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Summary in English

Random motions in random media is an interesting topic that has been studied in-
tensively since several decades. Although these models are relatively simple math-
ematical objects, they have a wide variety of interesting properties from the theo-
retical point of view.

In this dissertation, we study an important branch within this topic, namely re-
versible random walks moving among nearest neighbour random conductances on
Zd – the random conductance model. Reversibility provides the model a variety
of interesting connections with other fields in mathematics, for instance, percola-
tion theory, ∇ϕ-interface models, and especially stochastic homogenization. Many
questions coming from this model have been answered by techniques from partial
differential equations and harmonic analysis.

As seen in the name of the thesis, we would like to consider this model un-
der ”degenerate conditions”. Here, ”degenerate” has essentially two meanings.
First, the conductances are not assumed to be bounded from above and below
and stochastically independent. Second, we also consider the case of zero conduc-
tances, where the random walk can only move on a subgraph of Zd. Since there
are percolation clusters, where the existence of the infinite cluster does not rely on
stochastic independence, it is reasonable to accept the lack of stochastic indepen-
dence.

In Chapter II we study quenched invariance principles. We assume that the pos-
itive conductances have some certain moment bounds, however, not bounded from
above and below, and give rise to a unique infinite cluster and prove a quenched
invariance principle for the continuous-time random walk among random conduc-
tances under relatively mild conditions on the structure of the infinite cluster. An
essential ingredient of our proof is a new anchored relative isoperimetric inequality.

In Chapter III we study Liouville principles. As in Chapter II, we also assume
some moment bounds and prove a first order Liouville property for this model. Us-
ing the corrector method introduced by Papanicolaou and Varadhan, Chapters II
and III are closely related to each other at the technical level. Chapter IV proves a
discrete analogue of the Dirichlet-to-Neumann estimate, which compares the tan-
gential and normal derivatives of a harmonic function on the boundary of a domain.
This result is used in Chapter III and perhaps useful for numerical analysis.
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Zusammenfassung in Deutsch

Zufällige Bewegungen in zufälligen Medien ist ein interessantes Thema, das seit
mehreren Jahrzehnten intensiv studiert wurde. Obwohl diese Modelle relativ ein-
fache mathematische Objekte sind, haben sie aus theoretischer Sicht eine Vielzahl
von interessanten Eigenschaften.

In dieser Dissertation betrachten wir einen wichtigen Zweig in diesem Thema,
nämlich das zufällige Leitfähigkeitsmodell. Es konzentriert sich auf reversible Ir-
rfahrten, die sich durch zufällige Leitfähigkeiten von Nächsten-Nachbarn-Kanten
auf Zd bewegen. Reversibilität bietet dem Modell eine Vielzahl von interessanten
Verbindungen mit anderen Feldern in Mathematik, zum Beispiel Perkolationstheo-
rie, ∇ϕ-interface Modelle, und ins besondere stochastische Homogenisierung. Viele
Fragen aus diesem Modell wurden durch Techniken aus partiellen Differentialgle-
ichungen und harmonischen Analysis beantwortet.

Wie der Name der Arbeit zeigt, möchten wir dieses Modell unter ”degenerierten
Bedingungen” betrachten. Hier hat ”degeneriert” im Wesentlichen zwei Bedeutun-
gen. Ersten nehmen wir nicht an, dass die Leitfähigkeiten von oben und unten
beschränkt und stochastisch unabhängig sind. Zweitens betrachten wir auch den
Fall von Null-Leitfähigkeiten, wo sich der Irrfahrt nur auf einem Untergraphen von
Zd bewegen kann. Da es Perkolationsclusters gibt, wo die Existenz des unendlichen
Clusters nicht auf stochastische Unabhängigkeit beruht, ist es vernünftig, den Man-
gel an stochastischer Unabhängigkeit zu akzeptieren.

Im Kapitel II studieren wir fast sichere Invarianzprinzipien. Wir nehmen an,
dass die positiven Leitfähigkeiten einige gewisse Momentbedingungen erfüllen,
die jedoch nicht von oben und unten beschränkt sind und einen eindeutigen un-
endlichen Cluster erzeugen und ein fast sicheres Invarianzprinzip für eine Irrfahrt
unter relativ milden Bedingungen für die Struktur des unendlichen Clusters be-
weisen. Ein wesentlicher Bestandteil unseres Beweises ist eine neue verankerte
relative isoperimetrische Ungleichung.

In Kapitel III studieren wir Liouville-Eigenschaften. Wie in Kapitel II, nehmen
wir auch einige Momentenbedingungen an und zeigen eine Liouville-Eigenschaft
erster Ordnung für dieses Modell. Da sie die Korrektor-Methode von Papanico-
laou und Varadhan benutzen, sind Kapitel II und III eng miteinander verknüpft
auf technischer Ebene. Kapitel IV beweist ein diskretes Analogon der Dirichlet-
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to-Neumann-Abschätzung, die die tangentialen und normalen Ableitungen einer
harmonischen Funktion auf dem Rand einer Gebiete vergleicht. Dieses Ergebnis
wird in Kapitel III benutzt und eventuell nützlich für numerische Analysis.



Chapter I

Introduction

Random motions in random media is an interesting topic that has been studied in-
tensively since several decades. Although these models are relatively simple math-
ematical objects, they have a wide variety of interesting properties from the theo-
retical point of view.

In this dissertation, we study an important branch within this topic, namely re-
versible random walks in random environments – the random conductance model.
Reversibility provides the model a variety of interesting connections with other
fields in mathematics, for instance, percolation theory, ∇ϕ interface models, and
especially stochastic homogenization. Many questions coming from this model
have been answered by techniques from partial differential equations and harmonic
analysis.

The thesis focuses on two different aspects in the random conductance model,
namely quenched invariance principles (Chapter II) and Liouville properties (Chap-
ter III), which are, however, related closely to each other at the technical level.
Chapter IV proves a discrete analogue of the Dirichlet-to-Neumann estimate needed
for Chapter III that seemingly has not appeared in the liturature yet. It seems to be
the most technical part of the thesis and it is perhaps useful for numerical analysis.
Chapter II is a joint work with Deuschel and Slowik [27] and has been already
published online. Chapters III and IV are motivated by several ideas given by Bella,
Fehrman, and Otto [12]. Each chapter is written quite independently from the oth-
ers and can be considered as an independent paper, which contains an introduction
and its own notations.

I.1 The model and assumptions

I.1.1 The model

15
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Figure I.1: A trajectory (yellow)
of a random walk moving among
conductances on Zd. Red: very
high or low conductances

The model can be simply described as follows.
Consider the lattice Zd, equip each nearest
neighbour bond e = {x, y} = {y, x} on Zd with a
random conductance ω(e) = ω({x, y}) ∈ [0,∞)

and call ω a random environment, and assume
that the probability distribution of the conduc-
tances is ergodic. Roughly speaking, it is noth-
ing but the law of large number, meaning that
averaging a large number of conductances gives
us their expectation. A very natural example is
the case where the conductances are mutually
independent and identical distributed (i.i.d.).
However, we do not restrict ourselves to this
special case. For each fixed sample ω of a ran-
dom environment, we consider two types of ran-
dom walks: a discrete time random walk and a
continuous time random walk. The discrete time random walk {Zn : n ∈ N} jumps
from x to y with probability ω({x, y})/µω(x) where

µω(x) =
∑

y:|x−y|1=1

ω({x, y}),

while the continuous time random walk {Xt : t ≥ 0} waits at x an exponential
time with means µω(x)−1 and jumps to a nearest neighbour y of x with probability
ω({x, y})/µω(x). As a Markov process it has the following generator:

Lωu(x) =
∑
y∼x

ω({x, y}) (u(y)− u(x)) .

In the literature, this continuous time random walk is called the variable speed
random walk, since the holding times depend on the space variable. The discrete
time random walk can also be considered as a continuous time random walk by
setting up waiting times at all points on the lattice, which are i.i.d. exponentially
distributed with mean 1. This continuous time random walk is called the constant
speed random walk, since the holding times do not depend on the space variable:
it waits at x an exponential time with mean 1 and jumps to y ∼ x with probability
ω({x, y})/µω(x). It has the following generator

Pωu(x) = µω(x)−1
∑
y∼x

ω({x, y}) (u(y)− u(x)) .

Let us give some simple examples to illustrate the above definition. More inter-
esting examples can be found in the main text.

Example I.1.1. In the simplest case, ω(e) = 1 for all e, the discrete time random
walk is nothing but a simple random walk on Zd.
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Example I.1.2 (Simple random walks). Let ω(e) be independently sampled from
{0, 1}. We speak of an open edge if ω(e) = 1 and a closed edge if ω(e) = 0. This
problem can be simulated easily (Figure I.2) where an edge e is coloured blue if
ω(e) = 1 and not coloured if ω(e) = 0. The blue edges give us a random subgraph
of Zd. The discrete time random walk can only jumps through an open edge and
therefore can only stay in a connected component (cluster). We call it a simple
random walk in the sense that in each step it jumps from its current position x to
a nearest neighbour in this subgraph with probability 1/µω(x) where µω(x) is the
degree of the node x.

In percolation theory, it is well-known that if

p := P[e is open] > pc(d) (I.1.1)

for some pc ∈ (0, 1), the open edges percolate and form a unique infinite connected
component, a so-called supercritical percolation cluster. In this case, the discrete
time random walk Zn becomes a simple random walk on a supercritical percolation
cluster. This random walk (or its continuous time version, the constant speed ran-
dom walk) can be simulated easily (see Figure I.2) and has been studied in several
papers e.g. [9, 14, 13].

Example I.1.3 (i.i.d. conductances). Example I.1.1 can be easily generalized as
follows. Let ω(e) be independently sampled from [0,∞). We coloured an edge e

blue if ω(e) > 0 and white if ω(e) = 0. The random walk can only jump through
a cluster of blue edges. However, the probability of jumping from x to y now
depends proportionally on the conductance ω({x, y}). We always assume (I.1.1),
where the random walk moves on an infinite connected component. Further, we
are interested in several assumptions on the conductances. If p = 1 the cluster
becomes the whole Zd and the conductances are called elliptic or degenerate. In
some papers, they are even assumed to be bounded from above and below, in other
words, uniformly elliptic or strongly elliptic. If p ∈ (pc, 1) where the cluster forms a
proper subgraph of Zd, similar assumptions can also be made for the conductances
on the cluster, for instance, elliptic or uniformly elliptic.

Example I.1.4 (Gaussian free fields). Let d ≥ 3. Define the conductances by

ω({x, y}) = exp(h(x) + h(y)), |x− y|1 = 1 (I.1.2)

where {h(x) : x ∈ Zd} is the Gaussian free field i.e. a Gaussian process indexed
by x ∈ Zd with Eh(x) = 0 and cov(h(x), h(y)) = G(x, y) where G(x, y) is the Green
function in Zd. This example has been considered in [2].

I.1.2 Degenerate conditions
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Figure I.2: A simple random walk
on a Bernoulli supercritical percola-
tion cluster for p = 0.55 and d = 2

obtained by simulation with Python.
Blue: the percolation cluster; red: the
trajectory of the random walk.

Although Examples I.1.1, I.1.3 and I.1.3 are
also very interesting cases, which are ob-
jects of several researches, as seen the name
of the thesis, we are interested in more gen-
eral cases. Here, ”degenerate” has essen-
tially two meanings. First, the conductances
are not assumed to be bounded from above
and below and stochastically independent
(cf. Example I.1.4). Second, we also con-
sider the case of zero conductances where
the random walk can only move in a sub-
graph of Zd, a similar scenario as that in
Example I.1.3. Since there are percolation
clusters where the existence of the infinite
cluster does not rely on stochastic indepen-
dence [28, 57], it is reasonable to accept the
lack of stochastic independence.

In degenerate cases, we have to classify
assumptions on the environment so that our
result applies to a possibly large class of
models. First, we have to assume some certain integrability conditions for the con-
ductances, since, due to an example by Barlow, Burdzy and Timár [8, 7], the first
moment and inverse moment is necessary for the quenched invariance principle to
hold. Second, in the case of zero conductances (Chapter II), we need assumptions
on the infinite cluster. The novelty is to encode them in isoperimetric inequalities
(cf. Definition II.1.2 and Assumption II.1.3).

I.2 The main results

We discuss the main results, quenched invariance principles and Liouville properties
and provide some links between them.

I.2.1 Quenched invariance principles

In Chapter II, we are interested in a typical question in probability theory, namely
quenched invariance principles, which provide, roughly speaking, long-term prop-
erties of the random walk. More rigorously, we discuss whether the sequence of
processes {X(n) : n ∈ N} where X(n)

t := 1
n
Xtn2 converges to a Brownian motion for

almost every environment ω. Here, ”quenched” means nothing but almost surely.
The main result, Theorem II.1.7, answers this question. Further, it applies to the
constant speed random walk (cf. Remark II.1.9). Besides Assumption II.1.6 on
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the integrability of the conductances, we set up large-scale properties of the in-
finite cluster (Assumption II.1.3), encoded in the notation ”θ-very regularity” (cf.
[9, 57]), which basically means volume regularity and a weak relative isoperimetric
inequality for large sets. These conditions apply to a large class of random conduc-
tance models (see Examples II.1.11–II.1.13) not necessarily relying on stochastic
dependence.

I.2.2 Liouville properties

In Chapter III, we restrict ourselves on the case of positive conductances, meaning
that the conductances are living now on the full lattice Zd. We make Assump-
tion III.1.1, which is similar to Assumption II.1.6 on integrability we made before
in Chapter II except the fact that we now require that the law of the conductaces is
invariant under reflections on Zd. The last condition implies that the homogenized
matrix is a diagonal matrix, which later allows us to implement the idea of perturb-
ing around the homogenized coefficients [33, 12] in the discrete case. In Chapter III,
we are interested in solutions to the discrete elliptic equation

Lωu(x) = 0, x ∈ Zd (I.2.1)

which are called ω-harmonic functions. The main result is a Liouville-type property
for ω-harmonic functions (Theorem III.1.2) claiming that the space of sub-quadratic
(growing at most like |x|1+α, α ∈ (0, 1)) ω-harmonic function has dimension d + 1.

This is a consequence of a regularity estimate which is called the excess decay
(Theorem III.1.3).

I.2.3 Discussion on the methods

Connections between Chapters II and III at the technical level The problem
studied by Chapter III comes mainly from an analytic point of view, for instance,
theory of partial differential equations and homogenization. However, at the tech-
nical level, it is closely related to Chapter II by the fact that

”(I.2.1) is true if and only if u(Xt) (and u(Zn)) is a martingale.”

The central object studied through the dissertation, which appears in both Chap-
ters II and III, is the corrector ϕ = (ϕ1, . . . , ϕd) : Ω × Zd → Rd. It is defined so
that

Ψi(ω, x) := xi + ϕi(ω, x), (I.2.2)

is ω-harmonic for each i ∈ {1, . . . , d}, meaning

LωΨi(ω, x) = 0. (I.2.3)
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We call Ψ1, . . . ,Ψd the harmonic coordinates, meaning Ψi(ω, ·) is a ”ω-harmonized”
version of the coordinate fields Πi(ω, x) := xi.

The use of the corrector is based on the classical work by Papanicolaou and
Varadhan [53] studying random elliptic differential operators in divergence form
in the continuum setting,

Lau(x) = ∇ · a(x)∇u(x) =
d∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj
(x)

)
(I.2.4)

where a(x) is a symmetric positive definite random matrix defined on some proba-
bility space. The random diffusion generated La can be considered as a continuum
counterpart of the random conductance model. The crucial idea in their construc-
tion of the corrector is instead of solving (I.2.9) for all positions x in the physical
space, they require that the gradient of ϕ is stationary in the sense

u(ω, x+ e)− u(ω, x) = u(τxω, e) (I.2.5)

solve (I.2.9) for almost every environment ω but for only one position, the origin,
and exploit (I.2.5) to extend the solution to the whole space. In both Chapters II
and III we have to control the sublinear growth of the corrector informally written
as

ϕ(ω, x) = o(|x|), |x| → ∞. (I.2.6)

Methods of Chapter II We prove the quenched invariance principle in two step.
First, we establish that for the process {Ψ(ω,Xt) : t ≥ 0}, which is a martingale by
(I.2.3). Second, we prove that

sup
0≤ t≤T

1

n

⏐⏐χ(ω,Xtn2)
⏐⏐ −→

n→∞
0 in Pω

0 -probability, (I.2.7)

almost surely, where Pω
0 is the law of the random walk starting at the origin in the

environment ω. Since invariance principles for martingales are well-known [39],
it suffices to show (I.2.5) which is a consequence of the ℓ∞-sublinearity of the
corrector,

max
|x|<n

1

n
|ϕ(ω, x)| n→∞−→ 0, P-a.s. (I.2.8)

This is basically a maximal inequality for a solution to the Poisson-type equation

Lωϕi = −LωΠi, (I.2.9)

and therefore can be obtained, appealing to the Moser iteration schema by An-
dres, Deuschel, and Slowik [2], once we control the corresponding ℓ1 norm. The
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novelty of Chapter II is an anchored Sobolev inequality on graphs, Lemma II.3.7,
which provides an elegant argument for the ℓ1-sublinearity of the corrector, Propo-
sition II.2.9. This inequality is proved under Assumption II.3.1 which contains
essentially volume regularity and two relative isoperimetric inequalities for large
sets.

Methods in Chapter III The Liouville property is proved by monitoring the ex-
cess, a natural distance between a given ω-harmonic function u and the space gen-
erated by the harmonic coordinates Ψ1, . . . ,Ψd in different scales (Theorem III.1.3).
In contrast to Chapter II working on arbitrary infinite graphs, in Chapter III, borrow-
ing the idea of Bella, Fehrman, and Otto [12], we only focus on the lattice Zd. Fol-
lowing [12], we construct the second order corrector σ in the discrete case (Propo-
sition III.2.3) with stationary gradients (I.2.5). This second order corrector allows
us to have an energy estimate for the homogenization error (Proposition III.2.3),
which is an important step to obtain the excess decay. Since a main part of [12]
contains estimates on a boundary term, when implementing the schema given in
[12] into the discrete case of Zd, we mainly have to work on the discrete surfaces of
a fixed box, while Chapter II we consider a sequence of growing balls. It is therefore
not surprising that Chapter III has a flavour of numerical analysis. Indeed, we need
to make an excursion to finite element to install suitable ”numerical tricks” which
help us to translate the idea in [12] in our setting smoothly. The most technical
part is to establish the Dirichlet-to-Neumann estimate in the discrete case which
is written as an independent part, Chapter IV, which may be useful for numerical
analysis.

I.3 Discussion on previous works

I.3.1 Quenched invariance principles

Since the annealed quenched invariance principle was already proved in the 1980s
by De Masi, Ferrari, Goldstein and Wick [24] and Kipnis and Varadhan [41] for
stationary and ergodic laws P with E[ω(e)] <∞, it took quite some time in the last
two decades to obtain quenched results especially for stationary and ergodic laws
under degenerate conditions (see Table I.1). This can be explained, in my opinion,
by the following facts. First, almost all the papers [59, 14, 48, 17, 10, 1, 28] proved
the sub-linearity of the corrector ϕ by estimates on heat kernels, which rely on an
a priori knowledge in percolation theory on the distribution of the size of holes in
the cluster or the chemical distance, which we do not have in the stationary and
ergodic case. Second, perhaps they did not really consider the corrector ϕ as a
solution to (I.2.9) (actually the solution, when we consider (I.2.9) at the level of
the probability space). Nevertheless, it also has an advantage, since those papers
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Year Works and authors Conditions on the environment
THE CASE OF I.I.D.
CONDUCTANCES

2004 Sznitman and Sidoravicius [59] i.i.d and uniformly elliptic
λ ≤ ω(e) ≤ 1, fixed λ > 0

2007 Berger and Biskup [14] Simple random walks
Mathieu and Piatnitski [48] on percolation clusters (d ≥ 2)

2007 Biskup and Prescott [17] i.i.d. bounded from above
2008 Mathieu [47] 0 ≤ ω(e) ≤ 1 and P[ω(e) > 0] > pc
2010 Barlow and Deuschel [10] i.i.d. bounded from below

λ ≤ ω(e) <∞, fixed λ > 0

including E[ω(e)] = ∞
2013 Andres, Barlow, General i.i.d.

Deuschel, and Hambly [1] P[ω(e) > 0] > pc
including E[ω(e)] = ∞

THE CASE OF STATIONARY

ERGODIC CONDUCTANCES

2011 Biskup [16] First moment and inverse moment
ω(e) > 0, d = 2,
E[ω(e)] + E[ω(e)−1] <∞

2015 Andres, Deuschel, and Slowik [2] (p, q)-moment condition
ω(e) > 0, E[ω(e)p] + E[ω(e)−q] <∞
and 1/p+ 1/q < 2/d

2016 Procaccia, Rosenthal, Simple random walks on clusters
and Sapozhnikov [28] in correlated percolation models

2017 Deuschel, Ng., and Slowik [27] (p, q, θ)-moment condition
E[ω(e)] + E[ω(e)−q1e is open] <∞,

1/p+ 1/q < 2(1− θ)/(d− θ)

θ-very regularity of the cluster

Table I.1: The quenched invariance principle – previous results.
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give us a more general notion of correctors, which is sometimes very useful, for
instance when dealing with large deviation principles, see [15, Remark 2, p11].

As mentioned before, Chapter II is motivated by Andres, Deuschel, and Slowik
[2] considering the corrector as solution to (I.2.9) and proving the ℓ∞-sublinearity
(I.2.9) with the maximal inequality obtained by Moser’s iteration. This work is
motivated by Fannjiang and Komorovski [30] whose proved a quenched invari-
ance principle for random diffusions generated by (I.2.4) (under the condition
E[|aij(x)|p] <∞ where p > d). Recently, using the idea of Moser’s iteration, Chiarini
and Deuschel [22, 23] have proved a quenched invariance principle for diffusions
under the following (p, q)-moment condition

E[µ(a)p] + E[|λ(a)|−q] <∞,
1

p
+

1

q
<

2

d
, (I.3.1)

where E denotes the expectation of the random coefficient a and

λ(a) := inf
ξ∈Rd

ξ · aξ
|ξ|2

, and µ(a) := sup
ξ∈Rd

|aξ|2

ξ · aξ
.

I.3.2 Liouville properties

Compared to quenched invariance principles, not so many researches have drawn
their attention to Liouville properties for random environments. While Liouville
properties are well-understood [6] for a-harmonic functions in ”periodic media”,
i.e. for those which make (I.2.4) equal to zero where a is periodic, a(x+L) = a(x),

that for random media are still objects of recent researches (see Table I.2). Ques-
tions on Liouville properties for random environments were first asked by Ben-
jamini, Duminil-Copin, Kozma, and Yadin [13]. In their paper, they proved that the
space of ω-harmonic functions on the supercritical percolation cluster, satisfying
Lωu = 0 with ω given in Example I.1.2, has dimension d+1, and their idea of using
the entropy can be easily extended to the model given by Sapozhnikov [57], which
is the same model as that given in his joint work on quenched invariance principles
[28] with Procaccia and Rosenthal. Recently, Armstrong and Dario [5] have an-
swered a question given by Benjamini et. al. on Liouville properties. Indeed, they
consider a more general model, namely the conductances ω(e) are i.i.d. bounded
from above and below and live on a supercritical percolation cluster. They have
achieved a more general result which states that the space of ω-harmonic functions
growing at most like o(|x|k+1) has the same dimension as the space of harmonic
polynomials of degree at most k.

In the continuum setting, several results on Liouville properties have been ob-
tained recently. Gloria, Neukamm, and Otto have proved a O(|x|1+α) Liouville for
a-harmonic functions, where a is a stationary and ergodic matrix bounded from
above and below. This Liouville property is a consequence of a regularity estimate
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Year Works and authors Assumptions Order
THE CASE OF I.I.D.
CONDUCTANCES

2015 Benjamini, Duminil-Copin, Simple random walks O(|x|)
Kozma, and Yadin [13] on supercritical cluster

2017 Armstrong and Dario [5] i.i.d and uniformly elliptic o(|x|k+1)

on supercritical cluster
λ ≤ ω(e) ≤ 1, fixed λ > 0. for k ≥ 1

THE CASE OF STATIONARY

ERGODIC CONDUCTANCES

2015 Marahrens and Otto [46] uniformly elliptic
and mixing on Zd O(|x|α)
λ ≤ ω(e) ≤ 1, fixed λ > 0

2016 Sapozhnikov [57] Simple random walks O(|x|)
on clusters in correlated
percolation models

2017 Ng. (see Chapter III) (p, q)-moment condition O(|x|1+α)

ω(e) > 0,
E[ω(e)p] + E[ω(e)−q] <∞
P reflection invariant

Table I.2: Known results on Liouville properties for the random conductance model
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called the excess decay. Fischer and Otto [31] have extended this to a O(|x|k+α)

Liouville property and Fischer and Raithel [32] to the case of the haft space, both
required mixing conditions on the environment. Lately, Bella, Fehrman, and Otto
have shown the excess decay and therefore the Liouville property introduced by
[33] under the (p, q)-condition (I.3.1).

I.3.3 Open problems

Although the idea of using Moser’s iteration by Andres, Deuschel, and Slowik [2]
is quite robust in the sence that it can be indeed extended to the case of random
graphs, their (p, q)-condition cannot cover the ”optimal case” in d = 2 by [16] (see
Table I.2). It is conjectured by Biskup [16] that the quenched invariance principle
holds true in all dimensions d ≥ 2 under the assumption on the first moment and
inverse moment,

E[ω(e)] + E[ω(e)−1] <∞. (I.3.2)

Further, comparing Table I.1 and Table I.2 we can ask a natural question con-
cerning Liouville properties: Can we fill in Table I.2 so that it becomes quite similar
to Table I.1? Let us state the question more precisely. First, consider the i.i.d. case.
Does a Liouville hold true under the most general i.i.d. condition i.e. under the set-
ting of Andres, Deuschel, Barlow, and Hambly [1] (Table I.1), where it can happen
that E[ω(e)] = ∞. Maybe it does not make sense to ask this question, since in this
case we cannot construct the corrector ϕ for the original environment and therefore
we do not have the harmonic coordinates.

In my opinion (it may be wrong), before addressing more ”degenerate” cases,
for instance, the stationary and ergodic case with moment conditions, relaxing a bit
the uniform elliptic condition of Armstrong and Dario [5] would be more realistic.
For instance, asking this question in the setting of Biskup and Prescott [17] and
Mathieu [47] in Table I.1 (i.i.d conductances bounded from above and living on
a supercritical percolation cluster) would be quite reasonable, since in this case,
we can construct the corrector and therefore the harmonic coordinates, which are
candidates for a basis of the space of d+ 1 harmonic functions. The same question
for the i.i.d. case, bounded from below, unbounded from above, however, with the
first moment E[ω(e)] <∞, where the harmonic coordinates can also be constructed.
In this case, quenched invariance principles are often proved by ”peeling off” bad
conductances, which are too high or to low. However, when dealing with Liouville
properties, ”peeling off” may destroy the ω-harmonicity.

Note that as in the case of Biskup’s conjecture, the (p, q)-condition (III.1.7) in
Chapter III inherited from (I.3.1) used by Bella, Fehrman, Otto [12] does not cover
the case p = 1 or q = 1 even in the simplest case d = 2 (and i.i.d.) – the reason is
that we appeal to a Calderón-Zymund-type estimate when constructing the correc-
tor σ. The use of the homogenization error defined by a harmonic extension given
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by Bella, Fehrman, and Otto [12] exploits too many aspects which are only true
on Rd and Zd, for instance, the construction of the corrector σ and the Dirichlet-to-
Neumann estimate (the main result of Chapter IV). It is very interesting to know
whether it is possible to improve this idea so that it works with ”volumes” rather
than with ”surfaces”.

Recently, Bella, Fehrman, Chiarini [11] have achieved a Liouville property for
parabolic equations in the continuum setting. It is interesting to extend it to the
discrete case and under degenerate conditions. This is perhaps the first step to
achieve the idea of Jean-Dominique Deuschel: approximate the parabolic Green
function by the homogenized one and apply it for the Ginzburg-Landau model.



Chapter II

Quenched invariance principles

II.1 Introduction

II.1.1 The model

Consider the d-dimensional Euclidean lattice, (Zd,Ed), for d ≥ 2, where the edge
set, Ed, is given by the set of all non-oriented nearest neighbor bonds. Let (Ω,F) =

([0,∞)E
d
,B([0,∞))⊗Ed

) be a measurable space equipped with the Borel-σ-algebra.
For ω ∈ Ω, we refer to ω({x, y}) as the conductance of the corresponding edge
{x, y}. Henceforth, we consider a probability measure P on (Ω,F), and we write E
to denote the expectation with respect to P. Further, a translation or shift by z ∈ Zd

is a map τz : Ω → Ω,

(τzω)({x, y}) := ω({x+ z, y + z}), {x, y} ∈ Ed. (II.1.1)

The set {τx : x ∈ Zd} together with the operation τx ◦ τy := τx+y defines the
group of space shifts.

For any ω ∈ ω, the induced set of open edges is denoted by

O ≡ O(ω) :=
{
e ∈ Ed | ω(e) > 0} ⊂ Ed.

We also write x ∼ y if {x, y} ∈ O(ω). Further, we denote by C∞(ω) the subset of
vertices of Zd that are in infinite connected components.

Throughout the paper, we will impose assumptions both on the law P and on
geometric properties of the infinite cluster.

Assumption II.1.1. Assume that P satisfies the following conditions:

(i) The law P is stationary and ergodic with respect to translations of Zd.

(ii) E[ω(e)] <∞ for all e ∈ Ed.

(iii) For P-a.e. ω, the set C∞(ω) is connected, i.e. there exists a unique infinite
connected component – also called infinite open cluster – and P[0 ∈ C∞] > 0.

27



28 CHAPTER II. QUENCHED INVARIANCE PRINCIPLES

Let Ω0 =
{
ω ∈ Ω : 0 ∈ C∞(ω)

}
and introduce the conditional measure

P0[ · ] := P[ · | 0 ∈ C∞], (II.1.2)

and we write E0 to denote the expectation with respect to P0. We denote by dω the
natural graph distance on (C∞(ω),O(ω)), in the sense that for any x, y ∈ C∞(ω),
dω(x, y) is the minimal length of a path between x and y that consists only of edges
in O(ω). For x ∈ C∞(ω) and r ≥ 0, let Bω(x, r) := {y ∈ C∞(ω) : dω(x, y) ≤ ⌊r⌋}
be the closed ball with center x and radius r with respect to dω, and we write
B(x, r) := {y ∈ Zd : |y − x|1 ≤ ⌊r⌋} for the corresponding closed ball with respect
to the ℓ1-distance on Zd. Further, for a given subset B ⊂ Zd we denote by |B| the
cardinality of B, and we define the relative boundary of A ⊂ B by

∂ωBA :=
{
{x, y} ∈ O(ω) : x ∈ A and y ∈ B \ A

}
and we simply write ∂ωA if B ≡ C∞(ω). The corresponding boundary on (Zd,Ed) is
denoted by ∂BA and ∂A, respectively.

Definition II.1.2 (regular balls). Let CV ∈ (0, 1], Criso ∈ (0,∞) and CW ∈ [1,∞)

be fixed constants. For x ∈ C∞(ω) and n ≥ 1, we say a ball Bω(x, n) is regular if it
satisfies the following conditions:

i) volume regularity of order d:

CV n
d ≤ |Bω(x, n)| (II.1.3)

ii) (weak) relative isoperimetric inequality: There exists Sω(x, n) ⊂ C∞(ω) con-
nected such that Bω(x, n) ⊂ Sω(x, n) ⊂ Bω(x,CWn) and

|∂ωSω(x,n)A| ≥ Criso n
−1 |A| (II.1.4)

for every A ⊂ Sω(x, n) with |A| ≤ 1
2
|Sω(x, n)|.

Assumption II.1.3 (θ-very regular balls). For some θ ∈ (0, 1) assume that for P0-
a.e. ω there exists N0(ω) <∞ such that for all n ≥ N0(ω) the ball Bω(0, n) is θ-very
regular, that is, the ball Bω(x, r) is regular for every x ∈ Bω(0, n) and r ≥ nθ/d.

Remark II.1.4. (i) The lattice (Zd,Ed) satisfies the assumption above with θ = 0.
(ii) The notion of θ-very regular balls is particularly useful in the context of random
graphs, e.g. supercritical Bernoulli percolation clusters [9] or clusters in percolation
models with long range correlations [57] (see the examples below for more de-
tails). Such random graphs have typically a local irregular behaviour, in the sense
that the conditions of volume growth and relative isoperimetric inequality fail on
small scales. Roughly speaking, Assumption II.1.3 provides a uniform lower bound
on the radius of regular balls.
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(iii) In contrast to the (weak) relative isoperimetric inequality (II.1.4), the (stan-
dard) isoperimetric inequality on Zd reads

|∂ωA| ≥ Ciso |A|(d−1)/d, ∀A ⊂ Zd. (II.1.5)

On random graphs, however, such an inequality is true only for large enough sets.
However, under the assumption that the ball Bω(x, n) is θ-very regular, the isoperi-
metric inequality (II.1.5) holds for allA ⊂ Bω(x, n) with |A| > nθ; cf. Lemma II.2.10
below.

For any fixed realization ω ∈ Ω, we are interested in a continuous-time Markov
chain, X = {Xt : t ≥ 0}, on C∞(ω). We refer to X as random walk among random
conductances or random conductance model (RCM). Set

µω(x) =
∑
y∼x

ω({x, y}),

X is the process that waits at the vertex x ∈ C∞(ω) an exponential time with
mean 1/µω(x) and then jumps to a vertex y that is connected to x by an open edge
with probability ω({x, y})/µω(x). Since the holding times are space dependent,
this process is also called variable speed random walk (VSRW). The process X is a
Markov process with generator, Lω, acting on bounded functions as(

Lωf
)
(x) =

∑
y∈Zd

ω({x, y})
(
f(y)− f(x)

)
, x ∈ C∞(ω). (II.1.6)

We denote by Pω
x the quenched law of the process starting at the vertex x ∈ C∞(ω).

The corresponding expectation will be denoted by Eω
x . Notice that X is a reversible

Markov chain with respect to the counting measure.

II.1.2 Main result

We are interested in the long time behavior of the random walk among random
conductances for P0-almost every realization ω. In particular, we are aiming at
obtaining a quenched functional central limit theorem (QFCLT) for the process X
in the following sense.

Definition II.1.5. Set X(n)
t := 1

n
Xtn2, t ≥ 0. We say that the quenched functional

CLT or quenched invariance principle holds for X, if for every T > 0 and every
bounded continuous function F on the Skorohod space D([0, T ],Rd), it holds that
Eω
0 [F (X

(n))] → EBM
0 [F (Σ·W )] as n→ ∞ for P0-a.e. ω, where (W,PBM

0 ) is a Brownian
motion on Rd starting at 0 with covariance matrix Σ2 = Σ · ΣT .

Our main result relies on the following integrability condition.
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Assumption II.1.6 (Integrability condition). For some p, q ∈ [1,∞] and θ ∈ (0, 1)

with

1

p
+

1

q
<

2(1− θ)

d− θ
, (II.1.7)

assume that the following integrability condition holds

E
[
ω(e)p

]
< ∞ and E

[
ω(e)−q1e∈∈O

]
< ∞, (II.1.8)

where we used the convention that 0/0 = 0.

Theorem II.1.7 (Quenched invariance principle). For d ≥ 2 suppose that θ ∈ (0, 1)

and p, q ∈ [1,∞] satisfy Assumptions II.1.1, II.1.3 and II.1.6. Then, the QFCLT holds
for the process X with a deterministic and non-degenerate covariance matrix Σ2.

Remark II.1.8. If the law P of the conductances is invariant under reflection and
rotation of Zd by π/2, the limiting Brownian motion is isotropic in the sense that
its covariance matrix Σ2 is of the form Σ2 = σ2I for some σ > 0. (Here I ∈ Rd×d

denotes the identity matrix.)

Remark II.1.9. Consider the Markov process Y = {Yt : t ≥ 0} on C∞(ω) that waits
at the vertex x ∈ C∞(ω) an exponential time with mean 1 and then jumps to a
neighboring vertex y with probability ω({x, y})/µω(x). This process is also called
constant speed random walk (CSRW). Notice that the process Y can be obtained
from the process X by a time change, that is Yt := Xat for t ≥ 0, where

at := inf{s ≥ 0 : As > t}

denotes the right continuous inverse of the functional

At :=

ˆ t

0

µω(Xs) ds, t ≥ 0.

By the ergodic theorem and Lemma II.2.4, we have that limt→∞At/t = E0[µ
ω(0)]

for P0-a.e ω. Hence, under the assumptions of Theorem II.1.7, the rescaled process
Y converges to a Brownian motion on Rd with deterministic and non-degenerate
covariance matrix Σ2

Y = E0[µ
ω(0)]−1Σ2, see [1, Section 6.2].

Remark II.1.10. Notice that Assumption II.1.1 and the remark above implies that
P0-a.s. the process X does not explode in finite time.

Random walks among random conductances is one of the most studied exam-
ples of random walks in random environments. Since the pioneering works of De
Masi, Ferrari, Goldstein and Wick [24] and Kipnis and Varadhan [41] which proved
a weak FCLT for stationary and ergodic laws P with E[ω(e)] < ∞, in the last two
decades much attention has been devoted to obtain a quenched FCLT.
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For i.i.d. environments (P is a product measure), it turns out that no moment
conditions are required. Based on the previous works by Mathieu [47], Biskup
and Prescott [17], Barlow and Deuschel [10] (for similar results for simple ran-
dom walks on supercritical Bernoulli percolation clusters see also Sidoravious and
Sznitman [59], Berger and Biskup [14], Mathieu and Piatniski [48]) it has been
finally shown by Andres, Barlow, Deuschel and Hambly [1] that a QFCLT for i.i.d.
environments holds provided that P0[ω(e) > 0] > pc with pc ≡ pc(d) being the
bond percolation threshold. Recently, Procaccia, Rosenthal and Sapozhnikov [54]
have studied a quenched invariance principle for simple random walks on a certain
class of percolation models with long range correlations including random inter-
lacements and level sets of the Gaussian Free Field (both in d ≥ 3).

For general ergodic, elliptic environments, P[0 < ω(e) < ∞] = 1, where the
infinite connected component C∞(ω) coincides with Zd, the first moment condition
on the conductances, E[ω(e)] < ∞ and E[ω(e)−1] < ∞, is necessary for a QFCLT to
hold, see Barlow, Burdzy and Timár [8, 7]. The uniformly elliptic situation, treated
by Boivin [19], Sidoravious and Sznitman [59] (cf. Theorem 1.1 and Remark 1.3
therein), Barlow and Deuschel [10], has been relaxed by Andres, Deuschel and
Slowik [2] to the condition in Assumption II.1.6 with θ = 0. As it turned out,
for the constant speed random walk Y as defined above, this moment condition is
optimal for a quenched local limit theorem to hold, see [4]. In dimension d = 2,
Biskup proved a QFCLT under the (optimal) first moment condition, and it is an
open problem if this remains true in dimensions d ≥ 3.

In Chapter II, we are interested in the random conductance model beyond the
elliptic setting. We prove a quenched invariance principle in the case of stationary
and ergodic laws under mild assumptions on geometric properties of the resulting
clusters and on the integrability of P. This framework includes the models consid-
ered in [2] and [54]. The main novelty is a new anchored relative isoperimetric
inequality (Lemma II.3.7) that is used to show in a robust way the ℓ1-sublinearity
of the corrector (for more details see below). Another important aspect is that nei-
ther an a priori knowledge on the distribution of the size of holes in the connected
components nor on properties of the chemical distance is needed. In particular, our
proof does not rely on the directional sublinearity of the corrector.

In the sequel, we give a brief list of motivating examples of probability measures
on [0,∞)E

d for the conductances.

Example II.1.11 (Supercritical percolation cluster). Consider a supercritical bond
percolation {ω(e) : e ∈ Ed}, that is, ω(e) ∈ {0, 1} are i.i.d. random variables
with P[ω(e) = 1] > pc. The almost sure existence of a unique infinite cluster is
guaranteed by Burton–Keane’s theorem, while Assumption II.1.3 on θ-very regu-
lar balls for any θ ∈ (0, 1) follows from a series of results in [9]: Theorem 2.18
a), c) together with Lemma 2.19, Proposition 2.11 (combined with Lemma 1.1),
and Proposition 2.12 a). More precisely, we choose Sω(0, n) as the largest cluster
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Cω(Q1) where Q1 is the smallest special cube appearing in the proof of [9, Theorem
2.18]. In this case, our result on the quenched invariance principle Theorem II.1.7
contains the ones in [59, 48, 17, 14].

Example II.1.12 (Models with long-range correlations). Consider a family of dis-
tribution Pu on {0, 1}Zd indexed by u ∈ (a, b) that satisfies the assumptions P1–P3,
S1 and S2 in [57]. For a given sample {η(x) : x ∈ Zd} of Pu, we set

ω({x, y}) = η(x) · η(y) ∀ {x, y} ∈ Ed.

For any fixed u ∈ (a, b), set P = Pu ◦ ω−1. Obviously, P is ergodic with respect to
translations of Zd. In view of [57, Remark 1.9 (2)], there exists P-a.s. a unique
infinite cluster. Hence, Assumption II.1.1 is satisfied. Moreover, Assumption II.1.3
on θ-very regular balls for any θ ∈ (0, 1) follows from [57, Proposition 4.3] with
ε = 1/d. Therefore, the QFCLT for the simple random walk on percolation clusters
given by ω holds true. In particular, the strategy used in showing Theorem II.1.7
provides an alternative proof of [54, Theorem 1].

Let us consider a more general model in which random walks move on percola-
tion clusters with arbitrary jump rates.

Example II.1.13 (RCM by level sets of the Gaussian Free Field). Consider the dis-
crete Gaussian Free Field ϕ = {ϕ(x) : x ∈ Zd} for d ≥ 3, i.e. ϕ is a Gaussian
field with mean zero and covariances given by the Green function of the simple
random walk on Zd. The excursion set of the field ϕ above level h is defined as
V≥h(ϕ) := {x ∈ Zd : ϕ(x) ≥ h}, which can be considered as vertex set of the ran-
dom graph of with edge set E≥h(ϕ) := {{x, y} : ϕ(x) ∧ ϕ(y) ≥ h}. It is well known
[21, 55] that there exists a threshold h∗ = h∗(d) ∈ [0,∞) such that almost surely
the graph

(
V≥h(ϕ), E≥h(ϕ)

)
contains

(i) for h < h∗, a unique infinite connected component;

(ii) for h > h∗, only finite connected components.

We are interested in the first case, where the family {Ph∗−h, h ∈ (a, b)}, with Pu

denoting the law of the site percolation process {1ϕ(x)≥u : x ∈ Zd}, satisfies for
some 0 < a < b < ∞ the assumptions P1–P3, S1 and S2 in [57] (for more details,
see Subsection 1.1.2 therein). For h ∈ (a, b), define

ω({x, y}) = exp
(
ϕ(x) + ϕ(y)

)
1|ϕ(x)|∧|ϕ(y)| ≥h∗−h ∀ {x, y} ∈ Ed,

and denote by P the corresponding law. In view of [57, Proposition 4.3], Assump-
tions II.1.1 and II.1.3 are satisfied. Since E[ω(e)p] < ∞ and E[ω(e)−q1ω(e)>0] < ∞
for every p, q ∈ (0,∞), Theorem II.1.7 holds for this random conductance model.
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II.1.3 The method

We follow the most common approach to prove a QFCLT that is based on harmonic
embedding, see [16] for a detailed exposition of this method. A key ingredient of
this approach is the corrector, a random function, χ : Ω×Zd → Rd satisfying P0-a.s.
the following cocycle property

χ(ω, x+ y)− χ(ω, x) = χ(τxω, y), x, y ∈ C∞(ω).

such that |χ(ω, x)| = o(|x|) as |x| → ∞ and

Φ(ω, x) = x− χ(ω, x)

is an Lω-harmonic function in the sense that P0-a.s.

LωΦ(ω, x) =
∑
y

ω({x, y})
(
Φ(ω, y)− Φ(ω, x)

)
= 0, ∀ x ∈ C∞(ω).

This can be rephrased by saying that χ is a solution of the Poisson equation

Lωu = LωΠ

where Π denotes the identity mapping on Zd. The existence of χ is guaranteed by
Assumption II.1.1. Further, the Lω-harmonicity of Φ implies that

Mt = Xt − χ(ω,Xt)

is a martingale under Pω
0 for P0-a.e. ω, and a QFCLT for the martingale part M can

be easily shown by standard arguments. In order to obtain a QFCLT for the process
X, by Slutsky’s theorem, it suffices to show that for any T > 0 and P0-a.e ω

sup
0≤ t≤T

1

n

⏐⏐χ(ω,Xtn2)
⏐⏐ −→

n→∞
0 in Pω

0 -probability, (II.1.9)

which can be deduced from ℓ∞-sublinearity of the corrector:

lim
n→∞

max
x∈Bω(0,n)

1

n

⏐⏐χ(ω, x)⏐⏐ = 0 P0-a.s. (II.1.10)

The main challenge in the proof of the QFCLT is to show (II.1.10). In a first
step we show that the rescaled corrector converges to zero P0-a.s. in the space av-
eraged norm ∥ · ∥1,Bω(0,n) (see Proposition II.2.9 below). A key ingredient in the
proof is a new anchored relative isoperimetric inequality (Lemma II.3.7) and an
extension of Birkhoff’s ergodic theorem, see Appendix II.A for more details. In a
second step, we establish a maximal inequality for the solution of a certain class of
Poisson equations using a Moser iteration scheme. As an application, the maximum
of the rescaled corrector in the ball Bω(0, n) can be controlled by the correspond-
ing ∥ ·∥1,Bω(0,n)-norm. In the case of elliptic conductances such a Moser iteration



34 CHAPTER II. QUENCHED INVARIANCE PRINCIPLES

has already been implemented in order to show a QFCLT [2], a local limit theo-
rem and elliptic and parabolic Harnack inequalities [3] as well as upper Gaussian
estimates on the heat kernel [4]. The Moser iteration is based on a Sobolev in-
equality for functions with compact support which follows in the case of elliptic
conductances (C∞(ω) ≡ Zd) from the isoperimetric inequality (II.1.5) on Zd. Since
such an isoperimetric inequality on random graphs is true only for sufficiently large
sets (Lemma II.2.10), the present proof of the Sobolev inequality relies on an inter-
polation argument in order to deal with the small sets (see Lemma II.3.3 below).

The paper is organized as follows: In Section II.2, we prove our main result.
After recalling the construction of the corrector and proving the convergence of the
martingale part, we show the ℓ1- and ℓ∞-sublinearity of the corrector. The proof
of the ℓ1-sublinearity is based on an anchored Sobolev inequality that we show in
a more general context in Section II.3. Finally, the Appendix contains an ergodic
theorem that is needed in the proofs.

Throughout the paper, we write c to denote a positive constant that may change
on each appearance, whereas constants denoted by Ci will be the same through
each argument.

II.2 Quenched invariance principle

Throughout this section we suppose that Assumption II.1.1 holds.

II.2.1 Harmonic embedding and the corrector

In this subsection, we first construct a corrector to the process X such that Mt =

Xt−χ(ω,Xt) is a martingale under Pω
0 for P a.e. ω. Second, we prove an invariance

principle for the martingale part.

Definition II.2.1. A measurable function, also called a random field, Ψ: Ω×Zd → R
satisfies the cocycle property if for P0-a.e. ω, it hold that

Ψ(τxω, y − x) = Ψ(ω, y)−Ψ(ω, x), for x, y ∈ C∞(ω).

We denote by L2
cov the set of functions Ψ: Ω×Zd → R satisfying the cocycle property

such that

∥Ψ∥2L2
cov

:= E0

[∑
x∼0

ω({0, x}) |Ψ(ω, x)|2
]
< ∞.

In the following lemma we summerize some properties of functions in L2
cov.

Lemma II.2.2. For all Ψ ∈ L2
cov, we have
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(i) Ψ(ω, 0) = 0 and Ψ(τxω,−x) = Ψ(ω, x) for any x ∈ C∞(ω) and ω ∈ ω0,

(ii) ∥Ψ∥L2
cov

= 0, if and only if, Ψ(ω, x) = 0 for all x ∈ C∞(ω) and P0-a.e. ω ∈ Ω0.

Proof. (i) follows from the definition.
(ii) ”⇐” The assertion follows immediately from the definition of ∥ · ∥L2

cov
.

”⇒” Suppose that ∥Ψ∥L2
cov

= 0. By using the stationarity of P and the cocycle
property, we obtain that, for any y ∈ Zd,

0 = E

[∑
x∼0

(τyω)({0, x})Ψ(τyω, x)
2 10∈C∞(τyω)

]

= E

[∑
x∼0

ω({y, y + x})
⏐⏐Ψ(ω, y + x)−Ψ(ω, y)

⏐⏐2 1y∈C∞(ω)

]
. (II.2.1)

Hence, for any y ∈ Zd there exists Ω∗
y ⊂ Ω such that P[Ω∗

y] = 1 and for all ω ∈ Ω∗

ω({y, y + x})
⏐⏐Ψ(ω, y + x)−Ψ(ω, y)

⏐⏐2 1y∈C∞(ω) = 0 ∀ |x| = 1. (II.2.2)

Set Ω∗ :=
⋂

y∈Zd Ω∗
y. Obviously, P[Ω∗] = 1, and for any ω ∈ Ω∗, (II.2.2) holds true

for all y ∈ Zd. In particular, for any ω ∈ Ω∗ ∩ Ω0 and z ∈ C∞(ω), there exist
z0 = 0, . . . , zk = z with {zi, zi+1} ∈ O(ω) for all 0 ≤ i ≤ k − 1 such that

Ψ(ω, zi) = Ψ(ω, zi+1) ∀ i = 0, . . . , k − 1.

Hence, Ψ(ω, z) = Ψ(ω, 0) = 0. This completes the proof.

In particular, it can be checked that L2
cov is a Hilbert space (cf. [17, 48]).

We say a function φ : Ω → R is local if it only depends on the value of ω at a
finite number of edges. We associate to φ a (horizontal) gradient Dφ : ω × Zd → R
defined by

Dφ(ω, x) = φ(τxω)− φ(ω), x ∈ Zd.

Obviously, if the function φ is bounded, Dφ is an element of L2
cov. Following [48],

we introduce an orthogonal decomposition of the space L2
cov. Set

L2
pot = cl

{
Dφ | φ : Ω → R local

}
in L2

cov,

being the closure in L2
cov of the set gradients and let L2

sol be the orthogonal comple-
ment of L2

pot in L2
cov, that is

L2
cov = L2

pot ⊕ L2
sol.

In order to define the corrector, we introduce the position field Π : ω × Zd → Rd

with Π(ω, x) = x. We write Πj for the j-th coordinate of Π. Since Πj(τxω, y − x) =
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Πj(ω, y) − Πj(ω, x) for all x, y ∈ Zd, the j-th component of the position field Πj

satisfies the cocycle property for every ω ∈ Ω0. Moreover,

∥Πj∥2L2
cov

= E0

[∑
x∼0 ω({0, x}) |xj|

2
]

= 2E0

[
ω({0, ej})

]
< ∞, (II.2.3)

where ej denotes the j-th coordinate unit vector. Hence, Πj ∈ L2
cov. So, we can

define χj ∈ L2
pot and Φj ∈ L2

sol as follows

Πj = χj + Φj ∈ L2
pot ⊕ L2

sol.

This defines the corrector χ = (χ1, . . . , χd) : Ω× Zd → Rd. Further, we set

Mt = Φ(ω,Xt) = Xt − χ(ω,Xt). (II.2.4)

The following proposition summarizes the properties of χ, Φ and M ; see, for exam-
ple, [1], [10] or [16] for detailed proofs.

Proposition II.2.3. For P0-a.e. ω, we have

LωΦ(x) =
∑
y∼x

ω({x, y})
(
Φ(ω, y)− Φ(ω, x)

)
= 0 ∀ x ∈ C∞(ω). (II.2.5)

In particular, for P0-a.e. ω and for every v ∈ Rd, M and v ·M are Pω
0 -martingales

with respect to the filtration Ft = σ(Xs, s ≤ t). The quadratic variation process of the
latter is given by

⟨v ·M⟩t =

ˆ t

0

∑
x∼0

(τXsω)({0, x})
(
v · Φ(τXsω, x)

)2
ds. (II.2.6)

In the sequel, we prove a quenched invariance principle for the martingale part.
This is standard and follows from the ergodicity of the process of the environment
as seen from the particle {τXtω : t ≥ 0} which is a Markov process taking values in
the environment space Ω0 with generator

L̂φ(ω) =
∑
x∼0

ω({0, x})
(
φ(τxω)− φ(ω)

)
acting on bounded functions φ : Ω0 → R. The following result is a generalization of
Kozlov’s theorem [42] in the case that the underlying random walk is reversible.

Lemma II.2.4. The measure P0 is reversible, invariant and ergodic for the environ-
ment process {τXtω : t ≥ 0}.

Proof. The reversibility of {τXtω : t ≥ 0} with respect to P0 follows directly from
Assumption II.1.1. The proof of the ergodicity of the environmental process relies
on the ergodicity of P with respect to shifts of Zd and the fact that for P-a.e. ω the
infinite cluster, C∞(ω), is unique. See [24, Lemma 4.9] for a detailed proof.
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In the next proposition we show both the convergence of the martingale part
and the non-degeneracy of the limiting covariance matrix. The proof of the latter,
inspired by the argument given in [54] (see also [14]), relies on the ℓ1-sublinearity
of the corrector that we will show below in Proposition II.2.9.

Proposition II.2.5 (QFCLT for the martingale part). For P0-a.e. ω, the sequence of
processes { 1

n
Mtn2 : t ≥ 0} converges in Pω

0 -probability to a Brownian motion with a
deterministic covariance matrix Σ2 given by

Σ2
ij = E0

[∑
x∼0 ω({0, x}) Φi(ω, x) Φj(ω, x)

]
.

Additionally, if θ ∈ (0, 1) satisfies Assumption II.1.3 and E[(1/ω(e))1e∈O] <∞ for any
e ∈ Ed, then the limiting covariance matrix Σ2 is non-degenerate.

Proof. The proof follows from the martingale convergence theorem by Helland, cf.
[39, Theorem 5.1a)]; see also [1] or [48] for details. The argument is based on
the fact that the quadratic variation of { 1

n
Mtn2 : t ≥ 0} converges, for which the

ergodicity of the environment process in Lemma II.2.4 is needed.
It remain to show that the limiting Brownian motion is non-degenerate. The

argument is similar to the one in [54], but avoids the use of the ℓ∞-sublinearity of
the corrector. Assume that (v,Σ2v) = 0 for some v ∈ Rd with |v| = 1. First, we
deduce from Lemma II.2.2 that, for P0-a.e. ω, v · Φ(ω, x) = 0 for all x ∈ C∞(ω).
Since x = χ(ω, x) + Φ(ω, x), this implies that, for P0-a.e. ω, |v · x| = |v · χ(ω, x)| for
all x ∈ C∞(ω). In particular,

1

|Bω(n)|
∑

x∈Bω(n)

⏐⏐v · 1
n
x
⏐⏐ =

1

|Bω(n)|
∑

x∈Bω(n)

⏐⏐v · 1
n
χ(ω, x)

⏐⏐. (II.2.7)

In view of Proposition II.2.9, the right-hand side of (II.2.7) vanishes for P0-a.e. ω
as n tends to infinity. On the other hand, for any δ ∈ (0, 1) we have that

1

nd

∑
x∈Bω(n)

⏐⏐v · 1
n
x
⏐⏐ ≥ δ2

nd

∑
x∈Bω(n)

x ̸=0

1|x|>δn 1|v·x/|x||>δ

≥ δ2

nd

(
|Bω(n)| − |B(δn)| −

∑
x∈B(n)
x ̸=0

1|v·x/|x||≤δ

)

Due to (II.1.3), |Bω(n)| ≥ CVn
d for all n ≥ N1(ω) and P0-a.e. ω. Moreover, the other

two terms in the bracket above are of order δnd. Hence, by choosing δ sufficiently
small, there exists c > 0 such that

lim
n→∞

1

|Bω(n)|
∑

x∈Bω(n)

⏐⏐v · 1
n
x
⏐⏐ ≥ c > 0.

Thus, we proved that (v,Σ2v) > 0 for all 0 ̸= v ∈ Rd, which completes the proof.
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II.2.2 Sublinearity of the corrector

Recall that we denote by Bω(x, r) and B(x, r) a closed ball with center x ∈ C∞(ω)

and radius r ≥ 0 with respect to the graph distance dω and usual ℓ1-distance on Zd,
respectively. To lighten notation, we write Bω(r) ≡ Bω(0, r) and B(r) ≡ B(0, r).
Further, for any non-empty A ⊂ Zd, we define a locally space-averaged norm for
functions f : Zd → R by

∥f∥p,A :=

(
1

|A|
∑
x∈A

|f(x)|p
)1/p

, p ∈ [1,∞).

Our main objective in this subsection is to prove the ℓ∞-sublinearity of the corrector.

Proposition II.2.6 (ℓ∞-sublinearity). Suppose that θ ∈ (0, 1) and p, q ∈ [1,∞] satisfy
Assumptions II.1.3 and II.1.6. Then, for any j = 1, . . . , d,

lim
n→∞

max
x∈Bω(n)

⏐⏐ 1
n
χj(ω, x)

⏐⏐ = 0, P0-a.s. (II.2.8)

The proof is based on both ergodic theory and purely analytic tools. In a first
step, we show the ℓ1-sublinearity of the corrector, that is the convergence of 1

n
χ to

zero in the ∥ · ∥1,Bω(n)-norm. This proof uses the spatial ergodic theorem as well
as the anchored S1-Sobolev inequality that we established in Proposition II.3.9. In
a second step, we use the maximum inequality in order to bound from above the
maximum of 1

n
χ in Bω(n) by 1

n
∥χ∥1,Bω(n).

Let us start with some consequences from the ergodic theorem. To simplify
notation let us define the following measures µω and νω on Zd

µω(x) =
∑
x∼y

ω({x, y}) and νω(x) =
∑
x∼y

1

ω({x, y})
1{x,y}∈O(ω),

where we still use the convention that 0/0 = 0.

Lemma II.2.7. Suppose that for P0-a.e. ω there exists N1(ω) < ∞ such that the ball
Bω(n) satisfies the volume regularity (II.1.3) for all n ≥ N1(ω). Further, assume that
E[ω(e)p] < ∞ and E[(1/ω(e))q1e∈O] < ∞ for some p, q ∈ [1,∞). Then, for P0-a.s. ω
there exists c <∞ such that

lim
n→∞

∥µω∥pp,Bω(n) ≤ cE0[µ
ω(0)p] and lim

n→∞
∥νω∥qq,Bω(n) ≤ cE0[ν

ω(0)q]. (II.2.9)

Proof. The assertions follows immediately from the spatial ergodic theorem. For
instance, we have for P0-a.s.

lim
n→∞

∥µω∥pp,Bω(n)

(II.1.3)
≤ lim

n→∞

C−1
V

nd

∑
x∈B(n)

µτxω(0)p 10∈C∞(τxω) ≤ cE0

[
µω(0)p

]
,

where we exploit the fact that Bω(n) ⊂ B(n) ∩ C∞(ω) for every n ≥ 1.
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The next lemma relies on an extension of Birkhoff’s ergodic theorem that we
show in the appendix.

Lemma II.2.8. Let wn : Ed → (0,∞) be defined by

wn({x, y}) = (n/max{|x|1, |y|1})d−ε

for some ε ∈ (0, 1), and assume that E[(1/ω(e))1e∈O] < ∞ for all e ∈ Ed. Then, there
exists C5 <∞ such that for any Ψ ∈ L2

cov and P0-a.e. ω,

lim
n→∞

1

nd

∑
x,y∈Bω(n)

x∼y

wn({x, y}) |Ψ(ω, x)−Ψ(ω, y)| ≤ C5

ε
E0[ν

ω(0)]1/2 ∥Ψ∥L2
cov
. (II.2.10)

Proof. First, an application of the Cauchy-Schwarz inequality yields

E0

[∑
0∼y|Ψ(ω, y)|1{0,y}∈O

]
≤ E0

[∑
0∼y

(
1/ω({0, y})

)
1{0,y}∈O

]1/2
E0

[∑
0∼yω({0, y}) |Ψ(ω, y)|2

]1/2
= E0[ν

ω(0)]1/2 ∥Ψ∥L2
cov
. (II.2.11)

which is finite since Ψ ∈ L2
cov and E[(1/ω(e))1e∈O] < ∞ by assumption. Recall that

Ψ satisfies the cocycle property, that is Ψ(ω, x)−Ψ(ω, y) = Ψ(τxω, y−x) for P0-a.e. ω
and for every x, y ∈ C∞(ω). Since Bω(n) ⊂ B(n)∩C∞(ω) for every n ≥ 1, we obtain
that, for any ω ∈ Ω0,

1

nd

∑
x,y∈Bω(n)

x∼y

wn({x, y})
⏐⏐Ψ(τxω, y − x)

⏐⏐
≤ 1

nd

∑
x,y∈B(n)

wn({x, y})
⏐⏐Ψ(τxω, y − x)

⏐⏐10∈C∞(τxω)1{0,y−x}∈O(τxω)

≤ ψ(ω)

nε
+

1

nd

∑
x∈B(n)
x ̸=0

ψ(τxω)

|x/n|d−ε

where we introduced ψ(ω) =
∑

y∼0 |Ψ(ω, y)|10∈C∞(ω)1{0,y}∈O(ω) to lighten notation.
Further, an application of (II.A.1) yields

lim
n→∞

1

nd

∑
x,y∈Bω(n)

x∼y

wn({x, y})
⏐⏐Ψ(τxω, y − x)

⏐⏐
≤ C5

ε
E
[∑

0∼y|Ψ(ω, y)|10∈C∞1{0,y}∈O

] (II.2.11)
≤ C5

ε
E0[ν

ω(0)]1/2 ∥Ψ∥L2
cov
,

which concludes the proof.
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Proposition II.2.9 (ℓ1-sublinearity). Suppose θ ∈ (0, 1) satisfies Assumption II.1.3,
and assume that E

[
(1/ω(e))1e∈O

]
<∞ for all e ∈ Ed. Then, for any j = 1, . . . , d,

lim
n→∞

1

|Bω(n)|
∑

x∈Bω(n)

⏐⏐ 1
n
χj(ω, x)

⏐⏐ = 0, P-a.s. (II.2.12)

Proof. Since χj ∈ L2
pot, there exists a sequence of bounded functions φj,k : ω → R

such that Dφj,k → χj in L2
cov as k → ∞. Thus, for any fixed k ≥ 1 we obtain

1

nd+1

∑
x∈Bω(n)

|χj(ω, x)| ≤
c∥φj,k∥L∞(ω)

n
+

1

nd+1

∑
x∈Bω(n)

⏐⏐(χj −Dφj,k)(ω, x)
⏐⏐. (II.2.13)

In order to bound from above the second term on the right hand-side of (II.2.13)
we consider the deterministic edge weight wn : Ed → (0,∞) that is defined by
wn({x, y}) = (n/max{|x|1, |y|1})d−ε for some ε ∈ (0, 1). Since dω(x, y) ≥ |x− y|1 for
any x, y ∈ C∞(ω), the wn satisfies the assumption in Proposition II.3.9. By applying
(II.3.15) and the cocycle property, we find for any ω ∈ Ω0 that

1

nd+1

∑
x∈Bω(n)

⏐⏐(χj −Dφj,k)(ω, x)
⏐⏐

≤ CS1

nd

∑
x,y∈Bω(CWn)

wn({x, y})
⏐⏐(χj −Dφj,k)(τxω, y − x)

⏐⏐1{0,y−x}∈O(τxω).

Hence, by combining the estimate above with (II.2.13), we get

1

nd+1

∑
x∈Bω(n)

|χ(ω, x)|

≤
c∥φj,k|L∞(ω)

n
+
CS1

nd

∑
x,y∈Bω(CWn)

{0,y−x}∈O(τxω)

wn({x, y})
⏐⏐(χj −Dφj,k)(τxω, y − x)

⏐⏐.
(II.2.14)

In view of Lemma II.2.8, we obtain that there exists c <∞ such that for P0-a.e. ω,

lim
k→∞

lim
n→∞

∥ 1
n
χj(ω, ·)∥1,Bω(n)

(II.1.3)
≤ lim

k→∞
lim
n→∞

C−1
V

nd+1

∑
x∈Bω(n)

|χ(ω, x)|

(II.2.10)
≤ lim

k→∞

c

ε
E0[ν

ω(0)]1/2 ∥χj −Dφj,k∥L2
cov

= 0,

which concludes the proof.

In the following lemma we show that under the assumption that the ball Bω(n)

is θ-very regular, the random graph (C∞(ω),O(ω)) satisfies P0-a.s. an isoperimetric
inequality for large sets.
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Lemma II.2.10 (isoperimetric inequality for large sets). Suppose that θ ∈ (0, 1)

satisfies Assumption II.1.3. Then, for any ω ∈ Ω0 and n ≥ N0(ω), there exists Ciso ∈
(0,∞) such that

|∂ωA| ≥ Ciso |A|(d−1)/d (II.2.15)

for all A ⊂ Bω(n) with |A| ≥ nθ.

Proof. First, note that (II.2.15) follows trivially from (II.1.4) for sets with |A| ≥ cnd.
Consider A ⊂ Bω(n) with |A| ≥ nθ and set rd := (2/CV) |A|. Since r ≥ nθ/d, the

Assumption II.1.3 implies that any ball Bω(y, 3r) with y ∈ Bω(n) is regular. Further,
there exists a finite sequence {yi ∈ Bω(n) : i ∈ I} such that

Bω(yi, r) ∩ Bω(yj, r) = ∅ ∀ i, j ∈ I with i ̸= j

and Bω(x, r) ∩
⋃

i∈I B
ω(yi, r) ̸= ∅ for all x ∈ Bω(n) \

⋃
i∈I B

ω(yi, r). Clearly, the sets
Bω(yi, 3r) cover the ball Bω(n), that is, Bω(n) ⊂

⋃
i∈I B(yi, 3r). We claim that there

exists M <∞, independent of n, such that every x ∈ Bω(n) is contained in at most
M different balls Bω(yi, 3CWr). To prove this claim, set

Ix :=
{
i ∈ I : x ∈ Bω(yi, 3CWr)

}
.

Notice that for any i ∈ Ix we have that Bω(yi, r) ⊂ Bω(x, 4CWr). By the fact that
the sets Bω(yi, r) are disjoint and regular, (II.1.3) hold. In particular,

C0(4CW)drd ≥ |Bω(x, 4CWr)| ≥
∑
x∈Ix

|Bω(yi, r)| ≥ |Ix|CVr
d,

where C0 := maxk≥1 |B(k)|/kd < ∞. Hence, M ≤ (4CW)dc0/CV which completes
the proof of the claim. Further, set Ai := A ∩ S(yi, 3r). Since Bω(yi, 3r) is regular
and |Ai| ≤ |A| ≤ 1

2
|S(yi, 3r)| for any i ∈ I, (II.1.4) implies that

|∂ωA| ≥ 1

M

∑
i

|∂ωS(yi,r)Ai| ≥ Criso

Mr

∑
i

|Ai| ≥ Criso

Mr
|A| ≥ CrisoCV

2M
|A|.

By setting Ciso := CrisoCV/(2M), the assertion (II.2.15) follows.

The next proposition relies on the application of the Moser iteration scheme that
has been established for general graphs in [2]. A key ingredient in this approach is
the following Sobolev inequality

∥u∥d′/(d′−1),Bω(n) ≤ CS1

n

|Bω(n)|
∑

x∨y∈Bω(n)

|u(x)− u(y)|1{x,y}∈O(ω) (II.2.16)

for some suitable d′ that we will prove in Proposition II.3.5.
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Proposition II.2.11 (maximal inequality). Suppose θ ∈ (0, 1) and p, q ∈ [1,∞] sat-
isfies Assumption II.1.3 and II.1.6. Then, for every α > 0 there exist γ′ > 0 and κ′ > 0

and c(p, q, θ, d) <∞ such that for any ω ∈ Ω0 and j = 1, . . . , d,

max
x∈Bω(n)

⏐⏐ 1
n
χj(ω, x)

⏐⏐ ≤ c
(
1 ∨ ∥µω∥p,Bω(n) ∥νω∥q,Bω(n)

)κ′

∥ 1
n
χj(ω, ·)∥γ

′

α,Bω(2n).

Proof. In view of Lemma II.2.10 and Assumption II.1.3, for any ω ∈ Ω0 and n ≥
N0(ω) the assumptions of Proposition II.3.5 are satisfied. Further, let ζ = (1 −
θ)/(1− θ/d) and set d′ = (d− θ)/(1− θ). Then, Proposition II.3.5 implies that

∥u∥d′/(d′−1),Bω(n) = ∥u∥d/(d−ζ),Bω(n) ≤ CS1

n

|Bω(n)|
∑

x∨y∈Bω(n)
{x,y}∈O(ω)

|u(x)− u(y)|

for any u : C∞(ω) → R with supp(u) ⊂ Bω(n). By taking this inequality as a starting
point and using the fact that by definition χ(ω, x) = 0 for any x ∈ Zd \ C∞(ω),
the assertion for 1

n
χj(ω, ·) follows directly from [2, Corollary 3.9] with f(x) = 1

n
xj,

x0 = 0, σ = 1, σ′ = 1/2, n replaced by 2n and d replaced by d′.

Proposition II.2.6 follows immediately from Proposition II.2.11 with the choice
α = 1, combined with Proposition II.2.9 and Lemma II.2.7.

Proof of Theorem II.1.7. Proceeding as in the proof of [2, Proposition 2.13] (with
the minor modification that the exit time TL,n of the rescaled process X(n) from the
cube [−L,L]d is replaced by T ω

L,n := inf{t ≥ 0 : Xtn2 ̸∈ Bω(n)}), the ℓ∞-sublinearity
of the corrector that we have established in Proposition II.2.6 implies that for any
T > 0 and P0-a.e. ω

sup
t≤T

⏐⏐ 1
n
χ(ω,Xtn2)| −→

n→∞
0, in Pω

0 -probability.

Thus, the assertion of Theorem II.1.7 now follows from Proposition II.2.5.

II.3 Sobolev inequalities on graphs

As seen in the previous section, both the Sobolev and the anchored Sobolev in-
equality turned out to be a crucial tool in order to prove the ℓ1- and ℓ∞-sublinearity
of the corrector. In this section we will prove these inequalities for general graphs.

II.3.1 Setup and preliminaries

Let us consider an infinite, connected, locally finite graphG = (V,E) with vertex set
V and edge set E. Let d be the natural graph distance on G. We denote by B(x, r)

the closed ball with center x and radius r, i.e. B(x, r) := {y ∈ V | d(x, y) ≤ ⌊r⌋}.
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The graph is endowed with the counting measure, i.e. the measure of A ⊂ V is
simply the number |A| of elements in A. Given a non-empty subset B ⊆ V , we
define for any A ⊂ B the relative boundary of A with respect to B by

∂BA :=
{
{x, y} ∈ E : x ∈ A and y ∈ B \ A

}
,

and we simply write ∂A instead of ∂VA. We impose the following assumption on
the properties of the graph G.

Assumption II.3.1. For some d ≥ 2, there exist constants creg, Creg, Criso, Ciso ∈
(0,∞), CW ∈ [1,∞) and θ ∈ (0, 1) such that for all x ∈ V it holds

(i) volume regularity of order d for large balls: there exists N1(x) <∞ such that
for all n ≥ N1(x),

creg n
d ≤ |B(x, n)| ≤ Creg n

d. (II.3.1)

(ii) (weak) relative isoperimetric inequality: there exists N2(x) < ∞ and an in-
creasing sequence {S(x, n) ⊂ V : n ∈ N} of connected sets such that for all
n ≥ N2(x),

B(x, n) ⊂ S(x, n) ⊂ B(x,CWn) (II.3.2)

and

|∂S(x,n)A| ≥ Criso n
−1 |A| (II.3.3)

for all A ⊂ S(x, n) with |A| ≤ 1
2
|S(x, n)|.

(iii) isoperimetric inequality for large sets: there exists N3(x) < ∞ such that for
all n ≥ N3(x),

|∂A| ≥ Ciso |A|(d−1)/d, (II.3.4)

for all A ⊂ B(x, n) with |A| ≥ nθ.

Remark II.3.2. Suppose that a graph G satisfies the relative isoperimetric inequal-
ity (II.3.3) and C1 ∈ (0, 1/2). Then, for all n ≥ N2(x) and any A ⊂ S(x, n) such that
1
2
|S(x, n)| < |A| < (1− C1)|S(x, n)|, we have that

|∂S(x,n)A| = |∂S(x,n)(S(x, n) \ A)| ≥ Criso n
−1 |S(x, n) \ A| ≥ CrisoC1 n

−1 |A|.

Thus, any such set A also satisfies the relative isoperimetric inequality however
with a smaller constant.



44 CHAPTER II. QUENCHED INVARIANCE PRINCIPLES

II.3.2 Sobolev inequality for functions with compact support

By introducing an effective dimension, we first prove a (weak) isoperimetric in-
equality that holds for all subsets A ⊂ B(x, n) provided that n is large enough.

Lemma II.3.3. Suppose that Assumption II.3.1 (i) and (iii) hold for some θ ∈ [0, 1)

and let ζ ∈
[
0, 1−θ

1−θ/d

]
. Then, for all x ∈ V and n ≥ N1(x) ∨N3(x),

|∂A|
|A|(d−ζ)/d

≥ Ciso/C
(1−ζ)/d
reg ∧ 1

n1−ζ
, ∀A ⊂ B(x, n). (II.3.5)

Remark II.3.4. Let d ≥ 2 and ζ ∈ [0, 1−θ
1−θ/d

] for some θ ∈ [0, 1). By setting d′ :=

d/ζ, we have that (d′ − 1)/d′ = (d − ζ)/d. Thus, (II.3.5) corresponds to a (weak)
isoperimetric inequality with d replaced by d′.

Proof. Consider ζ ∈
[
0, (1 − θ)/(1 − θ/d)

]
and x ∈ V . For any n ≥ N1(x) ∨ N3(x),

let A ⊂ B(x, n) be non-empty. In the sequel, we proceed by distinguish two cases:
|A| ≥ nθ and |A| < nθ. If |A| ≥ nθ, we have

|∂A|
|A|(d−ζ)/d

(II.3.4)
≥ Ciso

|A|(1−ζ)/d
≥ Ciso

|B(x, n)|(1−ζ)/d

(II.3.1)
≥ Ciso/C

(1−ζ)/d
reg

n1−ζ
.

On the other hand, in case |A| < nθ, due to the choice of ζ we obtain that

|∂A|
|A|(d−ζ)/d

≥ 1

nθ(1−ζ/d)
≥ 1

n1−ζ
.

This completes the proof.

Proposition II.3.5 (Sobolev inequality). Suppose Assumption II.3.1 (i) and (iii) are
true for some θ ∈ [0, 1). Then, for any ζ ∈

[
0, 1−θ

1−θ/d

]
, there exists

CS1 ≡ CS1(θ, d) ∈ (0,∞)

such that, for any x ∈ V and n ≥ N1(x) ∨N3(x),(
1

|B(x, n)|
∑

y∈B(x,n)

|u(y)|
d

d−ζ

)d−ζ
d

≤ CS1n

|B(x, n)|
∑

y∨y′∈B(x,n)
{y,y′}∈E

⏐⏐u(y)− u(y′)
⏐⏐ (II.3.6)

for every function u : V → R with supp(u) ⊂ B(x, n).

Proof. The assertion follows by an application of the co-area formula as in [63,
Proposition 3.4]. Nevertheless, we will repeat it here for the readers’ convenience.

Let u : V → R be a function with suppu ⊂ B(x, n). Note that it is enough to
consider u ≥ 0. Moreover, by Jensen’s inequality it suffices to prove (II.3.6) for
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ζ = 1−θ
1−θ/d

. Define for t ≥ 0 the super-level sets of u by At = {y ∈ V : u(y) > t}.
Obviously, At ⊂ B(x, n) for any t ≥ 0. Thus,∑

{y,y′}∈E

⏐⏐u(y)− u(y′)
⏐⏐ =

ˆ ∞

0

|∂At| dt
(II.3.5)
≥ Ciso/C

(1−ζ)/d
reg ∧ 1

n1−ζ

ˆ ∞

0

|At|1−ζ/d dt.

Now, consider a function g : B(x0, n) → [0,∞) with ∥g∥Lα∗ (V ) = 1 where α∗ = d/ζ

and α = d/(d − ζ). Notice, that 1/α + 1/α∗ = 1 and 1 − ζ/d = 1/α. Since
|At|1/α ≥ ⟨1At , g⟩ by Hölder’s inequality, we obtain thatˆ ∞

0

|At|1−ζ/d dt ≥
ˆ ∞

0

⟨1At , g⟩ dt = ⟨u, g⟩ .

Here, ⟨·, ·⟩ denotes the scalar product in ℓ2(V ). Finally, taking the supremum over
all g : B(x0, n) → [0,∞) with ∥g∥Lα∗ (V ) = 1 implies the assertion (II.3.6).

Remark II.3.6. It is well known, see [56, Lemma 3.3.3], that for functions u :

V → R that are not compactly supported, the following (weak) Poincaré inequality
follows from the (weak) relative isoperimetric inequality: For x ∈ V and n ≥ N2(x)

inf
m∈R

∑
y∈B(x,n)

|u(y)−m| ≤ C−1
riso n

∑
y,y′∈B(x,CWn)

{y,y′}∈E

⏐⏐u(y)− u(y′)
⏐⏐.

II.3.3 Anchored Sobolev inequality

As a second result, we prove a Sobolev inequality for functions with unbounded
support that vanishes at some point x ∈ V . The proof is based on an anchored
relative isoperimetric inequality. For this purpose, let w : E → (0,∞) be an edge
weight and for any A ⊂ B non-empty we write

|∂BA|w :=
∑

e∈∂BA

w(e).

Lemma II.3.7 (anchored relative isoperimetric inequality). Suppose that the graph
G satisfies Assumption II.3.1 (i) and (ii). For any x ∈ V and ε ∈ (0, 1), choose n large
enough such that ⌊n(1−ε)/(d−ε)⌋ ≥ N1(x) ∨N2(x). Further, assume that

wn({y, y′}) ≥ (n/max{d(x, y), d(x, y′)})d−ε ∀ {y, y′} ∈ E. (II.3.7)

Then, there exists C2 ∈ (0,∞) such that

|∂S(x,n)A|wn ≥ C2

n
|A|, ∀A ⊂ S(x, n) \ {x}. (II.3.8)

Remark II.3.8. On the Euclidean lattice, (Zd,Ed), the anchored relative isoperimet-
ric inequality (II.3.8) holds for all n ≥ 1, if

wn({y, y′}) ≥ c

(
n

max{d(x, y), d(x, y′)}

)d−1

for some c <∞ and for all {y, y′} ∈ Ed.
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Proof. Set C1 = 2−(d+1)cregC
−1
regC

−d
W and β = (1−ε)/(d−ε). In view of Remark II.3.2,

it holds that for any n ≥ N1(x) ∨N2(x),

|∂S(x,n)A| ≥ C1Criso n
−1 |A| =: C3 n

−1|A| (II.3.9)

for all A ⊂ S(x, n) with |A| ≤ (1 − C1)|S(x, n)|. Suppose that n is chosen in such
a way that ⌊nβ⌋ ≥ N1(x) ∨ N2(x) and let A ⊂ S(x, n) \ {x} be non-empty. Since
S(x, n) ⊂ B(x,CWn), we have that wn({y, y′}) ≥ C−d

W and so

|∂S(x,n)A|wn ≥ C−d
W |∂S(x,n)A|.

Thus, (II.3.8) follows from (II.3.9) for any A ⊂ S(x, n) \ {x} with |A| ≤ (1 −
C1)|S(x, n)|.

It remains to consider the case |A| > (1 − C1)|S(x, n)|. We proceed by distin-
guishing two different cases. First, assume that A ∩ S(x, ⌊nβ⌋) ̸= ∅. Due to the fact
that A does not contain the vertex x, there exists at least one edge {y, y′} ∈ E with
y ∈ A ⊂ S(x, ⌊nβ⌋) and y′ ∈ S(x, ⌊nβ⌋) \ A. This implies

|∂S(x,n)A|wn ≥ max
{
wn(e) : e ∈ ∂S(x,n)A

}
(II.3.2)
≥ nd−1

Cd
W

(II.3.1)
≥

C−1
reg

C2d
W

n−1|B(x,CWn)|
(II.3.2)
≥

C−1
reg

C2d
W

n−1|A|. (II.3.10)

Consider now the case that |A| > (1− C1)|S(x, n)| and A ∩ S(x, ⌊nβ⌋) = ∅. Set

k := min
{
0 ≤ j ≤ n : |A ∩ S(x, j)| > (1− C1) |S(x, j)|

}
. (II.3.11)

Obviously, ⌊nβ⌋ < k ≤ n. Since |A∩S(x, k−1)| ≤ (1−C1) |S(x, k−1)| by definition
of k, we obtain by exploiting the monotonicity of the sets S(x, k)

|∂S(x,n)A|wn ≥
⏐⏐∂S(x,k−1)

(
A ∩ S(x, k − 1)

)⏐⏐
wn

≥ 1

Cd
W

(
n

k − 1

)d−ε⏐⏐∂S(x,k−1)

(
A ∩ S(x, k − 1)

)⏐⏐
(II.3.9)
≥ C3

Cd
W

nd−ε

kd+1−ε
|A ∩ S(x, k − 1)|. (II.3.12)

On the other hand, since

|S(x, k − 1)|
(II.3.2)
≥ |B(x, k − 1)|

(II.3.1)
≥

creg C
−1
reg

Cd
W

2−d |B(x,CWk)| ≥
creg C

−1
reg

Cd
W

2−d |S(x, k)|,

we get that |S(x, k) \ S(x, k − 1)| ≤ (1− 2C1)|S(x, k)|. Hence,

|A ∩ S(x, k − 1)|
(II.3.11)
≥ (1− C1) |S(x, k)| − |S(x, k) \ S(x, k − 1)| ≥ C1creg k

d.

(II.3.13)
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By combining (II.3.12) and (II.3.13), we find that

|∂S(x,n)A|wn

(II.3.1)
≥ C1C3creg

C2d
WCreg

n−1 |B(x0, CWn)| ≥ C1C3creg
C2d

WCreg

n−1 |A|. (II.3.14)

By setting C2 := min{C3, C
−1
regC

−2d
W , C1C3cregC

−1
regC

−2d
W }, the assertion (II.3.8) follows.

Proposition II.3.9 (anchored Sobolev inequality). Let x ∈ V and suppose that the
assumptions of Lemma II.3.7 are satisfied. Then, there exists CS1 ∈ (0,∞) such that∑

y∈B(x,n)

|u(y)| ≤ CS1 n
∑

y,y′∈B(x,CWn)
{y,y′}∈E

wn({y, y′})
⏐⏐u(y)− u(y′)

⏐⏐ (II.3.15)

for every function u : V → R with u(x) = 0.

Proof. The proof is based on an application of the co-area formula and the anchored
relative isoperimetric inequality as derived in Lemma II.3.7. For some x ∈ V , let
u : V → R be a function with u(x) = 0. It suffices to consider u ≥ 0. Define for
t ≥ 0 the super-level sets of u by At = {y ∈ S(x, n) : u(y) > t}. Then,

∑
y,y′∈S(x,n)
{y,y′}∈E

wn({y, y′})
⏐⏐u(y)− u(y′)

⏐⏐ =

ˆ ∞

0

|∂S(x,n)At|wn dt

(II.3.8)
≥ C2

n

ˆ ∞

0

|At| dt =
C2

n

∑
y∈B(x,n)

|u(y)|.

Since S(x, n) ⊂ B(x,CWn) by Assumption II.3.1(ii), (II.3.15) follows.

II.A Ergodic theorem

In this appendix we provide an extension of the Birkhoff ergodic theorem that
generalises the result obtained in [20, Theorem 3]. Consider a probability space
(ω,F ,P) and a group of measure preserving transformations τx : ω → ω, x ∈ Zd

such that τx+y = τx ◦ τy. Further, let B1 := {x ∈ Rd : |x| ≤ 1}.

Theorem II.A.1. Let φ ∈ L1(P) and ε ∈ (0, d). Then, for P-a.e. ω,

lim
n→∞

1

nd

∑′

x∈B(0,n)

φ(τxω)

|x/n|d−ε
=

( ˆ
B1

|x|−(d−ε) dx

)
E
[
φ
]
, (II.A.1)

where the summation is taken over all x ∈ B(0, n) \ {0}.
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Proof. To start with, notice that the ergodic theorem, see [20, Theorem 3], implies
that for P-a.e. ω

lim
k→∞

lim
n→∞

1

nd

∑′

x∈B(0,n)

(
k ∧ |x/n|−(d−ε)

)
φ(τxω)

= lim
k→∞

( ˆ
B1

k ∧ |x|−(d−ε) dx

)
E
[
φ
]
=

( ˆ
B1

|x|−(d−ε) dx

)
E
[
φ
]
. (II.A.2)

On the other hand, by means of Abel’s summation formula, we have that⏐⏐⏐⏐ 1nε

∑′

x∈B(0,n)

φ(τxω)

|x|d−ε

⏐⏐⏐⏐ =

⏐⏐⏐⏐ 1nε

n∑
j=1

1

jd−ε

∑
|x|=j

φ(τxω)

⏐⏐⏐⏐
≤
⏐⏐⏐⏐ 1nd

∑′

x∈B(0,n)

φ(τxω)

⏐⏐⏐⏐ + d− ε

nε

n−1∑
j=1

1

j1−ε

⏐⏐⏐⏐ 1jd ∑′

x∈B(0,j)

φ(τxω)

⏐⏐⏐⏐,
where we used that j−(d−ε)− (j+1)−(d−ε) ≤ (d− ε)j−(d+1−ε). From this estimate we
deduce that for any φ ∈ L1(P) and P-a.e. ω

sup
n≥1

⏐⏐⏐⏐⏐ 1

nε

∑′

x∈B(0,n)

φ(τxω)

|x|d−ε

⏐⏐⏐⏐⏐ ≤ Cd

ε
sup
n≥0

1

|B(0, n)|
∑

x∈B(0,n)

⏐⏐φ(τxω)⏐⏐ < ∞, (II.A.3)

where C := supn≥1 |B(0, n)|/nd <∞. On the other hand, for any k ≥ 1

1

nd

⏐⏐⏐⏐⏐ ∑′

x∈B(0,n)

(
1

|x/n|d−ε
− k ∧ 1

|x/n|d−ε

)
φ(τxω)

⏐⏐⏐⏐⏐ ≤ C

kε/d
sup
n≥1

⏐⏐⏐⏐⏐ 1

nε

∑′

x∈B(0,n)

φ(τxω)

|x|d−ε

⏐⏐⏐⏐⏐.
(II.A.4)

Since the last factor on the right-hand side of (II.A.4) is finite due to (II.A.3), we
conclude that P-a.s.

lim
k→∞

1

nd

⏐⏐⏐⏐⏐ ∑′

x∈B(0,n)

|x/n|−(d−ε) φ(τxω) −
∑′

x∈B(0,n)

(
k ∧ |x/n|−(d−ε)

)
φ(τxω)

⏐⏐⏐⏐⏐ = 0 (II.A.5)

uniformly in n. The assertion follows by combining (II.A.2) and (II.A.5).



Chapter III

A Liouville principle

III.1 Introduction and the main results

III.1.1 Motivation

The classical Liouville theorem, a direct consequence of Cauchy’s integral formula,
is one of the most beautiful results in mathematics. It states that the space of
harmonic functions on R2 which grow not faster than |x|k contains only polynomials
of degree k. In the view point of probability theory a function u is harmonic if u(Bt)

is a martingale where Bt is the standard Brownian motion on R2.
We are interested in studying Liouville-type properties when replacing the stan-

dard Brownian motion on R2 by several types of random motions, for instance, the
random conductance model (random walks among random conductances) and dif-
fusions on random media. The random conductance model is defined by equipping
each nearest neighbour bond e = {x, y} = {y, x} on Zd with a random conductance
ω(e) = ω({x, y}) ∈ [0,∞). In this model, we are interested in two types of random
walks: a discrete time random walk and a continuous time random walk. For each
realization ω, the discrete time random walk {Zn : n ∈ N} jumps from x to y with
probability ω({x, y})/µω(x) where

µω(x) =
∑

y:|x−y|1=1

ω({x, y}),

while the continuous time random walk {Xt : t ≥ 0} waits at x an exponential
time with means µω(x)−1 and jumps to a nearest neighbour y of x with probability
ω({x, y})/µω(x). As a Markov process it has the following generator:

Lωu(x) =
∑
y∼x

ω({x, y}) (u(y)− u(x)) . (III.1.1)

A function u : Zd → R is said to be ω-harmonic if

Lωu(x) = 0.

49
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In other words, u is ω-harmonic if {u(Xt) : t ≥ 0} is a martingale, {Xt : t ≥ 0}
being the continuous time random walk, or equivalently, if {u(Zn) : n ∈ N} is a
martingale, {Zn : n ∈ N} being the discrete time random walk.

In the case of diffusions on random media generated by random elliptic differ-
ential operators in divergence form in the continuum setting,

Lau(x) = ∇ · a(x)∇u(x) =
d∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj
(x)

)
(III.1.2)

where a(x) is a symmetric positive definite random matrix defined on some proba-
bility space, a function u is called a-harmonic if

Lau = 0.

In the language of probability, a function u is a-harmonic if u(Yt) is a martingale
where Yt is the diffusion generated by the operator La.

The main result in this chapter, Theorem III.1.2, is motivated by several results
obtained recently in this topic. First, Benjamini, Duminil-Copin, Kozma, and Yadin
[13] studied the case of simple random walks on Bernoulli supercritical percolation
clusters. In this case, ω(e) are i.i.d. and have values in {0, 1}. We speak of an open
edge if ω(e) = 1 and a closed edge if ω(e) = 0. Further, it is well-known that
if P(ω(e) = 1) > pc for some pc ∈ (0, 1), the open edges percolate and form a
unique infinite connected component, a so-called percolation cluster. In this case,
it is showed that the space of ω-harmonic functions (Lωu = 0) which grow at most
linearly has dimension d+1, the same dimension as the space of harmonic functions
with linear growth in Rd or Zd.

A quite similar result has been obtained by Gloria, Neukamm, and Otto [33] in
the continuum setting of random differential operators La where a is a stationary
ergodic matrix bounded from above and below. Exploiting the idea of perturbing
around the homogenized coefficients by using the two-scale homogenization error
in a new fashion, they obtained a first order Liouville property as a consequence
of a Schauder-type estimate called the excess decay which monitors the distance
between a harmonic function and the space generated by the harmonic coordi-
nates. Indeed, under a pure assumption on ergodicity they proved that the space
of harmonic functions which grows not faster than |x|1+α for some α ∈ (0, 1) has
dimension d+ 1.

Lately, a work by Armstrong and Dario [5] has extended the work by Benjamini,
Duminil-Copin, Kozma, and Yadin [13] to higher order Liouville-type results on
the random conductance model on a supercritical percolation cluster under the
assumption that the conductances are uniformly elliptic, meaning bounded from
above and below.

As in Chapter II we are interested in going beyond the uniformly elliptic condi-
tion. Recently, Bella, Fehrman, and Otto [12] have extended the first order Liouville



III.1. INTRODUCTION AND THE MAIN RESULTS 51

property by Gloria, Neukamm, and Otto to degenerate random differential opera-
tors La under the assumption that the random matrix a satisfies

⟨µ(a)p⟩+ ⟨|λ(a)|−q⟩ <∞,
1

p
+

1

q
<

2

d
,

where ⟨·⟩ denotes the expectation with respect to P and

λ(a) := inf
ξ∈Rd

ξ · aξ
|ξ|2

, and µ(a) := sup
ξ∈Rd

|aξ|2

ξ · aξ
,

which is very similar to the integrability condition we assumed in Chapter II. This
work also implemented the idea of perturbing around the homogenized coefficient
by using the two-scale homogenization error, however, with more subtle ideas to
deal with the lack of the uniform ellipticity.

In this chapter we discuss how to implement the ideas given by Bella, Fehrman,
and Otto [12] to prove a similar result in the random conductance model on Zd.

III.1.2 The notations

In the whole chapter let d ≥ 2. Denote by | · |p, p ∈ [1,∞] the ℓp-norm in Zd. Two
points x, y ∈ Zd are called nearest neighbours, denoted by x ∼ y, if |x− y|1 = 1. Let
Ed denote the set of unoriented nearest neighbour edges formally defined by

Ed := {{x, y} : x, y ∈ Zd, x ∼ y}

where {x, y} = {y, x}. Consider the measurable space of random environments

(Ω,F) := ((0,∞)E
d

,B((0,∞))⊗Ed

).

Denote by ω ∈ Ω a random environment and ω(e) the conductance of e. Further, let
P be a probability measure on (Ω,F) with expectation denoted by ⟨·⟩.

Consider the following family of translations {τx : x ∈ Zd}:

[τxω]({y, z}) := ω(x+ y, x+ z), x, y, z ∈ Zd. (III.1.3)

The random walks among random conductances generated by (III.1.1) can be
considered as a discrete counterpart of diffusions in random media generated by
(III.1.2). To see the connection between them, let us define the random matrix

a(x) := a(ω, x) = diag ({ω(x, x+ e1}), . . . , ω({x, x+ ed})) , ω ∈ Ω, x ∈ Zd.

Further, we mimic the notation in the continuum setting by introducing the discrete
forward and backward partial derivatives for u : Zd → R as follows:

∇iu := u(·+ ei)− u and ∇∗
iu := u(· − ei)− u, 1 ≤ i ≤ d,
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respectively. The full gradient ∇u (or ∇∗u) is defined as a vector of d components:

∇u :=

⎡⎢⎣∇1u
...

∇du

⎤⎥⎦ =

⎡⎢⎣u(·+ e1)− u
...

u(·+ ed)− u

⎤⎥⎦ , ∇∗u :=

⎡⎢⎣∇
∗
1u
...

∇∗
du

⎤⎥⎦ =

⎡⎢⎣u(· − e1)− u
...

u(· − ed)− u

⎤⎥⎦ . (III.1.4)

The backward derivative ∇∗
i is the dual of the forward derivative ∇i in the sense

that for r, r∗ ∈ [1,∞] satisfy 1/r+1/r∗ = 1, we have the discrete partial integration∑
Zd

∇ifg =
∑
Zd

f∇∗
i g (III.1.5)

for f ∈ Lr(Zd) and g ∈ Lr∗(Zd). We will mimic the notation in vector analysis in
the continuum case, e.g. the backward divergence is defined by

∇∗ · F :=
d∑

i=1

∇∗
iFi,

for F = (F1, . . . , Fd) : Zd → Rd. By a simple calculation we can show that

Lω(x) :=
∑
y∼x

ω({x, y})(u(y)− u(x)) = −∇∗ · a(x)∇u(x) =: La,

which is a discrete analogue of the operator in (III.1.2). Then, saying that u is ω-
harmonic in the sense that Lωu = 0 is equivalent to saying that u is a-harmonic in
the sense that Lau = 0, where La is defined as above. We use both ways of speaking
in the whole chapter.

The above notation used by Gloria and Otto [34, 35] is very helpful when we
mimic the calculation in the continuum setting. In contrast to (III.1.4) defining
gradients as functions of vertices, it is sometimes more convenient to consider gra-
dients as functions of edges. Consider the set of oriented nearest neighbour edges

Ed
± := {[x, y] : x, y ∈ Zd, x ∼ y}

where we mean [x, y] ̸= [y, x]. For u : Zd → R and e = [x, y] ∈ Ed
± we write

∇u(e) = ∇u([x, y]) = u(y)− u(x).

Further, for e′ = {x, y} ∈ Ed being an unoriented edge we write

|∇u(e′)| = |∇u({x, y}) = |u(y)− u(x)| (III.1.6)

which does not depend on the choice of the direction. In the whole chapter we use
all types of gradients. Whether ∇u is a function depending on vertices or oriented
or unoriented edges will be clear in each context.
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Further, denote the continuum open boxes and closed boxes and boundary by

CR := {x : |x|∞ < R}, CR := {x : |x|∞ ≤ R}, ∂CR := {x : |x|∞ = R}.

The discrete boxes with boundary are denoted by

DR := CR ∩ Zd, DR := CR ∩ Zd, ∂DR = ∂CR ∩ Zd.

For discrete boxes we only consider R ∈ {1, 2, . . .}. Define the edge sets

ER :=
{
{x, y} ∈ Ed : x, y ∈ DR

}
, ER =

{
{x, y} ∈ Ed : |1

2
(x+ y)|∞ < R

}
.

In the continuum (or discrete, respectively) we denote the average by
 
A

:=
1

|A|

ˆ
A

or
∑
A

:=
1

|A|
∑
A

where |A| is the Lebesgue or the counting measure, the Lp-norm, p ∈ [1,∞) by

∥f∥pLp(A) =

ˆ
A

|f |p or ∥f∥pLp(A) =
∑
A

|f |p,

and the average Lp-norm, p ∈ [1,∞) by

∥f∥p
L
p
(A)

=

 
A

|f |p or ∥f∥p
L
p
(A)

=
∑
A

|f |p.

In this chapter, A ≲α,β,... B means A ≤ cB where c ∈ (0,∞) is a constant depending
on parameters α, β, . . . The notation A ≳α,β,... B is defined analogously, and we
write A ∼α,β B if both inequalities happen. Finally, to lighten the notations, we use
Einstein’s notation summing over repeated indices.

III.1.3 Main results

Assumption III.1.1. Let d ≥ 2. Assume the following conditions.

(i) P is stationary and ergodic in the sense that P is invariant under the family
{τx : x ∈ Zd} defined by (III.1.3) and if f ∈ L1(Ω,P) satisfies f(τxω) = f(ω)

for all x ∈ Zd and P-a.e. ω, then f = ⟨f⟩.

(ii) the following (p, q)-moment condition holds:

⟨ω(e)p⟩+ ⟨ω(e)−q⟩ <∞ for some p, q ∈ (1,∞] with
1

p
+

1

q
<

2

d
. (III.1.7)

(iii) P is invariant under reflections on Zd.
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In this case, the assumption that P is invariant under reflections on Zd is a tech-
nical assumption which implies that the covariance matrix of the limiting Brownian
motion is a diagonal matrix (see [24, Theorem 4.6 (iii), p823]). Therefore, we can
define the ”homogenized conductances” as

ωh({x, x+ ei}) := (ah)i,i

This fact implies that both the heterogeneous conductance ω and the homogenized
conductance ωh live on Zd which allows us to apply the idea of ”perturbing around
the homogenized coefficients”.

Examples. The following examples satisfy Assumption III.1.1.

(a) The conductances ω(e), e ∈ Ed are i.i.d. random variables satisfying the inte-
grability condition (III.1.7).

(b) The conductances are given by

ω({x, y}) = exp (h(x) + h(y)) , {x, y} ∈ Ed

where {h(x) : x ∈ Zd} (for d ≥ 3) is the discrete Gaussian free field.

Theorem III.1.2 (First order Liouville principle). Under Assumption III.1.1 the fol-
lowing is true P-almost surely. If an ω-harmonic function u on Zd satisfies the following
sub-quadratic growth

lim
R→∞

R−(1+α)∥u∥
L

2p
p−1 (DR)

= 0 (III.1.8)

where α ∈ (0, 1), then it is necessarily of the form u(x) = c+ ξi(xi+ϕi(ω, x)) for some
c ∈ R and ξ ∈ Rd. In other word, the linear space of ω-harmonic functions u satisfying
(III.1.8) is (d+ 1)-dimensional.

The field ϕ = ϕ(ω, x) is called the corrector which was introduced in Chapter II
so that x ↦→ x+ ϕ(ω, x) is ω-harmonic, meaning Xt + ϕ(ω,Xt) is a martingale. The-
orem III.1.2 is a consequence of the following Theorem III.1.3, which is a discrete
analogue of the excess decay by Bella, Fehrman, and Otto [12].

Theorem III.1.3 (Excess decay). Let α ∈ (0, 1) and suppose that Assumption III.1.1
holds. Then, there exist a deterministic constant C = C(d, α, p, q,P) > 0 such that the
following is true: For P-a.e. ω there exists a minimal radius r∗(ω) > 0 such that

Exc(r) ≤ C
( r
R

)2α
Exc(R), r∗ ≤ r ≤ R (III.1.9)

for any a-harmonic function u in DR where the excess is defined as

Exc(r) := inf
ξ∈Rd

∥a(∇u− ξi(ei +∇ϕi)) · (∇u− ξi(ei +∇ϕi))∥L1
(Dr)

, r ≥ 1.

(III.1.10)
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In order to prove Theorem III.1.3 we first consider the case the radii are com-
parable. The general case immediately follows by using an iteration.

Theorem III.1.4. Let α ∈ (0, 1) and suppose that Assumption III.1.1 is true. Then,
there exist a deterministic integer K = K(d, α, p, q,P) ≥ 64 such that the following
holds. For P-a.e. ω there exists a minimal radius r∗(ω) > 0 such that

Exc(r) ≤ K−2αExc(Kr), r ≥ r∗. (III.1.11)

for any a-harmonic function u in DKr.

Proof of Theorem III.1.3 from Theorem III.1.4. We follow [12, Step 5 pp32–3]. We
only need to notice that we now consider integer radii. Choose C = Kd+2α. If
Kr ≥ R, the claim follows from

Exc(r) ≤
(
R
r

)d
Exc(R) =

(
R
r

)d+2α ( r
R

)2α
Exc(R) ≤ Kd+2α

(
r
R

)2α
Exc(R).

If Kr < R, choose n so that Kn−1r ≤ R < Knr. Then, applying (III.1.11) (n − 1)

times and using the choice of C, we have

Exc(r) ≤ K−2(n−1)αExc(Kn−1r) ≤ K−2(n−1)α
(

R
Kn−1r

)d
Exc(R)

≤ K−2(n−1)αKdExc(R) ≤ C
(
r
R

)2α
Exc(R).

The proof is complete.

III.2 Ingredients of the proof

III.2.1 A discrete Cacciopolli inequality

Note that it is well-known that the Cacciopolli inequality also holds true on the
discrete setting of the random conductance model on Zd (even on random graphs)
in the case the conductances are bounded from above and below. To deal with
degenerate condition, we need to improve this inequality a bit. The Cacciopolli-type
inequality in Lemma III.2.1 is used to prove Theorem III.1.2 from Theorem III.1.3.
Its proof is the same as the classical Cacciopoli’s inequality except in the last step
we need to apply the Hölder inequality. For convenience, we provide its proof in
Section III.A.

Lemma III.2.1. For large integer radii ρ and R satisfying 1 ≪ ρ ≤ R/2 the follow-
ing holds. Let u be an a-harmonic function on DR. Further, suppose that for some
exponents p, q ∈ (1,∞) we have

∥ω∥Lp
(ER) + ∥ω−1∥Lq

(ER) ≤ Λ. (III.2.1)

Then, for any c ∈ R, we have

∥∇u∥2
L

2q
q+1 (DR−ρ)

≲d Λ∥a∇u · ∇u∥L1
(DR−ρ)

≲d
1

ρ2
Λ∥u− c∥2

L
2p
p−1 (DR)

(III.2.2)
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Proof of Theorem III.1.2 from Theorem III.1.3 using Lemma III.2.1. Let

r∗(ω) ≤ r ≤ R

where r∗ is the minimal radius in Theorem III.1.3. By the excess decay (III.1.9)
with ξ := 0 in the infimum and the second inequality of (III.2.2) we have

Exc(r) ≤ C
( r
R

)2α
∥a∇u · ∇u∥

L
1
(DR)

≲d C
( r
R

)2α 1

R2
∥u∥2

L
2p
p−1 (D2R)

.

Letting R tend to infinity and using (III.1.8) we have Exc(r) = 0. Since r is arbi-
trarily chosen, the claim follows.

III.2.2 Construction of the correctors

In the continuum case, besides the corrector ϕ in Theorem III.1.3 and Section III.2,
which is a classical object in homogenization, a second order corrector σ with sta-
tionary gradient was introduced in [33, 12]. The advantage of using σ is that we
can write the two-scale homogenization error

w = u− v − ηϕi∂iv (III.2.3)

where u is an a-harmonic function, v is an ah-harmonic function and η is a cut-off
function as solution to a Poisson-type equation with the right-hand side in diver-
gence form which is useful for energy estimates

−∇ · a∇w = ∇ · ((1− η)(a− ah)∇v) +∇ · [ϕia− σi)(η∂i∇v)] (III.2.4)

(see [33, eq. (79), p27] and [12, eq. (26), p10]). In the discrete case we have to
construct the corrector so that we essentially have the same equation as (III.2.4),
which is the task of Proposition III.2.2 below.

Note that in the discrete case, saying a field has a stationary gradient is equiva-
lent to saying it is co-cycle. Here, a field u = u(ω, x) is co-cycle if

u(ω, 0) = 0 and u(ω, x+ e)− u(ω, x) = u(τxω, e),

for all x ∈ Zd, e ∈ {±ei : 1 ≤ i ≤ d} (III.2.5)

Proposition III.2.2 (Existence of (ϕ, σ)). Suppose that Assumption III.1.1 is satisfied.
Then, there exist co-cycle functions ϕi and σijk where 1 ≤ i, j, k ≤ d such that:

i) P-a.s. on Zd, the following equations are true

−∇∗ · a(ei +∇ϕi) = 0, (III.2.6)

−∇∗ · σi = qi, (III.2.7)

−∆σijk = ∇jqik −∇kqij, (III.2.8)
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where

qi := a(∇ϕi + ei)− ahei and ahei = ⟨a(∇ϕi + ei)⟩ , (III.2.9)

and ∆ denotes the standard discrete Laplacian in Zd.

ii) The tensor σ is anti-symmetric in the last indices,

σijk = −σikj on Zd, P-a.s. (III.2.10)

iii) The gradients of ϕ and σ have bounded moments and zero expectations:

⟨∇ϕi · a∇ϕi⟩ <∞,
⟨
|∇ϕi|

2q
q+1

⟩
<∞,

⟨
|∇σijk|

2p
p+1

⟩
<∞, (III.2.11)

⟨∇ϕi⟩ = ⟨∇σijk⟩ = 0. (III.2.12)

iv) ϕ and σ are sub-linear:

lim
R→∞

1
R
∥ϕ∥

L
2p/(p−1)

(DR)
= lim

R→∞
1
R
∥σ∥

L
2q/(q−1)

(DR)
= 0.

The idea for the construction of the corrector σ is essentially a projection ar-
gument on the probability space similar to the continuum case [33, 12]. First, we
need the forward and backward horizontal derivatives (for short, ω-derivatives)
defined for functions ζ : Ω → R as follows:

Dζ :=

⎡⎢⎣D1ζ
...

Ddζ

⎤⎥⎦ :=

⎡⎢⎣ζ ◦ τe1 − ζ
...

ζ ◦ τed − ζ

⎤⎥⎦ , D∗ζ :=

⎡⎢⎣D
∗
1ζ
...

D∗
dζ

⎤⎥⎦ :=

⎡⎢⎣ζ ◦ τ−e1 − ζ
...

ζ ◦ τ−ed − ζ

⎤⎥⎦ . (III.2.13)

Note that if a field u(ω, x) is stationary in the sense that

u(ω, x) = u(τxω, 0) ∀x ∈ Zd, P-a.e. ω

then
∇u(ω, x) = Du(ω, x) ∀x ∈ Zd, P-a.e. ω.

The stationarity of the gradient and the flux allows us to replace the x-derivative
by the ω-derivative in (III.2.8):

D · ∇∗σijk = D · (qikej − qijek). (III.2.14)

Testing with some ζ ∈ L∞(Ω) we have the following weak formulation:

⟨∇∗σijk ·D∗ζ⟩ = ⟨(qikej − qijek) ·D∗ζ⟩ . (III.2.15)

Let us first discuss the standard case where a is bounded from above and below.
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Construction of σ in the uniformly elliptic case. We exploit the following orthogonal
decomposition:

L2(Ω,Rd) = L2
∇∗ ⊕ (L2

∇∗)⊥ (III.2.16)

where

L2
∇∗ := closure of {D∗ζ : ζ ∈ L∞(Ω)} in L2(Ω,Rd)

(L2
∇∗)⊥ = {ψ ∈ L2(Ω,Rd) : D · ψ = 0}.

(III.2.17)

Since (III.2.15) holds, we should define the stationary gradient of σ as follows:

∇∗σijk := proj
⏐⏐⏐
L2
∇∗
(qikej − qijek). (III.2.18)

By (III.2.17), this projection obviously gives us (III.2.15), therefore (III.2.14) and
(III.2.8). Further, we have

∆(∇∗ · σij + qij) = ∇∗
k∆σijk +∆qij

= −∇∗
k∇jqik −∇∗

k∇kqij +∆qij  
=0

= 0,

where the second equality is due to (III.2.8) and the third (III.2.6) and (III.2.9).
This immediately gives us (III.2.7) and (III.2.10) by the fact that a stationary field
u ∈ L2(Ω) satisfying ∆u(ω, x) = 0 must be a constant. Indeed, stationarity allows
us to write

D∗ ·Du(ω, 0) = ∆u(ω, 0) = 0.

By partial integration on the probability space, we have

⟨Du(ω, 0) ·Du(ω, 0)⟩ = ⟨u(ω, 0)D∗ ·Du(ω, 0)⟩ = 0

which means u is invariant, therefore constant, by ergodicity.

In the degenerate case (Assumption III.1.1) we have to deal with a lack of inte-
grability since qi = a(∇ϕi + ei) ∈ L2p/(p+1). The solution to this is to define an ap-
proximating sequence ∇∗σ

(n)
ijk obtained by replacing the right-hand side of (III.2.18)

by its truncation sequence (qikej−qijek)1|q|≤n. As in [12] the convergence of ∇∗σ
(n)
ijk

in L2p/(p+1)(Ω) norm is obtained by lifting things onto the physical space and using
a Calderón-Zymund estimate on this level.

The discussion on the correctors is organized in Section III.3 as follows. In
Subsection III.3.1 we see that defining σ via (III.2.7), (III.2.8) and (III.2.10) is
really useful for obtaining a discrete analogue of (III.2.4). Then, Subsection III.3.2
reminds some basic facts on horizontal derivatives and co-cycle fields which are
important for the proof. For convenience, in Subsection III.3.3 we recall briefly the
construction of the first order corrector ϕ, which is already well-known – that of
the corrector σ is discussed in Subsection III.3.4.
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III.2.3 Construction of the harmonic extension

Roughly speaking, the idea of perturbing around the homogenized field [33, 12] is
to construct an ωh-harmonic function v which approximates the given ω-harmonic
function u and use the two-scale error (III.2.3) to estimate how good the approx-
imation is. This idea can also be fully adapted to the discrete case: The following
auxiliary result Proposition III.2.3, mimicking [12, (54), p28], is a crucial step to
obtain the excess decay (Theorem III.1.4).

In fact, by the sublinearity of the corrector, estimate Proposition III.2.3 below
yields that in a very large scale the energy of the homogenization error is very small
compared to that of the given ω-harmonic function.

Note that as in the continuum case this is a deterministic result and we only
need to assume (III.2.19) instead of (III.1.7).

Proposition III.2.3. For large R the following is true. Assume that

∥ω−1∥Lq
(ER) + ∥ω∥Lp

(ER) ≤ Λ where 1/p+ 1/q ≤ 2/d. (III.2.19)

Consider u : DR → R be a-harmonic in DR. Then, there exist an ah-harmonic function
v in D⌊R/2⌋ satisfying

∥∇v · ah∇v∥L1
(D⌊R/2⌋)

≲d,p,q Λ∥∇u · a∇u∥
L
1
(DR)

=: Λ (III.2.20)

such that the homogenization error w = u− v −∇ivϕi satisfies

∥∇w · a∇w∥
L
1
(D⌊R/4⌋)

≲d,p,q Λε
1−(d−1)(

1
2p

+
1
2q

)

+ ΛΛ
( ρ
R

)min(
p−1
2p

,
q−1
2q

)

ε
−(d−1)min(

q+1
q

,
p+1
p

)

+ ΛΛ

(
R

ρ

)d+2 [
∥ϕ∥

L
2p
p−1 (DR)

+ ∥σ∥
L

2q
q−1 (DR)

]
(III.2.21)

for all ε ∈ (0, 1/2) and ρ ∈ (20, R/8).

Let us discuss the proof of Proposition III.2.3 (Section III.5). Recall that in the
continuum setting [12, p24], from (III.2.3) and (III.2.4) we have the energy of w
as follows:ˆ

BR′

a∇w · ∇w =

ˆ
∂BR′

(u− v)ν · (a∇u− ah∇v) (III.2.22a)

+

ˆ
BR′

(1− η)∇w · (ah − a)∇v (III.2.22b)

−
ˆ
BR′

∇w · (ϕia− σi)∇(η∂iv), (III.2.22c)
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where η is a cut-off function

η = 0 in (BR′−ρ)
c, η = 1 in BR′−2ρ, and |∇η| ≲ 1/ρ.

By the fact that v is a ”very good” function (in fact, harmonic) and ϕ and σ are
”small”, the estimates for the near boundary (III.2.22b) and the corrector term
(III.2.22c) are quite robust, when adapted to the discrete case. We therefore mainly
focus on the boundary term (III.2.22a). Recall that in the continuum case, Bella,
Fehrman, and Otto [12] construct the function v using the boundary condition of
u. If q ≥ p (called the Dirichlet case), they use the Dirichlet boundary condition:

∇ · ah∇v = 0 in BR′ and v := uε on ∂BR′ (III.2.23)

If p ≥ q (called the Neumann case), they use the Neumann boundary condition:

∇ · ah∇v = 0 in BR′ and ah∇v = (a∇u)ε · ν −
 
∂BR′

(a∇u)ε · ν on ∂BR′ .

(III.2.24)

where ν = ν(x) is the normal vector on the sphere and the last one is a surface in-
tegral. Here, the index ε denotes a smoothed version defined by taking convolution
on ∂BR′ (on the sphere) which has better integrability than the original function.
In the our case, the first task is to find ”a discrete smoothed version” that is the aim
of the following result. Consider the tangential edges:

Etan
R =

{
{x, y} ∈ Ed : x, y ∈ ∂DR, x ∼ y

}
. (III.2.25)

Lemma III.2.4. For ε > 0 there exists a linear operator which maps u to uε, both
defined on ∂DR, with the following properties. For 1 ≤ s ≤ r ≤ ∞ we have

∥uε∥Lr
(∂DR) ≲ ε−(d−1)( 1

s
− 1

r
)∥u∥Ls

(∂DR), (III.2.26)

∥∇uε∥Lr
(Etan

R ) ≲ ε−(d−1)( 1
s
− 1

r
)∥∇u∥Ls

(Etan
R ). (III.2.27)

∥u− uε∥Ls
(∂DR) ≲ εR∥∇u∥Ls

(Etan
R ). (III.2.28)

Further, the multiplicative constants in (III.2.26)–(III.2.28) only depend on the di-
mension d and the exponents r and s. Especially, they do not depend on R.

This gives us a natural definition of v in the Dirichlet case q ≥ p:

v = uε on ∂DR′ (III.2.29)

where uε is the ”discrete smoothed version” of u provided by Lemma III.2.4. We
postpone the idea of constructing uε in Lemma III.2.4 until Subsection III.2.4. Let
us first give a comment on it. Although this way of smoothing gives us a very
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good way to adapt convolution estimates to the discrete setting, we still have to
struggle some obstacles which appear in the discrete analogue of the boundary
term (III.2.22a):∑

[x,y]∈Enor
R′

[u(x)− v(x)]
[
ω∇u([x, y])− ωh∇v([x, y])

]
, (III.2.30)

where the sum is taken over all normal edges (see Figure III.1),

Enor
R =

{
[x, y] ∈ Ed

± : x ∈ ∂DR, y ∈ DR

}
, (III.2.31)

or equivalently, over their endpoints lying on the boundary,

∂̃DR = {x ∈ ∂DR : ∃y s.t. [x, y] ∈ Enor
R } . (III.2.32)

The main challenge is that the harmonic extension does not remember the nor-
mal derivatives in the Dirichlet case or the tangential derivatives in the Neumann
case. This happened in the continuum case as well. As a consequence, we need to
compare the discrete tangential and normal derivatives of discrete harmonic functions
in the sense of Lr norm. This is the task of the following interesting result that will
be proved separately in Chapter IV which is the most technical part of the thesis.

Theorem III.2.5 (Dirichlet-to-Neumann). Let R ≫ 1 and v be harmonic in DR.
Then, we have

∥∇v∥Lr(Enor
R ) ≲d,r ∥∇v∥Lr(Etan

R ), r ∈ (1,∞).

Further, there exists a modification ṽ of v in the sense that v = ṽ on ∂̃DR ∪DR (i.e. v
is only modified at the corners) such that

∥∇ṽ∥Lr(Etan
R ) ≲d,r ∥∇v∥Lr(Enor

R ), r ∈ (1,∞).

In the Neumann case, we still have some minor difficulties. The first diffi-
culty is that the Neumann condition does not define the values of v in the set
of the ”corners” ∂DR′ \ ∂̃DR′ while all the terms in estimates (III.2.26)–(III.2.28)
in Lemma III.2.4 contain the values at the corners. Also note that because of the
”corners” we can only speak of ”a modification” in Theorem III.2.5. The second
difficulty is much more serious: there is a lack of symmetry of the convolution in
the discrete case, namely the ”discrete smoothed version” in Lemma III.2.4 does not
have the property

´
fεg =

´
fgε as in the continuum case, which has been exploited

by Bella, Fehrman, and Otto [12] in the Neumann case as follows:ˆ
∂BR′

(u− v) · (a∇u · ν − ah∇v · ν)dS

[by (III.2.24)] =

ˆ
∂BR′

(u− v) [a∇u · ν − (a∇u · ν)ε] dS

[symmetry of convolution] =

ˆ
∂BR′

[(u− v)− (u− v)ε] a∇u · νdS,

(III.2.33)
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Figure III.1: The tangential (red) and inner normal edges (blue)

where the difference on the right-hand side gives us a small ε. Also note that the
sum (III.2.30) does not contain the corners. So, it is definitely not clear whether
we should smooth ω∇u on the full boundary ∂DR′ or the boundary without the
corners ∂̃DR′ , or on each face without the corners etc., and whether we can still
use the smoothed version in Lemma III.2.4 or not.

Fortunately, we can overcome these by natural solutions. First, we introduce an
operator M which fills in or modifies the values of a given function at each corner.
We may perhaps use the modification produced by Theorem III.2.5. However, this
result looks like a black box and in order to know what really this modification is,
the reader needs to start with Chapter IV first. Therefore, to make the argument
clear, we do not want to reveal too many things in this chapter.

Lemma III.2.6 (Modification operator). There exists a linear operator M that maps
u defined on ∂DR′ to Mu = ū also defined on ∂DR′ such that ū = u on ∂̃DR′ and

∥∇ū∥Lr(Etan
R′ ) ≲d,r ∥∇u∥Lr(Etan

R′ ) and ∥ū∥Lr(∂DR′ ) ≲d,r ∥u∥Lr(∂̃DR′ )
, r ∈ [1,∞].

Idea of the proof. Think about d = 2 (Figure III.1). Define the value at each cor-
ner by copying that from an arbitrary point near them which is not a corner.
The complete proof for the general case d ≥ 2 has the same spirit (see Subsec-
tion III.5.1).

The novelty to overcome the second difficulty is to introduce a new definition
of the Neumann condition:

ωh∇v := (ω∇u)∗ε −
∑
∂̃DR′

(ω∇u)∗ε on ∂̃DR′ (III.2.34)

where (·)∗ε is defined so that we have the duality in the following sense.
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Lemma III.2.7 (Duality). Given h : ∂̃DR → R there exists h∗ε : ∂̃DR′ → R such that∑
x∈∂̃DR′

h∗εg =
∑

x∈∂̃DR′

h(Mg)ε (III.2.35)

for any g : ∂DR′ → R where M is the modification operator in Lemma III.2.6.

Remember that we have to take care for the norm of the normal gradients.

Lemma III.2.8. For any h : ∂̃DR → R and 1 < s ≤ r ≤ ∞ we have

∥h∗ε∥Lr
(∂̃DR′ )

≲d,r,s ε
−(d−1)( 1

s
− 1

r
)∥h∥Ls

(∂̃DR′ )
.

This allows us to mimic (III.2.33):

(III.2.30) =
∑
Enor

R′

(u− v)
[
ω∇u− (ω∇u)∗ε

]
[by (III.2.34)]

=
∑
Enor

R′

ω∇u
{
[M(u− v)]− [M(u− v)]ε

}
[by (III.2.35)].

In Subsection III.5.1 we rigorously prove Lemmas III.2.6–III.2.8 with very simple
arguments. With the above ”tricks”, the idea of Bella, Fehrman, and Otto [12] can
be completely implemented in the discrete case: In Subsection III.5.2 we calculate
the energy of the homogenization error by a simple discrete Gauss-type formula,
Lemma III.5.1. In Subsection III.5.3 we deal with the boundary term. The argu-
ments for the corrector term and the near boundary term, which are quite similar
to that in the continuum setting and do not require very new ideas, are presented
in Subsections III.5.4 and III.5.5, respectively. Finally, Subsection III.5.6 shows the
proof of Theorem III.1.4 from Proposition III.2.3.

III.2.4 Smoothing boundary conditions in the discrete case

In Section III.4 we prove Lemma III.2.4 constructing ”the discrete smoothed ver-
sion” in three steps by a short excursion to Sobolev spaces on Lipschitz surfaces
and to finite element theory. In the first step (Subsection III.4.1), using any type of
interpolation we embed u into the continuum surface ∂CR. The second step (Sub-
section III.4.2) is to smooth it there by decomposing u by a partition of unity into
”small pieces” compactly supported on local charts and lifting them to the Euclidean
space. Compared to the first and second step, the third one (Subsection III.4.3),
obtaining uε defined on the discrete surface ∂DR from the smoothed version in the
continuum surface ∂CR, requires some details. A natural way to define a discrete
function f from a given continuum function f̃ is local integration:

f(x) :=

ˆ
Γx

f̃ (III.2.36)
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where Γx is, for instance, an (d − 1)-dimensional unit box on the surface with ver-
tex x. However, this idea has a disadvantage: after interpolating a discrete function
and then projecting it to the discrete again, we may not get the same function. The
solution for this is to insert an integrator ψx into (III.2.36):

f(x) :=

ˆ
Γx

ψxf̃ . (III.2.37)

From the requirement that interpolating a discrete function and then projecting it
to the discrete again do not change the original function, this ansatz must satisfy

δz(x) =

ˆ
Γx

ψxφz. (III.2.38)

where φz ’s are the interpolations of the Dirac functions on the lattice, δz(x) = 1x=z,

which are called the nodal functions in finite element theory. If we choose ψx as a
linear combination of φz where z are vertices of Γx, we immediately have (III.2.38)
for all points z ̸= Γx, for which φz = 0 on Γx. In this case, ψx is uniquely determined
by (III.2.38) restricted to z which are vertices of Γx. This elegant idea is due to the
work by Scott and Zhang [58] in numerical analysis.

III.3 The correctors and their construction

III.3.1 Equation for the homogenization error

In the following we use the correctors given in Proposition III.2.2 to write the equa-
tion for the homogenization error as a Poisson-type equation in divergence form.
As in the continuum case, this calculation is useful for energy estimates in Subsec-
tion III.5.2.

Our first task is to introduce a notation which helps us to avoid lengthy calcu-
lations. Observe that for functions f, g : Zd → R we can write the product rule as
follows:

∇i(fg) = (f∇i)g + g∇if

(the first r.h.s. term with brackets, the second without brackets!) where we define
(f∇i)g (with brackets) and g∇if (without brackets) as follows:

[(f∇i)g](x) := f(x+ ei)∇ig(x) = f(x+ ei)(g(x+ ei)− g(x)), (III.3.1)

and
[g∇if ](x) = g(x)∇if(x) = g(x)(f(x+ ei)− f(x)).

Similarly, we also use this notation for the backward differential operator ∇∗, say

∇∗
i (fg) = (f∇∗

i )g + g∇∗
i f (III.3.2)
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where

(f∇∗
i )g(x) := f(x− ei)∇∗

i g(x) and g∇∗
i f(x) = g(x)(f(x− ei)− f(x)).

Finally, we write
(f∇)g := [(f∇1)g, . . . , (f∇d)g]

⊤

and

(F · ∇)g :=
d∑
1

(Fi∇i)g

for F : Zd → Rd. We also use similar notations for the backward operator ∇∗.

This notation is motivated by differential geometry where it is common to consider
differential forms as operators acting on functions. By using it, the product rule
in the discrete case looks almost the same as that the continuum case. Recall that
to lighten notations we make use of Einstein’s convention summing over repeated
indexes.

Lemma III.3.1. Let (ϕ, σ) be given as in Proposition III.2.2 and η : Zd → R. Consider

w = u− v − ηϕi∇iv.

Then, we have

∇∗ · a∇w = −∇∗ · ((1− η)(a− ah)∇v)
−∇∗ · [(σi · ∇∗)(η∇iv)]−∇∗ · a[(ϕi∇)(η∇iv)], (III.3.3)

whenever the following is true

∇∗ · a∇u = ∇∗ · ah∇v = 0. (III.3.4)

If we write (III.3.3) with the usual notation for the chain rule, it may contain
four or five lines with full of unnecessary terms.

Proof of Lemma III.3.1. The proof contains purely algebraic calculations. By the
product rule (III.3.1), we have

∇w = ∇u−∇v − η∇iv∇ϕi − (ϕi∇)(η∇iv).

Applying ∇∗ · a yields

∇∗ · a∇w = −∇∗ · (a∇v + η∇iva∇ϕi)  
=:A

−∇∗ · a[(ϕi∇)(η∇iv)] (III.3.5)

by assumption (III.3.4). Split A as follows:

A = (1− η)a∇v + η∇iva(ei +∇ϕi)

= (1− η)(a− ah)∇v + (1− η)ah∇v + η∇iva(ei +∇ϕi)

= A1 + A2 + A3.

(III.3.6)
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By assumption (III.3.4) and the product rule (III.3.2) we have

−∇∗ · A2 = −∇∗ · ((1− η)ah∇v)

= ∇∗ · (η∇ivahei)

= η∇iv∇∗ · ahei  
= 0

+(ahei · ∇∗)(η∇iv)

= (ahei · ∇∗)(η∇iv)

By the product rule (III.3.2) and the fact that ∇∗ · a(ei +∇ϕi) = 0, we have

−∇∗ · A3 = −∇∗ · {η∇iva(ei +∇ϕi)}

= −η∇iv∇∗ · a(∇ϕi + ei)  
=0

−{a(ei +∇ϕi) · ∇∗}(η∇iv)

= −{a(ei +∇ϕi) · ∇∗}(η∇iv)

Adding together we get

−∇∗ · (A2 + A3) = −{[a(ei +∇ϕi)− ahei] · ∇∗}(η∇iv)

(III.2.7)
= {[∇∗ · σi] · ∇∗}(η∇iv)

= −∇∗ · [(σi · ∇∗)(η∇iv)] (III.3.7)

where the last equality can be explained as follows. To lighten notation ξi := η∇iv.
Applying the product rule (III.3.2) we have

{[∇∗ · σi] · ∇∗}ξi = [(∇∗
kσijk) · ∇∗

j ]ξi

= ∇∗
j [ξi∇∗

kσijk]− ξi∇∗
j∇∗

kσijk  
=0

= ∇∗
j [ξi∇∗

kσijk] (III.3.8)

where the zero term is due to the antisymmetry of σ. Applying the product rule
(III.3.2) again we write the term inside the brackets as follows:

ξi∇∗
kσijk = ∇∗

k(ξiσijk)− (σijk∇∗
k)ξi,

which implies that

(III.3.8) = ∇∗
j∇∗

k(ξiσijk)  
=0

−∇∗
j [(σijk∇∗

k)ξi] = −∇∗
j [(σij · ∇∗)ξi]

= −∇∗ · [(σi · ∇∗)ξi]

where the zero term is due to the anti-symmetry. Combining (III.3.5)–(III.3.7)
yields (III.3.3). The proof is complete.
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III.3.2 Co-cycle fields and horizontal derivatives

We recall some basic facts which are useful for constructing the correctors. First,
being co-cycle (III.2.5) is equivalent to having a gradient field. In other words, a
field u : Ω× Zd → R is co-cycle if and only if

u(ω, 0) = 0, ∇u(ω, x) = ∇u(τxω, 0),

and ∇∗u(ω, x) = ∇∗u(τxω, 0), x ∈ Zd, P-a.e. ω (III.3.9)

where ∇ and ∇∗ are the forward and backward gradient defined in (III.1.4). It is
easy to see that a co-cycle function u : Ω × Zd → Rd is uniquely determined P-a.s.
by ∇u(ω, 0) or ∇∗u(ω, 0). Indeed, by (III.3.9), knowing ∇u(ω, 0) means knowing
all gradients with respect to the positive directions, therefore also that with respect
to the negative directions. For this reason, for co-cycle fields u, we often write ∇u
and ∇∗u instead of ∇u(ω, 0) and ∇∗u(ω, 0), when considering them at the level of
the probability space.

Second, note that in general, the ω-derivative (III.2.13) are different from the
x-derivatives defined by (III.1.4). However, for stationary fields u in the sense that

u(ω, x) = û(τxω), x ∈ Zd, P-a.e ω

for some û : Ω → R, it is easy to see that

∇u(ω, x) = Du(ω, x) and ∇∗u(ω, x) = D∗u(ω, x).

III.3.3 Construction of the first order corrector

The corrector ϕ is an important object in the literature of the random conductance
model (see e.g. [16]). For convenience, we briefly recall the construction of ϕ
which relies on a projection argument.

Lemma III.3.2. Assume ⟨ω(e)p⟩ < ∞ for some p ∈ [1,∞]. Then, there exist uniquely
co-cycle function ϕi satisfying (III.2.6). Additionally if ⟨ω(e)−q⟩ < ∞ for some q ∈
[1,∞], the integrability of ∇ϕi in (III.2.11) is true.

Let L2
cov be the Hilbert space of random vectors b : Ω → Rd with ⟨a(0)b · b⟩ <∞,

equipped with the scalar product (b, b̃) ↦→ ⟨a(0)b · b̃⟩ for b, b̃ ∈ L2
cov. Define

L2
∇ := the closure of {Dζ : ζ ∈ L∞(Ω)} in L2

cov. (III.3.10)

By Hilbert space theory, L2
cov = L2

∇ ⊕ (L2
∇)

⊥ and it is easy to see that

(L2
∇)

⊥ = {ψ ∈ L2
cov : D

∗ · aψ = 0}.
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Remark III.3.3. The way to define the L2
cov-norm in [16, 48]

∥b∥L2
cov

:= E
(∑

|e|1=1 ω(0, e)b(ω)
2
)

is a bit different from that given here. However, they are equivalent, since P is
stationary.

Proof of Lemma III.3.2. By the co-cycle property, discussed in Subsection III.3.2, it
suffices to construct ∇ϕi ≡ ∇ϕi(ω, 0). By stationarity we can replace ∇∗ by D∗ in
the equation (III.2.6) defining ϕi:

D∗ · a(∇ϕi + ei) = 0 (III.3.11)

Define

∇ϕi = proj
⏐⏐⏐
L2
∇

(−ei) (III.3.12)

Then, −ei − ∇ϕi ∈ (L2
∇)

⊥ from that (III.3.11) follows. The integrability of ∇ϕi

follows directly from this construction by applying Hölder’s inequality, and integra-
bility of a(0):

∥∇ϕi∥L2q/(q+1) ≤ ∥a1/2∇ϕi∥L2∥a1/2∥L2q

= ⟨a(0)∇ϕi · ∇ϕi⟩∥a(0)∥Lq <∞. (III.3.13)

The proof is complete.

III.3.4 Construction of the second order corrector

As mentioned before in the discussion behind Proposition III.2.2, the construction
of σ is straightforward, since we have the orthogonal decomposition (III.2.16)
and (III.2.17). Since we have to deal with a weaker integrability condition, we
need the following Meyer-type estimate.

Lemma III.3.4. Let f ∈ L∞(Ω,Rd) and u be the co-cycle field generated by

∇∗u := proj
⏐⏐⏐
L2
∇∗
f. (III.3.14)

Then for any r ∈ (1, 2],

∥∇∗u∥Lr(Ω,Rd) ≲r,d ∥f∥Lr(Ω,Rd).

Let us delay its proof until Subsection III.3.6 to continue the construction of σ.



III.3. THE CORRECTORS AND THEIR CONSTRUCTION 69

Existence of σ from Lemma III.3.4. Set

σ
(n)
ijk := proj

⏐⏐⏐
L2
∇∗

[
(qikej − qijek)1|q|≤n

]
, (III.3.15)

which means by the decomposition (III.2.17) that

D · ∇∗σ
(n)
ijk = D ·

[
(qikej − qijek)1|q|≤n

]
. (III.3.16)

By (III.3.16) and Lemma III.3.4, the sequence {∇∗σ
(n)
ijk} is a Cauchy sequence in

L2p/(p+1)(Ω). Therefore, we have

∇∗σ
(n)
ijk → ∇∗σijk in L2p/(p+1)(Ω) (III.3.17)

for some ∇∗σijk ∈ L2p/(p+1)(Ω) defining a unique co-cycle field σijk. Further,

D · ∇∗σijk = D · (qikej − qijek) (III.3.18)

which follows by writing (III.3.16) in the weak formulation (III.2.15) and using
the convergence (III.3.17). By stationarity, we can replace D by ∇ in (III.3.18)
to obtain (III.2.8). The claim on the integrability of ∇∗σ is obvious by applying
Lemma III.3.4 to σ

(n)
ijk , letting n tend to infinity and using (III.3.17). Let us check

the anti-symmetry (III.2.10). Swapping the indices j and k in (III.3.16) we have

D · ∇∗
(
σ
(n)
ijk + σ

(n)
ikj

)
= D ·

[
(qikej − qijek + qijek − qikej)  

=0

1|q|≤n

]
= 0.

By the decomposition (III.2.17), this trivially implies that

∇∗
(
σ
(n)
ijk + σ

(n)
ikj

)
∈ L2

∇∗ ∩
(
L2
∇∗

)⊥
= {0}.

Therefore, letting n tend to infinity, using (III.3.17) and noting that a co-cycle field
is defined to be zero at the origin, we obtain (III.2.10). Finally, we check (III.2.7).
As a first step we claim that taking ∇∗

k on both sides of (III.3.18) yields

D ·D∗∇∗
kσijk = D∗

kDjqik −D∗
kDkqij. (III.3.19)

Let us check this carefully. Note that obviously we are allowed to switch differential
operators of the same type and by stationarity we can also replace D∗ by ∇∗ or vice
verse. The left-hand side becomes

∇∗
kD · ∇∗σijk = D∗

kD · ∇∗σijk (stationarity)

= D ·D∗
k∇∗σijk

= D · ∇∗
k∇∗σijk (stationarity)

= D · ∇∗∇∗
kσijk

= D ·D∗∇∗
kσijk (stationarity)
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while the right-hand side becomes exactly the right-hand side of (III.3.19) by re-
placing ∇∗

k by D∗
k. Summing (III.3.19) over k and noting that D∗ · qi = 0 we get

D ·D∗u = 0 (III.3.20)

where u = ∇∗ · σij + qij. Heuristically, testing this with u and using the partial
integration yield

⟨|D∗u|2⟩ = ⟨uD ·D∗u⟩ = 0 (III.3.21)

which implies that D∗u = 0 for P-a.e. ω. Therefore, u is translation invariant. By
ergodicity, we have u = ⟨u⟩ = 0, which is (III.2.7). However, we still have a minor
difficulty, namely the integrability of u does not allow (III.3.21). Fortunately, there
is a solution to this. Lift u to the physical space, i.e. define ū(ω, x) := u(τxω). Then,
(III.3.20) becomes

∆ū(ω, x) = 0 x ∈ Zd, P-a.e. ω.

By the maximal inequality for harmonic functions (Andres, Deuschel, and Slowik
[3, Corollary 3.9], which is in fact a much stronger result than our purpose here –
we need here only the most standard case: the discrete Laplacian without weights!)
there exists a constant γ(d, q) > 0 such that

|ū(ω, 0)| ≲d,q ∥ū(ω, ·)∥γ
L
2q/(q+1)

(D2R)
.

By the ergodic theorem, letting R tend to infinity yields that u = ū(·, 0) ∈ L∞(Ω).

Therefore, we do not have to worry about (III.3.21). The proof is complete.

III.3.5 Proof of the sublinearity

We show that u = σijk is sublinear in the sense that

1
R
∥u(ω, ·)∥

L
2q
q−1 (DR)

→ 0, as R → ∞, P-a.e. ω. (III.3.22)

As a first step, instead of (III.3.22) let us prove that

Fu :=

⟨
lim
R→∞

1
R
inf
c∈R

∥u− c∥
L

2q
q−1 (DR)

⟩
= 0. (III.3.23)

Indeed, by Sobolev’s inequality and the ergodic theorem, we have

Fu ≲d,p,q

⟨
lim
R→∞

∥∇u∥
L

2p
p+1 (ER)

⟩
∼d,p ∥∇u∥

L
2p
p+1 (Ω,Rd)

. (III.3.24)

where we write ∇u = ∇u(ω, 0), when considering the stationary gradient at the
level of the probability space. Recall that un → u in L2p/(p+1)(Ω) where un ∈ L2

∇∗ is
defined by (III.3.15). Further, by (III.2.17) there exists ζn ∈ L∞(Ω) such that

∥∇un −D∗ζn∥L2(Ω) → 0.
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Therefore, by the triangle and Jensen inequality, we have

D∗ζn → ∇∗u in L
2p
p+1 (Ω,Rd). (III.3.25)

Set un(ω, x) = ζn(τxω)− ζn(ω). This is obviously a co-cycle field. Further, it satisfies

∇un(ω, 0) = Dζn(ω).

Combining this with (III.3.24) and (III.3.25) we have

F (u− un) ≲ ∥∇u−∇un∥
L

2p
p+1 (Ω,Rd)

= ∥∇u−Dζn∥
L

2p
p+1 (Ω,Rd)

→ 0.

From the fact that

Fun ≤
⟨

lim
R→∞

1
R
∥un∥

L
2q
q−1 (DR)

⟩
≲
⟨
lim
R→∞

1
R
∥ζn∥L∞(Ω)

⟩
= 0

for each n we have (III.3.23).
In the remaining part of the proof we discuss how to get rid of the constant in

(III.3.23). We introduce the following dyadic argument similar to the proof in the
continuum [12]. Fix δ > 0 and R0 > 0 such that for all R > R0 there exists cR > 0

satisfying

∥u− cR∥Ls
(DR) < δR. (III.3.26)

where we write s = 2q/(q − 1). Then, for R0 ≤ R ≤ R′ ≤ 2R, by the triangle
inequality and (III.3.26) we have

|cR − cR′ | ≤ ∥u− cR∥Ls
(DR) + ∥u− cR′∥Ls

(DR)

≲d ∥u− cR∥Ls
(DR) + ∥u− cR′∥Ls

(DR′ )≲dδR. (III.3.27)

Further, fix R ∈ [2nR0, 2
n+1R0] and define

Rj := 2jR0, j ≤ n, Rn+1 := R. (III.3.28)

By the triangle inequality, (III.3.27) and (III.3.28), we have

|cR − cR0 | ≤
n∑

j=0

|cRj+1
− cRj

| ≲d

n∑
j=0

δ2jR0 ≲d δR. (III.3.29)

Therefore, by the triangle inequality and (III.3.26) and (III.3.29) we have

1
R
∥u∥Ls

(DR) ≤ 1
R
∥u− cR∥Ls

(DR)  
≲δ

+ 1
R
|cR − cR0 |  

≲δ

+ 1
R
|cR0 | ≲d δ + 1

R
|cR0 |.

Letting R tend to infinity and δ to zero we finish the proof of the sublinearity of
σ. That for ϕ also exploits a density argument: use (III.3.10) and (III.3.12) and
application of Hölder’s inequality similar to (III.3.13) we have (III.3.25) for u = ϕi

and p replaced by q where ζn is some approximating sequence in L2q/(q+1)(Ω), and
we only need to repeat the proof for the part σ.
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III.3.6 Finishing the Meyer-type estimate

In the following, we give the proof for Lemma III.3.4 that is almost the same as in
the continuum case [12]. The only difficulty is that we have to prepare estimates
on Green function in the discrete setting (III.3.32) and (III.3.33).

Before going into the main part of the proof let us change the notation a bit.
Define the following random vector

f̃(ω) = − [f(τ−e1ω), . . . , f(τ−edω)]

which has the same integrability as f and satisfies D · f̃ = D∗ · f. Further, note that
if u is co-cycle, then

D · ∇∗u = ∇ · ∇∗u = ∇∗ · ∇u = D∗ · ∇u

where we obtained the first and third equality by replacing the x-derivative by the
ω-derivative, which is allowed by stationarity of ∇u and ∇∗u. Also notice that ∇u
and ∇∗u have the same integrability. Therefore, Lemma III.3.4 can be formulated
in a slightly different way:

Lemma III.3.5. Let f ∈ L∞(Ω,Rd) and u be a co-cycle field satisfying ∇u ∈ L2(Ω,Rd)

and D∗ · ∇u = D∗ · f. Then for any r ∈ (1, 2],

∥∇u∥Lr(Ω,Rd) ≲r,d ∥f∥Lr(Ω,Rd).

The first ingredient of the proof is the following approximation:

Claim. For each ε > 0 there exists a unique stationary field uε ∈ L2(Ω) such that

(ε+D∗ ·D) uε = D∗ · f. (III.3.30)

Further, as ε tends to zero,

Duε → ∇u, weakly in L2(Ω,Rd). (III.3.31)

The second ingredient is the following Green function estimate:

Claim. The Green function Gε(x, y) =: Gε(x− y) of (ε−∆) on Zd satisfies

|∇x∇yGε(x, y)| ≲d (1 ∨ |x|)−de−cε|x−y|, (III.3.32)

∇3Gε(x) ≲d (1 ∨ |x|)−d−1. (III.3.33)

Estimate (III.3.33) mainly states that the kernel K(x, y) := ∇x∇yGε(x, y) is a
Calderon–Zymund kernel in the sense that the associated linear operator

Tg(x) :=
∑
y∈Zd

K(x, y)g(y)

is a bounded linear operator from Ls(Zd) to Ls(Zd) for any s ∈ (1,∞). This result is
well-known in the continuum setting (see e.g. Stein [60, p29]). For an argument
in the discrete case using a decomposition with triadic boxes see e.g. Biskup, Salvi,
Wolff [18].
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Argument for (III.3.32). See Mourrat [51, Proposition 3.7].

Argument for (III.3.33). See Biskup, Salvi, and Wolff [18, Theorem 4.4].

Proof of (III.3.30) and (III.3.31). It is a standard argument, and was perhaps writ-
ten by Künnemann [43]. For convenience and completeness, let us repeat it. Equip
the space L2(Ω) with the norm ∥u∥2ε = ε⟨u2⟩ + ⟨|Du|2⟩ for u ∈ L2(Ω). Denote by
(·, ·)ε the corresponding scalar product. Then, by the Riesz lemma, there exists a
unique uε ∈ L2(Ω) such that

(u, v)ε := ε⟨uεv⟩+ ⟨Duε ·Dv⟩ = ⟨f ·Dv⟩, ∀v ∈ L2(Ω). (III.3.34)

By partial integration,

ε⟨uεv⟩+ ⟨(D∗ ·Duε)v⟩ = ⟨(D∗ · f)v⟩, ∀v ∈ L2(Ω).

This implies (III.3.30). Further, by the Cauchy–Schwarz inequality, (III.3.34) with
v = uε implies that

∥uε∥2ε = ⟨f ·Duε⟩ ≤ ∥f∥L2(Ω)∥Duε∥L2(Ω) ≤ ∥f∥L2(Ω)∥uε∥ε.

It follows that

∥uε∥2ε = ε∥uε∥2L2(Ω) + ∥Duε∥2L2(Ω) ≤ ∥f∥2L2(Ω). (III.3.35)

Especially, Duε converges weakly to some ξ ∈ L2(Ω,Rd) as ε tends to zero. Noting
that ε⟨uεv⟩ ≤ ε∥uε∥L2(Ω)∥v∥L2(Ω) → 0 by (III.3.35), we have by (III.3.34) with ε

tending to zero that ⟨ξ · Dv⟩ = ⟨f · Dv⟩. In other words, ξ = ∇u and we have
(III.3.31).

With (III.3.30)–(III.3.33) we are in a position to show Lemma III.3.4.

Proof of Lemma III.3.5. By stationary assumption we can replace D by ∇. There-
fore, (III.3.30) implies

(ε−∆)uε = ∇∗ · f.

Recall that Gε(x, y) denotes the Green function of (ε−∆). We have

uε =
∑
y∈Zd

Gε(x, y)∇∗ · f(y) =
∑
y∈Zd

∇yGε(x, y) · f(y)

and therefore

∇uε(x) =
∑
y∈Zd

∇x∇yGε(x, y) · f(y)

=
∑
y∈Zd

∇x∇yGε(x, y) · ηRf(y)  
=:gε(x)

+
∑
y∈Zd

∇x∇yGε(x, y) · (1− ηR)f(y)



74 CHAPTER III. A LIOUVILLE PRINCIPLE

where ηR is a cut-off function so that ηR = 1 in D2R and ηR = 0 in Zd \ D4R. By
(III.3.32) the second derivative of the Green function ∇x∇yGε(x, y) is a Calderon-
Zymund singular integral operator. Therefore,

∥gε∥Lr(Zd) ≲d,r ∥ηRf∥Lr(Zd) ≤ ∥f∥Lr(D4R)

in the same fashion as in Biskup, Salvi, and Wolff [18]. Then, by (III.3.32) we have

|∇uε∥rLr
(DR)

≲d,r ∥f∥Lr
(D4R) +R−de−cεR∥f∥r∞. (III.3.36)

Letting R tend to infinity we have

∥∇uε∥Lr(Ω,Rd) ≲d,r ∥f∥Lr(Ω,Rd) (III.3.37)

by the ergodic theorem. Fix G ∈ L∞(Ω,Rd) with ∥G∥Lr′ (Ω,Rd) = 1 where r′ is the
Hölder conjugate of r. By the weak convergence (III.3.31) and (III.3.37) we have

⟨∇u ·G⟩ = lim
ε→0

⟨∇uε ·G⟩ ≤ lim
ε→0

∥∇uε∥Lr(Ω,Rd) ≲d,r ∥f∥Lr(Ω,Rd).

Taking the supremum over G yields the claim. The proof is complete.

III.4 Defining the discrete smoothed version

The construction of the discrete function uε in Lemma III.2.4 can be summarized as
follows. First, interpolate u to get a continuum function ũ defined on ∂CR (see Sub-
section III.4.1). Then, smooth ũ on the Lipschitz surface ∂CR to get ũε (making use
of Proposition III.4.5 in Subsection III.4.2 by rescaling everything to ∂C1). Finally,
borrowing the idea of Scott and Zhang [58] we define uε as a projection of ũε to the
space of discrete functions embedded to the continuum (see Subsection III.4.3).

In this section the multiplicative constants in each estimate only depend on the
dimension d and the exponents there. Especially, they do not depend on the size of
the box.

III.4.1 Embedding discrete functions to the continuum setting

There are several ways to interpolate discrete functions on Zd to get continuum
functions on Rd. A possibility coming from finite element theory is to decompose
the given domain into simplexes and and interpolate discrete functions to get func-
tions which are continuous and piecewise affine linear, i.e. affine linear on each
simplex. However, when choosing this interpolation, we have to define a triangu-
lation and piecewise linear functions, which takes time, and makes the dissertation
much longer. For this reason, we choose that given by Deuschel, Giacomin, and
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Ioffe [26]. We extend a discrete function on Zd to a continuum function on Rd by
an explicit formula:

u(x) =
∑

a∈{0,1}d

[
d∏

i=1

(ai{xi}+ (1− ai)(1− {xi}))

]
u([x] + a), x ∈ Rd (III.4.1)

where we abuse the notation denoting the extension also by u. Then, u ∈ C(Rd).

Lemma III.4.1. Let u : DR → R extended to CR by (III.4.1). Then, for any p ∈ [1,∞],

∥u∥Lp(DR) ∼p,d ∥u∥Lp(CR), (III.4.2)

∥∇u∥Lp(ER) ∼p,d ∥∇u∥Lp(CR). (III.4.3)

This idea can be applied to functions defined on the boundary. In this case, a
function u defined on ∂DR can be extended trivially to Zd by defining it to be zero
everywhere outside its original definition set. This allows us to use (III.4.1). Notice
that the interpolation on ∂CR does not depend on the way we choose to extend u

from ∂DR to Zd. Indeed, for the reference box [0, 1]d, formula (III.4.1) becomes

u(x) =
∑

a∈{0,1}d

[
d∏

i=1

(aixi + (1− ai)(1− xi))

]
u(a), x ∈ [0, 1]d. (III.4.4)

Restricted to a face of [0, 1]d, for instance, [0, 1]d−1 × {0}, it becomes

u(x) =
∑

a∈{0,1}d−1×{0}

[
d−1∏
i=1

(aixi + (1− ai)(1− xi))

]
u(a), x ∈ [0, 1]d−1 × {0}

(III.4.5)

that depends only on the values of u at {0, 1}d−1 × {0}. In other words, to define
the interpolation on the boundary we only need to know the values at vertices on
the boundary. Our method in this subsection applies to any type of interpolations
with this property.

Lemma III.4.2. Let u : ∂DR → R extended to ∂CR by (III.4.1). Then, for p ∈ [1,∞],

∥u∥Lp(∂DR) ∼p,d ∥u∥Lp(∂CR), (III.4.6)

∥∇u∥Lp(Etan
R ) ∼p,d ∥∇tanu∥Lp(∂CR). (III.4.7)

For completeness let us finish the proofs before going ahead.

Proof of Lemmas III.4.1 and III.4.2. We only give the proof of Lemma III.4.1. That
of the other is similar. Tile CR by boxes of the form B := a + [0, 1]d ⊂ CR where
a ∈ Zd. FixB and denote V = a+{0, 1}d ⊂ DR. Since all norms there are equivalent
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on the space of discrete functions defined on V extended to B via (III.4.1), which
is of finite dimension, we have∑

x∈V

|u(x)|p ∼d,p

ˆ
B

|u|p.

Summing over B contained in CR yields (III.4.2). Further, applying the triangle
inequality and again the equivalence of norms we get∑

x,y∈V,x∼y

|u(x)− u(y)|p ≲p,d

∑
x∈V

|u(x)|p ∼p,d

ˆ
B

|u|p + |∇u|p.

Replacing u by u−
ffl
B
u and using Poincaré ’s inequality we get rid of

´
B
|u|p on the

right-hand side Then, summing over B yields ”≲” of (III.4.3). To see ”≳”, use again
equivalent norms:ˆ

B

|u|p + |∇u|p ∼p,d

∑
x,y∈V,x∼y

|u(x)− u(y)|p + |u(x0)|p

where x0 is arbitrarily chosen in V. Then, replacing u by u − u(x0) and summing
over B contained in CR yield the claim. Finally, to get the proof for p = ∞, replace
the sum or integral by the supremum.

The following inequalities are standard results (perhaps folklore) and we just
state them again to make the dissertation self-contained.

Lemma III.4.3 (Poincaré’s inequality). Let p ∈ [1,∞], u be a discrete function ex-
tended to Rd by (III.4.1) and R ≥ 1. Then,

inf
c∈R

∥u− c∥Lp(DR) ≲p,d R∥∇u∥Lp(ER) (III.4.8)

inf
c∈R

∥u− c∥Lp(∂DR) ≲p,d R∥∇u∥Lp(Etan
R ) (III.4.9)

Proof. The claim follows by Lemmas III.4.1 and III.4.2 and the Poincaré inequality
in the continuum setting for a cube or for the surface of a cube. For more details,
see Theorem III.B.6.

Denote p∗d is the Sobolev conjugate of p w.r.t the dimension, meaning 1
p∗

= 1
p
− 1

d
.

Lemma III.4.4 (Sobolev’s inequality). Let p ∈ [1,∞) and u be defined on Zd. Then,

inf
c∈R

∥u− c∥Lq
(DR) ≲p,q,d R∥∇u∥Lp

(ER), q ∈ [1, p∗d],

inf
c∈R

∥u− c∥Lq
(∂DR) ≲p,q,d R∥∇u∥Lp

(Etan
R ), q ∈ [1, p∗d−1].

Proof. By Lemmas III.4.1 and III.4.2 the claim follows by the Sobolev inequality in
the continuum Euclidean case or in the case of Lipschitz surfaces. For more details,
see Theorem III.B.7.
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Rd−1

R

Vj

Uj

Oj

Figure III.2: A chart of M

III.4.2 Smoothing functions on Lipschitz surfaces

We think of a Lipschitz surface M as an object which can be locally (up to an
isometry) represented as a graph of a Lipschitz function and on which we can
define Lebesgue and Sobolev spaces Lr(M) and W 1,r(M). For more details see Sec-
tion III.B. Note that by [36, Corollary 1.2.2.3, p12] the boundary of every convex
subset of Rd (e.g. ∂C1) is a Lipschitz surface.

Proposition III.4.5. Let M be a compact Lipschitz surface. For 0 < ε≪ 1 there exists
a linear operator which maps u : M → R to uε : M → R and satisfies the following
properties. If u ∈ Ls(M), s ∈ [1,∞] then uε ∈ L∞(M) and we have

∥uε∥Lr(M) ≲ ε−(d−1)( 1
s
− 1

r
)∥u∥Ls(M), r ∈ [s,∞]. (III.4.10a)

Further, if u ∈ W 1,s(M), s ∈ [1,∞] then

∥u− uε∥Ls(M) ≲ ε∥∇tanu∥Ls(M), (III.4.10b)

and in this case, uε ∈ W 1,∞(M) satisfies

∥∇tanuε∥Lr(M) ≲ ε−(d−1)( 1
s
− 1

r
)∥∇tanu∥Ls(M), r ∈ [s,∞]. (III.4.10c)

Here, the multiplicative constants only depend on the structure of M , the exponents
s, r and the dimension d.

The proof of Proposition III.4.5 requires some basic knowledges about Sobolev
spaces on Lipschitz surfaces in Section III.B. First, compactness ensures the exis-
tence of finitely many charts {Oj, Uj, Vj, φj}Nj=1 covering M . More precisely, there
exist finitely many bounded open subsets Oj, 1 ≤ j ≤ N of Rd coveringM , bounded
open subsets Vj of Rd−1 and Lipschitz continuous functions φj : Vj → R, 1 ≤ j ≤ N

such that
Uj := Oj ∩M = {(x′, φj(x

′)) : x′ ∈ Vj}
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(Subsection III.4.2). Second, the Lebesgue space Lp(M) and the Sobolev space
W 1,p(M) for every p ∈ [1,∞] are defined by pulling things back to the Euclidean
case (see Section III.B) so that equivalence of norms holds true on each chart
{Oj, Uj, Vj, φj}:

∥f∥Lp(Uj) ∼ ∥f(·, φj(·))∥Lp(Vj) and ∥∇tanf∥Lp(Uj) ∼ ∥∇f(·, φj(·))∥Lp(Vj)

(III.4.11)

(see Proposition III.B.3) where the multiplicative constants only depend on the
structure of M . Third, there exists a Lipschitz partition of unity {αj}Nj=1 subordi-
nate to {Uj}Nj=1 in the sense that all αj : Uj → R are Lipschitz continuous and
supported in a compact subset of Uj and

∑
j αj = 1 on M (for more details, see

Proposition III.B.8). Then, αj ∈ W 1,∞(M) (see [29, Theorem 4, p279]). With the
above ingredients in hand we are in a position to prove Proposition III.4.5.

Proof of Proposition III.4.5. If u is constant, we just need to define uε = u. Then, it
suffices to define uε for u satisfying

´
M
udS = 0. With help of the partition of unity

{αj}Nj=1 we can decompose u ∈ W 1,p(M) into uj := αju. Set

ε0 :=
1
2

min
1≤j≤N

dist(∂Vj, Kj) > 0 where Kj = supp(αj(·, φj(·))) ⊂⊂ Vj.

For 0 < ε < ε0 and 1 ≤ j ≤ N define vεj := vj ∗ ηε ∈ C∞
c (Vj) where vj := uj(·, φj(·))

satisfies supp(vj) ⊂⊂ Vj and ηε is the standard sequence of mollifiers approximating
the unity in Rd−1. Define

uεj(x
′, xd) = vεj (x

′)θ(xd − φj(x
′)) where θ ∈ C∞

c (−1
2
ε0,

1
2
ε0) and θ(0) = 1.

Then, we have

supp(uεj ↾M) ⊂⊂ Oj and uεj(·, φj(·)) = vεj .

Finally, set uε =
∑N

j=1 u
ε
j . We are going to show that the mapping u ↦→ uε is linear

and satisfies (III.4.10a)–(III.4.10c).
Linearity of (·)ε follows from that of (·)εj which is obvious by definition, since

both uj and uεj are supported in Uj.

Now comes the argument for (III.4.10a). By the triangle inequality and standard
estimates for convolution in the Euclidean case, we have

∥uε∥Lr(M) ≤
N∑
j=1

∥uεj∥Lr(Uj)

(III.4.11)
≲

N∑
j=1

∥vεj∥Lr(Vj) ≲
N∑
j=1

ε−(d−1)( 1
s
− 1

r
)∥vj∥Ls(Vj)

(III.4.11)
≲

N∑
j=1

ε−(d−1)( 1
s
− 1

r
)∥uj∥Ls(Uj)

|αj |≤1

≤ Nε−(d−1)( 1
s
− 1

r
)∥u∥Ls(M).
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Here and in the remaining part of the proof note that all the multiplicative con-
stants, the number N , and the function αj depend only on the structure of M , and
for our later purpose M is in fact the unit box.

Concerning (III.4.10b), we have

∥u− uε∥Ls(M) ≤
N∑
j=1

∥uj − uεj∥Ls(Uj)

(III.4.11)
≲

N∑
j=1

∥vj − vεj∥Ls(Vj) ≲
N∑
j=1

ε∥∇vj∥Ls(Vj)

(III.4.11)
≲

N∑
j=1

ε∥∇tanuj∥Ls(Uj) ≲ Nε

[
max
1≤j≤N

∥αj∥W 1,∞(M)

]
∥u∥W 1,s(M)

where the last inequality follows from ∇tanuj = αj∇tanu+u∇tanαj (for more details
see Lemma III.B.4 (Product rule) and (III.B.4)). By Theorem III.B.6 (Poincaré’s
inequality) this implies (III.4.10b).

Finally, (III.4.10c) is proven in the same way:

∥∇tanuε∥Lr(M) ≤
N∑
j=1

∥∇tanuεj∥Lr(Uj)

(III.4.11)
≲

N∑
j=1

∥∇vεj∥Lr(Vj)

≲
N∑
j=1

ε−(d−1)( 1
s
− 1

r
)∥∇vj∥Ls(Vj)

(III.4.11)
≲

N∑
j=1

ε−(d−1)( 1
s
− 1

r
)∥∇tanuj∥Ls(Uj)

≤ Nε−(d−1)( 1
s
− 1

r
)

[
max
1≤j≤N

∥αj∥W 1,∞(M)

]
∥u∥W 1,s(M),

which implies (III.4.10c) by Poincaré’s inequality. The proof is complete.

III.4.3 From continuum to discrete

Tile CR by the family TR of closed unit boxes Ba := a + [0, 1]d ⊂ CR where a ∈ Zd.
Then, ∂CR is covered by the family SR of (d − 1)-dimensional boxes being faces
of boxes in TR. Pick x ∈ DR and choose a box Γx from TR if x ∈ DR or from SR

if x ∈ ∂DR such that x is a vertex of Γx, i.e. x ∈ Γx ∩ Zd. So, for each x there
are several possibilities to choose Γx (some illustrated in Figure III.3 in the case
x ∈ ∂DR) and we do not have any other restrictions. However, we will see that
the multiplicative constants in all the estimates we derive in this subsection can
be chosen independently from the way we choose Γx. Let φx be the Dirac function
δx(y) := 1x=y defined for y ∈ Zd and extended to Rd by the interpolation given
in (III.4.1). In numerical analysis, each φx is called a nodal function. Let Hx be
the finite-dimensional space of discrete functions defined on the vertices of Γx and
extended to Γx by (III.4.1). Since {φz ↾Γx : z ∈ Γx ∩ Zd} is a basis of Hx there exists
uniquely ψx ∈ Hx satisfying

´
Γx
ψxφz = δxz for z ∈ σx ∩ Zd and ∥ψx(·)∥∞ ≲d 1. By
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x

Γx

y

Γy

(a)

x

Γx

Γy

y

(b)

x

Γx

Γy

y

(c)

x

Γx

Γy
y

(d)

Figure III.3: Some examples for Γx on the surface of the box in d = 3

the fact that φz ↾Γx≡ 0 for z ∈ Zd ∩ (Γx)
c we have

ˆ
Γx

ψxφz = δxz, z ∈ DR (III.4.12)

for all x ∈ DR. Finally, for f ∈ W 1,1(CR) define

Πf(x) :=

ˆ
Γx

ψxf, x ∈ DR. (III.4.13)

This operator behaves like a projection i.e. it maps discrete functions to discrete
functions and does not increase the Lp norm of the function and its gradients.
Further, the discrete boundary condition remains under this projection. A similar
projection is introduced by Scott and Zhang [58] working with piecewise linear
functions on some triangulation. For our purpose we only use Lemma III.4.7 and
(III.4.14) and (III.4.15) of Lemma III.4.8 which are estimates for surfaces.

Lemma III.4.6. Let f : DR → R. Extend f to a continuum function defined on Rd

still denoted by f by the interpolation (III.4.1). Then, Πf = f on DR.
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Figure III.4: An abstract roof is the union of two neighouring faces of the unit box

Proof of Lemma III.4.6. Write f =
∑

y∈DR
f(y)φy. Then,

Πf(x)
(III.4.13)
=

∑
y∈DR

f(y)

ˆ
Γx

ψxφy
(III.4.12)
=

∑
y∈DR

f(y)δxy = f(x).

The proof is complete.

Lemma III.4.7. Assume that f ↾∂CR
coincides with the interpolation of (III.4.1) of a

discrete function on ∂DR. Then, Πf = f on ∂DR.

Proof. The same as the proof of Lemma III.4.6 except that we have to consider the
sum over x ∈ ∂DR.

In the following (III.4.15) and (III.4.16), only for consistency, the gradient is un-
derstood as functions depending on unoriented edges, which means |∇u|({x, y}) =
|u(y)− u(x)|.

Lemma III.4.8. Let p ∈ [1,∞). For f ∈ W 1,p(∂CR), we have

∥Πf∥Lp(∂DR) ≲p,d ∥f∥Lp(∂CR), (III.4.14)

∥∇Πf∥Lp(Etan
R ) ≲p,d ∥∇tanf∥Lp(∂CR). (III.4.15)

For f ∈ W 1,p(CR), we have

∥∇Πf∥Lp(ER) ≲p,d ∥∇f∥Lp(CR). (III.4.16)

Remark. Although we do not use it in the dissertation, estimate (III.4.16) is useful
for proving the discrete analogue of the following result in the continuum setting
which plays a crucial role in the proof of the excess decay in the uniformly elliptic
case i.e. λ ≤ a ≤ 1 for fixed λ > 0. Let u : ∂CR → R. Then, u can be extended to
ũ : CR → R such that

∥∇ũ∥L2d/(d−1) ≲d ∥∇tanu∥L2(∂CR). (III.4.17)
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Indeed, the discrete analogue of this result can be obtained as follows. Let u now be
a discrete function on ∂DR. Interpolate u to get a continuum function still denoted
by u and call ũ a continuum extension satisfying (III.4.17). Then,

∥∇Πũ∥L2d/(d−1)(ER)

(III.4.16)
≲d ∥∇ũ∥L2d/(d−1)(CR)

(III.4.17)
≲d ∥∇tanu∥L2(∂CR)

(III.4.7)
∼d ∥∇tanu∥L2(Etan

R ).

By Lemma III.4.7 we have Πũ = u on ∂DR.

Proof of Lemma III.4.8. Since the upper bound of ψx is controlled, we have

|Πf(x)|p ≲p

ˆ
Γx

|f |p.

by Jensen’s inequality. Summing over all x yields (III.4.14). We turn to (III.4.15).
First, we have

Πf(x)− Πf(y) =

ˆ
Γx

ψx(f − c)−
ˆ
Γy

ψy(f − c) (III.4.18)

for all c ∈ R, since
´
Γx
ψx = 1 by combining (III.4.13) with Lemma III.4.6 for f ≡ 1.

By Jensen’s and the boundedness of ψx, we have

|Πf(x)− Πf(y)|p ≲p,d inf
c∈R

ˆ
Γx∪Γy

|f − c|p. (III.4.19)

We want to bound the right-hand side using Poincaré’s inequality and sum over all
edges {x, y}. Let us give an illustrated proof for the case d = 3. If x, y are as in Fig-
ure III.3a we only need the Poincaré’s inequality for a rectangle. However, it is not
always the case, since Figures III.3b–III.3c can happen. To deal with Figures III.3b
and III.3c we just need to choose a larger square Mxy of side length 4 to cover Γx

and Γy. The worst case happens in Figure III.3d where Γx and Γy are not on the
same face. However, we can cover them by a ”roof” Mxy of side 4 (see Figure III.4).
Rigorously, for {x, y} ∈ Etan

R′ define Mxy as the intersection of the face of ∂CR con-
taining x, the face of ∂CR containing y and the d-dimensional box of side length 4

and center x. Obviously, the covering Mxy is locally finite in the sense that there
exists a constant K = K(d) such that each point on the boundary of the box is
covered by at most K rectangles or ”roofs”. Then, applying the Poincaré inequality
(Lemma III.B.5) on the roof Mxy, which is a Lipschitz surface:

inf
c∈R

ˆ
Γx∪Γy

|f − c|p ≲p,d

ˆ
Mxy

|∇f |p,

and summing over x, y ∈ ∂DR and x ∼ y yield the claim (III.4.15). To prove
(III.4.16) we also start with (III.4.18). For each x ∈ DR define Γ̂x as follows: if
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x ∈ DR then Γ̂x := Γx and if x ∈ ∂DR then choose Γ̂x the d-dimensional box in
CR such that Γx is a face of Γ̂x. Then, by the boundedness of Ψx, Jensen’s and
Poincaré’s inequality and the trace theorem, (III.4.18) implies that

|Πf(x)− Πf(y)|p ≲p,d inf
c∈R

∥f − c∥pLp(Γx∪Γy)
≲p,d inf

c∈R
∥f − c∥p

W 1,p(Γ̂x∪Γ̂y)

≲p,d ∥∇f∥p
Lp(M̂xy)

where M̂xy is the d-dimensional box with center x and side length 4 intersecting
CR. Since {M̂xy : x, y ∈ DR, x ∼ y} is a locally finite covering of CR, the claim
follows by summing over all M̂xy.

Proof of Lemma III.2.4. Denote by ũ ∈ ∂CR the extension of u, when interpolated
by (III.4.1). Call ũε ∈ C(∂CR) the function obtained after the following process:
Rescale ũ to ∂C1, smooth it there by Proposition III.4.5 and rescale it back to ∂CR.

Then, by estimates (III.4.10a)–(III.4.10c) we have

∥ũε∥Lr
(∂CR) ≲ ε−(d−1)( 1

s
− 1

r
)∥u∥Ls

(∂CR) (III.4.20)

∥u− uε∥Ls
(∂CR) ≲ εR∥∇tanu∥Ls

(∂CR), (III.4.21)

∥∇tanuε∥Lr
(∂CR) ≲ ε−(d−1)( 1

s
− 1

r
)∥∇tanu∥Ls

(∂CR), 1 ≤ s ≤ r ≤ ∞. (III.4.22)

where the multiplicative constants only depend on d and the exponents r and s.
Note that there is a rescaling factor R on the right-hand side of (III.4.21) that is
typical when comparing functions with the corresponding gradients. Now, define
uε = Πũε where Π the discrete projection defined by (III.4.13). Linearity of u ↦→ uε
is then obvious. By the projection properties of Π (Lemmas III.4.7 and III.4.8) we
obtain (III.2.26)–(III.2.28) from (III.4.20)–(III.4.22), respectively.

III.5 Energy estimate for the homogenization error

Recall that in Subsections III.5.1–III.5.5 we prove Proposition III.2.3, where we
construct the harmonic extension v, calculate the energy of the homogenization and
estimate the boundary, corrector, and near boundary term. The boundary term is
the most important part of the proof – the estimates for the others are quite routine.
Finally, in Subsection III.5.6 we prove Theorem III.1.4 from Proposition III.2.3.

First of all, in Subsections III.5.1–III.5.5, ≲ means ≲d,p,q .

III.5.1 Construction of the harmonic extension

Following [12] we also consider the Dirichlet case q ≥ p the Neumann case p ≥ q,
respectively. In both cases ah-harmonic function v in Proposition III.2.3 is con-
structed via the boundary condition of u on ∂DR′ where ⌊R/2⌋ ≤ R′ ≤ R such
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that

∥∇u∥
L

2q
q+1 (Etan

R′ ∪Enor
R′ )

+ ∥ω∇u∥
L

2p
p+1 (Etan

R′ ∪Enor
R′ )

≲ Λ
1/2
. (III.5.1)

Argument for the existence of R′. By Hölder’s inequality, (III.2.19) and (III.2.20),

∥∇u∥
L

2q
q+1 (DR)

+ ∥a∇u∥
L

2p
p+1 (DR)

≲ Λ
1/2
.

Indeed, to lighten the notation, define

α1 = 2q/(q + 1), α2 = 2p/(p+ 1), A = Λ
1/2

and

f1(x) =
∑
|y|1=1

|u(x+ y)− u(x)|, f2(x) =
∑
|y|1=1

ω({x, x+ y})|u(x+ y)− u(x)|.

Further, set

R′ = argmin
r∈[R/2,R]∩Z

∑
i=1,2

A−αi∥fi∥αi

Lαi (∂Dr)
.

By assumption,

∑
i=1,2

RA−αi∥fi∥αi

Lαi (∂DR′ )
≲

R∑
ρ=0

∑
i=1,2

A−αi∥fi∥αi

Lαi (∂Dρ)

=
∑
i=1,2

A−αi∥fi∥αi

Lαi (DR)

(III.5.1)
≲d Rd

which implies the claim.

Recall that we define the boundary condition in the Dirichlet case (q ≥ p) by
(III.2.29) and in the Neumann case (p ≥ q) by duality (III.2.34) for that we need
Lemmas III.2.6–III.2.8. Let us finish these auxiliary results before continuing.

Proof of Lemma III.2.6. For each x̄ ∈ ∂DR′ \ ∂̃DR′ pick x ∈ ∂̃DR′ with |x − x̄|∞ = 1

and set ū(x̄) = u(x). For each x ∈ ∂DR′ let Qx = {ξ ∈ Zd : |ξ − x|∞ ≤ 4} ∩ ∂DR′ .

The covering R := {Qx : x ∈ ∂DR′} of ∂DR′ is locally finite in the sense that

sup
y∈∂CR′

|{Q ∈ R : y ∈ Q}| ≲d 1.

Let {x̄, ȳ} ∈ Etan
R′ . By construction ū(x̄) = u(x) and ū(ȳ) = u(y) for some x, y ∈ ∂DR′

with sup{|x− x̄|∞; |y− ȳ|∞} ≤ 1. Therefore, |x− y|∞ ≤ 3. By the triangle inequality

|ū(x̄)− ū(ȳ)|r = |u(x)− u(y)|r ≲d,r

∑
x′,y′∈Qx ,x′∼y′

|u(x′)− u(y′)|r.

Summing over all {x̄, ȳ} ∈ Etan
R′ yields the claim.
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Proof of Lemma III.2.7. For x ∈ ∂̃DR′ define h∗ε(x) plugging g(y) := 1x=y, y ∈ ∂DR′

into (III.2.35). By linearity we get (III.2.35) for all g : ∂DR′ → R satisfying g = 0 at
the corner points ∂DR′ \ ∂̃DR′ . Since Mg only depends on the values of g on ∂̃DR′ ,
(III.2.35) is true for any g : ∂DR′ → R.

Proof of Lemma III.2.8. By Hölder’s inequality, (III.2.26) and Lemma III.2.6,⏐⏐⏐⏐⏐⏐
∑

x∈∂̃DR

h∗εg

⏐⏐⏐⏐⏐⏐ ≲d,r,s ∥h∥Ls
(∂̃DR)∥(Mg)ε∥Ls′

(∂̃DR)

≲d,r,s ∥h∥Ls
(∂̃DR)ε

−(d−1)( 1
r′−

1
s′ )∥Mg∥

L
r′
(∂DR)

≲d,r,s ∥h∥Ls
(∂̃DR)ε

−(d−1)( 1
s
− 1

r
)∥g∥

L
r′
(∂̃DR)

for g : ∂̃DR → R and 1/s+ 1/s′ = 1/r+ 1/r′ = 1. From this the claim follows. Note
that in the limit case r = ∞ we only need to choose g the Dirac functions.

III.5.2 Energy of the homogenization error

Let ρ ∈ (0, R/256) and let η be a cut off function satisfying

η = 1 on DR′−32ρ and η = 0 on DR′ \DR′−16ρ and |∇η| ≲ 1

ρ
. (III.5.2)

Define the homogenization error

w = u− v − ηϕi∇iv. (III.5.3)

The energy of w can be obtained by testing the equation of w in Lemma III.3.1 with
w itself. In order to do this, we need the following Lemma III.5.1.

Lemma III.5.1. Let g : Ed
± → R and h, f : Zd → R satisfy

(a) g([x, y]) = −g([y, x]),

(b) hi(x) = g([x, x+ ei]), x ∈ Zd,

(c) ∇∗ · h = ∇∗ · f in DR,

(d) supp(f) ⊆ DR−2 .

Then, for any functions w defined on Zd we have∑
{x,y}∈ER

(g∇w)({x, y}) =
∑

[x,y]∈Enor
R

g(x, y)w(x) +
∑
x∈DR

f(x) · ∇w(x). (III.5.4)

The notation on the left-hand side of (III.5.4) is explained as follows: By as-
sumption (a) the product g∇u does not depend on the direction of the edge:

(g∇u)([x, y]) = (g∇u)([y, x])
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and we can therefore consider it as a function acting on unoriented edges.
Formula (III.5.4) looks a bit weird! However, it can be seen as a discrete Gauss-

type formula. For simplicity, let f = 0 and pick g = ∇β for some function β. Then,
assumption (c) says that ∆β = 0. Then, the continuum version of (III.5.4) is simply
the following

ˆ
BR

∇β · ∇w =

ˆ
BR

∇ · (w∇β)−
ˆ
BR

w∇ · ∇β  
=∆β=0

=

ˆ
∂BR

w∇β · νdS

where we apply the Gauss divergence theorem. Later, we choose f to be the cor-
rector term, which lies ”far away from the boundary”.

Proof of Lemma III.5.1. Define

w0 =

{
w in Zd \DR

0 in DR

and α = w − w0 so that supp (α) ⊆ DR.

The support of α and assumption (c) yield that∑
Zd

α∇∗ · h =
∑
Zd

α∇∗ · f.

By the partial integration (III.1.5) and assumption (b), we have

∑
Zd

f · ∇α =
∑
Zd

d∑
i=1

hi∇α =
∑

[x,y]∈Ed
+

{g∇α}([x, y]) (III.5.5)

where

Ed
+ := {[x, x+ ei] : x ∈ Zd, 1 ≤ i ≤ d}.

Noting that g∇α is, in fact, a function acting on e ∈ Ed and that supp(g∇α) ⊆ ER,

which follows from the fact that supp(α) ⊆ DR, we continue (III.5.5) as follows:∑
Zd

f · ∇α =
∑

{x,y}∈Ed

{g∇α}({x, y}) =
∑
ER

g∇α

=
∑
ER

g∇w −
∑
ER

g∇w0

where we use the definition of α for the last equality. Therefore, we have∑
ER

g∇w =
∑
ER

g∇w0 +
∑
Zd

f · ∇α

By assumption (d) and the definition of u0, this is exactly (III.5.4).
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In order to use Lemma III.5.1 we set

h = a∇w + (1− η)(a− ah)∇v

g([x, y]) = ω({x, y})∇w([x, y]) + (1− η(x))(ω − ωh)({x, y})∇v([x, y])

f = −(σi · ∇∗)(η∇iv)− a[(ϕi∇)(η∇iv)].

Here, h and f are functions of vertices and g is a function of oriented edges. By
Lemma III.3.1 and especially the fact that both a and ah are diagonal, they sat-
isfy Lemma III.5.1. To lighten notations in the following we will not write the
arguments, i.e. ω, ∇f , and f should be read as ω({x, y}), ∇f([x, y]), and f(x),
f ∈ {u, v, w}. First, we have

∑
ER′

g∇w =
∑
ER′

ω(∇w)2 + (1− η)(ω − ωh)∇v∇w

Further, by definition (III.5.3) of w and (III.5.2) of η,

∑
[x,y]∈Enor

R′

w(x)g(x, y) =
∑
Enor

R′

(u− v){ω∇w + (1− η)(ω − ωh)∇v}

=
∑
Enor

R′

(u− v){ω(∇u−∇v) + (ω − ωh)∇v}

=
∑
Enor

R′

(u− v){ω∇u− ωh∇v}

Therefore, Lemma III.5.1 gives us

∑
ER′

ω(∇w)2 = −
∑
ER′

(1− η)(ω − ωh)∇v∇w

+
∑
Enor

R′

(u− v){ω∇u− ωh∇v}

−
∑
DR′

{
(σi · ∇∗)(η∇iv) + a[(ϕi∇)(η∇iv)]

}
· ∇w.
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By Young’s and Hölder’s inequality and definition (III.5.2) of η,∑
ER′

ω(∇w)2

≲
∑

ER′\ER′−32ρ

(ω + ω−1)(∇v)2 (III.5.6a)

+
⏐⏐⏐∑
Enor

R′

(u− v)(ω∇u− ωh∇v)
⏐⏐⏐ (III.5.6b)

+ ΛRd

[
∥σ∥2

L
2q
q−1 (DR)

+ ∥ϕ∥2
L

2p
p−1 (DR)

]
sup

DR′−8ρ

{
|∇2v|2 + 1

ρ2
|∇v|2

}
. (III.5.6c)

We call (III.5.6a)–(III.5.6c) the near boundary, boundary, and corrector term, re-
spectively. The proposition is proved once we can show that

(III.5.6a) ≲ ΛΛRd
( ρ
R

)min(
p−1
2p

,
q−1
2q

)

ε
−(d−1)min

(
q+1
q

,
p+1
p

)
,

(III.5.6b) ≲ ΛRdε
1−(d−1)

(
1
2p

+
1
2q

)
,

(III.5.6c) ≲ ΛΛRd

(
R

ρ

)d+2 [
∥ϕ∥

L
2p
p−1 (DR)

+ ∥σ∥
L

2q
q−1 (DR)

]
.

III.5.3 The boundary term

As mentioned before, the most difficult part of the proof is the boundary term,
which we want to consider first to make sure that our ideas really work.

Lemma III.5.2. In both Dirichlet and Neumann case,

(III.5.6b) ≲ ΛRdε1−(d−1)( 1
2p

+ 1
2q ).

Proof for the Dirichlet case. Recall that v := uε. With the smoothed discrete ver-
sion and the Dirichlet-to-Neumann estimate we can almost repeat the argument by
Bella, Fehrman, Otto [12]. By the triangle inequality we decompose the left-hand
side into two terms:

R−(d−1)(III.5.6b) ≲ ∥(u− v)ω∇u∥
L
1
(Enor

R′ )
+ ∥(u− v)ωh∇v∥L1

(Enor
R′ )

(III.5.7)

where each term is estimated by Hölder’s inequality as follows:

∥(u− v)ω∇u∥
L
1
(Enor

R′ )
≲ ∥u− v∥

L
2p
p−1 (∂DR′ )

∥ω∇u∥
L

2p
p+1 (Enor

R′ )
,

∥(u− v)ωh∇v∥L1
(Enor

R′ )
≲ ∥u− v∥

L
2q
q−1 (∂DR′ )

∥∇v∥
L

2q
q+1 (Enor

R′ )
.

(III.5.8)
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Here we need to exploit the Dirichlet-to-Neumann estimate, Theorem III.2.5, to
bound the discrete normal derivatives:

∥∇v∥
L

2q
q+1 (Enor

R′ )
≲ ∥∇v∥

L
2q
q+1 (Etan

R′ )
≲ ∥∇u∥

L
2q
q+1 (Etan

R′ )
(III.5.9)

where the last inequality follows from (III.2.27) with r = s = 2q/(q + 1). Further,
(III.2.28) reads

∥u− v∥
L

2p
p−1 (∂DR′ )

≲ εR∥∇u∥
L

2p
p−1 (Etan

R′ )
, (III.5.10)

∥u− v∥
L

2q
q−1 (∂DR′ )

≲ εR∥∇v∥
L

2q
q−1 (Etan

R′ )
. (III.5.11)

Further, by the fact that the constant function is invariant under (·)ε, the triangle
inequality, estimate (III.2.26) with r = s = 2p/(p + 1) and finally, the Sobolev
inequality (Lemma III.4.4), we have

∥u− v∥
L

2p
p−1 (∂DR′ )

= ∥u− uε∥
L

2p
p−1 (∂DR′ )

= ∥(u− c)− (u− c)ε∥
L

2p
p−1 (∂DR′ )

≲ ∥(u− c)∥
L

2p
p−1 (∂DR′ )

+ ∥(u− c)ε∥
L

2p
p−1 (∂DR′ )

≲ ∥(u− c)∥
L

2p
p−1 (∂DR′ )

≲ R∥∇u∥Ls
(Etan

R′ ) (III.5.12)

with
1

s
=
p− 1

2p
+

1

d− 1
.

Interpolating between (III.5.10) and (III.5.12) yields

∥u− v∥
L

2p
p−1 (∂DR′ )

≲ ε1−(d−1)( 1
2p

+ 1
2q )R∥∇u∥

L
2q
q+1 (Etan

R′ )
, (III.5.13)

and between (III.5.11) and (III.5.12) yields

∥u− v∥
L

2q
q−1 (∂DR′ )

≲ ε1−
d−1
q R∥∇u∥

L
2q
q+1 (Etan

R′ )
. (III.5.14)

Plugging all (III.5.9), (III.5.13) and (III.5.14) into (III.5.8) and then (III.5.7), using
(III.5.1) and noting that

ε1−(d−1)( 1
2p

+ 1
2q ) ≥ ε1−

d−1
q

which follows from the case assumption q ≥ p we finish the argument for the
Dirichlet case.
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Proof for the Neumann case. Exploiting duality produced by (III.2.35) and using M
defined by Lemma III.2.6 are main ideas of the proof. The remaining part is very
routine. First of all, we can assume that∑

∂̃DR′

u− v = 0

by adding a constant to v so that the contribution of the mean in definition (III.2.34)
is zero. Therefore, by duality (III.2.35), we have

R−(d−1)(III.5.6b) ∼

⏐⏐⏐⏐⏐⏐
∑
Enor

R′

(u− v) (ω∇u− (ω∇u)∗ε)

⏐⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐⏐
∑
Enor

R′

ω∇u {[M(u− v)]− [M(u− v)]ε}

⏐⏐⏐⏐⏐⏐ .
By Hölder’s inequality,

R−(d−1)(III.5.6b) ≲ ∥ω∇u∥
L

2p
p+1 (Enor

R′ )
×

×
[
∥Mu− (Mu)ε∥

L
2p
p−1 (∂DR′ )

+ ∥Mv − (Mv)ε∥
L

2p
p−1 (∂DR′ )

]
. (III.5.15)

First of all, we have

∥Mu− (Mu)ε∥
L

2p
p−1 (∂DR′ )

≲ ε1−(d−1)( 1
2p

+ 1
2q )R∥∇Mu∥

L
2q
q+1 (Etan

R′ )

≲ ε1−(d−1)( 1
2p

+ 1
2q )R∥∇u∥

L
2q
q+1 (Etan

R′ )
(III.5.16)

where we obtain the first inequality using the same argument as that for (III.5.13)
and the last exploiting a property of M. Similarly,

∥Mv − (Mv)ε∥
L

2p
p−1 (∂DR′ )

≲ ε1−
d−1
p R∥∇Mv∥

L
2p
p+1 (Etan

R′ )
≲ ε1−

d−1
p R∥∇v∥

L
2p
p+1 (Etan

R′ )

≲ ε1−
d−1
p R∥∇v∥

L
2p
p+1 (Enor

R′ )

≲ ε1−
d−1
p R∥ω∇u∥

L
2p
p+1 (Enor

R′ )
(III.5.17)

where we obtain the first inequality using the same argument as that for (III.5.14),
the second using a property of M, the third exploiting the Dirichlet-to-Neumann
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estimate, Theorem III.2.5, and the last applying (III.2.34) and Lemma III.2.8. Com-
bining (III.5.1) and (III.5.15)–(III.5.17) and the fact that

ε1−(d−1)( 1
2p

+ 1
2q ) ≥ ε1−

d−1
p ,

which follows from the case assumption p ≥ q we finish the argument for the
Neumann case.

III.5.4 The corrector term

From now on until the end of the section the argument is quite routine. We con-
tinue with the corrector term, which can be estimated by combining (III.5.18)
and (III.5.21) below.

Claim. We have

sup
DR′−8ρ

|∇2v|2 + 1

ρ2
|∇v|2 ≲ 1

ρd+2
∥∇v∥2L2(DR′ ). (III.5.18)

Proof. Pick x ∈ DR′−8ρ. Note that each components of ∇2v and ∇v is ah-harmonic
in the box DR′−2ρ, which contains D4ρ(x). By the mean value inequality (for a ref-
erence see [25, Lemma 3.4]) and Cacciopoli’s inequality (Lemma III.2.1), we have

|∇2v(x)|2 ≲ ∥∇2v∥
L
2
(D2ρ(x))

≲
1

ρ2
∥∇v∥

L
2
(D4ρ(x))

∼ 1

ρ2+d
∥∇v∥L2(D4ρ(x)). (III.5.19)

By the mean value inequality, we have

1

ρ2
|∇v(x)| ≲ 1

ρ2
∥∇v∥

L
2
(D4ρ(x))

≲
1

ρd+2
∥∇v∥L2(D4ρ(x)). (III.5.20)

Adding (III.5.19) and (III.5.20) and noting that D4ρ(x) ⊂ DR′ we get (III.5.18).

Claim. In both the Dirichlet and the Neumann case,

∥ωh(∇v)2∥L1
(ER)

≲ Λ. (III.5.21)

Proof. By Lemma III.5.1 (with u = v− c, g = ωh∇v, f = 0) and Hölder’s inequality,

LHS (III.5.21) =
∑
Enor

R′

{ωh∇v}(v − c) ≤ ∥∇v∥
L

2q
q+1 (Enor

R′ )
∥v − c∥

L
2q
q−1 (∂̃DR′ )

(III.5.22)

for any c ∈ R. Applying Lemma III.4.4 (Sobolev’s inequality) and using the modifi-
cation M in Lemma III.2.8 we have

inf
c∈R

∥v − c∥
L

2q
q−1 (∂̃DR′ )

≲ inf
c∈R

∥Mv − c∥
L

2q
q−1 (∂DR′ )

≲ ∥∇Mv∥
L

2p
p+1 (Etan

R )

≲ ∥∇v∥
L

2p
p+1 (Etan

R )
. (III.5.23)
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Note that in order to apply the Sobolev inequality we need

p+ 1

2p
<
q − 1

2q
+

1

d− 1
,

which is satisfied since 1/p+ 1/q ≤ 2/d. By (III.5.22) and (III.5.23) we have

LHS (III.5.21) ≲ ∥∇v∥
L

2q
q+1 (Enor

R′ )
∥∇v∥

L
2p
p+1 (Etan

R′ )
.

Then, the claim follows from the fact that

p ≤ q ⇔ 2p

p+ 1
≤ 2q

q + 1

and the following two estimates

∥∇v∥
L

2q
q+1 (Etan

R′ ∪Enor
R′ )

≲ Λ
1/2
, in the Dirichlet case, (III.5.24)

∥∇v∥
L

2p
p+1 (Etan

R′ ∪Enor
R′ )

≲ Λ
1/2
, in the Neumann case (III.5.25)

which are direct consequences of (III.5.1) and definitions (III.2.29) and (III.2.34)
of v in each case. Indeed, the tangential part in (III.5.24) is estimated by using
(III.2.27) with r = s = 2q/(q + 1) and the normal part in (III.5.25) by using
Lemma III.2.8 with r = 2p/(p+1). In both cases, we need to apply the Dirichlet-to-
Neumann estimate, Theorem III.2.5.

III.5.5 The near boundary term

We finally turn to the near boundary term. The only difficulty is (III.5.29). How-
ever, it is much easier than the Dirichlet-to-Neumann estimate. Set

m = max
{

4p
p−1

, 4q
q−1

}
(III.5.26)

Claim. We have

(III.5.6a) ≲ ΛRd∥∇v∥Lm
(ER′ )(

ρ
R
)

2
m . (III.5.27)

Proof. By Hölder inequality,

∥ω(∇v)2∥L1(ER′\ER′−32ρ)
≲ ∥ω∥Lp

(ER′ )

[
1−

(
R′−32ρ

R

)d]1− 1
p
− 2

m

∥(∇v)2∥
L
m/2

(ER′ )

≲ Λ
( ρ
R

)1− 1
p
− 2

m ∥∇v∥2
L
m
(ER′ )

(III.5.28a)
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and

∥ω−1(∇v)2∥L1(ER′\ER′−32ρ)
≲ ∥ω−1∥Lq

(ER′ )

[
1−

(
R′−32ρ

R

)d]1− 1
q
− 2

m

∥(∇v)2∥
L
m/2

(ER′ )

≲ Λ
( ρ
R

)1− 1
q
− 2

m ∥∇v∥2
L
m
(ER′ )

. (III.5.28b)

Summing (III.5.28a) and (III.5.28b) and noting that

min{1− 1

p
− 2

m
, 1− 1

q
− 2

m
} ≤ 2

m

yield the claim.

Claim. In both Dirichlet and Neumann case,

∥∇v∥Lm
(ER′ ) ≲ ∥∇v∥Lm

(Etan
R′ ). (III.5.29)

Proof. This is Corollary IV.2.9 in Chapter IV.

Claim. In the Dirichlet case, we have

∥∇v∥Lm
(ER′ ) ≲ ε−(d−1) q+1

2q Λ
1
2 . (III.5.30)

Proof. By (III.5.29) we have

∥∇v∥Lm
(ER′ ) ≲ ∥∇v∥Lm

(Etan
R′ ) ≲ ∥∇v∥L∞

(Etan
R′ ).

Recall that v := uε. By (III.2.27) with r = ∞ and s = 2q/(q + 1), we have

∥∇v∥L∞
(Etan

R′ ) ≲ ε−(d−1) q+1
2q ∥∇u∥

L
2q
q+1 (Etan

R′ )
≲ ε−(d−1) q+1

2q Λ
1
2

where the last inequality is due to (III.5.1). The proof is complete.

Claim. In the Neumann case, we have

∥∇v∥Lm
(ER′ ) ≲ ε−(d−1) p+1

2p Λ
1
2 . (III.5.31)

Proof. We argue as follows:

∥∇v∥Lm
(ER′ ) ≲ ∥∇v∥Lm

(Etan
R′ ) ≲ ∥∇v∥Lm

(Enor
R′ ) ≲ ∥ωh∇v∥L∞

(Enor
R′ )

≲ ε−(d−1) p+1
2p ∥ω∇u∥

L
2p
p+1 (Enor

R′ )
≲ ε−(d−1) q+1

2q Λ
1
2 .

where the first inequality is due to (III.5.29), the second is nothing but the Dirichlet-
to-Neumann estimate, Theorem III.2.5, the fourth follows from definition (III.2.34)
in the Neumann case and Lemma III.2.8 (for h = ω∇u, r = ∞ and s = 2p/(p + 1),
and finally, for the last we use (III.5.1).
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III.5.6 From the energy estimate to the excess decay

Proof of Theorem III.1.4 from Proposition III.2.3. The proof is almost the same as
that in the continuum case [12, Step 4, p14]. We only have to take care make
sure that the radii ρ and R are integer, especially the scale of the cut off must
satisfy ρ≫ 1. It suffices to show that

Exc(r) ≤ K−2α∥a∇u · ∇u∥L1(DR) (III.5.32)

where R := Kr. Indeed, replacing u by u− ξi(ϕi + xi) where ξ is chosen so that

∥a (∇u− ξi(∇ϕi + ei)) · (∇u− ξi(∇ϕi + ei)) ∥L1(DR) → min

we obtain (III.1.11) from (III.5.32). Since r ≤ R/64 due to K ≥ 64, by definition
of the cutoff function η, we have

w = u− v − ϕi∇iv in Dr

Taking the discrete gradient yields

∇w = ∇u−∇v − (ϕi∇)∇iv −∇iv∇ϕi

= ∇u−∇iv (∇ϕi + ei)− (ϕi∇)∇iv

= ∇u−∇iv(0) (∇ϕi + ei)− (∇iv −∇iv(0)) (∇ϕi + ei)− (ϕi∇)∇iv.

Setting ξ = ∇iv(0), we obtain

∇u− ξi(∇ϕi + ei) = ∇w + (∇iv −∇iv(0)) (∇ϕi + ei) + (ϕi∇)∇iv.

Recall that R := Kr. By the triangle inequality,

∥a ((∇u− ξi(∇ϕi + ei)) · ((∇u− ξi(∇ϕi + ei)) ∥L1
(Dr)

≲ Kd∥a∇w · ∇w∥
L
1
(D⌊R/64⌋)

+

{
sup
D2r

|∇v −∇v(0)|2
}
∥a(∇ϕ+ ei) · (∇ϕi + ei)∥L1

(D2r)

+

{
sup
D2r

|∇∇v|2
}
∥aϕi · ϕi∥L1

(D2r)
.

(III.5.33)

The following is also true in the discrete case:

sup
D2r

|∇v −∇v(0)|2 ≲ r2 sup
D4r

|∇∇v|2. (III.5.34)
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Since r ≤ R/64, applying the mean value and Cacciopoli inequality (Lemma III.2.1)
we obtain

sup
D4r

|∇∇v|2 ≲ sup
D⌊R/8⌋

|∇∇v|2 ≲ ∥∇∇v∥
L
2
(D⌊R/4⌋)

≲
1

R2
∥∇v∥

L
2
(D⌊R/2⌋)

(III.5.21)
≲

1

R2
∥a∇u · ∇u∥

L
1
(DR)

. (III.5.35)

By Cacciopoli’s inequality (Lemma III.2.1) and Hölder’s inequality, we have

∥a(∇ϕi + ei) · (∇ϕi + ei)∥L1
(D2r)

≲
1

r2
∥ϕ+ x∥

L
2p
p−1 (D4r)

≲ 1, (III.5.36)

and

∥aϕ · ϕ∥
L
1
(Dr)

≤ ∥a∥Lp
(Dr)

∥ϕ∥2
L

2p
p−1 (Dr)

≲ r2, (III.5.37)

for large r, where the last inequalities in (III.5.36) and (III.5.37) are due to the sub-
linearity of ϕ and the ergodicity of P. Plugging (III.5.34)–(III.5.37) into (III.5.33)
yields that for large r we have

∥a (∇u− ξi(∇ϕi + ei)) · (∇u− ξi(∇ϕi + ei)) ∥L1
(Dr)

≤ C1

(
Kd∥a∇w · ∇w∥

L
1
(D⌊R/64⌋)

+
1

K2
∥a∇u · ∇u∥L1(DR)

)
(III.5.38)

where C1 is a deterministic constant. We obtain (III.5.32) choosing the right con-
stant K and r∗ as follows. First, choose K ≥ 64 and δ0 > 0 such that

C1δ0K
d ≤ 1

2
K−2α and C1

1

K2
≤ 1

2
K−2α, (III.5.39)

where we first choose K so that the second is true, then choose δ0 so that the
first holds. By Proposition III.2.3 for each δ0 > 0 there exists r∗(ω) > 0 large
enough such that the following is true. Given R ≥ r∗ and an ω-harmonic function
u defined in DR there exists an ωh-harmonic function v in D⌊R/2⌋ such that for
w = u− v − ϕi∇iv we have

∥∇w · a∇w∥
L
1
(D⌊R/4⌋)

≤ δ0Λ. (III.5.40)

Indeed, in (III.2.3) choose ε so that the first term is small, then choose the ratio
γ := ρ/R ≪ 1 so that the second term is small. Finally, we exploit the sublinearity
of (ϕ, σ) to rebalance γ−(d+2) ≫ 1 in the last term. Note that this procedure only
works if ρ = γR large enough. However, we can overcome this small difficulty
multiplying both R and ρ with a very large number i.e. by choosing r∗(ω) ≫ 1.
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This is the only difference between the discrete and continuum case. Combining
(III.5.38)–(III.5.40) we obtain the claim (III.5.32) as follows:

∥∇u− ξi(∇ϕi + ei)) · a (∇u− ξi(∇ϕi + ei)∥L1
(Dr)

≤ C1

{
δ0K

d +K−2
}
∥a∇u · ∇u∥L1(DR)

≤ K−2α∥a∇u · ∇u∥L1(DR).

The proof of Theorem III.1.4 is complete.

III.A Proof of Cacciopoli’s inequality

Proof of Lemma III.2.1. The first inequality is only application of Hölder’s inequal-
ity. To show the second one, we can assume c = 0. Choose a cut off function η with
the following properties:

supp(η) ⊂ DR−8, η = 1 in DR−ρ+8, and |∇η| ≲ 1/ρ. (III.A.1)

Further, we have

∇i(fg)(x) = avi[f ](x)∇ig(x) + avi[g](x)∇if(x)

where

avi[f ](x) =
f(x+ ei) + f(x)

2
.

Hence,

∇(fg)(x) = av[f ](x)∇g(x) + av[g](x)∇f(x)

where

av[f ] := diag (av1[f ], . . . , avd[f ]) .

Using this notation we have

∇(η2u) = av[η2]∇u+ av[u]∇(η2) = av[η2]∇u+ 2av[u]av[η]∇η

Testing ∇∗ · a∇u = 0 with η2u we have

0 =
∑
DR−4

∇(η2u) · a∇u =
∑
DR−4

av[η2]∇u · a∇u+
∑
DR−4

2av[u]av[η]∇η · a∇u,
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where
∑

denotes the average. Here, the fact that the support of η is far away from
∂DR−4 allows us to apply partial integration. From this equality we have

av[η2]a∇u · ∇u
L
1
(DR−4)

=

⏐⏐⏐⏐⏐∑
BR

2av[u]av[η]∇η · a∇u

⏐⏐⏐⏐⏐
≲
av[u]2a∇η · ∇η1/2

L
1
(DR−4)

av[η]2a∇u · ∇u1/2
L
1
(DR−4)

≲
av[u2]a∇η · ∇η1/2

L
1
(DR−4)

av[η2]a∇u · ∇u1/2
L
1
(DR−4)

.

Absorb the last term into the left-hand side and apply Hölder’s inequality:av[η2]a∇u · ∇u
L
1
(DR−4)

≲
av[u2]a∇η · ∇η

L
1
(DR−4)

≲ ∥a∥Lp
(DR−4)

∥av[u]2|∇η|2∥
L

p
p−1 (DR−4)

.

By (III.A.1) and assumption (III.2.1), the claim follows.

III.B Sobolev spaces on Lipschitz surfaces

This appendix provides some basic knowledges on Sobolev spaces on Lipschitz sur-
faces, which we need, for example, in the following situations: First, in Section III.4
we have to smooth continuum functions defined on the surface of a box. Second,
we need the Poincaré inequality on a ”roof” (Figure III.4) to bound the right-hand
side of (III.4.19), when implementing the idea of Scott and Zhang [58].

Rd−1

R

V

U
O

Figure III.5: A chart of M

The reader may think that since the
surface of the unit box is just a union of
open faces, it is not necessary to rigorously
deal with Sobolev spaces on Lipschitz sur-
faces. However, when mimicking Evan’s
proof [29, p275] to show the Poincaré in-
equality on a ”roof”, we construct a limit-
ing object g being a constant on each face
and having the Lp-norm 1. It is not enough
to deduce that g is constant on the whole
”roof”.

Unfortunately, there is seemingly no literature stating this result directly. Some
books consider Lipschitz manifolds, for instance, Wloka [62] but their settings are
much more general than what we need. Therefore, it is worth showing it here from
scratch. In Subsections III.B.1 and III.B.2 we mainly follow Chapter 2 in the lecture
note by Mitrea and Mitrea [50]. However, in order to make this appendix more
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compact, the definitions and arguments we introduce here may be a bit different
from that by Mitrea and Mitrea.

III.B.1 Basics on compact Lipschitz surfaces

Let d ≥ 2 and assume in the whole section that M is a Lipschitz surface in the
following sense. For any a ∈ M , there exists an open neighbourhood O = Oa of a
in Rd, a Lipschitz function

φ = φa : Rd−1 → R

and an open subset V = Va in Rd−1 such that up to an isometry in Rd we have

U := Ua :=M ∩O = {(x′, xd) : x′ ∈ V, xd = φ(x′)}.

We call {Oa, Ua, Va, φa} a chart for M at the point a. The normal vectors and the
surface integrals on a chart {O,U, V, φ} are well-defined almost everywhere:

ν(x′, φ(x′)) =
(∇φ(x′),−1)√
1 + |∇φ(x′)|2

, (III.B.1)

ˆ
U

fdS =

ˆ
V

f(x′, φ(x′))
√
1 + |∇φ(x′)|2dx′ (III.B.2)

As in the Euclidean case when defining Sobolev spaces we should start by choos-
ing test functions. In the case of Lipschitz surfaces, it is reasonable to choose them
to be C1 in a neighbourhood of the boundary M. First of all, this choice ensures the
fundamental lemma of variational calculus:

Lemma III.B.1. If f ∈ L1
loc(M) satisfies
ˆ
M

fg = 0 for all g ∈ C∞
c (Rd),

then f = 0.

Proof. The proof given by Mitrea and Mitrea [50] is very general. We introduce
another argument which may be simpler to read. Let {O,U, V, φ} be a chart and
ψ ∈ C∞

c (V ). Define Ψ : V × R → R by

Ψ(x′, xd) := ψ(x′)θ(xd − φ(x′))

where θ ∈ C∞
c (−1

4
ε0,

1
4
ε0) satisfying θ(0) = 1 and ε0 = dist(∂V, supp(ψ)) > 0. Let η

be the standard d-dimensional mollifier and ηε(·) = ε−dη(·/ε) for fixed ε ∈ (0, ε0).
Define the convolution

Ψε := Ψ ∗ ηε ∈ C∞
c (O).
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By assumption, we obtain

0 =

ˆ
M

fΨεdS
(III.B.2)
=

ˆ
V

f(x′, φ(x′))Ψε(x
′, φ(x′))

√
1 + |∇φ(x′)|2dx′.

Since Ψε(·, φ(·)) → ψ in L∞(V ) as ε tends to zero, we have

ˆ
V

f(x′, φ(x′))ψ(x′)
√

1 + |∇φ(x′)|2dx′ = 0.

Since ψ ∈ C∞
c (V ) is arbitrary, the fundamental theorem of variational calculus in

the Euclidean case provides f(x′, φ(x′)) = 0 for x′ ∈ V. The claim follows.

We consider the following tangential derivative operators ∂τjk acting on test
functions, being compactly supported functions ψ of class C1 in a neighbourhood of
M :

∂τjkψ := νj(∂kψ)− νk(∂jψ), 1 ≤ j, k ≤ d. (III.B.3)

The tangential gradient is defined by

∇tanψ := ∇ψ − (ν · ∇ψ)ν

Lemma III.B.2. For any C1 function ψ defined in a neighbourhood of M , we have

(∇tanψ)j =
d∑

k=1

νk∂τkjψ, (III.B.4)

∂τjkψ = νj(∇tanψ)k − νk(∇tanψ)j. (III.B.5)

Further, all the tangential operators in (III.B.4) and (III.B.5) depend only on ψ ↾M .

In other words, if ψ ∈ C1
c (Rd) satisfies ψ ≡ 0 on M, then ∂τjkψ = 0 on M.

Proof. The arguments for (III.B.4) and (III.B.5) contains purely elementary calcu-
lations. We completely follow Mitrea and Mitrea [50]. First, we show (III.B.4):

∇tanψ := ∇ψ − (ν · ∇ψ)ν =
d∑

j=1

(|ν|∂jψ − (ν · ∇ψ)νj)ej

=
d∑

j,k=1

νk(νk∂jψ − νj∂kψ)ej =
d∑

j,k=1

νk∂τkjψej
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We turn to (III.B.5):

νj(∇tanψ)k − νk(∇tanψ)j

(III.B.4)
= νj

d∑
ℓ=1

νℓ∂τℓk − νℓ

d∑
r=1

νr∂τrjψ

(III.B.5)
= νj

d∑
ℓ=1

ν2ℓ ∂kψ − νjνk

d∑
ℓ=1

νℓ∂ℓψ − νk

d∑
r=1

ν2r∂jψ + νjνk

d∑
r=1

νr∂rψ

|ν|=1
= νj∂kψ − νk∂jψ = ∂τjkψ.

To prove the last claim, test ψ with an arbitrary function φ ∈ C1
c (R)ˆ

M

φ(∂τjkψ) = 0.

and use Lemma III.B.1. The proof is complete.

III.B.2 Sobolev spaces on compact Lipschitz surfaces

Let p ∈ [1,∞]. We define W 1,p(M) as the closure of {ψ ↾M : ψ ∈ C∞
c (Rd)} with

respect to the norm

∥f∥W 1,p(M) := ∥f∥Lp(M) +
d∑

j,k=1

∥∂τjkf∥Lp(M) ∼p,M ∥f∥Lp(M) + ∥∇tanu∥Lp(M)

(III.B.6)

where the last equivalence of norms is due to (III.B.4) and (III.B.5). The Sobolev
norm for a chart ∥ · ∥W 1,p(U) can be defined in a similar way.

Proposition III.B.3. Let {O,U, V, φ} be a chart. Then, for p ∈ [1,∞]

f ∈ W 1,p(U) ⇔ f(·, φ(·)) ∈ W 1,p(V )

with equivalence of norms

∥f(·, φ(·))∥Lp(V ) ∼ ∥f∥Lp(U), ∥∇f(·, φ(·))∥Lp(V ) ∼
d∑

j,k=1

∥∂τjkf∥Lp(U) (III.B.7)

the multiplicative constant depending on ∥∇φ∥L∞(V ).

Proof. ”⇒ and ≲”: By definition, there exists a sequence {Fn} ⊂ C∞(Rd) ↾U con-
verging to f in W 1,p(U). By the chain rule and (III.B.1), we have

∂j[Fn(·, φ(·))] = [∂jFn](·, φ(·)) + [∂dFn](·, φ(·))∂jφ = ∂τjdFn

√
1 + |∇φ|2. (III.B.8)
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Since {Fn} and {∂τjdFn} are Cauchy sequences in Lp(U) and ∇φ is uniformly
bounded, {Fn(·, φ(·))} and {∂jFn(·, φ(·))} are Cauchy sequence in Lp(V ). There-
fore {Fn(·, φ(·))} converges to some g ∈ W 1,p(V ). Since

Fn(·, φ(·)) → f(·, φ(·)) in Lp(V )

we have f(·, φ(·)) = g a.e. and f ∈ W 1,p(V ). By (III.B.8) and the boundedness of
∇φ we have ”≲” of (III.B.7) with f replaced by Fn. By letting n tend to infinity the
claim follows.

”⇐ and ≳”: There exists a sequence {fn} ⊂ C∞
c (V ) such that

fn → f(·, φ(·)) in W 1,p(V ). (III.B.9)

Extend fn to Rd by defining

Fn(x
′, xd) := fn(x

′)θ(xd − φ(x′)) where θ ∈ C∞
c (R) s.t. θ(0) = 1.

Obviously Fn ∈ Lipc(Rd) and Fn(·, φ(·)) = fn. Further, by a standard approximation
using convolution there exists F̃n ∈ C∞

c (Rd) such that

∥Fn − F̃n∥L∞(Rd) ≤
1

n
. (III.B.10)

Then, (III.B.9) and (III.B.10) imply that

F̃n(·, φ(·)) → f(·, φ(·)) in W 1,p(V ). (III.B.11)

As a first consequence we have F̃n → f in Lp(U). Further, by (III.B.8) and the fact
that ∇φ is bounded, {∂τjdF̃n} is a Cauchy sequence in Lp(U). Fix 1 ≤ j, k ≤ d − 1.

Let us show that

{∂τjkF̃n} is a Cauchy sequence in Lp(U). (III.B.12)

Indeed, by the chain rule we have

∂k[F̃n(·, φ(·))] = [∂kF̃n](·, φ(·))− [∂dF̃n](·, φ(·))∂kφ (III.B.13)

∂j[F̃n(·, φ(·))] = [∂jF̃n](·, φ(·))− [∂dF̃n](·, φ(·))∂jφ, (III.B.14)

which implies

∂τjkF̃n(·, φ(·))
√

1 + |∇φ|2 = ∂jφ[∂kF̃n](·, φ(·))− ∂kφ[∂jF̃n](·, φ(·)),

= ∂jφ∂k[F̃n(·, φ(·))]− ∂kφ∂j[F̃n(·, φ(·))].
(III.B.15)

Therefore (III.B.12) simply follows by the fact that {∇F̃n(·, φ(·))} is a Cauchy se-
quence in Lp(V ). By (III.B.11) and (III.B.12), F̃n converges to f in W 1,p(U). Finally,
by (III.B.2), (III.B.15) and the boundedness of ∇φ we have ”≳” of (III.B.7) with f
replaced by F̃n. Letting n tend to infinity we finish the proof.
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Lemma III.B.4 (Product rule). Let {O,U, V, φ} be a chart. Further, let ψ ∈ Lipc(U)

and f ∈ W 1,p(U). Then, ψf ∈ W 1,p(U) and ∂τjk(ψf) = ψ∂τjkf + f∂τjkψ S-a.e. on U.

Proof. Extend ψ to the following function:

Ψ(x′, xd) := ψ(x′, φ(x′))θ(xd − φ(x′)) where θ ∈ C∞
c (R) s.t. θ(0) = 1.

Obviously, we have

Ψ ∈ Lipc(Rd) and Ψ ↾U= ψ.

By [29, Theorem 4, p279] this implies that Ψ ∈ W 1,∞(Rd). By a standard approxi-
mation using convolution as in the proof of this theorem we construct Ψn = Ψ ∗ ηn
satisfying Ψn → Ψ uniformly, ∇Ψn → ∇Ψ a.e. and ∥∇Ψn∥∞ ≤ ∥∇Ψ∥∞. Further,
there exists a sequence {Fn} ⊂ C∞(Rd) ↾U converging to f in W 1,p(U). Then, by
the triangle inequality, we have

∥ΨnFn − ψf∥Lp(U) ≤ ∥Ψn∥L∞(U)∥Fn − f∥Lp(U) + ∥Ψn − ψ∥L∞(U)∥f∥Lp(U)
n→∞−→ 0.

(III.B.16)

The proof is now very routine and is almost the same as in the Euclidean case. By
the product rule in the Euclidean case together with definition (III.B.3) of ∂τjk , we
obtain

∂τjk(ΨnFn) = Ψn∂τjkFn + Fn∂τjkΨn. (III.B.17)

By the triangle inequality, we have

∥∂τjk(ΨnFn)− ∂τjk(ΨmFm)∥Lp(U)

≤ ∥Ψn∂τjkFn −Ψm∂τjkFm∥Lp(U) + ∥Fn∂τjkΨn − Fm∂τjkΨm∥Lp(U) (III.B.18)

We continue splitting by means of the triangle inequality:

∥Ψn∂τjkFn −Ψm∂τjkFm∥Lp(U)

≤ ∥Ψn∥L∞(U)∥∂τjkFn − ∂τjkFm∥Lp(U) + ∥Ψn −Ψm∥L∞(U)∥∂τjkFm∥Lp(U) (III.B.19)

and

∥Fn∂τjkΨn − Fm∂τjkΨm∥Lp(U)

≤ ∥(Fn − Fm)∂τjkΨn∥Lp(U) + ∥Fm(∂τjkΨn − ∂τjkΨm)∥Lp(U) (III.B.20)

Since Ψn → Ψ uniformly and {Fn} is a Cauchy sequence in W 1,p(U), the right-hand
side of (III.B.19) tends to zero as m,n tend to infinity. Since ∥∇Ψn∥∞ ≤ ∥∇Ψ∥∞,
we can apply the Dominated Convergence Theorem to get that the right-hand side
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of (III.B.20) also tends to zero. Therefore, {ΨnFn} is a Cauchy sequence inW 1,p(U).
Knowing (III.B.16) we have that ΨnFn → ψf in W 1,p(U), especially

∂τjk(ΨnFn) → ∂τjk(ψf), in Lp(U). (III.B.21)

Letting m and then n tend to infinity in (III.B.19) and (III.B.20) yields that

Ψn∂τjkFn → Ψ∂τjkF, Fn∂τjkΨn → F∂τjkΨ, in Lp(U). (III.B.22)

Combining (III.B.21) and (III.B.22) with (III.B.17) we finish the proof.

III.B.3 Sobolev’s and Poincaré’s inequality

Figure III.6: A two dimensional
roof

Let us first start with the Poincaré inequal-
ity on a ”roof” (see Figure III.4 and Subsec-
tion III.B.3). This object can be considered as
the graph of the function

φ(x′) = 1− |x1|, x′ = (x1, . . . , xd−1).

In other words, we need a Poincaré inequality
on a local chart {O,U, V, φ} of M . In the Eu-
clidean case, the Poincaré inequality relies on
the so-called Rellich compact embedding W 1,p ⊂⊂ Lp, p ∈ [1,∞] (see Evans [29]).
Since a local chart looks like a Euclidean space (Proposition III.B.3), we also have

W 1,p(U) ⊂⊂ Lp(U). (III.B.23)

Then, the fact that Poincaré’s inequality is true on a local chart is obvious.

Lemma III.B.5 (Poincaré’s inequality on local charts). Poincaré’s inequality is true
on an arbitrary chart {O,U, V, φ} of M in the following sense. For any p ∈ [1,∞] and
for any f ∈ W 1,p(U) we have

∥f − (f)U∥Lp(U) ≲U ∥∇tanf∥Lp(U).

Proof. The proof follows the same spirit as that for the Euclidean case (see e.g.
Evans [29]). Assume there were s sequence {fn} such that

∥fn − (fn)U∥Lp(U) ≥ n∥∇tanfn∥Lp(U).

Normalizing

gn =
fn − (fn)U

∥fn − (fn)U∥Lp(U)

we obtain

1 = ∥gn∥Lp(U) ≥ n∥∇tangn∥Lp(U) and (g)U = 0. (III.B.24)
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As a first consequence, {gn} is bounded in W 1,p(U). Therefore, by (III.B.23) there
exists a subsequence {gnm} such that

gnm → g in Lp(U). (III.B.25)

On the other hand, combining (III.B.24) with the equivalent of norms (III.B.6)
yields that

∥∂τjkgn∥Lp(U) → 0. (III.B.26)

By (III.B.25) and (III.B.26), {gnm} converges to g in W 1,p(U), and ∂τjkg = 0. The
equivalence of norms (III.B.7) in Proposition III.B.3 yields that ∇g(·, φ(·)) = 0,
meaning g is constant on U. However, it cannot happen, since ∥g∥Lp(U) = 1 and
(g)U = 0, which follow from (III.B.24).

We turn to the Poincaré inequality on the whole boundary.

Theorem III.B.6 (Poincaré’s inequality). Assume that M is connected. Then,

∥f − (f)M∥Lp(M) ≲M ∥∇tanf∥Lp(M)

where

(f)M =

´
M
fdS´

M
1dS

denotes the average of f on M.

As in the Euclidean case, for Theorem III.B.6, we need the following result.

Theorem III.B.7 (Rellich). For any p ∈ [1,∞] we have

W 1,p(M) ⊂⊂ Lp(M).

Proof of Theorem III.B.6 from Theorem III.B.7. The proof is almost the same as that
for local charts (Lemma III.B.5). We obtain g ∈ W 1,p(M) with

(g)M = 0, ∥g∥Lp(M) = 1, and ∂τjk = 0 in M.

By the equivalent of norms (III.B.7) in Proposition III.B.3, g is constant on each
chart. Since M is connected, we get a contradiction.

The strategy to prove Theorem III.B.7 is ”divide and conquer”: using a partition
of unity we decompose a function defined on M into functions supported on each
local charts and lift them to the Euclidean space.

Proposition III.B.8. There exist finitely many charts {Oj, Uj, Vj, φj}, 1 ≤ j ≤ N such
that {Uj}Nj=1 covers M . Further, there exists a partition of unity {αj}Nj=1 subordinate
to {Uj}Nj=1 in the sense that



III.B. SOBOLEV SPACES ON LIPSCHITZ SURFACES 105

i) 0 ≤ αj ≤ 1 are all Lipschitz continuous functions defined on M ,

ii)
∑N

j=1 αj = 1, and

iii) supp(αj) is a compact subset of Uj.

Proof. The proof is standard and can be found in every textbook on differential
manifolds, for instance, Tu [61, Proposition 13.9]. In our case, we only need to
make sure that the standard construction also works for the Lipschitz case. For
each a ∈ M let {O′

a, U
′
a, V

′
a, φa}, {Oa, Ua, Va, φa} be charts for M at a satisfying

O′
a ⊂ Oa and dist(O′

a, ∂Oa)} > 0. Further, let βa be a smooth function satisfying
supp(βa) ⊂⊂ Va, αa = 1 in V ′

a. By compactness, there exists {aj}Nj=1 such that
{O′

ai
}Nj=1 covers M. For simplicity the index ai is replaced by i. Define

α̃j :M → R, α̃j(x
′, φj(x

′)) = βj(x
′), x′ ∈ Vj, α̃j = 0 in M \ Uj.

By definition α(x) :=
∑

j α̃j > 0 for any x ∈ M , since x ∈ V ′
j for some j. By nor-

malizing αj := α̃j/α we have
∑

j αj = 1. Further, by construction α̃j are Lipschitz.
Therefore αj is also Lipschitz, which can be seen by writing

α̃j(x)

α(x)
− α̃j(y)

α(y)
=

(α̃j(x)− α̃j(y))α(y)− (α(x)− α(y)) α̃j(y)

α(x)α(y)

and using the fact that both α and α̃j are Lipschitz and bounded from above, and
in particular, by compactness, α is bounded from below.

Proof of Theorem III.B.7. Assume {fm} is a bounded sequence in W 1,p(M). Propo-
sition III.B.8 compactness there exist finitely many charts Oj, Uj, Vj, φj, 1 ≤ j ≤ N

covering M and a partition of unity {αj}Nj=1 subordinate to them. Note that by
defining an extension as done for ψ in Lemma III.B.4 we can assume αj ∈ Lipc(Rd).
Therefore, by [29, Theorem 4, p279], we have αj ∈ W 1,∞(Rd) and

A := max
1≤j≤N

∥αj∥W 1,∞(Rd) <∞ (III.B.27)

depends only on the structure of M . Noting that by Lemma III.B.4 (Product rule)

∂τkl(αjfm) = αj(∂τklfm) + fm(∂τklαj) (III.B.28)

we have
∥αjfm∥W 1,p(Uj) ≲ ∥fm∥W 1,p(Uj) ≤ ∥fm∥W 1,p(M),

the multiplicative constant depending only on A. By Proposition III.B.3 and the fact
that supp(αj ↾Uj

) ⊂ Uj the sequence {[αjfm](·, φ(·))}∞m=1 is bounded in W 1,p(Vj).
Applying the embedding W 1,p(Vj) ⊂⊂ Lp(Vj) (see the remark in [29, p274]) suc-
cessively for 1 ≤ j ≤ N yields the existence of a subsequence {mk} such that
{[αjfmk

](·, φ(·))} converges in Lp(V ) for all 1 ≤ j ≤ N. Since ∇φ is bounded, lifting
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things to M yields that {αjfmk
} converges in Lp(M). By the triangle inequality and

the fact that
∑N

j=1 αj = 1 on M we have

lim
k,k′→∞

∥fmk
− fmk′

∥Lp(M) ≤ lim
k,k′→∞

∑
j

∥αj(fmk
− fmk′

)∥Lp(M) = 0.

Therefore, {fmk
} is a Cauchy sequence in Lp(M). The proof is complete.



Chapter IV

The Dirichlet-to-Neumann estimate

IV.1 Statement of the main result

The aim of this part is to prove Theorem III.2.5 in Chapter III which is a discrete
analogue of a well-known result [45, 49] claiming that the tangential and normal
component of the gradient of a harmonic function on the boundary of a domain,
for instance, the unit ball, are comparable in the following sense:

Theorem. Let p ∈ (1,∞) and u : B1 → R be harmonic in B1 and u|∂B1 ∈ W 1,p (∂B1).
Then, there exist c1, c2 ∈ (0,∞) depending on p and d such that
ˆ
∂B1

|∇noru|p ≤ c1

ˆ
∂B1

|∇tanu|p and
ˆ
∂B1

|∇tanu|p ≤ c2

ˆ
∂B1

|∇noru|p. (IV.1.1)

Figure IV.1: Tangential (red)
and normal edges (blue)

By a simple scaling argument we get the esti-
mates with the same constants c1, c2 for harmonic
functions defined on Br for all r > 0. In the
proof given by Maergoiz [45] and Mikhlin [49]
the tangential and the normal component are Lp-
bounded from above by the density of the single
and double layer potential by a Calderon-Zymund
theorem. The lower bound also follows, since the
densities can be represented as solutions of sin-
gular integral equations, in which the tangential
and normal component are considered as inputs.

We call u : A ⊂ Zd → R harmonic at x ∈ A if

u(x) =
1

2d

∑
y:|x−y|1=1

u(y),

and harmonic in B ⊂ A if it is harmonic at every x ∈ B. Consider a discrete box
[0, N ]d ∩ Zd for N ≫ 1. Then, the discrete analogues of the tangential and normal

107
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component are defined as follows. We denote by Etan
N the set of all nearest neighbor

edges {x, y} with x, y on the boundary

{0, . . . , N}d \ {1, . . . , N − 1}d

of the box, and by Enor
N the set of all nearest neighbor edges {x, y} with x in the

interior {1, . . . , N − 1}d and y on the boundary

{0, . . . , N}d \ {1, . . . , N − 1}d.

Note that in Chapter III, it was defined as the set of inner normal edges. How-
ever, for the main result below, we do not have to worry about this – we consider
unoriented edges just for consistency.

For u : {0, . . . , N}d → R define

∥∇u∥Lp(E∗
N)

:=

⎡⎣ ∑
{x,y}∈E∗

N

|u(x)− u(y)|p
⎤⎦ 1

p

, ∗ ∈ {tan, nor}. (IV.1.2)

In the following and throughout the chapter, ”F ≲a,b G” means ”F ≤ C(a, b)G”
where C is a positive constant depending on a and b.

Theorem IV.1.1. Let d ≥ 2 and N ≫ 1. Let u : {0, . . . , N}d → R be harmonic in
{1, . . . , N − 1}d. Then, for any p ∈ (1,∞),

∥∇u∥Lp(Enor
N ) ≲p,d ∥∇u∥Lp(Etan

N ), (Dirichlet case).

Further, there exists a harmonic modification ũ of u, in the sense that ũ is harmonic in
{1, . . . , N − 1}d and ũ = u also in this set, such that the inverse estimate is true:

∥∇ũ∥Lp(Etan
N ) ≲p,d ∥∇u∥Lp(Enor

N ), (Neumann case).

Here, we speak of a modification, since the Neumann condition does not define
the values of the harmonic function at the ”corners”. In other words, the values of
u given in Theorem IV.1.1 can be modified freely at those points without damaging
the harmonicity. Here, we use the word ”corners”, since for d = 2 those points are
really the four corners (Figure IV.1). The reader can easily define what a corner is
for d ≥ 3.

Remark. Our method is robust in the sense that Theorem IV.1.1 is still true for
d-dimensional rectangles

∏d
j=1{0, . . . , Nj} with 1/a ≤ Nj/N1 ≤ a, fixed a ∈ (1,∞).

IV.2 Outline of the proof

Recently, Bella, Fehrman, and Otto [12] have introduced an elementary proof for
(IV.1.1), where the unit ball is replaced by the unit box. Especially, their argument
only relies on reflections and Fourier analysis. We are going to implement this idea
for the discrete case.
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IV.2.1 A reflection argument

First, mimicking their idea of reflections, we decompose u into d harmonic functions
w1, . . . , wd with periodic boundary values as in the following Propositions IV.2.1
and IV.2.2.

Proposition IV.2.1 (Dirichlet decomposition). Given u in Theorem IV.1.1. Then,
there exists a unique decomposition u = w1+. . .+wd on {0, . . . , N}d with the following
properties.

(i) wi is defined in the infinite strip Zi−1 ×{0, . . . , N}×Zd−i, 2N -periodic along its
definition domain, i.e.

wi = wi(·+ 2Nej), ∀j ̸= i,

and harmonic in Zi−1 × {1, . . . , N − 1} × Zd−i.

(ii) It holds

wi = u−
i−1∑
ν=1

wν on {0, . . . , N}i−1 × {0, N} × {0, . . . , N}d−i. (IV.2.1)

(iii) It holds

wi = 0 on {0, . . . , N}j−1 × {0, N} × {0, . . . , N}d−j, 0 ≤ j ≤ i− 1.

(IV.2.2)

Before discussing the decomposition for the Neumann case let us introduce the
notation for the inner normal derivatives. The rule for the formula is in minus out:

∇nor
j f(x) :=

{
f(x+ ej)− f(x), xj = 0,

f(x− ej)− f(x), xj = N,
x ∈ Zj−1 × {0, N} × Zd−j. (IV.2.3)

Proposition IV.2.2 (Neumann decomposition). Given u in Theorem IV.1.1. Then,
there exists a decomposition u = w1 + . . . + wd up to a constant on {1, N − 1}d with
the following properties.

(i) wi is defined in the infinite strip Zi−1 × {0, . . . , N} × Zd−i, 2(N − 1)-periodic
along its definition domain, i.e.

wi = wi(·+ 2(N − 1)ej) ∀j ̸= i,

and harmonic in Zi−1 × {1, . . . , N − 1} × Zd−i.

(ii) It holds

∇nor
i wi = ∇nor

i u−
i−1∑
ν=1

∇nor
i wν

on {1, . . . , N − 1}i−1 × {0, N} × {1, . . . , N − 1}d−i. (IV.2.4)
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(iii) It holds

∇nor
j wi = 0 on {1, . . . , N − 1}j−1 × {0, N} × {1, . . . , N − 1}d−j,

0 ≤ j ≤ i− 1. (IV.2.5)

Uniqueness holds only up to a constant.

The fact that the period in Proposition IV.2.2 is 2(N − 1) instead of 2N is due to
the discreteness. In Propositions IV.2.1 and IV.2.2, each function wi is constructed
first on the boundary Zj−1 × {0, N} × Zd−j with periodic values and harmonically
extended into Zj−1 × {0, . . . , N} × Zd−j. This harmonic extension can be done due
to the following standard result.

Assumption IV.2.3 (harmonic functions on infinite strips). Let d ≥ 2, N, L ≫ 1.

Let u : Zd−1 × {0, . . . , N} → R be 2L-periodic in the first (d− 1) arguments, i.e.

u = u(·+ 2Lej), 1 ≤ j ≤ d− 1,

and harmonic in Zd−1 × {1, . . . , N − 1}.

Theorem IV.2.4 (harmonic extension – periodic case). The Dirichlet problem ”find
u satisfying Assumption IV.2.3 given u(·, 0) and u(·, N)” is uniquely solvable. The Neu-
mann problem ”find u satisfying Assumption IV.2.3 given ∇nor

d u (defined in (IV.2.3))
with ⟨∇nor

d u⟩ = 0”, where the mean is taken on Id−1
L ×{0, N}, is uniquely solvable (up

to a constant).

Proof of Theorem IV.2.4 (uniqueness). In both cases uniqueness follows from the
maximum principle. In the Neumann case, since the gradient ∇(2)u := u(·, ·+1)−u
is defined in Zd−1 × {0, . . . , N − 1} and harmonic in Zd−1 × {1, . . . , N − 2}, we get

∥∇(2)u(·, ·)∥∞ ≤ ∥∇nor
d u∥∞

that means the solution to zero Neumann condition is a constant function.

In fact, the Dirichlet and Neumann problem given in Theorem IV.2.4 (Subsec-
tion IV.3.2) can be solved explicitly by using the Fourier transform taken on each
horizontal line

Id−1
L × {y}, 0 ≤ y ≤ N

with

IL := {−L+ 1, . . . , L}, (IV.2.6)

which is an advantage of the periodic case. Setting up Fourier analysis step by step
we prove Theorem IV.2.4 in Subsections IV.3.1 and IV.3.2. Although this theorem is
not our goal, explicit Fourier-type calculations using to prove it are the main part of
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Figure IV.2: Dirichlet decomposition, d = 2

the proof of the main result, Theorem IV.1.1. The reader should read Section IV.3
completely and linearly.

Before going ahead, it is worth giving an argument for Propositions IV.2.1
and IV.2.2 in the simplest case d = 2, illustrated by figures. The proof for the
general case (Section IV.A) is longer, however, it follows the spirit of that in d = 2.

It is written in the appendix and can be skipped at the first reading.

Proof of Proposition IV.2.1 for d = 2. The proof is illustrated in Figure IV.2. We con-
struct the functions w1 and w2 as follows. Set

w1 = u on {0, N} × {0, . . . , N}. (IV.2.7)

Extend w1 to {0, N} × {0, . . . , 2N} by an even reflection, i.e. set

w1(x1, 2N − x2) := w1(x1, x2), x1 ∈ {0, N}, x2 ∈ {0, . . . , N}.

Then, extend w1 2N -periodically to {0, N} ×Z, and to {1, . . . , N − 1} ×Z so that it
is harmonic in there (use Theorem IV.2.4). Define

w2 = u− w1 in {0, . . . N} × {0, N}. (IV.2.8)

By (IV.2.7), this construction implies

w2 = 0 in {0, N} × {0, N}. (IV.2.9)

Extend w2 to {0, . . . 2N} × {0, N} by an odd reflection:

w2(2N − x1, x2) := −w2(x1, x2), x1 ∈ {0, . . . , N}, x2 ∈ {0, N}.

Note that this extension is consistent with (IV.2.9). Then, extend w2 2N -periodically
to Z× {0, N} and to Z× {1, . . . , N} so that it is harmonic in there. Because of the
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(a) (b) (c)

Figure IV.3: Construction of w1 in the Neumann case, d = 2 and N = 4

odd reflection on the boundary, applying the uniqueness part of Theorem IV.2.4,
we extend (IV.2.9) to the inner values:

w2 = 0 in {0, N} × {0, . . . , N}. (IV.2.10)

Combining (IV.2.7), (IV.2.8) and (IV.2.10) yields

w1 + w2 = u in ({0, N} × {0, . . . , N}) ∪ ({0, . . . , N} × {0, N})  
discrete boundary of {0, . . . , N}2

Therefore w1+w2 = u in {0, . . . , N}2, since these functions are harmonic. The proof
of Proposition IV.2.1 for d = 2 is complete.

Sketch of the proof of Proposition IV.2.1 (d ≥ 2). We construct {wi : 1 ≤ i ≤ d} suc-
cessively as follows: Given w1, . . . , wi−1, then wi is a priori defined via (IV.2.1)
and extended in two steps: first, from the set in (IV.2.1) to its periodic boundary
using reflections, and second, from its periodic boundary to its domain given in
(IV.2.2) using Theorem IV.2.4. By the uniqueness part of Theorem IV.2.4, property
(IV.2.5) is then a consequence of the odd reflections inherited from the periodic
boundary conditions. The complete version of the proof for d = 3 is written in
Subsection IV.A.1, illustrated by figures, and in Subsection IV.A.2 for the general
case d ≥ 2.

Proof of Proposition IV.2.2 for d = 2. The argument for the decomposition in the
Neumann case is different from that in the Dirichlet case by the fact that we switch
the role of the odd and even reflections, i.e. in contrast to Figure IV.2 (first even,
then odd) we now have first odd, then even. This is due to a minor difficulty: in
any case (peridic or box) the Neumann condition of a harmonic function must be of
mean zero. The fact that the Neumann condition of a harmonic function defined in
a box is of zero mean is standard and can be explained, for instance, by (III.5.22).
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Roughly speaking, an odd reflection creates a zero mean, which is not a priori avail-
able, and an even reflection produces an odd reflection for the derivatives, i.e. it
”kills” all derivatives of normal edges on the previous faces.

We constructed w1 as follows. Set

v1 = ∇nor
1 u on {0, N} × {1, . . . , N − 1} (IV.2.11)

with ∇nor
i defined in (IV.2.3), which are the derivatives with respect to the red edges

in Figure IV.3a. Further, extend v1 to {0, N}× {1, . . . , 2N − 2} by an odd reflection,
meaning that we set

v1(x1, x2) = −v1(x1, 2N − x2 − 1), x1 ∈ {0, N}, x2 ∈ {N, . . . , 2N − 2}.

This is illustrated by Figure IV.3b, where the value at the sharp endpoint of an
arrow is defined to be the negative of that at the other endpoint. Then, extend v1
(2N − 2)-periodically along x2-direction to {0, N} × Z. Finally, call w1 a function
defined in {0, . . . , N} × Z, harmonic in {1, . . . , N − 1} × Z and satisfying

∇nor
1 w1 = v1 in {0, N} × Z (IV.2.12)

where we use the notation (IV.2.3). Here, we are allowed to apply Theorem IV.2.4
since by the odd reflection, the Neumann condition immediately has zero mean. Now
set

v2 = ∇nor
2 u−∇nor

2 w1 on {1, . . . , N − 1} × {0, N}, (IV.2.13)

which are the blue edges, and extend v2 to {1, . . . , 2N − 2} × {0, N} by an even
reflection,

v2(x1, x2) = v2(2N − x1 − 1, x2), x1 ∈ {N, . . . , 2N − 2}, x2 ∈ {0, N},

and extend it (2N − 2)-periodically to Z×{0, N}. We want to use v2 as a Neumann
condition. For this purpose, we have to check the mean zero condition carefully.
We have

⟨v2⟩{1,...,N−1}×{0,N} = ⟨∇nor
2 (u− w1)⟩{1,...,N−1}×{0,N} (IV.2.14)

= −⟨∇nor
1 (u− w1)⟩{0,N}×{1,...,N−1} (IV.2.15)

= 0 (IV.2.16)

where the first equality is definition (IV.2.13), the second is due to the fact that
u − w1, being harmonic in {1, . . . , N − 1}2, has a Neumann condition with zero
mean, and the third is only definition (IV.2.11) and (IV.2.12). Now define w2 so
that it is harmonic in Z× {1, . . . , N − 1} and has the Neumann condition

∇nor
2 w2 = v2. (IV.2.17)
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Since by construction w2 is an even function in x1, its derivative ∇(1)w2(·, ·) is
an odd function in x1. We explain it carefully:

∇(1)w2(x1, x2) = w2(x1 + 1, x2)− w2(x1, x2)

[even reflection] = −w2(2N − (x2 + 1)− 1, x2)− w2(2N − x1 − 1, x2)

= −∇(2)w2(x1, 2N − x2 − 2)

[(2N − 2)-periodic] = −∇(1)w2(x1,−x2),

where the even reflection and the periodicity are inherited from that of the bound-
ary condition. The last two inequalities tell us that ∇(1)w2 as a function of x2 is
oddly reflected through 0 and N − 1. Therefore, ∇(1)w2(·, 0) = ∇(1)w2(·, N − 1) = 0.

In other words, the normal derivatives of w2 at the red edges inside the box are
”killed”:

∇nor
1 w2 = 0 in {0, N} × Z.

Combining this with (IV.2.12), (IV.2.13) and (IV.2.17) we have that the Neumann
condition of w1 + w2 is equal to that of u. The claim follows.

Sketch of the proof of Proposition IV.2.1 (d ≥ 2). We construct {wk : 1 ≤ k ≤ d} suc-
cessively as follows: Given w1, . . . , wk−1, then wk is a priori defined via its Neumann
condition (IV.2.4). In contrast to the Dirichlet case, we exploit odd reflections
to produce Neumann conditions of zero mean, required for application of Theo-
rem IV.2.4, and even reflections to kill normal derivatives on the previous faces.
The complete version of the proof is written in Subsection IV.A.3.

IV.2.2 Comparing edges on the periodic boundary

After getting the decomposition Propositions IV.2.1 and IV.2.2 we focus on each
function wi, satisfying Assumption IV.2.3 after changing the coordinates. An impor-
tant ingredient of the proof of the main theorem (Theorem IV.1.1) is to compare
the tangential derivatives and the normal derivatives of those functions on their
periodic boundary. It is seemingly the most challenging issue in the part. For the
proof of Theorem IV.1.1 we only need to consider N = L or N = L + 1. However,
we want to set up a more general assumption:

N/L ≥ r for some r > 0. (IV.2.18)

Before stating the results, let us introduce some notations. The discrete partial
derivatives of

u : (x, y) ∈ Zd−1 × Z ↦→ R
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are denoted by

∇(1)
i u(x, y) = u(x+ ei, y)− u(x, y), ∇(2)u(x, y) = u(x, y + 1)− u(x, y).

The full gradient is denoted by

∇u :=

[
∇(1)u

∇(2)u

]
:=
[
∇(1)

1 u, . . . ,∇(1)
d−1u,∇

(2)u
]⊤
. (IV.2.19)

Further, recall IL in (IV.2.6).

Proposition IV.2.5 (periodic Dirichlet). Suppose that Assumption IV.2.3 are satis-
fied. Further, assume (IV.2.18) and

u(·, N) = 0 and
∑
Id−1
L

u(·, 0) = 0.

Then, for any p ∈ (1,∞), we have

∥∇(2)(·, 0)∥Lp(Id−1
L ) ≲p,d,r ∥∇(1)u(·, 0)∥Lp(Id−1

L ), (IV.2.20)

∥∇(2)u(·, N − 1)∥Lp(Id−1
L ) ≲p,d,r ∥∇(1)u(·, 0)∥Lp(Id−1

L ). (IV.2.21)

Remark. Proposition IV.2.5 is not true if the assumption
∑

Id−1
L

u(·, 0) = 0 fails. A
counter example is u ≡ 1.

Proposition IV.2.6 (periodic Neumann). Suppose that Assumption IV.2.3 are satis-
fied. Further, assume (IV.2.18). Then, for any p ∈ (1,∞), we have

∥∇(1)u(·, 0)∥Lp(Id−1
L ) ≲p,d,r ∥∇(2)u(·, 0)∥Lp(Id−1

L ×{0,N}),

∥∇(1)u(·, N)∥Lp(Id−1
L ) ≲p,d,r ∥∇(2)u(·, 0)∥Lp(Id−1

L ×{0,N}).

As in the continuum case [12] the proof of Propositions IV.2.5 and IV.2.6 ex-
ploits the fact that the tangential and the normal derivatives are related by means
of Fourier multipliers that can be calculated explicitly. Note that because a full
tangential gradient has (d− 1) components, in the Dirichlet case, there are (d− 1)

multipliers. We therefore need a vector-valued Marcinkiewicz-type multiplier the-
orem, namely Theorem IV.B.1 in the appendix, which is slightly improved from
Theorem 2.49 in the book [40] by Jovanović and Süli, which is perhaps the only
Marcinkiewicz-type result in the discrete case, and in fact, a scalar version.

Here, the main challenge is that Marcinkiewicz-type theorems are always re-
quiring controls on the higher derivatives of the multipliers, which unfortunately
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x
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0−L+ 1 L

Figure IV.4: Comparing the tangential and normal derivatives d = 2. Proposi-
tion IV.2.5 (periodic Dirichlet) bounds the derivatives with respect to the blue edges
by that with respect to the red edges assuming the function is zero on the top (vio-
let). In constrast to this, Proposition IV.2.6 bounds the derivatives with respect to
the red and violet edges by that with respect to the blue edges.

cannot be calculated explicitly due to the discreteness. We overcome this challenge
by a simple application of Cauchy’s integral formula, which allows us to estimate
the higher derivatives elegantly without explicit calculations.

Also note that in the continuum case [12], although everything can perhaps be
calculated explicitly, using Cauchy’s integral formula still makes the arguments less
tedious.

IV.2.3 An inner regularity estimate

Another important ingredient of the proof is the inner regularity estimate Proposi-
tion IV.2.7 for that we need to set up a new assumption:

N/L ≤ r for some r > 0. (IV.2.22)

Proposition IV.2.7 (inner face – Figure IV.5). Suppose that Assumption IV.2.3 are
satisfied. Further, assume (IV.2.18) and (IV.2.22). Then, for any p ∈ (1,∞), we have

∥u∥Lp(Ii−1
L ×{0}×Id−i−1

L ×{1,...,N−1}) ≲p,d,r,r ∥u∥Lp(Id−1
L ×{0,N}). (IV.2.23)

Outline of the proof of Proposition IV.2.7. The proof is separated into two steps. In
the first step, instead of Assumption IV.2.3, we consider harmonic functions on the
haft space Zd−1×{1, 2, . . .} with 2L-periodic boundary values on Zd−1×{0}. In this
case, exploiting estimates on the Poisson kernel and its derivatives, we establish
(IV.2.23) under the assumption (IV.2.22). In the second step, we decompose a
harmonic function on an infinite strip into an infinite sum of harmonic functions ui
on haft spaces applying Lemma IV.2.8 (this is the reason why we need to assume
(IV.2.18)). Estimate (IV.2.23) for u follows then by adding that for ui together.
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Lemma IV.2.8 (inner layer). Let d ≥ 2 and L ≫ 1. Let u be bounded on the haft
space Zd−1 × {0, 1, . . .}, 2L-periodic on the boundary, i.e.

u = u(·+ 2Lej), 1 ≤ j ≤ d− 1,

and harmonic in Zd−1 × {1, 2, . . .}. Then, for all y ∈ {1, 2, . . .},

∥u(·, y)∥Lp(Id−1
L ) ≤ ∥u(·, 0)∥Lp(Id−1

L ). (IV.2.24)

Further, assume (IV.2.18) and
∑

Id−1
L

u(·, 0) = 0. Then, for any p ∈ (1,∞) there exists
a constant α(p, r) ∈ (0, 1) such that

∥u(·, N)∥Lp(Id−1
L ) ≤ α(p, r)∥u(·, 0)∥Lp(Id−1

L ). (IV.2.25)

Remark. For (IV.2.25) in Lemma IV.2.8 it is necessary to assume
∑

Id−1
L

u(·, 0) = 0.

A counterexample is the constant function u ≡ 1.

The following result is not a surprise. Indeed, its periodic version follows
directly from Lemma IV.2.8. We do not use it to prove the main result, Theo-
rem IV.1.1, but it is useful for an estimate in Chapter III.

Corollary IV.2.9. Let u be as in Theorem IV.1.1. Then, for any p ∈ (1,∞), we have

∥u∥Lp(Qd
N ) ≲d,p N∥u∥Lp(∂Qd

N ) (IV.2.26)

where Qd
N = {0, . . . , N}d and ∂Qd

N = Qd
N \ {1, . . . , N}d. Further,

∥∇u∥Lp(Ed
N ) ≲d,p N∥∇u∥Lp(Etan

N ) (IV.2.27)

where Ed
N denotes the set of all nearest neighbour bonds {x, y} with at least a vertex

in {1, . . . , N − 1}d and |∇u({x, y}) = |u(x)− u(y)|.

Idea of the proof. Use the Dirichlet decomposition in Proposition IV.2.1.

Structure of the proofs The complete proof for d ≥ 3 of the Dirichlet decompo-
sition (Proposition IV.2.1) are presented in Section IV.A. As mentioned before, the
proof for the general case is longer, however, follows the spirit of the case d = 2.

The reader can skip it at the first reading.
Main calculations for the periodic case are carried out in Sections IV.3 and IV.4.

We calculate solutions to Dirichlet and Neumann problems with periodic boundary
condition by means of discrete Fourier analysis (Subsections IV.3.1 and IV.3.2).
Using these results, we prove Propositions IV.2.5 and IV.2.6 and Lemma IV.2.8, in
Subsections IV.3.3.1, IV.3.3.2 and IV.3.5, respectively.

The inner regularity estimate Proposition IV.2.7 is shown in Section IV.4 for
d ≥ 3 by estimates on the Poisson kernel in the discrete case, based on an idea
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x1

x2

x3

Figure IV.5: Bounding values on inner faces by periodic boundary conditions,
(IV.2.23) in the case d = 3: the set in the right-hand side of contains the two
red squares of side length 2L. The set in the left-hand side is the blue (or yellow,
respectively) rectangle for i = 1 (or i = 2, respectively).

learnt from Felix Otto in Oberwohlfach in December 2016, and written here with
more ”probabilistic flavour”. For d = 2, the proof is much simpler and is conducted
in Subsection IV.3.4. Having obtained all the ingredients we finish the proof of the
main theorem and of Corollary IV.2.9 in Section IV.5.

The main challenge is the estimates on the higher derivatives on the multipliers
Subsections IV.3.3.1 and IV.3.3.2.

IV.3 Boundary problems solved by Fourier analysis

IV.3.1 Discrete Fourier analysis

For convenience, we use very similar notations as in the book by Jovanović and
Süli [40, Section 2.5.1, pp176–184]. Let d ≥ 1 and consider the rescaled lattice
Rd

h = hZd where the mesh is defined by

h = π/L≪ 1 ⇐⇒ L≫ 1. (IV.3.1)

Let vh be a 2π-periodic function on Rd
h in the sense that

vh(xh + 2Lhei) = vh(xh), xh ∈ Rd
h

(here, 2Lh = 2π). The superscript h reminds that the variables or functions are
defined on the lattice with mesh h. Following [40, Eq. (2.143-4)], we define the
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Fourier transform of vh by

v̂h(k) := [Fvh](k) := hd
∑

xh∈ωd
h

vh(xh)e−ik·xh

, k ∈ IdL, (IV.3.2)

as a 2L-periodic function on Zd, and its inverse by

F−1a(xh) :=
1

(2π)d

∑
k∈IdL

a(k)eik·x
h

, xh ∈ ωd
h, (IV.3.3)

where

IdL := {−L+ 1, . . . , L}d and ωd
h = hIdL. (IV.3.4)

Further, define the norm and the mean

∥vh∥Lp(ωd
h)

:=

⎛⎝hd ∑
xh∈ωd

h

|vh(xh)|p
⎞⎠1/p

, ⟨vh⟩ωd
h

:=
1

(2π)d

∑
xh∈ωd

h

vh(xh) (IV.3.5)

as a discretization of

∥v∥Lp(ωd) :=

(ˆ
ωd

|u|p
)1/p

and
1

(2π)d

ˆ
ωd

vdx.

When showing Lemma IV.2.8 and Propositions IV.2.5 and IV.2.6, we rescale every-
thing there into the lattice Rd

h = hZd, where h = π/L and L≫ 1. The only reason is
that we want to follow Jovanović and Süli [40] and it is convenient to have similar
notations as theirs. Set

uh(xh, yh) = u(x, y), (xh, yh) = (hx, hy) ∈ Rd−1
h × R1

h. (IV.3.6)

Here and in the sequel, we often denote a point in Rd
h by (xh, yh) with xh the first

(d− 1) components and yh the d-th component. Then, u is harmonic at (x, y) if and
only if uh is harmonic at (xh, yh) in the sense that

2duh(xh, yh) =
d−1∑
i=1

u(xh ± hei, y
h) + u(yh + h) + u(yh − h). (IV.3.7)

The discrete derivatives rescaled onto the lattice Rd
h are defined as follows:

∇(1)
h,iu

h(xh, yh) =
u(xh + hei, y

h)− u(xh, yh)

h
,

∇(2)
h uh(xh, yh) =

u(xh, yh + h)− u(xh, yh)

h
.

(IV.3.8)
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IV.3.2 Harmonic functions with periodic boundary conditions

IV.3.2.1 Harmonic functions on the haft space

To prepare for the case of harmonic functions on infinity strips, it is worth con-
sidering a simpler case, namely the case of harmonic functions on the haft space.
The calculations we are doing here are indeed useful for the proof of the inte-
rior estimates in Section IV.4. Let u be a bounded function defined on the haft
space Zd−1 × {0, 1, . . .}, 2L-periodic in the (d − 1)-first arguments and harmonic
in Zd−1 × {1, 2, . . .}. Rescaled to Rd

h by (IV.3.6)–(IV.3.8), the haft space and its
boundary become:

Hh := Rd−1
h × {h, 2h, . . .}, ∂Hh := Rd−1

h × {0} ≃ Rd−1
h , Hh := Hh ∪ ∂Hh.

The function u becomes uh : Hh → R, which is 2π-periodic in the first (d − 1)

arguments in the sense that

u(xh, yh) = u(xh + 2Lhei, y
h), (xh, yh) ∈ Hh, 1 ≤ i ≤ d− 1, (IV.3.9)

and is harmonic in Hh meaning (IV.3.7) is true for (xh, yh) ∈ Hh. Define

ϕy(k) = ˆuh(·, yh)(k), k ∈ Id−1
L , y = yh/h (IV.3.10)

that is the Fourier transform (IV.3.2) where d replaced by d−1. Then, we claim that
given the boundary data u(·, 0) (or equivalently, given ϕ0) the solution to (IV.3.13)
is

ϕy(k) = ϕ0(k)q
−y(hk), with y := yh/h, (IV.3.11)

where the function q = q(t) is defined as follows:

q = λ+
√
λ2 − 1, λ = λ(t) = d−

d−1∑
i=1

cos(ti), t ∈ [−π, π]d−1. (IV.3.12)

Argument for (IV.3.11). Taking the Fourier transform on each side of (IV.3.7) we
write it in the following form

2dϕy(k) = (ϕy+1(k) + ϕy+1(k)) + 2
d−1∑
i=1

ϕy(k) cos(hki), k ∈ Id−1
L , (IV.3.13)

which can be easily seen as follows. By definitions (IV.3.2) and (IV.3.10), the
Fourier transform of uh(xh, yh) and u(xh, yh ± h) are ϕy and ϕy±1, respectively, and
the Fourier transform of u(xh ± hei) is ϕy(k)e

∓ihki . Summing together and noting
that eihki + e−ihki = 2 cos hki yield (IV.3.13) which implies

2λ(hk)ϕy(k) = ϕy+1(k) + ϕy−1(k). (IV.3.14)
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Noting that 2λ (IV.3.12)
= q + q−1 we find (IV.3.11) satisfies (IV.3.14).

However, (IV.3.11) gives us only a solution. To show that this is the unique
solution we need to exploit the boundedness. Let us return to the lattice Zd and
work with the original function u. Let {Sn : n ≥ 1} be the simple random walk
on Zd. Since u is bounded and harmonic, u(Sn) is a bounded martingale. By the
optional stopping theorem, we have

u(x, y) = E [u(ST )|S0 = (x, y)] , T = inf{j ≥ 0 : Sj ∈ Zd−1 × {0}}. (IV.3.15)

which implies that the values of u are fixed by its boundary values on Zd−1 × {0}.
This yields uniqueness. The representation (IV.3.15) is very useful and we still
exploit this later.

IV.3.2.2 Harmonic functions on infinite strips with periodic boundary condi-
tions

Rescaling Assumption IV.2.3 by means of (IV.3.6)–(IV.3.8) we obtain uh : Sh

N → R
where

Sh
N := Rd−1

h × {h, . . . , (N − 1)h}, ∂Sh
N := Rd−1

h × {0, Nh}, Sh

N = Sh
N ∪ ∂Sh

N .

Further, uh is 2π-periodic in the first (d− 1) arguments, meaning (IV.3.9) is true for
(xh, yh) ∈ SN and is harmonic in Sh

N , meaning (IV.3.7) is true for all (xh, yh) ∈ Sh
N .

We claim that the Fourier transform of uh satisfies

ϕy(k) = ϕ0(k)γN−y + ϕN(k)γy,

where γy = (qy − q−y)/(qN − q−N)
⏐⏐⏐
q=q(hk)

, ∀k ∈ Id−1
L \ {0} (IV.3.16)

where q is defined in (IV.3.12). Similar calculations has been done by Guadie [37]
for L2(Zd) instead of periodic boundary conditions.

Argument for (IV.3.16). The proof contains simple calculations. As in the argument
for (IV.3.11) in the case of the haft space we have (IV.3.13) and therefore (IV.3.14).
By (IV.3.14) and the fact that 2λ (IV.3.12)

= q + q−1 we have

qϕy − ϕy−1 = ϕy+1 − q−1ϕy.

Multiplying with qy−1, we have

qyϕy − qy−1ϕy−1 = q−2(qy+1ϕy+1 − qyϕy).

By setting

uy = qyϕy − qy−1ϕy−1, (IV.3.17)
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we get q2uy = uy+1 for 1 ≤ y ≤ N − 1. By induction, we have

uy = q2(y−1)u1. (IV.3.18)

Summing together yields

qNϕN − ϕ0
(IV.3.17)
=

N∑
y=1

uy
(IV.3.18)
=

N∑
y=1

q2(y−1)u1 =
q2N − 1

q2 − 1
u1

(IV.3.17)
=

q2N − 1

q2 − 1
(qϕ1 − ϕ0).

This gives us ϕ0 exactly as in (IV.3.16). Then, we can easily find ϕ1, ϕ2, . . . Without
further calculation, the reader can convince himself that (IV.3.16) is really the so-
lution to (IV.3.14) by the fact that 2λγy

(IV.3.12)
= (q + q−1)γy = γy+1 + γy−1, and the

solution must be unique, due to the above calculation.

IV.3.2.3 Solving the Dirichlet problem on the finite strip

We solve the Dirichlet problem given by Theorem IV.2.4. By the uniqueness part
of Theorem IV.2.4, already proved, we can decompose u into 3 harmonic functions
u1, u2, u3 satisfying Assumption IV.2.3 and

u1(·, 0) = u(·, 0)− ⟨u(·, 0)⟩Id−1
L

, u1(·, N) = 0,

u2(·, N) = u(·, N)− ⟨u(·, N)⟩Id−1
L

, u2(·, 0) = 0,

u3(·, 0) = ⟨u(·, 0)⟩Id−1
N

, u3(·, N) = ⟨u(·, N)⟩Id−1
L

,

(IV.3.19)

where the bracket denotes the mean

⟨f⟩Id−1
L

:=
1

|Id−1
L |

∑
Id−1
L

f.

Observe that u3 is the following linear combination of its boundary conditions:

u3(·, y) ≡
N − y

N
⟨u(·, 0)⟩Id−1

N
+
N − y

N
⟨u(·, N)⟩Id−1

N
. (IV.3.20)

Indeed, observe that u3 defined by (IV.3.20) is harmonic and satisfies (IV.3.19). By
the uniqueness part of Theorem IV.2.4 it must be given by (IV.3.20). Therefore,
for simplicity we can assume that ⟨u(·, 0)⟩Id−1

L
= 0 and u(·, N) = 0. In this case,

given the boundary conditions ϕ0 and ϕN applying (IV.3.16) we obtain ϕy(k) for all
k ̸= 0. At k = 0 we just need to set ϕy(0) = 0 for all y. Obviously, this choice satisfies
(IV.3.16).
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IV.3.2.4 Solving the Neumann problem on the infinite strip

By the uniqueness part of Theorem IV.2.4 already proved we can decompose u in
to u1, u2, u3 due to the boundary conditions:

∇(2)u1(·, 0) = ∇(2)u(·, 0)− c, ∇(2)u1(·, N − 1) = 0,

∇(2)u2(·, N − 1) = ∇(2)u(·, N − 1)− c, ∇(2)u2(·, 0) = 0,

∇(2)u3(·, 0) = ∇(2)u3(·, N − 1) = c.

(IV.3.21)

where

c =
⟨
∇(2)u(·, 0)

⟩
Id−1
L

=
⟨
∇(2)u(·, N − 1)

⟩
Id−1
L

,

in which the second equation is due to the assumption ⟨∇nor
d u⟩ = 0 (recall defini-

tion of ∇nor
d u in (IV.2.3)). Here, similar to that in (IV.3.19), u3 can be calculated

explicitly (up to a constant) and is constant on each layer Zd−1 × {y}. Therefore,
for simplicity we can assume that⟨

∇(2)u(·, 0)
⟩
Id−1
L

= 0 and ∇(2)u(·, N − 1) = 0. (IV.3.22)

Rescaling to Rd
h by (IV.3.6)–(IV.3.8) and applying Fourier transform (IV.3.10) yield

that
ϕN = ϕN−1

(IV.3.16)
= ϕ0γ1 + ϕNγN−1,

we have

ϕN = ϕ0
γ1

1− γN−1

, k ∈ Id−1
L \ {0}. (IV.3.23)

This implies

ϕ1 − ϕ0
(IV.3.16)
= ϕ0γN−1 + ϕNγ1 − ϕ0

(IV.3.23)
= ϕ0 + ϕ0

γ21
1− γN−1

− ϕ0

= ϕ0
γ21 − (1− γN−1)

2

1− γN−1

(IV.3.23)
= ϕN

γ21 − (1− γN−1)
2

γ1
, k ∈ Id−1

L \ {0}.

(IV.3.24)

This gives us ϕ0 and ϕN in terms of the Fourier transform ϕ1 − ϕ0 of the Neumann
condition ∇(2)

h uh(·, 0), therefore ϕy for all 1 ≤ y ≤ N − 1 by (IV.3.16) for k ∈
Id−1
L \{0}. For k = 0 we just set ϕy(0) = c arbitrarily which clearly satisfies (IV.3.13)

as well. Note that for the Neumann problem uniqueness only holds up to addictive
constants.
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IV.3.3 Estimates on the edges on the periodic boundaries

IV.3.3.1 The Dirichlet case

In the following, we provide the proof of Proposition IV.2.5. Rescaling everything
onto Rd

h (see (IV.3.6) and (IV.3.8)) we have to show that for any p ∈ (1,∞),

∥∇(2)
h uh(·, 0)∥Lp(ωd−1

h ) ≲p,d ∥∇(1)
h uh(·, 0)∥Lp(ωd−1

h ), (IV.3.25)

∥∇(2)
h u(·, Nh− h)∥Lp(ωd−1

h ) ≲p,d ∥∇(1)
h u(·, 0)∥Lp(ωd−1

h ), (IV.3.26)

where the norm is defined in (IV.3.5). By (IV.3.16), the fact that ϕN = 0, and the
zero mean assumption ϕ0(0) = 0, the left- and right-hand side of (IV.3.25) satisfy

ˆ∇(2)
h uh(·, 0)(k) =MDir

i (k)
ˆ∇(1)

h,iu
h(·, 0)(k), k ∈ Id−1

L (IV.3.27)

where

MDir
i (k) =

f

e−ihki − 1
, k ∈ Id−1

L \ {0}, (IV.3.28)

MDir
i (k) = 0, k = 0, (IV.3.29)

for 1 ≤ i ≤ d− 1 and

f = 1− γ1 =
(q2N−1 + 1)(q − 1)

q2N − 1

⏐⏐⏐⏐
q=q(kh)

, k ∈ Id−1
L \ {0}. (IV.3.30)

As mentioned before, our main tool is a vector-valued version of the Marcinkiewicz
Multiplier Theorem in the discrete case, namely Theorem IV.B.1 in the appendix,
which has been slightly improved from Theorem 2.49 in the book [40] by Jovanović
and Süli. Let us point out that since all the multipliers are unbounded, there is no
hope to bound the normal component by only the j-th component of the tangential
derivative even in the sense of L2 norm that is the simplest case.

Applying Theorem IV.B.1, where the multipliers can be continuously extended
to k ∈ [−L + 1, L]d by using (IV.3.28) for k ∈ [−L + 1, L]d \ [−1, 1]d and using a
linear interpolation for the remaining interval, we then have to show that there
exists M0 > 0 depending only on d such that for any dyadic rectangle R there is at
least one multiplier m ∈ {MDir

i : 1 ≤ i ≤ d} such that

sup
k∈R

|m| ≲p,d M0, sup
k∈R

|kα1 · · · kανmkα1 ···kαν
| ≲p,d M0,

for all 1 ≤ α1 < . . . < αν ≤ d− 1.

By substitution

t := hk
(IV.3.1)
= πk/L (IV.3.31)
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and using the chain rule mti = mkiki/ti = mkih, this is equivalent to

sup
t∈hR

|m| ≲p,d M0, sup
t∈hR

|tα1 · · · tανmtα1 ···tαν
| ≲p,d M0,

for all 1 ≤ α1 < . . . < αν ≤ d− 1.

By the product rule and the fact that G(t) := t/
(
e−it − 1

)
satisfies |G(t)|+ |tĠ| ≲ 1

uniformly in t we can replace MDir
i in (IV.3.28) by

mDir
i = f/ti, i ∈ {1, . . . , d− 1}. (IV.3.32)

Taking the derivatives of mDir
i in (IV.3.32) yields that for i /∈ {α1, . . . , αν}

tα1 · · · tαν

[
mDir

i

]
tα1 ···tαν

=
tα1 · · · tαν

ti
· ftα1 ···tαν

, (IV.3.33)

and for i ∈ {α1, . . . , αν}, for example, for i = α1

tα1 · · · tαν

[
mDir

α1

]
tα1 ···tαν

= tα1 · · · tαν

(
ftα2 ···tαν

tα1

)
tα1

= tα1 · · · tαν

ftα1 ···tαν
· tα1 − ftα2 ···tαν

t2α1

= tα2 · · · tανftα1 ···tαν
− tα2 · · · tαν

tα1

· ftα2 ···tαν

(IV.3.34)

For each dyadic rectangle R there is an index i = i(R) ∈ {1, . . . , d− 1} such that

max
1≤µ≤d−1

|tµ| ≤ 4ti, t ∈ hR. (IV.3.35)

By (IV.3.33)–(IV.3.35), it suffices to show that

ftα1 ···tαν
≲d |t|−(ν−1) for all ν ≥ 0

and for all tuples 1 ≤ α1 < . . . < αν ≤ d− 1 (IV.3.36)

with the convention that for ν = 0 the left-hand side becomes f. By symmetry and
to lighten the notation, it suffices to consider the case αi = i. By the general chain
rule, we have

ft1···tν =
∑
π

∂|π|f

∂q|π|
·
∏
B∈π

∂|B|q∏
j∈B ∂tj

. (IV.3.37)
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1

r
r r

q

Figure IV.6

The notation in (IV.3.37) is explained as follows.
The sum is taken over all partitions π of {1, . . . , ν}.
Then, for each fixed π, the product is taken over all
mutually disjoint subsetsB in this partition. Further,
| · | denotes the cardinality. For instance,

π = {{1, 2}, {3, 4}}

is a partition of {1, 2, 3, 4} and B = {1, 2} is a block of π. Here, |π| = |B| = 2. This
general chain rule is called Faà di Bruno’s formula. See [38, Proposition 1] for a
reference.

Then, to get (IV.3.36) we need

f (ν)(q) ≲ |t|−(ν−1), ∀ν ≥ 0, (IV.3.38)

|qt1···tν | ≲ |t|−(ν−1), ∀ν ≥ 0. (IV.3.39)

Indeed, plugging them into (IV.3.37) yields (IV.3.36). Recall Cauchy’s formula in
complex analysis:

f (ν)(q) =
ν!

2πi

˛
|ζ−q|=r

f(ζ)

(ζ − q)ν+1
dζ, r := |q − 1|/2 (IV.3.40)

where i =
√
−1 (see Figure IV.6). By the triangle inequality,

|f (ν)(q)| ≲
˛
|ζ−q|=r

|f(ζ)|
|ζ − q|ν+1

d|ζ| ≲ r−ν sup
ζ:|ζ−q|=r

|f(ζ)|. (IV.3.41)

To estimate the supremum, apply the triangle inequality to definition (IV.3.30) of f :

|f(ζ)| ≤
(
|ζ|2N−1 + 1

)
|ζ − 1|

|ζ|2N − 1
=

1

|ζ|

(
1 +

|ζ|+ 1

|ζ|2N − 1

)
|ζ − 1| (IV.3.42)

For ζ on the circle in Figure IV.6, we have

|ζ − 1| ≲ r, 1 ≲ |ζ| ≲ 1, |ζ2N − 1| ≳ 1, (IV.3.43)

where we get the third estimate combining application of Bernoulli’s inequality,

|ζ|2N − 1 ≥ (1 + r)2N − 1 ≥ 2rN, (IV.3.44)

the fact that

2r = q − 1
(IV.3.12)∼

√
λ− 1 ∼ |t| (IV.3.45)

the assumptionN/L ≳ 1, and finally the fact that t is bounded away from the origin,
say |t| ≥ h = 1/L. Recall that in order to apply Theorem IV.B.1, we extended the
multipliers continuously for k ∈ [−1, 1]d using a linear interpolation. Therefore, it
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suffices to consider |k| ≥ 1
(IV.3.31)⇐⇒ |t| ≥ π/L. To see (IV.3.45) recall (IV.3.12) and

the fact that t ↦→ (1−cos t)/t2 (continuously extended at 0) has a positive maximum
and minimum in [0, π]. Plugging (IV.3.43) into (IV.3.42) yields that the supremum
of f on the circle is O(r) which, together with (IV.3.41), finishes the argument for
(IV.3.38). Note that (IV.3.38) is true even for ν = 0, since (IV.3.45) holds in both
directions.

We continue with the argument for (IV.3.39), which contains purely calcula-
tions. By (IV.3.45), the case ν = 0 is trivial. Since λti = sin ti depends only on ti,
we have

qt1···tν = qt1···tν−1λ · sin tν = . . . = q
(ν)
λ · sin t1 sin t2 · · · sin tν , ν ≥ 1 (IV.3.46)

where q(ν)λ denotes the ν-th λ-derivative of q. Further,

q
(1)
λ = 1 +

∂

∂λ

{
(λ2 − 1)1/2

}
, q

(2)
λ =

∂2

∂λ2

{
(λ2 − 1)1/2

}
, . . . ,

q
(ν)
λ =

∂ν

∂λν

{
(λ2 − 1)1/2

}
.

Applying Leibniz’s formula to (fg)(n) with f = (λ− 1)
1
2 and g = (λ+ 1)

1
2 yields

q
(ν)
λ ≲d

∂ν

∂λν

{√
λ− 1

}
≲d (λ− 1)−

(2ν−1)
2 ≲ |t|−(2ν−1), (IV.3.47)

which together with (IV.3.46) and the fact that | sin(ti)| ≲ ti implies (IV.3.39).
Therefore, we finish the argument for (IV.3.25). Another way to show (IV.3.47)
without using Leibniz’s formula is again application of Cauchy’s integral formula to
ζ ↦→

√
ζ2 − 1 where the contour integral is taken on the circle in Figure IV.6 with q

replaced by λ. Here, the square root can be defined as the inverse mapping of

{ζ : Re(ζ) > 0} → C \ {ib : b ≤ 0}, ζ ↦→ ζ2

and therefore analytic by the inverse mapping theorem. We do not go into details.
The argument for (IV.3.26) is almost the same. We apply the Marcinkiewicz

Multiplier Theorem (Theorem IV.B.1) with the following multipliers that can also
be calculated explicitly:

M̃Dir
i =

⎧⎪⎪⎨⎪⎪⎩
f̃

e−iti − 1
, k ∈ Id−1

L \ {0}

0, k = 0,

(IV.3.48)

where

f̃ =
q − q−1

qN − q−N
= qN−1 q

2 − 1

q2N − 1

⏐⏐⏐⏐
q=q(hk)

, k ∈ Id−1
L \ {0}. (IV.3.49)
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We can repeat all steps in the proof of (IV.3.25). The only thing we need to check
is that the supremum of f̃ on the circle in Figure IV.6 is O(r). However, it is also
obvious by doing some simple calculations:

|f̃(ζ)| ≤ |ζ|N−1

|ζ|2N − 1
· |ζ + 1| · |ζ − 1|

=
1

|ζ|

(
|ζ|N − 1

|ζ|2N − 1
+

1

|ζ|2N − 1

)
· |ζ + 1| · |ζ − 1|

=
1

|ζ|

(
1

|ζ|N + 1
+

1

|ζ|2N − 1

)
· |ζ + 1| · |ζ − 1|

≤ 1

|ζ|

(
1

|ζ|N − 1
+

1

|ζ|2N − 1

)
· |ζ + 1| · |ζ − 1|,

and repeating the argument (IV.3.43)–(IV.3.45).

IV.3.3.2 The Neumann case

Now comes the proof of Proposition IV.2.6. It suffices to assume (IV.3.22) since oth-
erwise we decompose u into u1, u2, u3 satisfying Assumption IV.2.3 and (IV.3.21).
Note that u3 is a constant on each layer Zd−1×{y}, 0 ≤ y ≤ N meaning g3 plays no
role to the tangential derivatives on the periodic boundary. Rescaling into Rd

h (see
(IV.3.6), (IV.3.8), and (IV.3.5)) we have to show that for any p ∈ (1,∞),

∥∇(1)
h uh(·, 0)∥Lp(ωd−1

h ) ≲p,d ∥∇(2)
h uh(·, 0)∥Lp(ωd−1

h ), (IV.3.50)

∥∇(1)
h uh(·, Nh)∥Lp(ωd−1

h ) ≲p,d ∥∇(2)
h uh(·, 0)∥Lp(ωd−1

h ), (IV.3.51)

where the left-hand and right-hand side are related by means of Fourier multipliers:

ˆ∇(1)
h,iu

h(·, 0)(k) =MNeu
i (k)

ˆ∇(2)
h uh(·, 0)(k),

ˆ∇(1)
h,iu

h(·, Nh)(k) = M̃Neu
i (k)

ˆ∇(2)
h uh(·, 0)(k).

Recall the substitution (IV.3.31). Using (IV.3.24) we easily get the multipliers:

MNeu
i =

1− γN−1

γ21 − (1− γN−1)2
(e−iti − 1),

M̃Neu
i =

γ1
γ21 − (1− γN−1)2

(e−iti − 1), t ∈ ωd−1
h \ {0},

(IV.3.52)



IV.3. BOUNDARY PROBLEMS SOLVED BY FOURIER ANALYSIS 129

with i =
√
−1 and γy defined in (IV.3.16). By (IV.3.22) we just takeMNeu

i = M̃Neu
i =

0 for t = 0. With the same argument as in the Dirichlet case, we replace MNeu
i by

mNeu
i = tig with g =

1− γN−1

γ21 − (1− γN−1)2
, t ∈ ωd−1

h \ {0} (IV.3.53)

and M̃Neu
i by

m̃Neu
i = tig̃ with g̃ =

γ1
γ21 − (1− γN−1)2

, t ∈ ωd−1
h \ {0}. (IV.3.54)

In this case, we only need the one-dimensional version of the Marcinkiewicz theo-
rem (see [40, Theorem 2.49, p180]). Let us start with mNeu

i . For i /∈ {α1, . . . , αν},

tα1 . . . tαν

[
mNeu

i

]
tα1 ...tαν

= titα1 . . . tαν · gtα1 ...tαν
.

For i ∈ {α1, . . . , αν}, e.g. i = α1,

tα1 . . . tαν

[
mNeu

i

]
tα1 ...tαν

= tα1 . . . tαν [tα1g]tα1 ...tαν

= tα1 . . . tαν

[
gtα2 ...tαν

+ tα1gtα1 ...tαν

]
.

Therefore, it suffices to show that for all ν ≥ 0 and all {α1, . . . , αν} ⊂ {1, . . . , d−1},

gtα1 ...tαν
≲ |t|−(ν+1). (IV.3.55)

By the chain rule (IV.3.37) and estimate (IV.3.39) on derivatives of q, this follows
from the following

g(ν)(q) ≲ |t|−(ν+1). (IV.3.56)

Repeating the argument (IV.3.40), (IV.3.41) and (IV.3.45) with Cauchy’s integral
formula, we only need to control the supremum of g on the circle in Figure IV.6. In
this case, we have to check that

sup
ζ:|ζ−q|=r

|g(ζ)| ≲ r−1 with r = |q − 1|/2. (IV.3.57)

Write g as follows:

g = − 1

1− γN−1 − γ1
× 1− γN−1

1− γN−1 + γ1
=: −g1 × g2, (IV.3.58)

where γ1 and γN−1 are defined in (IV.3.16). Note that

1− γN−1 =

(
q2N+1 + 1

)
(q − 1)

q2N − 1
, 1− γN−1 ± γ1 =

(q − 1)
(
qN−1 ± 1

)
qN + 1

. (IV.3.59)
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By (IV.3.58) and (IV.3.59) and the triangle inequality we have

|g1(ζ)| =
⏐⏐⏐⏐ ζN + 1

(ζ − 1)(ζN−1 − 1)

⏐⏐⏐⏐
≤ |ζN − ζ|+ |ζ − 1|

|ζN−1 − 1|
· 1

|ζ − 1|
=

[
|ζ|+ |ζ − 1|

|ζ|N−1 − 1

]
1

|ζ − 1|
≲ r−1,

and

|g2(ζ)| =

⏐⏐⏐⏐⏐
(
ζ2N+1 + 1

)
(ζ − 1)

ζ2N − 1
· ζN + 1

(ζ − 1) (ζN−1 + 1)

⏐⏐⏐⏐⏐
≤
⏐⏐⏐⏐ ζ2N−1 + 1

(ζN + 1) (ζN−1 + 1)

⏐⏐⏐⏐ = ⏐⏐⏐⏐1− ζN−1(ζ + 1)

(ζN + 1) (ζN−1 + 1)

⏐⏐⏐⏐
≤ 1 +

⏐⏐⏐⏐ ζN−1

ζN−1 + 1

⏐⏐⏐⏐× |ζ + 1|
|ζN + 1|

= 1 +

⏐⏐⏐⏐1− 1

ζN+1 + 1

⏐⏐⏐⏐× |ζ + 1|
|ζN + 1|

(IV.3.60)

= 2 +
1

|ζN+1 + 1|
× |ζ + 1|

|ζN + 1|

= 2 +
1

|ζ|N+1 − 1
× |ζ + 1|

|ζ|N − 1
≲ 1.

where we bound the terms

|ζ|N−1 − 1, |ζ|N − 1, |ζ|N+1 − 1

from below by Bernoulli’s inequality as done for (IV.3.43). This completes the
argument for (IV.3.57).

Concerning m̃Neu
i in (IV.3.54) we write g̃ = −g1g̃2 with g1 defined in (IV.3.58)

and

g̃2(ζ) =
γ1

1− γN−1 + γ1
=

ζN−1(ζ + 1)

(ζN + 1) (ζN−1 + 1)

which is exactly the product in (IV.3.60). The argument for m̃Neu
i is therefore the

same as that for mNeu
i .

IV.3.4 Interior regularity for the two-dimensional case

In the following, we prove Proposition IV.2.7 for d = 2. By decomposing as in
(IV.3.19) it suffices to consider the case u(·, N) = 0 and

∑
IL
u(·, 0) = 0. The claim

follows by interpolating between the weak L1 and L∞ estimate (see e.g. [60, The-
orem 5, p21]). Since the L∞ estimate is obvious due to the maximum principle, we
only have to prove the weak L1 estimate,

|u(0, y)| ≲ 1

y
∥u(·, 0)∥L1(IL).
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By rescaling to R2
h (see (IV.3.5)–(IV.3.8)), this is equivalent to

|uh(0, yh)| ≲ 1

yh
∥uh(·, 0)∥L1(ωh).

By the Fourier inverse transform (IV.3.3) and the fact that ϕ0(0) = 0 we have

uh(0, yh) =
1

2π

∑
k∈IL\{0}

ϕy(k).

Since ϕ0(0) = 0 and ϕN(·) = 0, in (IV.3.16) we have ϕy = ϕ0γN−y. Further, γN−y

is bounded by q−y and ϕ0 is bounded by ∥uh(·, 0)∥L1(ωh) by applying the triangle
inequality to the definition (IV.3.2). Therefore,

|uh(0, yh)| ≲ 1

2π

∑
k∈IL\{0}

q−y(kh)|ϕ0(k)| ≤
1

2π

∑
k∈IL\{0}

q−y(kh)∥uh(·, 0)∥L1(ωh).

By symmetry and the fact that ϕ0(0) = 0, we only need to consider the sum taken
from 1 to L, and it suffices to show that

1

2π

L∑
k=1

1

qy(kh)
≲

1

yh
=

1

hy
.

Indeed, since q(·) is increasing, we have

∑
k∈IL

h

qy(kh)
≤
ˆ π

0

q−y(t)dt,

which can be obtained by summing up the following estimates for k = 1, . . . , L:

h

qy(kh)
≤
ˆ
[(k−1)h,kh]

dt

qy(t)

Since there exists a > 0 such that q(t)− 1 ≥ at (see (IV.3.45)), we have

ˆ π

0

dt

q(t)y
≤
ˆ π

0

dt

(1 + at)y
=

(at+ 1)−y+1

−y + 1

1

a

⏐⏐⏐⏐π
t=0

≤ 1

a(y − 1)
, y ≥ 2.

Therefore, when we choose C large enough, we have

ˆ π

0

dt

q(t)y
≤ C

y
, y ≥ 1

which completes the proof.
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IV.3.5 Proof of the inner layer lemma

In this subsection, we prove Lemma IV.2.8. The proof is structured as follows. First,
we prove that (IV.2.24) and (IV.2.25) are true for p ∈ {1,∞} for α = 1. Then, we
prove that (IV.2.25) is true for p = 2 for some α ∈ (0, 1). The claim then follows by
interpolation. Let us start with p ∈ {1,∞}. Recall the representation (IV.3.15):

u(x, y) = E [u(ST )|S0 = (x, y)] , T = inf{j ≥ 0 : Sj ∈ Zd−1 × {0}}.

which implies

u(x, y) = E [u (ST + (x, 0))|S0 = (0, y)] .

From this, we easily have (IV.2.24) and (IV.2.25) (with α = 1) for p ∈ {1,∞},
which we explain precisely as follows. First,

∑
x∈Id−1

L

|u(x,N)| ≤ E

⎡⎣ ∑
x∈Id−1

L

|u (ST + (x, 0)) |

⏐⏐⏐⏐⏐S0 = (0, N)

⎤⎦ =
∑

x∈Id−1
L

|u(x, 0)|,

where we obtained the last inequality simply by taking expectation of∑
x∈Id−1

L

|u(ST + (x, 0))| =
∑

x∈Id−1
L

|u(x, 0)|

which is true for each realization of (Sn). Second,

max
x∈Id−1

N

|u(x,N)| ≤ E

[
max
x∈Id−1

N

|u (ST − (x, 0)) |

⏐⏐⏐⏐⏐S0 = (0, N)

]
≤ max

x∈Id−1
N

|u(x, 0)|

also by taking expectation of an inequality which is true for all realizations.
In the remaining part we consider the case p = 2. Then, interpolating between

1 and between 2 and 2 and ∞ we finish the proof. Rescale everything into Rd
h (see

(IV.3.7), (IV.3.8), and (IV.3.5)). By (IV.3.11)

ˆuh(·, Nh)(k) = ℓN(k)ûh(·, 0)(k), (IV.3.61)

with the multiplier

ℓN(k) = q−N , q = q(kh), k ∈ Id−1
L .

Since q ≥ 1 meaning ℓN ≤ 1, we get (IV.2.24) easily. To get α ∈ (0, 1) in (IV.2.25)
we need to exploit the assumption N/L ≥ r > 0 and

∑
Id−1
L

u(·, 0) = 0. By (IV.3.45)
and Bernoulli’s inequality, we have

qN(kh) ≥
(
1 + |k|π

L

)N
≥ 1 + |k|πr > 1 + r, k ∈ Id−1

L \ {0}
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that yields

ℓN(k) ≤ (1 + r)−1, k ∈ Id−1
L \ {0}.

Since
∑

Id−1
L

u(·, 0) = 0 by assumption, we have ûh(·, 0)(0) = 0, which implies the
existence of α ∈ (0, 1) for p = 2 :

∥uh(·, yh)∥L2(ωd−1
h ) ≤ (1 + r)−1∥uh(·, 0)∥L2(ωd−1

h )

by Plancherel’s identity applied to (IV.3.61).

IV.4 Interior regularity

In this section, we prove Proposition IV.2.7 for d ≥ 3. For d = 2, see Subsec-
tion IV.3.4.

IV.4.1 The case of the haft space

Let us forget for a while about the fact that u is harmonic on the infinite strip with
top and bottom boundary conditions as mentioned before in Assumption IV.2.3.
Indeed, a first step, we prove (IV.2.23) under Assumption IV.4.1 below where u is
supposed to be harmonic on the whole haft space which is somehow a bit easier to
deal with.

Assumption IV.4.1. Let N,L≫ 1. Assume that there exist r, r > 0 such that

r ≤ N/L ≤ r.

Further, let u : Zd−1 × {0, 1, . . .} → R be 2L-periodic in the first (d− 1) arguments,
meaning u = u(·+ 2Lej) for 1 ≤ j ≤ d− 1, and harmonic in Zd−1 × {1, 2, . . .}.

In this subsection we denote a point ξ ∈ Zd by

ξ = (x, y, z), x ∈ Z, y ∈ Zd−2, z ∈ Z.

As said at the beginning of the section we have to show for any p ∈ (1,∞)⎛⎝ ∑
y∈Id−2

L

N∑
z=1

|u(0, y, z)|p
⎞⎠1/p

≲p,d,r

⎛⎝∑
x∈IL

∑
y∈Id−2

L

|u(x, y, 0)|p
⎞⎠1/p

. (IV.4.1)

This follows from the following estimate: for any p ∈ (1,∞)⎛⎝ ∑
y∈Id−2

L

N∑
z=1

|u(0, y, z)−m(y, z)|p
⎞⎠1/p

≲p,d,r

⎛⎝∑
x∈IL

∑
y∈Id−2

L

|u(x, y, 0)|p
⎞⎠1/p

(IV.4.2)
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with
m(y, z) =

1

|IL|
∑
x∈IL

u(x, y, z).

Indeed, the means can be absorbed into the right-hand side by Lemma IV.2.8:∑
y∈Id−2

L

N∑
z=1

|m(y, z)|p ≤ 1

|IL|
∑
x∈IL

∑
y∈Id−2

L

N∑
z=1

|u(x, y, z)|p ≤ (RHS (IV.4.1))p ,

Here, we need the upper bound N/L ≤ r for the second inequality. To get (IV.4.2),
we interpolate the following weak L1 and the strong L∞ estimate:⎛⎝ ∑

y∈Id−2
N

|u(0, y, z)−m(y, z)|p
⎞⎠1/p

≲p,d,r
1

z

∑
x∈IN

⎛⎝ ∑
y∈Id−2

N

|u(x, y, 0)|

⎞⎠1/p

, (IV.4.3)

⎛⎝ ∑
y∈Id−2

N

|u(0, y, z)−m(y, z)|p
⎞⎠1/p

≲p,d,r max
x∈IN

⎛⎝ ∑
y∈Id−2

N

|u(x, y, 0)|p
⎞⎠1/p

. (IV.4.4)

In order to have a clear argument for (IV.4.3) and (IV.4.4) we come back again to
the representation (IV.3.15), which reads

u(x, y, z) = E
[
u(S0)

⏐⏐⏐S0 = (x, y, z)
]
= E

[
u(ST )

⏐⏐⏐S0 = (x, y, z)
]

(IV.4.5)

where (Sn) is the simple random walk on Zd and T := inf{j ≥ 0 : Sj ∈ Z × {0}}.
Using the Poisson kernel defined as

Pz(x, y) = P
[
ST = (x, y, 0)

⏐⏐⏐S0 = (0, 0, z)
]
,

and the translation invariance we have

u(x, y, z) =
∑

(x′,y′)∈Zd−1

u(x′, y′, 0)Pz(x
′ − x, y′ − y). (IV.4.6)

Argument for the L∞ estimate (IV.4.4). Note that the means m(y, z) can be easily
absorbed into the right-hand side of (IV.4.4):∑

y∈Id−2
L

|m(y, z)|p =
∑

y∈Id−2
L

⏐⏐⏐⏐⏐ 1

|IL|
∑
x∈IL

u(x, y, z)

⏐⏐⏐⏐⏐
p

[Jensen’s ineq.] ≤ 1

|IL|
∑
x∈IL

∑
y∈Id−2

L

|u(x, y, z)|p

[Lemma IV.2.8] ≤
∑
x∈IL

∑
y∈Id−2

L

|u(x, y, 0)|p ≤ (RHS (IV.4.4))p . (IV.4.7)
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Consider the left-hand side of (IV.4.4) without the mean:∑
y∈Id−2

N

|u(0, y, z)|p ≤
∑

y∈Id−2
N

E
[
|u(ST )|p

⏐⏐⏐S0 = (0, y, z)
]

(translation inv.) =
∑

y∈Id−2
N

E
[
|u(ST + (0, y, 0))|p

⏐⏐⏐S0 = (0, 0, z)
]

= E

⎡⎣ ∑
y∈Id−2

N

|u(ST + (0, y, 0))|p
⏐⏐⏐S0 = (0, 0, z)

⎤⎦
≤ (RHS (IV.4.4))p . (IV.4.8)

Combining (IV.4.7) and (IV.4.8) we finish the argument for (IV.4.4).

Argument for the L1 weak estimate (IV.4.3). We have

|u(0, y, z)−m(y, z)| =

⏐⏐⏐⏐⏐u(0, y, z)− 1

|IL|
∑
x∈IL

u(x, y, z)

⏐⏐⏐⏐⏐
[triangle ineq.] ≤ 1

|IL|
∑
x∈IL

|u(0, y, z)− u(x, y, z)|

[telescope sum] =
1

|IL|
∑
x∈IL

⏐⏐⏐⏐⏐
x−1∑
x′=0

∇(1)u(x′, y, z)

⏐⏐⏐⏐⏐ ≤ ∑
x∈IL

|∇(1)u(x, y, z)|.

Applying the triangle inequality to the norm
(∑

y | · |p
)1/p

we get

⎛⎝ ∑
y∈Id−2

L

|u(0, y, z)−m(y, z)|p
⎞⎠1/p

≤
∑
x∈IL

⎛⎝ ∑
y∈Id−2

L

|∇(1)u(x, y, z)|p
⎞⎠1/p

(IV.4.9)

where

∇(1)u(x, y, z)
(IV.4.6)
=

∑
(x′,y′)∈Zd−1

∇(1∗)Pz(x
′ − x, y′ − y)u(x′, y′, 0)

=
∑

(x′,y′)∈Zd−1

∇(1∗)Pz(x
′, y′)u(x′ + x, y′ + y, 0)

and

∇(1∗)Pz(x̃, ỹ) = Pz(x̃− 1, ỹ)− Pz(x̃, ỹ).
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Then, (IV.4.4) follows from (IV.4.9) and the following two facts. First, we have

∑
x∈IL

⎛⎝ ∑
y∈Id−2

L

|∇(1)u(x, y, z)|p
⎞⎠1/p

≤

⎡⎣ ∑
(x,y)∈Zd−1

|∇(1∗)Pz(x, y)|

⎤⎦
⎡⎢⎣∑

x∈IL

⎛⎝ ∑
y∈Id−2

L

|u(x, y, 0)|p
⎞⎠1/p

⎤⎥⎦ . (IV.4.10)

Second, the following estimate on the Poisson kernel is true:

∑
(x,y)∈Zd

|∇1∗Pz(x, y)| ≲p,d
1

z
. (IV.4.11)

Hence, the proof for (IV.4.4) is complete after proving (IV.4.10) and (IV.4.11).

In the remaining part of this subsection, we verify (IV.4.10) and (IV.4.11).

Argument for (IV.4.11). This results from the mean value theorem and the follow-
ing approximation of the Poisson kernel by its continuum counterpart (see Lawler
[44, Theorem 8.1.2, p227]):

Pz(x, y) =
2z

ωd|ξ|d

[
1 +O

(
z

|ξ|2

)]
+O

(
1

|ξ|d+1

)
, ξ = (x, y, z).

Another way to get (IV.4.11) is to exploit the fact that the Poisson kernel can be
represented by the Green function with respect to the simple random walk on Zd

as follows:

Pz(x, y) = G(ξ − ed)−G(ξ + ed)

(see Lawler [44, Proposition 8.1, p226]). Therefore, the Poisson kernel has the
order of the first derivative of the Green function, and the first derivative of the
Poisson kernel has the order of the second derivative of the Green function:

|∇1∗Pz(x, y)| ≲ |ξ|−d.

Then, by the following elementary estimate:

∑
(x,y)∈Zd−1\{(0,0)}

1

{|x|2 + |y|2 + |z|2}d/2
≲d

1

z
,

we also obtain (IV.4.11).
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Argument for (IV.4.10). The argument contains purely calculations.

LHS (IV.4.10) =
∑
x∈IL

⎡⎣ ∑
y∈Id−2

L

⏐⏐⏐⏐⏐⏐
∑
x′∈Z

∑
y′∈Zd−2

u(x+ x′, y + y′)∇(1∗)Pz(x
′, y′)

⏐⏐⏐⏐⏐⏐
p⎤⎦

1
p

[∆-ineq.] ≤
∑
x∈IL

∑
x′∈Z

∑
y′∈Zd−2

⎡⎣ ∑
y∈Id−2

L

|u(x+ x′, y + y′, 0)∇(1∗)Pz(x
′, y′)|p

⎤⎦ 1
p

[u periodic in y] =
∑
x∈IL

∑
x′∈Z

∑
y′∈Zd−2

⎡⎣ ∑
y∈Id−2

L

|u(x+ x′, y, 0)|p
⎤⎦ 1

p

|∇(1∗)Pz(x
′, y′)|

[push sum y′ in] =
∑
x∈IL

∑
x′∈Z

⎡⎣ ∑
y∈Id−2

L

|u(x+ x′, y, 0)|p
⎤⎦ 1

p
⎡⎣ ∑

y′∈Zd−2

|∇(1∗)Pz(x
′, y′)|

⎤⎦

[swap sums x, x′] =
∑
x′∈Z

∑
x∈IL

⎡⎣ ∑
y∈Id−2

L

|u(x+ x′, y, 0)|p
⎤⎦ 1

p
⎡⎣ ∑

y′∈Zd−2

|∇(1∗)Pz(x
′, y′)|

⎤⎦

[u periodic in x] =
∑
x′∈Z

∑
x∈IL

⎡⎣ ∑
y∈Id−2

L

|u(x, y, 0)|p
⎤⎦ 1

p
⎡⎣ ∑

y′∈Zd−2

|∇(1∗)Pz(x
′, y′)|

⎤⎦
= RHS(IV.4.10)

The argument for (IV.4.10) is complete.

IV.4.2 From the haft space to the infinite strip

We completely follow the original argument by [12]. Using the decomposition
(IV.3.19) we can assume u(0, N) = 0 and ⟨u(·, 0)⟩Id−1

L
= 0, where the brackets

denote the mean. Now set u0 = u and define inductively u2k+1 the solution of

∆u2k+1 = 0 in Zd−1 × {1, 2, . . .}, u2k+1(·, 0) = u2k(·, 0), k ≥ 0.

and u2k the bounded solution of

∆u2k = 0 in Zd−1 × {N − 1, N − 2, . . .}, u2k(·, N) = u2k−1(·, N), k ≥ 1.
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Then, u =
∑∞

k=1(−1)k+1uk. To see this, note that by construction and (IV.2.25) in
Lemma IV.2.8,

∥u2k(·, N)∥Lp(Id−1
L ) = ∥u2k−1(·, N)∥Lp(Id−1

L ) ≤ α∥u2k−1(·, 0)∥Lp(Id−1
L )

and

∥u2k(·, 0)∥Lp(Id−1
L ) ≤ α∥u2k−1(·, N)∥Lp(Id−1

L ) ≤ α2∥u2k−1(·, 0)∥Lp(Id−1
L ),

which imply the convergence of the sum on the top and the bottom boundary:

∞∑
k=1

∥uk∥Lp(Id−1
L ×{y}) ≲α 1, y ∈ {0, N}. (IV.4.13)

By (IV.2.24) in Lemma IV.2.8, (IV.4.13) is true for every y ∈ {0, . . . , N}. Observe
that this sum defines a harmonic function which coincides with u on the boundary.
Adding the estimate for the case of the haft space applied to uk for k ≥ 1 and noting
(IV.4.13) we get the estimate for the case of the infinite strip (IV.2.23).

IV.5 Finishing the proof

IV.5.1 Combining the ingredients together

Proposition IV.5.1 (Neumann case). Under Assumption IV.2.3 with L = N −1 ≫ 1,

∥∇u∥Lp(Etan
N ) ≲p,d ∥∇(2)u(·, ·)∥Lp(Id−1

N−1×{0,N−1}).

Proof. In the following, we prove Proposition IV.5.1. We decompose ∥∇u∥Lp(Etan
N )

into three types of derivatives: those taken over edges

i) on the periodic boundary,

ii) within and parallel to the periodic boundary, ∇(1)
i u(·, ·), i ∈ {1, . . . , d− 1} and

iii) within and perpendicular, ∇(2)u(·, ·) := u(·, ·+ 1)− u to the periodic boundary.

The first type can be controlled by Proposition IV.2.6. To bound the second type,
note that ∇(1)

i u(·, ·), i ∈ {1, . . . , d − 1} are also harmonic. By the inner regularity
estimate Proposition IV.2.7 (with N = L+1), they can be controlled in terms of the
gradients ∇(1)u(·, ·) on the periodic boundary Id−1

N−1 × {0, N}. Therefore, applying
Proposition IV.2.6 yields the bound of the second type. We turn to the third type.
Note that the derivatives ∇(2)u(·, ·) are defined in Zd−1×{0, . . . , N−1} and harmonic
in Zd−1×{1, . . . , N −2}. Applying Proposition IV.2.7 (with L replaced by N −1 and
N replaced by N − 1) yields the bound ∇(2)u(·, ·) := u(·, ·+ 1)− u.
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Proposition IV.5.2 (Dirichlet case). Under Assumption IV.2.3 with N = L≫ 1,

∥∇u∥Lp(Enor
N ) + ∥∇u∥Lp(Etan

N )

≲p,d ∥∇(1)u(·, ·)∥Lp(Id−1
N ×{0,N}) +

1

N
∥u∥Lp(Id−1

N ×{0,N}).

Proof of Proposition IV.5.2. Decompose u into 3 harmonic functions u1, u2, u3 satis-
fying (IV.3.19). By the triangle inequality,

∥∇u∥Lp(Enor
N ) ≲ ∥∇u1∥Lp(Enor

N ) + ∥∇u2∥Lp(Enor
N ) + ∥∇u3∥Lp(Enor

N ).

Splitting Enor into edges perpendicular and parallel to the top and the bottom
boundary Zd−1 × {0, N}, respectively, we have

∥∇uν∥Lp(Enor
N ) ≲p,d ∥∇(2)uν(·, 0)∥Lp(Id−1

N ) + ∥∇(2)uν(·, N − 1)∥Lp(Id−1
N )

+
d−1∑
i=1

∥∇(1)
i uν(·, ·)∥Lp(Ii−1

N ×{0}×Id−i−1
N )

+
d−1∑
i=1

∥∇(1)
i uν(·, ·)∥Lp(Ii−1

N ×{N−1}×Id−i−1
N ), ν ∈ {1, 2, 3}.

By Proposition IV.2.5 (with u replaced by u1) and Proposition IV.2.7 (with u re-
placed by ∇(1)

i u(·, ·) being also harmonic and N = L) and ∇(1)u1(·, 0) = ∇(1)u(·, 0),

∥∇u1∥Lp(Enor
N ) ≲p,d ∥∇(1)u(·, 0)∥Lp(Id−1

N ).

Similarly,

∥∇u2∥Lp(Enor
N ) ≲p,d ∥∇(1)u(·, N)∥Lp(Id−1

N ).

Finally, observing that u3 is the linear interpolation between the top and the bottom
boundary value we have ∇(1)u(·, ·) = 0 and ∇(2)u3(·, ·) = 1

N
|⟨u(·, 0) − u(·, N)⟩|. By

the triangle and Jensen inequality, the last one implies

∥∇u3∥Lp(Enor
N ) ≲p,d

1

N
∥u∥Lp(Id−1

N ×{0,N}).

Summing up the estimates of ui, i ∈ {1, 2, 3} we get

∥∇u∥Lp(Enor
N ) ≲p,d ∥∇(1)u(·, ·)∥Lp(Id−1

N ×{0,N}) +
1

N
∥u∥Lp(Id−1

N ×{0,N}).

To bound the tangential derivatives we repeat the proof of Proposition IV.5.1 with
two small modifications: apply Proposition IV.2.7

(i) with L = N to bound the second type, and

(ii) with N replaced by N−1 and L replaced by N (i.e. the second case) to bound
the third type.

The proof of Proposition IV.5.2 is complete.
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IV.5.2 Proof of the main theorem

Proof of Theorem IV.1.1. We first start with the Dirichlet case, i.e. showing the tan-
gential derivatives bound the normal derivative. It suffices to show that

∥∇u∥Lp(Enor
N ) ≲p,d ∥∇u∥Lp(Etan

N ) +
1

N
∥u∥Lp(∂Qd

N)
(IV.5.1)

where Qd
N := {0, . . . , N}d. Indeed, applying (IV.5.1) with u replaced by u−c, where

c ∈ R is chosen arbitrarily, noting that ∇(u − c) = ∇u, and applying the Poincaré
inequality, we easily get the claim:

∥∇u∥Lp(Enor
N ) ≲ ∥∇u∥Lp(Etan

N ) + inf
c∈R

1

N
∥u− c∥Lp(∂Qd

N)
≲ ∥∇u∥Lp(Etan

N ). (IV.5.2)

Now comes the argument for (IV.5.1). Applying Proposition IV.5.2 to the function
wi from Proposition IV.2.1 yields

∥∇u∥Lp(Enor
N ) ≤

d∑
i=1

∥∇wi∥Lp(Enor
N )

≲
d∑

i=1

∥∇wi∥Lp(Ii−1
N ×{0,N}×Id−i

N ) +
1

N
∥wi∥Lp(Ii−1

N ×{0,N}×Id−i
N )  

=:∥wi∥
W

1,p
dis (I

i−1
N

×{0,N}×Id−i
N )

. (IV.5.3)

We show by induction that the sum (IV.5.3) is bounded by the right-hand side of
(IV.5.1). First of all,

∥w1∥W 1,p
dis ({0,N}×Id−1

N )

can be absorbed into the right-hand side of (IV.5.1) by construction. Assume that

∥wi∥W 1,p
dis (I

i−1
N ×{0,N}×Id−i

N ) ≲ RHS(IV.5.1), ∀i ∈ {1, . . . , k}

for some 1 ≤ k ≤ d− 1. By Proposition IV.2.1 (IV.2.1),

wk+1 = u−
k∑

i=1

wi, in IkN × {0, N} × Id−k−1
N .

By the triangle inequality,

∥wk+1∥ ≤ ∥u∥+
k∑

i=1

∥wi∥, with ∥ · ∥ := ∥ · ∥W 1,p
dis (Ik×{0,N}×Id−k−1). (IV.5.4)

Here, for all i ∈ {1, . . . , k} the discrete Sobolev W 1,p
dis

(
IkN × {0, N} × Id−k−1

N

)
norm

of wi (taken on faces within the periodic boundary) can be estimated by its dis-
crete Sobolev norm taken on its peridic boundary, i.e. itsW 1,p

dis

(
Ii−1 × {0, N} × Id−i

)
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norm (see Propositions IV.2.7 and IV.5.2). By the induction hypothesis and (IV.5.4),
the claim is also true for k+1. Therefore, (IV.5.3) is bounded by the right-hand side
of (IV.5.1). Finally, let us make a remark that the instead of applying the Poincaré
inequality on the whole surface, we can apply it on each face for each wi, 2 ≤ i ≤ d,
which have zero mean (by odd reflections), and therefore we get rid of the last
term in (IV.5.1). However, w1 does not have zero mean and we still have to use the
”tricks” subtracting a constant (IV.5.2) to bound it. We finish the argument for the
Dirichlet case.

In the Neumann case, we also add the estimates from Proposition IV.5.2 applied
to each wi in the Neumann decomposition and use an induction argument similar
to that in the Dirichlet case (IV.5.4).

Proof of Corollary IV.2.9. We only sketch the proof. We use the Dirichlet decomposi-
tion u = w1+. . .+wd, Proposition IV.2.1, and a similar induction argument to bound
the norm of wi or ∇wi on the boundary by the norm of u or ∇u, respectively. There-
fore, it suffices to consider the periodic case. In this case, (IV.2.26) is obvious by
exploiting the fact that u has periodic boundary and the inner face lemma, Propo-
sition IV.2.7, to take the sum ”over N faces”. The argument for (IV.2.27) in the
periodic case is less obvious, however, is very similar to that of Propositions IV.5.1
and IV.5.2: we control 2 type of edges in the interior of the box: those which are
parallel and those which are perpendicular to the periodic boundary. Both types
can be estimated by exploiting the fact that the derivatives of a harmonic function
is still harmonic and applying (IV.2.26).

IV.A Decompositions

We prove Propositions IV.2.1 and IV.2.2 for d ≥ 3. The case d = 2 has been done
before (see Page 111). We first start with the Dirichlet case in d = 3 where the
proof can be still illustrated. The proof for the general case (Subsections IV.A.2
and IV.A.3) follows the spirit of that for d = 2, 3, however, we will check every step
carefully.

IV.A.1 Dirichlet decomposition in the three-dimensional case

The argument is illustrated in Figure IV.7.
Construction of w1. Define

w1 = u in {0, N} × {0, . . . , N}2 (IV.A.1)

which is the two red sides perpendicular to x1-axis in Figure IV.7a. Extend w1

into {0, N} × {0, . . . , 2N}2 (the red surface on Figure IV.7e) by using two even
reflections: first extend it along x2-direction to {0, N} × {0, . . . , 2N} × {0, . . . , N}
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x1

x2
x3
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x1

x2
x3

(b)

x1
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x2
x3

(d)

x1

x2
x3

(e)

x1

x2
x3

(f)

Figure IV.7: Construction of w1 (left) and w2 (right) – the case d = 3
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(the red surface in Figure IV.7c), then to the two squares of side length 2N . Then,
extend w1 to {0, N}×Z2 2N -periodically and to {1, . . . , N}×Z2 so that it is harmonic
in there.

Construction of w2. Set

w2 = u− w1 in {0, . . . , N} × {0, N} × {0, . . . , N} (IV.A.2)

which is the two yellow faces in Figure IV.7b). This construction implies

w2 = 0 in {0, N} × {0, N} × {0, . . . , N}, (IV.A.3)

which is the intersection of the yellow and the red faces in Figure IV.7d. Then,
extend w2 to the two yellow squares in Figure IV.7f,

{0, . . . , 2N} × {0, N} × {0, . . . , 2N}

as follows: extend it along to

{0, . . . , 2N} × {0, N} × {0, . . . , N},

the two yellow rectangles in Figure IV.7d, using an odd reflection through

{N} × {0, N} × {0, . . . , N}

and to the two squares of side length 2N using an even reflection through

{0, . . . , 2N} × {0, N} × {N}.

Note that the use of an odd reflection is consistent with (IV.A.3). Extend w2 2N -
periodically to Z× {0, N} × Z and to Z× {1, . . . , N − 1} × Z so that it is harmonic
in there. Because of the odd reflection of the boundary values, (IV.A.3) can be
extended to the inner values

w2 = 0 in {0, N} × {0, . . . , N}2, (IV.A.4)

which is the red faces of the box. Combining (IV.A.1)–(IV.A.3) yields

u = w1 + w2 in[
{0, N} × {0, . . . , N} × {0, . . . , N}

]
∪
[
{0, . . . , N} × {0, N} × {0, . . . , N}

]
(IV.A.5)

Construction of w3. Set

w3 = u− w1 − w2 in {0, . . . N} × {0, . . . , N} × {0, N}
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the two faces of the box perpendicular to w3. By this construction and (IV.A.5),

w3 = 0 in[
{0, N} × {0, . . . , N} × {0, N}

]
∪
[
{0, . . . , N} × {0, N} × {0, N}

]
(IV.A.6)

being the set of all points on the boundary of the two faces {x3 ∈ {0, N}}. Extend
w3 to

{0, . . . , 2N}2 × {0, N}

by using two odd reflections: along the x1-direction to

{0, . . . , 2N} × {0, . . . , N} × {0, N},

and along x2-direction to
{0, . . . , 2N}2 × {0, N},

where the use of odd reflections is consistent with (IV.A.6). Then, extend w3 2N -
periodically to Z2×{0, N} and to Z2×{1, . . . , N−1} so that it is harmonic in there.
Because of the odd reflections of the boundary values, (IV.A.6) can be extended to
the inner values:

w3 = 0 in[
{0, N} × {0, . . . , N} × {0, . . . , N}

]
∪
[
{0, . . . , N} × {0, N} × {0, . . . , N}

]
,

(IV.A.7)

which are the red and yellows faces of {0, . . . , N}d in Figure IV.7. Combining
(IV.A.5) and (IV.A.7) we get u = w1 +w2 +w3 on all faces of {0, . . . , N}d, therefore
also on {0, . . . , N}d.

IV.A.2 Dirichlet decomposition in higher dimensions

The argument is similar to the proof in the continuum setting [12]. For convenience
we repeat it here.

Construction of w1. Set

w1 = u in {0, N} × {0, . . . , N}d−1. (IV.A.8)

By successively using (d− 1) even reflections extend w1 to {0, N}× {0, . . . , 2N}d−1.

Then, extend w1 to {0, N} × Zd−1 2N -periodically, and to {1, . . . , N − 1} × Zd−1 so
that it is harmonic in there.

Construction of w2. Set

w2 = u− w1 on {0, . . . , N} × {0, N} × {0, . . . , N}d−2. (IV.A.9)
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By this construction and (IV.A.8)

w2 = 0 in {0, N} × {0, N} × {0, . . . , N}d−2. (IV.A.10)

By successively using an odd reflection consistent to (IV.A.10) in the first coordinate
and even reflections in d − 2 last coordinates extend w2 to {0, 2N} × {0, N} ×
{0, . . . , 2N}d−2. Then, extend w1 to Z× {0, N} × Zd−2 2N -periodically and to

Z× {1, . . . , N − 1} × Zd−2

so that it is harmonic in there. Because of the odd reflection on the boundary,
(IV.A.10) can be extended to the inner values:

w2 = 0 in {0, N} × {0, . . . , N}d−1. (IV.A.11)

Combining (IV.A.8), (IV.A.9), and (IV.A.11) yields

u = w1 + w2 in
⋃

j=1,2

{0, . . . , N}j−1 × {0, N} × {0, . . . , N}d−j. (IV.A.12)

Construction of wk, k ≥ 2 by induction. Assume that for some 1 ≤ k ≤ d− 1, for
every 1 ≤ j ≤ k, wj has been constructed in Zj−1 × {0, . . . , N} × Zd−j so that it is
harmonic in Zj−1 × {1, . . . , N − 1} × Zd−j and

u =
k∑

j=1

wj in
k⋃

j=1

{0, . . . , N}j−1 × {0, N} × {0, . . . , N}d−j (IV.A.13)

Note that (IV.A.12) is (IV.A.13) with k = 2. Then, define

wk+1 = u−
k∑

j=1

wj in {0, . . . , N}k × {0, N} × {0, . . . , N}d−k−1. (IV.A.14)

By this construction and (IV.A.13),

wk+1 = 0 in
k⋃

j=1

{0, . . . , N}j−1 × {0, N} × {0, . . . , N}k−j

× {0, N} × {0, . . . , N}d−k−1. (IV.A.15)

By making use of odd reflections in the first k coordinates consistent to (IV.A.15)
and even reflections in the last d− k − 1 coordinates, extend wk+1 to

{0, . . . , 2N}k × {0, N} × {0, . . . , 2N}d−k−1.

Finally, extend wk+1 to

{0, . . . , 2N}k × {1, . . . , N − 1} × {0, . . . , 2N}d−k−1
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so that it is harmonic in there. Because of the odd reflections of the boundary
conditions, (IV.A.15) can be extended to the inner values:

wk+1 = 0 in
k⋃

j=1

{0, . . . , N}j−1 × {0, N} × {0, . . . , N}d−j. (IV.A.16)

Combining (IV.A.13)–(IV.A.15) we get (IV.A.13) with k replaced by k+1. Continue
the construction we get w1, . . . , wd and u = w1 + . . . + wd on every face of the box,
therefore also on the box {0, . . . , N}d.

IV.A.3 The Neumann decomposition in higher dimensions

Define v1 = ∇noru in {0, N} × {1, . . . , N − 1}d−1. Then, using (d− 1) odd reflec-
tions extend v1 to {0, N} × {1, . . . , 2N − 2}d−1, and then (2(N − 1)-periodically to
{0, N} × Zd−1. Define w1 in {0, . . . , N} × Zd−1 (up to a constant) such that w1 is
harmonic in {1, . . . , N − 1} × Zd−1 and ∇nor

1 w1 = v1 on {0, N} × Zd−1.

Now, having defined vj and wj for 1 ≤ j ≤ k such that each wj is defined on
Zj−1 × {0, . . . , N} × Zd−j and harmonic in Zj−1 × {1, . . . , N − 1} × Zd−j with the
Neumann condition vj = ∇nor

j on Zj−1×{0, N}×Zd−j. Then, define wk+1 as follows.
First, define

vk+1 = ∇nor
k+1u−

k∑
j=1

∇nor
k+1wj

{1, . . . , N − 1}k × {0, N} × {1, . . . , N − 1}d−j−1 (IV.A.17)

and extend it using k odd reflections in the first k coordinates and d− k − 1 in the
last to Zj×{0, N}×Zd−j−1 and use it as a Neumann condition to define wk+1, which
is harmonic in Zj × {1, . . . , N − 1} × Zd−j−1 and

∇nor
k+1wk+1 = vk+1 on Zj × {0, N} × Zd−j−1.

When proceeding as above we obtain (IV.2.4) and (IV.2.5) for 1 ≤ i ≤ k after k + 1

steps, this can be proved as done in the Dirichlet case. We do not give details. Only
note that (IV.2.5) follows, since even reflections ”kill” all normal derivatives on the
previous faces – the same way as in the case d = 2.

Finally, we have to make sure that in each step we have a Neumann condition
of zero mean to apply Theorem IV.2.4. In the k-th step 1 ≤ k ≤ d − 1, since we
use at least an odd reflection, this is obvious. In the last (d-th) step we only use
even reflections. However, we still have that vd has zero mean on the last two
faces {1, . . . , N − 1}d−1 × {0, N}. This can be seen as follows. Note that we define
vd = ∇nor

d u−
∑d−1

j=1 ∇nor
d wj on the last two faces. Remember that ∇nor

d u−
∑d−1

j=1 ∇nor
d wj

is zero on the first (2d − 2) faces and has zero mean on all 2d faces, since it is the
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Neumann condition of u − w1 − . . . − wd−1, being harmonic in the box. Therefore,
it must be of zero mean on the last 2 faces. In other words vd has zero mean. The
proof is complete.

IV.B The Marcinkiewicz multiplier theorem

IV.B.1 Periodic discrete functions

In the proof of Proposition IV.2.5 we need to bound the normal component by the
(d − 1) tangential components that requires a vector-valued multiplier theorem.
Therefore, we improve the Marcinkiewicz theorem [40, Theorem 2.49] proved by
Jovanović and Süli to Theorem IV.B.1 below.

Before stating the result, let us recall the notations in Subsection IV.3.1.

Theorem IV.B.1. Let a(β) = {a(β)(k) : k ∈ Zd}, β ∈ {1, . . . , d} be 2L-periodic func-
tions defined on Zd. Suppose that one of the following two conditions holds.

a) There exists a constant M such that for each k = (k1, . . . , kd) and each collection
1 ≤ j1 < . . . < jm ≤ d, there exists an index β0 = β0(k) such that

|a(β0)(k)| ≤M,∑
νj1∈[±2|k1|−1;±2|k1|−1]∩IL

. . .
∑

νjm∈[±2|km|−1;±2|km|−1]∩IL

|∇j1 . . .∇jma
(β0)(ν)| ≤M,

(IV.B.1)
where + or − is chosen according to kj > 0 or kj < 0, for kj = 0 the sum is
extended only to νj = 0, and

∇if(ν) := f(ν + ei)− f(ν), ν ∈ Zd. (IV.B.2)

b) For 1 ≤ β ≤ d, a(β) can be extended to a function, still denoted by a(β), which is
defined and continuous on [−L+ 1, L]d, whose derivatives satisfy

∂αa ∈ C
(
[−L+ 1, L]d \ IdL

)
, ∀α ∈ {0, 1}d,

such that for each k ∈ Zd there exists β0 = β0(k) satisfying

sup
α∈{0,1}d

sup
ξ∈Dk

⏐⏐ξα∂αa(β0)(ξ)
⏐⏐ ≤M0,

where

Dk =

{
d∏

β=1

[
±2|kβ |−1;±2|kβ | − 1

]}
∩ [−L+ 1, L]d.
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Further, let V, v(1), . . . , v(d) be 2π-periodic functions on ωd
h related by means of the

Marcinkiewicz multipliers:

V̂ (k) = a(β)(k)v̂(β)(k), k ∈ IdL, β ∈ {1, . . . , d}.

Then, for any p ∈ (1,∞), we have

∥V ∥Lp(ωd
h)

≲p,d M0∥v∥Lp(ωd
h)

where ∥v∥Lp(ωd
h)

denotes the Lp
(
ωd
h

)
norm of

|v| :=

(
d∑

β=1

|v(β)|2
)1/2

.

Proof. Recall that in the proof of [40, Theorem 2.49] by Jovanović and Süli one
returns to the case of 2π-periodic continuum functions [40, Theorem 1.59] by using
piecewise constant extensions and exploiting [40, Lemmas 2.48 and 2.50]. By
using this idea, the claim then follows from Theorem IV.B.2 below dealing with the
continuum periodic case.

IV.B.2 Periodic continuum functions

The following theorem is a very simple improvement of the multiplier theorem in
the book by Nikol’skǐi [52, p52].

Theorem IV.B.2 (Multiplier theorem for vector valued functions). Let d ≥ 1. Sup-
pose that the functions λ(β) = {λ(β)k : k ∈ Zd}, β ∈ {1, . . . , d} satisfy the following
assumptions: There exists a constant M > 0 such that for each k = (k1, . . . , kd) ∈ Zd

and each collection 1 ≤ j1 < . . . < jm ≤ d, there exists β0) = β0(k) such that

|λ(β0)
k | ≤M,

±2|k1|−1∑
νj1=±2|k1|−1

. . .

±2|km|−1∑
νjm=±2|km|−1

|∇j1 . . .∇jmλ
(β0)
ν | ≤M, (IV.B.3)

where + or − is chosen according to kj > 0 or kj < 0, for kj = 0 the sum is extended
only to νj = 0, and (IV.B.2). Further, let F, f (1), . . . , f (d) be 2π-periodic functions
represented in terms of Fourier series and related by means of the Marcinkiewicz mul-
tipliers:

f (1)(x) =
∑
k∈Zd

c
(1)
k eik·x, . . . , f (d)(x) =

∑
k∈Zd

c
(d)
k eik·x,

F (x) =
∑
k∈Zd

λ
(1)
k c

(1)
k eik·x = . . . =

∑
k∈Zd

λ
(d)
k c

(d)
k eik·x.
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Then, for any p ∈ (1,∞), we have(ˆ
[−π,π]d

|F (x)|pdx
)1/p

≲p,d

(ˆ
[−π,π]d

|f(x)|pdx
)1/p

.

Proof. The proof is almost the same as in [52]. However, we check every step
carefully to make sure that it works in our new setting. It suffices to consider d = 2.

Further, by [52, (11) p49] and the paragraph thereafter, we also can assume that
the Fourier series here are extended over ki ≥ 0, 1 ≤ i ≤ d. The formulas (IV.B.4)
and (IV.B.5) below are almost the same as (5) and (6) in the proof in [52], except
the fact that we have now d multipliers distinguished by the superscript (β). Set

s∑
µ=2k−1

t∑
ν=2l−1

c(β)µν e
i(µx+νy) = r

(β)
st = r

(β)
s,t,k,l, β ∈ {1, . . . , d}. (IV.B.4)

Applying the Abel transformation yields

δkl(F ) =
2k−1∑

µ=2k−1

2l−1∑
ν=2l−1

λ(β)µν c
(β)
µν e

i(µx+νy)

=
2k−2∑

µ=2k−1

2l−2∑
ν=2l−1

r
(β)
ij

{
λ(β)(i, j)− λ(β)(i, j + 1)

− λ(β)(i+ 1, j) + λ(β)(i+ 1, j + 1)

}

+
2l−2∑
2l−1

r
(β)

2k−1,j

[
λ(2k − 1, j)− λ(β)(2k − 1, j + 1)

]

+
2k−2∑
2k−1

r
(β)

i,2l−1

[
λ
(β)

i,2l−1
− λ

(β)

i+1,2l−1

]
+ r

(β)

2k−1,2l−1
λ
(β)

2k−1,2l−1
.

=:
∑
ij

r
(β)
ij γ

(β)
ij , β ∈ {1, . . . , d}. (IV.B.5)

By the Cauchy-Schwartz inequality,

|δkl(F )|2 ≤

(∑
ij

r
(β0)
ij γ

(β0)
ij

)2

≤

{∑
ij

|γ(β0)
ij |

}{∑
ij

(
r
(β0)
ij

)2
|γ(β0)

ij |

}

≤M

{∑
ij

(
r
(β0)
ij

)2
|γ(β0)

ij |

}
,
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for β0 depending on k, l satisfying (IV.B.3). Applying [52, (13) p50] with nk = 2k

we get

¨
[−π,π]2

|F |p ≲
¨

[−π,π]2

(∑
k,l

|δkl(F )|2
)p/2

≲Mp/2

¨
[−π,π]2

(∑
k,l

∑
i,j

(
r
(β0)
ij

√
|γ(β0)

ij |
)2
)p/2

Applying the result (6) p52 in the same book (more precisely, with fn replaced by

the Fourier serie δkl(f (β0))
√

|γ(β0)
ij |, their partial sums r(β0)

ij

√
|γ(β0)

ij | playing the role
of Sn,kn , and the sum over n replaced by the sum over k, l, i, j) yields that

¨
[−π,π]2

|F |p ≲Mp/2

¨
[−π,π]2

(∑
k,l

∑
i,j

(
δkl(f

(β0))

√
|γ(β0)

ij |
)2
)p/2

=Mp/2

¨
[−π,π]2

(∑
k,l

δkl(f
(β0))2

∑
ij

|γ(β0)
ij |

)p/2

=Mp

¨
[−π,π]2

(∑
k,l

δkl(f
(β0))2

)p/2

≤Mp

d∑
β=1

¨
[−π,π]2

(∑
k,l

δkl(f
(β))2

)p/2

≤Mp

d∑
β=1

¨
[−π,π]2

|f (β)|p.

The proof is complete.
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