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Abstract: We discuss phonon-induced non-Markovian and 
Markovian features in QD-based quantum nanooptics. 
We cover lineshapes in linear absorption experiments, 
phonon-induced incoherence in the Heitler regime, 
and memory correlations in two-photon coherences. To 
qualitatively and quantitatively understand the underly-
ing physics, we present several theoretical models that 
capture the non-Markovian properties of the electron–
phonon interaction accurately in different regimes. Exam-
ples are the Heisenberg equation of motion approach, the 
polaron master equation, and Liouville propagator tech-
niques in the independent boson limit and beyond via the 
path integral method. Phenomenological modeling over-
estimates typically the dephasing due to the finite mem-
ory kernel of phonons and we give instructive examples 
of phonon-mediated coherence such as phonon-dressed 
anticrossings in Mollow physics, robust quantum state 
preparation, cavity feeding, and the stabilization of the 
collapse and revival phenomenon in the strong coupling 
limit of cavity quantum electrodynamics.

Keywords: phonons; semiconductor quantum dots; open 
quantum system; quantum optics.

1  �Introduction
Since the seminal demonstration of optically [1] and elec-
trically triggered [2] single-photon emission, deterministic 

generation of entangled photon pairs [3, 4], near-unity 
indistinguishable photons [5], and strong coupling to a 
microcavity [6] with semiconductor quantum dots (QDs) 
[7,  8], acting as active quantum light emitters, there has 
been a steadily increasing number of research activities 
to establish semiconductor systems, in particular QDs, 
as a key element for modern photonic quantum tech-
nologies [9–19]. Focusing on the goal to implement QDs 
in quantum sensing, metrology, and quantum cryptogra-
phy and to establish them as “artificial atoms” and ideal 
candidates for solid-state quantum bits (qubits) and scal-
able quantum information processing [13, 20–22], it has 
become clear that QDs cannot be considered as isolated 
quantum emitters but interact intrinsically with their sem-
iconductor bulk environment. This coupling has usually 
detrimental impact as it leads to decoherence of the con-
fined exciton acting via superposition states as a qubit 
[23, 24]. Interestingly, it can also be of positive impact 
and facilitate, for instance, attractive phonon-mediated 
resonant excitation schemes [25–27] or phonon-induced 
quantum coherences [28, 29].

A major phonon coupling mechanism stems from the 
surrounding host material and its lattice vibrations [8, 
30, 31]. The associate distortion of the underlying crystal 
structure leads inevitably to electron–phonon interac-
tion and subsequently to substantial new forms of deco-
herence unknown in standard atom–molecular optics 
(AMO). Because the phonon reservoir is structured, that 
is, the coupling is frequency-dependent, the influence of 
phonons on the quantum optical properties of QDs is of 
non-Markovian nature [23, 32–34]. Thus, to quantify and 
unravel the underlying physics, non-Markovian dissipa-
tive processes need to be taken into account. However, 
non-Markovianity refuses a time-local formulation, and 
therefore typical quantum dissipative treatments become 
unavailable [35,  36] and advanced, or perturbative 
methods need to be employed [37–41].

Before we discuss the electron–phonon interaction 
in more detail, we want to briefly comment on how the 
term “non-Markovian” and “Markovian” is used in this 
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review. We adapt the definition of Markovian and non-
Markovian processes as formulated among others in Refs. 
[37, 41]. A system–reservoir interaction is Markovian if the 
reservoir correlation time vanishes or can be assumed to 
be negligible for the given set of observables of interest. 
For example, the correlation function of a reservoir con-
sisting of harmonic oscillators with annihilation (crea-
tion) operators (†)bq  with bosonic commutation relation 

†[ , ]= ( )b b δ′ − ′q q q q  can be written as:
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where †( ) ( exp[ ] exp[ ])q qR t g b i t b i tω ω= − +∑ q q qq
 and an 

initial thermal equilibrium at 1/β = kBT has been assumed 
with † 1[exp( ) 1] = ,q qb b nβ ω −〈 〉 = −q q �  the Bose–Einstein dis-
tribution, and (†) (†) 0.b b〈 〉 =q q  If now the relaxation time of 
the reservoir is much smaller than the evolution time of 
the observed system, that is, Re[〈R(t)R(t′)〉] = Γδ(t–t′), the 
system’s evolution does not depend on former system–
reservoir interaction and the process is Markovian [41]. 
A specific example of a vanishing correlation time is the 
radiative decay into free space, where the vacuum field 
amplitude is nearly constant in the regime of optical sys-
tem–reservoir interaction and justifies within the small-
bandwidth assumption a Lindblad formulation of the 
process as shown in standard quantum optics books [35–
38]. In this case, the dissipative processes can be included 
via time-independent Lindblad superoperators [35].

A standard example for non-Markovian processes is 
the electron–phonon interaction in semiconductors [7, 
23, 24, 42], where the timescale of the interaction is in the 
same regime as the corresponding mode structure (ps), 
and the environment correlation time is finite. In this 
case, a backflow of information between environment 
and system takes place and leads to non-Lorentzian line-
shapes (e.g. [43]), longer Wigner delay times [44], reap-
pearance of Rabi oscilllations (e.g. [33, 45]), or allows for 
robust state preparation protocols (e.g. [25, 27, 46–48]), 
phonon-mediated quantum coherences (e.g. [28, 29, 49]), 
and incoherent excitation processes such as cavity feeding 
(e.g. [50, 51]), pulse area–dependent damping, renormali-
zation of Rabi oscillations [23, 45], and excitation-induced 
dephasing of Mollow triplet sidebands [52–54] as will be 
discussed in detail below. Thus, when we refer to non-
Markovian processes, we mean in general a process that 
cannot be described with a time-independent, global, 
Lindblad-based master equation as the paradigm for 
delta-correlated white noise [35–38, 55].

In the following, we review exemplarily recent work 
on non-Markovian and Markovian signatures of electron–
phonon dynamics in semiconductor QDs [7, 42]. In par-
ticular, we focus on most mature InGaAs/GaAs QDs (QDs) 
with dominant coupling to longitudinal acoustic (LA) and 
longitudinal optical phonons (LO) via the deformation or 
respective Fröhlich coupling element [24]. For detailed 
discussion of semiconductor nanostructures, and the 
effort of microscopical calculations to quantify coupling 
mechanism in semiconductors, we refer to relevant books 
[8, 56] and reviews [57–60].

For the sake of compactness, we do also not include 
explicitly results in the research efforts of higher-dimen-
sional semiconductor nanostructures such as quantum 
wires, quantum wells, or mesoscopic bulk systems [61, 
62]. There is a wide range of exciting phenomena in these 
systems because of the ubiquitous non-Markovian elec-
tron–phonon and electron–electron dynamics. To name a 
few, quantum wires show phonon-enabled thermal con-
ductivity [63] based on a universal quantum of thermal con-
ductance [64]. Pronounced non-Markovian decoherence 
is demonstrated in localized nanotube excitons [32], and 
also phonon-assisted Anderson localization phenomena 
have been investigated [65]. In quantum wells, coherent 
acoustic oscillations are studied [66], and nonequilibrium 
cooling effects bottlenecked by non-Markovian phonon 
dynamics have been discussed [67]. Four-wave mixing 
techniques allow to study and characterize giant excitonic 
resonances [68, 69], and via two-dimensional coherent 
spectroscopy techniques, incoherent exciton–phonon 
Green’s function can be probed and extracted in disor-
dered quantum wells [70, 71].

Moreover, optical and electronic two-dimensional 
spectroscopy has drawn a lot interest recently, as non-
Markovian, anomalous lineshapes and relaxation/scatter-
ing processes can be characterized and studied in depth. 
For example, the study of signatures of spatially correlated 
noise and nonsecular effects [72] has been performed, the 
read-out of Rabi oscillations in QDs [73], exciton coher-
ence at room temperature [74] investigated, systematic 
study of dephasing processes including quadratic elec-
tron–phonon coupling for elevated temperatures [75, 76] 
and phonon sidebands in transition metal dichalcoge-
nides have furthermore been demonstrated [77]. Despite 
the exciting results in higher-dimensional nanostructures 
and two-dimensional coherent spectroscopy, we focus 
in the following on a single material platform, semicon-
ductor QDs. This allows us to discuss in detail instructive 
experimental examples in which the phonon interaction 
is the dominant source of decoherence and theoretical 
models, which are capable to capture their specific details 
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and can partially be treated even analytically. These 
models are, however, not limited to the QD case and are 
used for other material platforms such as quantum wells, 
quantum wires, or atomic-thin two-dimensional systems 
as well [61, 78, 79].

2  �Structure of the review and 
Hamiltonians

This review covers two different interaction schemes, 
electron–light (e – l) and electron–phonon (e – p) dynam-
ics, and is basically structured by increasing complexity. 
To increase readability, we introduce here the correspond-
ing Hamiltonians, which are used throughout the review. 
The electron–light interaction is treated either semiclassi-
cally ,sc

e lH −  quantized in a mode continuum ,con
e lH −  or within 

a cavity or single mode description .cav
e lH −  The Hamiltoni-

ans read:

	 22 21 12( )( ),sc
e lH t∆σ Ω σ σ− = + +� � � (2)

	
† †

21 22 0 12 21( )cav
e lH c c g c cω σ ω σ σ− = + + +� � � � (3)

	
† †

21 22 12 21( ),con
e lH d c c gc g c

ω ω ω ω
ω σ ω ω σ σ− = + + +∫� � � (4)

where the rotating-wave approximation has been applied, 
and Ω(t) is the Rabi frequency, including the exter-
nal driving field E(t) with frequency ωL and the dipole 
moment of the QD d12 = d21, assumed in the following as 
real number, between the conduction 2 and valence band 
1 with a bandgap energy of ħω21. In the semiclassical case 
( ),sc

e lH −  the Hamiltonian is written in the rotating frame of 
the laser frequency, leading to a detuning of Δ = ω21–ωL. 
The operator σij flips the state |j〉 to |i〉, whereas (†) (†), c c

ω  
annihilates (creates) a photon in the corresponding mode 
with bosonic commutation relation †[ , ] ( ).c c

ω ω
δ ω ω′ = − ′  

The interaction strength between photons and electron is 
denoted g, assuming a Wigner–Weisskopf-like coupling 
with an approximate constant vacuum field amplitude 
[35, 36].

The second interaction we consider is the electron–
phonon interaction, either in a semiclassical limit sc

e pH −  
or for longitudinal acoustical LA

e pH −  or longitudinal optical 
phonons .LO

e pH −  The Hamiltonians read:

	 22( ) ,sc
e pH F t σ− = � � (5)

	 † †
22 12[ ],LA

e pH b b g b bω σ− = + +∑ ∑ q
q q q q q

q q
� � � (6)

	

† †
22 12 [ ],LO

e p LOH b b f b bω σ− = + +∑ ∑ q
q q q q

q q
� � � (7)

where F(t) denotes a stochastic force acting on the QD, 
12gq  the electron-longitudinal acoustic, and 12f q the elec-

tron-longitudinal optical phonon coupling element. 
Throughout the review, the standard GaAs phonon bulk 
parameters are used. For example, in case of an approxi-
mative spherical geometry, the acoustical phonon cou-
pling element 12 11 22g g g= −q q q  reads, where
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and typical parameters for InGaAs/GaAs QDs are given 
with sound velocity of GaAs cs = 0.00511  nm/fs, defor-
mation potentials D1 = −5.38 eV, D2 = −11.68 eV, effec-
tive masses: m2 = 0.063, m1 = 0.45, confinement energies 
ħω2 = 0.040 eV, ħω1 = 0.02 eV, and mass density of GaAs 
ρ = 5370 kg/m3 [23, 24, 29, 51, 56, 80]. For the longitudinal 
optical phonons, the Fröhlich coupling applies and reads:
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with 1/ε′ = 1/ε∞–1/εs = 0.0119347  with the static dielec-
tric constant εs = 12.53 and the high frequency dielectric 
constant ε∞ = 10.9, and the reciprocal dielectric constant 
1/ε0 = 18.1e2/(eV nm). The longitudinal optical phonon fre-
quency is in GaAs ħωLO = 36.4 meV.

This review is structured in five parts. After the intro-
duction (Section 1) and this section (Section 2), we discuss 
nonequilibrium phonon dynamics in the semiclassical 
regime in Section 3. Here, the light field is treated classi-
cally with sc

e lH −  and acts as an excitation source and a way 
to probe the system’s dynamics. Here, we discuss the elec-
tron–phonon and electron–light interaction in different 
regimes, from weak coupling and weak driving to strong 
coupling and strong driving, and important theoretical 
tools are presented and explained in detail.

In Section 4, we include also quantized electron–
light interaction in cavity quantum electrodynamics cav

e lH −  
or for a mode continuum con

e lH −  and show how phonons 
contribute to quantum optical phenomena, render-
ing the field of semiconductor quantum optics exciting 
and novel. This section is structured from the single- 
and two-photon regime to the many-photon dynamics, 
including non-Markovian phonons as the main source 
for decoherence.

We then conclude the review in Section 5 and give 
a short outlook on future directions. Please refer to the 
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given Sections for a detailed discussion of the presented 
material.

3  �Nonequilibrium phonon dynamics 
in semiclassical light–matter 
interaction

Experimental data on quantum emitters in a solid-state 
environment, as discussed in the introduction, show 
the necessity of non-Markovian decoherence models. 
Modeling the required intrinsic memory of the electron–
phonon interaction is theoretically a demanding but 
also very rewarding task as it provides the link between 
experimental data and their non-Markovian description. 
Analyzing decoherence mechanisms in solid-state devices 
is therefore crucial to understand the underlying physics 
and to optimize their functionality, in particular when 
quantum properties are addressed. It is also an important 
part in the pursuit to realize reliable protocols in future 
quantum communication networks, which are based on 
coherent light–matter interfaces and the exchange of 
quantum information via single photons and entangled 
photon pairs with high indistinguishability [81, 82]. Here, 
light–matter interaction between two-level emitters and 
the coherent light fields of an external laser is a well-
established approach to investigate the time evolution of 
the polarization density within a medium [83, 84]. This 
time evolution can be governed by semiclassical, Maxwell 
type of dynamics, or takes place deep in the quantum 
regime of single-emitter–light interaction. However, in 
this section, we discuss nonequilibrium phonon dynam-
ics in the semiclassical regime.

The achievements in fabrication of high-quality QDs 
acting as close-to-ideal two-level emitters in the solid 
state [22, 85] established the possibility to investigate the 
light–matter interaction in different regimes. This section 
is structured from the weak electron–phonon coupling 
and weak driving limit (linear) to the strong electron–
phonon coupling and strong driving regime (Mollow 
regime).

We start in Section 3.1  with the discussion of the 
impact of lattice distortion processes in absorption experi-
ments [24, 83, 86]. In this linear regime, the QD emission 
can be expressed via the absorption coefficient α(ω) and 
calculated exactly via the independent boson model 
[37, 87]. Phonon-induced non-Lorentzian lineshapes are 
unraveled in the absorption coefficient, and a clear devia-
tion from Gaussian white noise correlation is observed 

and successfully explained with wavefunctions based on 
8 band k · p theory and with inclusion of non-Markovian 
phonon effects [43].

We continue in Section 3.2 with the weak driving or 
Heitler regime in which we investigate the emission and 
scattering of a single QD under pulsed excitation [44]. This 
regime allows us to explore an intriguing quantum optical 
effect namely the Wigner time delay known from atomic 
physics [88–90]. This delay originates form the phase 
shift between the exciting and emitted field because of 
the finite dwelling time of the excitation in the QD before 
the QD relaxates. Phonon-induced incoherent processes 
explain maximal achievable Wigner delay times τW(Δ) in 
the nontrivial detuning dependence between the laser and 
the QD transition [44], which cannot be described by con-
ventional optical Bloch equations [89]. Here, we discuss 
semiconductor Bloch equations with phonon contribu-
tions via the cluster expansion approach [79, 91], which 
allows perturbatively to take into account nonequilibrium 
and non-Markovian phonon dynamics. We also show that 
for low temperatures and weak electron–phonon cou-
pling, the perturbative cluster expansion solution agrees 
well with the solution from the exact independent boson 
model, given in Section 3.1.

In the weak electron–phonon coupling but strong 
driving limit (Section 3.3), non-Markovian features are 
also captured in the perturbative cluster expansion 
approach [23, 79, 92–95]. In this limit, ultralong dephas-
ing times can be explained [31] and the recurrence of Rabi 
oscillations for large pulse areas [23, 33, 46] is seen. This 
method allows a fast and good approximation to quantify 
influences of the microscopic properties of the nanostruc-
ture under investigation [78, 96]. As an example for signa-
tures typically not present in Lindblad (Markovian) master 
equation simulations, we present in detail damped Rabi 
oscillations via longitudinal acoustic phonons. Within 
the same theoretical framework but in fourth-order per-
turbation theory, phonon-assisted state preparation pro-
tocols are discussed. Those protocols are robust against 
the underlying geometry of the nanostructure; however, 
the wavefront of the outgoing acoustic excitations differs 
strongly for different geometries [27, 46, 96].

Beyond the weak electron–phonon coupling but still 
in the perturbative regime (Section 3.4), master equation 
approaches within a dressed-state basis are typically used 
[35, 37, 97]. We first discuss the Markovian limit [98–101] in 
Section 3.4 and give an analytical solution for the power 
spectrum of a resonantly and optically driven QD sub-
jected to Markovian pure dephasing [102]. The Markovian 
limit, however, cannot capture incoherent excitation pro-
cesses via phonon feeding [50]. To model such processes 
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correctly, a Polaron master equation is a feasible model 
to include as much information as possible from the non-
equilibrium phonon dynamics in second-order perturba-
tion theory [51, 97, 103, 104] and shows already very good 
agreement with experimental data [50]. We derive the 
polaron master equation explicitly and show that for the 
weak coupling limit in secular approximation, the cluster 
expansion solution and polaron master equation dynam-
ics agree well as long as the exciting laser field amplitude 
is time-independent.

We conclude this section with exact solutions of the 
electron–phonon interaction. In case of a dispersionless 
phonon mode, such as longitudinal optical (LO) phonons 
in the Einstein approximation, an inductive equation of 
motion scheme leads to numerically exact solutions, 
cf. Section 3.5. As an example, we show phonon-assisted 
anticrossings in the Mollow regime, which give experi-
mental access to the Huang-Rhys factor. This shows that 
the equation of motion approach based on the semicon-
ductor Bloch equations [61, 79, 91] is not limited to the 
weak coupling regime in principle. If the dispersion rela-
tion is nearly constant, as for LO phonons, an inductive 
equation of motion approach can be used to take into 
account higher-order phonon processes [28, 105, 106]. 
In this case, the equation of motion approach becomes 
a numerically exact method and allows to compute LO 
phonon–assisted Mollow triplet spectra. Because of the 
strong driving limit, anticrossings between polaronic 
and polaritonic dressed states occur and the electron–
LO phonon coupling strength can be spectrally obtained 
because of the emerging splitting [107]. In case of linear, 
or nonconstant dispersion, this method also still possible 
to employ is numerically very expensive and therefore not 
feasible anymore.

In the limit of time-dependent pulses and/or strong 
coupling to phonons with nonconstant dispersion relation 
(Section 3.6), perturbative approaches and master equa-
tion models do not capture the phonon-induced dynam-
ics accurately anymore [108]. Given the non-Markovian 
and therefore entangled system–bath dynamics, density 
matrix renormalization group techniques [109, 110] or 
exact diagonalization become the only choice. They allow 
for numerical expensive but exact treatments. Examples 
are matrix product state evolution techniques [111–114] or 
the real-time path integral method [33, 115] in which the 
time evolution is discretized and the dissipative quantum 
kinetics becomes solvable because of the finite memory 
of the dissipative kernel, here of the acoustic phonons. 
Within the path integral method technique, excellent 
agreement between theory and experiment has been 
demonstrated for state preparation protocols [25] and 

the description of phonon-induced dephasing of coupled 
QD microcavity systems in the strong coupling regime of 
cavity quantum electrodynamics [116, 117].

3.1  �Non-Lorentzian lineshapes (independent 
boson model)

For weak coherent pumping, a system is well described 
in the linear response regime [83]. Via a probe field, the 
absorption of the nanostructure, here, for example, an 
ensemble of QDs is quantified via the Beer–Lambert law 
[118]. The absorption coefficient reveals resonances of 
the emitter sample, but, more importantly, the interac-
tion with the environment is probed also via the detun-
ing dependence of the absorption. The corresponding 
lineshape gives access to important information about 
the kind of coupling (e.g. Fröhlich, deformation, or 
piezoelectric interaction between electrons and phonons) 
and the linewidth allows one to conclude about the effec-
tive electron–phonon coupling strength [7, 8, 12, 56]. A 
characteristic quantity to connect theory to experiment is 
the absorption coefficient, which can be expressed via the 
susceptibility ( , ) Im[ ( , )].r rα ω χ ω=

In the semiclassical description, we assume an 
incoming electromagnetic field E(r, t) described via Max-
well’s equations including material contributions. The 
dynamics of the electric component is described via the 
homogeneous equation: ∇ × E = −∂tB, and the inhomo-
geneous ∇ × B = μ0j + ∂tE/c2 with the speed of light in the 
vacuum c0 = (ε0μ0)−1/2. Averaging over microscopic degrees 
of freedom below the optical wavelengths, assuming an 
electrically neutral sample without a macroscopic current, 
and neglecting magnetic contributions, we yield for the 
averaged current: j(r, t) ≡ ∂tP(r, t) [78, 83, 118]. Deriving the 
wave equation in frequency domain for the electric field, 
we obtain:

	

2
2

02
0

( , ) ( , ),r r
c
ω

∆ ω µ ω ω
 

+ = − 
  

E P � (10)

where we assume a purely transversal wave and we 
neglect in the following out of notation convenience the 
background material refractive index. If the sample is 
isotropic, homogeneous, and linear, the polarization is 
related to the electric field: P(r, ω) = ε0χ(r, ω)E(r, ω) and 
we derive the solution of the field intensity (propagating 
in z-direction):

	

2 2
0

2
0

( , ) | ( , ) | | | exp[ ( ) ]
| | exp[ 2Im[ ] ],

I z r E i k k z
E k z

ω ω ∗= = −
= −

 E  
� (11)
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with 
0 ( , ),k k n r ω=  the refraction index of the inves-

tigated sample ( , ) 1 ( , )n r rω χ ω= +  and k0 = ω/c0. The 
imaginary part of the wave number is directly propor-
tional to the imaginary part of the susceptibility. The sus-
ceptibility in the linear regime is connected to the dipole 
density, which is microscopically given via the transition 
amplitudes multiplied by their dipole momentum and 
the  average dipole density in the sample with emitter 
density n0:

	
0( , ) ( ) ( )ij ij

ij
r n rω ρ ω= ∑P d � (12)

with ρij(t) = 〈i | ρ(t) | j〉. Therefore, the density matrix 
equation gives access to the linear and, also, nonlin-
ear response of the system via solving the Liouville–von 
Neumann equation ( ) [ , ].i t Hρ ρ=��

In the following, a sample consisting of QDs in the 
two-level approximation is assumed, which is probed via 
an incoming (linear polarized) field with an amplitude 
parallel to the dipole moment of the two-level emitters 
[119]. The associated Hamiltonian sc

e lH −  is given in Eq. (2). 
The noncoherent contributions are considered by the 
decoherence inducing Hamiltonian ( )st

e pH t−  given in Eq. (5) 
with a c-valued stochastic force F(t). The dynamics of the 
transition amplitudes reads in general:

	
12 12 22 11( ) ( ) 1 |[ ( ), ( )]| 2 .st

t e l
ii i t i t H t tρ ∆ρ Ω ρ Ω ρ ρ−∂ = − + − 〈 〉
� �(13)

In the linear regime (no population change is 
induced), we set ρ11(t) ≈ ρ11(0) = 1 and a time-independent 
weak driving field Ω(t) = Ω0. Using a phenomenological 
decoherence model, we choose a stochastic force con-
tribution to the energy splitting between ground |1〉 and 
excited state |2〉, that is, ω21 + F(t) [38, 120]. The formal 
solution of the transition dynamics in the linear regime 
reads then with 

0
( ) ( )

t
t dt F tξ = ′ ′∫ :

	
( )( ) ( )

12 12 0 11 0
( ) (0) (0) .

ti t i t i t i tt e i dt e∆ ξ ∆ ξρ ρ Ω ρ+ − −′ ′= − ′∫ � (14)

Because of the decoherence-inducing contributions 
ξ(t), the equation must be averaged [120]. Assuming the 
white noise limit, we average with a Gaussian probabil-
ity distribution, taking only two-body correlations into 
account [120]. In this limit, we characterize the correla-
tion function as 〈〈F(t)F(t′)〉〉 = 2γδ(t–t′) with 〈〈F(t)〉〉 = 0 and 
obtain 〈〈e±iξ(t′)〉〉 = exp[−γt]. Given the dephasing, the solu-
tion of the transition dynamics is obtained after a simple 
integration:
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Differentiating with respect to time and taking the 
Fourier transform into account, we find an expression for 
the polarization density in the linear regime, projected 
along the direction of the dipole:
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We have already assumed a linearly polarized elec-
trical field with a real amplitude parallel to the dipole: 
Ω0 = d21E0/ħ. Ignoring the off-resonant parts of the suscep-
tibility, we find with ρ11(0) = 1:
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χ ω
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which connects to the absorption of the incoming 
electric field via the Beer–Lambert law: I(z, ω) = | E0 | 2 
exp(−2Im[χ]z). The higher the dipole density, the larger the 
individual dipole moments and closer the incoming wave 
is resonant with the transitions, the stronger is the absorp-
tion of the incoming wave into the sample.

The aforementioned absorptive behavior is experi-
mentally accessible via luminescence signals. In the limit 
of Fermi’s golden rule and after subtracting a constant 
offset, the absorption is proportional to the luminescence 
signal. This assumption is valid up to second order in the 
time-evolution operator and within the classical Condon 
approximation for semiclassical light–matter interaction 
[83]. These requirements are nevertheless fulfilled in most 
of the cases, and absorption and luminescence lineshapes 
are mirror images of each other. In the phenomenologi-
cal model discussed above, a Lorentzian lineshape is 
obtained, cf. Eq.  (16). However, comparing the experi-
mental luminescence signal of a single QD nonresonantly 
driven via current injection in the p-i-n diode structure, cf. 
Figure 1A and B, strong deviations from a Lorentzian oscil-
lator model are visible. The line broadening has a temper-
ature-dependent shoulder, which cannot be explained 
with a white noise model as outlined above. In contrast, 
the asymmetric lineshape is a direct consequence of the 
underlying non-Markovian dynamics between the QD and 
lattice vibrations [24, 30, 73, 76, 93, 121, 122].

To model the microscopic interaction between the 
weakly driven QD and its semiconductor host matrix 
more accurately, we choose the quantized electron–
phonon Hamiltonian ( )la

e pH t−  given in Eq. (6) already in 
the interaction picture with the free evolution governed 
by †

pH b bω= ∑ q q qq
�  [24, 93, 123]. To solve the quantum 

mechanical decoherence model, we have to take into 
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account the quantum mechanical character of the deco-
herence Hamiltonian. The full solution of the density 
matrix evolution reads in the Liouville space:

	
{ }1 10

( ) exp ( ) (0)
t

t T L t dtρ ρ =   ∫ � (18)

with time-ordering operator T and Liouvillean superoper-
ator L(t)ρ = (−i/ħ)[H(t), ρ]. To derive the systems dynamics, 
we trace out the phonon degrees of freedom:

	
{ }{ }1 10

Tr { ( )} ( ) Tr exp ( ) (0) ,
t

B s s Bt t T T L t dtρ ρ ρ = =   ∫ � (19)

where the time-ordering operators ensure that the corre-
sponding von-Neumann equation is still solved. To evalu-
ate this solution, typically a path integral method is used, 
cf. Section 3.6. Here, we assume a vanishing light–matter 
coupling and stay in the linear regime. In this case, Eq. (19) 
can be solved analytically for ( ) ( )LA

e pH t H t−=  [24, 37, 124].
To solve the quantum mechanical model in the linear 

regime, one traces out first the electronic degrees of 
freedom:
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This equation can be formally solved via the Dyson 
series with 〈2 | ρ(t) | 1〉 = PB(t):
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( ) exp ( ) / (0)
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Assuming discrete time steps Δt, we can write
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after performing a Suzuki–Trotter decomposition and 
using the abbreviation
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The time-order is now trivially fulfilled and therefore, 
the time-ordering operator is omitted. The necessary con-
dition for the analytical solution in this case is that the 
commutator of two Hamiltonians is a c-value and not an 
operator anymore:
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This result means that the commutator of the 
individual Hamiltonian with the commutator of the 
Hamiltonians vanishes [[Hi + Hj], [Hi, Hj]] = 0, and there-
fore the Baker–Campbell–Hausdorff formula can be used 
exp[A]exp[B] = exp[A + B]exp[[A, B]/2] to obtain in the 
limit of Δt → 0:
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Figure 1: Semilogarithmic plot of the electroluminescence intensity of a single QD.
(A) With increasing temperature the line broadening increases due to stronger acoustic phonon interaction. (B) Comparison of the measured 
lineshape with two calculated spectra, using alternatively a simple Gaussian (green dotted curve) or a realistic 8 band k · p wave function 
(red dashed curve). Reprinted figure with permission from [43]. © 2011 by the American Physical Society.
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Because the time-ordering has been taken into account 
already, one can trace out the phonons and the independ-
ent boson model is given via P(t): = TrB[PB(t)]

	 21( ) exp[ Im[ ( )] Re[ ( )]],I IP t i t i t tω φ φ= + − � (25)
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ω
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q

q
�(26)

Obviously, the time-order is fully taken via the 
imaginary phase whereas the temperature-dependent 
dephasing stems alone from the part left untouched by 
the time-ordering. Therefore, neglecting the time-order 
completely will yield the wrong result interestingly only if 
phase-dependent quantities are studied.

Taking the Fourier transform, we yield ρ12(ω) and 
ρ21(ω) and the susceptibility includes then non-Markovian 
effects because of the quantum character of the struc-
tured bosonic reservoir. The semiconductor host matrix 
is considered in the coupling elements, as well as the 
temperature dependence mainly governed by the phonon 
frequencies from the dispersion relation, which in princi-
ple can be calculated ab initio. In Figure 1B, a microscopic 
wavefunction is used to model the correct, experimentally 
observed lineshape [43].

To conclude this section, a non-Markovian dephas-
ing model was applied to describe the emission spectra of 
a single QD embedded in an electrically pumped device, 
which is based on a p-i-n diode design and an oxide aper-
ture to spatially restrict the current flow. Despite the com-
plexity of the device design and the electrical excitation 
scheme, the agreement between the analytical solvable 
model and experiment is striking. This together with the 
possibility to include microscopic parameters into the 
model for the description of experimental results proves 
the strength of the non-Markovian dephasing model. Note-
worthy, the lineshape of the calculated spectra depends 
only on the electron–phonon coupling matrix elements. 
Moreover, the sensitivity of the choice of electronic wave 
function is clearly visible, comparing a Gaussian wave 
function with an 8 band k · p theory [58, 59]. This is an 
important feature of the advanced model and highlights 
its usefulness for further optimization and technological 
fine-tuning of single-QD quantum devices.

3.2  �Phonon-enhanced Wigner time delay 
(Cluster expansion)

Beyond the linear regime but still in the weak excitation 
limit, the Heitler regime includes nonlinear contributions 
as it studies the excited state dynamics ρ22(t) = 〈σ22(t)〉 as 

a figure of merit in strong contrast to the simpler linear 
regime, which addresses ρ12(t) = 〈σ21(t)〉. In the Heitler 
regime, the incoming light is mainly coherently scattered, 
that is proportional to |ρ12(t) | 2, but in dependence on the 
pulse length and pulse area, a part of the incoming laser 
excitation is absorbed ρ11(t) < 1, converted into electronic 
excitation ρ22(t) > 0 before being emitted back via incoher-
ent scattering. The process of reemission needs a finite time 
between the incoming pulse and outgoing emission, and 
the delay between the maximum of the excitation pulse and 
emission pulse is called Wigner delay or dwell time.

The Wigner delay is ultimately limited by the coher-
ence time 2 1 21 / = 1 /(2 ) 1 /T T T ∗+  [89] where T1 denotes the 
radiative lifetime and 2T ∗ is the coherence timescale. If no 
or negligible decoherence is present ( 2T ∗ → ∞) such as in 
certain atomic systems [88, 90], the maximum Wigner 
delay reads 2T1 as the signal stems from radiative relaxa-
tion, and every relaxation induces a partial decoherence 
between the electronic levels. Because the Wigner delay is 
limited by the decoherence process in case of solid-state 
emitters, it is an interesting figure of merit to quantify the 
effective 2T ∗ time. In particular when probing the spectral 
response, the detuning dependence of the Wigner delay 
reveals clearly a non-Markovian and phonon coupling–
dependent feature as we discuss in the following [44].

Because the pulse induces population dynamics of 
the electronical system, we need to solve the optical Bloch 
equations. Limiting our analysis of the electronic system 
to a two-level system, which is in good agreement with 
the experimental situation of studying InGaAs QD with 
close to ideal quantum properties at low temperature, we 
restrict the dynamics first to the Lindblad master equation 
case with

	
12 22[ ( ), ] [ ] [ ] ,

2 2
psc

e l
i H t

γΓ
ρ ρ σ ρ σ ρ−= − + +�

�
D D � (27)

with D[A]ρ = 2AρA+ − A+Aρ − ρA+A as the Lindblad super-
operator. Dissipative contributions are taken into account 
via this Lindblad formalism and can be derived via sec-
ond-order perturbation theory based on st

e pH −  for the pure 
dephasing γp and con

e lH −  for the radiative decay Γ, cf. Section 
3.4 for an exemplarily derivation of the pure dephasing 
Lindblad. The dynamics of the system reads:

	 22 22 122Im[ ( ) ]tρ Γρ Ω ρ= − +� � (28)
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where we use for the excitation pulse 
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 with the amplitude ΩL and 
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Δ = ω21–ωL. The Heitler regime is given in the low excita-
tion limit, when no Rabi oscillations will be induced and 
the coherence ρ12 is driven weakly and is mainly governed 
by the detuning and dephasing dynamics γ = Γ/2 + γp. 
Therefore, we yield after assuming quasisteady dynamics 

2 2
12 12 22( 0) ( )(2 1)( ) /( )t iρ ρ Ω ρ ∆ γ ∆ γ≈ ≈ − − +�  and the exci-

tation density reads: 2 ρ22 ≈ [1 +(Δ2 + γ2)Γ/(4γΩ2)]−1. Because 
the detection is proportional to the coherence time of the 
electronic signal, the phase shift of the transition dynam-
ics is given in the adiabatic limit. To describe the Wigner 
time delay in the presence of decoherence, we are not 
interested in the amplitude but in the phase, which is pro-
portional to φ(ω) = atan[Δ/γ] + π/2 of the field amplitude 
Δ–iγ. The derivative of the phase with respect to the fre-
quency allows us to find the Wigner delay in the steady-
state limit:

	
2

1
/W

d
d

φ
τ

ω γ ∆ γ
= =

+
� (30)

which for Δ = 0, γp = 0 yields the maximum of the Wigner 
delay, namely max

12 / 2 .W Tτ Γ= =  However, if we compare the 
Markovian theory (green and blue lines) with experimental 
data (black dots) in Figure 2, a Lindblad-based pure dephas-
ing mechanism reproduces either the small or comparably 
large detuning limit but misses the asymmetry between 
positive and negative detunings. Importantly, it is not valid 
in both limits for the same phenomenological γp value, 
whereas the radiative decay Γ and the pulse Ω(t) are fixed. 
In contrast to the phenomenological decoherence model, 

the non-Markovian model, cf. Figure 2 (red line) based on 
the semiconductor Bloch equation approach reproduces the 
experimental data for both limits and also exhibits the slight 
asymmetry between positive and negative detunings with 
respect to the laser frequency [44]. We will now discuss how 
to obtain the non-Markovian system response.

In the weak coupling limit, the experimental data 
are modeled by semiconductor Bloch equations in the 

Heisenberg picture 
d [ , ]
dt

sc la
e l e pi A H H A− −− = +�  from Eq.  (2) 

and (6) with corresponding nonequilibrium phonon 
contributions [28, 61, 79, 91] and A a quantum mechanical 
operator such as σ22. In this context, it is important to note 
that lattice vibrations in semiconductor nanostructures 
give rise to new effects not encountered in typical atomic 
quantum optics [125, 126]. These features stem from the 
non-, that is, sub- or super-Ohmian spectral density of 
the semiconductor electron–phonon interaction [7, 57, 
84, 93]. Corresponding Lindblad-based master equation 
treatments are derived via Markovian-, Born-, and secular 
approximation and neglect frequency-dependent system–
bath interaction strengths. Furthermore, master equation 
approaches fail in this case because of the time-dependent 
pulse, which enforces a time-reordering procedure [127]. 
Here, we model the dynamics via a Born factorization 
approach, which is valid up to a temperature of 60 K and 
in the weak driving limit, cf. Ref. [108], relevant for the 
description of the data presented in Figure 2.

When solving the semiconductor Bloch equation in 
the Heisenberg picture, the one-electron assumption is 
considered 〈σ11〉 = 1–〈σ22〉. The phonon dynamics is treated 
non-Markovianly in the bath assumption limit, that is, 
second-order Born factorization and the derived set of 
equations of motion reads (including a Markovian radia-
tive decay constant Γ) with 〈A(t)〉 = Tr[ρ(0)A(t)]:
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Figure 2: Time delay as a function of spectral detuning between the 
laser and the TLS.
The red line and black dots correspond, respectively, to the non-
Markovian simulations and the experiment as discussed in the 
main text. Green and blue lines show the simulation obtained 
via the Markovian approximation. Inset: Integrated intensity of 
the scattered pulses as a function of detuning. © 2019 American 
Physical Society, reprinted from [44].
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	 12 22
d .
d qb i b ig

t
ω σ

∗
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The phonon occupation number is given by the Bose–
Einstein distribution:

	
† 1=[exp( /( )) 1] .q Bb b k Tω −〈 〉 −q q � � (37)

Before discussing the Heitler regime, we show the 
validity of the second-order truncation in the weak cou-
pling limit. In Figure 3, we compare the solution of the 
independent boson model from Eq. (25) (green) with the 
perturbative solution in second order (orange) for differ-
ent temperatures (from top to bottom, 4, 50, 77, 100  K). 
Assuming an initial delta pulse Ω(t) = δ(t)/2, the dynam-
ics of the set of equations [Eq. (31–36)] reduces to three 
equations [Eq. (32–34)] and can also be solved analytically 
[24, 93]. The resulting dynamics agrees well with the ana-
lytically exact solution up to 60 K. If the cluster expansion 
solution is expanded up to the fourth order, the agreement 
is even better and holds up to 150 K [108].

Having shown the validity of the perturbative 
approach, we can discuss the role of phonons in the 
Heitler regime. In the calculations, the radiative decay 
time Γ = 650 ps−1 is taken from the experiment, and we 
choose a phonon coupling strength so that we reproduce 
the maximum of the Wigner delay on resonance at Δ = 0 
for the experimentally given pulse width of τ = 1.05 ns. 
Via the detuning dependence, the Wigner delay probes 
the amount of phonon-induced incoherence in the signal 

and is a good figure of merit to unravel and to monitor 
the electron–phonon interaction [50, 107]. Clearly, the 
non-Markovian theory interpolates between both limits 
(large and small detuning), cf. Figure 2 (red, solid line), 
and reproduces also the small temperature-dependent 
asymmetry because of the preference of the system to emit 
rather than to absorb phonons at low temperatures. This 
can be explained with Eq. (33) and (34), as in the low tem-
perature limit mainly †

12b σ〈 〉q  contributes because of spon-
taneous phonon emission rather than induced absorption 
and stimulated emission. Because the phonon frequency 
enters with a different sign into the dynamics of both of 
the phonon-assisted coherences, the pure dephasing is 
blue-detuned effectively larger, which leads subsequently 
to an efficiently larger Wigner delay.

Applying this theory is therefore a key to describe 
an exciting optical effect known up until now only from 
atomic physics. Together with experimental data on the 
Wigner time delay of a single two-level emitter repre-
sented by a high-quality QD, it provides important access 
to the underlying decoherence processes and associated 
timescales, which will be of importance to tailor such 
quantum emitters for applications in quantum techno-
logy, which requires a high degree of coherence in the 
generation, transfer, and interfacing of single photons in 
solid-state quantum devices.

3.3  �Phonon-assisted damping of Rabi 
oscillations and state preparation 
(cluster expansion)

As have been discussed in the previous section, in the weak 
coupling regime for the electron–phonon coupling, quan-
tified here via 12 ,gq  a factorization approach already mirrors 
qualitatively and quantitatively the system’s dynamics 
very accurately. A typical factorization approach for time-
dependent and time-independent pulses is the Born fac-
torization, typically within the Heisenberg picture of the 
operator of interest A, for example, † †Ab b A b b〈 〉 ≈ 〈 〉〈 〉q q q q  
[37, 38]. To go beyond the Born limit, a systematic correla-
tion expansion approach can be applied [60, 61, 79, 91, 128]. 
Here, the factorization is accompanied with a correction, 
and the dynamics of this correction is taken into account 
up to arbitrary high orders: † † †Ab b A b b Ab bδ〈 〉 = 〈 〉〈 〉 + 〈 〉q q q q q q  
[79, 129]. For the weak coupling limit and nonentan-
gled system reservoir dynamics, this cluster expansion 
approach gives reliable quantitative agreement for weakly 
correlated many-body systems [79]. Already on a second-
order level, the quantum kinetic dephasing dynamics 
of optically induced nonlinearities in GaAs QDs can be 

Figure 3: Comparison for different temperatures (from top to 
bottom 4, 50, 77, 100 K) between the independent boson solution 
from Eq. (25) (green) and the second-order cluster expansion 
solution from Eq. (32) with Ω(t) = δ(t)/2 (orange).
For low temperatures and typical semiconductor parameter as given 
in the text, the solutions agree well up to around 60 K.
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calculated accurately and in agreement with experiments 
for so far experimentally accessible pulse strengths.

Evaluating the set of equations of motion [Eq. (31–
36)] beyond the Heitler regime, Rabi oscillations occur, 
cf. Figure 4. Here, acoustical phonons renormalize the 
Rabi energy and result in damping that depends strongly 
on the input pulse strength, which is not included in a 
Markovian treatment [23, 130–133]. This can be seen by 
comparing the dynamics induced by a Markovian, time-
independent dephasing (green line) with the non-Mark-
ovian, phonon-induced dephasing (orange line) in the 
excited state density, cf. Figure 4. The Markovian dephas-
ing dynamics overestimates the influence of the phonon 
strongly and acts continuously with the same damping 
strength. In contrast, acoustical phonons attack initially 
the coherences strongly but saturate after few ps, which 
leads to an almost constant Rabi oscillation amplitude. 
This shows that Markovian and non-Markovian treat-
ment of decoherence processes lead to qualitative dif-
ferent behavior and are difficult to compare on the same 
footing. Note also that the results can be obtained in a 
rate equation approach using corresponding dressed 
states [134].

Another example is all-optical state preparation [27]. 
The cluster expansion techniques allows one to investi-
gate the impact of different geometries of the QD in state-
preparation protocols. For example, the electron–phonon 
coupling of a spherical QD and a more realistic lens-
shaped QD can explicitly be compared [96]. Interestingly, 

the numerical analysis shows that the QD (electronic) 
dynamics is hardly influenced on the actual nanostruc-
ture geometry, cf. Figure 5D, and depends mainly on the 
smallest dimension, which governs the electron–phonon 
interaction. For instance, comparing the state prepara-
tion dynamics for different geometries (lens-shaped QD A, 
spherical B,C with different radii) of the QD’s excited state, 
the qualitative dependence on the pulse area is the same. In 
this regard, it is noteworthy that the strongly lens-shaped 
QD A has nearly exact the same pulse area dependence 
as the spherical QD C despite different spectral densities 
for the electron–phonon interaction strength. This result 
allows one to map the electronic dynamics of lens-shaped 
QDs with spectral densities derived via a spherical geom-
etry when studying the phonon influence on the elec-
tronic system. In contrast to the electronic kinetics that 
are mainly governed by the exciting laser field, the actual 
nanostructure geometry has a very strong impact on the 
spatiotemporal properties of the phonon dynamics, cf. 
Figure 5A and C. An example is given, where for a lens-
shaped QD, the phonon emission is strongly concentrated 
along the direction of the smallest axis of the QD, which 
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lens-shaped QD (A) and two spherical shaped QDs (B, C). Despite 
different geometries QD, A and C show quantitative and qualitative 
the same dependence on the pulse area. (A) and (C) The relative 
volume change after an excitation with a 2π pulse for (A) a lens-
shaped and (C) a spherical shaped QD. The outgoing phonon waves 
differ strongly in directionality. Reprinted figure with permission 
from [96]. © 2017 by the American Physical Society.



666      A. Carmele and S. Reitzenstein: Non-Markovian features in semiconductor quantum optics

is important for a phonon-mediated coupling of different 
QD [135, 136]. Therefore, the QD shape plays an important 
role in determining the properties of the created phonons 
and possible application for phonon lasing and sensing 
with solid-state nanostructures [137–139]. Also, it has 
been shown that adding a high chirp rate to ultrashort 
laser pulses, the QD can be decoupled from the phononic 
environment and thus a reappearance of rapid adiabatic 
passage can be established [46].

3.4  �Phonon-assisted incoherent excitation 
processes (Polaron master equation)

The Heisenberg equation of motion method is in general 
valid in the weak coupling limit. This is not the case for 
the strong coupling and high temperature limit, where 
most perturbative approaches fail. However, in case of a 
time-independent pump, the Hamiltonian in Eq. (2) can 
be rewritten in the polaron frame, and a more conveni-
ent non-Lindblad type of master equation can be derived 
[50, 127]. The main goal of the polaron transformation is 
to trace out the degrees of freedom of the phonon reser-
voir in a second-order Born theory but to keep as much 
information as possible about the electron–phonon inter-
action. In second-order perturbation theory, the reduced 
density matrix TrB{p(t)} = ρs(t) in the interaction picture 
and in second-order Born approximation reads:

	
( ) = [ , ( )] Tr {[ , ( ) ]}sc I

s e l s B I s B
i it H t H tρ ρ ρ ρ−− − ⊗�
� � � (38)

	
2 0

1 Tr {[ , [ ( ), ( ) ]]}.
t

B I I s Bd H H tτ τ ρ τ ρ− − − ⊗∫� � (39)

As a first approach, one can choose a stochastic force 
via .st

e pH −  In this case, the interaction Hamiltonian reads 
HI(τ) = ħσ22(τ)F(t + τ) and the trace over the bath degrees 
of freedom is a Gaussian average TrB{… ρB} → 〈〈…〉〉. As 
the electronic operators are not affected by the statistical 
average and c-values commute, we obtain:

	
2

22 22

[ , [ ( ), ( )]]
( / 2) ( )[ , [ ( ), ( )]]

I I s

p s

H H t
t

τ ρ τ

γ δ τ σ σ τ ρ τ

〈〈 − − 〉〉
= − −� � (40)

where we used the white noise correlation for the stochas-
tic force 〈〈F(t1)F(t2)〉〉 = γ

ρ
δ(t1–t2)/2 and 〈〈F(t)〉〉 = 0. In this 

limit, the master equation reads as given in Eq. (27):

	
22 12 21

22 22

d ( ) [ ( ), ( )]
dt

[ ( ) ( )].
s s

p s s

t i t

t t

ρ ∆σ Ω σ σ ρ

γ σ ρ σ ρ

= − + +

+ − � (41)

Such a Markovian limit is valid in many experimen-
tal setups and driving scenarios, as long as the dynam-
ics of the chosen observable evolves on a much smaller 
timescale than the environmental correlation times. For 
example, Figure 6 depicts excitation-dependent reso-
nance fluorescence emission spectra for different excita-
tion, which were obtained in a unique experiment using a 
high-β QD microlaser as cw pump [102].

Acting as excitation the electrically driven high-β 
microlaser drives with its output field, a semiconductor 
QD. This QD acts as a two-level system within an advanced 
fiber-coupled experimental setup based on two cryostats, 
which host the QD microlaser and single QD sample, 
respectively. The experimental data on the resonantly 
driven QD are obtained at cyrogenic temperatures of 7 K 
to minimize electron and hole escape from the QDs and 
phonon-induced decoherence γ

ρ
. However, the emerging 

Mollow spectra for increasing excitation powers show 
driving-induced pure dephasing, which we model quan-
titatively by our model Eq. (41). Indeed, the Markovian 

Figure 6: Excitation-dependent resonance fluorescence emission 
spectra and photon autocorrelation function under cw excitation by 
a state-of-the-art high-β QD microlaser.
Increasing excitation power leads toward a Mollow-triplet like 
emission spectrum. Reprinted figure from [102].
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theory (solid lines) reproduces well the experimental data 
for optimum T2 values around 500 ps. The Mollow spec-
trum, derived from the power spectrum formula S(ω), 
reads:
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where the following abbreviations are used: ΓR = 2Γ, 
ΓP = Γ + γ

ρ
, and Γ± = (ΓR ± ΓP)/2, 2 24RΩ Ω Γ−= −  and the 

oscillator strength functions are introduced:
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Although a Markovian model may apply to special 
situations, more insight into the decoherence processes is 
feasible to overcome temperature and single-photon rep-
etition rate limitations. As shown above, Markovian, that 
is, global, frequency-, and time-independent dephasing 
dynamics do not always model the dynamics correctly, 
and it is necessary to go beyond the Born–Markovian and 
secular limit of the master equation.

To include as much information as possible in sec-
ond-order perturbation theory, we transform the Hamil-
tonian for a time-independent Rabi frequency Ω(t) = Ω0 
in Eq. (2) into the polaron frame [51, 97, 103, 104]. We use 
the electron–phonon interaction Hamiltonian and apply a 
unitary transform, that is, diagonalization of the phonon 
part of the Hamiltonian, via Up = exp[σ22(R†–R)] and 

12 / .qR g b ω= ∑ q
qq

 The Hamiltonian in the polaron frame 
can be calculated via 

0
exp[ ] exp[ ] [ , ] / !nn

x y x x y n∞

=
− = ∑  and 

[x, y]0 = y, [x, y]n = [x, [x, y]n-1]:
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The transformed Hamiltonian is split into an interac-
tion Hamiltonian:

	
†

12 21/ ( )( cosh[ ] )IH R Rσ σ Ω Ω= + − −� �

	
†

21 12( )sinh[ ],R RΩ σ σ+ − − � (49)

with †exp[ ] exp[ (0) / 2]R RΩ Ω Ω φ= 〈 − 〉 = −  where φ(t) 
denotes the phonon correlation of the diagonalized 
electron–phonon interaction:
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The corresponding Hamiltonian of the free evolution 
reads:

	

†
0 22 12 21/ ( ) ,qH b b∆σ Ω σ σ ω= + + + ∑ q q

q
� � (51)

with 
2

12
21

| |
.L

q

g
∆ ω ω

ω
= − −∑

q

q
 Additionally the Franck–

Condon renormalization 12 12( )Ω σ σ+  is introduced to 
the free evolution and subtracted from the interac-
tion Hamiltonian to ensure in second-order perturba-
tion theory in HI(t) a vanishing first-order contribution: 
Tr{[ ( ), ( ) ]} 0,I

I s BH t tρ ρ⊗ =  and the resulting non-Markovian 
master equation reads:

	
22
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with †
12 21X Xσ σ+ += + =  and †

21 12( )X i Xσ σ− −= − =  to allow 
for a compact formulation of the master equation. 
The corresponding phonon Green’s functions read 
G+(t) = cosh[φ(t)]–1 and G–(t) = sinh[φ(t)]. Interestingly, 
this trace-preserving master equation (after setting  
ρ(t–τ) = ρ(t)) simulates the complex decoherence dynam-
ics in more detail for time-independent system dynamics 
and poses a feasible alternative to time-convolutionless 
techniques [37, 140]. In the limit of a vanishing coupling 
element, one recovers the system dynamics without 
any contributions from the environment, as G±(t) ≡ 0 
and φ(t) = 0, it follows ΩR = Ω. The time dynamics of 
Xi(τ) is given via the electronic part of H0. The general 
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solution for a detuned, driven two-level system reads with 
2 24η Ω ∆= + :
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where 0 (0)i iX X=  are the initial values and Xz = σ22–σ11 is 
given for completeness. Another interesting limiting case 
assumes Xi(τ) ≈ Xi(0), that is, the system’s dynamics is too 
slow and the environmental time correlation dominates 
the dissipative part of the master equation. As 2 2

iX X+ = =1  
and 0( ) ,i iX t X≈  we can write
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i
G t X t Xτ ρ ρ

=+ −

≈ −∑

	 12 21 21 12Re[ ( ) ( )][2 ( ) 2 ( ) 2 ( )]s s sG G t t tτ τ σ ρ σ σ ρ σ ρ+ −= − + + −

	 12 12 21 21Re[ ( ) ( )] 2 ( ) 2 ( ) ,s sG G t tτ τ σ ρ σ σ ρ σ− +
 − − +  � (56)

which leads to the following master equation:
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with the time-dependent damping and dephasing 
coefficients:
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In Figure 7, we plot the solutions obtained from the 
polaron master equation in Eq. (57) in the weak driving 
limit Ω = 50 μeV and the solution of the cluster expansion 
of second order from the set of equations in Eq. (31–36) 
for standard GaAs material parameter and T = 77  K. In 
the secular approximation Γ−(t) = 0 and without the Rabi 
energy renormalization Ω Ω=  in H0 (left), the solutions 
agree well. Deviations with nonsecular terms and the 
renormalized Rabi energy become apparent even in the 
weak coupling, weak driving limit. However, the solu-
tion has been obtained in the very weak and resonant 
driving scenario. The advantage of the polaron master 
equation is the possibility to take into account dressed 
state dynamics in the case, when the time dependence of 
Xi(τ) becomes nonnegligible, however only up to driving 
strengths below the cut-off frequency as the polaron 
master equation does not allow to simulate dynamical 
decoupling scenarios.

An exemplary result is plotted in Figure 8. The experi-
mental data points are obtained from self-assembled 
In(Ga,As)/GaAs QDs grown by metal–organic vapor-phase 
epitaxy. The corresponding sample includes a single layer 
of QDs centered in a 1-λ-thick planar GaAs cavity sur-
rounded by alternating λ/4 periods of AlAs/GaAs as 4 top 
and 20 bottom distributed Bragg reflectors to enhance the 
photon extraction efficiency. A narrow band (500  kHz) 
tunable Ti:sapphire cw laser served as an excitation source, 
and the integrated intensity of an incoherently driven 
QD is compared with theory [50]. This detailed study of a 
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Figure 7: Comparison between the polaron master equation and cluster expansion solution in the second-order and weak driving limit 
(ħΩ = 50 μeV).
The solutions agree well without nonsecular terms and Rabi energy renormalization (left) for temperatures up to T = 77 K.
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phonon-assisted incoherent excitation mechanism of single 
QDs allows one to explore the underlying acoustic phonon 
bath dynamics and shows very good agreement with the 
polaron master equation theory. Please note that the experi-
mental data points (black spheres) are only well produced, 
if the full phonon-induced quantum kinetics is taken into 
account such as in a polaron master equation model (red) 
with a constant external driving field and emerging addi-
tional incoherent excitation channels. Therefore, the QD 
coupling to the phonon reservoir does not only introduce 
pure dephasing and an enhancement of radiative decay pro-
cesses, but also accounts for new and in Markovian models 
not included incoherent excitation/scattering channels if 
spectral detuning becomes important. The applied phonon-
assisted incoherent excitation provides a unique excitation 
mechanism of a semiconductor QD and can be used as an 
effective new tool to map the characteristic features of the 
phonon bath present in such a solid-state quantum emitter 
system. Additional, it serves as an interesting quasiresonant 
excitation scheme for the triggered generation of single 
photons with high indistinguishability [26].

3.5  �Phonon anticrossings in the Mollow 
regime (inductive equations of motion)

In addition to the perturbative models above, we address 
now numerically exact solutions. We start with the 
Heisenberg equation of motion approach, which can 
be used to calculate nonequilibrium phonon dynamics 
up to arbitrary order if an inductive equation of motion 
method is used. For example, for longitudinal optical 
(LO) phonons, the dispersion is constant in the Einstein 
approximation: ω(q) ≡ ωLO [24, 106, 141]. This allows for an 

exact treatment of the electron–LO phonon interaction 
[28, 105, 106, 141]. Because of the constant dispersion, 
we may write the Hamiltonian in Eq. (7) in the interaction 
picture as † †

12( ) [ ( ) ( )] .LO LOi t i tlo
e pH t f b t b t Be B eω ω−

− = + = +∑ q
q qq

 
This leads to the commutation relation [B(t), B†(t)] = | f | 2 
with 2 2

12| | | | ,f f= ∑ q
q

 which corresponds to the renormal-
ized harmonic oscillator picture. This collective operator 
leads to a numerically exact solvable set of equations. 
Using the Heisenberg equation of motion for a nonexplicit 

time-dependent operator: 
d [ , ]
dt

sc lo
e l e pi A H H A− −− = +�  from 

Eqs. (2) and (7), a set of differential equations, defining 
〈An,m〉 = 〈AB†nBm〉, can be derived. As an example, we give 
the full set of equations of motion for a driven QD with LO 
phonon interaction:
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Figure 8: Integrated QD intensity derived from a frequency scan (black dots, experiment) and theory with (red) and without (blue) phonon-
included processes on the basis of the polaron master equation for different temperatures (A) and (B).
Reprinted figure with permission from [50]. © 2012 by the American Physical Society.
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This set of equation is complete and allows one 
to solve the dynamics of the coupled phonon-emitter 
system and calculate the associated emission spectra, cf. 
Figure 9. Note that with given initial conditions and for 
a fixed time interval, hierarchies only up to a certain N 
in the phonon interaction contribute. This maximum N 
is tested until convergence is reached, depending on the 
time interval and coupling strength of the system. This 
inductive equation of motion method has been applied, 
for example, to calculate the luminescence spectrum of a 
strongly driven QD with LO phonon satellite peaks [107]. 
Because of the present electron–LO phonon interaction, 
the typical Mollow triplet is changed and additional side 
peaks appear at the frequency of the LO phonon satel-
lite peaks 36  meV. In Figure 9, an emission scheme is 
depicted showing that besides the strong drive-induced 
Mollow sideband, also LO phonon emission and absorp-
tion occurs and introduces Raman-like features into the 
spectrum under coherent excitation. Another impor-
tant aspect is the fact that the phonon emission and 
absorption is strongly temperature-dependent. Here, 
the temperature is included in the initial conditions 
for the expectation values: 〈B†n(0)Bm(0)〉 = δnmn![exp(βħ
ωLO)–1]−1 and 1/β = kBT. For low temperatures, because of 
the LO phonon frequency in the range of for example, 
ħωLO = 36  meV, spontaneous emission dominates, 
leading to strong Stokes contributions. Given the set of 
equations of motions, the dynamics of the coupled laser-
QD system can be calculated and because of the included 
Markovian radiative decay constant Γ, a steady state is 
inevitably reached. Via a two-time correlation function, 
using the quantum regression theorem [35, 36, 38], the 
power spectrum S(ω) is obtained. In Figure 9, the power 
spectrum of a QD under cw excitation Ω(t) = const is 

plotted for different Rabi energies Ω. Clearly, for low-
excitation amplitudes, the Mollow triplet can be identi-
fied and an additional LO phonon satellite peak triplet 
becomes visible, where both scale linearly with the Rabi 
energy. Interestingly, if the excitation strength becomes 
comparable with the LO phonon energy, anticrossings 
occur and both, the electronic and phononic triplet inter-
fere, forming a new Eigenstate [107]. This has the inter-
esting practical consequence that the splitting allows 
one to obtain independently and spectrally resolved 
the electron–phonon interaction strength without 
relying on the delicate measurement of the relative peak 
heights [43, 142, 143] to estimate the Huang–Rhys factor 

2 2
12| | / .HR LOF f ω= ∑ q

q

3.6  �Phonon-assisted population inversion 
(real-time path integral)

Because of the intrinsic non-Markovian nature of the elec-
tron–phonon dynamics, perturbation approaches such as 
reviewed above break down either in the high tempera-
ture or strong coupling limit. With exception of phonon 
modes with constant dispersion, in which the Heisenberg 
inductive equations of motion are numerically exact, 
only the real-time path integral method is capable to treat 
the coupling of QDs to a continuum of acoustic phonons 
exactly for time-dependent excitation scenarios. This 
method relies on slicing the time evolution into discrete 
steps and is similar to recently widely used time-evolving 
block decimation or matrix-product state methods [111, 
112, 114, 115, 144]. These models take into account not only 
the non-Markovian features of the system dynamics but 
also the growing degree of entanglement between system 

Figure 9: Scheme and power spectrum of a two-level system (e.g. QD) interacting coherently with strong external laser field.
The emission consists of triplets centered at the driving laser frequency (Mollow triplet) and at the Raman frequencies (only Stokes 
contribution shown). For driving strength of the order of the LO phonon energy, additional anticrossings occur. © 2011 American Physical 
Society, reprinted from [107].
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and reservoir states because of excitation exchange and 
information backflow.

The real-time path integral method is derived from 
the Caldeira–Leggett model [110] and has been reviewed 
widely within the well-known spin-boson problem [33, 115, 
145]. The application to the QD–phonon kinetics has been 
successfully applied to exciton [33] and biexciton systems 
[47]. Interestingly, the real-time path integral method 
has also successfully used to describe phonon-induced 
dephasing in a coherently coupled QD microcavity systems 
in the regime of cavity quantum electrodynamics (cQED) 
with efficient numerical protocols [116, 117].

Starting point is the general solution of the Liouville–
von Neumann equation:
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In contrast to Section 3.1, we take light–matter inter-
action into account: ( ) = ( ) .sc LA

e l e pH t H t H− −+  Choosing a final 
QD state, we are interested in | |N Ni i〉〈 ′  at time t = NΔt, and 
summing overall possible initial system and phonon and 
final phonon states in the coherent state representation, 
we yield:

	

2 22
0 0

0 0| ( ) | , | ( , 0)| , s N
N N N N

d z d zd z
i t i z i U t z iρ

π π π

′
〈 〉 = 〈 〉′ ∫∫∫ �(64)

	
†

0 0 0 0 0 0, | (0)| , , | ( , 0)| , N Nz i z i z i U t z iρ〈 〉〈 〉′ ′ ′ ′ ′ � (65)

We proceed as before when we derived the independ-
ent boson model in Eq. (25) and trace out the system 
degrees of freedom first. We use a stroboscopic evolution 
in time slices Δt, applying the Suzuki–Trotter decom-
position and trivially fulfilling the time-order in doing 
so. Then, we insert between the time slices (N-1)-times 
the system identity 

1,2
| |

n
n ni

i i
=

= 〉〈∑1  and yield following 
matrix elements:

	

1 1

1

| exp[ ( )]| | exp[ ( )]|
exp[ ( , )],

sc
n n n e l n

LA
e p n

i iH n i i iH n i
iH n i

− − −

− −

〈 − 〉 = 〈 − 〉
− � (66)

where we assumed Δt to be small that the electron–
phonon and light–matter Hamiltonian commute to first 
order, and we exploit the fact that electron–phonon inter-
action is diagonal in the system states. The light–matter 
interaction reads explicitly (for resonant excitation):
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reducing the system dynamics to c-values per time slice 

and 
( 1)

= ( ) .
n t

n n t
f t dt

∆

∆
Ω

−∫  Now, the electron–phonon inter-
action is reduced to a Gaussian problem and the Fey-
nman–Vernon influence functional can be derived. It 
is convenient to use the coherent state representation, 
inserting (N-1)-times the phonon subspace identity, the 
evolution reads:
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with S as the phonon action and formally as a path inte-
gral with corresponding trajectories for Gaussian degrees 
of freedom. Taking the extremum, solving for the classical 
equation of motion for the phonon degrees of freedom, 
and tracing out the phonon reservoir, one yields the 
reduced density matrix evolution:
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1 1
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where the impact of the phonon reservoir is included via:

	 1 2 1 2 1 21 1
= ( )[ ( ) ( ) ]

n t m t

nm n n m mn t m t
S dt dt i i t t i t t i

∆ ∆

∆ ∆
φ φ∗

− −
− − − −′ ′∫ ∫ � (70)

for k ≠ m as an example with the phonon correlation φ(t) 
given in Eq. (50). Note, the solution assumes a real phonon 
coupling element and a two-level system in which the 
phonons couple to the excited state only. We recover the 
solution of the independent boson model when Ω(t) ≡ 0 
and 0 0,i i≠ ′  

	 =1 =1
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−
〈 〉 = 〈 〉∏∏ � (71)

leading numerically to solution given in Section 3.1 in 
Eq. (25).

In principle, the problem is solved with Eq. (69). 
However, the evaluation is numerically still expensive and 
can be reduced strongly by taking into account an “on fly” 
screening [33, 146, 147] because of the fact that for longi-
tudinal acoustic phonon coupling (or other superohmic 
environments), the memory falls off rapidly. Further-
more, boundary conditions need to be imposed to recover 
known exact solutions [33, 146, 147]. This exact method 
can also be used to benchmark perturbative approaches. 
In Figure 10 and in Ref. [108], the cluster expansion solu-
tion of the second-order (orange line) is compared with 
the numerically exact solution from the real-time path 
integral method (green line). As a figure of merit, the real 
part of the microscopic coherence is calculated for a QD 



672      A. Carmele and S. Reitzenstein: Non-Markovian features in semiconductor quantum optics

exposed to a weak cw driving. Due to the electron-phonon 
interaction, the Eigenstate of the system change and a 
real part of the coherence emerges in dependence on the 
driving and the electron-phonon coupling strength. This 
real part saturates fast and captures intrinsical phonon-
induced effects. 

Clearly, for weak coupling 12( ),gq  that is, the standard 
semiconductor GaAs parameters, i.e. a < 2, the path inte-
gral solution, and the cluster expansion are in agreement 
for low temperatures, e.g. T = 4 K. For a stronger coupling, 
e.g. 4,α ≥  the deviation is visible and a clear breakdown of 

the cluster expansion solution is recognizable, and unre-
alistical oscillations may occur (not shown).

Full demonstration of the reliability of the path inte-
gral method has been achieved in population inversion 
protocols where the laser pulses are tuned within the 
neutral exciton phonon sideband [25]. This unconven-
tional method achieves the inversion by rapid thermaliza-
tion of the optically dressed states for which incoherent 
phonon-assisted relaxation processes are necessary. In 
Figure 11, the exciton population TrB[〈2 | ρ(t) | 2〉] is plotted 
(experiment b; theory c). The experimental data have been 
obtained from a layer of InGaAs/GaAs QDs embedded in 
the intrinsic region of an n-i-Schottky diode structure at 
42  K, where the measured photocurrent is the quantity 
of interest to measure the final occupation of the exciton 
state. We observe a very good overall agreement between 
experiment and theory, and all qualitative features are 
reproduced and confirmed by microscopic input para-
meters. The population inversion arises due to the incoher-
ent phonon-induced relaxation between optically dressed 
states, and the occurring phonon scattering becomes an 
enabling factor in the high driving limit. 

4  �Nonequilibrium phonon dynamics 
in quantized light–matter 
interaction

Quantum optical experiments based on solid-state 
quantum emitter platforms have made significant 
advances over the past decade. Manifestly atomlike 
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Figure 10: Comparison of the real time path-integral solution with 
the cluster expansion time-trace for cw excitation.
Clearly, for weak coupling (α < 2), the cluster expansion solution 
of second-order (orange) captures the correct steady-state of the 
real part of the microscopic coherence P < σ12. However, for stronger 
coupling and elevated temperatures deviations arise, and only the 
path-integral solution (green) predicts the correct experimental 
values. 

Figure 11: Experimentally obtained (left, B) exciton population versus the pulse area and laser detuning. The path integral solution is given 
in (C, right) and in very good agreement with the measured signal. The inset (C) shows the calculated values without electron–phonon 
interaction. Reprinted figure with permission from [25]. © 2015 by the American Physical Society.
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properties have been demonstrated for semiconduc-
tor QDs, and further progress is expected from coupling 
those semiconductor nanostructures to microcavities as 
development of in situ lithography techniques advances 
rapidly [148, 149]. Related progress in the fabrication of 
QD microcavities paves the way to use the Purcell effect 
in the optical regime to build efficient and deterministic 
sources of single photons with tunable photon statistics 
[150, 151]. Exploiting such phenomena, QDs coupled to a 
cavity mode become even more atomlike [6, 100, 152–155]. 
Many well-known features of AOM physics have already 
been demonstrated on solid state–based platform such 
as Rabi splitting [6] or spectral Jaynes–Cummings ladder 
signatures [153, 156, 157]. In contrast to atoms, solid-state 
environments are also tailorable and provide the possi-
bility to position nanostructures on demand such as QDs 
permanently in a high-Q microcavity [20], cf. Figure  12. 
Independent on natural given atomic features, the size 
and geometry of the QD are controlled properties, for 
example, the coupling strength and the confinement 
energies [58]. Those systems are scalable and perform as 
material platforms for future technological applications, 
including single-photon emitters [1, 158–160]. However, 
compared with atomic systems, quantum emission fea-
tures in semiconductor nanostructures are ultimately 
accompanied with decoherence and scattering in the 

semiconductor environment [161, 162], as also we have 
reviewed in Section 3(A–F).

In this section, we selectively review phonon-induced 
phenomena in cQED based on QDs as active medium and 
where the quantized nature of the light field enters in the 
description of the dynamics. The following examples are 
ordered from the single- via the two- to the many-photon 
regime. First (Section 4.1), we extend the theoretical 
toolbox by introducing the time-convolutionless method 
to model the Jaynes–Cummings physics in the single-
excitation limit via cav

e lH −  in Eq. (3) and show that acoustic 
phonons introduce dephasing but also a Rabi frequency 
renormalization via LA

e pH −  [117, 163]. In this single-photon 
regime, two aspects of the semiconductor environment 
in QD-based cQED are given, for example, disadvanta-
geous impact of phonons on the goal to reach the strong 
coupling regime [163]. Furthermore, and also in the sin-
gle-photon limit, phonon-mediated cavity feeding is dis-
cussed, an interesting effect that strongly deviates from 
the idealized “artificial atom” model typically applied 
[80, 164–166].

In the two-photon limit (Section 4.2), we discuss the 
emission of photon pairs into free space, based on .con

e lH −  In 
this quantum optically nonlinear regime, we discuss the 
effect of colored noise in st

e pH −  on the visibility of subse-
quently emitted photons in a Hong-Ou-Mandel setup. This 
colored noise can be interpreted as semiclassically treated 
phonon influence as in Section 3.1 when the susceptibil-
ity has been derived. We demonstrated that changing the 
pulse separation in a two-pulse sequence allows one to 
monitor environmental correlations and unravels the 
intrinsic memory kernel [167]. Overall, the semiconductor 
environment is inevitably involved in excitation processes 
and renders coherent excitation processes partially inco-
herent, which are nevertheless crucial for a quantitative 
understanding of experimental results. However, as men-
tioned already above, the same environment, which has 
detrimental effects on the coherence, may also in certain 
scenarios become advantageous and supports quantum 
optical properties.

As an example of phonon-assisted coherence 
increase, we discuss in Section 4.3 the collapse and 
revival phenomenon known from AMO physics based 
on the Jaynes–Cummings model Hamiltonian .cav

e lH −  Here, 
we use the inductive equations of motion approach from 
Section 3.5 to model a QD strongly coupled to microcavity 
mode, which is initialized in a coherent state. This coher-
ent state leads to the collapse and revival phenomenon 
[36, 168, 169]. Typically, for low photon numbers, the 
collapse and revival patterns vanish fast into an irregu-
lar oscillatory behavior, but a QD coupled to an acoustic 

Figure 12: Scanning electron micrograph of a pillar with a diameter 
of about 0.8 mm.
A combination of electron beam lithography and reactive dry etching 
allows one to obtain micropillars with close to vertical and defect-
free sidewalls. Figure reprinted from [6].
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phonon reservoir exhibits a stabilization via LA
e pH −  and the 

collapse and revival phenomenon survives much longer in 
the presence of phonon-mediated coherence support [29]. 
Therefore, we show before concluding this review that 
phonon nonequilibrium dynamics may even be supported 
and enhanced quantum coherences.

4.1  �Phonon-induced decoherence 
in QD-cQED

There is a wide range of examples how scattering processes 
limit the performance of semiconductor nanostructures [7, 
11, 12, 154]. To take into account the underlying non-Mark-
ovian physics of the phonon environment, simulations 
must rely either on higher-order perturbative Markovian 
approaches, time-convolutionless techniques, highly 
numerically expensive nonequilibrium Green’s function 
models, or exact diagonalization. Here, the influence of the 
non-Markovian is calculated using a time-convolutionless 
approach [37, 140]. Given the dynamics of the reduced 
density matrix in second order of the electron–phonon 
interaction Eq. (39), the system density matrix is approxi-
mated in a timelocal form by setting ρ(t–τ) ≈ p(t). Using the 
full Hamiltonian H including the cavity–QD interaction 

,cav
e lH −  the dynamics in the single excitation limit yield the 

following set of equations of motion, if the photon-assisted 
ground state is abbreviated with †

11 11: :QDc cσ σ=
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where a Markovian radiative decay and a cavity loss is 
assumed [ ]cκ ρD  and a detuning between cavity mode 
and the QD is assumed with Δ = ω21–ωc. The influence of 
the acoustic phonons is included in the time-dependent 
coefficients A, B, C, obtained after inserting a unity in the 
time-local master equation:
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with 〈i | σ22(−τ) | j〉 = 〈i | U(τ, 0) | 2〉〈2 | U(−τ, 0) | j〉 the time-
evolution matrix element of the unperturbed system with 
time evolution operator: U(t, 0) = exp[−igt(σ12 + σ21)–iΔt], 
and φI(t) is given in Eq. (26). A(t) includes the polaron shift 
and the dephasing dynamics via the imaginary and the 
real part, respectively. B(t) and C(t) renormalize the inter-
action strength between the cavity mode and the QD via 
the independent boson phonon correlation function. This 
is an important feature of non-Markovian open quantum 
system dynamics, as a system–reservoir coupling intro-
duces an increase of entanglement and thermalization at 
the same time, leading to a loss of information and basi-
cally new “dressed” system states. In the Markovian limit 
φ(t) → γpδ(t), we recover a Lindblad type of interaction, in 
which B(t) and C(t) are vanishing because of 〈i | j〉 = δij and 
A(t) reduces to −γM in which all phonon characteristics are 
gone and a phenomenological pure dephasing constant 
remains.

The formulation with finite time kernel, however, 
allows one to investigate the phonon impact on the strong 
coupling regime of the QD-cQED without overestimat-
ing the dephasing rate, which is the case for a Markovian 
decay. A figure of merit for the strong coupling regime is 
a nonmonotonic decrease of the initial QD occupation 
〈σ22(0)〉 = 1 with 〈σ22(t1)〉 ≥ 〈σ22(t2)〉 for t2 > t1. Figure 13 shows 
the parameter space where strong coupling and weak cou-
pling resides depending on the bare coupling constant g 
and the temperature. The temperature enters in the phonon 
correlation function via φ(t) ≡  φ(t, T). From evaluating 
the dynamics in the single-excitation regime, it becomes 
apparent that the higher the temperature, the stronger 
must be the cavity–QD coupling to yield nonmonotonous 
decay dynamics of the QD excitation [34]. Remarkably, 
the coupling–renormalization has a strong effect (without 
renormalization dashed lines, with renormalization solid 

Figure 13: Parameter space where strong coupling and weak 
coupling resides for QD-based cQED depending on the bare 
coupling constant and the temperature.
Non-Markovian phonon interaction leads to a renormalization and 
affects strongly the transition from weak to strong coupling (solid 
lines with renormalization, dashed lines without). Reprinted figure 
with permission from [163]. © 2010 by the American Physical Society.
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lines). This energy renormalization is also important in 
explaining asymmetries in life times with respect to the 
QD–cavity detuning in cavity feeding scenarious.

A pronounced increase in a nonresonant QD–cavity 
coupling toward elevated temperatures is a strong indi-
cation of phonon-mediated relaxation processes [51, 54, 
164]. The spectral mismatch between the cavity mode and 
the emitter is then bridged by either phonon emission 
if the emitter is blue detuned from the cavity mode, or 
phonon absorption if the emitter field is red detuned. This 
asymmetry is included in the phonon correlation func-
tion φ(t) and not included in the Markovian limit, where 
φ(t) → γMδ(t). As for low temperatures, nq → 0 processes 
accompanied by phonon emission (nq + 1) are favored over 
those obtained by phonon absorption (nq), and spectral 
asymmetries become visible and pronounce in this tem-
perature regime. In Figure 14, the non-Markovian relaxa-
tion dynamics of a detuned QD–cavity QED platform is 
investigated [80] and given in the single excitation as:

	
2 ( )

11 220

d 2 Re ,
dt

ig d e ∆τ φ τσ τ σ
∞ − 〈 〉 ≈ 〈 〉  ∫ � (78)

if instead of the phonon interaction, the cavity–QD inter-
action is taken as a perturbation up to second order in 
the reduced but timelocal density matrix, cf. Eq. (39). 
This transition strength from excited to ground state can 
be understood as a generalization of Fermi’s golden rule 
[37, 51]. A model without phonons (dashed line) cannot 
reproduce the effective lifetimes of the coupled QD–cavity 
system as a function of the detuning Δ (experimental 
data, dots). The non-Markovian simulations (solid) were 
computed with a measured quality factor Q = 2900 and a 
cavity–QD coupling strength ħg = 45 μeV. Also, the asym-
metric dip of the lifetime with respect to the detuning is 
not reproduced without phonon dynamics, showing that 
phonon-mediated feeding cannot be captured with a 
broadened zero-phonon linewidth. For higher excitation 
manifolds, it can furthermore be shown that the cavity 
feeding effect depends nontrivially on the detunings, for 
example, maximal efficiency is obtained for detunings 
corresponding to transition energies between cavity-
dressed states with excitation numbers larger than one 
[116]. Quantum correlations, such as entanglement and 
indistinguishability, however, still decohere because of 
phonon-induced noise, as will be discussed next.

4.2  �Hong-Ou-Mandel effect: photon 
indistinguishability

A good figure of merit to characterize the noise robustness 
of a quantum emitter is the two-photon coherence such as 
in Hong-Ou-Mandel (HOM) type of experiments [170]. If the 
photon–photon correlation function of two photons sub-
sequently emitted from a single emitter [5] is strongly anti-
bunched after interfering in a Hanbury Brown and Twiss 
setup, the quantum emitter is time-translational robust 
and shows therefore no noise. Such quantum optical exper-
iments probe therefore the indistinguishability of emitted 
photons and are the basis for entanglement distribution 
via Bell-state measurements in long-distance quantum 
communication networks [81, 82]. Because the visibility 
on HOM interference experiments is influenced by the 
dephasing of the quantum emitters, they are well suited to 
explore decoherence on the nanoseconds timescale under 
variation of, for instance, the temperature with high sensi-
tivity. In the theoretical description of HOM experiments, 
we extend the single-mode cavity Hamiltonian in Eq. (3) to 
a multimode description con

e lH −  in Eq. (4). Furthermore, we 
model the phonon contribution with a stochastic force F(t) 
via st

e pH −  in Eq. (5) to solve the problem analytically. To probe 
decoherence on a nanoseconds timescale, the QD is excited 
with a two-pulse sequence with variable pulse separation 

Figure 14: Extracted decay times of a QD–cavity system as a function 
of detuning.
Experimental data (dots) are in good agreement with non-Markovian 
phonon theory (solid line) in comparison without phonons (dashed 
lines). Figure (A) shows that neglecting the phonon contributions 
leads only in the small and large detuning limit the experimentally 
correct excitonic lifetimes, whereas including phonons allows to 
correctly mediate between these limits. In (B), there are two sets of 
data. Squares refer to the fast and circles to the slow components of 
the luminescence decay. Reprinted figure with permission from [80]. 
© 2009 by the American Physical Society.



676      A. Carmele and S. Reitzenstein: Non-Markovian features in semiconductor quantum optics

δt. The first pulse creates an excitation via resonant p-shell 
excitation, which radiatively decays under emission of a 
photon from the s-shell of the QD. After a time delay δt in 
which the QD may experience a reconfigured charge envi-
ronment slightly shifting its energy levels, a second pulse 
creates another excited state within the QD and another 
photon is subsequently emitted. The corresponding two-
photon wave function reads:
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We distinguish channels with the labels: ωL for long 
ωS for short, that is, the photons are distinguishable via 
their spatial traveling mode in the detection path until 
they superpose at the HOM beam splitter. Note the differ-
ence in the lower limit of the integrals (0, δt) and in the 
integrated noise signals ( ) ( ),

t
t dt F t

τ τ
Φ = ′ ′∫  and the radia-

tive decay constant is given with Γ = g2π. If the first photon 
now takes a longer way to the 50:50 HOM beam splitter 
with single-photon detectors A and B at its two output 
ports and the second photon travels the shorter route, 
both photons can interfere

	
( ) ( ) ( )2 : ,A S LE E E± ± ±= + �

	
( ) ( ) ( )2 : .B L SE E E± ± ±= − � (80)

In this case, the detected photon–photon correlation 
gives a direct measure for the degree of indistinguish-
ability in terms of the HOM visibility as discussed in the 
following.

The unnormalized HOM two-photon correlation func-
tion reads:
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with the noise contribution ξ(tD, τ, δt) = Ф0(tD + τ) + Ф
δt(tD)–

Ф
δt(tD + τ) – Ф0(tD). The two-photon correlation function 

vanishes in case of indistinguishable photon emission 
events, that is, for vanishing noise ξ ≡ 0 or infinite cor-
related noise: Ф

δt(t) = Ф0(t). This is the expected result, 
which implies that if the emitter is not subjected to a 
varying environment or negligible environment influence 
at all, the emitted photons are indistinguishable as the 
emission event is time-translational invariant. However, 
in the typical experimental setting with finite noise 
contribution, for example, because of charge noise by 
access electron and holes under nonresonant excitation, 

fluctuating surface charges, and/or electron–phonon 
scattering, decoherence occurs and reduces the HOM vis-
ibility. The figure of merit and experimentally accessible 
quantity is again the HOM visibility:
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Note, the pulse delay and noise contribution are still 
present in the two-photon correlation. If a delta-correlated 
white noise is assumed, that is, in the situation when the 
noise correlation of different emission events vanishes 
identically, we obtain:

	
Markovian( , ) | 1 .cV t γ Γ

δ τ
Γ γ γ Γ

= − =
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� (83)

This is an interesting result that deserves further 
explanation. Firstly we note that here the photon indis-
tinguishability is independent from the radiative decay 
constant (as a Markovian radiative decay process has 
been assumed) but depends strongly on the pure dephas-
ing processes within the emission processes. However, for 
a Markovian decoherence process, the reduced visibility 
does not depend on the delay between the two pulses in 
a two-pulse sequence. Thus, a non-Markovian treatment 
needs to established to fully capture the complexity of the 
two-pulse experiment and its underlying physics. To illus-
trate and substantiate this statement, we consider experi-
mental results on the HOM visibility of a semiconductor 
QD presented in Figure 15A and B, where the QD is excited 
in a two-photon sequence with different pulse delays δt. 
The HOM visibility clearly decreases with increasing pulse 

Figure 15: Two-photon interference visibilities of consecutively 
emitted single photons in dependence on the pulse separation δt.
Experimental data for (A) the neutral exciton state and (B) the 
charged exciton state are quantitatively described by a theoretical 
model assuming a non-Markovian noise correlation, leading to 
spectral diffusion on a nanosecond timescale. Reprinted figure with 
permission from [167]. © 2016 by the American Physical Society.
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separation, and a Markovian model cannot be applied to 
model this result. In contrast, a colored noise model with 
a phenomenologically assumed correlation length of the 
emission events allows us to characterize the emitter for 
given visibility data. For this purpose, we include this 
dependence as a finite memory effect with specific corre-
lation time of τc:
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t t
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This kind of noise correlation stems from a non-Mark-
ovian low-frequency noise [171–173] and shows plateau-
like behavior for temporal pulse distances sufficiently 
short in comparison with the experimentally extracted 
memory depth. With the correlation length parameter, we 
derive for the visibility:
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Therefore, for vanishing pure dephasing the visibil-
ity is 1, that is, consecutively emitted photons are Fourier 
transform limited and coalesce at the beamsplitter into 
a perfect coherent two-photon state. Further dephasing 
could also be suppressed by strict resonant excitation 
[159], electrical charge control [22], or suitable surface pas-
sivation [174]. A detailed understanding of effects limiting 
the HOM visibility in two-pulse experiments is of vital 
interest for the further development of state-of-the-art 
QD-based quantum light sources toward the implemen-
tation of quantum circuits, for example, boson sampling 
and advanced quantum communication protocols such 
as measurement device independent quantum key distri-
bution and the quantum repeater. This challenging goal 
can only be achieved by engineering and operating the 
sources to effectively suppress phonon-induced dephas-
ing and spectral diffusion at timescales well beyond the 
nanosecond range in the future.

4.3  �Phonon-enhanced coherence

Lattice vibrations in semiconductor QDs give rise to new 
effects not known in atomic quantum optics such as 
phonon-mediated off-resonant cavity feeding (Section 
4.1), formation of phonon-assisted Mollow triplets [107] 
and temperature-dependent vacuum Rabi splittings 
in cavity emission spectra [117]. Expanding on these 
developments, another example is phonon-induced 
quantum optical coherence [29, 49]. Here, the memory 

effects of the phonon bath are investigated with respect 
to its impact on quantum optical pattern formations in 
the coherent collapse and revival phenomenon. This 
expands the non-Markovian investigation beyond the 
single excitation limit, as higher-order photon manifolds 
are involved.

The basis of the investigation is the inductive Heisen-
berg equation of motion approach [28, 105], presented in 
Section 3.5. The cavity–QD dynamics ( )cav

e lH −  is calculated 
within a numerically exact approach, while the coupling 
to the longitudinal acoustic phonon reservoir ( )LA

e pH −  is 
treated for every photon manifold at second-order Born 
level. The corresponding equations of motion read for res-
onant interaction between QD and cavity photons Δ = −Δp 
to compensate for the polaron shift:

	
† † † 1

12
d 2 2 Im[ ]
dt

m m m m m mc c m c c m g c cκ σ −〈 〉 = − 〈 〉 − 〈 〉 � (86)

	
† † † 1

22 22 12
d 2 2 Im[ ]
dt

m m m m m mc c m c c m g c cσ κ σ σ +〈 〉 = − 〈 〉 + 〈 〉 � (87)

	
† 1 † 1 †

12 12 22
d [(2 1) ]
dt

m m m m m mc c m i c c igm c cσ κ ∆ σ σ+ +〈 〉 = − + − 〈 〉 − 〈 〉
�

	
† 1 1 † 1 1

22(2 )m m m mig c c c cσ + + + +− 〈 〉 − 〈 〉 �

	

† 1 †
12 12 ( ) .m mi g c c b bσ +− 〈 + 〉∑ q

q q
q

� (88)

In the present objective to study the impact of elec-
tron-phonon interaction, the most important contribution 
is proportional to the phonon- and photon-assisted tran-
sition dynamics † 1 †

12 ( ) .m mc c b bσ +〈 + 〉q q  This transition facili-
tates photon number-dependent dephasing and blocks 
the mixing between different photon number manifolds 
to stabilize the collapse and revival dynamics. The equa-
tion of motion read, for example:

	
† 1 † † 1 †

12 12
d [(2 1) ]
dt

m m m m
qc c b m i i c c bσ κ ω ∆ σ+ +〈 〉 = − + − − 〈 〉q q �

	
† † 1

12 12 ,m mig b b c cσ +− 〈 〉〈 〉q
q q � (89)

where the Born factorization has been applied to second 
order, neglecting contributions proportional to 12 .gg∝ q  
This set of equations of motion corresponds to Section 
3.2 for higher-order photon correlations. The set is, 
however, not closed in terms of the photon number (m). 
Therefore, depending on the coupling strength g, a suf-
ficient high order in m is taken into account to reach 
convergence in the calculations. Let us focus on a sit-
uation that starts with an inverted QD and a coherent 
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photon state with a mean photon number N = 3.5 [168]. 
The obtained solution is numerically exact and renders, 
in the absence of electron–phonon coupling, the well-
known Jaynes–Cummings model solutions [28]. Because 
of the small mean photon number, the collapse and 
revival phenomenon without acoustical phonons known 
from the Jaynes–Cummings model [169] is visible only 
for short times t < 10 ps, cf. Figure 16 (orange line in both 
upper and lower panel). For longer times t > 15 ps, the 
pattern of oscillations becomes irregular and the effect 
of rephasing vanishes. Excitingly, with phonons for tem-
peratures up to 50 K, the phenomenon is stabilized for 
much longer times than without phonons (green lines, 
upper panels for a temperature of 4 K, lower panel for 
50 K). The underlying physics is that decoherence mani-
festly keeps the different photon-assisted Rabi frequen-
cies within the cavity from mixing and allows much 
longer rephasing dynamics in phase space. This effect 

is purely due to the frequency-dependent coupling 
from the QD to the phonon bath and not included in 
any Markovian simulations, showing hereby the excit-
ing possibilities provided by non-Markovian, quantum 
kinetics–induced decoherence. Interestingly, it is even 
stable against cavity loss but strongly depends on the 
strong coupling limit between cavity and QD, that is, 
the cooperativity must be high enough to allow for Rabi 
oscillations in the microcavity after initialization of the 
coherent photon field [29, 175]. The experimental chal-
lenge lies, however, in the preparation of the initial state, 
as a perfect coherent superposition initially is essential, 
however, subjected to losses and transient effect during 
the preparation stage [168]. These problems have ren-
dered the collapse and revival phenomenon difficult to 
observe on any platforms. However, if these difficulties 
can be overcome, QDs with acoustical phonon coupling 
are ideal candidates to observe long and lasting rephas-
ing, collapse, and revival dynamics, as standard GaAs 
parameters have been used.

5  �Conclusion
In this review, we discussed non-Markovian features in 
QD-based optical experiments. To understand limits and 
features of semiconductor nanostructures, it is neces-
sary to unravel the microscopic system–environment 
dynamics. Electron–phonon interaction is a prominent 
coupling mechanism, and several examples have been 
given in which the phonon dynamics cannot be reduced 
to a Lindblad type of interaction. Phenomenological mod-
eling overestimates typically the dephasing because of the 
finite memory kernel of phonons, and interesting intrinsi-
cal features such as polaron-dressed states and phonon-
mediated coherence become inaccessible. Several 
theoretical models, however, have been presented, which 
allow to a high-degree of precision to understand quan-
titatively and qualitatively the physics in semiconductor 
quantum optics, which in the opinion of the authors have 
just been started because of advances in experiments and 
theory to flourish and will continue in doing so. Of par-
ticular interest is the investigation of the electron–pho-
non dynamics beyond the harmonic approximation. As 
nonequilibrium phonon dynamics is already interesting 
and partially coherence preserving in the harmonic limit, 
new effects are to be expected beyond lifetime broad-
ening mechanisms if the electron–phonon interaction 
is treated beyond second order in its lattice vibrations. 
Also, detailed investigation on phononic reservoir engi-
neering is on the verge to be realizable in experiments. 
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Figure 16: The excited state density 〈σ22(t)〉 for a cavity initialized 
with mean coherent photon number of N = 3.5.
The Jaynes–Cummings model solution (orange line) without 
phonons exhibits only a single collapse with an incomplete revival. 
Including acoustical phonons (green line) with a lattice temperature 
of 4 K and 50 K many cycles of collapse and revival are visible.



A. Carmele and S. Reitzenstein: Non-Markovian features in semiconductor quantum optics      679

For example, the impact of acoustic cavities on electronic 
coherences, phonon lasing, and even on surface-reflected 
acoustic quantum feedback enables the investigation of 
exotic light–matter interaction. Because of the high degree 
of nanotechnological control, collective effects become 
reachable and superphononance as an acoustic equiva-
lent to superradiance will, maybe, be observed soon. Of 
fundamental interest is the design of new coupling mech-
anism and the impact on nonequilibrium steady states 
and the question arises whether electron–phonon inter-
action guarantees ergodicity on a microscopical level or 
not. Here, semiconductor quantum optics may shed light 
because of nonequilibrium electron–phonon dynamics 
on the very principles of quantum thermodynamics, heat 
transport, and possible quantum memory platforms. The 
fast progress of nanodesign has just begun to address 
long-standing questions in many-body physics, and, in 
the belief of the authors, QDs will play their role in this 
pursuit of understanding fundamental limits of light–
matter interaction because of their universal applicability.
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