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During slow-wave sleep, the brain is in a self-organized regime in which slow oscillations

(SOs) between up- and down-states travel across the cortex. While an isolated piece of

cortex can produce SOs, the brain-wide propagation of these oscillations are thought to

be mediated by the long-range axonal connections. We address the mechanism of how

SOs emerge and recruit large parts of the brain using a whole-brain model constructed

from empirical connectivity data in which SOs are induced independently in each brain

area by a local adaptation mechanism. Using an evolutionary optimization approach,

good fits to human resting-state fMRI data and sleep EEG data are found at values

of the adaptation strength close to a bifurcation where the model produces a balance

between local and global SOs with realistic spatiotemporal statistics. Local oscillations

are more frequent, last shorter, and have a lower amplitude. Global oscillations spread as

waves of silence across the undirected brain graph, traveling from anterior to posterior

regions. These traveling waves are caused by heterogeneities in the brain network in

which the connection strengths between brain areas determine which areas transition

to a down-state first, and thus initiate traveling waves across the cortex. Our results

demonstrate the utility of whole-brain models for explaining the origin of large-scale

cortical oscillations and how they are shaped by the connectome.

Keywords: whole-brain model, slow-wave sleep, slow oscillations, mean-field model, evolutionary algorithm

INTRODUCTION

Slow oscillations (SOs) are a hallmark of slow-wave sleep (SWS), during which neuronal activity
slowly (< 1 Hz) transitions between up-states of sustained firing and down-states in which the
neurons remain almost completely silent (Steriade et al., 1993; Neske, 2016). During SWS, large
cortical networks collectively depolarize and hyperpolarize, producing high-amplitude oscillations
of the local field potential which can be measured in electroencephalography (EEG) (Massimini
et al., 2004). These oscillations play a crucial role for memory consolidation during deep sleep
(Diekelmann and Born, 2010).

Intracranial in-vivo recordings (Nir et al., 2011) of the human brain, as well as EEG (Vyazovskiy
et al., 2011; Malerba et al., 2019), show that SOs can cover a wide range of participation of brain
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areas. While the majority of SOs remain locally confined in a few
brain regions, some can recruit the entire brain. They preferably
originate in anterior parts and propagate to posterior parts of the
cortex, like a traveling wave (Massimini et al., 2004; Nir et al.,
2011; Mitra et al., 2015; Malerba et al., 2019). In-vitro recordings
of isolated cortical tissue (Sanchez-Vives and McCormick, 2000;
Capone et al., 2019) demonstrate that SOs can be generated in
the absence of any external neural inputs. Taken together, these
observations support the idea that SOs are generated locally in
an individual brain region, while the synchronized propagation
of SOs across the cortex is shaped by the global structure of the
human connectome.

While not all details of the cellular processes underlying SOs
are known, hyperpolarizing spike-frequency adaptation currents,
mediated by activity-dependent potassium concentrations, are
thought to play a major role in terminating the up-state (Sanchez-
Vives and McCormick, 2000; Neske, 2016). This mechanism
has been explored in models of isolated cortical masses where
activity-dependent adaptation lead to slow oscillations between
high-activity up-states and a low-activity down-states (Tartaglia
and Brunel, 2017; Cakan and Obermayer, 2020; Nghiem et al.,
2020).

In this paper, we address the question of how brain-wide
spatiotemporal SO patterns emerge using a large-scale network
model of the human brain during SWS. Whole-brain models
have been shown to be capable of reproducing functional resting-
state patterns of the awake brain (Deco et al., 2011; Breakspear,
2017) from functional magnetic resonance imaging (fMRI) (Deco
et al., 2009; Cabral et al., 2017), EEG (Endo et al., 2020) and
MEG (Cabral et al., 2014; Deco et al., 2017). While a pioneering
study (Deco et al., 2014) showed that a whole-brain model
with adaptation-induced SOs can be fitted to resting-state fMRI,
following modeling work did not include SO activity (Jobst
et al., 2017; Ipiña et al., 2020) and, thus, did not explore the
spatiotemporal activity patterns present during slow-wave sleep
on a brain-wide scale.

To address the emergence of brain-wide SO activity during
sleep, we construct a whole-brain model in which cortical
brain areas are represented by a mean-field neural mass model
(Augustin et al., 2017; Cakan and Obermayer, 2020) with a
bistability of up- and down-states. Adding a local spike-frequency
adaptation mechanism to each brain area induces transitions
between these states which in turn affect the global brain
dynamics. A state-space analysis of the whole-brain model
reveals several possible dynamical attractors of the system. To
determine optimal model parameters, and hence, the optimal
location of the model in state space, we then use a multi-
objective evolutionary optimization framework to fit the whole-
brain model to resting-state fMRI and sleep EEG recordings
simultaneously. This procedure identifies an operating point in
which the whole-brain model produces realistic sleep-like SO
activity, which we characterize in detail.

Specifically, we find that N3 sleep EEG power spectra are only
accurately reproduced if spike-frequency adaptation is included
and the adaptation strength is at values close to the boundary
of the bifurcation to a state of globally synchronous and self-
sustained SOs. Only in this regime, a continuum of locally

confined and globally synchronous SOs can be observed, which
is consistent with reports of in-vivo SO statistics during SWS
(Massimini et al., 2004; Nir et al., 2011; Kim et al., 2019;
Nghiem et al., 2020) and can therefore be considered as a
condition for creating a realistic model of whole-brain SOs. In
line with these experiments, we also find that local oscillations are
shorter, more frequent, and have a lower amplitude, compared to
global ones.

Global oscillations that involve multiple brain areas travel
as "waves of silence" across the cortex with a preferred origin
of waves in prefrontal areas. The heterogeneous distribution
of connection strengths in the human connectome guides the
propagation of these waves from anterior to posterior regions.
Finally, we explore the role of spike-frequency adaptation of
the underlying neurons in affecting brain-wide SO statistics, a
mechanism which is subject to cholinergic modulation when
the real brain falls asleep (McCormick and Williamson, 1989;
Nghiem et al., 2020).

Our results demonstrate the utility of whole-brain models for
representing a wider range of brain dynamics beyond the resting-
state, which highlights their potential for elucidating the origin
and the dynamical properties of large-scale brain oscillations
in general.

RESULTS

Neural Mass Model of a Cortical Brain
Region
A whole-brain network model is constructed by combining a
model of an isolated cortical region with information regarding
the structural connectivity of the human brain (Figure 1). A
mean-field neural mass model (Augustin et al., 2017; Cakan and
Obermayer, 2020) derived from populations of excitatory (E)
and inhibitory (I) adaptive exponential integrate-and-fire (AdEx)
neurons represents a single cortical region as a node in the whole-
brain network. The neural mass model has been previously
validated against detailed simulations of spiking neural networks
(Augustin et al., 2017; Cakan and Obermayer, 2020). The
excitatory subpopulations of every brain area are equipped with
an activity-dependent adaptation mechanism.

For a sparsely connected random network of N → ∞ AdEx
neurons, the distribution p(V) of membrane potentials and the
mean population firing rate rα of population α ∈ {E, I} can
be calculated using the Fokker-Planck equation (Brunel, 2000).
Here, we use a low-dimensional linear-nonlinear cascade model
(Fourcaud-Trocmé et al., 2003; Ostojic and Brunel, 2011) of
the Fokker-Planck equation which captures its steady-state and
transient dynamics via a set of ordinary differential equations and
nonlinear transfer functions8(µα , σα) with themeanmembrane
current µα and standard deviation σα .

Model Equations
Every brain area is represented by a node which consists of an
excitatory (E) and inhibitory (I) population. For every node, the
dynamics of the mean membrane currents are governed by the
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FIGURE 1 | Construction of the whole-brain model. Structural connectivity is obtained from probabilistic DTI tractography, and the nodes of the brain network are

defined by 80 cortical regions of the AAL2 atlas. The neural mass model represents a single brain area and consists of an excitatory (red) and an inhibitory (blue)

population. Long-range connections between areas are via the excitatory populations. All nodes receive a background input currents with means µext
E,I and noise

variance σou. The excitatory firing rate of each region is converted to a BOLD signal using the hemodynamic Balloon-Windkessel model. For model optimization, the

power spectrum of the average excitatory firing rate is compared to the mean EEG power spectrum during sleep stage N3. The functional connectivity (FC) and its

temporal dynamics (FCD) are compared to empirical FC and FCD matrices. For details see Methods.

differential equation:

τα

dµα

dt
= µ

syn
α (t)+ µext

α (t)+ µou
α (t)− µα(t). (1)

Here, µα describes the total mean membrane currents, µ
syn
α the

currents induced by synaptic activity from internal connections
within a brain area and external connections from other
brain areas, µext

α represents the currents from external input
sources, and µou

α represents an external noise source which
is described by an Ornstein-Uhlenbeck process with standard
deviation, i.e., noise strength, σou, simulated independently
for each subpopulation α. The synaptic currents µ

syn
α depend

on the structural connectivity, i.e., the connection strengths
and delays between brain regions, and the global coupling
strength parameter Kgl which scales the strengths of all
connections globally. The input-dependent adaptive timescale
τα = 8τ (µα), the mean membrane potential V̄E = 8V (µE),
and the instantaneous population spike rate rα = 8r(µα) of
every subpopulation are determined at every time step using
precomputed transfer functions (Supplementary Figure 1).

Every excitatory subpopulation is equipped with a somatic
spike-frequency adaptation mechanism. The population mean of
the adaptation currents ĪA is given by Augustin et al. (2017)

dĪA

dt
= −

ĪA

τA
+ b · rE(t). (2)

The adaptation currents effectively act like an additional
inhibitory membrane current, i.e., 8r,τ ,V (µα − ĪA/C). The full
set of model equations, including the synaptic equations and the
equations for the second statistical moments of all dynamical
variables are provided in detail in the Methods section.

State-Space Description of the
Whole-Brain Model
Figure 2 a shows the state space of an isolated E-I node
and the coupled whole-brain network in terms of the mean
background input currents µext

α to all E and I subpopulations.
The state space of the whole-brain model is closely related
to the state space of the isolated E-I system. The oscillatory
and the bistable states of the brain network are inherited
from the isolated nodes and the transitions between states
take place at similar locations in parameter space. Due to the
heterogeneous connection strengths for different brain regions,
in the whole-brain model, transitions between the depicted
states happen gradually for one brain region at a time as the
input currents to all brain regions are increased simultaneously.
However, the range of the input current strengths at which
these gradual transitions happen are so small such that when
noise is added to the system, we only observe homogeneous
states across all areas (see the Methods section for a more
detailed discussion).

Without adaptation, the system can occupy several dynamical
states, depending on the mean external inputs to E and
I: a down-state with almost no activity, an up-state with
a constant high firing rate corresponding to an irregular
asynchronous firing state on the microscopic level (Brunel,
2000; Cakan and Obermayer, 2020), a bistable region where
these two fixed-point states coexist (Figure 2B1), and a
fast oscillatory limit-cycle region LCEI (Figure 2B3) that
arises from the coupling of the E and I subpopulations
with frequencies between 15 and 35 Hz. Without noise,
oscillations in different brain areas are at near-perfect synchrony
with only the inter-areal signal transmission delays and
slight differences in oscillation frequency counteracting
perfect synchrony.
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FIGURE 2 | State space of the brain network. (A) Single node (top row) and the whole-brain network (bottom row) without (b = 0 pA, left column) and with

spike-frequency adaptation (b = 20 pA, right column). Horizontal and vertical axes denote the mean input to the excitatory (E), µext
E , and to the inhibitory (I)

populations, µext
I . Colors denote the maximum firing rate rE of all E populations. Regions of low-activity down-states (down) and high-activity up-states (up) are

indicated. Dashed green contours indicate bistable (bi) regions where both states coexist. Solid white contours indicate oscillatory states with fast E-I (LCEI) and slow

excitation-adaptation (LCEA) limit cycles. (B) Time series of the firing rate rE (black) and the adaptation current IA (red) of one node (left precentral gyrus) in the

whole-brain network at several locations in the state space: (1) Bistable up- and down-states are reached through a decaying stimulus (blue) that is delivered to all

nodes. (2) Finite adaptation causes slow oscillations in the LCEA region. (3) When external noise is added, fast oscillations already occur outside but close to the LCEI

region. (4) With adaptation, fast oscillations are slowly modulated. (5) Noise-induced down-to-up transitions with adaptation occur close to the LCEI region. (6)

Up-to-down transitions with down-states shown as shaded areas. Parameters are Kgl = 300, τA = 600ms, σou = 0 mV/ms3/2 in (A, b1, b2), and σou = 0.1 mV/ms3/2

else. µext
E , µext

I of marked locations are 1: (2.3, 2.8), 2: (2.5, 2.0), 3: (0.3, 0.5), 4: (0.4, 0.5), 5: (2.6, 2.5), and 6: (2.5, 2.0) mV/ms. All other parameters are given in

Table 1.

Adaptation, Bistability, and Slow Oscillations
The activity-dependent adaptation mechanism in the excitatory
subpopulations lead to hyperpolarizing currents that destabilize
the high-activity up-state in the bistable regime. As we increase
the adaptation strength, a Hopf bifurcation (Tartaglia and Brunel,
2017; Cakan and Obermayer, 2020) gradually replaces the
bistable regime with a second limit cycle LCEA (Figure 2B2,4)
that produces slow oscillations between the (formerly stable)
up- and the down-state. The oscillation frequencies range from
around 0.5–2 Hz, depending on the external inputs and the
adaptation parameters. As with the fast limit cycle, when the
whole-brain network is parameterized in the slow adaptation
limit cycle, without noise, the resulting oscillations are at near-
perfect synchrony across all brain regions.

The feedback mechanism leading to this oscillation can be
summarized as follows: Without adaptation, in the region of
bistability, the up- and down-states remain stable for an arbitrarily
long time. With adaptation, the high firing rate in the up-
state leads to an increase of the adaptation currents (controlled
by the adaptation strength parameter b). These inhibitory
currents weaken the response of active neurons, which causes
the population activity to decay to the down-state. In the down-
state, the activity-driven adaptation currents decrease (with a
slow timescale τA) until the recurrent excitation is strong enough

to drive the system back to the up-state, ultimately causing a slow
oscillation between the two originally bistable states.

Therefore, when the system is placed in the bistable region, the
interplay of the adaptation strength b, the adaptation timescale
τA, the strength of mean external inputs, and fluctuations in the
form of external noise can lead to stochastic switching between
up- and down-states (Figure 2B5,6). The resulting pattern of state
transitions resembles the bistable neural activity often observed
experimentally and in computational models (Sanchez-Vives and
McCormick, 2000; D’Andola et al., 2018; Capone et al., 2019;
Nghiem et al., 2020).

Multi-Objective Evolutionary Optimization
Key parameters such as the mean external inputs µext

E and
µext
I , the global coupling strength Kgl, the adaptation strength

b, the adaptation time scale τA, and the strength of the
external noise σou determine the system’s dynamics. We
perform an evolutionary optimization on all of these parameters
simultaneously in order to produce a model with an optimal fit
to empirical brain recordings.

Evolutionary algorithms are stochastic optimization methods
that are inspired by the mechanisms of biological evolution
and natural selection. The use of a multi-objective optimization
method, such as the NSGA-II algorithm (Deb et al., 2002), is
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FIGURE 3 | Optimization results. (A) Regions of good fits in the multi-objective optimization. Shown are fMRI fits with FC correlation > 0.35 with the empirical data,

FCD fits with KS distance < 0.5, and EEG fits with a power spectrum correlation > 0.7. fMRI fits are shown without adaptation (bright green) and with adaptation

(dark green). All EEG fits with down-to-up (blue) and up-to-down oscillations (red) are shown separately. Lines indicate boundaries between the four different

dynamical states of the brain network in Figure 2A with b = 0pA (top panel) and 20pA (bottom panel). (B) Best values of input current parameters to the E and I

populations. The colors represent the results from different optimization setups. Good fMRI-only fits appear at the state transition line of the fast limit cycle LCEI

without adaptation, b = 0pA (bright green) and close to the bistable region with adaptation b ≥ 0pA (dark green). Good fMRI+EEG fits are found close to the

adaptation limit cycle LCEA (blue and red). The star symbol indicates the parameters of the sleep model in Figure 4. (C–F) Example average firing rate time series of

good fits for all different optimizations. (C) Fit to fMRI data only with b = 0pA (D) and with adaptation b ≥ 0pA. Fit to fMRI+EEG reveals two classes of solutions (E)

with long down-states and (F) with in-vivo-like long up-states. All parameters are given in Table 1.

crucial in a setting in which a model is fit to multiple independent
targets or to data from multiple modalities. In our case, these
are features from fMRI and EEG recordings. In a multi-objective
setting, not one single solution but a set of solutions can be
considered optimal, called the Pareto front, which refers to the set
of solutions that cannot be improved in any one of the objectives
without diminishing its performance in another one.

For each parameter configuration, a goodness of fit is
determined between the simulated model output and the
empirical dataset. The simulated BOLD functional connectivity
(FC) and the functional connectivity dynamics (FCD) matrices
are compared to the empirical fMRI data. While fMRI recorded
during deep sleep would be preferable, only awake resting-state
fMRI recordings were available. However, as we elaborate in
more detail in the Discussion section, fMRI FC recorded during
sleep and awake show a remarkable similarity justifying the use
of resting-state fMRI for the purpose of the present study. The
frequency spectrum of the simulated firing rate is compared to
EEG power spectra recorded during sleep stage N3. Fitness scores
are then averaged across all subjects in the empirical dataset.

The optimization is carried out in incremental steps such
that the contribution of each step can be assessed individually.
The model is first fit to fMRI data only and the optimization
is carried out without adaptation (b = 0) and with adaptation
(b ≥ 0, τA are allowed to vary) separately. The quality of the
fitting results to fMRI data is comparable to previous works
(Cabral et al., 2017; Jobst et al., 2017; Demirta et al., 2019)
(Supplementary Figure 3B). We then include EEG data as an

additional objective in the optimization to derive models with
realistic firing rate power spectra. The resulting parameters that
produce a good fit to either optimization scheme are shown
in Figure 3B and Supplementary Figure 3A. Details on the
optimization procedure are provided in the Methods.

Fit to Empirical Data: Up-to-Down and Down-to-up

Oscillations
Without adaptation, the region of good fMRI fits lies close to the
line that marks the transition from a silent down-state to the fast
E-I limit cycle LCEI (Figure 3A, top panel and Figure 3B, bright
green dots). The activity in this region shows noisy oscillations
with frequencies between 15 and 35 Hz and brief excursions to
the silent down-state (Figure 3C).

The region of good EEG fits, however, lies in the bistable
regime at the boundary to the down-state. Here, noise-induced
transitions between up- and down-states produce low-frequency
components necessary for a good fit to the empirical power
spectrum. Therefore, when no adaptation is present, the regions
of good fit to fMRI and EEG are disjoint in state space
making it impossible to produce a model that fits to both data
modalities simultaneously.

With adaptation, however, the bistable region is replaced by
a new oscillatory limit cycle LCEA around which new regions
of good fMRI fits appear (Figure 3A, bottom panel). In these
solutions, the firing rates slowly oscillate between up- and down-
states (Figures 3D–F). The power spectrum is dominated by this
slow oscillation with a 1/f -like falloff, similar to the empirical
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FIGURE 4 | Dynamics of the whole-brain sleep model. (A) Firing rate averaged across all nodes of the whole brain network. (B) State time series of all nodes with

active up- (yellow) and silent down-states (blue). (C) Snapshots of state time series plotted on the brain network centered around a global slow wave at t=43 s. (D)

The durations of up- (red) and down-states (blue) are exponentially distributed. (E) Distribution of the down-state involvement which measures the fraction of

participating brain regions. (F) Inter-event interval distributions of local (gray) and global oscillations (green). (G) Mean state durations depend on the involvement in up-

and down-states. (H) The excitatory firing rate depends on the up-state involvement of brain regions. Every dot represents a time point of the simulation. Linear

regression line is shown in black with regression coefficients R2 = 0.84,p < 0.001. (I) Mean down-state duration of areas. Color indicates relative time spent in the

down-state. (J) State durations depend on each brain area’s degree. (K) Mean of the up-to-down transition phases of all areas (relative to the global oscillation phase

φ, see Methods). Down-states are preferably initiated in anterior areas. (L) Down-state transition phases are positively correlated with the anterior-posterior

coordinates of brain areas, i.e., they travel from anterior to posterior regions. Up-state transitions behave in an opposite manner. Parameters are µext
E = 3.3mV/ms,

µext
I = 3.7mV/ms, b = 3.2pA, τA = 4765ms, Kgl = 265, σou = 0.37mV/ms3/2. All other parameters are given in Table 1.

EEG power spectrum during SWS (Supplementary Figure 5). It
should be noted that this 1/f -like falloff is not caused by the noise
input to the system alone, since it is not present when the system
is parameterized in the fast limit cycle, for example, but originates
from the slow transitions between up- and down-states with a
stochastic frequency and state duration.

As a result of the optimization, two classes of good solutions
that simultaneously fit well to fMRI and EEG data can be
observed: In down-to-up solutions (Figures 2B5, 3E), all nodes
remain silent for most of the time and the network exhibits
short and global bursts of up-state activity. In up-to-down
solutions (Figures 2B6, 3F), however, the activity of the network
is in the up-state most of the time and slow oscillations are
caused by irregular transitions to the down-state with a varying
degree of synchrony across brain areas. Compared to down-
to-up solutions, up-to-down solutions require stronger external
inputs to the excitatory populations (medians 3.36 vs. 2.73
mV/ ms, Figure 3B), stronger noise σou (0.36 vs. 0.27 mV/ ms
3/2, Supplementary Figure 3A), and a weaker adaptation b (3.8
vs. 9.9 pA).

Sleep Model
Tonic firing with irregular transitions to the down-state is
indeed typically observed during deep sleep in intracranial
in-vivo recordings of humans and other mammals (Vyazovskiy
et al., 2009; Nir et al., 2011). To present the results from
the optimization, we randomly pick one of the parameter
configurations from the set of up-to-down solutions that
resulted from the evolutionary optimization (star in Figure 3B

and Supplementary Figure 3A) as our reference sleep
model. This model was randomly selected from a uniform
distribution of all candidate up-to-down fits (red dots in
Figure 3B). We did not consider the down-to-up fits since
they show mostly down-state activity. To ensure that the
chosen model is representative for the remaining up-to-down
candidates, we confirmed the results reported below for the
100 best up-to-down individuals resulting from the evolution
(Supplementary Figure 6).

In Figure 4A, SOs are visible in the average firing rate across
all brain areas. In the corresponding node-wise state time series
in Figure 4B, global oscillations that involve the entire brain (cf.
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Figure 4C) are visible as vertical lines, and spatially confined
oscillations appear as small vertical patches.

Up- and down-state durations follow a close to exponential
distribution with up-states having longer durations overall
(Figure 4D), which is in agreement with human in-vivo data
(Nghiem et al., 2020). The involvement of brain areas in down-
state oscillations, i.e., the proportion of nodes that simultaneously
take part in the down-state, is skewed toward lower values
(Figure 4E), meaning that most oscillations remain local. Only
a small fraction of down-state oscillations involve the whole
brain, similar to statistics from human intracranial recordings
(Nir et al., 2011). The mean down-state involvement of all brain
regions was 32% with 83% of oscillations involving less than half
of the brain. Comparing the inter-event intervals (Figure 4F) of
local (e.g., oscillations that involve between 25 and 50% of areas)
and global oscillations (involvement above 50%), we see that
local oscillations happenmore frequently than global oscillations,
which was also observed experimentally (Kim et al., 2019).

Down-states last longer, when more brain areas are involved
(Figure 4G), i.e., when areas receive less input on average. Due
to the adaptation mechanism of excitatory populations, up-states
follow a non-monotonic relationship: when more than 65% of
areas are involved, excessive excitation leads to a faster increase
of adaptation currents which, in turn, shorten up-states. The
firing rates across all regions also depend on the involvement of
brain areas (Nir et al., 2011) which means that the more nodes
participate, the larger the average firing rate amplitudes of SOs
become (Figure 4H). This relation holds for the average firing
rate across all areas, as well the firing rates of individual brain
areas, as each of them receives more input when other brain areas
are in the up-state as well (not shown). In summary, due to the
interactions of different brain areas, global oscillations are longer,
slower, and have a larger amplitude compared to local ones.

In our computational model, the dynamics of SOs and
their propagation across the cortex are shaped by the
structural properties of the connectome. Since anterior
regions have a lower node degree compared to posterior ones
(Supplementary Figure 2E), areas which spent the most time
in the down-state are part of the frontal and the temporal lobe
(Figure 4I and Supplementary Figure 7A). Nodes with a higher
degree receive stronger inputs from other areas, lengthening the
time spent in up-states and shortening down-states (Figure 4J).

Traveling Waves of Silence
SOs are known to appear as traveling waves which tend to
originate in frontal regions and travel to posterior parts of the
brain within a few 100 ms, recruiting multiple brain regions
during their propagation (Massimini et al., 2004; Nir et al.,
2011). Our next goal is to determine whether our model displays
a directionality in the propagation of SOs. Since the only
differences between brain areas are due to their connectivity,
network properties are expected to play an important role in how
oscillations propagate.

Figure 4K shows the average timing of the individual up-
to-down transitions for every brain area with respect to
the global down-state measured by a transition phase as
determined from the involvement time series (see Methods

FIGURE 5 | Adaptation shapes the spatial pattern of slow-wave activity. (A)

State time series across all nodes in the brain network, with up-states in bright

yellow and down-states in dark blue. Values for the adaptation strength b from

the top panel to the bottom panel are 1.6,3.2, and 4.8pA. (B) Number of

global waves in which at least 50% of all brain regions participate in an SO

down-state as a function of the adaptation strength b and the input noise

strength σou (measured in mV/ms3/2, colored lines). Tick marks b−, bc, and

b+ indicate values for each in (A) respectively. (C) Number of local waves per

minute with an involvement of 25–50% of brain areas. All other parameters are

as in Figure 4.

and Supplementary Figures 8A,B). The phases for both up-to-
down and down-to-up transitions strongly correlate with the
brain areas coordinates along the anterior to posterior axis
(Figure 4L). Down-states tend to appear earlier in the anterior
brain and propagate to posterior areas (Figure 4L, blue line.
Linear regression slope m = 3.6 × 10−3, R = 0.46, p <

10−3). Subsequent transitions to the up-state happen earlier
in posterior and later in anterior areas (Figure 4L, red line,
m = −6.0 × 10−3, R = −0.41, p < 10−3). Brain areas that
transition to the down-state last, tend to initiate up-states first
(Supplementary Figure 8C), leading to a reversed down-to-up
wave front propagation. The respective mean transition phases
of all regions are shown in Supplementary Figure 7B.

Adaptation and Noise Determine State Statistics
The interplay of noise and adaptation, which are both subject
to cholinergic modulation in the brain (Nghiem et al., 2020),
determines whether SOs remain local or recruit the entire cortex,
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greatly affecting the SO statistics. Taking the sleep model of
Figure 4 with intermediate adaptation strength b = 3.2 pA as
a reference, a reduction of the adaptation strength by 50%
(b = 1.6 pA) leads to the disappearance of global oscillations
(Figure 5A). On the contrary, higher adaptation strengths (b
= 4.8 pA) lead to maximum involvement of brain areas for
almost every SO. This transition is accompanied by an increase
of synchrony across all brain areas (Supplementary Figure 9B).

The adaptation strength b acts as a bifurcation parameter,
and small adjustments around its threshold value cause a sudden
change of the network’s dynamics. Figure 5B shows how the
number of global oscillations per minute quickly increases after a
critical value bc close to 3.2 pA is crossed, which is equal to the
adaptation strength of the optimized sleep model in Figure 4.
Beyond the threshold, the number of global waves does not
significantly increase. For values lower than bc, all nodes stay
in the up-state indefinitely (Supplementary Figure 9A). Local
waves are observed only around bc (Figure 5C), indicating that
the system is only able to generate a wide range of local and
global oscillations in this regime. Here, the system is in a state
of maximum metastability (Supplementary Figure 9C) which is
an indication for the emergence of complex dynamical patterns.
All up-to-down solutions with a good fit to the empirical data are
close to the threshold value bc (Supplementary Figure 3A).

DISCUSSION

We presented a biophysically grounded human whole-brain
model of slow-wave sleep (SWS) that reproduces the observed
resting-state fMRI functional connectivity (FC) and its dynamics
(FCD), and that captures the EEG frequency spectrum during
SWS which is dominated by low frequencies. The model
was fitted to multimodal data from fMRI and EEG by the
use of a multi-objective evolutionary algorithm (Deb et al.,
2002). Good fits to both measurements were only achieved if
an activity-dependent adaptation mechanism to the excitatory
subpopulations was included. At critical values of the adaptation
strength, this resulted in a model in which the interplay of
adaptation currents and noise creates a dynamically rich activity
with irregular switching between up- and down-states, similar to
the underlying brain activity of slow oscillations (SOs) during
SWS (Massimini et al., 2004; Nir et al., 2011; Nghiem et al., 2020).

Comparison to Human SWS
As a result of the optimization procedure, two classes of well-
fitting models emerged (Figure 3), which we named down-to-up
and up-to-down solutions.Down-to-up solutions did not produce
realistic in-vivo SO statistics, since here the simulated brain
activity was silent for most of the time. These solutions were
more similar to in-vitro recordings of SOs (Sanchez-Vives and
McCormick, 2000; D’Andola et al., 2018) where down-states of
longer duration than observed during in-vivo SWS (Nir et al.,
2011; Nghiem et al., 2020) are interrupted by short bursts of
up-state activity.

In up-to-down solutions, up-stateswere of longer duration and
SOs were produced by transitions to down-states which represent
brief off-periods in neuronal activity. Up-to-down solutions

require stronger excitatory input currents, stronger noise
fluctuations, and a weaker adaptation strength (Figure 3B
and Supplementary Figure 3A), which all facilitate the
initiation of the up-state and help sustain it. Only up-to-
down solutions reproduced in-vivo SO statistics during
SWS. Intracranial in-vivo data from humans (Nir et al.,
2011; Nghiem et al., 2020) and other mammals (Holcman
and Tsodyks, 2006; Vyazovskiy et al., 2009) show that up-
states in the cortex are longer than down-states, i.e., that
cortical activity is in a tonic and irregular firing state for the
most time.

One explanation for this difference might be that the up-
state transitions observed in-vivo are foremost driven by the
convergence of external inputs to brain areas (Chauvette et al.,
2010; Nir et al., 2011) and fluctuations thereof (Jercog et al.,
2017), which are both absent in isolated in-vitro tissue. This is
supported by our modeling results where external mean inputs
and noise strengths were key parameters separating both classes.

Balance Between Local and Global
Oscillations at Critical Values of the
Adaptation Strength
Up-to-down transitions can remain local because transitions
of individual brain regions have only a weak effect on
other brain areas. Global up-to-down transitions happen only
when the local adaptation feedback currents of a large
fraction of brain areas synchronize. Down-to-up transitions,
however, spread by exciting other brain areas in an all-or-
nothing fashion. In fact, most up-to-down transitions remain
local (Figure 4E), which is a well-described property of SOs
(Nir et al., 2011; Vyazovskiy et al., 2011; Malerba et al.,
2019).

Global waves last longer, have a higher amplitude
(Supplementary Figures 8A,B), and occur less frequently
(Figure 4F) than local waves. In the experimental literature these
different characteristics of local and global waves have been used
to discern delta waves from SOs (Kim et al., 2019). However,
there is still no consensus on whether delta waves and SOs are
generated by the same or a qualitatively different underlying
neural mechanism (Dang-Vu et al., 2008). In the model, local
oscillations have these properties because participating regions
receive more input from neighboring areas. Here, oscillations
with similar characteristics of delta waves do not emerge
because of a different generating mechanism, but solely due
to the fact that the individual brain areas are embedded in a
network and that the model operates in a regime with a broad
involvement distribution.

Only at these critical values bc of the adaptation strength
parameter where the model is parameterized close but not
inside the adaptation-driven low-frequency limit cycle a tight
balance between local and global oscillations is maintained
(Figures 5B,C). The best fits to the empirical data were found
in this regime. This optimal working point also coincides with
states in which the metastability of the whole-brain dynamics was
maximal (Supplementary Figure 9C).
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Slow Waves Are Guided by the
Connectome
In the model, up-to-down transitions can originate in many
different brain areas and propagate in different directions.
However, when averaged over many events, a preferred direction
from anterior regions to posterior brain regions becomes evident.
This is a well-known feature of SOs (Massimini et al., 2004; Nir
et al., 2011; Mitra et al., 2015; Malerba et al., 2019) and emerges
from the model without any specific adjustments.

While down-to-up transitions spread through excitatory
coupling of brain areas, up-to-down transitions initiate periods
of silence. In the latter case, these oscillations represent a
"window of opportunity" in which other brain areas can
transition to the down-state due to a relative lack of inputs.
Consistent with prior studies (Hagmann et al., 2008), we
measured a positive correlation between the coordinate of a
brain region on the anterior-posterior axis and its in-degree
(Supplementary Figure 2E). This means that frontal regions
receive less input on average and, therefore, spend more time
in the down-state, as was also observed experimentally (Malerba
et al., 2019). As a consequence, up-to-down transitions tend to
be initiated in frontal areas and spread more easily to other low-
degree nodes, ultimately producing wave fronts that travel, on
average, from front to back. A mirrored directionality for down-
to-up transitions (Figure 4J and Supplementary Figure 8C) can
be observed as well which is in agreement with a previous
computational study (Roberts et al., 2019) that considered
cortical waves as spreading activation only. Other heterogeneities
that might affect wave propagation, such as a differential
sensitivity of brain areas to neuromodulators (Kringelbach et al.,
2020), have not been addressed here.

In summary, the increased likelihood of slow waves to
be initiated in the prefrontal cortex and the directionality of
propagation is determined by the structural properties of the
whole-brain model alone. Hence, recognizing that slow waves are
propagating as periods of silence explains the possibly unintuitive
fact that, although frontal areas are not strongly connected,
they become sources of global waves exactly due to their low
network degree.

Underlying Neuronal Activity of
Resting-State fMRI Is Underdetermined
Our findings confirm other studies in that best fits to empirical
data are found when the system is parameterized close to a
bifurcation (Deco et al., 2013; Cabral et al., 2017; Jobst et al., 2017;
Demirta et al., 2019) which usually separates an asynchronous
firing state from an oscillatory state. In accordance with these
studies, we find that low-gamma frequencies (25–35 Hz) can
produce good fits to fMRI data. However, by including an
adaptation mechanism, we also found good fits at the state
transition to the slow limit cycle with very low oscillation
frequencies (0.5–2Hz). In some cases, a single up-state burst from
an otherwise silent brain was enough to produce a good FC fit.

This shows that a wide range of parameters and oscillation
frequencies can reproduce empirical resting-state (rs) fMRI
patterns, primarily because BOLD models act like an infraslow

(0.005–0.1 Hz) low-pass filter. The wide range of possible
solutions ultimately poses the question which of these regimes
is the most suitable candidate for the underlying neuronal
activity of rs-fMRI. This problem is particularly evident in sleep.
SOs during SWS are profoundly distinct from the tonic firing
activity observed in the awake state. Strikingly, however, fMRI
FCs during both states are very similar and differ primarily in
the average strength of correlations between regions but not
significantly in the spatial structure of the FCmatrix itself (Dang-
Vu et al., 2008; Mitra et al., 2015; Jobst et al., 2017). In agreement
with another whole-brain modeling study with adaptive neurons
(Deco et al., 2014), we observed that while the strength of
adaptation has a profound effect on the global activity, it did not
lead to significantly different FC patterns. FC matrices resulting
from the optimization (Supplementary Figure 4A) were largely
independent of adaptation strength (not shown) and produced
good model fits in either case (Supplementary Figure 3B).
Therefore, we think that it is justified to use awake rs-fMRI data
for calibrating a whole-brain model of slow-wave sleep, as we do
not expect a significant difference compared to fMRI recorded
during sleep.

We conclude that it is necessary to incorporate data from
faster modalities, such as MEG or EEG, when validating whole-
brain models and that the use of fMRI data alone is not sufficient
to constrain the vast space of possible models well enough.

Adaptation, Cholinergic Modulation, and
Slow Oscillations
The emergence of SOs caused by activity-dependent adaptation
has been thoroughly studied in the past in models of isolated
cortical networks (Bazhenov et al., 2002; Jercog et al., 2017; Cakan
and Obermayer, 2020; Nghiem et al., 2020), and our findings
suggest that adaptation plays a major role in the organization
of SOs across the whole brain. This mechanism for generating
SOs should generalize to a wider class of cortical E-I population
models, as long as a bistability between up- and down-states and
a suitable activity-dependent adaptation mechanism is present,
such as in Deco et al. (2014). This is further supported by the fact
that a link of this bistable dynamics in large spiking networks with
adaptive neurons and their respective mean-field representations
was previously established (Tartaglia and Brunel, 2017; Cakan
and Obermayer, 2020).

These modeling results are in line with experimental
evidence that activity-dependent hyperpolarizing potassium
conductances, which contribute to spike-frequency adaptation
of pyramidal cells, are in fact responsible for the termination of
up-states in the cortex (Neske, 2016). Furthermore, experiments
show that increased levels of acetylcholine (ACh) effectively
lead to a weakening of adaptation (McCormick and Williamson,
1989). Analogously, a higher ACh concentration corresponds to
a lower adaptation strength b in our model, enabling cholinergic
modulation of SO statistics.

The application of carbachol, a drug which causes a
blockage of potassium channels and which is an agonist of
ACh, can be used to transition a cortical slice from a sleep-
like state with SOs to an awake-like state with tonic firing

Frontiers in Computational Neuroscience | www.frontiersin.org 9 January 2022 | Volume 15 | Article 800101

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Cakan et al. Whole-Brain Model of Slow-Wave Sleep

(D’Andola et al., 2018), same as predicted by the model
(Supplementary Figure 9A). Indeed, in-vitro experiments have
shown that carbachol application leads to a lengthening of
up-states and a shortening of down-states (Nghiem et al.,
2020). In line with this, endogenous ACh levels are found
to be significantly higher during wakefulness and sharply
decrease during SWS (Hasselmo, 1999) and, vice-versa, that the
administration of carbachol enhances transitions from SWS to
REM sleep (Carrera-Cañas et al., 2019).

In humans, the frequency with which SOs occur changes
during a night of sleep and increases with the depth of the sleep
stage, ranging from no SOs during the awake stage to around 20
SOs per minute in the deepest sleep stage (Massimini et al., 2004).
Similar changes of SO event frequency and durations of up-
and down-states were reported in rats (Vyazovskiy et al., 2009).
Measuring changes of SO event frequency in the EEG, in addition
to the analysis of the power spectrum could potentially provide a
way to better calibrate whole-brain models to in-vivo data and to
characterize transitions between sleep stages. One advantage of
the evolutionary optimization method is that the fitness function
can be extended to include these more specific features which
could help determine differences in model parameters when
fitted to multiple sleep stages independently, for instance.

The transitioning of neural dynamics from awake to deep
sleep stages as a function of ACh concentrations was previously
explored in models of single populations of thalamocortical
networks (Bazhenov et al., 2002; Hill and Tononi, 2005; Krishnan
et al., 2016). Combined with the experimental evidence of the
significance of cholinergic modulation during sleep, this strongly
suggests that the same principles can be applied on the level of
the whole brain. In our model, increasing the adaptation strength
b, which is akin to lowering ACh concentrations in the cortex,
also leads to an increase of the number of global oscillations
per minute (Figure 5B). This highlights the importance of
the adaptation mechanism of individual neurons during the
transitioning from superficial to deeper sleep stages where SOs
are abundant and can involve the whole brain.

In accordance with this, it has been shown that transitions
into deeper sleep stages that are accompanied by an increase
of SO power also lead to a decrease of delta oscillation
power (Rosenblum et al., 2001). A similar transition can be
observed in the model where increased adaptation values lead
to a replacement of faster local oscillations by slower global
oscillations (Figure 5).

Outlook
Despite the abundance of macroscopic waves in the human
cortex (Muller et al., 2018), computational models have only
recently been used to study them on a whole-brain scale in order
to understand how the connectome shapes these oscillations
(Atasoy et al., 2016; Robinson et al., 2016; Roberts et al., 2019).
Our work is a step in this direction, linking the emergence of
cortical waves to the underlying neural mechanism that governs
adaptation in the human brain during SWS.We have shown how
the interplay of local properties of brain areas and the global
connectivity of the brain shapes these oscillations. The present

study also confirms that whole-brain models can represent a
wider range of brain activity beyond the resting-state.

Apart from oscillations during SWS, which was themain focus
of this paper, cortical waves can be observed in many other
scenarios, for example evoked by external stimuli (Stroh et al.,
2013), during sensory processing (Davis et al., 2020), and during
the propagation of epileptic seizures (Proix et al., 2018). They can
range from the mesoscopic (Muller et al., 2018) to the whole-
brain scale (Burkitt et al., 2000; Mitra et al., 2015). Therefore,
we have reason to believe that a whole-brain modeling approach,
that builds on biophysically grounded and computationally
efficient neural mass models, in combination with advanced
optimization methods, can help to address questions about the
origin and the spatio-temporal patterns of cortical waves in the
healthy as well as the diseased human brain.

METHODS

Neural-Mass Model
We construct a mean-field neural mass model of a network of
coupled adaptive exponential integrate-and-fire (AdEx) neurons.
The neural mass model (Augustin et al., 2017) has been
previously validated against detailed simulations of spiking
neural networks (Cakan and Obermayer, 2020). The AdEx
model successfully reproduces the sub- and supra-threshold
voltage traces of single pyramidal neurons found in cerebral
cortex (Jolivet et al., 2008; Naud et al., 2008) while offering
the advantage of having interpretable biophysical parameters.
The dimensionality reduction by means of a mean-field
approximation provides an increase in simulation speed of about
four orders of magnitude over the large spiking neural network
while still retaining the same set of biophysical parameters and
reproducing all of its dynamical states.

For a sparsely connected random network of N → ∞ AdEx
neurons, the distribution of membrane potentials p(V) and the
mean population firing rate rα of population α can be calculated
using the Fokker-Planck equation in the thermodynamic limit
N → ∞ (Brunel, 2000). Determining the distribution involves
solving a partial differential equation, which is computationally
demanding. Instead, a low-dimensional linear-nonlinear cascade
model (Fourcaud-Trocmé et al., 2003; Ostojic and Brunel, 2011)
captures the steady-state and transient dynamics of a population
in the form of a set of ordinary differential equations. For a given
mean membrane current µα with standard deviation σα , the
mean of the membrane potentials V̄α as well as the population
firing rate rα in the steady-state can be calculated from the
Fokker-Planck equation (Richardson, 2007) and can be captured
by a set of simple nonlinear transfer functions 8r,τ ,V (µα , σα).
These transfer functions can be precomputed (once) for a specific
set of single AdEx neuron parameters (Supplementary Figure 1).

For the construction of the mean-field model, a set of
conditions need to be fulfilled: We assume (1) random
connectivity (within and between populations), (2) sparse
connectivity (Holmgren et al., 2003; Laughlin and Sejnowski,
2003), but each neuron having a large number of inputs
(Destexhe et al., 2003) K with 1 ≪ K ≪ N, (3) and that
each neuron’s input can be approximated by a Poisson spike
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train (Fries et al., 2001; Wang, 2010) where each incoming
spike causes a small (c/J ≪ 1) and quasi-continuous change
of the postsynaptic potential (PSP) (Williams and Stuart, 2002)
(diffusion approximation).

Model Equations
A detailed mathematical derivation of the model equations was
provided before in Refs. (Augustin et al., 2017; Cakan and
Obermayer, 2020). Here, we only present the equations of the
linear-nonlinear cascade model which were used to simulate the
whole-brain network model. Every brain area is represented by a
node consisting of an excitatory (E) and inhibitory (I) population
α ∈ {E, I}. All parameters of the whole-brain model are listed
in Table 1. For every node, the following equations govern the
dynamics of the membrane currents:

τα

dµα

dt
= µ

syn
α (t)+ µext

α (t)+ µou
α (t)− µα(t), (3)

µ
syn
α (t) = JαE s̄αE(t)+ JαI s̄αI(t), (4)

σ 2
α (t) =

∑

β∈{E,I}

2J2αβ σ 2
s,αβ (t) τs,β τm

(1+ rαβ (t)) τm + τs,β
+ σ 2

ext,α . (5)

Here, µα describe the total mean membrane currents, µ
syn
α the

currents induced by synaptic activity, µext
α the currents from

external input sources, and µou
α the external noise input. Means

and variances are across all neurons within each population. Note
that mean currents measured in units of mV/ms can be expressed
in units of nA by multiplying with the membrane capacity
C = 200 pF, i.e., 1 mV/ms ·C = 0.2 nA. σ 2

α is the variance
of the membrane currents. The parameters Jαβ determine the
maximum synaptic current when all synapses from population
β to population α are active. The synaptic dynamics is given by:

ds̄αβ

dt
= τ−1

s,β

((

1− s̄αβ (t)
)

· rαβ (t)− s̄αβ (t)
)

, (6)

dσ 2
s,αβ

dt
= τ−2

s,β

((

1− s̄αβ (t)
)2 · ραβ (t) + (ραβ (t)

− 2τs,β (rαβ (t)+ 1
))

· σ 2
s,αβ (t)

)

. (7)

Here, s̄αβ represents the mean of the fraction of all active
synapses, which is bounded between 0 (no active synapses) and
1 (all synapses active), and σ 2

s,αβ represents its variance.
The input-dependent adaptive timescale τα = 8τ (µα , σα),

the mean membrane potential V̄E = 8V (µE, σE) and the
instantaneous population spike rate rα = 8r(µα , σα) are
determined at every time step using the precomputed transfer
functions (Supplementary Figure 1). The mean rαβ and the
variance ραβ of the effective input rate from population β to α

for a spike transmission delay dα are given by

rαβ (t) =
cαβ

Jαβ

τs,β
(

Kβ

·rβ (t − dα)+ δαβE · Kgl

N
∑

j=0

Cij · rβ (t − Dij)
)

, (8)

ραβ (t) =
c2αβ

J2αβ

τ 2s,β
(

Kβ

·rβ (t − dα)+ δαβE · Kgl

N
∑

j=0

C2
ij · rβ (t − Dij)

)

. (9)

rα is the instantaneous population spike rate, cαβ defines the
amplitude of the post-synaptic current caused by a single spike
(at rest, i.e., for s̄αβ = 0), and Jαβ sets the maximum membrane
current generated when all synapses are active (at s̄αβ = 1).
Kgl is the global coupling strength parameter, Cij are elements
from the whole-brain fiber count matrix connecting region j
with region i, and Dij are elements from the fiber length delay
matrix. Here, the Kronecker delta δαβE is 1 if α = β = E
and 0 otherwise, restricting inter-areal coupling to the excitatory
subpopulations only.

Adaptation Currents
For a single AdEx neuron, the hyperpolarizing adaptation current
is increased after ever single spike (Benda and Herz, 2003) which
leads to a slowly-decreasing spike frequency in response to a
constant input (Naud et al., 2008). In the mean-field limit of
a large population, an adiabatic approximation can be used to
express the mean adaptation current in terms of the mean firing
rate of the population. The mean adaptation current is given
by ĪA and acts as an inhibitory membrane current, 8r,τ ,V (µα −
ĪA/C, σα), with its slow dynamics (compared to the membrane
time constant) given by (Augustin et al., 2017):

dĪA

dt
= τ−1

A

(

a(V̄E(t)− EA)− ĪA
)

+ b · rE(t). (10)

We set the subthreshold adaptation parameter a to 0 and
only consider finite spike-triggered adaptation b. In Cakan and
Obermayer (2020), it was shown that a finite a mainly shifts the
state space in the positive direction of the excitatory input µext

E
and produces no new states compared to when only b is allowed
to vary. All parameters are listed in Table 1.

Noise and External Input
Each subpopulation α of every brain area receives an external
input current with the same mean µext

α (t) and standard deviation
σ ext with respect to all neurons of the subpopulation. We set the
value of µext

α (t) to draw the state space diagrams in Figure 2. The
origin of these mean currents is not further specified and can be
thought of as a tonic mean background input, for example, from
subcortical areas to the cortex. Additionally, every subpopulation
also receives an independent noise input µou

α (t) which also
originates from unidentified neural sources such as subcortical
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TABLE 1 | Summary of model parameters.

Parameter Value Description

µext
E [0− 4] mV/ms Mean external input to E

µext
I [0− 4] mV/ms Mean external input to I

σou [0− 0.5] mV/ms3/2 Noise strength

Ke 800 Number of excitatory inputs per neuron

Ki 200 Number of inhibitory inputs per neuron

cEE , cIE 0.3 mV/ms Maximum AMPA PSC amplitude Brunel

(2003)

cEI, cII 0.5 mV/ms Maximum GABA PSC amplitude Brunel

(2003)

JEE 2.4 mV/ms Maximum synaptic current from E to E

JIE 2.6 mV/ms Maximum synaptic current from E to I

JEI −3.3 mV/ms Maximum synaptic current from I to E

JII −1.6 mV/ms Maximum synaptic current from I to I

τs,E 2 ms Excitatory synaptic time constant

τs,I 5 ms Inhibitory synaptic time constant

dE 4 ms Synaptic delay to excitatory neurons

dI 2 ms Synaptic delay to inhibitory neurons

C 200 pF Membrane capacitance

gL 10 nS Leak conductance

τm C/gL Membrane time constant

EL −65 mV Leak reversal potential

1T 1.5 mV Threshold slope factor

VT −50 mV Threshold voltage

Vs −40 mV Spike voltage threshold

Vr −70 mV Reset voltage

Tref 1.5 ms Refractory time

σ ext 1.5 mV/
√
ms Standard deviation of external input

EA −80 mV Adaptation reversal potential

a 0 nS Subthreshold adaptation conductance

b [0− 20] pA Spike-triggered adaptation increment

τA [5− 5, 000] ms Adaptation time constant

Kgl [100− 400] Global coupling strength

vgl 20 m/s Global signal speed

Parameters which are subject to optimization are given as intervals.

brain areas and which is modeled as an Ornstein-Uhlenbeck
process with zero mean,

dµou
α

dt
= −

µou
α

τou
+ σou · ξ (t), (11)

where ξ (t) is a white noise process sampled from a normal
distribution with zero mean and unitary variance. The noise
strength parameter σou determines the amplitude of fluctuations
around the mean of the process.

BOLD Model
The firing rate output rE(t) of the excitatory population of each
brain area is converted to a BOLD signal using the Balloon-
Windkessel model (Friston et al., 2000; Deco et al., 2013) with
parameters taken from Friston et al. (2003). The BOLD signal
is represented by a set of differential equations that model the

hemodynamic response of the brain caused by synaptic activity.
After simulation, the BOLD signal is subsampled at 0.5Hz to
match the sampling rate of the empirical fMRI recordings.

State Space Diagrams
Due to the semi-analytic nature of the model, the state space
diagrams in Figure 2 a were computed numerically by simulating
each point in the diagrams for 20 s. Corresponding to the
resolution of the diagrams, this resulted in a total of 161 ×
161 simulations for a single node and 101 × 101 simulations
for the whole-brain network. State transition lines which mark
the bifurcations of the system were drawn by classifying the
state of each simulated point and thresholding certain measures
to identify abrupt state changes in parameter space. Every
simulation was initialized randomly. The state space diagrams
were computed without adaptation (b = 0) and with spike-
triggered adaptation (b = 20 pA). All nodes in the brain network
received the same mean background input µext

α .
To classify a state as bistable, a decaying stimulus in negative

and subsequently in positive direction was applied to the
excitatory population of all nodes. An example of this stimulus
can be seen in Figure 2B1. This ensured that, if the system
was in the bistable regime, it would reach the down-state and
subsequently the up-state. If a difference in the 2 s-mean firing
rate in any brain area of at least 10Hz was detected, after the
stimulus had relaxed to zero after 8 s, it was classified as bistable.
A threshold of 10Hz was chosen because it was less than the
smallest difference in firing rate between any down- and up-state
in the state space.

It should be noted that the state space diagrams of the
whole-brain network in Figure 2 a necessarily provide a reduced
description disregarding heterogeneous states that can arise
at the depicted state transition boundaries. In the absence
of noise, transitions from one network state to another, e.g.,
from down-state to up-state, happen gradually as we change
the corresponding bifurcation parameter, such as the excitatory
external input. Close to the bistable regime some nodes effectively
receive more input than others, depending on the in-degree of
each node, and can transition to the up-state before others do.
However, these regions are so narrow that they do not play any
meaningful role in the dynamics, i.e., the width of these regions
is much smaller than the standard deviation of the noise input.
Examples of these states are shown in Supplementary Figure 10

which we could find only by fine-tuning the input strengths of
the system without noise. When noise is added, the fluctuating
activity of the individual nodes is typically enough to drive the
entire network into one of the states in an all-or-nothing fashion.

Oscillatory regions were classified as such if the oscillation
amplitude of the firing rate of at least one brain area was larger
than 10Hz after 8 s of stimulation after which all transients
vanished. An amplitude threshold of the firing rate oscillations
of 10Hz was chosen because all oscillatory states had a larger
amplitude across the entire state space. This was confirmed by
choosing a smaller threshold and comparing the transition lines
with the former one, which yielded the same results. Note that
the output of the mean-field model is a firing rate, describing
the average number of spikes per second measured in Hertz.
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Therefore, when the system is in a limit cycle, the firing rate
oscillates with an amplitudemeasured in Hertz. At the same time,
the frequency of the oscillations is also measured in Hertz. In
the whole-brain network, states were classified as oscillatory, if
at least one node was in an oscillatory state. This criterion was
compared with a stricter version in which all brain regions had
to be simultaneously classified as oscillatory, which again yielded
almost the same results with onlyminimal differences. This leaves
us with the conclusion that, in the brain network, the regions in
which state transitions from non-oscillatory to oscillatory states
happen gradually for each individual brain region, are so narrow
that they can be disregarded in our analysis. This is especially
true, once noise was added to the system, which made these
regions practically unnoticeable.

Neuroimaging Data
Participants
Structural and resting-state functional MRI data were acquired
from 27 older adults (15 females: age range = 51–77 years,
mean age = 62.93 years; 12 males: age range = 50–78 years,
mean age = 64.17 years) at the Universitätsmedizin Greifswald.
For 18 out of the 27 participants, subsequent daytime sleep
EEG recordings were also acquired. Nine participants were
excluded from the EEG phase due to an inability to sleep in the
laboratory. The study was approved by the local ethics committee
at Universitätsmedizin Greifswald and was in accordance with
the Declaration of Helsinki. All participants gave their written
informed consent prior to taking part in the study and were
reimbursed for their participation.

Structural Imaging Data

Acquisition
Data acquisition was performed using a 3T Siemens
MAGNETOM Verio syngo B17 MR scanner with a 32-
channel head coil. High-resolution anatomical T1 images were
acquired using a gradient echo sequence (TR = 1,690 ms, TE =
2.52 ms, TI = 900 ms, flip angle (FA) = 9◦, FOV = 250 x 250,
matrix size = 246 x 256, slice thickness = 1 mm, number of
slices = 176), while for diffusion data a single-shot echo-planar
imaging (EPI) sequence (TR = 11,100 ms, TE = 107 ms) was
used. For every participant, there were 64 gradient directions (b
= 1,000 s/mm2) and one non-diffusion-weighted acquisition (b
= 0 s/mm2) acquired over a field of view of 230 x 230 x 140 mm,
with a slice thickness of 2 mm and no gap, and a voxel size of 1.8
x 1.8 x 2 mm.

Preprocessing and Connectome Extraction.
Preprocessing of T1- and diffusion-weighted images was
conducted using a semi-automatic pipeline implemented in
the FSL toolbox (www.fmrib.ox.ac.uk/fsl, FMRIB, Oxford).
Preprocessing of anatomical T1-weighted images involved the
removal of non-brain tissue using the brain extraction toolbox
(BET) implemented in FSL and the generation of a brain mask.
The quality of the brain-extracted images was assessed manually,
and, subsequently, 80 cortical regions were defined based on
the automatic anatomical labeling (AAL2) atlas introduced in
Rolls et al. (2015). Brain extraction was also conducted for

the diffusion-weighted images, and it was followed by head
motion and eddy current distortion correction. Subsequently,
a probabilistic diffusion model was fitted to the data using the
Bayesian Estimation of Diffusion Parameters Obtained using
Sampling Techniques (BEDPOSTX) FSL toolbox. Individual
connectomes were obtained by linearly registering each subject’s
b0 image to the corresponding T1-weighted image, transforming
the high-resolution mask volumes from MNI to the individual’s
diffusion space and running probabilistic tractography with
5,000 random seeds per voxel using FSL’s PROBTRACKX
algorithm (Behrens et al., 2007). Furthermore, as probabilistic
tractography contains no directionality information but is
dependent on the seeding location, the connection strength
Cij between regions i and j was considered equal to the
connection strength Cji between regions j and i and was
obtained by averaging the corresponding entries in the
connectivity matrix. Each connectivity matrix was normalized
by dividing every matrix entry by the maximum value of
the matrix.

Finally, all subject-specific matrices were averaged to yield
a single structural connectivity (Supplementary Figure 2A) and
a single fiber length matrix (Supplementary Figure 2B). The
resulting connectivity matrix, when multiplied by a coupling
parameter Kgl, determines the coupling strength between any
two regions. For a given simulation, the fiber length matrix is
divided by the signal propagation speed vgl to yield a time-
delay matrix. The average inter-subject Pearson correlation of
individual structural connectivity (fiber length) matrices was 0.96
(0.68) (cf. Supplementary Figures 2C,D).

Resting-State Functional MRI Data

Acquisition
Resting-state functional MRI data were acquired using the same
3T SiemensMAGNETOMVerio syngo B17MR scanner, with the
following parameters: TR= 2000ms, TE= 30, slice thickness= 3
mm, spacing between slices= 3.99 mm, FA = 90◦, matrix size=
64 x 64, FOV= 192 x 192, voxel size= 3 x 3 x 3 mm. Participants
were scanned for 12min, leading to an acquisition of 360 volumes
per participant.

Preprocessing and Network Construction
Preprocessing of rsfMRI data was conducted using the FSL
FEAT toolbox (Woolrich et al., 2001). The first five volumes
of each dataset were discarded. Data were corrected for head
motion using the FSL McFLIRT algorithm, and high-passed
filtered with a filter cutoff of 100 s. Functional images were
linearly registered to each subject’s anatomical image using
FLIRT. A brain mask was created from the mean volume of the
data using BET. MELODIC ICA was conducted and artifactual
components (including motion, non-neuronal physiological
artifacts, scanner artifacts and other nuisance sources) were
removed using the ICA FIX FSL toolbox (Griffanti et al., 2014;
Salimi-Khorshidi et al., 2014). Subsequently, the high-resolution
mask volumes were transformed from MNI to individual subject
functional space and average BOLD time courses for each cortical
region were extracted using the fslmeants command included
in Fslutils.
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Sleep EEG Data

Acquisition
Electroencephalography (EEG) recordings were obtained during
afternoon naps with a duration of 90 min as part of a larger
study in which slow oscillatory transcranial direct current
stimulation (so-tDCS) was also applied. For the purposes of
the current study, however, only the two baseline recordings
and one sham (no so-tDCS stimulation) were used. In the
baseline sessions, EEG was recorded from 28 scalp sites
using Ag/AgCl active ring electrodes placed according to
the extended 10–20 international EEG system, while in the
sham session, 26 scalp electrodes were used. Data were
recorded at a sampling rate of 500 Hz using the Brain Vision
Recorder software and referenced to an electrode attached
to the nose. Additionally, chin electromyography (EMG) and
electrooculography (EOG) data were acquired according to the
standard sleep monitoring protocol.

Preprocessing
Preprocessing of EEG data was conducted using custom scripts
implemented in the FieldTrip toolbox (Oostenveld et al., 2011),
in two parts: in the first part, raw data were prepared for an
independent component analysis (ICA), which was conducted
in order to identify and remove artefactual components, while
in the second part, different filtering settings, as required by
our main data analysis, were applied again to the raw data and
previously identified artifactual independent components (ICs)
were removed. In preparation for ICA, data were bandpass-
filtered between 1 and 100 Hz using a finite impulse response
filter. In addition, a bandstop filter centered at 50 Hz with
a bandwidth of 4 Hz was applied. Subsequently, a manual
inspection of the data was conducted in order to remove gross
noise artifacts affecting all channels, and ICA was performed
using the runica algorithm (Makeig et al., 1997). EMG channels
were excluded from the ICA. The resulting 30 maximally
independent components (ICs) were visually inspected and
those corresponding to muscle artifacts, heart beat, and, where
applicable, eye movements were marked for rejection based on
scalp topography (Jung et al., 1998, 2000) and power spectrum
density (Criswell, 2010; Berry and Wagner, 2014).

For the main analysis, raw data were bandpass-filtered
between 0.1-100 Hz using a finite impulse response filter,
then segmented in 10 s epochs. Previously identified artifactual
ICs were removed from the data, together with the EOG
channels. Next, a two-step procedure was employed for detecting
remaining artifact-contaminated channels: the first step was
based on kurtosis, as well as low- (0.1–2 Hz) and high-frequency
(30–100 Hz) artifacts, while in the second step, the FASTER
algorithm was used (Nolan et al., 2010); these channels were
afterwards interpolated. In a final step, any 10 s epochs still
containing artifacts which could not be removed in the previous
steps were manually removed from the analysis and the data were
linearly detrended.

Sleep stage classification was conducted manually on the raw
data, according to the criteria described in Rechtschaffen and
Kales (1968), using the Schlafaus software (Steffen Gais, Lübeck,
Germany). Here, 30 s epochs were used, and each was classified

as belonging to one of seven categories: wakefulness, non-REM
sleep stage 1, 2, 3, or 4, REM sleep, or movement artifact.

Model Optimization
Functional Connectivity (FC)
From each subject’s resting-state fMRI recording, functional
connectivity (FC) matrices are obtained by computing the
Pearson correlation between the BOLD time series of all brain
areas, yielding a symmetric 80 × 80 FC matrix per subject. The
FC matrix of the simulated BOLD activity (simulation time T =
12min) is computed the same way. In order to determine the
similarity of the simulated and the empirical FC matrices, the
Pearson correlation of the lower-triangular elements (omitting
the diagonal) between both matrices is computed. For each
simulation, this is done for all subjects, and the average of all FC
correlation coefficients is taken to determine the overall FC fit. A
higher FC correlation coefficient means a better correspondence
of simulated and empirical data, with values ranging from –1
to 1 (higher is better). This ensures that the simulated activity
produces realistic spatial correlation patterns.

For the four fitting scenarios, the best subject-averaged FC
fit scores were the following: 0.57 for fMRI-only fits without
and 0.56 with adaptation. With EEG data included in the
optimization, fits were 0.57 for both up-to-down and down-to-up
solutions (Supplementary Figure 3B). For individual subjects,
best fits reached up to 0.75 (Supplementary Figures 4A,B).

Functional Connectivity Dynamics (FCD)
Functional connectivity dynamics (FCD) matrices quantify the
cross-correlation between time-dependent FC matrices FC(t). In
contrast to computing the grand-average FC alone, this ensures
that the temporal dynamics of the simulated and empirical FCs
is similar. A rolling window of length 60 s and a step length 10
s is applied to the BOLD time series of length T = 12 min to
determine FC(t) (Hutchison et al., 2013). For all t1, t2 < T, the
element-wise Pearson correlation of the lower diagonal entries of
the matrices FC(t1) and FC(t2) is computed, yielding a symmetric
T × T FCD matrix. In order to determine the similarity of the
simulated FCD to the empirical FCD, the Kolmogorov-Smirnov
(KS) distance of the distributions of lower-triangular elements
(omitting the diagonal) of simulated and empirical FCDmatrices
is calculated. This value ranges from 0 for maximum similarity to
1 for maximum dissimilarity (lower is better). The KS distance
is determined for each subject, and an average of all values is
taken to determine the overall FCD fit for a simulation. Average
FCD fits for all four optimization scenarios were 0.26, 0.26, 0.25,
and 0.25, respectively. The best subject-specific fits reached 0.05
(Supplementary Figures 4C,D).

Fit to EEG Power Spectrum
Lastly, the frequency spectrum of the firing rate of the excitatory
populations of all brain areas is compared to the mean power
spectrum of the EEG data during sleep stage N3.

14 out of the 18 subjects with sleep EEG recordings reached
the deep sleep stage N3 in a total of 29 sleep sessions. This
resulted in a EEG dataset of 1,034 non-overlapping epochs of
10 s each. The power spectrum of each epoch was computed
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using the implementation of Welch’s method (Welch, 1967)
scipy.signal.welch in SciPy (v1.4.1) (Virtanen et al., 2020). A
rolling Hanning window of length 10 s was used to compute each
spectrum. For each channel, the mean of all epoch-wise power
spectra was computed. All channel-wise power spectra were then
averaged across all channels to yield a subject-specific N3 EEG
power spectrum. The power spectra of all subjects were then
averaged across all subjects to yield a single empirical EEG power
spectrum of N3 sleep. The average and subject-wise EEG power
spectra are shown in Supplementary Figure 5.

Based on the results of Martínez-Cañada et al. (2021), who
showed that in a network of point neurons both the total synaptic
current and the average firing rate correlate well with the LFP
time series and its power spectrum, we used the firing rate
output of the model as a proxy for comparison with the power
spectrum of the empirical EEG data. The firing rate of the
last 60 s of every simulation was averaged across all N brain
regions and the power spectrum was computed using the same
method as for the empirical data. We then computed the Pearson
correlation coefficient between the simulated and the empirical
power spectra between 0 and 40 Hz, with correlation values
ranging from –1 to 1 (higher is better). During deep sleep,
low frequency components (< 1 Hz) are particularly strong
due to the underlying slow oscillations (SO) between up- and
down-states (Massimini et al., 2004). Using the power spectrum
correlation between the simulated model and the empirical data,
we were able to find model parameters that produce SOs with
a frequency spectrum similar to EEG during SWS. Average
EEG spectrum correlations for the two scenarios in which the
model was fitted to EEG data were 0.93 when we allowed
only up-to-down solutions during the optimization, and 0.97
when down-to-up solutions were allowed as well. In addition,
we confirmed that the power spectra of the excitatory synaptic
activity variable (Equation 6) and the firing rate (Equation 8)
were similar (Pearson correlation > 0.99) leading to the same
optimization results.

In Supplementary Figure 5C, the correlation between the
power spectrum of the model (Supplementary Figure 5A) and
the EEG power spectrum during sleep stage N3 (which was the
optimization target) is the highest and decreases from N3 to
the awake state (Wa). The lower correlation with stages Wa-
N2 (which were not used in the optimization) is mainly due
to the emergence of a strong peak in the alpha range between
8 and 12 Hz in addition to the emergence of the SO peak in
N3 at around 1 Hz. In order to be more sensitive toward these
differences in the data at low frequencies, the EEG cost function
used here could be extended. One possibility could be using an
event-based SO detection algorithm to extract more granular
sleep stage-dependent features from the EEG time series, such as
the event frequency, event duration, and the event involvement
distribution, instead of relying on the power spectra alone.

Evolutionary Algorithm
An evolutionary algorithm is used to find suitable parameters
for a brain network model that fits to empirical resting-state
fMRI and sleep EEG recordings. A schematic of the evolutionary

algorithm is shown in Supplementary Figure 11. The use of
a multi-objective optimization method, such as the NSGA-II
algorithm (Deb et al., 2002), is crucial in a setting in which a
model is fit to multiple independent targets or data frommultiple
modalities. Algorithms designed to optimize for a single objective
usually rely on careful adjustment of the weights of each objective
to the overall cost function. In a multi-objective setting, not one
single solution but a set of solutions, called the first Pareto front,
can be considered optimal. This refers to the set of solutions
that cannot be improved in any direction of the multi-objective
cost function without diminishing its performance in another
direction. These solutions are also called non-dominated.

In the evolutionary framework, a single simulation is called
an individual and its particular set of parameters are called its
genes, which are represented as a six-dimensional vector, i.e.,
one element for each free parameter (listed below). A set of
individuals is called a population. For every evolutionary round,
also called a generation, the fitness of every new individual is
determined by simulating the individual and computing the
similarity of its output to the empirical data, resulting in a
three-dimensional fitness vector with FC, FCD, and EEG fits,
determined as described above. Then, a subset of individuals
is selected as parents from which a new set of offspring are
generated. Finally, these offspring are mutated, added to the
total population, and the procedure is repeated until a stopping
condition is reached, such as reaching a maximum number
of generations. The multi-objective optimization is based on
non-dominated sorting and several other evolutionary operators
as introduced in Deb et al. (2002) which are implemented in
our software package neurolib (Cakan et al., 2021) using the
evolutionary algorithm framework DEAP (Fortin et al., 2012).

The evolutionary algorithm consists of two blocks,
the initialization block and the evolution block
(Supplementary Figure 11). For initialization, a random
population of Ninit = 320 (in the fMRI-only case) or Ninit = 640
(in the fMRI and EEG case) individuals is generated from a
uniform distribution across the following intervals of the model
parameters: µext

E and µext
I ∈ [0.0, 4.0] mV/ms, b ∈ [0.0, 20.0]

pA, τA ∈ [0.0, 5000.0] ms, Kgl ∈ [100, 400], and σou ∈ [0.0, 0.5]

mV/ms3/2. Since the parameter space of good fits in the fMRI
and EEG case is smaller compared to the fMRI-only case (see
Figure 3A), a larger initial population was used to ensure that the
algorithm is able to find these regions. The initial population is
simulated, and the fitness scores are evaluated for all individuals.

We then start the evolutionary block which will repeat until
the stopping condition of a maximum number of 20 (fMRI-only)
or 50 (fMRI and EEG) generations is reached. Using a non-
dominated sorting operator, the initial population is reduced to
the population size Npop = 80 (fMRI-only) or Npop = 160
(fMRI and EEG). From this population, using a tournament
selection operator based on dominance and crowding distance,
a set of parents is chosen. A simulated binary crossover is used
as a mating operator and is applied on the parent population
to generate Npop new offspring. Finally, a polynomial mutation
operator is applied on the offspring population, which introduces
randomness and thus aids the exploration of the parameter
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space. After all offspring have been evaluated and a fitness
is assigned to each of them, the population is merged with
the parent population. The process is then repeated for each
generation such that the algorithm produces improving fits in
every new generation.

The evolutionary process was significantly accelerated by
avoiding long (12 min) simulations with almost no activity. This
was achieved by a stage-wise simulation scheme. In the first stage,
every run was simulated for 10 s with a transient time of 1 s. If the
maximum firing rate of any brain area did not exceed 10 Hz, the
run was omitted andmarked as invalid. Then, in the second stage,
each valid run was simulated for the full length of 12 min and the
fitness of that run was evaluated.

When fitting to fMRI and EEG data simultaneously, we
filtered for up-to-down solutions by thresholding the median
firing rate in the first stage of each simulation. If the median firing
rate (across all nodes and time) was below 1 Hz, the simulation
was omitted and marked as invalid to avoid finding down-to-
up solutions. If the median firing rate was above 15 Hz, the
simulation was omitted, to avoid solutions that showed excessive
up-state activity. No filtering was necessary when the model was
optimized for down-to-up solutions, since the algorithm had a
strong tendency to find these solutions without any intervention.
The second stage was not subject to such filtering.

Sleep Model Analysis
Up- and Down-State Detection
Up- and down-states are detected by thresholding the excitatory
firing rate rE(t) of each brain region, similarly as in Renart et al.
(2010) and Nghiem et al. (2020). At any time t, a region is
considered to be in the up-state if rE(t) > θ ·max(rE(t)) with θ =
0.01, otherwise it is considered to be in the down-state. States that
were shorter than 50ms were discarded by replacing them with
the preceding state. For robustness, the statistics in Figures 4D–L

were computed from 10 min simulations. To compute the
statistics shown in Figures 5B,C and Supplementary Figure 9,
each parameter value was simulated 10 times for 1 min each and
results were averaged across the 10 simulations.

Involvement
When not stated differently, we report the involvement in the
down-state because its onset is usually considered to be the
beginning of a slow oscillation. Following the definition in Nir
et al. (2011), the involvement time series I(t) represents a fraction
and is defined as the number n of brain areas in a given state
at time t divided by the number N of all brain areas: I(t) =
n(t)/N. Note that maximum involvement in the down-state
means minimum involvement in the up-state and vice versa.

Global and Local Waves
Oscillations in Figures 4F, 5 and Supplementary Figure 9 were
detected using the peak finding algorithm scipy.signal.find_peaks
implemented in SciPy applied on the involvement time series
I(t) which ranged between 0% and 100%. For peak detection,
the minimum peak height was 10% and the minimum
distance to a neighboring peak was 100 ms. A Gaussian
filter scipy.ndimage.gaussian_filter1d with a width of 200 ms

was applied on I(t) before peak detection. Oscillations were
considered global if the amplitude of the peak in I(t) was larger
than 50% (i.e., most brain areas participated) and as local if
25% < I(t) < 50%. Oscillations with an involvement of less than
25% were not considered. It should be noted that the choice of
these threshold values for the classification into local and global
waves is in line with previously used values (Nir et al., 2011).

Population Statistics
To ensure that the properties of the chosen model are typical
for all good up-to-down fits, we confirmed the results reported
in Figure 4 for the 100 best individuals resulting from the
evolutionary optimization process (Supplementary Figure 6).
First, the fMRI+EEG (up-to-down) population shown in
Figure 3B, was sorted by the score of the individuals which is
the weighted sum of each individual’s fitness. Then, the best
100 individuals were selected, and each individual was replicated
twice. For each replica, the adaptation strength parameter b,
which was subject to optimization and had a value of bc, was
increased (b+) and decreased (b−) by 50%. The resulting 200
new individuals were then simulated for 1 min each and the
statistics were obtained for all 300 individuals, similar to the sleep
model presented.

Whole-Brain Oscillation Phase
To determine the mean phase of up- and down-state transitions
relative to the global (whole-brain) oscillation for every brain
area (Supplementary Figure 8A), we first compute the global
phase φ(t) of SOs using the Hilbert transform of the down-state
involvement time series I(t) whose inverse tightly tracks themean
firing rate of the brain (Supplementary Figure 8B). The signal
I(t) was first bandpass filtered between 0.5 and 2.0 Hz using
an implementation of the Butterworth filter scipy.signal.butter
of order 8 in SciPy. The signal was then converted into a
complex-valued analytic signal R(t) = A(t) exp

(

iφ(t)
)

using
scipy.signal.hilbert_transform. The phase φ(t) of R(t) then served
as the phase of whole-brain oscillations.

Measure of Synchrony and Metastability
In Supplementary Figures 9B,C the synchrony andmetastability
of transitions to the down-state were quantified using
the Kuramoto order parameter (Kuramoto, 2003) R(t)
which measures the synchrony of all brain areas. In
Supplementary Figure 9B, the temporal mean of R(t), and
in Supplementary Figure 9C, the temporal standard deviation
of R(t) are plotted. The Kuramoto order parameter R(t) is
given by

R(t) =
1

N

∣

∣

∣

∣

∣

∣

N
∑

j=1

eiϕj(t)

∣

∣

∣

∣

∣

∣

, (12)

where N is the number of brain areas, and ϕj(t) is the phase of
the down-state transitions of each area j. The phase of down-state
transitions of a region (index j ommited) can be defined as

ϕ(t) = 2π
t − tn

tn − tn−1
, (13)
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where tn is the time of the last transition and
tn−1 the time of the second to last transition
(Rosenblum et al., 2001).

Numerical Simulations
All simulations, the parameter explorations, and the
optimization framework including the evolutionary algorithm
are implemented as a Python package in our whole-brain
neural mass modeling framework neurolib (Cakan et al.,
2021) which can be found at https://github.com/neurolib-
dev/neurolib. The forward Euler method was used for the
numerical integration with an integration time step of dt
= 0.1 ms. The code for reproducing all presented figures
can be found at https://github.com/caglarcakan/sleeping_
brain.
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