
This version is available at https://doi.org/10.14279/depositonce-8712

© © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

Terms of Use

Accepted for 2019 International Conference on High Performance Computing & Simulation (HPCS)

Maier, D.; Mammeri, N.; Cosenza, B.; Juurlink, B. (2019): Approximating Memory-bound Applications on
Mobile GPUs. 2019 International Conference on High Performance Computing & Simulation (HPCS). IEEE.

Daniel Maier, Nadjib Mammeri, Biagio Cosenza, Ben Juurlink

Approximating Memory-bound
Applications on Mobile GPUs

Accepted manuscript (Postprint)Conference paper |

Approximating Memory-bound Applications on
Mobile GPUs

Daniel Maier, Nadjib Mammeri, Biagio Cosenza, Ben Juurlink
Technische Universität Berlin, Germany

{daniel.maier,mammeri,cosenza,b.juurlink}@tu-berlin.de

Abstract—Approximate computing techniques are often used
to improve the performance of applications that can tolerate some
amount of impurity in the calculations or data. In the context of
embedded and mobile systems, a broad number of applications
have exploited approximation techniques to improve performance
and overcome the limited capabilities of the hardware. On such
systems, even small performance improvements can be sufficient
to meet scheduled requirements such as hard real-time deadlines.
We study the approximation of memory-bound applications
on mobile GPUs using kernel perforation, an approximation
technique that exploits the availability of fast GPU local memory
to provide high performance with more accurate results. Using
this approximation technique, we approximated six applications
and evaluated them on two mobile GPU architectures with very
different memory layouts: a Qualcomm Adreno 506 and an
ARM Mali T860 MP2. Results show that, even when the local
memory is not mapped to dedicated fast memory in hardware,
kernel perforation is still capable of 1.25× speedup because of
improved memory layout and caching effects. Mobile GPUs with
local memory show a speedup of up to 1.38×.

Index Terms—approximate computing, GPU, kernel perforation

I. INTRODUCTION

Many applications have the property of being inherently
resilient ([1]): they are still capable of producing acceptable
results even if part of the computations is incorrect or approxi-
mated. Inherent resilience [1] is a property that enables a wide
number of code transformations and optimization techniques
where accuracy is purposely reduced under an acceptable
limit in order to gain better performance or to reduce energy
consumption. Research in the area of approximate computing
aims at studying and exploiting the gap between the accuracy
required by an application and the one provided by a system,
offering the possibility to have large performance gain out of
minimal accuracy degradation. Recent examples of approxi-
mate computing come from image processing [2], machine
learning [3], object recognition [4] and graph algorithms [5],
but the potential application scenarios are countless.

In the context of mobile and embedded systems, approxima-
tion techniques can be very important: on one hand, we have
systems with limited resources, which can reach, e.g., inter-
active performance with the huge performance improvement
gained by approximation; similarly, approximation techniques
may drastically reduce the power consumption of a program.
On the other hand, many typical embedded applications al-
ready provide error tolerance to some extent. For example,
applications in charge of processing real-time audio or video
signals are often required to deal with signals acquired under

challenging conditions or large sensor networks based on low-
cost, unreliable and inaccurate measuring instruments.

A traditional way to approximate applications is through
loop perforation [6], which skips iterations of a loop with
a static pattern. Recently, dynamic skipping of iterations
or instructions in loops has also been explored [7]. Loop
perforation has been exploited also on GPUs [6], [8].

However, these works are limited in two aspects. The
acceptable error is very high, 10% on average, unacceptable
for many applications. The second problem is related to the use
of local memory, which can be accessed with very low latency
and is shared by all threads in a work group. Exploiting local
memory is extremely important to get high performance on
GPUs, however, most existing approximated GPU applications
do not use local memory. These two limitations have been
recently addressed by Maier et al. [9] with local memory-
aware kernel perforation. Their approximation technique is
tailored for GPUs and uses the fast local memory for improv-
ing the accuracy of perforation. The technique was inspired
by loop perforation that skips loop iterations. In contrast,
kernel perforation skips the loading of parts of the input
data in order to speed up memory-bound applications. Local
memory is used in the perforation phase, to cache samples
for different threads, and in a successive reconstruction phase,
which further improves the accuracy of the approximation.

Embedded GPUs represent a challenging architecture for
kernel perforation. Embedded and desktop GPUs share sim-
ilarities, e.g., a SIMT-like execution model based on SIMD
units for vector processing. However, both computing and
memory capabilities are fundamentally different. An example
is the presence of dedicated local memory: e.g., ARM Mali
does not provide local memory, while a Qualcomm Adreno
GPU provides dedicated local memory of 32 kB for each
compute unit.

This work aims at using advanced kernel perforation tech-
niques on embedded GPUs. In particular, we focus our analysis
on how the availability of dedicated local memory impacts
the accuracy and performance of kernel perforation. The
contributions of this paper are:

1) a first application of local memory-aware kernel perfo-
ration to embedded GPUs;

2) an evaluation study of kernel perforation techniques in
relation to the availability of local memory on two
embedded GPUs (Qualcomm Adreno 506 and ARM
Mali T860 MP2) and six test applications.

The paper is organized as follows: Related work is discussed
in Section II. Section III gives an introduction of how the
concept of kernel perforation can be used to approximate
OpenCL kernels and its application to embedded GPUs. Sec-
tion IV and V discuss, respectively, the experimental settings
and the results of our evaluation on two embedded GPUs and
a desktop GPU. Finally, Section VI concludes the paper and
gives directions for future work.

II. RELATED WORK

Research of approximate techniques has been conducted
from many different perspectives, ranging from hardware [10]
and compiler approaches [6], [11], to programming language
support [12], [13], [14], [15] and software solutions [6], [8],
[2], [7]. In this section, we discuss the most relevant related
works in the field of approximated computing. For a more
detailed overview we indicate Mittal’s survey paper [16].

There have been various approaches that are hardware-
based. One of these approaches was presented by Lipasti et
al. [17] and is called Load Value Prediction, which skips the
execution stall due to a cache miss by predicting the value
based on locality. However, if the error of a predicted value
is too large a rollback is necessary. Load Value Approxi-
mation [18] overcomes this limitation by not verifying the
predicted values, thus not involving the burden of rollbacks.
Yazdanbakhsh et al. [19] presented a similar approach for
GPUs that focuses on memory bandwidth, instead of the sole
latency. A fraction of cache misses are approximated without
any checking for the quality of the predictions. The predictor
utilizes value similarity across threads. The programmer must
specify which loads can be approximated and which are
critical. The fraction to be approximated is used as a knob
to control the approximation error. Lal et al. [20] increase
the compression rate in memory compression systems by
selectively approximating bytes to save extra memory requests
and show speedups of up to 1.35×.

Compiler approaches have been suggested as well for au-
tomatic approximation. Samadi et al. [11] presented SAGE,
a framework consisting of (a) a compilation step in which a
CUDA kernel is optimized using approximation techniques,
and (b) a runtime system that ensures that the target output
quality criteria are met. PARAPROX [8] is a framework for
transparent and automated approximation of data-parallel ap-
plications. Input to the framework is an OpenCL or CUDA
kernel, which is parametrized by applying different approx-
imation techniques, depending on the detected data-parallel
pattern. A runtime helper is then employed to choose those
kernel parameters that meet the specified output quality. For
an error budget of 10% they reported an average performance
gain of 2.7×. Mitra et al. [21] recognized that there are
different phases in many applications, each with very different
sensitivity to approximation. They presented a framework that
detects these phases in applications and searches for specific
approximation levels for each of the phases. For an error
budget of 5% they report a speedup of 16%. By allowing for
an error budget of 20% the speedup increases to 72%.

Several related works have been utilizing software-based
approaches for leveraging application’s resilience to some
amount of error. An analysis of inherent application resilience
has been conducted by Chippa et al. [1]. They presented a
framework for Application Resilience Characterization (ARC)
that partitions an application into resilient and sensitive parts,
and proposed approximation models to analyze the resilient
parts. Lou et al. [2] presented image perforation, a tech-
nique specifically designed for accelerating image pipelines.
By transforming loops so that they skip certain particular
expensive to calculate samples speedups of 2× up to 10× were
reported. Subsequent pipeline stages rely on the presence of
these samples, and they can be reconstructed using different
methods (nearest-neighbor, Gaussian and multi-linear interpo-
lation).

III. KERNEL PERFORATION ON MOBILE GPUS

This paper evaluates the impact of state-of-the-art approx-
imation techniques on embedded GPUs. We focus on an
approach specifically designed to target GPUs [9]. In this sec-
tion, we provide an overview of the approach (Section III-A),
describing how kernel perforation is performed (Section III-B)
and which approximation schemes (Section III-C) are used,
and presenting how the techniques can be tailored for embed-
ded GPUs (Section III-D).

Input
buffer

Kernel
execution

Output
buffer

(a) Accurate GPU application.

Input
buffer

Data
perforation

Data
recon-

struction

Kernel
execution

Output
buffer

(I) (Ia) (Ib) (II) (III)

(b) Local memory-aware kernel perforation.

Fig. 1: Accurate GPU application and local memory-aware
kernel perforation [9] approach.

A. Overview

In typical GPU applications, as depicted in Figure 1a, a
GPU kernel first fetches data from the input buffer in global
memory (I), then it performs its computations (II), and finally
it writes the result to the output buffer in global memory (III).
The latency for accessing the global memory is in general
very high, although it can be hidden to some extent by the
massively parallel architecture of the GPU and its scheduler.
A way to improve the performance of GPU kernels is to make
use of fast local memory, whose access latency is significantly
smaller than the one for global memory.

Maier et al. [9] proposed a novel way to perform kernel
perforation where the fast local memory is exploited for more
accurate approximation. Figure 1b shows their approach that is
also used in this paper. Kernel perforation extends the accurate
application with two additional steps: a data perforation phase
(Ia) that fetches a part of the input data; a data reconstruction

phase (Ib) that reconstructs the missing data and works on
local memory.

B. Kernel Perforation

Loop perforation [6] is an approximation technique that
improves the performance of a loop execution by skipping
some iterations. Loop perforation has been originally applied
to sequential code and can be easily parametrized through
tunable loops in order to trade accuracy for performance.

Maier et al. [9] discuss how perforation can be implemented
on GPUs by taking care of memory accesses, and introduce
the concepts of input approximation opposed to output approx-
imation for kernel perforation. The general idea is that many
applications are inherently resilient to the input as well as the
output, i.e., they can tolerate small errors, but because of the
long latency of memory access on GPUs, an approximation of
the input may take advantage of low-latency local memory to
improve the approximation. Furthermore, fast local memory
is used for reconstruction of the not loaded data in order to
minimize the error.

Input approximation works by skipping the loading of some
of the input data. If the input data is two-dimensional, e.g.,
an image, a possible input perforation scheme may skip every
other row. In general, input approximation can be a suitable
acceleration technique for any application that (a) processes
data with redundancy and (b) is resilient to some amount
of error in its input data. This is an advantage over output
approximation techniques that require spatial locality in the
output data set. Although it has been shown that output
approximation can be used for many applications, this is a
conceptual limitation.

The usage of local memory to prefetch data from global
memory is a well-known technique to accelerate GPU kernels.
Applications’ execution time usually benefits from the usage of
local memory if there is enough reuse of data, i.e., data loaded
by a thread is also re-used by the same or other threads, who
in turn also load data.

In the OpenCL programming model, this is implemented
using local memory, which is shared among all threads in
a work group. On GPUs, the latency of local memory is far
lower compared to the latency of accessing the global memory,
but its size is limited. Therefore, local memory is used to
implement the steps of (Ia) data perforation and of (Ib) data
reconstruction, as shown in Figure 1b.

C. Perforation Schemes

The perforation schemes determine which parts of the input
data are loaded from memory and which parts are approxi-
mated. Figure 2 shows three perforation schemes used in this
work. Each cell represents a value (e.g., a float) in the input
data. Colored cells represent data that is loaded from memory
and white cells represent data that is approximated. The cells
map to threads in a work group and the local memory used by
the threads. In a typical OpenCL program, each thread might
load one data element to local memory and the other threads
reuse the same data. When designing the perforation schemes

the GPU’s memory architecture needs to be taken into account.
Especially the cache organization is important to avoid loading
data into the cache and then not taking advantage of the data,
because it is actually perforated and approximated.

(a) Accurate (b) Stencil (c) Rows1 (d) Rows2

Fig. 2: 2D Perforation schemes for threads in a local group.

In this work we have used three different perforation
schemes depicted in Figure 2. In Figure 2 (a) we show the
accurate scheme where no data is approximated (red). Figure 2
(b) is a scheme that perforates the boundaries of a tile. It can
be used to approximate stencil applications where the data
elements on the edges need to be fetched additionally while
they have only a very small impact on the result. However,
the perforation scheme is application-specific and therefore
cannot be used with all applications. The schemes shown in
Figure 2 (c) and (d), by contrast, are generally applicable.
They perforate every other row and two out of three rows,
respectively. The schemes align very well with the memory
architecture of GPUs, as they take into account the cache
organization.

The parts of the input data that were not loaded from
memory need to be reconstructed. We use nearest-neighbor-
approximation to reconstruct the missing data, as our main
target is speedup and more sophisticated reconstruction tech-
niques also affect the performance.

D. Application to Embedded GPUs

It is important to remark that while the OpenCL pro-
gramming model exposes local memory (software) and a
series of functions to understand type and size, this does not
necessarily mean that it is always mapped into fast (hardware)
dedicated local memory. This is generally the case for desktop
GPUs, which typically expose as local memory their internal
physically shared memory of 16 kB or 32 kB.

However, this may be very different on embedded GPUs.
In Table I, we report the three devices used in this paper (two
embedded and a desktop for comparison). All devices report
32 kB of local memory. For the Adreno GPU and the AMD
GPU the memory type is local; however, for the Mali GPU
the type is global. This indicates that there is no dedicated,
local memory for Mali.

IV. EXPERIMENTAL EVALUATION

In our evaluation, we compare the performance of two dif-
ferent kernel perforation techniques with different parameters
on two mobile systems and one desktop system. We apply
the kernel perforation approach to benchmark applications and
measure performance and error. As the applications perform

TABLE I: HARDWARE PLATFORMS DETAILS.

Qualcomm ARM AMD
Adreno Mali FirePro
506 860 MP2 W5100

Class mobile mobile desktop
OpenCL version 2.0 1.2 1.2
Global memory size 1.39 GB 3.72 GB 3.5 GB

Unified memory yes yes no
Local memory type local global local
Local memory size 32 kB 32 kB 32 kB

the same approximations on different platforms the perfor-
mance differs while the error introduced by the approximation
is identical on all platforms.

A. Experimental Platforms

There are three important mobile GPU vendors: Imagina-
tion Technologies (PowerVR), Qualcomm (Adreno) and ARM
(Mali). While all of them support OpenCL in a way or another,
OpenCL support is not generally built into mobile operating
systems. In our study, we compare an Adreno GPU and a
Mali GPU with a desktop GPU, with a focus on the results on
mobile platforms equipped with and without local memory.

Adreno is a mobile GPU from Qualcomm that was orig-
inally developed by ATI. It is exclusively integrated within
Qualcomm’s Snapdragon SOC family. Our test device for the
Adreno platform is a Qualcomm MSM8953 Snapdragon 625
with an Adreno 506 GPU. It is equipped with 3 GB of memory.
The device is running Android 7.1.2 and Linux 3.18.31. This
mobile GPU has 32 kB of dedicated local memory.

ARM’s own GPU available for licensing with ARM cores
is Mali. Mali is integrated by many SOC manufactures, e.g.,
MediaTek and Samsung. Our device for the Mali platform is a
MediaTek Helio P10. This mobile GPU has no dedicated local
memory, even though it reports being equipped with 32 kB of
local memory through the OpenCL API.

Both mobile platforms are equipped with a SOC that
integrates both CPU and GPU. The mobile GPUs do not
have dedicated memory but share the same memory with
the CPU. While the shared global memory comes with all
negative effects of shared memory (e.g., lower bandwidth) it
can also provide the advantage of no necessity to transfer data
between the host’s memory and the GPU’s global memory.
The amount of main memory that the GPU can use may be
different from the available amount of memory. In our case
the Adreno platform is equipped with 3 GB of memory, while
OpenCL reports only less than 1.5 GB global memory. For the
Mali platform OpenCL reports nearly the full main memory.

For OpenCL, we rely on the operating systems support for
OpenCL drivers. While OpenCL is not officially supported by
the Android operating system, there are devices available that
have the relevant libraries and drivers included. This enables
us to run OpenCL programs in a real portable way without the
usage of any Android-specific software layers. We employ the
same source code for our applications on all three platforms.
However, the quality of the software stack is unclear. Some

of our applications failed to execute due to driver issues and
this led to missing data in our results.

We measure two values for each experiment: execution
time of the kernel using the OpenCL API and the error of
the approximated kernel with respect to an accurate kernel.
To ensure stable results and to minimize any effects from
the operating system, voltage scaling, etc., we repeated each
experiment 100 times with the first 50 as a warm-up time.
We use the average execution time of the kernel measured
using the OpenCL API of the last 50 executions. Moreover,
we disabled Dynamic Voltage and Frequency Scaling (DVFS).

B. Benchmark Applications

Our benchmark set consists of medical, signal processing
and image processing applications. Table II gives an overview
of the applications. We evaluate the execution time and the
accuracy when approximating the applications. We calculate
the speedup using the execution time of the accurate applica-
tion with optimal work group size as baseline. The error is
measured by first generating the true result as reference using
the accurate application. Then we calculate the error of the
result of approximated applications. We use the mean relative
error (MRE) as a metric for the error, except for the SOBEL
application. In this case the mean error (ME) is a more suitable
metric, as the MRE is undefined when the true value is zero.

TABLE II: APPLICATIONS USED IN THE EVALUATION.

Application Domain Error Metric

GAUSSIAN Signal processing Mean relative error
MEDIAN Medical imaging Mean relative error
INVERSION Image processing Mean relative error
SOBEL Image processing Mean error

The GAUSSIAN filter is a well-known low-pass filter, and
has applications in electronics and signal processing. The
GAUSSIAN has data-reuse across threads and, therefore, bene-
fits from the use of local memory in general. The filter kernel
width is either 3 or 5. The MEDIAN filter is a nonlinear
spatial filter with applications in medical imaging and image
processing. The filter replaces each sample by the median of
adjacent samples. Our optimized implementation uses private
memory, i.e., registers, to load all samples in the current filter
kernel and compute the median. The filter kernel size is 3×3.
The INVERSION filter is an application that maps each input
value to its inverse. The filter has a kernel size width of
1 and, therefore, there is no data reuse across threads. The
SOBEL operator is used in edge detection applications. We
use two versions: SOBEL3 with a filter kernel size of 3 × 3
and SOBEL5 using a 5× 5 kernel size. Previous work [9] has
shown that the error depends on the input data and can vary
a lot depending on both application and input data. In all our
tests we use input data that yields an approximate average error
for the application. Input data dimensions are 512× 512. All
applications operate on single precision floating-point data.

Gau
ss3

Gau
ss5 Sob

3
Sob

5 Inv M
ed GM

0.0

0.5

1.0

1.5
Sp

ee
du

p

(a) Qualcomm Adreno 506.
Gau

ss3

Gau
ss5 Sob

3
Sob

5 Inv M
ed GM

0.0

0.5

1.0

1.5

Sp
ee

du
p

Baseline Stencil Rows1 Rows2

(b) ARM Mali T860 MP2.
Gau

ss3

Gau
ss5 Sob

3
Sob

5 Inv M
ed GM

0.0

0.5

1.0

1.5

Sp
ee

du
p

(c) AMD FirePro W5100.

Fig. 3: Comparison of speedup with respect to applications.

V. RESULTS

In our experimental evaluation we show the performance
and the accuracy on three platforms. We analyze in partic-
ular how the perforation schemes perform on the different
platforms with a consideration of the availability of dedicated
local memory. First, we examine the optimal execution times
on each platform. Then, we have a detailed look on the
performance of the applications on each platform. We compare
the performance of each approximated application across the
three platforms. Finally, we show the error introduced by the
different perforation schemes.

A. Performance on Three Platforms
In general, it can be noted that the technique can speed up

applications on all three platforms. In Figure 3 we compare the
three perforation schemes for six applications. Furthermore,
we show the geometric mean of the speedups (GM).

1) Qualcomm Adreno 506: The speedup for Qualcomm’s
GPU is between 7% and 37%, except for the INVERSION
application where there is actually a slowdown of 20%.
Applications with a larger filter kernel like GAUSSIAN5 and
SOBEL5 benefit more from approximation. The stencil perfora-
tion scheme (light blue) always yields the largest speedup. The
Rows2 perforation scheme performs the second best, except
for the MEDIAN application. The approximated kernels of the
INVERSION application are slowed down. The geometric mean
(GM) of all perforation schemes is positive.

2) ARM Mali T860 MP2: The ARM GPU has no dedicated
local memory, still kernel perforation is able to accelerate the
execution on four out of six applications between 15% and
24%. The highest speedup can be always observed for the
Stencil scheme, followed by the Rows1 scheme and Rows2
scheme. The Rows2 scheme is not beneficial for GAUSSIAN3
and SOBEL3 application while it is for GAUSSIAN5 and
SOBEL5 which have a larger filter kernel size. The geometric
mean of the speedup for the stencil scheme is positive while
it is negative for the Rows1 and Rows2 scheme.

For the INVERSION application—that has no actual algo-
rithmic data reuse—we can see the effect of the missing
dedicated local memory, as all accesses to local memory
are in fact not local but global and therefore the overall
latency is increased. A similar situation can be observed for
the MEDIAN application that is implemented using a highly
optimized algorithm using private memory.

3) AMD FirePro W5100: The acceleration achieved with
the desktop AMD GPU is between 3% and 36%. None of the
applications is actually slowed down by the approximation.
GAUSSIAN3 and SOBEL3 show the largest speedups of 25%
to 36% while the applications with a larger kernel size
(GAUSSIAN5/SOBEL5) only show a speedup of 3% to 7%.
For most applications, the Rows1 scheme leads to the largest
speedup, except for applications with larger filter kernel size.
The Rows2 scheme is less beneficial.

To conclude this section we would like to point out that
the Stencil perforation scheme, while yielding always the
lowest speedup on the desktop GPU, is able to always pro-
duce the highest speedup on both mobile applications. This
observation is contrary to the results shown by the desktop
GPU. In our experiments we learned that synchronization
of threads (in a work group) is more expensive on mobile
platforms. This explains in part these results. Furthermore,
applications with a larger filter kernel size benefit more from
approximation on mobile GPUs than on the desktop GPU. The
difference in between GAUSSIAN3 and GAUSSIAN5 on AMD
is 16%, while it is 227% on the Qualcomm GPU and 182%
for the ARM GPU. Applications with smaller filter kernel
size (GAUSSIAN3/SOBEL3) benefit more from approximation
when there is no dedicated local memory.

B. Application Performance on Different Platforms
In Figure 4 we compare the performance per application on

the different platforms in order to highlight application-specific
differences of the perforation schemes. For the GAUSSIAN3
and SOBEL3 applications, all perforation schemes on all
platforms, except for Rows2 on the Mali GPU, are able to
accelerate the execution of the kernel. The speedup on the
desktop GPU is larger than on the mobile platforms: Adreno
is accelerated by 7% to 12% and Mali is 19% to 22% faster.
The higher speedup of Mali can be explained by the improved
data locality.

The situation for the GAUSSIAN5 and SOBEL5 is quite
different. All perforation schemes are able to yield a speedup
on both desktop and mobile GPUs. However, the speedup on
mobile platforms is larger compared to the desktop GPU. The
speedups on the desktop GPU are between 3% and 7%. The
speedups on the mobile GPUs are larger and between 16%
and 35% for the Adreno GPU and between 15% and 22%
for the Mali GPU. This observation can be explained by the

Adreno Mali AMD
0.0

0.5

1.0

1.5
Sp

ee
du

p

(a) GAUSSIAN3.

Adreno Mali AMD
0.0

0.5

1.0

1.5

Sp
ee

du
p

(b) SOBEL3.

Adreno Mali AMD
0.0

0.5

1.0

1.5

Sp
ee

du
p

Baseline Stencil Rows1 Rows2

(c) INVERSION.

Adreno Mali AMD
0.0

0.5

1.0

1.5

Sp
ee

du
p

(d) GAUSSIAN5.

Adreno Mali AMD
0.0

0.5

1.0

1.5

Sp
ee

du
p

(e) SOBEL5.

Adreno Mali AMD
0.0

0.5

1.0

1.5

Sp
ee

du
p

(f) MEDIAN.

Fig. 4: Comparison of speedup with respect to platform.

much larger memory bandwidth of desktop GPUs. Therefore,
mobile applications benefit more from a reduced number of
memory accesses.

The INVERSION application is accelerated by the AMD
GPU and slowed down by both mobile GPUs. The stencil
scheme is not applicable here. The execution failed due to a
driver issue for the Rows2 perforation scheme on Mali. The
slowdown can be attributed to a comparable large number of
synchronization operations which are in particular expensive.

The MEDIAN application is already highly optimized using
private memory. Still, the application can be accelerated by
approximation on Adreno and AMD. However, for Mali, a
slowdown can be observed, that can be explained by the
absence of dedicated local memory.

C. Execution Times

We list the kernel execution times for the optimal work
group configuration for accurate and approximated applica-
tions in Table III on the different platforms. As the three
platforms are different, executions times are not directly com-
parable. While the desktop GPU’s execution time is around
30-60 µs, the mobile GPU’s execution time is much larger:
the Adreno GPU takes up to ∼6 ms and the Mali GPU takes
up to ∼14 ms to execute the kernel.

D. Analysis of the Error

While the speedup of the different perforation schemes is
different across the different architectures the error introduced
by the approximation is—for the same application and input
data—almost platform agnostic. We show a representative
error for all applications and perforation schemes in Figure 5.
The approximation techniques are in general sensitive to the
input data. Different types of input data lead to a different
accuracy. Maier et al. [9] provide more detailed insights.

Gauss3 Gauss5 Sob3 Sob5 Inv Med
0.00

0.05

0.10

0.15

0.20

0.25

E
rr

or
Stencil
Rows1
Rows2

Fig. 5: Error with respect to application and approximation.

The stencil scheme always yields the best accuracy. How-
ever, the stencil scheme is not applicable to the INVER-
SION application. The error is less than 1% for GAUSSIAN3,
GAUSSIAN5 and MEDIAN. For SOBEL3 and SOBEL5 it is
around 5%, whereat these two applications are very sensitive
to approximation. The Rows1 scheme introduces a larger error
between 4% and more than 5% for SOBEL3. With the Rows2
scheme the accuracy degrades further for all applications: Less
than 10% error for most applications except an error of more
than 20% for SOBEL3/SOBEL5.

E. Summary

For the mobile applications, the best performance is always
achieved using the Stencil scheme. This is advantageous as this
perforation scheme also introduces the smallest error (almost
always 5% or less). In cases where the Stencil scheme is not
applicable, an alternative scheme can be employed. However,
for the INVERSION application, other schemes have not been
proven useful in terms of speedup.

The achieved speedup on mobile platforms is generally
smaller than the speedup on the desktop platform. However,

TABLE III: RUNTIME (1/100 S) FOR OPTIMAL CONFIGURATION ON DIFFERENT PLATFORMS.

Qualcomm Adreno 506 ARM Mali T860 MP2 AMD FirePro W5100

Baseline Stencil Rows1 Rows2 Baseline Stencil Rows1 Rows2 Baseline Stencil Rows1 Rows2

GAUSSIAN3 2.707 2.415 2.515 2.471 7.556 6.133 6.300 9.802 0.049 0.039 0.036 0.038
GAUSSIAN5 6.165 4.560 5.288 4.703 13.801 11.250 11.659 11.963 0.057 0.055 0.054 0.053
SOBEL3 2.711 2.419 2.522 2.471 7.594 6.113 6.256 9.616 0.050 0.039 0.037 0.039
SOBEL5 6.177 4.488 5.275 4.670 13.751 11.468 11.621 11.832 0.057 0.055 0.054 0.053
INVERSION 0.487 —1 0.605 0.721 0.445 —1 1.460 —2 0.027 —1 0.021 0.022
MEDIAN 3.027 2.668 2.821 2.953 7.013 9.427 9.395 —2 0.062 0.054 0.049 0.050
1 Perforation scheme not applicable. 2 Kernel execution not successful.

the speedup achieved by our approach can make the difference
between meeting a real-time deadline and missing it.

VI. CONCLUSION

Local memory-aware kernel perforation is a novel approxi-
mation technique tailored for GPUs that uses the fast local
memory for improving the accuracy of the approximated
OpenCL kernels. The technique exploits local memory in two
ways: in a perforation phase, to cache perforated data for
different threads; in a successive reconstruction phase, which
further improves the accuracy of the approximation.

We present the first implementation and evaluation of local
memory-aware kernel perforation on embedded GPUs. While
the technique makes explicit use of OpenCL local memory,
some embedded GPUs (e.g., ARM Mali and Imagination Tech-
nologies PowerVR) do not map local memory to dedicated
hardware memory. To analyze the impact of dedicated local
memory, we study the aforementioned approximation tech-
niques on two embedded GPUs with very different memory
layouts: Qualcomm Adreno 506 (32 kB of local memory) and
ARM Mali T860 (no dedicated local memory).

Results show that, even when the OpenCL local memory
is not mapped on a dedicated fast memory in hardware,
kernel perforation is still capable of accelerating memory-
bound applications. In many cases even a small speedup is
enough to ensure real-time applications to meet their deadlines.

Future work can investigate the impact of kernel perforation
on energy and power consumption. Furthermore, detailed
insights in the latency introduced by reconstruction can be
guiding the design of new perforation schemes and reconstruc-
tion techniques. Compiler-based approximations can enable a
wide application of the approach with less application-specific
knowledge.

REFERENCES

[1] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Anal-
ysis and Characterization of Inherent Application Resilience for Ap-
proximate Computing,” in Design Automation Conference, ser. DAC.
ACM/EDAC/IEEE, 2013.

[2] L. Lou, P. Nguyen, J. Lawrence, and C. Barnes, “Image Perforation:
Automatically Accelerating Image Pipelines by Intelligently Skipping
Samples,” ACM Transactions on Graphics (TOG), vol. 35, no. 5, 2016.

[3] S. Venkataramani, A. Raghunathan, J. Liu, and M. Shoaib, “Scalable-
effort Classifiers for Energy-efficient Machine Learning,” in Proc. of the
52nd Annual Design Automation Conf., ser. DAC. ACM, 2015.

[4] T. W. Chin, C. L. Yu, M. Halpern, H. Genc, S. L. Tsao, and V. J.
Reddi, “Domain Specific Approximation for Object Detection,” IEEE
Micro, vol. PP, no. 99, 2018.

[5] H. Omar, M. Ahmad, and O. Khan, “GraphTuner: An Input Dependence
Aware Loop Perforation Scheme for Efficient Execution of Approxi-
mated Graph Algorithms,” in 2017 IEEE 35th International Conference
on Computer Design (ICCD). IEEE, 2017.

[6] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing Performance vs. Accuracy Trade-offs With Loop Perfora-
tion,” in Proceedings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software engineering, ser.
ESEC/FSE. ACM, 2011.

[7] S. Li, S. Park, and S. Mahlke, “Sculptor: Flexible Approximation
with Selective Dynamic Loop Perforation,” in Proceedings of the 2018
International Conference on Supercomputing. ACM, 2018.

[8] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke, “Paraprox: Pattern-
based approximation for data parallel applications,” in Proceedings of
the 19th Int. Conf. on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS. ACM, 2014.

[9] D. Maier, B. Cosenza, and B. Juurlink, “Local Memory-Aware Kernel
Perforation,” in International Symposium on Code Generation and
Optimization (CGO), ser. CGO. ACM, 2018.

[10] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel, “A Low Latency
Generic Accuracy Configurable Adder,” in Design Automation Confer-
ence, ser. DAC. ACM/EDAC/IEEE, 2015.

[11] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke, “SAGE:
Self-tuning Approximation for Graphics Engines,” in Proceedings of the
46th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO. ACM, 2013.

[12] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “EnerJ: Approximate Data Types for Safe and General
Low-power Computation,” in ACM SIGPLAN Notices, vol. 46, no. 6.
ACM, 2011.

[13] A. Yazdanbakhsh, D. Mahajan, B. Thwaites, J. Park, A. Nagendrakumar,
S. Sethuraman, K. Ramkrishnan, N. Ravindran, R. Jariwala, A. Rahimi
et al., “Axilog: Language Support for Approximate Hardware Design,”
in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2015. IEEE, 2015.

[14] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard, “Chisel:
Reliability- and Accuracy-aware Optimization of Approximate Compu-
tational Kernels,” in ACM SIGPLAN Notices, vol. 49, no. 10. ACM,
2014.

[15] M. Kambadur and M. A. Kim, “NRG-loops: Adjusting Power from
Within Applications,” in Proceedings of the 2016 International Sym-
posium on Code Generation and Optimization, ser. CGO. ACM, 2016.

[16] S. Mittal, “A Survey of Techniques for Approximate Computing,” ACM
Computing Surveys (CSYR), vol. 48, no. 4, 2016.

[17] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value Locality and
Load Value Prediction,” ACM SIGPLAN Notices, vol. 31, no. 9, 1996.

[18] J. S. Miguel, M. Badr, and N. E. Jerger, “Load Value Approximation,”
in Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO. IEEE, 2014.

[19] A. Yazdanbakhsh, G. Pekhimenko, B. Thwaites, H. Esmaeilzadeh,
O. Mutlu, and T. C. Mowry, “Rfvp: Rollback-free value prediction with
safe-to-approximate loads,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 12, no. 4, 2016.

[20] S. Lal, J. Lucas, and B. Juurlink, “Slc: Memory access granularity aware
selective lossy compression for gpus,” 2019.

[21] S. Mitra, M. K. Gupta, S. Misailovic, and S. Bagchi, “Phase-aware
Optimization in Approximate Computing,” in Proceedings of the 2017
International Symposium on Code Generation and Optimization, ser.
CGO. IEEE, 2017.

