
Vol.:(0123456789)

Algorithmica (2021) 83:1–44
https://doi.org/10.1007/s00453-020-00746-y

1 3

Parameterized Dynamic Cluster Editing

Junjie Luo1,2 · Hendrik Molter3 · André Nichterlein3 · Rolf Niedermeier3

Received: 12 December 2018 / Accepted: 3 July 2020 / Published online: 25 July 2020
© The Author(s) 2020

Abstract
We introduce a dynamic version of the NP-hard graph modification problem Clus-
ter Editing. The essential point here is to take into account dynamically evolving
input graphs: having a cluster graph (that is, a disjoint union of cliques) constituting
a solution for a first input graph, can we cost-efficiently transform it into a “simi-
lar” cluster graph that is a solution for a second (“subsequent”) input graph? This
model is motivated by several application scenarios, including incremental cluster-
ing, the search for compromise clusterings, or also local search in graph-based data
clustering. We thoroughly study six problem variants (three modification scenarios
edge editing, edge deletion, edge insertion; each combined with two distance meas-
ures between cluster graphs). We obtain both fixed-parameter tractability as well
as (parameterized) hardness results, thus (except for three open questions) provid-
ing a fairly complete picture of the parameterized computational complexity land-
scape under the two perhaps most natural parameterizations: the distances of the
new “similar” cluster graph to (1) the second input graph and to (2) the input cluster
graph.

Keywords  Graph-based data clustering · Incremental clustering · Compromise
clustering · Correlation clustering · Local search · Goal-oriented clustering ·
NP-hard problems · Fixed-parameter tractability · Parameterized complexity ·
Kernelization · Multi-choice knapsack

An extended abstract of this work appears in the proceedings of the 38th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS ’18)[35].
Unfortunately, the conference version contains a claim whose unpublished proof contained an error
(see Table 1). This full version contains all proof details.

 *	 Hendrik Molter
	 h.molter@tu‑berlin.de

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00746-y&domain=pdf

2	 Algorithmica (2021) 83:1–44

1 3

1  Introduction

The NP-hard Cluster Editing problem[6, 41], also known as Correlation Cluster-
ing[5], is one of the most popular graph-based data clustering problems in algorithmics.
Given an undirected graph, the task is to transform it into a disjoint union of cliques
(also known as a cluster graph) by performing a minimum number of edge modifica-
tions (deletions or insertions). Being NP-hard, Cluster Editing gained high popular-
ity in studies concerning parameterized algorithmics, e.g.[1, 4, 9, 11, 14, 23, 26, 29,
33]. To the best of our knowledge, to date these parameterized studies mostly focus on
a “static scenario”. Chen et al.[14] are an exception by also looking at temporal and
multilayer graphs. In their work, the input is a set of graphs (multilayer) or an ordered
list of graphs (temporal), in both cases defined over the same vertex set. The goal is to
transform each input graph into a cluster graph such that, in the multilayer case, the
number of vertices in which any two cluster graphs may differ is upper-bounded, and in
the temporal case, the number of vertices in which any two consecutive (with respect to
their positions in the list) cluster graphs may differ is upper-bounded.

In contrast to the work of[14], we do not assume that all future changes are
known. We consider the scenario where, given an input graph, we only know
changes that lie immediately ahead, that is, we know the “new” graph that the input
graph changes to. Thus we seek to efficiently and effectively adapt an existing solu-
tion, namely a cluster graph. Motivated by the assumption that the “new” cluster
graph should only change moderately but still be a valid representation of the data,
we parameterize both on the number of edits necessary to obtain the “new” clus-
ter graph and on the difference between the “old” and the “new” cluster graph. We
finally remark that there have been previous parameterized studies of dynamic (or
incremental) graph problems, dealing e.g. with coloring[30], domination[3, 19], and
vertex deletion[2, 34] problems.

1.1 � Mathematical Model

In principle, the input for a dynamic version of a static problem X are two instances I
and I′ of X, a solution S for I, and an integer d. The task is to find a solution S′ for I′ such
that the distance between S and S′ is upper-bounded by d. Often, there is an additional
constraint on the size of S′ . Moreover, some distance measure between I and I′ has often
been considered as a parameter for the problem[2, 3, 19, 34]. We arrive at our following
“original dynamic version” of Cluster Editing (phrased as decision version).

3

1 3

Algorithmica (2021) 83:1–44	

Herein, ⊕ denotes the symmetric difference between two sets and dist (⋅, ⋅) is a
generic distance function for cluster graphs, which we discuss later. Moreover, Gc
is supposed to be the “solution” given for the input graph G1 . However, since the
question in this problem formulation is independent from G1 , we can remove G1
from the input and arrive at the following simplified version of the problem. For the
remainder of this paper we focus on this simplified formulation of Dynamic Cluster
Editing.

There are many different distance measures for cluster graphs[37, 38]. Indeed, we
will study two standard ways of measuring the distance between two cluster graphs.
One is called classification error distance, which measures the number of vertices
one needs to move between cliques to make two cluster graphs the same—we sub-
sequently refer to it as matching-based distance. The other is called disagreement
distance, which is the symmetric distance between two edge sets—we subsequently
refer to it as edge-based distance. Notably, the edge-based distance upper-bounds
the matching-based distance. We give formal definitions in Sect. 2.

1.2 � Motivation and Related Work

Beyond parameterized algorithmics and static Cluster Editing, dynamic clustering
in general has been subject to many studies, mostly in applied computer science[12,
16, 17, 42–44]. We mention in passing that there are also close ties to reoptimization
(e.g.,[7, 8, 40]) and parameterized local search (e.g.,[21, 25, 28, 30, 36]).

There are several natural application scenarios that motivate the study of Dynamic
Cluster Editing. Next, we list four of them.

Dynamically updating an existing cluster graph Dynamic Cluster Editing can
be interpreted to model a smooth transition between cluster graphs, reflecting that
“customers” working with clustered data in a dynamic setting may only tolerate a
moderate change of the clustering from “one day to another” since “revolutionary”
transformations would require too dramatic changes in their work. In this spirit,
when employing small parameter values, Dynamic Cluster Editing has kind of
an evolutionary flavor with respect to the history of the various cluster graphs in a
dynamic setting.

Editing a graph into a target cluster graph For a given graph G, there may be
many cluster graphs which are at most k edge modifications away. The goal then
is to find one of these which is close to the given target cluster graph Gc since in a

4	 Algorithmica (2021) 83:1–44

1 3

corresponding application one is already “used to” work with Gc . Adapting a differ-
ent point of view, the editing into the target cluster graph Gc might be too expensive
(that is, |E(G)⊕ E(Gc)| is too big), and one has to find a solution cluster graph with
small enough modification costs but being still close to the target Gc.

Local search for an improved cluster graph Here the scenario is that one may
have found an initial clustering expressed by Gc , and one searches for another solu-
tion G′ for G within a certain local region around Gc (captured by our parameter d).

Editing into a compromise clustering When focusing on the edge-based distance,
one may generalize the definition of Dynamic Cluster Editing by allowing Gc to
be any graph (not necessarily a cluster graph). This may be used as a model for
“compromise cluster editing” in the sense that the goal cluster graph then is a com-
promise for a cluster graph suitable for both input graphs since it is close to both of
them.

1.3 � Our Results

We investigate the (parameterized) computational complexity of Dynamic Clus-
ter Editing. We study Dynamic Cluster Editing as well as two restricted ver-
sions where only edge deletions (“Deletion”) or edge insertions (“Completion”) are
allowed. We show that all problem variants (notably also the completion variants,
whose static counterpart is trivially polynomial-time solvable) are NP-complete
even if the input graph G is already a cluster graph. Table 1 surveys our main com-
plexity results.

The general versions of Dynamic Cluster Editing all turn out to be param-
eterized intractable (W[1]-hard) by the single natural parameter “budget k” or

Table 1   Result overview for Dynamic Cluster Editing. We primarily categorize the problem variants by
the distance measure (Matching, Edge) they use and secondarily by the allowed modification operation

NP-completeness for all problem variants (last column) even holds if the input graph G is a cluster
graph. PK stands for polynomial-size problem kernel
a In the conference version[35] of this paper we claimed that DCCompletion (Edge Dist) is in FPT when
parameterized by k. Unfortunately, the unpublished “proof” for this claim contained an error that we
could not fix

Parameter

Problem variant k + d k d

Match. Editing FPT (PK) Theorem 3 W[1]-h Theorem 2 W[1]-h
}

 Theorem 2 NP-c Theorem 1
Deletion FPT (PK) open W[1]-h NP-c
Completion FPT (PK) open FPT Theorem 4 NP-c

Edge Editing FPT (PK) Theorem 3 W[1]-h Theorem 2 W[1]-h
}

 Theorem 2 NP-c Theorem 1

Deletion FPT (PK) FPT Theorem 4 W[1]-h NP-c
Completion FPT (PK) opena FPT Theorem 4 NP-c

5

1 3

Algorithmica (2021) 83:1–44	

“distance d”; however, when both parameters are combined, we achieve a polyno-
mial-size problem kernel, implying fixed-parameter tractability. We also derive a
generic approach, based on a reduction to Multi-Choice Knapsack, to derive fixed-
parameter tractability for several deletion and completion variants with respect to
the parameters budget k as well as the distance d.

1.4 � Organization of the Paper

Our work, after introducing basic notations (Sect. 2), consists of two main parts. In
Sect. 3, we provide all our (parameterized) hardness results. In Sect. 4, we develop
several positive algorithmic results, namely polynomial-size problem kernels
through polynomial-time data reduction, and fixed-parameter solving algorithms.
We conclude with a summary and directions for future work (Sect. 5).

2 � Preliminaries and Problems Variants

In this section we give a brief overview on concepts and notations of graph theory
and parameterized complexity theory that are used in this paper. We also give for-
mal definitions of the distance measures for cluster graphs we use and of our prob-
lem variants. We use ⊕ to denote the symmetric difference of two sets, that is, for
two sets A, B we have A⊕ B ∶= (A⧵B) ∪ (B⧵A).

2.1 � Graph‑Theoretic Concepts and Notations

Given an undirected graph G = (V ,E) , we say that a vertex set C ⊆ V is a clique
in G if G[C] is a complete graph. We say that a vertex set C ⊆ V is isolated in G
if there is no edge {u, v} ∈ E with u ∈ C and v ∈ V⧵C . A P3 is a path with three
vertices. We say that vertices u, v,w ∈ V form an induced P3 in G if G[{u, v,w}] is
a P3 . We say that an edge {u, v} ∈ E is part of a P3 in G if there is a vertex w ∈ V
such that G[{u, v,w}] is a P3 . Analogously, we say that a non-edge {u, v} ∉ E is part
of a P3 in G if there is a vertex w ∈ V such that G[{u, v,w}] is a P3 . A cluster graph
is simply a disjoint union of cliques. Equivalently, a graph G = (V ,E) is a cluster
graph if for all u, v,w ∈ V we have that G[{u, v,w}] is not a P3 , or in other words, P3
is a forbidden induced subgraph for cluster graphs.

2.2 � Distance Measures for Cluster Graphs

A cluster graph is simply a disjoint union of cliques. We use two basic distance
measures for cluster graphs[37, 38]. The first one is called “matching-based
distance” and counts how many vertices have to be moved from one clique to
another to make two cluster graphs the same (see Fig. 1 for an illustrating exam-
ple). It is formally defined as follows.

6	 Algorithmica (2021) 83:1–44

1 3

Definition 1  (Matching-based distance) Let G1 = (V ,E1) and G2 = (V ,E2) be two
cluster graphs defined over the same vertex set. Let B(G1,G2) ∶= (V1 ⊎ V2,E,w)
be a weighted complete bipartite graph, where each vertex u ∈ V1 corresponds
to one cluster of G1 , denoted by Cu ⊆ V  , and each vertex v ∈ V2 corresponds
to one cluster of G2 , denoted by Cv ⊆ V  . The weight of the edge between u ∈ V1
and v ∈ V2 is w({u, v}) ∶= |Cu ∩ Cv| . Let W be the weight of a maximum-weight
matching in B(G1,G2) . The matching-based distance dM between G1 and G2 is
dM(G1,G2) ∶= |V| −W.

The second distance measure is called “edge-based distance” and simply meas-
ures the symmetric distance between the edge sets of two cluster graphs.

Definition 2  (Edge-based distance) Let G1 = (V ,E1) and G2 = (V ,E2) be two clus-
ter graphs defined over the same vertex set. The edge-based distance between G1
and G2 is dE(G1,G2) ∶= |E1 ⊕ E2|.

See Fig. 1 for an example illustration of two cluster graphs G1 and G2 defined
over the same vertex set V = {u1, u2, u3, u4, u5, u6, v1, v2,w} . In G1 there are three
cliques (clusters) C1 = {u1, u2, u3, u4, u5, u6} , C2 = {v1, v2} and C3 = {w} . In G2
there are two cliques C1

� = {u1, u2, u3, v1, v2} and C2
� = {u4, u5, u6,w} . Then

in B(G1,G2) we have three vertices on the left side for the cliques in G1 and two
vertices on the right side for the cliques in G2 . A maximum-weight matching
for B(G1,G2) matches C1 with C′

2
 and C2 with C′

1
 , and has weight W = 5 . Thus we

have dM(G1,G2) = |V| −W = 9 − 5 = 4 , while dE(G1,G2) = 32 + 2 ⋅ 3 + 1 ⋅ 3 = 18

.

2.3 � Problem Names and Definitions

In the following we present the six problem variants we are considering. We use
Dynamic Cluster Editing as a basis for our problem variants. In Dynamic Cluster

u1 u2 u3 u4 u5 u6

v1 v2 w

C1
′ C2

′

C1

C2 C3

C1
′

C2
′

C1

C2

C3

3
2

0

3

0
1

B(G1, G2) :

Fig. 1   An illustration of the matching-based distance measure. On the left side, red dotted boundaries
represent cliques in cluster graph G1 , and blue dashed boundaries represent cliques in cluster graph G2 .
The bipartite graph on the right side is the edge-weighted bipartite graph B(G1,G2) . The maximum-
weight matching M for B(G1,G2) of weight five is formed by the two edges represented by the two bold
lines. The edges not in M indicate how vertices have to be moved from one cluster to another: Moving w
from C3 to C1 and u1, u2, u3 from C1 to C2 transforms G1 into G2 (Color figure online)

7

1 3

Algorithmica (2021) 83:1–44	

Deletion we add the constraint that E(G�) ⊆ E(G) and in Dynamic Cluster Com-
pletion we add the constraint that E(G) ⊆ E(G�) . For each of these three variants
we distinguish a matching-based version and an edge-based version, where the
generic “dist” in the problem definition of Dynamic Cluster Editing is replaced
by dM and dE , respectively. This gives us a total of six problem variants. We use
the following abbreviations for our problem names. The letters “DC” stand for
“Dynamic Cluster”, and “Matching Dist” is short for “Matching-Based Distance”.
Analogously, “Edge Dist” is short for “Edge-Based Distance”. This yields the fol-
lowing list of studied problems:

•	 Dynamic Cluster Editing with Matching-Based Distance, abbreviation:
DCEditing (Matching Dist).

•	 Dynamic Cluster Deletion with Matching-Based Distance, abbreviation:
DCDeletion (Matching Dist).

•	 Dynamic Cluster Completion with Matching-Based Distance, abbreviation:
DCCompletion (Matching Dist).

•	 Dynamic Cluster Editing with Edge-Based Distance, abbreviation: DCEditing
(Edge Dist).

•	 Dynamic Cluster Deletion with Edge-Based Distance, abbreviation: DCDele-
tion (Edge Dist).

•	 Dynamic Cluster Completion with Edge-Based Distance, abbreviation:
DCCompletion (Edge Dist).

2.4 � Parameterized Complexity

We use standard notation and terminology from parameterized complexity[15, 18,
22, 39] and give here a brief overview of the most important concepts. A param-
eterized problem is a language L ⊆ Σ∗ × ℕ , where Σ is a finite alphabet. We call
the second component the parameter of the problem. A parameterized problem is
fixed-parameter tractable (in the complexity class FPT) if there is an algorithm
that solves each instance (I, r) in f (r) ⋅ |I|O(1) time, for some computable function
f. A parameterized problem L admits a polynomial kernel if there is a polynomial-
time algorithm that transforms each instance (I, r) into an instance (I�, r�) such that
(I, r) ∈ L if and only if (I�, r�) ∈ L and |(I�, r�)| ≤ rc , for some constant number c. If a
parameterized problem is hard for the parameterized complexity class W[1], then it
is (presumably) not in FPT. The complexity class W[1] is closed under parameter-
ized reductions, which may run in FPT-time and additionally set the new parameter
to a value that exclusively depends on the old parameter.

3 � Intractability Results

In this section. we first establish NP-completeness results.

8	 Algorithmica (2021) 83:1–44

1 3

Theorem 1  All considered problem variants of Dynamic Cluster Editing are NP-
complete, even if the input graph G is a cluster graph.

Intuitively, Theorem 1 means that on top of the NP-hard task of transforming a
graph into a cluster graph, it is computationally hard to improve an already found
cluster graph with respect to being closer to the target cluster graph. Notably,
while the dynamic versions of Cluster Completion turn out to be NP-complete,
it is easy to see that classic Cluster Completion is solvable in polynomial time.

In a second part of this section we show W[1]-hardness results both for budget
parameter k and for distance parameter d for several variants of Dynamic Cluster
Editing. Formally, we show the following.

Theorem 2  The following problems are W[1]-hard when parameterized by the
budget k:

•	 DCEditing (Matching Dist),
•	 DCEditing (Edge Dist).

The following problems are W[1]-hard when parameterized by the distance d:

•	 DCEditing (Matching Dist),
•	 DCDeletion (Matching Dist),
•	 DCEditing (Edge Dist), and
•	 DCDeletion (Edge Dist).

The proof of Theorem 2 is based on several parameterized reductions which
are presented in Sect. 3.2. The proof of Theorem 1 is based on nonparameter-
ized polynomial-time many-one reductions (see Sect. 3.1) and some parameter-
ized reductions that also imply NP-hardness (see Sect. 3.2). More precisely, The-
orem 1 follows from Lemmas 1, 2, Observation 1, and Lemma 3 presented in
Sect. 3.1, as well as Lemmas 4 and 5 presented in Sect. 3.2.

3.1 � Polynomial‑Time Many‑One Reductions

We first present two polynomial-time many-one reductions from the strongly
NP-hard 3-Partition problem[24] for both DCCompletion (Matching Dist) and
DCCompletion (Edge Dist) with input graphs that are already cluster graphs. We
start with the latter.

Lemma 1  DCCompletion (Edge Dist) is NP-complete, even if the input graph G is
a cluster graph.

Proof  We present a polynomial-time reduction from 3-Partition, where, given a
multi-set of 3m positive integers {a1, a2,… , a3m} with

∑

1≤i≤3m ai = mB ,

9

1 3

Algorithmica (2021) 83:1–44	

for 1 ≤ i ≤ 3m it holds that B∕4 < ai < B∕2 , and the task is to determine whether
this multi-set can be partitioned into m disjoint subsets A1,A2,… ,Am such that for
each 1 ≤ i ≤ m it holds that

∑

aj∈Ai
aj = B . Given an instance {a1, a2,… , a3m} of

3-Partition, we construct an instance (G,Gc, k, d) of DCCompletion (Edge Dist) as
follows. The construction is illustrated in Fig. 2. For graph G, we first create m dis-
joint big cliques, each with M = 4(mB)2 vertices. Then for every integer ai , we cre-
ate a small clique Ci with |Ci| = ai vertices. We set Gc to be a complete graph. Fur-
ther, we set k ∶= mMB +

m

2
B2 −

1

2

∑

1≤i≤3m ai
2 and d ∶= |E(G)⊕ E(Gc)| − k.

Next we show that {a1, a2,… , a3m} is a yes-instance of 3-Partition if and only
if (G,Gc, k, d) is a yes-instance of DCCompletion (Edge Dist).

(⇒ ): Assume that {a1, a2,… , a3m} is a yes-instance of 3-Partition. Then there is
a partition A1,A2,… ,Am such that for each 1 ≤ i ≤ m it holds that

∑

aj∈Ai
aj = B . For

each Ai , we can combine the corresponding three small cliques and one big clique of
size M into one clique. This costs MB +

1

2
(B2 −

∑

aj∈Ai
aj

2) edge insertions. In total,
there are

edge insertions. Hence we get a cluster graph G′ with |E(G)⊕ E(G�)| = k
and |E(G�)⊕ E(Gc)| = |E(G)⊕ E(Gc)| − k = d.

(⇐ ): Assume that (G,Gc, k, d) is a yes-instance of DCCompletion (Edge
Dist) and let G′ be the solution. Since k + d = |E(G)⊕ E(Gc)| , to get G′ we have
to add exactly k edges to G. We make the following two observations. First, we can

mMB +
m

2
B2 −

1

2

∑

1≤i≤3m

ai
2 = k

...

...

m big cliques 3m small cliques

Fig. 2   Illustration of the constructed instance for the proof of Lemma 1. Graph G has m big cliques on
the left side and 3m small cliques on the right side. Each number a

i
 in the instance of 3-Partition is rep-

resented by a small clique with a
i
 vertices on the right side. Every dashed rounded rectangle containing

one big clique and three small cliques is a possible group in a solution

10	 Algorithmica (2021) 83:1–44

1 3

never combine two big cliques, as otherwise we need at least M2 > k edge inser-
tions. Second, every small clique must be combined with a big clique, as other-
wise we have at most M(mB − 1) edge insertions between big cliques and small
cliques and at most (mB)2 edge insertions between small cliques, and in total there
are at most M(mB − 1) + (mB)2 = mMB − 3(mB)2 < k edge insertions. Hence, to
get solution G′ we must partition all 3m small cliques C1,C2,… ,C3m in G into m
groups A1,A2,… ,Am and combine all cliques in each group with one big clique.

We can split the edge insertions into two parts k = k1 + k2 , where k1 ∶= mMB is
the number of edge insertions between big cliques and small cliques, and
k2 ∶=

∑

1≤i≤m

∑

Cj,Ck∈Ai
�Cj��Ck� is the total number of edge insertions between small

cliques in each group. We can also write k2 as

Recall that k = mMB +
m

2
B2 −

1

2

∑

1≤i≤3m ai
2 , so we have that

Since
∑

1≤i≤3m �Ci� =
∑

1≤i≤3m ai = mB , the equality

holds only if C1,C2,… ,C3m can be partitioned into m disjoint subsets A1, A2,… ,Am
such that for 1 ≤ i ≤ m it holds that

∑

Cj∈Ai
�Cj� = B . Thus, {a1, a2,… , a3m} can be

partitioned into m disjoint subsets A1
�
,A2

�
,… ,Am

� such that for 1 ≤ i ≤ m it holds
that

∑

aj∈Ai
� aj = B . 	� ◻

We continue with DCCompletion (Matching Dist). The corresponding NP-
hardness reduction uses the same basic ideas as in Lemma 1. The main difference
is that in the proof of Lemma 1 we make use of the property that we need to add
exactly k edges. This enforces that every small clique should be combined with
a big clique, while in the following proof we need to make use of the matching-
based distance to enforce this.

Lemma 2  DCCompletion (Matching Dist) is NP-complete, even if the input
graph G is a cluster graph.

Proof  We present a polynomial-time reduction from 3-Partition, where, given a
multi-set of 3m positive integers {a1, a2,… , a3m} with

∑

1≤i≤3m ai = mB ,
for 1 ≤ i ≤ 3m it holds that B∕4 < ai < B∕2 , and the task is to determine whether

k2 =
1

2

�

1≤i≤m

⎛

⎜

⎜

⎝

�

Cj∈Ai

�Cj�

⎞

⎟

⎟

⎠

2

−
1

2

�

1≤i≤3m

ai
2.

�

1≤i≤m

⎛

⎜

⎜

⎝

�

Cj∈Ai

�Cj�

⎞

⎟

⎟

⎠

2

= mB2.

�

1≤i≤m

⎛

⎜

⎜

⎝

�

Cj∈Ai

�Cj�

⎞

⎟

⎟

⎠

2

= mB2

11

1 3

Algorithmica (2021) 83:1–44	

this multi-set can be partitioned into m disjoint subsets A1,A2,… ,Am such that for
each 1 ≤ i ≤ m it holds that

∑

aj∈Ai
aj = B . Given an instance {a1, a2,… , a3m} of

3-Partition, we construct an instance (G,Gc, k, d) of DCCompletion (Matching
Dist) as follows.

The construction is illustrated in Fig. 3. For graph G, we first create m big
cliques CM

1
,CM

2
,… ,CM

m
 each with M ∶= 4(mB)2 vertices. Then for every integer ai

in {a1, a2,… , a3m} , we create a small clique Ci with |Ci| = aim . Lastly, we create a
clique CM2 with M2 vertices. For graph Gc , we create m + 1 cliques as follows. For
every CM

i
 in G, we create a clique CM+3m

i
 with M + 3m vertices which contains all M

vertices from CM
i

 and one vertex from each Ci for 1 ≤ i ≤ 3m . In other words, each Ci
in G contains exactly one vertex from each CM+3m

i
 in Gc for 1 ≤ i ≤ m . Lastly, we

create a clique CM2+(B−3)m2 which contains all remaining vertices, that is, M2 verti-
ces from CM2 and vertices from every Ci for 1 ≤ i ≤ 3m which are not contained
in any CM+3m

i
 . Thus CM2+(B−3)m2 contains M2 +

∑

1≤i≤3m(ai − 1)m = M2 + (B − 3)m2
vertices. Set k ∶= m2MB +

m3

2
B2 −

m2

2

∑

1≤i≤3m ai
2 and d ∶= m2B − 3m.

CM
i ..

.
CM+3m

i..
.

Ci

...

a1m

a3mm

CM2
CM2+(B−3)m2

...

...

...

...

...

G Gc

Fig. 3   Illustration of the constructed instance for the proof of Lemma 2. Blue borders on the left side
represent cliques in graph G and red borders on the right side represent cliques in cluster graph G

c
 .

Each number a
i
 in the instance of 3-Partition is represented by a clique C

i
 with a

i
m vertices in graph G,

which contains one vertex from every CM+3m
i

 and a
i
(m − 1) vertices from CM

2+(B−3)m2 . The maximum-
weight matching for B(G,G

c
) is formed by the edges between CM

i
 and CM+3m

i
 and the edge between CM

2
and CM

2+(B−3)m2 (Color figure online)

12	 Algorithmica (2021) 83:1–44

1 3

It is easy to see that the maximum-weight matching M∗ for B(G,Gc) is to
match CM

i
 with CM+3m

i
 for every 1 ≤ i ≤ m and is to match CBm2 with C(2B−3)m2 . Thus

the matching-based distance between G and Gc is

Now, we show that {a1, a2,… , a3m} is a yes-instance of 3-Partition if and only if
(G,Gc, k, d) is a yes-instance of DCCompletion (Matching Dist).

(⇒ ): Assume that {a1, a2,… , a3m} is a yes-instance of 3-Partition. Then there is
a partition Ai,A2,… ,Am such that for 1 ≤ i ≤ m it holds that

∑

aj∈Ai
aj = B . We add

edges into G to get a cluster graph G′ as follows. For each Ai , we combine the corre-
sponding three small cliques for the three integers in Ai and the big clique CM

i
 into

one clique. This costs

edge insertions. In total, there are m2MB +
m3

2
B2 −

m2

2

∑

1≤i≤3m ai
2 = k edge inser-

tions. Since every small clique Ci , combined with some big clique CM
j

 , contains one
vertex from CM+3m

j
 , we obtain

(⇐ ): Assume that (G,Gc, k, d) is a yes-instance of DCCompletion (Matching
Dist) and let G′ be the solution and let M′ be the maximum-weight matching
between G′ and Gc . First note that clique CM2 has M2 vertices and M2 > k , so we
cannot combine CM2 with any other clique. Since M2 > (B − 3)m2 , we have
also |CM2

| >
1

2
|CM2+(B−3)m2

| . Hence, in the matching M′ clique CM2 must be matched
with CM2+(B−3)m2 . Next in the matching M′ every CM+3m

i
 in Gc must be matched with

a clique in G′ which contains clique CM
i

 , since otherwise the distance between G′
and Gc is at least M and M > d . This also means that we cannot combine two big
cliques CM

i
 and CM

j
 . Since dM(G�,Gc) ≤ d = d0 − 3m , to get solution G′ every small

clique Ci for 1 ≤ i ≤ 3m has to be combined with some big clique CM
j

.
We can split k into two parts k = k1 + k2 , where k1 ∶= m2MB is the number of

edge insertions between big cliques and small cliques, and k2 is the total number of
edge insertions between small cliques. Similarly to the analysis in Lemma 1, we
have that k2 ≥

m3

2
B2 −

m2

2

∑

1≤i≤3m ai
2 and the equality holds only if {a1, a2,… , a3m}

can be partitioned into m disjoint subsets A1,A2,… ,Am such that for 1 ≤ i ≤ m it
holds that

∑

aj∈Ai
aj = B . 	� ◻

Observe that when G is a cluster graph, we can “swap” G with Gc and k with d:

Observation 1  When G is a cluster graph, instance (G,Gc, k, d) of DCEditing
(Edge Dist) is a yes-instance if and only if instance (Gc,G, d, k) of DCEditing (Edge

d0 = dM(G,Gc) =
∑

1≤i≤3m

aim = m2B.

MmB + m2
�

ak ,aj∈Ai

ajak = MmB +
m2

2

⎛

⎜

⎜

⎝

B2 −
�

aj∈Ai

aj
2

⎞

⎟

⎟

⎠

dM(G
�,Gc) = d0 − 3m = m2B − 3m = d.

13

1 3

Algorithmica (2021) 83:1–44	

Dist) is a yes-instance. When both G and Gc are cluster graphs and E(G) ⊆ E(Gc)

, instance (G,Gc, k, d) of DCCompletion (Edge Dist) is a yes-instance if and only if
instance (Gc,G, d, k) of DCDeletion (Edge Dist) is a yes-instance.

Observe that from Lemma 1 and Observation 1 we can infer NP-hardness for
DCDeletion (Edge Dist) even if G is a cluster graph. For the matching-based
distance, we do not have an analogue of Observation 1. Thus, we provide another
reduction showing NP-hardness for DCDeletion (Matching Dist) even if G is a
cluster graph.

Lemma 3  DCDeletion (Matching Dist) is NP-complete, even if the input graph G
is a cluster graph.

Proof  We present a polynomial-time reduction from the NP-hard Exact Cover
by 3-Sets problem[31], where, given a set X with |X| = 3q and a collection S
of 3-element subsets of X, the task is to determine whether S contains a subcol-
lection S≃ ⊆ S of size q that covers every element in X exactly once. Given
an instance (X,S) of Exact Cover by 3-Sets, where X = {x1, x2,… , x3q}
and S = {S1, S2,… , Sm} , we construct an instance (G,Gc, k, d) of DCDeletion
(Matching Dist) in polynomial time as follows.

The construction is illustrated in Fig. 4. For every set Si = {xi1 , xi2 , xi3} in S , we
create a clique Ci = {vi

1
, vi

2
} ∪ {xi

i1
, xi

i2
, xi

i3
} in G. So G contains m order-five

cliques C1,C2,… ,Cm . For Gc , we first create m cliques D1,D2,… ,Dm
with Di = {vi

1
, vi

2
} . Then for each element xi , we create a clique Dxi

= {x
j

i
∣ xi ∈ Sj} .

Ci

... Di

...
Dxi

...

Fig. 4   Illustration of the constructed instance for the proof of Lemma 3. Each clique C
i
 in G contains

two green vertices, which form a clique D
i
 in G

c
 . The instance of Exact Cover by 3-Sets is encoded by

black vertices. On the left side each C
i
 in G encodes a set S

i
 ; on the right side each D

x
i
 in G

c
 encodes the

appearance of the element x
i
 (Color figure online)

14	 Algorithmica (2021) 83:1–44

1 3

For example, if an element xi is contained in some set Sj , then in G the correspond-
ing clique Cj for Sj contains a vertex xj

i
 which is also contained in the clique Dxi

 in Gc .
Hence, if there is a subcollection S≃ of size q that covers every element in X exactly
once, then we can find these q corresponding cliques in G and separate them to
get 3q new vertices each contained in one different clique Dxi

 in Gc . Finally, we
set k ∶= 9q and d ∶= 3m − 3q.

Note that the maximum-weight matching M∗ for B(G,Gc) has to match every Ci
in G with Di in Gc . Thus dM(G,Gc) = 3m . Now we show that (X,S) is a yes-instance
of Exact Cover by 3-Sets if and only if (G,Gc, k, d) is a yes-instance of DCDele-
tion (Matching Dist).

(⇒ ): Assume that (X,S) is a yes-instance of Exact Cover by 3-Sets. Let S≃ be
the solution. For every Si ∈ S≃ , we find the corresponding
clique Ci = {vi

1
, vi

2
} ∪ {xi

i1
, xi

i2
, xi

i3
} in G and partition it into four cliques {vi

1
, vi

2
} ,

{xi
i1
} , {xi

i2
} , and {xi

i3
} . Let G′ be the resulting cluster graph. For every such clique Ci ,

we delete nine edges to partition it. Thus, overall we need to delete 9q = k edges.
Since every element of X is covered by exactly one set from S≃ , we have that in G′
we get 3q new cliques each with one vertex, and each vertex is contained in a differ-
ent clique from Dx1

,Dx2
,… ,Dx3q

 . Thus, we have dM(G,Gc) = 3m − 3q = d.
(⇐ ): Assume that (G,Gc, k, d) is a yes-instance of DCDeletion (Matching Dist).

Let G′ be the solution and M′ be the maximum-weight matching between G′ and Gc .
Since we can only delete edges to get G′ and every set Si can only contain each ele-
ment from X once, we get that in M′ any edge incident on Dxi

 has weight at most
one. Since dM(G,Gc) ≤ d = 3m − 3q , it has to hold that in M′ every Dxi

 is matched
with a new clique in G′ and they share exactly one vertex. Thus we need 3q new
cliques in G′ to be matched with Dx1

,Dx2
,… ,Dx3q

 in Gc . To get these 3q new cliques,
we need to separate at least 3q vertices from C1,C2,… ,Cm in G. Since we can delete
at most k = 9q edges, there have to be q cliques from C1,C2,… ,Cm such that we can
separate each of them into four parts, where the first part contains {vi

1
, vi

2
} and the

remaining three parts each have one vertex. Moreover, these 3q new cliques each
share one vertex with one different clique from Dx1

,Dx2
,… ,Dx3q

 . Thus, in the
instance (X,S) of Exact Cover by 3-Sets we can find the corresponding 3q sets and
they cover each element of X exactly once. 	� ◻

3.2 � Parameterized Reductions

We first show that DCEditing (Matching Dist) is W[1]-hard when parameterized by
the budget k.

Lemma 4  DCEditing (Matching Dist) is NP-complete and W[1]-hard with respect
to the budget k, even if the input graph G is a cluster graph.

Proof  We present a parameterized reduction from Clique, where, given a
graph G0 and an integer � , we are asked to decide whether G0 contains a complete

15

1 3

Algorithmica (2021) 83:1–44	

subgraph of order � . Clique is W[1]-hard when parameterized by �[18]. Given
an instance (G0,�) of Clique, we construct an instance (G,Gc, k, d) of DCEditing
(Matching Dist) as follows.

The construction is illustrated in Fig. 5. Let n = |V(G0)| . We first construct G.
For every vertex v of G0 , we create a clique Cv of size �7 + �

4 + �
2 . For every edge e

of G0 , we create a clique Ce of size �4 + 2 . Lastly, we create a big clique CB of
size �8 . Note that G is already a cluster graph. Next we construct Gc . We first cre-
ate � cliques Di of size n�3 for each 1 ≤ i ≤ � . Every Di contains �3 vertices in
every Cv in G. In other words, every Cv in G contains �3 vertices in every Di in Gc .
Then we create a big clique DB which contains all vertices in CB and �7 vertices in
every Cv . For every vertex v of G0 , we create clique Dv which contains �2 vertices
in Cv and one vertex in every Ce for v ∈ e . Lastly, for every edge e we create De

which contains �4 vertices in Ce . We set k ∶=
(

�

2

)

(2�4 + 1) + �

(

� − 1

2

)

 and we

set d ∶= d0 − �(� − 1) , where d0 = dM(G,Gc) is the matching-based distance
between G and Gc , which is computed as follows.

To compute dM(G,Gc) , we need to find an optimal matching in B(G,Gc) , the
weighted bipartite graph between G and Gc . First, in an optimal matching DB must
be matched with CB since |CB ∩ DB| = �

8 > |Cv ∩ DB| = �
7 for any v ∈ V(G0)

and CB ⊆ DB . Similarly, De must be matched with Ce for every e ∈ E(G0) . Then the
remaining n cliques Cv in G need to be matched to � cliques Di and n cliques Dv
in Gc . Since |Cv ∩ Di| = �

3 > |Cv ∩ Dv| = �
2 for any v ∈ V(G0) and 1 ≤ i ≤ � , it is

always better to match Cv with some Di . Since there are only � cliques Di , we can
choose any � cliques from {Cv ∣ v ∈ V(G0)} to be matched with Di for 1 ≤ i ≤ � and

Di, 1 ≤ i ≤ �

Cv , v ∈ V

Dv

Du

Ce and De for
e = {u, v} ∈ E

CB

DB

Fig. 5   Illustration of the constructed instance for the proof of Lemma 4. Blue solid borders represent
cliques in G and red dotted borders represent cliques in G

c
 . One horizontal long blue border represents

a clique C
v
 in G. It has � + 2 parts and each part is contained in one clique of G

c
 . The first part con-

tains �7 vertices which are contained in the big clique D
B
 of G

c
 . The following � parts each contain �3

vertices which are contained in the � cliques D
i
 of G

c
 , and the last part contains �2 vertices which are

contained in D
v
 of G

c
 (Color figure online)

16	 Algorithmica (2021) 83:1–44

1 3

the remaining n − � cliques to be matched with Dv . Thus we have many different
matchings in B(G,Gc) which have the same maximum weight, and each of them
corresponds to choosing � different cliques from {Cv ∣ v ∈ V(G0)} to be matched
with Di for 1 ≤ i ≤ � . For each optimal matching, there are � free cliques Dv in Gc
which are not matched.

This reduction works in polynomial time. We show that there is a clique of size �
in G0 if and only if there is a cluster graph G� = (V ,E�) such that |E(G�)⊕ E(G)| ≤ k
and dM(G�,Gc) ≤ d.

(⇒ ): Assume that there is a clique C∗ of order � in G0 . We modify the graph G as
follows. First, for every edge e in the clique C∗ partition the corresponding clique Ce
in G into three parts; one part contains all vertices in De and the other two parts each
have one vertex. After this we get �(� − 1) single vertices. Since C∗ is a clique, all
these single vertices can be partitioned into � groups such that each group has � − 1
vertices and all these � − 1 vertices are contained in the same Dv for some v ∈ C∗ .
Then for each v ∈ C∗ , we combine the corresponding � − 1 vertices into one
clique C�−1

v
 . Denote the resulting graph by G′ . For an illustration see Fig. 6. Along

the way to get G′ , we delete
(

�

2

)

(2�4 + 1) edges and add �
(

� − 1

2

)

 edges,

thus |E(G)⊕ E(G�)| =

(

�

2

)

(2�4 + 1) + �

(

� − 1

2

)

= k . Next we show

that dM(G�,Gc) ≤ d0 − �(� − 1) . Recall that an optimal matching in B(G,Gc) can
choose � cliques from {Cv ∣ v ∈ V(G0)} to be matched with Di for 1 ≤ i ≤ � . Now

Di, 1 ≤ i ≤ �

Cv , v ∈ V

Dv

Du

CB

DB

Fig. 6   Illustration of a possible solution for the constructed instance (see Fig. 5) in the proof of
Lemma 4. Blue solid borders represent cliques in G′ and red dotted borders represent cliques in G

c
 .

Green shaded areas indicate how cliques of G′ and G
c
 are matched. If two horizontal cliques of G′ (blue)

are matched with two of the � vertical cliques of G
c
 , then the corresponding vertices are part of the

clique and hence are adjacent. This means that the cliques corresponding to the edge can be matched in
the indicated way (Color figure online)

17

1 3

Algorithmica (2021) 83:1–44	

in B(G�,Gc) we can choose all cliques in {Cv ∣ v ∈ C∗} to be matched with Di
for 1 ≤ i ≤ � , and then match C�−1

v
 with Dv for all v ∈ C∗ . Then in the new matching

we have � additional edges between C�−1
v

 and Dv for v ∈ C∗ , each with weight � − 1 .
Hence dM(G�,Gc) ≤ d0 − �(� − 1).

(⇐ ): Assume that there is a cluster graph G� = (V ,E�) such that |E� ⊕ E(G)| ≤ k
and dM(G�,Gc) ≤ d . Note that k < �

7 , thus k < |Cv| and k < |CB| . Consequently, we
can only modify edges between vertices in Ce . It is easy to see that in any optimal
matching in B(G�,Gc) , we still have that clique CB must be matched with DB and
clique Ce must be matched with De for every e ∈ E(G0) . We should choose � cliques
from {Cv ∣ v ∈ V(G0)} to be matched with Di for 1 ≤ i ≤ � , which creates � free
cliques Dv . Hence, to decrease the distance between G and Gc or to increase the
matching, we have to create new cliques to be matched with these � free cliques Dv .
Note that every Dv only contains single vertices from Ce with v ∈ e and the vertices
contained in Cv . To create new cliques we need to first separate Ce to get single verti-
ces and then combine them. To decrease the distance by �(� − 1) , we need to sepa-
rate at least �(� − 1) single vertices from Ce . This will cost at

least �(� − 1)(�4 + 1) −

(

�

2

)

=

(

�

2

)

(2�4 + 1) edge deletions if we always sepa-

rate one Ce into three parts and get two single vertices. Then we need to combine
these single vertices into at most � cliques since there are at most � free cliques Dv .

This will cost at least �
(

� − 1

2

)

 edge insertions if all these �(� − 1) single vertices

can be partitioned into � groups and each group has � − 1 vertices.

Since k =
(

�

2

)

(2�4 + 1) + �

(

� − 1

2

)

 , we have that in the first step we have to

choose
(

�

2

)

 cliques Ce and separate them into three parts and all these �(� − 1) sin-

gle vertices are evenly distributed in � free cliques Dv . This means that in G0 we can

select
(

�

2

)

 edges between � vertices and each vertex has � − 1 incident edges. Thus

there is a clique of size � in G0 . 	� ◻

The next lemma shows that DCEditing (Edge Dist) is W[1]-hard with respect
to k. The corresponding parameterized reduction is from Clique and shares some
similarities with the reduction presented in the proof of Lemma 4 with respect to the
edge gadgets. Our proof is based on the following property for instances of DCEdit-
ing (Edge Dist) with k + d = |E(G)⊕ E(Gc)|.

Observation 2  If an instance (G,Gc, k, d) of DCEditing (Edge Dist) (DCDe-
letion (Edge Dist) or DCCompletion (Edge Dist)) has the property
that k + d = |E(G)⊕ E(Gc)|, then any solution G′ satisfies that |E(G)⊕ E(G�)| = k ,
|E(G�)⊕ E(Gc)| = d, and E(G)⊕ E(G�) ⊆ E(G)⊕ E(Gc).

Proof  On the one hand, for any graph G′ , we have that

18	 Algorithmica (2021) 83:1–44

1 3

On the other hand, a solution G′ satisfies that |E(G�)⊕ E(G)| ≤ k
and |E(G�)⊕ E(Gc)| ≤ d . Thus we have that |E(G)⊕ E(G�)| = k
and |E(G�)⊕ E(Gc)| = d . Let S1 ∶=

(

E(G)⊕ E(G�)
)

⧵
(

E(G)⊕ E(Gc)
)

and S2 ∶=

(

E(G)⊕ E(G�)
)

⧵S1 . Then

Next we show that

Let us consider

where the last equation holds since

and

Hence, |E(G�)⊕ E(Gc)| = |E(G)⊕ E(Gc)| + |S1| − |S2| . If S1 ≠ ∅ , then combine
Eqs. (1) and (2) and we get

which is a contradiction. Thus we conclude that S1 = � and
hence E(G)⊕ E(G�) ⊆ E(G)⊕ E(Gc) . 	� ◻

From this result we can conclude that, when k + d = |E(G)⊕ E(Gc)| , the only
way to get a solution G′ is to find a subset of E(G)⊕ E(Gc) with size exactly k
such that modifying the edges of this subset in G yields a cluster graph.

Lemma 5  DCEditing (Edge Dist) is NP-complete and W[1]-hard with respect to
the budget k, even if the input graph G is a cluster graph and k + d = |E(G)⊕ E(Gc)|

.

|E(G�)⊕ E(G)| + |E(G�)⊕ E(Gc)| ≥ |E(G)⊕ E(Gc)| = k + d.

(1)|E(G�)⊕ E(G)| = |S1| + |S2|.

(2)|E(G�)⊕ E(Gc)| = |E(G)⊕ E(Gc)| + |S1| − |S2| = k + d + |S1| − |S2|.

E(G�)⊕ E(Gc) =
(

E(G)⊕
(

E(G)⊕ E(G�)
)

)

⊕ E(Gc)

=
(

E(G)⊕ (S1 ∪ S2)
)

⊕ E(Gc)

=
(

E(G)⊕ E(Gc)
)

⊕ (S1 ∪ S2)

=
(

(

E(G)⊕ E(Gc)
)

⧵(S1 ∪ S2)
)

∪
(

(S1 ∪ S2)⧵
(

E(G)⊕ E(Gc)
)

)

=
(

E(G)⊕ E(Gc)
)

⧵S2 ∪ S1,

S1 =
(

E(G)⊕ E(G�)
)

⧵
(

E(G)⊕ E(Gc)
)

⇒ S1 ∩
(

E(G)⊕ E(Gc)
)

= �

S2 =
(

E(G)⊕ E(G�)
)

⧵S1 ⇒ S2 ⊆ E(G)⊕ E(Gc).

|E(G�)⊕ E(G)| + |E(G�)⊕ E(Gc)| = k + d + 2|S1| > k + d,

19

1 3

Algorithmica (2021) 83:1–44	

Proof  We present a parameterized reduction from Clique, where given a graph G0
and an integer � , we are asked to decide whether G0 contains a complete sub-
graph of order � . Clique is W[1]-hard when parameterized by �[18]. Given an
instance (G0,�) of Clique, we construct an instance (G,Gc, k, d) of DCEditing
(Edge Dist) as follows. The construction is illustrated in Fig. 7. We set L1 ∶= �

7 + 1
and L2 ∶= �

2 . We first construct G. For every vertex v of G0 , we create a clique Cv
of size L1 + 1 = �

7 + 2 , and for every edge e of G0 , we create a clique Ce of size 2L2 .
Note that G is already a cluster graph. Next, we construct Gc . For every vertex v
of G0 , let C1

e
,C2

e
,… ,C

p
e be all cliques of size 2L2 in G which represent all edges

incident on v. For each vertex v of G0 , we create two cliques in Gc . One of them con-
tains L1 vertices of Cv , the other contains the one remaining vertex of Cv , called the
single vertex of Cv , and L2 vertices from every Ci

e
 for 1 ≤ i ≤ p (see also Fig. 7). Set

and set d ∶= |E(G)⊕ E(Gc)| − k . This reduction works in polynomial time.
Now we show that there is a clique of size � in G0 if and only if there is a cluster

graph G� = (V ,E�) such that |E� ⊕ E(G)| ≤ k and |E� ⊕ E(Gc)| ≤ d . To simplify the
proof, we assume � ≥ 3 in the following.

(⇒ ): Assume that there is a clique C∗ of size � in G0 . We modify graph G in the
following two steps. We first partition cliques in G according to C∗ by deleting edges
as follows. For every vertex v in C∗ , find the clique Cv and delete edges between the
single vertex in Cv and the remaining L1 vertices. For every edge e in C∗ , find the
clique Ce in G and delete edges to partition the clique into two parts, each with L2

vertices. In the first step we delete �L1 +
(

�

2

)

L2
2 edges. The next step is to com-

bine some cliques by adding edges. For every vertex v in C∗ , we combine the single
vertex from Cv and � − 1 cliques of size L2 into one clique. In this step we

add �(� − 1)L2 + �

(

� − 1

2

)

L2
2 edges. Thus in total we modify k edges.

(3)k ∶= �L1 + �(� − 1)L2 + �

(

� − 1

2

)

L2
2 +

(

�

2

)

L2
2

v u

Cv Cu

Cv,u

Fig. 7   Illustration of the constructed instance for the proof of Lemma 5. On the left side there are two
connected vertices v and u in G0 and three edges incident on v. On the right side we have the correspond-
ing parts in G and G

c
 . Red dotted circles represent cliques in G

c
 and blue solid borders represent cliques

in G (Color figure online)

20	 Algorithmica (2021) 83:1–44

1 3

(⇐ ): Assume that there is a cluster graph G� = (V ,E�) such
that |E(G�)⊕ E(G)| ≤ k and |E(G�)⊕ E(Gc)| ≤ d . Since k + d = |E(G)⊕ E(Gc)| ,
we have |E(G)⊕ E(G�)| = k and |E(G�)⊕ E(Gc)| = d . Thus, to get the solution G′
we have to modify exactly k edges from E(G)⊕ E(Gc) . As a result, we only have the
following four kinds of operations:

1.	 partition a clique Cv in G into two parts, one with the single vertex and the other
with L1 vertices, which costs L1 = �

7 + 1 edge deletions;
2.	 partition a clique Ce in G into two parts, each with L2 vertices contained in one

clique in Gc , which costs L22 = �
4 edge deletions;

3.	 combine the single vertex of Cv with some cliques of size L2 which come from
partitioning clique Ce into two parts, which costs aL2 = a�2 edge insertions for
some integer a;

4.	 combine some cliques of size L2 which come from partitioning clique Ce into two

parts, which costs
(

b

2

)

L2
2 =

(

b

2

)

�
4 edge insertions for some integer b.

First, we claim that there must be � cliques of size L1 + 1 in G that have been
partitioned. Note that k = �

8 +
1

2
�
7 − �

6 +
1

2
�
5 + �

4 − �
3 + � , where the last

additive term � can only come from partitioning � cliques of size L1 + 1 in G.
In addition, there cannot be more than � cliques of size L1 + 1 in G that have
been partitioned, since (� + 1)L1 > k (assuming � ≥ 3 ). Thus exactly � cliques of
size L1 + 1 in G have to be partitioned and we get � single vertices. This costs �L1
edge deletions, which is the first additive item of Eq. (3).

Next, we claim that at least �(� − 1) cliques of size L2 are combined with
these � single vertices we got in the last step. This is because the second term
of k, �(� − 1)L2 , is strictly less than �4 , and hence can only come from the third
kind of operation, combining the single vertex with cliques of size L2 . Suppose
that �(� − 1) + � cliques of size L2 are combined with these single vertices for
some � ≥ 0 . Then we need (�(� − 1) + �)L2 edge insertions. Note that the second
additive term of Eq. (3) is �(� − 1)L2.

Then, we need to partition at least
�

�

2

�

+
⌈�⌉

2
 cliques of size 2L2 so that we can

combine them with single vertices. Denote by f1(�, �) the number of edge deletions

this separation cost. Clearly, f1(�, �) ≥ (

�

�

2

�

+
⌈�⌉

2
)L2

2 . Notice that the last addi-

tive term of Eq. (3) is
(

�

2

)

L2
2.

Finally, when we combine a single vertex with more than one clique of order L2 ,
then we also need to add edges between these cliques. Denote by f2(�, �) the num-
ber of edge insertions between these cliques. Since we have �(� − 1) + � cliques of
size L2 and � single vertices, and every clique is combined with one single vertex, it

follows that f2(�, �) ≥ �

(

� − 1

2

)

L2
2 . Notice that the third additive term of Eq. (3)

is �
(

� − 1

2

)

L2
2.

21

1 3

Algorithmica (2021) 83:1–44	

Overall, we need

edge modifications. Equality only holds if � = 0 , f1(�, �) =

(

�

2

)

L2
2 ,

and f2(�, �) = �

(

� − 1

2

)

L2
2 . Here f2(�, �) = �

(

� − 1

2

)

L2
2 means that we can

partition all �(� − 1) cliques of size L into � parts, each with � − 1 cliques, and then
combine all � − 1 cliques in each part with one single vertex. Moreo-

ver, f1(�, �) =
(

�

2

)

L2
2 means that all these �(� − 1) cliques of order L come from

partitioning
(

�

2

)

 cliques of order 2L2 . Then, in G0 we have � vertices (correspond-

ing to these � single vertices) and
(

�

2

)

 edges (corresponding to these
(

�

2

)

 cliques

of order 2L2 ) such that each vertex has � − 1 incident edges from these
(

�

2

)

 edges.

Hence, these � vertices form a clique in G0 . 	� ◻

Note that in the reduction of Lemma 5 the constructed graph G is a cluster graph.
According to Observations 1 and 2, this reduction can also be used to prove W[1]-
hardness with respect to the distance d.

Corollary 1  DCEditing (Edge Dist) is NP-complete and W[1]-hard
with respect to the distance d, even if the input graph G is a cluster graph
and k + d = |E(G)⊕ E(Gc)|.

The following result also exploits the property that we need exactly k edge modi-
fications when k + d = |E(G)⊕ E(Gc)|.

Lemma 6  DCDeletion (Edge Dist) is W[1]-hard with respect to the distance d,
even when k + d = |E(G)⊕ E(Gc)|.

Proof  We present a parameterized reduction from Multicolored Clique. In Multi-
colored Clique, we are given an integer � and a graph where every vertex is colored
with one of � colors. The task is to find a clique of order � containing one vertex of
each color. Multicolored Clique is W[1]-hard with respect to �[20].
Let (G0 = (V ,E),�) be an instance of Multicolored Clique. We construct an
instance (G,Gc, k, d) of DCDeletion (Edge Dist) as follows. For every vertex v
in G0 , create a clique Cv with 2� vertices in Gc . Add a special clique with one ver-
tex v∗ in G0 . For graph G, first copy Gc and then add more edges as follows: add
edges between v∗ and all other vertices in G, and for every edge {u, v} in G0 , add all

edges between vertices in Cu and vertices in Cv . Set d = 2�2 + 4�2

(

�

2

)

and k = |E(G)⊕ E(Gc)| − d . This reduction works in polynomial time and the con-
struction is illustrated in Fig. 8.

�L1 + (�(� − 1) + �)L2 + f2(�, �) + f1(�, �) ≥ k

22	 Algorithmica (2021) 83:1–44

1 3

Note that k + d = |E(G)⊕ E(Gc)| and according to Observation 2 a solution G′
for instance (G,Gc, k, d) has to delete exactly k edges from E(G)⊕ E(Gc) from G,
which is equivalent to adding exactly d edges from E(G)⊕ E(Gc) to Gc . Next we
show that there is a multicolored clique of order � in G0 if and only if there is a clus-
ter graph G� = (V ,E(G�)) such that |E(G�)⊕ E(G)| ≤ k and |E(G�)⊕ E(Gc)| ≤ d.

(⇒∶) Suppose that there is a multicolored clique C0 of size � in G0 , then for all
vertices in C0 find the corresponding cliques in Gc , and combine these � cliques and
vertex v∗ into one big clique. Denote the resulting graph by G′ . To get graph G′

from G, we need to delete |E(G)⊕ E(Gc)| − (2�2 + 4�2

(

�

2

)

) = k edges, and all

these edges are in E(G)⊕ E(Gc) . In this way we get a new cluster graph G′ such
that |E(G�)⊕ E(G)| = k and |E(G�)⊕ E(Gc)| = d.

(⇐∶) Suppose that there is a cluster graph G′ such that |E(G�)⊕ E(G)| ≤ k
and |E(G�)⊕ E(Gc)| ≤ d . Since k + d = |E(G)⊕ E(Gc)| , it has to hold

that |E(G�)⊕ E(G)| = k and |E(G�)⊕ E(Gc)| = d . Since d = 2�2 + 4�2

(

�

2

)

 , and

except for v∗ , every clique in Gc has 2� vertices, 2�2 in d must come from adding
edges between v∗ and � cliques in Gc . Since G′ is a cluster graph, there must be edges
between every pair of these � cliques in G, which means that there is a multicolored
clique of order � in G0 . 	� ◻

The final two results show W[1]-hardness with respect to the distance d for
DCEditing (Matching Dist) and DCDeletion (Matching Dist).

Lemma 7  DCEditing (Matching Dist) is W[1]-hard with respect to the distance d.

Proof  We present a parameterized reduction from Clique on Regular Graphs, where
given a regular graph G∗ = (V ,E) with vertex degree r with r < n

2
 , and a number k∗

with k∗ ≤ r , we are asked to decide whether G∗ contains a clique of size k∗ . Clique
on Regular Graphs is W[1]-hard with respect to k∗[10]. Given an instance (G0, k0, r)

Fig. 8   Illustration of the con-
structed instance for the proof of
Lemma 6. A circle represents a
clique in G

c
 . Circles in the same

blue dotted ellipse mean that
the corresponding vertices in G0
have the same color. Dotted
edges represent the additional
edges in G. Vertex v∗ is con-
nected to all other vertices in G.
For an edge {u, v} in G0 , the
corresponding two cliques C

u

and C
v
 are connected in G

(Color figure online)

v∗

Cu

Cv

. . .

. . .

23

1 3

Algorithmica (2021) 83:1–44	

of Clique on Regular Graphs, we construct an instance (G,Gc, d, k) of DCEditing
(Matching Dist) as follows.

Graph G is the same as G0 and graph Gc = (V ,

(

V

2

)

) is a complete graph.

Set d ∶= k0 and k ∶= n(n−1−r)

2
− k0(n + k0 − 2r − 2) . The construction can trivially

be done in polynomial time. In the following we show that there is a clique of size k0
in G0 if and only if (G,Gc, d, k) is a yes-instance of DCEditing (Matching Dist).

(⇒ ): Assume that there is a clique of order k0 in G0 ; we construct a graph G′
which consists of two cliques, where one of them contains the vertices from the
clique of order k0 in G0 ; the other, denoted by Cmax , contains the remaining vertices
and has order n − k0 . Next we compute |E(G)⊕ E(G�)| , which consists of two parts:

•	 D(k0) : the set of edges between vertices in Cmax and the remaining vertices,
and

•	 A(k0) : the set of added edges between vertices in Cmax.

Since the vertices outside Cmax form a clique, every such vertex has r − k0 + 1
edges connected to vertices in Cmax . Thus |D(k0)| = k0(r − k0 + 1) . To deter-
mine |A(k0)| , we count the sum of the degrees of vertices in Cmax . Before add-
ing edges to Cmax , the sum is (n − k0)r . After adding edges the sum should
be (n − k0)(n − k0 − 1) + |D(k0)| . So the number of edges which need to added
to Cmax is

Then we get the size of the modification set for G′:

(⇐ ): To simplify the following proof, we define three functions:

•	 g1(x) ∶= x(r − x + 1),
•	 g2(x) ∶=

(n−x)(n−x−1)+g1(x)−(n−x)r

2
 , and

•	 f (x) ∶= g1(x) + g2(x) =
n(n−1−r)

2
− x(n + x − 2r − 2).

Since r < n

2
 , we have that f(x) is monotonically decreasing and f (k0) = k.

Suppose that there is no clique of size k0 in G0 . We need to show that there is
no cluster graph G′ satisfying both |E(G)⊕ E(G�)| ≤ k and d(Gc,G

�) ≤ d . Suppose
towards a contradiction that there is such a cluster graph G′ . Denote the largest clus-
ter in G′ as Cmax . Since dM(Gc,G

�) ≤ d , we have that |V(Cmax)| ≥ n − k0 . Define

•	 D: the set of edges between vertices in Cmax and the remaining vertices, and
•	 A: the set of added edges between vertices in Cmax.

|A(k0)| =
(n − k0)(n − k0 − 1) + |D(k0)| − (n − k0)r

2
.

|E(G)⊕ E(G�)| = |D(k0)| + |A(k0)| =
n(n − 1 − r)

2
− k0(n + k0 − 2r − 2) = k.

24	 Algorithmica (2021) 83:1–44

1 3

To get the clique Cmax from G, we have to delete all edges in D and add all edges
in A, thus |E(G)⊕ E(G�)| ≥ |D| + |A| . We distinguish the following two cases:

Case 1 |Cmax| = n − k0 . Every vertex outside Cmax has at least r − k0 + 1 edges
connected to vertices in Cmax , and since there is no clique of order k0 in G0 , among
all vertices outside Cmax , there is at least one vertex which has more than r − k0 + 1
edges connected to vertices in Cmax . This means that |D| > g1(k0) and |A| > g2(k0) .
Thus, we have:

Case 2 |Cmax| > n − k0.
Suppose that |Cmax| = n − k� , where k′ < k0 is the number of all vertices out-

side Cmax . Now we have |D| ≥ g1(k
�) and |A| ≥ g2(k

�) , and

The last inequality holds since f(k) is monotonically decreasing.
In both cases we have that there is no solution for instance (G,Gc, d, k) . 	� ◻

The above reduction cannot be used to show W[1]-hardness with respect to d
for DCDeletion (Matching Dist) since both edge insertions and edge deletions
are needed. Next we show that DCDeletion (Matching Dist) remains W[1]-hard
with respect to d.

Lemma 8  DCDeletion (Matching Dist) is W[1]-hard with respect to the
distance d.

Proof  We present a parameterized reduction from Clique on Regular Graphs,
where, given a regular graph G∗ = (V ,E) with vertex degree r with r < n

2
 , and num-

ber k∗ with k∗ ≤ r , we are asked to decide whether G∗ contains a clique of size k∗ .
Clique on Regular Graphs is known to be W[1]-hard with respect to k∗[10]. Given
an instance (G0,�, r) of Clique on Regular Graphs, where G0 is a regular graph

|E(G)⊕ E(G�)| ≥ |D| + |A| > g1(k0) + g2(k0) = f (k0) = k.

|E(G)⊕ E(G�)| ≥ |D| + |A| ≥ g1(k
�) + g2(k

�) = f (k�) > f (k0) = k.

.

.

v0

vi

v′i

G0

Fig. 9   Illustration of constructed graph G in the proof of Lemma 8. Edges in G0 are not shown. Every
vertex v

i
 is connected to its copy v′

i
 and the universal vertex v0

25

1 3

Algorithmica (2021) 83:1–44	

with vertex degree r, we construct an instance (G,Gc, d, k) of DCDeletion (Match-
ing Dist) as follows. The construction is illustrated in Fig. 9.

Let {v1, v2,… , vn} be the vertex set of G0 . For graph G, we first copy the whole
graph G0 . Then we add a universal vertex and a private neighbor for each original
vertex: we add a universal vertex v0 and add an edge between v0 and every vertex vi
in G0 , and for every vertex vi in G0 , we add vertex v′

i
 and add an edge between vi

and v′
i
 . The graph Gc has the same vertex set as G. Moreover, graph Gc contains

edges between vi and v′
i
 for all 1 ≤ i ≤ n . That is, Gc consists of n + 1 cliques: C0 with

V(C0) = {v0} and Ci with V(Ci) = {vi, v
�
i
} for 1 ≤ i ≤ n . Set k = n +

rn

2
−

(

�

2

)

and d = � . Next we show that there is clique of size � in G0 if and only if the con-
structed instance (G,Gc, d, k) is a yes-instance of DCDeletion (Matching Dist).

(⇒ ): Assume that there is clique C∗ of order � in G0 . Then in G we first delete
edges {vi, v

�
i
} for all vi ∈ V(C∗) and delete edges {v0, vi} for

all vi ∈ {v1, v2,… , vn}⧵V(C
∗) . Second, delete all edges between vertices

in {v1, v2,… , vn} except for edges between vertices in C∗ . We delete n edges in the

first step and rn
2
−

(

�

2

)

 edges in the second step, since G0 is a regular graph and C∗

is a clique. By deleting these n + rn

2
−

(

�

2

)

= k edges, we get a cluster graph G′

which contains n + 1 cliques: C′
i
 with V(C�

i
) = {v�

i
} for vi ∈ V(C∗), C′

j

with V(C�
j
) = {vj, v

�
j
} for vi ∈ {v1, v2,… , vn}⧵V(C

∗) , and C′
0

with V(C�
0
) = {v0} ∪ V(C∗) . Thus dM(G�,Gc) = �.

(⇐ ): Assume that (G,Gc, d, k) is a yes-instance of DCDeletion (Matching
Dist) and let G′ be a solution. Since we can only delete edges, for every pair of
edges {vi, v�i} and {vi, v0} for vi ∈ {v1, v2,… , vn} , we have to delete one of them
because {v0, v�i} ∉ E(G) . This means that for every vi ∈ {v1, v2,… , vn} vertex vi is
either in the same clique with v′

i
 or with v0 . Suppose that in G′ there are p ≤ � verti-

ces from {v1, v2,… , vn} which are in the same clique with v0 . Then these p vertices
must form a clique C′ in G0 . To get G′ , we have to delete edges {vi, v�i} for
all vi ∈ V(C�) and edge {vi, v0} for every vertex vi ∈ {v1, v2,… , vn}⧵V(C

�) . This
costs n edge deletions. Moreover, we have to delete all edges between vertices

in {v1, v2,… , vn} except for edges between vertices in C′ . This costs rn
2
−

(

p

2

)

 edge

deletions. Overall we have

Since G′ is a solution, we have that |E(G)⊕ E(G�)| ≤ k = n +
rn

2
−

(

�

2

)

 . Hence,

p ≥ � and G0 contains a clique of order � . 	� ◻

We now have shown all intractability results stated in Theorem 2.

|E(G)⊕ E(G�)| = n +
rn

2
−

(

p

2

)

.

26	 Algorithmica (2021) 83:1–44

1 3

4 � Fixed‑Parameter Tractability Results

In this section, we complement the hardness results of Sect. 3 by identifying trac-
table cases for the considered variants of Dynamic Cluster Editing. We first show
that all problem variants admit a polynomial kernel for the combination of the two
parameters budget k and distance d. Then we present further FPT-results with
respect to single parameters.

4.1 � Polynomial Kernels for the Combined Parameter (k + d)

In this subsection, we present polynomial kernels with respect to the parameter com-
bination (k + d) for all considered variants of Dynamic Cluster Editing : Formally,
we prove the following theorem.

Theorem 3  The following problems admit an O(k2 + d2)-vertex kernel:

•	 DCEditing (Matching Dist),
•	 DCDeletion (Matching Dist), and
•	 DCCompletion (Matching Dist).

The following problems admit an O(k2 + k ⋅ d)-vertex kernel:

•	 DCEditing (Edge Dist),
•	 DCDeletion (Edge Dist), and
•	 DCCompletion (Edge Dist).

All kernels can be computed in O(|V|3) time.
We describe polynomial-time data reduction rules that each take as input an

instance (G = (V ,E),Gc = (V ,Ec), k, d) and output a reduced instance. We say that
a data reduction rule is correct if the reduced instance is a yes-instance if and only
if the original instance is a yes-instance (of the corresponding problem variant). A
data reduction rule works for all problem variants that fit a given restriction. For
example, the restriction Editing/Deletion (given for Reduction Rule 2a) addresses
the problems: DCEditing (Edge Dist), DCEditing (Matching Dist), DCDeletion
(Edge Dist), and DCDeletion (Matching Dist). If no restriction is given, then a data
reduction rule works for all problem variants. In the correctness proof of each data
reduction rule, we assume that all previous rules are not applicable.

The first rule formalizes an obvious constraint on the solvability of the instance
(for all problem variants). The correctness of this rule is obvious.

Reduction Rule 1  If k < 0 or d < 0, then output NO.1

1  Formally, this does not fit the definition of a data reduction rule, but we can assume that instead of NO
the rule outputs a trivial no-instance of constant size.

27

1 3

Algorithmica (2021) 83:1–44	

We next use some well-known data reduction rules for classic Cluster Edit-
ing[26] to get a graph which consists of isolated cliques plus one vertex set of
size k2 + 2k that does not contain any isolated cliques. These rules remove edges
that are part of k + 1 induced P3 s and add edges between non-adjacent vertex pairs
that are part of k + 1 induced P3 s. The correctness proofs are straightforward adapta-
tions of the correctness proofs of these rules for classic Cluster Editing. The reason
we use these data reduction rules instead of rules used for linear-vertex kernels for
classic Cluster Editing[11, 13, 27] is that these rules do not eliminate any possible
solution. Thus, the presented rules perform edge edits that are provably part of every
optimal edge modification set.

Reduction Rule 2a  (Editing/Deletion) If there are k + 1 induced P3s in G that con-
tain a common edge {u, v} ∈ E, then remove that edge from E and decrease k by
one.

Reduction Rule 2b  (Completion) If there are k + 1 induced P3s in G that contain a
common edge {u, v} ∈ E, then output NO.

Reduction Rule 3a  (Editing/Completion) If there are k + 1 induced P3s in G that
contain a common non-edge {u, v} ∉ E, then add that edge to E and decrease k by
one.

Reduction Rule 3b  (Deletion) If there are k + 1 induced P3s in G that contain a
common non-edge {u, v} ∉ E, then output NO.

Lemma 9  Reduction Rules 2a, 2b, 3a, and 3b are correct.

Proof  Let I = (G = (V ,E),Gc = (V ,Ec), k, d) be an instance of a problem variant of
Dynamic Cluster Editing and let I∗ be the instance after applying any of the four
reduction rules. It is obvious that if I is a no-instance, then I∗ is also a no-instance.
In the following we show that if I is a yes-instance, then so is I∗ for Reduction
Rule 2a and Reduction Rule 2b. The correctness of Reduction Rule 3a and Reduc-
tion Rule 3b follows by symmetric arguments.

We now show for Reduction Rule 2a that the removed edge has to be in any solu-
tion for instance I. This implies that if I is a yes-instance of a completion variant of
the problem, then Reduction Rule 2b is not applicable. Assume for the sake of con-
tradiction that I is a yes-instance and that I∗ is a no-instance. Then there is a cluster
graph G′ with |E(G�)⊕ E| ≤ k that is a solution for I and contains edge {u, v} . How-
ever, we know that there are k + 1 vertices w1,w2,… ,wk+1 such that G[{u, v,wi}] is
a P3 for all 1 ≤ i ≤ k + 1 (otherwise the rule would not be applicable). To destroy
these P3 s without removing edge {u, v} we need at least k + 1 edge additions or dele-
tions. This is a contradiction to the assumption that |E(G�)⊕ E| ≤ k . 	� ◻

As for classic Cluster Editing we can upper-bound the number of vertices that
are part of P3 s, leading to the following reduction rule.

28	 Algorithmica (2021) 83:1–44

1 3

Reduction Rule 4  If there are more than k2 + 2k vertices in V that are all con-
tained in some induced P3 in G, then output NO.

Lemma 10  Reduction Rule 4 is correct.

Proof  Let I = (G = (V ,E),Gc = (V ,Ec), k, d) be an instance of a problem variant
of Dynamic Cluster Editing where Reduction Rule 2a / Reduction Rule 2b and
Reduction Rule 3a / Reduction Rule 3b are not applicable. We show that if Reduc-
tion Rule 4 is applicable, then I is a no-instance.

Let R ⊆ V denote the set of vertices in V that are each contained in an
induced P3 in G. Assume for the sake of contradiction that I is a yes-instance and
that Reduction Rule 4 is applicable, that is, |R| > k2 + 2k . Then there is a clus-
ter graph G′ with |E(G�)⊕ E| ≤ k that is a solution for I. For each {u, v} ⊆ R ,
let Ruv denote the set of vertices w such that G[{u, v,w}] is a P3 . Since the afore-
mentioned rules are not applicable, we know that |Ruv| ≤ k . We further know that
R ⊆

⋃

{u,v}∈E(G�)⊕E({u, v} ∪ Ruv) . It follows that |R| ≤ k(k + 2) = k2 + 2k . This is a
contradiction to the assumption that Reduction Rule 4 is applicable. 	� ◻

In classic Cluster Editing we can just remove all isolated cliques from the graph.
This is not always possible in our setting because of the distance constraints to Gc .
However, if there is a vertex set that forms an isolated clique both in G and Gc , then
we can remove it since it has no influence on k or d in any problem variant. This is
formalized in the next rule. We omit a formal correctness proof.

Reduction Rule 5  If there is a vertex set C ⊆ V that is an isolated clique in G
and Gc, then remove all vertices in C from G and Gc.

Now we introduce four new problem-specific reduction rules that will allow us to
upper-bound the sizes of all remaining isolated cliques and their number in a func-
tion depending on k + d . The next rules deal with large isolated cliques and allow us
to either remove them or to conclude that we face a no-instance. We first state the
reduction rule for the matching-based distance problem variants and then turn to the
edge-based distance variants.

Reduction Rule 6a  (Matching-based distance) If there is a vertex set C ⊆ V with
|C| > k + 2d + 2 that is an isolated clique in G, then

•	 if for each vertex set C′ ⊆ V that is an isolated clique in Gc we have that
|C ∩ C�

| ≤ d, then answer NO,
•	 otherwise, if there is a vertex set C′ ⊆ V that is an isolated clique in Gc and

|C ∩ C�
| > d, then remove vertices in C from G and Gc and decrease d by

|C⧵C′
|. Furthermore, if d ≥ 0, then add a set Cd of k + d + 1 fresh vertices to V.

Add all edges between vertices in Cd to G and add all edges between vertices
in Cd ∪ (C�⧵C) to Gc (if not already present).

29

1 3

Algorithmica (2021) 83:1–44	

Lemma 11  Reduction Rule 6a is correct.

Proof  Let I = (G = (V ,E),Gc = (V ,Ec), k, d) be an instance of a problem variant of
Dynamic Cluster Editing that uses the matching-based distance and let I∗ be the
instance after applying the reduction rule. Note that if there is a vertex set C ⊆ V
with |C| > k + 2d + 2 > k + 1 that is an isolated clique in G, then we can neither
divide this clique into smaller cliques nor can we add any vertex to this clique, since
then more than k edge modifications would be necessary (or it is not allowed in the
case of deletion or completion). This means that if I is a yes-instance and G′ is the
solution for I, then for all {u, v} ∈ E(G�)⊕ E we have that {u, v} ∩ C = � or, in other
words, C is also an isolated clique in G′.

We first argue that if for each isolated clique C′ in Gc we have that |C ∩ C�
| ≤ d ,

then we face a no-instance. Assume for contradiction that I is a yes-instance and
G′ is the solution for I. Then we know that C is also an isolated clique in G′ and
no matter to which clique C′ in Gc the clique C in G′ is matched, we always have
that |C⧵C′

| > d and hence the matching-based distance between G′ and Gc is too
large. This is a contradiction to the assumption that I is a yes-instance.

Now assume that there is an isolated clique C′ in Gc with |C ∩ C�
| > d . We show

that if I is a yes-instance, then I∗ is a yes-instance. Let I be a yes-instance and let G′
be a solution for I. Then we know that C is also an isolated clique in G′ . If C in G′
is not matched to C′ in Gc , then the matching-based distance between G′ and Gc is
larger than d. Hence, we can assume that C in G′ is matched to C′ in Gc.

For the next argument we introduce the following terminology. If in an optimal
solution an isolated clique C in G′ is matched to an isolated clique C′ in Gc , then
we say that this match contributes |C⧵C�

| + |C�⧵C| to the matching-based distance
between G′ and Gc.

Now we look at the instance I∗ = (G∗ = (V∗,E∗),G∗
c
= (V∗,E∗

c
), k∗, d∗) where

the vertices in C are removed from G and Gc . The reduction rule further reduces d
by |C⧵C′

| and introduces a new isolated clique Cd of size k + d + 1 to G. In Gc we have
that Cd ∪ (C�⧵C) is an isolated clique. We claim that G⋆�

= (V∗,E∗ ⊕ (E(G�)⊕ E))
is a valid solution for I∗ . First, note that G⋆′ is a cluster graph. Since the removed
clique and the added clique both have order larger than k, we can conclude that
G⋆′ is the graph that results from removing the clique C from G′ and then adding
the clique Cd . Concerning the matching-based distance, we can replace the match
between C and C′ in G′ and Gc by the match between Cd and Cd ∪ (C�⧵C) in G⋆′
and G∗

c
 , respectively. Note that the contribution of the match between C and C′ in G′

and Gc , respectively, minus |C⧵C′
| (the value by which d is decreased by the reduc-

tion rule) is the same as the contribution of the match between Cd and Cd ∪ (C�⧵C)
in G⋆′ and G∗

c
 , respectively. Hence, we can conclude that the matching-based dis-

tance between G′ and Gc is the same as the matching-based distance between G⋆′
and G∗

c
 . It follows that I∗ is a yes-instance.

By a symmetric argument it follows that if I∗ is a yes-instance, then I is a yes-
instance. 	� ◻

30	 Algorithmica (2021) 83:1–44

1 3

Reduction Rule 6b  (Edge-based distance) If there is a vertex set C ⊆ V with
|C| > k + 1 that is an isolated clique in G, then decrease d by

|Ec| +

(

|C|

2

)

− 2|E(Gc[C])| − |E(Gc[V⧵C])| and remove the vertices in C from G

and Gc.

Lemma 12  Reduction Rule 6b is correct.

Proof  Let I = (G = (V ,E),Gc = (V ,Ec), k, d) be an instance of a problem variant of
Dynamic Cluster Editing that uses the edge-based distance and let I∗ be the
instance after applying the reduction rule. Note that if there is a vertex set C ⊆ V
with |C| > k + 1 that is an isolated clique in G, then we can neither divide this clique
into smaller cliques nor can we add any vertex to this clique, since then more than k
edge modifications would be necessary (or it is not allowed in the case of deletion or
completion). This means that if I is a yes-instance and G′ is the solution for I, then
for all {u, v} ∈ E(G�)⊕ E we have that {u, v} ∩ C = � or, in other words, C is also
an isolated clique in G′ . This implies that removing C from G′ and Gc decreases d by
the number of edges between vertices in C that are present in G′ but not present
in Gc plus the number of edges in Gc that have one endpoint in C and one endpoint in
V⧵C (note that no such edges are present in G′ ). The number of edges between verti-

ces in C that are present in G′ is clearly
(

|C|

2

)

 and the number of edges between

vertices in C that are present in Gc is |E(Gc[C])| . The number of edges in Gc that
have one endpoint in C and one endpoint in V⧵C is the total number of edges in Gc
minus the number of edges in Gc between vertices in C and the edges in Gc between
vertices in V⧵C . Hence, we

get d =

(

|C|

2

)

− |E(Gc[C])| + |Ec| − (|E(Gc[C])| + |E(Gc[V⧵C])|) , which yields

the decrease conducted by the reduction rule. Note that this number is independent
of G′ . It follows that G�[V⧵C] is a solution for I∗ . Thus, I∗ is a yes-instance.

By an analogous argument we get that if I∗ is a yes-instance, then I is also a yes-
instance. 	� ◻

If none of the previous rules are applicable, then we know that there are no
large cliques left in the graph. The next rules allow us to conclude that we face a
no-instance if there are too many small cliques left.

Reduction Rule 7a  (Matching-based distance) If there are more than 2k + d iso-
lated cliques in G, then output NO.

Lemma 13  Reduction Rule 7a is correct.

Proof  Let I = (G = (V ,E),Gc = (V ,Ec), k, d) be an instance of a problem vari-
ant of Dynamic Cluster Editing that uses the matching-based distance. We show
that if Reduction Rule 5 is not applicable and there are 2k + d + 1 isolated cliques
C1,C2,… ,C2k+d+1 ⊆ V in G, then I is a no-instance.

31

1 3

Algorithmica (2021) 83:1–44	

Assume for the sake of contradiction that I is a yes-instance. Then there is a clus-
ter graph G′ with |E(G�)⊕ E| ≤ k that is a solution for I. Since Reduction Rule 5 is
not applicable we have that for isolated cliques Ci in G with 1 ≤ i ≤ 2k + d + 1 the
vertex set Ci is not an isolated clique in Gc . Each edge modification in E(G�)⊕ E
when applied to G can reduce the number of isolated cliques in G that are not iso-
lated cliques in Gc by at most 2. This happens when two isolated cliques of G are
joined in G′ and the union of their vertices is an isolated clique in Gc . It is easy to
check that this is the best case. It follows that after at most k edge modifications, G′
still has at least d + 1 isolated cliques that are not isolated cliques in Gc . Thus the
matching-based distance cannot be decreased to d which is a contradiction to the
assumption that we face a yes-instance. 	� ◻

Reduction Rule 7b  (Edge-based distance) If there are more than 2(k + d) isolated
cliques in G, then output NO.

Lemma 14  Reduction Rule 7b is correct.

Proof  Let I = (G = (V ,E),Gc = (V ,Ec), k, d) be an instance of a problem vari-
ant of Dynamic Cluster Editing that uses the edge-based distance. We show that
if Reduction Rule 7b is not applicable and there are 2(k + d) + 1 isolated cliques
C1,C2,… ,C2k+d+1 ⊆ V in G, then I is a no-instance.

Let M = E⊕ Ec . Since Reduction Rule 7b is not applicable, we have that for iso-
lated cliques Ci in G with 1 ≤ i ≤ 2(k + d) + 1 the vertex set Ci is not an isolated
clique in Gc . It follows that for all Ci there is a vertex u ∈ Ci and a vertex v ∈ V such
that {u, v} ∈ M . This implies that |M| > k + d and, hence, we face a no-instance. 	
� ◻

In the following we show that the rules we presented decrease the number of ver-
tices of the instance to a number polynomial in k + d.

Lemma 15  Let (G = (V ,E),Gc = (V ,Ec), k, d) be an instance of any one of the con-
sidered problem variants of Dynamic Cluster Editing that uses the matching-based
distance. If none of the suitable data reduction rules applies, then |V| ∈ O(k2 + d2)
and |E| ∈ O(k3 + d3).

Proof  Let I = (G = (V ,E),Gc = (V ,Ec), k, d) be an instance of a problem variant of
Dynamic Cluster Editing that uses the matching-based distance.

Since Reduction Rule 4 is not applicable, we know that there are at most k2 + 2k
vertices in G that are not part of an isolated clique. It is also known that there are O(k3)
edges between those vertices[26]. Further, since Reduction Rule 7a is not applicable,
we know that there are at most 2k + d isolated cliques in G. Since Reduction Rule 6a
is not applicable, we know that each isolated clique has size at most k + 2d + 2 . This
yields a maximum number of 3k2 + 2d2 + 5dk + 2d + 6k ∈ O(k2 + d2) vertices and
O(k3 + d3) edges. 	� ◻

32	 Algorithmica (2021) 83:1–44

1 3

Lemma 16  Let (G = (V ,E),Gc = (V ,Ec), k, d) be an instance of any one of the con-
sidered problem variants of Dynamic Cluster Editing that uses the edge-based dis-
tance. If none of the suitable data reduction rules applies, then |V| ∈ O(k2 + k ⋅ d)
and |E| = O(k3 + k2 ⋅ d).

Proof  Let I = (G = (V ,E),Gc = (V ,Ec), k, d) be an instance of a problem variant of
Dynamic Cluster Editing that uses the edge-based distance.

Since Reduction Rule 4 is not applicable, we know that there are at most k2 + 2k
vertices in G that are not part of an isolated clique. It is also known that there are
O(k3) edges between those vertices[26]. Further, since Reduction Rule 7b is not
applicable, we know that there are at most 2(k + d) isolated cliques in G. Since
Reduction Rule 6b is not applicable, we know that each isolated clique has size at
most k + 1 . This yields a maximum number of 2dk + 2d + 3k2 + 4k ∈ O(k2 + k ⋅ d)
vertices and O(k3 + k2 ⋅ d) edges. 	� ◻

Finally, we can apply all data reduction rules exhaustively in O(|V|3) time.

Lemma 17  Let (G = (V ,E),Gc = (V ,Ec), k, d) be an instance of any one of the con-
sidered problem variants of Dynamic Cluster Editing. Then the respective reduc-
tion rules can be exhaustively applied in O(|V|3) time.

Proof  We first exhaustively apply Reduction Rule 1, Reduction Rule 2a, Reduction
Rule 2b, Reduction Rule 3a, Reduction Rule 3b, and Reduction Rule 4. These rules
are well-known data reduction rules for classic Cluster Editing and it is known that
these rules can exhaustively be applied in O(|V|3) time[26] if the graph is repre-
sented by an adjacency matrix.

It is easy to check that none of the remaining rules introduces new induced P3 s to
G. Hence, we know that once these rules (except Reduction Rule 1) are exhaustively
applied, then they will not be applicable after any of the other rules is applied.

From now on we assume that the graph G is represented in the following way.
Adjacencies between vertices that are part of an induced P3 are represented in an
adjacency matrix. We know that all other vertices are contained in isolated cliques.
We store a list of cliques and also a map from vertices to the isolated clique they are
contained in. We assume that Gc is represented in the same way. It is easy to check
that this new representation can be computed in O(|V|3) time from the adjacency
matrix.

Using the new representation of G and Gc , we can apply Reduction Rule 5
exhaustively in O(|V|2) time. We can check in O(|V|) time whether Reduction
Rule 6a or Reduction Rule 6b is applicable and, if so, apply the rule in O(|V|2) time.
After each application of Reduction Rule 6a we exhaustively apply Reduction
Rule 5. Since each application of Reduction Rule 6a or Reduction Rule 6b decreases
the number of vertices in V by at least one, we can apply these rules exhaustively
in O(|V|3) time. Using our representation of G, we can apply Reduction Rule 7a and
Reduction Rule 7b in O(|V|) time.

Altogether, we obtain an overall running time in O(|V|3) . 	� ◻

33

1 3

Algorithmica (2021) 83:1–44	

It is easy to see that Theorem 3 directly follows from Lemmas 15, 16, and 17.
We remark that the number of edges that are not part of an isolated clique can be
bounded by O(k3)[26].

4.2 � Fixed‑Parameter Tractable Cases for Single Parameters

In this subsection, we show that several variants of Dynamic Cluster Editing are
fixed-parameter tractable with respect to either the budget k or the distance d.

Theorem 4  DCDeletion (Edge Dist) is in FPT when parameterized by the
budget k.

All our FPT results in Sect. 4.2 are using the same approach: We reduce (in
FPT time) the input to an instance of Multi-Choice Knapsack (MCK), formally
defined as follows.

MCK is known to be solvable in pseudo-polynomial time by dynamic
programming:

Lemma 18  [32, Section 11.5] MCK can be solved in O(W ⋅
∑𝓁

i=1
�Si�) time.

As our approach is easier to explain with the edge-based distance, we start with
this case and afterwards show how to extend it to the matching-based distance.
As already exploited in our reductions showing NP-hardness (see Theorem 1),
all variants of Dynamic Cluster Editing carry some number-problem flavor. Our
generic approach will underline this flavor: We will focus on cases where we can
partition the vertex set of the input graph into parts such that we will neither add
nor delete an edge between two parts. Moreover, we require that the parts are
“easy” enough to list all Pareto-optimal (with respect to k and d) solutions in
FPT-time (this is usually achieved by some kernelization arguments). However,
even with these strict requirements we cannot solve the parts independently from
each other: The challenge is that we have to select for each part an appropriate
Pareto-optimal solution. Finding a feasible combination of these part-individual
solutions leads to a knapsack-type problem (in this case MCK). Indeed, this is
common to all studied variants of Dynamic Cluster Editing.

The details for our generic four-step approach (for edge-based distance) are
given subsequently. In order to apply this approach on a concrete problem variant,

34	 Algorithmica (2021) 83:1–44

1 3

we have to show (using problem-specific arguments) how the requirements in the
first two steps can be met.

1.	 When necessary, apply polynomial-time data reduction rules from Sect. 4.1.
	  Partition the input graph G = (V ,E) into different parts G1,G2,… ,G

�+1 for
some � ≤ |V| such that

•	 in G there is no edge between the parts and
•	 if there is a solution, then there exists a solution where no edge between

two parts will be inserted or deleted.

2.	 Compute for each part Gi = (Vi,Ei) , 1 ≤ i ≤ � , a set Si ⊆ ℕ
2 encoding “cost” and

“gain” of all “representative” solutions for Gi . The size of the set Si has to be
upper-bounded in a function f of the parameter p. (Here, p will be either k or d.)

	  More precisely, select a family Ei of f(p) edge sets such that for each edge

set E′
i
⊆

(

Vi

2

)

 in Ei the graph G�
i
= (Vi,E

�
i
⊕ Ei) is a cluster graph achievable

with the allowed number of modification operations ( G�
i
= (Vi,Ei⧵E

�
i
) for edge

deletions and G�
i
= (Vi,Ei ∪ E�

i
) for edge insertions). For each such edge set E′

i
 ,

add to Si a tuple containing the cost ( = |E�
i
| ) and “decrease” the distance from Gi

to the target cluster graph Gc . More formally, for edge insertions
a d d (|E�

i
|, |E�

i
∩ Ec| − |E�

i
⧵Ec|) t o Si o r fo r e d g e d e l e t i o n s

add (|E�
i
|, |E�

i
⧵Ec| − |E�

i
∩ Ec|) to Si , where Ec is the edge set of Gc . Note that we

allow E�
i
= � , that is, if Gi is a cluster graph, then Si contains the tuple (0, 0).

	  The set Si has to fulfill the following property: If there is a solution, then there is a
solution G′ such that restricting G′ to Vi yields a tuple in Si . More precisely, we require
that (|E(G�[Vi])⊕ Ei|, |(E(G

�[Vi])⊕ Ei) ∩ Ec| − |(E(G�[Vi])⊕ Ei)⧵Ec|) ∈ Si.
3.	 Create an MCK instance I with W ∶= k  , P ∶= |E⊕ Ec| − d  , and the

sets S1, S2,… , S
�
 where the tuples in the sets correspond to the items with the

first number in the tuple being its weight and the second number being its profit.
4.	 Return true if and only if I is a yes-instance.

Note that the requirement in Step 1 implies that a part is a collection of con-
nected components in G. Furthermore, note that the part G

�+1 will be ignored
in the subsequent steps. Thus G

�+1 contains all vertices which are not con-
tained in an edge of the edge modification set. Observe that � ≤ n . Hence, we
have

∑𝓁

i=1
�Si� ∈ O(f (p) ⋅ n) . (The parameter p will be either k or d.) Moreover,

as k and d are smaller than n2 , it follows that W < n2 and thus, by Lemma 18, the
MCK instance I created in Step 3 can be solved in f (p) ⋅ n3 time in Step 4. This
yields the following.

Observation 3  If the partition in Step 1 and the sets Si in Step 2 can be computed
in g(p) ⋅ nc time with |Si| ≤ f (p) for some functions f, g and constant c, then the above
four-step approach runs in g(p) ⋅ nc + f (p) ⋅ n3 time.

35

1 3

Algorithmica (2021) 83:1–44	

Note that Step 1 and Step 2 are different for every problem variant we consider.
There are, however, some similarities between the variants where only edge inser-
tions are allowed.

4.2.1 � Edge‑Based Distance

We use the above mentioned approach to show that DCDeletion (Edge Dist) and
DCCompletion (Edge Dist) are both fixed-parameter tractable with respect to k and
that DCCompletion (Edge Dist) is also fixed-parameter tractable with respect to d.
Since Step 1 and Step 2 are easiest to explain for the edge-deletion variant, we start
with DCDeletion (Edge Dist). Note that the requirements of Step 1 and Step 2 seem
impossible to achieve in FPT-time when allowing edge insertions and deletions.
Indeed, as shown in Theorem 2, the corresponding edge-edit variants are W[1]-hard
with respect to the studied (single) parameters k and d, respectively.

Lemma 19  DCDeletion (Edge Dist) can be solved in O(4k4 ⋅ n3) time and thus is in
FPT when parameterized by the budget k.

Proof  We first apply the known data reduction rules for Cluster Editing (see dis-
cussion after Theorem 3). As a result, we end up with a graph where at most k2 + 2k
vertices are contained in an induced P3 ; all other vertices form a cluster graph with
each clique containing at most k vertices. Denote by G the resulting graph.

Now we apply our generic four-step approach. Thus we need to provide the
details how to implement Step 1 and Step 2. We define the parts G1,G2,… ,G

�
,G

�+1
of Step 1 as follows: The first part G1 = (V1,E1) contains the graph induced by all
vertices contained in a P3 . Each of the cliques in the cluster graph G[V⧵V1] forms
another part Gi , 2 ≤ i ≤ � . Finally, set G

�+1 = (�, �) , that is, we include all verti-
ces in the subsequent steps of our generic approach. Clearly, each part contains less
than 2k2 vertices. Moreover, observe that there are no edges between the parts.

As to Step 2, we add, for every edge set E′
i
⊆ Ei with G�

i
= (Vi,Ei⧵E

�
i
) being a

cluster graph, a tuple (|E�
i
|, |E�

i
⧵Ec| − |E�

i
∩ Ec|) to Si . As this enumerates all possible

solutions for Gi , the requirement in Step 2 is fulfilled.
As for the running time, since each part Gi contains less than 2k2 vertices, we

have for each edge set that |Ei| ≤ 2k4 and hence |Si| ≤ |2Ei
| ≤ 4k

4 . Together with
Observation 3 we get the statement of the lemma. 	� ◻

Next we show that DCCompletion (Edge Dist) is in FPT with respect to d.
Before applying our generic approach, we make some observations. Since we can
only insert edges in DCCompletion (Edge Dist), we can make all vertices in a con-
nected component pairwise adjacent.

Observation 4  Let (G,Gc, k, d) be an instance of DCCompletion (Edge Dist) or of
DCCompletion (Matching Dist). If G is not a cluster graph, then there is an equiva-
lent instance (G∗,Gc, k

∗, d) with G∗ being a cluster graph and k∗ < k.

36	 Algorithmica (2021) 83:1–44

1 3

Proof  Since we are only allowed to insert edges and the solution graph is required to
be a cluster graph, it follows that every connected component of G has to be made
into a clique. Call the resulting cluster graph G∗ and denote by k′ the number of
inserted edges. Clearly, (G,Gc, k, d) is a yes-instance if and only if (G∗,Gc, k − k�, d)
is a yes-instance. 	� ◻

Observation 4 allows us in the following to assume that all connected components
in G are cliques. The main difference between DCDeletion (Edge Dist) and DCCom-
pletion (Edge Dist) is that in the former we can partition cliques independently and
thus the partition for Step 1 is straightforward. In the latter problem, Step 1 requires
some preliminary observations. We subsequently show that for DCCompletion (Edge
Dist) we can partition the graph G according to cliques in Gc such that no edges
between the parts are added.

We assign every clique C in G a number that indicates the “best match” in Gc , that
is, the clique D in Gc—if existing—that contains more than half of the vertices of C.
More formally, let C be the set of all cliques in G and D = {D1,D2,… ,Dq} be the
cliques in Gc . We define a function T ∶ C → {0, 1,… , q} mapping a clique C ∈ C to a
number between 0 and q as follows:

We say that we merge two cliques Ci and Cj when we add all edges between Ci
and Cj . We show next that we can assume that we only merge cliques Ci and Cj
with T(Ci) = T(Cj) (see Fig. 10 for an illustration).

Definition 3  Let (G,Gc, k, d) be a yes-instance of DCCompletion (Edge Dist) such
that G is a cluster graph. A solution G� = (V ,E�) , E′ ⊇ E , is called standard
if for each clique C′ in G′ the following holds: If C1 ≠ C2 are two cliques in G
and C1,C2 ⊆ C′ , then T(C1) = T(C2) > 0.

T(C) ∶=

{

i if ∃i ∶ |C ∩ Di| >
1

2
|C|;

0 otherwise.

Fig. 10   Illustration of a possible combination of cliques in G (blue dashed or dotted circles). The red
solid circle denotes a clique in G

c
 . Less than half of the vertices in the clique represented by the dotted

(rightmost) circle are contained in the clique represented by the red solid circle. Lemma 21 states that the
clique represented by the dotted circle will not be combined with a clique represented by a dashed circle
(Color figure online)

37

1 3

Algorithmica (2021) 83:1–44	

We start with a technical lemma that essentially states that merging two cliques Ci
and Cj with T(Ci) ≠ T(Cj) or T(Ci) = 0 will not decrease the edge-based distance.

Lemma 20  Let (G,Gc, k, d) be an instance of DCCompletion (Edge
Dist), let C0,C1,… ,Cr be isolated cliques in G with r ≥ 1, and
let E∗ ∶= {{u, v} ∣ u ∈ C0, v ∈ C1 ∪… ∪ Cr}. If T(C0) = 0 or if T(C0) ≠ T(Ci) for
all 1 ≤ i ≤ r, then |E∗ ∩ E(Gc)| ≤ |E∗⧵E(Gc)|.

Proof  We first show the statement for r = 1 . Let D = {D1,D2,… ,Dq} be the cliques
in Gc . Observe that �E∗ ∩ E(Gc)� =

∑q

i=1
�C0 ∩ Di� ⋅ �C1 ∩ Di� . Furthermore,

If T(C0) = 0 , then, by definition of T, we have |C0⧵Di| ≥ |C0 ∩ Di| for all 1 ≤ i ≤ q .
Thus, |E∗ ∩ E(Gc)| ≤ |E∗⧵E(Gc)| . By symmetry, this follows also from T(C1) = 0.

It remains to consider the case that T(C0) = j0 ≠ j1 = T(C1) for
some j0, j1 ∈ {1, 2,… , q} . By the definition of T, we have |C0⧵Di| ≥ |C0 ∩ Di| for
all i ∈ {1,… , q}⧵{j0, j1} . Thus,

It remains to show that

To this end, observe that

Furthermore,

From the above, we can deduce that

This competes the proof for the case T(C0) ≠ T(C1).
The proof for the case r > 1 is now straightforward. We have

|E∗⧵E(Gc)| =

q
∑

i=1

|C0⧵Di| ⋅ |C1 ∩ Di| =

q
∑

i=1

|C0 ∩ Di| ⋅ |C1⧵Di|.

∑

i∈{1,…,q}⧵{j0,j1}

|C0 ∩ Di| ⋅ |C1 ∩ Di| ≤
∑

i∈{1,…,q}⧵{j0,j1}

|C0⧵Di| ⋅ |C1 ∩ Di|.

(4)
∑

i∈{j0,j1}

|C0 ∩ Di| ⋅ |C1 ∩ Di| ≤
∑

i∈{j0,j1}

|C0⧵Di| ⋅ |C1 ∩ Di|.

(5)C0 ∩ Dj0
⊆ C0⧵Dj1

and C0 ∩ Dj1
⊆ C0⧵Dj0

.

(6)|C0⧵Dj1
| > |C0⧵Dj0

| and |C1⧵Dj1
| < |C1⧵Dj0

|.

|C0 ∩ Dj0
| ⋅ |C1 ∩ Dj0

| + |C0 ∩ Dj1
| ⋅ |C1 ∩ Dj1

|

(5)

≤ |C0⧵Dj1
| ⋅ |C1 ∩ Dj0

| + |C0⧵Dj0
| ⋅ |C1 ∩ Dj1

|

(6)

≤ |C0⧵Dj0
| ⋅ |C1 ∩ Dj0

| + |C0⧵Dj1
| ⋅ |C1 ∩ Dj1

|.

38	 Algorithmica (2021) 83:1–44

1 3

Using the above argument for r = 1 for every Cj , 1 ≤ j ≤ r , we have that

Thus, |E∗ ∩ E(Gc)| ≤ |E∗⧵E(Gc)| . 	� ◻

Lemma 21  Let (G,Gc, k, d) be a yes-instance of DCCompletion (Edge Dist). Then
there exists a standard solution G′ for (G,Gc, k, d).

Proof  Let G′ be a solution for (G,Gc, k, d) . Assume that G′ is not a standard solution.
Let C′ be a clique in G′ which is not standard. (A clique C′ is called a standard clique
if either it only contains one clique from C or there is a number i with 1 ≤ i ≤ q such
that all cliques from C contained in C′ are assigned the value i under the function T.)
Next we show that we can modify G′ to get a standard solution by showing that
each non-standard clique can be divided into some standard cliques and the result-
ing cluster graph is still a solution. We consider two cases distinguishing whether or
not C′ contains a clique C from G with T(C) = 0.

If C′ contains a clique C from G with T(C) = 0 , then splitting C from C′ gives a
cheaper solution that, by Lemma 20, also has distance at most d from Gc.

Now consider the case that there is no clique C from G with T(C) = 0 con-
tained in C′ . Let S = {C1,C2,… ,Cr� ,Cr�+1,… ,Cr} be the set of cliques from G
contained in C′ with C = C1 . Let S1 = {C1,C2,… ,Cr� } be the set that con-
tains all cliques Ci ∈ S with T(Ci) = T(C1) and S2 = S⧵S1 . We divide C′ into two
cliques CS1

 and CS2
 and get a new cluster graph G∗ , where CS1

 contains all vertices
in C1,C2,… ,Cr� and CS2

 contains all vertices in Cr�+1,Cr�+2,… ,Cr . We show that G∗
is also a solution.

Let Ei
Δ
 be the set of edges between vertices in CS1

 and vertices in Ci for
each r� + 1 ≤ i ≤ r . Let EΔ =

⋃

r�+1≤i≤r E
i
Δ
 . Then to get G∗ from G′ , we need to

delete all edges in EΔ . Now we split edges in Ei
Δ
 into two parts. Let Ei

Δ
= Ei

+
⊎ Ei

−
 ,

where Ei
+
= Ei

Δ
∩ (E(G)⊕ E(Gc)) and Ei

−
= Ei

Δ
∩
(

(

V

2

)

⧵(E(G)⊕ E(Gc))
)

 .

Since T(Ci) ≠ T(C1) for any r� + 1 ≤ i ≤ r , it follows from Lemma 20
that |Ei

+
| ≤ |Ei

−
| . Then for the distance upper bound, we have that

|E∗ ∩ E(Gc)| =

r
∑

j=1

q
∑

i=1

|C0 ∩ Di| ⋅ |Cj ∩ Di|,

|E∗⧵E(Gc)| =

r
∑

j=1

q
∑

i=1

|C0⧵Di| ⋅ |Cj ∩ Di|.

q
∑

i=1

|C0 ∩ Di| ⋅ |Cj ∩ Di| ≤

q
∑

i=1

|C0⧵Di| ⋅ |Cj ∩ Di|.

39

1 3

Algorithmica (2021) 83:1–44	

For the modification budget, we have that

Hence, G∗ is also a solution. We can continue to divide clique CS2
 in G∗ in the same

way such that every sub-clique is standard. Thus, for every non-standard clique
in G′ , we can divide it into several standard cliques and the new cluster graph is still
a solution. 	� ◻

Note that for a clique Ci in G which has exactly half of its vertices from one clique
in Gc and the remaining half of its vertices from another clique in Gc , no clique in G
has the same type as it. Lemma 21 allows us to focus on standard solutions. This
allows us to show our next fixed-parameter tractability result.

Lemma 22  DCCompletion (Edge Dist) can be solved in O(dd+1 ⋅ n3) time and thus
is in FPT when parameterized by the distance d.

Proof  We apply our generic four-step approach and thus need to provide the details
how to implement Step 1 and Step 2.

By Observation 4, we can assume that our input graph is a cluster graph. Fur-
thermore, exhaustively apply Reduction Rule 6b to delete too big cliques and
denote by G the resulting cluster graph. Let C be the set of all cliques in G
and D ∶= {D1,D2,… ,Dq} be the set of all cliques in Gc . We partition G into q + 1
groups G1,G2,… ,Gq,Gq+1 with Gi = G[Vi] , where Vi ∶= {C ∈ C ∣ T(C) = i}
for 1 ≤ i ≤ q and Vq+1 ∶= {C ∈ C ∣ T(C) = 0} . So Gq+1 contains all cliques with
value 0 under the function T. According to Lemma 21, if there is a solution, then
there is a solution only combining cliques within every group Gi for 1 ≤ i ≤ q . This
shows that with � = q the requirements of Step 1 of our generic approach are met.

Next we describe Step 2, that is, for every part Gi , we show how to compute a
set Si corresponding to all “representative” solutions. To this end, we distinguish
two cases: Gi contains at most d + 1 cliques or at least d + 2 cliques. If Gi contains at
most d + 1 cliques, then we can brute-force all possibilities to partition the cliques
and merge the cliques in each partition. There are less than (d + 1)d+1 possibilities to
do so and for each possibility we add to Si a tuple representing the cost and gain of
making all cliques in S into a clique.

If Gi contains at least d + 2 cliques, then we show that we need to merge all
cliques in Gi : If not all cliques are merged into one clique, then we have a solu-
tion with two parts without any edge between the two parts (each part can be a
single clique or a cluster graph). Let p and q be the number of vertices in the two

|E(G∗)⊕ E(Gc)| =|E(G
�)⊕ E(Gc)| −

∑

r�+1≤i≤r

|Ei
+
| +

∑

r�+1≤i≤r

|Ei
−
|

=|E(G�)⊕ E(Gc)| −
∑

r�+1≤i≤r

(|Ei
+
| − |Ei

−
|)

≤|E(G�)⊕ E(Gc)|

≤d.

|E(G)⊕ E(G∗)| = |E(G)⊕ E(G�)| − |EΔ| ≤ k.

40	 Algorithmica (2021) 83:1–44

1 3

parts that are also in Di . Since there are at least d + 2 cliques, each containing at
least one vertex from Di , it follows that p + q ≥ d + 2 , p ≥ 1 , and q ≥ 1 . Thus, at
least p ⋅ q ≥ d + 1 edges in Di (and thus in Gc ) are not in our solution, a contradic-
tion to the fact that the solution needs to have a distance of at most d to Gc . Hence,
we only need to add one tuple to Si encoding the cost and gain of making Gi into one
clique. Together with Observation 3 we get the statement of the lemma. 	� ◻

4.2.2 � Matching‑Based Distance

We next discuss how to adjust our generic four-step approach for DCCompletion
(Matching Dist). The main difference to the edge-based distance variants is an addi-
tional search tree of size O(dd+2) in the beginning. Each leaf of the search tree then
corresponds to a simplified instance where we have additional knowledge on the
matching defining the distance of a solution to Gc . With this additional knowledge,
we can apply our generic four-step approach in each leaf, yielding the following.

Lemma 23  DCCompletion (Matching Dist) can be solved in O(dd+2 ⋅ n3) time and
thus is in FPT when parameterized by the distance d.

Proof  We apply our generic four-step approach and thus need to provide the details
how to implement Step 1 and Step 2.

We can assume that our input graph is a cluster graph. Let C be the set of all
cliques in G and let D ∶= {D1,D2,… ,Dq} be the set of all cliques in Gc . Then we
partition all cliques in C into two classes C1 and C2 , where every clique in C1 has the
property that all its vertices are contained in one clique in D and every clique in C2
contains vertices from at least two different cliques in D . Observe that |C2| ≤ d as
otherwise the input is a no-instance. Similarly, every clique in C2 contains vertices
from at most d + 1 different cliques in D as otherwise the input is a no-instance.

This allows us to do the following branching step. For each clique in C2 we try
out all “meaningful” possibilities to match it to a clique in D , where “meaningful”
means that the cliques in C2 and D should share some vertices or we decide to not
match the cliques of C2 to any clique in D . or each clique this gives us d + 2 possi-
bilities and hence we have at most dd+2 different cases each of which defines a map-
ping M ∶ C2 → D ∪ {�} that maps a clique in C2 to the clique in D it is matched to.

Given the mapping M from cliques in C2 to cliques in D or ∅ , we par-
tition G into q + 1 groups G1,G2,… ,Gq,Gq+1 with Gi = G[Vi] , where
Vi ∶= {C ∈ C1 ∣ M(C) ⊆ Di} ∪ {C ∈ C2 ∣ M(C) = Di} and Vq+1. ∶= {C ∈ C2 ∣ M(C) = �}.

If there is a solution with a matching that uses the matches given by M, then
there is a solution only combining cliques within every group Gi, 1 ≤ i ≤ q , since
all cliques in Gi that are not matched by M are completely contained in Di and hence
would not be merged with cliques in Gj for some i ≠ j . This shows that with � = q
the requirements of Step 1 of our generic approach are met.

41

1 3

Algorithmica (2021) 83:1–44	

Next we describe Step 2, that is, for every part Gi , we show how to compute a
set Si corresponding to all “representative” solutions. Note that all except for at most
d cliques from Gi need to be merged into one clique that is then matched with Di ,
otherwise the matching distance would be too large. For each clique in Gi that is
not completely contained in Di we already know that it is matched to Di , hence we
need to merge all cliques of this kind to one clique C⋆

i
 . Each clique in Gi that is com-

pletely contained in Di and has size at least d + 1 also needs to be merged to C⋆

i
 , oth-

erwise the matching distance would be too large. For all cliques of Gi that are com-
pletely contained in Di with size x for some 1 ≤ x ≤ d , we merge all but d cliques
to C⋆

i
 . This leaves us with one big clique C⋆

i
 and d2 cliques of size at most d each.

Now we can brute-force all possibilities to merge some of the remaining cliques
to C⋆

i
 . There are less than dd possibilities to do so and for each possibility we add

to Si a tuple representing the cost and gain of merging the cliques according to the
partition. Together with Observation 3 we get the statement of the lemma. 	� ◻

We now have shown all fixed-parameter tractability results stated in Theorem 4.

5 � Conclusion

Our work provides a first thorough (parameterized) analysis of Dynamic Cluster
Editing, addressing a natural dynamic setting for graph-based data clustering. We
deliver both (parameterized) tractability and intractability results. Our positive
algorithmic results (fixed-parameter tractability and polynomial kernelization) are
mainly of classification nature. Hence, to get practically useful algorithms, one
needs to further improve our running times, a challenge for future research.

A key difference between Dynamic Cluster Editing and static Cluster Editing
is that all six variants of Dynamic Cluster Editing remain NP-hard even when the
input graph is already a cluster graph (see Theorem 1). Moreover, Dynamic Clus-
ter Editing (both matching- and edge-based distance) is W[1]-hard with respect to
the budget k (see Theorem 2) whereas Cluster Editing is fixed-parameter tractable
with respect to k. An obvious approach to solve Dynamic Cluster Editing is to
compute (almost) all cluster graphs achievable with at most k edge modifications,
then pick from this set of cluster graphs one at distance at most d to the target cluster
graph. However, listing these cluster graphs is computationally expensive. Indeed,
our W[1]-hardness results indicate that we might not do much better than using this
simple approach.

Note that we refrain fraom stating results on potential containment in W[1] for
all our W[1]-hardness results. There are two reasons for that. First, for all our W[1]-
hard cases, it is easy to show containment in XP, that is, polynomial-time solvability
for constant parameter values. For an algorithmic point of view, there is not much
further gain by knowing containment in W[1]. Second, we indeed studied contain-
ment in W[1] with quite some technical but not particularly inspiring expenditure
(using machine models for W[1][22]). We showed W[1]-completeness for the prob-
lems DCEditing (Edge Dist) and DCDeletion (Edge Dist) parameterized by d. For
all other problems, however, we failed to show this with reasonable effort.

42	 Algorithmica (2021) 83:1–44

1 3

We mention in passing that our results partly transfer to the “compromise
clustering” problem, where, given two input graphs, one wants to find a “com-
promise” cluster graph that is close enough (in terms of edge-based distance) to
both input graphs. It is easy to see that our fixed-parameter tractability results
carry over if one of these two input graphs is already a cluster graph. A direc-
tion for future research is to examine whether our results can also be adapted
to the case where both input graphs are arbitrary. Furthermore, we left open the
parameterized complexity of Dynamic Cluster Editing (deletion variant and
completion variant) with matching-based distance as well as Dynamic Cluster
Editing (completion variant) with edge-based distance when parameterized by
the budget k , see Table 1 in Sect. 1. Moreover, the existence of polynomial-size
problem kernels for our fixed-parameter tractable cases for single parameters
(budget k or distance d) is open.

Acknowledgements  Open Access funding provided by Projekt DEAL. We are grateful to two anony-
mous Algorithmica reviewers whose constructive feedback helped us to significantly improve our pres-
entation. JL was partially supported by CAS-DAAD Joint Fellowship Program for Doctoral Students of
UCAS and partially supported by the DFG, Project AFFA (BR 5207/1). Work done while with TU Ber-
lin. HM was supported by the DFG, Project MATE (NI 369/17).

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

References

	 1.	 Abu-Khzam, F.N.: On the complexity of multi-parameterized cluster editing. J. Discrete Algorithms
45, 26–34 (2017)

	 2.	 Abu-Khzam, F.N., Egan, J., Fellows, M.R., Rosamond, F.A., Shaw, P.: On the parameterized com-
plexity of dynamic problems. Theor. Comput. Sci. 607, 426–434 (2015)

	 3.	 Abu-Khzam, F.N., Cai, S., Egan, J., Shaw, P., Wang, K.: Turbo-charging dominating set with an FPT
subroutine: further improvements and experimental analysis. In: Proceedings of the 14th Annual
Conference on Theory and Applications of Models of Computation, TAMC 2017, volume 10185 of
LNCS, pp. 59–70. Springer (2017)

	 4.	 Abu-Khzam, F.N., Egan, J., Gaspers, S., Shaw, A., Shaw, P.: Cluster editing with vertex splitting.
In: Proceedings of the 5th International Symposium on Combinatorial Optimization, ISCO 2018,
volume 10856 of LNCS, pp. 1–13. Springer (2018)

	 5.	 Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56, 89–113 (2004)
	 6.	 Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Comput. Biol. 6(3–4),

281–297 (1999)
	 7.	 Böckenhauer, H., Hromkovič, J., Mömke, T., Widmayer, P.: On the hardness of reoptimization. In:

Proceedings of the 34th Conference on Theory and Practice of Computer Science, SOFSEM 2008,
volume 4910 of LNCS, pp. 50–65. Springer (2008)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

43

1 3

Algorithmica (2021) 83:1–44	

	 8.	 Böckenhauer, H., Burjons, E., Raszyk, M., Rossmanith, P.: Reoptimization of parameterized prob-
lems. CoRR, abs/1809.10578 (2018)

	 9.	 Böcker, S., Baumbach, J.: Cluster Editing. In: Proceedings of the 9th Conference on Computability
in Europe, CiE 2013, volume 7921 of LNCS, pp. 33–44. Springer (2013)

	10.	 Cai, L.: Parameterized complexity of cardinality constrained optimization problems. Comput. J.
51(1), 102–121 (2008)

	11.	 Cao, Y., Chen, J.: Cluster editing: kernelization based on edge cuts. Algorithmica 64(1), 152–169
(2012)

	12.	 Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and dynamic information
retrieval. SIAM J. Comput. 33(6), 1417–1440 (2004)

	13.	 Chen, J., Meng, J.: A 2k kernel for the cluster editing problem. J. Comput. Syst. Sci. 78(1), 211–220
(2012)

	14.	 Chen, J., Molter, H., Sorge, M., Suchý, O.: Cluster editing in multi-layer and temporal graphs. In:
Proceedings of the 29th International Symposium on Algorithms and Computation (ISAAC ’18),
volume 123 of LIPIcs, pp. 24:1–24:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)

	15.	 Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Sau-
rabh, S.: Parameterized Algorithms. Springer, Berlin (2015)

	16.	 Dey, T.K., Rossi, A., Sidiropoulos, A.: Temporal clustering. In: Proceedings of the 25th Annual
European Symposium on Algorithms, ESA 2017, Volume 87 of LIPIcs, pp. 34:1–34:14. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

	17.	 Dong, X., Frossard, P., Vandergheynst, P., Nefedov, N.: Clustering with multi-layer graphs: a spec-
tral perspective. IEEE Trans. Signal Process. 60(11), 5820–5831 (2012)

	18.	 Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, Berlin (2013)
	19.	 Downey, R.G., Egan, J., Fellows, M.R., Rosamond, F.A., Shaw, P.: Dynamic dominating set and

turbo-charging greedy heuristics. Tsinghua Sci. Technol. 19(4), 329–337 (2014)
	20.	 Fellows, M.R., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity of multi-

ple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61 (2009)
	21.	 Fellows, M.R., Fomin, F.V., Lokshtanov, D., Rosamond, F.A., Saurabh, S., Villanger, Y.: Local

search: Is brute-force avoidable? J. Comput. Syst. Sci. 78(3), 707–719 (2012)
	22.	 Flum, J., Grohe, M.: Parameterized Complexity Theory, Volume XIV of Texts in Theoretical Com-

puter Science, An EATCS Series. Springer, Berlin (2006)
	23.	 Fomin, F.V., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Villanger, Y.: Tight bounds for parameter-

ized complexity of cluster editing with a small number of clusters. J. Comput. Syst. Sci. 80(7),
1430–1447 (2014)

	24.	 Garey, M.R., Johnson, D.S.: Computers and Intractability—A Guide to the Theory of NP-Com-
pleteness. W. H. Freeman and Company, New York (1979)

	25.	 Gaspers, S., Kim, E.J., Ordyniak, S., Saurabh, S., Szeider, S.: Don’t be strict in local search! In:
Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, pp. 486–492. AAAI
Press (2012)

	26.	 Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: exact algorithms
for clique generation. Theory Comput. Syst. 38(4), 373–392 (2005)

	27.	 Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput. Sci. 410(8–10),
718–726 (2009)

	28.	 Guo, J., Hartung, S., Niedermeier, R., Suchý, O.: The parameterized complexity of local search for
TSP, more refined. Algorithmica 67(1), 89–110 (2013)

	29.	 Hartung, S., Hoos, H.H.: Programming by optimisation meets parameterised algorithmics: a case
study for cluster editing. In: Proceedings of the 9th International Conference on Learning and Intel-
ligent Optimization, LION 2015, Volume 8994 of LNCS, pp. 43–58. Springer (2015)

	30.	 Hartung, S., Niedermeier, R.: Incremental list coloring of graphs, parameterized by conservation.
Theor. Comput. Sci. 494, 86–98 (2013)

	31.	 Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W.,
Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, Boston (1972)

	32.	 Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Boston (2004)
	33.	 Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications. Discrete Appl.

Math. 160(15), 2259–2270 (2012)
	34.	 Krithika, R., Sahu, A., Tale, P.: Dynamic parameterized problems. Algorithmica 80(9), 2637–2655

(2018)

44	 Algorithmica (2021) 83:1–44

1 3

	35.	 Luo, J., Molter, H., Nichterlein, A., Niedermeier, R.: Parameterized dynamic cluster editing. In: Pro-
ceedings of the 38th IARCS Annual Conference on Foundations of Software Technology and Theo-
retical Computer Science, FSTTCS ’18, Volume 122 of LIPIcs, pp. 46:1–46:15 (2018)

	36.	 Marx, D., Schlotter, I.: Parameterized complexity and local search approaches for the stable mar-
riage problem with ties. Algorithmica 58(1), 170–187 (2010)

	37.	 Meilă, M.: Comparing clusterings: an axiomatic view. In: Proceedings of the 22nd International
Conference on Machine Learning, pp. 577–584. ACM (2005)

	38.	 Meilă, M.: Local equivalences of distances between clusterings—a geometric perspective. Mach.
Learn. 86(3), 369–389 (2012)

	39.	 Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)
	40.	 Schieber, B., Shachnai, H., Tamir, G., Tamir, T.: A theory and algorithms for combinatorial reopti-

mization. Algorithmica 80(2), 576–607 (2018)
	41.	 Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144(1–

2), 173–182 (2004)
	42.	 Tang, W., Lu, Z., Dhillon, I.S.: Clustering with multiple graphs. In: Proceedings of the Ninth IEEE

International Conference on Data Mining, ICDM 2009, pp. 1016–1021 (2009)
	43.	 Tantipathananandh, C., Berger-Wolf, T.Y.: Finding communities in dynamic social networks. In:

Proceedings of the IEEE 11th International Conference on Data Mining, ICDM 2011, pp. 1236–
1241 (2011)

	44.	 Tantipathananandh, C., Berger-Wolf, T.Y., Kempe, D.: A framework for community identification in
dynamic social networks. In: Proceedings of the 13th SIGKDD Conference on Knowledge Discov-
ery and Data Mining, KDD 2007, pp. 717–726. ACM (2007)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Junjie Luo1,2 · Hendrik Molter3 · André Nichterlein3 · Rolf Niedermeier3

	 Junjie Luo
	 junjie.luo@tu‑berlin.de; luojunjie@amss.ac.cn

	 André Nichterlein
	 andre.nichterlein@tu‑berlin.de

	 Rolf Niedermeier
	 rolf.niedermeier@tu‑berlin.de

1	 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
2	 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
3	 Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Berlin, Germany

	Parameterized Dynamic Cluster Editing
	Abstract
	1 Introduction
	1.1 Mathematical Model
	1.2 Motivation and Related Work
	1.3 Our Results
	1.4 Organization of the Paper

	2 Preliminaries and Problems Variants
	2.1 Graph-Theoretic Concepts and Notations
	2.2 Distance Measures for Cluster Graphs
	2.3 Problem Names and Definitions
	2.4 Parameterized Complexity

	3 Intractability Results
	3.1 Polynomial-Time Many-One Reductions
	3.2 Parameterized Reductions

	4 Fixed-Parameter Tractability Results
	4.1 Polynomial Kernels for the Combined Parameter
	4.2 Fixed-Parameter Tractable Cases for Single Parameters
	4.2.1 Edge-Based Distance
	4.2.2 Matching-Based Distance

	5 Conclusion
	Acknowledgements
	References

