

Supplementary Material

1 SUPPLEMENTARY TABLES AND FIGURES

Table S1.	Relevant chemical	and isotopic cha	racteristics of the	e incubation m	edia used for SI	P experiments.
		· ···· · · · · · · · · · · · · · · · ·				r

Incubation period	Culture	DIC^\dagger		N_2 or NO_3	
		$[mmol L^{-1}]$	$x(^{13}C)_S$	$[\mathrm{mmol}\mathrm{L}^{-1}]$	$x(^{15}N)_S$
07:30–09:30 (morning)	N_2	1.4	0.23	0.3	0.06
	NO_3	1.2	0.28	22.7	0.07
	$SC-N_2$	1.4^{*}	0.23	0.3	0.06
14:45–17:15 (afternoon)	N_2	0.5	0.67	0.3	0.06
	NO_3	0.4	0.86	22.7	0.07
	$SC-N_2$	0.3	0.99	0.3	0.06
21:45-17:15 (night+day)	N_2	0.6^{\S}	0.53	0.3	0.06
	$SC-N_2$	0.4 [§]	0.74	0.3	0.06
21:45-00:45 (early night)	N_2	0.6 [§]	0.53	0.3	0.06
02:00-07:00 (late night)	N_2	1.0 [§]	0.32	0.3	0.06
21:45-07:00 (full night)	N_2	0.6^{\S}	0.53	0.3	0.06
	NO_3	0.5^{\S}	0.68	16.2	0.10
	$SC-N_2$	0.4^{\S}	0.74	0.3	0.06

[†] DIC concentrations [mmol L⁻¹] and ¹³C atom fractions [$x(^{13}C)_S$] were calculated based on DIC measurements in samples from bioreactors taken at the same time point and the known amount of added NaH¹³CO₃.

 * Value was assumed to be the same as in the N_{2} culture.

 \S Values were interpolated from DIC concentrations measured at 07:00, 09:00 and 14:00.

Supplementary Figure S1. Intra-cellular heterogeneity of C assimilation in N₂-fixing Cyanothece 51142. Shown are data for cells from the N₂ culture incubated in the morning (07:30–09:30). (A) Carbon-specific rates of C assimilation in individual polysaccharide (ps) inclusions (p_C ; open symbols) and in whole cells (k_C ; filled symbols), calculated for 279 inclusions in 17 selected cell sections. p_C varied among polysaccharide inclusions (CV = 32%), with 61% and 39% of the total variance explained by differences among and within cells, respectively ($SS_{groups}/SS_{total} = 0.0455/0.0746 = 0.61$, $SS_{error}/SS_{total} = 0.0291/0.0746 = 0.39$). Variation in p_C values among cells was significant (ANOVA, F(16, 262) = 25.6, $p = 10^{-44}$). (B) Correlation between k_C in whole cells and the relative area of the cell sections covered by polysaccharide inclusions, A_{ps}/A_{cell} (coefficient of determination $R^2 = 0.46$). The correlation reveals that the cell-specific ¹³C enrichment depends on the cell volume probed by nanoSIMS. (C–D) Examples of ¹³C atom fraction images from which data in panels A–B were calculated. White lines show approximate cell outlines, ¹³C-enriched spots correspond to polysaccharide inclusions.

Supplementary Figure S2. Images of the isotopic composition of *Cyanothece* 51142 cells. Shown are additional overlays of the ${}^{13}C$ (red) and ${}^{15}N$ (green) atom fractions measured in cells from the N₂ and NO₃ culture deposited on polycarbonate membrane filters. Note that panel C shows cells from the N₂ culture incubated during late night (02:00–07:00). In panels D and F, examples of cyanophycin inclusions (cy) and carboxysomes (c) are marked with dashed-line and solid-line arrows, respectively.