MBM model of the
BZ reaction381 or detailed neural382 or cardiac cell models383. While special methods,
like adiabatic elimination and bath approximation (appendix C.2) or principal component
analysis384 can be applied to remove a number of components, the most elemental reduction
is possible by exploiting the topological structure of the limit cycle: A closed circle embedded
in a high-dimensional phase space87,213,347.
The treatment of spatially coupled oscillators falls prey to the same problem, but further
amplified. Their description is usually given in the framework of partial differential equations
(PDE), which are infinite-dimensional due to the additional dependence on a continuous
spatial variable. Discretizing a PDE via method of lines158 yields a finite, but still large
dimensional system. In the case of three spatial dimensions, the resulting dimension is:
d = nx× ny× nz× nc, where nc is the number of components of the local dynamics and
the other variables give the number of cells in each spatial directions. For the scroll ring
dynamics (chapter 2), the dimension is on the order of 106.
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A.1 Discrete oscillators

Figure A.1 | Phase reduction of a limit cycle. (a) In a planar dynamical system (C.7) a representative
limit cycle Γ (black) is located around an unstable fixed point (unfilled circle). The velocity along Γ

is not a constant as indicated by the non-equidistant colored isochrones indicate. The extension of the
isochrones beyond Γ is calculated with the asymptotic phase. (b) With a suitable transformation, the
non-uniform dynamics on Γ can be mapped to uniform motion on a topologically equivalent circle.
Each point on the circle is parametrized by a phase φ , which follows (A.3)

Coupled discrete oscillators can be described with a system of coupled ordinary differential
equations:

d
dt
ci = fi(ci)+K

N

∑
j=1

Ii j(ci,c j). (A.1)

Here the vectors ci,c j ∈ Rnc are vectors of the dynamical variables with nc components for
each of the N coupled oscillators indexed by i, j. The dynamics of the coupled units may
range from harmonic to relaxation oscillations and is given by the local dynamics fi ∈ Rnc .
The oscillators interact with each other described by the scalar coupling strength K ∈ R
multiplied with the interaction function Ii j : Rnc×Rnc→Rnc . The indices of fi and Ii j reflect
the possible heterogeneity of each node. First Winfree12 and later Kuramoto213 exploited
the fact, that an uncoupled dynamical system,

d
dt
c= f(c) (A.2)

showing time-periodic behavior c(t) = c(t +T ) must feature a limit cycle Γ embdedded in
a high-dimensional phase space Rnc that is topologically equivalent to a one-dimensional
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ring embedded in two dimensions. While before the dynamic state was defined by the value
of the dynamic variables {ci}i=1,...,nc

, the state along the one-dimensional manifold is given
by the position on the circle or its phase ϕ (Fig. A.1). Points on the limit cycle are mapped
directly to corresponding phase values, such that the phase grows linearly with constant
angular frequency ω = 2π/T0 ∈ R in time87,213

d
dt

ϕ = ω (A.3)

=⇒ ϕlinear(t) = ωt. (A.4)

Here, the offset ϕ0 is set to zero. This is also called the temporal phase definition87.
Alternative phase definitions include the geometrical phase mapping331, which takes into
account the spatial position on the limit cycle:

ϕgeometric(t) = arctan
(

v(t)− v0

u(t)−u0

)
. (A.5)

Here (u0,v0) is a selectable reference point in phase space and arctan is the four-quadrant
inverse tangent. The difficulty in applying this method successfully lies in determining a ref-
erence point, that remains inside the modified limit cycle in the presence of perturbations385.
Another method employs the Hilbert transform H 386, to extend a single real-valued input u(t)
into a complex one u(t)+ iH(u(t)) and determine its phase:

H(u(t)) =
1
π
−
∫ +∞

−∞

u(t̃)
t− t̃

dt̃ (A.6)

ϕ Hilbert(t) = arctan
(

H(u(t))
u(t)

)
. (A.7)

However, the wave form u(t) needs to be preprocessed, such that its zeroth Fourier mode
vanishes387: u(t)− u0. Otherwise if u(t) is entirely positive, not all phase values [0,2π[

are accessible. Since any frequency can be mapped from a time-dependent to a constant
frequency by reparametrization

ω(t) = ω
(
t(s)
)
/

ds
dt

= const , (A.8)

and due to its simplicity, we will choose (A.3) as the phase definition in what follows.
The phase corresponding to points c outside the limit cycle R2 \Γ can be calculated via the
asymptotic phase ϕ(c). It is defined via the phase corresponding to the point on the limit
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Figure A.2 | Phase definitions and dynamics. (a) Time series of dynamical variables during an
unperturbed relaxation oscillation with period T0 in a model for the BZ reaction (C.5). Both dy-
namical variables correspond to chemical concentrations. (b) Comparison of different time-phase
mappings: linear (blue), geometric (yellow), Hilbert (green) (c) The impact of perturbations at
phases ϕ in terms of resultant phase change ∆ϕ (A.9) along the limit cycle is quantified as phase
response curves. Here the linear time-phase mapping (A.4) is employed. The perturbations are in the
form of additive inputs u→ u+∆u (blue) and v→ v+∆v (yellow). While perturbations in u advance
the phase by resetting it to zero, perturbations in v delay the phase.

cycle, that the trajectory reaches for t→ ∞ starting from state c. This procedure allows for
finding isochrones, lines of equal asymptotic phase ϕ(c) in phase space (Fig. A.1).
Coupled oscillators continuously perturb each others phases by advancing or delaying each
other. The phase shift ∆ϕ due to a perturbation is quantified with the phase response
curve (PRC) Q(ϕ). It can be calculated directly by measuring the perturbed period Tp in
relation to the unperturbed period T0:

∆ϕ = 2π
T0−Tp

T0
. (A.9)

An example for a PRC is shown in figure A.2c for the ZBKE model (C.5). Negative values
of ∆ϕ stand for phase delays and positive values for phase advances. Note that there are
opposing sign conventions in the literature for the PRC388. In addition the pulse-shape P(ϕ)
defines the perturbation magnitude that an oscillator imposes on its neighbors depending
on its current phase ϕ . Combining these two aspects and accounting for heterogeneity of
oscillators, leads to the evolution for a single oscillator coupled to its N neighbors:

d
dt

ϕi = ωi +Qi

(
N

∑
j=1

K jPj(ϕ j),ϕi

)
. (A.10)
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Analytical progress can be made under the assumption of identical coupling strength K j = K,
homogeneous transfer Pj = P and response Qi = Q to perturbations as well as weak interac-
tion, which means that the state never deviates far from the limit cycle, since the attracting
local dynamics dominates over the coupling. This has two important implications: The total
result of all perturbations can be expressed as their linear superposition, Q(K,ϕ) = KQ(ϕi),
and the effect of the perturbations evolve on such a slow time scale that their effect is negligi-
ble during a single oscillation. Instead the perturbations accumulate over many periods on a
slow timescale. Taken together this simplifies equation A.10 to the Winfree model12:

d
dt

ϕi = ωi +KQ(ϕi)
N

∑
j=1

P(ϕ j). (A.11)

The effect of the accumulated perturbations over an oscillation cycle period can be accounted
for by averaging over a period213,221:

d
dt

ϕi = ωi +K
N

∑
j=1

1
2π

∫ 2π

0
Q(ϕi + ϕ̃)P(ϕ j + ϕ̃)dϕ̃. (A.12)

Note that ϕ was replaced here with ϕ̃ → ϕ , such that it does not represent the instantaneous
phase ϕ anymore, but the accumulated phase change ϕ̃ , that slowly changes over many
periods. Choosing the simplest Fourier series term for the 2π-periodic phase response curve
Q(ϕ) =−sin(ϕ) and a delta-peak as pulse-shape P(ϕ) = 2πδ (ϕ) to counter the integral,
model (A.12) becomes

d
dt

ϕi = ωi +K
N

∑
j=1

sin(ϕ j−ϕi). (A.13)

This is the paradigmatic Kuramoto model213, which is frequently employed for studying
synchronization in large networks.
Alternatively, the same result can be derived via multiple scale analysis389–391 starting from
(A.1) and assuming a limit cycle solution. For this purpose, we exploit the two time scales of
the problem. Introducing an additional slow time scale t ′′ = εt with a small scalar parameter
ε ∈ R besides the original fast one t ′ = t. Variations on the slow time scale will only become
relevant after a long time t→ t ′′/ε .
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Thus, taking into account both time scales, an appropriate perturbation ansatz for the solu-
tion ci of (A.1) is:

ci(t) =
∞

∑
n=0

ε
nCi,n(t ′, t ′′)≈Ci,0(t ′, t ′′)+ εCi,1(t ′, t ′′). (A.14)

The total time derivative of equation A.1 is transformed via the chain rule, such that

d
dt
ci(t)≈

∂Ci,0

∂ t ′
+ ε

∂Ci,0

∂ t ′′
+ ε

∂Ci,1

∂ t ′
. (A.15)

To incorporate the assumption of weak coupling, the coupling strength K is supposed to be
of order ε: K = ε . Plugging in the ansatz (A.14) and applying Taylor expansion, the right
hand side of (A.1) in up to first order of ε becomes

f(ci) ≈ f (Ci,0 + εCi,1) ≈ f(Ci,0)+ εDf (Ci,0)Ci,1,

(A.16)

K
N

∑
j=1

I(ci,c j) ≈ ε

N

∑
j=1

I
(
Ci,0 + εCi,1,C j,0 + εC j,1

)
≈ ε

N

∑
j=1

I(Ci,0,C j,0), (A.17)

where Df is the Jacobian of the local dynamics f . Overall the resulting equation reads

∂Ci,0

∂ t ′
+ ε

∂Ci,0

∂ t ′′
+ ε

∂Ci,1

∂ t ′
= f(Ci,0)+ εDf (Ci,0)Ci,1 + ε

N

∑
j=1

I(Ci,0,C j,0). (A.18)

Collecting terms by order of ε:

ε
0 :

∂Ci,0

∂ t ′
= f(Ci,0) (A.19)

ε
1 :

∂Ci,1

∂ t ′
−Df (Ci,0)Ci,1 =

N

∑
j=1

I(Ci,0,C j,0)−
∂Ci,0

∂ t ′′
(A.20)

As expected, the zeroth order (A.19) returns the original dynamical system, whose solution
is the unperturbed limit cycle:

Ci,0
(
t ′, t ′′

)
= ci,LC

(
t ′+ϕi

(
t ′′
))

. (A.21)

In the solution the position on the limit cycle is given by the fast time t ′ together with a phase
offset ϕi(t ′′), which evolves on the slow time scale, but not on the fast one.
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The expression for the first order in ε (A.20) is in the form of an inhomogeneous linear
differential equation for Ci,1 after insertion of (A.21),(

∂

∂ t ′
−Df (ci,LC)

)
Ci,1 =

N

∑
j=1

I(ci,LC,c j,LC)−c′i,LC
dϕi

dt ′′
. (A.22)

This relation can be formulated as a solvability condition determined by the Fredholm Alter-
native392 a . In Dirac notation394,395 the theorem can be formulated for a linear differential
operator L̂ with vectors |x⟩ and dual vectors ⟨x|, describing the existence of a solution to the
equation

L̂ |x⟩= |b⟩ . (A.23)

A solution |x⟩ to equation A.23 exists if and only if:

⟨x|b⟩= 0, (A.24)

where ⟨x| is the left eigenvector to the adjoint eigenvalue problem to the eigenvalue 0, also
called response function:

⟨x|L̂ † = 0. (A.25)

Simply stated, (A.23) only has a solution if the inhomogeneity |b⟩ is orthogonal to the kernel
subspace of the adjoint operator L̂ †, which is populated by the response functions ⟨x|.
Applied to (A.22) the scalar product of (A.24) evaluates to:

1
T

∫ T

0
Q(t ′) ·

[
N

∑
j=1

I
(
ci,LC

(
t ′
)
,c j,LC

(
t ′− (ϕi−ϕ j)

))
−c′i,LC

dϕi

dt ′′

]
dt = 0, (A.26)

Note that the phase offset is shifted, t ′+ϕ → t ′, such that oscillator i has a relative phase of
zero at time t = 0. The response function of (A.22) is denoted Q(t), which is identical to the
phase response curve in case of weak perturbations348. Utilizing the normalization condition

a For finite vector spaces, the Fredholm Alternative is a corollary of the rank-nullity theorem393:
dimA = dim(kerA)+dim(im A). If the kernel space is empty then the operator is injective and surjective.
Otherwise it is neither. The latter case applies for vanishing eigenvalues, since Ax= 0x= 0. Consequently, a
solution x to Ax= b is not guaranteed to exist.
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from Malkin’s theorem396

1
T

∫ T

0
Q(t ′) ·

df(ci,LC)

dt ′
dt = 1, (A.27)

it is possible to derive the evolution equation for the slowly changing phase offset:

d
dt

ϕi = ε
1
T

∫ T

0
Q(t̃) ·

N

∑
j=1

I
(
cLC (t̃) ,cLC

(
t̃ +(ϕ j−ϕi)

))
dt̃, (A.28)

= εωi + ε

N

∑
j ̸=i

H(ϕ j−ϕi). (A.29)

Note that for identical oscillators the interaction function H results in the frequency deviation
from the unperturbed oscillation: H(ϕi− ϕi) = ωi

348. Replacing the periodic function
H(ϕ j−ϕi) by its first Fourier mode sin(ϕ j−ϕi) times a scalar factor K, it is possible to
recover the Kuramoto model213:

d
dt

ϕi = ωi +K
N

∑
j=1

sin(ϕ j−ϕi). (A.30)

The scaling factor ε was absorbed into the time variable εt→ t, such that the dynamics occur
on a slow time scale in agreement with (A.13).
The synchronization dynamics of the Kuramoto model can be readily analyzed with a mean
field approach213. The mean field is given by the centroid of the oscillators in the complex
plane

ReiΨ =
1
N ∑

k
eiϕk with R =

⏐⏐⏐⏐⏐ 1
N ∑

k
eiϕk

⏐⏐⏐⏐⏐ . (A.31)

Plugging these expressions back into the Kuramoto model (A.30), leaves us with a mean-field
equation:

dϕi

dt
= ωi +KRsin(Ψ−ϕi) (A.32)

This equation describes how a single oscillator is coupled to the effective remainder of
the network, which is given by the Kuramoto order parameter R and its phase Ψ. This
shows that a single oscillator is always attracted to the mean phase of the bulk, since the
frequency decreases due to the coupling if the oscillator is ahead and the frequency increases
in the opposite case. In addition, the more oscillators align, the stronger is the pull of the
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bulk on single oscillators. However, since sin(ϕ) is bounded, oscillators with a frequency
that exceeds the maximum pulling Kcr = K/∆ω , can not be synchronized. The frequency
difference ∆ω = ωi−ω0 is taken between the individual ωi and bulk frequency ω0. The
latter is given as the arithmetic mean of the frequency distribution,

ω0 =
1
N

N

∑
i=1

ωi, (A.33)

because the coupling function is odd. At a sufficiently high coupling strength oscillators
may start firing in unison by undergoing different synchronization scenarios, such as quorum
sensing397, mobbing398, discontinuous explosive synchronization367,399 or the continuous
Kuramoto phase transition 12,213,313,400,401.

A.2 Continuous oscillator fields

In the previous section, an oscillator was perturbed due to its coupling to other discrete
oscillators. For continuous oscillator fields the interaction is incorporated as a diffusion term

∆dc=
d

∑
i=1

d2c

dx2
i
, (A.34)

which gives rise to a partial instead of an ordinary differential equation. In order to reduce
the dimensionality for d = 3 dimensional vortex dynamics in reaction diffusion problems,

d
dt
c= f(c)+D∆3c, with c= c(x,y,z, t), (A.35)

it is advantageous to focus on the dynamics of self-organized structures called filaments402.
These are lines of phase singularities to which spiral-shaped solutions c0(r, t) = c0(r,θ , t)
of the two-dimensional reaction diffusion equation

d
dt
c= f(c)+D∆2c, with c= c(x,y, t), (A.36)

are attached. In a co-rotating frame of polar coordinates, θ̃(t) = θ −ωt, the solutions c0(r)

are stationary and can be determined by solving the equivalent nonlinear eigenvalue problem(
D∆2 +ω∂θ +f(·)

)
c0(r,θ −ωt) = 0. (A.37)
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Figure A.3 | Goldstone modes and response functions of spiral waves. (a) The stationary u-
concentration profile of a spiral wave simulated with the FHN model (C.7) on a circular domain
enclosed by Neumann boundaries. (b) Real part of the rotational Goldstone mode |0⟩. (c) Real part of
the corresponding response function ⟨0|. It shows the spatial regions that are sensitive to perturbations,
which will excite the Goldstone mode |0⟩. The black contour line is for comparison. Simulation and
mode determination is performed with DXSpiral406.

Stability properties can be inferred from the corresponding linearized differential operator L̂ .
Its eigenvalue problem for general eigenvectors |n⟩ reads:

L̂ |n⟩ =

(
D∆2 +ω∂θ +Df (c0)

)
|n⟩ = (µ + iωn) |n⟩ (A.38)

⟨n|L̂ † = ⟨n|
(

D∆2−ω∂θ −Df (c0)

)
= ⟨n|(ν− iωn) (A.39)

Here the adjoint eigenvalue problem (A.39) is included as well. Note that the left ⟨n| and
right eigenmodes |m⟩ fulfill the orthogonality relation ⟨n|m⟩= δnm.
From (A.37) it is apparent that we have to find the eigenvectors c0(r) to the potentially
degenerate eigenvalue λ = 0, which are called the Goldstone modes206. Perturbations in the
form of these modes are shape-preserving and lead solely to translation and rotation of the
spiral wave.
Due to the Euclidean symmetries of the infinite plane339,403,404 b, there are three possible
eigenmodes with a vanishing real part of the eigenvalue µ : one for rotation

(
|0⟩= ∂θc0(r)

)
and two for translations

(
|±1⟩= (∂x± i∂y)c0 (r)

)
. Note that in the non-rotating frame, the

translational modes are the derivatives along the Euclidean basis vectors.
To gain further understanding of the role of response functions132,133,407, let us consider
a small perturbation εh(c,r, t) on the two-dimensional spiral wave field c0(r, t), which
is a stable solution of (A.37). Since the perturbation is weak, it can only change the

b Here we limit ourselves to the special Euclidean group SE(2), which only contains rotation and translation
symmetries. Reflection is excluded, since it would flip the chirality of the spiral pattern leading to a violation of
topological charge conservation38,405.
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rotation frequency ω = ω0 + εω1 and induce translational movement v = εv1 of the slightly
perturbed concentration field c = c0 + εc1. In a frame that follows these rotations and
translations, (A.36) together with the perturbation becomes

(∂t− (ω0 + εω1)∂θ − εv1 •∇)(c0 + εc1)

= f(c0)+ εDf (c0)c1 +D∆2(c0 + εc1)+ εh
(A.40)

On different scales we collect

ε
0 : (∂t−ω0∂θ )c0 = f(c0)+D∆2c0 (A.41)

ε
1 : ∂tc1−ω1∂θc0−v •∇c0 = L̂ c1 +h (A.42)

Noting that the stable spiral wave solution c0 is stationary in the co-rotating frame and thus
∂tc0 = 0, (A.41) is identical to (A.37) and determines the unperturbed pattern (ω,c0).
Since projections of response functions ⟨n| on c1 can be absorbed into c0, we can introduce
a gauge condition407, ⟨n|c1⟩= 0, such that ⟨n|∂tc1⟩= 0 and ⟨n|L̂ c1⟩= 0. This relationship
simplifies the evaluation of the Fredholm alternative of (A.42), which involves the projection
on response functions:

∂tφ = εω1 =−ε ⟨0|h⟩ (A.43)

∂tRx = εvx =−ε ⟨+|h⟩ (A.44)

∂tRy = εvy =−ε ⟨−|h⟩ . (A.45)

These are the equations of motion for a spiral wave under weak perturbations, such as a
parameter gradient, advective fields or periodic forcing408. For the special case of a parameter
step in an additive excitability threshold h(x,y, t) = e1∆pH(x− x0), the theory predicts a
stable spiral wave drifting in parallel to the step, which was confirmed experimentally as
well362. The projection can be evaluated as132

⟨n|h⟩ ∝

∫∫
R2

Yn(r) •h(r) d2r, (A.46)

where for clarity constant factors stemming from the transformation between fixed and
co-rotating frame have been omitted. This shows that a perturbation h is most effective of
inducing motion of the spatially unbounded spiral wave pattern c, when it has a large overlap
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Figure A.4 | Frenet-Serret frame. A curved scroll wave with a twisted filament (red ribbon)
simulated with the FHN model (C.7). Initial twist and torsion were initialized from a random walk in
x and y directions as well as rotation phase ϕ0. Frenet-Serret coordinate frame is locally attached to
the curved filament to parametrize space (A.47).

integral with any of the response functions Yn, which are localized in the neighborhood of
the spiral tip133 c.
In order to make progress on the three-dimensional problem (A.35), we adopt from the
differential geometry of space curves the curvilinear Frenet-Serret frame410. The filament
curve can be described by a vector R(s), which is parametrized by its arclength s. To each
point of the filament, a triad of orthonormal vectors, the tangent vector T (s) = ∂sR(s), the
normal vector N(s) = ∂ssR(s) and the binormal vector B(s) =T (s)×N(s), are attached lo-
cally. In addition this description naturally introduces the torsion τ(s) =−∂sB(s) ·N(s) and
curvature κ(s) = ∂sT (s) ·N(s) of the filament. Globally, positions in space are parametrized
with

r = r(s, p,q) =R(s)+ pB(s)+qN(s). (A.47)

c Beyond the response functions, the entire spectrum of adjoint eigenmodes are localized at the spiral tip409.
They are important in the case of unstable spiral waves as well as stable, confined spiral waves in bounded
domains, where the continuous symmetries of the special Euclidean group SE(2) are broken.



A.2 Continuous oscillator fields 99

Making use of the chain rule and the Frenet-Serret equations, the space and time derivatives in
(A.35) can be expressed in the Frenet-Serret coordinates (Fig. A.4) d. Under the assumption
that filament quantities vary on different spatial scales118,

O(ε−1) : T , (A.48)

O(ε0) : N ,B,c0,c0,θ ,c0,θθ ,c0,p,c0,q, (A.49)

O(ε1) : τ,φs,q, p,c0,s, (A.50)

O(ε2) : c1,c0,ss,Rt ,Nt ,Bt ,φt ,φss,τs,κ, (A.51)

we can again apply multiple scale analysis in conjunction with the Fredholm alterna-
tive (A.24), but now in space instead of time. Here subscripted variables are shorthand
for partial derivatives. The perturbation ansatz is given in the co-rotating frame and account-
ing for twist:

c≈ c0 +c1, with c= c(s, p,q, t) = c(r,θ −φ(s, t)−ωt). (A.52)

After simplifying 1− pκ ≈ 1, since the curvature is small, and linearizing the local dynam-
ics f , then up to order ε2, equation A.35 in the corotating Frenet-Serret frames is:

L̂ c1 ··=
(

∂t−D∆2−D f (c0)

)
c1

= f(c0)+D
(
∂s(φs + τ)∂θc0 +(φs + τ)2

∂θθc0 +κ∂pc0
)
+D∆2c0

− (φt−ω)∂θc0 +(Rt +qNt + pBt) •T (φs + τ)∂θc0

+Rt •N ∂pc0 +Rt •B ∂qc0 +Nt •B ∂θc0.

(A.53)

This procedure decouples the spiral waves in each p-q plane , since their interaction in u1

is on the scale ε4. Introducing the twist87, w = φs + τ , for brevity and collecting terms for

d Note that the coordinate system is degenerate in the case of a curve without curvature. This problem
was remedied in recent work by Verschelde et al.407,411, who replaced the Frenet-Serret frame with the Fermi-
Walker frame, describing trajectories in curved space-time in general relativity412, to prove a geodesic minimal
principle413 for filament evolution in anisotropic media.
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different powers of ε results in:

ε
0 : 0 = f(c0)+D∆2c0 +ω∂θc0, (A.54)

ε
2 : L̂ c1 = wsD∂θc0 +w2D∂θθc0−κD∂pc0 (A.55)

−φt∂θc0 +(Rt +qNt + pBt) •T w∂θc0 (A.56)

+Rt •N ∂pc0 +Rt •B ∂qc0 +Nt •B ∂θc0 (A.57)

··=|b⟩ . (A.58)

In the lowest order (A.54), we recover (A.37), the nonlinear eigenvalue problem that deter-
mines the stationary pulse profile of a spiral wave in the corotating frame. For the equation
in second order we invoke the Fredholm Alternative (A.24) for the rotational ⟨0| and transla-
tional ⟨±| response functions. Due to the orthonormality relation between Goldstone modes
and reponse functions, ⟨n|m⟩= δnm, a number of terms in the solvability condition vanish.
Furthermore, Biktashev showed, that products pairing rotational with translational modes and
involving the diffusion matrix D , e.g. ⟨+|D0⟩, average to zero over one rotation period120.

The remaining terms reveal the equations of motion for the filament118,120:

φt =Nt •B+Rt •Tw+ ⟨0|D0⟩ws + ⟨0|D∂θθc0⟩w2, (A.59)

Rt = ⟨+|D+⟩κN + ⟨−|D+⟩κB. (A.60)

For the simple case of a closed filament loop with no twist and constant curvature, projecting
(A.60) into the loop plane, results in the equations for the evolution of ring radius R and drift
along the symmetry axis ez:

Ṙ =−α/R, (A.61)

ż = β/R. (A.62)

Here α = ⟨+|D+⟩ ∈ R is called the filament tension, since the filament ring will compress
for α > 0 and expand for α < 0 similar to the elastic properties of a stretched or compressed
rubber-based material. The parameter β = ⟨−|D+⟩ ∈ R gives the magnitude of the drift
along the symmetry axis. The negative sign in the radius dynamics results from the radius R
moving in opposite direction to the normal vector N . Note that these equations are only
strictly valid in the limit of small filament curvature κ and sufficiently far from system
boundaries. An alternative derivation arises within a kinematic approach414, which is based
on the curvature induced motion of fronts.
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In summary, the preceeding machinery allowed us to reduce a large problem on the order of
106 dimensions to a two-dimensional problem amenable to the standard theoretical tools of
planar dynamical systems.





Appendix B

Implementations

B.1 Experimental setups

This section gives a chronological overview of the experimental setups and techniques
developed and employed over the course of this thesis.

B.1.1 Setup I: Three-dimensional active medium

Spiral waves and scroll rings alike can be created by erasing a part of a planar wave38.
To realize excitation waves in a spatially extended medium, we employ the Belousov-
Zhabotinsky (BZ) reaction, which is well-established as a chemical oscillator (appendix C).
Instead of exploiting sensitivities to externally applied fields like light (section B.1.2), it is
possible to just shake the medium in order to completely erase excitation waves due to fluid
mixing. Since a part of the original wave needs to remain in order to nucleate a scroll ring,
there is a complementary part of the medium that consists of agarose hydrogel. The hydrogel
matrix prevents hydrodynamic flows from occurring and thus preserves the structure of the
excitation waves. The medium is prepared as follows:
A liquid- or gel layer with a height of 4 mm requires 25 ml of the following reaction solution:
14.5 ml of bidistilled H2O (water), 8 ml 0.5 M H2SO4 (sulfuric acid), 1 ml 1 M C3H4O4

(malonic acid or MA), 1 ml 1 M NaBrO3 (sodium bromate), 0.5 ml 25 mM (Fe(o phen)3)SO4

(ferroin) and in case of the gel layer 0.2 g (C12H18O9)n (agarose).
The liquid layer is prepared by adding H2O, H2SO4, C3H4O4 and NaBrO3 to an empty beaker
with a volume of 50 ml. Before the solution for the gel layer receives the reagents, the agar
must be cooked. To this end, only water with agarose and a magnetic stirrer is filled in
another beaker of 50 ml. This mixture is brought to boil on a heating plate while stirred.
Once the boiling point is reached after about 6 –7 min, the beaker is moved to an unheated
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Figure B.1 | Setup I: Scroll ring formation and time evolution are monitored spectrophotometrically
in a three-dimensional active medium. White light from a spatially homogeneous light source is
absorbed depending on the oxidation state of the ferroin catalyst. This allows for the optical recording
of chemical waves with a CCD camera.

plate for the solution to cool for 12 –13 min while gently stirred, but it is not to solidify.
After this time, H2SO4, C3H4O4, NaBrO3 and ferroin are added with a pipette under rapid
stirring. Adding the complete set of BZ reagents initiates the first chemical oscillation, which
is visible as a periodic color change from red to blue. The first oscillation takes about 2 min,
after which the solution in the beaker is transferred to a Petri dish. While the gel solidifies,
ferroin is also added to the solution for the liquid layer while stirring strongly. It takes about
5 –7 min for solidification to finish, at which point the solution for the liquid layer is added
on top of it in the Petri dish. This completes the preparation of the bipartite active medium.
The procedure to generate a scroll ring starts with introducing a silver wire of high purity
(99% Ag) perpendicular to the gel-liquid interface for 15 –50 s. Because the silver wire
perturbs the local ion balance via formation of AgBr, it initiates a small spherical excitation
wave at the point of contact with the silver wire tip. About 20 s after its appearance, the
medium is shaken manually to suppress wave formation in the liquid layer. Once the spherical
wave in the gel layer reaches the desired initial radius R0, shaking is suspended. This allows
the wave to propagate into the now calm liquid layer and curl in, which nucleates the scroll
ring. Note that the initial distance to the boundaries h1 and h2 (Fig. 2.4) is determined by the
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used solution volumes of the gel and liquid layer. Caution has to be taken as to not shake the
medium for too long, because phase waves will emerge after about 5 min that start from the
radial Petri dish boundary and travel inwards. Their interaction with the spherical wave will
disturb the circular shape of the scroll ring and can even prevent it from forming.
To observe the evolution of the scroll ring, the Petri dish containing the chemical bipartite
medium is placed in a spectrophotometric setup (Fig. B.1). The Petri dish has to be placed
perfectly in parallel to the ground to avoid inclined height gradients in the system. This
is realized by a metal ring that sits on three small screws that can be adjusted in height to
correct for inclinations. Before the observation begins, the active medium is sealed from
outside oxygen, that is known to negatively affect the reaction415, by very carefully placing a
floating acrylic glass plate on the liquid layer and a plastic lid on the Petri dish. Convective
temperature exchange is minimized by attaching a transparent plastic wrap to the bottom of
the metal holding piece under the Petri dish. Furthermore, the entire setup is encased in a
cardboard box.
With these precautions in place, the optical observation is performed by exploiting the
difference in absorption spectra of the catalyst for different oxidation states. The white light
from a spatially homogeneous light illuminator (Fiber-Lite PL-800) with light bulb (USHIO
EKE/L 21 V, 150 W) gets absorbed strongly by the reduced form of the catalyst, but not by
the oxidized form. The largest contrast is obtained for blue wavelengths (Fig. 2.3c), which
is enhanced by a dichroic filter (Edmund Optics) that is light-transmissive for 400 –500 nm.
The transmitted light-intensity is recorded in a spatially-resolved manner with a CCD camera
(COHU 2122-1000), that relays the data to a framegrabber card (Data Translation 3155) to
be saved as 8-bit grayvalue image files for later analysis (Fig. 2.5).

B.1.2 Setup II: Two- and three-dimensional active medium

It is possible to make the Belousov-Zhabotinsky reaction light sensitive416 by utilizing
the photosensitive catalyst ruthenium-tris-dimethylene-bipyridine (Ru(dmbipy) 2+

3 )126. In
addition the absorption spectra of the reduced, Ru(dmbipy) 2+

3 , and the oxidized form,
Ru(dmbipy) 3+

3 , are sufficiently different to allow for spectrophotometric measurements
(Fig. B.2). The oxidized form is approximately transparent to all visible wavelengths, while
the reduced form absorbs blue wavelengths 400 –500 nm (Fig. B.3a).
To perturb excitation waves in a thick three-dimensional medium that absorbs light, large
light intensities are required. These intensities can be achieved by tuning the projector (Casio
XJ-A140V). As is shown in figure B.3, the projector natively emits blue, green and red light.
In the experiment, we only require blue light. For this reason we remove the lenses and
mirrors that inject the red and green beam into the output beam line. Furthermore, there is
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Figure B.2 | Setup II: Spectrophotometric setup for spiral wave control and scroll ring nucleation
via light. The projector applies spatio-temporally varying light intensity for control (dark blue arrows)
of chemical dynamics. The resulting patterns are observable due the absorption difference in the
oxidation state with light (pale blue arrows) from a flat LED, which was repurposed from a cell phone.
A hollow black cardboard box acts as a homogeneous background for the camera recording, because
it does not reflect stray light.

no dedicated source for green light. Instead, blue light is transformed into green light via
a fluorescent layer on the colorwheel. Unfortunately the colorwheel also functions as the
internal clock of the projector, which stops operating without it. The solution is to remove
the fluorescent coating and replace the lost mass in the form of copper disks to preserve
the angular momentum. Another option is to extract the colorwheel and connect it to the
projector mainboard from the outside.
Another challenge is the spatial light gradient over the area of a projected image. Initial
experiments showed, that the native heterogeneous light negatively impacts the formation
and lifetime of planar scroll rings.
The spatial light distribution of the projector is homogenized by first measuring the nor-
malized sensitivity at every pixel of the camera chip Schip(x,y) by taking a snapshot of a
cloud-free blue sky or the output of an Ulbricht sphere. This information allows us to correct
for heterogeneities of the camera chip. Next we assign an image of constant brightness I0 as
the projector output. With the calibrated camera, we take a snapshot of the emitted projector
light intensity Ihetero(x,y) on a fluorescent screen. This allows us to compute a pixel-wise
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Figure B.3 | Control and observation by blue light. (a) Absorption spectra of the reduced (orange)
and oxidized (green) form of the Ru(dmbipy) 2+

3 catalyst. Note that control and observation light
can not be spectrally separated as both rely on the absorption peak at λ = 450nm. Thus the light
distribution for spatio-temporal control is also visible on the camera image of the chemical pattern.
(b) The projector (Casio XJ-A140V) is modified to emit a peak amount of blue, instead of red or green
light. This is achieved by removing the optical elements, such as lenses, mirrors and the colorwheel
(yellow dashed shapes) required for the red and green light to be passed into the main beamline.

multiplicative correction filter Fcorrection for later use in experiments:

Fcorrection(x,y) =
I0

Ihetero(x,y)
Schip(x,y) (B.1)

Icorrected(x,y) = Ihetero(x,y) ·Fcorrection(x,y). (B.2)
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Figure B.4 | Light-mediated scroll ring initiation. (a) With the modified spatial light modulator,
it is possible to emit a spatiotemporal light intensity I(x,y, t) that allows for the formation of scroll
rings. It consists of a bright boundary layer, that prevents waves from the outside to interact with the
scroll ring, and a variable light intensity on the inside. (b) Inside the shielded area a scroll ring was
nucleated, that periodically emits circular wavefronts. The white scale bar corresponds to 1 cm.

Scroll rings are initiated with a spatial light distribution I(x,y) consisting of three concentric
elliptic light regions stacked on top of each other (Fig. B.4a). The largest circle is very
bright and prevents outside excitation waves, especially those coming from the hydrogel
boundary, to interfere with the patterns on the inside. The next ellipse is less bright to support
the propagation of excitation waves. The innermost circle is the darkest. In this region
oscillations may occur spontaneously. Once this oscillation spreads into the excitable domain
as an excitation wave, the innermost dark region is removed to prevent oscillations from
interfering with the scroll ring. The upper part of the cylindrical excitation wave in the
excitable domain is removed with a short burst of high light intensity. Here, the duration
of the illumination is crucial. If it is too short the cylindrical wave is not perturbed, but if
it is too long all waves are erased. The right duration of illumination finally leads to the
successful nucleation of the scroll ring (Fig. B.4b).
In contrast to version I (section B.1.1), this versatile setup allows for creating scroll rings
of large initial radii R0, because interference from the boundaries is suppressed with light.
In addition rings of both chiralities are possible by switching the brightness of the two
inner elliptic regions. Furthermore any autocompletion patterns, like spirals169 or multiple,
interacting scroll waves or closed filaments with varying curvature, like ellipses, squares
or heart-shaped loops can be realized by starting from a suitable initial condition and then
removing the upper half of the wave structures with an intense short burst of light intensity.
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B.1.3 Setup III: Discrete oscillators

Figure B.5 | Setup III: Chemical oscillators in a Petri dish exhibit color changes depending on the
phase in their oscillation cycle. The color information is recorded in grayscale by a CCD camera
mounted under a slight angle to avoid reflections from the liquid surface. Note that the grayscale
value is proportional to the scattered light intensity at bead surface. The grayscale information is fed
back to a computer. The computer calculates the coupling signal (3.9), which is projected on each
bead with a spatial light modulator (Toshiba TLP X20). The neutral filter allows for reducing the
intensity of the projector without restraining the dynamic illumination range of the projector. The
bandpass filter increases the contrast by blocking irrelevant wavelengths outside of 440 –460 nm.

This experimental setup (Fig. B.5) supports experiments on discrete chemical micro-oscillators
that are connected by mutual light perturbations instead of diffusive coupling via mass ex-
change244,245,417–419. Discrete chemical oscillators are realized by placing cation-exchange
beads (DOWEX SOW X4-200) soaked with the catalyst ruthenium-tris(bipyridine) (Ru(bipy)3)
in a Petri dish filled with BZ solution. Employed reagent concentrations are given in table C.1.
Since the catalyst is confined to the bead locations, the BZ reaction can only occur at the
bead sites. Each bead is a microporous sphere with a size of about 200 µm. When loaded
with catalyst and soaked in water the diameter increases to about 300 µm. Resembling a
solidified hydrogel318 a bead features a tight polymer matrix with cavities and tunnels for
exchange of molecules. The polymer matrix consists of long polystyrene chains that are
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crosslinked with divinylbenzene420. It is important to note, that Ru(bipy)3 is actually able to
slowly leak from the beads, but at a very slow rate. After an hour, there is non-negligible loss
of the catalyst to the surroundings. Hence, the duration of an experiment is limited to about
half an hour, during which oscillation periods change about 10%. This issue is resolved
in version V (section B.1.5) with the introduction of additional dimethylene ligands in the
complex catalyst.
As in previous experimental setups (sections B.1.1 and B.1.2) the chemical oscillation cycle
can be monitored optically due to changes in the absorption spectra that follow the oxidation
state of the catalyst. The absorption spectra of the Ru(bipy)3 catalyst very closely resemble
those of Ru(dmbipy) 2+

3 (Fig. B.3a). In contrast to the other setups, the grayvalues that
are recorded by the CCD camera (Lumenera Infinity 2) are not related to changes in the
transmitted light intensity, but are due to light scattered at the bead surfaces. The reason for
this is that the camera views the beads under a small tilted angle to avoid bright reflections of
the projector intensity from the water surface. In this reduced state of the catalyst incident
light is absorbed, while in the oxidized state light can pass through the bead and scatter
back from it. This light intensity is measured by the CCD camera as 8-bit grayvalues. To
enhance the contrast, the measured grayvalues vi,0 are normalized by the minimum vi,min and
maximum vi,max from a running window over the last 100 s of the individual timeseries:

vi(t) =
vi,0(t)− vi,min

vi,max− vi,min
. (B.3)

The resulting normalized grayvalues of each bead are used in an autonomously running
MATLAB program to calculate the appropriate light perturbations to each oscillator based
on the current state of all of its neighbors in the network (3.9). The feedback is applied with
a projector (Toshiba TLP X20) with a dynamic range of 256 distinct light intensity values.
Thus the feedback needs to be appropriately rescaled to fit in this range.
Note that the control and measurement light are not spectrally separated as in section B.1.2.
To avoid artifacts in the recorded grayvalues, measurement and feedback are performed
alternatingly in a duty cycle. The measurement duration is essentially given by the exposure
time of the camera, which is about 1 s. After computing the new feedback values, which
only takes a negligible amount of time, the feedback is applied for 2 s. Since the chemical
oscillation period takes 40 –80 s, a duty cycle length of 3 s is too small to induce stroboscopic
artifacts. This was also verified by varying the length of the duty cycle, which did not affect
the experimental outcome.
One complication is that the beads are not spatially fixated in the Petri dish. This allows them
to move around. The movement is caused by convective flows in the liquid layer due to the
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produced reaction heat as well as the product CO2 accumulating under the beads until there
is enough to rise up and simultaneously push the bead to a different location. Experiments
showed, that the convective flow can be suppressed by reducing the height of the liquid layer
to 2.0 mm. However, this also worsens aging effects due to oxygen inflow through the open
boundary with air.
The solution was to develop a tracking algorithm, that continuously updated the location
of each bead for the projected image. For each bead, the position of its center of mass is
detected with an image recognition program. The same procedure is repeated for the next
camera snapshot. Then the algorithm compares the new positions to the old ones and pairs
up those with the least distance. For not too large movement this algorithm works flawlessly.
In the case of a collision between two beads the algorithm will fail. However, once two beads
collide, they will also couple diffusively and thus corrupt the experiment either way.

B.1.4 Setup IV: Discrete oscillators

Figure B.6 | Setup IV: The projector (Acer P1120) provides optical feedback, that is focused by
lenses at a microfluidic chamber holding BZ droplets on a microscope slide. A camera (QImaging
Retiga 2000R), attached to a microscope (Zeiss Stemi 2000-C) mounted over the droplets, records the
chemical oscillation states of the droplets as grayvalues due to changes in absorption spectra of the
catalyst. Based on their arithmetic mean, the intensity of the global light feedback is adjusted.

In this variant, BZ droplets421,422, instead of beads are used as discrete chemical micro-
oscillators in spectrophotometric measurements (Fig. B.6). Droplets are micrometer-sized
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Figure B.7 | BZ Droplets. (a) The molecular arrangement in the membrane of a lipid monolayer
micelle as positioned with packmol423 and visualized with VMD424. Non-polar heads of the surfactant
(red) are turned to the outside, while polar heads (white) are turned to the inside, where the BZ reaction
(blue) occurs. (b) A hexagonal carpet of droplets as modeled with (C.6) exhibits a Turing pattern
composed of droplets with high and low catalyst concentration.

objects with a diameter between 50 –300 µm. They contain a small volume of BZ solution,
which is encased in a monolayer (Fig. B.7) of surfactants (Pico-Surf). These lipid vesicles
resemble living cells, whose membrane is a lipid bilayer.
Once the BZ droplets are pumped into a rectangular region on a microfluidic chip, they form
a close-packed hexagonal lattice that is immersed in oil (Fluorinert FC-40). The droplets can
interact with each other, because non-polar chemical compounds can pass through the droplet
membrane and diffuse through the oil phase. The most significant non-polar intermediate in
the BZ reaction is bromine (Br2). That explains why coupling through the oil-phase slows
down chemical oscillations in the BZ reaction, because bromine can spontaneously decay to
bromide (Br–), which acts as the inhibitor in the BZ mechanism (see appendix C.1.3).
The BZ solution in the droplets contains a dual catalyst, consisting of ferroin as well as
photosensitive Ru(bipy)3. This allows for the spectral separation of control and observation
light. While the oscillation cycle can be manipulated with light of 400 –500 nm (Fig. B.3a),
it can simultaneously be observed at 500 –600 nm (Fig. 2.3c). However, an additional
interference filter is also required to exclude fluorescence (Fig. 4.2c) of the Ru(bipy)3 catalyst
at large wavelength λ > 550nm.
In contrast to version III (section B.1.3), care has to be taken in order to not evaporate the
droplets with illumination from the 200 W mercury lamp in the projector. For this purpose
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an additional infrared filter, that consists of a water chamber, is included in the beam line
that removes heat radiation with λ > 1100nm.
Note, that droplets can disappear over time. This is due to a sudden failure of structural
integrity of the surfactant membrane, which results in the dissolution of the droplet. These
spontaneously appearing defect sites in the regular hexagonal lattice lead to a drifting motion
of all remaining droplets until the lattice finds a new state of minimum energy. Furthermore,
the BZ reagents inside the droplets are consumed after about 100 oscillation periods. Since
the membrane is impermeable for polar molecules, it is not possible to replenish them.
The oil phase is only permeable for inhibiting but not for activating species. As a conse-
quence, Turing patterns prevalently emerge on hexagonal carpets of BZ droplets (Fig. B.7b).
Depending on initial conditions they can take the shape of patches, stripes and spots. Intro-
ducing yet another source of inhibitory coupling via global illumination based on the mean
grayvalue, leads to oscillating antiphase patterns, where direct neighbors never fire together.
In addition, there are also mixed oscillatory and Turing patterns, where one set of oscillators
ceases their activity, while the other oscillators continue to oscillate. Increasing the global
feedback strength enlarges the domain of the mixed patterns.

B.1.5 Setup V: Discrete oscillators

Figure B.8 | Setup V: A large reservoir of chemical micro-oscillators is fixated on an acrylic glass
plate in an open thermostatted reactor126. During their oscillation cycles they emit fluorescence
photons (red arrows), which are recorded as grayvalues with a hardware-triggered (NI-USB 6000)
CMOS camera (Imaging Source DMK 23UX174) and a 50 mm objective. The values are sent to
a computer to determine the projected light intensity Ii on oscillator i according to (4.24). This
feedback (blue arrows) is applied to the oscillators with a spatial light modulator (Casio XJ-A140V).
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Version V is specifically developed to support a large number of addressable oscillators and
simultaneously allow for independent and individual control of every oscillator334. The
setup only features a single optical axis due to the fact, that the ruthenium-tris(dimethylene-
bipyridine) catalyst (Ru(dmbipy) 2+

3 ) absorbs light around λ = 450nm and emits fluorescence
photons for λ > 600nm. This allows for the spectral separation of control and observation
light. An additional improvement over version III (section B.1.3), is the use of three additional
dimethylene groups as ligands in the ruthenium based catalyst Ru(dmbipy) 2+

3
126. They keep

the catalyst sterically fixated in the bead polymer matrix, such that it can not leak. This
greatly reduces aging effects. The spatial drifting problem is resolved as well by confining
the location of all beads. Every bead is trapped within a well on the acrylic glass plate and
sealed off under a silica hydrogel layer. The setup also relies on modifying the projector for
high blue light intensities (Fig. B.3b). Since the cross section of each bead is very small
(Fig. 4.4a), they require a bright light intensity for successful manipulation. Note that the
setup also allows for experiments on continuous systems, as the bead plate can readily be
exchanged with a plate holding a gel layer. In this case the observed grayscale images will be
inverted in comparison to images from version II (section B.1.2). This is because the reduced
form of the catalyst emits fluorescence photons, whereas in version II the oxidized form of
the catalyst is transmissive for visible light.

Micro-oscillator preparation

It is known, that the size of the beads has an impact on the oscillation period325, because
reagent exchange with the surrounding solution scales with the bead surface area. Here, we
employ a sieving procedure for bead size homogenization with a custom-built sieve machine
(Fig. B.9a). Its components are a default laptop that hosts a frequency generator program.
The output is fed to an amplifier (Phase Evolution RS4) and powered by a DC generator with
13 V (Statron, Model 3233). The amplifier is connected to a subwoofer speaker (SXCTRON,
S8P12W, 12 inch membrane diameter, 200 W). Once turned on, the low-frequency vibration
of the membrane (18 Hz) is transferred to the sieve tower that is fixated on the membrane
by two-sided tape and crossed rubber bands. To reduce movement, the speaker is fitted to a
wooden base and weighted with a heavy lead block. The sieve tower consists of a collection
basin, three sieves of 10 cm diameter (Retsch) with mesh sizes, 106 µm, 112 µm and 125 µm,
as well as a glass top. We employ three stages to reduce the load on the sieve in the middle,
because if there are too many particles, they clog the sieve mesh. To increase the throughput
of the sieving process, we also add glass beads of 1 mm diameter (Retsch) to each sieve. Their
kinetic energy pushes the resin through the holes. After two hours of sieving, the beads are
separated well by their diameters and are collected from the sieves. The quality of the sieving
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Figure B.9 | Size homogenization of micro-oscillators. (a) Photograph of the custom-built sieve
machine. (b) The distribution shows the narrow period selection used for the experiment shown in
figure 4.8. The tails of the distribution are due to oscillator beads with abnormal concentrations of
catalyst and the second peak is due to double occupancy of some wells.

process is controlled by measuring the beads under a basic light field microscope (Motic
SMZ-143 Series) with a mounted camera (ImagingSource DFK 21AUC03). The particles and
their sizes are detected automatically employing OpenCV algorithms in Python. Sieved resin
beads, mbeads = 1.0g in VH2O = 5ml H2O, are mixed by a vortex mixer (Velp Scientifica) in
a test tube with Vcat = 15ml of ccat = 1.66mM Ru(dmbpy) 2+

3 solution. The latter is slowly
added with a pipette over a span of 10 minutes. Mixing continues autonomously for two
days to achieve a homogeneous catalyst loading of 2.5×10−5 mol Ru(dmbpy) 2+

3 /g resin on
all beads. To achieve a desired catalyst load nload, the required catalyst concentration ccat can
be calculated according to:

ccat[mM] = nload[10−6 molg−1] · mbeads[g]
VH2O +Vcat[ml]

. (B.4)

The outcome of this process is verified by color saturation measurements (Fig. 4.4b). Note
that an overloading of beads with Ru(dmbipy) 2+

3 leads to the decay of the catalyst. This
can be inferred from exposure to ultraviolet light, to which the intact catalyst responds
with fluorescence. Also the color of beads turns to pitch black, if there was too much
catalyst loaded on them. The catalyst-loaded beads are placed on an acrylic glass plate
with 64×44 = 2816 wells. The wells have a depth of 150 µm, a diameter of 200 µm, and
a separation of 400 µm, covering an area of 3.8×2.6cm2. To allow for distribution of the
beads, the plate is coated with methanol or a water-surfactant (Titan X 0.05 %) mixture to
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lower the surface tension. A fine brush is used to place a single bead in each well. For
convenient placement, a CCD camera is mounted to a microscope so the placement progress
can be viewed via a computer screen.
After three hours, the beads are sealed in their wells by applying liquid silica hydrogel with
20 shots from a spray bottle. Surfactant is added to the mixture, to reduce surface tension,
which otherwise induces droplet formation from the sprayed mist. Note that spilling the
liquid hydrogel over the plate would pull the beads out of the holes, that they were carefully
placed in. Afterwards the hydrogel is allowed to solidify and dry for 30 minutes and the plate
is stored in a mildly acidic solution.
On the next day, the plate, prepared with oscillator beads, is installed in the reactor. Catalyst-
free BZ solution is pumped into the reactor to allow for the BZ reaction to occur, but only
at the bead locations. From the array of chemical oscillators, we select oscillators based on
their natural oscillation periods, as shown in Fig. B.9(b).

B.1.6 LabVIEW Control Program

Figure B.10 | Camera display correlation. This routine projects 5× 5 crosses subsequently at
equally spaced positions on the reactor plane, that are recorded with the camera. If a cross is not
found, it performs a random walk until it is sharp enough to be detected at a different location.

The program to control setups II and V is written in LabVIEW as it provides an intuitive user
interface to the experimentalist. Its architecture follows an object-oriented approach to allow
for the simple integration of future experiment routines.
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Figure B.11 | Bead detection and selection. The image shows the bead array on the acrylic glas plate
overlaid with red and blue lines based on spatial information that was entered by the experimentalist.
Only beads that are located inside blue boxes are accepted as valid oscillators. The scatter plot shows
the periods of the currently selected oscillators.

Before any experiments can be performed, the setup needs to be initialized. It requires a
mapping between coordinates on the virtual projector image and coordinates in the real-
world that are observed with the camera. The mapping is used to correctly spatially address
different locations on a continuous gel or individual nodes in a network. The spatial mapping
is based on a homographic transformation425, which corrects for perspective distortions. To
find it, a number of white crosses are applied by the projector at different locations on the
reactor plane (Fig. B.10). With an image recognition routine, these crosses are detected in
the camera images. After all crosses were found, the matrix elements in the homographic
transformation are computed employing a linear regression.
In the case of experiments with networks, the available beads must be located and character-
ized (Fig. B.11). Since each bead is located in a well on a rectangular grid, the dimensions
of this grid in the camera image are required by the program to assign each oscillating pixel
in the grid to a bead. Pixels without oscillations of sufficient amplitude are discarded. Beads
are further filtered based on their size. Even after the mixing procedure there might be few
very small or very large outliers that are left over. Also a single well may be occupied by
two beads, which appears as a single large one. Furthermore the oscillation is tested for its
relaxation character exhibiting a steep rise and a slow decay. False oscillations can occur that
are due to pinned CO2 bubbles periodically growing and bursting. Once all true oscillators in
the reservoir have been identified, they can be further filtered based on the natural oscillation
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Figure B.12 | Experiment supervision. This frontpanel allows for selecting from a number of
different types of network experiments and initial conditions. While the experiment runs, the live
dynamics of a subset of all nodes as well as feedback applied to them is visualized.

periods for example to achieve a narrow or multi-peaked period distribution. Another option
is to filter the beads by their responsiveness to light perturbations.
Once all suitable oscillators have been selected, they can be coupled into a desired network
with a chosen coupling function (Fig. B.12). After an initial condition stage during which
individual oscillator phases are entrained by local periodic feedback to show a desired
starting condition, the coupling function takes over and continues autonomously until the
preprogrammed experiment duration expires. Then all data is saved to binary files for later
analysis and visualization. As a means of quickly exploring parameter space, it is also
possible for the experimentalist to change coupling parameters like coupling strength K and
time delay τ during the experiment. The effect of these changes can be followed in a live
visualization of the oscillators.
Variations of this program were developed in LabVIEW and MATLAB to suit the require-
ments for experiments in the workgroups of Kenneth Showalter in Morgantown and Vladimir
Vanag in Kaliningrad.
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B.2 Numerical Implementations

Simulations of three-dimensional spatial domains of nonlinear PDEs (chapter 2) or nonlocally
coupled equations in two dimensions (chapter 4) are computationally very expensive and
take a long time.
For this reason a simple, but fast forward Euler integrator158,426 is implemented. In order to
discretize an autonomous continuous dynamical system,

d
dt
c(t) = f (c(t)) (B.5)

with local dynamics f and a dynamical variable vector c(t), the time evolution is discretized
into steps t → ti = i∆t and the time derivative is replaced with a difference quotient. The
shorthand notation ct+1 = c(ti+1) is introduced here for clarity,

d
dt
c(t)→ ∆c

∆t
=

ct+1−ct

ti+1− ti
= f(ct)← f(c(t)). (B.6)

Solving now for ct+1 the forward Euler scheme is:

ct+1 = ct +∆tf(ct). (B.7)

Note that the choice of the time index in the local dynamics gives rise to either the explicit
Euler scheme for ct or the unconditionally stable, implicit Euler scheme for ct+1 158.
Introducing spatial coupling leads to a reaction diffusion equation:

∂

∂ t
c(x, t) = f(c(x, t))+D

∂ 2

∂x2c(x, t). (B.8)

This PDE is translated into a set of coupled ODEs via the method of lines158. Discretizing
space x→ xi = i∆x and replacing spatial derivatives with difference quotients yields:

∂

∂ t
ci(t) = f(ci(t))+D

ci+1(t)−2ci(t)+ci−1(t)
∆x2 . (B.9)

In the final step this system of ODEs can be discretized in the same way as (B.5), yielding:

ct+1
i = ct

i +∆t
(
f(ct

i)+D
ct

i+1−2ct
i +ct

i−1

∆x2

)
. (B.10)
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Figure B.13 | Runtime reduction due to GPU algorithm. (a) Comparison of runtimes on GPU vs
CPU for the three-dimensional diffusion problem. Note that the tiling algorithm does not lead to an
improvement, as the stencil size is too small. (b) Runtime comparison for nonlocally coupled systems.
Here, the FHN model is used to portray the speedup for single and double precision. For the tiling
algorithm to be effective in the case of double precision numbers, the hardware settings of the GPU,
such as block size of concurrent threads must be tuned finely. For small problems the CPU version
outperforms the GPU version, since it avoids the overhead of transferring data to the GPU. Used
hardware in the test: (CPU) Intel i5-2500 4 cores @ 3.30 GHz, 8 GB RAM; (GPU) Nvidia GTX 970,
CUDA 8.0, block size = 242 threads, 4 GB RAM

More accurate higher order methods as well as multi-step methods of the Runge-Kutta type,
or predictor-corrector algorithms like Adams-Bashforth158, take a longer computation timea,
but do not lead to qualitative differences with the Euler scheme once the time step ∆t is small
enough. This is due to the dissipative character of the local dynamics, which always attracts
the trajectory back to the limit cycle or fixed points. Note that time-adaptive methods158 can
lead to a speed-up for a single oscillator. However, for a grid of coupled units, a speed-up
is only achieved when all oscillators move in unison. In other cases, there is one oscillator,
which will move in fast region of phase space and limit the time step to its smallest possible
value. This results effectively in a non-adaptive method.
Even with the simple and fast Euler integrator, long simulations or parameter searches are
prohibitively long. However, the numerical problem is very amenable to parallelization. The
local dynamics and the coupling of each oscillator can be solved consecutively in such a way,
that the calculations for each oscillator occur mostly independently. For a large number of
oscillators, the large number of processors on a GPU428 is perfect. CPU parallelization of 4
cores is already advantageous but ultimately can not compete with over a 1000 parallel cores
of a GPU. For demanding computations presented in this thesis an Nvidia GTX 970 with 4
GB RAM was used. In the case of three-dimensional scroll rings a speed-up of factor 25 was

aOne exception is the exponential time-differencing algorithm ETDRK4427, which is also very fast for
PDEs in three spatial dimensions. However, it is less effective for nonlocally coupled systems.



B.2 Numerical Implementations 121

achieved and two-dimensional nonlocally coupled systems ran 2-4 times faster on the GPU
in comparison to the CPU (Fig. B.13).

The code for computing spiral wave chimeras is available on public Git repository:
https://github.com/bzjan/Spiral_Wave_Chimera_Solver.git

B.2.1 CUDA Solver

For nonlocal coupling a speed up can be achieved by exploiting the shared memory of
the GPU for faster access speeds. Whereas for the diffusion problem only a few nearest
neighbors are used for the computation, in the case of nonlocal coupling, a large number of
neighbors will be required. Thus many values will be reused multiple times. This fact can
be exploited by preloading all values into the shared memory section of the GPU, which is
known as tiling algorithm429.

https://github.com/bzjan/Spiral_Wave_Chimera_Solver.git
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Algorithm B.1 | CUDA pseudocode for solving a reaction-diffusion equation. CUDA-specific syntax
is highlighted in green. An introduction to the CUDA programming language can be found in the
literature428–430. Here only a part of loading data from the host to the device memory (lines 1-5) is
shown as well as the parallelized evaluation of local dynamics (lines 8-18) and coupling (lines 21-42)
together with the function call (lines 45-54).

1 // transfer array to GPU
2 array_size = nx*ny*sizeof(double2);
3 cudaMalloc(&(d->c),array_size);
4 cudaMalloc(&(d->cnew),array_size);
5 cudaMemcpy(d->c,h.c,array_size,cudaMemcpyHostToDevice);
6
7
8 // local dynamics (FHN model)
9 __global__ void reaction(double2* c, double2* cnew, int len, double dt){
10 double ooeps=1.0/0.05;
11 double a=0.9;
12
13 int i = threadIdx.x + blockDim.x*blockIdx.x;
14 if(i<len){
15 cnew[i].x=c[i].x + dt*( ooeps*(c[i].x-1.0/3.0*c[i].x*c[i].x*c[i].x-c[i].y) ); // u
16 cnew[i].y=c[i].y + dt*( c[i].x + a ); // v
17 }
18 }
19
20
21 // spatial coupling
22 __global__ void diffusion(double2* c, double2* cnew, int nx, int ny, const double2 diffs){
23
24 int x = threadIdx.x + blockDim.x*blockIdx.x;
25 int y = threadIdx.y + blockDim.y*blockIdx.y;
26 if(x<nx && y<ny){
27 int idx = x + y*nx;
28
29 int left=idx-1;
30 int right=idx+1;
31 int top = idx + nx;
32 int bottom = idx - nx;
33
34 // Neumann BC
35 if(x==0) left++;
36 if(x==nx-1) right--;
37 if(y == ny-1) top -= nx;
38 if(y == 0) bottom += nx;
39
40 cnew[idx] += diffs*( c[left] + c[right] + c[top] + c[bottom] - 4.0*c[idx] );
41 }
42 }
43
44
45 // solve reaction diffusion equation
46 int warpsize=32;
47 dim3 nBlocks((ncomponents*n-1)/warpsize+1);
48 dim3 nThreads(warpsize);
49
50 for(int t=0; t<nsteps; t++){
51 reaction<<<nBlocks,nThreads>>>(d->c,d->cnew,nx*ny,dt);
52 coupling<<<nBlocks,nThreads>>>(d->c,d->cnew,nx,ny,diffcoeffs);
53 swapGPU(d->c,d->cnew);
54 }
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Algorithm B.2 | CUDA pseudocode for long-range coupling via tiled429 convolution. The algorithm
consists of three steps. First, all threads in the block preload data that will later be needed for the
coupling into shared memory for faster access (lines 15-22). The two-dimensional thread indices
in the block are aligned with the positions in the input tile. However, the output tile is smaller
than the input tile, since edge positions are filled with tile boundary values. Thus the convolution
operation (lines 25-36) only uses a subset of the threads available. In the last part, the result is scaled
appropriately and added on the output array (lines 39-41).

1 template <int maskRadius>
2 __global__ void nonlocal_delay_homo_tiled_zbke2k_2d(double2* input, double2* output, \
3 double2* input_delay, int width, int height, int o_tile_width, \
4 const double* __restrict__ M, const double2 coupleCoeff){
5
6 extern __shared__ double input_shared[];
7
8 int tx = threadIdx.x;
9 int ty = threadIdx.y;
10 int col_o = blockIdx.x*o_tile_width+tx;
11 int row_o = blockIdx.y*o_tile_width+ty;
12 int col_i = col_o-maskRadius;
13 int row_i = row_o-maskRadius;
14
15 int idx = col_i+row_i*width;
16 double output_temp{};
17 if((row_i>=0) && (row_i<height) && (col_i>=0) && (col_i<width)){
18 input_shared[tx+ty*blockDim.x] = input_delay[idx].y;
19 }else{
20 input_shared[tx+ty*blockDim.x] = 0.0;
21 }
22 __syncthreads();
23
24
25 if(ty<o_tile_width && tx < o_tile_width){
26 double ksum{};
27 int maskWidth=2*maskRadius+1;
28 double input0=input[row_o*width+col_o].y;
29 for(int i=0; i<maskWidth; i++){
30 for(int j=0; j<maskWidth; j++){
31 output_temp += M[j*maskWidth+i] * !!input_shared[i+tx+blockDim.x*(j+ty)] * \
32 (input_shared[i+tx+blockDim.x*(j+ty)] - input0);
33 }}
34 }
35 __syncthreads();
36 }
37
38 if(row_o<height && col_o<width && tx<o_tile_width && ty<o_tile_width){
39 output[row_o*width+col_o] += couplecoeff*max(output_temp,-5.25e-4);
40 }
41 }
42
43
44 int maskWidth=2*maskRadius+1;
45 int o_TileWidth=blockWidth-maskWidth+1;
46 dim3 nBlocks((nx-1)/o_TileWidth+1,(ny-1)/o_TileWidth+1);
47 dim3 nThreads(blockWidth,blockWidth);
48 int mem_size=blockWidth*blockWidth*sizeof(double);
49
50 nonlocal_delay_tiled_2d<maskRadius><<<nBlocks,nThreads,mem_size>>>(d->c, \
51 d->cnew,d->cdelay,nx,ny,o_TileWidth,d->mask,d->coupling_coeffs2);
52 }





Appendix C

Chemistry

C.1 Belousov-Zhabotinsky reaction

The Belousov-Zhabotinsky (BZ) reaction is the protoypical chemical oscillator431–434: Over
the course of the reaction it exhibits periodic changes in the concentrations of intermittently
produced and consumed chemical species.

C.1.1 History & Applications

Discovered serendipitously in 195143, it has been employed as an experimental proving
ground for a variety of counter-intuitive mathematically predicted phenomena, such as
deterministic chaos435,436, chaos control437, mixed-mode oscillations438, collective syn-
chronization397, spiral wave and scroll wave dynamics and control89,125,439,440, stochas-
tic resonance441,442, coherence resonance443,444, Turing mechanism312,445,446 and chimera
states244,245.
In addition a number of applications based on the BZ reaction were developed, i.e. chem-
ical diodes447, parallelized chemical computation448–451, memory devices452,453, image
segmentation454, quantitative chemical sensors455, neuromorphic spike-timing dependent
plasticity25, autonomously moving agents27,117,456, message encryption457, biomimetic self-
oscillating hydrogels, whose volume changes are entrained to the chemical oscillations23.
They open the door for pistons in microfluidic devices, active metamaterials, peristaltic mass
transport and models of organs, such as intestine, uterus and the heart, as well as actuators in
soft robotics.
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C.1.2 Apparent violation of the second law of thermodynamics

The reaction was initially dismissed43,431 as impossible, since it apparently violated the sec-
ond law of thermodynamics: ∆S≥ 0; or equivalently from a chemical standpoint: ∆G≤ 0458.
Acceptance was not until after the work by Field, Körös and Noyes, who – in elucidating
the underlying chemical mechanism – indeed showed that the oscillations did not violate
the second law of thermodynamics459–463. The resolution of the paradox is that the oscilla-
tions occur not through the thermodynamic equilibrium but far from it. Thus the reaction
enthalpy G decreases monotonically while periodically switching between a fast and a slow
rate. Without external replenishment of reagents, the oscillations will eventually cease and
the system will move towards thermodynamic equilibrium33,431.

C.1.3 Reaction mechanism

The Belousov-Zhabotinsky reaction is the oxidation of an organic substrate (usually malonic
acid, MA) in an acidic medium in the presence of a redox-catalyst (Mred / Mox)433,460. In the
absence of a catalyst the net reaction,

3 MA + 2 BrO –
3 + 2 H+ 2 BrMA + 3 CO2 + 4 H2O, (BZ)

is very slow even though its free enthalpy change is very large433. Introducing a catalyst
into the system allows for a faster pathway and leads to the aforementioned concentration
oscillations. The most complete reaction scheme to date involves 37 species in 48 elementary
reactions381. However, the main mechanism433,460 behind the oscillations can be reduced to
a small subset and is depicted in figure C.1. The oscillation cycle can be divided into three
distinct phases: A, B and C. In each phase a different set of chemical reactions takes the
lead over the others. The protagonists are bromous acid (HBrO2), bromide (Br–) and the
oxidized form of the metal catalyst Mox. Starting with process B, we find that bromous acid
reproduces autocatalytically

HBrO2 + BrO –
3 + 3 H+ + 2 Mox 2 Mred + 2 HBrO2 + H2O, (AUTO)

where the presence of HBrO2 promotes its own further increase. The resulting exponential
growth is countered with decay via disproportionation:

2 HBrO2 HOBr + BrO –
3 + H+. (R7)
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Once both processes balance out, HBrO2 will reach a quasi-steady concentration. However,
the reaction cycle does not end here, since the reduced form of the catalyst Mred in reac-
tion (R6) gains an electron and thus attains its oxidized form Mox. Even though Mox does
not directly compromise the autocatalytic production, it brings out the seeds for its future
decline by providing the fuel for process C.
In its oxidized form, the catalyst Mox is an electron donor, also known as an oxidizing agent.
This allows Mox to oxidize not only MA, the original organic substrate, but bromomalonic
acid (BrMA) as well:

6 Mox + MA + 2 H2O 6 Mred + FA + 2 CO2 + 6 H+, (R9)

4 Mox + BrMA + 2 H2O 4 Mred + Br– + FA + 2 CO2 + 5 H+. (R10)

Note that process C is not understood in its entirety433, since MA and BrMA give rise to a
large number of different radicals and organic acids. That is the reason why instead of giving
a complete set of reactions, figure C.1 only shows the relevant reactions that are agreed upon
in the literature433,436,464. The most important product of these reactions is bromide Br–, the
inhibitor.
Its role becomes clear during process A. In a series of reactions an excess Br– concentration
leads to the decomposition of different oxybromine species whose remainders ultimately react
with MA to form new BrMA. Among these oxybromine species is the autocatalyst, HBrO2,
as well. Its concentration is kept in a low steady state since it is produced, but consumed as
well. As long as Br– is above a low critical concentration [Br–]cr, HBrO2 autocatalysis will be
suppressed. Only once enough of Br– is consumed during the production of BrMA, Process B
can start anew and initiate another cycle. Note that the reactions have been renumbered in
comparison to the original FKN paper460 for clarity.
In summary, process B describes the autocatalytic step or the positive feedback loop. Pro-
cess C switches from high HBrO2 to low HBrO2 by seeding process A with Br– which
poisons the autocatalytic step. This completes the delayed negative feedback.
From the standpoint of nonlinear dynamics, the reason for the oscillations is very simple. The
core principle of this mechanism can be identified as a switch between two coexisting, bistable
branches of high and low HBrO2 concentration. At high concentrations of the catalyst or the
controlling species, the transition may only occur from high to low HBrO2, while at small
concentrations the transition occurs from low to high concentrations. This mechanism has
been identified to lie at the heart of chemical oscillations465 and was successfully employed
to design new chemical oscillators466,467.
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C.1.4 Redox catalysts

As is evident from the oscillation mechanism, a suitable catalyst is required to receive
an electron from one species (oxidation, R6) and later donate it to another (reduction,
R9 and R10). Thereby forming Br– from BrO –

3 . This kind of catalyst is called a redox-
catalyst468. In addition the catalysts for the BZ reaction exhibit different colors depending on
their oxidation state. This allows for simple visual recording of the concentration oscillations.
Originally Belousov utilized the transition metal cerium, whose ions are colorless in the
reduced state Ce(III) and appear yellow in the oxidized state Ce(IV)43. Another example is
the transition metal complex ferroin, the cation of 1,10-(ortho)-phenanthroline ferrous sulfate
or Fe(phen), which exhibits a strong contrast between red (Fe(phen)3+) and blue (Fe(phen)4+)
colors during different phases of the oscillation cycle43. While the different oxidation states
of manganese Mn(II) and Mn(III) also exhibit color changes between transparent and red,
this catalyst is also employed in setups, where the oscillation state is tracked using magnetic
resonance imaging (MRI)469. The oscillation cycle can also be tracked potentiometrically
with concentration-specific electrodes460, thermometrically470, calorimetrically471 or via
chemiluminescence472,473.
Among the BZ catalysts, the ruthenium-tris(2,2’-bipyridine) complex (Ru(bipy) 2+

3 )) or
Rubipy stands out434. Besides allowing for spectrometrical measurements, this catalyst
also introduces the possibility for control, since it is photo-sensitive416. After absorption of
photons at λ = 452nm, it turns from a weak reducing agent into a very strong one452,474,

Ru(bipy) 2+
3 + h̄ω

*Ru(bipy) 2+
3 . (R-L1)

The transition to the long-lived excited state474,475 allows the redox-catalyst to lend its
electrons even more easily to other reagents and thus catalyze more reactions than in the
ground state. It was shown that the previously unaccessible reaction,

*Ru(bipy) 2+
3 + Ru(bipy) 2+

3 + BrO –
3 + 3H+ HBrO2 + 2 Ru(bipy) 3+

3 + H2O, (R-L2)

is the main benefactor of the stronger reducing agent476. Due to light illumination, the
autocatalytic species HBrO2 is produced as well as oxidized catalyst Ru(bipy) 3+

3 which leads
to the delayed rise of the inhibitor Br–. In summary light illumination has both, a direct
excitatory and an indirect inhibitory effect on the oscillation cycle.
A later modification of the catalyst adds a dimethylene-group to each bipyridine ligand, which
increases the spectrometric contrast and steric fixation in hydrogel polymer matrices126 as
well as in cation-exchange resin particles. Furthermore Ru(bipy) 2+

3 and Ru(dmbipy) 2+
3 emit
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strong fluorescence intensity477 at λ > 600nm (Fig. 4.2c) that allows for robust tracking of
the oscillation cycle (see chapter 4). Note that interfering chemiluminescence is suppressed
at large concentration of [H2SO4]478.
Due to its desirable photoredox properties, the Rubipy catalyst and its derivatives474 are
popular in fields beyond the Belousov-Zhabotinsky reaction, such as luminescent sen-
sors479,480, environmentally friendly catalysis481,482, fuel cells483, photovoltaics484, light
emitting diodes485 as well as diagnostic486 and therapeutic applications487.

C.1.5 Parameter drift

Over the course of the BZ reaction, the amplitude and the period of oscillations change.
The phenomenon is known as parameter drift or aging346,488. This introduces a difficulty
absent from idealized numerical simulations. During the chemical reaction, reagents are
converted into products. The rates of change of the concentrations are functions of the
concentrations themselves, so they will change over time. However, even with an open
system126 that continuously feeds new reagents (BrO –

3 , MA) into the system and allows for
escape of gaseous products, most notably CO2, an aging effect can still be observed. This can
be due to the catalyst slowly leaking from the system, as in version II (appendix B.1.2) and
III (appendix B.1.3). After increasing the size of the ligands with three dimethylene groups,
the catalyst molecule is fixated in the hydrogel or bead polymer matrix, which resolves this
particular issue126. However, even with these precautions, there is still a non-vanishing
parameter drift. This might be due to slow oxidative degradation of the photocatalyst489,490

or the escape of gaseous intermediates such as Br2.

C.1.6 Troubleshooting

There are a number of strategies to overcome the shortcomings of the BZ reaction. Different
catalysts can be mixed resulting in what is called dual catalysts434. This way an experiment
can feature the strong optical contrast of the ferroin catalyst with the photosensitivity of
Rubipy catalysts. Another application is to combine absorption spectra of different catalysts
for tunable spectrometric properties.
It was shown that the rate of parameter drift can be drastically reduced by replacing the
hydrogen-donating acid (H2SO4 or HNO3) with a protic ionic liquid491,492.
Gaseous CO2 presents itself as a major problem since it leads to the growth of numerous
spherical inclusions that act as defect sites in solidified BZ gel systems. One remedy is to
use cyclohexanedione (CHD) as a replacement for MA as the organic substrate, since it does
not lead to CO2 formation493,494.
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Figure C.2 | Concentration Space Overview. Figures show the dynamical state of the FKN model
modified to account for light illumination in dependence of initial chemical reagent concentrations of
H2SO4, NaBrO3, MA and the metal catalyst M. States are automatically identified by checking for
monotonous convergence to a fixed point and its value as well as for oscillations by evaluating the
difference between the maximum and minimum concentration. The black dot is a reference point
for comparison with initial concentrations of [H2SO4]0 = 1.1 M, [NaBrO3]0 = 0.5 M, [MA]0 = 0.15 M

and [M]0 = 25mM.

Mixing the BZ reagent with the correct concentrations does not lead to immediate oscillations.
Usually it takes a few minutes up to an hour, before oscillations start. This time interval is
known as the induction period461, during which intermediate species are slowly built up for
the ensuing oscillations. The induction period can be decreased by adding Br– and BrMA to
the initial reagent mixture326.
To ensure reproducibility of experiments it is important to thoroughly remove any trace
amounts of oxybromine species including Br2 from reactor chambers that are to be used
again. For one set of experiments, chemicals from only the same batch should be used. In
addition the employed chemical reagents should be of analytical grade as they can contain
impurities that perturb the reaction495. All BZ reagents can be obtained from chemical
vendors. Variations of the standard reagents, e.g. the Ru(dmbipy) 2+

3 catalyst must be
produced via repeated reflux and recrystallization126,496,497 or microwave synthesis498.
Finding the right concentrations for an excitable or oscillatory system can be accelerated
with a quantitative numerical model of the BZ reaction (see FKN model (C.1)). Employing
the rate constants compiled in table C.2, the behavior of the BZ system can be simulated for
a range of initial reagent concentrations.
The effect of the different reagents on the dynamics of the BZ reaction can be seen in
figure C.2. Increasing the sulfuric acid (H2SO4) concentration, and thereby the proton (H+)
concentration, leads to a transition from a stable fixed point through a Hopf bifurcation with
consecutive Canard explosion499,500 to a large stable limit cycle. Following another Hopf
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bifurcation the fixed point becomes stable again, but this time it is located at large values of
the oxidized catalyst. Perturbations to the fixed point at low oxidized catalyst concentration
lead to a large phase space excursion, while perturbations to the fixed point at high oxidized
catalyst concentrations do not. So only the fixed point at low oxidized catalyst corresponds to
excitability. The result of increasing bromate concentration [BrO –

3 ] is the same as increasing
[H2SO4], while increasing [MA] or the total catalyst concentration has the opposite effect.
Note that [H+] is not linearly dependent on [H2SO4], but is based on the Hammett acidity
function, whose values are given in the literature501. These diagrams can be used to tune
concentrations of an experiment in order to find the desired dynamical behavior.

C.1.7 Chemical recipes

The concentrations for the different experiments described in this thesis are listed in table C.1
for reproducibility.

Table C.1 | Employed initial concentrations for the experiments. Note that the units of the catalyst
depend on the type of the experiment. In experiments with continuous hydrogels, the concentration
is given in mM, whereas with discrete particles, the unit is amount of catalyst in moles per mass of
exchange resin in grams.

concentration scroll ring162 scroll ring152 network217 network334

experimental setup version I version II version III version V

[H2SO4]0 (M) 0.16 0.39 0.78 0.77
[NaBrO3]0 (M) 0.04 0.2 0.48 0.51

[NaBr]0 (M) 0 0.09 0.02 0.08
[MA]0 (M) 0.04 0.17 0.08 0.16

[Mred + Mox]0 0.5mM 4.5mM 8.3×10−6 mol/g 2.5×10−5 mol/g

catalyst Fe(phen) 2+
3 Ru(dmbipy) 2+

3 Ru(bipy) 2+
3 Ru(dmbipy) 2+

3

dynamics oscillatory excitable oscillatory oscillatory



C.2 Overview of numerical models 133

C.2 Overview of numerical models

The reaction mechanism by Field, Körös and Noyes460 as detailed above contains 37 chemical
species and 48 reaction steps. It can be translated into a system of first order differential
equations, which are amenable to numerical simulation. The conversion involves standard
techniques from reaction kinetics458: mass action law, adiabatic elimination, also known as
quasi steady state approximation, and bath approximation, which assumes reactant species to
be so abundantly available, that their concentration is constant. The resulting FKN model
consists of seven coupled ordinary differential equations460,464, which capture the dynamics
of the BZ reaction semi-quantitatively:

U̇ =−k2UW + k1W −2k7U2− k5U + k−5R2 + k6SR,

V̇ =−k9V − k10V + k6SR,

Ẇ =−k2UW − k1W − k3WP+ k−3O+ k4O+ k10V,

Ȯ = k3WP− k−3O− k4O,

Ṗ = 2k2UW + k1W + k7U2− k3WP+ k−3O− k8P,

Ṙ = 2k5U−2k−5R2− k6SR,

Ṡ = k9V + k9V − k6SR.

(C.1)

The variables U , V , W , O, P, R, S stand for the concentrations of bromous acid (HBrO2),
oxidized catalyst (Mox), bromide (Br–), hypobromous acid (HOBr), bromine (Br2), hypobro-
mous acid radical (BrO2 ) and reduced catalyst (Mred), respectively. All ki are reaction rate
constants and their values are listed in table C.2. Note that the rate constants and variables
have been renamed for consistency throughout this chapter.

Table C.2 | FKN model. Reaction rate constants of the FKN mechanism and their values421. Due to
discrepancies in the literature126,326,421,433 the following rate constants are selected, since they lead to
agreement with experimental observations in the photosensitive BZ reaction464. The concentrations
of bath reagents are absorbed into the rate constants.

rate constant value rate constant value

k1 2 M−3s−1[H+] 2
0 [BrO –

3 ]0 k−5 2×108 M−1s−1

k2 2×106 M−2s−1[H+]0 k6 5×106 M−1s−1

k3 5×109 M−2s−1[H+]0 k7 3×103 M−1s−1

k−3 10s−1 k8 9.3 M−1s−1[MA]0
k4 29 M−1s−1[MA]0 k9 0.05 M−1s−1[MA]0
k5 42 M−2s−1[H+]0[BrO –

3 ]0 k10 1 M−1s−1[BrMA]0



134 Chemistry

An analysis of the involved time scales502 reveals which chemical species may be adiabati-
cally eliminated for further simplification. After taking into account that the total catalyst
concentration is conserved and non-dimensionalization, the resulting qualitative model reads:

u̇ =
1
ε1

(
−w(u−µ)−u2 +u

)
,

v̇ = u− v,

ẇ =
1
ε2
( f v+φ −w(u+µ)).

(C.2)

The remaining variables u, v, w stand for the dimensionless concentrations of HBrO2, Mox

and Br–. Conversion formulas for the parameters434 are found in table C.3. Since the organic
reaction pathways are not known in detail, the production of Br– can be estimated with a
stoichiometric factor f . This factor relates the number of produced moles of Br– from a mole
of consumed Mox

433,463. Note that this model is called the Modified Complete Oregonator415,
since it incorporates the effect of light exposure into the original Oregonator model463. Here,
light illumination was thought to exclusively produce the inhibitor Br– via

*Ru(bipy) 2+
3 + BrMA Ru(bipy) 3+

3 + Br–. (R-L3)

This reaction is accounted for as an additive bromide source term φ . However, the model
neglects the excitatory impact of light476, as described in reaction R-L2.
Adiabatically eliminating the inhibitor species w, leads to the two-component Oregonator
model463,502:

u̇ =
1
ε1

(
u(1−u)− u−µ

u+µ
( f v+φ)

)
,

v̇ = u− v.
(C.3)

Table C.3 | Oregonator models. Conversion formulas434 for parameters in (C.2) and (C.3). The
same rate constants464 as in table C.2 are employed. Majuscule and minuscule variables stand for
concentrations with and without dimensions, respectively. Bath species are abbreviated as A= [BrO –

3 ]0
and B = [BrMA]0 = 0.1[MA]0

464 and H = [H+]0 (via Hammett acidity function501).

u =
2k7

k5A
U v =

k7k10B
(k5A)2 V w =

k2

k5A
W τ = k10Bt

ε1 =
k10B
k5A

ε2 =
2k7k10B
k2k5A

µ =
2k1k7

k2k5

k1 = 2 M−3s−1H2A k2 = 2×106 M−2s−1H k5 = 42 M−2s−1HA

k7 = 3×103 M−1s−1 k10 = 1 M−1s−1B
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Table C.4 | Rovinsky model. Rate constants and conversion formulas154 for parameters in (C.4).
Majuscule and minuscule variables stand for concentrations with and without dimensions, respectively.
Bath species are abbreviated as A = [BrO –

3 ]0 and B = [BrMA]0 = 0.1[MA]0
464, C = [Mred]0 +[Mox]0

and H = [H+]0 (via Hammett acidity function501).

u =
2k4

k1A
U v =

1
C

V τ =
(k1A)2H

k4C
t

ε =
k1A
k4C

α =
k4k8B

(k1AH)2 β =
2k4k13B

(k1A)2H
µ =

2k4k6

k1k5

k1 = 10 M−2s−1 k4 = 1.7×103 M−2s−1 k5 = 106 M−2s−1

k7 = 1.5M−2s−1 k8 = 2×10−6 Ms−1 k13 = 10−7 s−1

Later Rovinsky and coworkers154,503,504 devised another model (C.4) based on a slightly
augmented FKN scheme that leads to semi-quantitative agreement between simulations and
experiments in case of the ferroin-catalyzed BZ-reaction:

u̇ =
1
ε

(
u(1−u)− u−µ

u+µ

(
β +2q

αv
1− v

))
,

v̇ =
(

u− αv
1− v

)
.

(C.4)

The variables u and v stand again for the concentrations of HBrO2 and Mox, in this case
Fe(phen)4+. Conversion formulas for the parameters154 are found in table C.4. Note that
the photosensitivity of the ferroin catalyst416,505 is neglected. Instead the new parameter β

accounts for the slow hydrolysis of BrMA into Br–504. The other important change is the
replacement of the oxidized catalyst v with the ratio αv/1− v. This ratio results from
adiabatic eliminations of organic species while taking the sum of reduced and oxized catalyst
concentration as constant.
The ZBKE model by Zhabotinsky and Epstein326 and its later refinements by Taylor and
others244,434 build on the Rovinsky model (C.4) but in addition take into account explicitly
the concentration of the intermediate basic radical of bromous acid (HBrO +

2 ). This species
plays a role in process B during the radicalic oxidation of the catalyst:

BrO2 + H+ HBrO +
2 ,

Mred + HBrO +
2 Mox + HBrO2 ·
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Table C.5 | ZBKE model. Rate constants262 and conversion formulas326 for parameters in (C.5).
Majuscule and minuscule variables stand for concentrations with and without dimensions, respectively.
Bath species are abbreviated as A = [BrO –

3 ]0 and B = [BrMA]0 = 0.1[MA]0
464, C = [Mred]0 +[Mox]0

and H = [H+]0 (via Hammett acidity function501).

u =
2k4

k5HA
U v =

1
C

V τ =
(k5HA)2

2k4C
t µ =

2k3k4

k2k5H
γ =

k−5

k6

ε1 =
k5HA
2k4

ε2 =
(k5HA)2

2k4k6C2 ε3 =
k8

k−7HC
α =

2k4k7k8B
k2

5k−7H3A2 β =
2k∗4k9B
(k5HA)2

k2 = 2.0×106 M−2s−1 k3 = 2 M−2s−1 k4 = 3×103 M−1s−1

k5 = 33 M−2s−1 k−5 = 4.2×106 M−1s−1 k6 = 4.0×106 M−1s−1

k7 = 9.2×10−1 M−1s−1 k8/k−7 = 2.5×10−4 M2 k9 = 3.3×10−6 s−1

Its adiabatic elimination leads to a two-component model involving the activator u ([HBrO2])
and ox. catalyst v ([Ru(dmbipy) 3+

3 ]):

σss =
1

4γε2

(√
16γuε2 + v2−2v+1+ v−1

)
,

u̇ =
1
ε1

(
φ +u(−1−u)− u−µ

u+µ

(
β +q

αv
ε3 +1− v

)
+ γε2σ

2
ss +(1− v)σss

)
,

v̇ = 2φ +(1− v)σss−
αv

ε3 +1− v
.

(C.5)

Parameter formulas326 are listed in table C.5. Note that the oxidation of the catalyst
Ru(bipy) 2+

3 by radicals (reaction R6) is irreversible434 in contrast to ferroin. This means
the parameter δ in the original model326 vanishes. For modelling cation-exchange particles
loaded with BZ catalyst (chapters 3 and 4), the ZBKE model turned out to be superior over
the Oregonator (C.3), because it allowed for a larger spread of periods. In the simulations the
heterogeneity in periods was modeled by the stoichiometric parameter q.
For BZ nano- and microdroplets421, Vanag developed a number of models506,507, which are
based on the original FKN mechanism. The model presented here is designed to explicitly
account for non-polar Br2 molecules that are exchanged between the droplets through an oil
phase. To this end, the disproportionation of Br2 is taken into account as well,

Br2 + H2O Br– + HOBr + H+ ·

In addition the influence of the photosensitive catalyst Ru(bipy) 3+
3 is incorporated. The

light interaction is assumed507 to have an exclusive inhibitory impact via reactions (R-L1)
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and (R-L3). Also the decay of the excited state via fluorescent photon emission328 is taken
into account:

*Ru(bipy) 2+
3 Ru(bipy) 2+

3 + h̄ω. (R-L4)

Instead of invoking the bath approximation, the periodic time-evolution of [BrMA] is explicity
accounted for. The number of resulting differential equations are reduced by taking the total
catalyst concentration [Mred] + [Mox] C to be constant and adiabatic eliminations of HBrO ,
HOBr and *Mred. Furthermore terms with the smallest contribution to the rate of change
are eliminated507. However, as in all models presented before, the adiabatic elimination of
HBrO introduces a flaw in model: The autocatalytic production of HBrO2 (see R6) is not
limited by the concentration of Mred anymore. To resolve this issue, the rate constant k5 is
made dependent on Mred

506:

k′5 = k5
C−V

C−V +Smin
.

Here Smin is the smallest concentration of reduced catalyst during the oscillation cycle. For
large V , k′5→ k5 but for small V , k′5→ 0, which effectively stops the autocatalysis. The full
model is:

U̇ =−k1UW + k2W −2k3U2 + k4U
C−V

C−V +Smin
,

V̇ = 2k4U
C−V

C−V +Smin
− k9BV − k10V +

C−V
KL/B+1

φ ,

Ẇ =−3k1UW −2k2W − k3U2 + k7P+ k9BV +
C−V

KL/B+1
φ ,

Ṗ = 2k1UW + k2W + k3U2− k7P,

Ḃ = k7P− k9BV − k13B.

(C.6)

The variables U , V , W , P, B represent the species [HBrO2], [Mox], [Br–], [Br2] and [BrMA]
as in the FKN model (C.1). Values of rate constant are compiled in table C.6.
From the perspective of nonlinear dynamics, the chemical oscillations in the BZ system
require bistability and a controller species that moves the system between both stable
branches465. The bistability can be realized with a species that has a cubic nullcline. Both
properties are found in the FitzHugh-Nagumo model, which is the paradigmatic model of
neural dynamics348:

u̇ =
1
ε

(
u− 1

3
u3− v

)
+φ ,

v̇ = u+a.
(C.7)
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Table C.6 | Vanag model. Rate constants507 employed in (C.6). Majuscule and minuscule variables
stand for concentrations with and without dimensions, respectively. Bath species are abbreviated as
A = [BrO –

3 ]0, M = [MA]0, C = [Mred]0 +[Mox]0 and H = [H+]0 (via Hammett acidity function501).

Smin =
√

3krk10C/kred

k1 = 2×106 M−1s−1H k2 = 2s−1H2A k3 = 3×103 M−1s−1

k4 = 42s−1HA k7 = 29s−1M k9 = 20 M−1s−1

k10 = 0.05s−1M kr = 2×108 M−1s−1 kred = 5×106 M−1s−1

KL = 0.05

In neural systems, u corresponds to the membrane voltage and v to the fast gating variable432.
Model (C.7) features a supercritical Hopf bifurcation at a = 1 with a consecutive Canard.
This captures the essential characteristic dynamics observed in BZ models (Eqs. C.1 to C.6).
The time scale separation in the relaxation oscillations can be tuned via ε . The parameter φ

is introduced additively in the activator variable u to mimic the excitatory effect of light
illumination in the BZ reaction (R-L2). The different nature of the models is best illustrated
with a depiction of the phase space (or a projection thereof in the u-v phase plane) and their
respective phase response curves (PRC) in figure C.3.
Quantitative agreement between a model and an experiment is difficult to attain, as not
all values of the rate constants are available with high precision326,433. In addition small
temperature changes will lead to different rate constants due to the Arrhenius law458. Further-
more the purity of the employed reactants is not perfect and may contain impurities, such as
trace amounts of halogens e.g. Br– and Cl–, which strongly influence the sensitive dynamic
behavior of the BZ reaction495.
For the ferroin-catalyzed BZ reaction, the Rovinsky model (C.4) gave semi-quantitative
agreement with the experiments on spiral waves in continuous media162 and the FKN
model (C.1) yielded good results for a photosensitive BZ system with droplets464. The
Oregonator models, (C.3) and (C.2), are very useful to qualitatively describe an excitable
BZ system. The latest attempt in elucidating the role of light illumination in the BZ476

showed that the ZBKE model (C.5) incorporates the excitatory and inhibitory influence of
light correctly.
Besides the FKN model461, extensive chemical models are available that take into account a
wide range of concurrent reactions, such as the GTF model508, which was later simplified via
principal component analysis509. The most recent entry is the MBM model381 with detailed
dynamics for the organic subprocess. The above listing gives insight into finding reduced
models of the BZ reaction and an overview of the models used in this thesis.
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Figure C.3 | Model Overview. All models are compared via their limit cycle, time series and phase
response curve. (a) FKN (C.1), (b) modified complete Oregonator (C.2), (c) Rovinsky (C.4), (d)
ZBKE, (C.5) (e) FHN (C.7). The unfilled and half-filled markers in the limit cycle show the unstable
nodes and saddle points, respectively. Note that all models show a phase-reset character for species
that are identified as activators and a phase-delaying character with large negative contributions for
inhibitory species.





References

[1] R. Clausius. Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen
der mechanischen Wärmetheorie. Ann. Phys. 201, 353 (1865)

[2] M. S. Rappé, S. A. Connon, K. L. Vergin, and S. J. Giovannoni. Cultivation of the ubiquitous
SAR11 marine bacterioplankton clade. Nature 418, 630 (2002)

[3] B. Würsig, W. Perrin, B. Würsig, and J. Thewissen, eds. Encyclopedia of Marine Mammals.
Academic Press (2008)

[4] R. Danovaro, A. Dell’Anno, A. Pusceddu, C. Gambi, I. Heiner, and R. Møbjerg Kristensen.
The first metazoa living in permanently anoxic conditions. BMC Biol. 8, 30 (2010)

[5] A. Clarke, G. J. Morris, F. Fonseca, B. J. Murray, E. Acton, and H. C. Price. A Low Temperature
Limit for Life on Earth. PLOS ONE 8, e66207 (2013)

[6] G. Fiala and K. O. Stetter. Pyrococcus furiosus sp. nov. represents a novel genus of marine
heterotrophic archaebacteria growing optimally at 100◦C. Arch. Microbiol. 145, 56 (1986)

[7] E. Schrödinger. What Is Life? The Physical Aspect of the Living Cell. Cambridge University
Press (1944)

[8] J. D. Watson and F. H. C. Crick. Molecular Structure of Nucleic Acids: A Structure for
Deoxyribose Nucleic Acid. Nature 171, 737 (1953)

[9] P. Glansdorff and I. Prigogine. Thermodynamic Theory of Structure, Stability and Fluctuations.
Wiley (1971)

[10] I. Prigogine. Time, Structure, and Fluctuations. Science 201, 777 (1978)

[11] A. M. Turing. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37
(1952)

[12] A. T. Winfree. Biological rhythms and the behavior of populations of coupled oscillators. J.
Theor. Biol. 16, 15 (1967)

[13] T. H. Maiman. Stimulated Optical Radiation in Ruby. Nature 187, 493 (1960)

[14] H. Haken and H. Sauermann. Nonlinear interaction of laser modes. Z. Physik 173, 261 (1963)

[15] H. Haken. Synergetics: Introduction and Advanced Topics. Springer (2004)

[16] W. Ebeling. Strukturbildung bei Irreversiblen Prozessen. Eine Einführung in die Theorie
dissipativer Strukturen. Teubner (1976)

http://dx.doi.org/10.1002/andp.18652010702
http://dx.doi.org/10.1002/andp.18652010702
http://dx.doi.org/10.1038/nature00917
http://dx.doi.org/10.1038/nature00917
https://www.elsevier.com/books/encyclopedia-of-marine-mammals/wursig/978-0-12-373553-9
http://dx.doi.org/10.1186/1741-7007-8-30
http://dx.doi.org/10.1371/journal.pone.0066207
http://dx.doi.org/10.1371/journal.pone.0066207
http://dx.doi.org/10.1007/BF00413027
http://dx.doi.org/10.1007/BF00413027
http://www.cambridge.org/catalogue/catalogue.asp?isbn=0521427088
http://dx.doi.org/10.1038/171737a0
http://dx.doi.org/10.1038/171737a0
https://books.google.de/books/about/Thermodynamic_Theory_of_Structure_Stabil.html?id=vf9QAAAAMAAJ&redir_esc=y
http://dx.doi.org/10.1126/science.201.4358.777
http://dx.doi.org/10.1098/rstb.1952.0012
http://dx.doi.org/10.1016/0022-5193(67)90051-3
http://dx.doi.org/10.1038/187493a0
http://dx.doi.org/10.1007/BF01377828
http://dx.doi.org/10.1007/978-3-662-10184-1
https://books.google.de/books/about/Strukturbildung_bei_irreversiblen_Prozes.html?id=Zt1vnQEACAAJ&redir_esc=y
https://books.google.de/books/about/Strukturbildung_bei_irreversiblen_Prozes.html?id=Zt1vnQEACAAJ&redir_esc=y


142 References

[17] G. Ertl. Reactions at Surfaces: From Atoms to Complexity (Nobel Lecture). Angew. Chem.,
Int. Ed. 47, 3524 (2008)

[18] W. A. Zehring, D. A. Wheeler, P. Reddy, R. J. Konopka, C. P. Kyriacou, M. Rosbash, and
J. C. Hall. P-element transformation with period locus DNA restores rhythmicity to mutant,
arrhythmic drosophila melanogaster. Cell 39, 369 (1984)

[19] L. B. Vosshall, J. L. Price, A. Sehgal, L. Saez, and M. W. Young. Block in nuclear localization
of period protein by a second clock mutation, timeless. Science 263, 1606 (1994)

[20] J. L. England. Statistical physics of self-replication. J. Chem. Phys. 139, 121923 (2013)

[21] J. L. England. Dissipative adaptation in driven self-assembly. Nat. Nanotechnol. 10, 919
(2015)

[22] J. M. Horowitz and J. L. England. Spontaneous fine-tuning to environment in many-species
chemical reaction networks. Proc. Natl. Acad. Sci. USA 114, 7565 (2017)

[23] Y. S. Kim, R. Tamate, A. M. Akimoto, and R. Yoshida. Recent developments in self-oscillating
polymeric systems as smart materials: From polymers to bulk hydrogels. Mater. Horiz. 4, 38
(2017)

[24] M. Wehner, R. L. Truby, D. J. Fitzgerald, B. Mosadegh, G. M. Whitesides, J. A. Lewis, and
R. J. Wood. An integrated design and fabrication strategy for entirely soft, autonomous robots.
Nature 536, 451 (2016)

[25] H. Ke, M. R. Tinsley, A. Steele, F. Wang, and K. Showalter. Link weight evolution in a network
of coupled chemical oscillators. Phys. Rev. E 89, 052712 (2014)

[26] P. A. Merolla, et al. A million spiking-neuron integrated circuit with a scalable communication
network and interface. Science 345, 668 (2014)

[27] X. Lu, L. Ren, Q. Gao, Y. Zhao, S. Wang, J. Yang, and I. R. Epstein. Photophobic and
phototropic movement of a self-oscillating gel. Chem. Commun. 49, 7690 (2013)

[28] J. C. Nawroth, H. Lee, A. W. Feinberg, C. M. Ripplinger, M. L. McCain, A. Grosberg, J. O.
Dabiri, and K. K. Parker. A tissue-engineered jellyfish with biomimetic propulsion. Nat.
Biotech. 30, 792 (2012)

[29] S.-J. Park, et al. Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353, 158
(2016)

[30] T. Patino, R. Mestre, and S. Sánchez. Miniaturized soft bio-hybrid robotics: A step forward
into healthcare applications. Lab Chip 16, 3626 (2016)

[31] M. S. Lundberg, J. T. Baldwin, and D. B. Buxton. Building a bioartificial heart: Obstacles and
opportunities. J. Thorac. Cardiovasc. Surg. 153, 748 (2017)

[32] A. N. Zaikin and A. M. Zhabotinsky. Concentration Wave Propagation in Two-dimensional
Liquid-phase Self-oscillating System. Nature 225, 535 (1970)

[33] I. R. Epstein and J. A. Pojman. An Introduction to Nonlinear Chemical Dynamics: Oscillations,
Waves, Patterns, and Chaos: Oscillations, Waves, Patterns, and Chaos. Oxford University Press
(1998)

http://dx.doi.org/10.1002/anie.200800480
http://dx.doi.org/10.1016/0092-8674(84)90015-1
http://dx.doi.org/10.1016/0092-8674(84)90015-1
http://dx.doi.org/10.1126/science.8128247
http://dx.doi.org/10.1126/science.8128247
http://dx.doi.org/10.1063/1.4818538
http://dx.doi.org/10.1038/nnano.2015.250
http://dx.doi.org/10.1073/pnas.1700617114
http://dx.doi.org/10.1073/pnas.1700617114
http://dx.doi.org/10.1039/C6MH00435K
http://dx.doi.org/10.1039/C6MH00435K
http://dx.doi.org/10.1038/nature19100
http://dx.doi.org/10.1103/PhysRevE.89.052712
http://dx.doi.org/10.1103/PhysRevE.89.052712
http://dx.doi.org/10.1126/science.1254642
http://dx.doi.org/10.1126/science.1254642
http://dx.doi.org/10.1039/c3cc44480e
http://dx.doi.org/10.1039/c3cc44480e
http://dx.doi.org/10.1038/nbt.2269
http://dx.doi.org/10.1126/science.aaf4292
http://dx.doi.org/10.1039/C6LC90088G
http://dx.doi.org/10.1039/C6LC90088G
http://dx.doi.org/10.1016/j.jtcvs.2016.10.103
http://dx.doi.org/10.1016/j.jtcvs.2016.10.103
http://dx.doi.org/10.1038/225535b0
http://dx.doi.org/10.1038/225535b0
https://global.oup.com/academic/product/an-introduction-to-nonlinear-chemical-dynamics-9780195096705?cc=de&lang=en&
https://global.oup.com/academic/product/an-introduction-to-nonlinear-chemical-dynamics-9780195096705?cc=de&lang=en&


References 143

[34] R. H. Clayton, E. A. Zhuchkova, and A. V. Panfilov. Phase singularities and filaments:
Simplifying complexity in computational models of ventricular fibrillation. Prog. Biophys.
Mol. Biol. 90, 378 (2006)

[35] A. Karma. Physics of Cardiac Arrhythmogenesis. Annu. Rev. Condens. Matter Phys. 4, 313
(2013)

[36] A. T. Winfree. Electrical turbulence in three-dimensional heart muscle. Science 266, 1003
(1994)

[37] N. Joshi. Solitons. In “Encyclopedia of Nonlinear Science”, Taylor & Francis Group (2006)

[38] A. S. Mikhailov. Foundations of Synergetics I: Distributed active systems. Springer (1990)

[39] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its
application to conduction and excitation in nerve. J. Physiol. 117, 500 (1952)

[40] C. Koch. Biophysics of Computation: Information Processing in Single Neurons. Oxford
University Press (2005)

[41] Y. Kuramoto. Reduction methods applied to non-locally coupled oscillator systems. In
“Nonlinear Dynamics and Chaos: Where Do We Go from Here?”, 209–227. CRC Press (2002)

[42] D. Kim, D. Browder, and M. Heiberg. Star Craft II. Blizzard Entertainment (2010)

[43] A. T. Winfree. The prehistory of the Belousov-Zhabotinsky oscillator. J. Chem. Educ. 61, 661
(1984)

[44] P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-González. The Defocusing Nonlinear
Schrödinger Equation: From Dark Solitons to Vortices and Vortex Rings. SIAM (2015)

[45] P.-J. Hsu, A. Finco, L. Schmidt, A. Kubetzka, K. von Bergmann, and R. Wiesendanger. Guiding
Spin Spirals by Local Uniaxial Strain Relief. Phys. Rev. Lett. 116, 017201 (2016)

[46] A. R. Verma. Spiral Growth on Carborundum Crystal Faces. Nature 167, 939 (1951)

[47] A. A. Chernov. Formation of crystals in solutions. Contemp. Phys. 30, 251 (1989)

[48] I. S. Aranson, A. R. Bishop, I. Daruka, and V. M. Vinokur. Ginzburg-Landau Theory of Spiral
Surface Growth. Phys. Rev. Lett. 80, 1770 (1998)

[49] I. Bischofberger, B. Ray, J. F. Morris, T. Lee, and S. R. Nagel. Airflows generated by an
impacting drop. Soft Matter 12, 3013 (2016)

[50] S. J. Haward, R. J. Poole, M. A. Alves, P. J. Oliveira, N. Goldenfeld, and A. Q. Shen. Tricritical
spiral vortex instability in cross-slot flow. Phys. Rev. E 93, 031101 (2016)

[51] E. Bodenschatz, J. R. de Bruyn, G. Ahlers, and D. S. Cannell. Transitions between patterns in
thermal convection. Phys. Rev. Lett. 67, 3078 (1991)

[52] M. Assenheimer and V. Steinberg. Transition between spiral and target states in
Rayleigh–Bénard convection. Nature 367, 345 (1994)

[53] S. V. Kiyashko, L. N. Korzinov, M. I. Rabinovich, and L. S. Tsimring. Rotating spirals in a
Faraday experiment. Phys. Rev. E 54, 5037 (1996)

http://dx.doi.org/10.1016/j.pbiomolbio.2005.06.011
http://dx.doi.org/10.1016/j.pbiomolbio.2005.06.011
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125112
http://dx.doi.org/10.1126/science.7973648
https://www.crcpress.com/Encyclopedia-of-Nonlinear-Science/Scott/p/book/9781138012141
http://dx.doi.org/10.1007/978-3-642-78556-6
http://dx.doi.org/10.1113/jphysiol.1952.sp004764
http://dx.doi.org/10.1113/jphysiol.1952.sp004764
http://www.oupcanada.com/catalog/9780195181999.html
https://doi.org/10.1201/9781420033830.ch9
http://us.battle.net/sc2/en/
http://dx.doi.org/10.1021/ed061p661
https://doi.org/10.1137/1.9781611973945
https://doi.org/10.1137/1.9781611973945
http://dx.doi.org/10.1103/PhysRevLett.116.017201
http://dx.doi.org/10.1103/PhysRevLett.116.017201
http://dx.doi.org/10.1038/167939a0
http://dx.doi.org/10.1080/00107518908225517
http://dx.doi.org/10.1103/PhysRevLett.80.1770
http://dx.doi.org/10.1103/PhysRevLett.80.1770
http://dx.doi.org/10.1039/C5SM02702K
http://dx.doi.org/10.1039/C5SM02702K
http://dx.doi.org/10.1103/PhysRevE.93.031101
http://dx.doi.org/10.1103/PhysRevE.93.031101
http://dx.doi.org/10.1103/PhysRevLett.67.3078
http://dx.doi.org/10.1103/PhysRevLett.67.3078
http://dx.doi.org/10.1038/367345a0
http://dx.doi.org/10.1038/367345a0
http://dx.doi.org/10.1103/PhysRevE.54.5037
http://dx.doi.org/10.1103/PhysRevE.54.5037


144 References

[54] J. R. de Bruyn, B. C. Lewis, M. D. Shattuck, and H. L. Swinney. Spiral patterns in oscillated
granular layers. Phys. Rev. E 63, 041305 (2001)

[55] R. Wille. Kármán Vortex Streets. Adv. Appl. Mech. 6, 273 (1960)

[56] D. Kondepudi and I. Prigogine. Modern Thermodynamics: From Heat Engines to Dissipative
Structures. Wiley (2014)

[57] J. H. Rogers. The Giant Planet Jupiter. Cambridge University Press (1995)

[58] S. J. Bolton, et al. Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with
the Juno spacecraft. Science 356, 821 (2017)

[59] C. C. Lin and F. H. Shu. On the Spiral Structure of Disk Galaxies. Astrophys. J. 140, 646
(1964)

[60] B. P. Abbott, et al. Observation of Gravitational Waves from a Binary Black Hole Merger.
Phys. Rev. Lett. 116, 061102 (2016)

[61] B. P. Abbott, et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys.
J. Lett. 848, L12 (2017)

[62] N. Wiener and A. Rosenblueth. The mathematical formulation of the problem of conduction of
impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch.
Inst. Cardiol. Mex. 16, 205 (1946)

[63] M. A. Allessie, F. I. Bonke, and F. J. Schopman. Circus movement in rabbit atrial muscle as a
mechanism of tachycardia. III. The "leading circle" concept: A new model of circus movement
in cardiac tissue without the involvement of an anatomical obstacle. Circ. Res. 41, 9 (1977)

[64] J. M. Davidenko, P. F. Kent, D. R. Chialvo, D. C. Michaels, and J. Jalife. Sustained vortex-like
waves in normal isolated ventricular muscle. Proc. Natl. Acad. Sci. USA 87, 8785 (1990)

[65] F. X. Witkowski, L. J. Leon, P. A. Penkoske, W. R. Giles, M. L. Spano, W. L. Ditto, and A. T.
Winfree. Spatiotemporal evolution of ventricular fibrillation. Nature 392, 78 (1998)

[66] S. Luther, et al. Low-energy control of electrical turbulence in the heart. Nature 475, 235
(2011)

[67] G. Bub, L. Glass, N. G. Publicover, and A. Shrier. Bursting calcium rotors in cultured cardiac
myocyte monolayers. Proc. Natl. Acad. Sci. USA 95, 10283 (1998)

[68] S. Iravanian, Y. Nabutovsky, C.-R. Kong, S. Saha, N. Bursac, and L. Tung. Functional reentry
in cultured monolayers of neonatal rat cardiac cells. Am. J. Physiol. Heart Circ. Physiol. 285,
H449 (2003)

[69] B. O. Bingen, et al. Light-induced termination of spiral wave arrhythmias by optogenetic
engineering of atrial cardiomyocytes. Cardiovasc. Res. 104, 194 (2014)

[70] R. A. B. Burton, A. Klimas, C. M. Ambrosi, J. Tomek, A. Corbett, E. Entcheva, and G. Bub.
Optical control of excitation waves in cardiac tissue. Nat. Photon. 9, 813 (2015)

[71] H. M. McNamara, H. Zhang, C. A. Werley, and A. E. Cohen. Optically Controlled Oscillators
in an Engineered Bioelectric Tissue. Phys. Rev. X 6, 031001 (2016)

http://dx.doi.org/10.1103/PhysRevE.63.041305
http://dx.doi.org/10.1103/PhysRevE.63.041305
http://dx.doi.org/10.1016/S0065-2156(08)70113-3
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-111837181X.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-111837181X.html
https://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521410083
http://dx.doi.org/10.1126/science.aal2108
http://dx.doi.org/10.1126/science.aal2108
http://dx.doi.org/10.1086/147955
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.3847/2041-8213/aa91c9
https://www.ncbi.nlm.nih.gov/pubmed/20245817
https://www.ncbi.nlm.nih.gov/pubmed/20245817
http://dx.doi.org/10.1161/01.RES.41.1.9
http://dx.doi.org/10.1161/01.RES.41.1.9
http://dx.doi.org/10.1161/01.RES.41.1.9
http://dx.doi.org/10.1073/pnas.87.22.8785
http://dx.doi.org/10.1073/pnas.87.22.8785
http://dx.doi.org/10.1038/32170
http://dx.doi.org/10.1038/nature10216
http://dx.doi.org/10.1073/pnas.95.17.10283
http://dx.doi.org/10.1073/pnas.95.17.10283
http://dx.doi.org/10.1152/ajpheart.00896.2002
http://dx.doi.org/10.1152/ajpheart.00896.2002
http://dx.doi.org/10.1093/cvr/cvu179
http://dx.doi.org/10.1093/cvr/cvu179
http://dx.doi.org/10.1038/nphoton.2015.196
http://dx.doi.org/10.1103/PhysRevX.6.031001
http://dx.doi.org/10.1103/PhysRevX.6.031001


References 145

[72] G. Kastberger, E. Schmelzer, and I. Kranner. Social Waves in Giant Honeybees Repel Hornets.
PLOS ONE 3, e3141 (2008)

[73] X. Huang, W. C. Troy, Q. Yang, H. Ma, C. R. Laing, S. J. Schiff, and J.-Y. Wu. Spiral Waves
in Disinhibited Mammalian Neocortex. J. Neurosci. 24, 9897 (2004)

[74] J. Lechleiter, S. Girard, E. Peralta, and D. Clapham. Spiral calcium wave propagation and
annihilation in Xenopus laevis oocytes. Science 252, 123 (1991)

[75] N. A. Gorelova and J. Bureš. Spiral waves of spreading depression in the isolated chicken
retina. J. Neurobiol. 14, 353 (1983)

[76] D. Taniguchi, S. Ishihara, T. Oonuki, M. Honda-Kitahara, K. Kaneko, and S. Sawai. Phase
geometries of two-dimensional excitable waves govern self-organized morphodynamics of
amoeboid cells. Proc. Natl. Acad. Sci. USA 110, 5016 (2013)

[77] K. J. Tomchik and P. N. Devreotes. Adenosine 3’,5’-monophosphate waves in Dictyostelium
discoideum: A demonstration by isotope dilution–fluorography. Science 212, 443 (1981)

[78] G. Seiden and S. Curland. The tongue as an excitable medium. New J. Phys. 17, 033049 (2015)

[79] F. Macari, M. Landau, P. Cousin, B. Mevorah, S. Brenner, R. Panizzon, D. F. Schorderet,
D. Hohl, and M. Huber. Mutation in the Gene for Connexin 30.3 in a Family with Erythrokera-
todermia Variabilis. Am. J. Hum. Genet. 67, 1296 (2000)

[80] A. J. Welsh, E. F. Greco, and F. H. Fenton. Dynamics of a human spiral wave. Phys. Today 70,
78 (2017)

[81] R. D. Kirkton and N. Bursac. Engineering biosynthetic excitable tissues from unexcitable cells
for electrophysiological and cell therapy studies. Nat. Commun. 2, 300 (2011)

[82] W. J. E. P. Lammers. Circulating excitations and re-entry in the pregnant uterus. Pflügers Arch.
– Eur. J. Physiol. 433, 287 (1996)

[83] E. Pervolaraki and A. V. Holden. Spatiotemporal patterning of uterine excitation patterns in
human labour. BioSystems 112, 63 (2013)

[84] S. C. Müller, T. Mair, and O. Steinbock. Traveling waves in yeast extract and in cultures of
Dictyostelium discoideum. Biophys. Chem. 72, 37 (1998)

[85] J. T. Groves and J. Kuriyan. Molecular mechanisms in signal transduction at the membrane.
Nat. Struct. Mol. Biol. 17, 659 (2010)

[86] M. Gerhardt, M. Ecke, M. Walz, A. Stengl, C. Beta, and G. Gerisch. Actin and PIP3 waves in
giant cells reveal the inherent length scale of an excited state. J. Cell Sci. 127, 4507 (2014)

[87] A. T. Winfree. The Geometry of Biological Time. Springer (2001)

[88] N. Uchida and R. Golestanian. Synchronization and Collective Dynamics in a Carpet of
Microfluidic Rotors. Phys. Rev. Lett. 104, 178103 (2010)

[89] A. T. Winfree. Spiral Waves of Chemical Activity. Science 175, 634 (1972)

[90] V. K. Vanag and I. R. Epstein. Inwardly Rotating Spiral Waves in a Reaction-Diffusion System.
Science 294, 835 (2001)

http://dx.doi.org/10.1371/journal.pone.0003141
http://dx.doi.org/10.1523/JNEUROSCI.2705-04.2004
http://dx.doi.org/10.1523/JNEUROSCI.2705-04.2004
http://dx.doi.org/10.1126/science.2011747
http://dx.doi.org/10.1126/science.2011747
http://dx.doi.org/10.1002/neu.480140503
http://dx.doi.org/10.1002/neu.480140503
http://dx.doi.org/10.1073/pnas.1218025110
http://dx.doi.org/10.1073/pnas.1218025110
http://dx.doi.org/10.1073/pnas.1218025110
http://dx.doi.org/10.1126/science.6259734
http://dx.doi.org/10.1126/science.6259734
http://dx.doi.org/10.1088/1367-2630/17/3/033049
http://dx.doi.org/10.1016/S0002-9297(07)62957-7
http://dx.doi.org/10.1016/S0002-9297(07)62957-7
http://dx.doi.org/10.1063/PT.3.3474
http://dx.doi.org/10.1038/ncomms1302
http://dx.doi.org/10.1038/ncomms1302
http://dx.doi.org/10.1007/s004240050279
http://dx.doi.org/10.1016/j.biosystems.2013.03.012
http://dx.doi.org/10.1016/j.biosystems.2013.03.012
http://dx.doi.org/10.1016/S0301-4622(98)00121-5
http://dx.doi.org/10.1016/S0301-4622(98)00121-5
http://dx.doi.org/10.1038/nsmb.1844
http://dx.doi.org/10.1242/jcs.156000
http://dx.doi.org/10.1242/jcs.156000
http://dx.doi.org/10.1007/978-1-4757-3484-3
http://dx.doi.org/10.1103/PhysRevLett.104.178103
http://dx.doi.org/10.1103/PhysRevLett.104.178103
http://dx.doi.org/10.1126/science.175.4022.634
http://dx.doi.org/10.1126/science.1064167


146 References

[91] M. Yoneyama, A. Fujii, and S. Maeda. Chemical oscillations in Ru(bpy)32+ Langmuir
monolayers formed on Belousov-Zhabotinskii reaction solutions. Physica D 84, 120 (1995)

[92] M. R. Tinsley, D. Collison, and K. Showalter. Propagating Precipitation Waves: Experiments
and Modeling. J. Phys. Chem. A 117, 12719 (2013)

[93] S. Jakubith, H. H. Rotermund, W. Engel, A. von Oertzen, and G. Ertl. Spatiotemporal
concentration patterns in a surface reaction: Propagating and standing waves, rotating spirals,
and turbulence. Phys. Rev. Lett. 65, 3013 (1990)

[94] I. Krastev and M. T. M. Koper. Pattern formation during the electrodeposition of a silver-
antimony alloy. Physica A 213, 199 (1995)

[95] K. Agladze and O. Steinbock. Waves and Vortices of Rust on the Surface of Corroding Steel.
J. Phys. Chem. A 104, 9816 (2000)

[96] J. F. Nye and M. V. Berry. Dislocations in Wave Trains. Proc. R. Soc. A 336, 165 (1974)

[97] P. Coullet, L. Gil, and F. Rocca. Optical vortices. Opt. Commun. 73, 403 (1989)

[98] I. V. Basistiy, V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov. Optics of light beams with
screw dislocations. Opt. Commun. 103, 422 (1993)

[99] H. G. Pearlman and P. D. Ronney. Self-organized spiral and circular waves in premixed gas
flames. J. Chem. Phys. 101, 2632 (1994)

[100] P. Coullet and F. Plaza. Excitable Spiral Waves in Nematic Liquid Crystals. Int. J. Bifurcat.
Chaos 04, 1173 (1994)

[101] A. Martinez and I. I. Smalyukh. Light-driven dynamic Archimedes spirals and periodic
oscillatory patterns of topological solitons in anisotropic soft matter. Opt. Express 23, 4591
(2015)

[102] M. Schwabe, U. Konopka, P. Bandyopadhyay, and G. E. Morfill. Pattern Formation in a
Complex Plasma in High Magnetic Fields. Phys. Rev. Lett. 106, 215004 (2011)

[103] L. Dong, F. Liu, S. Liu, Y. He, and W. Fan. Observation of spiral pattern and spiral defect
chaos in dielectric barrier discharge in argon/air at atmospheric pressure. Phys. Rev. E 72,
046215 (2005)

[104] Y. Li, H. Li, Y. Zhu, M. Zhang, and J. Yang. Type of spiral wave with trapped ions. Phys. Rev.
E 84, 066212 (2011)

[105] R. Lauter, C. Brendel, S. J. M. Habraken, and F. Marquardt. Pattern phase diagram for
two-dimensional arrays of coupled limit-cycle oscillators. Phys. Rev. E 92, 012902 (2015)

[106] R. Kapral, R. Livi, G.-L. Oppo, and A. Politi. Dynamics of complex interfaces. Phys. Rev. E
49, 2009 (1994)

[107] I. Aranson, M. Gitterman, and B. Y. Shapiro. Spiral fluxons and a characteristic frequency in
two-dimensional Josephson junctions. Phys. Rev. B 52, 12878 (1995)

[108] D. P. Zipes, J. Jalife, and W. G. Stevenson. Cardiac Electrophysiology: From Cell to Bedside.
Elsevier (2017)

http://dx.doi.org/10.1016/0167-2789(95)00010-2
http://dx.doi.org/10.1016/0167-2789(95)00010-2
http://dx.doi.org/10.1021/jp4095479
http://dx.doi.org/10.1021/jp4095479
http://dx.doi.org/10.1103/PhysRevLett.65.3013
http://dx.doi.org/10.1103/PhysRevLett.65.3013
http://dx.doi.org/10.1103/PhysRevLett.65.3013
http://dx.doi.org/10.1016/0378-4371(94)00161-L
http://dx.doi.org/10.1016/0378-4371(94)00161-L
http://dx.doi.org/10.1021/jp002237n
http://dx.doi.org/10.1098/rspa.1974.0012
http://dx.doi.org/10.1016/0030-4018(89)90180-6
http://dx.doi.org/10.1016/0030-4018(93)90168-5
http://dx.doi.org/10.1016/0030-4018(93)90168-5
http://dx.doi.org/10.1063/1.467636
http://dx.doi.org/10.1063/1.467636
http://dx.doi.org/10.1142/S0218127494000873
http://dx.doi.org/10.1364/OE.23.004591
http://dx.doi.org/10.1364/OE.23.004591
http://dx.doi.org/10.1103/PhysRevLett.106.215004
http://dx.doi.org/10.1103/PhysRevLett.106.215004
http://dx.doi.org/10.1103/PhysRevE.72.046215
http://dx.doi.org/10.1103/PhysRevE.72.046215
http://dx.doi.org/10.1103/PhysRevE.84.066212
http://dx.doi.org/10.1103/PhysRevE.92.012902
http://dx.doi.org/10.1103/PhysRevE.92.012902
http://dx.doi.org/10.1103/PhysRevE.49.2009
http://dx.doi.org/10.1103/PhysRevB.52.12878
http://dx.doi.org/10.1103/PhysRevB.52.12878
https://www.elsevier.com/books/cardiac-electrophysiology-from-cell-to-bedside/zipes/978-0-323-44888-8


References 147

[109] T. Quail, A. Shrier, and L. Glass. Spatial Symmetry Breaking Determines Spiral Wave Chirality.
Phys. Rev. Lett. 113, 158101 (2014)

[110] V. Zykov, A. Krekhov, and E. Bodenschatz. Fast propagation regions cause self-sustained
reentry in excitable media. Proc. Natl. Acad. Sci. USA 114, 1281 (2017)

[111] A. T. Winfree and S. H. Strogatz. Singular filaments organize chemical waves in three
dimensions: I. Geometrically simple waves. Physica D 8, 35 (1983)

[112] A. Winfree and S. Strogatz. Singular filaments organize chemical waves in three dimensions II.
Twisted waves. Physica D 9, 65 (1983)

[113] A. Winfree and S. Strogatz. Singular filaments organize chemical waves in three dimensions:
III. Knotted waves. Physica D 9, 333 (1983)

[114] A. Winfree and S. Strogatz. Singular filaments organize chemical waves in three dimensions:
IV. Wave taxonomy. Physica D 13, 221 (1984)

[115] A. B. Medvinsky, A. V. Panfilov, and A. M. Pertsov. Properties of Rotating Waves in Three
Dimensions. Scroll Rings in Myocard. In P. D. V. I. Krinsky, ed., “Self-Organization Autowaves
and Structures Far from Equilibrium”, 195–199. Springer (1984)

[116] A. T. Winfree. Scroll-Shaped Waves of Chemical Activity in Three Dimensions. Science 181,
937 (1973)

[117] H. Kitahata, N. Yoshinaga, K. H. Nagai, and Y. Sumino. Spontaneous Motion of a Be-
lousov–Zhabotinsky Reaction Droplet Coupled with a Spiral Wave. Chem. Lett. 41, 1052
(2012)

[118] J. P. Keener. The dynamics of three-dimensional scroll waves in excitable media. Physica D
31, 269 (1988)

[119] W. W. Mullins. Two-Dimensional Motion of Idealized Grain Boundaries. J. Appl. Phys. 27,
900 (1956)

[120] V. N. Biktashev, A. V. Holden, and H. Zhang. Tension of Organizing Filaments of Scroll Waves.
Phil. Trans. R. Soc. Lond. A 347, 611 (1994)

[121] S. Alonso, F. Sagués, and A. S. Mikhailov. Taming Winfree Turbulence of Scroll Waves in
Excitable Media. Science 299, 1722 (2003)

[122] O. Steinbock, V. Zykov, and S. C. Müller. Control of spiral-wave dynamics in active media by
periodic modulation of excitability. Nature 366, 322 (1993)

[123] M. Markus, Z. Nagy-Ungvarai, and B. Hess. Phototaxis of Spiral Waves. Science 257, 225
(1992)

[124] O. Steinbock and S. Müller. Chemical spiral rotation is controlled by light-induced artificial
cores. Physica A 188, 61 (1992)

[125] J. Schlesner, V. S. Zykov, H. Brandtstädter, I. Gerdes, and H. Engel. Efficient control of spiral
wave location in an excitable medium with localized heterogeneities. New J. Phys. 10, 015003
(2008)

http://dx.doi.org/10.1103/PhysRevLett.113.158101
http://dx.doi.org/10.1073/pnas.1611475114
http://dx.doi.org/10.1073/pnas.1611475114
http://dx.doi.org/10.1016/0167-2789(83)90309-3
http://dx.doi.org/10.1016/0167-2789(83)90309-3
http://dx.doi.org/10.1016/0167-2789(83)90292-0
http://dx.doi.org/10.1016/0167-2789(83)90292-0
http://dx.doi.org/10.1016/0167-2789(83)90276-2
http://dx.doi.org/10.1016/0167-2789(83)90276-2
http://dx.doi.org/10.1016/0167-2789(84)90279-3
http://dx.doi.org/10.1016/0167-2789(84)90279-3
http://link.springer.com/chapter/10.1007/978-3-642-70210-5_36
http://link.springer.com/chapter/10.1007/978-3-642-70210-5_36
http://dx.doi.org/10.1126/science.181.4103.937
http://dx.doi.org/10.1246/cl.2012.1052
http://dx.doi.org/10.1246/cl.2012.1052
http://dx.doi.org/10.1016/0167-2789(88)90080-2
http://dx.doi.org/10.1063/1.1722511
http://dx.doi.org/10.1098/rsta.1994.0070
http://dx.doi.org/10.1126/science.1080207
http://dx.doi.org/10.1126/science.1080207
http://dx.doi.org/10.1038/366322a0
http://dx.doi.org/10.1038/366322a0
http://dx.doi.org/10.1126/science.257.5067.225
http://dx.doi.org/10.1016/0378-4371(92)90253-M
http://dx.doi.org/10.1016/0378-4371(92)90253-M
http://dx.doi.org/10.1088/1367-2630/10/1/015003
http://dx.doi.org/10.1088/1367-2630/10/1/015003


148 References

[126] H. Brandtstädter, M. Braune, I. Schebesch, and H. Engel. Experimental study of the dynamics
of spiral pairs in light-sensitive Belousov–Zhabotinskii media using an open-gel reactor. Chem.
Phys. Lett. 323, 145 (2000)

[127] M. Gómez-Gesteira, A. P. Muñuzuri, V. Pérez-Muñuzuri, and V. Pérez-Villar. Boundary-
imposed spiral drift. Phys. Rev. E 53, 5480 (1996)

[128] J. J. Tyson and J. P. Keener. Singular perturbation theory of traveling waves in excitable media
(a review). Physica D 32, 327 (1988)

[129] P. Foerster, S. C. Müller, and B. Hess. Curvature and Propagation Velocity of Chemical Waves.
Science 241, 685 (1988)

[130] D. Horváth, V. Petrov, S. K. Scott, and K. Showalter. Instabilities in propagating reaction-
diffusion fronts. J. Chem. Phys. 98, 6332 (1993)

[131] D. Margerit and D. Barkley. Large-excitability asymptotics for scroll waves in three-
dimensional excitable media. Phys. Rev. E 66 (2002)

[132] V. Biktashev and A. Holden. Resonant Drift of Autowave Vortices in Two Dimensions and the
Effects of Boundaries and Inhomogeneities. Chaos 5, 575 (1995)

[133] I. V. Biktasheva and V. N. Biktashev. Wave-particle dualism of spiral waves dynamics. Phys.
Rev. E 67, 026221 (2003)

[134] V. N. Biktashev and I. V. Biktasheva. Dynamics of filaments of scroll waves. In “Engineering
of Chemical Complexity II”, 221–238. World Scientific (2014)

[135] T. Amemiya, P. Kettunen, S. Kádár, T. Yamaguchi, and K. Showalter. Formation and evolution
of scroll waves in photosensitive excitable media. Chaos 8, 872 (1998)

[136] T. Bánsági and O. Steinbock. Nucleation and Collapse of Scroll Rings in Excitable Media.
Phys. Rev. Lett. 97, 198301 (2006)

[137] T. Bánsági and O. Steinbock. Three-dimensional spiral waves in an excitable reaction system:
Initiation and dynamics of scroll rings and scroll ring pairs. Chaos 18, 026102 (2008)

[138] N. P. Das and S. Dutta. Interaction of scroll waves in an excitable medium: Reconnection and
repulsion. Phys. Rev. E 91, 030901 (2015)

[139] M. Vinson, S. Mironov, S. Mulvey, and A. Pertsov. Control of spatial orientation and lifetime
of scroll rings in excitable media. Nature 386, 477 (1997)

[140] C. Luengviriya, S. C. Müller, and M. J. B. Hauser. Reorientation of scroll rings in an advective
field. Phys. Rev. E 77, 015201 (2008)

[141] Z. Jiménez, B. Marts, and O. Steinbock. Pinned Scroll Rings in an Excitable System. Phys.
Rev. Lett. 102 (2009)

[142] Z. A. Jiménez and O. Steinbock. Pinning of vortex rings and vortex networks in excitable
systems. Europhys. Lett. 91, 50002 (2010)

[143] S. Dutta and O. Steinbock. Topologically Mismatched Pinning of Scroll Waves. J. Phys. Chem.
Lett. 2, 945 (2011)

http://dx.doi.org/10.1016/S0009-2614(00)00486-3
http://dx.doi.org/10.1016/S0009-2614(00)00486-3
http://dx.doi.org/10.1103/PhysRevE.53.5480
http://dx.doi.org/10.1103/PhysRevE.53.5480
http://dx.doi.org/10.1016/0167-2789(88)90062-0
http://dx.doi.org/10.1016/0167-2789(88)90062-0
http://dx.doi.org/10.1126/science.241.4866.685
http://dx.doi.org/doi:10.1063/1.465062
http://dx.doi.org/doi:10.1063/1.465062
http://dx.doi.org/10.1103/PhysRevE.66.036214
http://dx.doi.org/10.1103/PhysRevE.66.036214
http://dx.doi.org/10.1016/0960-0779(93)E0044-C
http://dx.doi.org/10.1016/0960-0779(93)E0044-C
http://dx.doi.org/10.1103/PhysRevE.67.026221
https://doi.org/10.1142/9789814616133_0013
http://dx.doi.org/doi:10.1063/1.166373
http://dx.doi.org/doi:10.1063/1.166373
http://dx.doi.org/10.1103/PhysRevLett.97.198301
http://dx.doi.org/10.1063/1.2896100
http://dx.doi.org/10.1063/1.2896100
http://dx.doi.org/10.1103/PhysRevE.91.030901
http://dx.doi.org/10.1103/PhysRevE.91.030901
http://dx.doi.org/10.1038/386477a0
http://dx.doi.org/10.1038/386477a0
http://dx.doi.org/10.1103/PhysRevE.77.015201
http://dx.doi.org/10.1103/PhysRevE.77.015201
http://dx.doi.org/10.1103/PhysRevLett.102.244101
http://dx.doi.org/10.1209/0295-5075/91/50002
http://dx.doi.org/10.1209/0295-5075/91/50002
http://dx.doi.org/10.1021/jz2003183


References 149

[144] S. C. Müller, T. Plesser, and B. Hess. Two-dimensional spectrophotometry and pseudo-color
representation of chemical reaction patterns. Sci. Nat. 73, 165 (1986)

[145] P. Ruoff. Excitability in a closed stirred Belousov-Zhabotinskii system. Chem. Phys. Lett. 90,
76 (1982)

[146] A. Pertsov, M. Vinson, and S. C. Müller. Three-dimensional reconstruction of organizing
centers in excitable chemical media. Physica D 63, 233 (1993)

[147] Z. A. Jiménez and O. Steinbock. Stationary Vortex Loops Induced by Filament Interaction and
Local Pinning in a Chemical Reaction-Diffusion System. Phys. Rev. Lett. 109 (2012)

[148] Z. A. Jiménez and O. Steinbock. Scroll wave filaments self-wrap around unexcitable hetero-
geneities. Phys. Rev. E 86, 036205 (2012)

[149] T. Bánsági, Jr. and O. Steinbock. Negative filament tension of scroll rings in an excitable
system. Phys. Rev. E 76, 045202 (2007)

[150] P. J. Nandapurkar and A. T. Winfree. Dynamical stability of untwisted scroll rings in excitable
media. Physica D 35, 277 (1989)

[151] M. Courtemanche, W. Skaggs, and A. Winfree. Stable three-dimensional action potential
circulation in the Fitzhugh-Nagumo model. Physica D 41, 173 (1990)

[152] A. Azhand, J. F. Totz, and H. Engel. Three-dimensional autonomous pacemaker in the
photosensitive Belousov-Zhabotinsky medium. Europhys. Lett. 108, 10004 (2014)

[153] I. Aranson, L. Kramer, and A. Weber. On the interaction of spiral waves in non-equilibrium
media. Physica D 53, 376 (1991)

[154] R. R. Aliev and A. B. Rovinskii. Spiral waves in the homogeneous and inhomogeneous
Belousov-Zhabotinskii reaction. J. Phys. Chem. 96, 732 (1992)

[155] M.-A. Bray and J. P. Wikswo. Interaction Dynamics of a Pair of Vortex Filament Rings. Phys.
Rev. Lett. 90, 238303 (2003)

[156] F. Paul. Dreidimensionale Erregungswellen in oszillatorischen Medien. Diploma thesis, TU
Berlin, Berlin (2011)

[157] D. A. Kulawiak. Über die Wechselwirkung rotierender dreidimensionaler Erregungswellen mit
begrenzenden Neumann-Rändern. M.Sc. Thesis, TU Berlin (2014)

[158] Press, Teukolsky, Vetterling, and Flannery. Numerical Recipes: The Art of Scientific Comput-
ing. Cambridge University Press (2007)

[159] W. Skaggs, E. Lugosi, and E. Winfree. Stable vortex rings of excitation in neuroelectric media.
IEEE Trans. Circuits Syst. 35, 784 (1988)

[160] V. A. Davydov, A. S. Mikhailov, and V. S. Zykov. Kinematical Theory of Autowave Patterns
in Excitable Media. In P. J. Engelbrecht, ed., “Nonlinear Waves in Active Media”, 38–51.
Springer (1989)

[161] A. Winfree. Stable Particle-Like Solutions to the Nonlinear Wave Equations of Three-
Dimensional Excitable Media. SIAM Rev. 32, 1 (1990)

http://dx.doi.org/10.1007/BF00417720
http://dx.doi.org/10.1007/BF00417720
http://dx.doi.org/10.1016/0009-2614(82)83328-9
http://dx.doi.org/10.1016/0167-2789(93)90157-V
http://dx.doi.org/10.1016/0167-2789(93)90157-V
http://dx.doi.org/10.1103/PhysRevLett.109.098301
http://dx.doi.org/10.1103/PhysRevLett.109.098301
http://dx.doi.org/10.1103/PhysRevE.86.036205
http://dx.doi.org/10.1103/PhysRevE.86.036205
http://dx.doi.org/10.1103/PhysRevE.76.045202
http://dx.doi.org/10.1103/PhysRevE.76.045202
http://dx.doi.org/10.1016/0167-2789(89)90070-5
http://dx.doi.org/10.1016/0167-2789(89)90070-5
http://dx.doi.org/10.1016/0167-2789(90)90120-E
http://dx.doi.org/10.1016/0167-2789(90)90120-E
http://dx.doi.org/10.1209/0295-5075/108/10004
http://dx.doi.org/10.1209/0295-5075/108/10004
http://dx.doi.org/10.1016/0167-2789(91)90069-L
http://dx.doi.org/10.1016/0167-2789(91)90069-L
http://dx.doi.org/10.1021/j100181a039
http://dx.doi.org/10.1021/j100181a039
http://dx.doi.org/10.1103/PhysRevLett.90.238303
http://www.cambridge.org/de/academic/subjects/mathematics/numerical-recipes/numerical-recipes-art-scientific-computing-3rd-edition?format=HB&utm_source=shortlink&utm_medium=shortlink&utm_campaign=numericalrecipes
http://www.cambridge.org/de/academic/subjects/mathematics/numerical-recipes/numerical-recipes-art-scientific-computing-3rd-edition?format=HB&utm_source=shortlink&utm_medium=shortlink&utm_campaign=numericalrecipes
http://dx.doi.org/10.1109/31.1824
https://doi.org/10.1007/978-3-642-74789-2_6
https://doi.org/10.1007/978-3-642-74789-2_6
http://dx.doi.org/10.1137/1032001
http://dx.doi.org/10.1137/1032001


150 References

[162] J. F. Totz, H. Engel, and O. Steinbock. Spatial confinement causes lifetime enhancement and
expansion of vortex rings with positive filament tension. New J. Phys. 17, 093043 (2015)

[163] V. Pérez-Muñuzuri, F. Sagués, and J. M. Sancho. Lifetime enhancement of scroll rings by
spatiotemporal fluctuations. Phys. Rev. E 62, 94 (2000)

[164] R.-M. Mantel and D. Barkley. Parametric forcing of scroll-wave patterns in three-dimensional
excitable media. Physica D 149, 107 (2001)

[165] S. Alonso, F. Sagués, and A. S. Mikhailov. Periodic forcing of scroll rings and control of
Winfree turbulence in excitable media. Chaos 16, 023124 (2006)

[166] V. Zykov and H. Engel. Feedback-mediated control of spiral waves. Physica D 199, 243 (2004)

[167] V. Zykov, G. Bordiougov, H. Brandtstädter, I. Gerdes, and H. Engel. Global Control of Spiral
Wave Dynamics in an Excitable Domain of Circular and Elliptical Shape. Phys. Rev. Lett. 92
(2004)

[168] I. Bakas and C. Sourdis. Dirichlet sigma models and mean curvature flow. J. High Energy
Phys. 2007, 057 (2007)

[169] K. I. Agladze, V. I. Krinsky, A. V. Panfilov, H. Linde, and L. Kuhnert. Three-dimensional
vortex with a spiral filament in a chemically active medium. Physica D 39, 38 (1989)

[170] E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. A. Siegelbaum, and A. J. Hudspeth, eds.
Principles of Neural Science. McGraw-Hill (2012)

[171] S. R. y Cajal. Nobel Lecture: The structure and connections of neurons (1906)

[172] F. de Castro, L. López-Mascaraque, and J. A. De Carlos. Cajal: Lessons on brain development.
Brain Res. Rev. 55, 481 (2007)

[173] D. O. Hebb. The Organization of Behavior: A Neuropsychological Theory. Wiley (1949)

[174] T. V. P. Bliss and T. Lømo. Long-lasting potentiation of synaptic transmission in the dentate
area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232,
331 (1973)

[175] L. Carrillo-Reid, W. Yang, Y. Bando, D. S. Peterka, and R. Yuste. Imprinting and recalling
cortical ensembles. Science 353, 691 (2016)

[176] J.-H. Han, S. A. Kushner, A. P. Yiu, C. J. Cole, A. Matynia, R. A. Brown, R. L. Neve, J. F.
Guzowski, A. J. Silva, and S. A. Josselyn. Neuronal Competition and Selection During Memory
Formation. Science 316, 457 (2007)

[177] A. J. Silva, Y. Zhou, T. Rogerson, J. Shobe, and J. Balaji. Molecular and Cellular Approaches
to Memory Allocation in Neural Circuits. Science 326, 391 (2009)

[178] L. J. Richards, T. J. Kilpatrick, and P. F. Bartlett. De novo generation of neuronal cells from
the adult mouse brain. Proc. Natl. Acad. Sci. USA 89, 8591 (1992)

[179] D. J. Jhaveri, A. Tedoldi, S. Hunt, R. Sullivan, N. R. Watts, J. M. Power, P. F. Bartlett, and
P. Sah. Evidence for newly generated interneurons in the basolateral amygdala of adult mice.
Mol. Psychiatry (2017)

http://dx.doi.org/10.1088/1367-2630/17/9/093043
http://dx.doi.org/10.1088/1367-2630/17/9/093043
http://dx.doi.org/10.1103/PhysRevE.62.94
http://dx.doi.org/10.1103/PhysRevE.62.94
http://www.sciencedirect.com/science/article/pii/S0167278900001858
http://www.sciencedirect.com/science/article/pii/S0167278900001858
http://dx.doi.org/10.1063/1.2203589
http://dx.doi.org/10.1063/1.2203589
http://dx.doi.org/10.1016/j.physd.2004.10.001
http://dx.doi.org/10.1103/PhysRevLett.92.018304
http://dx.doi.org/10.1103/PhysRevLett.92.018304
http://dx.doi.org/10.1088/1126-6708/2007/06/057
http://dx.doi.org/10.1016/0167-2789(89)90037-7
http://dx.doi.org/10.1016/0167-2789(89)90037-7
http://www.principlesofneuralscience.com/
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1906/cajal-lecture.html
http://dx.doi.org/10.1016/j.brainresrev.2007.01.011
https://books.google.de/books/about/The_Organization_of_Behavior.html?id=dZ0eDiLTwuEC&redir_esc=y
http://dx.doi.org/10.1113/jphysiol.1973.sp010273
http://dx.doi.org/10.1113/jphysiol.1973.sp010273
http://dx.doi.org/10.1126/science.aaf7560
http://dx.doi.org/10.1126/science.aaf7560
http://dx.doi.org/10.1126/science.1139438
http://dx.doi.org/10.1126/science.1139438
http://dx.doi.org/10.1126/science.1174519
http://dx.doi.org/10.1126/science.1174519
http://dx.doi.org/10.1073/pnas.89.18.8591
http://dx.doi.org/10.1073/pnas.89.18.8591
http://dx.doi.org/10.1038/mp.2017.134


References 151

[180] J. Fell and N. Axmacher. The role of phase synchronization in memory processes. Nat. Rev.
Neurosci. 12, 105 (2011)

[181] P. R. Roelfsema, A. K. Engel, P. König, and W. Singer. Visuomotor integration is associated
with zero time-lag synchronization among cortical areas. Nature 385, 157 (1997)

[182] E. Rodriguez, N. George, J.-P. Lachaux, J. Martinerie, B. Renault, and F. J. Varela. Perception’s
shadow: Long-distance synchronization of human brain activity. Nature 397, 430 (1999)

[183] C. Hammond, H. Bergman, and P. Brown. Pathological synchronization in Parkinson’s disease:
Networks, models and treatments. Trends Neurosci. 30, 357 (2007)

[184] J. J. Eggermont and L. E. Roberts. The neuroscience of tinnitus. Trends Neurosci. 27, 676
(2004)

[185] P. A. Tass, I. Adamchic, H.-J. Freund, T. von Stackelberg, and C. Hauptmann. Counteracting
tinnitus by acoustic coordinated reset neuromodulation. Restor. Neurol. Neurosci. 30, 137
(2012)

[186] F. Mormann, K. Lehnertz, P. David, and C. E. Elger. Mean phase coherence as a measure for
phase synchronization and its application to the EEG of epilepsy patients. Physica D 144, 358
(2000)

[187] P. Jiruska, M. de Curtis, J. G. R. Jefferys, C. A. Schevon, S. J. Schiff, and K. Schindler.
Synchronization and desynchronization in epilepsy: Controversies and hypotheses. J. Physiol.
591, 787 (2013)

[188] N. Wiener. Nonlinear Problems in Random Theory. MIT Press (1958)

[189] A. Pikovsky, M. Rosenblum, and J. Kurths. Synchronization: A Universal Concept in Nonlinear
Sciences. Cambridge University Press (2001)

[190] G. Buzsáki and A. Draguhn. Neuronal Oscillations in Cortical Networks. Science 304, 1926
(2004)

[191] I. Fischer, R. Vicente, J. M. Buldú, M. Peil, C. R. Mirasso, M. C. Torrent, and J. García-Ojalvo.
Zero-Lag Long-Range Synchronization via Dynamical Relaying. Phys. Rev. Lett. 97, 123902
(2006)

[192] V. Flunkert, S. Yanchuk, T. Dahms, and E. Schöll. Synchronizing Distant Nodes: A Universal
Classification of Networks. Phys. Rev. Lett. 105, 254101 (2010)

[193] W. Klimesch, R. Freunberger, P. Sauseng, and W. Gruber. A short review of slow phase
synchronization and memory: Evidence for control processes in different memory systems?
Brain Res. 1235, 31 (2008)

[194] V. Nicosia, M. Valencia, M. Chavez, A. Díaz-Guilera, and V. Latora. Remote Synchronization
Reveals Network Symmetries and Functional Modules. Phys. Rev. Lett. 110, 174102 (2013)

[195] H. Nakao and A. S. Mikhailov. Turing patterns in network-organized activator-inhibitor
systems. Nat. Phys. 6, 544 (2010)

[196] S. Hata, H. Nakao, and A. S. Mikhailov. Dispersal-induced destabilization of metapopulations
and oscillatory Turing patterns in ecological networks. Sci. Rep. 4 (2014)

http://dx.doi.org/10.1038/nrn2979
http://dx.doi.org/10.1038/385157a0
http://dx.doi.org/10.1038/385157a0
http://dx.doi.org/10.1038/17120
http://dx.doi.org/10.1038/17120
http://dx.doi.org/10.1016/j.tins.2007.05.004
http://dx.doi.org/10.1016/j.tins.2007.05.004
http://dx.doi.org/10.1016/j.tins.2004.08.010
http://dx.doi.org/10.3233/RNN-2012-110218
http://dx.doi.org/10.3233/RNN-2012-110218
http://dx.doi.org/10.1016/S0167-2789(00)00087-7
http://dx.doi.org/10.1016/S0167-2789(00)00087-7
http://dx.doi.org/10.1113/jphysiol.2012.239590
https://mitpress.mit.edu/books/nonlinear-problems-random-theory
http://www.cambridge.org/de/academic/subjects/physics/nonlinear-science-and-fluid-dynamics/synchronization-universal-concept-nonlinear-sciences?format=PB&isbn=9780521533522
http://www.cambridge.org/de/academic/subjects/physics/nonlinear-science-and-fluid-dynamics/synchronization-universal-concept-nonlinear-sciences?format=PB&isbn=9780521533522
http://dx.doi.org/10.1126/science.1099745
http://dx.doi.org/10.1103/PhysRevLett.97.123902
http://dx.doi.org/10.1103/PhysRevLett.105.254101
http://dx.doi.org/10.1103/PhysRevLett.105.254101
http://dx.doi.org/10.1016/j.brainres.2008.06.049
http://dx.doi.org/10.1016/j.brainres.2008.06.049
http://dx.doi.org/10.1103/PhysRevLett.110.174102
http://dx.doi.org/10.1103/PhysRevLett.110.174102
http://dx.doi.org/10.1038/nphys1651
http://dx.doi.org/10.1038/nphys1651
http://dx.doi.org/10.1038/srep03585
http://dx.doi.org/10.1038/srep03585


152 References

[197] H. Nakao and A. S. Mikhailov. Diffusion-induced instability and chaos in random oscillator
networks. Phys. Rev. E 79, 036214 (2009)

[198] N. E. Kouvaris, T. Isele, A. S. Mikhailov, and E. Schöll. Propagation failure of excitation
waves on trees and random networks. Europhys. Lett. 106, 68001 (2014)

[199] T. Isele, B. Hartung, P. Hövel, and E. Schöll. Excitation waves on a minimal small-world
model. Eur. Phys. J. B 88, 1 (2015)

[200] S. H. Strogatz. Exploring complex networks. Nature 410, 268 (2001)

[201] D. Garlaschelli, F. Ruzzenenti, and R. Basosi. Complex Networks and Symmetry I: A Review.
Symmetry 2, 1683 (2010)

[202] L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy. Cluster synchro-
nization and isolated desynchronization in complex networks with symmetries. Nat. Commun.
5, 4079 (2014)

[203] L. M. Pecora and T. L. Carroll. Master Stability Functions for Synchronized Coupled Systems.
Phys. Rev. Lett. 80, 2109 (1998)

[204] L. Pecora, T. Carroll, G. Johnson, D. Mar, and K. S. Fink. Synchronization Stability in Coupled
Oscillator Arrays: Solution for Arbitrary Configurations. Int. J. Bifurc. Chaos 10, 273 (2000)

[205] W. Zou, D. V. Senthilkumar, R. Nagao, I. Z. Kiss, Y. Tang, A. Koseska, J. Duan, and J. Kurths.
Restoration of rhythmicity in diffusively coupled dynamical networks. Nat. Commun. 6, 7709
(2015)

[206] P. G. Kevrekidis and I. G. Kevrekidis. Wave of Translation. In “Encyclopedia of Nonlinear
Science”, 986–988. Taylor & Francis Group (2006)

[207] F. Sorrentino and L. Pecora. Approximate cluster synchronization in networks with symmetries
and parameter mismatches. Chaos 26, 094823 (2016)

[208] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math. 1, 269 (1959)

[209] A. J. Ijspeert. Central pattern generators for locomotion control in animals and robots: A
review. Neural Netw. 21, 642 (2008)

[210] X. Wu and S. Ma. CPG-based control of serpentine locomotion of a snake-like robot. Mecha-
tronics 20, 326 (2010)

[211] S. Steingrube, M. Timme, F. Wörgötter, and P. Manoonpong. Self-organized adaptation of a
simple neural circuit enables complex robot behaviour. Nat. Phys. 6, 224 (2010)

[212] A. F. Taylor, M. R. Tinsley, and K. Showalter. Insights into collective cell behaviour from
populations of coupled chemical oscillators. Phys. Chem. Chem. Phys. 31, 20047 (2015)

[213] Y. Kuramoto. Chemical Oscillations, Waves, and Turbulence. Springer (1984)

[214] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and Cooperation in Networked
Multi-Agent Systems. Proc. IEEE 95, 215 (2007)

[215] A.-L. Barabási and R. Albert. Emergence of Scaling in Random Networks. Science 286, 509
(1999)

http://dx.doi.org/10.1103/PhysRevE.79.036214
http://dx.doi.org/10.1103/PhysRevE.79.036214
http://dx.doi.org/10.1209/0295-5075/106/68001
http://dx.doi.org/10.1209/0295-5075/106/68001
http://dx.doi.org/10.1140/epjb/e2015-50869-y
http://dx.doi.org/10.1140/epjb/e2015-50869-y
http://dx.doi.org/10.1038/35065725
http://dx.doi.org/10.3390/sym2031683
http://dx.doi.org/10.1038/ncomms5079
http://dx.doi.org/10.1038/ncomms5079
http://dx.doi.org/10.1103/PhysRevLett.80.2109
http://dx.doi.org/10.1142/S0218127400000189
http://dx.doi.org/10.1142/S0218127400000189
http://dx.doi.org/10.1038/ncomms8709
https://www.crcpress.com/Encyclopedia-of-Nonlinear-Science/Scott/p/book/9781138012141
http://dx.doi.org/10.1063/1.4961967
http://dx.doi.org/10.1063/1.4961967
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1016/j.neunet.2008.03.014
http://dx.doi.org/10.1016/j.neunet.2008.03.014
http://dx.doi.org/10.1016/j.mechatronics.2010.01.006
http://dx.doi.org/10.1038/nphys1508
http://dx.doi.org/10.1038/nphys1508
http://dx.doi.org/10.1039/C5CP01964H
http://dx.doi.org/10.1039/C5CP01964H
http://dx.doi.org/10.1007/978-3-642-69689-3
http://dx.doi.org/10.1109/JPROC.2006.887293
http://dx.doi.org/10.1109/JPROC.2006.887293
http://dx.doi.org/10.1126/science.286.5439.509


References 153

[216] A.-L. Barabási and E. Bonabeau. Scale-Free Networks. Sci. Am. 288, 60 (2003)

[217] J. F. Totz, R. Snari, D. Yengi, M. R. Tinsley, H. Engel, and K. Showalter. Phase-lag synchro-
nization in networks of coupled chemical oscillators. Phys. Rev. E 92, 022819 (2015)

[218] M. Newman. Networks: An Introduction. Oxford University Press (2010)

[219] B. D. MacArthur and R. J. Sánchez-García. Spectral characteristics of network redundancy.
Phys. Rev. E 80, 026117 (2009)

[220] D. Rubino, K. A. Robbins, and N. G. Hatsopoulos. Propagating waves mediate information
transfer in the motor cortex. Nat. Neurosci. 9, 1549 (2006)

[221] M. J. Panaggio and D. M. Abrams. Chimera states: Coexistence of coherence and incoherence
in networks of coupled oscillators. Nonlinearity 28, R67 (2015)

[222] P. Ashwin, S. Coombes, and R. Nicks. Mathematical Frameworks for Oscillatory Network
Dynamics in Neuroscience. J. Math. Neurosci. 6, 1 (2016)

[223] D. M. Abrams and S. H. Strogatz. Chimera States for Coupled Oscillators. Phys. Rev. Lett. 93,
174102 (2004)

[224] J. Hogan, A. R. Krauskopf, M. di Bernado, R. E. Wilson, H. M. Osinga, M. E. Homer, and
A. R. Champneys, eds. Nonlinear Dynamics and Chaos: Where do we go from here? CRC
Press (2002)

[225] E. Alvarez-Lacalle and B. Echebarria. Global coupling in excitable media provides a simplified
description of mechanoelectrical feedback in cardiac tissue. Phys. Rev. E 79, 031921 (2009)

[226] J. C. González-Avella, M. G. Cosenza, and M. San Miguel. Localized coherence in two
interacting populations of social agents. Physica A 399, 24 (2014)

[227] I. A. Shepelev, T. E. Vadivasova, A. V. Bukh, G. I. Strelkova, and V. S. Anishchenko. New
type of chimera structures in a ring of bistable FitzHugh–Nagumo oscillators with nonlocal
interaction. Phys. Lett. A 381, 1398 (2017)

[228] M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson.
Synchronization of Micromechanical Oscillators Using Light. Phys. Rev. Lett. 109, 233906
(2012)

[229] M. Zhang, S. Shah, J. Cardenas, and M. Lipson. Synchronization and Phase Noise Reduction
in Micromechanical Oscillator Arrays Coupled through Light. Phys. Rev. Lett. 115, 163902
(2015)

[230] E. Gil-Santos, M. Labousse, C. Baker, A. Goetschy, W. Hease, C. Gomez, A. Lemaître, G. Leo,
C. Ciuti, and I. Favero. Light-Mediated Cascaded Locking of Multiple Nano-Optomechanical
Oscillators. Phys. Rev. Lett. 118, 063605 (2017)

[231] M. Rohden, A. Sorge, M. Timme, and D. Witthaut. Self-Organized Synchronization in
Decentralized Power Grids. Phys. Rev. Lett. 109, 064101 (2012)

[232] M. Trepanier, D. Zhang, O. Mukhanov, and S. M. Anlage. Realization and Modeling of
Metamaterials Made of rf Superconducting Quantum-Interference Devices. Phys. Rev. X 3,
041029 (2013)

http://dx.doi.org/10.1038/scientificamerican0503-60
http://dx.doi.org/10.1103/PhysRevE.92.022819
http://dx.doi.org/10.1103/PhysRevE.92.022819
https://global.oup.com/academic/product/networks-9780199206650?cc=de&lang=en&
http://dx.doi.org/10.1103/PhysRevE.80.026117
http://dx.doi.org/10.1038/nn1802
http://dx.doi.org/10.1038/nn1802
http://dx.doi.org/10.1088/0951-7715/28/3/R67
http://dx.doi.org/10.1088/0951-7715/28/3/R67
http://dx.doi.org/10.1186/s13408-015-0033-6
http://dx.doi.org/10.1186/s13408-015-0033-6
http://dx.doi.org/10.1103/PhysRevLett.93.174102
https://www.crcpress.com/Nonlinear-Dynamics-and-Chaos-Where-do-we-go-from-here/Hogan-Krauskopf-Bernado-Wilson-Osinga-Homer-Champneys/p/book/9780750308625
http://dx.doi.org/10.1103/PhysRevE.79.031921
http://dx.doi.org/10.1103/PhysRevE.79.031921
http://dx.doi.org/10.1016/j.physa.2013.12.035
http://dx.doi.org/10.1016/j.physa.2013.12.035
http://dx.doi.org/10.1016/j.physleta.2017.02.034
http://dx.doi.org/10.1016/j.physleta.2017.02.034
http://dx.doi.org/10.1016/j.physleta.2017.02.034
http://dx.doi.org/10.1103/PhysRevLett.109.233906
http://dx.doi.org/10.1103/PhysRevLett.115.163902
http://dx.doi.org/10.1103/PhysRevLett.115.163902
http://dx.doi.org/10.1103/PhysRevLett.118.063605
http://dx.doi.org/10.1103/PhysRevLett.118.063605
http://dx.doi.org/10.1103/PhysRevLett.109.064101
http://dx.doi.org/10.1103/PhysRevLett.109.064101
http://dx.doi.org/10.1103/PhysRevX.3.041029
http://dx.doi.org/10.1103/PhysRevX.3.041029


154 References

[233] N. Lazarides, G. Neofotistos, and G. P. Tsironis. Chimeras in SQUID metamaterials. Phys.
Rev. B 91, 054303 (2015)

[234] V. In and A. Palacios. Superconductive Quantum Interference Devices (SQUID). In “Symmetry
in Complex Network Systems”, 127–163. Springer (2018)

[235] S. Kaka, M. R. Pufall, W. H. Rippard, T. J. Silva, S. E. Russek, and J. A. Katine. Mutual
phase-locking of microwave spin torque nano-oscillators. Nature 437, 389 (2005)

[236] M. Zaks and A. Pikovsky. Chimeras and complex cluster states in arrays of spin-torque
oscillators. Sci. Rep. 7, 4648 (2017)

[237] H. W. Lau, J. Davidsen, and C. Simon. Chimera patterns in conservative systems and ultracold
atoms with mediated nonlocal hopping. arxiv (2017)

[238] C. R. Laing and C. C. Chow. Stationary Bumps in Networks of Spiking Neurons. Neural
Comput. 13, 1473 (2001)

[239] C. R. Laing. Derivation of a neural field model from a network of theta neurons. Phys. Rev. E
90, 010901 (2014)

[240] P. C. Bressloff and Z. P. Kilpatrick. Nonlocal Ginzburg-Landau equation for cortical pattern
formation. Phys. Rev. E 78, 041916 (2008)

[241] J. Viventi, et al. Flexible, foldable, actively multiplexed, high-density electrode array for
mapping brain activity in vivo. Nat. Neurosci. 14, 1599 (2011)

[242] R. G. Andrzejak, C. Rummel, F. Mormann, and K. Schindler. All together now: Analogies
between chimera state collapses and epileptic seizures. Sci. Rep. 6, 23000 (2016)

[243] R. Faubel, C. Westendorf, E. Bodenschatz, and G. Eichele. Cilia-based flow network in the
brain ventricles. Science 353, 176 (2016)

[244] M. R. Tinsley, S. Nkomo, and K. Showalter. Chimera and phase-cluster states in populations
of coupled chemical oscillators. Nat. Phys. 8, 662 (2012)

[245] S. Nkomo, M. R. Tinsley, and K. Showalter. Chimera States in Populations of Nonlocally
Coupled Chemical Oscillators. Phys. Rev. Lett. 110, 244102 (2013)

[246] M. Wickramasinghe and I. Z. Kiss. Spatially organized partial synchronization through the
chimera mechanism in a network of electrochemical reactions. Phys. Chem. Chem. Phys. 16,
18360 (2014)

[247] K. Schönleber, C. Zensen, A. Heinrich, and K. Krischer. Pattern formation during the oscillatory
photoelectrodissolution of n-type silicon: Turbulence, clusters and chimeras. New J. Phys. 16,
063024 (2014)

[248] L. Schmidt, K. Schönleber, K. Krischer, and V. García-Morales. Coexistence of synchrony and
incoherence in oscillatory media under nonlinear global coupling. Chaos 24, 013102 (2014)

[249] M. Patzauer, R. Hueck, A. Tosolini, K. Schönleber, and K. Krischer. Autonomous Oscilla-
tions and Pattern Formation with Zero External Resistance during Silicon Electrodissolution.
Electrochim. Acta 246, 315 (2017)

http://dx.doi.org/10.1103/PhysRevB.91.054303
http://dx.doi.org/10.1007/978-3-662-55545-3_4
http://dx.doi.org/10.1038/nature04035
http://dx.doi.org/10.1038/nature04035
http://dx.doi.org/10.1038/s41598-017-04918-9
http://dx.doi.org/10.1038/s41598-017-04918-9
http://arxiv.org/abs/1708.04375
http://arxiv.org/abs/1708.04375
http://www.mitpressjournals.org/doi/abs/10.1162/089976601750264974
http://dx.doi.org/10.1103/PhysRevE.90.010901
http://dx.doi.org/10.1103/PhysRevE.78.041916
http://dx.doi.org/10.1103/PhysRevE.78.041916
http://dx.doi.org/10.1038/nn.2973
http://dx.doi.org/10.1038/nn.2973
http://dx.doi.org/10.1038/srep23000
http://dx.doi.org/10.1038/srep23000
http://dx.doi.org/10.1126/science.aae0450
http://dx.doi.org/10.1126/science.aae0450
http://dx.doi.org/10.1038/nphys2371
http://dx.doi.org/10.1038/nphys2371
http://dx.doi.org/10.1103/PhysRevLett.110.244102
http://dx.doi.org/10.1103/PhysRevLett.110.244102
http://dx.doi.org/10.1039/C4CP02249A
http://dx.doi.org/10.1039/C4CP02249A
http://dx.doi.org/10.1088/1367-2630/16/6/063024
http://dx.doi.org/10.1088/1367-2630/16/6/063024
http://dx.doi.org/10.1063/1.4858996
http://dx.doi.org/10.1063/1.4858996
http://dx.doi.org/10.1016/j.electacta.2017.06.005
http://dx.doi.org/10.1016/j.electacta.2017.06.005


References 155

[250] P. Kumar, D. K. Verma, and P. Parmananda. Partially synchronized states in an ensemble of
chemo-mechanical oscillators. Phys. Lett. A 381, 2337 (2017)

[251] A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko, and E. Schöll. Experimental
observation of chimeras in coupled-map lattices. Nat. Phys. 8, 658 (2012)

[252] J. D. Hart, K. Bansal, T. E. Murphy, and R. Roy. Experimental observation of chimera and
cluster states in a minimal globally coupled network. Chaos 26, 094801 (2016)

[253] E. A. Martens, S. Thutupalli, A. Fourrière, and O. Hallatschek. Chimera states in mechanical
oscillator networks. Proc. Natl. Acad. Sci. USA 110, 10563 (2013)

[254] T. Kapitaniak, P. Kuzma, J. Wojewoda, K. Czolczynski, and Y. Maistrenko. Imperfect chimera
states for coupled pendula. Sci. Rep. 4, 6379 (2014)

[255] J. Wojewoda, K. Czolczynski, Y. Maistrenko, and T. Kapitaniak. The smallest chimera state
for coupled pendula. Sci. Rep. 6, 34329 (2016)

[256] L. Larger, B. Penkovsky, and Y. Maistrenko. Virtual Chimera States for Delayed-Feedback
Systems. Phys. Rev. Lett. 111, 054103 (2013)

[257] L. Larger, B. Penkovsky, and Y. Maistrenko. Laser chimeras as a paradigm for multistable
patterns in complex systems. Nat. Commun. 6, 7752 (2015)

[258] F. Rossi, S. Ristori, N. Marchettini, and O. L. Pantani. Functionalized Clay Microparticles as
Catalysts for Chemical Oscillators. J. Phys. Chem. C 118, 24389 (2014)

[259] L. V. Gambuzza, A. Buscarino, S. Chessari, L. Fortuna, R. Meucci, and M. Frasca. Experimental
investigation of chimera states with quiescent and synchronous domains in coupled electronic
oscillators. Phys. Rev. E 90, 032905 (2014)

[260] L. Q. English, A. Zampetaki, P. G. Kevrekidis, K. Skowronski, C. B. Fritz, and S. Ab-
doulkary. Analysis and observation of moving domain fronts in a ring of coupled electronic
self-oscillators. Chaos 27, 103125 (2017)

[261] D. R. Brumley, N. Bruot, J. Kotar, R. E. Goldstein, P. Cicuta, and M. Polin. Long-range
interactions, wobbles, and phase defects in chains of model cilia. Phys. Rev. Fluids 1, 081201
(2016)

[262] V. K. Vanag, L. Yang, M. Dolnik, A. M. Zhabotinsky, and I. R. Epstein. Oscillatory cluster
patterns in a homogeneous chemical system with global feedback. Nature 406, 389 (2000)

[263] P. Rupp, R. Richter, and I. Rehberg. Critical exponents of directed percolation measured in
spatiotemporal intermittency. Phys. Rev. E 67, 036209 (2003)

[264] L. Hall-Stoodley, J. W. Costerton, and P. Stoodley. Bacterial biofilms: From the Natural
environment to infectious diseases. Nat. Rev. Micro. 2, 95 (2004)

[265] S. Bayin. Mathematical Methods in Science and Engineering. Wiley (2006)

[266] Y. Kuramoto and S. Shima. Rotating Spirals without Phase Singularity in Reaction-Diffusion
Systems. Prog. Theor. Phys. Supplement 150, 115 (2003)

[267] S. Shima and Y. Kuramoto. Rotating spiral waves with phase-randomized core in nonlocally
coupled oscillators. Phys. Rev. E 69, 036213 (2004)

http://dx.doi.org/10.1016/j.physleta.2017.05.032
http://dx.doi.org/10.1016/j.physleta.2017.05.032
http://dx.doi.org/10.1038/nphys2372
http://dx.doi.org/10.1038/nphys2372
http://dx.doi.org/10.1063/1.4953662
http://dx.doi.org/10.1063/1.4953662
http://dx.doi.org/10.1073/pnas.1302880110
http://dx.doi.org/10.1073/pnas.1302880110
http://dx.doi.org/10.1038/srep06379
http://dx.doi.org/10.1038/srep06379
http://dx.doi.org/10.1038/srep34329
http://dx.doi.org/10.1038/srep34329
http://dx.doi.org/10.1103/PhysRevLett.111.054103
http://dx.doi.org/10.1103/PhysRevLett.111.054103
http://dx.doi.org/10.1038/ncomms8752
http://dx.doi.org/10.1038/ncomms8752
http://dx.doi.org/10.1021/jp5032724
http://dx.doi.org/10.1021/jp5032724
http://dx.doi.org/10.1103/PhysRevE.90.032905
http://dx.doi.org/10.1103/PhysRevE.90.032905
http://dx.doi.org/10.1103/PhysRevE.90.032905
http://dx.doi.org/10.1063/1.5009088
http://dx.doi.org/10.1063/1.5009088
http://dx.doi.org/10.1103/PhysRevFluids.1.081201
http://dx.doi.org/10.1103/PhysRevFluids.1.081201
http://dx.doi.org/10.1038/35019038
http://dx.doi.org/10.1038/35019038
http://dx.doi.org/10.1103/PhysRevE.67.036209
http://dx.doi.org/10.1103/PhysRevE.67.036209
http://dx.doi.org/10.1038/nrmicro821
http://dx.doi.org/10.1038/nrmicro821
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470041420.html
http://dx.doi.org/10.1143/PTPS.150.115
http://dx.doi.org/10.1143/PTPS.150.115
http://dx.doi.org/10.1103/PhysRevE.69.036213
http://dx.doi.org/10.1103/PhysRevE.69.036213


156 References

[268] V. Casagrande. Synchronization, Waves, and Turbulence in Systems of Interacting Chemical
Oscillators. Ph.D. Thesis, TU Berlin, FHI (2006)

[269] M. Hazewinkel. Diffeomorphism. In “Encyclopaedia of Mathematics”, Springer (2001)

[270] D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley. Solvable Model for Chimera States
of Coupled Oscillators. Phys. Rev. Lett. 101, 084103 (2008)

[271] Y. Kuramoto and D. Battogtokh. Coexistence of Coherence and Incoherence in Nonlocally
Coupled Phase Oscillators. Nonlin. Phenom. Complex Syst. 5, 380 (2002)

[272] D. M. Abrams and S. H. Strogatz. Chimera States in a Ring of Nonlocally Coupled Oscillators.
Int. J. Bifurcat. Chaos 16, 21 (2006)

[273] O. E. Omel’chenko, Y. L. Maistrenko, and P. A. Tass. Chimera States: The Natural Link
Between Coherence and Incoherence. Phys. Rev. Lett. 100, 044105 (2008)

[274] O. E. Omel’chenko, M. Wolfrum, and Y. L. Maistrenko. Chimera states as chaotic spatiotem-
poral patterns. Phys. Rev. E 81, 065201 (2010)

[275] I. Omelchenko, O. E. Omel’chenko, P. Hövel, and E. Schöll. When Nonlocal Coupling between
Oscillators Becomes Stronger: Patched Synchrony or Multichimera States. Phys. Rev. Lett.
110, 224101 (2013)

[276] R. G. Andrzejak, G. Ruzzene, and I. Malvestio. Generalized synchronization between chimera
states. Chaos 27, 053114 (2017)

[277] O. E. Omel’chenko, M. Wolfrum, S. Yanchuk, Y. L. Maistrenko, and O. Sudakov. Stationary
patterns of coherence and incoherence in two-dimensional arrays of non-locally-coupled phase
oscillators. Phys. Rev. E 85, 036210 (2012)

[278] X. Tang, T. Yang, I. R. Epstein, Y. Liu, Y. Zhao, and Q. Gao. Novel type of chimera spiral
waves arising from decoupling of a diffusible component. J. Chem. Phys. 141, 024110 (2014)

[279] B.-W. Li and H. Dierckx. Spiral wave chimeras in locally coupled oscillator systems. Phys.
Rev. E 93, 020202 (2016)

[280] A. Schmidt, T. Kasimatis, J. Hizanidis, A. Provata, and P. Hövel. Chimera patterns in two-
dimensional networks of coupled neurons. Phys. Rev. E 95, 032224 (2017)

[281] M. Falcke and H. Engel. Influence of global coupling through the gas phase on the dynamics
of CO oxidation on Pt(110). Phys. Rev. E 50, 1353 (1994)

[282] Y. Maistrenko, O. Sudakov, O. Osiv, and V. Maistrenko. Chimera states in three dimensions.
New J. Phys. 17, 073037 (2015)

[283] H. W. Lau and J. Davidsen. Linked and knotted chimera filaments in oscillatory systems. Phys.
Rev. E 94, 010204 (2016)

[284] V. Maistrenko, O. Sudakov, O. Osiv, and Y. Maistrenko. Multiple scroll wave chimera states.
Eur. Phys. J. Spec. Top. 226, 1867 (2017)

[285] M. Shanahan. Metastable chimera states in community-structured oscillator networks. Chaos
20, 013108 (2010)

https://depositonce.tu-berlin.de/handle/11303/1642
https://depositonce.tu-berlin.de/handle/11303/1642
https://www.encyclopediaofmath.org/index.php/Diffeomorphism
http://dx.doi.org/10.1103/PhysRevLett.101.084103
http://dx.doi.org/10.1103/PhysRevLett.101.084103
http://www.j-npcs.org/abstracts/vol2002/v5no4/v5no4p380.html
http://www.j-npcs.org/abstracts/vol2002/v5no4/v5no4p380.html
http://dx.doi.org/10.1142/S0218127406014551
http://dx.doi.org/10.1103/PhysRevLett.100.044105
http://dx.doi.org/10.1103/PhysRevLett.100.044105
http://dx.doi.org/10.1103/PhysRevE.81.065201
http://dx.doi.org/10.1103/PhysRevE.81.065201
http://dx.doi.org/10.1103/PhysRevLett.110.224101
http://dx.doi.org/10.1103/PhysRevLett.110.224101
http://dx.doi.org/10.1063/1.4983841
http://dx.doi.org/10.1063/1.4983841
http://dx.doi.org/10.1103/PhysRevE.85.036210
http://dx.doi.org/10.1103/PhysRevE.85.036210
http://dx.doi.org/10.1103/PhysRevE.85.036210
http://dx.doi.org/10.1063/1.4886395
http://dx.doi.org/10.1063/1.4886395
http://dx.doi.org/10.1103/PhysRevE.93.020202
http://dx.doi.org/10.1103/PhysRevE.95.032224
http://dx.doi.org/10.1103/PhysRevE.95.032224
http://dx.doi.org/10.1103/PhysRevE.50.1353
http://dx.doi.org/10.1103/PhysRevE.50.1353
http://dx.doi.org/10.1088/1367-2630/17/7/073037
http://dx.doi.org/10.1103/PhysRevE.94.010204
http://dx.doi.org/10.1140/epjst/e2017-70007-1
http://dx.doi.org/10.1063/1.3305451


References 157

[286] Y. Zhu, Z. Zheng, and J. Yang. Chimera states on complex networks. Phys. Rev. E 89, 022914
(2014)

[287] P. Ashwin and O. Burylko. Weak chimeras in minimal networks of coupled phase oscillators.
Chaos 25, 013106 (2015)

[288] X. Jiang and D. M. Abrams. Symmetry-broken states on networks of coupled oscillators. Phys.
Rev. E 93, 052202 (2016)

[289] G. Ghoshal, A. P. Muñuzuri, and J. Pérez-Mercader. Emergence of a super-synchronized
mobbing state in a large population of coupled chemical oscillators. Sci. Rep. 6, 19186 (2016)

[290] J. Shena, J. Hizanidis, V. Kovanis, and G. P. Tsironis. Turbulent chimeras in large semiconductor
laser arrays. Sci. Rep. 7, 42116 (2017)

[291] A. Zakharova, M. Kapeller, and E. Schöll. Chimera Death: Symmetry Breaking in Dynamical
Networks. Phys. Rev. Lett. 112, 154101 (2014)

[292] A. Vüllings, J. Hizanidis, I. Omelchenko, and P. Hövel. Clustered chimera states in systems of
type-I excitability. New J. Phys. 16, 123039 (2014)

[293] I. Omelchenko, Y. Maistrenko, P. Hövel, and E. Schöll. Loss of Coherence in Dynamical
Networks: Spatial Chaos and Chimera States. Phys. Rev. Lett. 106, 234102 (2011)

[294] C. Gu, G. St-Yves, and J. Davidsen. Spiral Wave Chimeras in Complex Oscillatory and Chaotic
Systems. Phys. Rev. Lett. 111, 134101 (2013)

[295] G. C. Sethia, A. Sen, and F. M. Atay. Clustered Chimera States in Delay-Coupled Oscillator
Systems. Phys. Rev. Lett. 100, 144102 (2008)

[296] F. Böhm, A. Zakharova, E. Schöll, and K. Lüdge. Amplitude-phase coupling drives chimera
states in globally coupled laser networks. Phys. Rev. E 91, 040901 (2015)

[297] A. Zakharova, S. A. M. Loos, J. Siebert, A. Gjurchinovski, J. C. Claussen, and E. Schöll.
Controlling Chimera Patterns in Networks: Interplay of Structure, Noise, and Delay. In
“Control of Self-Organizing Nonlinear Systems”, 3–23. Springer (2016)

[298] S. A. M. Loos, J. C. Claussen, E. Schöll, and A. Zakharova. Chimera patterns under the impact
of noise. Phys. Rev. E 93, 012209 (2016)

[299] V. Semenov, A. Zakharova, Y. Maistrenko, and E. Schöll. Delayed-feedback chimera states:
Forced multiclusters and stochastic resonance. Europhys. Lett. 115, 10005 (2016)

[300] N. Semenova, A. Zakharova, V. Anishchenko, and E. Schöll. Coherence-Resonance Chimeras
in a Network of Excitable Elements. Phys. Rev. Lett. 117, 014102 (2016)

[301] A. Buscarino, M. Frasca, L. V. Gambuzza, and P. Hövel. Chimera states in time-varying
complex networks. Phys. Rev. E 91, 022817 (2015)

[302] J. Sieber, O. E. Omel’chenko, and M. Wolfrum. Controlling Unstable Chaos: Stabilizing
Chimera States by Feedback. Phys. Rev. Lett. 112, 054102 (2014)

[303] C. Bick and E. A. Martens. Controlling chimeras. New J. Phys. 17, 033030 (2015)

http://dx.doi.org/10.1103/PhysRevE.89.022914
http://dx.doi.org/10.1063/1.4905197
http://dx.doi.org/10.1103/PhysRevE.93.052202
http://dx.doi.org/10.1038/srep19186
http://dx.doi.org/10.1038/srep19186
http://dx.doi.org/10.1038/srep42116
http://dx.doi.org/10.1038/srep42116
http://dx.doi.org/10.1103/PhysRevLett.112.154101
http://dx.doi.org/10.1103/PhysRevLett.112.154101
http://dx.doi.org/10.1088/1367-2630/16/12/123039
http://dx.doi.org/10.1088/1367-2630/16/12/123039
http://dx.doi.org/10.1103/PhysRevLett.106.234102
http://dx.doi.org/10.1103/PhysRevLett.106.234102
http://dx.doi.org/10.1103/PhysRevLett.111.134101
http://dx.doi.org/10.1103/PhysRevLett.111.134101
http://dx.doi.org/10.1103/PhysRevLett.100.144102
http://dx.doi.org/10.1103/PhysRevLett.100.144102
http://dx.doi.org/10.1103/PhysRevE.91.040901
http://dx.doi.org/10.1103/PhysRevE.91.040901
http://dx.doi.org/10.1007/978-3-319-28028-8_1
http://dx.doi.org/10.1103/PhysRevE.93.012209
http://dx.doi.org/10.1103/PhysRevE.93.012209
http://dx.doi.org/10.1209/0295-5075/115/10005
http://dx.doi.org/10.1209/0295-5075/115/10005
http://dx.doi.org/10.1103/PhysRevLett.117.014102
http://dx.doi.org/10.1103/PhysRevLett.117.014102
http://dx.doi.org/10.1103/PhysRevE.91.022817
http://dx.doi.org/10.1103/PhysRevE.91.022817
http://dx.doi.org/10.1103/PhysRevLett.112.054102
http://dx.doi.org/10.1103/PhysRevLett.112.054102
http://dx.doi.org/10.1088/1367-2630/17/3/033030


158 References

[304] I. Omelchenko, O. E. Omel’chenko, A. Zakharova, M. Wolfrum, and E. Schöll. Tweezers for
Chimeras in Small Networks. Phys. Rev. Lett. 116, 114101 (2016)

[305] T. Isele, J. Hizanidis, A. Provata, and P. Hövel. Controlling chimera states: The influence of
excitable units. Phys. Rev. E 93, 022217 (2016)

[306] F. P. Kemeth, S. W. Haugland, L. Schmidt, I. G. Kevrekidis, and K. Krischer. A classification
scheme for chimera states. Chaos 26, 094815 (2016)

[307] C. R. Laing. The dynamics of chimera states in heterogeneous Kuramoto networks. Physica D
238, 1569 (2009)

[308] C. Laing. Chimeras in Two-Dimensional Domains: Heterogeneity and the Continuum Limit.
SIAM J. Appl. Dyn. Syst. 16, 974 (2017)

[309] E. Ott and T. M. Antonsen. Low dimensional behavior of large systems of globally coupled
oscillators. Chaos 18, 037113 (2008)

[310] D. Cohen, J. Neu, and R. Rosales. Rotating Spiral Wave Solutions of Reaction-Diffusion
Equations. SIAM J. Appl. Math. 35, 536 (1978)

[311] E. A. Martens, C. R. Laing, and S. H. Strogatz. Solvable Model of Spiral Wave Chimeras.
Phys. Rev. Lett. 104, 044101 (2010)

[312] N. Tompkins, N. Li, C. Girabawe, M. Heymann, G. B. Ermentrout, I. R. Epstein, and S. Fraden.
Testing Turing’s theory of morphogenesis in chemical cells. Proc. Natl. Acad. Sci. USA 111,
4397 (2014)

[313] I. Z. Kiss, Y. Zhai, and J. L. Hudson. Emerging Coherence in a Population of Chemical
Oscillators. Science 296, 1676 (2002)

[314] D. K. Verma, H. Singh, P. Parmananda, A. Q. Contractor, and M. Rivera. Kuramoto transition
in an ensemble of mercury beating heart systems. Chaos 25, 064609 (2015)

[315] P. R. Buskohl, R. C. Kramb, and R. A. Vaia. Synchronicity in Composite Hydrogels: Be-
lousov–Zhabotinsky (BZ) Active Nodes in Gelatin. J. Phys. Chem. B 119, 3595 (2015)

[316] D. P. Rosin, D. Rontani, N. D. Haynes, E. Schöll, and D. J. Gauthier. Transient scaling and
resurgence of chimera states in networks of Boolean phase oscillators. Phys. Rev. E 90, 030902
(2014)

[317] M. R. Tinsley, A. F. Taylor, Z. Huang, and K. Showalter. Emergence of Collective Behavior in
Groups of Excitable Catalyst-Loaded Particles: Spatiotemporal Dynamical Quorum Sensing.
Phys. Rev. Lett. 102, 158301 (2009)

[318] B. Neumann, Z. Nagy-Ungvarai, and S. Müller. Interaction between silica gel matrices and the
Belousov-Zhabotinsky reaction. Chem. Phys. Lett. 211, 36 (1993)

[319] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature 393,
440 (1998)

[320] D. Witthaut and M. Timme. Braess’s paradox in oscillator networks, desynchronization and
power outage. New J. Phys. 14, 083036 (2012)

http://dx.doi.org/10.1103/PhysRevLett.116.114101
http://dx.doi.org/10.1103/PhysRevLett.116.114101
http://dx.doi.org/10.1103/PhysRevE.93.022217
http://dx.doi.org/10.1103/PhysRevE.93.022217
http://dx.doi.org/10.1063/1.4959804
http://dx.doi.org/10.1063/1.4959804
http://dx.doi.org/10.1016/j.physd.2009.04.012
http://dx.doi.org/10.1137/16M1086662
http://dx.doi.org/10.1063/1.2930766
http://dx.doi.org/10.1063/1.2930766
http://dx.doi.org/10.1137/0135045
http://dx.doi.org/10.1137/0135045
http://dx.doi.org/10.1103/PhysRevLett.104.044101
http://dx.doi.org/10.1073/pnas.1322005111
http://dx.doi.org/10.1126/science.1070757
http://dx.doi.org/10.1126/science.1070757
http://dx.doi.org/10.1063/1.4921717
http://dx.doi.org/10.1063/1.4921717
http://dx.doi.org/10.1021/jp512829h
http://dx.doi.org/10.1021/jp512829h
http://dx.doi.org/10.1103/PhysRevE.90.030902
http://dx.doi.org/10.1103/PhysRevE.90.030902
http://dx.doi.org/10.1103/PhysRevLett.102.158301
http://dx.doi.org/10.1103/PhysRevLett.102.158301
http://dx.doi.org/10.1016/0009-2614(93)80048-T
http://dx.doi.org/10.1016/0009-2614(93)80048-T
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1088/1367-2630/14/8/083036
http://dx.doi.org/10.1088/1367-2630/14/8/083036


References 159

[321] L. R. Varshney, B. L. Chen, E. Paniagua, D. H. Hall, and D. B. Chklovskii. Structural Properties
of the Caenorhabditis elegans Neuronal Network. PLOS Comput. Biol. 7, e1001066 (2011)

[322] T. A. Jarrell, Y. Wang, A. E. Bloniarz, C. A. Brittin, M. Xu, J. N. Thomson, D. G. Albertson,
D. H. Hall, and S. W. Emmons. The Connectome of a Decision-Making Neural Network.
Science 337, 437 (2012)

[323] P. Hänggi and P. Jung. Colored Noise in Dynamical Systems. In I. Prigogine and S. A. Rice,
eds., “Advances in Chemical Physics”, 239–326. Wiley (1994)

[324] N. G. V. Kampen. Stochastic Processes in Physics and Chemistry. Elsevier (2011)

[325] K. Yoshikawa, R. Aihara, and K. Agladze. Size-Dependent Belousov-Zhabotinsky Oscillation
in Small Beads. J. Phys. Chem. A 102, 7649 (1998)

[326] A. M. Zhabotinsky, F. Buchholtz, A. B. Kiyatkin, and I. R. Epstein. Oscillations and waves in
metal-ion-catalyzed bromate oscillating reactions in highly oxidized states. J. Phys. Chem. 97,
7578 (1993)

[327] R. Toth, A. F. Taylor, and M. R. Tinsley. Collective Behavior of a Population of Chemically
Coupled Oscillators. J. Phys. Chem. B 110, 10170 (2006)

[328] S. Kádár, T. Amemiya, and K. Showalter. Reaction Mechanism for Light Sensitivity of the
Ru(bpy)32+-Catalyzed Belousov-Zhabotinsky Reaction. J. Phys. Chem. A 101, 8200 (1997)

[329] I. Omelchenko, A. Zakharova, P. Hövel, J. Siebert, and E. Schöll. Nonlinearity of local
dynamics promotes multi-chimeras. Chaos 25, 083104 (2015)

[330] I. Omelchenko, A. Provata, J. Hizanidis, E. Schöll, and P. Hövel. Robustness of chimera states
for coupled FitzHugh-Nagumo oscillators. Phys. Rev. E 91, 022917 (2015)

[331] M.-A. Bray and J. P. Wikswo. Use of topological charge to determine filament location and
dynamics in a numerical model of scroll wave activity. IEEE Trans. Biomed. Eng. 49, 1086
(2002)

[332] M. J. Panaggio and D. M. Abrams. Chimera states on the surface of a sphere. Phys. Rev. E 91,
022909 (2015)

[333] A. A. Selivanov, J. Lehnert, T. Dahms, P. Hövel, A. L. Fradkov, and E. Schöll. Adaptive
synchronization in delay-coupled networks of Stuart-Landau oscillators. Phys. Rev. E 85,
016201 (2012)

[334] J. F. Totz, J. Rode, M. R. Tinsley, K. Showalter, and H. Engel. Spiral wave chimera states in
large populations of coupled chemical oscillators. Nat. Phys. 1 (2017)

[335] A. T. Winfree. Varieties of spiral wave behavior: An experimentalist’s approach to the theory
of excitable media. Chaos 1, 303 (1991)

[336] D. Frenkel and B. Smit. Understanding Molecular Simulation: From Algorithms to Applica-
tions. Academic Press (2001)

[337] D. Barkley, M. Kness, and L. S. Tuckerman. Spiral-wave dynamics in a simple model of
excitable media: The transition from simple to compound rotation. Phys. Rev. A 42, 2489
(1990)

http://dx.doi.org/10.1371/journal.pcbi.1001066
http://dx.doi.org/10.1371/journal.pcbi.1001066
http://dx.doi.org/10.1126/science.1221762
http://dx.doi.org/10.1002/9780470141489.ch4
http://www.sciencedirect.com/science/book/9780444529657
http://dx.doi.org/10.1021/jp982136d
http://dx.doi.org/10.1021/jp982136d
http://dx.doi.org/10.1021/j100131a030
http://dx.doi.org/10.1021/j100131a030
http://dx.doi.org/10.1021/jp060732z
http://dx.doi.org/10.1021/jp060732z
http://dx.doi.org/10.1021/jp971937y
http://dx.doi.org/10.1021/jp971937y
http://dx.doi.org/10.1063/1.4927829
http://dx.doi.org/10.1063/1.4927829
http://dx.doi.org/10.1103/PhysRevE.91.022917
http://dx.doi.org/10.1103/PhysRevE.91.022917
http://dx.doi.org/10.1109/TBME.2002.803516
http://dx.doi.org/10.1109/TBME.2002.803516
http://dx.doi.org/10.1103/PhysRevE.91.022909
http://dx.doi.org/10.1103/PhysRevE.85.016201
http://dx.doi.org/10.1103/PhysRevE.85.016201
http://dx.doi.org/10.1038/s41567-017-0005-8
http://dx.doi.org/10.1038/s41567-017-0005-8
http://dx.doi.org/10.1063/1.165844
http://dx.doi.org/10.1063/1.165844
http://www.sciencedirect.com/science/book/9780122673511
http://www.sciencedirect.com/science/book/9780122673511
http://dx.doi.org/10.1103/PhysRevA.42.2489
http://dx.doi.org/10.1103/PhysRevA.42.2489


160 References

[338] W. Jahnke, W. E. Skaggs, and A. T. Winfree. Chemical vortex dynamics in the Belousov-
Zhabotinskii reaction and in the two-variable Oregonator model. J. Phys. Chem. 93, 740
(1989)

[339] D. Barkley. Euclidean symmetry and the dynamics of rotating spiral waves. Phys. Rev. Lett.
72, 164 (1994)

[340] M. Wolfrum and O. E. Omel’chenko. Chimera states are chaotic transients. Phys. Rev. E 84,
015201 (2011)

[341] Y. L. Maistrenko, A. Vasylenko, O. Sudakov, R. Levchenko, and V. L. Maistrenko. Cascades
of Multiheaded Chimera States for Coupled Phase Oscillators. Int. J. Bifurcation Chaos 24,
1440014 (2014)

[342] I. Sendiña-Nadal, S. Alonso, V. Pérez-Muñuzuri, M. Gómez-Gesteira, V. Pérez-Villar,
L. Ramírez-Piscina, J. Casademunt, J. M. Sancho, and F. Sagués. Brownian Motion of
Spiral Waves Driven by Spatiotemporal Structured Noise. Phys. Rev. Lett. 84, 2734 (2000)

[343] C. Brito, I. S. Aranson, and H. Chaté. Vortex Glass and Vortex Liquid in Oscillatory Media.
Phys. Rev. Lett. 90, 068301 (2003)

[344] M. Bär and M. Eiswirth. Turbulence due to spiral breakup in a continuous excitable medium.
Phys. Rev. E 48, R1635 (1993)

[345] M. Bär and L. Brusch. Breakup of spiral waves caused by radial dynamics: Eckhaus and finite
wavenumber instabilities. New J. Phys. 6, 5 (2004)

[346] Z. Nagy-Ungvarai and S. Müller. Characterization of Wave Front Instabilities in the Belousov-
Zhabotinsky Raction: An Overview. Int. J. Bifurc. Chaos 04, 1257 (1994)

[347] L. Glass and M. C. Mackey. From Clocks to Chaos: The Rhythms of Life. Princeton University
Press (1988)

[348] E. M. Izhikevich. Dynamical Systems in Neuroscience. MIT Press (2007)

[349] N. W. Schultheiss, A. A. Prinz, and R. J. Butera. Phase Response Curves in Neuroscience:
Theory, Experiment, and Analysis, volume 6. Springer (2011)

[350] L. Glass and A. T. Winfree. Discontinuities in phase-resetting experiments. Am. J. Physiol.
Regul. Integr. Comp. Physiol. 246, R251 (1984)

[351] J. Jalife and G. K. Moe. Effect of electrotonic potentials on pacemaker activity of canine
Purkinje fibers in relation to parasystole. Circ. Res. 39, 801 (1976)

[352] M. R. Guevara, A. Shrier, and L. Glass. Phase resetting of spontaneously beating embryonic
ventricular heart cell aggregates. Am. J. Physiol. Heart Circ. Physiol. 251, H1298 (1986)

[353] J. M. Anumonwo, M. Delmar, A. Vinet, D. C. Michaels, and J. Jalife. Phase resetting and
entrainment of pacemaker activity in single sinus nodal cells. Circ. Res. 68, 1138 (1991)

[354] D. F. Russell. Respiratory pattern generation in adult lampreys (Lampetra fluviatilis): Interneu-
rons and burst resetting. J. Comp. Physiol. 158, 91 (1986)

[355] R. Wessel. In vitro study of phase resetting and phase locking in a time-comparison circuit in
the electric fish, Eigenmannia. Biophys. J. 69, 1880 (1995)

http://dx.doi.org/10.1021/j100339a047
http://dx.doi.org/10.1021/j100339a047
http://dx.doi.org/10.1103/PhysRevLett.72.164
http://dx.doi.org/10.1103/PhysRevE.84.015201
http://dx.doi.org/10.1142/S0218127414400148
http://dx.doi.org/10.1142/S0218127414400148
http://dx.doi.org/10.1103/PhysRevLett.84.2734
http://dx.doi.org/10.1103/PhysRevLett.84.2734
http://dx.doi.org/10.1103/PhysRevLett.90.068301
http://dx.doi.org/10.1103/PhysRevE.48.R1635
http://dx.doi.org/10.1088/1367-2630/6/1/005
http://dx.doi.org/10.1088/1367-2630/6/1/005
http://dx.doi.org/10.1142/S0218127494000940
http://dx.doi.org/10.1142/S0218127494000940
https://press.princeton.edu/titles/4308.html
https://mitpress.mit.edu/books/dynamical-systems-neuroscience
http://dx.doi.org/10.1007/978-1-4614-0739-3
http://dx.doi.org/10.1007/978-1-4614-0739-3
http://ajpregu.physiology.org/content/246/2/R251
http://dx.doi.org/10.1161/01.RES.39.6.801
http://dx.doi.org/10.1161/01.RES.39.6.801
http://dx.doi.org/10.1152/ajpheart.1986.251.6.H1298
http://dx.doi.org/10.1152/ajpheart.1986.251.6.H1298
http://dx.doi.org/10.1161/01.RES.68.4.1138
http://dx.doi.org/10.1161/01.RES.68.4.1138
http://dx.doi.org/10.1007/BF00614523
http://dx.doi.org/10.1007/BF00614523
http://dx.doi.org/10.1016/S0006-3495(95)80058-5
http://dx.doi.org/10.1016/S0006-3495(95)80058-5


References 161

[356] A. A. Prinz, V. Thirumalai, and E. Marder. The Functional Consequences of Changes in the
Strength and Duration of Synaptic Inputs to Oscillatory Neurons. J. Neurosci. 23, 943 (2003)

[357] S. B. S. Khalsa, M. E. Jewett, C. Cajochen, and C. A. Czeisler. A Phase Response Curve to
Single Bright Light Pulses in Human Subjects. J. Physiol. 549, 945 (2003)

[358] C. H. Johnson and J. W. Hastings. Circadian Phototransduction: Phase Resetting and Frequency
of the Circadian Clock of Gonyaulax Cells in Red Light. J. Biol. Rhythms 4, 417 (1989)

[359] V. Varma, N. Mukherjee, N. N. Kannan, and V. K. Sharma. Strong (Type 0) Phase Resetting of
Activity-Rest Rhythm in Fruit Flies, Drosophila Melanogaster, at Low Temperature. J. Biol.
Rhythms 28, 380 (2013)

[360] J. Rode. Synchronization in Heterogeneous Networks - From Phase to Relaxation Oscillators.
M.Sc. Thesis, TU Berlin (2016)

[361] J. F. Totz. Wechselwirkung spiralförmiger Erregungswellen mit kreisförmigen Heterogenitäten.
B.Sc. thesis, TU Berlin, Berlin (2011)

[362] E. Nakouzi, J. F. Totz, Z. Zhang, O. Steinbock, and H. Engel. Hysteresis and drift of spiral
waves near heterogeneities: From chemical experiments to cardiac simulations. Phys. Rev. E
93, 022203 (2016)

[363] S. Alonso and M. Bär. Reentry Near the Percolation Threshold in a Heterogeneous Discrete
Model for Cardiac Tissue. Phys. Rev. Lett. 110, 158101 (2013)

[364] A. Rothkegel and K. Lehnertz. Irregular macroscopic dynamics due to chimera states in
small-world networks of pulse-coupled oscillators. New J. Phys. 16, 055006 (2014)

[365] S.-y. Takemura, et al. A visual motion detection circuit suggested by Drosophila connectomics.
Nature 500, 175 (2013)

[366] Y. Chen, S. Wang, C. C. Hilgetag, and C. Zhou. Features of spatial and functional segregation
and integration of the primate connectome revealed by trade-off between wiring cost and
efficiency. PLOS Comput. Biol. 13, e1005776 (2017)

[367] S. Boccaletti, J. A. Almendral, S. Guan, I. Leyva, Z. Liu, I. Sendiña-Nadal, Z. Wang, and
Y. Zou. Explosive transitions in complex networks’ structure and dynamics: Percolation and
synchronization. Phys. Rep. 660, 1 (2016)

[368] B. Pietras, N. Deschle, and A. Daffertshofer. Equivalence of coupled networks and networks
with multimodal frequency distributions: Conditions for the bimodal and trimodal case. Phys.
Rev. E 94, 052211 (2016)

[369] S. M. Bohte, J. N. Kok, and H. La Poutré. Error-backpropagation in temporally encoded
networks of spiking neurons. Neurocomputing 48, 17 (2002)

[370] R. Bates, O. Blyuss, and A. Zaikin. Stochastic resonance in an intracellular genetic perceptron.
Phys. Rev. E 89, 032716 (2014)

[371] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni. Stochastic resonance. Rev. Mod. Phys.
70, 223 (1998)

[372] H. Gang, T. Ditzinger, C. Z. Ning, and H. Haken. Stochastic resonance without external
periodic force. Phys. Rev. Lett. 71, 807 (1993)

http://www.jneurosci.org/content/23/3/943
http://www.jneurosci.org/content/23/3/943
http://dx.doi.org/10.1113/jphysiol.2003.040477
http://dx.doi.org/10.1113/jphysiol.2003.040477
http://dx.doi.org/10.1177/074873048900400403
http://dx.doi.org/10.1177/074873048900400403
http://dx.doi.org/10.1177/0748730413508922
http://dx.doi.org/10.1177/0748730413508922
http://dx.doi.org/10.1103/PhysRevE.93.022203
http://dx.doi.org/10.1103/PhysRevE.93.022203
http://dx.doi.org/10.1103/PhysRevLett.110.158101
http://dx.doi.org/10.1103/PhysRevLett.110.158101
http://dx.doi.org/10.1088/1367-2630/16/5/055006
http://dx.doi.org/10.1088/1367-2630/16/5/055006
http://dx.doi.org/10.1038/nature12450
http://dx.doi.org/10.1371/journal.pcbi.1005776
http://dx.doi.org/10.1371/journal.pcbi.1005776
http://dx.doi.org/10.1371/journal.pcbi.1005776
http://dx.doi.org/10.1016/j.physrep.2016.10.004
http://dx.doi.org/10.1016/j.physrep.2016.10.004
http://dx.doi.org/10.1103/PhysRevE.94.052211
http://dx.doi.org/10.1103/PhysRevE.94.052211
http://dx.doi.org/10.1016/S0925-2312(01)00658-0
http://dx.doi.org/10.1016/S0925-2312(01)00658-0
http://dx.doi.org/10.1103/PhysRevE.89.032716
http://dx.doi.org/10.1103/RevModPhys.70.223
http://dx.doi.org/10.1103/PhysRevLett.71.807
http://dx.doi.org/10.1103/PhysRevLett.71.807


162 References

[373] A. S. Pikovsky and J. Kurths. Coherence Resonance in a Noise-Driven Excitable System. Phys.
Rev. Lett. 78, 775 (1997)

[374] K. Wimmer, D. Q. Nykamp, C. Constantinidis, and A. Compte. Bump attractor dynamics in
prefrontal cortex explains behavioral precision in spatial working memory. Nat. Neurosci. 17,
431 (2014)

[375] A. H. Cohen and P. Wallén. The neuronal correlate of locomotion in fish. Exp. Brain Res. 41,
11 (1980)

[376] I. Delvolvé, P. Branchereau, R. Dubuc, and J.-M. Cabelguen. Fictive Rhythmic Motor Patterns
Induced by NMDA in an In Vitro Brain Stem–Spinal Cord Preparation From an Adult Urodele.
J. Neurophysiol. 82, 1074 (1999)

[377] M. Salathé, M. Kazandjieva, J. W. Lee, P. Levis, M. W. Feldman, and J. H. Jones. A high-
resolution human contact network for infectious disease transmission. Proc. Natl. Acad. Sci.
USA 107, 22020 (2010)

[378] D. Brockmann and D. Helbing. The Hidden Geometry of Complex, Network-Driven Contagion
Phenomena. Science 342, 1337 (2013)

[379] T. W. Valente. Network Models of the Diffusion of Innovations. Hampton Press (1995)

[380] A. E. Pereda. Electrical synapses and their functional interactions with chemical synapses. Nat.
Rev. Neurosci. 15, 250 (2014)

[381] L. Hegedüs, M. Wittmann, Z. Noszticzius, S. Yan, A. Sirimungkala, H.-D. Försterling, and
R. J. Field. HPLC analysis of complete BZ systems. Evolution of the chemical composition in
cerium and ferroin catalysed batch oscillators: Experiments and model calculations. Faraday
Discuss. 120, 21 (2001)

[382] A. Erisir, D. Lau, B. Rudy, and C. S. Leonard. Function of Specific K+ Channels in Sustained
High-Frequency Firing of Fast-Spiking Neocortical Interneurons. J. Neurophysiol. 82, 2476
(1999)

[383] V. Iyer, R. Mazhari, and R. L. Winslow. A Computational Model of the Human Left-Ventricular
Epicardial Myocyte. Biophys. J. 87, 1507 (2004)

[384] S. Vajda and T. Turanyi. Principal component analysis for reducing the Edelson-Field-Noyes
model of the Belousov-Zhabotinskii reaction. J. Phys. Chem. 90, 1664 (1986)

[385] R. A. Gray, J. P. Wikswo, and N. F. Otani. Origin choice and petal loss in the flower garden of
spiral wave tip trajectories. Chaos 19, 033118 (2009)

[386] L. Cohen. Time-frequency Analysis. Prentice Hall (1995)

[387] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung,
and H. H. Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear and
non-stationary time series analysis. Proc. R. Soc. A 454, 903 (1998)

[388] S. A. Oprisan. A Geometric Approach to Phase Resetting Estimation Based on Mapping Tem-
poral to Geometric Phase. In “Phase Response Curves in Neuroscience: Theory, Experiment,
and Analysis”, 131–162. Springer (2011)

http://dx.doi.org/10.1103/PhysRevLett.78.775
http://dx.doi.org/10.1038/nn.3645
http://dx.doi.org/10.1038/nn.3645
http://dx.doi.org/10.1007/BF00236674
http://jn.physiology.org/content/82/2/1074
http://jn.physiology.org/content/82/2/1074
http://dx.doi.org/10.1073/pnas.1009094108
http://dx.doi.org/10.1073/pnas.1009094108
http://dx.doi.org/10.1126/science.1245200
http://dx.doi.org/10.1126/science.1245200
http://www.hamptonpress.com/Merchant2/merchant.mvc?Screen=PROD&Product_Code=1-881303-22-5&Category_Code=QMC
http://dx.doi.org/10.1038/nrn3708
http://dx.doi.org/10.1039/B103432B
http://dx.doi.org/10.1039/B103432B
http://jn.physiology.org/content/82/5/2476
http://jn.physiology.org/content/82/5/2476
http://dx.doi.org/10.1529/biophysj.104.043299
http://dx.doi.org/10.1529/biophysj.104.043299
http://dx.doi.org/10.1021/j100399a042
http://dx.doi.org/10.1021/j100399a042
http://dx.doi.org/10.1063/1.3204256
http://dx.doi.org/10.1063/1.3204256
https://www.pearson.com/us/higher-education/program/Cohen-Time-Frequency-Analysis-Theory-and-Applications/PGM235400.html
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1007/978-1-4614-0739-3
http://dx.doi.org/10.1007/978-1-4614-0739-3


References 163

[389] J. K. Kevorkian and J. D. Cole. Multiple Scale and Singular Perturbation Methods. Springer
(1996)

[390] C. M. Bender and S. A. Orszag. Advanced Mathematical Methods for Scientists and Engineers
I: Asymptotic Methods and Perturbation Theory. Springer (1999)

[391] M. A. Schwemmer and T. J. Lewis. The Theory of Weakly Coupled Oscillators. In N. W.
Schultheiss, A. A. Prinz, and R. J. Butera, eds., “Phase Response Curves in Neuroscience”,
3–31. Springer (2012)

[392] R. Haberman. Applied Partial Differential Equations: With Fourier Series and Boundary Value
Problems. Pearson (2013)

[393] K. Kuttler. Elementary Linear Algebra. Saylor Foundation (2012)

[394] P. A. M. Dirac. A new notation for quantum mechanics. Math. Proc. Camb. Philos. Soc. 35,
416 (1939)

[395] G. Chacón, H. Rafeiro, and J. C. Vallejo. Functional Analysis: A Terse Introduction. de
Gruyter (2016)

[396] F. C. Hoppensteadt and E. M. Izhikevich. Weakly Connected Neural Networks. Springer
(1997)

[397] A. F. Taylor, M. R. Tinsley, F. Wang, Z. Huang, and K. Showalter. Dynamical Quorum Sensing
and Synchronization in Large Populations of Chemical Oscillators. Science 323, 614 (2009)

[398] S. Ghosh and S. Jalan. Emergence of Chimera in Multiplex Network. Int. J. Bifurcation Chaos
26, 1650120 (2016)

[399] J. Gómez-Gardeñes, S. Gómez, A. Arenas, and Y. Moreno. Explosive Synchronization
Transitions in Scale-Free Networks. Phys. Rev. Lett. 106, 128701 (2011)

[400] Y. Kuramoto. Self-entrainment of a population of coupled non-linear oscillators. In “Inter-
national Symposium on Mathematical Problems in Theoretical Physics”, 420–422. Springer
(1975)

[401] A. T. Winfree. On Emerging Coherence. Science 298, 2336 (2002)

[402] A. T. Winfree. Two kinds of wave in an oscillating chemical solution. Faraday Symp. Chem.
Soc. 9, 38 (1974)

[403] B. Fiedler, B. Sandstede, A. Scheel, and C. Wulff. Bifurcation from Relative Equilibria of
Noncompact Group Actions: Skew Products, Meanders, and Drifts. Doc. Math. J. DMV 1,
479 (1996)

[404] R. B. Hoyle. Pattern Formation: An Introduction to Methods. Cambridge University Press
(2006)

[405] N. D. Mermin. The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591
(1979)

[406] D. Barkley, V. N. Biktashev, I. V. Biktasheva, G. V. Bordyugov, and A. J. Foulkes. DXSpiral:
Code for studying spiral waves on a disk (2008)

http://dx.doi.org/10.1007/978-1-4612-3968-0
http://dx.doi.org/10.1007/978-1-4757-3069-2
http://dx.doi.org/10.1007/978-1-4757-3069-2
http://dx.doi.org/10.1007/978-1-4614-0739-3_1
https://www.pearson.com/us/higher-education/program/Haberman-Applied-Partial-Differential-Equations-with-Fourier-Series-and-Boundary-Value-Problems-5th-Edition/PGM290639.html
https://www.pearson.com/us/higher-education/program/Haberman-Applied-Partial-Differential-Equations-with-Fourier-Series-and-Boundary-Value-Problems-5th-Edition/PGM290639.html
https://www.saylor.org/site/wp-content/uploads/2012/02/Elementary-Linear-Algebra-1-30-11-Kuttler-OTC.pdf
http://dx.doi.org/10.1017/S0305004100021162
https://www.degruyter.com/view/product/460814
https://dx.doi.org/10.1007/978-1-4612-1828-9
http://dx.doi.org/10.1126/science.1166253
http://dx.doi.org/10.1126/science.1166253
http://dx.doi.org/10.1142/S0218127416501200
http://dx.doi.org/10.1103/PhysRevLett.106.128701
http://dx.doi.org/10.1103/PhysRevLett.106.128701
http://dx.doi.org/10.1007/BFb0013365
http://dx.doi.org/10.1126/science.1072560
http://dx.doi.org/10.1039/FS9740900038
https://eudml.org/doc/229411
https://eudml.org/doc/229411
http://www.cambridge.org/us/academic/subjects/mathematics/mathematical-modelling-and-methods/pattern-formation-introduction-methods?format=HB&isbn=9780521817509
http://dx.doi.org/10.1103/RevModPhys.51.591
http://cgi.csc.liv.ac.uk/~ivb/SOFTware/DXSpiral.html
http://cgi.csc.liv.ac.uk/~ivb/SOFTware/DXSpiral.html


164 References

[407] H. Dierckx, O. Bernus, and H. Verschelde. A geometric theory for scroll wave filaments in
anisotropic excitable media. Physica D 238, 941 (2009)

[408] I. V. Biktasheva, D. Barkley, V. N. Biktashev, and A. J. Foulkes. Computation of the drift
velocity of spiral waves using response functions. Phys. Rev. E 81, 066202 (2010)

[409] C. D. Marcotte and R. O. Grigoriev. Adjoint eigenfunctions of temporally recurrent single-spiral
solutions in a simple model of atrial fibrillation. Chaos 26, 093107 (2016)

[410] S. Dineen. Multivariate Calculus and Geometry. Springer (2014)

[411] H. Verschelde, H. Dierckx, and O. Bernus. Covariant Stringlike Dynamics of Scroll Wave
Filaments in Anisotropic Cardiac Tissue. Phys. Rev. Lett. 99, 168104 (2007)

[412] F. K. Manasse and C. W. Misner. Fermi Normal Coordinates and Some Basic Concepts in
Differential Geometry. J. Math. Phys 4, 735 (1963)

[413] M. Wellner, O. Berenfeld, J. Jalife, and A. M. Pertsov. Minimal principle for rotor filaments.
Proc. Natl. Acad. Sci. USA 99, 8015 (2002)

[414] A. S. Mikhailov. Three-dimensional kinematics. Chaos 5, 673 (1995)

[415] H. J. Krug, L. Pohlmann, and L. Kuhnert. Analysis of the modified complete Oregonator
accounting for oxygen sensitivity and photosensitivity of Belousov-Zhabotinskii systems. J.
Phys. Chem. 94, 4862 (1990)

[416] V. Gáspár, G. Basza, and M. T. Beck. The Influence of Visible Light on the Belousov-
Zhabotinskii Oscillating Reactions applying Different Catalysts. Z. Phys. Chem. 264, 43
(1983)

[417] H. Fukuda, H. Nagano, and S. Kai. Stochastic Synchronization in Two-Dimensional Coupled
Lattice Oscillators in the Belousov–Zhabotinsky Reaction. J. Phys. Soc. Jpn. 72, 487 (2003)

[418] T. Okano, A. Kitagawa, and K. Miyakawa. Array-enhanced coherence resonance and phase
synchronization in a two-dimensional array of excitable chemical oscillators. Phys. Rev. E 76,
046201 (2007)

[419] A. F. Taylor, P. Kapetanopoulos, B. J. Whitaker, R. Toth, L. Bull, and M. R. Tinsley. Clusters
and Switchers in Globally Coupled Photochemical Oscillators. Phys. Rev. Lett. 100, 214101
(2008)

[420] C. E. Carraher, Jr. Introduction to Polymer Chemistry. CRC Press (2017)

[421] M. Toiya, V. K. Vanag, and I. R. Epstein. Diffusively Coupled Chemical Oscillators in a
Microfluidic Assembly. Angew. Chem. Int. Ed. 47, 7753 (2008)

[422] M. Toiya, H. O. González-Ochoa, V. K. Vanag, S. Fraden, and I. R. Epstein. Synchronization
of Chemical Micro-oscillators. J. Phys. Chem. Lett. 1, 1241 (2010)

[423] L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez. PACKMOL: A package for building
initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157 (2009)

[424] W. Humphrey, A. Dalke, and K. Schulten. VMD: Visual molecular dynamics. J. Mol. Graph.
14, 33 (1996)

http://dx.doi.org/10.1016/j.physd.2008.09.006
http://dx.doi.org/10.1016/j.physd.2008.09.006
http://dx.doi.org/10.1103/PhysRevE.81.066202
http://dx.doi.org/10.1103/PhysRevE.81.066202
http://dx.doi.org/10.1063/1.4962644
http://dx.doi.org/10.1063/1.4962644
http://dx.doi.org/10.1007/978-1-4471-6419-7
http://dx.doi.org/10.1103/PhysRevLett.99.168104
http://dx.doi.org/10.1103/PhysRevLett.99.168104
http://dx.doi.org/10.1063/1.1724316
http://dx.doi.org/10.1063/1.1724316
http://dx.doi.org/10.1073/pnas.112026199
http://dx.doi.org/10.1016/0960-0779(93)E0049-H
http://dx.doi.org/10.1021/j100375a021
http://dx.doi.org/10.1021/j100375a021
http://dx.doi.org/https://doi.org/10.1515/zpch-1983-26406
http://dx.doi.org/https://doi.org/10.1515/zpch-1983-26406
http://dx.doi.org/10.1143/JPSJ.72.487
http://dx.doi.org/10.1143/JPSJ.72.487
http://dx.doi.org/10.1103/PhysRevE.76.046201
http://dx.doi.org/10.1103/PhysRevE.76.046201
http://dx.doi.org/10.1103/PhysRevLett.100.214101
http://dx.doi.org/10.1103/PhysRevLett.100.214101
https://www.crcpress.com/Introduction-to-Polymer-Chemistry-Fourth-Edition/Jr/p/book/9781498737616
http://dx.doi.org/10.1002/anie.200802339
http://dx.doi.org/10.1002/anie.200802339
http://dx.doi.org/10.1021/jz100238u
http://dx.doi.org/10.1021/jz100238u
http://dx.doi.org/10.1002/jcc.21224
http://dx.doi.org/10.1002/jcc.21224
http://dx.doi.org/10.1016/0263-7855(96)00018-5


References 165

[425] E. Dubrofsky. Homography Estimation. M.Sc. Thesis, University of British Columbia,
Vancouver (2009)

[426] S. H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,
Chemistry, and Engineering. Westview Press (2014)

[427] A.-K. Kassam and L. N. Trefethen. Fourth-Order Time-Stepping for Stiff PDEs. SIAM J. Sci.
Comput. 26, 1214 (2005)

[428] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to General-Purpose GPU
Programming. Addison-Wesley (2010)

[429] W.-m. Hwu. GPU Computing Gems Emerald Edition. Elsevier (2011)

[430] J. Cheng, M. Grossman, and T. McKercher. Professional CUDA C Programming. John Wiley
& Sons (2014)

[431] R. J. Field and M. Burger, eds. Oscillations and Traveling Waves in Chemical Systems. Wiley
(1985)

[432] J. J. Tyson. What Everyone Should Know About the Belousov-Zhabotinsky Reaction. In S. A.
Levin, ed., “Frontiers in Mathematical Biology”, 569–587. Springer (1994)

[433] A. F. Taylor. Mechanism and Phenomenology of an Oscillating Chemical Reaction. Prog.
React. Kinet. Mech. 27, 247 (2002)

[434] R. Toth and A. F. Taylor. The tris(2,2’-bipyridyl)ruthenium-catalysed Belousov–Zhabotinsky
reaction. Prog. React. Kinet. Mech. 31, 59 (2006)

[435] R. A. Schmitz, K. R. Graziani, and J. L. Hudson. Experimental evidence of chaotic states in
the Belousov–Zhabotinskii reaction. J. Chem. Phys. 67, 3040 (1977)

[436] R. J. Field. Chaos in the Belousov–Zhabotinsky reaction. Mod. Phys. Lett. B 29, 1530015
(2015)

[437] V. Petrov, V. Gáspár, J. Masere, and K. Showalter. Controlling chaos in the Be-
lousov—Zhabotinsky reaction. Nature 361, 240 (1993)

[438] J. L. Hudson, M. Hart, and D. Marinko. An experimental study of multiple peak periodic
and nonperiodic oscillations in the Belousov–Zhabotinskii reaction. J. Chem. Phys. 71, 1601
(1979)

[439] A. T. Winfree. Rotating Chemical Reactions. Sci. Am. 230, 82 (1974)

[440] O. Steinbock, J. Schütze, and S. C. Müller. Electric-field-induced drift and deformation of
spiral waves in an excitable medium. Phys. Rev. Lett. 68, 248 (1992)

[441] A. Guderian, G. Dechert, K.-P. Zeyer, and F. W. Schneider. Stochastic Resonance in Chemistry.
1. The Belousov-Zhabotinsky Reaction. J. Phys. Chem. 100, 4437 (1996)

[442] S. Kádár, J. Wang, and K. Showalter. Noise-supported travelling waves in sub-excitable media.
Nature 391, 770 (1998)

[443] K. Miyakawa and H. Isikawa. Experimental observation of coherence resonance in an excitable
chemical reaction system. Phys. Rev. E 66, 046204 (2002)

https://www.cs.ubc.ca/grads/resources/thesis/May09/Dubrofsky_Elan.pdf
https://westviewpress.com/books/nonlinear-dynamics-and-chaos/
https://westviewpress.com/books/nonlinear-dynamics-and-chaos/
http://dx.doi.org/10.1137/S1064827502410633
https://www.pearson.com/us/higher-education/program/Sanders-CUDA-by-Example-An-Introduction-to-General-Purpose-GPU-Programming/PGM200291.html
https://www.pearson.com/us/higher-education/program/Sanders-CUDA-by-Example-An-Introduction-to-General-Purpose-GPU-Programming/PGM200291.html
https://www.elsevier.com/books/gpu-computing-gems-emerald-edition/hwu/978-0-12-384988-5
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118739329.html
https://books.google.de/books?id=AsxnQgAACAAJ&dq=%22Oscillations+and+Traveling+Waves+in+Chemical+Systems%22&hl=de&sa=X&ved=0ahUKEwjq5_e8wv_WAhUDmBoKHa_JCagQ6AEIKTAA
http://dx.doi.org/10.1007/978-3-642-50124-1_33
http://dx.doi.org/10.3184/007967402103165414
http://dx.doi.org/10.3184/007967406779946928
http://dx.doi.org/10.3184/007967406779946928
http://dx.doi.org/10.1063/1.435267
http://dx.doi.org/10.1063/1.435267
http://dx.doi.org/10.1142/S021798491530015X
http://dx.doi.org/10.1038/361240a0
http://dx.doi.org/10.1038/361240a0
http://dx.doi.org/10.1063/1.438487
http://dx.doi.org/10.1063/1.438487
http://dx.doi.org/10.1038/scientificamerican0674-82
http://dx.doi.org/10.1103/PhysRevLett.68.248
http://dx.doi.org/10.1103/PhysRevLett.68.248
http://dx.doi.org/10.1021/jp952243x
http://dx.doi.org/10.1021/jp952243x
http://dx.doi.org/10.1038/35814
http://dx.doi.org/10.1103/PhysRevE.66.046204
http://dx.doi.org/10.1103/PhysRevE.66.046204


166 References

[444] V. Beato, I. Sendiña-Nadal, I. Gerdes, and H. Engel. Coherence resonance in a chemical
excitable system driven by coloured noise. Phil. Trans. R. Soc. Lond. A 366, 381 (2008)

[445] V. Vanag and I. Epstein. Pattern Formation in a Tunable Medium: The Belousov-Zhabotinsky
Reaction in an Aerosol OT Microemulsion. Phys. Rev. Lett. 87 (2001)

[446] T. Bánsági, V. K. Vanag, and I. R. Epstein. Tomography of Reaction-Diffusion Microemulsions
Reveals Three-Dimensional Turing Patterns. Science 331, 1309 (2011)

[447] K. Agladze, R. R. Aliev, T. Yamaguchi, and K. Yoshikawa. Chemical Diode. J. Phys. Chem.
100, 13895 (1996)

[448] A. Adamatzky and B. D. L. Costello. Reaction–Diffusion Computing. In G. Rozenberg,
T. Bäck, and J. N. Kok, eds., “Handbook of Natural Computing”, 1897–1920. Springer (2012)

[449] J. Gorecki, K. Gizynski, J. Guzowski, J. N. Gorecka, P. Garstecki, G. Gruenert, and P. Dittrich.
Chemical computing with reaction–diffusion processes. Phil. Trans. R. Soc. A 373, 20140219
(2015)

[450] Y. Fang, V. V. Yashin, S. P. Levitan, and A. C. Balazs. Pattern recognition with “materials that
compute”. Sci. Adv. 2, e1601114 (2016)

[451] A. L. Wang, J. M. Gold, N. Tompkins, M. Heymann, K. I. Harrington, and S. Fraden. Config-
urable NOR gate arrays from Belousov-Zhabotinsky micro-droplets. Eur. Phys. J. ST 225, 211
(2016)

[452] L. Kuhnert. A new optical photochemical memory device in a light-sensitive chemical active
medium. Nature 319, 393 (1986)

[453] A. Kaminaga, V. K. Vanag, and I. R. Epstein. A Reaction–Diffusion Memory Device. Angew.
Chem. Int. Ed. 45, 3087 (2006)

[454] L. Kuhnert, K. I. Agladze, and V. I. Krinsky. Image processing using light-sensitive chemical
waves. Nature 337, 244 (1989)

[455] J. Ren, X. Zhang, J. Gao, and W. Yang. The application of oscillating chemical reactions to
analytical determinations. Cent. Eur. J. Chem. 11, 1023 (2013)

[456] N. J. Suematsu, Y. Mori, T. Amemiya, and S. Nakata. Oscillation of Speed of a Self-Propelled
Belousov–Zhabotinsky Droplet. J. Phys. Chem. Lett. 7, 3424 (2016)

[457] E. M. Bollt and M. Dolnik. Encoding information in chemical chaos by controlling symbolic
dynamics. Phys. Rev. E 55, 6404 (1997)

[458] D. A. McQuarrie and J. D. Simon. Physical Chemistry: A Molecular Approach. University
Science Books (1997)

[459] R. M. Noyes, R. Field, and E. Koros. Oscillations in chemical systems. I. Detailed mechanism
in a system showing temporal oscillations. J. Am. Chem. Soc. 94, 1394 (1972)

[460] R. J. Field, E. Koros, and R. M. Noyes. Oscillations in chemical systems. II. Thorough analysis
of temporal oscillation in the bromate-cerium-malonic acid system. J. Am. Chem. Soc. 94,
8649 (1972)

http://dx.doi.org/10.1098/rsta.2007.2096
http://dx.doi.org/10.1098/rsta.2007.2096
http://dx.doi.org/10.1103/PhysRevLett.87.228301
http://dx.doi.org/10.1103/PhysRevLett.87.228301
http://dx.doi.org/10.1126/science.1200815
http://dx.doi.org/10.1126/science.1200815
http://dx.doi.org/10.1021/jp9608990
http://dx.doi.org/10.1007/978-3-540-92910-9_56
http://dx.doi.org/10.1098/rsta.2014.0219
http://dx.doi.org/10.1126/sciadv.1601114
http://dx.doi.org/10.1126/sciadv.1601114
http://dx.doi.org/10.1140/epjst/e2016-02622-y
http://dx.doi.org/10.1140/epjst/e2016-02622-y
http://dx.doi.org/10.1038/319393a0
http://dx.doi.org/10.1038/319393a0
http://dx.doi.org/10.1002/anie.200600400
http://dx.doi.org/10.1038/337244a0
http://dx.doi.org/10.1038/337244a0
http://dx.doi.org/10.2478/s11532-013-0239-y
http://dx.doi.org/10.2478/s11532-013-0239-y
http://dx.doi.org/10.1021/acs.jpclett.6b01539
http://dx.doi.org/10.1021/acs.jpclett.6b01539
http://dx.doi.org/10.1103/PhysRevE.55.6404
http://dx.doi.org/10.1103/PhysRevE.55.6404
http://www.uscibooks.com/mcq.htm
http://dx.doi.org/10.1021/ja00759a080
http://dx.doi.org/10.1021/ja00759a080
http://dx.doi.org/10.1021/ja00780a001
http://dx.doi.org/10.1021/ja00780a001


References 167

[461] R. J. Field and R. M. Noyes. Oscillations in Chemical Systems III. Explanation of Spatial
Band Propagation in the Belousov Reaction. Nature 237, 390 (1972)

[462] R. J. Field and R. M. Noyes. Oscillations in chemical systems. IV. Limit cycle behavior in a
model of a real chemical reaction. J. Chem. Phys. 60, 1877 (1974)

[463] R. J. Field and R. M. Noyes. Oscillations in chemical systems. V. Quantitative explanation of
band migration in the Belousov-Zhabotinskii reaction. J. Am. Chem. Soc. 96, 2001 (1974)

[464] N. Li, N. Tompkins, H. Gonzalez-Ochoa, and S. Fraden. Tunable diffusive lateral inhibition in
chemical cells. Eur. Phys. J. E 38 (2015)

[465] J. Boissonade and P. De Kepper. Transitions from bistability to limit cycle oscillations.
Theoretical analysis and experimental evidence in an open chemical system. J. Phys. Chem.
84, 501 (1980)

[466] P. De Kepper, I. R. Epstein, and K. Kustin. A systematically designed homogeneous oscillating
reaction: The arsenite-iodate-chlorite system. J. Am. Chem. Soc. 103, 2133 (1981)

[467] I. R. Epstein, K. Kustin, P. D. Kepper, and M. Orbán. Oscillating Chemical Reactions. Sci. Am.
248, 112 (1983)

[468] P. W. Atkins and J. D. Paula. Atkins’ Physical Chemistry. Oxford University Press (2002)

[469] A. Tzalmona, R. L. Armstrong, M. Menzinger, A. Cross, and C. Lemaire. Detection of
chemical waves by magnetic resonance imaging. Chem. Phys. Lett. 174, 199 (1990)

[470] U. Franck and W. Geiseler. Zur periodischen Reaktion von Malonsäure mit Kaliumbromat in
Gegenwart von Cer-Ionen. Sci. Nat. 58, 52 (1971)

[471] I. Lamprecht, B. Schaarschmidt, and T. Plesser. Heat production in oscillating chemical
reactions: Three examples. Thermochim. Acta 112, 95 (1987)

[472] F. Bolletta and V. Balzani. Oscillating chemiluminescence from the reduction of bromate by
malonic acid catalyzed by tris(2,2’-bipyridine)ruthenium(II). J. Am. Chem. Soc. 104, 4250
(1982)

[473] M. Iranifam, M. A. Segundo, J. L. M. Santos, J. L. F. C. Lima, and M. H. Sorouraddin.
Oscillating chemiluminescence systems: State of the art. Luminescence 25, 409 (2010)

[474] S. Campagna, F. Puntoriero, F. Nastasi, G. Bergamini, and V. Balzani. Photochemistry and
Photophysics of Coordination Compounds: Ruthenium. In V. Balzani and S. Campagna, eds.,
“Photochemistry and Photophysics of Coordination Compounds I”, 117–214. Springer (2007)

[475] D. W. Thompson, A. Ito, and T. J. Meyer. [Ru(bpy)32+* and other remarkable metal-to-ligand
charge transfer (MLCT) excited states. Pure Appl. Chem., PAC 85, 1257 (2013)

[476] L. Ren, B. Fan, Q. Gao, Y. Zhao, H. Luo, Y. Xia, X. Lu, and I. R. Epstein. Experimental,
numerical, and mechanistic analysis of the nonmonotonic relationship between oscillatory
frequency and photointensity for the photosensitive Belousov–Zhabotinsky oscillator. Chaos
25, 064607 (2015)

[477] F. E. Lytle and D. M. Hercules. Luminescence of tris(2,2’-bipyridine)ruthenium(II) dichloride.
J. Am. Chem. Soc. 91, 253 (1969)

http://dx.doi.org/10.1038/237390a0
http://dx.doi.org/10.1038/237390a0
http://dx.doi.org/10.1063/1.1681288
http://dx.doi.org/10.1063/1.1681288
http://dx.doi.org/10.1021/ja00814a003
http://dx.doi.org/10.1021/ja00814a003
http://dx.doi.org/10.1140/epje/i2015-15018-3
http://dx.doi.org/10.1140/epje/i2015-15018-3
http://dx.doi.org/10.1021/j100442a009
http://dx.doi.org/10.1021/j100442a009
http://dx.doi.org/10.1021/ja00398a061
http://dx.doi.org/10.1021/ja00398a061
http://dx.doi.org/10.1038/scientificamerican0383-112
https://global.oup.com/ukhe/product/atkins-physical-chemistry-9780198769866?cc=de&lang=en&
http://dx.doi.org/10.1016/0009-2614(90)80106-N
http://dx.doi.org/10.1016/0009-2614(90)80106-N
http://dx.doi.org/10.1007/BF00620804
http://dx.doi.org/10.1007/BF00620804
http://dx.doi.org/10.1016/0040-6031(87)88086-3
http://dx.doi.org/10.1016/0040-6031(87)88086-3
http://dx.doi.org/10.1021/ja00379a036
http://dx.doi.org/10.1021/ja00379a036
http://dx.doi.org/10.1002/bio.1203
http://link.springer.com/chapter/10.1007/128_2007_133
http://link.springer.com/chapter/10.1007/128_2007_133
http://dx.doi.org/10.1351/PAC-CON-13-03-04
http://dx.doi.org/10.1351/PAC-CON-13-03-04
http://dx.doi.org/10.1063/1.4921693
http://dx.doi.org/10.1063/1.4921693
http://dx.doi.org/10.1063/1.4921693
http://dx.doi.org/10.1021/ja01030a006


168 References

[478] F. Bolletta, L. Prodi, and N. Zaccheroni. Oscillating luminescence in the Belousov-Zhabotinsky
reaction catalyzed by Ru(bpy)32+. Inorg. Chim. Acta 233, 21 (1995)

[479] J. W. Dobrucki. Interaction of oxygen-sensitive luminescent probes Ru(phen)32+ and
Ru(bipy)32+ with animal and plant cells in vitro: Mechanism of phototoxicity and condi-
tions for non-invasive oxygen measurements. J. Photochem. Photobiol. B 65, 136 (2001)

[480] G. Orellana and D. García-Fresnadillo. Environmental and Industrial Optosensing with Tailored
Luminescent Ru(II) Polypyridyl Complexes. In “Optical Sensors”, 309–357. Springer (2004)

[481] T. P. Yoon, M. A. Ischay, and J. Du. Visible light photocatalysis as a greener approach to
photochemical synthesis. Nat. Chem. 2, 527 (2010)

[482] C. K. Prier, D. A. Rankic, and D. W. C. MacMillan. Visible Light Photoredox Catalysis with
Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev. 113, 5322 (2013)

[483] S. Topcagic and S. D. Minteer. Development of a membraneless ethanol/oxygen biofuel cell.
Electrochim. Acta 51, 2168 (2006)

[484] M. K. Nazeeruddin, C. Klein, P. Liska, and M. Grätzel. Synthesis of novel ruthenium sensitizers
and their application in dye-sensitized solar cells. Coord. Chem. Rev. 249, 1460 (2005)

[485] F. G. Gao and A. J. Bard. Solid-State Organic Light-Emitting Diodes Based on Tris(2,2‘-
bipyridine)ruthenium(II) Complexes. J. Am. Chem. Soc. 122, 7426 (2000)

[486] A. Ruggi, C. Beekman, D. Wasserberg, V. Subramaniam, D. N. Reinhoudt, F. W. B. van
Leeuwen, and A. H. Velders. Dendritic Ruthenium(II)-Based Dyes Tuneable for Diagnostic or
Therapeutic Applications. Chem. Eur. J. 17, 464 (2011)

[487] K. T. Hufziger, F. S. Thowfeik, D. J. Charboneau, I. Nieto, W. G. Dougherty, W. S. Kassel, T. J.
Dudley, E. J. Merino, E. T. Papish, and J. J. Paul. Ruthenium dihydroxybipyridine complexes
are tumor activated prodrugs due to low pH and blue light induced ligand release. J. Inorg.
Biochem. 130, 103 (2014)

[488] C. Luengviriya, U. Storb, M. J. B. Hauser, and S. C. Müller. An elegant method to study an
isolated spiral wave in a thin layer of a batch Belousov–Zhabotinsky reaction under oxygen-free
conditions. Phys. Chem. Chem. Phys. 8, 1425 (2006)

[489] P. K. Ghosh, B. S. Brunschwig, M. Chou, C. Creutz, and N. Sutin. Thermal and light-induced
reduction of the ruthenium complex cation Ru(bpy)33+ in aqueous solution. J. Am. Chem. Soc.
106, 4772 (1984)

[490] N. Bergman, A. Thapper, S. Styring, J. Bergquist, and D. Shevchenko. Quantitative de-
termination of the Ru(bpy)32+ cation in photochemical reactions by matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry. Anal. Methods 6, 8513 (2014)

[491] T. Ueki, M. Watanabe, and R. Yoshida. Belousov–Zhabotinsky Reaction in Protic Ionic Liquids.
Angew. Chem. Int. Ed. 51, 11991 (2012)

[492] T. Ueki, K. Matsukawa, T. Masuda, and R. Yoshida. Protic Ionic Liquids for the Be-
lousov–Zhabotinsky Reaction: Aspects of the BZ Reaction in Protic Ionic Liquids and Its Use
for the Autonomous Coil–Globule Oscillation of a Linear Polymer. J. Phys. Chem. B 121,
4592 (2017)

http://dx.doi.org/10.1016/0020-1693(94)04358-3
http://dx.doi.org/10.1016/0020-1693(94)04358-3
http://dx.doi.org/10.1016/S1011-1344(01)00257-3
http://dx.doi.org/10.1016/S1011-1344(01)00257-3
http://dx.doi.org/10.1016/S1011-1344(01)00257-3
http://dx.doi.org/10.1007/978-3-662-09111-1_13
http://dx.doi.org/10.1007/978-3-662-09111-1_13
http://dx.doi.org/10.1038/nchem.687
http://dx.doi.org/10.1038/nchem.687
http://dx.doi.org/10.1021/cr300503r
http://dx.doi.org/10.1021/cr300503r
http://dx.doi.org/10.1016/j.electacta.2005.03.090
http://dx.doi.org/10.1016/j.ccr.2005.03.025
http://dx.doi.org/10.1016/j.ccr.2005.03.025
http://dx.doi.org/10.1021/ja000666t
http://dx.doi.org/10.1021/ja000666t
http://dx.doi.org/10.1002/chem.201002514
http://dx.doi.org/10.1002/chem.201002514
http://dx.doi.org/10.1016/j.jinorgbio.2013.10.008
http://dx.doi.org/10.1016/j.jinorgbio.2013.10.008
http://dx.doi.org/10.1039/B517918A
http://dx.doi.org/10.1039/B517918A
http://dx.doi.org/10.1039/B517918A
http://dx.doi.org/10.1021/ja00329a022
http://dx.doi.org/10.1021/ja00329a022
http://dx.doi.org/10.1039/C4AY01379D
http://dx.doi.org/10.1039/C4AY01379D
http://dx.doi.org/10.1039/C4AY01379D
http://dx.doi.org/10.1002/anie.201205061
http://dx.doi.org/10.1021/acs.jpcb.7b01309
http://dx.doi.org/10.1021/acs.jpcb.7b01309
http://dx.doi.org/10.1021/acs.jpcb.7b01309


References 169
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