


Systematic Modeling for Optimization 
Erik Esche* and David Müller, Günter Wozny 
Chair of Process Dynamics and Operation, Technische Universität Berlin, 
Straße des 17. Juni 135, Sekr. KWT-9, Berlin, 10623, Germany  
*erik.esche@tu-berlin.de 

Abstract 
Optimization usually requires models, which are computationally speaking less 
expensive than models commonly used for simulations. At the same time, 
process optimization and model predictive control etc. require dependable 
accuracies in addition to the fastness. To demystify the art of preparing process 
models for optimization, a workflow is presented in this contribution, which 
systematically deduces models based on simplification of existing models and 
experiment based deduction of computationally inexpensive correlations. 
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1. Introduction 
Process systems engineers working in the field of optimization often find 
themselves in one of the following situations when modeling phenomena or an 
entire process: a large complex model exists, a short-cut model exists, or no 
model exists at all. Whatever the status quo is, the aim in the end is to have a 
model that not only describes the phenomena or process correctly, but has 
adequate numerical characteristics. Among these desired characteristics are a 
high degree of convexity and linearity. Often, process systems engineers will 
start randomly at various points of the project to develop or modify their model, 
i.e. perform experiments, establish an overly complex model not suitable for 
optimization, or forget to see the whole bigger picture by focusing on the 
phenomena level. A workflow systematizing the work of process engineers 
working on optimization models is required to firstly speed up the model 
development and model preparation process, to reduce redundancy or 
repetitiveness, and to aid in the general thinking process. Thus, a step towards 
systematizing the “art” of solving large-scale nonlinear programming problems 
is undertaken. 
In this contribution, such a systematic workflow for the development of models 
for optimization purposes presented in [1] is expanded, whereby the workflow 
focuses on continuously differentiable models. Then, the workflow is applied on 
an absorption-desorption process. For this purpose, multi-stage model 
preparation is performed starting at the phenomena level and ending on the 
process level. 

2. Existing Strategies for Model Reduction 
Most solvers applied today for solving non-linear programming problems are 
gradient based methods and converge at fulfilled KKT conditions [2]. These 
conditions usually require the implementation of continuously differentiable 
models. This requirement is fulfilled by most classical short-cut models such as 
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McCabe-Thiele method (McCabe & Thiele, 1925). Their computation is also 
usually quite low. Only their accuracy leaves something to be desired. This 
aspect, on the other hand, is usually not an issue for models based on neural 
networks or support vector regression (Nandi et al.). In general, these types of 
models show a high accuracy for the operation points they were trained with. 
However, differentiability, interpolation, and especially extrapolation can be an 
issue here. Lastly, reduced order models (ROM) have become fashionable in 
recent years. Especially notable are Lang et al. (2009), who deduced ROMs 
from CFD simulations. The only disadvantages here are the expensive set-up 
procedure and the small area of applicability. 

3. Model Derivation for Optimization Purposes 
The model derivation for optimization is divided into two parts. Firstly, the 
general workflow for process systems engineers is presented and discussed. 
This is followed by a selection of possible strategies for improving the numerical 
behavior of systems. 
3.1. Parameter Identification and Subset Selection 
The workflow consists of 16 steps, which essentially should lead to a model 
suitable for optimization purposes. This whole workflow is described in [1] and 
shall just shortly be revisited here. The general idea is to firstly start off with the 
goal definition. The engineer must decide what type of model is required. This 
leads the engineer to Step 1. Here, the following question is stated: does a 
model for the system under investigation exist? If the answer is yes, this leads 
the engineer to the second question concerning the accuracy of the model 
(Step 2). If the accuracy is high enough, the model must be analyzed regarding 
its numerical convergence behavior. If this is also acceptable, then the model is 
already ready for optimization purposes. More details on all of the steps will be 
given in the following case study. 
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Figure 1. Systematic workflow for the development of models for optimization purposes 
[1]. 

4. Case Study: Optimization Model of a CO2 Absorption Desorption 
Process 
The workflow shown above will now be applied to an absorption desorption 
process for the separation of CO2 from a product gas stream, which contains 
larger amounts of C2H4. The process model required is to be readied for 
superstructure optimization under uncertainty. In this context, a convergence 
time of below 1 sec is demanded and a level of accuracy compared to 
experimental data of ±5%. The absorption of carbon dioxide (CO2) using 
monoethanolamine (MEA) solutions is of course one of the more extensively 
investigated processes. The solubility of CO2 in aqueous solutions of MEA has 
been measured for a wide range of operating conditions as published by e.g. 
(Shen et al., 1992) and (Jou et al., 1995). The development of the respective 
kinetics started with (Clarke, 1964) and (Hikita et al., 1977). Simulation studies 
have been carried out with a high degree of complexity. Yeh et al. (1999) and 
Freguia et al. (2003) modeled the absorption rigorously and fitted their model to 
lab-scale and field data. 
4.1. Existing Mini-Plant 
At Technische Universität Berlin a mini-plant exists, which features a full-scale 
absorption desorption process for the removal of CO2. The absorption column 
has a packing height of 5m and is operated at pressures of up to 30bar. The 
desorption column has 4m of packing and is operated at temperatures of up to 
130°C at a pressure of up to 2.5bar. Feed streams consisting of CO2, CH4, 
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C2H4, and N2 have been stripped of CO2 at varying operating conditions using a 
30wt% monoethanolamine solution. The specific heat required for the removal 
of CO2 and the ethylene loss in the desorption section were recorded (Stünkel, 
2013). 
4.2. Systematic Model Derivation 
The starting point of the algorithm shown in Fig. 1 has already been discussed. 
Also, given the extensive history of modeling MEA-based absorption of CO2, a 
rigorous model can easily be derived (Step 1). As part of this contribution rate-
based simulations were implemented in Aspen Plus® using the Electrolyte-
NRTL package in combination with correlations for the mass and heat transfer 
of the used package material (Mellapak 350 and 500) (Stünkel, 2013). The 
simulations incorporating all nine ionic and non-ionic liquid as well as the five 
gas components consist of roughly 2,000 state variables. To simulate a single 
steady-state operation point of the mini-plant, simulations of the absorption and 
desorption columns have to be prepared separately, before the recycles 
between each are slowly closed. In order to switch to a different operation point, 
the same procedure has to be repeated manually. Obviously, the convergence 
behavior of the rigorous model as implemented in Aspen Plus® is highly 
undesirable and not as required above. In addition, offsets greater than 10% 
between model and experimental data from the mini-plant is observed, which 
answers the question in Step 2 about the sufficiency of the accuracy. The 
general behavior of the mini-plant can of course be expected to be seen in the 
rigorous model (Step 5). Hence, it is initially tried to simply readjust the existing 
model in Aspen Plus® (Step 10) to more closely mimic the experiments 
performed in the mini-plant (Steps 11 through 14). The most important step 
herein is the introduction of heat loss for each column. After this step, the 
accuracy of the Aspen Plus® model is satisfactory (Step 2). However, the 
convergence does not improve of course (Step 3). 
4.3. Systematic Simplification of the Model (Step 4) 
As described in (Esche et al., 2013) this step consists of a decomposition of an 
existing model and a systematic investigation of simplification potential in each 
different model part to ease the computational expense of the overall system. 
The main subdivision is the classification of the governing equations into mass 
balances, equilibrium equations, summations, energy and momentum balances, 
and auxiliary equations. In this case, the main source for the bad convergence 
behavior can be found in the bad scaling of the component balances. Several 
components such as H3O+, OH-, and HCO32+ appear in tiny, but varying 
amounts, close to zero, i.e. 10-9 to 10-4 mol/m3. Attempts to ease these troubles 
by manually scaling the respective equations proved to be in vain as the 
concentrations may vary depending on the state of the chemical equilibrium at 
different positions in the plant. As these troubles cannot be resolved so that the 
model does not repeatedly run into local infeasibilities, the decision was made 
to find a formulation of the entire system which does without the trace 
components. Given their necessity for the entire kinetic system a completely 
new description thereof is required. Within Step 4 this leads to the decision to 
acquire experimental data for the phenomena level. 
4.4. Modeling at the Phenomena Level 
Given the extensive level MEA-based CO2 absorption has already been 
investigated, experimental data is available to great extents (Step 6). Therefore, 
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planning and performing lab-scale experiments can actually be skipped at this 
point (Steps 7 and 8). Data published by Shen et al. (1992) and Kim (2007) on 
the solubility of CO2 in 30wt% MEA solutions and the heat of absorption 
respectively is employed to derive bivariate correlations. Fig. 2 shows the 
experimental data (blue lines) and the respective correlations (colored surfaces) 
for each (Step 9). 

    
Figure 2. Solubility of CO2 (left) in a 30 wt.-\% MEA solution α depending on temperature 
T and the partial pressure of CO2 pCO2 and heat of absorption of CO2 ΔhA (right) 
depending on temperature T and the solubility α. 

The underlying functions of the correlations are determined with respect to the 
general curvature of the data. For this purpose the bivariate dependency is 
especially useful. Based on the solubility and heat of absorption correlations no 
description of the ionic composition is required. The system is reduced to three 
liquid components (CO2, MEA, and H2O) and four gas components (CO2, H2O, 
CH4, and C2H4). At the phenomena level these correlations are joined with a 
basic description of the vapor pressure of water using the Antoine equation, a 
correlation estimating the solubility of C2H4 in MEA solutions derived from data 
published by Carroll et al. (1998). At this point, no additional information will be 
given on the actual modeling seeing as it has already been published in (Esche 
et al., 2013). 
4.5. Fitting to Mini-plant Data 
To model the whole mini-plant for the absorption desorption process, the 
absorption column is divided into 40 equilibrium stages, for which component 
mole balances are formulated as well as energy balances. One equilibrium 
stage is used to model both the flash and the desorption column. Tray 
efficiencies are introduced into the solubility equations for each equilibrium 
stage. In addition, U∗A-based heat loss correlations and the heat of evaporation 
of water are added. The liquid recycle from the desorption column back to the 
absorption is modeled as a forwarding of the CO2 load, whilst MEA and H2O are 
reinitiated to ease the computational complexity. This extended model is then 
fitted to actual experimental mini-plant data reported by Stünkel (2013). The 
experiments were carried out in the mini-plant varying the absorption pressure 
between 5 and 32 bar, the gas load factor between 0.25 and 0.42 Pa0.5, the 
feed concentrations of carbon dioxide between 0.14 and 0.26 mol/mol, the CO2 
removal rate between 70 and 100%, as well as the flow of the scrubbing liquid 
from 10 to 60 kg/h. It was found, that all parameters above can be set to 
constant values, while the efficiency for the desorption column can be described 
depending on five characteristic variables: the absorption pressure, the gas load 
factor, the feed concentration of CO2, the removal rate of CO2, and the 



6  

scrubbing liquid flow. For the subsequent parameter estimation the solubility 
correlation parameters, the stage efficiencies, and U∗A are used as decision 
variables. This concludes Steps 10 to 14 in the systematic in Fig. 1. 
4.6. Numerical Stabilization Strategies 
The resulting, fitted model can represent all experimental points with a margin 
of error of ± 3% with respect to the energy required per captured kilogram of 
CO2. So the reevaluation in Step 2 gives a positive reply. However, when given 
to Step 3, the model at this point still is not adequate. For this reason, it is 
handed back to Step 4, in which at this point no simplifications but rather 
reformulations are carried out. Among these are: 

 (1) 

 
(2) 

 
(3) 

 (4) 

Eq. (1) and (2) are applied as reformulations for various fractions appearing in 
the system. Whenever b can be expected to take values close to 0, the 
reformulation from Eq. (2) is employed. This substitution is more 
computationally expensive but stabilizes the fraction more reliably by also fixing 
the non-differentiability. Eq. (1) instead does not rectify this, but seems to be 
sufficient for most cases, in which b only infrequently turns zero during an 
optimization or simulation iteration step. The substitution in Eq. (3) similarly is 
only applied to cases, in which a is frequently smaller than zero. Lastly, Eq. (4) 
is employed for reformulating equations which can be written explicitly in terms 
of the logarithmic function. For the model derived here these four reformulations 
were chosen. It would also have been possible to substitute the problematic 
terms in the equations and add additional equations for those. However, seeing 
as the system in hand is already quite sparse, the additional equations would 
only increase the computational complexity as there would be no additional 
benefit from a further increase in sparsity. Optimization studies carried out with 
this model showed a fast and reliable convergence from different starting points 
and usually converged within a second on a 64bit AMD Athlon X2 Dual Core 
Processor 3800+. Hence, with respect both to accuracy and computational time 
(Steps 2 and 3), this model is suitable for optimization. 

5. Conclusions and Outlook 
So far the systematic introduced in this article has been applied to two 
fundamentally different systems and applied successfully to derive 
computationally fast and accurate models for optimization. For future work, the 
workflow will be reapplied to more complex systems and extended if necessary. 
Additionally, the numerical stabilization strategies will be extended and 
formalized further. The workflow as a whole will be implemented into the online 
modeling platform MOSAIC. 



  7 

Acknowledgments 
The authors acknowledge the support from the Cluster of Excellence “Unifying 
Concepts in Catalysis” and the Collaborative Research Center SFB/TR 63 
InPROMPT “Integrated Chemical Processes in Liquid Multiphase Systems” both 
coordinated by the Technische Universität Berlin and funded by the German 
Research Foundation (Deutsche Forschungsgemeinschaft “DFG”). 

References 
J.K.A Clarke, 1964, Kinetics of absorption of carbon dioxide in monoethanolamine 

solutions at short contact times, Ind. Eng. Chem. Fundamen., 3, 239 – 245 
J.J. Carroll, J. Maddocks, A.E. Mather, 1998, The Solubility of  Hydrocarbons in Amine 

Solutions, Laurance Reid Gas Conditioning Conference, Norman, Oklahoma 
E. Esche and D. Müller, R. Kraus, G. Wozny, 2013, Systematic Approaches for Model 

Derivation for Optimization Purposes, Chemical Engineering Science. DOI: 
10.1016/j.ces.2013.11.041. 

S. Freguia, G.T. Rochelle, 2003, Modeling of CO2 capture by aqueous 
monoethanolamine, AIChE Journal, 49, 1676 – 1686 

H. Hikita, S. Asai, H. Ishikawa, M. Honda, 1977, The kinetics of reactions of carbon 
dioxide with monoethanolamine, diethanolamine and triethanoamine by a rapid mixing 
method, The Chemical Engineering Journal, 13, 7 – 12 

F.-Y. Jou, A.E. Mather, F.D. Otto, 1995, The solubility of CO2 in a 30 mass percent 
monoethanolamine solution, The Canadian Journal of Chemical Engineering, 73, 140 
– 147 

I. Kim, H.F. Svendsen, 2007, Heat of absorption of carbon dioxide (CO2) in 
monoethanolamine (MEA) and 2-(aminoethyl)ethanolamine (AEEA) solutions, Ind. 
Eng. Chem., 46, 5803 – 5809 

H. W. Kuhn, A. W. Tucker, Nonlinear programming, 1951, Proceedings of the 2nd 
Berkeley Symposium, University of California Press, 481 – 492.  

S. Kuntsche, H. Arellano-Garcia, G. Wozny, 2011,MOSAIC, an environment for web-
based modeling in the documentation level, Computer Aided Chemical Engineering 
29, 1140-1144.  

Y. Lang, A. Malcina, L.T. Biegler, S. Munteanu, J.I. Madsen, S.E. Zitney, 2009, Reduced 
order model based on principal component analysis for process simulation and 
optimization. Energy & Fuels, 23, 1695 - 1706 

S. Nandi, Y. Badhe, J. Lonari, U. Sridevi, B. Rao, S.S. Tambe, B.D. Kulkarni, 2004, 
Hybrid process modeling and optimization strategies integrating neural 
networks/support vector regression and genetic algorithms: study of benzene 
isopropylation on hbeta catalyst, Chem. Eng. Trans., 29, 1495 - 1500 

W. McCabe, E. Thiele, 1925, Graphical design of frationating columns, Industrial & 
Engineering Chemistry, 20, 591 – 609 

K.P. Shen, M.H. Li, 1992, Solubility of carbon dioxide in aqueous mixtures of 
monoethanolamine with methyldiethanolamine, J. Chem. Eng. Data, 37, 96 – 100 

S. Stünkel, 2013, Kohlendioxid-Abtrennung in der Gasaufbereitung des Prozesses der 
oxidativen Kupplung von Methan, PhD Thesis, Technische Universtität Berlin 

A.C. Yeh, H. Bai, 1999, Comparison of ammonia and monoethanolamine solvents to 
reduce CO2 grenhouse gas emissions, Science of the Total Environment, 228, 121 – 
131 


