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Abstract

Predicting the ground-state and metastable crystal structures of materials from just
knowing their composition is a formidable challenge in computational materials discovery.
Recent studies that were published in the group of M. Scheffler have investigated how the
relative stability of compounds between two crystal-structure types can be predicted from
the properties of their atomic constituents within the framework of symbolic regression.
By using a novel compressed-sensing-based method, the sure independence screening and
sparsifying operator (SISSO), the descriptor that best captured the structural stability
was identified from billions of candidates. A descriptor is a vector of analytical formulas
built from simple physical quantities.
In the first part of the thesis, a multi-task-learning extension of SISSO (MT-SISSO) that
enables the treatment of the structural stability of compounds among multiple structure
types is introduced. We show how the multi-task method that identifies a single descrip-
tor for all structure types enables the prediction of a well-defined structural stability
and, therefore, the design of a crystal-structure map. Moreover, we present how MT-
SISSO determines accurate, predictive models even when trained with largely incomplete
databases.
A different artificial-intelligence approach proposed for tackling the crystal-structure-
prediction challenge is based on approximating the Born-Oppenheimer potential-energy
surface (PES). In particular, Gaussian Approximation Potentials that are typically com-
posed of a combination of two-, three-, and many-body potentials and fitted to elemental
systems have attracted attention in recent years. First examples that were published in the
group of G. Csanyi have demonstrated how the ground-state and metastable phases could
correctly be identified for Si, C, P, and B, by exploring the PES that was predicted by
such machine-learning potentials (ML potentials). However, the ML potentials introduced
so far show limited transferability, i.e. their accuracy rapidly decreases in regions of the
PES that are distant from the training data. As a consequence, these ML potentials
are usually fitted to large training databases. Moreover, such training data needs to be
constructed for every new material (more precisely, tuple of species types) that was not
in the initial training database. For instance, the chemical-species information does not
enter the ML potentials in the form of a variable.
The second part of the thesis introduces a neural-network-based scheme to make ML
potentials, specifically two- and three-body potentials, explicitly chemical-species-type
dependent. We call the models chemical transferable potentials (CTP). The methodology
enables the prediction of materials not included in the training data. As a showcase
example, we consider a set of binary materials. The thesis tackles two challenges at the
same time: a) the prediction of the PES of a material not contained in the training
data and b) constructing robust models from a limited set of crystal structures. In
particular, our tests examine to which extent the ML potentials that were trained on
such sparse data allow an accurate prediction of regions of the PES that are far from
the training data (in the structural space) but are sampled in a global crystal-structure
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search. When performing both constrained structure searches among a set of considered
crystal-structure prototypes and an unbiased global structure search, we find that missing
data in those regions does not hinder our models from identifying the ground-state phases
of materials, even if the materials are not in the training data. Moreover, we compare
our method to two state-of-the-art ML methods that, similarly to CTP, are capable of
predicting the potential energies of materials not included in the training data. These are
the extension of the smooth overlap of atomic positions by an alchemical similarity kernel
(ASOAP) introduced in the group of M. Ceriotti, and the crystal graph convolutional
neural networks (CGCNN) introduced in the group of J. C. Grossman. In the literature so
far, the ASOAP and CGCNN have been benchmarked on single-point energy calculations
but have not been investigated in combination with global, unbiased structure-search
scenarios. We include the ASOAP and CGCNN in our structure-search tests. Our analysis
reveals that, unlike CTP, these two approaches learn unphysical shapes of the PES in
regions that surround the training data which are typically sampled in a structure-search
application. This shortcoming is particularly evident in the unbiased global-search sce-
nario.
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Zusammenfassung

Die Vorhersage der Grundzustands- und metastabilen Kristallstrukturen von Materialien
anhand der Kenntnis ihrer Zusammensetzung ist in der computergestützten Materialwis-
senschaft eine Herausforderung. In neueren Studien der Forschungsgruppe M. Schefflers
wurde untersucht, wie die Energiedifferenz zwischen zwei Kristallstrukturtypen der
gleichen chemischen Zusammensetzung anhand der Eigenschaften ihrer atomaren Be-
standteile im Rahmen der symbolischen Regression vorhergesagt werden kann. Mithilfe
der Verwendung einer neuartigen Compressed-Sensing-basierten Methode, des Sure In-
dependence Screening and Sparsifying Operator (SISSO), wurde aus Milliarden von
Kandidaten der Deskriptor identifiziert, der die strukturelle Stabilität am besten erfasst.
Ein Deskriptor ist ein Vektor aus analytischen Formeln, die sich aus einfachen physikalis-
chen Größen zusammensetzen.
Im ersten Teil der Arbeit wird eine Multi-Task-Learning-Erweiterung von SISSO (MT-
SISSO) vorgestellt, die das Behandeln von Energiedifferenzen zwischen mehreren Kristall-
strukturtypen des gleichen Materials ermöglicht. Wir demonstrieren, wie die Multi-Task-
Methode, die einen einzigen Deskriptor für alle Strukturtypen identifiziert, die Vorhersage
einer wohldefinierten strukturellen Stabilität und damit das Erstellen einer Kristallstruk-
turkarte ermöglicht. Darüber hinaus zeigen wir, wie MT-SISSO genaue Vorhersagemodelle
bildet, selbst wenn die Modelle mit weitgehend unvollständigen Daten trainiert werden.
Ein weiterer bekannter Ansatz zur Bewältigung der Herausforderung der Kristallstruk-
turvorhersage mit künstlicher Intelligenz basiert auf der Approximation der Born-
Oppenheimer-Potentialenergieoberfläche (PEO). Insbesondere haben Gaussian Ap-
proximation Potentials, die in der Regel aus einer Kombination von Zwei-, Drei- und
Vielteilchenpotentialen bestehen und an Materialien, die aus einem chemischen Ele-
ment bestehen, gefittet werden, in den letzten Jahren Aufmerksamkeit erregt. Erste
Beispiele, die in der Gruppe von G. Csanyi veröffentlicht wurden, haben gezeigt, wie
die Grundzustands- und metastabilen Kristallstrukturen von Si, C, P und B korrekt
identifiziert werden können. Dabei wurde die PEO erkundet, die durch die Gaussian Ap-
proximation Potentials - oder allgemeiner Machine-Learning-Potentials (ML-Potentials)
- vorhergesagt wurde. Die Transferierbarkeit der bisher bekannten ML-Potentials ist
allerdings begrenzt, d. h. ihre Genauigkeit nimmt in Bereichen der PEO, die weit entfernt
von den Trainingsdaten liegen, rapide ab. Folglich werden diese ML-Potentiale an große
Trainingsdatenbanken gefittet. Des Weiteren müssen solche Trainingsdaten für jedes neue
Material (genauer gesagt, Tupel von chemischen Elementen), das nicht in der aktuellen
Trainingsdatenbank enthalten ist, konstruiert werden. Beispielsweise fehlt in den ML-
Potentials eine Beschreibung der Eigenschaften der chemischen Elemente der Materialien
in Form einer Variable.
Im zweiten Teil der Arbeit wird eine auf Neuronalen-Netzen-basierende Methode en-
twickelt, die eine explizite Abhängigkeit der ML-Potentials, insbesondere Zwei- und
Drei-Teilchen-Potentiale, von den chemischen Elementen des Materials erlaubt. Wir
nennen die Modelle Chemical Transferable Potentials (CTP). Die Methodik ermöglicht
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die Vorhersage von Materialien, die nicht in den Trainingsdaten enthalten sind. Als
Vorzeigebeispiel betrachten wir eine Reihe von binären Materialien. Die Arbeit befasst
sich mit zwei Herausforderungen zur gleichen Zeit: a) der Vorhersage der PEO eines
Materials, das nicht in den Trainingsdaten enthalten ist, und b) das Bilden robuster
Modelle aus einer begrenzten Anzahl an Kristallstrukturen. In unseren Untersuchungen
wird insbesondere evaluiert, inwieweit die auf solch spärlichen Daten trainierten ML-
Potentiale eine genaue Vorhersage von Regionen der PEO ermöglichen, die zwar weit
von den Trainingsdaten (im Kristallstrukturraum) entfernt liegen, aber in einer globalen
Kristallstruktursuche mit abgetastet werden. Sowohl bei eingeschränkten Kristallstruktur-
suchen unter einer Reihe von betrachteten Kristallstrukturprototypen als auch bei einer
uneingeschränkten globalen Kristallstruktursuche stellen wir fest, dass fehlende Daten in
diesen Kristallstrukturregionen unsere Modelle nicht daran hindern, die Grundzustand-
skristallstrukturen von Materialien zu identifizieren, selbst wenn die Materialien nicht in
den Trainingsdaten enthalten sind. Darüber hinaus vergleichen wir unsere Methode mit
zwei modernen ML-Methoden, die ähnlich wie die CTP in der Lage sind, die potentielle
Energie von Materialien vorherzusagen, die nicht in den Trainingsdaten enthalten sind.
Die eine Methode basiert auf einer Erweiterung des Smooth Overlap of Atomic Positions
um einen alchemical Ähnlichkeitsmaß (ASOAP), welche in der Gruppe von M. Ceriotti
entwickelt wurde. Die zweite Methode heißt Crystal Graph Convolutional Neural Net-
works (CGCNN) und wurde in der Gruppe von J. C. Grossman eingeführt. Bisher wurden
ASOAP und CGCNN in der Literatur anhand von Einzelpunkt-Energieberechnungen
validiert, aber nicht im Rahmen globaler uneingeschränkter Kristallstruktursuchen. Wir
wenden unsere Kristallstruktursuchtests ebenso auf ASOAP und CGCNN an. Unsere
Untersuchungen zeigen, dass die beiden Methoden im Gegensatz zu den CTP un-
physikalische Formen der PEO in Regionen lernen, die weit von den Trainingsdaten
entfernt liegen, aber in einer Kristallstruktursuche üblicherweise abgetastet werden. Diese
Limitation kommt besonders im uneingeschränkten und globalen Suchszenario zur Gel-
tung.
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1 Introduction

Designing a new material for a specific technological application can be a slow and
uncertain process [1]. For instance, while the elements of the periodic table provide an
enourmous number of combinations (pairs, triplets, ...) to construct chemical compounds,
only 16% of ternary, 0.6% of quaternary, 0.03% of quinternary and probably a much
smaller fraction of systems involving more elements have been experimentally investi-
gated [2]. Facing moreover the fact that it takes typically 15-20 years from the invention of
a new material in the laboratory to its widespread adoption in the market [3,4], a progress
(actually a revolution) of the presently slow materials-discovery process is required to
determine promising materials early.
Facilitated by advances in both computational power and first-principles techniques in
the last decades, modern computational approaches based on a quantum-mechanical
description of matter have proven to be an appropriate step in the materials design
process [5] simulating several materials properties and overcoming different experimental
drawbacks, e.g. the need to synthesize the material first. Still, the number of unknown
materials is pratically infinite and the application of first-principles based techniques even
to a fraction of the theoretical materials space stays computationally infeasible. In recent
years, the growth of materials databases [6–9] together with intelligent data analysis
techniques has led to the development of a data-driven and informatics-based method-
ology [10] to alleviate the need of solving quantum-mechanical equations from scratch
repetitively. Machine learning (ML) has become the most promising technique to accel-
erate and systematically facilitate insights into computational materials science. Many
ML-based methods have been introduced for the description of technologically important
materials properties [11] where the models allow for a fast prediction of the properties of
up to millions of compounds [12]. However, only a small number of promising compounds
published were hitherto validated by experiments or quantum-mechanical simulations
and the number of “unsolved” materials might increase with the exponential growth of
ML-based research in materials science [13]. Crucially, when property predictions with
machine-learning models go beyond a reduced set of materials that are already known to
exist, the question if a hypothetical material is stable in nature is often not adressed. Many
candidates might not be stable. Thus, a reliable and efficient ML-based methodology that
predicts what crystal structures a compound will form is required to determine the “real-
istic” materials in the theoretical materials space. Such a methodology is currently miss-
ing.

Predicting the ground-state and metastable crystal structures of a compound from its
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1 Introduction

chemical composition is one of the most fundamental challenges in materials science
because exploring the complex, non-convex potential-energy surface (PES) is a combi-
natorial problem. In 1988, John Maddox stated [14]: “One of the continuing scandals in
the physical sciences is that it remains impossible to predict the structure of even the
simplest crystalline solids from a knowledge of their composition.” In 1982, pioneering
steps in predicting atomic structures and the relative structural stability of solids with
ab initio methods were demonstrated [15]: the equations of state for several phases of Si
and Ge were predicted. Since then, the field of crystal-structure prediction has undergone
significant progress and methods combining ab initio approaches with structure-search
algorithms [16–21] have asserted themselves as their application led to the discovery of
several new materials [22, 23]. The dilemma of the computational cost of the underly-
ing ab initio method is, nonetheless, present as ever and the current status of crystal-
structure prediction is becoming shaped by the development of so-called ML potentials [24,
25].

The ground-state solution of the electronic Schrödinger equation provides the Born-
Oppenheimer PES [26]. The potential energy depends on the species types of the atoms in
the compound and their structural arrangement1. The PES describes the space of potential
energies in dependence of the crystal structure. Usually, a ML potential approximates spe-
cific regions of a PES for a considered set of a few atomic species types (typically not more
than four species). The restriction to this set of species types dos not necessarily hinder
the treatment of different compositions of the same species types. For example, given two
species types A and B, a ML potential may be fitted to AB structures, however, possibly
also to compounds with chemical formulas AB2 and A2B3 as well as elemental compounds
of the constituents, i.e. A and B. In contrast, the prediction of the PES of a compound
that includes a different species type C is not possible because the chemical-species
information does not enter the ML potentials in the form of a variable. We note that when
referring to the the mentioned restriction of a ML potential, we will, nonetheless, use the
term composition instead of set of atomic species types to say that new sets of species
types cannot be modeled. In this regard, we may define that a ML potential is a function
fML that maps the atomic positions in a material onto the potential energy E of a composi-
tion:

Ecomposition = fML(structure). (1.1)

ML potentials are fitted to data obtained from ab inito calculations. Once the learning step
has been performed, the computational cost of predicting the PES with a ML potential
is orders of magnitudes lower than the one of the reference ab initio methods. However,
obtaining the data for the learning may well be very elaborate.
Recent examples have demonstrated how the PES predicted by a ML potential could be

1A full description is given by adding the number of electrons. Throughout this work, the considered
systems are uncharged. Therefore, the sum of the atomic numbers equals the number of electrons in
the system.
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explored using a structure-search algorithm to identify the ground-state and metastable
phases of C [27, 28], Si [29], B [28, 30], P [31], and Na [28]. Among these examples,
Ref. [27, 30, 31] used a hierarichal combination of a two-, three-, and many-body po-
tential and Ref. [29] one of a two- and and many-body potential within the framework
of Gaussian Approximation Potentials [32]. Other works have considered clusters and
nanoparticles [33–36] as well as surface reconstructions [37] and sheets [38]. However,
our studies will focus on three-dimensional crystal structures only. The consideration
of systems with defects is out of the scope of this thesis as well. A key component
of ML potentials introduced so far has been the available flexibility of the functional
form. This choice aims at minimizing the human effort in determining the functional
form while allowing for a high fitting accuracy when tackling new training data sets.
Typically, the high accuracy is limited to regions of the PES that are close to the
training data. Accordingly, such methodology comes with the need for reliable data
design techniques to adapt the domain of applicability of the model to regions in the
structure space relevant for the targeted application. In Ref. [27, 29], the selection of
training structures has relied on past experience. Attempts to autonomize the creation
of the training database were studied in Ref. [28, 30, 31, 39]. However, the outcome of
both approaches has been the same: a large training database. Crucially, it is unclear
to which extent the creation of such databases challenges the speed-up of sampling the
PES with a ML potential. Moreover, new training data needs to be constructed for every
new composition that was not in the initial training data base. Thus, the acceleration
of first-principles crystal-structure prediction through the help of ML is currently uncer-
tain.

In recent years, a conceptually different artificial-intelligence approach to tackle materials-
science problems has attracted the attention: a combination of symbolic regression and
compressed sensing [40]. In contrast to predifined functional forms that allow for a high
flexibility, the expressions are being determined by descriptive parameters based on the
physics captured from the data. By using compressed sensing, a short vector of (typically
not more than five) analytical formulas is determined where the formulas are identified
out of a large pool of candidates. This vector is termed descriptor. However, only the
recently introduced sure independence screening and sparsifying operator (SISSO) [41]
enabled tackling spaces of billions of candidate analytical formulas. SISSO outperforms
state-of-the-art compressed-sensing methods if the restriction of the model to a few ana-
lytical formulas is required.
The symbolic-regression- and compressed-sensing-based scheme is well suited for the de-
scription of a wide range of materials properties and it was first demonstrated for a crystal-
structure prediction problem predicting the relative stability of octet binary compounds
between two crystal-structure types from descriptors based on chemical information of
the atoms only. A descriptor that is based on atomic properties allows for the prediction
across the composition space. However, due to the absence of a structural description of
the material, the approximation of the PES through a model based on such descriptor is
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reduced to selected points on the PES, e.g. equilibria of crystal-structure types instead of
whole regions. Accordingly, the compressed-sensing based models map the chemical compo-
sition onto the energy of one fixed structure type (or the energy difference of two structure
types):

Estructure = fML(composition). (1.2)

An extension of the approach to model across the structure space as well could
be realized by introducing a structural input quantity. However, the symbolic-
regression and compressed-sensing based scheme is limited to scalar input features.
As good (flexible) structural descriptors are often vectorial quantities, it is currently
not clear how the scheme can be applied to the crystal-structure-prediction chal-
lenge.

Both models, the ML potential in Eq. 1.1 and the model in Eq. 1.2 that results from the
specific application [40] of the symbolic-regression- and compressed-sensing-based scheme,
are limited, i.e. predictions are possible across either structure space only or composition
space only. As a consequence, the description of the entire materials space can only be
realized by separate independent models that are specific to only one composition or
structure (pair of structures). The consideration of new compositions or phases that
are not contained (or only sparsely contained) in the training database involves new
quantum-mechanical calculations.
For example, assume we use a model in the form of Eq. 1.2, however, to predict the
relative stability of compositions between two space groups (structure types) instead
of the energy of one structure. Then, at least 229 different independent models of that
form need to be determined to cover the structural stability among all possible 230 space
groups. Accordingly, for every model a sufficiently large and good training database needs
to be constructed in order to determine reliable models. It would be of great value if an
artificial-intelligence model could connect the 229 different optimization problems such
that information about the relative stability of a certain composition among a subset of
space groups can be used to predict the relative stability of that composition among a
different set of space groups. As a result, the number of known compositions for some or
all space groups could be reduced.
Analogously, in order to describe the entire composition space with ML potentials, for
every composition a sufficiently large and good training database of structures needs to be
present. The ability to model additionally across chemical composition space, could allow
for predictions of the PES of new compositions or reduce the number of calculated data for
them.

In this thesis, we show how both approaches can be extended by introducing a so-far
missing structural/chemical component. The work is split into two studies. Both studies
focus on the prediction of the crystal-structure stability of octet binary compounds among
multiple polymorphs considering sparse data sets. Note that the methodologies developed
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in this thesis are not restricted to binary systems. The approaches can be further extended
to multispecies systems beyond binaries in future projects.
In the first part of the thesis, we extend the symbolic-regression- and compressed-sensing-
based scheme to a multi-task learning approach, specifically for SISSO. More in general,
if a specific input can be categorized into a set of tasks (here structure types), multi-task
SISSO provides an elegant solution by decoupling the models such that the information
of this input (structural information) enters only the fitting coefficients parametrically.
This enables the treatment of multiple structure types without the need for a definition of
a structural quantity. We demonstrate how multi-task SISSO, which identifies one single
descriptor capturing different materials properties (structure-type energies), stabilizes the
predictions and outperforms the ones of the independent single-task models on sparse and
incomplete data sets. Furthermore, we present how the dependence of the models on only
one descriptor allows the projection of the multidimensional model onto a ground-state
structure map. Contrary to typical black-box ML models, the methodology provides a
promising way to visualize the crystal-structure stability of materials and provide insights
into the physical mechanisms that drive the stability. Moreover, the visualization of
the distribution of the training data in the descriptor space, e.g. in a materials map,
reveals unknown regions of a model. The ability to locate those regions could facilitate
the development of model error estimators. Apart from the crystal-structure-prediction
problem that we tackle in this work, our approach is applicable to problems involving
other materials properties. The work is, in general, a first showcase of a multi-task-learning
application in materials science.
The second part of the thesis introduces a novel class of ML potentials that are able
to predict across the chemical composition space, namley chemical-transferable poten-
tials (CTP). The dependence on the atomic species types is realized by making the
regression coefficients of n-body potentials functions of the chemical composition using
a neural network. We demonstrate how the additional interpolation across the chemical
compound space stabilizes the potentials on the prediction across the crystal-structure
space. Furthermore, we tackle a task not investigated yet: the prediction of the PES of
a composition that is not included in the training database. In particular, we investigate
to which extent models that are built on sparse training data are able to predict the
PES of a composition with an accuracy that allows to identify the ground-state and
metastable phases in a crystal-structure search. We perform both constrained struc-
ture searches among a set of considered crystal-structure prototypes and an unbiased
global structure search. Our investigations involve critical factors important for a reliable
crystal-structure search, e.g. if a structure appears as a minimum in the predicted PES
or spurious minima hinder the identification of the most stable structure(s). We highlight
possible challenges in fulfilling these factors and show why other state-of-the-art ML
methods fail in determining reliable models. The state-of-the-art methods to which we
compare our models are the crystal graph convolutional neural networks [42] and the
alchemical smooth overlap of atomic positions [43]. Beyond the specific class of potentials
that we introduce, our analysis yields a first step towards reliable next-generation models
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1 Introduction

that describe the unified structure and chemical composition space. The models aim
at a coarse grained prediction of the PES, so that the number of quantum-mechanical
calculations in a structure search is greatly reduced, i.e. the ML model is meant as an
accelerator, but the reference is meant to be always the considered quantum-mechanical
method.

The thesis is divided into six chapters. In Chapter 2, an introduction to the statis-
tical methods behind the ML methods used in this work is given. The mathemat-
ical framework of the ML potentials is introduced in Chapter 4. The main results
of this work are presented in Chapter 3 and Chapter 5. The former considers the
multi-task extension of the symbolic-regression- and compressed-sensing-based ap-
proach, the latter the chemical-transferable potentials. Chapter 6 summarizes and
concludes the work. The thesis is complemented by a rich appendix where more
details and analyses that would have broken the flow of the main story are re-
ported.
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2 Statistical learning

This chapter deals with the theoretical background behind the ML algorithms used or
extended in this thesis. In particular, it focuses on different statistical-learning approaches
from the literature, independent of their application to a physical problem. In contrast,
Chapter 4 introduces a theoretical framework that implements the concepts of this
chapter within a physical methodology that considers a certain problem (i.e. fitting the
potential-energy surface).
The different ML methods discussed in this chapter are divided into linear (Sec.
2.1) and kernel (Sec. 2.2) ridge regression, artificial neural networks (Sec. 2.3), and
compressed-sensing methods (Sec. 2.4). Note that Sec. 2.4.3 includes the recently in-
troduced sure independence screening and sparsifying operator (SISSO) [41] while its
multi-task extension (MT-SISSO) which is introduced in this work will be presented in
Chapter 3.

At the heart of the studies presented in this thesis lies the development of new machine-
learning (ML) based approaches for identifying correlations and trends in materials
databases in order to yield physical insights and allow for the prediction of prop-
erties of materials not contained in the reference databases. Typically, the goal is
finding a function f from a function space F that approximates a materials prop-
erty P in order to accelerate or enable its determination, e.g. surrogating (intensive)
quantum-mechanical calculations or reducing the need for expensive and wasteful ex-
perimental scan of materials spaces. The functions are learned by a set of N input-
output pairs {(d1, P1), ..., (dN , PN )}. Pi represents the value of a targeted property
of the data point i to be predicted from a vectorial descriptor di ∈ RM of the
data point. A general formulation of the ML optimization problem is given by [44]

arg min
f∈F

N∑
i=1

L(f(di), Pi) + λr(f), (2.1)

where L is a loss function and r(f) is a measurement of the complexity of f . The
parameter λ ≥ 0 regulates the compromise between the fitting accuracy and a low
complexity of the model. One reason for regularization is to avoid overfitting (e.g. fit-
ting to noise) in order to increase the prediction accuracy on data points out of the
training set. The choice of F , L and r determines the ML method. All ML meth-
ods presented in this chapter are based on the squared error loss L(f(di), Pi) = (f(di)−
Pi)2.
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2 Statistical learning

In the following sections, we will write many equations in matrix form and rep-
resent the N data points as a property vector P ∈ RN and an input matrix
D ∈ RN×M .

2.1 Linear regression

The most basic ML method is linear regression. One reason is that many linear-regression
problems can be solved by linear algebra and convex optimization. The least-squares prob-
lem

arg min
c∈RM

‖P −Dc‖2 (2.2)

formulates the fundament of linear regression analysis determining the regression co-
efficients c of a linear model f(d) = dc. Its solution is given by the closed-form
expression c = (DTD)−1DTP . Geometrically, the linear model is given by the or-
thogonal projection of the target vector P onto the column space of the descriptor matrix
D. It minimizes the Euclidean distance ‖P −Dc‖ between the target P and itself, i.e
Dc.

In order to avoid overfitting, the problem 2.2 is often extended by an `2 penalty
λ‖c‖22 = λ‖c‖2 (linear ridge regression):

arg min
c∈RM

‖P −Dc‖2 + λ‖c‖2. (2.3)

The solution to this problem is given by c = (DTD+λI)−1DTP , where I ∈ RM×M is the
identity matrix.

2.2 Kernel ridge regression

The kernel ridge regression is a generalization of the linear ridge regression 2.3 to-
wards considering nonlinar models f . Let us consider the optimization problem
in Eq. 2.1 using the squared error loss and r(f) = f2. Then, according to the
representer theorem [45], the solution to the optimization problem has the form

f(d) =
N∑
i=1

αik(d,di) (2.4)

where k : X × X → R is the associated positive-definite real-valued kernel on our
input (descriptor) space X. It can be shown that the coefficients {αi} are a closed-
form solution α = (K + λI)−1P to the optimization problem (kernel ridge regression)

arg min
α∈RN

‖P −Kα‖2 + λαTKα, (2.5)
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2.3 Artificial neural networks

where K ∈ RN×N represents the matrix with elements Kij = k(di,dj). For a lin-
ear kernel k(di,dj) = di · dj the model 2.4 becomes a linear function and equals
the linear model that results from the optimization problem 2.3 of the linear ridge
regression. For instance, the kernel ridge regression can alternatively be derived by
kernelizing the linear ridge regression and, moreover, introducing a potentially non-
linear feature map φ such that k(di,dj) =< φ(di), φ(dj) >. However, φ does not
need to be known and rather the kernel is specified directly. A typical (nonlinear)
kernel is given by the Gaussian kernel k(di,dj) = exp(−‖di−dj‖

2

2σ2 ). Note that such
a kernel function is, generally, viewed as a similarity measurements between two data
points.

2.3 Artificial neural networks

Artificial neural networks, or simply neural networks, are (nonlinear) ML
models whose design are (vaguely) inspired by the nervous system of ani-
mals. The neural network consists of (partially) connected neurons. Each neu-
ron that receives signals processes them and sends a single output signal
to other neurons connected to it. The processing of a signal is modeled by

youtput = φ(
∑
i

wixinput,i + b), (2.6)

where youtput represents the output signal, xinput,i the input signal received from a neuron
i that is weighted by wi, b a bias term, and φ a so-called activation function, typically
nonlinear. One popular example for an activation function is given by the rectified
linear unit (ReLU) φ(x) = max(0, x). In this thesis, we consider feed-forward neural
network for regression. If such a neural network consist of one hidden layer, it is writ-
ten:

f(d) =
Nneurons∑

h

w
(2)
h φ

 M∑
j

w
(1)
h,jdj + b

(1)
j

+ b(2). (2.7)

A typical way to train the weights and biases of neural networks is based on
the backpropagation algorithm in combination with a squared error loss [46,
47].

2.4 Compressed-sensing based methods

Often, it is desirable to find a linear model f(d) = dc with a sparse solution c. We measure
the sparsity by the number of non-zero coordinates of the coefficient vector, the `0 norm:

‖c‖0 = #{j : cj 6= 0}. (2.8)
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2 Statistical learning

A rigorous reformulation of the least-squares problem 2.2 to promote and control sparsity is
given by adding an `0 penalty:

arg min
c∈RM

‖P −Dc‖2 + λ‖c‖0. (2.9)

However, Eq. 2.9 is not a convex but a combinatorial problem and computationally infeasi-
ble ifm is large. The naive way of determining the solution to it is to solve the least-squares
problem

arg min
c̃∈RS

‖P − D̃c̃‖ (2.10)

for all submatrices D̃ ∈ RN×S that consist of a specified number S = ‖c‖0 of columns
from D. The solution c̃ for the submatrix that yields the smallest least-squares error
‖P −D̃c̃‖2 determines the (only) non-zero elements of the solution c at specified S, where
the non-zero vector indices of c correspond to the columns of D̃. Varying S corresponds
to varying λ.

2.4.1 Least absolute shrinkage and selection operator

A convex reformulation of the `0 problem 2.9 is realized by the least absolute shrink-
age and selection operator (LASSO) [48], which replaces the `0 norm by the `1 norm:

‖c‖1 =
M∑
i

|ci|. (2.11)

The resulting optimization problem is given by:

arg min
c∈RM

‖P −Dc‖2 + λ‖c‖1. (2.12)

The `1 problem 2.12 is an approximation of the `0 problem 2.9 and the condi-
tions on P and D that guarantee that the solutions of the two problems coincide,
or at least do not differ much, are formulated in the theory of compressed sens-
ing.

2.4.2 Orthogonal matching pursuit

The orthogonal matching pursuit (OMP) is a greedy algorithm that iteratively
expands the set of columns {dj} of D to which non-zero coefficients are as-
signed:

1. Initialize the residual R0 = P and the set S = ∅ of saved columns {dj}. Chose a
target number Ω of columns for the final linear model and let the iteration counter
k = 1.
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2.4 Compressed-sensing based methods

2. Extend S by the column dj with the maximum projection score:

maxj |dj ·Rk|. (2.13)

3. Build the submatrix D̃ out of all dj ∈ S. Calculate c∗ = arg minc∈RM ‖P − D̃c‖2

and let Rk+1 = P − D̃c∗.

4. If k = Ω, stop. Otherwise set k = k + 1 and return to the 2. step.

Note that, Eq. 2.13 in the 2. step selects the column dj of D that is the closest one to
Rk, measured by the Euclidean distance. The OMP is characterized by its low computa-
tional complexity (relative to the LASSO) because Eq. 2.13 is evaluated by the matrix
multiplication v = DTRk and the search for the index of v with the highest absolute
value.

2.4.3 Sure independence screening and sparsifying operator

The `1 penalty in Eq. 2.9 (LASSO) has been established as an alternative regularizer
for linear regression besides the `2 problem 2.3. Often the regularization parameter λ is
optimized with the aim of yielding the best prediction performance. A different reason
for searching for sparse solutions is based on a descriptive methodolgy, i.e. understand on
which features (columns) dj the target P depends. For example, studies that used the
compressed-sensing-based methodology introduced in Ref. [40] for materials science had
the motivation of identifying the best few, typically not more than five, features in order
to provide insights into the physics behind the target property. The iterative scheme in
Ref. [40] that combined `1 and `0 regularization improves the results of a method solely
based on `1 regularization [49]. However, the combined method is still limited by the `1
part particularly when dealing with large and correlated feature spaces. For instance, the
goal of the compressed-sensing based methodology introduced in in Ref. [40] is to generate
a feature space of billions of candidates which may be highly correlated.
The sure independence screening and sparsifying operator (SISSO) [41] was specifically
designed to identify the best few descriptors out of a space of billions of candidates.
It makes use of a step of lower computational complexity similar to the second step of
the OMP algorithm 2.4.2, however it improves the results of the OMP by enforcing for
stricter searches for accurate low-dimensional descriptors. Note that in this work we
consider only the `0 regularization as the sparsifying operator of the SISSO algorithm.
While the SISSO method might be considered as independent of how the descriptor matrix
D is built, processing the descriptor matrix is an important prestep in the total frame-
work of a symbolic-regression- and compressed-sensing-based scheme introduced in Ref.
[40].

The construction of the feature space is an iterative procedure. The basis is given by the
set of primary features Φ0, e.g. the column labels or indices of the input matrix D, and
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2 Statistical learning

a set of unary and binary operators (such as +,−, exp ,
√

, . . . ). At each iteration q a
new feature space Φq is constructed by combining every feature (pair of features) of Φq−1

with each unary (binary) operator. Sums and differences are constrained to be taken only
among homogeneous quantities.
The SISSO algorithm searches for a model based on the best few descrip-
tors out of the final Φk. The targeted model is linear in the identified descrip-
tors of Φk but nonlinear in the original features Φ0. The algorithm is given
by:

1. Initialize the residual R0 = P and the (subspace) set S = ∅ of saved columns {dj}.
Chose a target number Ω of columns for the final linear model and a number NS

of columns added to S at each iteration k. Furthermore, let the iteration counter
k = 1.

2. SIS step: Extend S by the NS columns {dj} having the largest linear correlations
|dj ·Rk| with Rk.

3. SO step: Build the submatrix D̃ out of all dj ∈ S and solve the `0 problem 2.9 for
D̃ and k non-zero coefficients. Let Rk+1 = P − D̃c∗ where c∗ is the solution of the
`0 problem.

4. If k = Ω, stop. Otherwise set k = k + 1 and return to the 2. step.

For NS = 1 the SISSO algorithm becomes the same as the OMP. Note that when k = 1,
the `0 problem in the 3. step is not performed because its solution is the model based on
the descriptor with the maximum linear correlation with R0 = P , found in the SIS step.
For extending SISSO to classification problems, we refer to the reference
[41].
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3 Multi-task SISSO for crystal structure
prediction on incomplete databases

3.1 Introduction

The wealth of available data in materials databases [6–8] has opened the era of the data-
driven materials science [50,51]. A critical goal of the field is the acceleration of materials
discovery through the establishment of artificial-intelligence tools in order to find patterns
and trends in the databases and allow to draw conclusions for properties of (theoretical)
materials not contained in the databases. Clearly, the interest in machine-learning (ML)
aided research is rapidly increasing: The number of materials and chemistry publications
referencing ML has grown exponentially, even as a fraction of total research [13]. When
the prediction of a materials property is targeted, the formulation of the ML problem
is, typically, composed of a) the definition of a quantity that represents the materials
property to be predicted, b) the identification of a materials representation (or descriptor)
from which the target-property representation needs to be predicted, and c) the choice or
development of the ML algorithm that determines a model mapping the quantity of a) to
the one of b). In that sense, a) and b) yield the output and input of a ML model.
Choosing the most convenient quantity for task a) may be not trivial. Let us consider the
example of this work. The original property that we want to predict is the energetically
lowest crystal structure (ground-state crystal structure) on the potential-energy surface of
a material from its chemical formula. A crystal structure is defined by a multi-component
quantity given by the atomic numbers, the coordinates of the atomic positions in the
crystal and, in case of a solid, the ones of the lattice vectors. Probably, the most naive
choice for the output of the ML model would be these crystal coordinates of the ground-
state crystal structure. However, the fact that the output is given by a multi-component
quantity does not only limit the number of ML algorithms applicable, the high dimen-
sionality of the output space might lead to a poor learning performance of the models.
To overcome this problem there are different ways to define the ML problem for the
crystal-structure-prediction challenge and, in this thesis, we consider two approaches. One
is presented in Chapter 5 and we refer to it for a precise description of the problem. The
one of this chapter follows the strategy of dividing first the crystal-structure space into
categories that are characterized by crystal symmetries such as space groups (crystal-
structure types). As a consequence, the infinite crystal-structure space is split into a set

25



3 Multi-task SISSO for crystal structure prediction on incomplete databases

of a few crystal-structure types, e.g. 230 space groups1. The most direct ML approach to
learn the ground-state crystal-structure prototype can be realized by a classification task.
For example, the input of the ML model is given by the chemical formula and the output
by the ground-state structure type. Nevertheless, the uncertainty if the structure of a
material in the training data is correctly labeled as the ground state may introduce biases
to the model. For instance, the ground states can only be determined with certainty
if the energy of every other possible crystal-structure type is present in the training
data for every chemical formula, a requirement that is not fulfilled in current databases
and would, moreover, lead to an immense number of ab initio calculations, which is a
task that we want to avoid with the approach of this chapter. Instead of considering a
classification task, we choose to present the output of the ML model by the potential
energy of a structure. More precisely: A data point is specified by the tuple (chemical
formula, crystal-structure type), and the output is given by the potential energy of the
energetically lowest crystal structure within the crystal symmetry that corresponds to
the considered crystal-structure type. Furthermore, we will show that learning energy
differences between structure types instead of potential energies directly will simplify
learning the crystal-structure stability.
The discussion above of choosing the quantity to be predicted highlights that task a) is in-
deed not necessarily trivial. Note that we will consider only five different crystal-structure
types in this chapter as a showcase for our approach. For a global crystal-structure
prediction challenge, the work needs to be extended to include every space group at least
for a few chemical formulas in the training data.
Although the T = 0 K properties of a material are fully described by the many-body
Hamiltonian which is uniquely identified by the atomic positions and numbers {RI , ZI}
in the crystal2, the connection between {RI , ZI} and the materials properties is too
complicated and indirect. As a result, the description of processes ruling materials prop-
erties and functions requires to add as much domain knowledge to the ML problem
as available. The general approach is to incorporate this knowledge into b), the in-
put of the ML model or simply descriptor, while c) is typically given by well-known
ML approaches such as kernel-based methods or neural networks. The “critical role of
the descriptor” in "big data of materials science" was highlited by Ghiringhelli et al.
in 2015 [40]. The work has, moreover, introduced a novel artificial-intelligence based
approach to systematically search for a materials descriptor within the framework of
symbolic regression applying a two-step procedure: the construction of a large space
of candidate descriptors (feature space) and the application of a compressed-sensing-
based method that selects the best few descriptors out of the constructed feature space.
However, only the introduction of the sure independence screening and sparsifying op-
erator (SISSO) in 2018 [41] enabled to tackle feature spaces of billions of descriptor

1Note that this simplification of the ML problem comes at the cost of the need for a search, e.g. with
the reference ab initio method, for the exact crystal coordinates substantially after the ground-state
crystal-structure type was predicted

2A full description is given by adding the number of electrons. However, in this work we consider only
uncharged system.

26



3.1 Introduction

candidates, outperforming state-of-the-art compressed sensing methods, if the target
number of descriptors is restricted to be low (e.g. < 6), and replaced the LASSO
(least absolute shrinkage and selection operator) [48] based approach of the reference
work3.

SISSO has been already successfully applied to identifying descriptors for relevant
materials-science properties [12,41,52,53]. Still, its extension for two types of problems is
a challenge: I) if an input feature is multi-component, e.g. a vector with many coordinates,
and needs to appear in a descriptor with all or many of its components and II) if the
target property depends strongly on a certain input feature but the data is sparse in
that input feature. Note that the collection of input (or primary) features is determined
by all quantities that are hypothesized to be relevant for describing the target property
and, in the feature-space-construction step, non-linear combinations out of them are built
using arithmetic operations in an iterative procedure. I) is prevented by the fact that the
compressed-sensing-based scheme is conceptually based on scalar features and the only
way to include a multi-component quantity considering all its elements is to contract it
to a scalar first, e.g. by taking the average of the components. If, alternatively, not all
elements of the multi-component feature need to appear in the descriptor, each compo-
nent might be considered as an independent scalar feature. The candidate descriptors
of the constructed feature space would, then, each contain a few or none components.
Nevertheless, the applicability of SISSO is computationally limited by the number of
input features (often < 30), as the construction of the space of candidate descriptors
is a combinatorial process. An example for a multi-component feature is a descriptor
that represents a crystal structure in a vector and the one of Chapter 5 for building ML
potentials based on two- and three-body terms contains 786 elements. Now, let us give
an example for II). Consider a training data which is set up of materials whose target
property is given by a thermodynamic quantity (depending on the temperature) and was
calculated at only a few (e.g. three) different temperatures. To distinguish the properties
with respect to their corresponding temperatures one would expect that a descriptor needs
to depend on the temperature. However, given the small number of different temperatures
in the training set, such treatment carries the risk of capturing the dependence of the
target on the temperature wrongly4. In such a case, it might be desirable to determine
one single model that describes the whole data set, however, does not explicitly depend
on the temperature.
We show how the problems I) and II) can be solved by extending the compressed-sensing
based method of the reference works to a multi-task (MT) compressed-sensing approach5,

3Note that in Ref. [41], furthermore, a powerful extension of the compressed-sensing based scheme to
classification tasks was introduced.

4Still, a relationship between the property and the temperature that is simple, i.e. linear, might be
captured correctly by the descriptor which is typically a nonlinear function.

5More precisely, we will focus only on problem I) but it will be clear that the MT approach provides the
needed concept for II).
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3 Multi-task SISSO for crystal structure prediction on incomplete databases

a framework that belongs to the wider class of learning schemes known as MT learn-
ing [54–61]. A task for a learning algorithm is the learning of one target property from a
single input source (set of features). The learning of multiple tasks (or MT learning) is an
umbrella term that refers to [60] the learning of multiple target properties using a single
input source, the joint learning of a single target property using multiple input sources,
or a mixture of both. The key aspect is the parallel learning of multiple tasks, with the
(sometimes implicit) assumption that the shared information among different tasks can
lead to better learning performance if all the tasks are learned jointly, as compared to
learning them independently. In other words, MT learning assumes that the learning of
one task can improve the learning of the other tasks [60].
We demonstrate the MT approach specifically for the SISSO algorithm, i.e. MT-
SISSO. More general than the problems I) and II), if an input feature can be cat-
egorized into a set of classes (tasks), e.g. structure types or a set of temperatures,
MT-SISSO, provides an elegant solution by decoupling the models such that the infor-
mation about the categorized feature ftask enters only the linear fitting coefficients ci,
parametrically, instead of the descriptors di (as in the case of all other input features):

P =
Ω∑
i

ci({ftask})di(Frest,i). (3.1)

Here, P denotes the modeled target property, Frest,i a subset (with index i) of all features
but ftask, Ω the number of descriptors to be selected by SISSO from the space of candidate
descriptors, and the brackets {} highlight the parametrical dependence of the coefficients
on the tasks. While, in principle, it is possible, to determine alternatively an independent
model for each task, the result can be a different descriptor for each task and a loss of infor-
mation in each separate learning process as the properties of all data points are described
by the same physical mechanisms. In fact, the central result of this chapter is that the uni-
fied learning process, realized by MT-SISSO, that identifies a single set of descriptors for
all tasks improves the prediction performance of the models on incomplete databases com-
pared to using separate single-task (ST) models which, typically, all depend on different
sets of descriptors. MT-SISSO can learn accurate predictive models also with high levels of
incompleteness, e.g., when 50% or more of the information is randomly missing. We demon-
strate this by considering the crystal structure stability of 82 octet binary compounds
among five different crystal structure types. Furthermore, we show how the fact that one
single descriptor is found for all structures types, or equivalently for every compound,

P =
Ω∑
i

ci({structure type})di(compound), (3.2)

allows to visualize the structural stability and materials distribution in the descriptor
space in a ground-state structure map. In general, the work is a first showcase of a
MT-learning application in materials science.
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3.2 Theoretical framework

This chapter presents my contributions to the publication in Ref. [62]. The con-
tributions include the formulation of theoretical aspects of the methodology for
continuous properties, the development of the 2D-structure-map approach as well
as the design, implementation, and analysis of all tests for continuous proper-
ties.

3.2 Theoretical framework

As in the reference works [40, 41], the compressed-sensing-based scheme consists of
two steps: the construction of a large space of candidate descriptors (feature space)
given a set of input (primary) features and the application of a compressed-sensing-
based algorithm that identifies the best few descriptors out of the constructed feature
space to fit the target property P . The initial data set is given by N input-output
pairs {(dprimary

1 , P1), ..., (dprimary
N , PN )}. dprimary

i represents the vector of input primary
features of a data point i. We write the values of the target properties Pi into a vector P ∈
RN .

The construction of the feature space is an iterative procedure. The basis is given by the set
of primary features Φ0 and a set of unary and binary operators (such as +,−, exp ,

√
, . . . ).

At each iteration l, a new feature space Φl is constructed by combining every feature (pair
of features) of Φl−1 with every unary (binary) operator. Typically sums and differences
are constrained to be taken only among homogeneous quantities, i.e. quantities which are
expressed by the same units. The SISSO algorithm searches for a model based on the best
few descriptors out of the final Φl. The targeted model is linear in the identified descriptors
of Φl but nonlinear in the primary features Φ0 if l > 0. As a result of the feature-space-
construction step, every data point i is represented by a possibly huge descriptor vector d of
sizeM . We write the descriptor vectors of all data points down as the rows of a matrixD ∈
RN×M .

We split the data, P and D, into Q tasks {(D1,P 1), ..., (DQ,PQ)}. Note that each
task may have a different number of samples Nq, while the number M of columns of all
matrices Dq is the same. In order to make the feature vectors (columns Dq

j ) comparable
(within each task), we standardize each of them to have zero mean and a variance of
one.

The goal of single-task (ST) compressed-sensing methods is to approximate the solu-
tion of the `0 problem (defined in Eq. 2.9). We write the MT analogy of the `0 problem

arg min
C∈RM×Q

Q∑
q=1

1
Nq
‖P q −DqCq‖22 + λ ‖C‖0 , (3.3)

where C is the coefficient matrix, with M rows and Q columns, i.e. its q-th column Cq is
the vector of coefficients projecting Dq onto P q. The `0 norm of the matrix C counts the
number of rows that have at least one nonzero element. The regularization imposes that
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Figure 3.1: Schematic representation of single-task (ST) SISSO vs multi-task (MT)
SISSO. The white regions in the (sparse) fitting vectors c andCq represent zero-valued
elements, while the colored-hatched squares represent the nonzero-valued elements,
which select the hatched columns in the descriptor matricesD andDq. The gray areas
in the target property vectors P q - and correspondingly in the descriptor matrices -
represent missing/unknown data in the training database, i.e. for some materials (each
material occupies always the same position in the property vector and is related to the
same row in the descriptor matrix) some property vectors are not known. Crucially,
the non-zero values of the fitting vectors Cq are always in the same position (they have
the same indices) for the same MT-SISSO learning, and correspondingly the selected
columns are the same in all descriptor matrices Dq.

when a feature Dq
j is selected (i.e. it has nonzero coefficient Cqj ) for one task q, then it is

selected for all tasks. While the `0 minimization in Eq. 3.3 yields exactly what we want
(identify the same best few descriptors for all tasks), it is computationally infeasible if M
is large as, in practice, we perform the minimization in a combinatorial way:
For a target number Ω of descriptors to be selected, the set SΩ of all column-
index Ω-combinations of D is defined. For every Ω-tuple out of SΩ the submatri-
ces Dq

Ω ∈ RNq×Ω are built and the (MT-extended) least-squares problem is solved:

arg min
CΩ∈RΩ×Q

Q∑
q=1

1
Nq
‖P q −Dq

ΩC
q
Ω‖

2
2 . (3.4)

Then, the solution of the `0 problem is the Ω-tuple that exhibits the lowest least-
squares error6. We say that the features determined by the best Ω-tuple are the
identified best Ω descriptors (or Ω-dimensional descriptor). The corresponding Q

models are given by P q
fit = Dq

ΩC
q∗
Ω with the single least-squares solutions Cq∗

Ω =
(DqT

Ω D
q
Ω)−1DqT

Ω P
q. Varying the target number Ω of descriptors corresponds to varying λ.

6More precisely, the solution is the coefficient vector C with all entries zero except that the rows that
correspond to the Ω-tuple are filled with the non-zero coefficients of the solution to Eq. 3.4
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3.2 Theoretical framework

The problem solved by MT-SISSO is an approximation to the `0 problem in Eq. 3.3. An
important feature of the MT-learning concept that we have introduced is the ability to
handle tasks of different sample sizes. For instance, an incomplete database (one where
for every data point not every task is known) typically consists of tasks with different
sample sizes. Figure 3.1 shows graphically the setup for MT-SISSO, in particular in terms
of the possibility to deal with incomplete data. Note that, in this work, we consider
SISSO only using the `0 optimization as the SO step. The MT-SISSO algorithm is given
by:

1. Initialize Q residuals with Rq
0 = P q and the (subspace) set S = ∅ of saved col-

umn (descriptor) indices. Chose the target dimension Ω of the descriptor for the
final linear models and a number NS of columns added to S at each iteration k.
Furthermore, let the iteration counter k = 1.

2. SIS step: Extend S by the NS column indices {j} having the largest linear correlation
score with the residuals:

θj =

√√√√√ Q∑
q=1

<Dq
j ,R

q >2 /Nq. (3.5)

3. SO step: Build for each task the submatrix D̃q out of all columns Dq
j with saved

indices j ∈ S and solve the MT-`0 problem 3.3 for the set of Q submatrices D̃q and
a target dimension k of the descriptor. Let every Rq

k+1 = P − D̃qCq∗ where Cq∗ are
the solutions of the `0 problem.

4. If k = Ω, stop. Otherwise set k = k + 1 and return to the 2. step.

For Q = 1, MT-SISSO becomes ST-SISSO (described in Sec. 2.4.3). Note
that when k = 1, the `0 problem in the 3. step is, in practice, not per-
formed because its solution is known already in the 2. step, i.e. the models
based on the descriptor j with maximum θj . A derivation of θj is given in
App. A.

The number of iterations l in the construction of the feature space Φl and the di-
mension Ω of the descriptor are (hyper-)parameters of the SISSO method, to be op-
timized with respect to the prediction error on a validation set, typically via cross
validation (CV). The size Ω · NS of the subspace selected by SIS is also a param-
eter, but not a hyperparameter to be optimized. In fact, ideally it is large enough
to include the solution of the `0 problem 3.3. In practice, we invoke the relation-
ship that the compressed-sensing theory establishes between the size Ω · NS of the
feature space S of selected descriptors by all SIS steps, dimensionality of the so-
lution Ω, and the number of data points N : ΩNS = exp (N/(κ ·Ω)), where κ is
a dimensionless constant that the compressed-sensing theory locates between 1 and
10.
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3.3 Data set

The data set of our example consists of 82 octet binary compounds, each in five
crystal-structure types, including rock-salt (RS) and zinc-blende (ZB) of the refer-
ence works [40, 41] based on ST learning, and three further phases: the CsCl, NiAs,
and CrB prototypes. Every compound was optimized in each of the five different
crystal-structure types by fully relaxing all degrees of freedom compatible with the
corresponding crystal symmetry (1 degree of freedom for RS, ZB, and CsCl, 2 degrees
of freedom for NiAs, and 5 for CrB). This results in 82 · 5 data points, e.g. (struc-
ture, potential energy)-tuples. The data was calculated in Ref. [63], using DFT within
the local-spin-density approximation, and downloaded from the NOMAD Repository
[6].

Modeling four independent energy differences, each between two crystal structures
for every compound, is sufficient for describing the relative stability among the five
crystal-structure types, i.e. using only one structure as reference and learning the energy
differences to that structure. However, learning four energy differences may lead to large
errors for the relative stability of any two other phases whose difference was not consid-
ered as a target to be learned. In contrast, the simultaneous learning of all ten possible
energy differences limits the prediction error of the relative stability between all phases.
Therefore, the MT problem that we consider is given by ten tasks made of all possible
energy differences. The distribution of the ten energy differences is shown in Fig. 3.2.
Note that considering energy differences as the targets simplifies modeling the structural
stability compared to using cohesive energies (DFT energy of a structure minus the DFT
energy of the gas-phase atomic constituents). For instance, the root mean square error
(RMSE) on predicting all ten energy differences with a MT model that was fitted to the
five cohesive energies is 0.15 eV/atom7, while it is only 0.07 eV/atom if the energy differ-
ences were fitted directly. For both models the parameters chosen in the next section were
used.

3.4 Choice of the parameters

For the descriptor identification, we use atomic properties as input features: the ioniza-
tion potential (IP ), electron affinity (EA), number of valence electrons nval, the group
number G in the periodic table, and the radii rs,p,d where the radial probability density
of the valence s, p, and d orbitals are maximal. Furthermore, equilibrium distances dij of
homonuclear AA and BB, and AB dimers are included.
We set the parameter κ that determines the sizes of the SIS subspaces (see theory in
Sec. 3.2) to 3.3. With N = 82, the subspace sizes Ω · NS are approximately 2 · 105

7This means that first five cohesive energies per compound were predicted from a model fitted to the five
cohesive energies. Then, ten energy differences were derived out of the five predicted cohesive energies.
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Figure 3.2: Distribution of reference energy differences (10 pairs of structure types)
for all 82 octet binaries. The square marks the average value of the distribution.
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Figure 3.3: Prediction errors of MT-models, as a function of the dimension Ω of the
descriptor, for the feature space Φ2 and Φ3. All errors are averaged over 30 repetitions
of a leave-10%-out CV (MT-SISSO is trained over 90% of randomly selected data and
tested on the remaining 10%). The “box plots” mark the 25th and 75th percentiles
(extrema of the rectangle), the 5th and 95th percentiles (extrema of the “whiskers”),
and the median (horizontal line inside the rectangle). Shown are also the mean absolute
error (MAE, cross) and the root mean square error (RMSE, solid square).
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Ω RMSE Median p75 p95 MaxAE

Φ2

1 0.186 0.082 0.170 0.393 1.098
2 0.146 0.069 0.131 0.272 1.055
3 0.115 0.058 0.112 0.240 0.649
4 0.121 0.053 0.103 0.252 0.968
5 0.132 0.050 0.099 0.252 1.385

Φ3

1 0.163 0.076 0.158 0.332 1.056
2 0.137 0.062 0.121 0.268 0.973
3 0.098 0.051 0.090 0.205 0.548
4 0.093 0.043 0.079 0.187 0.742
5 0.094 0.043 0.080 0.189 0.709

Table 3.1: Tabulated values from Figure 3.3. p75 and p95 are the 75th and 95th
percentiles, respectively, RMSE is the root mean square error, and MaxAE is the
maximum absolute error. All quantities are given in [eV/atom].
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Figure 3.4: Prediction errors of MT-SISSO models (using Φ3, Ω = 3) within a
leave-10%-out cross validation. Central panel: Prediction errors vs. reference energies
(energy differences). Left panel: distribution of the prediction errors. Right panel:
distribution of the absolute values of the prediction errors and corresponding box
plot. The box plot and symbols are consistent with Fig. 3.3, except that the maximum
absolute error (MaxAE, circle) was added, here.
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, 4 · 103, 5 · 102, and 102 for Ω = 2, 3, 4, 58. These values are kept fixed through
all our numerical tests, e.g. also when the sample size N is decreased in the cross-
validation (CV) tests. For the routine application of ST and MT-SISSO, we note
that the sizes NS of the feature subspaces used in this work are rather large. We
checked that even for κ = 4, the same descriptors are always found at Ω = 2,
while for Ω = 3 even κ = 5 is small enough to yield the same descriptor as for κ =
3.3

In Fig. 3.3 (the corresponding numerical values are tabulated in Tab. 3.1), results of a
leave-10%-out CV test are shown, performed in order to assess the two hyperparameters
of MT-SISSO: the (size of the) constructed feature space Φl and the dimensionality Ω of
the descriptor. The leave-10%-out CV is performed in the following way: A random set of
10% of the 82 materials is left out of the training set, the MT-SISSO model is trained on
the remaining 90% of the materials, and the errors are measured for the left-out materials.
This random selection of training and validation sets was repeated 30 times, which we
found sufficient to converge the validation RMSE to 0.01 eV. Note that all the ten target
properties of a material are excluded from the training set when it is left out.
Analysis of Fig. 3.3 reveals that models trained by using the larger feature space Φ3

(containing ∼ 2 · 1010 features) are consistently better performing (in terms of prediction
errors) than models trained on Φ2 (containing ∼ 2.4 · 105 features), for all dimensions.
RMSE and mean absolute errors (MAE) are only marginally better when going from Φ2

to Φ3, but we notice that the largest percentiles (75th and 95th) improve significantly,
especially for 3 ≤ Ω ≤ 5. The overall best model is (Φ3, Ω = 5), but we also notice
that, for Φ3, the improvement of all error indicators when going from Ω = 3 to Ω = 5 is
only marginal. Therefore, in view of the significantly smaller computational time needed
to train Ω = 3 vs Ω = 5, in the tests of the next section, we focus on (Φ3, Ω = 3).
The detailed analysis of the signed and absolute errors for the latter setting is shown in
Fig. 3.4.

3.5 Stabilization of the SISSO models through multi-task
learning

Besides conceptual advantages of MT vs ST learning (see next section), the shared learning
across different tasks realized by MT learning stabilizes (reduces the risk of high prediction
errors of) the models if only incomplete data is available. We will show this by performing
two tests.

In the first test, we selected left-out sets in this way: One material and one crystal structure
are randomly selected and all the energy differences involving the selected structure are
eliminated from the training set for the selected material. The procedure is repeated until

8Recall that for Ω = 1, no subspace is considered as the best descriptor is determined already by the SIS
step on all features.
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Figure 3.5: Prediction errors of MT-SISSO vs (average) ST-SISSO for (left panel)
“leave x% of (materials, structure) data out” and (right panel) “leave y% of data for
one crystal structure out”. The symbol convention is the same as in Fig. 3.3. The errors
at 0% data out in both panels are training errors. The horizontal line at 0.49 eV/atom
represents the basline (standard deviation of the reference energy differences) against
which the root mean square errors (solid markers) are benchmarked.

a prefixed x% of pairs (material, structure) are eliminated. We recall, the total number of
such pairs is 82×5 = 410. This test simulates the training over a materials database where
for some (or many) materials the information for only some crystal structures is available.
It would be of great value if from such dishomogenous database, one could predict the
missing information. For a meaningful test, we added the following two constraints in
the simulated elimination of database fields: For each material, the energy of at least
two crystal structures (e.g. one energy difference) is known and for each of the ten tasks
(energy differences) there are at least four materials carrying the information, in order to
have enough data to train the four fitting coefficients of the Ω = 3 model9. For each x%
selected value, we train one MT-SISSO model and 10 independent ST-SISSO models (one
for each task of MT-SISSO). We then look at the prediction errors on the missing data.
The left panel of Fig. 3.5 shows the outcome of the test. With abuse of notation, the values
at 0% refer to the training error on all data points. As one should expect, ST-SISSO
yields lower training error due to higher flexibility (for each task, a different descrip-
tor can be chosen). However, as soon as data are missing, MT-SISSO rules with lower
RMSE and, crucially, with lower largest errors. Interestingly, the quality of MT-SISSO
stays pretty unchanged, for all error indicators, over a wide range of amount of missing
data.

In the second test, we select, first, one crystal structure and then we remove the energy
values for a given y% of materials. Removing the energy value of one structure implies the
removal of four energy differences from the (material, energy differences) database. One
MT-SISSO model and four ST-SISSO models are trained and the errors for the selected
structures are evaluated on the missing materials. This test simulates the case of a new
crystal structure being identified for only few materials in the database and one wants

9Three coefficients are assigned to the three descriptors and one determines the constant/intercept.
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to learn with the fewest possible data the predicted energy in such new crystal structure
for all materials. We repeat this test for leaving each of the five structures once out and
report the prediction errors averaged over all five tests.
The right panel of Fig. 3.5 shows the performance of the MT-SISSO models vs the one of
the ST-SISSO models. Again the training error (at 0%) favors ST-SISSO and again MT-
SISSO’s performance remains impressively constant over a wide range of amount of missing
data.

These two tests show numerically what should be expected from a physical point
of view: It is reasonable to assume that the energy of different crystal structures
depend on the same mechanism encoded in the properties of the gas-phase atoms
used as primary features. Therefore MT-SISSO uses at best the (possibly scarce) in-
formation scattered over all crystal structures to identify such mechanism. In this
way the prediction on the scarcely known materials and/or crystal structures is
more reliable than a model that uses information from only one crystal structure
(or, one pair of crystal structures, as in the presented case) to identify the descrip-
tor.

3.6 Design of a crystal-structure map

The identification of a single descriptor for multiple tasks (crystal structures), enabled
only by the MT extension of the compressed-sensing-based scheme, allows to draw a
phase-diagram (crystal-structure map) whose axes are given by the found descriptor. Let
us consider the (Ω = 2) MT-SISSO model trained over all data points. The linear models
of the different tasks can be represented as planes in a 3D space, where the coordinates
(x, y) are the components of the descriptor and coordinate z is the predicted energy.
A subtle implication of the MT-SISSO learning energy differences is that the models
maintain an internal consistency with respect to a common energy zero, which allows
for the unambiguous determination of the predicted lowest-energy structure for each
coordinate (x, y). For example, for any three structures α, β, γ, the difference in energy
E(α) − E(γ) is by construction equal to (E(α) − E(β)) − (E(γ) − E(β)). This is not
(necessarily) true if the three energy differences are learned with separate, independent
models. For instance, the internal consistency obtained through the MT-SISSO models
is a result of the fact that all models depend on the same descriptor (see derivation in App.
B).

The left panel of Figure 3.6 represents the structure map for the octet binaries. The
colored areas refer to the predictions and the colored squares are the reference data. A
color is associated with any specific crystal structure and assigned to a square (pixel)
(δx, δy) centered on (x, y) when the corresponding structure is the lowest in energy at
(x, y). The white color marks areas where the energy difference between the lowest-energy
and the second lowest-energy structures differs by less than 0.03 eV/atom. In order to give
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Figure 3.6: Left: MT-SISSO-learned ground-state structure map for the octet bi-
naries. The colored areas represent the predicted stability region for the structure
with the same color in the legend. The squares are colored according to the reference
lowest-energy structure. The white color marks areas where the difference between the
energy of the lowest-energy and the second lowest-energy structure differs by less or
equal 0.03 eV/atom. Right: cut of the phase-diagram along the dashed line shown in
the left panel. The lines are the traces of the planes representing the predicted energy
difference from the baseline (ZB structure).

an insight into the 3D visualization of the structure map, we show in the right panel of
Fig. 3.6, a cut along the gray-white dotted line marked in the left panel of Fig. 3.6. This
shows that some crystal structures are predicted to be very close in energy for certain val-
ues of the descriptors. In a realistic application, one may conclude that the actual ground
state in the neighborhood of those values of the descriptor may be any of the low-energy
structures, while those that are predicted to be very high in energy can be safely discarded
as candidate ground states. To gauge the trustfulness of the presented phase diagram,
we mention that the largest prediction error for a structure that appears “misclassified”
(the color of its symbol does not match the predicted color of the background) is 0.09
eV/atom.

3.7 Outlook

While the extension of the approach to considering a more global description of the
structure space, e.g. modeling all 230 space groups, is conceptually possible, there are
some practical challenges.
Clearly, for each of the 230 space groups at least a few data points need to be present in
the training data. If no data is available for a space group, a task cannot be assigned to
it. Furthermore, the number of present data points in a space group needs to be at least
as high as the number of fitting coefficients to determine the model corresponding to the
task (there are Ω+ 1 fitting coefficients in a model based on a Ω-dimensional descriptor).
As discussed in Sec. 3.3, predicting energy differences instead of cohesive energies is
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advantageous in terms of accuracy, if not even essential. However, following the spirit
of this work that it is beneficial to consider for the tasks any energy difference possible
among a set of given structures, the extension of our approach to 230 structure types
is computationally impractical, as the set up would need to consist of 26 335 tasks. At-
tempts to sparsify the number of tasks need to be discussed in a future work. Moreover,
out of a scope of this thesis, the consideration of formation energies (DFT energy of
structure minus the DFT energy of elemental solids built by the atomic constituents)
instead of energy differences or cohesive energies, might be testes as an alternative, as
the assignation of one energy to a structure type would result in maximally 230 tasks. To
give a feeling on the computational effort necessary to find the MT-SISSO descriptor and
model, we report that the learning for the settings (Φ3, Ω = 3) and 82 · 10 data points
(materials × energy differences) was run on an Intel Xeon E5-2698 v3 node with 2 CPUs
per node (16 cores/CPU @ 2.3 GHz) and it took 5 h. On a 4-cores laptop, it would take a
couple of days of runtime. We remind that the size of the features space is huge: 2×1010 fea-
tures.

3.8 Conclusions

In conclusion, we have introduced an extension of the symbolic-regression- and compressed-
sensing-based scheme of Ref. [40, 41] to a MT-learning approach, considering specifically
the SISSO algorithm. If an input feature can be categorized into classes, MT-SISSO yields
an elegant way to take account of this input feature. This is needed if the feature is high
dimensional, such as structural information, because SISSO is limited to scalar features.
We have shown the applicability of MT-SISSO to the challenge of crystal-structure pre-
diction and demonstrated how only the MT extension of the symbolic-regression- and
compressed-sensing-based scheme enabled the description of the structural stability in
a well-defined phase diagram and ground-state structure map. Furthermore, we high-
lighted how MT learning stabilized the models on incomplete data sets. As opposed
to ST-SISSO, MT-SISSO was able to learn accurate predictive models also with high
levels of incompleteness (e.g. when 50% or more of the information was randomly miss-
ing).
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4.1 Definition of interatomic potential

An interatomic potential is a closed-form expression that calculates the potential en-
ergy of a system of atoms as a function of their arrangement. The design of an interatomic
potential is often based on a quantum-mechanical description of matter. The ground-state
solution of the electronic Schrödinger equation provides the Born-Oppenheimer PES,
which is typically the reference for an accurate treatment of the interactions between
nuclei. Interatomic potentials approximate specific regions of the Born-Oppenheimer PES
and DFT-based calculations are a possible source of data1. Traditionally, the functional
form of potentials was determined based on chemical intuition [64–66]. Such poten-
tials are referred to as analytical, empirical, semiempirical, or classical potentials. With
machine-learning (ML) potentials, a new class of interatomic potentials was introduced
that aim at the determination of accurate models at much less human intervention. Their
main difference to analytical potentials is a more flexible functional form that has less
physical background built in. However, the higher flexibility comes with the need for new
data-design techniques because the accuracy of ML potentials may decrease even more
rapidly in regions of the PES that are distant from the training data than the classical
approach.
In this chapter, we will present the theoretical framework of the ML potentials developed
in this work. We will introduce the chemical-transferable potentials (CTP) and summarize
two other state-of-the-art methods to which the CTP will be compared in Chapter 5.
The two other methods are the extension of the smooth overlap of atomic positions by an
alchemical kernel [43, 67] and the crystal graph convolutional neural networks [42].
The chemical-transferable potentials are based on n-body potentials. We note that
our terms and mathematical definitions might deviate from the ones of other works
which treat n-body potentials. The definitions mainly serve to decompose and il-
lustrate the mathematical framework behind our methods. Basically, many of our
concepts follow the framework of n-body potentials [27, 68] that were introduced
within the framework of Gaussian Approximation Potentials [32] and the respective
implementation in the QUIP code [69]. However, our implementations are similar
but not equivalent [70] to the ones of the Gaussian Approximation Potentials of Ref.
[32].

1More precisely, the calculations are based on an approximation to DFT and provide only an approxima-
tion to the Born-Oppenheimer PES.
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Usually, there are two fundamental properties of interatomic potentials and a possible
definition is given in the following [32].

Definition 4.1. Let (S,Z) be a system of atoms with positions S = (r1, r2, ..., rNatoms)2

and atomic numbers Z = (Z1, Z2, ..., ZNatoms). Furthermore, let A ⊂ {1, 2, ..., 118} be a set
of atomic numbers. A local interatomic potential is a function

E : R3Natoms ×ANatoms → R

(S,Z) 7→ E(S,Z)

that approximates the Born-Oppenheimer PES and has the properties:

a) The energy is a sum of atomic contributions εi,

E =
Natoms∑

i

εi.

b) Each atomic contribution εi to the total energy depends on the positions (and chem-
ical species) of atoms j that are within a cutoff region (neighbourhood) from atom
i.

All ML potentials introduced in this chapter and investigated in Chapter 5 are such
interatomic potentials. A typical choice of the neighbourhood is a spherical cutoff region
ρ(ri) = {rj ∈ S | ‖ri−rj‖ < rcut} [32,71]. Note that, generally, ML interatomic potentials
treat Z only parametrically, i.e. the information about the species types enters only the
fitting coefficients.
An interatomic potential defined through Def. 4.1 exhibits practical advantages.
Property a) ensures size-consistency, e.g. doubling the unit cell of a crystal to a su-
percell doubles also the potential energy per crystal, and its computational cost
scales only linearly with the number of atoms in the unit cell. Property b) sim-
plifies the atomic environment to a small number of interactions and the size of
the cutoff is a major factor for computational speed. It puts, however, a con-
straint on the accuracy of the model [32] as interactions with atoms outside of
the cutoff region are, in the best case, mapped only effectively into the neigbour-
hood.

Given Def. 4.1, the effort in designing a potential lies in finding an ap-
propriate function for ε. In the case of ML potentials, this task is sepa-
rated into two components, namely finding an appropriate representation q of
the crystal system and a function that maps q onto ε (or onto a part of
ε).

2In case of periodic systems, we assume that also the unit cell is given and the atom index runs only over
atoms in the unit cell.
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4.2 n-body descriptors

4.2 n-body descriptors

In the field of data-driven materials science, the search for the materials representation
is considered as the major challenge while the function mapping onto the materi-
als property is determined by an ML algorithm, typically a kernel-based method or
a neural network. Fundamental symmetries, such as invariance for translation, rota-
tion, reflection of the crystal, or permutation of the same species types, are chosen
to be incorporated into the crystal representation. Representation design has become
an attractive field [72–75] that has led to many new descriptors [76–82] or, in the
case of general materials properties, novel approaches [41, 48]. However, in interatomic
potentials, representations like explicit pairwise or three-body descriptors often stay
a key term [27, 29, 39, 83]. A possible definition of an n-body descriptor is given be-
low.

Definition 4.2. Let P = (r1, r2, ..., rn) ⊂ S be positions of a set of atoms. Then the
function q

q : Rn×3 → Rm

P 7→ q

with

∂q

∂ri
6= 0 ∀ ri ∈ P

is called an (m-dimensional) n-body descriptor.

The two-body descriptor is given by

qij = rij = ‖ri − rj‖ (4.1)

with j ∈ ρi. ρi = {j | ‖ri − rj‖ < rcut, rj ∈ S} is the set of indices of
atoms in the neighbourhood of atom i. The two-body descriptor often builds
the basis of more complex descriptors such as many-body descriptors (e.g. the
smooth overlap of atomic positions in Sec. 4.5) or the following three-body descrip-
tor

qijk = (rij , rik, rjk) (4.2)

with j, k ∈ ρi. In this form, the three-body descriptor is ordered, and symmetry in
exchanging the neighbour atoms j and k needs to be imposed either by the poten-
tial function or by assigning to each triplet of atoms a second three-body descriptor
with j and k exchanged. In this work, we implement the latter symmetrization tech-
nique. Note that, in the following sections, we will often denote the pairwise distance in
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4 Machine-learning Potentials

a vector form qij to keep consistent with the vectorial form of the three-body descrip-
tor.

4.3 n-body potentials

A common approach to design potentials is the so-called many-body expansion in which the
local energies εi in Def. 4.1 are written in linear combinations of n-body contributions [64,
65].

Definition 4.3. Let E =
∑Natoms
i εi be an interatomic potential and {qij , qijk, ...} n-body

descriptors. The many-body expansion expresses the local energy ε formally through

εi = ε1b +
∑
j∈ρi

ε2b(qij) +
∑
j,k∈ρi

ε3b(qijk) + ... (4.3)

and εnb is called an n-body potential.

The general modelling strategy is based on truncating the expansion after a rather
small number n, e.g. n < 5, due to the combinatorial growth of the number of n-tuples.
Sometimes, the expansion is complemented with a term based on a many-body descrip-
tor [27,29,39] like the smooth overlap of atomic positions (Sec. 4.5).
Note that while n ≥ 2-body terms are interaction-based models, ε1b is typically a quantity
that depends on the composition of the material, e.g. a quantity based on the energies of the
atomic constituents.

4.3.1 n-body potentials for multiple species types

Considering a sum of a two- and three-body potential for an elemental solid, e.g.
Si, the energy of the crystal can be separated into a two- and three-body contribu-
tion

E = ESiSi + ESiSiSi (4.4)

with ESiSi =
∑Natoms
i

∑
j∈ρi ε2b(qij) and ESiSiSi =

∑Natoms
i

∑
j,k∈ρi ε3b(qijk). One

way to model a multi-species systems, e.g. a binary AB, is to separate the inter-
actions of the different species combinations into a linear combination of contribu-
tions:

E = EAA + EAB + EBB

+ EAAA + EAAB + EABB (4.5)

+ EBAA + EBAB + EBBB.
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4.3 n-body potentials

Correspondingly, nine functions εnb,I are specified for nine types of interactions I (AA,
AB,... BAB, BBB) which leads to a higher flexibility of the multi-species potential
compared to the single-species one. The indices i, j (k) in EAB (EABC) run only over
atoms of species types A, B (C). Note that the first element A of a three-body interaction
ABC specifies the species type of the central atom i of a triplet represented by the
descriptor (rij , rik, rjk). Its neighbours B and C correspond to j and k in the descrip-
tor.

4.3.2 Functional forms of machine-learning n-body potentials

The task of determining functions εnb(qnb) starts with the specification of the func-
tion space from which a corresponding ML algorithm selects an optimal element.
A possible result of the demand for efficient optimization are functions that are
linear in regression coefficients αµ with basis functions bµ nonlinear in the input
qnb:

εnb(qnb) =
Nbasis∑
µ

αµbnb,µ(qnb). (4.6)

Then also the total energy of the system can be written in a linear form (considering again a
two- and three-body potential)

E =
Nbasis,2b∑

µ

α2b,µB2b,µ +
Nbasis,3b∑

µ

α3b,µB3b,µ (4.7)

with

Bnb,µ =
Natoms∑

i

∑
j,k...∈ρi

bnb,µ(qijk...). (4.8)

For a data set of multiple structure-energy tuples the equations become a linear sys-
tem

E = Bα =
(
B2b B3b

)(α2b

α3b

)
. (4.9)

The coefficients α2b and α3b are determined by (regularized) linear regression (i.e.
Eq. 2.3). Note that the closed-form expression α = (BTB + λI)−1BTE is equivalent to
the one that is obtained in the sparsification process [68] of the Gaussian Approximation
Potentials [32] if the same two- and three-body potential (with the same basis functions)
is used. The rows of B can be considered as structural descriptors that could alternatively
be used as a vectorial input of a nonlinear ML model. The columns of B represent the
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4 Machine-learning Potentials

basis functions (or their indices µ).
Following the works [27,32], a Gaussian basis set is used

εnb(q) =
Nbasis∑
µ

αµ exp(−(qnb − qµ)2

2σ2
µ

), (4.10)

where the collection of Gaussian centers qµ and widths σµ is a set of hyperparameters.
In order to guarantee smooth decay of energies and forces to zero at the cutoff rc, a cutoff
function is multiplied with the (radial) basis functions:

b̃2b,µ(rij) = b2b,µ(rij) · fcut,2b(rij). (4.11)

The following cutoff function was used [68]:

fcut,2b(rij) =

1, r ≤ rc − rw
1
2(cos

[
π

(rij−rc+rw)
rw

]
+ 1), r > rc − rw.

(4.12)

Here, rw specifies the width of the smooth decay region. It is a hyperparameter of the ML
model. For the three-body terms we implement:

b̃3b,µ(rij , rik, rjk) = b3b,µ(rij , rik, rjk) · fcut,2b(rij) · fcut,2b(rik). (4.13)

4.4 Chemical-transferable potentials

Normally, ML potentials do not take the chemical-species types explicitly as variables
but treat them parametrically, e.g. by letting information on the chemical species enter
the fitting coefficients. For instance, ML potentials have often been fitted to data of
a single chemical formula (or systems with not more than three species types) which
did not require an explicit dependence of the potentials on the species type in form
of a variable. ML models that take the chemical species types as variables do ex-
ist [42, 43, 78, 84], for example crystal graph convolutional neural networks (Sec. 4.6)
or a kernel-based model depending on the alchemical SOAP (Sec. 4.5.1). However, a
methodology that makes explicitly n-body potentials (defined in the form of Def. 4.3)
species dependent was, to the best of our knowledge, not investigated yet and is introduced
in this work. A definition of a chemical-transferable n-body potential is given in the follow-
ing.

Definition 4.4. Let Z = (1, 2, 3, ...) = (ZH, ZHe, ZLi, ...) be the set of all atomic numbers
(species types), Z a vector of n atomic numbers Zi ∈ Z , and εnb(qnb) =

∑Nbasis
µ αµbµ(qnb)
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4.4 Chemical-transferable potentials

an n-body potential as defined in Def. 4.3. Then a chemical-transferable n-body po-
tential is written

εnb(qnb,Z) =
Nbasis∑
µ

αµ(Z)bµ(qnb). (4.14)

where αµ are functions of the species types Z.

In this way, the chemical information about the species types enters only
the coefficients, while the basis functions stay solely a structural descrip-
tion of the material. Note that the αµ are explicit functions of species tu-
ples and not of the chemical formula of a compound, e.g. the compounds MgS,
MgO, and Mg2O are described by the same Mg-Mg and Mg-Mg-Mg coeffi-
cients, αµ([ZMg, ZMg]) in the two-body and αµ([ZMg, ZMg, ZMg]) in the three-body
case.

The determination of the relationship between the species types and coefficients αµ follows
the approach of first representing the input Z with an appropriate descriptor vector d to
be mapped with a ML model to the coefficients. This means we replace Z by d. Atomic
properties as used in [40] are one example for building d, e.g ionization potential, electron
affinity, or orbital-based radii. To ensure the invariance of the potential energy with respect
to interchanging atoms of different species types, we symmetrize the descriptors. In case
of a two-body potential for an AB compound and using an atomic property d, we imple-
ment:

d =
(
d(A) + d(B)
|d(A)− d(B)|

)
. (4.15)

Our symmetrized descriptor for the three-body potential is defined by:

d =
(
d(A) + d(B) + d(A) + d(C)
|d(A)− d(B)|+ |d(A)− d(C)|

)
. (4.16)

This choice of the three-body symmetrization takes account of the symmetry of our three-
body potential, i.e. that EABC = EACB (see paragraph below Eq. 4.6). In case multiple
atomic properties d1, d2, ... are used, we write the symmetrized elements of all properties in
one vector,

d =



d1(A) + d1(B)
|d1(A)− d1(B)|
d2(A) + d2(B)
|d2(A)− d2(B)|

...


, (4.17)

if considering, for example, the two-body case.
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Our experience is that a linear relationship between the chemical descriptors d and the co-
efficients αµ does not yield sufficiently accurate potentials. One way to obtain a nonlinear
relationship could be a symbolic type of regression in which the input descriptors are com-
bined by arithmetic combinations to be selected by a compressed-sensing-based technique,
see Chapter 3. In fact, this is possible because the linearity of the symbolic regression mod-
els in their regression coefficients allows to write the total energy in a linear combination
of products between combined descriptors and structural basis functions. However, in this
work we used a neural network as described in the next section and the symbolic-regression-
based approach could be investigated in a future work. Note that a neural network that
determines parameters of a predefined expression (here n-body potential) was already in-
troduced in a recent work by S. A. Ghasemi et al. [85]. The neural network mapped atomic
environments onto atomic electronegativities that were components of an explicit poten-
tial.

4.4.1 Chemical-transferability via neural networks

In order to realize a nonlinear connection between the chemical descriptors d and the coef-
ficients αµ of the potentials, a neural network is used. An example with one hidden layer is
written

αµ(Z) =
Nneurons∑

h

W
(2)
µ,hφ

Nd∑
j

W
(1)
h,j dj(Z) + b

(1)
j

+ b(2)
µ (4.18)

or in matrix form

α(Z) = W (2)φ
[
W (1)d(Z) + b(1)

]
+ b(2) (4.19)

where the activation function φ is applied to a vector elementwise and W (i) and b(i) are
weights and biases, respectively.

Consider the example of a two- and three-body chemical-transferable potential for a binary
compound. The energy of a crystal is decomposed into species-interaction contributions (as
already described in Sec. 4.3.1):

E = EAA + EAB + EBB

+ EAAA + EAAB + EABB

+ EBAA + EBAB + EBBB.

(4.20)

Then we use two neural networks, one for the two- and one for the three-
body potential. If implementing one-hidden-layer neural networks and using Eq.
4.8 to sum the potential basis functions over the atomic environments in the
crystal into the elements of a matrix B, the energy of a crystal is written:
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E = BT
AA

(
W

(2)
2b φ

[
W

(1)
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]
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)
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(
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W

(2)
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(1)
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3b

)
.

(4.21)

4.4.2 Optimization of the neural networks

The weights of the two neural networks in Eq. 4.21 are determined by solving the optimiza-
tion problem

arg min
W2b,b2b,W3b,b3b

Ndata∑
i=1

[
Eref
i − ECTP

i (W2b, b2b,W3b, b3b)
]2

(4.22)

using backpropagation and stochastic gradient descent. In this work we regularize
the neural networks by early stopping at an epoch that optimizes the prediction er-
ror on a validation test, similar to other works in materials science that use neu-
ral networks such as the crystal graph convolutional neural networks [42] or SchNet
[84].

It might be desirable to make also the parameters of the basis functions bµ dependent on
the compounds or species tuples in the form of variables, i.e. the widths σµ and centers
rµ in a basis set of Gaussians bµ = exp(− (q−qµ)2

2σ2
µ

). However, the fact that, in this work,
the basis function parameters do not enter the optimization problem 4.22 as variables
has a practical advantage: the basis functions bµ can be summed together into a matrix
B (see Eq. 4.8) that is treated as a constant factor in the optimization problem. In
contrast, an additional optimization of the basis function parameters would require to
calculate the gradient along every basis function bµ resulting in a significantly higher
computational expense in the optimization process. An investigation of the computational
limits of an algorithm that optimizes also the basis function parameters is a possible future
work.
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4.4.3 Constrained two-body potentials

By using zero-centered Gaussians bµ(rij) = exp(− (rij−0)2

2σ2
µ

) as basis functions, the two-body
potential (Eq. 5.3) becomes:

ε2b(rij) =
Nbasis∑
µ

αµ exp(−(rij − 0)2

2σ2
µ

). (4.23)

A Gaussian is, then, defined only by its width σµ. One of the most fundamental re-
lationships that is typically incorporated into an interatomic potential, is a pairwise
interaction that consists of a repulsion behaviour ( ∂ε2b

∂rij
< 0) at small distances and an

attraction part (∂ε2b
∂rij

> 0) at larger distances. We found that the choice of zero-centered
Gaussians allows to assign specific roles to the different basis functions, i.e. ones with
relatively small widths are suited to model a (strong) repulsion, while the ones with
larger widths are proper to fit an attraction part. To control the roles of the basis
functions when using the CTP, we constrain the coefficients αµ of the Gaussians with
smaller widths to be positive and the ones that correspond to Gaussians with larger
widths to be negative, see Fig. 4.1. This is realized by squaring the outputs of the neural
network in Eq. 4.18 and multiplying them with a sµ = 1 or sµ = −1 depending on
the basis function. Eq. 4.18, then, becomes for the coefficients of the two-body poten-
tials:

αµ(Z) = sµ

Nneurons∑
h

W
(2)
µ,hφ

Nd∑
j

W
(1)
h,j dj(Z) + b

(1)
j

+ b(2)
µ

2

. (4.24)

Note that an alternative way to control the signs of the the coefficients αµ is
to apply ReLU activation functions to the original neural-network outputs instead
of squaring them. The ReLU activation function is given by f(x) = max(0, x).
When using ReLUs, we found that some coefficients αµ converged against zero dur-
ing the training process in our tests. Accordingly, we observed a missing repul-
sion in some AB pairwise potentials when coefficients defined to be positive became
zero.

4.5 The smooth overlap of atomic positions

In Chapter 5, we will compare the chemical-transferable potentials (Sec. 4.4) introduced
in this thesis to two state-of-the-art ML methods. The two methods are the extension of
the smooth overlap of atomic positions (SOAP) by an alchemical kernel (this section) and
the crystal graph convolutional neural networks (Sec. 4.6).
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Figure 4.1: Two-body potentials decomposed into contributions of their basis func-
tions. The potentials are obtained from a chemical-transferable-potential (CTP)
model trained on structures of 77 octet binary compounds, GaN not included.
The CTP was fitted within the leave-one-compound-out cross validation in Sec.
5.4.6. The three panels show three two-body potentials modeling the Ga-Ga, Ga-
N and N-N interaction. The black dashed line represents the two-body potential
ε2b(rij) =

∑Nbasis
µ αµ exp(− (rij−0)2

2σ2
µ

), i.e. the sum of basis-function contributions

αµ exp(− (rij−0)2

2σ2
µ

). Each basis-function contribution is shown by a solid line and rep-
resented in the legend by its Gaussian width σµ. The coefficients αµ of the Gaussians
with the two smallest widths 0.5 and 0.7 were constrained to be positive, the remaining
coefficients negative. We checked that with this choice, the energy-vs-distance curves
of dimers in the gas phase from elements of the 78 octet binary compounds could
accurately be fitted. The positive coefficients were able to describe the repulsive part
of the energy-vs-distance curves of the dimers.

The SOAP kernel [76]

k(Ui, Uj) =

 k̃(Ui, Uj)√
k̃(Ui, Ui)k(Uj , Uj)

ζ (4.25)

k̃(Ui, Uj) =
∫
dR

∣∣∣∣∣
∫
ρUi(r)ρUj (r)(Rr)dr

∣∣∣∣∣
2

(4.26)

measures the similarity (overlap) between the local atomic neighbour densi-
ties

ρUi(r) =
∑
k∈Ui

exp((rk − r)2

2σ2 ) (4.27)

of atom i and j, with their neighbourhoods Ui and Uj . The integration is performed
over all three-dimensional rotations R. Furthermore, ζ is a positive integer. Expand-
ing

ρUi(r) =
∑
nlm

cnlmgn(r)Ylm(r̂) (4.28)
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in terms of spherical harmonics Ylm and orthonormal basis functions gn(r) the (not normal-
ized) SOAP kernel becomes

k̃(Ui, Uj) = pi · pj =
∑
n1n2l

pi,n1n2lpj,n1n2l (4.29)

with the power spectrum

pn1n2l =
∑
m

cn1lm(cn2lm)†. (4.30)

4.5.1 The alchemical smooth overlap of atomic positions

One way to distinguish between different species types is to split the neighbor densities into
different parts

ραUi(r) =
∑
k∈Uαi

exp((rk − r)2

2σ2 ), (4.31)

where the index k runs only over atom types α, and extend the SOAP kernel (Sec. 4.5)
to:

k̃(Ui, Uj) =
∫
dR

∣∣∣∣∣∑
α

∫
ραUi(r)ραUj (r)(Rr)dr

∣∣∣∣∣
2

. (4.32)

By introducing, furthermore, an alchemical kernel καβ , also the similarity between atomic
species types can be taken into account [43]:

k̃(Ui, Uj) =
∫
dR

∣∣∣∣∣∑
αβ

καβ

∫
ραUi(r)ρβUj (r)(Rr)dr

∣∣∣∣∣
2

. (4.33)

Setting the alchemical kernel to the Kronecker-delta καβ = δαβ recovers the original ex-
pression Eq. 4.32. An explicit chemical dependence is realized, for example, by assigning
nonzero similarities to a pair of different species types, e.g. with a Gaussian kernel and
some quantity that represents the atomic species types such as the atomic number Z: καβ =
exp [−(Zα − Zβ)2/(2σ2)].

4.5.2 The smooth overlap of atomic positions for crystals

The SOAP kernel as defined in Eq. 4.26 or 4.33 measures the similarity between
atomic environments. In order to compare two structures, the SOAP kernel is evalu-
ated for all pairs of atoms from structure X1 and X2, resulting in a covariance ma-
trix:

Cij(X1, X2) = k̃(Ui, Uj) , i ∈ X1, j ∈ X2. (4.34)
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Following the framework of decomposing structural energies into sums of local contribu-
tions, a kernel for comparing structures can be written as an average of atomic pairwise
comparisons [43]

K̃(X1, X2) = 1
NANB

∑
i∈X1,j∈X2

k̃(Ui, Uj), (4.35)

if the target energy is averaged over the number of atoms in the structure. Using the kernel
4.35 to compare data points (structures), the target energy is fitted via kernel ridge regres-
sion (Sec. 2.2).

4.6 Crystal graph convolutional neural networks

In the crystal graph convolutional neural network [42] introduced by T. Xie
and J. C. Grossman the local energies are given by a linear transforma-
tion

εi = νiWl + bl (4.36)

of a vector νi, which represents both the species type and structural environment of
an atom. The representation is learned in the training process by a neural network as
described in the following.
First νi is initialized by a random vector ν(0)

i which is species-type specific [86]. Such a
random initialization of the atomic descriptor was implemented by Schütt et al. in another
deep-learning method applied to fitting PESs as well [84]. However, note that this choice
precludes transferability to compositions with unseen combinations of species types.
Following the work in Ref. [42], for the structural description of the neigh-
bourhood, only the twelve nearest neighbours are taken into account with vec-
tors

uij [µ] = exp(−(rij − rµ)2

σ2 ). (4.37)

In each iteration k, a concatenated vector

z
(k)
ij = ν

(k−1)
i ⊕ ν(k−1)

j ⊕ u(k−1)
ij (4.38)

is built and the representation according to

ν
(k)
i = ν

(k−1)
i +

∑
j

[
σ(z(k−1)

ij W
(k−1)
f + b(k−1)

f )� φ(z(k−1)
ij W (k−1)

s + b(k−1)
s )

]
(4.39)

transformed. � denotes element-wise multiplication, W and b are weights and bi-
ases, and σ denotes a sigmoid and φ a nonlinear (here unspecified) activation func-
tion.
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4.7 Comparison of the extrapolation of chemical information for
the chemical-transferable potentials, alchemical smooth
overlap of atomic positions, and crystal graph convolutional
neural networks

This section presents a short theoretical analysis of what chemical information is assumed
to be known by a model when predicting a compound not seen in the training set, i.e.
how chemical similarities between compounds are incorporated into the analytical forms
of the models. As an example we consider the energy of a GaN compound to be pre-
dicted.

One crucial property of the chemical-transferable potentials (CTP, Sec. 4.4) is the fact
that the total energy E of the GaN compound can be decomposed into addends indepen-
dent of each other that yield energy contributions of Ga-Ga (atoms of type Ga surrounded
by neighbours of type Ga), N-N, and Ga-N (a mixture of Ga and N atoms) interac-
tions:

E = EGa-Ga + EGa-N + EN-N. (4.40)

In case of a two- and three-body CTP, EGa-Ga = EGaGa + EGaGaGa depends on the
two- and three-body contribution EGaGa and EGaGaGa, respectively (see Sec. 4.3.1).
Besides the independence of the three terms in Eq. 4.40, a further consequence of
the CTP implementation is that for any compound that contains the specific atom
type Ga, e.g. GaP, GaAs, or Ga2P4, the determination of EGa-Ga is based on the
same chemical relationships in the model. More precisely, the two-body potential
ε2b(q2b, (ZGa, ZGa)) =

∑Nbasis
µ αµ(ZGa, ZGa)bµ(q2b), see Def. 4.4, is based on the same

regression coefficients αµ independent of what other species is present in the compound.
The same rule applies to the three-body potential ε3b(q3b, (ZGa, ZGa, ZGa)). Crucially,
if for example a GaN compound is not in the training set, the model assumes that it
already knows the Ga-Ga interaction of GaN if compounds like GaP or GaAs are included
in the training set. Moreover, if also compounds containing N atoms (BN, AlN, etc.) are
contained in the training set, the only unknown (chemically interpolated or extrapolated)
part is the interaction between Ga and N atoms. Accordingly, if neither compounds con-
sisting of Ga atoms nor ones with N atoms are included in the training set, the prediction
of all three interactions relies on the interpolation/extrapolation along the chemical space.
The fact that interactions are only species-tuple and not directly compound dependent
is a choice of implementation in this work. Its benefits or limitations are, however, not
clear and might be investigated in a future work. An example for a different choice
of implementation are, if considering again a GaN compound, coefficients αµ that are
assigned to Ga-Ga interactions however depend on chemical descriptors of both Ga and
N.
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4.7 Comparison of the extrapolation of chemical information for different
machine-learning models

The alchemical smooth overlap of atomic positions (ASOAP, Sec. 4.5.1) [43] captures
chemical information in a conceptually different way. The total energy of a structure
modeled by the ASOAP can be decomposed into atomic energies, which each again can be
decomposed into measured similarities between the atomic environments of the structure
and reference atomic environments in the training set. Considering again the case, that we
want to predict the energy of a GaN compound using a training set that contains GaP, one
term in the energy of the GaN compound will be given by a similarity measurement be-
tween the atomic environment UGa,GaN of a Ga atom in GaN and the environment UGa,GaP

of a Ga atom in GaP. For the sake of clarity, we will denote the environments of the two Ga
atoms by UGaN and UGaP. The ASOAP similarity (Eq. 4.33) of the two Ga atoms is given
by:

k̃(UGaN, UGaP) =
∫
dR

∣∣∣∣∣
∫
κGaGaρ

Ga
GaN(r)ρGa

GaP(r)(Rr)dr (4.41)

+
∫
κGaPρ

Ga
GaN(r)ρPGaP(r)(Rr)dr (4.42)

+
∫
κNGaρ

N
GaN(r)ρGa

GaP(r)(Rr)dr (4.43)

+
∫
κNPρ

N
GaN(r)ρPGaP(r)(Rr)dr

∣∣∣∣∣
2

. (4.44)

Note that the superscript α in the neighbour densities ραUi(r) =
∑
k∈Uαi

exp( (rk−r)2

2σ2 )
denotes the species type of the neighbours around the (central) Ga atom, e.g. the index k
runs only over neighbours of type α. Given that the pure Ga-Ga comparison in line 4.41
does not rely on an appropriate choice of the chemical kernel καβ (except that καβ = 1
for α = β), interactions between Ga atoms can be considered as known from the training
set. However, although the chemical kernel κGaGa = 1 assigns the maximal possible kernel
value to the Ga-Ga comparison and thus the maximum weight in the sum in the above
equation, its contribution to the total energy of the GaN compound might still play a
minor role among possibly a large number of terms that are based on the similarities
between the atomic environments in GaN and the ones in the training set. In contrast,
in case of the CTP the energy contribution of Ga-Ga interactions is one of three terms
(Eq. 4.40).
A further significant property of the implementation in the ASOAP is the fact that the
chemical similarity καβ does only compare the neighbours of two atomic environments but
not the central atoms themselves. This choice might be a consequence of the concept in
the non-alchemical smooth overlap of positions that compares only neighbourhoods with
each other. As a result, the ASOAP assigns two atoms of different species types the same
atomic energy εi if their neighbourhoods are the same. To which extent this choice is a lim-
itation in modeling the total energy

∑Natoms
i εi in a crystal could be investigated in the fu-

ture.

The crystal graph convolutional neural networks (CGCNN, Sec. 4.6) [42] as used in
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this work follows the concept of Ref. [84, 86] initilizing the chemical representation
of atom types by random vectors. The chemical information is learned based on
the training set using a neural network of multiple layers. While in Ref. [86] it was
shown that the random initialization of the atomic features did not (significantly)
affect the prediction error of formation energies compared to features based on phys-
ical properties of atoms, its limitation in the prediction across chemical composition
space is obvious: If neither compounds that consist of Ga nor ones with N are con-
tained in the training set, the prediction of the properties of a GaN compound is ran-
dom.
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5 Crystal-structure prediction on sparse data
sets: Towards reliable machine-learning
models with chemical-transferable
potentials

5.1 Introduction

First-principles based crystal-structure prediction is the identification of the (meta-)stable
crystal structures from (an approximation of) the Born-Oppenheimer potential-energy
surface (PES). The potential energy of a collection of atoms is given by the ground-state
solution of the electronic Schrödinger equation. The PES describes the potential energy in
dependence of the structural arrangement of the atoms and may display a large amount
of local minima, the mechanically stable structures. The ultimate goal is to find the global
minimum, i.e. the lowest-energy structure or ground-state phase. This task is demanding
because the global minimum can only be identified with certainty if all local minima are
identified which is typically unfeasible. While not ensuring to find the ground-state phase,
structure search algorithms [16–21] have shown to predict new structures that have later
been experimentally confirmed [23]. Nevertheless, these algorithms are still limited by
the computational cost of the underlying ab initio method that determines the PES and
the development of surrogate machine-learning (ML) potentials is considered a promising
route to accelerate crystal-structure prediction.
The task of predicting the atomization-, formation-, or cohesive energy from the ge-
ometry of a material using artificial intelligence has attracted attention during the last
decade with a considerable amount of introduced models with accuracies as low as a
few meV/atom [42, 72, 73, 84, 88]. However, only some studies [28–31, 39] considered a
validation of the models with respect to requirements needed to predict a (meta-)stable
crystal structure with a structure-search algorithm that is based on sampling the PES
and minimizing the potential energy. Let us first consider one requirement: In a T = 0 K
approach, the crystal structure has to appear as a minimum (or at least as a saddle
point) on the PES. In fact, while we may allow a tolerance for the accuracy on predicting
energies of structures, missing a minimum in the right region of the structure space might
lead to complete failure of identifying a phase in a crystal-structure search. Fulfilling
the mentioned aspect with a ML model is not trivial. Moreover, the validation if it is
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Figure 5.1: The energy as a function of the volume is shown for GaN in the ZB phase
predicted by different ML models. The presented curves are given by predictions of a
crystal graph convolutional neural network (CGCNN) fitted to two different subsets
of the materials project (MP) database and to the octet binaries (OB) data set. The
data sets MP1 and MP2 consist of 46 744 and 46 747 data points, respectively, differing
by three data points: MP1 contains only one GaN compound (in the ZB phase), MP2
consist of further three GaN compounds in other phases. The OB and MP data point(s)
represent the respective training data of GaN in the ZB phase. The OB data points
and the DFT curve (black dashed line) are obtained from calculations within the LDA
while the MP energies are based on the PBE functional. The respective energies are
given in relative values to the energy of the reference DFT level at the ZB equilibrium.
Note that the LDA- and PBE-equilibrium volume differ by 0.6 Å3/atom.

fulfilled is not necessarily obvious from the analysis of those kind of errors that have
typically been used to develop and benchmark ML models for the prediction of the energy
from the geometry of a structure: (averaged) errors on predicted energies of a set of
given structures [42, 72, 73, 78–81, 84, 88–90]. Crucially, if the analysis stays limited to the
evaluation of errors on such selected data points, the quality of the predicted PES outside
the data regions or between the given data points (e.g. DFT minima) stays unknown and
the ability to perform a successful structure search based on sampling the PES uncertain.

Let us consider an example with a crystal graph convolutional neural network (CGCNN)
[42, 86], a state-of-the-art ML model for predicting energies of materials. The model is
based on a multi-layer neural network that maps the atomic species types and bond
distances in the crystal onto its energy (see theory in Sec. 4.6). We have fitted a CGCNN
to the formation energies of the Materials Project (MP) database1 [9]. The total data that
we considered consists of 46 744 relaxed structures (local minima on the PES) covering
87 elements, 7 lattice systems, 216 space groups, and primitive unit cells ranging from
1 to 200 atoms. Splitting the data into 60% training, 20% validation, and 20% test set,

1For the model hyperparameters, we used the ones of a pretrained example model published together
with the respecitve code [91] by T. Xie and J. Grossman who introduced the CGCNN in Ref. [42, 86].
Note that the MP database is continually updating. To allow a comparison to the model performances
of Ref. [42,86], we used the same subset [91] of the database as in Ref. [42], i.e. 46 744 structures, in a
first step.
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the CGCNN achieved a mean absolute error of 35 meV/atom for predicting formation
energies on the test set (comparible with 39 meV/atom of the original work [42]). Such
level of accuracy can be considered as excellent for predicting energies of structures
from a large and heterogeneous materials-database. It would be of great value if the
model could be used for crystal-structure prediction using a structure search algorithm.
However, the found low mean absolute prediction error does not reveal if the model is
capable of identifying the structures as local minima on the predicted PES. We analyzed
predicted energy-volume curves of 78 octet binary compounds for four cubic phases, i.e.
zinc-blende (ZB), rock-salt (RS), CsCl, and NaTl prototype. We observed that 21 out of
312 curves did not exhibit a minimum in the inspected range of volumes. Let us focus
on one example: GaN in the ZB phase. Fig. 5.1 shows that no minimum appears over a
wide volume range of ZB structures in the predicted PES, see the curve “CGCNN MP1”.
Accordingly, in a structure-search, the ZB phase of GaN would not be found, at least not
in a volume similar to the one of the reference ZB crystal of GaN (grey marker, “MP data
point”). Still, the model predicts the formation energy of the reference GaN-ZB structure
with an error of only 61 meV/atom. In other words: Despite an accurate prediction of
the formation energy of a selected data point, the predicted PES around the data point
can be unphysical. Note that the GaN-ZB structure (at the ZB equilibrium) of the MP
database was included in the training set. Moreover, no other GaN structure was present
in the data but 89 other binary compounds in the ZB phase.
One origin of the failure in predicting a physical energy-volume shape might be the fact
that the training data does not reveal information about the shape of the PES both
in regions that are near the relaxed ZB structure (e.g. the same phase) and ones that
are far from it (e.g. other phases). By adding three further GaN structures, in the RS
and wurtzite prototype structure and a hexagonal layered structure, to the training set2,
a minimum appears in the ZB constrained energy-volume curve in Fig. 5.1 (“CGCNN
MP2”). However, the minimum is found at a volume of 8.7 Å3/atom, while at a volume
of 10.6 Å3/atom the curve yields a saddle point. In comparison, the reference equilibrium
volume (grey marker) is given by 11.7 Å3/atom. We have trained a further CGCNN model
replacing the Materials Project database by a training data set of 78 octet binaries (OB)
each in eight different polymorphs with a total number of 4 840 data points [63], including
GaN in the ZB phase, with data points close around the equilibria. We found that training
a new CGCNN on the OB data set gives an improved prediction of the ZB energy-volume
dependence of GaN close around the reference minimum. Still, the PES at small volumes
(V < 8 Å3/atom) completely misses the repulsive behaviour ( ∂E∂V < 0), but rather predicts
a completely unphysical minimum at 4.8 Å3/atom, which lies 0.074 eV/atom lower than
the correctly predicted minimum at 10.8 Å3/atom. The additional unphysical minimum
is a typical characteristics of PESs predicted by ML models currently in the literature.
We will call this characteristics in this work an artefact outside of the training region of
a model.

2The three structures are also taken from the Materials Project database but were not included in the
first data subset, i.e the one of Ref. [42].
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If some preknowledge about the compound exists, one might define beforehand the volume
range in which GaN forms its crystals, and remove the artefact from the crystal-structure
search. In fact, we will present a scheme in this work to estimate the realistic ranges of
a compound. The range presented in Fig. 5.1 is the result of our estimator. However,
the presence of unphysical minima with low energies on the predicted PES hints at a
further potential risk of applying ML models to a crystal-structure search, a problem
that we have not discussed yet. The fact that minima on the DFT PES appear also as
minima on the ML PES is not a sufficient condition for the correct prediction of the
ground-state phase. For instance, if an artefact minimum is (significantly) lower than all
other minima on the predicted PES, the identification of the DFT ground-state phase as
the most-stable phase on the ML PES has failed. Basically, the tendency of ML models
to predict artefacts with possibly low energies and the resulting failure in predicting the
DFT ground-state phase as the most stable structure is a central observation of this work.
This tendency as well as the demonstrated failure of identifying the ZB phase of GaN
highlights the need for examinations of ML models that go beyond the typical energy
errors on predefined sets of structures to reveal the reliability of the ML approaches for
an application in crystal-structure search3. This chapter puts a focus on understanding
when ML models (those ones that map the geometry to the potential energy) fail in a
structure-search scenario. In particular, it considers the challenging task of constructing
robust models from sparse training data sets. This task is complementary to improving
ML methodologies by using error estimates and dynamic data-construction or active
learning techniques [28,39,93].
Recent publications by the group of G. Csanyi have critically examined Gaussian-
Approximation-Potential-based ML models [32] for sampling the PES in order to predict
(meta-)stable crystal structures [27, 29–31, 39]. The potentials were fitted to large data
sets that, in contrast to the CGCNN applications above, included only a single species
type, i.e. C, Si, B , P, or Ti. The models are based on a hierarchical combination of n-body
potentials (explicitly in the additive form as introduced in Def. 4.3). Most of the physics is
described by a two-body, a smaller amount by a three-body, and the rest by a many-body
potential4. A model dominated by an appropriate two-body term might predict the repul-
sion at small volumes, which was missed by the CGCNN models trained by us, and reduce
the risk of artefacts, at least at small volumes. The inclusion of a two-body potential (char-
acterized by a strong repulsion) into the model is, in some sense, a step towards defining

3At this point, we would like to note that we do not expect that the missing minimum or repulsive behavior
on the predicted PESs of the CGCNN models is specific to the CGCNN but rather to ML models, in
general, if they are trained on the data sets introduced above. In principle, as our tests indicate, the
shape of the PES is strongly influenced by the choice of the data set and not only dependent on
the type of the ML model. However, the appearance of multiple minima within a single cubic phase
is a typical feature of the CGCNN PESs (at least at the chosen hyperparameters, see for example
Fig. F.6 in Appendix) that we have observed in the cubic phases of the octet binaries indicating that
the PES also outside of the cubic-symmetry-constrained regions is unphysical. More significantly, the
CGCNN is unphysically rough in the PES and, therefore, not applicable to a gradient (forces) based
crystal-structure search (more discussion on that will follow in this chapter).

4An exception is the work in Ref. [29] which used only a two- and a many-body term.
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physically motivated constraints. However, due to the fact that current n-body poten-
tials (as in Def. 4.3) depend only parametrically on the species types in a compositions,
a large amount of new quantum-mechanical calculations is required for new composi-
tions that include species tuples that were not, or only sparsely, contained in the training
set.

In this chapter, we introduce a novel scheme to transfer explicit n-body potentials across
the chemical composition space using a neural-network based approach. We call these mod-
els chemical-transferable potentials (CTP). We investigate them for two- and three-body
terms on the OB data, which consist of 4 840 data points with 78 compounds in eight differ-
ent polymorphs. Including two further state-of-the-art ML methods, the alchemical smooth
overlap of atomic positions (ASOAP) [43, 67] and CGCNN, that are capable of modeling
across both structure and chemical composition space, we explore to which extent the PES
of a composition not seen in the training set can be reproduced. This task has, to the best
of our knowledge, not been investigated yet. We highlight the risk of model artefacts and
analyze the reliability of the models specifically for a structure search, going beyond single-
point energy predictions: we perform symmetry-constrained crystal-structure searches (at
least for the cubic phases) and an unbiased global structure search. In particular, we
investigate to which extent models that are built on sparse training data are able to pre-
dict the PES of a composition with an accuracy that allows to identify the ground-state
phase in a crystal-structure search. In contrast to the typical demand of ML potentials
to have an accuracy of a few meV (on dense data), we aim at coarse predictions that,
however, allow to identify the most stable structure. Our goal is a ML-based framework,
that predicts a set of promising phases. The set consists of the predicted lowest-energy
phase plus phases whose energy difference to the lowest phase is below a tolerance of 0.1
eV/atom. In the second step, all promising phases are tested with DFT calculations. Such
a framework could greatly reduce the number of DFT calculations in a crystal-structure
search.

In Sec. 5.2, we present a short summary of the theoretical framework behind the CTP.
Before critically and extensively analyzing the chemical-transfer approach in Sec. 5.4,
we validate the structural parts of the CTP, i.e. two- and three-body potentials, on a
few selected key materials science problems that depend on compounds containing only
a single tuple of atomic species, e.g. a single chemical formula, in Sec. 5.3. We, then,
show how the chemical-transfer approach stabilizes the potentials that are specific to
a single chemical formula (Sec. 5.4.5). Sec. 5.4.6 presents tests that evaluate to which
extent specific regions of the PES of a composition that was not seen in the training
set can be predicted reliably for a (constrained) crystal-structure search, for any of the
78 octet binary compounds, i.e. in a cross validation where every compound is once
left out from the training set. In this test, also the CGCNN and ASOAP are included.
In Sec. 5.4.7, we demonstrate and analyze a global crystal-structure search performing
a random-structure search [21, 92] for GaN with CTP, CGCNN, and ASOAP models
trained on all octet binary compounds of the OB data set but GaN. As as comparison, we
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perform the random-structure search also with DFT. Furthermore, we introduce a novel
idea on extracting an interpretable materials descriptor to detect for which materials the
ML models failed in predicting the ground-state phase (Sec. 5.4.8). This idea presents
a potential scheme to estimate the domain of applicability of the ML models in the
chemical composition space, on the one hand. On the other hand, it opens up the route
to understand which conceptual feature the ML models miss such that they can be im-
proved.

5.2 Theoretical framework

This section presents a short summary of the theoretical framework behind the CTP.
More details can be found in Chapter 4.
We consider interatomic potentials with the two fundamental properties that the poten-
tial energy E is written in a sum of atomic contributions εi and that only interactions
between atoms whose distance rij is below a certain cutoff rcut are taken into ac-
count:

E =
Natoms∑

i

εi({rij}rij<rcut). (5.1)

We decompose the interaction orders within the so-called many-body expansion that ex-
presses the local energies εi formally through

εi = ε1b +
∑
j

ε2b(qij) +
∑
j,k

ε3b(qijk), (5.2)

if truncated at third order, and use qij = rij and qijk = (rij , rik, rjk) as a
two- and three-body descriptor, respectively. The specification of appropriate func-
tional forms for the n-body contributions εnb is a crucial step in the potential
design. One choice is given by a basis set expansion with linear regression coeffi-
cients αµ and basis functions like polynomials or, as used in this work, Gaussians
[32]:

εnb(q) =
Nbasis∑
µ

αµ exp(−(q − rµ)2

2σ2
µ

). (5.3)

The Gaussian centers rµ and widths σµ are hyperparameters. They should be chosen
such that the Gaussians overlap sufficiently and fill the descriptor space. However, their
number is a factor of computational expense and we will, furthermore, show in Sec. 5.5
that their choice is not trivial. In a multi-species system, we model every species-tuple
interaction with a different function εnb(q) (more details in Sec. 4.3.1) where the terms
are distinguished only by the different regression coefficients αµ. Then, the potentials
εnb(q, {Z}) depend explicitly on the structural environment and parametrically on the
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species tuples. Here, we represent the species tuples by the vector of the corresponding
atomic numbers Z, i.e. Z = (Zi, Zj) or Z = (Zi, Zj , Zk) depending on the order of the
potential, and the parametrical dependence is highlighted by the brackets {}. The poten-
tials become chemically transferable if the atomic numbers enter the potentials explicitly
as variables realized by transforming the coefficients to functions of the atomic num-
bers:

εnb(q,Z) =
Nbasis∑
µ

αµ(Z) exp(−(q − rµ)2

2σ2
µ

). (5.4)

We introduce a chemical descriptor d(Z) of the species types based on
atomic information such as atomic number, group and row in the periodic ta-
ble, ionization potential, electron affinity and orbital based radii, and map
the descriptor via a neural network with one hidden layer onto the coeffi-
cients:

αµ(Z) =
Nneurons∑

h

W
(2)
µ,hφ

Nd∑
j

W
(1)
h,j dj(Z) + b

(1)
j

+ b(2)
µ (5.5)

Note that symmetries with respect to exchanging atoms need to be incorporated into
the descriptor (see. Eq. 4.15 - 4.17). Furthermore, in case of the two-body potential we
constrain the signs of the coefficients as described in Sec. 4.4.3. The weights of the neural
network are trained using backpropagation and stochastic gradient descent (see Sec. 4.4.2).
We provide our implementation of the CTP on GitHub [94].

5.3 Validation of the potential form for fixed compositions

The local-energy approximation (Eq. 5.1) bears a limit on the accuracy of the poten-
tial [32], the three-body descriptor in Eq. 5.2 does not ensure a unique description of the
structural environment [75], and the set of basis functions in Eq. 5.3 do not span the
complete function space. Therefore, the choice of constraints put on the potentials need
to be validated for the systems to be investigated. Before applying the chemical-transfer
approach, we have tested the described potential forms above for three applications: a)
the prediction of two key properties, e.g. band gap and formation energies, relevant for
optoelectronic applications considering (AlxGayInz)2O3 compounds, b) the description of
silicon in nine phases including an analysis if a phase not seen in the training set can be
predicted correctly, and c) the prediction of the transition temperature of ZrO2 between
two phases, a quantitiy that can involve millions of calculations.
Note that the total number of regression coefficients and therefore the complexity of the
model increases with the number of species types in the system (see Sec. 4.3.1)5. We

5Nevertheless, it is not clear to which extent also the complexity of the PES to be described increases
with the number of species. An investigation if, for example, a three-body potential can describe most
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Ranking Model type Band gap energy Formation energy
RMSLE MAE [meV] RMSLE MAE [meV/cation]

1st n-gram+KRR 0.077 114 0.021 15
2nd c/BOP+LGBM 0.081 93 0.022 15
3rd SOAP+NN 0.081 98 0.021 13

This work 0.079 104 0.021 13

Table 5.1: Prediction errors of the three winning models in the NOMAD 2018 Kaggle
competition and the potential of this work. Shown are the root mean square log error
(RMSLE) and mean absolute error.

follow the route of varying hyperparameters (cutoff, and number, widths and centers
of the Gaussians) with the data to be described targeting the most simple expression
the investigated system allows. The selected hyperparameters are listed in App. D.
Note that when modeling the thermodynamics ZrO2 the implemention of the QUIP
package [69] was used while the rest of the work was performed with our own implementa-
tion6.

5.3.1 The NOMAD 2018 Kaggle competition

The NOMAD 2018 Kaggle competition [72] introduced a data-analytics challenge aiming
to find the best ML method that can predict the band gap and formation energies of
(AlxGayInz)2O3 compounds. Among the 883 submitted models, the winner was based on
a crystal-graph representation called n-grams not used in materials science before. The
data set consist of 2 400 training and 600 test points with structures from six different
crystal space groups and unit cells ranging from 10 to 80 atoms.
We found that a potential with a basis set of Gaussians all centered at zero (rµ = 0) in
both the two-body and three-body part achieved an accuracy similar to the ones of the top
models. In fact, in the challenge, it would have ranked second with a root-mean-square-log
error (RMSLE) of 0.079 on the band gap and 0.021 on the formation energies, right
behind the n-gram model with 0.077 and 0.021 (Tab. 5.1). Note that while the mean
absolute error (MAE) is reported in Tab. 5.1, only the average of the RMSLE determined
the ranking metric7. Furthermore, note that extending our two- and three-body potential
to the prediction of quantities beyond the potential energy (e.g. band gap energy) is
technically straightforward as long as to every structural input a scalar output is assigned.

of the solid phases of a ternary while being insufficient for an elemental is to our best knowledge missing
in the literature.

6Note that after the symmetrization, QUIP implements a normalization of the three-body terms, which
modifies Eq. 5.2.

7The purpose of using the RMSLE as a metric was to enable the comparison between two quantities with
different ranges of values.
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Figure 5.2: Energy-volume curves for nine phases of silicon. The solid lines repre-
sent the reference DFT energies calculated in Ref. [29] by A. P. Bartok et al. using
the PW91 exchange-correlation functional [102]. The dashed lines represent the pre-
dictions of our ML potential. The curves are obtained by varying the volume and
performing at each volume a constant-volume and fixed-crystal-symmetry relaxation.
a) shows the predictions of a potential fitted to data of all nine phases. In b) each
phase was once left out from the training set and predicted from a potential trained on
the remaining phases. Furthermore, the prediction of a second hcp phase (hcp’) was
added using a potential trained on the initial nine phases. In c1) - c4) the nine phases
are divided, based on volume and energy similarity, into four groups: (diamond, hex.
dia.), (bc8, st12), (β-Sn, sh), and (hcp, bcc, fcc). Each group is once left out into a
test set and predicted by a potential trained on the remaining phases. The predicted
values for the cohesive energy, volume, bulk modulus, derivative of the bulk modulus,
and the diamond-to-β-Sn transition pressure are listed in Tab. E.2 - E.4.

5.3.2 Phases of silicon

The history of analytical interatomic potentials is probably most shaped by the descrip-
tion of silicon [64, 95–100]. One basic benchmark for a newly developed potential has
often been the performance of predicting the different bulk phases of silicon. We have
fitted a ML potential to the energies, forces, and virials of 1 451 structures from nine
different bulk phases including low-energy and high-pressure phases. The data was taken
from Ref. [29]. The structure types cover the diamond, hexagonal diamond (hex. dia.),
β-Sn, simple hexagonal (sh), bc8, st12, hexagonal close packed (hcp), body-centered cubic
(bcc), and face-centered cubic (fcc) phase. For each phase, an energy-volume curve is
calculated by varying the volume and performing at each volume a constant-volume and
fixed-crystal-symmetry relaxation.
Our potential was able to predict the equilibrium energies and volumes of the nine phases
with a MAE of 2 meV/atom and 0.1 Å3/atom, respectively (Fig. 5.2 a)). In contrast,
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Figure 5.3: The two leading principal components of the structural descriptors used
to fit 1 451 silicon structures in nine phases. Further twelve structures in the second
hcp phase are added. The big edged markers represent the equilibrium structures. For
more information about the principal component analysis, including a figure with the
three leading principal components, see App. E.1.1.

many other non-ML models, e.g. well-known empirical analytical potentials including
ReaxFF [100, 101], the Stillinger-Weber potential [64], or the modified embedded atom
method [98,99], were not able to predict the two equilibrium properties of some phases at
that accuracy, when performing the same test, see Ref. [29].
To analyze to which extent the accuracy of the ML potential in predicting the energy-
volume curve of a phase is influenced if that phase is excluded from the training set, we
have performed a leave-one-phase-out cross validation: each phase is once left out into a
test set and its energy-volume curve is predicted by a potential fitted to the remaining
phases. In addition, also the prediction of a second phase in the hcp crystal symmetry
not in the initial data set was included into the test. The second hcp phase (hcp’) is
distinguished from the first one by its smaller lattice parameter ratio c/a. The potentials
achieved a MAE of 45 meV/atom and 0.4 Å3/atom for equilibirium energies and volumes,
see Fig. 5.2 b). In contrast to the reference ML potential in Ref. [29], a two-body- and
SOAP-based Gaussian approximation potential (GAP), which did not include informa-
tion about the hcp’ phase either, our potential was not able to predict the equilibrium
energy and volume of the hcp’ phase at the same accuracy, i.e. the errors on predicting
the equilibrium energy are 1 meV/atom and 74 meV/atom for the reference and our
model, respectively. Note that the GAP was fitted to a larger database that contains also
amorphous bulks, liquids, as well as point, line, and plane defects. We found that if the
GAP (using the same potential parameters) is retrained on the same data set as used in
this work, i.e. nine bulk phases, the error for predicting the equilibrium energy of the hcp’
phase is 121 meV/atom.
The leave-one-phase-out cross validation demonstrates that not seen phases could be
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predicted with relatively high accuracy, e.g. the maximum error is 89 meV/atom (for
st12) and the energetical ranking was only within the three highest phases hcp, bcc, and
fcc wrongly reproduced when one of them was left out of the training set. The prediction
of a left out phase at that accuracy was possible because its structural environments
are similar to the ones in the training data. A structural descriptor map reveals that
each of the nine phases in the initial data set (without the hcp’ phase) is similar to at
least one other phase in the data set, see Fig. 5.3. For instance, phases that are similar
in the energy-volume plots (Fig. 5.2) are also clustered together in the descriptor space
(Fig. 5.3). For more information about the distribution of the phases in the structural
descriptor space or a figure with the three leading principal components, see App. E.1.1.
In order to investigate if a phase can also be predicted from phases that are less simi-
lar to it, we have grouped the nine phases according to their similarity and performed
a leave-one-group-out cross validation. The groups are given by: (diamond, hexagonal
diamond), (bc8, st12), (β-Sn, sh), and (hcp, bcc, fcc). Due to its relatively isolated
location in Fig. 5.3, we consider the hcp’ phase as a separate group which was already
predicted in the test before. The leave-one-group-out cross validation yields a MAE of
78 meV/atom and 1.1 Å3/atom for equilibrium energies and volumes, see Fig. 5.2 c1)
- c4). While the errors have approximately doubled when comparing to the leave-one-
phase-out test, the energetical ranking is still roughly kept for the groups. For instance,
in a ground state structure search the diamond phase would have been identified cor-
rectly or phases and higher energy (hcp, bcc, fcc) would have been identified as less stable
ones.

However, the increase of the errors when removing phases out of the training set that are
similar to the ones in the test set (i.e. going from test b) to c)) highlights the requirement
for a reliable technique to estimate similarities of data points. A reliable error-estimator
is a key component of an active-learning framework that explores the descriptor space to
adapt the domain of applicability of the model to regions in the structure space relevant
for the targeted application. The development of such a technique is, nevertheless, a
challenge: diamond and hexagonal diamond are predicted to have a much higher volume
and energy difference than DFT reveals (97 meV/atom vs. 12 meV/atom for the energy
difference) although being located approximately on the same spot in the structure map.
For instance, the structural environments of the two phases differ only by a few neighbour
atoms (Fig. E.2). More information about the comparison between diamond and hexago-
nal diamond can be found in App. E.1.2.
In App. E.1.3, we have performed the tests described in Fig. 5.2 for the GAP of Ref. [29]
and tabulated the errors including the ones of our potential, i.e. we have retrained the
GAP on the data sets of our tests using the reference GAP parameters. Despite compara-
ble accuracy, e.g. 78 meV/atom for our potential vs 85 meV/atom for GAP in predicting
equilibrium energies in test c), the predictions exhibit qualitative differences: the reference
potential is able to better recognize similar structures as similar, e.g. the MAE for the
energy differences within the groups in test c) is 12 meV/atom for GAP and 78 meV/atom
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for the potential of this work8. Nevertheless, in test b) GAP mispredicts the volume
of diamond by 1.8 Å3/atom although containing information of the similar hexagonal
diamond phase.
The reasons behind the deviations of the predictions for similar phases is not clear. In
general, (extensive) studies that investigate to which extent ML potentials can predict
phases not seen in the training set are currently missing. A work that evaluates different
ML methods on different compounds/data sets and yields insights into the influence of
the mathematical terms on limitations in the prediction performances is urgently required
to develop reliable ML potentials for the exploration of the structure space.
Note that in our tests, we have focused on target quantities that are re-
lated to crystal-structure prediction at T = 0 K. The reliability of the mod-
els for predicting other materials properties like thermodynamic quantities within
these leave-some-materials out tests needs to be investigated in future studies as
well.

5.3.3 Thermodynamics of ZrO2

The computational cost of methods based on DFT is a limiting factor for the predic-
tion of quantities that are based on the evaluation of thermodynamic averages. In this
section, we overcome this limitation by building a ML potential from a small number
of DFT calculations performed with a hybrid exchange-correlation functional. In partic-
ular, we demonstrate how the monoclinic-tetragonal transition temperature of zirconia
can be obtained from thermodynamic integration by performing millions of energy and
force evaluations with the ML potential. Moreover, we show that the ML potential
is able to reproduce the ferroelastic switching in zirconia recently predicted with DFT
[103].

To determine the Helmholtz free energy FML with our ML potential at a certain temper-
ature and phase, we evaluate the free-energy difference to a reference system of which the
free energy can be calculated (analytically), i.e. the harmonic potential FH, using thermo-
dynamic integration [105]:

FML − FH =
∫ 1

0
< UML − UH >λ dλ. (5.6)

The ensemble average < · >λ is built on configurations sampled using the hybrid poten-
tial Uλ = λUML + (1 − λ)UH at a specified λ. The change of the free energy of a system
with the temperature is obtained from an integration along the inverse temperature using
[105]

∂(βFML)
∂β

=< HML >, (5.7)

8In case of the group with three phases the energy difference is built with respect to the lowest energy
phase determined by DFT.
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Figure 5.4: Predicted free energy difference F t − Fm between the tetragonal and
the monoclinic phase in dependence of the temperature T is shown. The blue marker
represents the predicted transition temperature.

where HML represents the ML Hamiltonian and β = 1
kBT

is given by the Boltzmann
constant kB and the temperature T . The intersection between the free energies of the
tetragonal and monoclinic phase, F tML(T )− FmML(T ) = 0, yields the transitions tempera-
ture.

The data set covers 24 000 structures in three phases: monoclinic, tetragonal, and cubic
(see Fig. E.4 in appendix). The configurations are outcomes of molecular-dynamics sim-
ulations in a 96-atoms supercell at different temperatures (Fig. E.4) using the PBEsol
functional, light settings, default tier with additional f functions on the oxygen, NVT
molecular dynamics with stochastic velocity rescaling [108] and 2-fs time steps, as imple-
mented in the FHI-aims code [109]. The trajectories in the cubic and tetragonal phase
were calculated in Ref. [103, 110] and downloaded from the NOMAD Repository. The
simulations in the monoclinic phase were performed in this work.
The data set for training the ML potentials consists of 350 data points where 200 were
randomly selected from the molecular-dynamics trajectories and 150 data points were
taken from the cubic-tetragonal PES (Fig. 5.5c). The cubic-tetragonal PES was sampled
both once with fixed unit cell and once with optimized lattice vectors, as in Ref. [103].
The 350 training data points were recalculated with the HSE06 functional. We have fitted
two ML potentials, one to the PBEsol energies and forces, the other one to HSE06 values.
As we used the implementation of Gaussian Approximation Potentials (GAP) [32] in the
QUIP package [69], we will term the two potentials GAP(PBEsol) and GAP(HSE06).
GAP(PBEsol) was only used for validation on the remaining 23 800 configurations from the
molecular-dynamics trajectories that were not included in the training set. All molecular-
dynamics simulations performed with GAP(HSE06) were carried out using 96-atoms super-
cells, 2-fs time steps, and the Langevin thermostat as implemented in the QUIP package.

The GAP(PBEsol) predicted the 23 800 PBEsol energies with a mean absolute error
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Figure 5.5: Simulation of the ferroelastic switching of ZrO2 in the tetragonal phase.
Molecular-dynamics simulations at constant volume and temperature were performed
for a 96-atoms supercell in the tetragonal phase deformed along the z-axis (a). Accord-
ingly the dominance of oxygen displacements in z-direction (b) is observed originated
in the unsymmetric cubic-tetragonal potential-energy surface (c). The displacements
are given in relative coordinates of the (orthogonal) lattice vectors and averaged over
the crystal.
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(MAE) of 2 meV/atom. However, the accuracy depends linearly on the simulation tem-
perature (disorder of the structure). The MAEs on structures from simulations run at
300 K, 1 500 K and 2 400 K are 1 meV/atom, 3 meV/atom, and 5 meV/atom for ener-
gies and 0.11 eV/Å, 0.27 eV/Å, and 0.37 eV/Å for forces (Fig. E.5b in appendix). The
monoclinic-tetragonal energy difference (for relaxed structures) of 26 meV/atoms for
GAP(HSE06) is in good agreement with the DFT one of 25 meV/atom.
Using GAP(HSE06), thermodynamic integrations (Eq. 5.6) at 1 000 K were performed
to calculate the free energies for the monoclinic and tetragonal phase. By integrating
along the inverse temperature (Eq. 5.7), the free energy difference in dependence of
the temperature was predicted, as shown in Fig. 5.4. For both phases, the volume was
kept fixed at the T = 0 K equilibrium. The transition temperature is found at 1 537 K
which is in good agreement with the experimental values at 1 480 K - 1 550 K [111, 112].
More details about the presented scheme to predict the monoclinic-tetragonal transition
temperature are in App. E.2.1.
GAP(HSE06) was, furthermore, able to reproduce the spontaneous realignment of oxygen
atoms in the tetragonal phase (Fig. 5.5), which was predicted in Ref. [103] using DFT.
In a molecular-dynamics simulation over 400 ps with fixed tetragonal lattice, switching
frequencies of 5 ns−1, 55 ns−1, and 155 ns−1 for 1 100 K, 1 500 K, and 1 900 K were
observed. The avarage time (standard deviation) the oxygens stay in a valley is 172 ps
(71 ps), 18 ps (16 ps), and 7 ps (5 ps), respectively. Accordingly, at high temperature the
outcome of the time avarage over the displacements are oxygen atoms centered between
the domains the oxygen atoms align, (dx = dy = dz = 0), which becomes after a unit cell
optimization the cubic phase measured stable above 2 650 K [113]. At this point we note
that we performed 3 000 000 calculations with the ML potential and the speed up with re-
spect to calculations at hybrid-DFT level is given by a factor of 40 000 for the 96-atoms unit
cell.

More intensive tests and the extension of the approach to doped zirconia could help
to gain insights into the mechanisms that drive the stabilization and toughening in
the tetragonal phase, important for the development of advanced thermal barrier coat-
ings.

5.4 Prediction across chemical composition space

While the development of purley structural descriptors and models has become a major
topic in data-driven materials research, only some studies involve a combination with
chemical representations [42, 43, 78, 84]. In 2016, an approach to extend the smooth
overlap of atomic positions (SOAP) descriptor by an alchemical kernel (ASOAP) was
introduced [43]. The SOAP is maybe the most widley applied many-body descriptor for
ML potentials [27, 29, 30, 39, 72, 73, 76, 81, 88, 114]. A conceptually different approach de-
signed to describe several materials properties is given by the crystal graph convolutional
neural network (CGCNN) [42], a deep-learning based method demonstrated to predict
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the formation energies of large and heterogeneous data sets with an impressive accuracy.
Including the ASOAP and the CGCNN into the tests, we investigate to which extent the
prediction of the potential-energy surface (PES) of a compound not seen in the training
set is possible. To our knowledge, this is a tasks that has not been investigated yet.
Moreover, studies examining those kind of models that can predict across both structure
and chemical composition space have hitherto only considered errors on predicted energies
of a set of provided or known structures. Accordingly, the quality of the predicted PES
outside of the considered data regions or between the given data points (e.g. DFT minima)
remains unknown. Therefore, the ability to identify stable structures via sampling the PES
of the models is uncertain, as highlighted in the introduction of this chapter (Sec. 5.1).
We go a significant step beyond the examinations of other studies that considered models
capable of predicting across both structure and chemical composition space: we analyze
the shapes of the predicted PES (at least for cubic phases) and their potentially negative
influence on the success of identifying the ground-state phase of a compound correctly.
Moreover, we demonstrate a crystal-structure search for GaN performed with models
(CTP, ASOAP, CGCNN) trained on 77 octet binary compounds, GaN not included. GaN
is not special, but rather a showcase example to analyze the performance of the ML mod-
els.

5.4.1 Data set

The prediction across the chemical composition space is investigated on the OB data set.
The data set was created within the studies of Ref. [63]. It consists of 4 840 structures and
corresponding DFT cohesive energies with 78 octet binary compounds in eight different
crystal-structure prototypes: zinc-blende (ZB), rock-salt (RS), CsCl, NaTl, NiAs, CoSn,
NbP, CrB. The data is charactarized by eight-point energy-volume curves, as shown in
the central panel of Fig. 5.6. An exception is the CrB phase where only one data point
per compound is given. For 56 compounds, there are two energy-volume curves present in
the CoSn phase, each with exchanged occupation of the sites in the crystal by the atomic
species types (AB and BA). In all our tests we will consider CoSn(AB) and CoSn(BA) as
two different phases. The data was calculated using the local-spin-density approximation
and downloaded from the NOMAD Repository [6]. Further details about the data set,
including the reason for the varying number of data points of the phases, can be found in
App. C.
In the case of the cubic phases, we have used Birch-Murnaghan fits to extrapolate
the enery-volume curves to a wider volume range9. The distribution of energy dif-
ferences is shown in Fig. 5.6, left. The relative energies are built for each compound

9The lattice-parameter interval was increased from 5% to 15% of the equilibrium parameter. The con-
vergence tests in Ref. [63] show that the change of the equilibrium energy obtained from the Birch-
Murnaghan fits when varying the interval between 1% and 15% is below 1 meV/atom. The reason
behind expanding the range is to let the ML models learn better the repulsion and attraction over a
wider interval of distances in the crystal as demonstrated in Fig. 5.1 for the CGCNN.
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Figure 5.6: Distributions in the OB data. The distribution of energy differences is
shown left. The energy differences are built with respect to the lowest energy in each
compound. In the center, energy-volume curves are shown for GaN. On the right,
nearest neighbour distances of the crystals are plotted against the summed covalent
radii of the compounds. Only equilibria of the phases are shown. The summed covalent
radius is given by rcov = (rcov(A) + rcov(B)). The covalent radii are based on the
statistical analysis [115] of experimental bond lengths in the Cambridge Structural
Database [116]. The solid line represents a linear fit through the data points. The
dashed lines define the borders of the search ranges used in our studies for the cubic
equilibria, see text in Sec. 5.4.4. A figure with all training data points can be found
in Fig. C.1.

with respect to the data point with the lowest energy present for the compound.

5.4.2 Choosing the model parameters

The values of all ML-model parameters used in this chapter are tabulated in App. D.
For the CTP, we set ε1b in the many-body expansion in Eq. 5.2 to zero. Given that the
target property to be learned in this work is the cohesive energy (DFT total energy of
a structure minus the DFT energy of the gas-phase atomic constituents), setting ε1b to
zero is equivalent to learning the total energy of a structure and setting a different ε1b
for every compound where ε1b is determined by the summed energies of the correspond-
ing gas-phase atomic constituents. For both the two-body and three-body part of the
CTP, we use a neural network with one hidden layer and 500 neurons (see validation in
App. F.1). The weights of the neural networks are trained by using stochastic gradient
descent and the backpropagation algorithm, which is a common choice for neural net-
works.

In Sec. 5.4.6, we include also the crystal graph convolutional neural networks (CGCNN,
see theory in Sec. 4.6) and alchemical smooth overlap of positions (ASOAP, see theory in
Sec. 4.5.1 and 4.5.2) into the numerical tests. We use a CGCNN code [91] provided by
the authors of the studies [42,86] that introduced the CGCNN and an ASOAP code [117]
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provided by the authours of Ref. [43, 67] that introduced and investigated the ASOAP.
For the CGCNN, we use the hyperparameters of an example pretrained model published
together with the respective code. The example model was trained by the authors of
Ref. [42, 86] on formation energies of the Materials Project database.
While the CGCNN learns the atomic representations during the training process, in case of
the CTP and ASOAP we use atomic properties such as the atomic number, group and row
in the periodic table, ionization potential, electron affinity and radii of the valence s and p
orbitals where the radial probability density is maximal. With this choice of atomic prop-
erties, we improved the ASOAP based on the Pauling electronegativity and van-der-Waals
radius as used in previous works for the ASOAP [43,67,114]10. The superior performance
of our ASOAP is demonstrated in a leave-one-compound-out cross validation on a smaller
data set where only four crystal-structure types were considered (see test results in App.
F.2). Moreover, in contrast to the typical cutoff of around 3 Å used in the works that inves-
tigated the ASOAP, we used one of 5 Å. The value is a compromise between having a cutoff
large enough to include at least the first neighbours shell into the cutoff for all structures
in the octet-binaries data set11 and keeping the cutoff low to maintain the computational
efficiency high. Note that we use the averaged kernel (Eq. 4.35) for the comparison of struc-
tures.

The weights in the CTP and CGCNN are optimized using a validation set for early
stopping. In case of the ASOAP based model, the regression coefficients are determined
by kernel ridge regression and the hyperparameters, i.e. the regularization parameter of
the ridge model and the Gaussian width in the chemical kernel καβ in Eq. 4.33, via a
square-grid search using a validation set.
The validation set is given by 10% of the (compound, structure type) tu-
ples in the training set, meaning that if a (compound, structure type) tu-
ple is left out into the validation set all data points in that phase are left
out for this compound. When performing the leave-one-compound-out cross
validation in Sec. 5.4.6, for all three methods the same validation sets are
used.

5.4.3 Scaling of the structural CTP parameters

Our experience is that setting the structural parameters (the ones used to describe the
PES of a fixed compound) as compound dependent improves the CTP. In practice, we
keep the Gaussian widths fixed and scale only the pairwise distances in the two- and three
body descriptors by the nearest neighbour distance predicted for the compounds, besides
scaling the cutoff radius. This is equivalent to using larger cutoffs and Gaussian widths for
compounds that tend to exhibit larger bond lengths and vice versa. The (average) nearest
10But only the studies [67, 114] considered the prediction of energies.
11A further criterion is that the neighbours within the first shell are not in the smooth decay region of the

cutoff function. Such a region is, for example, given by rc − rw < r < rc in Eq. 4.12, where rc is the
cutoff and rw defines the width of the region.
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neighbour distance can be well described by a linear relationship to the summed covalent
radii rcov = rcov(A) + rcov(B) of an AB compound12, as demonstrated by the linear fit in
the right panel of Fig. 5.6. The scaling factor rnn/rref for the descriptors of a compound
is a ratio of the predicted nearest neighbour distance rnn and a reference distance rref
that we set to the average of the nearest neighbour distances over all structures in the
training set. A different choice than the covalent radii for estimating the nearest neighbour
distance could be given by equilibrium dimer distances or a quantity that depends on
orbital based radii, see Fig. C.2.
Using the scaling procedure, the prediction of the PES is, in some sense, decoupled into
a prestep that estimates the bond distance in a compound and the actual prediction of the
(scaled) PES.

5.4.4 Evaluation of the prediction performance

An ultimate goal in data-driven materials design is to predict the ground-state structure
of a compound not present in databases. A meaningful framework would be based on
predicting a set of promising (lowest-energy) structures that are further inspected with
DFT. Thus, in our tests we evaluate the ground-state-prediction performance on left out
compounds from the training set by validating if the ground-state phase as determined
by the reference DFT method is inside a predicted set of promising phases. Such a set
consists of the predicted lowest-energy phase plus phases whose energy difference to the
lowest phase is below a tolerance of 0.1 eV/atom. For the energy assigned to a phase,
we consider the energy at the equilibrium of the phase, i.e. obtained from a relaxation.
Accordingly, to evaluate the prediction performance of the ML models, we will focus on
the accuracy of the predicted energies at the equilibrium structures obtained from relax-
ations with the ML models. Moreover, we will report errors rather on energy differences
than on absolute energies, i.e. the predicted energy differences between the phases are
compared to the energy differences as given by DFT. Note that the exact parameters
of the equilibrium structures (atomic coordinates and lattice parameters) of DFT and
the ones of the models do not necessarily coincide as the equilibria are obtained from
relaxations with the respective method. The energy difference is built with respect to the
ground-state phase of the corresponding compound where also for the model predictions
the ground-state phase determined by DFT is considered. For example, even if the model
predicts a different phase than ZB as the ground state for GaN, the energy difference for
any GaN data point is built with respect to the predicted equilibrium of the ZB phase,
because ZB is the ground-state phase according to DFT. Note that we use the label
"ground-state" relative to the considered set of eight phases in the octet-binaries data set,
i.e. the label is assigned to the energetically lowest phase inside the set of eight phases.
For instance, GaN is more stable in the wurtzite than in the ZB phase according to the
reference DFT calculations, but wurtzite is not included in our set of phases. The tests
12The covalent radii are taken from Ref. [115]. They are based on the statistical analysis of experimental

bond lengths in the Cambridge Structural Database [116].
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in the next two sections, Sec. 5.4.5 and Sec. 5.4.6, will focus on this set of phases. In
Sec. 5.4.7, we will go beyond the limited set of phases and perform an unbiased global
crystal-structure search for the example of GaN.
As the equilibria of the ML potentials can be located outside of the volume ranges
considered in the DFT data we perform a lowest-energy search with the models for a
wide compound-dependent range of volumes, at least in case of the cubic phases. Such
an energy-volume curve is shown in Fig. 5.1. The search is carried out on a grid with
0.2 Å3/atom volume steps. The volume interval is determined by the nearest neighbour
distance 0.8rcov < dnn < 1.3rcov in the crystal where rcov = rcov(A) + rcov(B) is the the
summed covalent radius of an AB compound. The borders for the cubic search ranges
are represented by the dashed lines in the right panel of Fig. 5.6. Note that the figure
shows the distribution only of equilibirum structures. For the same plot, however, with
all training data points, see Fig. C.1. The choice of the cubic search interval is based on
the linear correlation of the average covalent radius with the nearest neighbour distance
in a compound (Fig. 5.6, right). For instance, the minimum and maximum ratio dnn/rcov
calculated in the training data set is 0.8 and 1.4. Similarly, in a recent work, the minimum
interatomic distance for genarating structures in a random-structure search for silicon
was chosen to be 1.7 Å [29], which corresponds to 0.77rcov.
For non-cubic phases, an (extensive) search for the phase equilibrium is not per-
formed. For the CrB phase, the single existing DFT structure of a compound is
used. For all remaining phases, the energies of all eight DFT structures inside a
phase are predicted with the ML model and the energetically lowest is used for each
phase.

5.4.5 Stabilization of the machine-learning potentials by connecting the
chemical space

The OB data set contains only limited information about the interactions between
the atoms, e.g. not more than 65 structures are given per compound, the maximum
number of atoms in the unit cell is six, and the crystals are highly symmetric (in
contrast to the distorted structures of a molecular-dynamics trajectory if more atoms
are present in the unit cell). We will show that for a ML model trained on such a
sparsely covered structure space without the chemical-transfer (CT) approach, i.e. for
every compound an independent potential is fitted, accurately predicting the (equilib-
rium) energy of a phase not seen in the training set is a challenging task. In contrast,
we observed accurate results for the CT approach (Eq. 5.4 and Eq. 5.5) that enabled
fitting one single ML model to all compounds at the same time by “connecting” the
chemical composition space. For each of the two approaches, with and without CT
learning, we have designed a cross-validation test that allows for a comparison between
them.

We say “a phase is left out” if all structures that belong to that phase (crystal-structure
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Figure 5.7: Predicted vs reference energy differences from cross-validation tests that
evaluate the prediction performance of the (equilibrium) energies of phases left out
from the training sets. The tests were performed for the chemical-transfer (CT) and
non-CT approach.

prototype) are left out of the training set.
In case of the non-CT approach, a separate leave-one-phase-out cross validation for every
compound was implemented by leaving one phase out, training the ML model on the
structures of the remaining phases (between 48 and 64 data points), searching the equi-
librium structure (as described in Sec. 5.4.4) and predicting the corresponding cohesive
energy of the left out phase. This procedure is iterated over every phase to be left out and
every compound.
For the CT approach, one test with nine cross-validation steps was performed. In each
step, for every compound, one phase is left out, where the phase is selected for every
compound randomly and may differ among the compounds. This means that a phase that
was left out for one compound is present in the training set for many other compounds.
The model is trained on the data of all compounds and their phases that were not left
out, at the same time. The equilibria of all left out (compound, phase) tuples are searched
and the corresponding cohesive energies predicted. Furthermore, we ensure that for every
compound every phase was at least once left out in the nine cross-validation steps.
As described in Sec. 5.4.4, we evaluate the errors on the predicted energy differences,
i.e. the difference between the predicted energy at the equilibrium (or relaxed) geometry
of the left-out phase and the predicted energy at the equilibrium (or relaxed) geometry
of the ground-state phase, where the ground-state-phase label is given by the reference
DFT method. If the left-out phase is the ground-state phase, we report the energy dif-
ference with respect to the second lowest-energy phase13, again given by DFT. In both
cross-validation schemes, the errors are averaged over all compounds and left out phases.

The predicted energy differences for the two methods are compared in Fig. 5.7. In case of

13This means that the energy difference, then, becomes negative as opposed to a difference that is built
with respect to the ground-state phase.
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the non-CT approach, the energy differences of the left out phases were predicted with a
mean absolute error (MAE) of 0.35 eV/atom and root mean square error (RMSE) of 0.52
eV/atom. The MAE and RMSE of the CT approach are 0.10 eV/atom and 0.16 eV/atom,
respectively. Similar to the outcomes of the multi-task learning approach in Chapter 3
that highlight how a unified model for all tasks (data subsets) improve the prediction
accuracy, the results of the CTP demonstrate how the prediction of a left out phase of a
compound can benefit from the knowledge of this phase in other compounds.
The MAE and RMSE for the predicted cohesive energies are similar in their magnitudes
compared to the ones of the energy differences. In case of the CT approach, the MAE and
RMSE on the cohesive energies are given by 0.09 eV/atom and 0.15 eV/atom, in case of
the non-CT one by 0.35 eV/atom and 0.52 eV/atom. Note that the relative errors with
respect to the distribution of the reference data is higher for the energy differences, i.e. the
standard deviation of the DFT energy differences is given by 0.59 eV/atom while the one
of the DFT cohesive energies is given by 0.97 eV/atom (compare Fig. F.2 in appendix to
Fig. 5.7).

5.4.6 Predicting the potential-energy surface of a new compound

We have performed a leave-one-compound-out cross validation for the 78 compounds of
the OB data set. At each cross-validation step, the models were trained on the data of 77
compounds and the PES of the left-out compound was predicted for the eight phases as
described in Sec. 5.4.4. For all three ML methods, the same training and validation sets
were used. A central result of this work is that the PES of a compound can indeed be
predicted from other compounds (at least in our data set) with an accuracy that allows
to identify the ground-state structure with the constrained structure search described in
Sec. 5.4.4. The key quantity with which we evaluate the models in the cross validation
is the ground-state-prediction success rate, i.e. the fraction of compounds that had their
ground-state phases predicted correctly within a tolerance of 0.1 eV/atom (see description
in Sec. 5.4.4).
The ground-state-phase prediction test yielded a success rate of 74/78 for the CTP,
67/78 for the ASOAP, and 68/78 for the CGCNN, see left column in Tab. 5.2. As a
comparison, a probabilistic model based on statistical averages of the data (as described
in App. F.4) achieves a success rate of 44/7814. With a tolerance of 0.11 eV/atom instead
of 0.10 eV/atom for determining the set of possible ground states, the CTP would have
identified the ground states of two further compounds correctly (total 76/78). In fact,
the ground state of one of the two compounds was missed by only 1 meV/atom which
highlights the sensitivity of the success rate to the chosen tolerance at the magnitude of

14Note that in contrast to a purely random prediction, the probabilistic model uses some information
of the data set. As opposed to the investigated ML models, the probabilistic model just predicts the
likelihood of a set of promising ground states without the usage of energy-structure or energy-compound
relationships.
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a) LOCOCV b) Ga, N c) Sr, O
r ∆E V r ∆E V r ∆E V

CTP 74/78 0.25 2.0 6/7 0.64 2.2 10/10 0.25 2.2
ASOAP 67/78 0.42 2.5 6/7 1.14 3.6 7/10 0.57 3.7
CGCNN 68/78 0.44 6.7 - - - - - -

Table 5.2: Prediction results of a) a leave-one-compound-out cross validation (LO-
COCV), b) a test in which all compounds that include either Ga, N or both are left
out to be predicted, and c) one in in which all compounds with Sr or O are left out.
The success rate r shows how many compounds had their ground states predicted cor-
rectly within a tolerance of 0.1 eV/atom. ∆E and V represent the root-mean-square
errors for the predicted energy differences and volumes, respectively. ∆E is given in
[eV/atom] and V in [Å3/atom].

0.1 eV/atom15. While we consider the specific success rates of the ML methods, despite
the gap between CTP and both other methods, as relatively similar we highlight a crucial
difference between the predicted PESs: In contrast to the ASOAP and CGCNN, the CTP
predicted the cubic surfaces to have one single minimum with higher probability, i.e. an
energy-volume curve mainly characterized by a repulsion dominating at small volumes
and an attraction at higher volumes (compare to the CTP curve in Fig. 5.1). Only in 4%
of the (288 cubic) cases a second minimum was found. In contrast, the ASOAP predicted
23% and the CGCNN 61% of the surfaces with two or even more minima (in the case of
CGCNN even up to five), see the right panel of Fig. 5.8. The figures F.4, F.5, and F.6 in
the appendix show the qualitative difference of the predicted PESs. The tendency towards
predicting PESs with multiple minima already for simple cubic symmetries suggests that
overall the predicted PES is unphysical16. The fact that unphysical multiple minima in the
PES can hinder an (accurate) structure search is also visible in some cases of the CGCNN
predictions: if one limits the search to volumes in the surroundings of the DFT minima,
the ground states of further five compounds are predicted correctly by the CGCNN and
an additional one by the ASOAP. For instance, the predicted minima in the surroundings
of the DFT minima are typically accurate in terms of predicted cohesive energy, however,
an extended search reveals other minima (artefacts) that are possibly lower in energy.
Without the pre-knowledge of the DFT reference, the structure search by CGCNN and
ASOAP leads to completely unphysical predictions in some cases.
Next, we will discuss the prediction errors on relative energies. In case of the cubic phases,
we will consider errors also on volumes. Recall that the errors are based on predicted
properties of geometries that were (at least in case of the cubic phases) identified as the
equilibrium structures in the structure search (as described in Sec. 5.4.4). Therefore the
DFT and predicted equilibrium geometries can deviate significantly. The left panel of

15The sensitivity of the success rate to the tolerance depends on the value of the tolerance, e.g. at a low
tolerance small changes of the tolerance affect the success rate more strongly than at a high tolerance.

16We will show in Sec. 5.4.7 that the ASOAP fails in a random-structure search for GaN, while the CTP
was able to identify the most stable structures of GaN correctly. There are no results for the CGCNN
in this test because the model is not even smooth in the PES.
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Figure 5.8: Prediction results of a leave-one-compound-out cross validation. a) and b)
show box plots for the absolute errors of the predicted energy differences and volumes.
The errors on the volumes are evaluated only for the cubic phases. The box plots mark
the 25th and 75th percentiles (extrema of the rectangle), the 5th and 95th percentiles
(extrema of the “whiskers”), and the median (horizontal line inside the rectangle).
Shown are also the mean absolute error (MAE, cross) and the root mean square error
(RMSE, solid square). c) shows the number of predicted minima inside the inspected
volume ranges for the cubic phases.

Fig. 5.8 shows that the three methods achieved comparable mean absolute errors in pre-
dicting relative energies, e.g. 0.16 eV/atom, 0.16 eV/atom and 0.13 eV/atom for CGCNN,
ASOAP and CTP, respectively. While the CGCNN predicted most of the relative energies
with a lower error than the ASOAP and CTP, i.e. the median and the 75th percentile are
lower (e.g. 0.12 eV/atom vs 0.15 eV/atom and 0.15 eV/atom, respectively for the 75th
percentile), the root mean square error (RMSE) lies higher, e.g. 0.44 eV/atom vs 0.42
eV/atom and 0.25 eV/atom. In case of the CGCNN and ASOAP a large contribution
to the higher RMSE originates in the fact that artefacts were identified as equilibria of
the cubic phases. If again only the ones close to the DFT volume ranges are considered
the RMSEs decrease to 0.34 eV/atom and 0.36 eV/atom for the CGCNN and ASOAP,
respectively. The fact that the minima were identified wrongly emerges, in case of the
the CGCNN significantly, also in the higher RMSE on predicted equilibrium volumes for
the cubic phases (central panel of Fig. 5.8), e.g. 6.7 Å/atom for CGCNN, 2.5 Å/atom for
ASOAP, and 2.0 Å/atom for CTP. Note that a dependence of the absolute errors on the
percentiles is shown in Fig. F.3 in the appendix. We will analyze possible origins of the
model-prediction errors in Sec. 5.4.8.

It is expected that the accuracy of predicting the PES of a new compound (not seen in
the training data) depends on the materials distribution in the training data, e.g. if there
are compounds in the training data that are similar to the new compound to be predicted.
We would like to find out to which extent specifically the fact that atomic constituents
of the new compound are also present in compounds of the training data supports the
accurate prediction of the new PES. Let us consider the example in which GaN (with
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all its structures) is left out from the training set to be predicted. When considering the
CTP, the atomic energy contribution to the total energy of a GaN structure from a Ga
atom surrounded by Ga atoms, or a N atom surrounded by N neighbours, is already
modeled in compounds from the training set, such as in GaP and GaAs or BN and AlP
(see Sec. 4.7). In the following, we test the ability of the models to predict a PES if such
information is not available. For this, we leave all compounds that contain either Ga, N,
or both atom types out from the training set and predict their PESs. We repeat the same
test for compounds that contain either Sr, O, or both atom types. Note that this test
is performed only for the CTP and ASOAP, because the CGCNN used in this work is
based on randomly initialized atomic representations, i.e. there is no physical connection
between those CGCNN-input vectors that represent the atomic species types. Accordingly
if neither Ga nor N is present in the training data, the choice of their representation
vectors will not have an influence on the training procedure but on the prediction of the
GaN PES. In other words, different (random) choices of the Ga and N representation
vectors will lead to different random predictions of the GaN PES. An analysis about how
specific chemical information is incorporated into the models and a discussion to which
extent a left-out compound is considered as extrapolated is presented in Sec. 4.7.
We found that the ground states of six of seven compounds that include Ga or N could
be identified correctly by both the CTP and ASOAP, see central column in Tab. 5.2.
For compounds including Sr or O the success rates are 10/10 and 7/10 for the CTP and
ASOAP, respectively. Interestingly, the RMSE for the predicted relative energies does not
differ significantly from the one of the leave-one-compound-out cross validation for the
same compounds (see Tab. F.2). For compounds that include Ga or N atoms the error
has not changed with respect to the leave-one-compound-out cross validation in case of
the CTP, i.e. it stayed 0.64 eV/atom, while for the ASOAP it has increased only slightly
from 1.10 eV/atom to 1.14 eV/atom. For compounds containing Sr or O atoms, the values
changed from 0.23 eV/atom to 0.25 eV/atom and 0.50 eV/atom to 0.57 eV/atom for
the CTP and ASOAP, respectively. When comparing the ground-state-prediction success
rates of the tests where information about Ga and N or Sr and O was missing in the
training set to the success rates of the leave-one-compound-out cross validation, again for
the same compounds, the success rates have changed only for the CTP, i.e. from 9/10
to 10/10 for compounds that include Sr or O, where the ground state of the compound
BeO is, now, predicted correctly. Note that the ground state of BeO was predicted also
by the ASOAP wrongly in both the leave-one-compound-out cross validation and the test
with excluded compounds that consist of Sr or O atoms. The improvement of the CTP
in predicting the ground state of BeO correctly is surprising because not only the size
of the training data set has decreased but specifically compounds that include Be or O
atoms were excluded. In contrast, the prediction of AlN energies suffered from the missing
information about N atoms, i.e the phase CsCl was identified to be most stable with
0.25 eV/atom lower than the true ground-state phase ZB. In the leave-one-compound-out
cross validation the ZB phase was predicted correctly and more stable than the CsCl phase
by 1.52 eV/atom, which is in good agreement with the DFT energy difference of 1.67
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eV/atom. However, the energy-volume behaviour in the CsCl phase exhibits two minima
(see Fig. F.4) and, moreover, the minimum that deviates stronger from the DFT volume
was predicted energetically lower for both the leave-one-compound-out cross validation
and the test with missing Ga and N atoms in the training set. Accordingly, we consider
this second CsCl equilibrium in both cases as wrong despite the low error on the predicted
CsCl-ZB energy difference in the leave-one-compound out cross validation. The fact that
the second minimum lead to a mispredicted ground state in the test of this paragraph is,
similar to the multiple minima that influenced the success rates of the CGCNN in the
leave-one-compound cross validation, a further indication of the fact that artefacts can
increase the risk of an unsuccessful ground-state search.
Compared to the leave-one-compound cross validation, the tests of leaving out
compounds that contain Ga or N (Sr or O) atoms from the training set and
predicting their PESs showed a significant loss of performance only in case
of reproducing the ground-state phase of AlN correctly. Thus the hypothe-
sis that predicting the PES of a compound can benefit from the presence of
its atomic constituents in compounds of the training set could not be clearly
proven.

5.4.7 A global structure search for GaN

The tests in Sec. 5.4.6 evaluated the ability of the ML potentials to predict the PES of a
compound not seen in the training set. However, the investigation of the predicted PES
was limited to a set of selected phases. Accordingly, the label “ground-state phase” as-
signed to the lowest-energy phase is relative to this set. For instance, while we have labeled
ZB as the ground state of GaN, the reference DFT method predicts the wurtzite (WZ)
structure, which is not in our set, to be the ground state, predicted to be 9 meV/atom
more stable than ZB.
To demonstrate a completely unbiased global search for the ground-state phase of a
compound, we have performed a random-structure search (RSS) [21, 92] for GaN, using
a CTP and ASOAP trained on the data of all octet binary compounds except GaN,
i.e. a test that again evaluates the ability of a ML model to predict the PES of a new
compound. In addition, we performed a RSS also with DFT. The RSS was carried out
by generating 300 random structures (the same for all three methods) and relaxing them
(both atomic positions and unit cells) with the considered methods. We considered only
structures with eight atoms in the unit cell, constrained to have a minimum pairwise
distance of 1.54 Å (0.8rcov, as motivated in Sec. 5.4.4). For more details, e.g. on the
generation rules of the structures, see App. F.6. The upper panel of Fig. 5.9 shows the
crystal structures, which were identified in the RSS, in a energy-volume scatter plot.
Note that we do not report results for the CGCNN in this test because none of its 300
relaxations resulted in a minimum17, given that the PES predicted by the CGCNN is
17More precisely, within 1 500 relaxation steps, the forces did not converge below a tolerance of 0.01

Å2/atom.
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unphysically rough. This behavior is mainly attributed to a construction choice of the
CGCNN, where strictly only 12 neighbours are considered in the representation of the
model, therefore causing uncontrolled oscillatory behavior in the forces when different
neighbours enter the first shell in a relaxation step (see explanation in App. F.7). How-
ever, we will present results for the CGCNN in an adapted RSS in a second test, see below.

A key result of the RSS is that the ASOAP failed in predicting the PES with an accuracy
that would be needed to identify the most stable crystal structures of GaN with the
RSS. We consider the predicted PES as significantly wrong. Neither WZ nor ZB were
identified. All found structures are energetically lower than ZB, with a noticeable average
energy difference of -1.57 eV/atom. A separate relaxation of the WZ structure resulted in
a structure that was still in the WZ crystal symmetry and 1.39 eV/atom lower than ZB,
however, higher than most of the structures found in the RSS and 0.76 eV/atom higher
than the energetically lowest structure. Moreover, in 87 structures the minimum distance
between two atoms is unphysically small, below 0.5 Å. The maximum space group is 15
(monoclinic crystal-system), see Fig. F.7 in the appendix for the crystal-system distri-
bution. This observation is in accordance with the general expectation that a potential
based solely on a many-body descriptor such as SOAP carries higher a risk of predicting
an unphysical PES, especially when the training data set is limited.
As mentioned above, the predicted PES by the CGCNN is unphysically rough. We would
like to investigate if the CGCNN still predicts ZB or WZ as the global minimum on
its PES. Due to the roughness of the PES, the forces in the crystals did not converge
during the relaxations in the RSS approach (at least not within 1 500 relaxation steps, see
Fig. F.10 in appendix). As an alternative, we have performed the structure optimization
using a random walk on the PES, where a step is only accepted if it leads to a lower energy.
That is, at each step of the algorithm, a configuration with randomly slightly changed
coordinates of the atomic positions and lattice vectors is suggested and only accepted if
its energy is lower than the one of the previous configuration (the one without changed
coordinates). This is equivalent to perform a Metropolis Monte Carlo random-walk at
T = 0 K. As a consequence, the strong energy fluctuations observed in the forces-based
optimization technique (Fig. F.10) are avoided and a (fast) convergence becomes possible.
In order to validate the random-walk based optimization, we have performed it also for
the CTP and ASOAP. The results for all three machine-learning models are shown in
Fig. F.9 in the appendix. The energy-volume distributions of the CTP and ASOAP in
Fig. F.9 are comparable to the ones in the upper panel of Fig. 5.9, which validates the
random-walk based optimization18. Analyzing the results of the CGCNN, shows that 25%
of the optimized structures are more stable than ZB (and also than WZ), 12% are more
stable by at least 0.1 eV/atom. Note that neither ZB nor WZ were identified by CGCNN

18Note, that two optimized structures obtained from the two optimization techniques, the forces-based and
random-walk-based one, do not necessarily coincide, if they had the same initial structure. However,
in case of the CTP, we find that also the space-group distributions of the optimized structures are
comparable for both optimization techniques.
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Figure 5.9: GaN structures from random-structure searches (RSS) in energy-volume
scatter plots. The upper panel shows the result of the RSS with 300 initial ran-
dom structures performed for the chemical-transferable potentials (CTP), alchemical
smooth overlap of atomic positions (ASOAP), and DFT. The CTP and ASOAP were
trained on structures of 77 octet binary compounds, GaN not included. The RSS
performed for the CTP resulted in 58 unique structures and 40 of them are mechan-
ically stable (no imaginary phonon frequencies were found). In the lower panel, the
40 unique and stable “CTP structures” (green markers) were further relaxed with
DFT, resulting in structures represented by the blue markers. The lines between the
markers show which CTP structure resulted in which further-DFT-relaxed structure.
The black lines highlight that a DFT relaxation did not significantly change a CTP
structure (see text). The structures obtained from the DFT relaxations are labeled
either by their space group or by the name of their structure prototype. The black
dashed line represents the relative-energy base of 0.1 eV/atom.

84



5.4 Prediction across chemical composition space

in the structure search. In fact, all found structures have a space group of 1. Moreover,
most of them are unphysical: three have a minimum pairwise distance of below 0.5 Å and
170 of below 1.5 Å (1.5 Å is still unphysically small for GaN).
From now, we will again consider the results of the forces-based RSS only.

The CTP identified both ZB and WZ as the most stable structures, just as predicted
by DFT, although predicting WZ higher than ZB by 63 meV/atom. We remind that
DFT predicts WZ lower by 9 meV. The next higher structure predicted by CTP has a
difference of 129 meV/atom to ZB. This means that in a search where only the lowest
energy structure and the ones with maximally 100 meV/atom above were considered, only
WZ and ZB would have been chosen for a DFT check.
An interesting result is that the CTP tended to predict structures with relatively
high crystal symmetry, while most structures identified by DFT have space group
of 1, compare crystal-system distributions in Fig. F.7. ZB was identified 104 times
by CTP but only 11 times by DFT. WZ was identified 32 times by CTP vs two
times by DFT. Moreover, 95% of the “DFT structures” have at least one atom
whose next-neighbour shell contains only the same atom types as itself, while none
of the CTP structures show this property. A possible reason for the higher symme-
tries of the CTP structures and the fact that the structures do not have atoms whose
next-neighbour shell contains only the same atom types as itself might be that the
two characteristics apply also to the octet-binaries data set on which the CTP was
trained.

In Sec. 5.4.6, we have shown that the PESs predicted by the ML models were often char-
acterized by artefacts (minima that are not ones on the DFT PES) although relatively
rare in case of the CTP. In order to analyze if the predicted phases by the CTP in the
RSS are also minima (or saddle points) on the DFT PES, we have relaxed them further
with DFT. The RSS performed for the CTP resulted in 58 unique structures19 and 40 of
them are mechanically stable, as we did not find imaginary phonon frequencies for them.
The lower panel of Fig. 5.9 compares in an energy-volume scatter plot the 40 unique and
stable structures predicted by the CTP in the RSS with their DFT-relaxed forms. The
lines in the plot connecting the the green (CTP structures) blue marker (DFT-relaxed
structures) highlight which CTP structure resulted in which DFT-relaxed one. A line is
colored black if the structure (crystal symmetry) did not change (significantly20). The 29
grey lines represent the cases where a CTP structure is not stable on the DFT PES.
Out of 29 CTP structures that are not stable in DFT, 24 relaxed relaxed into ZB or
WZ. What the 29 CTP structures have in common is that they tend to have low crystal
symmetry. For example 23 of the 29 structures are triclinic or monoclinic (space group of
19The decision if two structures are the same is based on both a) if the space groups are the same and b)

if volumes and energies are same (similar).
20In one case, a CTP structure has space group 58 and the corresponding DFT relaxed one has 136.

However, the structures are similar, i.e., the CTP structure (space group 58) is just a stretched (or with
fewer symmetries) version of the DFT-relaxed one (space group 136). This similarity can be appreciated
by setting a loose tolerance in spglib, where the space group 58 structure is actually recognized as space
group 136.
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16 or below), and 28 of 29 are of space group 62 or below. In contrast, out of the eleven
CTP structures that are stable (minimum or saddle point) also in DFT, only one has a
space group of 16 or below and four have one of 62 or below. Thus, the test indicates
that for the CTP, predictions of structures with higher crystal-symmetry are reliable21.
We remind that the lowest space group in the training database of the CTP is 62, given
by the CrB prototype.
The fact that the CTP predicted each of the eleven structures, whose form did not
change significantly in a relaxation by DFT, with a smaller volume than DFT, in-
dicates that the CTP underestimated the volumes of GaN phases collectively. The
mean absolute volume difference between DFT and CTP for the eleven structures
is 1.4 Å3/atom. We assume that the collective underestimation of the volumes
(at this extent) did not have an effect on the task of identifying a phase in the
RSS.

Four (ZB, WZ, RS, 136) of the eleven DFT-relaxed structures, which do not differ sig-
nificantly from their corresponding CTP structures, are known phases of GaN, where
only two (ZB and RS) of the four are contained in the training set of the CTP. The
prediction of WZ is not surprising, due to its similarity to ZB22. However, the struc-
ture with the space group 136 was just recently predicted for GaN using DFT [118].
The DFT energy-difference of the strucutre with space group 136 to WZ is 0.063
eV/atom. Note that, before the work in Ref. [118], besides ZB and WZ, only two fur-
ther phases had been reported for GaN: RS [119,120] and a hexagonal layered type [121,
122]23.

The tests of this section have shown that the CTP trained on the OB data set where
information about GaN was excluded was able to predict, in a RSS, the most stable
crystal structures of GaN. In a crystal-structure search, where only the lowest-energy
structure and the ones with maximally 0.1 eV/atom above were considered, the CTP
would identify WZ and ZB. In a test with a higher tolerance of 0.15 eV/atom, also the
just recently predicted phase with a space group of 136 would have been identified, a
phase not contained in the training set of the CTP.
Evaluating the benefit of using the CTP also for the prediction of higher-energy phases
is not trivial, as the results of DFT and CTP differ from each other. For instance, the
identified structures in the RSS of DFT mainly deviate from the ones of CTP and,
furthermore, the knowledge of which DFT structures, not found with CTP, are promising

21Note that the CTP structures are mechanically stable while the DFT-relaxed ones might only be saddle
points.

22The ZB and wurtzite structure based on two atomic species types become diamond and hexagonal
diamond, respectively, if both atomic species types are replaces by a single type, resulting in an an
elemental solid. The similarity between diamond and hexagonal diamond are discussed for silicon in
App. E.1.2.

23Also in the AFLOW database, there are only ZB, WZ, RS and a hexagonal layered type available for
GaN. In the Materials Project database the same are given plus a further triclinic system. However,
while the hexagonal layered phases of AFLOW and the Materials Project are the same, they differ from
the one that has been discussed in Ref. [118,121,122].
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metastable states requires further extensive tests. Still, we observed that the CTP was
able to identify all structures of space group above 75 that were also identified with DFT,
except one24. Therefore, the results demonstrate the applicability of the CTP (trained
on the considered data set) to find high-energy phases that have high crystal symme-
tries.

5.4.8 Error analysis in the chemical composition space

The reliable estimate of the error expected for the prediction of a ML model is a critical
goal in data-driven materials science. One important component of an error-estimator is
the partitioning of the input space of a model, e.g. the structural and chemical composition
space, into known and unknown regions depending on the population of the training data
points in the input space. The prediction of the energy of a material in an unknown region
or at the border of an known region would be considered as an extrapolation of the model
and the prediction accuracy estimated to be low. A further crucial component independent
of the population of the training data in the materials space is the estimation if it is
harder to accurately describe the PES of a material due to the nature of the material.
For instance, in the leave-one-compound-out cross validation in Sec. 5.4.6 the compounds
AgF and CuF had their ground-states mispredicted by all three ML approaches, the CTP,
ASOAP and CGCNN. Moreover, we find that the likelihood that the ground state of a
material is mispredicted by at least one of the three models correlates with a materials
descriptor that depends on the sizes (radii) of the atomic constituents (see below).
Beyond discussing the correlation between this materials descriptor and the failed pre-
dictions of the models, this section demonstrate how this descriptor is identified using
the SISSO algorithm [41]. Such a descriptor does not only provide a potential estimator
for the domain of applicability of the ML model in the chemical composition space.
Due to its interpretable form, it also opens the route to analyze and understand which
conceptual feature a ML model misses such that it can be improved. A similar idea to
find such a descriptor was just recently presented [123], however using subgroup discov-
ery.

17 of the 78 octet binary compounds had their ground states mispredicted by at least one
of the three models, CTP, ASOAP, and CGCNN. The goal is to find a descriptor with
SISSO for classification that separates the 17 compounds from the remaining ones based
on the atomic properties that were used as the input of the CTP and ASOAP models.
However, we expect that a highly accurate classifier, e.g. a descriptor that perfectly
separates the two compound classes, would overfit to a sort of noise: If the ground state
of a compound is considered as mispredicted depends on a tolerance (described in Sec.
5.4.4). As discussed in Sec. 5.4.6, the set of compounds which had their ground states
mispredicted is sensitive on small changes of the tolerance. Therefore, we searched for a
descriptor that is rather simple and allows for misclassifications.

24The structure has space group 187 and is similar to wurtzite, see Fig. F.8 in the appendix.
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Figure 5.10: Dependence of the ground-state prediction success on the location of
a compound in the chemical-compound representation rs(A)rs(B). The figure high-
lights compounds that had their ground states mispredicted by three ML methods
in a leave-one-compound-out cross validation (Sec. 5.4.6). The three methods are:
chemical-transferable potentials (CTP), alchemical smooth overlap of atomic posi-
tions (ASOAP), and crystal graph convolutional neural networks (CGCNN). The blue
markers represent the materials whose ground states were predicted correctly by all
three methods. The descriptor rs(A)rs(B) was identified in a classification task with
the sure independence screening and sparsifying operator (SISSO). The aim was to
separate most of the 17 compounds which had their ground-states mispredicted by at
least one of the three ML methods from the remaining compounds. The descriptor
rs(A)rs(B) is linearly correlated with the average volume of a compound (y-axis). The
average is built over the volumes of the different phases of the compounds, each at
the equilibrium of its crystal symmetry.
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We identified a one-dimensional descriptor: rs(A) rs(B). The atomic proper-
ties rs(A) and rs(B) denote the radii, where the radial probability density of
the valence s orbitals are maximal for the elements A and B of the AB com-
pounds. Note that A labels the element with the smaller electronegativity. Fig.
5.10 shows how the compounds are distributed in the descriptor space rs(A)
rs(B) (x-axis). We find that rs(A)rs(B) is linearly correlated with the volume
in which a compound tends to crystallize, as shown in the upper panel of Fig.
5.10.

Ten compounds that had their ground states mispredicted by at least one of the three ML
methods are located at a low value of rs(A)rs(B), i.e. below 0.7 Å2. This means that the
PESs of compounds, whose (stable) crystal structures are characterized by small volumes,
are harder to be predicted accurately. The ten compounds are CdO, AgF, ZnO, CuF,
AlN, MgO, BN, BP, BeO, and LiF.
The origin of the erroneous description of small-volume compounds is, however, not clear.
Due to the fact that the CGCNN learns the atomic representations in the training process,
the choice of atomic descriptors in the case of the CTP and ASOAP might be excluded
as a (leading) origin. A possible factor of statistical nature that might influence the
prediction performance is the higher variance of the target (energies) of many compounds
with smaller volumes. For instance, the left panel of Fig. F.11 demonstrates that the
variance is more likely to be high for small rs(A)rs(B). The variance was calculated
for each compound over the relative energies of the different phases with respect to the
ground state phase of the compound. More precisely, the variance assigned to a compound
AB is given by VarAB =

∑
i

(∆Ei−∆E)2

n−1 where n represents the number of phases of the
compound AB, i runs over all phases but the ground-state phase, ∆Ei denotes the energy
difference of a phase to the ground-state phase, and ∆E is the average of the energy
differences. The three highest variances are given by BN, AlN and BeO with a value of
approximately 0.87 eV2/atom2. At the same time, the errors on the predicted energies are
more likely to increase when rs(A)rs(B) decreases (Fig. F.11, center). However, while, in
fact, the errors tend to increase with the variance of energies, relatively high errors (a root
mean square error above 0.2 eV/atom) are also found for variances of below 0.11, including
some compounds that are in the region rs(A)rs(B) < 0.7 Å2, e.g. LiF, CuF, AgF, NaF,
BAs, and BP. Therefore, the variance of the energies alone does not completely explain the
more challenging description of small-volume compounds. Out of the scope of this work,
a deeper investigation of the correlation between materials descriptors and prediction
errors might help to design reliable error-estimators for the exploration of the materials
space.
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Figure 5.11: Potential energy of an atom surrounded by two neighbours (i.e. an
isolated trimer) in dependence of the distances rij and rik to the neighbours for two
different models f1 and f2 fitted to the same Si structures (Sec. 5.3.2). The distance
rjk between the two neighbours is fixed at 2.2 Å. The potential energy of the trimer
depends on the sum of a two- and three- body contribution, ε2b and ε3b, and is shown
for two different models f1 and f2 which differ by the centers rµ of the Gaussian basis
functions exp(− [(rij ,rik,rjk)−rµ]2

2σ2
µ

) in the three body term, see Eq. 5.3. In both cases, the
centers rµ are distributed on a uniform grid in the input space (rij , rik, rjk), where
in f1 the “smallest” grid point is given by (1.0, 1.0, 1.0) and in f2 by (1.7, 1.7, 1.7).
Furthermore, the Gaussian widths are σµ = 1.4 and σµ = 1.3 (for all µ), respectively.
The two different analytical forms of f1 and f2 fitted to the same data set show
significantly different potential energies in the shown domain. The left panel shows
the dependence of the potential on both rij and rik in a three-dimensional plot. The
right panel presents the potential along the diagonal rij = rik, in a two-dimensional
plot.

5.5 Technical challenges

5.5.1 Sensitivity of the model reliablity to small changes in the
potential-basis functions

The analysis of the leave-one-compound-out cross validation in Sec. 5.4.6 performed for the
CTP, ASOAP and CGCNN shows that the predictions of different models can correlate in
specific ranges of the input space but deviate significantly in other regions. Similarly, even
when considering one method, different choices of (hyper-)parameters may cause a similar
effect. This is expected because of the fundamental requirement that ML algorithms shall
select a model from a diverse function space. The optimization of all hyperparameters of
a model, including the choice of the basis functions, is a high-dimensional problem, and
some are typically chosen by the scientist based on intuition or experience [124]. Even if
an optimization of the hyperparameters is performed, the optimality of the results is valid
only for the training range.
For instance, let us consider the choice of the basis functions for fitting the solid phases
of silicon (Sec. 5.3.2). We have built two models f1 and f2 which are based on a two-
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and three-body potential and only distinguished by the basis functions of the three-body
terms. In both cases, Gaussian basis functions exp(− [(rij ,rik,rjk)−rµ]2

2σ2
µ

) were used (see Eq.
5.3) with the centers rµ distributed on a uniform grid in the input space (rij , rik, rjk),
where in f1 the “smallest” (smallest `2 norm) grid point is given by (1.0, 1.0, 1.0) and in
f2 by (1.7, 1.7, 1.7). Furthermore, the Gaussian widths are σµ = 1.4 and σµ = 1.3 (for
all µ), respectively. Note that the nearest neighbour distance in the diamond phase of
silicon is 2.36 Å. Clearly, the difference of the prediction accuracies of the two models
f1 and f2 on the considered data set of nine silicon phases is negligible: 44 meV/atom
vs 45 meV/atom in a leave-one-phase-out cross validation (the test is described in Sec.
5.3.2). However, outside of the training range they differ significantly, where one of them
predicts a distinctly unphysical PES. Fig. 5.11 shows the predicted energy of an isolated
trimer with small neighbour distances, where the energy consists of both, the two- and
three-body contribution. Recall that the energy of a structure is modeled as a sum of
triplet energies. The figure highlights that a relaxation of the isolated trimer with f1 might
decrease the neighbour distances to unphysically small values if the starting geometry is
given by rather small neighbour distances. For instance, while the two-body potentials of
both models exhibit a repulsion ( ∂ε2b

∂r < 0 at small distances r), the three-body potential of
f1 exhibits a strong attraction behaviour dominating the trimer energy in the considered
region. We found that when relaxing with f1 a random bulk structure with eight silicon
atoms in the unit cell and rather small pairwise distances where, for example, one atom
is surrounded by two neighbours with distances between 1.7 Å and 1.8 Å, four atoms
collapsed into each other, i.e. they had the same positions. Moreover, the energy of the
relaxed structure is 3 500 eV/atom below the one of diamond25. In contrast, when using
f2, a relaxation of the same starting geometry lead to a structure located inside the region
of the reference DFT distribution shown in Ref. [29] with a volume of 23.3 Å3/atom and
an energy difference of 0.293 eV/atom to the diamond phase.
There is no trimer in the training data set that has two neighbours at such small dis-
tances (< 1.8 Å) and an appropriate similarity model could detect that the considered
structure is out of the training range. Still, the fact that only relatively small adjustments
of the three-body basis functions lead to a highly unphysical behaviour of the model
underlines the challenge of designing reliable ML models. A possible way out of the
problem, could be a stronger regularization of the three-body term. With a penalized
three-body term, the contribution of the three-body potential to the total energy could
be kept low such that the repulsive behaviour of the two-body potential could dominate
at small atomic distances. Alternatively, a constraint on the coefficients that prevents
the thee-body potential forming an attractive behaviour at small distances, similar to
the one in the two-body part of the CTP (Sec. 4.4.3), could be investigated in the fu-
ture.

25Note that a relaxation of the isolated trimer is only partially representing the relaxation of a bulk
that contains the same three-atoms cluster (triplet). For example, in Fig. 5.11 we assigned a two-body
contribution to the triplet energy but the two-body contributions in the crystal are independent of
the three-body terms and not distributed to triplets. Furthermore, only the collection of all triplet
contributions in the crystal fully describes the behaviour of a bulk in a relaxation.
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Figure 5.12: Influence of the data-processing type on the learning of a linear model
with gradient descent. The modes are fitted to a toy Lennard-Jones potential E =
ε[(σ/r)12 − (σ/r)6] with dimensionless parameters ε = 1 and σ = 2, represented
by 100 training data points, i.e. distance-energy tuples {(ri, Ei)}. The linear models
f =

∑
µ αµbµ consist of 14 Gaussian basis functions bµ = exp(− [r−rµ]2

2σ2
µ

), with centers
rµ from a uniform grid on the training range and σµ = 0.5 for all µ. Two different
models were trained with gradient descent, one with standardized, the other one with
Gram-Schmidt-orthogonalized data. In the former case, 30 000 epochs were used and
in the latter 500 epochs.

5.5.2 Limitations on the fitting accuracy through gradient descent

The consequence of the linearity of our two- and three body potentials in their regression
coefficients αi results in the fact that the modeled energy E of a crystal is also linear in
these regression coefficients. When modeling the energies of structures that depend on
a fixed set of atomic species types, e.g. a single chemical formula (no chemical-transfer
learning), the final linear system is written E = Bα, where the matrix B represents the
sums of the basis functions over all atomic environments in the structures (see derivation
in Sec. 4.3.2). The standard optimization method to determine the coefficients α is
(regularized) linear regression. When extending the potentials to CTP by introducing
an explicit dependence of the coefficients α on the species types that is modeled with
a neural network, the regression parameters to be optimized become the weights of the
neural network. Given that the energy E is, then, not linear anymore in the regression
parameters, linear regression is not applicable anymore. The typical optimization method
for a neural network is a gradient-descent based one, as used in this work. The CTP
construction does not change the shape of the equations E = Bα. In principle, they
are still written for every chemical formula separately where the only difference to the
non-chemical-transfer-learning approach is that the coefficients α are determined by a
neural network and gradient descent. However, in practice, the solution for the individual
coefficients α of the CTP for every chemical compound obtained by optimizing the neural
network with gradient descent is not necessarily optimal, while the solutions of linear re-
gression applied to E = Bα for every chemical formula separately (non-chemical-transfer
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learning) are26. One reason lies in the fact that converging the solution of gradient-descent
in its iterative procedure towards the exact solution can have numerical barriers.
For instance, assume we want to fit only a linear and simple function depending on one
variable with gradient descent (non-chemical-transfer approach), i.e. a toy Lennard-Jones
potential E(r) = ε[(σ/r)12 − (σ/r)6] with dimensionless parameters ε = 1 and σ = 2.
Using as a model our two-body ML potential f =

∑
µ αµbµ with Gaussian basis functions

bµ = exp(− [r−rµ]2
2σ2
µ

) and a set of 100 samples {(ri, Ei)} from the Lennard-Jones potential
to which we want to fit the ML potential, we again obtain the linear system E = Bα

that we have to solve for α. For different learning rates and random distributions for
initializing α, we were not able to obtain a good fit to the Lennard-Jones potential with
gradient descent after 30 000 epochs, which is a relatively high number considering the
simplicity of the problem (linear, only 100 data points, only 14 coefficients), see the
blue curve in Fig. 5.12. Note that we have standardized the columns of the matrix B
to have zero mean and variance one27. In contrast, we would be able to describe the
curve accurately if we determined α with a least-squares regression. The reason for the
poor performance of the gradient descent is given by the fact that the Gaussian basis
functions are correlated. More precisely, given that we used basis functions with Gaussian
centers rµ from a uniform grid on the training range, 1.95 ≤ rµ ≤ 3.9, and σµ = 0.5 for
all µ, two neighbouring basis functions (similar rµ) are strongly correlated, e.g. the two
corresponding columns of B have a Pearson correlation coefficient of 0.99. As a result,
when coming closer to the least-squares solution during evolvement of the epochs, the
gradients and accordingly the changes of the coefficients α become smaller and smaller.
While, theoretically, gradient descent leads to the optimal solution due to the convexity
of the least-squares problem, in practice the needed epoch to reach the optimal solution
might be computational unfavourably high or the absolute value of the gradients might
come below a numerical tolerance. In the following we discuss three different approaches
that improve the accuracy of a linear model learnt by gradient descent.
If we decorrelate the columns of B by orthogonalizing them via the Gram-Schmidt pro-
cess instead of standardizing them, already after a few hundred epochs we were able to
obtain an accurate model, see the green curve in Fig. 5.12. Note that the Gram-Schmidt
orthogonalization of the column vectors does not change the column space of B (or the
function space from which the linear regression selects a model)28. Nevertheless, while
the Gram-Schmidt orthogonalization has provided a way to solve the considered problem
(efficiently) with gradient descent, its integration into the CTP approach is not straight-
forward, however, could be investigated in a future work.
We found that orthogonalizing the basis functions (not the columns of B) numerically
also improves the gradient-descent result. In practice, we perform the Gram-Schmidt
26If the standard squared-error loss is used, the least-squares solution (non-regularized linear regression)

is proven to minimize the loss.
27Furthermore, the model includes an intercept. This means that the model consists of a further regression

coefficient α0, such that f =
∑

µ
αµbµ + α0.

28This means that for any coefficient vector α assigned to a model of not orthogonalized columns of B,
there is a α∗ for a model based on B∗ with orthogonalized columns, that yield the same model.
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process on an interval [a, b], where the scalar product between two basis functions is given
by < bi(r), bj(r) >=

∫ b
a bi(r)bj(r)dr . In contrast to the orthogonalization of the columns

of B, the incorporation of the orthogonal basis functions into the CTP implementation is
straightforward. An alternative way to the numerically orthogonalized basis functions is to
use orthogonal basis functions of whom the analytical forms are tabulated (or recursively
obtained), e.g. orthogonal polynomials.
In general, the choice of the basis functions can be a key factor for obtaining an ac-
curate fit when using gradient descent. While also polynomial basis functions gave a
poor result when the data was only standardized, we found that with a Gaussian ba-
sis set, where all Gaussians are centered at zero (rµ = 0) and distinguished by their
widths σµ, we were able to fit the Lennard-Jones potential with the gradient-descent
solution accurately without any orthogonalization. In fact, the advantage of using zero-
centered Gaussians as basis functions when fitting a Lennard-Jones potential with
gradient descent was one reason for implementing them into the CTP of this work,
given also that we expect that two-body potentials, typically, adopt after fitting a shape
similar to a Lennard-Jones potential (i.e. repulsion at small and attraction at larger dis-
tances)29.

Still, despite the effort to improve the models when being fitted with gradient de-
scent, we may obtain a significant deviation from the optimal solution given by least-
squares regression. Considering a more realistic example, i.e. 1 541 silicon structures
and the same two- and three-body basis functions as used in Sec. 5.3.2, the mean
absolute errors on the fitted energies are 5.5 meV/atom and 0.9 meV/atom for stan-
dardized and orthogonalized columns of B, respectively, when using gradient descent,
versus 0.9 meV/atom in case of the least-squares regression. Although the deviation
between the solution of gradient descent with standardized data and the other two
methods might be small relative to our goal of predicting the ground state of a
compound with an accuracy of 100 meV/atom, it is not clear to which extent this
deviation might increase for larger and more complex data sets when using the CTP ap-
proach.

5.6 Conclusions and outlook

In this work, we have considered machine-learning (ML) potentials. Such models have
been used to approximate the potential-energy surface (PES) for a set of a few atomic
species types. By making ML potentials (specifically n-body potentials) explicitly species-
type dependent, we have investigated to which extent ML potentials can be generalized
towards the prediction across chemical composition space. We have termed these models
chemical-transferable potentials (CTP). In particular, we have evaluated the applicability

29When fitting Si (Sec. 5.3.2) or ZrO2 (Sec. 5.3.3) structures with a two- and three body potential (using
linear regression), we observed that the two-body parts of the potentials adopted this kind of shape,
independent of the choice of basis functions (except that they allow for an accurate fit).
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of the CTP to predict the ground-state and metastable crystal structures of materi-
als.

First we validated the ML potentials without the chemical-transfer approach.

• In Sec. 5.3.1, models for the prediction of formation energies and band gaps of
(AlxGayInz)2O3 compounds were built using a data set from the NOMAD 2018
Kaggle competition [72]. The models achieved a prediction accuracy which would
have ranked the models second place in the competition.

• We have considered nine solid phases of silicon and discussed to which extent the
equilibrium energy of a phase could be accurately predicted if the phase was not in
the training set (Sec. 5.3.2). We demonstrated that the predicted energetical ranking
of the phases, some of which were not in the training set, was accurately reproduced.

• We have shown that a ML potential fitted to ZrO2 compounds in Sec. 5.3.3 predicted
a sufficiently reliable cubic-tetragonal and monoclinic potential-energy surface (PES)
such that molecular-dynamics based properties or phenomena below 2 000 K like the
ferroelastic switching and monoclinic-tetragonal transition temperature could be well
reproduced.

The chemical-transfer approach was analyzed on a data set of 78 binary compounds in
eight different phases. This data is sparse and limited in the structure space. Building
reliable models from sparse data sets is a challenge with ML potentials that have been in-
troduced so far. The goal of this work was to construct models with the focus on a coarser
but robust prediction of the PES, particularly when only sparse training data is avail-
able.

• In a cross-validation test in Sec. 5.4.5, we have shown that the single unified model
determined with the CTP for all compounds stabilized the predictions of the separate
potentials determined for every compound independently.

• In order to evaluate the ability of the CTP to accurately predict the PES of a new
compound, we have performed a leave-one-compound-out cross validation in Sec.
5.4.6. Performing (at least for the cubic phases) symmetry-constrained relaxations to
search for phase equilibria, the CTP were able to correctly identify the energetically
lowest phase (within the set of eight phases) for 74 out of 78 left-out compounds.
We considered a phase of a compound as correctly identified if the true ground-state
phase (as determined by DFT) was inside a set of phases that were predicted to
be promising, i.e. the predicted lowest phase plus phases whose energy difference to
the lowest phase is below a tolerance of 0.1 eV/atom. If this tolerance was increased
to 0.11 eV/atom, the ground-state-prediction success rate of the CTP would be
76/78. For a comparison, we have included two state-of-the-art models into the tests,
i.e. the alchemical smooth overlap of atomic positions (ASOAP) and crystal graph
convolutional neural networks (CGCNN). Their respective ground-state-prediction
success rates are 67/78 and 68/78.
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• We analyzed the shapes of the energy-volume curves of the cubic phases that were
predicted by the CTP, ASOAP, and CGCNN in the leave-one-compound-out cross-
validation in Sec. 5.4.6. We found that the ASOAP and CGCNN predicted many
spurious minima for the cubic phases, indicating that the predicted PESs of the two
models might be overall unphysical.

• We have performed a random-structure search (a global search) for GaN with the
CTP, ASOAP, and CGCNN in Sec. 5.4.7. The three ML models were trained on all
binary compounds but GaN. In case of the ASOAP and CGCNN, many of the found
structures were energetically lower than the true ground-state phase wurtzite and
many structures exhibited unphysically small atomic pairwise distances. Moreover,
neither wurtzite and zinc-blende were identified in the random-structure search nor
any other phase from the training set. Furthermore, in case of the CGCNN, the
forces-based relaxations in the inital random-structure-search method could not be
performed due to the unphysical roughness of the CGCNN. Therefore, we introduced
a random-walk-based method for the relaxations to still obtain insights into the
CGCNN PES. In contrast to the ASOAP and CGCNN, the CTP was able to identify
the three most stable phases zinc-blende, wurtzite, and one with a space group 136.
The latter phase was not considered in the training set. Moreover, it was not known
for GaN before a recent prediction with DFT [118].

• By using the SISSO algorithm, we have demonstrated in Sec. 5.4.8 how descriptors
can be identified that predict which materials are harder to be described by the three
considered ML methods, CTP, CGCNN, ASOAP.

Our motivation behind using n-body potentials (explicitly in the simple additive form
as introduced in Def. 4.3) in the CTP was the intention to build models based on lower
terms in the n-body expansion to better control and inspect the flexibility of the models.
For instance, the presence of an explicit two-body potential allowed us to further imple-
ment physical constraints that promote the appearance of a repulsion in the two-body
terms which decreases the risk that a relaxation leads to structures with unphysically
small atomic pairwise distances as in the case of the ASOAP and CGCNN in the
random-structure search for GaN. Incorporating (more) physics (or experience) into the
mathematical formulas of the models, that is not specific to a general system, such that
the human intervention is kept limited for an autonomous application to large materials
databases, is a challenge and highly needed (see tests and discussion in Sec. 5.5.1).
The literature dealing with studies that demonstrate successful ML applications in materi-
als science is expanding fast. However, the knowledge of why a ML model was successful in
a shown application and what risks it might carry in a modified application stays generally
limited. In this work, we analyzed the requirement to better understand the limitations
of the models in order to develop more reliable models and our first step was given by
demonstrating that the typical quantity used to develop and benchmark ML potentials,
i.e. (averaged) errors on predicted energies of a set of given structures, is not necessarily
sufficient to evaluate the success and reliability of a potential in a crystal-structure search.
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One possible step towards gaining more insights into the ability of ML potentials for the
inter- and extrapolation of the structure space could be realized by a future work that
evaluates different ML methods on different compounds/data sets and yields insights into
the influence of the mathematical terms on limitations on reproducing the PES accurately
enough for the task of crystal-structure prediction.
Studies that have considered databases like the Materials Project, AFLOW, and Open
Quantum Materials Database [8] for training ML models have typically used only relaxed
structures. In the introduction (Sec. 5.1) of this chapter, we have shown (only for the
CGCNN) the risk that a data set consisting only of relaxed structures might lead to
models that have not learned that a structure is (mechanically) stable. If the CTP is
trained on databases as the ones mentioned above, one needs to use relaxed and unrelaxed
structures. If only relaxation paths are sufficient or also molecular-dynamics trajectories
need to be taken into account must be investigated in the future. Note that, for example,
the AFLOW database provides also relaxation paths and the NOMAD Repository is, in
general, not limited to relaxations, e.g. data also from molecular-dynamics simulations
are available.
We have analyzed the CTP for two- and three-body potentials. Future applications
might require the inclusion of higher-body terms. One possible example, whose imple-
mentation into the CTP framework is straightforward, is the (many-body) “embedded-
atom-method like” descriptor [125]. A further limitation of the CTP is their dependence
on local-environment descriptors. An explicit treatment of long-range effects is miss-
ing. A generalization of the CTP towards the description of electrostatic effects beyond
the cutoff radius might be realized by learning the partial charges of materials [85,136,137].
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6 Conclusions

In this thesis, we have introduced two novel artificial-intelligence-based approaches for
the prediction of the ground-state and metastable crystal structures of materials from
quantum-mechanical materials data.

The first approach is a multi-task-learning extension of a symbolic-regression- and
compressed-sensing-based scheme that identifies low-dimensional, meaningful, and inter-
pretable materials descriptors from a space of billions of candidate descriptors. We demon-
strated how only the multi-task extension, which determines a unified model describing
multiple crystal-structures with a single descriptor, enabled the prediction of a well-defined
structural stability and, therefore, the design of a low-dimensional crystal-structure map.
Furthermore, we highlighted how multi-task learning stabilized the models on incomplete
data sets considering the specific example of the stability of octet binary compounds among
five different phases. As opposed to single-task learning, our multi-task learning approach
was able to determine accurate predictive models also with high levels of incompleteness
(e.g. when 50% or more of the information was randomly missing). Moreover, we discussed
possible steps and related challenges towards a more global description of the structure
space.

In the second part of the thesis, we introduced the chemical-transferable potentials
(CTP). We demonstrated how the CTP transfer a certain class of machine-learning (ML)
potentials across chemical composition space by using a neural-networks-based scheme.
First we validated the class of ML potentials itself on different relevant materials-science
problems, i.e. excluding the chemical transfer approach and focusing on the prediction
across structure space for fixed compositions (a few set of atomic species types). We
have shown that our models would have ranked second in a Kaggle competition for
predicting the formation energies and band gaps of (AlxGayInz)2O3 compounds [72].
Moreover, we have presented that a ML potential fitted to ZrO2 structures predicted a
sufficiently reliable cubic-tetragonal and monoclinic potential-energy surface (PES) such
that molecular-dynamics-based properties (phenomena) below 2 000 K like the ferroelastic
switching and monoclinic-tetragonal transition temperature could be well reproduced. In
a further example, we demonstrated that the predicted energetical ranking of nine silicon
phases, some of which were not in the training set, was accurately reproduced.
After validating the structural parts of the CTP, we considered a sparse data set of octet
binary compounds in eight different phases to analyze the prediction across chemical
composition space. We found that the chemical-transfer approach that identified a unified
model for all binary compounds stabilized the ML potentials that were specific to a single

99



6 Conclusions

compound. The observation that the description of both structure and composition space
by a unified model leads to more reliable predictions than in case of models that focus
only on one of the two spaces is found in the application of both introduced approaches
of the thesis (multi-task learning and CTP). This is a central result of our work.
Next, we have performed extensive tests to evaluate to which extent the PES of a com-
pound not seen in the training set can be reproduced with an accuracy that allows to
identify the most stable structure(s) of that compound. One example is a cross-validation
test, where the structural stability of a test compound among eight phases was predicted
by a model trained on all but the test compound. For this purpose, at least the cubic
structures were obtained from a structure search with the ML model to determine the
equilibrium within a given cubic crystal symmetry. The CTP were able to correctly predict
the ground-state phases of 74 out of 78 test compounds. In contrast, two state-of-the-art
models for predicting potential energies from geometries, the ASOAP and CGCNN,
achieved ground-state-prediction success rates of 68/78 and 69/78, respectively. A crucial
distinction between the CTP and the two other methods was observed in the shapes of the
predicted cubic PESs: the ASOAP and CGCNN are more likely to predict an unphysical
energy-volume relationship than the CTP.
The tendency of ASOAP and CGCNN towards predicting PESs with spurious minima
already for simple cubic symmetries suggested that overall the predicted PESs are un-
physical. By performing a random-structure search only for GaN using models that were
trained on all compounds but GaN, we were able to demonstrate that the predicted PESs
of CGCNN and ASOAP were indeed overall unphysical: many of the found structures in
the random-structure search were energetically lower than the true ground-state phase
wurtzite and many structures exhibited unphysically small atomic pairwise distances.
Furthermore, neither the two most stable structures wurtzite and zinc-blende were identi-
fied in the random-structure search nor any other phase from the training set. Moreover,
the relaxations of the random structures with the CGCNN needed to be performed with
a random-walk based approach as the unphysically roughness of the predicted CGCNN
PES did not allow to perform a forces based relaxation. In contrast to the ASOAP and
CGCNN, the CTP was able to identify the three most stable phases zinc-blende, wurtzite,
and one with a space group 136. The latter phase was not considered in the training set.
Moreover, it was not known for GaN before a recent prediction with DFT [118].
We have, furthermore, shown using the SISSO method how descriptors can be identified
that predict which materials are harder to be described by the three considered ML meth-
ods, CTP, CGCNN, ASOAP. The introduced scheme to find such descriptors presents
a route to identify the applicability boundaries of a model in the materials space and
understand what further development step is needed for improving the model.
In summary, our work has demonstrated how ML potentials that were able to pre-
dict only across structure space could be extended towards the prediction across
chemical composition space. The results are promising: the PES of a new compound
can indeed be predicted with an accuracy that is needed to identify the most sta-
ble structures. However, the considered data set is limited and our analysis provides
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only a proof-of-concept. Aiming at a wide-scale exploration of the materials space,
our approach needs to be analyzed and possibly further developed on a larger data
set including more complex systems, in the future. In particular, such analysis must
involve a critical examination of the issue to which extent the ML based approach ac-
celerates crystal-structure prediction and materials discovery compared to using DFT
only.
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A Derivation of the MT-SISSO correlation
measure

MT-SISSO determines models in an iterative process. At each SIS step, it evaluates which
single descriptors are closest to the current residuals Rq. We determine the closest descrip-
tor j∗ by:

j∗ = arg min
j

min
Cj∈RQ

Q∑
q=1

1
Nq

∥∥∥Rq −Dq
jC

q
j

∥∥∥2

2
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Let us define the least-squares solution with a vector of lower case letters:
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In the least-squares regression, Rq is orthogonally projected onto the space spanned by the
vectorDq
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A Derivation of the MT-SISSO correlation measure

The least-squares solution is given by cj = 1
‖Dq

j ‖
2
2
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j ,R
q〉. Hence:

⇔
Q∑
q=1

1
Nq

1
‖Dq

j∗‖22

〈
Dq
j∗ ,Rq

〉2
≥

Q∑
q=1

1
Nq

1
‖Dq

j‖22

〈
Dq
j ,R

q
〉2
. (A.10)

AllDq
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if the vectors are standardized. Thus:
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⇔ θj∗ ≥ θj . (A.13)

Thus, at each SIS step, we search for the descriptors with the largest linear correlation
scores θj .
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B Determining well-defined phase diagrams
with multi-task SISSO

MT-SISSO determines the same descriptors for all tasks (relative stabilities). As a con-
sequence, the crystal-structure stability among five phases can be uniquely described
by four independent relative stabilities. For example, for any three structures α, β,
γ, the difference of the predicted energies E(α) − E(γ) is by construction equal to
(E(α)−E(β))− (E(γ)−E(β)). This can be shown by considering the least-squares solu-
tion

cα,γ = (DTD)−1DT(Eα −Eγ), (B.1)

which determines during the `0 step of the MT-SISSO algorithm the model
of the task corresponding to the target E(α) − E(γ). Here, Eµ denotes
the vector of training energies of structure µ and D is the descriptor ma-
trix made of the Ω-dimensional descriptor that was identified by MT-SISSO.
The prediction of any (new) data point represented by d (e.g. a row of D)
yields:

(E(α)− E(β))− (E(γ)− E(β)) = dcα,β − dcγ,β (B.2)

= d
[
cα,β − cγ,β

]
(B.3)

= d(DTD)−1DT
[
(Eα −Eβ)− (Eγ −Eβ)

]
(B.4)

= d(DTD)−1DT [Eα −Eγ ] (B.5)

= dcα,γ (B.6)

= E(α)− E(γ). (B.7)

The important condition to derive the above relationship is that for both (all) tasks the
same descriptors are used, which is the case in MT-SISSO. Note that we have assumed
that for both tasks (target properties) (E(α) − E(β)) and (E(γ) − E(β)) the same
materials were included in the training data set. However, in an incomplete database,
this might not be the case. In such a case, in a pre-step, missing target-property values
need to be filled by the predictions of models that were fitted to the incomplete data.
For instance, refitting the model to the filled data set will not change the least-squares solu-
tion.
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C Octet binaries data set

The OB data set consists of 4 840 structures and DFT cohesive energies with 78 octet bi-
nary compounds in eight different crystal structure prototypes: zinc-blende (ZB), rock-salt
(RS), CsCl, NaTl, NiAs, CoSn, NbP, CrB. Details about the space groups and number
of atoms in the unit cell are listed in in Tab. C.1. Information about the atomic and
lattice-vector coordinates can be found in [126]. The 78 compounds are given by:
LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbF, RbCl, RbBr,
RbI,CsF, CsCl, CsBr, CsI, AgF, AgCl, AgBr, AgI, CuF, CuCl, CuBr, CuI, BeO, BeS,
BeSe,BeTe, MgO, MgS, MgSe, MgTe, CaO, CaS, CaSe, CaTe, SrO, SrS, SrSe, SrTe, BaO,
BaS,BaSe, BaTe, ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, BN, BP, BAs, BSb,
AlN,AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, SnGe, SnSi, SnC,
GeSi, GeC, SiC.
Note that in Chapter 3, also the four elemental solids C, Si, Ge, Sn are included in the data
set and considered as octet binaries.

Every (compound, phase) tuple is characterized by eight-point energy-volume curves. An
exception is the CrB phase, where only one data point per compound is given, because
the reference work [63] used a different optimization technique for the CrB phase than for
the other phases. The equilibria of the seven phases, whose crystal symmetries depend
on one or two degrees of freedom, were determined by Birch-Murnaghan fits. Using the
Birch-Murnaghan fit also for the CrB phase was, however, not possible because its crystal
symmetry depends on five degrees of freedom. Instead, a symmetry-constrained relaxation
was performed and we used only the equilibrium structures.
For 56 compounds, there are two energy-volume curves present in the CoSn phase,
each with exchanged occupation of the sites in the crystal by the atomic species
types (AB and BA). The data set does not contain both CoSn(AB) and CoSn(BA)
for all 78 compounds because the reference work [63] aimed to find only the en-
ergetically lower structure of the two types. For compounds who showed already
in estimations, performed with light numerical DFT settings, a large energy gap
between the two types, only the lower one was calculated with more accurate set-
tings.

Fig. C.2 shows the correlation of the nearest neighbour distance inside a struc-
ture with the dimer equilibrium distance and a descriptor that depends on or-
bital based radii. Only structures at the equilibria of the corresponding phases are
shown.
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C Octet binaries data set

Prototype Space group Crystal system Natoms in unit cell
ZB 216 cubic 2
RS 225 cubic 2
CsCl 221 cubic 2
NaTl 227 cubic 4
NiAs 194 hexagonal 4
CoSn 191 hexagonal 6
NbP 141 tetragonal 4
CrB 63 orthorhombic 4

Table C.1: Details about the crystal-structure types present in the octet binaries
data set.
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Figure C.1: Same figure as the right panel of Fig. 5.6, however, with all training
data points instead of only equilibrium structures.
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Figure C.2: Correlation of the nearest neighbour distances with the equilibrium
dimer distances (left) and

√
rs(A)rs(B) (right) for the octet binaries data set. The

dimers are given by the same species tuples A-B that determine the AB compounds.
rs represents the radius where the radial probability density of the valence s orbitals
is maximal. More details about the figure can be found in Fig. 5.6.
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D Lists of model hyperparameters

cutoff radius 6 Å
cutoff-transition width 2 Å
widths of zero-centered two-body Gaussians 0.7, 1.0, 1.3, 1.5, 2.0, 3.0, 4.0
widths of zero-centered three-body Gaussians 0.6, 0.8, 1.0, 1.3, 1.5, 1.7, 2.0,

2.5, 3.0, 4.0, 5.0

Table D.1: Hyperparameters of the potentials applied to the NOMAD 2018 Kaggle
competition (Sec. 5.3.1).

cutoff radius 5 Å
cutoff-transition width 2 Å
widths of zero-centered two-body Gaussians 0.5, 0.7, 1.0, 1.3, 1.5, 2.0, 3.0, 4.0
number of three-body Gaussians 432
widths of three-body Gaussians 1.3

Table D.2: Hyperparameters of the potentials for the description of silicon in its
different phases (Sec. 5.3.2).

cutoff radius for the 2b 5 Å
cutoff radius for the 3b 4 Å
number of sparse points 2b 12
number of sparse points 3b 300
weight δ2b on 2b potential 2
weight δ2b on 2b potential 0.6
sparse method “uniform”
regularization parameter σenergy 0.0014
regularization parameter σforce 0.1

Table D.3: Hyperparameters of the potentials for the description of the thermody-
namics of zirconia (Sec. 5.3.3), as implemented in the QUIP package [69].
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D Lists of model hyperparameters

cutoff radius 6 Å
cutoff-transition width 6 Å
widths of zero-centered two-body Gaussians 0.5, 0.7, 1.0, 1.5, 2.0, 3.0
two-body Gaussians with negative αµ 0.5, 0.7
two-body Gaussians with positive αµ 1.0, 1.5, 2.0, 3.0
number of three-body Gaussians 128
widths of three-body Gaussians 1.5
number of hidden layers in two-body neural network 1
number of hidden layers in three-body neural network 1
number of neurons in two-body neural network 500
number of neurons in three-body neural network 500
activation function in two-body neural network ReLU
activation function in three-body neural network ReLU
batch size 32
number of epochs 400

Table D.4: Hyperparameters of the chemical-transferable potentials as used in Sec.
5.4.6.

cutoff radius 5 Å
cutoff-transition width 1 Å
nmax 9
lmax 9
Gaussian width 0.5
ζ 2

Table D.5: Hyperparameters of the alchemical smooth overlap of atomic positions
(ASOAP) as used in Sec. 5.4.6

max. number of neighbours 12
cutoff radius 8 Å
minimum radius 0 Å
radius steps for the Gaussian centers 0.2 Å
length of atomic feature vector 64
length of hidden-layer feature vector 64
number of convolutional layers 4
batch size 256
number of epochs 5000

Table D.6: Hyperparameters of the crystal graph convolutional neural networks
(CGCNN) as used in Sec. 5.4.6.
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E Machine-learning potentials for fixed
compositions

E.1 Phases of silicon

E.1.1 Structural descriptor map

The regression coefficients α of the ML potentials used in this work are optimized within a
linear regression problem, as described in Sec. 4.3.2. The linear system to fit the energies is
written:

E = Bα =
(
B2b B3b

)(α2b

α3b

)
(E.1)

The components of the matrix B contain structural information of the crystals repre-
sented by sums of basis functions over the the atomic environments in the crystal. In other
words, a row of B is a vectorial descriptor representing a structure. Descriptors based
on basis functions that are summed over the atomic environments were used to represent
crystal structures and predict energies with kernel ridge regression in Ref. [81]. Given the
fact that Eq. E.1 determines a linear model, a principal-component analysis is well suited
to decompose the summed structural information, i.e. into contributions with the highest
variances. The two leading principal components of the structural descriptors used to fit
the energies of 1 451 silicon structures in nine phases are shown in 5.3. The three leading
principal components are shown in Fig. E.1. The first two components together describe
98.8% of the variance of the data, the first four components each describe 73.2%, 25.6%,
1.0%, and 0.1%.
The structure map in Fig. 5.3 is only partially visualizing the distribution of the struc-
tures in the descriptor space. In fact, the two-dimensional descriptor is not able to
separate the phases into non-overlapping domains, and two structures of different phases
might not be distinguishable. We find, however, that when using the full high dimen-
sional descriptor B instead of its first principal components, the phases are separable
into non-overlapping domains. Performing a classification of the data into their phase
labels with a linear support vector machine already yields an almost perfect pairwise
separation of the phases. Only twelve data points were misclassified and belong to
the β-Sn and sh phase. We checked that with a Gaussian kernel based support vec-
tor machine the two phases can be separated perfectly into non-overlapping domains
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E Machine-learning potentials for fixed compositions
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Figure E.1: The three leading principal components of the structural descriptors used
to fit the energies of 1 451 silicon structures in nine phases. Further twelve structures
in the second hcp phase are added.

which are each fully connected. The connectivity is determined by performing a walk
along a line (in the descriptor space) between every pair of structures of the same
phase and ensuring that the predicted class does not change during the walk. Note
that one cannot conclude from the perfect classification alone that two regions are non-
overlapping because with a sufficiently small Gaussian width, a Gaussian kernel based
support vector machine is, in general, able to classify any data set perfectly, if two
points of different classes do not have the same descriptor. The connectivity-test is needed
to clarify if the model is not alternating the predicted class between two points of the same
class.

E.1.2 Comparison of the diamond and hexagonal diamond structure

Fig. E.2 shows the neighbours of an atom in the diamond and hexagonal diamond struc-
ture, both at the equilibrium. More precisely, the neighbours within the cutoff of the ML
potential are shown. Note that every atom within a structure has the same structural
environment when considering diamond or hexagonal diamond. When comparing diamond
to hexagonal diamond, the relaxed structures of the two phases have (almost) the same
22 neighbours (brown atoms in Fig. E.2), i.e. the positions differ from each other on
average by 0.01 Å. Further six neighbours in the case of diamond (blue atoms) and four
in hexagonal diamond (orange atoms) yield the major difference of the both structures
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E.1 Phases of silicon
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Figure E.2: Positions of neighbours around a central atom in the diamond and
hexagonal diamond phase. The central atom is located at the origin.

and the apparent volume and energy difference predicted by our ML potential.
Let us consider a model trained on all phases but diamond (Fig. 5.2 b)). The volume
difference between hexagonal diamond and diamond is predicted to be 0.27 Å3/atom and
the energy difference 71 meV/atom. In comparison, the reference DFT values are 0.01
Å3/atom and 11 meV/atom. Removing the energy and forces contributions of the ML
model that are based on the neighbours that distinguish the two structures significantly
(the blue and orange markers in Fig. E.2), the differences become 0.01 Å3/atom and 3
meV/atom for rerelaxed structures.
Similarly, we observed deviations of the predicted quantities of diamond and hexago-
nal dimanond for the GAP of Ref. [29] that we retrained, in this work, only on bulk
phases without diamond, see Fig. E.3 b). While the energy difference was predicted
with 36 meV/atom more accurately than in case of our model, the volume difference
is given by 1.73 Å3/atom. If the GAP is trained on all (solid) phases but both dia-
mond and hexagonal diamond, the predictions become more accurate (Fig. E.3 c)), i.e.
0.4 Å3/atom and 20 meV/atom. It is, however, not clear why the additional exclusion
of the hexagonal diamond phase from the training data improves the predictions of the
GAP.

E.1.3 Performance of the reference machine-learning potential

In order to compare the performances of the ML potential of this work and the GAP of
Ref. [29], we performed the tests demonstrated in Fig. 5.2 for the GAP, using the same
training data of the solid phases. The results are shown in Fig. E.3. The errors of both
potentials, our ML potential and retrained GAP, are tabulated in Tab. E.1.
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E Machine-learning potentials for fixed compositions
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Figure E.3: Predictions of the reference Gaussian approximation potential [29] as a
comparison to the results of our potential (Fig. 5.2). The figure shows energy-volume
curves for nine phases of silicon. The solid lines represent the reference DFT energies,
the dashed lines the predictions of the ML potential. The curves are obtained by
varying the volume and performing at each volume a constant-volume and fixed-
crystal-symmetry relaxation. a) shows the predictions of a potential fitted to a data of
all nine phases. In b) each phase was once left out from the training set and predicted
from a potential trained on the remaining phases. Furthermore, the prediction of a
second hcp phase (hcp’) was added using a potential trained on the initial nine phases.
In c1) - c4) the nine phases are divided, based on volume and energy similarity, into
four groups: (diamond, hex. dia.), (bc8, st12), (β-Sn, sh), and (hcp, bcc, fcc). Each
group is once left out into a test set and predicted by a potential trained on the
remaining phases.

The performance of the two potentials is comparable. While the GAP was able to
yield a slightly more accurate model when all phases were included in the training
set (3 meV/atom vs 1 meV/atom for MAE of predicted energies in test a)), our po-
tential yields a lower average prediction error on phases not seen in the training set,
i.e. 45 meV/atom vs 60 meV/atom for energies in test b) and 78 meV/atom vs 85
meV/atom for energies in test c). However, the reference potential is able to better
recognize similar structures as similar, e.g. the MAE for the energy differences within
the groups in test c) is 12 meV/atom for the reference potential and 78 meV/atom
for the one of this work. Note that in case of the group with the three phases the en-
ergy difference is built with respect to the lowest energy phase as determined by DFT.
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E.1 Phases of silicon

Energy [meV/atom] Volume [Å3/atom]
a) b) c) a) b) c)

Our Ref. Our Ref. Our Ref. Our Ref. Our Ref. Our Ref
diamond 0 0 64 47 116 180 0.0 0.0 0.4 1.8 1.4 0.3
hex. dia. 8 0 45 71 202 189 0.1 0.0 0.3 0.1 0.8 0.1
bc8 5 0 11 25 2 92 0.1 0.0 0.0 1.1 1.1 1.0
st12 2 1 89 104 50 96 0.1 0.1 0.7 1.4 0.9 0.8
β-Sn 1 0 15 2 48 19 0.0 0.0 0.1 0.1 0.8 1.8
sh 0 1 5 9 32 1 0.1 0.0 0.1 0.1 0.6 2.1
hcp 2 0 45 61 56 59 0.1 0.1 1.0 1.1 0.7 0.2
hcp’ - - 74 121 - - - - 0.0 1.0 - -
bcc 3 3 48 51 9 49 0.0 0.0 0.6 1.4 1.8 1.2
fcc 3 5 57 105 188 75 0.4 0.1 0.4 1.3 1.3 0.4
MAE 3 1 45 60 78 85 0.1 0.0 0.4 0.9 1.1 0.9

Table E.1: Prediction errors of our ML potential and the Gaussian approximation
potential trained in this work for the tests described in Fig. 5.2.

E.1.4 Tables of predicted values

The predicted cohesive energy, volume, bulk modulus, and derivative of the bulk modulus
within the tests described in Fig. 5.2 are listed in E.2 and E.3. The bulk modulus and
its derivative were obtained from a fit to the Birch-Murnaghan equation of states. Using
the Maxwell construction, we have calculated the diamond-to-β-Sn transition pressure, see
Tab. E.4.
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Cohesive energy [eV/atom] Volume [Å3/atom]
DFT Our ML potential DFT Our ML potential

a) b) c) a) b) c)
diamond 4.633 4.633 4.697 4.517 20.4 20.4 20.0 18.9
hex. dia. 4.622 4.630 4.576 4.420 20.3 20.5 20.7 19.5
bc8 4.470 4.475 4.481 4.468 18.4 18.3 18.4 17.3
st12 4.461 4.459 4.372 4.411 18.3 18.4 19.0 17.5
β-Sn 4.311 4.312 4.326 4.360 15.4 15.4 15.3 16.2
sh 4.289 4.289 4.294 4.257 15.1 15.1 15.0 15.7
hcp 4.072 4.074 4.026 4.127 14.5 14.6 13.5 13.8
hcp’ 4.198 - 4.272 - 16.4 - 16.4 -
bcc 4.061 4.058 4.012 4.070 14.7 14.7 14.1 12.9
fcc 4.043 4.040 4.101 4.231 14.6 15.0 15.0 13.3

Table E.2: Predicted equilibrium cohesive energies and volumes of our ML potential
for the tests described in Fig. 5.2.

B [Mbar] B’
DFT Our ML potential DFT Our ML potential

a) b) c) a) b) c)
diamond 0.88 0.89 0.98 0.95 4.3 3.4 5.4 9.6
bc8 0.83 0.89 0.94 0.73 4.3 2.9 3.1 6.5
bcc 0.89 0.67 0.59 1.14 4.3 9.2 10.7 14.1
fcc 0.77 0.68 1.01 1.66 4.5 2.2 2.1 7.4

Table E.3: Predicted bulk modulus B and its derivative B’ (with respect to pressure)
of our ML potential for cubic phases within the tests described in Fig. 5.2.

DFT a) b) c)
left out β-Sn left out diamond left out β-Sn left out diamond

112 112 106 140 123 92

Table E.4: Predicted diamond-to-β-Sn transition pressure (in kbar) of our ML po-
tential for the tests described in Fig. 5.2.
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E.2 Thermodynamics of ZrO2
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Figure E.4: DFT-PBEsol energies of configurations from molecular-dynamics simu-
lations for ZrO2 in the tetragonal, cubic and monoclinic phase, each for three different
temperatures using 96 atoms in the unit cell.

(a) ML-versus-DFT scatter plot for energies.

1000 2000
Temperatur [K]

0.001

0.002

0.003

0.004

0.005

M
AE

 [e
V/

at
om

]
Energy

1000 2000
Temperatur [K]

0.10

0.15

0.20

0.25

0.30

0.35

M
AE

 [e
V/

Å2 ]

Forces

(b) Dependence of the mean absolute error (MAE)
on temperature and crystal structure.

Figure E.5: Prediction performance of GAP(PBEsol) evaluated for energies and
forces on a test set of 23 800 data points.

E.2 Thermodynamics of ZrO2

A data set of 24 000 ZrO2 configurations from molecular-dynamics simulations performed
using DFT-PBEsol was considered, see Fig. E.4. A training data set of 350 configurations
was constructed where 200 were randomly selected from the molecular-dynamics trajecto-
ries and 150 data points were taken from the cubic-tetragonal PES (Fig. 5.5c). We fitted a
two-body and three-body Gaussian Approximation Potential [32] to the energies and forces
of this training data. The prediction errors of the potential, termed GAP(PBEsol), on the
remaining 23 800 configurations of the molecular-dynamics trajectories are shown in Fig.
E.5.
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∆EDFT [meV/atom] ∆EML [meV/atom]
PBEsol 23 25
HSE06 25 26

Table E.5: Tetragonal-monoclinic energy differences for relaxed structures using DFT
and the ML potential.

Figure E.6: Thermodynamic integration performed for the monoclinic and tetragonal
phase at 1 000 K. The reference potential is given by the harmonic potential. A 96-
atoms unit cell was used.

E.2.1 Monoclinic-tetragonal phase transition

Crystal-structure relaxations were performed in the tetragonal and monoclinic phase
for both DFT and the ML potential. The tetragonal-monoclinic energy differences
∆E = Et − Em of the relaxed structures predicted by the ML potentials are in good
agreement with the DFT ones (Tab. E.5). In order to calculate the monoclinic-
tetragonal transition temperature at hybrid level, first the free energies at 1 000 K
were calculated via thermodynamic integrations (Eq. 5.6) for both the monoclinic
and tetragonal phase using the GAP(HSE06) and reference harmonic potentials based
on the relaxed structures. The integration grid is given by five λ-points, i.e. 0 and
1 plus three sample points according to the Gauss-Legendre quadrature. The re-
sults give anharmonic contributions of -0.002 eV/atom for the tetragonal and -0.007
eV/atom for the monoclinic case (Fig. E.6). By integrating the calculated free ener-
gies along the (inverse) temperature (Eq. 5.7) the transition temperature was determined.
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F Prediction across chemical composition
space

F.1 Choosing parameters of the chemical-transferable potentials

The parameters can be separated into two categories, the parameters of the potential (for
a fixed composition) and the parameters of the neural network for the chemical-transfer
learning. For the tests in Sec. 5.4.5 and 5.4.6, the potential parameters were chosen to
keep the potentials through a smaller number of basis functions simple (compare CTP
parameters in Tab. D.4 to the ones of the silicon potential in Tab. D.2).
We have chosen a neural network with one hidden layer that consists of 500 neurons
with ReLU activation functions, see left panel of Fig. F.1. While deeper architectures
could be investigated, we consider the performance of the neural network with one hidden
layer in Sec. 5.4.5 and 5.4.6 as sufficient. Furthermore, the hidden layer finds a nonlinear
representation of the input layer (atomic descriptors) to interpolate the chemical similarity
of only 78 compounds, a relatively small number of data points compared to standard
deep-learning applications.
The right panel of Fig. F.1 shows a convergence of the validation error at about the
400th epoch. In contrast, the training errors keeps decreasing at an epoch of 2 000. In
the test in Sec. 5.4.6, we have run 400 epochs in every cross-validation step, but used
the weights determined at an epoch that optimizes the validation error within the 400
epochs for the final model. While one might take the optimal weights from a longer run
of, for example, 10 000 epochs with the aim to further decrease the validation error (only)
slightly, its influence on overfitting the model to the training and validation set is not
clear. For instance, the distribution of information in the validation set does not represent
the one in the test set. More precisely, the validation set consists of randomly selected
(compound, phase) tuples, where no compound is left completely out of the training set,
while the test set in Sec. 5.4.6 is a compound left out completely with all its phases. The
reason of not designing a validation set of compounds that are completely left out of the
training set is the small sample size of compounds in the octet binaries data set and consid-
ering the demanding task of predicting the potential-energy surface of a left out compound.
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F Prediction across chemical composition space
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Figure F.1: Root mean square errors (RMSE) on energies in dependence of neural
network parameters of the chemical-transferable potentials (CTP). The errors are
evaluated on a validation set that consist of 10% of randomly selected (compound,
phase) tuples of the octet binaries data set. Every 20th epoch the minimum error
of the past 20 epochs is plotted only. The same neural-network architecture is used
for both the two- and three-body part of the potential. A neural network with one
hidden layer and ReLU activation functions is implemented. The left panel shows
the dependence of the error on the number of nodes in the hidden layer. The right
panel compares training and validation error for a neural network with 500 nodes.
The validation error is converged at around the 400th epoch.

F.2 Choosing parameters of the alchemical smooth overlap of
positions

We have varied selected hyperparameters of the alchemical smooth overlap of positions
(ASOAP) in a leave-one-compound-out cross validation. The leave-one-compound-out
cross validation is described in Sec. 5.4.6, the evaluation of the performance in Sec.
5.4.4. However, in contrast to the investigation in Sec. 5.4.6, the dependence on the
hyperparameters is tested on a smaller data set of only four instead of eight crystal-
structure types, i.e. ZB, RS, CsCl, and NiAs. Besides the dependence of the model on the
cutoff radius and the exponent ζ in Eq. 4.25, we considered two sets of atomic descrip-
tors:

D1 = {Z,G,R, IP,EA, rs, rp}, (F.1)

D2 = {rvdW, χ}. (F.2)

The sets consist of the following atomic properties: the atomic number Z, group G and row
R in the periodic table, ionization potential IP , electron affinity EA, radii rs and rp of the
valence s and p orbitals where the radial probability density is maximal, van-der-Waals
radius rvdW, and Pauling electronegativity χ. For the alchemical similarity καβ in Eq. 4.33
we used a Gaussian kernel. In case of D2 the Gaussian kernel depends on two Gaussians
widths, one for each atomic property, following Ref. [67]. Accordingly, if considering also
the regularization parameter of the kernel ridge model, the hyperparameter optimization
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F.3 Stabilization of the machine-learning potentials by connecting the chemical space

Atomic descriptors rc [Å] ζ r RMSE(∆E) [eV/atom] Rmin, 1
D1 6 2 67/78 1.26 0.69
D1 4 2 73/78 0.24 0.75
D1 4 1 70/78 0.21 0.73
D2 4 2 61/78 0.51 0.45
D2 4 1 60/78 0.40 0.60

Table F.1: Prediction results of the alchemical smooth overlap of positions (ASOAP)
in a leave-one-compound-out cross validation in dependence of hyperparameters. The
test differs from the leave-one-out-compound cross validation in 5.4.6 by the smaller
data set of only four instead of eight crystal structure types, i.e. ZB, RS, CsCl, and
NiAs. The set of atomic descriptors D1 and D2 are defined in the text (App. F.2), rc
represents the cutoff radius, and ζ is the exponent in Eq. 4.25. The success rate r shows
how many compounds had their ground states predicted correctly within a tolerance
of 0.1 eV/atom. RMSE(∆E) represent the root-mean-square errors for the predicted
energy differences. Rmin, 1 gives the fraction of cubic surfaces that were predicted to
have only one minimum.

is performed on a cubic grid. In contrast, in case of D1 we implemented only a single
Gaussian width for all atomic properties, to keep the computational expense of the
hyperparameter-grid search low, i.e. the Gaussian width and the regularization parameter
of the kernel ridge model were optimized on a square grid. The results are tabulated in
Tab. F.1.
We found a significant better performance of the ASOAP when using D1 in-
stead of D2. Furthermore, a model based on a cutoff radius of 4 Å is more
accurate than one of 6 Å. Varying ζ between 1 and 2 does not influence
the model performance significantly when using the set of atomic descriptors
D1.

F.3 Stabilization of the machine-learning potentials by
connecting the chemical space

In order to demonstrate the benefit of the CT approach to using no CT learn-
ing, we have performed for each of the two methods a different cross-validation
test that allows for the comparison of the two methods, see Sec. 5.4.5. Here,
we only show the results of the test using errors on cohesive energies (Fig.
F.2), as opposed to Sec. 5.4.5 where we used errors on energy differences (Fig.
5.7).
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Figure F.2: Predicted vs reference cohesive energies from cross-validation tests that
evaluate the prediction performance of the (equilibrium) energies of phases left out
from the training sets. The tests were performed for the chemical-transfer (CT) and
non-CT approach. For more information see Sec. 5.4.5.

F.4 Probabilistic model for the leave-one-compound out cross
validation

As described in Sec. 5.4.4, we consider the prediction of a ground state as successful
if the reference (DFT) ground-state phase is inside the set of predicted ones where the
set consists of the predicted lowest energy phase and the ones which lie maximally 0.1
eV/atom above. The success rates for identifying the ground states of the compounds
in the cross-validation test determined for the three ML methods in Sec. 5.4.6 provide
information for a comparison of the performance between the three methods. However,
the three rates alone do not reveal to which extent the methods were capable of solving a
demanding problem. For instance, a model that would predict the same energy for every
data point would achieved a success rate of 78/78 because the predictions would count
any phase into the set of possible ground states. Using the reference value of 1/8 = 9/72
(one of eight phases) as a baseline to benchmark the ML models is one meaningful choice.
Still the ML methods predict in some cases more than one phase and a better reference
might be a value based on the distribution of the data set, as described in the following.
We define a model that assigns to every combination of phases a probability to be the
set of possible ground-state phases, where the probability is given by the frequency of a
set with competing ground-state phases (as given by DFT energies) within a tolerance of
0.1 eV/atom, count over the 78 compounds in the reference data. For example, the tuple
(RS, ZB) defines a set of competing ground-state phases for a compound if one of the
two phases is the ground state, the energy difference between them is not higher than
0.1 eV/atom, and the energy difference of all other phases to the ground state is higher than
0.1 eV/atom. We find that (RS, ZB) is the set of competing ground-state phases for 5/78
compounds. Then, for any compound, the probabilistic model predicts that (RS, ZB) is the
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F.5 Leaving out Ga-or-N or Sr-or-O based compounds versus leave-one-compound-out
cross validation
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Figure F.3: Absolute errors of a leave-one-compound-out cross validation in depen-
dence of the percentile.

set of promising ground-states with a probability of 5/78. The success rate in the leave-one-
compound-out cross validation corresponds to the outcome of predicting at each step the
set of promising ground-state phases and repeating the cross-validation until the appear-
ance rate of the phase combinations converges against the respective probability. A predic-
tion is counted as correct if the DFT ground state is inside the set of promising candidates.
The resulting success rate is approximately 44/78. Note that only 13 of 28 possible phase
tuples appear in the reference data. Accordingly the probability for 15 combinations is
zero.

F.5 Leaving out Ga-or-N or Sr-or-O based compounds versus
leave-one-compound-out cross validation

In Sec. 5.4.6, Ga-or-N or Sr-or-O based compounds were left out to be tested.
Tab. F.2 compares the result of this test to results of the same compounds
in the leave-one-compound-out cross validation, also performed in Sec. 5.4.6.

F.6 Random-structure search for GaN

Let Aref be the cell matrix (lattice vectors as rows) of the eight-atoms cubic supercell
of ZB-GaN relaxed by DFT. The lengths of the lattices vectors are given by 4.5 Å. 300
random structures are generated based on Aref. Each random structure is constructed in
the following way:
First a strain matrix F = I + R is built, by adding to the identity matrix I a ran-
dom matrix R with values from a uniform distribution between -0.2 and 0.2, and,
furthermore, adding the constraint that the mean of the diagonal elements of F
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F Prediction across chemical composition space
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Figure F.4: Energy-volume curves predicted by the chemical-transferable potentials
(CTP). 78 binary compounds in four cubic phases are considered. The phases are:
ZB (blue), RS (orange), CsCl (green), NaTl (red). The volume intervals are given
by 0.8rcov < dnn < 1.3rcov. Furthermore, the curves are constrained by a maximum
energy value of 10 eV/atom.
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F.6 Random-structure search for GaN
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Figure F.5: Energy-volume curves predicted by the alchemical smooth overlap of
atomic positions (ASOAP). 78 binary compounds in four cubic phases are considered.
The phases are: ZB (blue), RS (orange), CsCl (green), NaTl (red). The volume inter-
vals are given by 0.8rcov < dnn < 1.3rcov. Furthermore, the curves are constrained by
a maximum energy value of 10 eV/atom.
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Figure F.6: Energy-volume curves predicted by the crystal graph convolutional neu-
ral networks (CGCNN). 78 binary compounds in four cubic phases are considered. The
phases are: ZB (blue), RS (orange), CsCl (green), NaTl (red). The volume intervals
are given by 0.8rcov < dnn < 1.3rcov. Furthermore, the curves are constrained by a
maximum energy value of 10 eV/atom.
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F.6 Random-structure search for GaN

Ga, N Sr, O
r ∆E V r ∆E V

CTP 6/7 (7/7) 0.64 (0.64) 2.2 (2.1) 10/10 (9/10) 0.25 (0.23) 2.2 (1.1)
ASOAP 6/7 (6/7) 1.14 (1.10) 3.6 (2.5) 7/10 (7/10) 0.57 (0.50) 3.7 (2.6)

Table F.2: Prediction results of the chemical-transferable potentials (CTP) and al-
chemical smooth overlap of positions (ASOAP) in a test in which all compounds that
include either Ga, N or both are left out to be predicted and one in in which all
compounds with Sr or O are left out. The success rate r shows how many compounds
had their ground states predicted correctly within a tolerance of 0.1 eV/atom. ∆E
and V represent the root-mean-square errors for the predicted energy differences and
volumes, respectively. The values in the brackets correspond to the results for the
same compounds in a leave-one-compound-out cross validation (Sec. 5.4.6).
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Figure F.7: Crystal-system distribution of the identified structures in the random-
structure searches of Sec. 5.4.7 performed for the CTP, ASOAP and DFT. The tick-
labels on the x-axis are the abbreviations for (from left to right): triclinic, monoclinic,
orthorhombic, tetragonal, trigonal, hexagonal, and cubic.
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Figure F.8: “Chains” of two hexagonal crystal structures identified in a random-
structure search (RSS) for GaN using DFT. Left: the wurtzite (WZ, space group
186) structure is represented. Right: a similar structure with space group 187. In
principle, the right structure can be obtained from WZ by only exchanging some
atoms (plus further adjustments of the exact lattice lengths and one atomic-positions
related degree of freedom). While WZ is characterized by an alternating Ga-N order
along the vertical axis, in case of the right structure there is either a Ga-Ga or N-
N order. Furthermore, the smallest bond in the right structure is given by the N-N
bonding (blue). The next neighbour of a N atom is given only by a N atom, i.e. the
same atom type. The property, that the next-neighbour shell of an atom is only given
by atoms of its atom type, was not found in any of the structures identified by the
CTP in the RSS in Sec. 5.4.7. The DFT energy difference of the right structure to
WZ is 0.556 eV/atom.
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Figure F.9: GaN structures from random-structure searches (RSS) in an energy-
volume scatter plot. The result of the RSS with 300 initial random structures per-
formed for the CTP, ASOAP, and CGCNN is shown. In contrast to the searches in
Fig. 5.9, which were performed via relaxations using gradients (forces), here the PES
was optimized using a random walk on the PES. That is, at each step of the algorithm,
a configuration with randomly changed coordinates of the atomic positions and lattice
vectors is suggested and only accepted if its energy is lower than the previous con-
figuration. Note that the energies of some structures might have not fully converged.
However, the energy-volume distributions of the CTP and ASOAP are comparable
with the ones in Fig. 5.9.
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F.7 Unphysical roughness of the crystal graph convolutional neural networks in the
potential-energy surface

should equal one. Moreover, F is symmetrized such that Fij = Fji. The cell of the
random structure is, then, defined by the matrix multiplication A = ArefF . The
fractional coordinates of eight atomic positions are given by random numbers ob-
tained from a uniform distribution between zero and one. The only constraint on
the atomic positions is that the number of Ga and N atoms should be equal and
the distance between two atoms should not be smaller than 1.54 Å (0.8rcov, see Sec.
5.4.4).

To evaluate the similarity of the generated random cell shapes A to a cubic one, we
introduce a two-dimensional descriptor, one element for the lattice vector lengths a, b, c
and one for the angles α, β, γ between the lattice vectors. The descriptor is then given by:
(max3(a, b, c)−min3(a, b, c),max3(α, β, γ)−min3(α, β, γ), where max3 (min3) returns
the maximum (minimum) value among its three variables. In case of a cubic cell, the
descriptor yields (0, 0). Note that for a more precise similarity to the cubic cell also the
difference of the angles to 90◦ need to be considered. With the current descriptor, (0,0) is
assigned, for example, to cells that are characterized by a = b = c and α = β = γ while
only the additional criterion α = 90◦ gives the cubic cell.
The elementwise average, standard deviation and maximum value for the descriptors
of the 300 structures1 are (0.9 Å, 15◦), (0.4 Å, 8◦), and (1.7 Å, 40◦), respectively.
While the structures were generated as (slightly) distorted cubic cells, we consider
many of the cell shapes as not “close” to cubic, mainly due to larger angle differ-
ences.

The results of the RSS for the CTP, ASOAP and DFT are presented in Sec. 5.4.7. Here, we
show only the distribution of the crystal systems for the structures identified in the RSS (af-
ter relaxation), see Fig. F.7.

F.7 Unphysical roughness of the crystal graph convolutional
neural networks in the potential-energy surface

The predicted PES of the CGCNN is not smooth. The main reason for this is the fact
that the CGCNN considers for every atom only pairwise distances to the twelve nearest
neighbours, see theory in Sec. 4.6.
Consider the example of a GaN compound. If a small change in atomic positions or
lattice vectors results in the change of an atomic environment such that a new Ga
atom enters the neighbourhood defined by the twelve nearest neighbours and replaces
a N atom on neighbour index i, then the species representation assigned to neigh-
bour index i will change. The “sudden” replacement of the representation vector in
the model will lead to a (possibly) significant jump on the PES, see example in Fig.

1The average, standard deviation and maximum value are taken along each of the two independent
coordinates.
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Figure F.10: Energy evolution along a relaxation path for a CGCNN and for an
initial random GaN structure. The CGCNN was trained on the structures of 77 octet
binaries, GaN not included. The energy is given relative to the relaxed ZB structure
as predicted by the CGCNN.

F.10. Note that we have evaluated the forces and stresses for the relaxation numeri-
cally.

F.8 Error analysis

In Sec. 5.4.6 a leave-one-compound-out cross validation was performed for the CTP,
ASAOP, and CGCNN. Fig. F.11 shows the relationships between the prediction
errors on the energies within this test for the three models, the variance of the
reference energies, and a materials descriptor that was determined in Sec. 5.4.8
to identify materials that are harder to be described by the models. Fig. F.12
presents the dependence of the errors and reference energies on the crystal-structure
types.
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Figure F.11: Relationship between the materials descriptor rs(A)rs(B), the variance
Var(∆Eref) of the reference relative energies, and prediction root mean square errors
RMSE(∆E) on the relative energies. Representing 78 compounds, 78 markers are
shown in the left panel, and 3 · 78 in the central and right one. rs(A)rs(B) is the
first component of the two-dimensional descriptor in Fig. 5.10. Both the variance
Var(∆Eref) and RMSE(∆E) are built for each compound separately over the energy
differences of the phases with respect to the ground-state phase of the compound. The
RMSE(∆E) are results of a leave-one-compound-out cross validation (Sec. 5.4.6) for
the chemical-transferable potentials (CTP), the alchemical smooth overlap of atomic
positions (ASOAP), and the crystal graph convolutional neural network (CGCNN).
Energies, thus also the RMSE, are given in eV/atom.
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Figure F.12: Relationship between the materials descriptor rs(A)rs(B), the reference
relative energies ∆Eref , and the absolute prediction error AE(∆E) on the relative en-
ergies in dependence of the phases. The AE(∆E) are results of a leave-one-compound-
out cross validation (Sec. 5.4.6) for the chemical-transferable potentials (CTP), the
alchemical smooth overlap of atomic positions (ASOAP), and the crystal graph convo-
lutional neural network (CGCNN). Energies, thus also the AE, are given in eV/atom.
Note that the cross, diamond and square symbols in the central and right panel rep-
resent the errors of the CTP, ASOAP, and CGCNN, respectively.
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G Density-functional theory and
approximations

The physical mechanisms that drive crystal-structure stability of materials are learned
from calculations based on density-functional theory (DFT) and approximations to it.
While most of the training data of our machine-learning models are extracted from the
NOMAD Laboratory, in some parts of the thesis we have performed DFT calculations.
For example, we have run molecular-dynamics simulations for monoclinic ZrO2 using DFT
and the PBEsol functional (Sec. 5.3.3). Furthermore, in order to fit a machine-learning
potential to hybrid-DFT-level data, energies and forces of a set of configurations was cal-
culated using the HSE06 functional. In Sec. 5.4.7, we have performed a random-structure
search using DFT within the local-density approximation.
This chapter briefly summarizes the concepts of density-functional theory and approxima-
tions to it.

G.1 The many-body problem

In order to understand the physics of solids and molecular systems, a set of interact-
ing atoms consisting of Nel electrons and Nnuc nuclei, we consider the time-independent
Schrödinger equation:

ĤΨ = EΨ. (G.1)

If relativistic effects are neglected we may write the Hamiltonian [128]

Ĥ = T̂el + T̂nuc + V̂el-el + V̂el-nuc + V̂nuc-nuc, (G.2)

where T̂el and T̂nuc represent the kinetic energy operators of the electrons and nu-
clei and V̂el-el, V̂el-nuc, and V̂nuc-nuc the electron-electron, electron-nuclear, and nuclear-
nuclear interaction operators, respectively. Using atomic units, the operators are given
by

T̂el = −1
2

Nel∑
i

∆i, (G.3)

T̂nuc = −1
2

Nnuc∑
I

∆I

MI
, (G.4)
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V̂el-el = 1
2

Nel∑
i

Nel∑
j 6=i

1
|ri − rj |

, (G.5)

V̂el-nuc = −1
2

Nel∑
i

Nnuc∑
I

ZI
|ri −RI |

, (G.6)

V̂nuc-nuc = 1
2

Nnuc∑
I

Nnuc∑
J 6=I

ZIZJ
|RI −RJ |

, (G.7)

where ri and RI are the electronic and nuclear coordinates, respectively, and ∆ represents
the Laplacian.
An exact analytical solution of the eigenvalue problem G.1 exists only for a few cases
(e.g. H, He+, or H+

2 ). A first step towards approximating the solution to Eq. G.1 is
realized by the Born-Oppenheimer approximation: due to the mass ratio mi

MI
< 10−3

it is assumed the electrons adapt instantaneously to the movement of the nuclei,
which allows us to factorize the wave function into an electronic and a nuclear part

Ψ = Ψel(r; {R})Ψnuc(R), (G.8)

where r and R denote the set of positions of the Nel electrons and Nnuc nuclei, re-
spectively, and Ψel depends only parametrically on R as highlighted by the brackets {}.
As a result, the Schrödinger equation G.1 can be decoupled into an electronic equation

[T̂el + V̂el-el + V̂el-nuc]Ψel = EelΨel (G.9)

and into a nuclear one:[
−1

2

Nnuc∑
i

∆I

MI
+ V̂nuc-nuc + Eel({R})

]
Ψnuc = EnucΨnuc. (G.10)

In this work we will consider only the ground-state solution of the electronic Schrödinger
equation G.9. Together with the nuclei-nuclei interaction and for different sets of
nuclear positions it provides the Born-Oppenheimer potential-energy surface (PES)

EPES = Eel + Vnuc-nuc (G.11)

on which the nuclei move.

G.2 The Hohenberg-Kohn theorems

Despite the simplification of the Schrödinger equation through the Born-Oppenheimer
approximation, determining the ground-state solution of the electronic Schrödinger
equation G.9 stays complicated as the function Ψel depends on 3Nel coordinates.
In the formalism of density-functional theory (DFT), the energy of the electrons
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is written as a functional of the electron density n(r) and the ground-state en-
ergy is obtained from the minimum of the functional via variational principle.
As a result, the complexity of the problem is reduced, since the electron density

n(r) = Nel

∫
...

∫
|Ψel(r, r2, ..., rNel)|

2 dr2...Nel (G.12)

depends on only 3 coorindates. The theory is build on the two Hohenberg-Kohn theo-
rems [129]:

First Hohenberg-Kohn theorem: For any system of interacting particles in an
external potential, the external potential is determined up to a constant by the ground-
state electron density.

Second Hohenberg-Kohn theorem: A universal functional E[n] of the electron
density exists. The minimum of the functional via variation of n(r) is the ground-state
energy at the ground state electron density.

The energy functional is defined as

E[n] = F [n] +
∫
νext(r)n(r)dr (G.13)

with the external potential νext(r) and the universal functional

F [n] = 〈g|T̂el + V̂el-el|g〉 = Tel[n] + Eel-el[n]. (G.14)

Here, 〈·|·〉 denotes the usual bra-ket notation and |g〉 the ground state.
While the formalism that results from the Hohenberg-Kohn theorems is exact, it is not
helpful in solving the many-electron problem because it leaves the universal functional
unknown. For instance, no analytical expression has been found for F [n], so far. This
problem can be overcome with the Kohn-Sham formalism, as discussed in the next sec-
tion.

G.3 Kohn-Sham equations

The idea behind the approach of Kohn and Sham [130] is that we map the problem
of the system of interacting electrons onto an auxiliary system of non-interacting elec-
trons. Kohn and Sham suggested to write the energy E[n] of the interacting system as

E[n] = Ts[n] + EH[n] +
∫
νext(r)n(r)dr + Exc[n] (G.15)
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with the kinetic energy Ts[n] of the non-interacting electron system, the Hartree energy

EH[n] = 1
2

∫ ∫
n(r)n(r′)
|r − r′|

, drdr′, (G.16)

and the exchange-correlation functional

Exc[n] = F [n]− Ts[n]− EH[n]. (G.17)

The variational problem for Eq. G.15 is given by

δTs[n]
δn(r) + δEH[n]

δn(r) + νext(r) + δExc[n]
δn(r) −

δ

δn(r)(µ
∫
n(r′)dr′) = 0 (G.18)

δTs[n]
δn(r) + νH[n](r) + νext[n](r) + νxc[n](r)︸ ︷︷ ︸

νKS(r)

−µ = 0 (G.19)

whereby the Lagrange multiplier µ imposes the constraint that the number of particles

Nel =
∫
n(r′)dr′ (G.20)

shall be fixed.
Eq. G.19 has the form of an equation that would have been obtained for a system of non-
interacting particles moving in an external potential νKS. This non-interacting system can
be expressed by the electron density

n(r) =
Nel∑
i

〈φi|φi〉 . (G.21)

and the Schrödinger equation[
−1

2∆ + vKS(r)
]
φi(r) = εiφi(r). (G.22)

Eq. G.21 and Eq. G.22 are called the Kohn-Sham equations. They are solved in a self-
consistent manner. The kinetic energy of the non-interacting particles is determined by

Ts[n] =
Nel∑
i

εi −
∫
νKS(r)n(r)dr. (G.23)

G.4 Approximations to the exchange-correlation functional

The only unknown part in the energy functional G.15 is the exchange-correlation
functional. There exist different approximations to it with different levels of accu-
racy and computational cost. In the following, we will only introduce the local-
density approximation, generalized gradient approximation, and hybrid function-
als.

146



G.4 Approximations to the exchange-correlation functional

G.4.1 Local-density approximation

The simplest approximation is the local-density approximation (LDA), in which the
electron density is locally approximated by a homogeneous electron gas. The exchange-
correlation functional is written

ELDA
xc [n] =

∫
n(r)εLDA

xc (n(r))dr. (G.24)

At each point in the space, εLDA
xc yields the respective value of homogeneous elec-

tron gas. Moreover εLDA
xc is decomposed linearly into exchange and correlation term.

The expression for the exchange part is known exactly [131]. Accurate paraemtriza-
tions for the correlation part were introduced on the basis of quantum Monte Carlo
simulations [132].

G.4.2 Generalized gradient approximation

The generalized gradient approximation introduces an explicit dependence on the gradient
of the density in the exchange-correlation functional

EGGA
xc [n] =

∫
n(r)εLDA

xc (n(r))Kxc(n(r),∇n(r))dr, (G.25)

where Kxc(n(r),∇n(r)) is a factor modifying εLDA
xc (n) in dependence of n(r) and ∇n(r)).

Examples are the PBE [133] or PBEsol [134] functional.

G.4.3 Hybrid functionals

Further improvements are obtained by using hybrid functionals, which re-
duce the so-called self-interaction error. The exchange functional is given by

Ehyb
x = αEHF

x + (1− α)EDFA
x , (G.26)

with the Hartree-Fock (HF) exchange

EHF
x = −1

2

Nel∑
i,j

∫ ∫ φ∗i (r)φj(r)φ∗j (r′)φi(r′)
|r − r′|

, drdr′ (G.27)

and the parameter α ∈ [0, 1], determining the weights of the HF and a density-
functional-approximation (DFA) contribution. A popular hybrid functional is
HES06 [135], in which additionally the Coulomb interaction in Eq. eq:hartee-hse is
screened.
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