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Zusammenfassung

Bei der Optimierung von Frasprozessen, die in der Massenproduktion genutzt wer-
den, ist die Hauptaufgabe, das Zeitspanvolumen zu steigern und gleichzeitig die Pro-
duktqualitéit sicherzustellen. Die Erhchung des Zeitspanvolumens ist jedoch durch
die verfiigbare Spindelleistung und durch den Verlust der Prozessstabilitit begrenzt.
Die Entwicklung von optimierten Designvorgaben fiir neue Werkzeugmaschinen ist
daher eine der Hauptaufgaben der Forschung. Fiir bestehende Werkzeugmaschinen
und Prozesse miissen die Effizienz und die Zuverléssigkeit der Stabilitdtsanalysever-
fahren weiter gesteigert werden.

Um diesen Anforderungen gerecht zu werden, wird in der vorliegenden Arbeit
ein neues Friasmodell zusammen mit einem speziell dafiir entwickelten, numerischen
Losungsverfahren vorgestellt. Neben der Maschinendynamik wird das Werkstiick-
verhalten in dem neuen Modell beriicksichtigt. Ein komplexes Mehrkorpersystem,
das zur detaillierten Maschinenbeschreibung verwendet wird, erméglicht es, Opti-
mierungspotentiale in der Maschinenstruktur aufzudecken. Die Modellierung des
Werkstiicks als dreidimensionaler, thermoelastischer Festkorper erlaubt eine Un-
tersuchung der Werkstiickeinflussfaktoren und die Analyse verschiedener Geome-
trien. Mit Hilfe eines Dexel-basierten Materialabtrennungsmodells kann dariiber
hinaus, auch fiir (thermo-)elastische Werkstiickmodelle, die erzeugte Werkstiick-
oberfliche und damit der Regenerativeffekt simuliert werden. Das numerische L&-
sungsverfahren basiert auf einer schnellen Methode zum Aufbau der Gleichungen
des Mehrkorpersystems und einer Ortsdiskretisierung der Werkstiickgleichungen mit
Hilfe der Finiten Elemente Methode. Die effiziente Losung des gekoppelten Systems
im Zeitbereich wird durch ein implizites Zeitintegrationsverfahren gewéhrleistet. Ein
weiterer Bestandteil der Arbeit ist ein neu entwickeltes, effizientes Verfahren zur
Stabilitdtsanalyse von periodischen Delaydifferentialgleichungen. Solche Systeme
beschreiben das Stabilitatsverhalten komplexer Frasmodelle oder repréasentieren dy-
namische Systeme, die von Modalanalysedaten realer Maschinen abgeleitet wurden.
Das neue Verfahren basiert auf der Losung von nichtlinearen Eigenwertproblemen
und der konsquenten Ausnutzung von Modellreduktionstechniken.

Die Arbeit ist wie folgt strukturiert: Im Anschluss an die Einleitung folgt ein
Kapitel in dem das neue Verfahren zur Stabilitéitsanalyse, einige Anwendungsbeispiele
und die Modellreduktion erlautert werden. Kapitel 3 deckt die Entwicklung des kom-
plexen Frésmodells sowie eine detaillierte Beschreibung der Kopplungsterme ab.
Kapitel 4 beschéftigt sich mit den Diskretisierungsansidtzen und dem Zeitintegra-
tionsverfahren. Die Prisentation der Simulationsergebnisse erfolgt in Kapitel 5 und
Kapitel 6 behandelt die experimentelle Verifizierung. Der letzte Abschnitt enthélt
einige abschlieffende Bemerkungen.






Abstract

The main optimisation goal for milling operations in mass production is to increase
the material removal rate while maintaining an optimal product quality. In addi-
tion to the spindle power available, the loss of process stability imposes an upper
boundary to the increase of the material removal rate. The challenges in research are
therefore to formulate optimal design directives for new machines on the one hand
and on the other to improve the reliability and the efficiency of stability prediction
methods for given machines and processes.

In order to address these issues, a new coupled model for milling processes is
presented in the following together with a tailored numerical simulation algorithm.
The model incorporates the machine dynamics and thermo—mechanical work piece
effects. While the detailed representation of the machine structure provided by
means of a multi body system gives useful information to discover structure op-
timisation potentials, the work piece representation as a 3D thermo-—elastic solid
guarantees high flexibility as a large range of possible geometries fits into this frame-
work. The regenerative effect is incorporated by a new Dexel based material removal
model that allows a realistic simulation of the generated work piece surface even for
(thermo—)elastic work piece models. A newly developed algorithm based on a finite
element discretisation of the work piece equations and a fast method for the assem-
bly of the equations of motion for the multi body system guarantees a robust and
effective numerical solution of the coupled system due to a fully implicit time inte-
gration scheme. Another novelty is related to the need for an efficient and reliable
stability analysis method for large systems of periodic delay differential equations
(PDDESs). Such systems arise either from the afore mentioned complex milling sys-
tem involving a machine model and the discrete elasticity equations in 3D describing
the work piece dynamics or even from complex dynamical systems representing the
modal analysis data of a real milling machine in time domain. The key concepts to
achieve this goal are, on the one hand, a new stability analysis approach based on the
solution of non linear eigenvalue problems and, on the other hand, the consequent
use of recently developed model reduction techniques.

The work is organised as follows: The introduction is followed by a chapter deal-
ing with the stability analysis for PDDEs, its applications with focus on coupled
systems and the exploitation of model reduction techniques. Chapter 3 covers the
development of a coupled milling system including a detailed description of the cou-
pling terms involved. Chapter 4 is devoted to the discussion of discretisation schemes
and the presentation of the time integration algorithm. The simulation results are
presented in Chapter 5 while Chapter 6 covers the experimental verification. The
last section is devoted to some closing remarks.
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Chapter 1

Introduction

1.1 Preface

The present work is a result of the research activities related to a cooperation project
between the Weierstrass Institute of Applied Analysis and Stochastics (WIAS) and
the Department of Production Technology and Factory Management (IWF) of Tech-
nische Universitat Berlin entitled 'Development of a Stability Prediction Tool for the
Identification of stable Milling Processes’, supported by Deutsche Forschungsgemein-
schaft (DFG) within the framework of the priority program 1180'. The objective of
the research project was the investigation of several experimental and theoretical is-
sues arising from the development of a simulation tool to describe the effects related
to the process structure interaction in milling. The experimental studies have been
carried out in close cooperation with the IWF. As a consequence, the results being
discussed in the present work have already partly been published in the research
articles [24,43,75,79-81,102,103].

1.2 State of research in the modelling and the sta-
bility analysis of metal cutting processes

The optimisation of production chains and particular processes is an important issue
in industry and economy. In production technology, for example, the research engi-
neers carefully analyse each step of the product development to discover optimisation
potentials. In order to reduce the costs arising from extensive experimental stud-

'For a detailed review of the mathematical methods in production technology see e.g. [28]. In
particular, the authors consider the Priority Program 1180 and point out that ’In order to better
understand and to predict the relations between the production process, the machine behaviour
and the resulting work piece properties, in 2005 the Priority Program 1180 "Prediction and Ma-
nipulation of Interactions between Structure and Process” has been established by the Deutsche
Forschungsgemeinschaft. In this research program, designed for a total of six years, approx. 50
researcher throughout Germany from the fields of production engineering, mechanics, mathemat-
ics and materials sciences work interdisciplinary together. Across the field borders innovative
approaches and methods for the prediction and systematic manipulation of interactions are inves-
tigated.’.
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ies, the need for numerical simulations drastically increased in the recent decades.
Nowadays, the simulation of processes, machines, processes structure interaction
and entire process chains is considered as a powerful tool to increase the efficiency
of single processes and production chains.

The main optimisation goal for milling operations involved in mass production
is to increase the metal removal rate, while maintaining an optimal product quality.
In addition to the available spindle power, the loss of process stability imposes
an upper bound to the increase of the material removal rate. In case of unstable
processes, the resulting large oscillations of tool and work piece may destroy the tool,
cause damages in the machine structure and lead to a poor product quality, i.e., for
example, a rough work piece surface. The challenges in research are therefore on the
one hand, for given machines and processes, to improve the reliability of stability
prediction methods and on the other hand, for new machines, to formulate optimal
design directives.

The stability prediction for metal cutting operations usually involves a process
and a structure model. While the process models relate the cutting or tool en-
gagement conditions to the cutting forces acting between tool and work piece, the
structure models describe the reaction of machine and work piece to the applied
external cutting forces. The structure response, i.e. tool displacement and work
piece deformation at the cutting zone, usually changes the engagement conditions
which leads in turn to a perturbation of the cutting forces. Depending on the pre-
defined process parameters and on the dynamical characteristics of the structure,
the cutting force perturbation either decays or increases in time. The uncritical case
of decaying perturbations finally leads to the desired stationary cutting conditions.
Increasing cutting force perturbations, the so—called regenerative chatter, provoke
strong vibrations of machine and work piece and thus lead to the undesired unstable
processes.

The research on this problem started in the early 1950s with pioneering works of
Tobias [99,100] and Tlusty [97,98| dealing with drilling, turning and metal cutting
in general. The large number of papers published on the stability prediction reveals
the relevance of this research field.

Time domain simulations in combination with a heuristic stability criterion ex-
ploiting either the evolution the cutting forces [60,91,92] or the evolution of the
uncut chip thickness [23], are a flexible and straightforward approach to characterise
the stability of cutting processes. Asshown by Lee et al. [59,61], they allow to employ
the elaborated cutting force models proposed by Oxley [70] for stability prediction.
Moreover, time domain simulations can be useful to simulate the machined surface
for complex tool geometries [6] or for small radial immersion milling [23].

Another research direction is the accurate and efficient prediction of stability
limits over a wide range of process parameters. For milling problems, Altintas and
Budak [4] proposed an analytical method for the stability prediction where the time
dependent directional factors are approximated by the zero order component of their
Fourier series. In another work [17,18] the same authors showed that the analytical
approach also works for more accurate approximations of the directional factors. In-
sperger et al. [48] reformulated the stability problem in terms of stability conditions
for delayed differential equations with time periodic coefficients and proposed a new
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numerical method for the stability prediction. For further details on the mathemat-
ical theory and the numerical methods the reader is referred to Section 2.2.

The dynamical characteristics of the machine structure are usually incorporated
by means of a frequency response function (FRF) measured at the tool centre point
(see e.g. [3,33]). Since the configuration of the milling machine usually does not
change markedly during the cutting operations, the FRFs at the tool centre point
(TCP) include all necessary information for stability prediction purposes. The gy-
roscopic effects caused by the spindle rotation become relevant only for high spin-
dle speeds (see e.g. [33,35]). Since the stability predictions methods presented
in [4,17,18,33| are formulated in frequency domain, the collected FRFs can be
directly used to calculate the stability limits. Fitting the measured FRFs either
by a sum of FRFs corresponding to single degree of freedom oscillators or by a
FREF corresponding to an abstract linear multi degree of freedom system, provides
an equivalent set of state equations reproducing the structure response in time do-
main. Such a time domain representation is an alternative approach that has been
successfully employed in many stability predictions methods (see e.g. [9,21,48,51]).

In case that the compliance of work piece and machine tool have the same order
of magnitude, the work piece characteristics affect the process stability. This hap-
pens especially in the production of blade integrated disks (BLISKs) for aeroengines
or during the machining of other thin walled projecting structures. The FRF at
the cutting zone describes the work piece response to the forces arising from the
cutting process. In contrast to the FRF of the machine tool, the work piece FRF
changes throughout the cutting process. During the milling operation the tool po-
sition changes due to the feed and the cutting zone travels along the work piece.
Depending on the cutting zone position different eigenmodes and frequencies be-
come relevant for the corresponding FRF. In order to incorporate the work piece
effects in the standard stability prediction methods, the work piece dynamics can be
approximately represented by several FRFs measured along the tool path [12,56,72].
Another effect is related to the material removal. During the milling operation, the
locally decreasing wall thickness of the work piece leads to a shift in the eigenfre-
quencies and probably increases the work piece compliance. As shown by Atlar
et al. [8] for beam like structures and by Alan et al. [1] for three dimensional thin
walled structures, the changing FRFs due to the material removal can be analytically
approximated by the so called matrix inversion method proposed by Ozgiiven [71].
Incorporating the resulting FRFs in the standard stability prediction finally provides
the stability diagrams corresponding to different stages of the machining process.

Furthermore, temperature effects may cause a poor product quality and geomet-
ric errors in the machined surface. For special geometries and adverse machining
conditions, the heat generated by the cutting process locally leads to a significant
rise of the work piece temperature (see e.g. [107]). The resulting thermal expansion
leads to large work piece deformations and too much or too few material is removed
from the work piece (see e.g. [108]). In addition to the effects related to thermal
expansion, the work piece temperatures affect the process stability limits as well. In
an experimental study, Uhlmann et al. [103| showed that a preheating of the work
piece partly increases the stability limits.
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1.3 Time domain simulations of process structure
interaction phenomena

The modelling of process structure interaction phenomena in production processes
usually leads to coupled systems of ordinary and partial differential equations. While
different process models relating the engagement conditions to the forces acting on
tool and work piece usually present a similar mathematical structure, the machine
and work piece models vary in each application. As a consequence, the resulting
complete systems present a particular structure and tailored numerical algorithms
have to be employed to guarantee an efficient simulation of the underlying process.

In grinding, for example, the deformation of spindle and the attached grinding
wheel usually dominate the structural response to process forces acting on the wheel.
Correspondingly, the approach proposed in [106] for a NC shape grinding applica-
tion, involves an elastic solid representation of the spindle, the spindle bearings and
the grinding wheel. The model can be adapted to vibration measurements by ad-
justing the material parameters for each part and the discretisation with adaptive
finite elements in space and a Newmark scheme in time guarantee an efficient and
accurate simulation of the grinding process [10]. In tool grinding processes, large
work piece deformations dominate the process structure interaction. In contrast to
the shape grinding example, the spindle and the grinding wheel are assumed to be
rigid while the work piece, i.e. a slender drill, is modelled as a cantilever beam
with varying cross section and tailored boundary conditions representing the clamp-
ing [74]. The lathe model to simulate a facing process presented in [16] consists of
rigid and flexible bodies connected by joints with nonlinear constitutive equations.
A rigid body represents the work piece and in addition to the standard process mod-
els, the authors formulate a contact problem to accurately reproduce the interaction
between tool and work piece.

In milling, the tool spindle system plays a crucial role. In order to study the effect
of the spindle bearings and the spindle rotation on the process stability, Grofsmann
et al. [35] proposed an elaborate spindle model. The flexible multi body system
employed for the spindle representation accurately reproduces the FRF at the TCP
for idle and rotating state and provides useful information about the effects related
to changes in the bearing stiffness.

Abstract flexible multi body systems can be used to reconstruct the frequency
response function for particular locations on machine parts. In micro milling, for
example, the frequency response function cannot be measured directly at the tool
centre point. In the approach proposed by Shi et al. [88], an oscillator chain repro-
ducing the FRF measured at the tool holder is combined with a Bernoulli cantilever
beam model representing the tool dynamics. Finally, the model incorporating spin-
dle rotation effects is utilised to calculate stability charts for the underlying micro
milling process.

A grinding model to simulate the work piece temperature, as well as the heat
conduction in the machine tool structure is discussed in [11]. While the work piece
model involves unstationary heat conduction and thermal expansion, the spindle
and the attached grinding wheel are represented as a thermo—elastic system without
neglecting the acceleration terms.
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1.4 Motivations for the present work

Even though the structure representation by means of measured frequency response
functions has been applied successfully in the stability prediction of milling problems,
the approach is not suitable for the machine optimisation because it provides only
few information about of the general behaviour of the milling system. A common
direction to improve the performance of milling machines is to reduce the time
needed for the axis travel by increasing the travelling speed. Higher travelling speeds
can be achieved by reducing the weight of the structural parts. As a consequence,
the stiffness of the machine structure decreases and, along with that, the maximum
chatter free material removal rate usually diminishes, too.

In order to study these effects numerically, the machine structure has to be rep-
resented with realistic models providing structural information. A popular approach
in production technology is to model each machine part as an elastic body and to
connect the different parts by special joint elements. This strategy, however, leads
to very large systems which often involve unacceptable computational costs. An
alternative strategy is to employ multi body systems for the machine structure sim-
ulation. Multi body systems provide more structural information than the FRF
approach and require less computational effort than the fully elastic models. The
performance of multi body systems can be further improved by replacing important
parts by elastic models with a few degrees of freedom. The resulting models, the
so called flexible multi body systems, provide more reliable results without severely
increasing the computational costs.

As outlined in Section 1.2, the standard approach to incorporate work piece
effects in milling simulations is to represent the work piece characteristics by means
of several measured FRFs. This approach, however, seems to be cumbersome in
the daily production routine, because unlike the machine, the work piece changes
frequently. Moreover, the empirical FRF based approach is not suitable for the
simulation of heat conduction in the work piece. Alternatively, the work piece can
be represented as a three dimensional thermo—elastic solid. This approach allows
to simulate different geometries, incorporates the effects of a travelling cutting zone
and is suitable for temperature simulations. If the focus is on stability analysis only,
the work piece can alternatively be represented as a one or two dimensional elastic
structure, that is, for example, a rod, a cantilever beam, a plate or a shell.

In view of the above considerations, the combination of a multi-body system
representing the machine structure with a thermo—elastic solid model for the work
piece seems to be a promising new approach for the simulation of process structure
interaction in milling. Based on the well studied models describing each subsystem,
i.e. a multi-body system for the machine and a thermo—elastic solid model for the
work piece, the main modelling challenge is to incorporate the effect of process forces
and to derive the equations describing the coupling of both structural models.

Consequently, one objective of the present work is to present a new model describ-
ing the coupling of machine and work piece, the development of tailored numerical
algorithms for the underlying coupled system and the simulation of a particular
production process to illustrate the features of the new model. As usual in time do-
main simulations, a heuristic criterion provides information to evaluate the process
stability. A second objective is to determine the stability limits corresponding to
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the coupled system employing a rigorous stability criterion. Since the system can be
approximated by a large system of periodic delay differential equations (PDDEs),
the goal is to develop a new numerically efficient stability analysis method which
allows to predict the stability limits for such systems.

1.5 Contribution of the present work

The main contributions of this thesis are twofold: first, a new model for milling pro-
cesses is presented that incorporates the machine dynamics and thermo—mechanical
work piece effects. While the detailed representation of the machine structure by
means of a multi body system provides useful information to discover structure op-
timisation potentials, the work piece representation as a three dimensional thermo—
elastic solid guarantees high flexibility since a large class of possible work piece
geometries fits in this framework. Moreover, in order to incorporate the regenera-
tive effect, a new Dexel based material removal model is introduced that allows, in
contrast to current approaches, a realistic simulation of the generated work piece
surface even for (thermo—)elastic work piece models. The second novelty is related
to the need for an efficient and reliable stability analysis method for large systems
of periodic delay differential equations (PDDEs). Such systems arise, for example,
from the above mentioned complex milling models involving a machine model and
the discrete elasticity equations in 3D describing the work piece dynamics. The key
concepts in order to achieve this goal are, on the one hand, a new stability analysis
approach based on the solution of non linear eigenvalue problems and, on the other
hand, the consequent use of recently developed model reduction techniques.

The present work is organised as follows. Chapter 2 deals with the stability
analysis of milling processes. By means of time domain simulations in combination
with a new chatter criterion it is shown that the predicted stability limits are almost
independent of the employed empirical cutting force model. Differences can only be
observed for strong variations in the feed per tooth. The main part of Chapter 2
is devoted to the development of a new stability analysis method for periodic delay
differential equations. In particular, these systems describe the dynamics of milling
processes. In contrast to the common solution operator discretisation approach, the
new method based on the solution of nonlinear eigenvalue problems and continuation
potentially allows, even for large systems, to compute the stability limits accurately.
In Section 2.3, the new method is applied to study the dynamics of a coupled milling
model involving the dynamics of a simple machine and a rod-like work piece. The
presented results reveal the effect of the coupling and show the influence of the
discretisation error. For the first time, model reduction techniques are considered in
the framework of stability prediction. The new approach introduced in Section 2.3.2
drastically improves the efficiency without introducing relevant errors and thus opens
new research directions in stability analysis.

Chapter 3 is devoted to the derivation of a complex milling model involving the
dynamics of machine and work piece as well as thermal effects. The strategy to
derive a milling model based on a multi body system characterising the machine, a
work piece represented as a thermo—elastic solid and an empirical cutting force model
for the coupling of both parts, requires a new modelling approach. Consequently,
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the focus is on the rigorous derivation of a system of partial and ordinary differential
equations describing the new milling model and on an extensive discussion of several
modelling issues. As a result, the regenerative effect is not reproduced by means of
a delayed term but by means of a subsequent modification of the work piece surface.
In contrast to similar techniques proposed by Campomanes et al. [23], Sims [91]
or Suhrmann et al. [95], the approach presented in this work allows for the first
time to incorporate the tool vibrations and arbitrary deformations of the work piece
surface. Since the material removal model considered here generates an approximate
machined work piece surface, the results of the virtual machining can be very useful
in practise. In addition, the new strategy allows to describe the effects related to a
travelling cutting zone in a straightforward way.

In Chapter 4 the focus is on the development of a tailored numerical algorithm
to solve the system of equations derived in Chapter 3 for the new milling model. In
a first step, the finite element method is utilised to derive a space discretisation of
the thermo—elastic system representing the work piece. Next, for each subsystem,
different time integration schemes are introduced and extensively discussed in order
to develop an optimal strategy for the coupled system. The final result is a new
time integration scheme based on a fixed point iteration that guarantees a fully
implicit coupling of the semi-discrete subsystems in each time step. The remainder of
Chapter 4 is devoted to the implementation of the material removal model, another
important issue. Special attention is paid to the incorporation of the work piece
deformations and to the construction of new work piece grids based on a Dexel
representation.

The objective of the simulations presented in Chapter 5 is to illustrate the main
features of the new model. At first, it is shown that the machine model accu-
rately reproduces the stability limits calculated on the basis of a measured FRF by
means of the new stability prediction method presented in Chapter 2. Time domain
simulations involving the full system illustrate that the structure of the employed
work piece affects the process stability. While for rather stiff geometries the process
stability is dominated by the characteristics of the machine, the situation changes
completely in case of a supple work piece. The simulations illustrate that a process,
previously identified as stable, can be destabilised due to the dynamical work piece
characteristics. The simulation of temperature effects show that, in slot milling,
the work piece temperature only moderately increases and that the induced thermal
expansion does not lead to relevant geometric errors in the machined surface.

Chapter 6 covers the comparison of the predicted and measured stability lobe
diagrams including the chatter frequencies. Moreover, it is shown that the work
piece effects observed in the simulations can be detected experimentally as well. The
chapter is completed by an extensive discussion of possible sources for measurement
errors and further experimental issues.

The last section is devoted to some concluding remarks and to the discussion of
further research directions arising from the content of the present work.



Chapter 2

Stability analysis

2.1 Dynamics of a simple milling system

2.1.1 Oscillator equations

The milling process can be represented schematically by a turning cutter remov-
ing material from the work piece, the latter translating in the direction of feed as
depicted in Figure 2.1.

Figure 2.1: Schematic representation of the milling process.

As shown in [3, p.105], the simplest structure model for milling problems is an
oscillator with two degrees of freedom. For such a model, the equations of motion
describing the cutter motion are given by

. 251&)1 0 . w% 0 . i
i+ { 0 2§2w2]u+ [ L2l e= F, (2.1)

~~
D

>4

where m, denotes the modal mass. The respective eigen—angular—frequencies in
x- and y-direction are denoted by w; = 27 f; = /k;/m. and the modal damping
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me Cz fz
0.06 kg 1.2 % 2241.49 Hz

Table 2.1: Oscillator parameters.

in each direction is represented by & = d;/2v/m.k;. Throughout the following
sections, the parameters characterising the oscillator are chosen according to the
values indicated by Table 2.1. As shown in Figure 2.2, the given values can be
interpreted as an approximation of the dominant peak appearing in the frequency
response function measured at the tool centre point of the milling machine employed
for the experimental part of the present work (see Section 6.2). Since the dominant
peak is related to an eigenmode of the rotationally symmetric spindle-tool system,
it is fair to assume that the oscillators representing the main peak have the same
mass, the same stiffness and the same damping.

-1

10 : T
experiment
SDOF-system
» 10'2 L
£
£
E
5 107
[e]
1S
107 -

10
frequency / [Hz]

Figure 2.2: Experimental mobility frequency response function! (see Figure 6.2 in
Section 6.2) compared to a single degree of freedom oscillator approximation of the
main peak.

The cutting forces given by F = [F,, F,]* appear on the right hand side of (2.1) as

external forces. By means of an orthogonal transformation the external force can
be expressed as a sum of the forces acting F'(h?) = [F,(h?), F;(h7)]T on each tooth,
le.

N .
_ ' Sin QOj COS QOj A j
P==3 wole) e cna LB 2.2
j:
where
) 2
©i(p(t) =)+ (j — 1>F’ o(t) =2mnt, (2.3)

!The experiments have been carried out by P. Rasper under supervision of Prof. E. Uhlmann
at IWF, TU-Berlin (for further details see e.g. [75] and Section 6.2).
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represents the time dependent angle of tooth 'j” indicated in Figure 2.1. The param-
eter n represents the rotation speed in rps, while N, denotes the number of tooth.
Note that the considered cutter has no helix angle. Depending on the immersion,
the tool enters and leaves the cut at different angles g (entry) and @, (exit). Dur-
ing the free-flight, i.e. ¢; & (¢st, ex), NO cutting forces act on the tool, a fact that
can be modelled by means of a switch function [48]

(2.4)

L, ¢a <mod(p;, 27) < Peq,
g(wj) = .
0 otherwise

For the model illustrated in Figure 2.1 the starting- and exit-angles are ¢y = 0
and ¢, = 5. The function mod(., 27) projects an arbitrary angle argument on the

interval [0, 27]. The forces F'(h?) acting in radial and tangential direction on the tip
of each tooth (see Figure 2.1) depend on the uncut chip thickness 77, on the axial
depth of cut a, (immersion depth perpendicular to the x-y plane) and possibly on
the cutting speed v,, i.e. the tangential velocity at the tip of the tooth. The effects
related to the plastic deformation of the work material with high strain rates govern
the chip formation process in metal cutting. Since the underlying model equations
present a very intricated structure, the usual approach is to employ empirical cutting
force models instead of solving the equations describing the plastic deformation
process. A large number of empirical approaches to determine the cutting forces for
given process parameters have been developed in the past.

2.1.2 Cutting force models

During a milling operation the tool tries to cut a chip with the corresponding ap-
proximate static chip thickness hgq = f.sing;. The reaction force generated by
the cutting operation induces a displacement of the tool and, according to the dy-
namical characteristics of the milling system, a wavy surface is generated. The
subsequent tooth oscillates because of the previously induced motion and cuts into
a wavy surface produced by the preceding tooth. Mathematically, this mechanism
can be expressed by the following formula for the uncut chip thickness, i.e.

ot (1] (2127

= f.sing; + [ui(t) — ui(t — 7)]sing; + [us(t) — ua(t — 7)] cos ¢j, (2.6)
N N\ - /
hgtat hglyn

with a delay 7 = (nN.)™!. In order to ease the presentation of the cutting force
model, the focus is on a tool with a single tooth and the index 'j’ can be dropped
from the expression of the uncut chip thickness. In case of tools with several teeth
the total cutting force can be computed by summing up the contributions of each
tooth. A simple linear cutting force model relating the uncut chip thickness, the
axial depth of cut and the cutting forces has been proposed by Weck [105]. The
empirical relation reads

F = Kayh, (2.7)
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with parameters K = [K,, K;]”, the specific cutting forces. Altintas [3] extended this
approach. He introduced additional parameters K¢ = [K¢, Kf]7, the so called edge
forces, to account for the contribution of friction to the cutting force for h = 0 mm,
ie.

F = Kayh + Kea,,. (2.8)

Another possibility is to use a non-linear relation between cutting force and chip
thickness, as was proposed by Tobias [99] or Stépan [93]

F = Kayh''. (2.9)

In this approach x; € (0, 1] is another empirical parameter. Note that due to the fact
that z; € (0, 1], the above expression is not well defined for & < 0. Consequently, h
has to be replaced by its positive part being defined as

hoifh >0,

_ (2.10)
0 otherwise.

hy = max(h,0) = {

Replacing h by h, introduces an additional non-linearity in the computation of
the cutting forces. An attempt which usually allows a good representation of the
experimental data was developed by Kienzle and Victor in the early 1950s. The
model which is described in detail by Ténshoff & Denkena [101], reads

F = K(hy)ayhy, with K(hy) = [K.(hy), K:(h)]" and (2.11)

w

l%f’h;mz , 1073 mm < hy <10 2mm
Ki(h—i—) = l%?h;m? , 1072mm < hy <107 'mm -
l%}h;m’l , 107 'mm < hy < 1lmm

As mentioned before, the large number of free parameters, i.e. /%f and mz with
j =1,...3, guarantees a precise reproduction of the experimental data. Faassen [33|
presents a combination of the models shown above. He combines Stépan’s model (2.9)
with the edge effects introduced by Altintas (2.8), i.e.

F = Ka,hy + K.a,. (2.12)

Recently new cutting force models have been proposed to incorporate process damp-
ing effects which seem to be important especially for low cutting speeds (see e.g. |5,
19]). Moreover, the effect of tool wear has been investigated and also incorporated
in the cutting force models (see e.g. [55]). However, since the present work focuses
on sharp tools and high cutting speeds, the process damping and tool wear effects
are assumed to be negligible.
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2.1.3 Experimental determination of the cutting constants

Every model presented above, contains empirical parameters which have to be de-
termined from experimental data. A standard approach to solve the parameter
identification problem is the least squares method proposed by Altintas (see |3, Sec.
2.8.1]). The cutting force measurements described in Section 6.3 provide an evolu-
tion of the cutting forces in x- ,y- and z-direction for several values of f,. The time
discrete cutting forces Fy, ™ (t;, f.), k = 1,2, 3, can be averaged over a tooth period
to get

FE(f) =

\\|>—‘

al e:vp erp At
Z F z lyfz)+F (tufz)) 9 ) (213)
i=1

with At denoting the time step size corresponding to the experimental data and N =
7/tn the number of averaged time steps. Note that the time integration in (2.13)
has been carried out on the discrete level employing the trapezoidal rule. A similar
expression can be derived exploiting (2.2) together with one of the empirical cutting
force models. Assuming a rigid machine, i.e. h/(t) = h(p;(t)) = hga(p;(t)) =
f=sin;(t), leads to the average cutting force

Fu(Ker, f2) = Z/ Fy(Kop, f.,p;(t))dt (2.14)
27m Fk Kop,fz,%( ()))( (t))dt (2.15)

with ¢, = 27 /N, denoting the pitch angle and K¢ p a vector containing the empirical
model parameters. The objective functional measuring the squared distance between
model and experimental cutting forces reads

2

J(Kcr) = Z [FP(f2) — Fe(Kor, £2)]

k=1 i=1

(2.17)

where f! denotes the different values for the feed per tooth. The constraint minimi-
sation of (2.17) by means of Gauss-Newton methods (for numerical and theoretical
aspects see e.g. [84]) finally provides an optimal set of parameters Kcp. The imposed
constraints guarantee the predefined limits for the empirical parameters and in case
of model (2.11) the continuous dependence on the uncut chip thickness. The results
of the optimisation process are summarised in Table 2.2, where the residual J™™"
of the objective functional is given in the last row. The constants corresponding to
the model (2.11) are given in Table 2.3. The residual J™" can be interpreted as an
indicator for the accuracy of each fit. Note that, depending on the analytical form
of the cutting force model, the approximation of the experimental mean cutting
forces is more or less accurate. Consequently, each cutting force model provides for
given chip thickness and immersion a slightly different force in x- and y-direction
(see (2.2)), which may in turn affect the computed stability limit.
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‘ Weck ‘ Altintas ‘ Stépan ‘ Faassen

K, 690 N/mm? 363 N/mm? 448 N/mm+29) [ 342 N/mm+2s)

K, 894 N/mm? 770 N/mm? 565 N/mm+) | 724 N/mm(+es)

K¢ - 90 N/mm? - 82 N/mm?

Ky 34 N/mm? - 18 N/mm?

Ty - - 0.63 0.89

Jmn 4254.18 N 816.4 N 2090.41 N 796.5 N

Table 2.2: Summary of the cutting constants corresponding to the models of Weck,
Altintas, Stépan and Faassen, determined from experimental data? for n = 16600

rpm.

| | 0.001 <h<0.01 [ 001<h<01 01<h<l1
kL 325 243 343
ki 396 633 706
m 0.65 0.71 0.56
mj 0.35 0.25 0.2

Table 2.3: Summary of the cutting constants corresponding to the model of Kienzle-
Victor (J™" = 383 N), determined from experimental data® for n = 16600 rpm

(h = h/hg, hg =1 mm, k! and k! are given in N/mml_mi and N/mml_mi).

2.1.4 Evolution of stable and unstable solutions in time

Reformulating the milling models following from Section 2.1.1 and 2.1.2 in first order
form, i.e. introducing a new variable v = 4 and setting y = [u,v]?, leads to the
following general periodic delay differential equation (PDDE)

y<t) = f(ta y(t)7 y(t - T)>7

with f(¢,.,.) = f(t +7,.,.) and the initial condition y(s) = ¢(s), s € [—7,0]. De-
lay differential equations having a structure like (2.18) can be numerically solved
by means of modified Runge-Kutta type time integration algorithms (for further
details see e.g. [37,86]). The milling system (2.1) equipped with Stépéan’s cutting
force model (2.9) for a tool with a single tooth (see Table 2.2) serves as an exam-
ple for the time domain simulation. The spindle speed has been set to n = 16600
rpm and f, = 0.2 mm. The corresponding evolution of the uncut chip thickness
for a, = 1 mm and a, = 1.5 mm is illustrated in Figure 2.3. In the first case,
after an initial perturbation, the uncut chip thickness converges to its stationary
value, given by hl,,, = f.sing;. In the second case, the magnitude of h increases
due to superimposed high frequency oscillations, the so called chatter vibrations.
Since the superimposed oscillations lead to a poor product quality, it is, from a
practical point of view, necessary to choose the process parameters so that any per-
turbation vanishes and the uncut chip thickness approaches the stationary evolution.

te[0,t], (2.18)

2The experiments have been carried out by P. Rasper and C. Mense under supervision of Prof.
E. Uhlmann at IWF, TU-Berlin (for further details see e.g. [104] and Section 6.3).
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Figure 2.3: Evolution of the uncut chip thickness for a stable (left) and unstable
(right) cut simulated with Stépan’s cutting force model (2.9) and a feed per tooth
f-=0.2 mm.

These requirements correspond to the mathematical concept of uniformly asymp-
totically stable solutions (for a precise definition see Appendix A). Consequently,
the following heuristic chatter criterion will be constructed so that only uniformly
asymptotically stable solutions are identified as stable.

2.1.5 A chatter indicator

As shown in Section 2.1.4 the solution of the milling model summarised by (2.18)
may become unstable if the parameter a, exceeds a limit value. Even though a rigor-
ous stability analysis approach is presented in Section 2.2, it is, for the comparison of
the empirical cutting force models, sufficient to work with an approximate stability
criterion, the so called chatter indicator. Moreover, a possibly difficult linearisation
of the system (h, is not differentiable) can be avoided since the numerically com-
puted solution in time domain provides all the necessary information. For a more
rigorous justification of the chatter indicator the reader is referred to pp. 25.

Sims [91] presents a criterion which uses Fourier analysis of the data to distin-
guish oscillations due to separate excitation from those due to self excitation. Based
on this distinction it is possible to judge whether the amplitude of self exited vibra-
tions decays or increases. In the case of an increase the state is identified as unstable.
Li [60] proposes another chatter indicator, comparing the dynamic cutting force with
the static one. Campomanes |23] makes use of a similar indicator, but he considers
directly the dynamic and static chip thickness. However, the latter methods use
a chatter threshold to identify unstable processes. The precise threshold value has
to be deduced from numerical experiments and assumes values between 1.04 and
1.4. Another method to classify the results of the time domain simulation has been
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introduced by Smith and Tlusty [92]. They use a peak to peak forces scheme to
identify stable cutting conditions.

An alternative approach avoiding the difficulty of defining an empirical chatter
threshold value, is to consider for each tooth the difference between the total uncut

chip thickness h/ = héyn + b, and its stationary part h’,,,, i.e.

N

DR () = by (D). (2.19)

Jj=1

1

)=
For every time, the parameter ep(t) can be computed from the corresponding nu-
merical solution of the milling system. Consequently e, (t) is the starting point for
the derivation of a chatter indicator. Recall that in case of uniformly asymptotically
stable solutions any small perturbation vanishes and the uncut chip thickness ap-
proaches the value hitat. Correspondingly, the local deviation of total and stationary
uncut chip thickness e;, decreases in time. Exploiting the evolution of ¢, leads to
the following number

n = max ep(s) — max en(s), (2.20)

with Iy = (to, k7) and I, = ((m — k)7, m7), m > k. While for < 0, the simulated
milling process is classified as stable, positive values of 1 indicate unstable processes.
The stability limit for a given spindle speed can computed applying Algorithm 1
which exploits the characteristics of n. While the the parameter £ is rather uncritical,
a wrong choice of m leads to serious errors because the computed stability limit
depends on the number of simulated revolutions of the tool [91]. The value of the
chatter indicator (m = 55 and k = 3) corresponding to the stable simulation shown
in Figure 2.3 is n = —0.225. The value for the unstable case is n = 1.129.

Algorithm 1 Stability limit computation

Choose iteration parameters m, k, with m > k > N,
Choose a3 so that 7(a3’) < 0
Choose a, so that the n(a,) > 0
while (a, —a3') > TOL do
ap = (ap +a3')/2
Solve problem (2.1) numerically on [0, tg = m7], with 7 = (nN,)~!.
Calculate 1 according to (2.20)
if n < 0 then
ay! = ap, (system is stable)

end if
. end while

— =
_ O

2.1.6 Comparison of the empirical cutting force models

Combining an empirical cutting force model with the simple milling system (2.1)
leads, depending on the employed model, to different linear or nonlinear periodic
delay differential equations. Although the models have a similar structure, they pro-
vide for a given uncut chip thickness different cutting force values. Consequently,



16

2.1. Dynamics of a simple milling system

the corresponding stability limits are expected to be different. Computing the sta-
bility limit for each cutting force model by means of time domain simulations and
the chatter indicator reveals the differences between the cutting force models.

(fz =0.20 mm) / [mm]
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Figure 2.4: Comparison of the stability charts computed for different cutting force
models and f, = 0.2 mm.
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Figure 2.5: Comparison of the stability charts computed for different cutting force
models and f, = 0.05 mm.

While for f, = 0.2 mm the variation of the predicted stability limits is rather small
(see Figure 2.4), large deviations can be observed in case of f, = 0.05 mm (see
Figure 2.5). Analysing the difference between the stability limits for f, = 0.2 mm
and f, = 0.05 mm illustrated in Figure 2.6 leads to the conclusion that the nonlinear
cutting force models, i.e. (2.12), (2.11) and (2.9), predict, depending on the chosen
feed, different stability limits. In contrast to the nonlinear models, the linear models
predict the same stability limits for all values of f,.
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Figure 2.6: Comparison of the difference between the stability charts corresponding
to f, = 0.2 mm and f, = 0.05 mm.

2.2 Stability analysis for large DDE systems with
periodic coefficients

2.2.1 Introduction to stability analysis for milling systems

Stability condition

The main objective in stability analysis for milling systems usually is to determine
the stability of periodic solutions. As outlined by Hale 38, p. 191], the approach
presented in this section can be interpreted as an extension of the Floquet theory for
ordinary differential equations. The motivation for the strategy of analysing periodic
solutions can be illustrated by means of the uncut chip thickness (2.5) which only
depends on the difference between current and delayed solution. Consequently, the
general delay differential equation 2.18 simplifies for milling models to

y(t) = fmi(tv y(t)7 y(t) - y(t - T))? te [O, te]» (2'21)

with initial condition y(s) = ¢(s), s € [-7,0] and f,,; : R x R" x R" — R". In case
of T-periodic functions, i.e. y,(t) = y,(t+7), (2.21) becomes an ordinary differential
equation characterising the periodic solution, i.e.

yp - fmi(tayp(t)7 0) = fmi<t7 yp<t))7 te [07 te]? (222)

with the initial condition y,(0) = 0. For small perturbations, the stability of a peri-
odic solution y, can be determined by means of linear stability analysis. Rewriting
the solution of the general equation y(t) as the sum of a periodic function y, and
a small perturbation z, i.e. y(t) = y,(t) + x(¢), linearising the right hand side in
x(t), x(t — 7) and exploiting the equation for y, leads to the following linear delay
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differential equation describing the evolution of the small perturbation x(t), the so
called first variational equation (see [54]), i.e.

#(t) = A()z(t) + Bt)z(t — 1),  te (0L, (2.23)

with the initial condition x(s) = ¢(s), s € [—7,0] and periodic and possibly non
smooth matrices (with respect to time)

A(t) = 02 fmi(t, Yp, 0) + O3 fini(t, yp, 0),
B(t) = _anmi(tv Yps 0)7

where 0; fi(t, xp,0) denotes the partial derivative of f,,; with respect to the ’ith’
argument evaluated at (¢, y,,0). Since for small perturbations the stability properties
of y,(t) are the same as those of the trivial solution z(¢) = 0 (see [54, p.243|), the
problem of determining the stability of a periodic solutions reduces to the analysis of
the linear delay differential equation (2.23) for the evolution of z. In case of a linear
milling system (2.23) follows immediately from the fact that the solution y can be
written as a superposition of y, and z. If the matrices A(t) and B(t) are measurable
in ¢, the solution of (2.23) is continuous, i.e. z(t) € C([—7,t.]) (see [38, p. 55]). By
defining
x(s) = x(t+s) : [-7,0] —» R", (2.24)
(2.23) can be rewritten as a linear retarded functional differential equation (RFDE),
ie.
z(t) = A(t)z:(0) + B(t)x:(—7) = L(t, x¢), t €10, t.], (2.25)
with initial condition z(s) = ¢(s), s € [—7,0]. The mapping L : D — R™ with
L(t,.) = L(t + 7,.) is called linear periodic functional on D C R x C([—7,0]).

The solution operator T'(t,0) corresponding to (2.23) mapping a given function
¢ € C([-T,0]) to the solution on [t — 7,¢] is defined by

T(t,0): C([—,0]) — C([—T,0)]) (2.26)
¢ T(t,0)p = x.

The special solution operator for t = 7, i.e.
Up="T(r,0)0,  ¢€C([-,0]), (2.27)

is called monodromy operator. Following the lines of Hale ( [38, p. 192]), the
spectrum o(U) of U is at most countable, and is a compact subset of the complex
plane with the only possible accumulation point being zero. If u # 0 is in o(U),
then p is in the point spectrum Po(U), i.e.

Ug = u, (2.28)

with 0 # ¢ € C([—7,0]). Any u # 0 satisfying (2.28) is called characteristic multi-
plier of (2.25) and any A for which p = e is called characteristic exponent of (2.25).
The stability condition for the zero solution of (2.25) and (2.23) respectively, can
be formulated by the following theorem:.



2.2. Stability analysis for periodic systems 19

Theorem 2.1 /38, p. 195] The solution x = 0 of (2.25) is uniformly asymp-
totically stable (for a precise definition see Appendiz A) if and only if all the char-
acteristic multipliers of (2.25) have moduli less than 1.

The above theorem is the starting point for several numerical methods. The usual
strategy is to compute a finite dimensional approximation U, of the monodromy
operator U and to calculate the approximate characteristic multipliers p, by solving
a standard linear eigenvalue problem (2.28) for U,,.

Example for the Monodromy operator approximation

The construction of an approximate monodromy operator U, corresponding to (2.25)
can be illustrated by means of a straightforward time discretisation of (2.25) em-
ploying an implicit Euler scheme. To this end, let In = [0, At, ..., 7—At, NAt = 7]
be a discretisation of the time interval [0, 7] with constant step size At = 7/N,
xl = x(t; — 7) the retarded discrete solution of (2.25) and z; = z(¢;) the current
discrete solution of (2.25) on the interval [0,7]. Approximating the time deriva-
tive appearing in (2.25) by means of finite differences leads to the following discrete
version of (2.25), i.e.

T; — Xiji—1 = AtAZZL’Z + AtBil’;,

with A; = A(t;) and B; = B(t;). Evaluating the discrete equation for each ¢ € I
gives

1 — AtAll’l = AtBldflﬂ + x5 = Atleg + er’
To — T1 — AtAQ.TQ = AtBQQZg,

IN —TN-1 — AtAN.%N = AtBNl‘}"V

In matrix form, the set of discrete equations reads

—Aa N

With the matrices Ax and Ba, the approximation of the monodromy operator
mapping the discrete solution from the interval [—7, 0] to the discrete solution on
the interval [0, 7] can finally be written as

U, = (Aa) ' Ba. (2.29)

Note that the above derivation only illustrates the general strategy to construct the
discrete monodromy operator. The numerical methods pursuing the monodromy
operator discretisation approach usually involve more efficient discretisation schemes
with a higher order of convergence. For a more detailed discussion of the different
methods, the reader is referred to the following sections.
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Zero-order approximation

An alternative strategy to calculate approximate stability limits is the so called zero
order approach introduced by Altintas and Budak [4]. The basic strategy of this
method is to replace the time dependent matrices A(t), B(t) by suitable constant
approximations Ay, By and to compute characteristic exponents by solving a nonlin-
ear eigenvalue problem. The basic solution strategy can be illustrated considering
the matrices A(t) and B(t) corresponding to milling model obtained by combin-
ing (2.1) and Weck’s cutting force model (2.7). Rewriting the system in first order
form and performing some rearrangements finally leads to the general form (2.23)
with matrices

Alt) = [C(t)O—K _1D} . B(t) = {_ Oo(t) 8] , (2.30)

and the periodic matrix

N, . -
Gy ' sinp;  cos; lfn o '
Ct) = Zlg(soy) {_ cosp; sin %} l KJ [sin 05, cos o]
]:

—C(t+71). (2.31)

Since C(t) is a T-periodic function, it has a Fourier representation, i.e.

Clt)= Y Cpem, (2.32)

with coeflicients e
C,=~ / C(t)e 2 =tdt. (2.33)

T Jo

Replacing C(t) by the zero order term Cy finally leads to the constant approxima-
tions

0 1 0 0
PO S P R 0

and (2.23) transforms to the constant coefficient delay differential equation
#(t) = Apx(t) + Box(t — 7), t €0, (2.35)

with the initial condition z(s) = ¢(s), s € [—7,0]. Inserting the general ansatz
z(t) = veM into (2.35) leads to the nonlinear eigenvalue problem for the determina-
tion of A

(\I—Ag— Boe M)v=0,v#0, < det(\I—Ag— Boe ™) =0. (2.36)

Currently, a two-stage approach is a common and very effective way to compute the
multipliers (or the characteristic roots) for the constant-coefficient delay differential
equation (2.35). The two-stage approach consists of approximating all interesting
characteristic roots and using the approximations as starting guess to local correction
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method. The two-stage approach is implemented in the popular software package
DDE-BIFTOOL (see [31,83]) and has been employed in other contexts (see [36]).
While the first step is typically the discretisation of an infinite dimensional operator,
e.g. the monodromy operator appearing in (2.28), employing a linear multistep
method in DDE-BIFTOOL, or spectral methods as proposed in [13], the second step
is normally a Newton iteration. As discussed in [53], methods from the numerical
linear algebra field, e.g. residual inverse iteration (see [69]), seem to be very efficient
for directly solving the nonlinear eigenvalue problem (2.36) corresponding to (2.35).

Another popular method, that can be extended to the time periodic case, has
been proposed by Altinas and Budak [3,4]. In order to recover the framework of this
approach, the eigenvalue problem has to be rewritten in reduced form exploiting the
special structure of Ag and By, i.e.

()\ZI +AD+ K —(1— e_’\T)%C‘O) w =0, w # 0, (2.37)
with w = [vy, ve]? and Cy = ;—”CC_’O. Replacing the eigenvector by w = m.®(A)w and
introducing a new parameter A(A) = —(1 — e™*7)aq,, leads to

(I + A(A)é@(A))@ —0, @#0 (2.38)

with ®(A) = (1/m.)(N*I + AD + K)~! denoting the so called frequency response
function. Note that in practise, the frequency response function is usually directly
derived from measurements at the tool centre point (see e.g. [33]). As shown in [3,4],
the stability limit can be analytically computed from the rearranged eigenvalue
problem (2.38) performing the following steps. Choosing A = iw¢e and solving (2.38)
gives a complex solution A*. Exploiting the definition

A= —(1- e—i“’CT)ap = —(1 — cosweT + iSiHWCT)apa

yields two equations to determine a,(A*) and 7(we, A¥), ie.

. Re A* Im A*]°
ap(A7) = ——5 <1+ {Re A*l ) (2.39)

0 = Re A"sinweT 4+ Im A" (coswer — 1). (2.40)

where the second equation can be rearranged to compute delay and spindle speed,
i.e.
1 we

o _ .24
n(we, A7) N.7(we,A*) — N,[(2k + 1)m — 2 arctan (Im A*/Re A")] i

The integer number £ = 0,1, ... is an additional parameter to switch between the
different lobes. The system of equations (2.39), (2.41) and (2.38) therefore deter-
mines, for a given frequency wc, the stability limit in terms of a, and n. The final
stability lobe diagram illustrated in Figure 2.7 can be constructed varying the values
of we and k and computing the corresponding solution given by A*, n(we, A*) and
a,(A*). The chatter frequency diagram shows how the frequency we changes with
the spindle speed.
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Figure 2.7: Stability chart and chatter frequency we computed with Alintas’ method.

Time-periodic case

Similar to the constant coefficient case arising from the zero order approximation
discussed above, a two step approach seems to be an effective way to compute
the characteristic multipliers corresponding to (2.28). Although there are several
methods which could be used as a first step of the two-stage approach, there are up
to the authors knowledge only a few works focusing on the second step (see e.g. [80]).

The methods dealing with the first step of the two-step approach, are based on an
approximation of the monodromy-operator (2.28). Spectral discretisation has been
employed by several groups to develop efficient techniques (see e.g. [14,20,21]). A
partition of the period 7 is used in the semi-discretisation approach to approximate
the solution of the periodic delay differential equation by a sequence of inhomoge-
neous ordinary differential equations with constant coefficients. The corresponding
sequence of fundamental solutions can be used to construct an approximation of the
monodromy operator ( [46,49-51]). A collocation discretisation combined with a
Newton correction is presented in [96].

Models related to milling have been widely studied using time periodic delay
differential equations. Typical issues are the analysis of different instabilities, i.e.
quasi periodic and periodic 2 chatter (see e.g. [22,46, 48,49, 51, 63, 64, 96|), and
the effect of tool properties and tool asymmetries (see [47,113]), which cannot be
reproduced by the zero order approach. Although these effects do not occur in the
simple milling system, the model with periodic coefficients predicts more realistic
chatter frequencies than the zero order approach (see Figure 2.7 and 2.8). For
additional considerations related to the presence of multiple chatter frequencies, the
reader is referred to pp. 25. The oscillators involved in the time periodic models
are similar to the simple milling model introduced in Section 2.1 and have thus at
most 2 degrees of freedom. Larger systems modelling a more complex structure have
been analysed by means of an improved semi-discretisation algorithm [41]. However,
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Figure 2.8: Stability chart and chatter frequencies for the time periodic example
(for further considerations related to the occurrence of multiple chatter frequencies
see pp. 25).

coupled systems involving partial differential equations to represent the work piece
and large systems of ordinary differential equations to model the milling machine,
have not been investigated comprehensively (see [80]).

The experience with the constant-coefficient case shows, that a good two-stage
approach and in particular an efficient correction scheme is necessary if larger sys-
tems shall be treated accurately and reliably. As shown in [80], the strategy being
presented in [53] of directly solving the nonlinear eigenvalue problem (2.36) associ-
ated to (2.35), can be transferred to the periodic coefficient case. Since the corre-
sponding nonlinear eigenvalue problem involves the unknown fundamental matrix of
a periodic ordinary equation, the main challenge is to develop an efficient solution
algorithm for this problem. While the residual inverse iteration (see [69]) has been
used in [80], the focus in this work will be on Newton type methods. These methods
and their applications are extensively discussed in [53,65].

2.2.2 The nonlinear eigenvalue problem for the TPDDE
A nonlinear eigenvalue problem for TPDDEs

As outlined by Hale [38|, the characteristic exponents for the time periodic delay
differential equation (2.23) can be computed from a characteristic equation similar
to (2.36). The starting point for the derivation of such an equation is the following

Theorem 2.2 /38, p. 193] u = € is a characteristic multiplier of (2.23) if
and only if there is a monzero solution of (2.23) of the form x(t) = p(t)e* where

p(t) = p(t+7).
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In order to verify the condition for the characteristic multiplier, x(t) = p(t)e* can
be inserted into (2.23) to obtain

y — pe)\t + /\pe)\t — Ape)\t + B€_>\Tp6)\t. (242)
Since e # 0, p(t) satisfies the following linear periodic ordinary differential equation
p(t) = (A(t) + B(t)e ™ — X) p(t) = C(t, A)p(t). (2.43)

Now let ®(t,s,A) with ®(0,s,\) = I be a fundamental solution of (2.43) (which
usually cannot be computed analytically). By definition, the solution of (2.43) is
given by

p(t) = ®(t,0,\)p(0) = (¢, 0, A)po, (2.44)
with py denoting the initial condition for p(t). Exploiting the above relation, the
periodicity condition for p(¢) becomes

po = p(1) = ®(7,0, N)po. (2.45)
Since (2.45) has nontrivial solutions if and only if
det (®(7,0,A) —I)=0 < (P(7,0,A) =I)py =0, (2.46)
o

with py # 0, the periodicity condition for p(t) provides an equation to determine
the characteristic exponent .

Remark 2.3 The characteristic equation (2.36) corresponding to the constant
constant coefficient case can be recovered from the time periodic case. For constant
A, B the fundamental solution of (2.23) reads

®(t,0,\) = exp ([A+ Be ™ — M| ¢). (2.47)
Accordingly, the periodicity condition becomes
Do = exp ( [A + Be ™\ — /\I} T)p(). (2.48)
The fact that \I commutes with A, B allows to rewrite (2.48) as
po = e Mexp < [A + Be‘”} T)pg, (2.49)

which implies with p = " that
(exp ( [A+ Be™7] 7’) - /~LI>PO =0. (2.50)

Consequently, p is in the spectrum of exp ([A + Be_”] 7'). The spectral mapping
principle (see e.g. [29, Appendix II, Theorem 4.17]) states that

ap(exp ([A+ Be ™| 1) ) =exp (top(A+ Be 7)), (2.51)

with op(.) denoting the point spectrum. Thus, there is a v € op(A + Be ) so
that /" = = €. Since 7 # 0, v = A, i.e. Xisin op (A + Be"\T) and therefore
satisfies the characteristic equation

(A+Be ™™ - M)z =0, xz#0. (2.52)
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Justification of the chatter indicator and chatter frequencies

As shown above and indicated by the Floquet theory for periodic delay differen-
tial equations, the particular solution of (2.23) corresponding to a characteristic
exponent A can be written as (see e.g. [47])

x(t) = p(t)e™ + p(t)e™, (2.53)

where p(t) = p(t + 7) denotes a periodic coefficient and p the corresponding conju-
gated value. In terms of z(t), the uncut chip thickness (2.6) reads

hl = himt + [z(t) — 2(t — 7)]e;, (2.54)

with e; = (sing;, cosp;)". Since the chatter indicator involves the difference h/ —

h?,.., the focus is on the evolution of the second term, i.e.

o) = ot = 7)) es(0)] = | ()™ + BO))e;~

(p(OeX7) + BB e (2.55)

= |p(t)ese (1 — )+ plt)ese (1 — e )| (2.50)

Choosing A = o + i with o > 0 (< solution is unstable) and 0 < § < 7 gives

at|

[[2(6) = 2t = P e ()] = | (PO (1 = e77) + BB (1 = 7)) ¢ Je

= c(t) ||,

with a 7-periodic and real coefficient ¢(t) = ¢(t + 7). Replacing the time by ¢t =
(k+e)r with 0 < e <1 so that 0 < ¢. = ¢((k +¢)7) leads to the limit

lim |[z.(k) —xz(k —1)]e;((k+¢)7)| = ¢ lim ‘ea(k+6)7’ = 00, (2.57)
k—00 k—o0
where z.(j) = z((j + €)7). Consequently, there is an £ € [0,1] so that the uncut
chip thickness tends to infinity for characteristic exponents A\ with Re A = a > 0.
Due to this property the evolution of the uncut chip thickness indicates unstable
processes.

In addition to the analysis of the uncut chip thickness evolution, (2.53) provides
information about the chatter frequencies (see Insperger et al. [47]). For the cal-

culation of the chatter frequencies occurring in a process on the stability limit, i.e.
A = iw, (2.53) reads

x(t) = p(t)e™ + p(t)e ™" (2.58)

Following the arguments of Insperger, the periodic coefficient can be represented by
its Fourier series, i.e.

p(t) = Y Cpe™ I, (2.59)

k=—o00
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and thus the particular solution becomes

x@) _ Z C«kei(%rk/r-i-w)t+C‘«ke—i(2wk/r+w)t, (260)
k=—oc0

_ Z C«k‘eZm'(k/TJru.)/(271'))t_'_Cvk671'271'(l~c/7'4ru.1/(27r))t7 (261)
k=—oc0

with amplitudes Cj, C} and chatter frequencies

w k w
=+~ 4~ =+—+knN,, 2.62
Jo 2 * T 27 m ( )
with £ = 0,4+1,£2,.... Note that only positive frequencies are physically mean-

ingful. The chatter frequencies occurring in Figure 2.8 have been calculated with
the above formula (2.62). The parameter w denoting the imaginary part of A can
be either directly derived from the computed characteristic exponent or calculated
from the characteristic multiplier p (see [47]), i.e.

1 I
w = — arctan ( - M) : (2.63)
T Re p

2.2.3 Residual inverse vs. augmented Newton

In some contexts, the following class of problems is known as nonlinear eigenvalue

problems: find A € C and v € C*\{0} such that
T(Mv = 0. (2.64)

There are numerous methods for nonlinear eigenvalue problems; see, e.g. |65, 82].
Clearly, (2.46) is a nonlinear eigenvalue problem of the form (2.64). This is a key
observation in this work and will finally lead to an efficient algorithm for the com-
putation of stability limits of the zero solution of (2.23). In [80] the residual inverse
iteration (RESINV, see e.g. [69]) has been employed to solve the nonlinear eigen-
value problem (2.64). One version of RESINV is the repeated solution of a scalar
nonlinear equation, solving a linear system and updating a vector,

UgT(Ak_H)Uk == O, (265)
T(1) Aviyr = T(Apg1)vn (2.66)
Vg1 = Vg — AU}C—H- (267)

Although the RESINV method works satisfactorily for some problems, it seems
advantageous to use the so called augmented Newton method (see e.g. [52,65])
instead. The algorithm for the augmented Newton method basically consists of the
repeated solution of a linear system, updating the eigenvalue and computing the

eigenvector, i.e.
Uk+1 = T()\k)_lT/()\k)Uk (
1 (
g1 = ———

k+1 dHUk+1

Akl = Ap = Qg1 (
(

Vk+1 = Op41Uk+1,
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where d¥ represents an arbitrary left vector, e.g. d = (1,...,1)T. An important
difference between RESINV and Newton’s method is that in case of residual inverse
the matrix in the linear system 7'(x) does not change throughout the iteration.
This might be advantageous if this is the computationally dominating part of the
iteration. The trade-off is that, unlike Newton, residual inverse iteration only has
linear convergence (to simple eigenvalues). The quadratic convergence and the fact
that the method works also for non simple eigenvalues (see [52]) compensate the
difficulties arising due to the repeated evaluation of the operator T'(\).

Evaluating the matrix operator

Since the matrix-operator T'(\) = ®(7,0,\) — I cannot be computed analytically,
the main challenge in the presented approach is the efficient evaluation of T'(\) and
its derivative 7"(\). In order to develop an effective approach, consider the result of
T(\) applied to an arbitrary vector vy, i.e.

TNy =o(1,0,\)y —y =p(7,0,\,y) — v, (2.72)

with p(¢,0, A\, y) representing the solution of (2.43) at time 7 for a parameter A and
initial value y. Similarly, the result of the operation 7"(\)y can be written as

T/()\)y = a/\(I)(Ta 07 /\)y = a)xp(Tv Oa )\7 y) (273)

While p(7,0, A, y) in (2.72) can be directly computed solving (2.43), the value of the
derivative d\p(T, 0, A, y) remains unknown. In order to derive an equation to compute
o\p(1,0, A, y), assume that p is sufficiently smooth and compute the derivative of
(2.43) with respect to A, i.e.

a)\atp = atﬁAp = atg = a)xo(ta )‘)p + C(ta )‘)ga (274)

with ¢ = 0yp. Combining (2.74) with (2.43) leads to the following system of linear
periodic ordinary differential equations

o |p C(t, \) 0 P

— = ’ ) 2.

310 = ot con) (270)
The appropriate initial value for g can be motivated by the following argument.

First, integrate (2.43) in time and rearrange the expression to get an explicit formula
for the corresponding initial condition

y=p(t,\) — /Ot C(s,\)p(s, N)ds. (2.76)

Since the initial condition p(0) = y does not depend on A, the derivative of (2.76)
with respect to A reads

0=0xp(t,\) — /Ot Iy (C(s,\)p(s,\)) ds

=g(t,\) — /Ot IWC (s, \)p(s, A) + C(s,N)g(s, N)ds
— 4(0), (2.77)
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which can be interpreted as the integral formulation of the second equation in (2.75).
Consequently, (2.77) provides an expression for the initial condition for the second
equation in (2.75), i.e. ¢g(0) = 0. Thus, the solution of (2.75) for initial condi-
tion (y,0)7 finally yields p(7, 0, \, y) and the corresponding derivative g(7,0,\,y) =
o\p(7,0,\,y). However, instead of the vectors p and g, the augmented Newton
method needs the corresponding fundamental matrices ®(7,0,\) and 0\®(7,0, A).
Rewriting (2.75) as a matrix differential equation, i.e.

o [CwN 0
ol = oty cun] (2.78)

leads with initial value
v(0,0,\) =1, (2.79)
to the fundamental solution matrix of (2.75) denoted by

o(t,0,0) 0

V0N =10 (0.0 Wit 0,))

(2.80)

Since (2.78) is linear, the fundamental solution can be directly approximated em-
ploying a standard ODE solver, i.e. odell3 (see e.g. [85]). Now, all the necessary
evaluations occurring in the augmented Newton method, can be expressed by means
of the approximated fundamental matrix U4 (7,0, \), i.e.

T(A\r) = RYUA(7,0, M) R, — 1 (2.81)
T'(Ae)vy, = RyUA(7,0, \p) l%’“} : (2.82)
with rectangular matrices
I
R, =1, and  R,=[0 I]. (2.83)

Note that, the expressions (2.81) and (2.82) can also be used to compute the evalu-
ations occurring in the residual inverse iteration, i.e.

T(u) = RywA(r,0, )R, — 1 (2.84)
T(Ajs1)vp = REWA(7,0, At {”‘6’“] — Vg (2.85)
T'(Ast )0k = RgUA (7,0, A1) [18“} , (2.86)

where the last expression is needed to employ Newton’s method for the scalar equa-
tion (c.f. [80]).
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Algorithmic details

The augmented Newton algorithm can be described through the following scheme.
Let A\g denote the starting guess for the eigenvalue and let vy represent the corre-
sponding eigenvector. The first guess for the eigenvalue typically follows from the
first step of the two step approach or from the preceding step of a continuation
procedure.

Algorithm 2 AUGMENTED NEWTON

1: Set RESTOL, stoplter = false, A = A\g and v = vy.

2: while NOT(stoplter) do

3:  Compute T'(\) and T"(A)v according to (2.81) and (2.82).
4:  Compute residual r = T'(\)v.
5. if [r| < RESTOL then

6: stoplter = true
7

8

9

else
Solve linear system (2.68) to compute u.
Calculate o, A and v according to (2.69), (2.70) and (2.71).
10:  end if
11: end while

Similarly, the following scheme summarises the residual inverse iteration being used
in [80], i.e.

Algorithm 3 RESINV

1: Set RESTOL, = Ay, A = A\g and v = 1.

2: Compute T'(u1) according to (2.84).

3: while NOT(stoplter) do

4:  Solve nonlinear equation (2.65) to update A.
5. Compute residual r = T'(\)v.
6: if |[r| < RESTOL then
7 stoplter = true
8
9

else
Solve linear system (2.66) to get Aw.
10: Update v = v — Auw.
11:  end if
12: end while

Two step approach and continuation

Recall that the main goal in stability analysis in milling is to predict the stabil-
ity limit curve in the a,-n-plane defined by x| = 1 or Re A = 0 respectively. An
example for such a limit curve is given in Figure 2.8. For general problems in-
volving delay differential equations, the first step in a two step approach is the
approximation of the spectrum by means of a solution operator discretisation ap-
proach followed by a Newton iteration (see e.g. [83|). Similarly, the first step in
the analysis of milling problems is choosing a point (ag, n?) in the parameter plane,
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computing the corresponding monodromy operator approximation U, (see p. 19) by
means of time-domain finite elements [64], semi-discretisation [51] or spectral meth-
ods |21] and solving the arising linear eigenvalue problem (2.28) to determine the
characteristic multipliers. Instead of computing the whole spectrum and selecting
the value with largest magnitude, it is more efficient to compute a small part of
the spectrum by means of Arnoldi-type methods being implemented in the popular
package ARPACK (see e.g. [58|). These methods are designed to compute a small
ordered subset oy (U,) C o(U,) of the spectrum containing for example the eigen-
values with largest magnitude. Among them, the member with largest magnitude
tmaz € ora(U,) serves as starting guess for the continuation method. Note that
the corresponding characteristic exponent reads

1 1 |
Re Moz = — In (\/,umaxﬁmax) . Im \,.. = —arctan (%) (2.87)
T T

€ /’[’mCLZE

After having found a suitable characteristic exponent, the second step is the
computation of the implicitly defined stability limit curve, i.e.

Re A(n,a,) =0,

employing a suitable continuation method (see e.g. Allgower et al. [2]). The Euler-
Newton continuation method, which shall be used in the present work, is usually
formulated as a predictor-corrector scheme. In order to explain the predictor step,
reformulate the above stability limit condition as

H(u) =0, (2.88)

with H : RY — R¥"! and u = (n,a,)". Next, assume that u is a parametrised
curve with curve parameter s, i.e. u: R — RY. Consequently, differentiating (2.88)

with respect to s gives

du
H(u)— =0 2.89
(u)===0, (2.89)
with an (N — 1) x N matrix A := H'(u) and the corresponding tangent vector

1(A) = du

= — 2.90
- (2.90)

with ¢(A) € RY. Note that due to (2.89), t(A) is in the kernel of A. Approximating
the derivative of u with respect to s in (2.90) by finite differences leads to the

predictor step
v=u(s)+ ht(A) =u+ ht(H'(u(s))).

Since the predictor v = uf’ (s + h) represents only an approximate solution of (2.88),
the corresponding point u“(s + h) on the implicitly defined curve has to be found
solving the minimisation problem

1 )
min o f|v — wl]

s.t. H(w) =0,
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with the necessary condition (see |2, p. 20])

H(w) =0,
t(H' (w))" (w —v) = 0.
As outlined in |2, pp. 22-27], the system being defined by the necessary condition

can be solved performing a Newton iteration involving the Moore-Penrose inverse
of H'(v). The corresponding Newton update reads

Av = —[H'(0)]" H(v), (2.91)
with [H'(v)]T = (H'(v))T[(H'(v))(H'(v))T]™' denoting the Moore-Penrose inverse.

Finally, the above considerations can be summarised by the following continuation
algorithm.

Algorithm 4 NEWTON-EULER-CONTINUATION

1: Set TOL and choose h > 0.

2: Set lower and upper bounds u”, uY.
3: Initialise u, with H(u) = 0.

4: stoplterl = false.

5. while NOT (stoplterl) do

6:  Perform Euler step: v = u + ht(H'(u)).
7. stoplter2=false.

8:  while NOT(stoplter2) do

9: Compute update: Av = — [H'(v)]" H(v)
10: Update v = v + Aw.

11: Compute residual r = H(v).

12: if |r| < TOL then

13: stoplter2=true

14: end if

15:  end while

16: u="v

17:  if u > u” and u < uY then

18: Choose a new step length A > 0
19: else
20: stoplterl=true
21:  end if

22: end while

2.3 Applications

2.3.1 Validation of the method

The first example is a well studied one-dimensional milling system. The experimen-
tally validated stability boundaries have been independently predicted by different
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methods (see e.g. [64] or [22]) . The model equation can be derived in a similar way
as presented in Section 2.1 and read

i)+ 26ni(®) + aiy) =~ g g7, o)
b1) = D 01 (0) [ sin(ioy (1)) + Kiconliy ()] sms (1), (2:99)
w;(t) =2 (nt+(j —1)/N,), (2.94)

where ¢(.) represents the switch function (2.4). The material and cutting param-
eters have been taken form [22| with entry and exit angles ¢, = 0 and ¢, = 7,
corresponding to an immersion ration a/D = 1.

Equation (2.92) models the dynamics of a milling process where a rigid cutter
machines a rigid work piece that was mounted on a flexible device. Since this set-
ting exhibits a frequency response function similar to a 1D harmonic oscillator, the
stability limits, predicted from the analysis of the one-dimensional system (2.92),
are in perfect agreement with the experimental results (c.f. [64]). In [22], the sys-
tem has been analysed for up- and down milling and different immersion ratios
a./D = 0.25, 0.5, 0.75, 1. Figure 2.9 shows the result of the recalculation of the

a_/[mm]

spindle speed / [rpm] x 10"

Figure 2.9: Recalculation of the down milling example (grey shaded region: unstable
region computed with the Chebychev-Collocation-Method [22], blue squares: stabil-
ity limit calculated with the new approach based on nonlinear eigenvalue problems).

down milling example given in [22| for a radial immersion ratio of a/D = 1. As
illustrated in Figure 2.9, the results obtained by the augmented Newton method
in combination with the continuation algorithm are in perfect agreement with the
stability limits obtained with Butcher’s Chebychev-Collocation-Method. In contrast
to the RESINV approach discussed in [80], the unstable region corresponding to a
Flip-bifurcation, i.e. |u| > 1, Im p = 0, can be reproduced utilising the augmented
Newton method.
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2.3.2 Stability of a PDE-DDE-milling model
Modelling

Generally, the stability limits for a milling process depend on the cutting forces and
on the dynamical characteristics of milling machine and work piece. ODE-systems
derived from modal analysis data provide reliable models for the milling machine
and the attached cutter. The work piece is often assumed to be rigid. However,
when machining thin walled pieces the latter assumption eventually leads to large
errors in the stability limit prediction. In order to overcome this difficulty, the ODE-
system for machine and cutter can be extended by additional equations accounting
for the work piece characteristics that are usually assumed to be constant (see [3]).
Because of the material removal and since the cutting zone translates along the work
piece boundary, the work piece characteristics, i.e. the impulse response function,
change during the cutting operation. In order to account for these effects, the work
piece has to be considered as series of continuous damped elastic bodies each being
represented by a partial differential equation (c.f. [42]). The coupling of machine
and work piece representation via the cutting forces, finally leads to a coupled DDE-
PDE-system with delay.

Fig 2.10 shows an example of a simple coupled DDE-PDE-system with delay.
While the oscillator on the right represents the rigid milling cutter mounted on
a flexible device, the rod on the left is a model for a damped elastic work piece.
In particular this example illustrates the usefulness of the numerical method by
analysing the effect of the coupling. The evolution of the characteristic exponents
corresponding to the coupled system is compared to the evolution of the character-
istic exponents corresponding decoupled systems. The two decoupled systems can
be derived from the equations of the coupled system by the assumptions that either
the work piece is perfectly rigid, or that the rigid cutter is mounted on a perfectly
rigid device. Setting the coupling vector ¢" appearing in (2.109) or in (2.110) to
c" = 0, leads to the independent equations for work piece and cutter. Moreover,
the assumption that the work piece is perfectly rigid gives a system presenting the
same structure as (2.92). The equations of motion for the rod and the rigid cutter

L L)
q(

X, u(tx) 7 )

17

Lo Ltt)

Figure 2.10: Scheme of the coupled DDE-PDE milling model (the grey shaded area
represents the massless perfectly rigid part).



34 2.3. Applications

mounted on a flexible device read

00 u(t,x) — Opo(u(t,z)) =0, (2.95)
u(t,0) =0, o(t,L) = —F/A, (2.96)
G(t) + 2Cwoq(t) +wo’q(t) = —F/m, (2.97)

with ¢ = 5 im and w2 = % Since the focus is on engineering materials, the stress
is described by the following relation

o(u(t,x)) = Edu(t,x) + noyu(t, ), (2.98)

with F denoting the elastic modulus and n a damping constant corresponding to
the Voigt model. The variational form of (2.95) reads

/OL ooun(t, z)v(x)dr + /OL o(ult, )0y () dx

— o(ult, L))o(L) = —%U(L), VoeV, (2.99)

where V = {v € H'([0,L]),v|o = 0}. The cutting forces F occurring during the
metal cutting process act on the work piece boundary and on the cutter. In the
present example Weck’s empirical cutting force model (2.7) relates the uncut chip
thickness to the forces acting perpendicularly (F,) and normally () to the cutting
edge, i.e. the tip of the cutter in Figure 2.10. The above mentioned force F' follows
from the projection of the cutting force vector in x-direction, i.e.

A

F(t,h) = g(p(t)) [sin ¢, cos ¢] [?T(h)} (2.100)

where g(.) denotes the switch function introduced in (2.4). Note that, for the sake
of simplicity, the focus is on milling cutters with only one tooth and zero helix
angle. Since the uncut chip thickness entering in the cutting force model depends
on the deformations of work piece and cutter, the formula for the simple model,
i.e. (2.6), has to be refined. To this end, let the rod in Figure 2.10 be composed of
two parts. The first damped elastic part, of length L, is followed by a small rigid
and massless part with varying length L%(¢) that is removed during the cutting
operation. Explicit formulae for the quantity L at time ¢ and time ¢t — 7 can be
derived from Figure 2.10, i.e.

LR 4+ u(t,L) + L = Ly — I(t) — gsingo —q(t), (2.101)
LRt —7)+ut—7,L)+L=1Lo—I(t—7)

D
-3 sing — q(t — 7). (2.102)

The uncut chip thickness is defined as the difference of Lg(t—7) and Lg(t), projected
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on the vector pointing from the centre to the tip of the cutter, i.e.
h=[(L"(t—7)— L%(t)] sinep
=[I(t) = l(t —7)]sinp
+ [u(t, L) —u(t — 7, L) + q(t) — q(t — 7)] sinp
= f,sinp
+ [u(t,L) —u(t —7,L) + q(t) — q(t — 7)] sin , (2.103)

with f, = [(t)—{(t —7) denoting the feed per tooth. Exploiting the above-mentioned
expression for the uncut chip thickness, the formula for the cutting forces reads

F = g(t) (sin oK, + cos ok ) a,{la(t) — a(t - 7)]
+[u(t,L) —u(t —7,L)] + f.}sing
= a,g(t) (sin2g0 Kp + cos psin KT) X
{f: +a(t) = q(t = 7)] + [u(t, L) —u(t — 7, L)]}
= ayw(t) [q(t) — q(t — 7)]
+ apw(t) [u(t, L) —u(t — 7, L)]
+ ayw(t)f. (2.104)

where the function w(t) = g(t) <sin290 K, + cos @sin ¢ f(t) denotes a T-periodic
coefficient.

Discretisation

The next step is the space discretisation of the PDE-part in variational from (2.99)
utilising the Garlerkin method. To this end, let span(yt...¢N) =V}, C V be a
finite set of piecewise linear basis functions ¥ (x). By means of the finite represen-
tation, the displacement field can be approximated by

u(t,r) ~ iuf(t)z/h(x), (2.105)

with N, denoting the number of basis elements. Choosing v(z) = ¥;(z) in (2.99)
leads to the corresponding finite dimensional approximation,i.e.

M"i" + D" + Kul =", (2.106)
with mass, damping and stiffness matrices
L L

M = oo / Yipjda, Dl =n / DpibiOpib;de, (2.107)

0 0

L
Kli=FE / 0p0i 0y d, (2.108)
0

and the right hand side

F Fh
rit = ——¥i(L) = ——d;(L).
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Inserting the approximation (2.105) in the cutting force formula leads to the discrete
cutting force F", i.e.

F" = Fopp + Fppp + Fy
apw(t) (q(t) = q(t — 7))
Nn
+apw(t) Y r(L) (ufl(t) = ui(t — 7))
k=1
+ a,w(t) f.
Finally, the semi discrete approximation of (2.95), (2.97) and (2.104) reads

75 L]0 ]38

5 e (] - [ =)+ ) e
with coupling vector ¢ = (¢1(L) ... ¥y, (L))" and coupling matrix C% = ;(L)iy(L).

Now, the general form (2.35) can be recovered from (2.109) by rewriting the equa-
tions in first order form and performing some additional rearrangements.

Stability of the coupled system

The right hand side R" of (2.109) can be divided into a term involving the state
(ul(t), u(t — 7), q(t), q(t — 7)) and a periodic term only depending on f,. Due to
the linearity of the system, the solution is therefore composed of two independent
contributions: a periodic part corresponding to the periodic right hand side involving
f. and a homogeneous part corresponding to the state dependent term in R". Since
the stability of the zero solution is the main objective of the analysis considered
here, the focus is on the homogeneous equation, i.e.

o) [0 2] o] <[ ™ 3]

R ) A

The stability limits of the coupled system (2.110) can be determined employing the
augmented Newton method in combination with the continuation algorithm. The
material and cutting parameters are m = 0.06 kg, ( = 1.2 %, wy = 2w x 2241.49
Hz, N, = 1, K, = 690.0 N/(mm?) and K; = 894.0 N/(mm?). The entry and exit
angles have been chosen as ¢, = 0 and ¢, = 7. The material parameters for the rod
equation have been set to p = 0.27 kg/mm3, E = 70 x 10* kg / (s> mm), n = 0.0378
kg / (mm s), L = 0.1 mm and A = 10 mm? The rod was discretised with 5
elements. Note that the rod parameters are artificial values that have been chosen
for presentation purposes. Figure 2.11 shows the result of the stability analysis. As
in Section 2.3.1 the white region characterises the combinations of a, and n where
the solution of the coupled system is asymptotically stable. The blue lines show the
evolution of the paths defined by Re (A(n,a,)) = 0.
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a_/[mm]

0
0.95 1 105
spindle speed / [rpm] x 10%

Figure 2.11: Stability chart for the coupled system (grey shaded area represents the
unstable regions).

Effect of the coupling

For the investigation of the difference between the coupled system and the decou-
pled subsystems, equation (2.110) has to be simplified. Setting ¢ = 0 yields two
independent systems. While the first part reads

() + (M) DMl (1) + (M) K" (t) =

t
—%O(Mh)‘lCh (u"(t) —u"(t — 7)), (2.111)
the second equation reduces to an expression presenting the same form as (2.92),
ie.

a,w(t)

G(t) + 20w (t) +wia(t) = (q(t) —q(t —7)). (2.112)

After having decoupled the system, the path following can be carried out for each
equation separately. The comparison of the corresponding stability lobes reveals
the effect of the coupling. In Figure 2.12 the red lines represent the stability lobes
corresponding to the coupled system. The result of the computations for the de-
coupled system has been plotted with blue lines. The main differences between the
blue and the red lines occur in the right part of each stability lobe. While the lobe
corresponding to an eigenvalue of the oscillator equation (2.112) lies below the lobe
of the coupled system, the stability limit corresponding to an eigenvalue of the rod
equation(2.111) is higher than the respective curve for the coupled system.

Discretisation error

The finite element discretisation of the continuous rod equation introduces a dis-
cretisation error. In order to display this effect of the discretisation consider the
stability lobe that has a minimum at n = 9800 rpm (see Figure 2.11). Refining
the discretisation, i.e. N, = 10, 20, 35 points, and recalculating the stability lobe
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Figure 2.12: Comparison of the coupled (blue lines) system and decoupled systems
(green lines: ODE, red lines: PDE).

for each grid size reveals the effect of the approximation. Figure 2.13 shows that
the stability lobe moves to the left for smaller grid sizes. This observation can be
explained with the fact that the finite element approximation leads to an overesti-
mation of the first eigenfrequency of the continuous rod equation. The refinement
of the grid reduces the approximation error and the lowest eigenfrequency converges
to the value of the continuous system. Since the position of the stability lobe is de-
termined by one of the eigenfrequencies of the oscillation system, the lobe translates
because of the better approximation of the first eigenfrequency of the rod equation.

Model reduction

As the previous section shows, the discretisation error occurring in the rod equation

leads to a shift in the predicted stability lobe. Even though grid refinement is
a possible remedy, the resulting increase in computation time due larger systems
is often not acceptable. One way to overcome this problem is to employ model
reduction techniques. In order to introduce the model reduction framework, revisit
the discrete rod equation (2.106) with an arbitrary stress input s* acting on the
boundary x = L, i.e.

M"i" + D" + Kul = b5, (2.113)

with the N, x 1-coupling vector b = (¢1(L), ..., ¥n,(L))". Moreover, let the rod
displacement at x = L be the quantity of interest, i.e. the output, which is defined
as

y= iwk(L)uZ = (") up. (2.114)
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Figure 2.13: Convergence of the stability lobe.
10 — -5 —6 -7 -8 -9 ~10 —11 —12 —12
tol 104 10 10 10 10 10 10 10 10 10
r 1 2 3 6 13 21 26 30 32 33

Table 2.4: Dimension r of the reduced system for different tolerances (original sys-
tem: N, = 35).

Introducing a new variable v = Tw" and multiplying the rod equation from the left
by WT leads to the system

WMo + WDy + W KTy = Why's (2.115)
& Mo+ Do+ Kv = Bs®, (2.116)

with new matrices M, D, D and B. Similarly, the output can be reformulated as
y=O"TTv = Cw, (2.117)

with another matrix C'. The objective of model reduction techniques is to determine
N,, x r - matrices W and T with » < N,,, as small as possible so that the error in the
observation y is smaller than a predefined tolerance tol. Among the available model
reduction techniques, the balanced truncation method is an efficient and flexible
tool that has been successfully applied to second order problems [77] and coupled
systems |76,78]. For the present example, i.e. a discrete rod equation with N,, = 35,
the matrices W and T have been computed employing the second-order balanced
truncation model reduction method with position balancing (see [77]). As shown in
Table 2.4, the dimension of the reduced system depends on the predefined tolerance.
A milling system presenting a structure similar to (2.111) can be recovered from the
reduced system defining the output as

y:CN’(v(t) —v(t—1)), (2.118)
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and feeding y back into the input, i.e.

_apw(t)
a7

st =

(2.119)

Correspondingly, the reduced discrete periodic rod equation with delay reads

Mi + Do + Kv = —“PZ“)B@ (v(t) — v(t — 7). (2.120)

Moreover, the rod equation occurring in the coupled system (2.110) can be replaced
by the reduced system. Defining a modified cutting force as

F =a,w(t) (q(t) — qt — 7)) + apw(t)y + a,w(t) fs, (2.121)

with y being given by (2.118), leads to the system

M + Do+ Kv = —B—, (2.122)

|

3 [

G+ 2Cwog +wiqg = ——. (2.123)

The equation describing the evolution of the corresponding homogeneous solution
reads

o) +["0” aca] i) < [0 ] L)
t

5 G ) (] L) =0 e

and presents the same structure as (2.110). The effect of the model reduction can
be analysed numerically by comparing the stability lobe illustrated in Fig. 2.13 for a
discretisation with NV, = 35 and the lobes predicted by the reduced system (2.120)
for different model reduction levels.

The stability lobes illustrated in Fig. 2.14 reveal that the model reduction is
a promising approach to reduce the computation time without introducing large
errors in the predicted stability limits. Even for the largest tolerance (tol = 107%),
the maximal relative error is lower than 2.5%. Higher accuracy can easily be achieved
by choosing smaller tolerances, e.g. tol = 1078, Another issue is the usage of reduced
systems in coupled problems such as (2.124).
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Figure 2.14: Comparison of stability lobes corresponding to different reduction levels
and the relative error for each approximation.

A comparison of the stability lobes of the coupled system involving the reduced rod
equation and the corresponding decoupled problems illustrated in Fig. 2.15 reveals
that the coupled system with the reduced PDE perfectly reproduces the coupling
phenomena shown in Fig. 2.12. Consequently, the model reduction approach allows
to reduce the system size without loosing the accuracy in terms of the predicted
stability limits.
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Figure 2.15: Comparison of the coupled (blue lines) system with reduced rod equa-

tion and the corresponding decoupled systems (green lines: ODE, red lines: reduced
PDE).

Concluding remarks

The new stability analysis method based on the augmented Newton scheme in com-
bination with Newton-Euler continuation can be used to analyse the stability of
coupled DDE-PDE-systems. It has been shown that stability limits of the coupled
system differ from the stability limits of the corresponding decoupled systems. The
most significant discrepancy can be noticed on the right part of each lobe. Thus, the
disregard of structural components during the modelling of a milling system may lead
to errors in the prediction of the stability limits. The finite element approximation
of the PDE-part causes further errors in the prediction of the stability limits. The
stability lobes translate with decreasing grid size in the direction of lower values of
n. It has been shown that the model reduction approach is a powerful tool to cope
with stability problems for coupled systems. The presented examples reveal that
employing model reduction techniques lead to important reduction of computation
time while maintaining a high level of accuracy.

2.3.3 Stability of multi degree of freedom systems
Measured machine dynamics and abstract representation

The starting point for the prediction of stability limits corresponding to the milling
machine employed for the cutting tests in the present work (see Chapter 6) is the
(mobility) frequency response function (FRF) measured at the tool centre point
(TCP) which describes the response of the machine to a force acting at the TCP in
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frequency domain. The corresponding experimental FRF? is given by the blue line
shown in Fig. 2.16. Since the main interaction between structure and process occurs
at the tool, the FRF contains all the relevant information for the stability prediction.
In contrast to the approach proposed by Altintas [3], the iterative method presented
in the previous sections needs a time domain formulation of the dynamical system,
i.e. the frequency response function. Such a formulation can be derived considering
the equations of motion for the oscillator chain depicted in Fig. (2.17), i.e.

Mz + Di + Kx = BF(t), (2.125)
where
di +do —dy o 0

M = diag(mq,...,my), D= _'dZ
dy-1+dy —dy-1

0 —dN_1 dN

ki +dy —ko e 0 0

K=| | oB=|
: kno1+ky —knoa 0

0 Ce _kN—l kN 1

In the stationary regime, x = Z(w)e™? is the response of the oscillator chain sub-
jected to a force F(t) = Fe™'. Inserting force and response into (2.125) and per-

forming some rearrangements leads to
#(w) = (~w*M +iwD + K)~' BE. (2.126)

Since the position =y of the mass N is given by zy = BTz, the frequency response
function of the oscillator chain at the last element reads

Y (w) = xNT(“’) — BT (~w’M +iwD + K) ' B (2.127)
The function Y involves the masses my, ..., my, the damping constants dy, ..., dy

and stiffness parameters ki, ..., ky. Consequently, the FRF corresponding to the
oscillator chain can be fitted to a measured FRF by varying the chain parameters
in a minimisation of the functional

Nmea.s

J(m, di, ki) = Z (1Y (wr)| — |Yke$p|)27 (2.128)
k=1

where {Y "} denotes the set of discrete experimental data. The result of this ap-
proach is illustrated in Fig 2.16 and the corresponding fit parameters are summarised
in Table 2.5.

3The experiments have been carried out by P. Rasper under supervision of Prof. E. Uhlmann
at IWF, TU-Berlin (for further details see e.g. [75] and Section 6.2).
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el. 1 el. 2 el. 3 el. 5

m / |kg| 0.920 0.329 0.034 0.011
d/ kg s™! 1637.649 0.058 0.000065 6.3199
k /107 kg s72] 9.851 7.451 1.013 0.549

Table 2.5: Oscillator chain parameters corresponding to the FRF-fit.
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Figure 2.16: Mobility frequency response function measured at the tool centre point*
(blue) and fitted by multi degree of freedom oscillator chain (red).
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Figure 2.17: Oscillator chain as an example for a multi degree of freedom system.

Although in the present example an oscillator chain has been employed to construct
a time domain representation of the experimental FRF, other configurations are
conceivable too, as long as they accurately reproduce the measurements. In case
that the experimental data comprises a sufficiently large set of FRFs, the time
domain representation can be reconstructed from the multi degree of freedom fit
approach being presented in [32].

4The experiments have been carried out by P. Rasper under supervision of Prof. E. Uhlmann
at IWF, TU-Berlin (for further details see e.g. [75] and Section 6.2).
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A multi degree of freedom milling model

The milling model involving the previously derived oscillator chains has a similar
structure as the system illustrated in Fig. 2.1. The oscillator chains replacing the
simple spring-damper element share their final mass, i.e. the end element represent-
ing the tool. Since the spindle-tool system is symmetric, the dynamical character-
istics of the tool can be approximated by two perpendicular oscillator chains. The
equations of motion corresponding to this multi degree of freedom model can be
summarised as follows

My 0 | |u§ Dy 0| |u§ Ky 0| |uf|  pel|f%

{0 Mg] L@]*{o ps| lac| 1o Kl lug| =8 || 2129
where M{ denotes the mass, Df the damping and K¢ stiffness matrix corresponding
to the oscillator chain i’. The vector components u$ represent the coordinates
describing the chain 2’. The matrix projecting the cutting forces F, and F}, on the
chain coordinates reads

0 ... 0
¢ __
B = [O .. 0

0 Or. (2.130)

0 1
The cutting forces are given by (2.2) in combination with an empirical cutting force
model. The uncut chip thickness entering in the empirical model can be computed

from the chain coordinates u§ = [z1,...,zy]T and u$ = [y1,...,yn]’ employing the
projection matrix B¢, i.e.

= bin e [ [] 4 [0

Employing Weck’s cutting force model (2.7), the right hand side of (2.129) can be
written as

B {ﬂ — —a, B°D(1)(B)" (BC m + Bigﬂ - mg::ﬂ) L2132

with periodic matrix

(t B T)H . (2.131)

i
5(

~

N .
- | [sing;  cosp; }9 . ‘
D(t) = E 19(%) {COS% _Sin%] {KJ [sin 5, cos @3]
j:

Finally, the matrices A(t) and B(t) appearing in the general linear periodic delay
equation (2.35) can be derived from above expressions by rewriting the equation for
the homogeneous solution of (2.129) in first order form and collecting the coefficients
of the current and delayed state vector.

Stability prediction

The stability limits of the abstract multi degree of freedom milling system derived
above can be computed employing the iterative method. The result of the con-
tinuation procedure is illustrated in Fig. 2.18. The stability plot is similar to the
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Figure 2.18: Chatter frequencies and stability chart for the multi degree of freedom
milling system.

diagram computed for the 2 degree of freedom model. Since the underlying FRF
(see Fig. 2.16) is dominated by the peak located at 2200 Hz, the MDOF system
has similar stability limits than a 2 degree of freedom model reproducing the main
peak. As outlined in [75], the measured FRF play a crucial role in the stability
prediction. The example discussed in 75| reveals that the excitation method, i.e.
hammer or shaker, and the angular position of the spindle importantly affect the
measured FRFs which leads, in turn, to completely different stability diagrams.

Moreover, the stability lobe diagram illustrated in Figure 2.18 illustrates the
stability limit corresponding to the milling system employed for the cutting tests in
the present work (see Chapter 6). Throughout the rest of this work, the Diagram 2.18
serves as a reference solution for the complex milling model involving a machine
model based on the multi body approach. Since the oscillator chain and the more
realistic multi body model reproduce the same experimental FRF, it is expected
that both models predict similar stability limits.



Chapter 3

Modelling

3.1 Modelling concept

As outlined in Chapter 2, the stability of milling processes depends on the dynamical
characteristics of the structure, i.e. typically machine and work piece, and on the
coupling effects arising from the interaction with the process. Unstable processes
can be identified analysing either the evolution of the uncut chip thickness (cf.
Section 2.1.5) or the simulated cutting force spectrum. In both cases the precision of
the predicted stability limit increases with the length of the simulated time interval.
However, due to the presence of high characteristic frequencies, the time step size
is strictly limited, which finally leads to unacceptable computation times especially
for models with many degrees of freedom. In view of these problems, modelling
the machine structure as a multi body system, the work piece as either rigid, visco-
elastic or thermo—elastic body and employing an empirical cutting force model as
presented in Section 2.1.2 seems to be the best trade-off between accuracy and
efficiency. Consequently, the nonlinear thermo—plastic effects dominating the chip
formation cannot be simulated with present approach. From a macroscopic point
of view, the largest part of the work piece behaves like a (thermo—) elastic body.
Plastic deformations usually occur only in regions close to the cutting edges and
can therefore be incorporated employing an empirical cutting force model. Due to
these simplifications, the material removal cannot be simulated directly and has to
be approximated by an heuristic approach.

For milling processes where the difference between exit and entry angle is smaller
than the pitch angle of the cutter such an approach can be constructed applying
a method of steps. In each step the work piece reference domain is considered to
be constant and the system equations are solved until the cutting edge leaves the
work piece. Before the next cutting edge starts cutting, the previously computed
solution is used to construct a new work piece reference domain before pursuing the
simulation. Consequently, the modelling and the simulation process consists of two
parts. While the first part deals with the phenomena occurring during one tooth
period, the second part focuses on the construction of a series of work piece reference
domains and thus on an implementation of the method of steps.

Note that in the present work the focus is on a single tooth cutter. Due to this
restriction the above condition that the difference between entry and exit angle has
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Figure 3.1: Schematic representation of the multi body system.

z-slider

y-slider

Figure 3.2: Body i and the corresponding predecessor p(i).

to be always smaller than the pitch angle of the tool is satisfied for all possible
immersion ratios.

3.2 Multi body systems

3.2.1 General structure
Orthogonal transformations, angular velocity

The machine structure can be considered as a system of rigid bodies which are
connected to each other by spring-damper coupling elements. However, the rigid
bodies do not exactly represent the machine parts. Since the most important mea-
sured mode shapes shall be properly reproduced, the machine parts usually have to
be divided in several bodies. The additional assumption that each body has a unique
predecessor leads to the tree-like structure illustrated in Figure 3.1. As outlined by
Bremer et al. [15], such an arrangement can be exploited for the construction of effi-
cient algorithms to assemble the equations of motion. The tree-like structure allows
to define a field p(.) that associates to each body i the corresponding predecessor
p(7). The orthogonal transformations between the reference frames ¢ and p(q) are a
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product of elementary transformations, i.e. A, = A,AgA,, with det(A4,,) =1 and

1 0 0 cosf 0 —sing
Ay = 1[0 cosa sina|,Ag= 0 1 0 ,
[0 —sina cosa sinf 0 cosf
[ cosy siny 0
A, = |—siny cosy 0
0 0 1

The relative angular velocity matrix between frame ¢ and p is defined as
oShpg = ququv (3.1)

while the corresponding relative angular velocity vector reads

é 0 0
woe = | 0| + Aq | B] + Ands 0] . (3.2)
0 0 o)

Accelerations, velocities and motion for tree-like structures

The vector with components given in system ¢ pointing from the global reference
frame (index ¢ = 0) to the origin of body i reads

iToi — Z Aipp/rpj> Wlth P = p(]), (33)

=1

where the orthogonal matrix A;, transforms the components of a vector given in
frame p to frame 7. The total velocity of the origin of body ¢ with components given
in frame ¢ reads

iVoi = Z Aip (i + pQ0ppTpi) - With  p = p(j). (3.4)

j=1

The angular velocity ;wp; and the corresponding skew symmetric total angular ve-

locity matrix ;Qg; = —; Q2 can be constructed as follows
iwWoi = ZAU 7Wpj, i = ZAZ']' jij, with p= P(j)- (3'5)
j=1 j=1

Correspondingly, the total angular acceleration vector and the corresponding matrix
are given by

i = Y A (i + ;Q055wps) (3.6)
=1
iToi =Y Ay (ij‘ + onijpj> ,  with p=p(j). (3.7)

=1
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With the above definitions, the total acceleration of the origin of body ¢ with com-
ponents given in frame ¢ reads

i0i = Z A {pfpj + » Top + p820p pQOp) ppi + 2pSlop pi’m’] ) (3.8)
j=1

with p = p(j).

Local Jacobians, minimal coordinates

The position and orientation of a rigid body ¢ can be uniquely defined with respect
to a reference frame p(q) with a 3 component vector ,r,, and 3 angles o, 3, v deter-
mining an orthogonal transformation matrix A,,. However, in a specific application,
some of the coordinates may be fixed or given by known functions. The remaining
degrees of freedom can be summarised by the so called minimal coordinates z,. As
outlined in [15, p. 49|, the motion vectors and the angular velocities can therefore
be written as a function of time and the set of minimal coordinates, i.e.

pT'pg = pqu(zqa t), (3.9)
¢Wpq = qWpq(2g, Zgr 1)- (3.10)

Moreover, the minimal coordinates can be employed to express the relative acceler-
ations introduced above (cf. [15, p. 49]), i.e.

0 pTpj 0 pTpj
Ajp pip; = JriZi + Ajp [( 8;2%) Zi+ <—§ij)} : (3.11)
j
O o O o
Wi = JriZ + K%) Zj+ (%” , (3.12)
J
with possibly rectangular Jacobian matrices
0 [Ajp pTpjl 0 Wy
Jry = (—> and T, = (_) | (3.13)
I 0,2]- J aZj

Jourdain’s principle

The equations of motion can be assembled exploiting Jourdain’s principle. As out-
lined in 15, p. 54], the Newton-Euler equations for a M degree of freedom system
being composed of N rigid bodies read

i |:(jRi)T’ (sz)T} {Mb; + & — T} =0, (3.14)

=1

where

()= (%) (- (%)
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denote the global Jacobian matrices with dimension 3 x M for rotation and trans-
lation, respectively. M; represents the generalised 6 x 6 mass matrix incorporating

mass and inertia tensor, i.e.
H ~
M = T; MiiTic
[ ~T )

miiric mZI

where I denotes the 3 x 3 identity matrix and m; the mass of body i. The 3 x 3 skew
symmetric matrices ;7;. correspond to the cross product of the vector ;r;. pointing
from the origin to the centre of mass with another vector, i.e.

0 —(ﬂ‘z’c)3 (ﬂ’ic)Q
iTie = =it = | (irie)3 0 —(iTic)
—(iTic)2  (Tieh 0

The 3 x 3 matrix TH denotes the inertia tensor being defined as

T/ = - iTep) (iTep)dV + My iFic T,
2 P P c
Bi

with
0 (iTic)s — o3 T3 — (iT4¢)2
(iTep) = | T3 — (iTic)3 0 (iTic)1 — 1
(ﬂ’ic)2 — T2 X1 — (z’?”ic)l 0

The vector b; represents the vector of total acceleration (3.8) and total angular
acceleration (3.7), i.e.
b; = (z‘Oéoz‘) .
1Q0;

While &; incorporates additional inertia terms, i.e.

gi _ ( o [IZ'H};;WOi ) :

iQoi [my iTE] woi

the vector ¢ being defined as

—e iNic ie + lze
qi = (T ffe ) (315)

represents the generalised external forces acting on body i. Reordering expres-
sion (3.14), exploiting (3.11), (3.12) and collecting all terms involving # leads to the
following nonlinear system of ordinary differential equations (cf. [15, p. 55])

M(t,2)5+C(t2,2) =TT (@), @) = ¢, (3.16)

where .J denotes the global Jacobian matrix with dimension 6N x M. Due to the
supposed tree-like structure of the multi body system, the above equation of motion
can be assembled efficiently by means of an iteration over all bodies starting at the
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Figure 3.3: Torque acting between two attached bodies.

body with index ’0’, i.e. the global reference frame. A tailored algorithm provides
the mass matrix M (¢, z), the vector ((t, z, %) and the right hand side ¢° for each
set of values of z, Z and t. In contrast to approaches based on computer algebra
software, the iterative method provides the equations of motion implicitly which
leads to an efficient simulation code that can be applied for very large systems.

The outlined procedure to construct the equations of motions for a multi body
system needs an expression for the generalised external force ¢°. In case of milling
machines such an expression can be found from the forces and torques provided
by coupling elements representing the interaction between the rigid bodies. The
different contributions usually involve model parameters that have to be determined
from experimental data.

3.2.2 External forces and torques
Example of a reaction torque for two attached bodies

The configuration illustrated in Figure 3.3 serves as a first example for the coupling
of two rigid bodies. The two bodies are attached to each other at a coupling point
which coincides with the origin of the reference frame corresponding to body B;.
Although Figure 3.3 only shows the y—const plane, the body B; may rotate around
the ;- and y;-axis with respect to body B,. The angle corresponding to a rotation
around the z;-axis is fixed, and the vector ,r,; pointing from the origin of body B,
to the origin of body B, is assumed to be independent of the minimal coordinates.
In present example, the two rotations around the x; and y; axis shall evoke reaction
torques ,l; and ;17 between both bodies if the vectors ,rq; and A;;r;. are not parallel
to each other. The orthogonal matrix A,; transforms vector components given in
frame 7 into the corresponding components in frame p. Exploiting the definitions of
the scalar and cross product provides two expressions for the angle ¢ between the
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considered vectors, i.e.

(pchv Apjjch) ||p7”cj X Apjjrch

Cos Y = : singp = , (3.17)
||pTCj|’||ApjjTjC|| HpTCj”HApjjTjCH
which leads to
80 — arctan ”ZJTCj X AP]JT]CH (3 18)
(pTejs ApjjTic) /) '

The torque vector acting on body p follows immediately from the rotation spring
equation and a viscose damping model, i.e.

pl; = kTQO pTt + dTApj jija (319)
with the normal vector

pTej X ApjiTic :
if Tei X A Y 0
= {“mijmrjc|| lpre x Apjiicll # 0,

0 otherwise,

(3.20)

and jw,; denoting the relative angular velocity between the two bodies. The coef-
ficients kr and dr represent the stiffness of the torsional spring and the damping
coefficient of the torsional damper. Both are empirical parameters that have to be
determined from experiments. Following Newton’s third law (action-reaction law)
and transforming the result into reference frame j, leads to the following expression
for the torque vector acting on body B;, i.e.

jl; = Ajp(— pl;) = —kpp Ajp pn — dp jwp;. (3.21)

Both torques partly modify the generalised force vector (3.15). While ,I7 has to
be added to [; the torque ;I7 contributes to /5. Note that the outlined procedure
can be pursued for any arbitrary pair of vectors defined on body B, and B;. The
vectors ,r.; and A,;;r;. have only been used as an illustrative example to describe
the necessary modelling steps.

Example of a reaction force between two bodies

The strategy to calculate the coupling forces between two interacting bodies is sim-
ilar to the method for the torque computation. As shown in Figure 3.4, the two
bodies B, and B; are assumed to be connected by means of a generalised spring.
Although Figure 3.4 only shows the y=const plane, both bodies can move in all
space directions. If the motion leads to a change in the prescribed distance ,rq
between the points a and b, reaction forces ,f; and ;fj act on body B, and Bj,
respectively. In order to compute the distance and the relative velocity between the
points a and b, the position and velocity of both points have to be expressed utilising
the position and orientation of the involved bodies. Exploiting (3.3) for each body
gives

p
pT0a = pTpa + plop = pTpa + Z qu qTqk> with q = Q(k)7 (322)
k=1
J
jrob = jT’jb + jToj = jrjb =+ Z qu qqu, with q = q(k) (323)

k=1
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Figure 3.4: Coupling forces acting between two bodies.

By means of (3.4) the total velocities of point a and b read

pV0a = pTpa T pSloppTpa + pUop

P
= pP'pa + pS0ppTpa + Z Apq (gT g + ¢S dogqTqk) » (3.24)
k=1

Vo = T4 + 804570 + 005

J
= jfjb —+ jQOjjij + Z qu (q’f"qk + qQququ) ; (325)
k=1

and again with ¢ = ¢(k). Since the constitutive equation for the coupling element is
assumed to be given in reference frame «, distance vector and relative velocity have
to be expressed in the coupling element frame, i.e.

r
aAab = Aajjr(]b - Aapproa, aUgp = AajjUOb — Aappv()a. (326)

The constitutive law for the coupling element finally provides the reaction force in
the corresponding reference frame «

of = diag{kl, k2, K2} (alap — arey) + diag{dS, d2, d2} vy, (3.27)

z) Vyo Nz T Yy Pz

with k7, ky, k2, d, dy, df and 7Y, representing the empirical parameters of the
coupling element. As mentioned in the previous section the empirical parameters
have to be determined from experimental data. The reaction forces act accord-
ing to Newton’s third law (action-reaction law) on both bodies with opposite sign.
Consequently the contributions to the generalised force for body B, and body B;
read

oI = Apaaf®, = = Ajaa ™ (3.28)

As already discussed in the previous section, the coupling elements contain empirical
parameters that have to be determined from experimental data. In the following
the right hand side of (3.16) is therefore considered as a function of the minimal
coordinates and a parameter vector p® representing the empirical parameters, i.e.

¢ = ¢°(t, 2, 2, p°). (3.29)
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Figure 3.5: Experimental' and simulated mobility frequency response function.

3.3 Construction of a multi body system based on
experimental data

3.3.1 General strategy

The development procedure of a multi body system representing a machine struc-
ture can be summarised as follows. The first step, an experimental modal analysis,
provides the eigenfrequencies and the corresponding mode shapes. Next, consid-
ering the measured mode shapes, the rigid bodies for the model can be defined.
Finally, after having implemented the mathematical model, the remaining free cou-
pling parameters have to be found comparing the experimentally and numerically
determined frequency response functions for several points on the machine structure.
Mathematically, this problem corresponds to the minimisation of a cost functional
that measures the differences between the measured and the simulated frequency
response functions.

3.3.2 Semi empirical approach
Determination of the rigid bodies

The blue line depicted in Figure 3.5 shows the mobility frequency response func-
tions (FRF) measured at the tool centre point (TCP) of the milling machine em-
ployed for the cutting tests in the framework of this work.! As already discussed in
Section 2.3.3, the measured mobility FRF clearly displays four dominant eigenfre-
quencies located at about 1243 Hz, 2208 Hz, 3075 Hz and 4423 Hz. Another small
peak can be observed at about 128 Hz. Due to the high frequencies, it can be as-

!The mobility FRF measurements have been carried out by P. Rasper under supervision of
Prof. E. Uhlmann at IWF, TU-Berlin (for further details see e.g. [75] and Section 6.2).
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toolholder spindle bearings

spindle spindle bearings

Figure 3.6: Complex model of the machine spindle.

sumed that the four dominating peaks are related to eigenmodes of the tool-spindle
system. Only the peak at 128 Hz corresponds to an eigenmode of the machine
structure, i.e. the assembly being composed of machine base, side plates, crossbar,
x-slider and headstock. Consequently, the focus is on a detailed modelling of the
tool-spindle system, while remaining parts can be represented by simple elements
only reproducing the feed along x—, y— and z—axis.

In contrast to the general strategy, in the present application, the eigenmodes
corresponding to the tool-spindle system are not available because the main part of
the spindle is covered by the headstock. An alternative strategy to find the mode
shapes of the spindle shaft is to perform an eigenfrequency analysis based on the
finite element model shown in Figure 3.6 consisting of cutter, toolholder and spindle.
The coupling between the different parts and the representation of the bearings are
modelled by connecting domains with special material properties. These parameters,
i.e. elastic modulus, Poisson’s ratio and mass density, can be adjusted so that the
eigenfrequencies of the whole assembly match those observed in the experiments.
The corresponding set of eigenvectors provides information that can be exploited to
construct a rigid body assembly approximating the mode shapes of the continuous
model. The result of the modelling process is shown in Figure 3.7. The approximate
model of the spindle system consists of the rigid bodies corresponding to the tool,
the toolholder and two spindle segments. The different parts are connected by the
elastic rotational joints described in Section 3.2.2. The different joints impose the
following conditions

e due to the joint IV, the spindle part 1 rotates around two axes with respect
to the preceding reference frame,

e the attachment point on top of spindle part 1 is fixed in the preceding reference
frame,

e the rotation angle p3(t) describing the rotation around the z—axis of the spindle
part 1 with respect to the preceding reference frame has been set to p3(t) =
2mnt, where n denotes the fixed spindle speed,

e due to the joint III , the spindle part 2 rotates around two axes with respect
to spindle part 1 and joint ITI blocks the rotation around the z—axis of spindle
part 2 with respect to spindle part 1,

e the attachment point on top of spindle part 2 is fixed in the reference frame
corresponding to spindle part 1,
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e due to the joint IT , the toolholder rotates around two axes with respect to spin-
dle part 2 and joint II blocks the rotation around the z—axis of the toolholder
with respect to spindle part 2,

e the attachment point on top of the toolholder is fixed in the reference frame
corresponding to spindle part 2,

e due to the joint I | the tool rotates around two axes with respect to the
toolholder and joint I blocks the rotation around the z—axis of the tool with
respect to the toolholder,

e the attachment point on top of the tool is fixed in the reference frame corre-
sponding to the toolholder,

By means of the rotational joint IV and the transverse joints, the complete assembly
can be connected to the next part, i.e. the headstock. While the rigid joint blocks
the translations in x,y- and z-direction, the transverse joints produce a reaction force
if the z-axis of spindle part 2 is shifted away from the centre. Moreover, recall that
each elastic coupling element, i.e. the rotational and the transverse joints, involves
an empirical stiffness and damping parameter.

spindle part 2 spindle part 1

toolholder

rotational rotational joint III (elastic)

joints I, II (elastic)
transverse rotational joint IV
joints (elastic)

Figure 3.7: Multi body model of the machine spindle.

The final machine model illustrated in Figure 3.8 can be constructed combining the
spindle system with three additional bodies representing the headstock, the x-slider
and the crossbeam attached to the side columns, i.e. the y-slider. While the x-
slider translates with respect to the crossbar in x-direction, the headstock moves
with respect to the x-slider in z-direction. The crossbar can rotate around the z-axis
and travel in y-direction. As before, the rigid bodies are connected to each other by
means of transverse joints with additional stiffness and damping parameters.

Identification of the joint parameters

Following the arguments presented in Section 3.2.1, the equation of motion describ-
ing the dynamics of the system can be summarised by (3.16), i.e.

M(t,2)2 4+ ((t, 2, 2) = ¢°(t, 2z, 2,0, ¢°), (3.30)
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body translational DOF ‘ rotational DOF ‘

y-slider 1 1
x-slider
headstock
spindle part 1
spindle part 2
toolholder
tool

OO OO |
NN NN OO

Table 3.1: Summary of the translational and rotational degrees of freedom (DOF)
corresponding to each body.

with ¢ representing the external forces and torques applied via joints on each body.
The parameter ¢g¢ represents the external forces arising in the cutting process or
in frequency response measurements. The vector p® contains the free coupling pa-
rameters like joint stiffness or joint damping. Due to the presence of predefined
parameters like feed of spindle rotation speed the time appears explicitly in the
expressions for M, ¢ and ¢°. While the unknown parameters like mass and inertia
tensor can be computed exploiting the given CAD data, the joint stiffness and joint
damping parameters have to be found solving a parameter identification problem.
The basic strategy is to excite the model with an approximated impulse, i.e.

576(1> = D (1) = o€;,——=€eXp ——( 5)2 l, = 10 5 g = 10
o] oty ) S ) )
J Jgﬁ 62

at the TCP and to compute numerically the time domain velocity response of the
system evaluating (3.4) in the global reference frame, i.e.

oVoa = oﬁoa(tapc)
= Aui [iQ0iiTia + iV0i]

- Aoi

iQOiiTia + Z Aip (pf’pj + pQOpprj)] s Wlth P = p(]) (331)

j=1

where ;1;, represents the vector from the origin of body '’ to the excitation point
‘a’ on body i’. The vector ,e; denotes the unit vector pointing in j-direction of
reference frame ’o’. Transforming both signals in frequency domain by means fast
Fourier transform (FFT) and taking the ratio of the transformed signals provides
a discrete, complex valued function H;;(f,p), the so called mobility frequency re-

sponse function, i.e.
Fl(oVoa)i] (f)

FlDiI(f)

where F[.] denotes the Fourier transform operator. The experimental mobility fre-
quency response function Hg (f) can be derived from the auto and cross spectral
densities corresponding to the measured force and response data (see e.g. [32, pp.

Hij(f> pc) =
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- headstock

x-slider
spindle system

y-slider

fixed machine base
(global reference frame)

Figure 3.8: Multi body system representing the milling machine.

79]). Minimising the cost functional measuring the distance between experimental
and simulated values, i.e.

N*P

7% = 3w (1Hyy )| = HE ()’ (332)

provides a set of parameters pf, that guarantees for the underlying multi body
system an optimal fit of the experimental data. The discrete weight function wy
suppresses the influence of critical experimental data. Figure 3.5 illustrates the result
of the parameter identification procedure. The deviations between experiments and
simulation are due to the approximations made in the modelling step. In particular,
the peak located at approximately 4500 Hz cannot be reproduced with the current
model. In order to improve the results, the model could be further refined by
splitting up the spindle in four elements and by introducing an additional body on
top of the spindle part 1. The current model, however, reproduces the main peaks
observed in the experiments and is therefore expected to predict the stability limits
accurately.
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3.4 Representation of the work piece

3.4.1 Preliminaries and assumptions

In many milling applications the work piece has a block-like geometry which is
clamped on the machine table. This leads to a very stiff assembly presenting a
compliance with small magnitude at the cutting zone. Consequently, the oscillations
of the tool dominate the process and the work piece can be represented as a rigid
body. However, in case of thinwalled parts with a more flexible structure, the
situation is completely different. The compliance at cutting zone and tool have a
similar order of magnitude and work piece effects have to be taken into account.
Usually, thinwalled parts can be described employing (cantilever) beam or plate
models. These models arising from a 1D or 2D formulation of the momentum
balance, accurately reproduce the dynamical characteristics of the work piece and
guarantee efficient numerical simulations because the corresponding discrete systems
are rather small. However, the most flexible approach is a full 3D representation
of the work piece. Many effects occurring in practise including complex geometries
and undesired material removal due to thermal expansion can be simulated with this
model. Consequently, in the present work the focus is on a full 3D description of
the work piece. The derivation of the model equations and the modelling of thermal
effects are the main objective of the following sections. Damping effects occurring
in the work piece are related to material and structural (clamping, stick-slip effects
etc.) damping (see e.g. [57]). A detailed discussion concerning the relevance of
each mechanism is beyond the scope of this work. In the present chapter, the
focus is therefore on the (thermo—) elastic behaviour of the work material. In the
simulations (cf. Chapter 5), the main damping effects are incorporated by means of
a semi-empirical approach.

3.4.2 The general equations of thermo—elasticity with inter-
nal variables

In order to derive the equations describing the work piece, recall the local balance
equations for momentum (B.18) and internal energy (B.28) in material coordinates
derived in appendix B

000, — Div(F - S) = 4o/, (3.33)

A

1

In symbolic notation Div(.) and Grad(.) denote the differential operators with
respect to the material coordinates.

Material laws, Clausius-Duhem inequality

As shown in Section B, the balance of entropy reads in material coordinates

1
M + TDiV(@) =0+5>0. (3.35)
0o
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Since for ordinary thermo-—elastic bodies the material entropy flux can be written as
® =Q/T (cf. |67, p. 261]), the above inequality leads to

U ey 1
Oof)t + ?DIV(Q) — TTQQ - Grad(T") > 0. (3.36)

Next, replace Div(Q) by the rearranged energy-balance, i.e.

. 1/1 R 1
00Tt + ? (55 : Ct — Qo@t) — TTQQ . Grad(T) Z 0. (337)

The multiplication with the absolute temperature 7' > 0, and the fact that (77"); =
0T + 11, yields

A . A 1 1

Identifying é, — (1), = Yy as the time derivative of the free energy leads to the
Clausius-Duhem inequality, i.e.

- 1 1
—00(u +0T) + 55 : Gy — Q- Grad(T) > 0. (3.39)

In the present application, the temperature T = T (t, X) the Cauchy-Green De-
formation tensor C' = C(t,X) and the internal variables & = £(t, X) represent the
unknown fields. Consequently, the free energy is considered to be a function of these
variables, i.e. w w(C T, 5) which implies the time derivative

- 3?/1 o 0
Uy = 9c Oy + (:)_TTt +—= 8{ (f)t (3.40)

Combining the above time derivative with (3.39) leads to the dissipation inequality

o 1 1 O

19) .
Y T (boggs —59) O = Q@ Grad(D) = 2@ 20 (341

(8T

2

Since the inequality holds for all values of T}, and C}, the corresponding coefficients
have to vanish. This leads to the following relations

. . o
f] = ﬁ(oa T) 5) = _a_;/}—w
S—8C.T,é) - 29022. (3.42)

1 A
0<-7Q- Grad(T') — Y. (&):-

The remaining inequality (3.42) requires the following constitutive law for the heat
flux

Q= —K(C,T,¢€) - Grad(T), (3.43)
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with K (C,T,€) denoting the heat conductivity tensor. Note that K (C,T,€) has to
be positive semi definite to ascertain that (3.41) is satisfied for all values of C, T, £
A similar condition holds for the time derivative of the internal variables, that can
be written in the following form of evolution equations (see [40, p. 513|)

_ o

(S)t = _‘:‘8_57

(3.44)

with a symmetric and positive definite matrix = possibly depending on combinations
of the unknown fields C', T', and &.
Material laws, internal energy

In order to find the constitutive relation for the internal energy é, consider the time
derivative of the entropy density together with(3.40) and (3.41), i.e.

N e AL
=" \or) T " or
0 (00 00 00

105 0 &
2000T ' 0T oroé

(&) (3.45)

Next, recall the relation ¢ = 1&+Tﬁ and its time derivative e; = @t—i—Ttﬁ—i—Tﬁt. Com-
bining the time derivative of the internal energy é; with (3.45) and exploiting (3.41)
yields

o O o A
et:%ict+%ﬂ+%(§)t+ﬂn+Tnt
1 o

20
1

S:Cy,—hT, + a?(é)t+ﬁE+Tﬁt

o -

1 0S8 on 0% -
o Ul w”t]

=—5:C+— +T | ——:C,+ —=1T;, — =
20, Ot e 2000T "7 OT"" aTOE
1 T oS 0 D [ N\

Inserting the above expression for é; into balance of internal energy (3.34) finally
leads to
on A T oS

QoTa—TTt + Div(Q) = 29T

0 N
Gt ol = o (¢+19) ). (3.46)

With the definition of the specific heat at constant deformation (cf. [40, p. 513]),
le.
3l 0%
Cp = 8_T = _TW7 (347)
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and the constitutive law for the heat flux (3.43), the balance of internal energy for
thermo—elasticity with internal variable can be written as

1 .
CDTt—@—DiV K(C,T,¢) - Grad(T)| =
0

_ T 05
20007

O+ Th) ;

Cy+ 7 — &. (3.48)

Material laws, heat flux

In order to relate the material heat flux given by (3.43) to the the heat flux in Euler
coordinates consider the following identities (i = 1,...,3)

or
L= — K
q’l axzﬂ
0X; oT
= —K _—
8% an7
T
"0X;

= —r(F1) (3.49)

As shown in Section B.3, the material heat flux can be expressed by means of the
heat flux in Euler coordinates, i.e.

Combning the above expression with (3.49) yields

or

Q= —“J(F_l)ji(F_l)kia—Xk-

(3.51)

Comparing (3.51) and (3.43) finally provides an expression for the material heat
flux, i.e.

Kjp(C,T,6) = —kJ(FY);0(F Y = —kJ(C7 Y. (3.52)
Hookes law can be used as constitutive equation for stress
S =CYE - EY), (3.53)

where £ = 1 (C' —1I) represents the total strain tensor and E* = (T — Tp)I the

inelastic deformations, i.e. the thermal expansion. The forth order elasticity tensor
(C’el)ijkl = N0;0m + p(6ikbjr + 0adjn),

which has been introduced in (D.26), contains the elastic constants A and u. Note

that in case of thermo-elasticity no additional variables are required and the addi-
tional terms involving ¢ can be dropped from (3.48).
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Linearised balance equations

The equations of linear thermo—elasticity can be derived form (3.33) with (3.53)
and (3.48) assuming that the deformation u(t, X) and the deviation from a constant
reference temperature Ty, i.e. © =T — Tj, are small quantities. In order to exploit
the latter assumption, rewrite the balance of internal energy in terms of O, i.e.

1
cp®, — = Div[K(C.T) - Grad(0)] =
0

_ T o5,
20000

Cy+7.

Next, recall the definition of the deformation gradient, i.e. F' = I+ Grad(u) and
introduce, for small © and O, the following approximations

Erxec= % (Grad(u) + (Grad(u))T) )
Cy = (2E +1); = 2F; ~ 2,
F.S=~C%e—a0),
Clta1—2e,
J ~ 1+ Div(u),
Q = —rJ(C1)Grad(0©) ~ —kGrad(0).

Inserting the approximations into the equations of thermo—elasticity and linearising
the resulting system, finally gives

1
Ut = @—le<0') + an, (354)
0

1
o= Mr(e)l +2ue —3Ka®l with K = §(3/\ + 2u),

£ = % (Grad(u) + (Grad(u))"),

00cpO; = KAO — 3K aTDiv(u;) + 0oS8
~ kAO — 3KaTyDiv(u;) + 0os, (3.55)

where A\ and p are the Lamé constants, Tj denotes the reference temperature, x the
heat conductivity and « is the thermal expansion coefficient. The additional terms
appearing on the right hand side of momentum (s¢,) and energy (7 := s¢) balance
represent source terms. They shall be used to model the effect of the cutting process.

3.5 Coupling of machine and work piece

3.5.1 Adaption of an empirical cutting force model

The cutting forces acting on cutter and work piece can be described by one of the
empirical models being discussed in Section 2.1.2. Weck’s approach (2.7), i.e.

~

F=a, K(T.) h, (3.56)
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cutting tool rotation

Figure 3.9: Scheme illustrating cutter, work piece, feed per tooth f, and the axial
depth of cut a,.

with axial depth of cut a, and the uncut chip thickness h, relates, for a cutting
edge without helix angle, the parameters a, and h to the forces acting on the tool
in the opposite direction of feed, i.e. Ft, in the direction normal to the cutting
edge, i.e. F,. and in negative z*—direction, i.e. Fp. The vector K represents an
empirical parameter, the so called specific cutting force, which is usually assumed
to be constant or depending on the cutting speed. However, as shown in [43], the
cutting forces decrease due to higher work piece temperatures. This effect can be
incorporated in the cutting force model by multiplying the constant specific cutting
force vector Kt = [KT, Kt, KP]T by an empirical function involving the work piece
temperature T, at the cutting edge, i.e.

K(T.) = K (cT.)™°, (3.57)

with further fit parameters b and c.

3.5.2 Uncut chip thickness

Standard approach and limitations

As discussed in Chapter 2, the uncut chip thickness describes the thickness of the
chip to be removed from the work piece. In case of perfectly rigid machine and
work piece, the value of the uncut chip thickness can be calculated from the preset
value of the feed per tooth, i.e. f,, and the current angular position of the tool
and the associated cutting edge (see e.g. Section 2.1.2). The dashed lines depicted
in Figure 3.11 show the ideal path of the cutting edge and the corresponding ideal
work piece surface.
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In case of a flexible system, the additional oscillations lead to a perturbation
of the ideal value of the uncut chip thickness. As discussed for example in Sec-
tion 2.3.2, additional terms appear in the expression for the uncut chip thickness.
These terms incorporate the current deformations of the system and, by means of
delayed terms, the deformations of the system one tooth period before. While the
current deformations define the position of tool and work piece, the delayed terms
incorporate the effects of the surface created during the previous tooth path. In
Section 2.3.2, the restriction to consider a 1D rod only, allowed to derive an explicit
formula for the uncut chip thickness. The incorporation of a more complex work
piece representation, i.e., for example, a 3D elastic solid, requires another strategy
since no explicit formula can be derived for this approach.

Derivation of a new expression for the uncut chip thickness

In order to establish a new expression for the uncut chip thickness incorporating tool
displacement and work piece deformations, the effect of the delayed terms has to be
replaced by a more general concept. As outlined in Section 3.1, the new concept is
inspired by the method of steps. While the material removal model provides, after
each tooth period, a new work piece reference domain 2z, the focus in the present
section is on the derivation of a formula for the uncut chip thickness for a single
tooth period, i.e. for a constant work piece reference domain. Even though the
approaches presented in [23] and in [109], respectively, do not incorporate complex
work piece deformations, a similar strategy is pursued for the present problem. In
order to calculate the uncut chip thickness assume that

e the tool and the associated cutting edge can penetrate the work piece with-
out removing any material material from the work piece (the material to be
removed remains on the work piece until the end of the tooth period),

e the reference configuration of the work piece 2; incorporating the history
of the tool displacement and the history of the work piece deformations, is
constant throughout the considered tooth period.

Next, consider an admissible solution of (3.16) and admissible solution of (3.54).
By means of the displacement field u(t, X), X € g, i.e. the admissible solution
of (3.54), the each point of the current work piece domain €2(¢) can be formulated as
the sum of a point in the reference configuration and the corresponding deformation,
ie.

x = X + u;(t, X),

with x € Q(t) and X € Qg (see appendix B). The set of points determining the
current work piece configuration at time ¢ therefore reads

Q(t) = QR + U(t,QR).

Since the boundary 02(t) of Q(t) describes the current shape of the work piece, the
main task for the calculation of the uncut chip thickness is to compute the distance
between each immersed point on the cutting edge and the corresponding point on
the current work piece surface 9€2(t). To this end, recall that the tool is a part of the
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multi body system, and that the position of the tool is defined by the kinematics
of the multi body system and the previously mentioned solution of (3.16). The
location of each point on the associated cutting edge can therefore be expressed as
a function of the tool position, the orientation of the reference frame attached on
the tool, i.e. the frame in Figure 3.10 indicated by z*, y* and z*, and and a variable
(* = (2" — z}) parameterising the cutting edge as a vector valued function in the
tool reference frame.

z* .
“Liool | | Tt 1T" 1" tool
frame |
Origin T’ | Origin g
cutter
centre cute
of mass | centre
IS e
cutting cutting
edge edge
_______________________ A(,D
«ae | A *
lr .................. Qe

Figure 3.10: Image of a real end mill> and a scheme indicating the vectors which
describe the cutting edge.

Using the following notations (see Fig. 3.10), i.e.
e .1, vector from the global origin to the origin of the tool,

e A,, orthogonal transformation relating the global, i.e. the work piece reference
frame ’0’, to the frame attached to the tool ",

e o(¢*) = o + "L tan B angle of cutting edge for the parameter (¥,

e O(p(C*)) orthogonal transformation relating the frame corresponding to the
cutting edge to the tool frame,

2The image has been kindly provided by P. Rasper from IWF (head: Prof. E. Uhlmann),
TU-Berlin (see e.g. [104]).
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e ... vector from the origin of the tool to its centre of mass,

® .Tase = «Tae(p(C*)) vector perpendicular to the cutter axis pointing from the
cutter axis to the cutting edge,

o .Tee = 4Tae((C*)) + (¢ — 28)s€sr — 7 vector from the centre of mass to the
cutting edge point identified by (*, with ,e.- denoting the unit vector pointing
in the direction of the tool axis,

the vector from the origin of the global reference frame (that coincides with the work
piece reference frame) to the cutting edge can be written as

orae(g*) = olox T Ao* (*T*c + *Tce)
= oTlox T Ao* (*fae(ﬁp(c*)) + (C* - ZE;)*eZ*)
= oTox + (Q* - ZS)AO**GZ* + Ao**fae((p(g*))
= oToa(C") + orae(CY). (3.58)
For presentation purposes, consider, without loss of generality, a particular solution

of the multi body system (3.16), so that the cutter axis is parallel to the z-axis of
the work piece reference frame.

Y
: current work piece domain §2(t) T
P —
o oa / o ideal work
P o piece surface
Oroe // Y
........... ‘h .
NI : 0(C*)
cutting edge ~ z / /PN o
j J olae %
cutting edge
cutter /.
path axcis tool
-1 Cross
ideal cutting ~ X 5] section
edge path f rotation
z

Figure 3.11: On the definition of the uncut chip thickness (the dashed lines represent
the ideal tooth path and the ideal work piece shape without machine and work piece
deformations).

In this case, work piece shape and the cutter position can be illustrated on a x, y-
plane as shown in Fig. 3.11, where 07“56 and 07"51 represent the projections of ,r,. and
oToq ON the considered x, y-plane.

The thick black line in Figure 3.11 represents the current shape of the work piece
given by 0€)(t) while the thick grey line illustrates the cutting edge path. As shown
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in [24], [81] and indicated by the red bar in Figure 3.11, the uncut chip thickness is
defined as the distance between a point on the cutting edge identified by (* and the
current work piece surface 9€2(t) measured in the direction of ,r,.. Mathematically,
this can be formulated as follows

0 if )10e & Q1),

h = - . (3.59)
max h otherwise,
heH

with the set H being defined as

oTae

H = {.I € R+| (07’06 — .Tm) S Q(t)} . (360)
Orae

Consequently, the value of h possibly changes for each point on the cutting edge

since it depends on the parameter ¢*, the minimal coordinates (due to ,7pe, oac)

and, via the current shape of the work piece defined by 0€2(t), on the displacement

field wu(t, X).

3.5.3 Cutting forces acting on the tool

Combining the expression for the uncut chip thickness with the empirical cutting
force model (3.56) divided by a, gives a force per unit length possibly assuming
different values for each value of the parameter (*, i.e.

R= R, R, k) =K h. (3.61)

Since the components of the vector R (see e.g. Fig. 3.10 or Fig. 3.14) are given
with respect to the reference frame corresponding to the cutting edge, (3.61) has
to be transformed by means of the previously mentioned orthogonal transformation
O(¢(¢*)) in the reference frame of the tool to compute the cutting force per unit
length acting on the cutter, i.e.

R=0(p(C")R = O((¢)K h, (3.62)

Similarly, the torque per unit length, acting on the cutter with respect to the centre
of mass is given by

T = ree X O(Q(CNR = yree X O(0(C)K h, (3.63)

where ,r.. denotes the vector (with components given with respect to the reference
frame attached on the tool) from the centre of mass to the point on the cutting edge
identified by *. Integrating (3.62) and(3.63) along the cutter axis, i.e. with respect
to ¢*, finally provides the resultant (or net) force and torque acting on the cutter.

3.5.4 Heat source
General strategy to estimate the heat flux into the work piece

In the previous sections the cutting forces have been computed for a single tooth tool
with nonzero helix angle. The basic strategy was to consider a x*—, y*—plane in the
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tool frame identified by the parameter (* and to calculate the uncut chip thickness
and the corresponding cutting forces per unit length (see (3.62)) for each plane.
Integrating the different contributions along the cutter axis, i.e. with respect to (*,
finally provided the resultant cutting force acting on the tool. In order to estimate
the heat flux into the work piece it is assumed that, on each (*—level, the oblique
cutting process can be approximated by an orthogonal process. As a consequence,
the third component of the cutting forces per unit length, i.e. ]f?p, can be neglected
and the generated heat will be estimated only considering the normal and tangential
force per unit length, i.e. R, and R,.

In order to derive the basic quantities for the heat flux estimation, consider
the cross section through an orthogonal process with width of cut a, illustrated
in Figure 3.12. Plastic deformations dissipating the energy usually occur in the
primary, secondary (or friction) and tertiary shear zone. The power consumed in
the most important shear zones, i.e. the primary shear and the friction zone, can
be calculated from the cutting forces, given by F,. and Ft, the chip velocity v,
and the velocity in the direction of the shear zone vg. Following the arguments of
Altintas, [3, pp. 4], the corresponding expressions can be derived performing the
following steps. At first, note that the cutting forces F. and F} can be transformed
in a pair of forces Fs and Fg,. While Fs represents the component acting in the
direction of the shear zone, Fs; denotes the component perpendicular to the shear
zone, i.e.

Fq, :Frcos¢+ptsin¢
Fqg = Ecosqﬁ—ﬁrsingb.

secondary
velocity shear zone -
diagram: .
primary
S shear zone.,
Ue > |
—_—
Ve L

tertiary

shear
E, zone work piece

Figure 3.12: Shear zones and cutting forces for an orthogonal process with width a,
and the corresponding velocity diagram.

Next, note that the cutting forces F, and F}, can also be transformed in a pair of
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forces Fy and Fy, ie.

Fy = F,cosa + F,sina

Fy = Ftcosoz — FTsinoz.
Fy acts in the direction of the rake face (see Figure 3.12) while Fi; represents the
force in the direction normal to the rake face. As outlined by Altintas [3, p.11], 'the

total power consumed in cutting is the sum of energy spent in the shear and friction
zones’, i.e.

P= FSUS -+ FUUCh,
= (Fr cos ¢ + Ft sin (;5) vg + (Fr cos o + ﬁ’t sin a) Ueh,

= <FTCOS¢+FtSin¢>ﬂ+(.FA’T-COSOZ—i‘FtSiIIOé)& Ve
cos(¢ — «) cos(¢p — )
= Fy.

where Fjv, represents the total power drawn from the spindle motor. The chip
velocity (see Figure 3.12) can be computed from the cutting speed and the shear
angle, i.e.

sin ¢
ch — Ue 5 3.64
Veh =0 cos(¢p — ) (3:64)
while the velocity vg in the direction of the shear plane is given by
cos
= Vp———. 3.65
Vs =0 cos(¢ — ) (3:65)

Due to shear and friction, the cutting power is almost completely transformed into
heat during the chip formation process. Since the primary shear zone is closer to the
work piece, it is assumed in the present application that the total heat flux into the
work piece can be estimated by means of the power dissipated in the primary shear
zone only, i.e. Fsvg, neglecting the heat generated in the secondary and tertiary
zone.

Estimation of the heat flux into the work piece

The heat generated in the shear plane, is, to a large extent, carried away with the
chip. The portion of heat flowing into the work piece depends on the cutter geometry,
the work piece material and on the cutting conditions. The starting point for the
derivation of a relation determining the heat flux into the work piece is an estimate
of the shear plane temperature for orthogonal cutting presented by Shaw [87, pp.
219]. Based on the power dissipated in the primary shear zone, i.e. Fsvg, Shaw
proposes the following expression for the heat per unit time per unit area flowing
into the work piece, i.e.

13’7. cos ¢ + Ft sin ¢
q=(1— RS _ ( T v (3.66)
Ag Ag cos(¢ — )
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where Ag = a,ls = a,h/sin ¢ denotes the shear plane area (see Figure 3.13). Since
Shaw assumes that the generated heat per unit time and per unit area, i.e. Fsvg/Ag,
is exclusively either carried away with the chip or flows into the work piece, he
introduced a new function R; to quantify both portions, i.e.

e (1 — Ry)Fsvs/Ag: heat flux into the work piece,
o Ri1Fsvg/Ag: heat carried away with the chip.

In particular, the function R; reads (cf. [87, p. 222|)

1

f= T rean

(3.67)

with a dimensionless parameter A, = A\y/(v.h) being a function of thermal diffusivity
A, cutting speed v,, uncut chip thickness h and shear strain +. In [87] the parameters
Cg, C are given as Cg = 1.328 and ¢ = 0.5. Unfortunately, the parameters ¢ and
~ remain unknown, while the other parameters can be determined from the cutting
conditions, i.e. v, h, a,, the tool geometry, i.e. a, and from the work piece material,
i.e. A\. A possible remedy is to exploit the relations between the cutting forces E,
and Ft, the shear angle and the shear strain presented in [3, pp. 10|. The shear
strain, for example, can be calculated from the shear angle ¢ and the rake angle «
(see Fig. 3.13), i.e

cos
= ) 3.68
7 cos(¢ — a) sin ¢ (3.68)
Moreover, Merchant [66] proposes an approximation of the shear angle, i.e.
—2(B, —
p=""aT Y <§ @) (3.69)

where (,, the average friction angle, can be calculated from the cutting forces (see |3,
p. 11]), i.e

A

E
B, = a + arctan —. (3.70)
t

Combining both expressions leads to the following relation between the cutting forces

and the shear angle, i.e.
1 E.
6= [g — arctan (EM . (3.71)

Consequently, the heat flux into the work piece can be estimated from the cutting
forces F. and Ft, the process parameters v., h, a,, the abstract parameters Cr =
1.328 and ¢ = 0.5, the tool geometry parameter «, and the thermal diffusity of the
work piece material .
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Ve

work piece

Figure 3.13: Section of an orthogonal cut (width a,).

Reformulation of the heat flux as source term

The quantity ¢ is a heat flux per unit time and per unit area distributed along
the primary shear zone. As mentioned before, the length lg of the primary shear
zone (cf. Fig. 3.13) can be related to the uncut chip thickness & since the vertical
component reads

lS singb =h<& ZS = (372)

sin g’
Correspondingly, the total heat P, flowing in to the work piece per unit time can be
computed multiplying ¢ with the shear zone area, i.e. Ag = lsa,,

Pq = C]AS =( lSCLp = (1 - Rl)FSUS. (373)

In the framework of the milling model involving the effects of machine and work
piece, the heat flux into to the work piece is incorporated by means of a source
term. This quantity corresponds to a the heat flux per unit volume and per unit
time. Consequently, in order to construct an appropriate source term, the total heat
given by (3.73) has to be divided by an approximate volume corresponding to the
cutting zone. Relating P, to the volume defined by V, = 2wha, (see Figure 3.13),
finally leads to the source term r describing the amount of heat r flowing into the
work piece per unit volume and unit time, i.e.

(ﬁ’t cos ¢ — F, sin gb) COS v
2wha,, cos(¢p — )

P
T‘ZVZ:(l—Rl)

where 2w represents an arbitrary distribution parameter (see Figure 3.13).

Ve, (3.74)

Heat flux modification due to the material removal

The above formula (3.74) for the source term describing the heat flux into the
work piece, has been derived assuming stationary cutting conditions. Due to the
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permanent chip flow, the amount of heat determined by the parameter R; is carried
away from the cutting zone. The remaining portion, i.e. (1 — R;) flows into the
work piece. The presented approach can therefore be used to directly estimate the
heat flux into the work piece without simulating the material removal.

However, the milling model being developed in the present work involves a ma-
terial removal simulation. After the simulation of a single tooth period, the chip
is indeed removed from the work piece by means of a tailored algorithm. Because
of this approach, the amount of heat carried away with the chip is implicitly incor-
porated in the present model. Consequently, the function R; can be dropped from
the equations and the source term representing the heat flux into the work piece is
given for the present model by the expression

ﬁ’tcosqb — Frsingb
r=tq_ ( ) PR (3.75)
V, 2wha, cos(¢p — )

P

Exploiting additionally the structure of the cutting force model (3.56), finally leads
to the following approximate heat source

<Rt cos ¢ — RT sin gb) V. COS (v 1 [x R
_ ¢ = — | = — arct - .
r 5o, cos(6—a) ¢ 5 |5 — arctan 2| (3.76)

where 2w represents the width of an arbitrary area located around the cutting edge
(for further details the reader is referred to the next section).

3.5.5 Boundary conditions and source terms

Similar to the resulting force on the cutter, the volume forces s¢, acting on the
right hand side of (3.54) and the corresponding source term s¢ appearing in (3.55)
have to be calculated from the relative cutting force given in (3.61) and the heat
source (3.76). Applying the orthogonal transformation between global reference and
tool frame A,. to (3.62) provides the components of the relative cutting force in the
work piece reference frame, i.e.

R = AnR = A, 0(0(C*)K h. (3.77)

Since the presented model is a macroscopic approach that cannot reproduce the chip
formation, the relative cutting forces have to be distributed over an area A(¢*) being
located between cutting edge and work piece surface (see Fig. 3.10) employing model
parameter Ap. For a set of minimal coordinates so that the cutter axis is parallel
to the z—axis of the work piece frame, the area A(C*) is illustrated in Figure 3.14.
For all points of the work piece domain not being in the domain €2, (see Figure 3.10)
around the cutting edge, the source terms are equal to zero. In order to verify this
condition, at first the coordinates of a point ,r given in the work piece reference
frame have to be transformed in the reference frame of the tool (denoted by ’«’), i.e.

*T<or) - Ato (or - oro*) ) (378)
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with ,7r.« denoting the vector from the origin of the work piece frame 'o’ to the
origin of the tool frame "x’. By means of the cylindrical coordinates corresponding

t0 . = (1), (47) g, (1)), Le.

p(er) = J16r)anl2 + (1)),

(2.

Cr) = () = 20,

the condition for ,r being in Q. (see Figure 3.10) can be formulated as follows

[Wo(ur) — w(i(*rm 5 Ap (3.79)

s EQ, & {—h(g*(»ﬂ")) < p(*r % <0
with ¢(.) denoting the angle of the cutting edge. The angle Ay is illustrated in
Figure 3.10 and Fig. 3.14, respectively. For a given point on the cutting edge .74
and a given level *, the area A(C*) is defined as the set of all points that are enclosed
by the green disc ring segment. The segment is defined by the arcs through ,7,. with
radius D/2 and length ApD and through (1 — /||« eel|)«7ae With radius D/2 — h
and length 2Ap(D/2 — h). Thus, the volume force reads

if,r(,r) & Qe,

otherwise,

~m 0
08¢ (o1) = { R (3.80)
CAC

*(+7))

with R given by (3.77). The corresponding heat source appearing on the right hand
side of (3.55) reads

08¢ (or) = {0 H tror) ¢ e (3.81)

m OtherWlse,

with H being related to (3.76) by

Ve COS (¢

cos(¢p — a)’

(b—l T arctan B,
=5 |5 —arcta 2l

Note that the source terms depend on the displacement field (due to the involved
uncut chip thickness h), possibly on the work piece temperature (due to temperature
dependent cutting coefficient) and on the set of minimal coordinates (due to the
transformation A,. and due to the vector ,r,.).

H=rA= (Rt cos ¢ — R, sin gb) (3.82)

with the shear angle
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Figure 3.14: On the definition of the volume force.

3.5.6 Summary of the equations describing the milling sys-
tem for a single tooth period
The milling model describing the the work piece oscillations, the heat conduction in

the work piece and the machine oscillations induced by the milling process can be
summarised by the following system of equations, i.e.

Oouy = Div(o) + oost,(t, 2, 2,u, ©) on Qg, (3.83a)

o = Ar(e)l 4+ 2ue — 3Ka®l, on Qg, (3.83b)

00cpO; + Grad(Q) = —3KaTyDiv(uy) + 0osi(t, 2, 2,u, ©), on Qp,  (3.83¢)
Q = —kGrad(O©) (3.83d)

M(t, 2)2 4+ ((t, 2, 2) = ¢°(t, 2, 2,u, O), (3.83¢)

Equation (3.83a) represents the balance of momentum for the work piece. The quan-
tity 0o represents the mass density of the work piece in the reference configuration
Qg. Equation (3.83b) is the linearised stress tensor relating the deformations, i.e.

e = % (Grad(u) + (Grad(u))"),

and the temperature difference © = T' — T} to the stresses in the work piece. The
parameters A and p denote the elastic constants while « represents the thermal
expansion coefficient. The parameter K = A\ + (2/3)u is the bulk modulus. Equa-
tion (3.83c) is the balance of energy describing the heat conduction in the work
piece. The parameter cp represents the specific heat for constant deformations
while () denotes the heat flux which is, due Fouriers law, related to the temperature
gradient. The parameter x appearing in (3.83d), i.e. Fouriers law, is the thermal (or
heat) conductivity. The first term on the right hand side of (3.83c) is necessary to
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model the temperature change due to compression or expansion of the work piece.
Equation (3.83e) describes the multi body system in terms of the corresponding
minimal coordinates z. The coefficient M (¢, z) is the state dependent mass matrix
while the function ((¢, z, 2) incorporates additional inertial effects. The function
q(t, z, 2,u,0), i.e. the vector of external forces, appearing on the right hand side
of (3.83e) incorporates the joint reactions between the rigid bodies and depends, due
to the cutting forces, on the solution of (3.83a) and (3.83c), respectively. Similarly,
the source terms s¢,, s¢ depend, due to the cutting forces and the heat generated by
the process, on the solution of (3.83a), (3.83c) and (3.83¢).

3.5.7 Geometry update

As mentioned before, the work piece surface can be constructed employing a material
removal model. The main idea is to construct a volume based on cutting edge path
and work piece deformations that can be subtracted from a given work piece domain
by means of Boolean operations.

To this end recall that during one tooth period, each point on the cutting edge
follows a certain path depending on the motion of the cutter. In a sub interval some
points of the cutting edge penetrate the deformed work piece surface and the cutter
is cutting. Thus, a work piece deformation can be associated to each point ,r..(¢*),
of the cutting edge (see (3.58)) being in the work piece domain €(t), i.e.

oroe(g*) = Xoe + U(ta Xoe)a Xoe € QR; C* € [07 a’;e)]a (384>

where aj, denotes the axial depth of cut corresponding to the cutting edge. With
solution X7, (,,70¢(C*)) of the above equation and the cutting edge points a new
point y can be defined that corresponds either to the cutting edge or to the new
shape of the reference domain, i.e.

_ oToe(C*) if Oroe(c*) g Q(t),
- {X;e(tv ol oe; (C*)) otherwise. (385)

Monitoring these points y C R3 during a time interval enclosing the actual cutting
period gives a set of points that describe an open surface in the three dimensional
space. From such a surface a set Q. C R? can be constructed that represents the
points travelled by the cutting edge and incorporating the work piece deformations.
The new work piece reference domain 2% can be found subtracting the domain (2.
from the given work piece reference domain g, i.e.

Qe = Qp \ Q. (3.86)

The presented strategy leads to a series of work piece domains each incorporating
the motion of the cutting edge and the corresponding work piece deformations during
the preceding tooth path. Together with the expression for the uncut chip thickness
the model leads to a nonlinear system of coupled ordinary and partial differential
equations. The history of work piece and cutter motion is stored in the work piece
surface.



Chapter 4

Discretisation and numerical
algorithms

4.1 Variational formulation and space discretisation

4.1.1 Existence of a unique weak solution

The milling model derived in Chapter 3 can be summarised by the following system
of equations (see Section 3.5.6), i.e.

Oou = Div(o) + oos.,(t, 2, 2,u, ©) on Qp, (4.1a)
o = Mr(e)l + 2ue — 3KaOl, on Qg,
1
=3 (Grad(u) + (Grad(u))T> : on (g,
0ocp©; + Grad(Q) = —3KaTyDiv(u:) + 00si(t, 2, 2, u, ©), on Qg, (4.1b)
Q = —kGrad(0©), on g,
M(t,2)2+((t, 2z, 2) = ¢°(t, 2, 2,u, ©), (4.1c)

¢, s¢ (see Sections 3.5.4 and 3.5.5) and the generalised exter-

nal forces ¢° (see Section 3.5.3) incorporate the coupling effects. The corresponding
initial conditions are

where the source terms s . s

with X € Qpg. Moreover, the following boundary conditions are imposed to the
System
o-n=0 on 'y C 0Qpg,
—kGrad(©) -n =0 on I'n C 0Qg,
u=0 on I'p C 0Qg,
=0 on I'p C 0Qpg,
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where n denotes the corresponding normal vector. The Dirichlet type conditions take
into account that the work piece is fixed on the machine table. Since all coupling
effects are included in the source terms, no stresses act on the boundary, therefore
homogeneous Neumann type conditions can be imposed for the normal stress on
'y = 0Qgr \ I'p. The homogeneous Neumann type condition for the heat flux on
'y = 0Qr \ T'p can be motivated by the assumption that effects like heat transfer
or radiation are small compared to the heat source s¢.

The weak form of (4.1a) and (4.1b) can be constructed by multiplying both
equations with test functions v € V = {v € H'(Qg,R?) : v|r, =0}, we W ={v €
H'(Qg,R) : v|r, = 0} and integrating over Q. Integration by parts and exploiting
the boundary conditions, leads with the identity o(u, ©) : Grad(v) = o(u, ©) : e(v)
to the weak formulation of the coupled system, i.e.

/Q @outtUdX—F/Q o(u,0):e(v)dX = i 0085, (t, 2, 2,u,©)vdX Vv, (4.2a)
/Q @OCD@tde+/Q /<:Grr8ud(@)-Grlfau(i(1,u)ch+/Q 3K aTydiv(uy)wdx

= / 0oss(t, z, 2,u, ©)wdX  Vw, (4.2b)

M(t, z)z + C(K::z, 2)=q°(t, 2, %,u,O). (4.2¢)

In [24] the authors show for a similar problem involving, instead of o(u,®), the
regularised stress o,(u, u,0) = o(u, ) + §,£(4) the existence of a unique solution
with the regularity v € L>*(0,7;V), u € L®(0,7; L*(Qg,R3)) N L*(0,7;V) and
i € L>=(0,7;V*). For the temperature field they show that © € L>(0,7; L*(R)),
Crad(©) € L*(0,7; L*(Qgp;R?) and © € L*(0,7;(H'(Qr))*). Even though the
authors analyse the solution on an interval [0, 7), the results hold for arbitrary time
intervals as well, because the solution can be continued employing the method of
steps. The time 7 represents the delay which is equal to the length of a single tooth
period.

Although the system being in the focus of the present work involves a more
elaborated machine model and another coupling model than the system discussed
in [24], the mathematical structure of both systems is quite similar and it is fair to
assume that the regularity results also hold for the present system. Consequently,
the above results are the starting point for the space discretisation because the
spaces V and W can be approximated with finite elements.

4.1.2 Space discretisation with finite elements

The semi-discrete equations corresponding to the coupled system of the two varia-
tional equalities (4.2a), (4.2b) and the ordinary differential equation (4.2¢) can be
derived employing the Galerkin method described, for example, in [24]. To this end,
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let {11, 19,...} be a basis of W and let

U 0 0 Yo 0 0
0 ) wl ) 0 5 0 5 w2 s 0 g
0 0 (0 0 0 ()}
- {0171)271)37@471]571]67"‘} (43)

be a basis of V with v; = (¢1,0,0)T,... v = (12,0,0)T,... v3, = (0,0,%,)T. The
Galerkin approximation of a weak solution can be constructed by choosing a finite set
of basis functions, i.e. W, = span{ty,s,...,1,} and V,, = span{vy, va, ..., v3,}.
The corresponding approximations read

n

u(X,t) = Zdj(t)vj(X) L OM(X, 1) =) A (Hw(X). (4.4)

k=1

With the additional requirement that the functions u” and ©" satisfy (4.2a) and
(4.2b) on the spaces V,,, W), respectively, the weak formulation reduces to the follow-
ing system of ordinary differential equations for the unknown functions d’(t) with
j=1,...,3n and v*(t) with k = 1,...,n, ie.

M) +K [#0)] = CHH0] + Rt [@0] B0, (@5

m [4(6)] + K (0] + ¢ [ (1)] = r(t. 2,2, [P @], ). (4.5b)
where z, 2 are a solution of the system

M(t,2)5+((t 2, 2) = ¢ (2, 2, [ 0)], [V ©O)]). (4.5¢)

The square brackets represent the vectors corresponding to the unknown functions,
i.e.

[ ()] = (d*(t), d3(t),...,d*" (&))",
V)] = (1), 22(@), . (1)

Note that the construction of the finite dimensional system is outlined in Ap-
pendix C. The corresponding initial conditions can be calculated solving the linear
systems derived in the Appendix C.3. The finite dimensional representations for the
initial conditions ug, vy € V read with (C.21)

[d7(0)] = M~ (R (), [dj(o)] =M (R%(wp)) . (4.6)
The finite dimensional representations for the initial condition Oy € W reads with (C.23)

[v*(0)] = m™ (x(©y)) - (4.7)
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4.1.3 Computation of the uncut chip thickness for linear fi-
nite elements

As outlined in Section 3.5.2, the uncut chip thickness h corresponding to a point on
the cutting edge given by ,7.., can be computed solving the following problem

- {0 if Jroe & Q(1),

max h* otherwise,
h*eH

(4.8)

with the set H being defined as

= {y el (i —ur ) €20}, (49)

HoraeH

where the vector ,r,. points from the tool axis to the point on the cutting edge
defined by ,r,. (see Figure 3.10 or Figure 3.11). Q(t) = Qg + u(t,2g) denotes the
deformed work piece domain. Solving the maximisation problem in (4.8) under the
restriction imposed by the set H is equivalent to the task of finding the point on the
line

olae .
‘C(y)zoroe_yn r ||7 with yeR—H

intersecting with the deformed boundary of the work piece given by 0Q(t). By
definition, the parameter y* solving this problem corresponds to the uncut chip
thickness h = y*.

point on the cutter axis

triangle T;(t)

Intersection
" point I’
OTO(I

ol02

cutting edge

Figure 4.1: Example of an intersection between vector and triangle.

In the discrete case, the union of triangles T;(¢) describes the current work piece



82 4.1. Variational formulation and space discretisation

surface , i.e.
Nt
0Q(t) ~ 0(t) = | Ti(t). (4.10)
=1

Figure 4.1 illustrates a configuration where the vector between the cutter axis and
the cutting edge, i.e. ,r., intersects a part of the discrete work piece boundary,
i.e. the triangle T;, at the intersection point ’I’. In case of a configuration where
the vector ,rq. does not intersect the triangle 7;, the intersection point is located in
the interior of another triangle, say Ty (t) € 0Q,(t), k # i. The edge points of the
triangle T;, i.e. o701, o702 and ,7,3, are given by the edge points ,R.1, o2 and ,Ry3
of the triangle in the reference configuration and the corresponding displacements,
ie.

oTok = ook + u(t, oRok); with Ry, € 0Qg, k=1,...,3. (4.11)

Since the triangle illustrated in Figure 4.1 represents the boundary of the deformed
work piece, the 'point on the cutter axis’ is located outside of the current work piece
domain €(¢) while the point named ’cutting edge’ is in the interior of (¢). As dis-
cussed in Section 3.5.2 and shown in Figure 3.10 and 3.11, respectively, the quantity
oToa Tepresents the vector from the origin of the global reference frame to a point
on the cutter axis. Similarly, ,r,. denotes the vector from the origin of the global
reference frame to a point on the cutting edge. ,7,. is the vector connecting ,r,, and
oToe- The parameter ny, denotes the outer-pointing normal vector corresponding to
the part of the current discrete work piece surface given by the triangle 7T;. The
vector ,ri; lying in the plane defined by the triangle 7; connects the triangle edge
1" with the intersection point 'I’. As discussed before, the uncut chip thickness h
is the distance from the cutting edge to the current work piece surface measured in
the opposite direction of ,r,.. In Figure 4.1, the uncut chip thickness ’'h’ is therefore
the distance between the cutting edge and the intersection point 'I’.

Since the intersection point and the corresponding triangle are unknown, the
uncut chip thickness has to be computed by finding the intersection between a
triangle 7;(¢) and the set of points given by the definition H. To this end, recall that
each point ,71 + ,7r17 on a triangle T; can be written as a convex linear combination
of the edge points ,71, o702, 003 i.€.

T; > oTo1 + ol'11r = oTo1 + b2 (0T02 - orol) + b3 (OTO3 - orol)
= bl ool T b207402 + b3or037 (412)

with the non negative (barycentric) coordinates by = 1 — by — b3, be, bs. The point
oTol +or1ir & T; if at least one of the barycentric coordinates is negative. As shown
in Figure 4.1, the vector ,r; + ,7r17 can also be expressed exploiting the definition of
the set H given by (4.9), i.e.

r
o1+ oT1I = oToe — b4ﬁ, (413)
olae
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where by denotes another positive number. Equating (4.12) and (4.13) leads together
with the definition of b; to a linear set of equations to determine the parameters
bl, ey b4, i.e.

b1 o1 + b2 oT2 + b3 013 + b4ﬁ = oToe
by + by + b3 = 1.
Rewriting the equations as linear system gives
4
> Lijb; = fi. (4.14)
j=1

Solving the linear system (4.14) for each triangle T; C 0,(t) and checking the
condition b;(T;) > 0, j = 1,...,4, finally provides the triangle T} being intersected
by the line ,roe —b4(Th) oTae(||oTacl|) ™, with by(Tk) € Ry, and thus the corresponding
uncut chip thickness h = by(T}).

4.2 Time discretisation

4.2.1 Momentum balance

In the present work, the Newmark scheme presented in [45, pp. 490] is used for the
time discretisation of the semi-discrete balance of momentum (4.5a). In order to
further clarify the time integration scheme, drop the term involving the temperature
and rewrite (4.5a) as follows

Ma + Dv + Kd = R, (4.15)

where D denotes an additional damping matrix. Since D represents an additional
term, the (thermo-) elastic system can always be recovered from (4.15) setting D =
0. For presentation purposes the state vector has been replaced by d = [d/(¢)], the
velocity vector by v = [dJ (t)} and the acceleration vector by a = [dﬂ (t)] . Moreover,

let R be a vector only depending on time. The initial conditions computed from (4.6)
are denoted by dg and vy. The corresponding initial acceleration ay can be computed
solving the problem

Mao = —DVO — Kd() + R(O) (416)

Next, assume that the solution of (4.15) is given in terms of the state vectors a; =
a(ty), vi, = v(tx) and dj = d(tx) for time ¢, = kAt. As outlined in [45], the new
state vectors for t;,; are related to the given vectors at time ¢; and to the new
accelerations a1 by the following expressions

di1 = dips + B(A) a4, (4.17)
Vi1 = Vi1 +Y(At)agi, (4.18)
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stability order of

method type b " condition accuracy
average acceleration | implicit | 1/4 1/2 unconditional 2
linear acceleration | implicit 1/6 1/2 fe = 0.5513 Hz 2
Fox-Goodwin implicit | 1/12 1/2 | f.~0.3898 Hz 2
Central difference | explicit® 0 1/2 | f.~0.3183 Hz 2
damped Newmark implicit | 0.3025 0.6 unconditional 1

Table 4.1: Properties of Newmark’s scheme depending on the parameters [ and
v given by Hughes [45, p. 493] (*M and D need to be diagonal for the central
difference method to be explicit).

with predictors

XN/'k+1 = Vi + (1 — 'y)(At)ak, (420)

and parameters 5 and . Inserting the formulae (4.17) and (4.18) into (4.15) leads,
after some rearrangements, to a linear system determining a1, i.e.

(M + v(A)D + B(AH)*K) a1 = Rltys1) — DVt — Kdjyr. (4.21)

Solving the linear system for ai,; and computing the new vectors dpi i, Vi1
from (4.17) and (4.18) finally provides a new set of state vectors for the next it-
eration.

The choice of the parameters g and v determine the numerical characteristics of
the Newmark scheme. Depending on the values of § and « the numerical scheme may
be conditionally or unconditionally stable and may introduce additional numerical
damping, see [45]. The results given in [45] are summarised in Table 4.1 The critical
frequency is related to the time step size by

Je

h Y
max

At < (4.22)

with f"  denoting the maximal eigenfrequency of the discrete undamped system,
i.e. for D = 0. For the present application the scheme called average acceleration
seems to be the best choice. Since the scheme produces no additional numerical
damping, it allows to study destabilising work piece effects in milling. Moreover,
the frequency response of the work piece is usually dominated by the low frequency
behaviour. For the accurate and efficient simulation of these effects the time step size
can be chosen relatively large. However, in case of conditionally stable schemes, the
upper bound for time step size imposed by (4.22) is much smaller than the admissible
step size for the accurate simulation of the low frequency effects. Moreover, for the
present problem, the advantages of the explicit scheme cannot be exploited because
the matrices M and D are not diagonal. In contrast to conditionally stable schemes
the unconditionally stable scheme does not impose an upper bound on the time step
size and therefore seems to be the better choice.
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4.2.2 Heat equation

A generalised trapezoidal rule is used for the time discretisation of the energy balance
equation (4.5b). In order to further clarify the integration scheme drop the coupling
term from the equations and rewrite (4.5b) as follows

m¢ + ky=r. (4.23)

Note that for presentation purposes, the coefficients have been replaced by ¢ = ['yk]
and v = [’yk}. As before, let r be a vector only depending on time. The initial
condition computed from (4.7) is denoted by -y,. The initial value for ¢, i.e. {(0) =
¢y, can be computed solving the linear system

m¢ = r(0) — k~,. (4.24)

Next, assume that the solution of (4.23) is given for time ¢, = kAt in terms of the
vectors ¢, = ((tx) and v, = v(tx). As outlined in [45, pp. 490|, the new vector
~(trs1) for time ti4 is related to the given vectors at time t; and to ¢, by the
following expression

Vit1 = Vi1 + (A i1, (4.25)
with predictor

Vit1 = Vi + (A1 = 6)Cy, (4.26)

and parameter 0. Inserting the formula (4.25) into (4.23) leads, after some rear-
rangements, to a linear system determining ¢, 4, i.e.

(m + 0(At)k) Cpyy = T(trr1) — k¥pyr- (4.27)

Solving the linear system for ¢, and computing the new vectors v, from (4.25)
provides a new set of vectors for the next iteration.

Similar to the Newmark’s method, the choice of the parameter § leads to different
numerical schemes. The methods summarised in Table 4.2 are either implicit or
explicit and have different orders of accuracy (see |45, pp. 465]). Note that, the

parameter A" is the maximal eigenvalue corresponding to the problem

k—MNm)x=0 x#0. (4.28)

Since the matrices m and k are symmetric, the eigenvalue problem has only real
solutions A?. In order to choose an optimal method among the possibilities given
in Table 4.2, recall that refining the grid leads to higher maximal eigenvalues \? .
This may in turn impose a step size restriction for the forward Euler scheme be-
cause the stability condition At < 2/A"  has to be satisfied for each grid. Since
unconditionally stable methods do not impose such a restriction, they are usually
the better choice. Moreover, note that, for the present problem, the advantages of
the explicit Euler scheme cannot be exploited because the matrix m is not diagonal.
Among the unconditionally stable schemes, the method derived from the trapezoidal
rule presents the highest order of accuracy and is therefore chosen for the present

application.
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method type 0 stability condition order of
accuracy
forward Euler explicit! 0 At <2/\ 1
trapezoidal rule implicit 1/2 unconditional 2
backward Euler implicit 1 unconditional 1

Table 4.2: Properties of the generalised trapezoidal rule depending on the parameter
d (* m needs to be diagonal for the forward Euler method to be explicit).

Remark 4.1 Note that the mass matrix m usually does not have the M-matrix
property (see Definition 4.3). Moreover, for the presented standard finite element
approach in 3D, the matrix k does not have the M-matrix property as well. Con-
sequently the iteration matrix m + Atk is no M-matrix and the present method
does not satisfy a discrete maximum principle [39]. Possible remedies are the use
of Finite-Volume schemes on Delauny meshes (see e.g. [44]) or tailored discretisa-
tion techniques like orthogonal subdomain collocation (OSC) (see [27]) or prismatic
meshes (see e.g. [39])

Definition 4.2 /34, p. 114] The class Z, (n > 0) is the set of all real square
matrices of order n whose off-diagonal entries are nonpositive, i.e.

Zn ={A=(ap),i,k=1,...,n;a; <0,i # k}.
A matriz belonging to the class Z, is called Z—matriz.

Definition 4.3 A Z-matriz (see Definition 4.2) A is called a (nonsingular) M-
matrix if There exists a diagonal matriz D having positive diagonal entries such that
the entries of the matriz AD = (wyy) satisfy the condition w;; > Ek# |wik| for each
i. For further equivalent properties see [34, p. 114], or [110)].

4.2.3 Multi-body system

In order to discuss the time discretisation methods for (4.2c) consider a generalised
force vector ¢ that depends only on the solution of (4.2¢), i.e.

qe(t7 Z7 Z’? d7 PY) - q_€<t? Z7 2})'

Next, reformulate (4.2¢) in first order form, i.e.

m - {M‘l(t 2) (cie(t,i,y) —C(tzy)]” (4.29)

which can be written in compact form, i.e.

@ = f(t,x). (4.30)

A general strategy to solve ordinary differential equations like (4.30) are Runge-
Kutta methods. As outlined in [37], these methods can be summarised by the
following scheme. Let s be an integer (the “number of stages”) and as1, asy, ass, - . .,
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As1, Ag2, - -, Qss—1, D1, ..., bs, Ca, ..., cs be real coefficients. Then the method to
compute z; 11 = z(t;41) for given z; = x(t;),

ky = f(ti,x;)

kJQ = f(tz + CgAt, ZT; —f- Ataglk’l)

/{73 = f_(tz + C3At, ZT; + At(a31k1 + aggkg))

: (4.31)
k?s = f(tz + CsAt, ZT; + At(aslkl 4+ ...+ as’s_lks_l))
Tit1 = X4 + At(blkl + ...+ bsks)

is called an s-stage explicit Runge-Kutta method for (4.30). Usually, the ¢; satisfy
the conditions

1—1
=Y ay i=2...s (4.32)
7j=1

Now, a particular Runge-Kutta method can be constructed defining a so called
Butcher tableau shown in Table 4.3.

0
Co | A21
C3 | az1 G32

Cs (5] Qg2 e as,sfl

by by ... bs_1 b

Table 4.3: Butcher tableau for an arbitrary s-stage Runge-Kutta method.

Efficient adaptive Runge-Kutta type methods are usually constructed from two dif-
ferent sets of coefficients (see e.g. [37]). The sets of coefficients satisfy the require-
ments that

e corresponding methods have different orders of accuracy (typically > 5),

e the tableau of the lower order method is embedded in the tableau of the higher
order method.

This strategy works well provided that the underlying equation (4.30) is non stiff and
that its right hand side is sufficiently smooth. In the present application, however,
the right hand side involves the solution of the discrete thermo—elastic system. In
contrast to the problem (4.30), the equation for the multi body system reads

T = f(taaja d(t)77(t)) = f(tv x)a (433)

with time dependent vectors d(¢) and ~(t). Both vectors have to be computed solv-
ing a system of coupled partial differential equations. As outlined in sections 4.2.1
and 4.2.2 the time discretisation of the partial differential equations has been carried
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out employing one step methods. Due to this restriction, the right hand side cannot
be provided at arbitrary times and (4.33) has to be discretised with the simple one
step scheme (von Heun’s method) shown in Table 4.4.

0
11
| 1/2 1/2

Table 4.4: Butcher tableau for von Heun’s method.

The corresponding second order Runge-Kutta method involving the vectors d(¢;),
(%), d(ti+1) and y(ti41) reads

ky = f(ti,x;) = f(ti, i, di, ;)

= f(tis1, x; + Atky,dip1,vi)
At

Tiy1 = T + 7(761 + ko).

4.3 Time integration algorithm for the coupled sys-
tem

After the discussion of time discretisation schemes for the decoupled problems, the
strategies can be combined to obtain a time integration method for the coupled
system. With the considerations of Section 4.2.1-4.2.3, the coupled system (4.5a)-
(4.5¢) can be summarised as follows

Ma + Dv + Kd = Cy + R(t, z,d,~) (4.34a)
m¢ + kv +cv=r(t,z,d,~). (4.34b)
&= f(t,z,d,7), (4.34¢)

where (4.34c) represents the first order formulation of (4.5¢) with z = (z,2)”. The
initial values for a, i.e. ag = a(0), and ¢, i.e. {, = ¢(0), can be computed from d,
Vo, Yo and xy solving the linear systems

Mao = C’)’O + R(O, Zo, dQ,’)’O) — DVO — Kd(), (435&)
mg¢, = r(0, o, do,vo) — kv — cVo. (4.35b)

Next, assume that a solution of the system (4.34a) — (4.34c) denoted by ay, v,
di, Cj, v, and zy is given at time t;. By virtue of the given solution and the
relations (4.17), (4.18) and (4.25), the system (4.34a) — (4.34c) can be rewritten, as
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a set of non linear equations determining the solution at time t;4, i.e.

{ L —6AtC] {akﬂ} _ |:R(tk+1,$k+1aak+1>Ck+1)1
~vAtc 1 Cri1 (g1, Tht1, Akt Ck+1)

LB e

ki = f(ty, Tk, Ak, Vy)
ko = f(tesr, v + At ki, apgr, $pr)

At

with predictors viyq, (leﬂ, Y41 only depending on the solution at time ¢, and
matrices L = M + ~v(At)D + 3(At)?°K and 1 = m + §(At)k. With the new variable
Y = (ag41,Cpr1s Tht1), the system determining the solution of the coupled system
at time %541 can be reformulated as a nonlinear equation, i.e.

0= F(Y). (4.37)

A standard algorithm to solve a system of non linear equations like (4.37) is Newton’s
method. The corresponding iteration to find a solution starting from the initial guess
Y = (ag, }, xx) consists of the repeated execution of the following steps

1. compute the residual Z = F(Y)
2. solve linear system AAY = —Z
3. update the solution Y =Y + AY,

where the matrix A usually is the gradient of F, i.e. A = VF(Y). For the present
application it is, however, very difficult to evaluate the gradient VF. Due to the
complicated structure and the dimension of the underlying equations, the gradient
can neither be provided analytically nor be computed by means of finite differences.
A possible remedy is, accepting slower convergence, to use the approximation A =~ I.
Since the quality of the initial guess increases with decreasing step size At, the
resulting fixed point iteration is expected to work satisfactorily at least for small
time steps.

4.4 Simulation of the material removal

4.4.1 Dexel-model to simulate the material removal
Material removal simulation and Dexel models

The second part of the algorithm deals with the generation of a new work piece
reference domain after each tooth period. In case of milling models involving a rigid
work piece, material removal models have been developed based on a constructive
solid geometry (CSG) approach (see e.g. [109]) or by considering ’arc surfaces’ (see
e.g. [23]). An alternative approach is to employ so called Dexel models as discussed
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Figure 4.2: Rays and Dexels for the description of the work piece geometry as shown
in [112,114].

for example in [94]. Dexel models are a particular discrete representation of a 3-
dimensional object which has been designed to simulate the material removal in
virtual sculpting or virtual machining operations [73,94]. The basic idea of the
Dexel representation is illustrated in Figure 4.2. From an observation plane (display
screen) rays are casted in the normal direction of the plane. Depending on the shape
of the object, each ray enters and leaves the object several times. The section of a
ray being inside of the object is called Dexel. The set of points corresponding to
the head and tail coordinates of each Dexel can be used to reconstruct a polyhedral
domain from the Dexel representation [114]. Recently, new techniques, the so called
tri-Dexel models, have been proposed to improve the quality of the reconstructed
surface by employing, instead of one, three sets of orthogonal rays to represent the
3-dimensional object [73,112].

Construction of the tooth-path-volume incorporating work piece defor-
mations

As described in Section 3.5.7, the simulated work piece deformations and cutter
motions provide data to construct a tooth-path-volume. The starting point for the
considerations is the description of the cutting edge points in the work piece reference
frame (3.58), i.e.

oToe = ofoe(ta 2, C*)7 (438>
where z = Z(t) denotes the solution of the multi body system (3.16) at time ¢ and

¢* € [0, ag] the parameter corresponding to the parametrisation of the cutting edge.
By virtue of a discrete parametrisation of the cutting edge, i.e.

H={G=0.G=G+AC, ... .Cv. = af),

the set of points E(¢) characterising the discrete cutting edge at time ¢ can be written
as

E() = {ofoe(t, 2, I €TT} (439)
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In order to incorporate the work piece deformations (3.84) has to be solved for each
element in E(¢). Since each point on the immersed cutting edge, i.e. each .7,
corresponds to a point of the current work piece domain, i.e. X, + u(t, X.), the
solution of (3.84), i.e. X,(o70e), corresponds to the point in the reference domain
being actually machined. For the solution of (3.84) in the discrete case, consider
the current discrete work piece domain at time ¢ given by

Q" (t) = Qg + u"(t, ),

where Q% represents the discrete reference domain and u™ the approximate displace-
ment field (4.4). Since the current discrete work piece domain is described by a grid
consisting of simplexes 5;, i.e.

Ns
Qh(t) - U Si>
=1

solving (3.84) for a y € E(t) reduces in case of linear finite elements to the problem
of finding the simplex S(y) C Q"(t) with

Nn
y = Z b;(9)x,(S) and b; >0, (4.40)
j=1

where x;(S) represents the coordinates of node ’;j’ of the simplex S(y). The param-
eter N,, denotes the number of nodes. After having found a simplex S(y), (3.84)
can be written as

X() =y = Db (S)ut, X, (5), (1.41)

where X;(.S) represents the nodes of simplex S(y) in the reference configuration.
Extending the above formula to elements y € E(¢) not being in Q"(¢) finally leads
to

X(y) = N, n .
y— 223005 (S(y) u™ (¢, X;(S(y)))  otherwise.

The set of cutting edge points incorporating the work piece deformations at time ¢
can now be written as

(4.42)

T(t) ={X(y)ly € E(t)}. (4.43)
With a discretisation of the tooth period k, i.e.

M= (th = (k=1 ts =ty + At,... th =k7),

the set of points describing the entire tooth path incorporating the work piece de-
formations reads
T=|]JT@®). (4.44)
telk
In a last step the points contained in T can be connected by a suitable triangulation

to obtain the approximation of ., i.e. Q" An example for Q" is illustrated in
Figure 4.3.
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cutting edge points

Figure 4.3: Tooth path volume constructed from T.

Constructing the polyhedral work piece domain

&

step 1: Dexel representation step 2: tooth path volume

( |
N

step 3: boolean operation step 4: contour generation

Figure 4.4: Scheme of boolean operation.

After the construction of the approximate tooth path domain Q" the new polyhedral
work piece domain Q%’"ew can be calculated implementing (3.86) on a discrete level,
i.e.

Q" = QR \ QL (4.45)
where Q% denotes a given polyhedral domain. Among the available methods dis-

cussed above, the uni directional Dexel representation described in [114] has been
chosen in the present work to carry out the material removal simulation. Starting
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tooth path
initial work piece grid volume final work piece grid

Figure 4.5: Illustration of the actual Boolean operation (left: initial grid, middle:
tooth-path volume, right: new grid).

from the given domain Q% i.e. the work piece grid on the left in Figure 4.5, the
corresponding Dexel representation can be computed tracing rays in x-direction as
shown in 4.2. The result is a set of Dexels organised on rays on a y-z-grid. Figure 4.4
(step 1) shows such a set of Dexels on the x-y-plane. The next step is the Boolean
operation. Computing for each Dexel the section intersecting with Q" and subtract-
ing this section from the original Dexel gives a new set of set of Dexels representing
the work piece after the Boolean operation (see Figure 4.4, step 3). Note that the
intersection of each Dexel and Q" can be computed efficiently because Q! is given
as a polyhedral domain. After the Boolean operation, the new polyhedral work
piece domain has to be constructed from the modified set of Dexels. To this end,
contours are generated from the Dexels on each x-y-plane performing the operations
described in [114], i.e.

e grouping of the Dexels on two adjacent rays,

e connecting adjacent Dexel points inside each group,

e creating a connection table to record the connections,

e traversing the connection table to construct the contours.

For the present example the result of the contour generation process is shown in
Figure 4.4, step 4. Finally, the polyhedral domain representing the new work piece
Q%’”ew can be constructed by tiling the contours on each x-y-plane using the algo-
rithm proposed in [25] and employing the mesh generator tetgen (see e.g. [89,90]).
The result of the material removal operation is illustrated in Figure 4.5.

Discretisation error and uncut chip thickness

The number of rays employed for the work piece representation affects the accuracy
of the computed uncut chip thickness. In order to illustrate this effect, consider
a rigid block like work piece ( 20 x 20 x 10 mm?) being machined by a rigid tool
with diameter D=8 mm. The results of the corresponding milling simulations is
illustrated in Figure 4.6. Especially for the coarse ray grid, i.e. 40x5 rays, large
errors occur in the computed uncut chip thickness when the tool enters and leaves the
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cut. Moreover, small oscillations can be observed during the entire cutting period.
As shown in the diagrams corresponding to finer grids, i.e. 160x5 and 640x5,
increasing the number of rays in y-direction reduces the error to an acceptable level.
A possible remedy is to employ Tri-Dexel models as discussed in [112]|. Since these
models involve rays in all spatial directions, they provide more detailed information
about the new surface constructed by performing the Boolean operation.

4.4.2 Transferring the solution to the new work piece grid

After the simulation of a single tooth period and the construction of a new discrete
work piece domain Qfé’"ew, the solution, i.e. the velocity field u}(¢, X), the displace-
ment field ™ (¢, X) and the discrete temperature field ©" (¢, X), given with respect
to the old discrete domain Q)% has to be transferred to the new grid Q™. As
outlined in Section 4.3, the new values of u}. (¢, X) and ©}(t,X), can be calculated
from the transferred fields solving the linear system (4.35a) — (4.35b). Since the
new domain is a subset of the old one, i.e. Q%" C QF. the solution transfer can
be accomplished by means of grid to grid interpolation (for algorithmic details, see
e.g. 62, pp.245]).

Alternatively, the solution can be projected from the old to the new grid solving
for each field a minimisation problem. For the displacement field ©" the minimisation
problem reads

u™" = argmin 1Hu - u”H%(Qmw), (4.46)
ueVi, () 2 R
where u" denotes the solution on the old grid. The general space Y (") can be
chosen as Y (QFv) = L2(QFY), YV (QEY) = HY(QFY) or Y (QEF) = A(QK™), where
|-l anewy denotes the norm induced by the bilinear form

alu,v] = /Qmw o(u) : e(v)dX. (4.47)

In the discrete case, the necessary condition corresponding to (4.46) can be written
as a linear system where the given solution u™ appears in an integral on the right
hand side. In order to evaluate this integral, the solution given on the old grid has
to be interpolated to the Gauss points of the new grid. This requires, in contrast to
the grid to grid interpolation, a more sophisticated interpolation algorithm that is
currently not implemented in the employed simulation framework.

Due to the lack of an efficient interpolation algorithm for the projection approach,
the grid to grid interpolation has been chosen for the present application. The pro-
jection approach, however, is, due to free choice of norm induced by Y ("), more
flexible and seems to be the better choice for future problems, provided that an effi-
cient implementation is available. Instead of optimally projecting the displacement
by choosing YV (%) = L*(Q2%™), it might be desirable to conserve the energy of
the system employing an energy norm for the projection.
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Figure 4.6: Evolution of the uncut chip thickness for different ray grids.
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Chapter 5

Numerical simulations in time
domain

5.1 Model hierarchy

The different aspects of the milling model (3.83a)-(3.83¢) developed in Chapter 3
shall be discussed by analysing the following hierarchy of models, i.e.

1. flexible machine and rigid work piece (Section 5.2),
2. flexible machine and damped elastic work piece (Section 5.3),
3. flexible machine and damped thermo-elastic work piece (Section 5.4).

The first approach illustrates the instabilities caused by the machine system. The
corresponding system can be derived from general model setting the work piece
deformations to zero and the temperature to the reference value Ty. The temperature
effects in the cutting force model can be suppressed choosing the fit parameters
in (3.57) as b=1 and ¢ = 1/T.

If a flexible work piece is involved in the milling process, work piece oscillations
may cause instabilities. Such effects can be simulated employing the second ap-
proach involving a flexible machine and a damped elastic work piece. As before, the
temperature is set to the reference temperature Ty and the parameters in (3.57) are
chosen as b =1 and ¢ = 1/Tj.

Undesired temperature effects, like thermal expansion, high work piece temper-
atures as well as the temperature induced variations of the stability limits, can
be analysed considering the third approach involving the flexible machine and a
thermo—elastic work piece.

5.2 Rigid work piece

5.2.1 Choosing the process parameters

As discussed in Section 5.1, the rigid work piece approach allows to analyse the ef-
fects arising from the machine system. The abstract oscillator chain MDOF milling
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Figure 5.1: Stability lobe diagram indicating the process parameters corresponding
to the simulations with rigid work piece.

model employed for the stability analysis in Section 2.3.3 has been developed based
on an experimental mobility FRF measured at the TCP of the milling machine
employed for the cutting tests in the present work (see Chapter 6). Since the com-
plex multi body system has been developed based on the same experimental data,
i.e. the measured mobility FRF, both models present similar dynamical character-
istics at the TCP (recall that the oscillator chain model reproduces the dynamical
characteristics corresponding to the TCP only). Consequently, the stability limits
corresponding to the approach involving a flexible machine and a rigid work piece
are expected to be similar to those predicted with the oscillator chain MDOF system
discussed in Section 2.3.3.

The objective of the present section is therefore to verify this presumption. To
this end, consider the stability boundary computed with the rigorous stability anal-
ysis method for the oscillator chain model and select particular process parameters
close this boundary corresponding to the points 1aS, 1bU, 2aS, 2bS, 2cU, 3aS, 3bU,
4aS, 4bU shown in Figure 5.1. Preforming time domain simulations with the multi
body machine model for each set of process parameters reveals, together with an
heuristic stability criterion (see Section 5.2.2), the stability characteristics of milling
model involving the complex multi body system. If the processes corresponding
to the parameter sets 1bU, 2cU, 3bU, 3cU, 4bU are unstable and if the processes
corresponding to the parameter sets 1aS, 2aS, 2bS, 3aS, 4aS are stable, it can be
concluded that the milling model involving the complex multi body system properly
reproduces the expected the stability characteristics.

5.2.2 Identifying unstable processes

The characteristics of a milling process can be analysed considering the uncut chip
thickness and the resulting cutting force acting on the work piece. As discussed in
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Section 2.1.5, the evolution of the uncut chip thickness provides information about
the process stability. In case of unstable processes, the uncut chip thickness does
not approach a stationary evolution. Additional oscillations superimposed on the
stationary evolution become perceivable and do not vanish until the end of the
simulation. In case of stable processes the chatter vibrations decay and the uncut
thickness converges to the stationary evolution.

The cutting forces acting on the work piece can be either determined by inte-
grating in each time step (3.80) over the approximate work piece domain Q% i.e.

P = | s (00X, (5.1)

h
R

or by integrating in each time step (3.62) along the cutter axis and transforming the
result into the global reference frame, i.e.

F(t) = —Ault) [ Ftt.C)aC" (5.2)

Dividing the x-component of the computed cutting force F by the corresponding ax-
ial depth of cut and transforming the obtained value in frequency domain by means
of a fast Fourier transform (FFT) leads to the relative force spectrum illustrated,
for example, in Figure 5.3. The peaks are located at multiples of the tooth passing
frequency. In order to distinguish the peaks appearing at multiples of the tooth
passing frequency and the peaks appearing in between, red squares indicate mul-
tiples of the tooth passing frequency. Moreover, note that, due to the interrupted
cutting, the cutting force can be interpreted as a multi frequency excitation, even in
the stable case. Consequently, the relative cutting force spectrum usually involves a
peak located at the tooth passing frequency and additional peaks appearing at mul-
tiples of the tooth passing frequency. Moreover, the relative cutting force spectrum
indicates unstable processes as well. If additional peaks occur between the peaks
corresponding to multiples of the tooth passing frequency, the process is considered
as unstable (see e.g. [91]).

5.2.3 Example 1aS

The process parameters corresponding to example 1aS are a, = 0.5 mm and n =
16000 rpm. As indicated in Figure 5.1, the process corresponding to this set of
parameters is located below the limit and has therefore been predicted as stable.
The evolution of the uncut chip thickness illustrated in Figure 5.2 confirms the
presumption. The facts that the initial perturbations vanish after the first few tooth
periods and that the uncut chip thickness approaches a stationary evolution clearly
indicate a the the simulated process is stable. In addition, the squares indicating
multiples of the tooth passing frequency in relative cutting force spectrum (see
Figure 5.3) are located on top of each peak and no additional chatter peaks appear
in between. From these facts it can be concluded the process corresponding to the
set of parameters 1aS is stable.
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Figure 5.2: Evolution of the uncut chip thickness for example 1aS.
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Figure 5.3: Relative cutting force spectrum for example 1aS.

5.2.4 Example 1bU

The process parameters corresponding to example 1bU are a, = 0.8 mm and n =
16000 rpm. As indicated in Figure 5.1, the process corresponding to this set of
parameters is located above the limit and and should therefore lead to unstable
cutting conditions. The evolution of the uncut chip thickness illustrated in Figure 5.4
confirms the presumption. Even though the initial perturbations converge at the
beginning, the magnitude of the of the uncut chip thickness increases after the tool
has been fully immersed and remains on a high level for the rest of the simulation.
In contrast to example 1aS, additional chatter peaks appear in relative cutting force
spectrum (see Figure 5.5) between the tooth passing peaks marked with squares. The
chatter peaks at 2005 Hz, 2274 Hz, 2539 Hz, 2805 Hz and 3070 Hz and the evolution
of the uncut chip thickness reveal that the corresponding process is unstable.
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Figure 5.4: Evolution of the uncut chip thickness for example 1bU.
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Figure 5.5: Relative cutting force spectrum for example 1bU.

5.2.5 Example 2aS and 2bS

The process parameters corresponding to examples 2aS and 2bS are n = 16400 rpm,
a, = 0.5 mm and a, = 0.8, respectively. As indicated in Figure 5.1, the processes
corresponding to these sets of parameters are located below the stability boundary
and have therefore been predicted as stable. The evolutions of the uncut chip thick-
ness illustrated in Figure 5.6 and Figure 5.7 confirm the presumptions. The facts
that for both examples the initial perturbations vanish after the first few tooth pe-
riods and that the uncut chip thickness approaches the stationary evolution, clearly
indicate that the simulated processes are stable. Since the squares indicating multi-
ples of the tooth passing frequency in relative cutting force spectrae (see Figure 5.8
and Figure 5.9) are located on top of each peak and no additional chatter peaks
appear in between, it can be concluded the processes corresponding to the sets of
parameters 2aS and 2bS are stable.
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Figure 5.6: Evolution of the uncut chip thickness for example 2aS.
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Figure 5.7: Evolution of the uncut chip thickness for example 2bS.
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102 5.2. Rigid work piece

60}
50t | o
40t
30t
20t

10|

0 1000 2000 3000 4000 5000
frequency / [Hz]

rel. cutting force spec. / [N/ mm]

Figure 5.9: Relative cutting force spectrum for example 2bS.

5.2.6 Example 2cU

The process parameters corresponding to example 2cU are a,—1.3 mm and n =
16400 rpm. As indicated in Figure 5.1, the process corresponding to this set of
parameters is located above the limit and has therefore been predicted as unstable.
The evolution of the uncut chip thickness illustrated in Figure 5.10 confirms the
presumption. Even though the initial perturbations decay at the beginning, the
magnitude of the of the uncut chip thickness increases after the tool has been fully
immersed and remains on a high level for the rest of the simulation.
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Figure 5.10: Evolution of the uncut chip thickness for example 2cU.

In contrast to examples 2aS and 2bS, additional chatter peaks appear in relative
cutting force spectrum (see Figure 5.11) between the tooth passing peaks marked
with squares. The chatter peaks at 2014 Hz, 2289 Hz, 2563 Hz, 2832 Hz, 3107 Hz and
3381 Hz and the evolution of the uncut chip thickness reveal that the corresponding
process is unstable.
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Figure 5.11: Relative cutting force spectrum for example 2cU.

5.2.7 Example 3aS

The process parameters corresponding to example 3aS are a, = 0.3 mm and n =
17800 rpm. As indicated in Figure 5.1, the process corresponding to this set of
parameters is located below the stability limit and has therefore been predicted as
stable. The evolution of the uncut chip thickness illustrated in Figure 5.12 confirms
the presumption. The facts that the initial perturbations vanish after the first few
tooth periods and that the uncut chip thickness approaches the stationary evolution
clearly indicate that the simulated process is stable.
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Figure 5.12: Evolution of the uncut chip thickness for example 3aS.

In addition, the squares indicating multiples of the tooth passing frequency in rela-
tive cutting force spectrum (see Figure 5.13) are located on top of each peak and no
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additional chatter peaks appear in between. From these facts it may be concluded
the process corresponding to the set of parameters 3a is stable.
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Figure 5.13: Relative cutting force spectrum for example 3aS.

5.2.8 Example 3bU and 3cU

The process parameters corresponding to example 3bU and 3cU are n = 17800
rpm, a, = 0.6 mm and a, = 0.8 mm, respectively. As indicated in Figure 5.1,
the processes corresponding to these sets of parameters are located above the limit
and have therefore been predicted as unstable. The evolution of the uncut chip
thicknesses illustrated in Figure 5.14 and Figure 5.15 confirm the presumption.
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Figure 5.14: Evolution of the uncut chip thickness for example 3bU.
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Figure 5.15: Evolution of the uncut chip thickness for example 3cU.
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Figure 5.16: Relative cutting force spectrum for example 3bU.

Even though the initial perturbations decay at the beginning, the magnitude of the
uncut chip thicknesses increase after the tool has been fully immersed and remain
on a high level for the rest of the simulation in both cases. The only difference is
that the chatter oscillations corresponding to case 3cU present a larger amplitude as
in case 3bU. In contrast to example 3aS, additional chatter peaks appear in relative
cutting force spectrae (see Figure 5.16 and Figure 5.17) between the tooth passing
peaks marked with squares. The chatter peaks at 1950 Hz, 2246 Hz, 2542 Hz, 2838
Hz, 3137 Hz and 3433 Hz and the evolution of the uncut chip thickness reveal that
the corresponding processes are unstable.
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Figure 5.17: Relative cutting force spectrum for example 3cU.

5.2.9 Example 4aS

The process parameters corresponding to example 4aS are a, = 0.8 mm and n =
19000 rpm. As indicated in Figure 5.1, the process corresponding to this set of pa-
rameters is located below the line indicating the stability boundary and has therefore
been predicted as stable. The evolution of the uncut chip thickness illustrated in
Figure 5.18 confirms the presumption. The facts that the initial perturbations van-
ish after the first few tooth periods and that the uncut chip thickness approach the
stationary evolution, clearly indicate that the simulated process is stable.
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Figure 5.18: Evolution of the uncut chip thickness for example 4aS.

In addition, the squares indicating multiples of the tooth passing frequency in rela-
tive cutting force spectrum (see Figure 5.19) are located on top of each peak and no
additional chatter peaks appear in between. From these facts it can be concluded
the process corresponding to the set of parameters 4aS is stable.
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Figure 5.19: Relative cutting force spectrum for example 4aS.

5.2.10 Example 4bU

The process parameters corresponding to example 4bU are a, = 1.2 mm and n =
19000 rpm. As indicated in Figure 5.1, the process corresponding to this set of
parameters is located above the limit and has therefore been predicted as unstable.
The evolution of the uncut chip thickness illustrated in Figure 5.20 confirms the
presumption. Even though the initial perturbations decay at the beginning, the
magnitude of the of the uncut chip thickness increases after the tool has been fully
immersed and remains on a high level for the rest of the simulation.
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Figure 5.20: Evolution of the uncut chip thickness for example 4bU.

In contrast to example 4aS, additional chatter peaks appear in relative cutting force
spectrum (see Figure 5.21) between the tooth passing peaks marked with squares.
The chatter peaks at 1950 Hz, 2246 Hz, 2542 Hz, 2838 Hz, 3137 Hz and 3433 Hz
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and the evolution of the uncut chip thickness reveals that the corresponding process
is unstable.

N w B (61 [*2] ~ (o] [{e]
o O O O O o o o
T T T T T T T T

£]
£1
i i i i i i

rel. cutting force spec. / [N/ mm]

10

0 1000 2000 3000 4000 5000
frequency / [Hz]

Figure 5.21: Relative cutting force spectrum for example 4bU.

Due to the material removal model, the machined work piece surface is another
result of the simulation. In case of exmple 4bU, i.e. an unstable processes, the
simulated work piece surface exhibits chatter marks.

Figure 5.22: A part of the simulated work piece for the slot milling process corre-
sponding example 4bU.

The corresponding work piece grid is illustrated in Figure 5.22 where the wavy
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surface on the right part of the milled slot clearly demonstrates the bad surface
quality.

5.2.11 Results of the time domain simulations with the multi
body machine model and rigid work piece

The results of the time domain milling simulations with the flexible machine and
rigid work piece are summarised in Table 5.1.

’ point No. \ n / [rpm] \ a, / [mm] \ process behaviour ‘
laS 16000 0.5 stable
1bU 16000 0.8 unstable
2aS 16400 0.5 stable
2bS 16400 0.8 stable
2c¢U 16400 1.3 unstable
3aS 17800 0.3 stable
3bU 17800 0.6 unstable
3cU 17800 0.8 unstable
4aS 19000 0.8 stable
4bU 19000 1.2 unstable

Table 5.1: Simulated processes and stability.

The results confirm the presumption that the milling system involving a multi body
machine model and a rigid work piece presents approximately the same stability
limits as the milling system involving an abstract oscillator chain machine model
presented in Section 2.3.3. Note that an experimental validation of the stability
limits independently predicted with each model will be presented in Chapter 6.

5.3 Damped elastic work piece

5.3.1 Modelling of work piece damping effects in milling sim-
ulations

The work piece in the machining examples considered in the present work, is either
directly fixed on the machine table or attached via bolted joints to a rigid support
plate which is clamped on the machine table (see Figure 5.23). The work piece is
subjected to alternating stresses arising from the material removal during the cutting
process. However, in large parts of the work piece the stress intensity is rather small.
For the given examples, high stresses only occur in vicinity of the clamping and close
to the cutting region. Thermo-elastic effects (transverse thermal currents) being
discussed in the appendix D.1.1 and elasto-slip effects occurring in the joints (cf.
appendix D.1.2) are therefore the most important damping mechanisms in the work
piece. While the first effect can be reproduced by a visco—elastic material model
with a tailored relaxation function (cf. appendix D.2), the second and possibly
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Figure 5.23: Block work piece and supple work piece attached via bolted joints on
the support plate.

more important contribution does not fit into the general visco—elastic framework
presented in appendix D.

An alternative approach to model the work piece damping is inspired by modal
testing problems being discussed, for example, in [32]. Following the arguments
presented in [45], the damping matrix D can be computed on the space discrete
level as a linear combination of mass- and stiffness matrix, i.e. with the matrices
introduced in (4.5a),

D = aM + DK, (5.3)

where a and b denote two unknown parameters, that have to be identified from
modal testing data. Since the parameters may change for each configuration, the
modal damping is not a constitutive law as the models discussed above.

5.3.2 Identification of damping parameters

Modelling of the clamping

The strategy to determine the damping parameters a and b appearing in (5.3) is
similar to the approach employed in the identification of the joint parameters in
Section 3.3. The effect of the bolted joints shown in Figure 5.23 can be modelled
imposing a homogeneous Dirichlet boundary condition on a strip with width wp on
the bottom face of the work piece. Since the parameter wp and the grid size affect
the eigenfrequencies of the undamped, discrete work piece model, i.e. solutions of
the eigenvalue problem

Ke = w’Me, e#0, (5.4)

wp has to be chosen so that the computed eigenfrequencies match those observed
in the experiments.
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Figure 5.24: Scheme of the setup to determine the mobility FRF of the work piece.

Strategy to identify the damping parameters

The damping parameters can be determined fitting the computed mobility frequency
response function of the work piece to the experimental curve. To this end, consider
the setup shown in Figure 5.24 and note that for an external force

F(t) = 5\15 exp (-“;—5)2) (5.5)

applied to a small area on the work piece boundary, the time domain velocity re-
sponse reads

o(t) = Cudp(t), (5.6)
where dp(t) is the solution of the discrete work piece equation, i.e.
Md + (aM + bK) d + Kd = BpF(t). (5.7)
The matrix C, arises from the discretisation of the integral
o (t) = — / (£, X) -1 do, (5.9)
Col Jr,

while the matrix Br represents the discrete counterpart of the Neumann boundary
condition

1
/ v-o-ndo=— F(t)v - e, do, Yv eV, (5.9)
Iy Cel Jr,

where e, denotes the unit vector in y-direction. Transforming v}'(¢) and F(t) in
frequency domain gives the mobility FRF depending on the parameters a and b, i.e.

Flogl(f)
FIFI(f)
with F[.](f) denoting the Fourier transform operator. The cost functional measuring
the difference between simulation and experiment can be written as

Hoype(f,a,b) = (5.10)

NEg
Ta,0) = 3 w5 (1Hugela b fi)l ~ () (5.11)
k=1

where H,, .(f) represents the experimental mobility FRF. As before, the discrete
weight function w” suppresses critical experimental data. Minimising the cost func-
tional with the restrictions a > 0 and b > 0, finally gives an optimal set of parameters

a, b determining the damping of the discrete system.
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Results

Work piece effects become important especially in the machining of thin walled
structures. Since the Rayleigh damping only fits to a particular work piece con-
figuration, it seems to be appropriate to consider the thin walled structure shown
in Figure 5.23 for the damping parameter identification and to transfer the results,
accepting possible errors, to work pieces with a more rigid structure. The final
material and damping parameters for the thin walled work piece with dimensions
100 x 10 x 140 mm?® are summarised in Table 5.2. The width of the strip corre-
sponding to the homogeneous Dirichlet boundary condition is wp=2.03 mm.

’ parameter value in unit 1 ‘ unit 1 ‘ value in unit 2 ‘ unit 2 ‘
0o 2.7x107° kg/mm? 2700 kg/m?
A 5.108359 x 10" | kg/(mm s*) | 51.08359 x 10° N/m?
1 2.631579 x 107 kg/(mm s?) 26.31579 x 10° N/m?
a 60 1/s 60 1/s
b 3x10°° S 3 x107° S

Table 5.2: Material and damping parameters for the thin walled work piece with
dimensions 100 x 10 x 140 mm? shown in Figure 5.23 and Figure 5.24, respectively.

The corresponding mobility FRF illustrated in Figure 5.25 reveals that the result
of the semi-empiric approach is in good agreement with the experimental datal.
The decay of the peaks and the locations of the antiresonances can be accurately
reproduced in the simulation.

mobility / [m / (N sec)]
=
o

experiment
simulation
n

10° 10° 10

frequency / [Hz]

Figure 5.25: Experimental’ and simulated mobility FRF of the work piece.

!The measurements of the work piece mobility FRF have been carried out by P. Rasper under
supervision of Prof. E. Uhlmann at IWF, TU-Berlin [104].
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5.3.3 Stiff work piece geometry
Effect of a damped elastic work piece with stiff geometry

In many milling applications, the machined work piece presents a stiff structure.
Since the compliance of the machine at the TCP is bigger than the compliance of the
work piece at the cutting zone, it is expected that the process stability is not affected
by the incorporation of work piece vibrations. In order to analyse the presumed
effects in detail, the objective of this section is to present the results obtained in
the resimulation of the example processes 2aS, 3aS, 3bU and 3cU considered in
Section 5.2 employing now a milling system involving the multi body machine model
and a block like damped elastic work piece with dimensions 50 x 30 x 70 mm? and
material parameters as given in Table 5.2.

Example 2aS with damped elastic work piece

The evolution of the uncut chip thickness depicted in Figure 5.26 confirms the pre-
sumption from above. As in the rigid work piece example, the uncut chip thickness
approaches after the initial perturbations the stationary evolution, a fact, that in-
dicates a stable process.
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Figure 5.26: Evolution of the uncut chip thickness corresponding to example 2aS
with stiff elastic work piece structure.

The analysis of the relative cutting force spectrum illustrated in Figure 5.27 reveals
that the simulated process is stable. Similar to the rigid work piece example, no
chatter peaks arise between the peaks located at multiples of the tooth passing
frequency.
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Figure 5.27: Relative cutting force spectrum corresponding to example 2aS with a
stiff elastic work piece structure.

Example 3aS with damped elastic work piece

The evolution of the uncut chip thickness depicted in Figure 5.28 shows the same
evolution as the uncut chip thickness computed for example 3aS with a rigid work
piece. As before, the uncut chip thickness approaches after the decay of the initial
perturbations the stationary evolution, a fact, that indicates a stable process.
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Figure 5.28: Evolution of the uncut chip thickness corresponding to example 3aS
with stiff elastic work piece structure.

The analysis of the relative cutting force spectrum illustrated in Figure 5.29 confirms
the conclusion drawn from the evolution of the uncut chip thickness. As in the rigid
work piece example, no chatter peaks arise between the peaks located at multiples
of the tooth passing frequency.
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Figure 5.29: Relative cutting force spectrum corresponding to example 3aS with a
stiff elastic work piece structure.

Example 3bU and 3cU with damped elastic work piece

The sets of process parameters 3bU and 3cU (see 5.1) correspond to unstable cutting
conditions. The uncut chip thicknesses illustrated in Figure 5.30 and Figure 5.31
shows a similar evolution as in the rigid work piece example (see Figure 5.14). The
uncut chip thickness does not converge to the stationary evolution but increases
noticeably after a short decay at the beginning and remains on a high level until the
end of the simulation. As mentioned before, this is a clear indicator for unstable
processes and chatter.
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Figure 5.30: Evolution of the uncut chip thickness corresponding to example 3bU
with stiff elastic work piece structure.
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Figure 5.31: Evolution of the uncut chip thicknesses corresponding to example 3cU
with stiff elastic work piece structure.
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As expected from the rigid work piece example, additional chatter peaks appear
in the relative cutting force spectrae depicted in Figure 5.32 and Figure 5.33, a
phenomenon finally confirming that the corresponding processes are unstable.
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Figure 5.32: Relative cutting force spectrum corresponding to example 3bU with a
stiff elastic work piece structure.
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Figure 5.33: Relative cutting force spectrum corresponding to example 3cU with a
stiff elastic work piece structure.

Remarks on the simulation results employing a stiff damped elastic work
piece

The simulation results presented in this section confirm the presumption that em-
ploying, instead of a rigid work piece, a stiff damped elastic work piece does not
affect the stability characteristics of the milling system. No appreciable differences
can be discovered comparing the evolutions of the uncut chip thickness and the
corresponding relative cutting force spectrae for both work piece models. Since the
stiff damped elastic work piece presents a small compliance at the cutting zone the
work piece reactions related to the cutting forces are very small compared to the
reactions of the tool. Consequently, the machine-tool system dominates the dynam-
ical characteristics of the whole system and the work piece effects can be neglected
in case of a stiff work piece structure.

5.3.4 Supple work piece structure

In the preceding section it has been shown that a stiff work piece structure does not
noticeably affect the process stability. The evolution of the uncut chip thickness and
the relative cutting force spectrum are similar to the results from the rigid work piece
examples. However, a supple work piece geometry may lead to instabilities. In order
to illustrate this effect, choose process parameters as in example 2aS, i.e. a, = 0.5
mm and n = 16400 rpm, previously identified as stable, and simulate the process
utilising the supple work piece with dimensions 100 x 10 x 140 mm? introduced in
Section 5.3.2. Especially on top, the supple work piece exhibits a high compliance
that can destabilise the previously stable milling process. Analysing the evolution of
the uncut chip thickness illustrated in Figure 5.34 reveals that the process does not
converge to a stationary regime. Large work piece oscillations lead to an increasing
uncut chip thickness and thus to increasing cutting forces.



118 5.3. Damped elastic work piece

05F \ \ \ =

o
~
T
Il

o
w
T

0.2F

uncut chip thickness / [mm]

o
-

0 0.05 0.1 0.15 0.2
time / [s]

Figure 5.34: Evolution of the uncut chip thickness corresponding to example 2aS
with a supple elastic work piece structure.

The additional chatter peaks appearing in the relative force spectrum shown in
Figure 5.35 clearly indicate that the corresponding process is unstable. In contrast
to example 3bU with stiff elastic work piece, the highest chatter peak is not located
2834 Hz at but at 136 Hz. Thus, the weak spot in the machine and work piece
assembly leading to chatter vibrations is not the machine as in example 3bU and
3cU, but the supple work piece structure.
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Figure 5.35: Relative cutting force spectrum corresponding to example 2aS with a
supple elastic work piece structure.
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5.4 Damped thermo—elastic work piece

5.4.1 Identification of the additional empirical parameters in
the cutting force model

The modified cutting force model presented in Section 3.5 involves two additional
parameters to incorporate the work piece temperature. Similar to cutting force
coefficients, the parameters b and ¢ appearing in (3.57) can be determined solving a
least squares problem.

Experiments

The cutting force measurements have been performed at the Department of Produc-
tion Technology and Factory Management (IWF) of Technische Universitidt Berlin
by P. Rasper under the supervision of Prof. E. Uhlmann. A short summary, the main
results and further references concerning the experimental studies can be found, for
example, in [43]. The cutting forces measured during three different stable processes
represent the experimental data for the identification procedure. For the measure-
ments of first data set, the work piece temperature was equal to the ambient tem-
perature, i.e. 25°C. Before the second and the third cutting test, the work piece
was heated up by means of a heating plate to 50°C and to 100°C, respectively. The
main observation in the cutting tests was that the cutting forces decrease with the
preheating of the work piece. Further tests revealed that the experimental stability
limit slightly increased in case of a preheating of the work piece as well [43].

Identification procedure

Similar to the strategy pursued for the determination of the cutting constants de-
scribed in Section 2.1.3, focusing on stable processes justifies the assumption that
the work piece deformation and the tool oscillations can be neglected in the simula-
tions related to the identification procedure for the additional empirical parameters b
and c. In view of these assumptions the coupled thermo—elastic system, i.e. (3.83a)—
(3.83e), can be reduced to the heat equation describing the temperature distribution
in the work piece. Since the enhanced cutting force model (3.57) just involves the
cutting edge temperature 7T, as additional parameter, the temperature distribution
in the work piece provides the necessary data to evaluate the cutting forces. Repro-
ducing the experimental procedure in the simulation requires three simulation runs.
While the first run has to be performed setting the work piece reference temperature
(as discussed on p. 64, the work piece temperature is given by T = © + T, with
reference temperature Ty) to Ty = 298.15 K, i.e. 25° C, the second and the third
run have to be carried out choosing a reference temperature of T = 323.15 K, i.e.
50° C, and T3 = 317.15 K, i.e. 100° C, respectively. The resulting cutting force
evolutions for can be compared considering the following cost functional, i.e.

3 2 kg

Te) = 3503 (PP 13) — Byt Toalti). ., Tg))Q, (5.12)

i=1 j=1 k=ko
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where F;™ denotes the experimental and F; the simulated cutting forces compo-
nents. Finally, the minimisation of the cost functional J(c,b) subjected to the
constraints ¢ > 0, 0 < b < 1 provides with b* = 0.9998 and ¢* = 254.33 K™! a set
of constants guaranteeing an optimal fit of the experimental data?. Note that the
starting index ky and the ending index kg have been introduced to select an appro-
priate subinterval with approximately stationary cutting conditions. Moreover, due
to the values of the empirical parameters, i.e. b* = 0.9998 and ¢* = 254.33 K™, the
cutting force model reproduces the experimental observation that the cutting forces
decrease with increasing work piece temperatures.

5.4.2 Example 3cU with stiff thermo—elastic work piece

In order to illustrate the additional effects occurring due the incorporation of the
work piece temperature, example 3cU is reconsidered in combination with a damped
thermo—elastic work piece model. Since the temperature dependent cutting force
model has been adjusted (see pp. 119) so that the high work piece temperatures lead
to decreasing cutting forces, it is expected that, in the simulations, a preheating
of the work piece, i.e. setting the initial temperature to 7, = 317.15 K, leads
to a stabilisation of the previously unstable process. However, the new cutting
force model provides modified cutting forces in the non preheated case, too. This
effect can be illustrated by the simulation of the example process 3cU involving a
damped thermo—elastic work piece with an initial temperature equal to the ambient
temperature, i.e. T = 298.15 K.

No preheating

A stabilisation of cutting process corresponding to the parameter set 3cU can be
observed in the simulations involving the damped thermo-—elastic work piece with
initial temperature Ty = 298.15 K. Even though the evolution of the uncut chip
thickness depicted in Figure 5.36 does not converge to the stationary evolution, the
maximum value for ¢ > 0.08 s is clearly smaller than the corresponding value of
the evolution shown in Figure 5.30. Similarly, the relative cutting force spectrum
illustrated in Figure 5.37 indicates that the considered process is unstable. However,
the chatter peaks appearing in Figure 5.37 are much smaller than the correspond-
ing peaks depicted in Figure 5.33. In conclusion, the modified cutting force model
involving the work piece temperature evaluated at the cutting edge and the addi-
tional parameters with values b = 0.9998 and ¢ = 254.33 K™! probably leads to an
underestimation of the cutting forces.

2 As mentioned before, the cutting force measurements have been carried out by P. Rasper under
supervision of Prof. E. Uhlmann at IWF, TU-Berlin (for further details see e.g. [43], [102-104] and
Section 6.3).
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Figure 5.36: Evolution of the uncut chip thickness corresponding to example 3cU
with a stiff thermo—elastic work piece structure with initial temperature of Ty =
298.15 K.
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Figure 5.37: Relative cutting force spectrum corresponding to example 3cU with a
stiff thermo—elastic work piece structure and initial temperature 7 = 298.15 K.

Preheating to 317.15 K (100°C)

A preheating of the work piece finally stabilises the process 3cU with damped
thermo—elastic work piece. As illustrated in Figure 5.38, the evolution of the uncut
chip thickness approaches the stationary evolution and therefore confirms that the
simulated process is stable. Similarly, the relative cutting force spectrum depicted in
Figure 5.39 indicates that the process 3cU with preheated damped thermo—elastic
work piece is stable. The chatter peaks that occurred in the previous examples
(see Figure 5.17 and 5.33) disappeared and the relative cutting force spectrum only
shows the peaks corresponding to multiples of the tooth passing frequency.



122

5.4. Damped thermo—elastic work piece

0.35F

0.3F

0.25F

0.2

0.15f

uncut chip thickness / [mm]

0.1

0.05

!

0
0 0.02

0.04

0.06 0.08 0.1 0.12 0.14
time / [s]

0.16 0.18 0.2

Figure 5.38: Evolution of the uncut chip thickness corresponding to example 3cU
with a stiff thermo—elastic work piece structure preheated to 317.15 K.
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Figure 5.39: Relative cutting force spectrum corresponding to example 3cU with a
stiff thermo—elastic work piece structure preheated to 317.15 K.

Preheating to 317.15 K (100°C) and increased axial depth of cut

Increasing the axial depth of cut from a, = 0.8 mm to a, = 1.1 mm leads to a
destabilisation of the stable process considered before. The uncut chip thickness
corresponding to the process with parameters n = 17800 rpm and a, = 1.1 mm
involving a damped thermo—elastic work piece is illustrated in Figure 5.40.
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Figure 5.40: Evolution of the uncut chip thickness corresponding to a process with
parameters n = 17800 rpm, a, = 1.1 mm and a stiff thermo-elastic work piece
structure preheated to 317.15 K.

The chatter oscillations and the related maximal value of the uncut chip thickness
increase after the tool is fully immersed, i.e. for ¢t > 0.08 s.
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Figure 5.41: Relative cutting force spectrum corresponding to a process with param-
eters n = 17800 rpm, a, = 1.1 mm and a stiff thermo—elastic work piece structure
preheated to 317.15 K.

Following the arguments outlined before, the corresponding process has to be clas-
sified as unstable. The corresponding relative cutting force spectrum illustrated in
Figure 5.41 confirms the conclusions drawn from the evolution of the uncut chip
thickness. The chatter peaks appearing between the peak corresponding to multi-
ples of the tooth passing frequency clearly indicate that the increase in the axial
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depth of cut destabilised the process 3cU involving a damped thermo—elastic work
piece preheated to 317.15 K.

Remarks concerning stability and work piece temperature

The purpose of the present section was to illustrate the implications of the tem-
perature effects. Based on the parameters identified from the cutting tests with a
preheated work piece (see Section 5.4.1), the new cutting force model generates,
even for a work piece without any preheating, smaller cutting forces than the model
without temperature effects. Consequently, the stability limits observed in the sim-
ulations with temperature effects are higher than the limits obtained in the simula-
tions involving a damped elastic work piece. Since the general characteristic of the
modified cutting force model strongly depends on the values of the parameters b and
¢, the identification procedure should be refined by incorporating more experimental
data. Nevertheless, it has been shown that with the proposed model, a preheating of
the work piece leads the an increase of the stability limits. Since the same effect has
been observed experimentally as well (see e.g. [43,102,103]), the proposed cutting
force model incorporating the cutting edge temperature can be interpreted as a first
step to reproduce these effects in the simulations.

5.4.3 Machining of a small thin walled work piece
Geometrical errors related to thermal expansion effects and stability

Another example to analyse the temperature effects can be constructed by consider-
ing the work piece with dimensions 50 x 7 x 3 mm? illustrated in Figure 5.42. Due to
the imposed Dirichlet boundary conditions, i.e. v =0 mm, © =0 K on I'p C 095,
and the heat generated by the cutting process, it is expected that the thermal ex-
pansion leads to a perceivable deformation of the work piece. Since the tool follows
a predefined path, too much material might be removed from the work piece in the
present configuration which finally leads to geometrical errors in the machined part.
On the other hand, the particular choice of the boundary conditions gives a quite
stiff work piece structure. As a consequence, it is expected that instabilities related
to work piece oscillations do not occur in the framework of the considered cutting
process. In this section, stability issues are not the prior motivation for the choice
of the boundary conditions since the focus is primarily on the documentation of
possible geometrical errors induced by the thermal deformation.

In order to study the evolution of the work piece temperature, for each time, the
temperature field can be evaluated at the so called watch (or observation) points
illustrated in Figure 5.43. The precise locations of these points are given in Table 5.3.
For the simulations, the spindle speed has been set to 18800 rpm while the axial
depth of cut has been chosen as a, = 1.5 mm. In contrast to the full immersion
processes considered before, a three quarter radial immersion cut is in the focus of
the present example. As a consequence of the lower radial immersion the stability
limit increases and the considered process is stable. The evolution of the uncut
chip thickness illustrated in Figure 5.44 and the corresponding relative cutting force
spectrum shown in Figure 5.45 confirm this result.
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point index x / [mm)] ‘ y / [mm] ‘ z / |mm] ‘
1 48.0 0.5 2.25
2 48.0 6.5 2.25
3 48.0 3.5 0.75
4 25 0.5 2.25
5 25 6.5 2.25
6 25 3.5 0.75

Table 5.3: Watch point coordinates in the work piece reference frame (see Fig-
ure 5.43).

cutting zone.,

:Dirichlet
boundary
conditions

Figure 5.42: Scheme of a thin walled work piece to illustrate the temperature effects.

Figure 5.43: Position of the watch points to evaluate the work piece temperature
and deformation.
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Figure 5.44: Uncut chip thickness corresponding the example with thin walled work
piece.
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Figure 5.45: Relative cutting force spectrum corresponding the example with thin
walled work piece.

Evolution of the work piece temperature

The temperature rise in the work piece is, depending on the watch (or observation)
point, in a range between 20 K and 270 K. Since the points 1 and 3 are located in
the tool path, the temperature measured at these points corresponds to the maximal
work piece temperature during the simulation. After the material has been removed
by the tool, the temperature at point 1 and 3 is set to zero. The peaks appearing in
the temperature evolution illustrated in Figure 5.46 can be explained by the repeated
heating due to the tooth passing. During a tooth period, when the distance between
cutting edge and watch point becomes minimal, the temperature at the watch point
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assumes a local maximum and decreases again. The points 2 and 5 are located in
the small region that remains on the right of the tool path. The temperature rise
at watch point 2 is relatively small due to the Dirichlet boundary condition. At
watch point 5 the temperature rise is about with 65 K more important because
the homogeneous Neummann boundary condition prevents a heat flux through the
boundary. A similar phenomenon can be observed for the temperature evolution
corresponding to watch point 3 and 6. Both points are located under the slot
created by the tool. The temperature rise at watch point 3 remains small because
of the heat flux through the Dirichlet boundary. At point 6 the temperature rises
up to 50 K and remains, in contrast to the temperature at point 5, on a high level.
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Figure 5.46: Evolution of the work piece temperature rise at watch point 1 and 4.
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Figure 5.47: Evolution of the work piece temperature rise at watch point 2 and 5.

Even though an important increase of the work piece temperature can be observed
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at the watch points 5 and 6, the resulting thermal expansion is still on a very low
level.
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Figure 5.48: Evolution of the work piece temperature rise at watch point 3 and 6.
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Figure 5.49: Temperature distribution in the work piece (tool is not cutting).

The maximum value of the work piece deformation illustrated in Figure 5.50 is in
the range of 0.0244 mm, a small value compared to the work piece dimensions. Due
to the discretisation error arising from the Dexel representation, the surface error
related to the work piece deformation induced by the thermal expansion can not be
simulated with the current approach. However, in case of other work piece materials
and different shapes, the illustrated effects may become more important. In con-
clusion, it can be said, that the model properly reproduces the effects, i.e. thermal
expansion and temperature distribution, related to the process heat conducted into
the work piece.
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Figure 5.50: Amplified work piece deformation (factor 100) and the corresponding
absolute value (colors).



Chapter 6

Experimental verification

6.1 Cooperation

The experimental studies presented in the Sections 6.2, 6.3, 6.4 and 6.5 have been
performed at the Department of Production Technology and Factory Management
(IWF) of Technische Universitat Berlin by C. Mense and P. Rasper under the su-
pervision of Prof. E. Uhlmann. To a large extend, the results of the experimental
work have already been published in [43, 75| and [103]. The experiments related
to the determination of the dynamical characteristics of the considered milling ma-
chine (Section 6.2) have been strongly supported by Prof. U. von Wagner from the
Department of Applied Mechanics (Chair of Mechatronics and Machine Dynamics)
of Technische Universitat Berlin and his co-worker K. Theet.

The device employed for the measurement of the frequency response function
discussed in Section 6.2 as well as for all cutting tests was a 5 axis milling machine
from MAP Werkzeugmaschinen GmbH, Magdeburg type LPZ 500 (see Figure 6.1).
For all experiments, i.e. the dynamical measurements as well as the cutting tests, a
one-edge end mill high-speed steel cutter according to DIN 6535 HA with a diameter
of 8 mm and a spiral angle of 23° has been used. The milling cutter was mounted
in a heat shrinking tool holder with a HSK-A mounting shank according to DIN
69882-8.

6.2 Machine dynamics

As discussed in Chapter 3, the starting point for a reliable machine model is an ex-
perimental modal analysis. In milling applications, the spindle-tool system usually
dominates the dynamical characteristics of the tool centre point (see e.g. [33]). As
a consequence, the focus of the experimental study! is at first on the measurement
of dynamical characteristics of the TCP.

L As already mentioned in Section 6.1, the measurements have been carried out at IWF by P.
Rasper under supervision of Prof. E. Uhlmann, for further details see [75].
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excitation/
response-.,

Figure 6.1: On the measurement of the mobility frequency response function? at the
tool centre point (TCP).

In order to measure the corresponding frequency response function?, the tool was
excited in y-direction of machine reference frame (see Figure 6.1). During the mea-
surements, the spindle-tool system was in an idle state.

mobility / [m / (N s)]

107 10°
frequency / [Hz]

2

Figure 6.2: Measured mobility frequency response function® at the tool centre

point [75].

The excitation force has been applied employing an impact hammer (Kistler 9722A500)
with a steel impact tip. The corresponding bandwidth was 5000 Hz. The response
in y-direction (see Figure 6.1) has been recorded using a laser vibrometer (Polytec
OFV 303). In contrast to the accelerometer, the vibrometer measures the velocity

2As already mentioned in Section 6.1, the measurements have been carried out at IWF by P.
Rasper under supervision of Prof. E. Uhlmann, for further details see [75].
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of the TCP without modifying the system. The additional mass of the accelerome-
ter attached on the TCP modifies the dynamical characteristics of the system and
therefore possibly introduces measurement errors. The main result is the frequency
response function corresponding to the tool centre point illustrated in Figure 6.2 (for
further results and experimental issues, the reader referred to [75]). A small peak
appears at about 127.3 Hz while the main peaks are located at about 1243 Hz, 2208
Hz, 3081 Hz and 4423 Hz. Due to the high frequencies, it can be concluded that
the the main peaks are related to eigenmodes of the spindle tool system. Only the
first peak corresponds to an eigenmode of the machine structure. Consequently, the
eigenfrequencies of the machine structure, i.e. machine base, side plates, traverse
plate, x-slider and headstock, can be neglected and an encompassing modal analysis
is not necessary for the stability issues discussed in the present work. The focus is
rather on a precise modelling of the dynamical characteristics of the spindle-tool
system.

6.3 Cutting force measurements

6.3.1 Experimental setup

As outlined in Chapter 2, the first step in the stability prediction procedure is
the determination of the cutting forces. In order to collect the necessary data for
the identification procedure presented in Section 2.1.3, machining tests have been
performed®. The employed work piece material was AlZnMgCul.5, an aluminium
alloy with the material number AAT075. As mentioned in Section 6.1, the device
employed for the cutting tests was a 5 axis milling machine from MAP Werkzeug-
maschinen GmbH, Magdeburg type LPZ 500. For the experiments a one-edge end
mill high-speed steel cutter according to DIN 6535 HA with a diameter of 8 mm
and a spiral angle of 23° has been used (see e.g. Figure 3.10). The milling cutter
was fixed in a heat shrinking tool holder with a HSK-A mounting shank according
to DIN 69882-8. A scheme of the experimental setup is shown in Figure 6.3.

heat shrinking toolholder

work ? L il
piece /| —€nd 1mil PC
ﬂ 3 charge amplifiers
3-component 3—% Hi=! —‘—‘—\ data
dynamometer5——-{_ @ —1% %' acqui-
® @ | it
machine table o ? sition
xT Fy FZ

Figure 6.3: Experimental setup for determining the cutting forces (for the definition
of the corresponding reference frame see Figure 6.4).

3As already mentioned in Section 6.1, the cutting tests have been carried out at IWF by P.
Rasper under supervision of Prof. E. Uhlmann [104].
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Figure 6.4: On the definition of the coordinates for the cutting force measurements.

The work piece was mounted on a 3-component dynamometer type Kistler 9257A.
The dynamometer was connected to three charge amplifiers type Kistler 5011. The
data acquisition has been carried out using a measuring board from National in-
struments with a maximum sampling rate of 500 kHz and a resolution of 16 bit. A
sampling rate of 50 kHz was used for the data logging. The cutting forces acting
on the work piece measured with the dynamometer are given with respect to the
reference frame shown in Figure 6.4.

6.3.2 Data processing
Experiments for the determination of the cutting coefficients

For the cutting force measurements* described in this section, the cutting speed has
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Figure 6.5: Mean values of the experimental? cutting forces for different feeds (co-
ordinates are given with respect to the reference frame shown in Fig 6.4).

4As already mentioned in Section 6.1, the underlying cutting test data has been measured at
IWF by P. Rasper under supervision of Prof. E. Uhlmann [104].
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been set to 417.2 m/min, i.e. an approximate spindle speed of 16600 rpm or a
tooth passing frequency of 277 Hz. The feed per tooth has been varied from 0.05
mm /tooth to 0.5 mm/tooth with increments Af, = 0.05 mm/tooth. In contrast to
the predicted stability limits (see Section 2.3.3), in the experiments, the process was
stable for an axial depth of cut @, = 1.5 mm. Consequently, the value a, = 1.5 mm
has been chosen for all cutting tests to acquire the data for the determination of the
cutting coefficients. The average values of the measured cutting forces are shown
in Figure 6.5 for different values of f,. Note that the coordinates z, vy, z correspond
to the directions indicated by the reference frame given in Figure 6.4. Due to the
action—reaction law, the cutting forces act on the work piece as well as on the tool.
The measured cutting forces can therefore be transformed in the forces acting on
the tool by changing the sign only. With the additional assumption that dynamical
effects arising from the dynamometer can be neglected, the measured cutting forces
can be used as input data for the identification of the cutting coefficients presented
in Section 2.1.3.
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Figure 6.6: Evolution of the experimental cutting force component perpendicular to
the direction of feed divided by a, for a stable process (the corresponding measure-
ments have been carried out by P. Rasper at IWF, see [104]).
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Experimental determination of unstable processes

Cutting tests and the monitored cutting forces can also be used to identify unstable
processes. In order to display the relevant effects, consider at first a stable process
with f, = 0.2 mm, a, = 1.5 mm and cutting speed n = 16600 rpm, and focus on the
cutting force component perpendicular to the direction of feed (for the definition of
the coordinates see Figure 6.4) depicted in Figure 6.6. The corresponding frequency
spectrum is illustrated in Figure 6.7 where the the red squares indicate multiples
of the tooth passing frequency. Because the peak locations coincide with the fre-
quencies marked by the red squares and no additional peaks occur in between, the
corresponding process is classified as stable.
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Figure 6.7: Spectrum of the relative cutting force in Figure 6.6.

Due to an increase of the axial depth of cut to a, = 2 mm, the process becomes
unstable. As illustrated in Figure 6.8 additional chatter vibrations are superimposed
to the cutting force evolution analysed before. This observation is confirmed by the
spectrum of the cutting forces illustrated in Figure 6.9. In contrast to the spectrum
shown in Figure 6.7, additional peaks occur between the peaks corresponding to
multiples of the tooth passing frequency. The ratio

max  (|F7(f)])

Exp _ f€R+\MTp

max (|E7(f)])

feMrp

7 (6.1)

with Myrp = {7,27,...} denoting the set of tooth passing frequencies, can be used

to define a criterion for the identification of unstable processes. The expression

Fmge = o (|Er(f)]) appearing in the denominator of (6.1) provides, due to the
eMrp

restriction f € Myp, the maximum of the set of values obtained by evaluating the
relative cutting forces spectrum | E7¢( f)| at multiples of the tooth passing frequency.
The final value usually corresponds to the peak located a the the tooth passing
frequency, i.e. the leftmost peak arising in the spectrum illustrated in Figure 6.7.
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The expression F7% = max (|F7(f)|) appearing in the numerator of (6.1)
fERT\Mrp

provides, due to the restriction f € RT\Mryp, the maximum value of the set obtained
by evaluating the relative cutting force spectrum |F'¢(f)| at all frequencies different
from any multiple of the tooth passing frequency.

300

200

X

100
H

rel. cutting force F_ /[N / mm]

-100

_200 L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time / [s]

250 - .

200 5

150 : : 1

X

100 .

50 7

rel. cutting force F_/ [N / mm]

-100 5

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
time / [s]

Figure 6.8: Evolution of the experimental cutting force component perpendicular
to the direction of feed divided by a, for an unstable process (the corresponding
measurements have been carried out by P. Rasper at IWF, see [104]).

In case of an unstable process, the final value corresponds to the highest chatter peak,
i.e. the peak located at about 2300 Hz in the spectrum illustrated in Figure 6.9.
In the stable case, the value F7'*" is close to zero since no chatter peaks appear in
the relative cutting force spectrum. Due to the periodic excitation, the value F75*
is always greater than zero and the ratio (6.1) approaches zero. In case of almost

unstable processes, chatter vibrations occur and the value FZ&'** increases.
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Figure 6.9: Spectrum of the relative cutting force in Figure 6.8.

As before, the periodic excitation guarantees that F8" is always greater than zero

and the value of the ratio (6.1) increases, due the increase of FZ2* as well. If, for
a given process, n¥*? is greater than a predefined threshold, that is, for example
™™ = 10% , the process is classified as unstable.

6.4 Verification of predicted stability limits

6.4.1 Stability lobe diagram

The experimental procedure to determine a stability lobe diagram (SLD) consists
of the following steps. First, choose a partition of the spindle speed range and, for
each spindle speed, define a set of values for the axial depth of cut a,. Next, perform
the cutting tests for each pair of process parameters and record the corresponding
cutting forces employing the dynamometer mentioned in Section 6.3.1. The chatter
criterion introduced in Section 6.3.2 with a threshold n’" = 5%, finally allows to
decide if the considered process is stable or not. The result of the experimental sta-
bility analysis procedure is shown in Figure 6.10 together with the SLD predicted
in Section 2.3.3, Figure 2.18. The points marked with transparent squares represent
stable process, while the filled circles correspond to unstable processes. The compar-
ison illustrated in Figure 6.10 shows pronounced deviations between experiment and
prediction. For the entire range of spindle speeds, the theoretical limit is below the
values derived from the experiments. The predicted stability peaks are, compared
to the experiments, shifted to the left, i.e. to lower spindle speeds, and, in terms of
a,, the difference between stability minimum and maximum is more pronounced for
the simulated curve. For the discussion of possible reasons the reader is referred to
Section 6.6 and to the considerations outlined in [75].
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Figure 6.10: Comparison of experimental and predicted stability limit (for further
details and experimental issues see [75]).

6.4.2 Chatter frequencies

The chatter frequencies corresponding to unstable processes are similar in experi-
ment and simulation. In order to verify this observation, consider the cutting forces
recorded during the simulation of the example process 3bU with stiff visco-elastic
work piece (see Section 5.3.3) and the measured cutting forces corresponding to a
process with parameters n = 17800 rpm and a, = 2 mm. As shown by the relative
cutting force spectrum illustrated in Figure 6.11, the three dominant chatter peaks
are located at frequencies around 2500 Hz.
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Figure 6.11: Relative cutting force spectrae for an unstable process at n = 17800 rpm
(for further details and experimental issues see [43]).
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Even though the spectrum shows pronounced deviations in the height of the peaks
corresponding to experiment and simulation, the similar locations the chatter peaks
indicate that the model satisfactorily reproduces the chatter frequencies. In order to
compare the chatter frequencies computed in the stability prediction with the values
measured in the cutting tests consider the frequencies in the interval [0, n], where n
denotes the spindle speed and recall that the experimental chatter frequency fgfp
is determined by

on” = argmax ([E;(f)]), (6.2)
FERH\Mirp

with Mpp = {7, 27, ...} denoting the set of tooth passing frequencies. The projection
of the experimental chatter frequency on the interval [0, n] is defined by

Fap = mod (fip,,n). (6.3)
The projected chatter frequencies corresponding to each unstable process indicated
in Figure 6.10, are depicted in Figure 6.12 together with the chatter frequencies
predicted in Section 2.3.3 (see Figure 2.18). In contrast to the stability limit, the
predicted chatter frequencies are in better agreement with the experimental values.
The black circles indicating the experiments are located in vicinity of the lines
corresponding to the predicted values. The main differences between experiment
and prediction appear in the regions close to the jumps at about 16500 and 19000
rpm. The jumps in the experimental chatter frequencies are shifted to the right
compared to the prediction. This effect corresponds the shifting of the peaks in the
stability lobe diagram. As before, for the discussion of possible reasons the reader
is referred to Section 6.6.
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Figure 6.12: Comparison of experimental and simulated chatter frequencies (the
cutting tests for the chatter frequencies and the corresponding experimental stability
stability limits shown in Figure 6.10 have been carried out by P. Rasper at IWF
under supervision of Prof. E. Uhlmann, see [75,104]).
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6.5 Work piece effects

The destabilising effect of a supple work piece structure discussed in Section 5.3.4,
has been observed experimentally as well. The result of the cutting test employing
a work piece with with the same dimensions, i.e. 100 x 10 x 140 mm?3, is shown in
Figure 6.13. Since the tool diameter is about 8 mm, a thin wall would remain on the
left and on the right of the machined slot in the stable case. In the present example,
however, the thin wall on the left of the slot has been almost entirely removed due
to strong work piece oscillations. A similar effect can be observed in the simulations.
While the material on the right of the tool path is still visible, the material on the
left has been almost completely removed as well and the remaining surface is covered
with chatter marks. Moreover, the evolution of the uncut chip thickness and the

relative cutting force spectrum presented in Section 5.3.4 clearly indicate that the
considered process is unstable.
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Figure 6.13: Comparison of a machined slot on top of a supple work piece (left:
simulation, right: experiment?).

°The image has been kindly provided by P. Rasper from IWF (head: Prof. E. Uhlmann),
TU-Berlin (see e.g. [104]).
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6.6 Discussion

The comparison of simulation results and experimental data show that
e the complex model reproduces the effects of a supple work piece,

e the stability analysis method accurately predicts the chatter frequencies for
large parts of the considered spindle speed range.

Moreover, the experimental observation, that a preheating of the work piece lead
to an increase of the stability limits, can be reproduced with the complex model
presented in this work.

However, the comparison of the stability limits reveals a large gap between ex-
periment and simulation. Since inaccuracies due to the stability prediction method
or modelling errors (the complex model presents approximately the same stability
limits as the system employed for the prediction) can be excluded, the observed de-
viations are most probably related to measurement errors. The frequency response
function measured at the tool centre point and cutting forces data recorded under
stable cutting conditions are the input data for the stability prediction. As dis-
cussed for example in [75], the result of the FRF measurement changes with the
excitation method and the angular position of the spindle. The observation that
the peaks in the predicted stability lobe diagram and the predicted jumps of the
chatter frequencies are shifted to lower spindle speeds compared to the experiments,
indicate that the frequency of the main peak in the measured FRF has probably
been underestimated in the experiments. The facts that the predicted stability limit
lies below the experimental values and that the difference between maximum and
minimum of the predicted limit curve is bigger than the corresponding experimental
value are probably related to errors in magnitude and width of the main peak in the
measured FRF. The dynamometer employed for the cutting force measurement is
another possible source of errors. Due its structure, the dynamometer is not as rigid
as, for example, an aluminium block. During the cutting tests, even in the stable
case, the oscillations arising in the work piece dynamometer assembly may lead to
inaccurate results. Since the cutting constants are identified from the experimen-
tal cutting force data, the measurement error is directly transferred to the cutting
force model and therefore leads to inaccurate results in the stability prediction. In
addition to the errors in the cutting force data, the dynamometer may directly af-
fect the stability limit of the system under consideration. Since the oscillations and
the damping effects related to the dynamometer are not included in the structure
models employed for the stability prediction, the observed deviations can probably
explained with the dynamometer effects. In conclusion, the problems occurred in
the stability prediction could probably be solved by conducting cutting tests with-
out the dynamometer. Alternatively, instabilities can be identified exploiting the
acoustic emission of the process [7], by monitoring work piece accelerations or by
recording the tool vibrations [33].
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Conclusions and outlook

The main objective of the present work was the development of a complex milling
model to investigate the effects of machine and work piece structure on the stability
of milling processes. The result of the rigorous mathematical modelling presented in
Chapter 3 is a system of ordinary and partial differential equations coupled through
a cutting force model. The empirical cutting force model relates the engagement
conditions, i.e. basically the uncut chip thickness involving tool position and work
piece deformation, to the reaction forces acting on machine and work piece. The
new concept to model the work piece as a continuous thermo—elastic body, required
a new strategy to formulate an analytical expression for the uncut chip thickness
and a new approach to describe the effect of the cutting forces acting on the work
piece. Motivated by the intention to study thermal effects, a Dexel based material
removal model has been proposed in order to simulate the effect of a travelling
heat source and to gain information about the final work piece shape. Since the
tailored numerical algorithm presented in Chapter 4 involves a fully implicit time
integration scheme, the effects arising from the coupling of machine and work piece
can be accurately simulated and studied in great detail with the new milling model.
Consequently, the time domain simulations in Chapter 5 clearly demonstrate that
the developed model is capable of reproducing the instability effects observed in the
experiments. Moreover, the simulation results document that the complex milling
model reproduces the experimental observation (see [102,103|) of increasing stability
limits due to a preheating of the work piece.

The objective to generate stability lobe diagrams displaying the stability limits
corresponding to the new complex milling model for a wide range of process param-
eters, required the development of a new stability prediction method since the com-
mon solution operator discretisation methods fail due to large number of unknowns
in the underlying system of equations. The new method presented in Chapter 2 for
the first time allows the determination of stability limits of large DDE-systems with
periodic coefficients. The main idea of the new method is to consider a numerical
linear algebra approach to the characteristic roots of time-periodic delay-differential
equations. In particular, a method from the field of nonlinear eigenvalue problems
has been adapted to construct an iterative correction scheme. The test examples
show that the new method accurately reproduces the stability limits corresponding
to different milling systems and that the new method can potentially be applied to
the complex milling system proposed in Chapter 3. Moreover, by means of several
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examples it has been demonstrated that model reduction techniques help to drasti-
cally reduce the computational costs while maintaining a high level of accuracy.

The results are promising and open up various directions for future research. In
addition to a more refined machine model and more efficient space discretisation
techniques for the work piece equations, it would be desirable to have available a
more flexible tri-Dexel model (see p. 89) for the material removal simulation. In
order to further accelerate the time domain simulations, one could introduce an
implicit time discretisation for the machine equations and consider time adaptive
methods. This requires a further development of the algorithm regarding the equa-
tions of motion of the multi-body system. In addition to the implemented approach
that provides the right hand side corresponding to a set of minimal coordinates, it
would be desirable to have available the gradient of the right hand side with respect
to minimal coordinates, too. Another issue, already discussed in [15], is to remove
the requirement that the underlying system has to present a chain like structure.
Based on the current model, a challenging task would be to investigate the effect of
variations in the machine design to the stability of milling processes.

Finally, from application point of view an efficient numerical tool for the sys-
tematic derivation of stability diagrams is most desirable. The developed stability
analysis tool is a first step in this direction. The next step would be an efficient
implementation of the so called two step approach. Combining the presented iter-
ative method and the path following approach with an efficient implementation of
the operator discretisation method finally gives a tool that, on the one hand, de-
tects unstable process parameters and, on the other hand, efficiently calculates the
corresponding stability boundary in the process parameter space. Consequently, the
improvement of the numerics, the further development of the employed algorithms
and the consideration of work piece models involving plate or shell equations are
subject to further research.

The numerical examples presented in Section 2.3.2 reveal that the computational
costs related to the numerical stability analysis can be drastically reduced by means
of model reduction techniques. Moreover, the examples show that replacing a part of
a coupled model by the corresponding reduced system leads, from a stability analysis
point of view, to a new system presenting almost the same features as the original
model. The model reduction based approach therefore opens new perspectives. For
the first time it is possible to treat efficiently even complex models involving, for
example, a realistic 3-dimensional work piece representation.

From a mathematical point of view, a challenging task is the analysis of the
employed model reduction techniques. The main difficulty is, based on the already
available error estimates for the model reduction techniques, to establish error esti-
mates for the characteristic multipliers corresponding to the reduced system.



Appendix A

Stability Definition

The stability definition utilised in the present work can be found in the book of
Hale [38, p. 130]. In the following, suppose that f : B x C([-7 + 0,0]) — R™,
7,0 > 0, is continuous and consider the retarded functional differential equation

() = f(t, ), (A1)

with z4(s) = z(t + s), s € [—=7 + 0,0] and the initial condition z,(s) = ¢(s), for
s € [-T 4+ 0,0]. Moreover suppose that f is completely continuous and that f is
sufficiently smooth so that the solution z(o, ¢)(t) through (o, ¢) is continuous in
(0,¢,t) in the domain of the definition of the function.

Definition A.1 Suppose f(t,0) =0 for allt € R. The solution x = 0 of (A.1)

18 said to be

e (Lyapunov) stable if for any o0 € R, € > 0, there is a 6 = 6(0,¢) > 0 such
that ¢ € B(0,9) implies that x.(o, ) € B(0,¢),

e asymptotically stable if it is stable and there is a by = bo(o) > 0 such that
¢ € B(0,by) implies xz(o,¢)(t) — 0 as t — oo,

e uniformly stable if the number § in the definition is independent of o,

e uniformly asymptotically stable if it is uniformly stable and there is a
bo > 0 such that for every n > 0, there is a to(n) > 0 such that ¢ € B(0,bp)
implies x(o, ¢) € B(0,n) fort > o+ to(n) for every o € R.

Note that B(y,r) represents a ball around y with radius 7.



Appendix B

Continuum mechanics

B.1 Material coordinates

As shown in Fig. B.1, an arbitrary body may, subjected to volume forces or stresses
acting on the boundary, change its shape, orientation and position with respect to
a reference configuration, i.e. a given set Qg = Q(t = 0) C R3.

—

Figure B.1: Reference and current configuration.

A deformation of the reference configuration is a vector field
x(t,.): Qr—R? (B.1)

that shall be smooth enough, injective except possibly on the boundary of the set
QA and orientation preserving (see |26, pp.27]). The set Q(t) = x(t,Qr) is called
deformed or current configuration. Since the current configuration is generated by
the deformation field mentioned before, the volume enclosed by 0€)(t) always consists
of the same material points or particles identified in the reference configuration, i.e.
Q(t) is a material volume. The derivative of the deformation field with respect to
the material coordinates

J

1,7 =1,2,3. (B.2)
is called deformation gradient. Note that the subscripts characterise the vector

component (.); or the matrix element (.);;. The letters written in bold face refer to
either the complete vector or to the complete matrix. Due to the assumptions on the
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deformation field, the determinant of the deformation gradient, J(¢,X) = det(F};)
is positive for all £ and X € (2 and there exists an inverse function

XUt Q1) = Qg (B.3)

mapping from the current to the reference configuration.

B.2 Balance of mass

The balance of mass in the current configuration reads (cf. [67, p. 93])

d

— o(t,x)dx = 0. B.4
i J,, e (B.4)

Using the substitution rule for multiple dimensions [111, pp.867], the above expres-
sion can be reformulated with respect to the reference configuration

0
[ 5 et X)) ax o (B5)
0, Ot
where o(t,x) = o(t, x(t,X)) = 6(t,X). Since the reference configuration is inde-
pendent of time, changing the order of differentiation and integration is possible.
Moreover, (B.5) holds true for arbitrary domains {2y and consequently
0

= (0, X).J (£, X)) = 0. (B.6)

Integrating the above equation with respect to time, using the initial condition
0(0,X) = 0o(X) and exploiting the fact that J(0,X) = 1, finally gives

o(t, X) = 0o(X)/J (¢, X). (B.7)

B.3 Balance of a generic quantity

The general form of a balance equations for a generic quantity W9(¢, x) reads |68, pp.
5]

d

— [ o(t,x)VI(t,x)dx = —/ @z(t,x)nkdo—l—/ o(t, x)&9(t, x)dx, (B.8)
dt Jo 20(t) Q@)

with ®7(t,x) representing the flux through the boundary 0€(t). The quantity

£9(t,x) comprises productions and sources. An infinitesimal surface element for the

current configuration do is related to a surface element in the reference configuration
dO by |67, pp. 34]

nxdo = J(F™1)iN;dO, (B.9)

with n; representing the normal vector in the current configuration and XV; the
normal vector in the reference configuration. Applying the same strategy as shown
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for the balance of mass and exploiting (B.9), (B.8) can be rewritten with respect to
the reference configuration, i.e.

a ) i —
/Qo a [Q(t,X)\Dg(t,X)J} dX = —/890 q)i(t,X)J(F 1)szde

T / 6(t, X)E0 (1, X) JdX, (B.10)
Qo

with o(t,x) = o(t,X), U9(t,x) = U9(¢,X) and &9(t,x) = &9(¢,X). According
to the divergence theorem, the first integral on the right hand side of (B.10) can
be transformed into an integral with respect to the reference domain. Since the
reference domain is arbitrary, the integrand has to be zero, i.e.

0 A
— 1|5 g
o [0t X)W X)7] +

0
0X;

[®(,%)T(F)a] = 6(6, X080 (1. X)0 (1)

Combining the expression above with (B.5) finally gives the local balance equation
for a generic field with respect to the reference configuration

o .
—UI(t, X

1

5o 3%, [ THEX)T(Fa] = €0(X), (B.12)

where the value ®J(t,x)J(F~ 1), = ®4(t, X)J(F~")y = ®Y(t,X) is defined as the
material flux. Note that one can derive a local balance equation for a generic field
with respect to the current configuration [68, p. 7| as well, i.e.

Jo(t,x)WI9(t,x) 0
82& * 8xk
- Q(ta X)fg(t’ X)'

[o(t, x) U9 (t, x)vy(t, x) + D7 (t,%)] (B.13)

As mentioned before, £9(t,x) comprises productions and sources. The expressions
(B.12) and (B.8) are balance equations for generic fields. The local balance of mass
for the current configuration corresponding to (B.5) follows from (B.8) choosing
UI(t,x) =1, I(t,x) =0 and &(t,x) =0, i.e

do(t,x) 0
ot ' o

lo(t, x)uk(t, x)] = 0. (B.14)

B.4 Balance of momentum

The local balance of momentum can be found setting in (B.13) W9(¢,x) = v;(t, x),
QI (t,x) = —ti, £2(t,x) = f; and reads

a@(ta X)”i(tv X) + a
ot 8xk

lo(t, x)vi(t, x)ur(t, %) — tir] = o(t, %) fi, (B.15)

where t;, = t5; represents the Cauchy stress tensor and f; the external forces. With
(B.12) the corresponding momentum balance in material coordinates can be written
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as
0 . 190 2
avl(t,X) QO aX [ zkt]<F )jk‘:| + fia
1 0 2
— P. . B.1
e [Py + fi (B.16)

where ;. J(F~1);,. = P;; denotes the usually non symmetric 1st Piola-Kirchoff stress
tensor. The 2nd Piola-Kirchoff stress tensor is related to the 1st Piola-Kirchoff stress
tensor as follows

Skj = (F Py < FySky = Py. (B.17)

Since many material laws are given in terms of the 2nd Piola-Kirchoff tensor, it is
often more convenient to write instead of (B.16)

1 0

X
5,011, X) = 50X,

B.5 Balance of internal energy

The balance of energy can be derived from (B.8) or (B.12) setting W9(t,x) =
(€(t> X) + U2(t7 X)/2)7 q)z(t7 X) =dqr — tjkvj (ta X) and é“g(t’ X) =7+ fivi(ta X)a i'ey

9, v? 9, v?
ET (Q (6 + 3)) + o {Q (6 + ?) Uk + qk — tjkvj} = o(r + fivi), (B.19)

with r denoting the radiation, e the internal energy and ¢ the heat flux. In order
to get a balance equation for the internal energy only, the kinetic energy has to be
removed from (B.19). To this end, multiply (B.15) with v; and exploit (B.4) to get
after some rearrangements the balance of kinetic energy, i.e,

o [ 1v? 0 v? ov;
— | 0— — tiv; | = ofivi — tin—=—. B.2
ot (Q 9 ) a[lfk; (Q Vi — zkvz) szvz ik aﬂfk ( 0)

Subtracting the above expression from (B.19) finally leads to the balance of internal
energy

8Qe+8[ev+ |=or+t 8U
An energy balance equation in material coordinates corresponding to (B.19), can be
deduced setting in (B.12) U =¢é+ 0%/2, ® = q; — tjpv; and fg =r+ fzvz, ie,

(B.21)

0 02 1 0 A
— e+ =)+ ——— — tav)) J(F Y0 =7 + fi, B.22

ot (6 * 2 > - 00(X) 0X; [(Qk #0;)J( )lk] Pr A ( )
Introducing the material heat flux Q; = qJ(F~'); and the before mentionend 1st
Piola-Kirchoff stress tensor Py =t J(F 1)y, yields

0

02 1 0 . . .
a (6 + ?> + éo(X) a—)(l [Ql — Pjﬂ}j] =7r+ fZUI (B23)
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Note that additionally v;(¢,x) has been replaced by the corresponding value in
material coordinates v,(¢,X). As before, the balance of kinetic energy in material
coordinates can be derived by multiplying (B.16) with ¢; which leads, after some
rearrangements, to

(02 1 0 00 5
() = T (Puty) — Pyl + fii. B.24
ot (2) 60(X) (axl( 1) l@Xl) i (B.24)
Subtracting (B.24) from (B.19) yields the balance of internal energy in material
coordinates, i.e,

. 0é  0Q, 0 A
— = P;—F; B.2
QOat +8Xl zlat zl+Q0T7 ( 5)

with g_% = %’;l = ;;f‘(;t = %Fil. Note that instead of the 2nd, the 1st Piola
Kirchoff stress tensor appears on the right hand side of (B.25). An equivalent
formula involving the 2nd Piola Kirchoff tensor can be found using the following
identity
0 0 0
Py—Fy = Fy (F ) Pji=Fu= Sy | Fom—=Fu |- B.26
ot " E Jmi Pt g Fo l( ot > (B:26)

(%)

Sml

Since S, is symmetric, i.e. Sy = Spn, (%) can be replaced by its symmetric part,
ie.

0 1 0 0

()
Identifying (*x) as the time derivative of the right Cauchy Green tensor C,,; =
F;, Fy, finally leads to

00 Q1. 0

gt ax, T30

Crni + 007 (B.28)

B.6 Balance of entropy

The balance of entropy can be recovered from (B.13) setting W9(t,x) = n(t, x),
DI (t,x) = ¢p(t,x) and £9(t,x) = o(t,x) + n(t,x), ie,

don 0
— 4+ — = . B.2
Again with (B.12), the entropy balance in material coordinates can be written as
0 1 0
=0(t,X) = J(F7Y); 5+ 3
1 09,
= — ' 1 (6+3), B.30
20(X) 9X; 6+3) (B.30)

with @;(¢,X) = ¢ J(F~!);. denoting the material entropy flux.
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Space discretisation of the PDE-part

C.1 Preparation

The finite dimensional spaces V,, = span{vy,...,v,} and W,, = span{¢y,..., ¥, }
arising in section 4.1.2 can be approximated with (conforming) finite elements. In
order to construct the corresponding finite element matrices, recall that the functions
v; are related to the functions v; by the following rule, i.e.

@Zjl 0 0 @Dz 0 0
0 ) ¢1 ) 0 ) 0 ’ ¢2 ) 0 3o .
0 0 U 0 0 o

= {Ub U2, U3, V4, Vs, Ug, - - -},

and rewrite the representation (4.4) defined in Section 4.1.2, in a different form, i.e.

(" (X, 1) = 3 d (1) (04(X) szﬂw astii(X)

= DO 09(X) = 3 Dy1)(X) (C.1)

with the index b = 1,2,3 characterising the spatial direction, the index function
j(i,a) = 3(i — 1) + a and coefficients Dj(t) = d&’Y(¢). Similarly, an arbitrary test

function v can be written as a linear combination of the basis elements vy, va, . . ., v3,,
i.e.
3n n 3
X))y =Y F(X))s =D > d6,05(X)
k=1 i=1 a=1

n

=) IIy(X Zv,fw (C.2)
=1

again with the index b = 1, 2, 3 characterising the spatial direction, the index func-
tion j(i,a) = 3(i — 1) + a and coefficients V;/ = ¢/ = const.
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C.2 Balance of momentum

As outlined in Section 4.1.2, the weak form of the balance of momentum (4.2a) reads

/ OoupvdX + / o(u,0):e(v)dX = / 0055, (t, 2, 2, u, ©)vdX, Yo,  (C.3)
Q Q Q
with the stress tensor

o = \Tr[e|]I + 2ue — 3KaOlI,

and 2 = Grad(u) + (Grad(u))”. Now, exploiting (C.1) and (C.2) the system ma-
trices can be constructed for each term in the weak formulation. The first term
gives

| o x - /wZ(Zwk X) Dk (1) sz ) ,
—ZZ/QOW )u(X) dX D} (1)V,

a=1 k,l=1

= Z Z / 00Uk (X) (X) 845 dX DF(1) V] (C.4)

a,b=1k,l=1<

Mab

where d,, represents the so called Kronecker-d, i.e.
e Ty
Inserting the definition of the stress tensor into the weak formulation yields
/Q o(u, ) dX — / {m VI + 2ue () — SKa@I} : 2(v) dX
Y /Q Div(u)Div(v)dX + 21 /Q “(u) : £(v) dX
- 3K04/Q@Div(v) dX. (C.5)

With (C.1) and (C.2), the first integral in the above equation gives
3

)a A(v(X))

/ ADiv(u")Div(v)dX = / /\Z z_; X,
Ok (X -

k(
/Azz 0303 T

b=1
) X

a=1 k=1

—ZZ/ @g; a‘glxb DEOVL. (C6)

a,b=1k,l=1
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The second integral reads

/2#8( dX /Q[L Z 5bc 5bc
Q
/ Z 8”*’ X

C

/ Z (%C dX. (C.7)

b

The integrals arising in the previous expression can be evaluated separately. While
the first integral gives

tX (%b ak al
[rs dx/zw 055

b,c=1 b,c=1 k=1
a,b,c=1 k,l=1 X
Yy / ( 8@; >a§§x))5ab aX DYV, ()
a,b=1k,l=1 c=1 ¢

the second integral leads to

n(t, X 8vc o Ovy
/ Z dX / Z aX 8Xa dX

b,c=1 b

Oy ( o (X
/zz&az&wx

a,b=1 k=1 =1

= Z_ Z_ / N&g;(::) ag;((}:)dx DFVE (C.9)

Recombining (C.6), (C.8) and (C.9) with (C.5) finally yields the result

/Q (u", ") : Z Z [K,‘jf’]D’“

a,b=1k,l=1

— 3Ka/ ©"Div(v) dz. (C.10)
e

with

O (X) Oy (X)
ab o
K = /QA 0X, 0X, ax

(B

c=1

Oy (X) O (X)
+/Qu X, ox. X (C.11)
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representing the stiffness matrix. The last integral in (C.5) assumes the form

3

/ 3K aO"Div(v) dX = / sKa0" S 2% gx

Q Q aXb
b=1

g (X
= [ e w0t 3 S ax

b=1 =1

=33 [aranoo i oy

b=1 k=1

=>. > Cur OV, (C.12)

b=1 k=1

with

O(X)
X,

Ch = /Q 3K ay(X) dX, (C.13)

denoting the coupling matrix. The discretisation of the right hand side in (4.2a)
reads

3 5 .
/ Oos,vdX = / éoz (s7,)pupdX = / @UZ(S;%ZW(X)VZCZX
¢ U Q = =
3 n
=2 / G055, )t (X)dX V]
Q

b=1 =1

3 n
Sy B (€1

b=1 I=1

with R} = [, 00(s%,)stu(X)dX. Inserting the discrete expressions (C.12) into (C.10)
and combining the result together with (C.14) and (C.4) with (C.3), leads to

0= > [M] DEi + > Y [Kat | Do)

Since (C.3) has to be fulfilled for all test functions v € V,, and in particular for
(v)y = D=, ¥ Vy} with arbitrary V), the expression in the square brackets has to
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vanish. Thus, for all [ = 1,...,n and b = 1,2, 3, the finite dimensional balance of
momentum reads

3 n
ZZM;;}’D’“ +ZZK;;;’ DE(t) ZO};ﬁ t)+ R.. (C.15)
a=1 k= a=1 k=1

Rewriting the above equation in matrix/vector notation finally gives
M [dﬂ (t)] K [d(1)] = C [/ (1)] + R, (C.16)

where d/(t) = #*Y = DF(t) and j =1,...,3nand k=1,...,n

C.2.1 Energy balance

The finite dimensional energy balance can be directly derived from (4.2b) and the
representation (4.4), i.e. ©"(X,t) = > 1_, v*(t)1x(X), choosing w = v;. The result
reads

Zﬁi(t)/Qchi@DldXJrZ'yi(t)//{Grad(@bi)Grad(wl)dX
i=1 @ i=1

Q
+ /Q 3K aTyDiv(uy (t, X)) dX = /Qszde, (C.17)
with mass matrix
my = /Q ocphdX, n,l=1,...,n,
stiffness matrix
ki = /Q/ﬁGrad(wi)Grad(wl)dX, i,l=1,...,n,

and right hand side
Tl:/8§¢ldX, l=1,...,n.
Q

The coupling term can be further evaluated by introducing the previously mentioned
notation of the displacement field, i.e.

(uf' (t, X))a

dxX
X, ~U

/3KozT0D1V(ut (t,X))hdX = /3KozTOZ
Q

a=1

/ 3KaT, Z Z 0%k (t)dX

a=1 k=1

_22/3[( ToawkwldX D (t)

a=1 k=1

= chgl D¥(t), (C.18)

a=1 k=1
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with ¢* denoting the second coupling matrix. With the abbreviations introduced
above, the finite dimensional energy balance reads for all [ =1,...,n

S A Mma+ Y A Oka+ Y > HDEt) = (C.19)

a=1 k=1

In matrix/vector notation, the above equation reads
m [$#(t)] + k[ (1) + ¢ [dﬂ' (t)] —r. (C.20)

where d/(t) = d/®% = D¥(t) and j = 1,...,3n.

C.3 Initial conditions

C.3.1 Balance of momentum

In order to compute the finite dimensional representation d’(0), with j = 1,..., 3n,
of an initial condition uy € V, consider the variational formulation

/vu (0,X)dX = /vuodX VvelV.

3
VN /Z (0, X))edX = /Z o(u)edX,  VuvelV.
a=1

Inserting the representations (C.1) and (C.2) into the left hand side leads to

/Z "(0,X)),dX = /ZZV% ZD’“ YR(X

a=1 =1
3 Z/wz Jx(X)b.5 dX DEO)V].
a,b=1k,l=1

Similarly, the left hand side reads

/Z o(Ug)adX = /ZZVM ) () pdX

b=1 I=1

—ZZ/wl () dX V.

b=1 I=1

Combining both expressions gives the variational equation

Z (ZZ/% JUr(X)dap dXDE(0 )—/QQ/JI(X)(UO)bdX> Vi, VA

b=1 a=1 k=1

Since V! is arbitrary, the above condition holds if and only if

> /Q (X)) ke (X)0apdX Dy (0) = /Q U (X) (u)pdX.
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In matrix/vector notation and with the identity @’(0) = @*®(0) = D¥(0), the
above equations reads

M [ (0)] = R°(uo), (C.21)

where M denotes the previously introduced mass matrix and
(R(w));. = Jo 60tu(X)(ug)cdX. Similarly, the finite dimensional representation

dj(O), with j = 1,...,3n, of the initial condition for the velocity field vy € V' can be
computed solving the linear system

M [dj(o)] = R(vy). (C.22)

C.3.2 Balance of internal energy

The finite dimensional representation v%(0), k = 1,...,n, of an initial condition
©p € W can be computed from the variational formulation

/w@”(O,X)dX:/w@O(X)dX, Yw € W.
Q Q

Inserting the definition ©™(0,¢) = >_,_, 7*(0)¢(X) and choosing w = 1;(X) leads

to
/ 1 (X) 6 (X)dXA* (0 / (X)B(X

forall I =1,...,n. In matrix/vector notation the condition reads
m [1(0)] = 1(6), (C.23)

where m denotes the previously introduced mass matrix and

(19(€0)), = Jy, docpir(X)O0(X)dX.
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Material damping models
(viscoelasticity)

D.1 Uni-axial stress and strain

D.1.1 Review of linear damping models

As outlined by Lazan [57], the damping capacity of a material can be measured with
the loss coefficient n being defined as

D

= (D.1)

n
The damping D is defined as the area enclosed by the hysteretic loop shown in
Figure D.1. For a cyclic strain with amplitude ¢, and frequency w, the damping is
given by

27
w  de
D= —dt. D.2
/0 7t (D-2)

For a nonlinear stress strain relation the strain energy U can be defined in several
ways [57]. Among them, the definition based on the mid stress (see Figure D.1),
seems to be a quite general concept. Thus, following the arguments of Lazan [57],
the strain energy reads

U= / Omida(€) de = 5/ Odec(€) + Tine(€) de. (D.3)
0 0

The loss coefficient introduced above can be used to classify different linear and
non linear damping models. The material law and the loss coefficient corresponding
to the Maxwell model illustrated in Figure D.2 read

k
b+ —0 = kié, (D.4)
21
k
Nhmw = - s (D5)
w1

with k; and p; representing material constants. The form of the loss coefficient (D.5)
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Ginc(€) ‘
—€a /
: 0

Ogec (€)

Figure D.1: Stress-strain relation for an arbitrary nonlinear visco-elastic body under
cyclic load.

Hy

Figure D.2: Maxwell and Kelvin-Voigt model for uni-axial stress and strain.

indicates that the Maxwell material law provides large damping for small frequencies
which becomes smaller and finally tends to zero for increasing frequencies w. The
Kelvin-Voigt material model illustrated in Figure D.2 provides the opposite damping
characteristic. The material law and loss coefficient, i.e.

g = k’1€ + Mlé, (D6)
Nkv = w%; <D7)
1

with material constants k; and p;, reveal that the damping corresponding to the
Kelvin-Voigt material model is small for low frequencies, increases with increasing
frequencies. The standard linear solid model shown in Figure D.3 is a combination
of the Maxwell and the Kelvin-Voigt model. The configurations illustrated in Fig-
ure D.3 are equivalent, i.e. both models lead to similar material laws that can be

Figure D.3: Equivalent standard linear solid models for uni-axial stress and strain.
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converted into each other by an appropriate choice of the material constants. The
corresponding material laws read

ka kqk )
G4 Lo =2e (kg + ky)é (D.8)
Ha [t
ki +k kik
sopthe, ke e (D.9)
H1 H1

The model (D.9) can be derived from (D.8) by choosing the material constants as

2
ka - (kQ) 5
k1 + ko
k1ko
ky = ;
"k + ke
;1,1(14:2)2

Ha (ky + k72)2'

The material models presented before can be interpreted as special cases of the
standard linear solid (D.9). Taking the limit k&1 — 0 leads to the Maxwell model.
The Kelvin-Voigt model can be derived from (D.9) considering the limit ks — oc.
The loss coefficient corresponding to (D.9) reads

i kaw _C TrW
]ﬁ(kl + kQ) + (M1)2w2 ol 1+ T,'?w27

Nsts = (DlO)

with a constant Cys = ko(1/k1(k1 + k2))~! and the relaxation time

2 (M1)2

T, — -
" ki (ke + ko)

The loss coefficient (D.10) also depends on the input frequency. The material pro-
vides for a frequency wynq, = 1/7 the highest damping capacity n** = Cys/2. If
the frequency tends to zero or to infinity, the loss coefficient and thus the damp-
ing capacity converges to zero. In the frequency range corresponding to milling
processes, grain boundary (for polycristalline aluminium) and macro— and micro—
thermo—elasticity effects are sources of material damping (see [57]). The damping
characteristic induced by these effects can qualitatively be reproduced by the stan-
dard linear solid model (D.9).

For a given &(t) sufficiently smooth, (D.8) can be solved analytically using the
variation of constants formula, i.e.

t

a a a k:ak:

o(t) = U(O)e_%t + eust [ enas ( b
[

0

e(s) + (ko + kb)é(s)) ds. (D.11)

For ¢(0) = 0 and £(0) = 0, (D.11) can be written in a more compact form
(see [30], [40]). By means of integration by parts and some rearrangements one
can show that

o(t) = /0 R(t — s)é(s)ds, (D.12)
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with the so called relaxation function

R(s) = [l + Roexp (225 | (D.13)

a

An alternative formulation of (D.12) can be derived by means of integration by parts
and exploiting the condition (0) = 0, i.e.

o(t) = R(0)e(t) + /0 R (t — s)z(t)ds, (D.14)

Because the effect of any previous strains decays with time, it is mathematically
convenient to imagine that the material has existed forever and the origin of be-
haviour is at ¢, = —oo (cf. [30]). The constitutive relation can then be written

as
t

o(t) = R(0)e(t) + / R(t — s)e(t)ds. (D.15)

The corresponding constitutive equation presented in [40] can be recovered from
(D.15) using the substitution rule, i.e.

o(t) = R(c0)e(t) + /OOO R/(s)e}(s)ds, (D.16)

with the relative strain history &4(s) = e(t — s) — (). Note that the material
laws defined by (D.12) and (D.14) are different formulations of a constitutive law
describing linear visco-elastic bodies for uniaxial stress and strain. Supposing an
infinite strain history leads to similar formulations given by (D.15) and (D.16). For
the strain jumping from zero to ¢y, i.e

5(t) = {0 for t <0, (D.17)

€0 otherwise,

the integral in (D.16) reads

/O T R()E( — 5) — 2(1))ds = eo(R(t) — R(00)) (D.18)

and thus converges to zero for t — 0o. Consequently, passing to the limit in (D.16)
gives
lim o(t) = 0y = R(00)eg = Eegco = kieo- (D.19)

t—o00

Since E,, represents the ersatz stiffness of the standard linear solid model illustrated
in Figure D.3, R(c0) is called equilibrium modulus and o, equilibrium stress [40].

However, real metals do not have a fixed size or character in their microcon-
stituents. The size, shape, and environment of grains and the grain boundary prop-
erties all vary form point to point. Thus, macroscopic behaviour depends on the dis-
tribution of the important features of the microstructure. Under load the response
of these visco-elastic materials includes both short-time and long-time reordering
characteristics. These characteristics of real materials can usually only be simulated
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Figure D.4: Biparameter elasto-slide (A) and general elasto-slip (B) model.

in models by use of multiple relaxation times (see [57]). Such models correspond
to a spring and N Maxwell elements in parallel arrangement. As shown in [40],
the corresponding constitutive equations can be constructed by replacing the simple
relaxation function (D.13) with

R(s) = Fuy + i ks exp (—%t) (D.20)

j=1 J

or with a continuous relaxation spectrum, i.e.

R(s) = E., + /0 (2 exp (—é) dz. (D.21)

Note that the parameters k;, £; and the function k(z) have to be determined exper-
imentally.

D.1.2 Review of nonlinear and rate independent damping ef-
fects

Another important source of damping is friction between joint interfaces. A simple
model to describe the damping effects arising from joint interfaces is illustrated in
Figure D.4. The loss coefficient corresponding to the biparameter elasto-slide-model
reads

0 if X, < f;N/ky,
ns{ JiN/E, (D.22)

4 (M — 1> otherwise.

T \ ffN

The value X, denotes the amplitude of the imposed displacement X (¢). Analysing
the form of the loss coefficient (D.22) reveals that the elasto-slide damping does not
depend on the frequency but on the amplitude of the input displacement. Conse-
quently, the elasto-slide effects have to be classified as rate independent and non-
linear damping phenomena. However, the general case of damping due to interface
friction is more difficult. Vibrating elastic bodies connected to each other by a joint
interface, only induce a relative motion on the contact zone if the shear stress on
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the interface exceeds the yield stress given by normal stress and frictional coeffi-
cient. Since the distribution of normal and shear stress changes in time due to the
oscillation of the elastic bodies, the elasto-slide effects occur non uniformly and pro-
gressively. This kind of friction damping effect is often called elasto-slip and can
be modelled combining several elasto-slide elements with different normal forces N;
and elastic constants k; (see [57]). Figure D.4 illustrates different contact conditions
and a scheme representing the elasto-slip model. Since the dissipation mechanism
is similar to the elasto-slide case, the elasto-slip damping effects are also nonlinear
and rate independent.

D.2 Review of linear damping models for multi-
axial stress and strain

The constitutive equations in the multi-axial case are similar to the formulae pre-
sented in section D.1.1. The constitutive law corresponding to (D.12) given by [40]
reads

= /0 K(t — s)Tr[e'(s)]T+ 2u(t — s){(e'(s))ds, (D.23)

with K (.) denoting the bulk modulus and p(.) the shear modulus respectively. While
(¢'(s)) represents the deviatoric part, Tr[e'(s)] provides the trace of £'(s). Dill [30]
presents an alternative formulation to (D.23), i.e

o(t) =C(0) : e(t) + /000 C'(s) : e(t — s)ds, (D.24)

with C(.) denoting a forth order constitutive function. Exploiting the identity

C(0) : () = C(o0) : £(t) — /0 T es)

leads to the multi-axial constitutive law corresponding to (D.16) for non isotropic
materials, i.e.

o(t) = / C'(s): [elt = ) — e(t)] s (D.25)
EZ(S)

Exploiting that &(.) is symmetric and the fact that for isotropic material the consti-
tutive function reads

Q

ikt (-) = A()0i50m + 20(.) (0505 + 0udjn), (D.26)
leads together with (D.25) to
o(t) = A(oo)Tre ()T + 2p(o0)e(t)+
4 /0 N () T [eh(5)]T 4+ 20 ()l () s
)]I+2M( )(e(t))
/ K'(s)Tr [eh(s)] T+ 24 (s) (e} (s)) ds, (D.27)
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Note that the above equation is the extension of (D.16) for multi-axial stress and
strain and can also be found in the book of Haupt [40]. The material laws corre-
sponding to the uni-axial case can be derived choosing special relaxation functions.
The standard linear solid model given in [30], i.e.

2
g4+ M i 2, — 2116 + (K - gm) Tr[¢]I

n
2 2
i fapz n (Ml + 2 g ,ULUZ) TY[eT,
U U 31

can be derived from (D.23) or (D.27) respectively, choosing the constitutive functions
as

1 b2 4 (1) ef%t
M+ 2 it o
K(s) = K = const.

p(s) =

Y

The Maxwell model for multi-axial stress and strain, i.e.

2
o+ %a =2me + (K - glh) Trlell + %KTTML

can be recovered from (D.23) or (D.27) respectively, choosing the constitutive func-
tions as

K(s) = K = const.

However, the Kelvin-Voigt model presented in [30], i.e

o= 2ue + <K - gu) Trle]l + 2ne + (( - gn) Tr[e]1.

can only be recovered from (D.23) because the constitutive function contains a
Dirac-delta-distribution 4(.), i.e.

pls) = p+nd(s),
K(s) = K+ (0(s).

Due to the parallel arrangement of spring and dashpot the Kelvin-Voigt model does
not allow a jump in the strain which leads in turn to the infinite stress.
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