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Abstract
We introduce a dynamic version of the NP-hard graph modification problem Clus-
ter Editing. The essential point here is to take into account dynamically evolving 
input graphs: having a cluster graph (that is, a disjoint union of cliques) constituting 
a solution for a first input graph, can we cost-efficiently transform it into a “simi-
lar” cluster graph that is a solution for a second (“subsequent”) input graph? This 
model is motivated by several application scenarios, including incremental cluster-
ing, the search for compromise clusterings, or also local search in graph-based data 
clustering. We thoroughly study six problem variants (three modification scenarios 
edge editing, edge deletion, edge insertion; each combined with two distance meas-
ures between cluster graphs). We obtain both fixed-parameter tractability as well 
as (parameterized) hardness results, thus (except for three open questions) provid-
ing a fairly complete picture of the parameterized computational complexity land-
scape under the two perhaps most natural parameterizations: the distances of the 
new “similar” cluster graph to (1) the second input graph and to (2) the input cluster 
graph.

Keywords  Graph-based data clustering · Incremental clustering · Compromise 
clustering · Correlation clustering · Local search · Goal-oriented clustering · 
NP-hard problems · Fixed-parameter tractability · Parameterized complexity · 
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1  Introduction

The NP-hard Cluster Editing  problem[6, 41], also known as Correlation Cluster-
ing[5], is one of the most popular graph-based data clustering problems in algorithmics. 
Given an undirected graph, the task is to transform it into a disjoint union of cliques 
(also known as a cluster graph) by performing a minimum number of edge modifica-
tions (deletions or insertions). Being NP-hard, Cluster Editing  gained high popular-
ity in studies concerning parameterized algorithmics, e.g.[1, 4, 9, 11, 14, 23, 26, 29, 
33]. To the best of our knowledge, to date these parameterized studies mostly focus on 
a “static scenario”. Chen et al.[14] are an exception by also looking at temporal and 
multilayer graphs. In their work, the input is a set of graphs (multilayer) or an ordered 
list of graphs (temporal), in both cases defined over the same vertex set. The goal is to 
transform each input graph into a cluster graph such that, in the multilayer case, the 
number of vertices in which any two cluster graphs may differ is upper-bounded, and in 
the temporal case, the number of vertices in which any two consecutive (with respect to 
their positions in the list) cluster graphs may differ is upper-bounded.

In contrast to the work of[14], we do not assume that all future changes are 
known. We consider the scenario where, given an input graph, we only know 
changes that lie immediately ahead, that is, we know the “new” graph that the input 
graph changes to. Thus we seek to efficiently and effectively adapt an existing solu-
tion, namely a cluster graph. Motivated by the assumption that the “new” cluster 
graph should only change moderately but still be a valid representation of the data, 
we parameterize both on the number of edits necessary to obtain the “new” clus-
ter graph and on the difference between the “old” and the “new” cluster graph. We 
finally remark that there have been previous parameterized studies of dynamic (or 
incremental) graph problems, dealing e.g. with coloring[30], domination[3, 19], and 
vertex deletion[2, 34] problems.

1.1 � Mathematical Model

In principle, the input for a dynamic version of a static problem X are two instances I 
and I′ of X, a solution S for I, and an integer d. The task is to find a solution S′ for I′ such 
that the distance between S and S′ is upper-bounded by d. Often, there is an additional 
constraint on the size of S′ . Moreover, some distance measure between I and I′ has often 
been considered as a parameter for the problem[2, 3, 19, 34]. We arrive at our following 
“original dynamic version” of Cluster Editing  (phrased as decision version). 
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Herein, ⊕ denotes the symmetric difference between two sets and dist (⋅, ⋅) is a 
generic distance function for cluster graphs, which we discuss later. Moreover, Gc 
is supposed to be the “solution” given for the input graph G1 . However, since the 
question in this problem formulation is independent from G1 , we can remove G1 
from the input and arrive at the following simplified version of the problem. For the 
remainder of this paper we focus on this simplified formulation of Dynamic Cluster 
Editing. 

There are many different distance measures for cluster graphs[37, 38]. Indeed, we 
will study two standard ways of measuring the distance between two cluster graphs. 
One is called classification error distance, which measures the number of vertices 
one needs to move between cliques to make two cluster graphs the same—we sub-
sequently refer to it as matching-based distance. The other is called disagreement 
distance, which is the symmetric distance between two edge sets—we subsequently 
refer to it as edge-based distance. Notably, the edge-based distance upper-bounds 
the matching-based distance. We give formal definitions in Sect. 2.

1.2 � Motivation and Related Work

Beyond parameterized algorithmics and static Cluster Editing, dynamic clustering 
in general has been subject to many studies, mostly in applied computer science[12, 
16, 17, 42–44]. We mention in passing that there are also close ties to reoptimization 
(e.g.,[7, 8, 40]) and parameterized local search (e.g.,[21, 25, 28, 30, 36]).

There are several natural application scenarios that motivate the study of Dynamic 
Cluster Editing. Next, we list four of them.

Dynamically updating an existing cluster graph Dynamic Cluster Editing   can 
be interpreted to model a smooth transition between cluster graphs, reflecting that 
“customers” working with clustered data in a dynamic setting may only tolerate a 
moderate change of the clustering from “one day to another” since “revolutionary” 
transformations would require too dramatic changes in their work. In this spirit, 
when employing small parameter values, Dynamic Cluster Editing   has kind of 
an evolutionary flavor with respect to the history of the various cluster graphs in a 
dynamic setting.

Editing a graph into a target cluster graph For a given graph G, there may be 
many cluster graphs which are at most  k edge modifications away. The goal then 
is to find one of these which is close to the given target cluster graph Gc since in a 
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corresponding application one is already “used to” work with Gc . Adapting a differ-
ent point of view, the editing into the target cluster graph Gc might be too expensive 
(that is, |E(G)⊕ E(Gc)| is too big), and one has to find a solution cluster graph with 
small enough modification costs but being still close to the target Gc.

Local search for an improved cluster graph Here the scenario is that one may 
have found an initial clustering expressed by Gc , and one searches for another solu-
tion G′ for G within a certain local region around Gc (captured by our parameter d).

Editing into a compromise clustering When focusing on the edge-based distance, 
one may generalize the definition of Dynamic Cluster Editing   by allowing Gc to 
be any graph (not necessarily a cluster graph). This may be used as a model for 
“compromise cluster editing” in the sense that the goal cluster graph then is a com-
promise for a cluster graph suitable for both input graphs since it is close to both of 
them.

1.3 � Our Results

We investigate the (parameterized) computational complexity of Dynamic Clus-
ter Editing. We study Dynamic Cluster Editing   as well as two restricted ver-
sions where only edge deletions (“Deletion”) or edge insertions (“Completion”) are 
allowed. We show that all problem variants (notably also the completion variants, 
whose static counterpart is trivially polynomial-time solvable) are NP-complete 
even if the input graph G is already a cluster graph. Table 1 surveys our main com-
plexity results.

The general versions of Dynamic Cluster Editing   all turn out to be param-
eterized intractable (W[1]-hard) by the single natural parameter “budget  k” or 

Table 1   Result overview for Dynamic Cluster Editing. We primarily categorize the problem variants by 
the distance measure (Matching, Edge) they use and secondarily by the allowed modification operation

NP-completeness for all problem variants (last column) even holds if the input graph  G is a cluster 
graph. PK stands for polynomial-size problem kernel
a In the conference version[35] of this paper we claimed that DCCompletion (Edge Dist) is in FPT when 
parameterized by  k. Unfortunately, the unpublished “proof” for this claim contained an error that we 
could not fix

Parameter

Problem variant k + d k d

Match. Editing FPT (PK) Theorem 3 W[1]-h Theorem 2 W[1]-h
}

 Theorem 2 NP-c Theorem 1
Deletion FPT (PK) open W[1]-h NP-c
Completion FPT (PK) open FPT  Theorem 4 NP-c

Edge Editing FPT (PK) Theorem 3 W[1]-h Theorem 2 W[1]-h
}

 Theorem 2 NP-c Theorem 1

Deletion FPT (PK) FPT  Theorem 4 W[1]-h NP-c
Completion FPT (PK) opena FPT  Theorem 4 NP-c
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“distance d”; however, when both parameters are combined, we achieve a polyno-
mial-size problem kernel, implying fixed-parameter tractability. We also derive a 
generic approach, based on a reduction to Multi-Choice Knapsack, to derive fixed-
parameter tractability for several deletion and completion variants with respect to 
the parameters budget k as well as the distance d.

1.4 � Organization of the Paper

Our work, after introducing basic notations (Sect. 2), consists of two main parts. In 
Sect. 3, we provide all our (parameterized) hardness results. In Sect. 4, we develop 
several positive algorithmic results, namely polynomial-size problem kernels 
through polynomial-time data reduction, and fixed-parameter solving algorithms. 
We conclude with a summary and directions for future work (Sect. 5).

2 � Preliminaries and Problems Variants

In this section we give a brief overview on concepts and notations of graph theory 
and parameterized complexity theory that are used in this paper. We also give for-
mal definitions of the distance measures for cluster graphs we use and of our prob-
lem variants. We use ⊕ to denote the symmetric difference of two sets, that is, for 
two sets A, B we have A⊕ B ∶= (A⧵B) ∪ (B⧵A).

2.1 � Graph‑Theoretic Concepts and Notations

Given an undirected graph G = (V ,E) , we say that a vertex set C ⊆ V  is a clique 
in G if G[C] is a complete graph. We say that a vertex set C ⊆ V  is isolated in G 
if there is no edge {u, v} ∈ E with u ∈ C and v ∈ V⧵C . A P3 is a path with three 
vertices. We say that vertices u, v,w ∈ V  form an induced P3 in G if G[{u, v,w}] is 
a P3 . We say that an edge {u, v} ∈ E is part of a P3 in G if there is a vertex w ∈ V  
such that G[{u, v,w}] is a P3 . Analogously, we say that a non-edge {u, v} ∉ E is part 
of a P3 in G if there is a vertex w ∈ V  such that G[{u, v,w}] is a P3 . A cluster graph 
is simply a disjoint union of cliques. Equivalently, a graph G = (V ,E) is a cluster 
graph if for all u, v,w ∈ V  we have that G[{u, v,w}] is not a P3 , or in other words, P3 
is a forbidden induced subgraph for cluster graphs.

2.2 � Distance Measures for Cluster Graphs

A cluster graph is simply a disjoint union of cliques. We use two basic distance 
measures for cluster graphs[37, 38]. The first one is called “matching-based 
distance” and counts how many vertices have to be moved from one clique to 
another to make two cluster graphs the same (see Fig. 1 for an illustrating exam-
ple). It is formally defined as follows.
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Definition 1  (Matching-based distance) Let G1 = (V ,E1) and G2 = (V ,E2) be two 
cluster graphs defined over the same vertex set. Let B(G1,G2) ∶= (V1 ⊎ V2,E,w) 
be a weighted complete bipartite graph, where each vertex u ∈ V1 corresponds 
to one cluster of  G1 , denoted by Cu ⊆ V  , and each vertex v ∈ V2 corresponds 
to one cluster of G2 , denoted by Cv ⊆ V  . The weight of the edge between u ∈ V1 
and v ∈ V2 is w({u, v}) ∶= |Cu ∩ Cv| . Let  W be the weight of a maximum-weight 
matching in B(G1,G2) . The matching-based distance  dM between G1 and G2 is 
dM(G1,G2) ∶= |V| −W.

The second distance measure is called “edge-based distance” and simply meas-
ures the symmetric distance between the edge sets of two cluster graphs.

Definition 2  (Edge-based distance) Let G1 = (V ,E1) and G2 = (V ,E2) be two clus-
ter graphs defined over the same vertex set. The edge-based distance between G1 
and G2 is dE(G1,G2) ∶= |E1 ⊕ E2|.

See Fig. 1 for an example illustration of two cluster graphs G1 and G2 defined 
over the same vertex set V = {u1, u2, u3, u4, u5, u6, v1, v2,w} . In G1 there are three 
cliques (clusters) C1 = {u1, u2, u3, u4, u5, u6} , C2 = {v1, v2} and C3 = {w} . In G2 
there are two cliques  C1

� = {u1, u2, u3, v1, v2} and  C2
� = {u4, u5, u6,w} . Then 

in B(G1,G2) we have three vertices on the left side for the cliques in G1 and two 
vertices on the right side for the cliques in G2 . A maximum-weight matching 
for B(G1,G2) matches C1 with C′

2
 and C2 with C′

1
 , and has weight W = 5 . Thus we 

have dM(G1,G2) = |V| −W = 9 − 5 = 4 , while dE(G1,G2) = 32 + 2 ⋅ 3 + 1 ⋅ 3 = 18

.

2.3 � Problem Names and Definitions

In the following we present the six problem variants we are considering. We use 
Dynamic Cluster Editing  as a basis for our problem variants. In Dynamic Cluster 

u1 u2 u3 u4 u5 u6

v1 v2 w

C1
′ C2

′

C1

C2 C3

C1
′

C2
′

C1

C2

C3

3
2

0

3

0
1

B(G1, G2) :

Fig. 1   An illustration of the matching-based distance measure. On the left side, red dotted boundaries 
represent cliques in cluster graph G1 , and blue dashed boundaries represent cliques in cluster graph G2 . 
The bipartite graph on the right side is the edge-weighted bipartite graph B(G1,G2) . The maximum-
weight matching M for B(G1,G2) of weight five is formed by the two edges represented by the two bold 
lines. The edges not in M indicate how vertices have to be moved from one cluster to another: Moving w 
from C3 to C1 and u1, u2, u3 from C1 to C2 transforms G1 into G2 (Color figure online)
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Deletion   we add the constraint that E(G�) ⊆ E(G) and in Dynamic Cluster Com-
pletion   we add the constraint that E(G) ⊆ E(G�) . For each of these three variants 
we distinguish a matching-based version and an edge-based version, where the 
generic “dist” in the problem definition of Dynamic Cluster Editing  is replaced 
by dM and dE , respectively. This gives us a total of six problem variants. We use 
the following abbreviations for our problem names. The letters “DC” stand for 
“Dynamic Cluster”, and “Matching Dist” is short for “Matching-Based Distance”. 
Analogously, “Edge Dist” is short for “Edge-Based Distance”. This yields the fol-
lowing list of studied problems:

•	 Dynamic Cluster Editing with Matching-Based Distance, abbreviation: 
DCEditing (Matching Dist).

•	 Dynamic Cluster Deletion with Matching-Based Distance, abbreviation: 
DCDeletion (Matching Dist).

•	 Dynamic Cluster Completion with Matching-Based Distance, abbreviation: 
DCCompletion (Matching Dist).

•	 Dynamic Cluster Editing with Edge-Based Distance, abbreviation: DCEditing 
(Edge Dist).

•	 Dynamic Cluster Deletion with Edge-Based Distance, abbreviation: DCDele-
tion (Edge Dist).

•	 Dynamic Cluster Completion with Edge-Based Distance, abbreviation: 
DCCompletion (Edge Dist).

2.4 � Parameterized Complexity

We use standard notation and terminology from parameterized complexity[15, 18, 
22, 39] and give here a brief overview of the most important concepts. A param-
eterized problem is a language L ⊆ Σ∗ × ℕ , where Σ is a finite alphabet. We call 
the second component the parameter of the problem. A parameterized problem is 
fixed-parameter tractable (in the complexity class FPT) if there is an algorithm 
that solves each instance  (I, r) in  f (r) ⋅ |I|O(1) time, for some computable function 
f. A parameterized problem L admits a polynomial kernel if there is a polynomial-
time algorithm that transforms each instance (I, r) into an instance (I�, r�) such that 
(I, r) ∈ L if and only if (I�, r�) ∈ L and |(I�, r�)| ≤ rc , for some constant number c. If a 
parameterized problem is hard for the parameterized complexity class W[1], then it 
is (presumably) not in FPT. The complexity class W[1]  is closed under parameter-
ized reductions, which may run in FPT-time and additionally set the new parameter 
to a value that exclusively depends on the old parameter.

3 � Intractability Results

In this section. we first establish NP-completeness results.
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Theorem 1  All considered problem variants of Dynamic Cluster Editing  are NP-
complete, even if the input graph G is a cluster graph.

Intuitively, Theorem 1 means that on top of the NP-hard task of transforming a 
graph into a cluster graph, it is computationally hard to improve an already found 
cluster graph with respect to being closer to the target cluster graph. Notably, 
while the dynamic versions of Cluster Completion  turn out to be NP-complete, 
it is easy to see that classic Cluster Completion is solvable in polynomial time.

In a second part of this section we show W[1]-hardness results both for budget 
parameter k and for distance parameter d for several variants of Dynamic Cluster 
Editing. Formally, we show the following.

Theorem  2  The following problems are W[1]-hard when parameterized by the 
budget k:

•	 DCEditing (Matching Dist),
•	 DCEditing (Edge Dist).

The following problems are W[1]-hard when parameterized by the distance d:

•	 DCEditing (Matching Dist),
•	 DCDeletion (Matching Dist),
•	 DCEditing (Edge Dist), and
•	 DCDeletion (Edge Dist).

The proof of Theorem 2 is based on several parameterized reductions which 
are presented in Sect.  3.2. The proof of Theorem  1 is based on nonparameter-
ized polynomial-time many-one reductions (see Sect.  3.1) and some parameter-
ized reductions that also imply NP-hardness (see Sect. 3.2). More precisely, The-
orem  1 follows from Lemmas  1, 2, Observation  1, and Lemma  3 presented in 
Sect. 3.1, as well as Lemmas 4 and 5 presented in Sect. 3.2.

3.1 � Polynomial‑Time Many‑One Reductions

We first present two polynomial-time many-one reductions from the strongly 
NP-hard 3-Partition problem[24] for both DCCompletion (Matching Dist) and 
DCCompletion (Edge Dist) with input graphs that are already cluster graphs. We 
start with the latter.

Lemma 1  DCCompletion (Edge Dist) is NP-complete, even if the input graph G is 
a cluster graph.

Proof  We present a polynomial-time reduction from 3-Partition, where, given a 
multi-set of  3m positive integers  {a1, a2,… , a3m} with 

∑

1≤i≤3m ai = mB , 
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for 1 ≤ i ≤ 3m it holds that B∕4 < ai < B∕2 , and the task is to determine whether 
this multi-set can be partitioned into m disjoint subsets A1,A2,… ,Am such that for 
each 1 ≤ i ≤ m it holds that 

∑

aj∈Ai
aj = B . Given an instance {a1, a2,… , a3m} of 

3-Partition, we construct an instance (G,Gc, k, d) of DCCompletion (Edge Dist) as 
follows. The construction is illustrated in Fig. 2. For graph G, we first create m dis-
joint big cliques, each with M = 4(mB)2 vertices. Then for every integer ai , we cre-
ate a small clique Ci with |Ci| = ai vertices. We set Gc to be a complete graph. Fur-
ther, we set k ∶= mMB +

m

2
B2 −

1

2

∑

1≤i≤3m ai
2 and d ∶= |E(G)⊕ E(Gc)| − k.

Next we show that {a1, a2,… , a3m} is a yes-instance of 3-Partition  if and only 
if (G,Gc, k, d) is a yes-instance of DCCompletion (Edge Dist).

(⇒ ): Assume that {a1, a2,… , a3m} is a yes-instance of 3-Partition. Then there is 
a partition A1,A2,… ,Am such that for each 1 ≤ i ≤ m it holds that 

∑

aj∈Ai
aj = B . For 

each Ai , we can combine the corresponding three small cliques and one big clique of 
size M into one clique. This costs MB +

1

2
(B2 −

∑

aj∈Ai
aj

2) edge insertions. In total, 
there are

edge insertions. Hence we get a cluster graph G′ with |E(G)⊕ E(G�)| = k 
and |E(G�)⊕ E(Gc)| = |E(G)⊕ E(Gc)| − k = d.

(⇐ ): Assume that  (G,Gc, k, d) is a yes-instance of DCCompletion (Edge 
Dist)  and let G′ be the solution. Since k + d = |E(G)⊕ E(Gc)| , to get G′ we have 
to add exactly k edges to G. We make the following two observations. First, we can 

mMB +
m

2
B2 −

1

2

∑

1≤i≤3m

ai
2 = k

...

...

m big cliques 3m small cliques

Fig. 2   Illustration of the constructed instance for the proof of Lemma 1. Graph G has m big cliques on 
the left side and 3m small cliques on the right side. Each number a

i
 in the instance of 3-Partition is rep-

resented by a small clique with a
i
 vertices on the right side. Every dashed rounded rectangle containing 

one big clique and three small cliques is a possible group in a solution
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never combine two big cliques, as otherwise we need at least M2 > k edge inser-
tions. Second, every small clique must be combined with a big clique, as other-
wise we have at most M(mB − 1) edge insertions between big cliques and small 
cliques and at most (mB)2 edge insertions between small cliques, and in total there 
are at most  M(mB − 1) + (mB)2 = mMB − 3(mB)2 < k edge insertions. Hence, to 
get solution G′ we must partition all 3m  small cliques C1,C2,… ,C3m in G into m 
groups A1,A2,… ,Am and combine all cliques in each group with one big clique.

We can split the edge insertions into two parts k = k1 + k2 , where k1 ∶= mMB is 
the number of edge insertions between big cliques and small cliques, and 
k2 ∶=

∑

1≤i≤m

∑

Cj,Ck∈Ai
�Cj��Ck� is the total number of edge insertions between small 

cliques in each group. We can also write k2 as

Recall that k = mMB +
m

2
B2 −

1

2

∑

1≤i≤3m ai
2 , so we have that

Since 
∑

1≤i≤3m �Ci� =
∑

1≤i≤3m ai = mB , the equality

holds only if C1,C2,… ,C3m can be partitioned into m disjoint subsets A1, A2,… ,Am 
such that for 1 ≤ i ≤ m it holds that 

∑

Cj∈Ai
�Cj� = B . Thus, {a1, a2,… , a3m} can be 

partitioned into m disjoint subsets A1
�
,A2

�
,… ,Am

� such that for 1 ≤ i ≤ m it holds 
that 

∑

aj∈Ai
� aj = B . 	�  ◻

We continue with DCCompletion (Matching Dist). The corresponding NP-
hardness reduction uses the same basic ideas as in Lemma 1. The main difference 
is that in the proof of Lemma 1 we make use of the property that we need to add 
exactly k edges. This enforces that every small clique should be combined with 
a big clique, while in the following proof we need to make use of the matching-
based distance to enforce this.

Lemma 2  DCCompletion (Matching Dist)  is NP-complete, even if the input 
graph G is a cluster graph.

Proof  We present a polynomial-time reduction from 3-Partition, where, given a 
multi-set of  3m positive integers  {a1, a2,… , a3m} with 

∑

1≤i≤3m ai = mB , 
for 1 ≤ i ≤ 3m it holds that B∕4 < ai < B∕2 , and the task is to determine whether 

k2 =
1

2

�

1≤i≤m

⎛

⎜

⎜

⎝

�

Cj∈Ai

�Cj�

⎞

⎟

⎟

⎠

2

−
1

2

�

1≤i≤3m

ai
2.

�

1≤i≤m

⎛

⎜

⎜

⎝

�

Cj∈Ai

�Cj�

⎞

⎟

⎟

⎠

2

= mB2.

�

1≤i≤m

⎛

⎜

⎜

⎝

�

Cj∈Ai

�Cj�

⎞

⎟

⎟

⎠

2

= mB2
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this multi-set can be partitioned into m disjoint subsets A1,A2,… ,Am such that for 
each 1 ≤ i ≤ m it holds that 

∑

aj∈Ai
aj = B . Given an instance {a1, a2,… , a3m} of 

3-Partition, we construct an instance  (G,Gc, k, d) of DCCompletion (Matching 
Dist) as follows.

The construction is illustrated in Fig.  3. For graph  G, we first create  m big 
cliques CM

1
,CM

2
,… ,CM

m
 each with M ∶= 4(mB)2 vertices. Then for every integer ai 

in {a1, a2,… , a3m} , we create a small clique Ci with |Ci| = aim . Lastly, we create a 
clique CM2 with M2 vertices. For graph Gc , we create m + 1 cliques as follows. For 
every CM

i
 in G, we create a clique CM+3m

i
 with M + 3m vertices which contains all M 

vertices from CM
i

 and one vertex from each Ci for 1 ≤ i ≤ 3m . In other words, each Ci 
in G contains exactly one vertex from each CM+3m

i
 in Gc for 1 ≤ i ≤ m . Lastly, we 

create a clique CM2+(B−3)m2 which contains all remaining vertices, that is, M2 verti-
ces from CM2 and vertices from every Ci for 1 ≤ i ≤ 3m which are not contained 
in any CM+3m

i
 . Thus CM2+(B−3)m2 contains M2 +

∑

1≤i≤3m(ai − 1)m = M2 + (B − 3)m2 
vertices. Set k ∶= m2MB +

m3

2
B2 −

m2

2

∑

1≤i≤3m ai
2 and d ∶= m2B − 3m.

CM
i ..

.
CM+3m

i..
.

Ci

...

a1m

a3mm

CM2
CM2+(B−3)m2

...

...

...

...

...

G Gc

Fig. 3   Illustration of the constructed instance for the proof of Lemma 2. Blue borders on the left side 
represent cliques in graph  G and red borders on the right side represent cliques in cluster graph G

c
 . 

Each number a
i
 in the instance of 3-Partition is represented by a clique C

i
 with a

i
m vertices in graph G, 

which contains one vertex from every CM+3m
i

 and a
i
(m − 1) vertices from CM

2+(B−3)m2 . The maximum-
weight matching for B(G,G

c
) is formed by the edges between CM

i
 and CM+3m

i
 and the edge between CM

2 
and CM

2+(B−3)m2 (Color figure online)
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It is easy to see that the maximum-weight matching  M∗ for  B(G,Gc) is to 
match CM

i
 with CM+3m

i
 for every 1 ≤ i ≤ m and is to match CBm2 with C(2B−3)m2 . Thus 

the matching-based distance between G and Gc is

Now, we show that {a1, a2,… , a3m} is a yes-instance of 3-Partition  if and only if 
(G,Gc, k, d) is a yes-instance of DCCompletion (Matching Dist).

(⇒ ): Assume that {a1, a2,… , a3m} is a yes-instance of 3-Partition. Then there is 
a partition Ai,A2,… ,Am such that for 1 ≤ i ≤ m it holds that 

∑

aj∈Ai
aj = B . We add 

edges into G to get a cluster graph G′ as follows. For each Ai , we combine the corre-
sponding three small cliques for the three integers in Ai and the big clique CM

i
 into 

one clique. This costs

edge insertions. In total, there are m2MB +
m3

2
B2 −

m2

2

∑

1≤i≤3m ai
2 = k edge inser-

tions. Since every small clique Ci , combined with some big clique CM
j

 , contains one 
vertex from CM+3m

j
 , we obtain

(⇐ ): Assume that  (G,Gc, k, d) is a yes-instance of DCCompletion (Matching 
Dist)  and let  G′ be the solution and let  M′ be the maximum-weight matching 
between G′ and Gc . First note that clique CM2 has M2 vertices and M2 > k , so we 
cannot combine  CM2 with any other clique. Since  M2 > (B − 3)m2 , we have 
also |CM2

| >
1

2
|CM2+(B−3)m2

| . Hence, in the matching M′ clique CM2 must be matched 
with CM2+(B−3)m2 . Next in the matching M′ every CM+3m

i
 in Gc must be matched with 

a clique in G′ which contains clique CM
i

 , since otherwise the distance between G′ 
and Gc is at least M and M > d . This also means that we cannot combine two big 
cliques CM

i
 and CM

j
 . Since dM(G�,Gc) ≤ d = d0 − 3m , to get solution G′ every small 

clique Ci for 1 ≤ i ≤ 3m has to be combined with some big clique CM
j

.
We can split k into two parts k = k1 + k2 , where k1 ∶= m2MB is the number of 

edge insertions between big cliques and small cliques, and k2 is the total number of 
edge insertions between small cliques. Similarly to the analysis in Lemma  1, we 
have that k2 ≥

m3

2
B2 −

m2

2

∑

1≤i≤3m ai
2 and the equality holds only if {a1, a2,… , a3m} 

can be partitioned into m disjoint subsets A1,A2,… ,Am such that for 1 ≤ i ≤ m it 
holds that 

∑

aj∈Ai
aj = B . 	�  ◻

Observe that when G is a cluster graph, we can “swap” G with Gc and k with d:

Observation 1  When  G is a cluster graph, instance  (G,Gc, k, d) of DCEditing 
(Edge Dist) is a yes-instance if and only if instance (Gc,G, d, k) of DCEditing (Edge 

d0 = dM(G,Gc) =
∑

1≤i≤3m

aim = m2B.

MmB + m2
�

ak ,aj∈Ai

ajak = MmB +
m2

2

⎛

⎜

⎜

⎝

B2 −
�

aj∈Ai

aj
2

⎞

⎟

⎟

⎠

dM(G
�,Gc) = d0 − 3m = m2B − 3m = d.
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Dist) is a yes-instance. When both G and Gc are cluster graphs and E(G) ⊆ E(Gc)

, instance (G,Gc, k, d) of DCCompletion (Edge Dist) is a yes-instance if and only if 
instance (Gc,G, d, k) of DCDeletion (Edge Dist) is a yes-instance.

Observe that from Lemma 1 and Observation 1 we can infer NP-hardness for 
DCDeletion (Edge Dist)  even if  G is a cluster graph. For the matching-based 
distance, we do not have an analogue of Observation 1. Thus, we provide another 
reduction showing NP-hardness for DCDeletion (Matching Dist) even if G is a 
cluster graph.

Lemma 3  DCDeletion (Matching Dist) is NP-complete, even if the input graph G 
is a cluster graph.

Proof  We present a polynomial-time reduction from the NP-hard Exact Cover 
by 3-Sets  problem[31], where, given a set  X with  |X| = 3q and a collection  S 
of 3-element subsets of  X, the task is to determine whether S contains a subcol-
lection  S≃ ⊆ S of size  q that covers every element in  X exactly once. Given 
an instance  (X,S) of Exact Cover by 3-Sets, where  X = {x1, x2,… , x3q} 
and  S = {S1, S2,… , Sm} , we construct an instance  (G,Gc, k, d) of DCDeletion 
(Matching Dist) in polynomial time as follows.

The construction is illustrated in Fig. 4. For every set Si = {xi1 , xi2 , xi3} in S , we 
create a clique  Ci = {vi

1
, vi

2
} ∪ {xi

i1
, xi

i2
, xi

i3
} in  G. So  G contains  m order-five 

cliques  C1,C2,… ,Cm . For  Gc , we first create  m cliques  D1,D2,… ,Dm 
with Di = {vi

1
, vi

2
} . Then for each element xi , we create a clique Dxi

= {x
j

i
∣ xi ∈ Sj} . 

Ci

... Di

...
Dxi

...

Fig. 4   Illustration of the constructed instance for the proof of Lemma 3. Each clique C
i
 in G contains 

two green vertices, which form a clique D
i
 in G

c
 . The instance of Exact Cover by 3-Sets is encoded by 

black vertices. On the left side each C
i
 in G encodes a set S

i
 ; on the right side each D

x
i
 in G

c
 encodes the 

appearance of the element x
i
 (Color figure online)
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For example, if an element xi is contained in some set Sj , then in G the correspond-
ing clique Cj for Sj contains a vertex xj

i
 which is also contained in the clique Dxi

 in Gc . 
Hence, if there is a subcollection S≃ of size q that covers every element in X exactly 
once, then we can find these  q corresponding cliques in  G and separate them to 
get  3q new vertices each contained in one different clique Dxi

 in Gc . Finally, we 
set k ∶= 9q and d ∶= 3m − 3q.

Note that the maximum-weight matching M∗ for B(G,Gc) has to match every Ci 
in G with Di in Gc . Thus dM(G,Gc) = 3m . Now we show that (X,S) is a yes-instance 
of Exact Cover by 3-Sets  if and only if (G,Gc, k, d) is a yes-instance of DCDele-
tion (Matching Dist).

(⇒ ): Assume that (X,S) is a yes-instance of Exact Cover by 3-Sets. Let S≃ be 
the solution. For every  Si ∈ S≃ , we find the corresponding 
clique Ci = {vi

1
, vi

2
} ∪ {xi

i1
, xi

i2
, xi

i3
} in  G and partition it into four cliques {vi

1
, vi

2
} , 

{xi
i1
} , {xi

i2
} , and {xi

i3
} . Let G′ be the resulting cluster graph. For every such clique Ci , 

we delete nine edges to partition it. Thus, overall we need to delete 9q = k edges. 
Since every element of X is covered by exactly one set from S≃ , we have that in G′ 
we get 3q new cliques each with one vertex, and each vertex is contained in a differ-
ent clique from Dx1

,Dx2
,… ,Dx3q

 . Thus, we have dM(G,Gc) = 3m − 3q = d.
(⇐ ): Assume that (G,Gc, k, d) is a yes-instance of DCDeletion (Matching Dist). 

Let G′ be the solution and M′ be the maximum-weight matching between G′ and Gc . 
Since we can only delete edges to get G′ and every set Si can only contain each ele-
ment from X once, we get that in M′ any edge incident on Dxi

 has weight at most 
one. Since dM(G,Gc) ≤ d = 3m − 3q , it has to hold that in M′ every Dxi

 is matched 
with a new clique in G′ and they share exactly one vertex. Thus we need 3q new 
cliques in G′ to be matched with Dx1

,Dx2
,… ,Dx3q

 in Gc . To get these 3q new cliques, 
we need to separate at least 3q vertices from C1,C2,… ,Cm in G. Since we can delete 
at most k = 9q edges, there have to be q cliques from C1,C2,… ,Cm such that we can 
separate each of them into four parts, where the first part contains {vi

1
, vi

2
} and the 

remaining three parts each have one vertex. Moreover, these 3q new cliques each 
share one vertex with one different clique from  Dx1

,Dx2
,… ,Dx3q

 . Thus, in the 
instance (X,S) of Exact Cover by 3-Sets  we can find the corresponding 3q sets and 
they cover each element of X exactly once. 	�  ◻

3.2 � Parameterized Reductions

We first show that DCEditing (Matching Dist) is W[1]-hard when parameterized by 
the budget k.

Lemma 4  DCEditing (Matching Dist) is NP-complete and  W[1]-hard with respect 
to the budget k, even if the input graph G is a cluster graph.

Proof  We present a parameterized reduction from Clique, where, given a 
graph G0 and an integer � , we are asked to decide whether G0 contains a complete 
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subgraph of order � . Clique  is W[1]-hard when parameterized by �[18]. Given 
an instance (G0,�) of Clique, we construct an instance (G,Gc, k, d) of DCEditing 
(Matching Dist) as follows.

The construction is illustrated in Fig.  5. Let n = |V(G0)| . We first construct G. 
For every vertex v of G0 , we create a clique Cv of size �7 + �

4 + �
2 . For every edge e 

of G0 , we create a clique Ce of size �4 + 2 . Lastly, we create a big clique CB of 
size �8 . Note that G is already a cluster graph. Next we construct Gc . We first cre-
ate � cliques Di of size n�3 for each 1 ≤ i ≤ � . Every Di contains �3 vertices in 
every Cv in G. In other words, every Cv in G contains �3 vertices in every Di in Gc . 
Then we create a big clique DB which contains all vertices in CB and �7 vertices in 
every Cv . For every vertex v of G0 , we create clique Dv which contains �2 vertices 
in Cv and one vertex in every Ce for v ∈ e . Lastly, for every edge  e we create De 

which contains �4 vertices in Ce . We set k ∶=
(

�

2

)

(2�4 + 1) + �

(

� − 1

2

)

 and we 

set  d ∶= d0 − �(� − 1) , where  d0 = dM(G,Gc) is the matching-based distance 
between G and Gc , which is computed as follows.

To compute dM(G,Gc) , we need to find an optimal matching in B(G,Gc) , the 
weighted bipartite graph between G and Gc . First, in an optimal matching DB must 
be matched with  CB since  |CB ∩ DB| = �

8 > |Cv ∩ DB| = �
7 for any  v ∈ V(G0) 

and CB ⊆ DB . Similarly, De must be matched with Ce for every e ∈ E(G0) . Then the 
remaining n cliques Cv in G need to be matched to � cliques Di and n cliques Dv 
in Gc . Since |Cv ∩ Di| = �

3 > |Cv ∩ Dv| = �
2 for any v ∈ V(G0) and 1 ≤ i ≤ � , it is 

always better to match Cv with some Di . Since there are only � cliques Di , we can 
choose any � cliques from {Cv ∣ v ∈ V(G0)} to be matched with Di for 1 ≤ i ≤ � and 

Di, 1 ≤ i ≤ �

Cv , v ∈ V

Dv

Du

Ce and De for
e = {u, v} ∈ E

CB

DB

Fig. 5   Illustration of the constructed instance for the proof of Lemma  4. Blue solid borders represent 
cliques in G and red dotted borders represent cliques in G

c
 . One horizontal long blue border represents 

a clique C
v
 in G. It has � + 2 parts and each part is contained in one clique of G

c
 . The first part con-

tains �7 vertices which are contained in the big clique D
B
 of G

c
 . The following � parts each contain �3 

vertices which are contained in the � cliques D
i
 of G

c
 , and the last part contains �2 vertices which are 

contained in D
v
 of G

c
 (Color figure online)
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the remaining n − � cliques to be matched with Dv . Thus we have many different 
matchings in B(G,Gc) which have the same maximum weight, and each of them 
corresponds to choosing � different cliques from {Cv ∣ v ∈ V(G0)} to be matched 
with Di for 1 ≤ i ≤ � . For each optimal matching, there are � free cliques Dv in Gc 
which are not matched.

This reduction works in polynomial time. We show that there is a clique of size � 
in G0 if and only if there is a cluster graph G� = (V ,E�) such that |E(G�)⊕ E(G)| ≤ k 
and dM(G�,Gc) ≤ d.

(⇒ ): Assume that there is a clique C∗ of order � in G0 . We modify the graph G as 
follows. First, for every edge e in the clique C∗ partition the corresponding clique Ce 
in G into three parts; one part contains all vertices in De and the other two parts each 
have one vertex. After this we get �(� − 1) single vertices. Since C∗ is a clique, all 
these single vertices can be partitioned into � groups such that each group has � − 1 
vertices and all these � − 1 vertices are contained in the same Dv for some v ∈ C∗ . 
Then for each  v ∈ C∗ , we combine the corresponding  � − 1 vertices into one 
clique C�−1

v
 . Denote the resulting graph by G′ . For an illustration see Fig. 6. Along 

the way to get  G′ , we delete 
(

�

2

)

(2�4 + 1) edges and add  �
(

� − 1

2

)

 edges, 

thus  |E(G)⊕ E(G�)| =

(

�

2

)

(2�4 + 1) + �

(

� − 1

2

)

= k . Next we show 

that dM(G�,Gc) ≤ d0 − �(� − 1) . Recall that an optimal matching in B(G,Gc) can 
choose � cliques from {Cv ∣ v ∈ V(G0)} to be matched with Di for 1 ≤ i ≤ � . Now 

Di, 1 ≤ i ≤ �

Cv , v ∈ V

Dv

Du

CB

DB

Fig. 6   Illustration of a possible solution for the constructed instance (see Fig.  5) in the proof of 
Lemma  4. Blue solid borders represent cliques in G′ and red dotted borders represent cliques in G

c
 . 

Green shaded areas indicate how cliques of G′ and G
c
 are matched. If two horizontal cliques of G′ (blue) 

are matched with two of the � vertical cliques of G
c
 , then the corresponding vertices are part of the 

clique and hence are adjacent. This means that the cliques corresponding to the edge can be matched in 
the indicated way (Color figure online)
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in  B(G�,Gc) we can choose all cliques in {Cv ∣ v ∈ C∗} to be matched with  Di 
for 1 ≤ i ≤ � , and then match C�−1

v
 with Dv for all v ∈ C∗ . Then in the new matching 

we have � additional edges between C�−1
v

 and Dv for v ∈ C∗ , each with weight � − 1 . 
Hence dM(G�,Gc) ≤ d0 − �(� − 1).

(⇐ ): Assume that there is a cluster graph G� = (V ,E�) such that |E� ⊕ E(G)| ≤ k 
and dM(G�,Gc) ≤ d . Note that k < �

7 , thus k < |Cv| and k < |CB| . Consequently, we 
can only modify edges between vertices in Ce . It is easy to see that in any optimal 
matching in B(G�,Gc) , we still have that clique CB must be matched with DB and 
clique Ce must be matched with De for every e ∈ E(G0) . We should choose � cliques 
from {Cv ∣ v ∈ V(G0)} to be matched with Di for 1 ≤ i ≤ � , which creates � free 
cliques Dv . Hence, to decrease the distance between  G and Gc or to increase the 
matching, we have to create new cliques to be matched with these � free cliques Dv . 
Note that every Dv only contains single vertices from Ce with v ∈ e and the vertices 
contained in Cv . To create new cliques we need to first separate Ce to get single verti-
ces and then combine them. To decrease the distance by �(� − 1) , we need to sepa-
rate at least  �(� − 1) single vertices from  Ce . This will cost at 

least �(� − 1)(�4 + 1) −

(

�

2

)

=

(

�

2

)

(2�4 + 1) edge deletions if we always sepa-

rate one Ce into three parts and get two single vertices. Then we need to combine 
these single vertices into at most � cliques since there are at most � free cliques Dv . 

This will cost at least �
(

� − 1

2

)

 edge insertions if all these �(� − 1) single vertices 

can be partitioned into  � groups and each group has  � − 1 vertices. 

Since k =
(

�

2

)

(2�4 + 1) + �

(

� − 1

2

)

 , we have that in the first step we have to 

choose 
(

�

2

)

 cliques Ce and separate them into three parts and all these �(� − 1) sin-

gle vertices are evenly distributed in � free cliques Dv . This means that in G0 we can 

select 
(

�

2

)

 edges between � vertices and each vertex has � − 1 incident edges. Thus 

there is a clique of size � in G0 . 	�  ◻

The next lemma shows that DCEditing (Edge Dist)  is W[1]-hard with respect 
to k. The corresponding parameterized reduction is from Clique  and shares some 
similarities with the reduction presented in the proof of Lemma 4 with respect to the 
edge gadgets. Our proof is based on the following property for instances of DCEdit-
ing (Edge Dist) with k + d = |E(G)⊕ E(Gc)|.

Observation 2  If an instance  (G,Gc, k, d) of DCEditing (Edge Dist)  (DCDe-
letion (Edge Dist)  or DCCompletion (Edge Dist)) has the property 
that k + d = |E(G)⊕ E(Gc)|, then any solution G′ satisfies that |E(G)⊕ E(G�)| = k , 
|E(G�)⊕ E(Gc)| = d, and E(G)⊕ E(G�) ⊆ E(G)⊕ E(Gc).

Proof  On the one hand, for any graph G′ , we have that
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On the other hand, a solution  G′ satisfies that  |E(G�)⊕ E(G)| ≤ k 
and  |E(G�)⊕ E(Gc)| ≤ d . Thus we have that  |E(G)⊕ E(G�)| = k 
and  |E(G�)⊕ E(Gc)| = d . Let  S1 ∶=

(

E(G)⊕ E(G�)
)

⧵
(

E(G)⊕ E(Gc)
)

 
and S2 ∶=

(

E(G)⊕ E(G�)
)

⧵S1 . Then

Next we show that

Let us consider

where the last equation holds since

and

Hence, |E(G�)⊕ E(Gc)| = |E(G)⊕ E(Gc)| + |S1| − |S2| . If  S1 ≠ ∅ , then combine 
Eqs. (1) and (2) and we get

which is a contradiction. Thus we conclude that S1 = � and 
hence E(G)⊕ E(G�) ⊆ E(G)⊕ E(Gc) . 	�  ◻

From this result we can conclude that, when k + d = |E(G)⊕ E(Gc)| , the only 
way to get a solution G′ is to find a subset of E(G)⊕ E(Gc) with size exactly k 
such that modifying the edges of this subset in G yields a cluster graph.

Lemma 5  DCEditing (Edge Dist)  is NP-complete and W[1]-hard with respect to 
the budget k, even if the input graph G is a cluster graph and k + d = |E(G)⊕ E(Gc)|

.

|E(G�)⊕ E(G)| + |E(G�)⊕ E(Gc)| ≥ |E(G)⊕ E(Gc)| = k + d.

(1)|E(G�)⊕ E(G)| = |S1| + |S2|.

(2)|E(G�)⊕ E(Gc)| = |E(G)⊕ E(Gc)| + |S1| − |S2| = k + d + |S1| − |S2|.

E(G�)⊕ E(Gc) =
(

E(G)⊕
(

E(G)⊕ E(G�)
)

)

⊕ E(Gc)

=
(

E(G)⊕ (S1 ∪ S2)
)

⊕ E(Gc)

=
(

E(G)⊕ E(Gc)
)

⊕ (S1 ∪ S2)

=
(

(

E(G)⊕ E(Gc)
)

⧵(S1 ∪ S2)
)

∪
(

(S1 ∪ S2)⧵
(

E(G)⊕ E(Gc)
)

)

=
(

E(G)⊕ E(Gc)
)

⧵S2 ∪ S1,

S1 =
(

E(G)⊕ E(G�)
)

⧵
(

E(G)⊕ E(Gc)
)

⇒ S1 ∩
(

E(G)⊕ E(Gc)
)

= �

S2 =
(

E(G)⊕ E(G�)
)

⧵S1 ⇒ S2 ⊆ E(G)⊕ E(Gc).

|E(G�)⊕ E(G)| + |E(G�)⊕ E(Gc)| = k + d + 2|S1| > k + d,
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Proof  We present a parameterized reduction from Clique, where given a graph G0 
and an integer � , we are asked to decide whether G0 contains a complete sub-
graph of order � . Clique  is W[1]-hard when parameterized by �[18]. Given an 
instance  (G0,�) of Clique, we construct an instance  (G,Gc, k, d) of DCEditing 
(Edge Dist) as follows. The construction is illustrated in Fig. 7. We set L1 ∶= �

7 + 1 
and L2 ∶= �

2 . We first construct G. For every vertex v of G0 , we create a clique Cv 
of size L1 + 1 = �

7 + 2 , and for every edge e of G0 , we create a clique Ce of size 2L2 . 
Note that G is already a cluster graph. Next, we construct Gc . For every vertex v 
of G0 , let C1

e
,C2

e
,… ,C

p
e be all cliques of size 2L2 in  G which represent all edges 

incident on v. For each vertex v of G0 , we create two cliques in Gc . One of them con-
tains L1 vertices of Cv , the other contains the one remaining vertex of Cv , called the 
single vertex of Cv , and L2 vertices from every Ci

e
 for 1 ≤ i ≤ p (see also Fig. 7). Set

and set d ∶= |E(G)⊕ E(Gc)| − k . This reduction works in polynomial time.
Now we show that there is a clique of size � in G0 if and only if there is a cluster 

graph G� = (V ,E�) such that |E� ⊕ E(G)| ≤ k and |E� ⊕ E(Gc)| ≤ d . To simplify the 
proof, we assume � ≥ 3 in the following.

(⇒ ): Assume that there is a clique C∗ of size � in G0 . We modify graph G in the 
following two steps. We first partition cliques in G according to C∗ by deleting edges 
as follows. For every vertex v in C∗ , find the clique Cv and delete edges between the 
single vertex in Cv and the remaining L1 vertices. For every edge e in C∗ , find the 
clique Ce in G and delete edges to partition the clique into two parts, each with L2 

vertices. In the first step we delete �L1 +
(

�

2

)

L2
2 edges. The next step is to com-

bine some cliques by adding edges. For every vertex v in C∗ , we combine the single 
vertex from  Cv and  � − 1 cliques of size  L2 into one clique. In this step we 

add �(� − 1)L2 + �

(

� − 1

2

)

L2
2 edges. Thus in total we modify k edges.

(3)k ∶= �L1 + �(� − 1)L2 + �

(

� − 1

2

)

L2
2 +

(

�

2

)

L2
2

v u

Cv Cu

Cv,u

Fig. 7   Illustration of the constructed instance for the proof of Lemma 5. On the left side there are two 
connected vertices v and u in G0 and three edges incident on v. On the right side we have the correspond-
ing parts in G and G

c
 . Red dotted circles represent cliques in G

c
 and blue solid borders represent cliques 

in G (Color figure online)
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(⇐ ): Assume that there is a cluster graph  G� = (V ,E�) such 
that |E(G�)⊕ E(G)| ≤ k and |E(G�)⊕ E(Gc)| ≤ d . Since  k + d = |E(G)⊕ E(Gc)| , 
we have |E(G)⊕ E(G�)| = k and |E(G�)⊕ E(Gc)| = d . Thus, to get the solution G′ 
we have to modify exactly k edges from E(G)⊕ E(Gc) . As a result, we only have the 
following four kinds of operations: 

1.	 partition a clique Cv in G into two parts, one with the single vertex and the other 
with L1 vertices, which costs L1 = �

7 + 1 edge deletions;
2.	 partition a clique Ce in G into two parts, each with L2 vertices contained in one 

clique in Gc , which costs L22 = �
4 edge deletions;

3.	 combine the single vertex of Cv with some cliques of size L2 which come from 
partitioning clique Ce into two parts, which costs aL2 = a�2 edge insertions for 
some integer a;

4.	 combine some cliques of size L2 which come from partitioning clique Ce into two 

parts, which costs 
(

b

2

)

L2
2 =

(

b

2

)

�
4 edge insertions for some integer b.

First, we claim that there must be � cliques of size L1 + 1 in  G that have been 
partitioned. Note that  k = �

8 +
1

2
�
7 − �

6 +
1

2
�
5 + �

4 − �
3 + � , where the last 

additive term � can only come from partitioning � cliques of size L1 + 1 in  G. 
In addition, there cannot be more than � cliques of size  L1 + 1 in  G that have 
been partitioned, since (� + 1)L1 > k (assuming � ≥ 3 ). Thus exactly � cliques of 
size L1 + 1 in G have to be partitioned and we get � single vertices. This costs �L1 
edge deletions, which is the first additive item of Eq. (3).

Next, we claim that at least  �(� − 1) cliques of size  L2 are combined with 
these � single vertices we got in the last step. This is because the second term 
of k, �(� − 1)L2 , is strictly less than �4 , and hence can only come from the third 
kind of operation, combining the single vertex with cliques of size  L2 . Suppose 
that �(� − 1) + � cliques of size  L2 are combined with these single vertices for 
some � ≥ 0 . Then we need (�(� − 1) + �)L2 edge insertions. Note that the second 
additive term of Eq. (3) is �(� − 1)L2.

Then, we need to partition at least 
�

�

2

�

+
⌈�⌉

2
 cliques of size 2L2 so that we can 

combine them with single vertices. Denote by  f1(�, �) the number of edge deletions 

this separation cost. Clearly, f1(�, �) ≥ (

�

�

2

�

+
⌈�⌉

2
)L2

2 . Notice that the last addi-

tive term of Eq. (3) is 
(

�

2

)

L2
2.

Finally, when we combine a single vertex with more than one clique of order L2 , 
then we also need to add edges between these cliques. Denote by  f2(�, �) the num-
ber of edge insertions between these cliques. Since we have �(� − 1) + � cliques of 
size L2 and � single vertices, and every clique is combined with one single vertex, it 

follows that  f2(�, �) ≥ �

(

� − 1

2

)

L2
2 . Notice that the third additive term of Eq. (3) 

is �
(

� − 1

2

)

L2
2.
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Overall, we need

edge modifications. Equality only holds if  � = 0 , f1(�, �) =

(

�

2

)

L2
2 , 

and  f2(�, �) = �

(

� − 1

2

)

L2
2 . Here  f2(�, �) = �

(

� − 1

2

)

L2
2 means that we can 

partition all �(� − 1) cliques of size L into � parts, each with � − 1 cliques, and then 
combine all  � − 1 cliques in each part with one single vertex. Moreo-

ver,  f1(�, �) =
(

�

2

)

L2
2 means that all these �(� − 1) cliques of order L come from 

partitioning 
(

�

2

)

 cliques of order 2L2 . Then, in G0 we have � vertices (correspond-

ing to these � single vertices) and 
(

�

2

)

 edges (corresponding to these 
(

�

2

)

 cliques 

of order 2L2 ) such that each vertex has � − 1 incident edges from these 
(

�

2

)

 edges. 

Hence, these � vertices form a clique in G0 . 	�  ◻

Note that in the reduction of Lemma 5 the constructed graph G is a cluster graph. 
According to Observations 1 and 2, this reduction can also be used to prove W[1]-
hardness with respect to the distance d.

Corollary 1  DCEditing (Edge Dist)  is NP-complete and W[1]-hard 
with respect to the distance  d, even if the input graph  G is a cluster graph 
and k + d = |E(G)⊕ E(Gc)|.

The following result also exploits the property that we need exactly k edge modi-
fications when k + d = |E(G)⊕ E(Gc)|.

Lemma 6  DCDeletion (Edge Dist)  is W[1]-hard with respect to the distance  d, 
even when k + d = |E(G)⊕ E(Gc)|.

Proof  We present a parameterized reduction from Multicolored Clique. In Multi-
colored Clique, we are given an integer � and a graph where every vertex is colored 
with one of � colors. The task is to find a clique of order � containing one vertex of 
each color. Multicolored Clique  is W[1]-hard with respect to  �[20]. 
Let  (G0 = (V ,E),�) be an instance of Multicolored Clique. We construct an 
instance  (G,Gc, k, d) of DCDeletion (Edge Dist)  as follows. For every vertex  v 
in G0 , create a clique Cv with 2� vertices in Gc . Add a special clique with one ver-
tex v∗ in G0 . For graph G, first copy Gc and then add more edges as follows: add 
edges between v∗ and all other vertices in G, and for every edge {u, v} in G0 , add all 

edges between vertices in  Cu and vertices in  Cv . Set  d = 2�2 + 4�2

(

�

2

)

 

and k = |E(G)⊕ E(Gc)| − d . This reduction works in polynomial time and the con-
struction is illustrated in Fig. 8.

�L1 + (�(� − 1) + �)L2 + f2(�, �) + f1(�, �) ≥ k
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Note that k + d = |E(G)⊕ E(Gc)| and according to Observation 2 a solution G′ 
for instance (G,Gc, k, d) has to delete exactly k edges from E(G)⊕ E(Gc) from G, 
which is equivalent to adding exactly d edges from E(G)⊕ E(Gc) to Gc . Next we 
show that there is a multicolored clique of order � in G0 if and only if there is a clus-
ter graph G� = (V ,E(G�)) such that |E(G�)⊕ E(G)| ≤ k and |E(G�)⊕ E(Gc)| ≤ d.

(⇒∶) Suppose that there is a multicolored clique C0 of size � in G0 , then for all 
vertices in C0 find the corresponding cliques in Gc , and combine these � cliques and 
vertex  v∗ into one big clique. Denote the resulting graph by G′ . To get graph G′ 

from G, we need to delete |E(G)⊕ E(Gc)| − (2�2 + 4�2

(

�

2

)

) = k edges, and all 

these edges are in E(G)⊕ E(Gc) . In this way we get a new cluster graph G′ such 
that |E(G�)⊕ E(G)| = k and |E(G�)⊕ E(Gc)| = d.

(⇐∶) Suppose that there is a cluster graph  G′ such that  |E(G�)⊕ E(G)| ≤ k 
and  |E(G�)⊕ E(Gc)| ≤ d . Since  k + d = |E(G)⊕ E(Gc)| , it has to hold 

that |E(G�)⊕ E(G)| = k and |E(G�)⊕ E(Gc)| = d . Since d = 2�2 + 4�2

(

�

2

)

 , and 

except for v∗ , every clique in Gc has 2� vertices, 2�2 in d must come from adding 
edges between v∗ and � cliques in Gc . Since G′ is a cluster graph, there must be edges 
between every pair of these � cliques in G, which means that there is a multicolored 
clique of order � in G0 . 	�  ◻

The final two results show W[1]-hardness with respect to the distance  d for 
DCEditing (Matching Dist) and DCDeletion (Matching Dist).

Lemma 7  DCEditing (Matching Dist) is W[1]-hard with respect to the distance d.

Proof  We present a parameterized reduction from Clique on Regular Graphs, where 
given a regular graph G∗ = (V ,E) with vertex degree r with r < n

2
 , and a number k∗ 

with k∗ ≤ r , we are asked to decide whether G∗ contains a clique of size k∗ . Clique 
on Regular Graphs is W[1]-hard with respect to k∗[10]. Given an instance (G0, k0, r) 

Fig. 8   Illustration of the con-
structed instance for the proof of 
Lemma 6. A circle represents a 
clique in G

c
 . Circles in the same 

blue dotted ellipse mean that 
the corresponding vertices in G0 
have the same color. Dotted 
edges represent the additional 
edges in G. Vertex v∗ is con-
nected to all other vertices in G. 
For an edge {u, v} in G0 , the 
corresponding two cliques C

u
 

and C
v
 are connected in G 

(Color figure online)

v∗

Cu

Cv

. . .

. . .
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of Clique on Regular Graphs, we construct an instance (G,Gc, d, k) of DCEditing 
(Matching Dist) as follows.

Graph  G is the same as G0 and graph Gc = (V ,

(

V

2

)

) is a complete graph. 

Set d ∶= k0 and k ∶= n(n−1−r)

2
− k0(n + k0 − 2r − 2) . The construction can trivially 

be done in polynomial time. In the following we show that there is a clique of size k0 
in G0 if and only if (G,Gc, d, k) is a yes-instance of DCEditing (Matching Dist).

(⇒ ): Assume that there is a clique of order k0 in G0 ; we construct a graph G′ 
which consists of two cliques, where one of them contains the vertices from the 
clique of order k0 in G0 ; the other, denoted by Cmax , contains the remaining vertices 
and has order n − k0 . Next we compute |E(G)⊕ E(G�)| , which consists of two parts:

•	 D(k0) : the set of edges between vertices in Cmax and the remaining vertices, 
and

•	 A(k0) : the set of added edges between vertices in Cmax.

Since the vertices outside Cmax form a clique, every such vertex has  r − k0 + 1 
edges connected to vertices in  Cmax . Thus  |D(k0)| = k0(r − k0 + 1) . To deter-
mine |A(k0)| , we count the sum of the degrees of vertices in Cmax . Before add-
ing edges to  Cmax , the sum is  (n − k0)r . After adding edges the sum should 
be  (n − k0)(n − k0 − 1) + |D(k0)| . So the number of edges which need to added 
to Cmax is

Then we get the size of the modification set for G′:

(⇐ ): To simplify the following proof, we define three functions:

•	 g1(x) ∶= x(r − x + 1),
•	 g2(x) ∶=

(n−x)(n−x−1)+g1(x)−(n−x)r

2
 , and

•	 f (x) ∶= g1(x) + g2(x) =
n(n−1−r)

2
− x(n + x − 2r − 2).

Since r < n

2
 , we have that f(x) is monotonically decreasing and  f (k0) = k.

Suppose that there is no clique of size k0 in G0 . We need to show that there is 
no cluster graph G′ satisfying both |E(G)⊕ E(G�)| ≤ k and d(Gc,G

�) ≤ d . Suppose 
towards a contradiction that there is such a cluster graph G′ . Denote the largest clus-
ter in G′ as Cmax . Since dM(Gc,G

�) ≤ d , we have that |V(Cmax)| ≥ n − k0 . Define

•	 D: the set of edges between vertices in Cmax and the remaining vertices, and
•	 A: the set of added edges between vertices in Cmax.

|A(k0)| =
(n − k0)(n − k0 − 1) + |D(k0)| − (n − k0)r

2
.

|E(G)⊕ E(G�)| = |D(k0)| + |A(k0)| =
n(n − 1 − r)

2
− k0(n + k0 − 2r − 2) = k.
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To get the clique Cmax from G, we have to delete all edges in D and add all edges 
in A, thus |E(G)⊕ E(G�)| ≥ |D| + |A| . We distinguish the following two cases:

Case 1 |Cmax| = n − k0 . Every vertex outside Cmax has at least r − k0 + 1 edges 
connected to vertices in Cmax , and since there is no clique of order k0 in G0 , among 
all vertices outside Cmax , there is at least one vertex which has more than r − k0 + 1 
edges connected to vertices in Cmax . This means that |D| > g1(k0) and |A| > g2(k0) . 
Thus, we have:

Case 2 |Cmax| > n − k0.
Suppose that |Cmax| = n − k� , where k′ < k0 is the number of all vertices out-

side Cmax . Now we have |D| ≥ g1(k
�) and |A| ≥ g2(k

�) , and

The last inequality holds since f(k) is monotonically decreasing.
In both cases we have that there is no solution for instance (G,Gc, d, k) . 	�  ◻

The above reduction cannot be used to show W[1]-hardness with respect to d 
for DCDeletion (Matching Dist)  since both edge insertions and edge deletions 
are needed. Next we show that DCDeletion (Matching Dist) remains W[1]-hard 
with respect to d.

Lemma 8  DCDeletion (Matching Dist)   is W[1]-hard with respect to the 
distance d.

Proof  We present a parameterized reduction from Clique on Regular Graphs, 
where, given a regular graph G∗ = (V ,E) with vertex degree r with r < n

2
 , and num-

ber k∗ with k∗ ≤ r , we are asked to decide whether G∗ contains a clique of size k∗ . 
Clique on Regular Graphs is known to be W[1]-hard with respect to k∗[10]. Given 
an instance (G0,�, r) of Clique on Regular Graphs, where G0 is a regular graph 

|E(G)⊕ E(G�)| ≥ |D| + |A| > g1(k0) + g2(k0) = f (k0) = k.

|E(G)⊕ E(G�)| ≥ |D| + |A| ≥ g1(k
�) + g2(k

�) = f (k�) > f (k0) = k.

. . . . . .

. . . . . .

v0

vi

v′i

G0

Fig. 9   Illustration of constructed graph G in the proof of Lemma 8. Edges in G0 are not shown. Every 
vertex v

i
 is connected to its copy v′

i
 and the universal vertex v0
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with vertex degree r, we construct an instance (G,Gc, d, k) of DCDeletion (Match-
ing Dist) as follows. The construction is illustrated in Fig. 9.

Let {v1, v2,… , vn} be the vertex set of G0 . For graph G, we first copy the whole 
graph G0 . Then we add a universal vertex and a private neighbor for each original 
vertex: we add a universal vertex v0 and add an edge between v0 and every vertex vi 
in G0 , and for every vertex vi in G0 , we add vertex v′

i
 and add an edge between vi 

and v′
i
 . The graph Gc has the same vertex set as  G. Moreover, graph Gc contains 

edges between vi and v′
i
 for all 1 ≤ i ≤ n . That is, Gc consists of n + 1 cliques: C0 with 

V(C0) = {v0} and  Ci with  V(Ci) = {vi, v
�
i
} for  1 ≤ i ≤ n . Set  k = n +

rn

2
−

(

�

2

)

 

and d = � . Next we show that there is clique of size � in G0 if and only if the con-
structed instance (G,Gc, d, k) is a yes-instance of DCDeletion (Matching Dist).

(⇒ ): Assume that there is clique C∗ of order � in G0 . Then in G we first delete 
edges  {vi, v

�
i
} for all  vi ∈ V(C∗) and delete edges  {v0, vi} for 

all  vi ∈ {v1, v2,… , vn}⧵V(C
∗) . Second, delete all edges between vertices 

in {v1, v2,… , vn} except for edges between vertices in C∗ . We delete n edges in the 

first step and rn
2
−

(

�

2

)

 edges in the second step, since G0 is a regular graph and C∗ 

is a clique. By deleting these n + rn

2
−

(

�

2

)

= k edges, we get a cluster graph G′ 

which contains  n + 1 cliques:  C′
i
 with  V(C�

i
) = {v�

i
} for  vi ∈ V(C∗),  C′

j
 

with  V(C�
j
) = {vj, v

�
j
} for  vi ∈ {v1, v2,… , vn}⧵V(C

∗) , and  C′
0
 

with V(C�
0
) = {v0} ∪ V(C∗) . Thus dM(G�,Gc) = �.

(⇐ ): Assume that  (G,Gc, d, k) is a yes-instance of DCDeletion (Matching 
Dist)  and let G′ be a solution. Since we can only delete edges, for every pair of 
edges {vi, v�i} and {vi, v0} for  vi ∈ {v1, v2,… , vn} , we have to delete one of them 
because {v0, v�i} ∉ E(G) . This means that for every vi ∈ {v1, v2,… , vn} vertex vi is 
either in the same clique with v′

i
 or with v0 . Suppose that in G′ there are p ≤ � verti-

ces from {v1, v2,… , vn} which are in the same clique with v0 . Then these p vertices 
must form a clique  C′ in  G0 . To get  G′ , we have to delete edges  {vi, v�i} for 
all  vi ∈ V(C�) and edge {vi, v0} for every vertex  vi ∈ {v1, v2,… , vn}⧵V(C

�) . This 
costs  n  edge deletions. Moreover, we have to delete all edges between vertices 

in {v1, v2,… , vn} except for edges between vertices in C′ . This costs rn
2
−

(

p

2

)

 edge 

deletions. Overall we have

Since G′ is a solution, we have that |E(G)⊕ E(G�)| ≤ k = n +
rn

2
−

(

�

2

)

 . Hence, 

p ≥ � and G0 contains a clique of order � . 	�  ◻

We now have shown all intractability results stated in Theorem 2.

|E(G)⊕ E(G�)| = n +
rn

2
−

(

p

2

)

.
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4 � Fixed‑Parameter Tractability Results

In this section, we complement the hardness results of Sect. 3 by identifying trac-
table cases for the considered variants of Dynamic Cluster Editing. We first show 
that all problem variants admit a polynomial kernel for the combination of the two 
parameters budget  k and distance  d. Then we present further FPT-results with 
respect to single parameters.

4.1 � Polynomial Kernels for the Combined Parameter (k + d)

In this subsection, we present polynomial kernels with respect to the parameter com-
bination (k + d) for all considered variants of Dynamic Cluster Editing : Formally, 
we prove the following theorem.

Theorem 3  The following problems admit an O(k2 + d2)-vertex kernel:

•	 DCEditing (Matching Dist),
•	 DCDeletion (Matching Dist), and
•	 DCCompletion (Matching Dist).

The following problems admit an O(k2 + k ⋅ d)-vertex kernel:

•	 DCEditing (Edge Dist),
•	 DCDeletion (Edge Dist), and
•	 DCCompletion (Edge Dist).

All kernels can be computed in O(|V|3) time.
We describe polynomial-time data reduction rules that each take as input an 

instance (G = (V ,E),Gc = (V ,Ec), k, d) and output a reduced instance. We say that 
a data reduction rule is correct if the reduced instance is a yes-instance if and only 
if the original instance is a yes-instance (of the corresponding problem variant). A 
data reduction rule works for all problem variants that fit a given restriction. For 
example, the restriction Editing/Deletion (given for Reduction Rule  2a) addresses 
the problems: DCEditing (Edge Dist), DCEditing (Matching Dist), DCDeletion 
(Edge Dist), and DCDeletion (Matching Dist). If no restriction is given, then a data 
reduction rule works for all problem variants. In the correctness proof of each data 
reduction rule, we assume that all previous rules are not applicable.

The first rule formalizes an obvious constraint on the solvability of the instance 
(for all problem variants). The correctness of this rule is obvious.

Reduction Rule 1  If k < 0 or d < 0, then output NO.1

1  Formally, this does not fit the definition of a data reduction rule, but we can assume that instead of NO 
the rule outputs a trivial no-instance of constant size.
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We next use some well-known data reduction rules for classic Cluster Edit-
ing[26] to get a graph which consists of isolated cliques plus one vertex set of 
size k2 + 2k that does not contain any isolated cliques. These rules remove edges 
that are part of k + 1 induced P3 s and add edges between non-adjacent vertex pairs 
that are part of k + 1 induced P3 s. The correctness proofs are straightforward adapta-
tions of the correctness proofs of these rules for classic Cluster Editing. The reason 
we use these data reduction rules instead of rules used for linear-vertex kernels for 
classic Cluster Editing[11, 13, 27] is that these rules do not eliminate any possible 
solution. Thus, the presented rules perform edge edits that are provably part of every 
optimal edge modification set.

Reduction Rule 2a  (Editing/Deletion) If there are k + 1 induced P3s in G that con-
tain a common edge {u, v} ∈ E, then remove that edge from E and decrease k by 
one.

Reduction Rule 2b  (Completion) If there are k + 1 induced P3s in G that contain a 
common edge {u, v} ∈ E, then output NO.

Reduction Rule 3a  (Editing/Completion) If there are k + 1 induced P3s in G that 
contain a common non-edge {u, v} ∉ E, then add that edge to E and decrease k by 
one.

Reduction Rule 3b  (Deletion) If there are k + 1 induced P3s in G that contain a 
common non-edge {u, v} ∉ E, then output NO.

Lemma 9  Reduction Rules 2a, 2b, 3a, and 3b are correct.

Proof  Let I = (G = (V ,E),Gc = (V ,Ec), k, d) be an instance of a problem variant of 
Dynamic Cluster Editing  and let I∗ be the instance after applying any of the four 
reduction rules. It is obvious that if I is a no-instance, then I∗ is also a no-instance. 
In the following we show that if I is a yes-instance, then so is I∗ for Reduction 
Rule 2a and Reduction Rule 2b. The correctness of Reduction Rule 3a and Reduc-
tion Rule 3b follows by symmetric arguments.

We now show for Reduction Rule 2a that the removed edge has to be in any solu-
tion for instance I. This implies that if I is a yes-instance of a completion variant of 
the problem, then Reduction Rule 2b is not applicable. Assume for the sake of con-
tradiction that I is a yes-instance and that I∗ is a no-instance. Then there is a cluster 
graph G′ with |E(G�)⊕ E| ≤ k that is a solution for I and contains edge {u, v} . How-
ever, we know that there are k + 1 vertices w1,w2,… ,wk+1 such that G[{u, v,wi}] is 
a P3 for all 1 ≤ i ≤ k + 1 (otherwise the rule would not be applicable). To destroy 
these P3 s without removing edge {u, v} we need at least k + 1 edge additions or dele-
tions. This is a contradiction to the assumption that |E(G�)⊕ E| ≤ k . 	�  ◻

As for classic Cluster Editing  we can upper-bound the number of vertices that 
are part of P3 s, leading to the following reduction rule.
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Reduction Rule 4  If there are more than k2 + 2k vertices in V that are all con-
tained in some induced P3 in G, then output NO.

Lemma 10  Reduction Rule 4 is correct.

Proof  Let I = (G = (V ,E),Gc = (V ,Ec), k, d) be an instance of a problem variant 
of Dynamic Cluster Editing   where Reduction Rule  2a / Reduction Rule  2b and 
Reduction Rule 3a / Reduction Rule 3b are not applicable. We show that if Reduc-
tion Rule 4 is applicable, then I is a no-instance.

Let R ⊆ V  denote the set of vertices in  V that are each contained in an 
induced P3 in G. Assume for the sake of contradiction that I is a yes-instance and 
that Reduction Rule  4 is applicable, that is, |R| > k2 + 2k . Then there is a clus-
ter graph G′ with  |E(G�)⊕ E| ≤ k that is a solution for I. For each {u, v} ⊆ R , 
let Ruv denote the set of vertices w such that G[{u, v,w}] is a P3 . Since the afore-
mentioned rules are not applicable, we know that |Ruv| ≤ k . We further know that 
R ⊆

⋃

{u,v}∈E(G�)⊕E({u, v} ∪ Ruv) . It follows that |R| ≤ k(k + 2) = k2 + 2k . This is a 
contradiction to the assumption that Reduction Rule 4 is applicable. 	�  ◻

In classic Cluster Editing  we can just remove all isolated cliques from the graph. 
This is not always possible in our setting because of the distance constraints to Gc . 
However, if there is a vertex set that forms an isolated clique both in G and Gc , then 
we can remove it since it has no influence on k or d in any problem variant. This is 
formalized in the next rule. We omit a formal correctness proof.

Reduction Rule 5  If there is a vertex set C ⊆ V  that is an isolated clique in G 
and Gc, then remove all vertices in C from G and Gc.

Now we introduce four new problem-specific reduction rules that will allow us to 
upper-bound the sizes of all remaining isolated cliques and their number in a func-
tion depending on k + d . The next rules deal with large isolated cliques and allow us 
to either remove them or to conclude that we face a no-instance. We first state the 
reduction rule for the matching-based distance problem variants and then turn to the 
edge-based distance variants.

Reduction Rule 6a  (Matching-based distance) If there is a vertex set C ⊆ V  with 
|C| > k + 2d + 2 that is an isolated clique in G, then

•	 if for each vertex set C′ ⊆ V  that is an isolated clique in Gc we have that 
|C ∩ C�

| ≤ d, then answer NO,
•	 otherwise, if there is a vertex set C′ ⊆ V  that is an isolated clique in Gc and 

|C ∩ C�
| > d, then remove vertices in C from G and Gc and decrease  d by 

|C⧵C′
|. Furthermore, if d ≥ 0, then add a set Cd of k + d + 1 fresh vertices to V. 

Add all edges between vertices in Cd to G and add all edges between vertices 
in Cd ∪ (C�⧵C) to Gc (if not already present).
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Lemma 11  Reduction Rule 6a is correct.

Proof  Let I = (G = (V ,E),Gc = (V ,Ec), k, d) be an instance of a problem variant of 
Dynamic Cluster Editing   that uses the matching-based distance and let I∗ be the 
instance after applying the reduction rule. Note that if there is a vertex set C ⊆ V  
with |C| > k + 2d + 2 > k + 1 that is an isolated clique in G, then we can neither 
divide this clique into smaller cliques nor can we add any vertex to this clique, since 
then more than k edge modifications would be necessary (or it is not allowed in the 
case of deletion or completion). This means that if I is a yes-instance and G′ is the 
solution for I, then for all {u, v} ∈ E(G�)⊕ E we have that {u, v} ∩ C = � or, in other 
words, C is also an isolated clique in G′.

We first argue that if for each isolated clique C′ in Gc we have that |C ∩ C�
| ≤ d , 

then we face a no-instance. Assume for contradiction that I is a yes-instance and 
G′ is the solution for  I. Then we know that C is also an isolated clique in G′ and 
no matter to which clique C′ in Gc the clique C in G′ is matched, we always have 
that |C⧵C′

| > d and hence the matching-based distance between G′ and Gc is too 
large. This is a contradiction to the assumption that I is a yes-instance.

Now assume that there is an isolated clique C′ in Gc with |C ∩ C�
| > d . We show 

that if I is a yes-instance, then I∗ is a yes-instance. Let I be a yes-instance and let G′ 
be a solution for I. Then we know that C is also an isolated clique in G′ . If C in G′ 
is not matched to C′ in Gc , then the matching-based distance between G′ and Gc is 
larger than d. Hence, we can assume that C in G′ is matched to C′ in Gc.

For the next argument we introduce the following terminology. If in an optimal 
solution an isolated clique C in G′ is matched to an isolated clique C′ in Gc , then 
we say that this match contributes |C⧵C�

| + |C�⧵C| to the matching-based distance 
between G′ and Gc.

Now we look at the instance I∗ = (G∗ = (V∗,E∗),G∗
c
= (V∗,E∗

c
), k∗, d∗) where 

the vertices in C are removed from G and Gc . The reduction rule further reduces d 
by |C⧵C′

| and introduces a new isolated clique Cd of size k + d + 1 to G. In Gc we have 
that Cd ∪ (C�⧵C) is an isolated clique. We claim that G⋆�

= (V∗,E∗ ⊕ (E(G�)⊕ E)) 
is a valid solution for I∗ . First, note that G⋆′ is a cluster graph. Since the removed 
clique and the added clique both have order larger than k, we can conclude that 
G⋆′ is the graph that results from removing the clique C from G′ and then adding 
the clique Cd . Concerning the matching-based distance, we can replace the match 
between C and C′ in G′ and Gc by the match between Cd and Cd ∪ (C�⧵C) in G⋆′ 
and G∗

c
 , respectively. Note that the contribution of the match between C and C′ in G′ 

and Gc , respectively, minus |C⧵C′
| (the value by which d is decreased by the reduc-

tion rule) is the same as the contribution of the match between Cd and Cd ∪ (C�⧵C) 
in G⋆′ and G∗

c
 , respectively. Hence, we can conclude that the matching-based dis-

tance between G′ and Gc is the same as the matching-based distance between G⋆′ 
and G∗

c
 . It follows that I∗ is a yes-instance.

By a symmetric argument it follows that if I∗ is a yes-instance, then I is a yes-
instance. 	�  ◻
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Reduction Rule 6b  (Edge-based distance) If there is a vertex set C ⊆ V  with 
|C| > k + 1 that is an isolated clique in G, then decrease d by 

|Ec| +

(

|C|

2

)

− 2|E(Gc[C])| − |E(Gc[V⧵C])| and remove the vertices in C from G 

and Gc.

Lemma 12  Reduction Rule 6b is correct.

Proof  Let I = (G = (V ,E),Gc = (V ,Ec), k, d) be an instance of a problem variant of 
Dynamic Cluster Editing   that uses the edge-based distance and let I∗ be the 
instance after applying the reduction rule. Note that if there is a vertex set C ⊆ V  
with |C| > k + 1 that is an isolated clique in G, then we can neither divide this clique 
into smaller cliques nor can we add any vertex to this clique, since then more than k 
edge modifications would be necessary (or it is not allowed in the case of deletion or 
completion). This means that if I is a yes-instance and G′ is the solution for I, then 
for all {u, v} ∈ E(G�)⊕ E we have that {u, v} ∩ C = � or, in other words, C is also 
an isolated clique in G′ . This implies that removing C from G′ and Gc decreases d by 
the number of edges between vertices in C that are present in G′ but not present 
in Gc plus the number of edges in Gc that have one endpoint in C and one endpoint in 
V⧵C (note that no such edges are present in G′ ). The number of edges between verti-

ces in C that are present in G′ is clearly 
(

|C|

2

)

 and the number of edges between 

vertices in C that are present in Gc is |E(Gc[C])| . The number of edges in Gc that 
have one endpoint in C and one endpoint in V⧵C is the total number of edges in Gc 
minus the number of edges in Gc between vertices in C and the edges in Gc between 
vertices in V⧵C . Hence, we 

get  d =

(

|C|

2

)

− |E(Gc[C])| + |Ec| − (|E(Gc[C])| + |E(Gc[V⧵C])|) , which yields 

the decrease conducted by the reduction rule. Note that this number is independent 
of G′ . It follows that G�[V⧵C] is a solution for I∗ . Thus, I∗ is a yes-instance.

By an analogous argument we get that if I∗ is a yes-instance, then I is also a yes-
instance. 	�  ◻

If none of the previous rules are applicable, then we know that there are no 
large cliques left in the graph. The next rules allow us to conclude that we face a 
no-instance if there are too many small cliques left.

Reduction Rule 7a  (Matching-based distance) If there are more than 2k + d iso-
lated cliques in G, then output NO.

Lemma 13  Reduction Rule 7a is correct.

Proof  Let I = (G = (V ,E),Gc = (V ,Ec), k, d) be an instance of a problem vari-
ant of Dynamic Cluster Editing   that uses the matching-based distance. We show 
that if Reduction Rule 5 is not applicable and there are 2k + d + 1 isolated cliques 
C1,C2,… ,C2k+d+1 ⊆ V  in G, then I is a no-instance.
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Assume for the sake of contradiction that I is a yes-instance. Then there is a clus-
ter graph G′ with |E(G�)⊕ E| ≤ k that is a solution for I. Since Reduction Rule 5 is 
not applicable we have that for isolated cliques Ci in G with 1 ≤ i ≤ 2k + d + 1 the 
vertex set Ci is not an isolated clique in Gc . Each edge modification in E(G�)⊕ E 
when applied to G can reduce the number of isolated cliques in G that are not iso-
lated cliques in Gc by at most 2. This happens when two isolated cliques of G are 
joined in G′ and the union of their vertices is an isolated clique in Gc . It is easy to 
check that this is the best case. It follows that after at most k edge modifications, G′ 
still has at least d + 1 isolated cliques that are not isolated cliques in Gc . Thus the 
matching-based distance cannot be decreased to d which is a contradiction to the 
assumption that we face a yes-instance. 	�  ◻

Reduction Rule 7b  (Edge-based distance) If there are more than 2(k + d) isolated 
cliques in G, then output NO.

Lemma 14  Reduction Rule 7b is correct.

Proof  Let I = (G = (V ,E),Gc = (V ,Ec), k, d) be an instance of a problem vari-
ant of Dynamic Cluster Editing   that uses the edge-based distance. We show that 
if Reduction Rule  7b is not applicable and there are 2(k + d) + 1 isolated cliques 
C1,C2,… ,C2k+d+1 ⊆ V  in G, then I is a no-instance.

Let M = E⊕ Ec . Since Reduction Rule 7b is not applicable, we have that for iso-
lated cliques Ci in G with 1 ≤ i ≤ 2(k + d) + 1 the vertex set Ci is not an isolated 
clique in Gc . It follows that for all Ci there is a vertex u ∈ Ci and a vertex v ∈ V  such 
that {u, v} ∈ M . This implies that |M| > k + d and, hence, we face a no-instance. 	
� ◻

In the following we show that the rules we presented decrease the number of ver-
tices of the instance to a number polynomial in k + d.

Lemma 15  Let (G = (V ,E),Gc = (V ,Ec), k, d) be an instance of any one of the con-
sidered problem variants of Dynamic Cluster Editing  that uses the matching-based 
distance. If none of the suitable data reduction rules applies, then |V| ∈ O(k2 + d2) 
and |E| ∈ O(k3 + d3).

Proof  Let I = (G = (V ,E),Gc = (V ,Ec), k, d) be an instance of a problem variant of 
Dynamic Cluster Editing  that uses the matching-based distance.

Since Reduction Rule 4 is not applicable, we know that there are at most k2 + 2k 
vertices in G that are not part of an isolated clique. It is also known that there are O(k3) 
edges between those vertices[26]. Further, since Reduction Rule 7a is not applicable, 
we know that there are at most 2k + d isolated cliques in G. Since Reduction Rule 6a 
is not applicable, we know that each isolated clique has size at most k + 2d + 2 . This 
yields a maximum number of 3k2 + 2d2 + 5dk + 2d + 6k ∈ O(k2 + d2) vertices and 
O(k3 + d3) edges. 	�  ◻
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Lemma 16  Let (G = (V ,E),Gc = (V ,Ec), k, d) be an instance of any one of the con-
sidered problem variants of Dynamic Cluster Editing  that uses the edge-based dis-
tance. If none of the suitable data reduction rules applies, then |V| ∈ O(k2 + k ⋅ d) 
and |E| = O(k3 + k2 ⋅ d).

Proof  Let I = (G = (V ,E),Gc = (V ,Ec), k, d) be an instance of a problem variant of 
Dynamic Cluster Editing  that uses the edge-based distance.

Since Reduction Rule 4 is not applicable, we know that there are at most k2 + 2k 
vertices in G that are not part of an isolated clique. It is also known that there are 
O(k3) edges between those vertices[26]. Further, since Reduction Rule  7b is not 
applicable, we know that there are at most 2(k + d) isolated cliques in G. Since 
Reduction Rule 6b is not applicable, we know that each isolated clique has size at 
most k + 1 . This yields a maximum number of 2dk + 2d + 3k2 + 4k ∈ O(k2 + k ⋅ d) 
vertices and O(k3 + k2 ⋅ d) edges. 	�  ◻

Finally, we can apply all data reduction rules exhaustively in O(|V|3) time.

Lemma 17  Let (G = (V ,E),Gc = (V ,Ec), k, d) be an instance of any one of the con-
sidered problem variants of Dynamic Cluster Editing. Then the respective reduc-
tion rules can be exhaustively applied in O(|V|3) time.

Proof  We first exhaustively apply Reduction Rule 1, Reduction Rule 2a, Reduction 
Rule 2b, Reduction Rule 3a, Reduction Rule 3b, and Reduction Rule 4. These rules 
are well-known data reduction rules for classic Cluster Editing and it is known that 
these rules can exhaustively be applied in O(|V|3) time[26] if the graph is repre-
sented by an adjacency matrix.

It is easy to check that none of the remaining rules introduces new induced P3 s to 
G. Hence, we know that once these rules (except Reduction Rule 1) are exhaustively 
applied, then they will not be applicable after any of the other rules is applied.

From now on we assume that the graph G is represented in the following way. 
Adjacencies between vertices that are part of an induced P3 are represented in an 
adjacency matrix. We know that all other vertices are contained in isolated cliques. 
We store a list of cliques and also a map from vertices to the isolated clique they are 
contained in. We assume that Gc is represented in the same way. It is easy to check 
that this new representation can be computed in O(|V|3) time from the adjacency 
matrix.

Using the new representation of G and Gc , we can apply Reduction Rule  5 
exhaustively in  O(|V|2)  time. We can check in  O(|V|)  time whether Reduction 
Rule 6a or Reduction Rule 6b is applicable and, if so, apply the rule in O(|V|2) time. 
After each application of Reduction Rule  6a we exhaustively apply Reduction 
Rule 5. Since each application of Reduction Rule 6a or Reduction Rule 6b decreases 
the number of vertices in V by at least one, we can apply these rules exhaustively 
in O(|V|3) time. Using our representation of G, we can apply Reduction Rule 7a and 
Reduction Rule 7b in O(|V|) time.

Altogether, we obtain an overall running time in O(|V|3) . 	�  ◻
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It is easy to see that Theorem 3 directly follows from Lemmas 15, 16, and 17. 
We remark that the number of edges that are not part of an isolated clique can be 
bounded by O(k3)[26].

4.2 � Fixed‑Parameter Tractable Cases for Single Parameters

In this subsection, we show that several variants of Dynamic Cluster Editing   are 
fixed-parameter tractable with respect to either the budget k or the distance d.

Theorem  4  DCDeletion (Edge Dist)  is in FPT  when parameterized by the 
budget k.

All our FPT  results in Sect.  4.2 are using the same approach: We reduce (in 
FPT  time) the input to an instance of Multi-Choice Knapsack  (MCK), formally 
defined as follows. 

MCK is known to be solvable in pseudo-polynomial time by dynamic 
programming:

Lemma 18  [32, Section 11.5] MCK can be solved in O(W ⋅
∑𝓁

i=1
�Si�) time.

As our approach is easier to explain with the edge-based distance, we start with 
this case and afterwards show how to extend it to the matching-based distance. 
As already exploited in our reductions showing NP-hardness (see Theorem  1), 
all variants of Dynamic Cluster Editing carry some number-problem flavor. Our 
generic approach will underline this flavor: We will focus on cases where we can 
partition the vertex set of the input graph into parts such that we will neither add 
nor delete an edge between two parts. Moreover, we require that the parts are 
“easy” enough to list all Pareto-optimal (with respect to  k and  d) solutions in 
FPT-time (this is usually achieved by some kernelization arguments). However, 
even with these strict requirements we cannot solve the parts independently from 
each other: The challenge is that we have to select for each part an appropriate 
Pareto-optimal solution. Finding a feasible combination of these part-individual 
solutions leads to a knapsack-type problem (in this case MCK). Indeed, this is 
common to all studied variants of Dynamic Cluster Editing.

The details for our generic four-step approach (for edge-based distance) are 
given subsequently. In order to apply this approach on a concrete problem variant, 
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we have to show (using problem-specific arguments) how the requirements in the 
first two steps can be met. 

1.	 When necessary, apply polynomial-time data reduction rules from Sect. 4.1.
	   Partition the input graph G = (V ,E) into different parts G1,G2,… ,G

�+1 for 
some � ≤ |V| such that

•	 in G there is no edge between the parts and
•	 if there is a solution, then there exists a solution where no edge between 

two parts will be inserted or deleted.

2.	 Compute for each part Gi = (Vi,Ei) , 1 ≤ i ≤ � , a set Si ⊆ ℕ
2 encoding “cost” and 

“gain” of all “representative” solutions for Gi . The size of the set Si has to be 
upper-bounded in a function f of the parameter p. (Here, p will be either k or d.)

	   More precisely, select a family Ei of f(p) edge sets such that for each edge 

set E′
i
⊆

(

Vi

2

)

 in Ei the graph G�
i
= (Vi,E

�
i
⊕ Ei) is a cluster graph achievable 

with the allowed number of modification operations ( G�
i
= (Vi,Ei⧵E

�
i
) for edge 

deletions and G�
i
= (Vi,Ei ∪ E�

i
) for edge insertions). For each such edge set E′

i
 , 

add to Si a tuple containing the cost ( = |E�
i
| ) and “decrease” the distance from Gi 

to the target cluster graph  Gc . More formally, for edge insertions 
a d d   (|E�

i
|, |E�

i
∩ Ec| − |E�

i
⧵Ec|)  t o   Si  o r  fo r  e d g e  d e l e t i o n s 

add (|E�
i
|, |E�

i
⧵Ec| − |E�

i
∩ Ec|) to Si , where Ec is the edge set of Gc . Note that we 

allow E�
i
= � , that is, if Gi is a cluster graph, then Si contains the tuple (0, 0).

	   The set Si has to fulfill the following property: If there is a solution, then there is a 
solution G′ such that restricting G′ to Vi yields a tuple in Si . More precisely, we require 
that (|E(G�[Vi])⊕ Ei|, |(E(G

�[Vi])⊕ Ei) ∩ Ec| − |(E(G�[Vi])⊕ Ei)⧵Ec|) ∈ Si.
3.	 Create an MCK instance  I with  W ∶= k  , P ∶= |E⊕ Ec| − d  , and the 

sets S1, S2,… , S
�
 where the tuples in the sets correspond to the items with the 

first number in the tuple being its weight and the second number being its profit.
4.	 Return true if and only if I is a yes-instance.

Note that the requirement in Step  1 implies that a part is a collection of con-
nected components in  G. Furthermore, note that the part G

�+1 will be ignored 
in the subsequent steps. Thus  G

�+1 contains all vertices which are not con-
tained in an edge of the edge modification set. Observe that � ≤ n . Hence, we 
have 

∑𝓁

i=1
�Si� ∈ O(f (p) ⋅ n) . (The parameter  p will be either  k or  d.) Moreover, 

as k and d are smaller than n2 , it follows that W < n2 and thus, by Lemma 18, the 
MCK instance I created in Step 3 can be solved in  f (p) ⋅ n3 time in Step 4. This 
yields the following.

Observation 3  If the partition in Step 1 and the sets Si in Step 2 can be computed 
in g(p) ⋅ nc time with |Si| ≤ f (p) for some functions f, g and constant c, then the above 
four-step approach runs in g(p) ⋅ nc + f (p) ⋅ n3 time.
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Note that Step 1 and Step 2 are different for every problem variant we consider. 
There are, however, some similarities between the variants where only edge inser-
tions are allowed.

4.2.1 � Edge‑Based Distance

We use the above mentioned approach to show that DCDeletion (Edge Dist)  and 
DCCompletion (Edge Dist) are both fixed-parameter tractable with respect to k and 
that DCCompletion (Edge Dist) is also fixed-parameter tractable with respect to d. 
Since Step 1 and Step 2 are easiest to explain for the edge-deletion variant, we start 
with DCDeletion (Edge Dist). Note that the requirements of Step 1 and Step 2 seem 
impossible to achieve in FPT-time when allowing edge insertions and deletions. 
Indeed, as shown in Theorem 2, the corresponding edge-edit variants are W[1]-hard 
with respect to the studied (single) parameters k and d, respectively.

Lemma 19  DCDeletion (Edge Dist) can be solved in O(4k4 ⋅ n3) time and thus is in 
FPT when parameterized by the budget k.

Proof  We first apply the known data reduction rules for Cluster Editing  (see dis-
cussion after Theorem 3). As a result, we end up with a graph where at most k2 + 2k 
vertices are contained in an induced P3 ; all other vertices form a cluster graph with 
each clique containing at most k vertices. Denote by G the resulting graph.

Now we apply our generic four-step approach. Thus we need to provide the 
details how to implement Step 1 and Step 2. We define the parts G1,G2,… ,G

�
,G

�+1 
of Step 1 as follows: The first part G1 = (V1,E1) contains the graph induced by all 
vertices contained in a P3 . Each of the cliques in the cluster graph G[V⧵V1] forms 
another part Gi , 2 ≤ i ≤ � . Finally, set G

�+1 = (�, �) , that is, we include all verti-
ces in the subsequent steps of our generic approach. Clearly, each part contains less 
than 2k2 vertices. Moreover, observe that there are no edges between the parts.

As to Step 2, we add, for every edge set E′
i
⊆ Ei with G�

i
= (Vi,Ei⧵E

�
i
) being a 

cluster graph, a tuple (|E�
i
|, |E�

i
⧵Ec| − |E�

i
∩ Ec|) to Si . As this enumerates all possible 

solutions for Gi , the requirement in Step 2 is fulfilled.
As for the running time, since each part Gi contains less than 2k2 vertices, we 

have for each edge set that |Ei| ≤ 2k4 and hence |Si| ≤ |2Ei
| ≤ 4k

4 . Together with 
Observation 3 we get the statement of the lemma. 	�  ◻

Next we show that DCCompletion (Edge Dist)  is in FPT  with respect to  d. 
Before applying our generic approach, we make some observations. Since we can 
only insert edges in DCCompletion (Edge Dist), we can make all vertices in a con-
nected component pairwise adjacent.

Observation 4  Let (G,Gc, k, d) be an instance of DCCompletion (Edge Dist) or of 
DCCompletion (Matching Dist). If G is not a cluster graph, then there is an equiva-
lent instance (G∗,Gc, k

∗, d) with G∗ being a cluster graph and k∗ < k.
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Proof  Since we are only allowed to insert edges and the solution graph is required to 
be a cluster graph, it follows that every connected component of G has to be made 
into a clique. Call the resulting cluster graph G∗ and denote by k′ the number of 
inserted edges. Clearly, (G,Gc, k, d) is a yes-instance if and only if (G∗,Gc, k − k�, d) 
is a yes-instance. 	� ◻

Observation 4 allows us in the following to assume that all connected components 
in G are cliques. The main difference between DCDeletion (Edge Dist) and DCCom-
pletion (Edge Dist)  is that in the former we can partition cliques independently and 
thus the partition for Step 1 is straightforward. In the latter problem, Step 1 requires 
some preliminary observations. We subsequently show that for DCCompletion (Edge 
Dist)  we can partition the graph  G according to cliques in Gc such that no edges 
between the parts are added.

We assign every clique C in G a number that indicates the “best match” in Gc , that 
is, the clique D in Gc—if existing—that contains more than half of the vertices of C. 
More formally, let C be the set of all cliques in G and D = {D1,D2,… ,Dq} be the 
cliques in Gc . We define a function T ∶ C → {0, 1,… , q} mapping a clique C ∈ C to a 
number between 0 and q as follows:

We say that we merge two cliques Ci and Cj when we add all edges between Ci 
and Cj . We show next that we can assume that we only merge cliques Ci and Cj 
with T(Ci) = T(Cj) (see Fig. 10 for an illustration).

Definition 3  Let (G,Gc, k, d) be a yes-instance of DCCompletion (Edge Dist) such 
that  G is a cluster graph. A solution  G� = (V ,E�) , E′ ⊇ E , is called standard 
if for each clique C′ in G′ the following holds: If C1 ≠ C2 are two cliques in  G 
and C1,C2 ⊆ C′ , then T(C1) = T(C2) > 0.

T(C) ∶=

{

i if ∃i ∶ |C ∩ Di| >
1

2
|C|;

0 otherwise.

Fig. 10   Illustration of a possible combination of cliques in G (blue dashed or dotted circles). The red 
solid circle denotes a clique in G

c
 . Less than half of the vertices in the clique represented by the dotted 

(rightmost) circle are contained in the clique represented by the red solid circle. Lemma 21 states that the 
clique represented by the dotted circle will not be combined with a clique represented by a dashed circle 
(Color figure online)
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We start with a technical lemma that essentially states that merging two cliques Ci 
and Cj with T(Ci) ≠ T(Cj) or T(Ci) = 0 will not decrease the edge-based distance.

Lemma 20  Let  (G,Gc, k, d) be an instance of DCCompletion (Edge 
Dist), let  C0,C1,… ,Cr be isolated cliques in  G with  r ≥ 1, and 
let E∗ ∶= {{u, v} ∣ u ∈ C0, v ∈ C1 ∪… ∪ Cr}. If T(C0) = 0 or if T(C0) ≠ T(Ci) for 
all 1 ≤ i ≤ r, then |E∗ ∩ E(Gc)| ≤ |E∗⧵E(Gc)|.

Proof  We first show the statement for r = 1 . Let D = {D1,D2,… ,Dq} be the cliques 
in Gc . Observe that �E∗ ∩ E(Gc)� =

∑q

i=1
�C0 ∩ Di� ⋅ �C1 ∩ Di� . Furthermore,

If T(C0) = 0 , then, by definition of T, we have |C0⧵Di| ≥ |C0 ∩ Di| for all 1 ≤ i ≤ q . 
Thus, |E∗ ∩ E(Gc)| ≤ |E∗⧵E(Gc)| . By symmetry, this follows also from T(C1) = 0.

It remains to consider the case that  T(C0) = j0 ≠ j1 = T(C1) for 
some  j0, j1 ∈ {1, 2,… , q} . By the definition of T, we have |C0⧵Di| ≥ |C0 ∩ Di| for 
all i ∈ {1,… , q}⧵{j0, j1} . Thus,

It remains to show that

To this end, observe that

Furthermore,

From the above, we can deduce that

This competes the proof for the case T(C0) ≠ T(C1).
The proof for the case r > 1 is now straightforward. We have

|E∗⧵E(Gc)| =

q
∑

i=1

|C0⧵Di| ⋅ |C1 ∩ Di| =

q
∑

i=1

|C0 ∩ Di| ⋅ |C1⧵Di|.

∑

i∈{1,…,q}⧵{j0,j1}

|C0 ∩ Di| ⋅ |C1 ∩ Di| ≤
∑

i∈{1,…,q}⧵{j0,j1}

|C0⧵Di| ⋅ |C1 ∩ Di|.

(4)
∑

i∈{j0,j1}

|C0 ∩ Di| ⋅ |C1 ∩ Di| ≤
∑

i∈{j0,j1}

|C0⧵Di| ⋅ |C1 ∩ Di|.

(5)C0 ∩ Dj0
⊆ C0⧵Dj1

and C0 ∩ Dj1
⊆ C0⧵Dj0

.

(6)|C0⧵Dj1
| > |C0⧵Dj0

| and |C1⧵Dj1
| < |C1⧵Dj0

|.

|C0 ∩ Dj0
| ⋅ |C1 ∩ Dj0

| + |C0 ∩ Dj1
| ⋅ |C1 ∩ Dj1

|

(5)

≤ |C0⧵Dj1
| ⋅ |C1 ∩ Dj0

| + |C0⧵Dj0
| ⋅ |C1 ∩ Dj1

|

(6)

≤ |C0⧵Dj0
| ⋅ |C1 ∩ Dj0

| + |C0⧵Dj1
| ⋅ |C1 ∩ Dj1

|.
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Using the above argument for r = 1 for every Cj , 1 ≤ j ≤ r , we have that

Thus, |E∗ ∩ E(Gc)| ≤ |E∗⧵E(Gc)| . 	�  ◻

Lemma 21  Let (G,Gc, k, d) be a yes-instance of DCCompletion (Edge Dist). Then 
there exists a standard solution G′ for (G,Gc, k, d).

Proof  Let G′ be a solution for (G,Gc, k, d) . Assume that G′ is not a standard solution. 
Let C′ be a clique in G′ which is not standard. (A clique C′ is called a standard clique 
if either it only contains one clique from C or there is a number i with 1 ≤ i ≤ q such 
that all cliques from C contained in C′ are assigned the value i under the function T.) 
Next we show that we can modify G′ to get a standard solution by showing that 
each non-standard clique can be divided into some standard cliques and the result-
ing cluster graph is still a solution. We consider two cases distinguishing whether or 
not C′ contains a clique C from G with T(C) = 0.

If C′ contains a clique C from G with T(C) = 0 , then splitting C from C′ gives a 
cheaper solution that, by Lemma 20, also has distance at most d from Gc.

Now consider the case that there is no clique  C from  G with T(C) = 0 con-
tained in C′ . Let  S = {C1,C2,… ,Cr� ,Cr�+1,… ,Cr} be the set of cliques from  G 
contained in  C′ with  C = C1 . Let  S1 = {C1,C2,… ,Cr� } be the set that con-
tains all cliques Ci ∈ S with T(Ci) = T(C1) and S2 = S⧵S1 . We divide C′ into two 
cliques CS1

 and CS2
 and get a new cluster graph G∗ , where CS1

 contains all vertices 
in C1,C2,… ,Cr� and CS2

 contains all vertices in Cr�+1,Cr�+2,… ,Cr . We show that G∗ 
is also a solution.

Let  Ei
Δ
 be the set of edges between vertices in  CS1

 and vertices in  Ci for 
each  r� + 1 ≤ i ≤ r . Let  EΔ =

⋃

r�+1≤i≤r E
i
Δ
 . Then to get G∗ from G′ , we need to 

delete all edges in EΔ . Now we split edges in Ei
Δ
 into two parts. Let Ei

Δ
= Ei

+
⊎ Ei

−
 , 

where  Ei
+
= Ei

Δ
∩ (E(G)⊕ E(Gc)) and  Ei

−
= Ei

Δ
∩
(

(

V

2

)

⧵(E(G)⊕ E(Gc))
)

 . 

Since  T(Ci) ≠ T(C1) for any  r� + 1 ≤ i ≤ r , it follows from Lemma  20 
that |Ei

+
| ≤ |Ei

−
| . Then for the distance upper bound, we have that

|E∗ ∩ E(Gc)| =

r
∑

j=1

q
∑

i=1

|C0 ∩ Di| ⋅ |Cj ∩ Di|,

|E∗⧵E(Gc)| =

r
∑

j=1

q
∑

i=1

|C0⧵Di| ⋅ |Cj ∩ Di|.

q
∑

i=1

|C0 ∩ Di| ⋅ |Cj ∩ Di| ≤

q
∑

i=1

|C0⧵Di| ⋅ |Cj ∩ Di|.
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For the modification budget, we have that

Hence, G∗ is also a solution. We can continue to divide clique CS2
 in G∗ in the same 

way such that every sub-clique is standard. Thus, for every non-standard clique 
in G′ , we can divide it into several standard cliques and the new cluster graph is still 
a solution. 	�  ◻

Note that for a clique Ci in G which has exactly half of its vertices from one clique 
in Gc and the remaining half of its vertices from another clique in Gc , no clique in G 
has the same type as it. Lemma 21 allows us to focus on standard solutions. This 
allows us to show our next fixed-parameter tractability result.

Lemma 22  DCCompletion (Edge Dist) can be solved in O(dd+1 ⋅ n3) time and thus 
is in FPT when parameterized by the distance d.

Proof  We apply our generic four-step approach and thus need to provide the details 
how to implement Step 1 and Step 2.

By Observation 4, we can assume that our input graph is a cluster graph. Fur-
thermore, exhaustively apply Reduction Rule  6b to delete too big cliques and 
denote by  G the resulting cluster graph. Let  C be the set of all cliques in  G 
and D ∶= {D1,D2,… ,Dq} be the set of all cliques in Gc . We partition G into q + 1 
groups  G1,G2,… ,Gq,Gq+1 with  Gi = G[Vi] , where  Vi ∶= {C ∈ C ∣ T(C) = i} 
for 1 ≤ i ≤ q and Vq+1 ∶= {C ∈ C ∣ T(C) = 0} . So Gq+1 contains all cliques with 
value 0 under the function T. According to Lemma 21, if there is a solution, then 
there is a solution only combining cliques within every group Gi for 1 ≤ i ≤ q . This 
shows that with � = q the requirements of Step 1 of our generic approach are met.

Next we describe Step 2, that is, for every part Gi , we show how to compute a 
set Si corresponding to all “representative” solutions. To this end, we distinguish 
two cases: Gi contains at most d + 1 cliques or at least d + 2 cliques. If Gi contains at 
most d + 1 cliques, then we can brute-force all possibilities to partition the cliques 
and merge the cliques in each partition. There are less than (d + 1)d+1 possibilities to 
do so and for each possibility we add to Si a tuple representing the cost and gain of 
making all cliques in S into a clique.

If Gi contains at least  d + 2 cliques, then we show that we need to merge all 
cliques in Gi : If not all cliques are merged into one clique, then we have a solu-
tion with two parts without any edge between the two parts (each part can be a 
single clique or a cluster graph). Let p and q be the number of vertices in the two 

|E(G∗)⊕ E(Gc)| =|E(G
�)⊕ E(Gc)| −

∑

r�+1≤i≤r

|Ei
+
| +

∑

r�+1≤i≤r

|Ei
−
|

=|E(G�)⊕ E(Gc)| −
∑

r�+1≤i≤r

(|Ei
+
| − |Ei

−
|)

≤|E(G�)⊕ E(Gc)|

≤d.

|E(G)⊕ E(G∗)| = |E(G)⊕ E(G�)| − |EΔ| ≤ k.
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parts that are also in Di . Since there are at least d + 2 cliques, each containing at 
least one vertex from Di , it follows that  p + q ≥ d + 2 , p ≥ 1 , and q ≥ 1 . Thus, at 
least p ⋅ q ≥ d + 1 edges in Di (and thus in Gc ) are not in our solution, a contradic-
tion to the fact that the solution needs to have a distance of at most d to Gc . Hence, 
we only need to add one tuple to Si encoding the cost and gain of making Gi into one 
clique. Together with Observation 3 we get the statement of the lemma. 	�  ◻

4.2.2 � Matching‑Based Distance

We next discuss how to adjust our generic four-step approach for DCCompletion 
(Matching Dist). The main difference to the edge-based distance variants is an addi-
tional search tree of size O(dd+2) in the beginning. Each leaf of the search tree then 
corresponds to a simplified instance where we have additional knowledge on the 
matching defining the distance of a solution to Gc . With this additional knowledge, 
we can apply our generic four-step approach in each leaf, yielding the following.

Lemma 23  DCCompletion (Matching Dist)  can be solved in O(dd+2 ⋅ n3) time and 
thus is in FPT when parameterized by the distance d.

Proof  We apply our generic four-step approach and thus need to provide the details 
how to implement Step 1 and Step 2.

We can assume that our input graph is a cluster graph. Let C be the set of all 
cliques in G and let D ∶= {D1,D2,… ,Dq} be the set of all cliques in Gc . Then we 
partition all cliques in C into two classes C1 and C2 , where every clique in C1 has the 
property that all its vertices are contained in one clique in D and every clique in C2 
contains vertices from at least two different cliques in D . Observe that |C2| ≤ d as 
otherwise the input is a no-instance. Similarly, every clique in C2 contains vertices 
from at most d + 1 different cliques in D as otherwise the input is a no-instance.

This allows us to do the following branching step. For each clique in C2 we try 
out all “meaningful” possibilities to match it to a clique in D , where “meaningful” 
means that the cliques in C2 and D should share some vertices or we decide to not 
match the cliques of C2 to any clique in D . or each clique this gives us d + 2 possi-
bilities and hence we have at most dd+2 different cases each of which defines a map-
ping M ∶ C2 → D ∪ {�} that maps a clique in C2 to the clique in D it is matched to.

Given the mapping M from cliques in C2 to cliques in D or ∅ , we par-
tition  G into  q + 1 groups  G1,G2,… ,Gq,Gq+1 with  Gi = G[Vi] , where 
Vi ∶= {C ∈ C1 ∣ M(C) ⊆ Di} ∪ {C ∈ C2 ∣ M(C) = Di} and Vq+1. ∶= {C ∈ C2 ∣ M(C) = �}.

If there is a solution with a matching that uses the matches given by M, then 
there is a solution only combining cliques within every group Gi, 1 ≤ i ≤ q , since 
all cliques in Gi that are not matched by M are completely contained in Di and hence 
would not be merged with cliques in Gj for some i ≠ j . This shows that with � = q 
the requirements of Step 1 of our generic approach are met.
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Next we describe Step 2, that is, for every part Gi , we show how to compute a 
set Si corresponding to all “representative” solutions. Note that all except for at most 
d cliques from Gi need to be merged into one clique that is then matched with Di , 
otherwise the matching distance would be too large. For each clique in Gi that is 
not completely contained in Di we already know that it is matched to Di , hence we 
need to merge all cliques of this kind to one clique C⋆

i
 . Each clique in Gi that is com-

pletely contained in Di and has size at least d + 1 also needs to be merged to C⋆

i
 , oth-

erwise the matching distance would be too large. For all cliques of Gi that are com-
pletely contained in Di with size x for some 1 ≤ x ≤ d , we merge all but d cliques 
to C⋆

i
 . This leaves us with one big clique C⋆

i
 and d2 cliques of size at most d each. 

Now we can brute-force all possibilities to merge some of the remaining cliques 
to C⋆

i
 . There are less than dd possibilities to do so and for each possibility we add 

to Si a tuple representing the cost and gain of merging the cliques according to the 
partition. Together with Observation 3 we get the statement of the lemma. 	�  ◻

We now have shown all fixed-parameter tractability results stated in Theorem 4.

5 � Conclusion

Our work provides a first thorough (parameterized) analysis of Dynamic Cluster 
Editing, addressing a natural dynamic setting for graph-based data clustering. We 
deliver both (parameterized) tractability and intractability results. Our positive 
algorithmic results (fixed-parameter tractability and polynomial kernelization) are 
mainly of classification nature. Hence, to get practically useful algorithms, one 
needs to further improve our running times, a challenge for future research.

A key difference between Dynamic Cluster Editing  and static Cluster Editing  
is that all six variants of Dynamic Cluster Editing  remain NP-hard even when the 
input graph is already a cluster graph (see Theorem 1). Moreover, Dynamic Clus-
ter Editing  (both matching- and edge-based distance) is W[1]-hard with respect to 
the budget k (see Theorem 2) whereas Cluster Editing is fixed-parameter tractable 
with respect to  k. An obvious approach to solve Dynamic Cluster Editing   is to 
compute (almost) all cluster graphs achievable with at most k edge modifications, 
then pick from this set of cluster graphs one at distance at most d to the target cluster 
graph. However, listing these cluster graphs is computationally expensive. Indeed, 
our W[1]-hardness results indicate that we might not do much better than using this 
simple approach.

Note that we refrain fraom stating results on potential containment in W[1]   for 
all our W[1]-hardness results. There are two reasons for that. First, for all our W[1]-
hard cases, it is easy to show containment in XP, that is, polynomial-time solvability 
for constant parameter values. For an algorithmic point of view, there is not much 
further gain by knowing containment in W[1]. Second, we indeed studied contain-
ment in W[1]   with quite some technical but not particularly inspiring expenditure 
(using machine models for W[1][22]). We showed W[1]-completeness for the prob-
lems DCEditing (Edge Dist)  and DCDeletion (Edge Dist)  parameterized by d. For 
all other problems, however, we failed to show this with reasonable effort.
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We mention in passing that our results partly transfer to the “compromise 
clustering” problem, where, given two input graphs, one wants to find a “com-
promise” cluster graph that is close enough (in terms of edge-based distance) to 
both input graphs. It is easy to see that our fixed-parameter tractability results 
carry over if one of these two input graphs is already a cluster graph. A direc-
tion for future research is to examine whether our results can also be adapted 
to the case where both input graphs are arbitrary. Furthermore, we left open the 
parameterized complexity of Dynamic Cluster Editing   (deletion variant and 
completion variant) with matching-based distance as well as Dynamic Cluster 
Editing   (completion variant) with edge-based distance when parameterized by 
the budget k , see Table 1 in Sect. 1. Moreover, the existence of polynomial-size 
problem kernels for our fixed-parameter tractable cases for single parameters 
(budget k or distance d) is open.
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