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Abstract

This thesis aims at the simulation based assessment of transport planning using a multi-
agent simulation approach. Effects of transport policies like (de-)construction of infras-
tructure, changes in timetable, or regulations like speed limits or tolls can be analyzed
with a high level of detail by the simulation under consideration!. Travelers are repre-
sented as individual entities that make their journey through the transport system and
learn iteratively the modeled constraints. The thesis covers three areas: Traffic signal
control, air transport systems, and software engineering.

It is shown how traffic signal control can be simulated with the multi-agent approach.
Traffic flow is simulated by a computationally efficient queue model (Gawron, 1998b;
Simon et al., 1999; Cetin, 2005). In this work, the queue model is extended to capture
effects of traffic signals. A software component for microscopic modeling of traffic sig-
nals is developed. This component interacts with the traffic flow model and allows
the simulation of network wide effects that result from a change of traffic signal con-
trol. Results indicate that the available choice dimensions of travelers, such as route
choice or departure time choice, influence the evaluation of traffic signal control. The
approach is applied to test different optimizations of traffic signal control. The opti-
mization of offsets for coordination of adjacent junctions (green waves) has little impact
on the network wide traffic patterns. In contrast, a traffic-actuated signal control results
in network wide changes of travelers’ route choice.

The thesis also shows how the multi-agent approach is applied to air transport systems.
The approach uses the public transport functionality of the simulation and modifies it
for air transport. As a result, individual passengers are included into the modeling on
all stages of their trip. Then, mode choice between air and alternative transport modes
is added. The existing Multinomial Logit model for mode choice (Rieser et al., 2009;
Rieser, 2010) is enriched by a Path Size Logit formulation that takes path overlap into
account. This removes artefacts of the sampling process and enables the analysis of
competitive markets, e.g., between high speed rail and air transport.

The software architecture of the simulation was initially a monolithic piece of software,
difficult to customize, and appeared not suited for further research. The thesis discusses
the redesign of the software. Design goals aim at a modular, extensible architecture
that permits researchers to modify or add certain components to the overall simulation
under the assumption that suitable interfaces are available. As proof of concept, the
module for fixed-time traffic signal control is provided as extension. The module is
decoupled from the overall simulation approach and can be replaced in part, or com-
pletely.

IMATSim, see www.matsim. org
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Zusammenfassung

Die vorliegende Arbeit widmet sich der simulationsbasierten Verkehrsplanung an-
hand eines Multi-Agenten-Ansatzes. Verkehrsplanerische Mafsnahmen, wie Riick-
oder Neubau von Infrastruktur, Anderungen in Fahrplanen, Maut oder Geschwindig-
keitsbegrenzungen, kénnen anhand der verwendeten Simulation? mit einer hohen De-
tailgenauigkeit untersucht werden. Der Fokus liegt auf dem Verkehrsteilnehmer, der
sich in der Simulation mikroskopisch durch das Verkehrssystem bewegt und in einem
iterativen Prozess dessen Rahmenbedingungen lernt. Die Arbeit behandelt die Themen
Lichtsignalanlagensteuerung, Luftverkehr und Softwareentwicklung.

Die Arbeit zeigt, wie Lichtsignalanlagen (LSA) in der Simulation abgebildet werden
konnen. Der Verkehrsfluss wird durch ein sehr effizient zu berechnendes , Queue
Model” (Gawron, 1998b; Simon et al., 1999; Cetin, 2005) abgebildet. Anhand einer Er-
weiterung des , Queue Model’s” konnen die Effekte von LSA abgebildet werden. Ein
entwickeltes Software-Modul modelliert mikroskopische LSA. Durch die Interaktion
dieses Moduls mit dem Verkehrsflussmodell konnen Reaktionen der Nutzer auf eine
Anderung der LSA-Steuerung netzwerkweit simuliert werden. Die Resultate zeigen,
dass die modellierten Wahlmoglichkeiten der Reisenden, wie z.B. Abfahrtszeit- oder
Routenwahl, die Evaluation von LSA-Steuerungen beeinflussen. Verschiedene Opti-
mierungen der LSA-Steuerung werden evaluiert. Die Optimierung von griinen Wellen
hat nur geringen Einfluss auf die Verkehrsmuster. Dahingegen kommt es bei einer
verkehrsabhingigen Steuerung zu netzwerkweiten Anderungen der Routen.

Die Arbeit zeigt weiterhin, wie der Multi-Agenten-Ansatz zur Abbildung von Luftver-
kehr eingesetzt werden kann. Dabei wird das Simulationsmodul fiir 6ffentlichen
Nahverkehr genutzt und entsprechend angepasst. Somit werden Passagiere auf allen
Teilen ihrer Reise personenscharf abgebildet. Daraufhin wird die Verkehrsmittelwahl
in die Modellierung aufgenommen. Das existierende multinomiale Logit-Modell fiir
die Verkehrsmittelwahl (Rieser et al., 2009; Rieser, 2010) wird durch eine ,Path Size
Logit”-Formulierung erweitert, die Uberlappungen von Routen explizit berticksichtigt.
Dies behebt Artefakte des Sampling-Prozesses und ermdglicht somit die Analyse von
Wettbewerbsmarkten zwischen Verkehrstragern, z.B. zwischen Hochgeschwindigkeits-
ziigen und Flugverbindungen.

Die Software-Architektur der Simulation war anfangs monolytisch aufgebaut, funk-
tionell schwer zu erweitern und schien fiir weitere Forschungszwecke nicht geeignet.
In der Arbeit wird das Redesign auf eine modulare, erweiterbare Architektur erldutert.
Diese soll es Forschern erlauben eigene Softwarekomponenten als Erweiterung bereit-
zustellen. Wie am Beispiel des Moduls fiir LSA gezeigt wird, ist dies moglich, sofern
geeignete Schnittstellen zur Verfiigung gestellt werden. Das Modul ist vom eigentlichen
Simulationsprozess weitgehend abgekoppelt und kann in Teilen oder komplett ersetzt
werden.

MATSim, www.matsim.org
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Chapter 1

Introduction

1.1. Motivation

Running transport systems efficiently can ease life of travelers within the system and
also may have impacts on economy, environment, and society as a whole. Transport
planning tries to improve efficiency whereby the understanding of “efficient” varies.
Planning always implies some kind of forecasting that is uncertain by nature. To pre-
dict the impacts of transport policies, as (de-)construction of infrastructure, changes in
timetables, or regulations like speed limits or tolls, this work uses an agent-based sim-
ulation approach. Transport policies are often costly and financed by public money, so
one may ask if an agent-based simulator is the appropriate tool for appraisal.

Before we can address this question, we have to clarify the semantics for the overloaded
“agent” paradigm (Petrie, 2007). In our context, “multi-agent” originally denotes the
modeling of each traveler in the transport system as individual entity throughout the
entire simulation process. The behavior of travelers is represented by more theoretical
attempts to characterize and forecast travel behavior (e.g. Nagel and Flotterod, 2012).
The project has a long and outstanding history, there are too many publications to cite
them at this point!. Thus, the approach is not considered to be “alchemy” (Petrie, 2007).
Forecasting, however, always comes with a taste of alchemy.

Compared to more traditional transportation planning approaches as the four-step pro-
cess, the modeling of transport systems with a multi-agent simulator has advantages
and disadvantages. The former includes a plausible modelling of travelers’ choice of
transport mode while it comes with a valid interpretation (Rieser et al., 2009). Also,
for economic appraisal of transport policies the agent-based approach appears well
suited (e.g. Nagel et al., 2008; Kickhofer et al., 2011; Kaddoura et al., submitted). The

IThe reader is referred to www.ivt.ethz.ch/docs/index and www.vsp.tu-berlin.de/publications/,
last access 27.11.2013, for further publications.
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agent-based modeling seems more intuitive and easier to explain than traditional ap-
proaches for many problems. Since the simulation, that is developed and used in this
work, can be applied to large-scale problems, e.g., whole metropolitan areas, network
wide effects of a policy can be studied. In principle, this is not limited to a single policy.
The effects of several policies can be analyzed jointly. But an agent-based simulator is
still a piece of software. It inherits all drawbacks and failures common to software.

Commercial software applications are considered as useful tools if they solve the prob-
lem of interest. For research, the use of software is more critical. In a recent arti-
cle, Joppa et al. (2013) point out several problems if research is based on software tools.
The existence of a specific software that is already successfully used in peer reviewed
publications can blur scientific decisions. The choice of a software based method is of-
ten motivated by easy use or existing publications instead of a validation against other
methods. While papers based on research software are typically peer reviewed, the un-
derlying software is not reviewed at all. Often, presented results lack reproducibility
and transparency. This can be improved by use of open source software (Hatton, 2007).
Thus, Hatton (2007); Joppa et al. (2013) argument for peer reviewed code in alignment
with publications.

Neither computer science, nor software engineering can help researchers to select their
methodology and tools carefully. In general, software engineering is seen and taught
as area in computer science. Following Joppa et al. (2013); Offutt (2013), this might be
subject to change. Software engineering should be a “core part of the science curriculum”
not restricted to studies of computer science (Joppa et al., 2013).

Scientific findings from computer science can help when developing scientific software.
But, it may take decades before they can be applied in software engineering. The most
prominent example might be the rise of the “world wide web” over the last decades and
the recent “web 2.0” software engineering approaches that ease development of www
applications. Approaches for software engineering mostly focus on the development of
commercial software. Science is not adopting technologies from software engineering,
as methodology for commercial software is not suited for scientific application devel-
opment (Kelly, 2007; Sanders and Kelly, 2008; Carver et al., 2013; De Roure and Goble,
2009). Despite the lack of methodology, there is some empirical evidence why scientific
software development is different to the commercial counterpart. Kelly et al. (2009) ar-
gue for a separation of data, computational functions, and user interfaces. The overall
approach should stick to standards rather then to customized solutions. De Roure and
Goble (2009) care about scientific workflows and make a strong argument for reusable
software that is suited for extensions and customizations. Closed-source code results
in a black box. Use of a black box increases the risk for biased or wrong deductions from
the output of the software (Sanders and Kelly, 2008).

At least in the transportation context, the argument made by Carver et al. (2013), that
most of the computational science and engineering developers “don’t know what they
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don’t know”, is twofold. Knowledge and understanding of computer science and soft-
ware engineering comes with a lack of experience in transport related problems. To
bridge the gap between both worlds, it seems reasonable, to work on both sides. There-
fore, this work covers two extensions to the multi-agent simulation approach — for the
simulation of traffic signal control and air transport systems.

Traffic signals ensure security of travelers at junctions and regulate right of way. Fur-
thermore, by assigning green times to the different approaches of a junction they are
a determinant of the junctions performance. Fixed-time traffic signal control repeats
periodically the same schedule for signalization. Traffic-responsive signal control re-
acts dynamically on the prevailing traffic patterns to improve the performance of the
junction or the system as a whole. Even if traffic-responsive control improves the traffic
conditions at a single junction, it might not result in benefits for the system as a whole.
As result of an improved, traffic-responsive signal control at two single junctions, net-
work wide changes in travel patterns can evolve Burghout and Wahlstedt (2007). Hu
and Mahmassani (1997) argue that second order or network effects should be taken into
account when effects of signal control strategies are tested. Network effects include
drivers’ reactions not only in terms of route choice but also in terms of scheduling.
Traffic-responsive signals need to obey some constraints. Otherwise, traffic may be-
come unstable at the network level. Thus, traffic-responsive signals can perform much
worse than a fixed-time control in some situations (Limmer and Helbing, 2010). The
simulation can capture most of these effects. Thus, it is well worth to consider a ex-
tension for the simulation of traffic-responsive signal control. Further, the impacts of
recently developed optimization models for fixed-time control can be tested (Kohler
and Strehler, 2010).

The effectiveness of traffic signal control can be simulated on a high level of detail,
e.g., with the commercially available simulation tools VISSIM (PTV AG, 2008) or Aim-
sun (Barcel6 et al., 2005). Because of their commercial nature, these models are closed-

source, i.e., a black box. Furthermore, non commercial research tools as SUMO? (e. g. Kra-

jzewicz et al., 2005) or ITSUMO? (Bazzan et al., 2010a, 2011) are available. These tools
implement explicit car following and lane changing models. Common to all these
models is that the demand is given as origin-destination (O-D) matrices, and their
capability to simulate large-scale scenarios. Also common to all, however, is a compar-
atively high computational effort for one simulation run. The traffic flow model used
in this work (Gawron, 1998b; Simon et al., 1999; Cetin et al., 2003; Cetin, 2005) has less
details and thus saves computation time. This can be important if travelers” reactions
on changes of signal control on large-scale networks shall be analyzed.

For the simulation of air transport systems, many simulation approaches are avail-
able (e.g. Bilimoria et al., 2000; Sweet et al., 2002; Alam et al., 2008; Clarke et al., 2007).
Most of them aim at the technology of air transport systems. The model proposed in

Zsee sumo-sim.org/, last access 07.10.2013
3see wiki.inf .ufrgs.br/ITSUMO_DOC_en, last access 07.10.2013
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this work represents technology rather coarse, but similar to the approach by Clarke
et al. (2007). In contrast, a high detail resolution of passengers is available at all stages
of their trips and is not restricted to air transport. At least in a European context, com-
petition between air, rail, and car transport exists. The proposed approach can analyze
passengers’ reactions between different transport modes.

1.2. Outline, Contributions & Limitations

In the subsequent chapter, the currently applied methodology and technology of the
multi-agent transport simulation approach is introduced. More detailed motivation,
relevant backgrounds, and literature is then given in the respective chapters.

Chapter 3 considers options to represent traffic signals within the simulation approach.
Several approaches to model dynamics of transport networks are reviewed. Most
suited appears an extension of the traffic flow model. The default model for traffic
flow of the simulation, a queue model (Gawron, 1998b; Simon et al., 1999; Cetin et al.,
2003; Cetin, 2005), is then extended to capture effects of traffic signals. Other traffic flow
models are not considered. The simulation of traffic signals may have impacts on the
calculation of routes. These are captured by a time dependent shortest path algorithm
based on Dijkstra (1959). Other options for calculation of shortest paths remain out of
consideration.

Chapter 4 explains important aspects of the software engineering and design for the
simulation and highlights options for extension and customization. The chapter makes
use of standard solutions for object-oriented software and explains, why certain ap-
proaches are chosen or neglected. The focus is on the programming language Java. The
spelling style should be understandable after some basic training in object-oriented pro-
gramming. E.g., after attending the one term, 4 /1 lecture that is part of our engineering
curriculum at TU Berlin. Neither lambdas and closures, nor functional programming is
covered by the lecture. The provided explanations do not rely on these more advanced
concepts. The chapter shows by example, how long term stable, decoupled extensions
can be provided to the simulation. As example, an extension for traffic signal control is
presented.

Chapter 5 studies network wide effects of traffic signal control. On a small example net-
work, potential impacts of traffic-responsive control are analyzed. Then, a simulation
scenario for a real-world instance is set up. The scenario serves as base for further anal-
ysis of network wide effects due to changes in traffic signal control. The results show
that the chosen approach can capture such effects, but they are not advanced enough
to compare and assess the two traffic signal control strategies under consideration. The
project has started February, 2013.

Chapter 6 explains, how air transport systems can be simulated with the multi-agent
approach. The technology side of air transport systems is modeled on a low level of

12



detail. The focus of attention is not on air traffic control. It is shown, however, how
influences of air traffic control, taxiing, or weather conditions could be captured de-
spite the model’s low level of detail. Then, results for a simulation of the German air
transport demand on a Europe to world wide air technology model are presented. Air
line choice and pricing are not covered by the model, but could be included in further
studies.

Finally, the thesis ends with a conclusion revisiting arguments from the motivation.

Please note that parts of this thesis have been presented at conferences and are already
published in conference proceedings and journals (Grether et al., 2009a; Kickhofer et al.,
2011; Grether et al., 2011, 2012, 2013; Grether and Nagel, 2013b,a). A more detailed
review of reused material is given in the introduction of the relevant chapters.
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Chapter 2

Multi-Agent Transport Simulation

The simulation approach used in this thesis is based on the software tool MATSim!.
The next paragraphs provide an overview of the simulation approach and highlight
the most important details used in this work. For more detailed information on tech-
nical aspects, please see Raney and Nagel (2006); Balmer et al. (2005b). For a detailed
discussion of methodology the reader is referred to Nagel and Flotterod (2012). Re-
garding economic concepts used in the simulation approach, see Nagel et al. (2008);
Kickhofer et al. (2011).

Please note that this chapter reuses and extends in part Grether et al. (2009a); Kickhofer
et al. (2011).

2.1. Simulation Overview

In MATSim, each traveler of the real system is modeled as an individual virtual per-
son?. The approach consists of an iterative loop that has the following important steps
(Fig. 2.1):

1. Plans generation: All virtual persons independently generate daily plans that en-
code, among other things, their desired activities during a typical day as well as
the transportation mode for each leg between activities. Virtual persons typically
have more than one plan (“plan database”).

2. Mobility Simulation: All selected plans are simultaneously executed in a simula-
tion of the physical system (often called “network loading” or “traffic flow simu-
lation”).

IMulti-Agent Transport Simulation www.matsim. org.
%In other works travelers are often referred as “agent”
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Figure 2.1.: MATSim simulation process, overview (source: Own figure (Grether et al.,
2007), modifications can be found at many places)

3. Scoring: All executed plans are scored by an utility function which can be person-
alized for every individual.

4. Learning/(Re-)Planning: At the beginning of every iteration, some virtual persons
obtain new plans by modifying copies of existing plans. This is done by sev-
eral modules that correspond to the choice dimensions available, e.g., time choice,
route choice, and mode choice. Virtual persons choose between their plans ac-
cording to a Random Utility Model (RUM). The number of plans per virtual per-
son is limited because of memory constraints and is typically set to 4 or 5. If this
threshold is exceeded, the plan with the lowest score is deleted.

Learning  The repetition of the iteration cycle coupled with the plan database enables the virtual
persons to improve (learn) their plans over many iterations. This is why it is also called
learning mechanism. The iteration cycle continues until the system has reached a relaxed
state. At this point, there is no quantitative measure of when the system is “relaxed”;
we just allow the cycle to continue until the outcome is stable.

Interpretation  In the steady state, the model is equivalent to the standard multinomial logit model (Nagel
and Flotterod, 2012)
etV

Pi= v (2.1)

where p; is the probability for plan j to be selected and p is a sensitivity parameter, set
to 2 for the simulations in this work. In consequence, V corresponds to the systematic
component of utility in Random Utility Models (RUM) (e.g. Ben-Akiva and Lerman,
1985; Train, 2003), where utility is defined as U = V + €. In RUM, the € is called random
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1. ActivityEndE vent 9. ActivityStartEvent
2. AgentDepartureEvent 8. AgentArrivalE vent '

’I/ ? 3. AgentWait2LinkE vent
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4. LinkLeaveEvent 5. LinkEnterEvent 6. LinkLeaveEvent 7. LinkEnterEvent
Figure 2.2.: Sequence of events for a single virtual person on its trip between two activ-

ities (source: Own figure, serves as base for official documentation matsim.
org/node/598, last access 18.11.2013)

component of utility, and in order to arrive at equation (2.1), epsilon is assumed to be
Gumbel distributed.

2.2. Mobility Simulation

The mobility simulation consists of a model of the physical environment, a model of
traffic flow, and several agent-representations. The physical environment comprises
at least a model of the transportation network. Agent-representations exist for virtual
persons, drivers of public transit vehicles, etc.

The traffic flow model is a queue model, that moves vehicles through the transportation
network. Queue models for traffic flow disregard most of the details of vehicle move-
ments on a road (Gawron, 1998b; Simon et al., 1999; Cetin et al., 2003; Cetin, 2005).
Further details of the traffic flow model are explained in Sec. 3.2.

The output of the traffic flow simulation is a list of “events” for each vehicle/virtual per-
son, such as entering/leaving link, left/arrived at activity, and so on, see Fig. 2.2. Data
for an event includes which vehicle/virtual person experienced it, what happened, at
what time it happened, and where the event occurred. With this data it is easy to pro-
duce different kinds of information and indicators like link travel time (which, e.g.,
will be used by the router), trip travel time, trip length, percentage of congestion, and
SO on.
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2.3. Scoring

In order to measure the quality of a plan after execution and to compare plans, it is nec-
essary to assign a quantitative score to the performance of each plan. For this purpose
the utility function of the virtual persons is used. The total utility [utils] of a plan is
computed as the sum of individual contributions:

n n
Viotal = 2 Vperf,i + Z Vtr,j ’ (2.2)
i=1 =1

where Vi, is the total utility for a given plan; n is the number of activities, which
equals the number of trips (the first and the last activity are counted as one); Vye,; is
the (positive) utility earned for performing activity i; and V;, ; is the (usually negative)
utility earned for travelling during trip ;.

For calculation of V., a logarithmic form is used

o
Vperf,i(tperf,i) = ,Bperf tei-In <i€0r]:’l> ’ (2.3)

where 1, is the actual performed duration of the activity, ¢. is the “typical” duration
of an activity, to; = t.; - e 1%/ a scale parameter, and Bpers is the marginal utility of an
activity at its typical duration. B is the same for all activities, since in equilibrium all
activities at their typical duration need to have the same marginal utility. In this work,

a Byerr of 6/ utils is used.

The (dis)utility of traveling is linear in travel time, i.e.,

Virj(ter,)) = Br - terj, (2.4)

whereby t;,; is the experienced travel time on trip j, and B the marginal utility of
traveling. In this work, B is set to —6/h for all virtual persons. If survey data is
available, B4 can be estimated for each virtual person and transport mode (Kickhofer
et al.,, 2011). If a virtual person arrives too late at his “work” activity, a penalty of
Blate - tiate is added to the overall utility. In this work, By, is set to —18/h.

Further details on the default MATSim utility function can be found in Charypar and
Nagel (2005), for an interpretation of the parameter values the reader is refered to Nagel
et al. (2008). Kickhofer et al. (2011) contains one of the most recent discussions of this
utility based approach.

2.4. Re-Planning

The Re-Planning comprises several modules that can be en- or disabled according to the
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choice dimensions available to virtual persons. Note that the modules in this section
describe how new alternatives are generated, i.e., how the choice sets of the agents are
extended over the iterations. Actual choice is made according to Eq. (2.1) within those
options that an agent has memorized.

2.4.1. New Routes

The generation of new routes for the “car” mode trips is implemented based on a time
dependent shortest path algorithm. Apart from relatively small and essential technical
details, the implementation of such an algorithm is straightforward (Jacob et al., 1999;
Lefebvre and Balmer, 2007). The shortest path algorithm calculates link travel times
from the event output of previous mobility simulations. The travel times of each link
in the transport network are encoded in time bins (default 15 min). They serve as in-
put for the weight function that calculates generalized costs. The least generalized cost
path from each activity to the next one is calculated as function of departure time. As
default shortest path algorithm, a time dependent implementation of Dijkstra’s algo-
rithm (Dijkstra, 1959) is used.

2.4.2. New Time Structures

Modification of the time structure is implemented by a simple approach that applies a
random “mutation” to the duration and/or the end time attribute of a virtual person’s
activities in a plan. For each such attribute, a random time from the uniform distri-
bution [—2h, 42 ] is selected and added to the attribute (configurable). Any negative
duration is reset to zero.

2.4.3. New Transport Modes

New transport modes are also generated by a random approach. For each leg between
two activities in a virtual person’s plan, one of the available transport modes is se-
lected randomly. Again a uniform distribution is used; for a quantitative interpretation
see (Rieser et al., 2009) and Chapter 6.

2.5. Public Transit

The public transit module of MATSim aims at the microscopic simulation of public
transit, concentrating on several types of ground transportation, e.g., buses, streetcars
or para transit (Rieser, 2010). This approach is successfully applied in ground trans-
portation planning (e.g. Neumann et al., 2014).
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Transit Schedule

Vehicles

Passenger Routing

In a transit schedule, transit stop facilities, lines, and routes are specified. Passengers
can access and leave vehicles at transit stops. Each transit line contains one or more
transit routes. Transit routes specify the order in which stops are lined up to a route
and the departure time of a vehicle at the beginning of the route. Furthermore each
route specifies which links in the network are used to connect stop facilites.

Characteristics of transit vehicles are specified using the default configuration of the
MATSim framework®. Several vehicle types can be defined that contain information as
length, width, passenger capacity, maximum velocity, and energy consumption. The
vehicle type specifies how fast passengers can access and leave a vehicle. In addition
to the different vehicle types, a set of particular vehicles can be defined. Each vehicle
has exactly one type assigned and inherits all attributes. The individual vehicles are
inserted into the traffic flow simulation and moved by the queue model along their
routes.

Virtual persons, that travel on the microsimulated public transit mode, require some en-
coding of their route, i.e., a specification of the transit stops for boarding and alighting,
the transit line and route, and the transfers between different lines. With the informa-
tion in the transit schedule, a graph is set up. This graph serves as input for the time
dependent shortest path algorithm. In contrast to trips on mode “car”, in the current
implementation shortest path calculations do not consider experienced travel times or
overcrowded vehicles. The weight function makes use of the scheduled travel times.
On edges that model transfers, an additional, homogeneous penalty can be added to
the travel time (Cjineswitcn)- For further details of passenger routing in the public transit
module, the reader is referred to Rieser (2010).

Shttp://matsim.org/files/dtd/vehicleDefinitions_v1.0.xsd
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Chapter 3

Extensions for Traffic Signal Control

This chapter considers options for a computationally affordable, but microscopic, sim-
ulation of traffic signal control and its integration into the simulation framework. As
the simulation is explicitly designed for large-scale applications, computational aspects,
i.e., run time and memory constraints, are considered. Dependent on the chosen solu-
tion, the integration affects the network representation, the traffic flow model, and the
calculation of shortest paths. Shortest paths shall be calculated by a time dependent im-
plementation of Dijkstra’s algorithm (Dijkstra, 1959). For the representation of dynamic
networks several approaches exist (Ford and Fulkerson, 1962; Pallottino and Scutella,
1998; Kohler et al., 2009; George and Shekhar, 2008). For MATSim, a model that cap-
tures time variant attributes is available (Laimmel et al., 2010). The chapter discusses
why all these approaches are not suited for large-scale applications. Traffic signal con-
trol is thus modeled by a queue model for traffic flow. Other traffic flow models are not
considered further. Finally, an approach based on Gawron (1998b); Simon et al. (1999);
Cetin et al. (2003); Cetin (2005) is selected.

Please note that Sec. 3.2 of this chapter provides an extended version of Grether et al.
(2012) and reuses in part material from the paper.

3.1. Network Representation, Graph Theory & Semantics

Most problems in the transport planning domain require a representation of the trans-
port network. For real-world problems this representation of the transport network is
derived from a wide range of data, e.g., using satellite images (Birkmann et al., 2008)
or road map data (Chen et al., 2008), and is then persisted in some data format. The
representation of the data format, however, might not fit to the representation required
by a transport model. Frequently, transport models use a graph to represent the trans-
port network. In conjunction with other data that describe the transport network, the
notion of graphs quickly gets inaccurate. In theory, graphs and networks are synonym.
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Graph Theory

Graph

Directed Graph

Line Graph

Transport Networks

(a) Graph (b) Directed graph (c) Line graph of the graph in
(@)

Figure 3.1.: Different types of graphs

In practice, the term transport network often has a more general semantics. It seems
worth, to look at the subtle differences in more detail.

Graph theory provides problem formulations, proofs, and algorithms that are build
on graphs as abstract structure. For formal definitions the reader is referred to (Dies-
tel, 2010). A good introduction focusing on transport related problems can be found
in (Schultes, 2008; Geisberger, 2011). In the following, only the concepts required for
the further arguments in this work are shortly introduced and explained on small ex-
amples.

A graph G is a pair G = (V,E) that consists of a set of vertices V and a set of edges
E. A vertex models an abstract object. Edges represent a pairwise relation between
two vertices. Fig. 3.1a shows a typical graphical representation of a graph with V' =
{1,2,3,4} and E = {{1,3},{2,3},{3,4}}. Each vertex has a label to distinguish vertices
and specify edges, i.e., the relations between the objects represented by vertices. So
far, there is no more information attached to the graph. Particularly, coordinates for
vertices are not included in the definition of a graph. A graph could be drawn in many
orientations. In principle, additional information can be added to vertices and edges
via functions. Frequently, a weight or cost function w : E — R is defined, representing
costs or weights of each edge.

Graph theory distinguishes between many types of graphs. For our purposes, directed
graphs and line graphs are of interest. In a directed graph, relations have a direction. A
directed graph is shown in Fig. 3.1b. The relation {1, 3} is bidirectional, while the rela-
tions {2,3} and {3,4} are unidirectional. A line graph L(G) is a graph that is derived
from another graph G by an “inversion” of the structure. Fig. 3.1c shows the line graph
of the graph in Fig. 3.1a. Each edge of G is converted to a vertex of L(G). An edge is
added between two vertices a, b of the line graph L(G) if the edges in G that are used
to derive the vertices a, b are connected by a node in G.

Transport networks are often represented as graph. Well known examples are sub-
way layouts of urban areas where each vertex depicts a subway station and each edge
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Figure 3.2.: European highway network (part) with higher resolution for the area
around Germany (source: Own figure, data from (ITP/BVU, 2005))

models a connection between two stations. In Fig. 3.2 parts of the European highway
network are shown. Within and close to the boarders of Germany other road types,
e.g., track roads, are included, thus the area is nearly black. The network is modeled
as a directed graph. Each edge represents a road segment. A vertex represents a deci-
sion point where a traveler has to decide which road segment to travel next. So far, our
notion of graphs state that vertices are only identified by their label. For the representa-
tion of the highway network, a notion of space is required. For each vertex an attribute
can be attached specifying its geospatial location. Such attributes can be added without
any modification of the graph structure similar to the example of the weight function
for edges. Thus, vertices get a geospatial interpretation and can be located in space.
The course of the road segments, however, is not specified. Vertices have coordinates,
Edges not. Thus, the course of road segments between vertices may be inaccurate. If,
e.g., speed limits or the number of lanes are attached as attributes to edges, a vertex can
also represent a point in space where one of these attributes changes.

When large-scale, real-world problems shall be analyzed on top of graphs some prob-
lems emerge. Consider a change of the resolution for the highway network of France
in Fig. 3.2. The network shall be modeled on the same level of detail that is used for
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Graphs & Attributes &
Semantics

(a) Transport network as graph (b) Directed graph for the transport network in
Fig. 3.3a if left turns are not allowed on the
edge from node 1 to 2

(c) Line graph for the transport network in
Fig. 3.3a if left turns are not allowed on the
edge from node 1 to 2

Figure 3.3.: Transport networks and graphs

the area around Germany. New vertices and edges are added to the graph. Others
might be removed as they are replaced by a more detailed representation. Thus, the
resulting graph is not comparable to the graph on the lower resolution. Additional
attributes, e.g., specifying traffic counts, facility locations, or activities, might be at-
tached to the vertices and edges of the original graph via attribute functions. These
vertices and edges may no longer exist in the refined graph. The attributes are no
longer well-defined and must be rematched. One may construct algorithms for ap-
proximation (Balmer et al., 2005a), but, on large-scale networks one may not be able to
retrieve good parameter sets. The rematching is often done (semi-)manually with big
effort. Thus, transport networks have a long life, a change of resolution might not be
desired.

Attributes are frequently attached to vertices and edges of a graph?. In our context,
their application requires some careful interpretation. Consider the graph in Fig. 3.3a
as representation of a transport network. Vertices are labeled, while the attributes on

! Data in semantically well-defined formats suited for machine processing could solve some of these
problems. E.g., see www.opengeospatial.org/standards, last access 17.11.2013, for potential ap-
proaches.

2e.g. gexf .net, last access 14.10.2013
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the edges specify the travel time. Let vertex 2 represent a junction. The shortest path be-
tween vertices 1 and 5 leads along vertex 2 and could, e.g., be calculated by the shortest
path algorithm of Dijkstra (1959). Then, by some reason, left turns are forbidden from
edge {1,2} to edge {2,5}. An attribute function can be added to the edge that specifies
the restricted left turn. Dijkstra’s algorithm is not specified for left turn restrictions.
One could modify the shortest path algorithm to take turn restrictions into account.
Then, however, one has to proof correctness and care about efficiency. If no formal
proof of correctness is provided, the modification of Dijkstra may exhibit the problems
illustrated in Fig. 3.3. It is then better described as a “some path creation heuristic”.

Another solution can be applied. The shortest path algorithm needs no modification
even if turning moves are specified for a transport network. The turn restrictions must
be reflected structurally, not by attributes. Fig. 3.3b shows a graph for the transport
network in Fig. 3.3a that reflects the turn restriction. Dijkstra provides a correct shortest
path, but vertex 2 is removed. Alternatively, a line graph can be used, if during the
derivation of the line graph the turning move constraint is considered. The line graph
considering the turn restriction is shown in Fig. 3.3c. Then, it is no longer obvious at
which vertex of the graph the shortest path algorithm is started. In the abstract example
presented here, one needs to run the algorithm twice.

The problem with attributes is not restricted to turn restrictions. It also occurs if certain
edges are restricted to specific modes or vehicle types, e.g., bus or bicycle lanes. Con-
cluding, use of graphs as representation for transport networks requires a careful se-
lection of attributes. A shortest path algorithm must explicitly support these attributes.
Alternatively, the shortest path calculation can be set up on top of a line graph. If the
semantics of attributes is captured for the creation of the line graph, standard shortest
path algorithms can be applied.

3.1.1. Transport Networks & Time

Problems on transport networks often possess a dynamic nature. Modeling may require
a discrete notion of time. In terms of network modeling this is challenging as over time
streets may be closed or (re-)opened, transit connections may (dis-)appear, speed limits
may vary, etc.

Dynamic transport networks can be modeled as time expanded graph (Ford and Fulker-
son, 1962; Pallottino and Scutella, 1998; Kohler et al., 2009). A time expanded graph
replicates the vertices of the static graph for each discrete time step. Each edge of the
time expanded graph then connects two replicated vertices. These vertices are selected
according to the dynamic attribute function, e.g., the required travel time to traverse
an edge. Fig. 3.4a shows a static graph with travel time attributes on edges. The corre-
sponding time expanded graph is shown in Fig. 3.4c. A time expanded graph is still a
graph in the sense of graph theory, that is, solution algorithms, concepts, and proofs still
apply. Thus, time expanded graphs permits an elegant modeling of dynamic transport
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Figure 3.4.: Dynamic graph representations for T € [1, 4]

networks, provide a general problem formulation and many efficiency considerations
or optimizations from graph theory can be applied with little effort. If the problem
is periodically the time expanded graph can be modeled cyclically (e.g. Kohler and
Strehler, 2010).

Obviously, the size of time expanded graphs increases in the length of the time interval
and the discretization of time. In an asymptotic notation (e.g. Russel and Norvig, 2010)
the time expanded adjacency list representation of a static graph G = (V, E) requires
memory of order O((|V| + |E|) - T), where T is the number of discrete time steps. Thus,
in terms of data modeling and memory consumption time expanded graphs are not a
good choice for large-scale applications. If each vertex or edge of G possesses many at-
tributes that vary over time independently from each other the problem can no longer
be modeled as time expanded graph. George and Shekhar (2008) address this problem
in detail. A time agqregated graph representation is proposed. Attributes of vertices and
edges can vary over time. Furthermore, vertices and edges may dis- or (re-)appear over
time. Time variance is modeled via time series that are attached to edges and vertices.
Each series contains the values of a time variant attributes. Fig. 3.4b shows an example
of a time aggregated graph. The semantics is equivalent to the time expanded graph in
Fig. 3.4c. The time series do not necessarily cover all discrete time steps, their length is
restricted to the validity of the attribute. Let a be the average length of all time series.
Then, the proposed representation requires O((|V| + |E|) - «) memory. Thus, as long as
a < T the representation outperforms the time expanded graph. Following George and
Shekhar (2008), standard shortest path algorithms can be applied on their representa-
tion.

3.1.2. Time Dependent Attributes

In principle, MATSim uses a static, directed graph for the representation of the trans-
port network. Edges depict road segments while vertices can be interpreted as decision
points in space that have a coordinate as attribute. The location of vertices in space is
not supposed to vary over time. Edges represent space, all other attributes relevant for
the domain are attached to edges.
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Figure 3.5.: Time dependent network

For MATSim, a model for time dependent attributes exists. The model is derived from
an use-case in the area of evacuation simulation. Large-scale inundations or conflagra-
tions do evolve over time and do not cover all road segments of a transport network
at once. Once they are affected by the disaster they cannot be used for evacuation
purposes. For details of the evacuation context and implementation hints readers are
referred to (Laimmel et al., 2010). The following reviews the conceptual backgrounds of
the model.

In the simulation context, inundation on road segments can be modeled via time variant
attributes for edges. Either the maximum outflow, or the speed-limit attributes of an
edge can be set to 0. It is not necessary to remove vertices and edges from the graph. As
all action is modeled on edges, vertices do not need further attributes. Instead of time
expanding the graph or storing attributes as time series, the changes of time varying
attributes are recorded. Each change has an associated time stamp and may be relative
to the previous value or absolute. Fig. 3.5a illustrates a speed limit of an edge that
varies over time. The resulting time variant attribute value can then be stored in a
self-balancing binary search tree. A binary search tree is a data structure that can be
displayed as another special type of graph. Fig. 3.5b shows an example for the time
varying speed limit in Fig. 3.5a. The organization of the data structure permits efficient
access to its vertices. In the example of Fig. 3.5b all labels left of vertex 17, the root, are
smaller than 17. The very reverse holds on the right side of the root. In our example,
this order is applied recursively, top to bottom. Thus, access times to vertices are bound
to the depth of the binary search tree. A binary search tree is called self-balancing if the
data structure ensures that the depth is always minimal. Thus, stored in a self-balancing
binary search tree access time to a time dependent attribute with C changes is bounded
by O(log C).

Memory consumption of binary search trees is linear in the number of entries, i.e., O(C).
Thus, overall memory consumption of a static graph with changes on edges is O(|V| +
(|E|-C)). In case of a large number of time steps T and attributes that stay constant over
long time series and seldom change their value, i.e., C < T, « = T, this time dependent
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network model requires less memory than the approaches of the previous section. Ac-
cess to attributes is rather expensive (O(log C)). If the number of time variant changes
is constant at runtime, access to attributes can be optimized by use of arrays and binary
search (Lammel et al., 2010). Otherwise, reorganization costs for the binary search tree
must be considered.

3.1.3. Discussion & Findings

Transport networks and their underlying graph may have a long life cycle. As the
variety of data to create such graphs is wide, there is no standardized method to derive
a graph from data automatically. After derivation of a graph, manual modifications are
frequently required to ensure a meaningful output of a simulation model. Recreation
of the graph may not be desired, as the attributes matched to the network have to be
rematched.

If standard algorithms from graph theory are applied on top of the transport network,
attributes have to be added carefully. If the semantics of attributes is considered the
transport network may no longer be a graph. For shortest path calculations this may
be resolved if a line graph is used for shortest path algorithms. The line graph has to
reflect the semantics of attributes.

For simulation in an evacuation context, the time dependent attribute representation
is well suited. When an edge is once covered by an inundation it is not supposed
to change further. The number of changes is rather limited. A successful use-case is
presented in (Lammel et al., 2010).

Traffic signals impose time variant attributes to a transport network. The approaches
presented in the first sections of this chapter may be used for modeling. If traffic sig-
nals are controlled by a fixed-time control, the problem is periodical. A cyclical time
expansion of the network can be applied (Kohler and Strehler, 2010). However, for
large-scale applications memory consumption of time expansion and the resulting net-
work size still limits analysis to subnetworks, see Sec. 5.4.

In case of a traffic-responsive signal control, a periodic formulation is no longer suitable.
The approach by George and Shekhar (2008) requires too much memory. Instead, the
time dependent attributes developed for evacuation scenarios might be considered. For
traffic-responsive signal control, the number of changes is clearly higher than for evacu-
ation scenarios. The number of changes, C, to the network should be small. Otherwise,
lookup costs increase logarithmically and memory consumption increases linear in C.
In case of a traffic-responsive signal control a preprocessing of changes is not feasible.
Then, the time dependent attributes have additional, permanent reorganization costs
for the binary search tree data structure. Thus, in the following, potential extensions of
the traffic flow model of the mobility simulation are considered.

28



3.1.4. Nomenclature

To reflect the subtle differences between transport networks and graphs, two different
nomenclatures are applied: The terms edge and vertex refer to a well-defined, directed
graph. If the notion of a well-defined graph is not important, edges are referred as links
while vertices are called nodes.

3.2. Queue Models for Traffic Flow

Popular models for the simulation of traffic flow on roads are, e.g., “car following mod-
els” (Wiedemann, 1974; Gipps, 1981) or the “Nagel-Schreckenberg model” (Nagel and
Schreckenberg, 1992). These models share a common characteristic: they are computa-
tionally relatively expensive. Therefore, in the domain of transport engineering, queue
models have been developed (Gawron, 1998b; Simon et al., 1999; Cetin et al., 2003;
Cetin, 2005; Cremer and Landenfeld, 1998; Charypar, 2008).

Queue models disregard most of the details of vehicle movements on a road segment.
The traffic network is modeled as directed graph. The interpretation of links differs
from model to model and refers to some part of a road.

3.2.1. “Fast Lane” Model by Gawron

“Fast Lane” is a queue model that is explicitly designed for high speed mesoscopic
traffic simulation (Gawron, 1998a,b). Vehicles entering a link have to stay on that link
at least as long as they would travel at their desired velocity vyp. During this time no
computation needs to be done, the vehicles are stored in a priority queue. Afterwards
the vehicle is placed into one of several point queues. A point queue can contain an
infinite number of vehicles and has no space restriction. One point queue is used for
each downstream link. These point queues jointly restrict the outflow of the link; the
documentation remains unclear as to how the joint link capacity is shared between the
point queues. The joint link capacity is modeled by a normal distribution that is cut
off at negative values. The number of vehicles that can be on a link simultaneously is
restricted to a maximum of cstorage € N. A vehicle is moved to the downstream link if
there is space available, i.e., the number of vehicles is less then cstorage- This enables the
modeling of spill-back. Gawron states that the links can, in principle, model signalized
intersections. However, there are no further specifications.

3.2.2. Extension of “Fast Lane”

The traffic flow simulation of MATSim is based on Gawron’s model. However, the
model was modified at some points:
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e Intersection Logic: In “Fast Lane”, approaches of an intersection are processed in
a fixed sequence. Thus, if spill-back occurs, some links are served with a higher
priority than others. Therefore, the model was extended by a probabilistic priori-
tization of approaches to an intersection (Cetin et al., 2003; Cetin, 2005).

e Turning Moves: Instead of using a point queue for each turning move, the MAT-
Sim model uses only one queue for all turning moves (Cetin, 2005).

e Speed limit, v st To calculate the minimum time a vehicle has to stay on a link ¢ fsr
the MATSim model uses a speed limit attribute for each link instead the desired
velocity of vehicles (Cetin, 2005): tts; = [/v¢s This change was undertaken due
to some artifacts of the model in case of spill-back: In “Fast Lane” vehicles with a
high desired velocity can overtake vehicles that have a low desired velocity even
in situations where the link is completely jammed.

e Flow capacity, ¢fjo,: The random draw from a normal distribution in “Fast lane”
and the random draw proposed in Simon et al. (1999) to model flow capacity
is replaced by a deterministic version. As vehicles cannot be divided into parts
(number of vehicles € N), one has to consider the case where cf1,, € N, i.e.,

Cflow = flOOT(CﬂUw) +frac(cflow) ’

whereby floor(x) := |x|, frac(x) := x — |x], x € RT. In each simulated
timestep, floor(cfo,) Vehicles may leave the link. Fractional capacity frac(cfiow)
is accumulated per time step until this is sufficient for an additional full vehicle
that may then leave the link. This change was done to improve the simulation of
small samples of demand: For prototyping or sketch planning usually 1 % or 10 %
samples of the transport demand are used in order to save computation time. A
1% sample, together with a flow capacity of, say, 900 veh/h = 0.25veh /sec, leads
to a flow capacity for simulation of 0.01 x 0.25veh /sec = 0.0025 veh /sec. Random
draws based on such a small probability leads to very large fluctuations. Link
travel times get very unpredictable for vehicles.

e Storage capacity, Cstorage: According to Simon et al. (1999), the maximal number of
vehicles on a link is retrieved by

Cstorage = U Mianes / Lsites

whereby 1,5 is the number of lanes represented by the link, [ its length, and [y,
the inverse of the jam density, /. := 7.5 meters.

e Calibration: To calibrate the model to small sample sizes, two scaling parameters
are available: afjo,, and astorage- The effective flow capacity of each link in the
network can be scaled to « Flow " Cflows the storage capacity to &siorage * Cstorage-

These changes have been subject to projects prior to this work. As there is not enough
evidence, they are not changed.
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Figure 3.6.: Influence of traffic signals on traffic flow and spill-back can be modeled by
a queue model, if the layout of turn pockets is considered.

3.2.3. Mesoscopic Traffic Signal Simulation by Cremer and Landenfeld

Cremer and Landenfeld (1998) propose a mesoscopic traffic model focusing on the
modeling of signalized intersections. The principles of the model for the movement
on a single link are quite similar to “Fast lane”. A link is defined as connection between
two junctions. Relevant differences are a simple specification for vehicle movements
on all parts of the link, and a logic to capture unprotected left-turns. Furthermore, the
maximum flow of links is set up via the sampling time of the model, i.e., simulated
flow rates at signalized intersections have plausible values only if a uniform velocity
of 50km/h and a sampling time of 2 seconds are used. The calibration of the model
via the sampling time implies that flow rates are equal for all links. Waiting queues for
distinct turning movements, including their spatial extension are modeled explicitly.
For that reason, in case of spill-back mutual blocking effects between several turning
directions are captured. This is important if traffic signals are simulated microscopi-
cally, see Fig. 3.6: If a single queue is used (Fig. 3.6a), the first vehicle blocks all other
vehicles upstream. This can capture reality if the approach has only one lane for all
turning moves but does not hold in all cases. In the case, however, that the approach
has several lanes for signalized turning-moves, a single queue model distorts the effects
of signalization. In contrast, Fig. 3.6b shows the modeling approach from Cremer and
Landenfeld (1998). Vehicles with distinct turn intentions do not block each other until
the available space for queueing on the lane is used completely.

3.2.4. Modeling Traffic Signals

The traffic flow models reviewed in the last sections are designed to simulate network
wide traffic efficiently. The Cremer and Landenfeld model has a well-defined semantic
how turn pockets can be represented to capture effects of spill-back at signalized inter-
sections. But, the model has some drawbacks. First, the modeling of vehicle behavior
on all parts of the link needs additional computation time. Gains in expressiveness of
this part of the model are limited, as the main use cases are visualization and to pro-
vide meaningful sensor information. This information can still be calculated if needed.
Second, the flow restrictions of the links are determined via the sampling time of the
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Figure 3.7.: Transition from a real road segment to a graph layout

simulator and are homogeneous for all links. The assumption of homogeneous flow
at all intersections makes it difficult or even impossible to calibrate large-scale scenar-
ios. In addition, most traffic signal control strategies update each second and not every
2 seconds.

Thus, here the traffic flow dynamics is taken from the extended Gawron model. If the
graph layout that defines the transport network can be changed, turning lanes can be
represented adequately (Gawron, 1998b, p. 37). Fig. 3.7a illustrates a typical layout
of a real-world road segment with several turning lanes at its end. The layout of the
corresponding graph is shown in Fig. 3.7b. If each edge is represented by a link of the
Gawron model spill-back effects between turning lanes are captured.

In the Highway Capacity Manual (Council, 2000, p. 16-14) the capacity of a signalized
lane C; is defined as C; := f; - gs;, where f; is the percentage of green given to lane i
and gs; is the saturation flow, if traffic signals are switched off multiplied by several
correction factors.

The extended Gawron model can capture flows at signalized intersections by modify-
ing the maximum permitted outflow cfjo, according to green time of traffic signals.
If the signal shows a color that allows vehicles to leave the link, flow is permitted
with floor(cfie) While frac(cfio,) is accumulated. If driving is not permitted, flow is
stopped. Also, accumulation of the fractional part of ¢y is stopped. If driving is per-
mitted for n timesteps, a maximum flow of n - floor(cfiew) + 1 - frac(cfiow) = 1 - Cflow
is allowed. Thus, cfjo, is a calibration parameter that has a similar interpretation as gs;
in the Highway Capacity Manual.

For the accuracy of the model it is important to stop accumulation of frac(cfis,) when
driving is not permitted. This is illustrated in Fig. 3.8 that shows simulation results for a
typical signalized link within an urban area, i.e, cfjo,, = 2000 veh/h. For one hour, each
second one vehicle enters the link. The green time is varied from 1sec up to the cycle
time of 90 sec and displayed on the x-axis of the figure. The y-axis shows the simulated
number of vehicles leaving the link. The flow calculated by C; = f; - gs; is depicted
by the blue curve. The red curve shows results of the simulation if flow accumulation
is not stopped during red time. Compared to the calculated values, there is too much
simulated flow. Furthermore, the curve shows some plateaus that are not specified by
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Figure 3.8.: Theoretic calculation vs. simulation results

the model. Fig. 3.8b shows the same situation for a model that stops accumulation of
frac(c flow) during red time. Differences are not observable.

3.2.5. Lanes

So far, traffic signals can be modeled straightforward by Gawron’s “Fast Lane” or the
extended version implemented in MATSim. The situation becomes more complicated,
if the graph structure of the transport network cannot be changed. To resolve this prob-
lem, the implementation in MATSim allows the modeling of a subgraph on top of a
link that reflects the structure shown in Fig. 3.7b. Edges of the subgraph are called
lanes. Traffic flow on each lane is simulated nearly the same way as for links in the
extended queue model. Just the calculation of minimum travel time slightly differs to
avoid systematic errors of temporal resolution (Gawron, 1998b, p. 38). The calculation
for lanes is set up in a way that is compatible to a link of the extended queue model
without lanes, i.e., in freeflow conditions both models result in exactly the same travel
times. This avoids further propagation of systematic errors. At the beginning of the
link only one lane may exist. The next lane is determined by the necessity to be in the
correct turning lane for the next downstream link of the vehicle’s precomputed route.
According to the Cremer and Landenfeld approach, the vehicle is placed on the lane
that currently contains the smallest number of other vehicles if there are several lanes
leading to the same downstream link. Note, that the lanes of the model have no 1:1
relation to the lanes existing on a link in reality. The use of lanes implies a specification
of the downstream links, thus, specific turning moves can be forbidden. This requires
a modified routing of vehicles.
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3.2.6. Routing

Within the overall simulation process introduced in Chapter 2 the use of lanes affects
the routing module. Routes are specified within MATSim as sequence of links®. The
shortest path algorithm is set up on link travel times. These do not reflect the travel time
differences for turning moves modeled by the subgraph. In addition, turn restrictions
cannot be captured by standard shortest path algorithms. To avoid these problems, the
shortest path algorithm can be set up on the line graph. Thereby, the turn restrictions
are considered when the line graph is created. The dynamic link travel times for the
line graph reflect the link travel time on the original network plus the travel time for
the specific turning move. Then, the shortest path calculation captures the effects of
lanes without further modification.

3.2.7. Discussion

Capturing the physical dimension of spill-back is a key feature of queue models. A
badly designed signal control strategy can quickly lead to grid lock in the network
due to the resulting spill-back (Sec. 5.1). Thus, modeling of spill-back is considered
important, if traffic signals are simulated microscopically. For certain road layouts a
microscopic representation of turning pockets is needed. With the model proposed
by Gawron, this can be modeled straightforwardly. The same applies to the extended
version implemented within MATSim. Thus, the number of required concepts is kept
small. The network modeling process, however, can get more complicated.

Many different attributes may be attached to the links of a transport network, e.g., traf-
fic count data, transit stops, transit lines, speed limits, etc. Geospatial location may not
be sufficient to describe the matching between attributes and links. Often, certain at-
tributes are matched manually. If, for the representation of turn pockets, the network
layout is changed, the manual matching must be repeated. This can result in huge ef-
fort. Further, a comparison between a simulation with and without an implicit model
for turn pockets is difficult. Simulation models deliver different results for different
network resolutions (Gawron, 1998b, p. 38). For comparison, one needs some algorith-
mic that traces the changes in network structure. If the network is changed to capture
turn pockets, the shortest path algorithm is responsible to select the appropriate turn
pocket on a route. If many turn pockets lead to the same downstream link, the number
of required iterations is increased.

These drawbacks can be resolved in part, if lanes are modeled as separate concept. A
lane layout can be attached to a link as optional attribute. Attributes matched to the
link are still valid. The routes defined on the network still refer to links. Shortest paths
are calculated on the line graph and reflect different travel times for single lanes and
turning moves.

3In older version of MATSim, this can also be specified by a sequence of nodes.
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For MATSim, both versions are implemented. One can change the network layout and
attach traffic signals to links or use the lanes as concept on top of links.

3.3. Findings

The chapter illustrates, why attributes attached to links of transport networks should
be treated carefully and in conjunction with their semantic interpretation. Then, sev-
eral options for the modeling of traffic signals are discussed. The most promising so-
lution is an extension of the traffic flow model. In principle, Gawron (1998b) can be
applied, but, the documentation for traffic signals is not very precise. Further, the im-
plemented version is not equivalent to Gawron (1998b) due to a sequence of subsequent
extensions (Simon et al., 1999; Cetin et al., 2003; Cetin, 2005). The chapter reviews and
summarizes the extensions and provides a detailed documentation how traffic signal
control can be represented by queue models for traffic flow.

Applications and studies using the queue model for traffic signal control are presented
in Chapter 5. Moreover, in Chapter 6, the queue model approach is applied to the
simulation of air transport technology.
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Chapter 4

Software Engineering & Design

4.1. Introduction

“Designing object-oriented software is hard, and designing reusable object-oriented software is
even harder. You must find pertinent objects, factor them into classes at the right granularity,
define class interfaces and inheritance hierarchies, and establish key relationships among them.
Your design should be specific to the problem at hand but also general enough to address future
problems and requirements. You also want to avoid redesign, or at least minimize it...”

Gang of four (Gamma et al., 1995)

Methodology for object-oriented (OO) software design is available and well docu-
mented in many sources (e.g. Gamma et al., 1995; Fowler, 2004b; Martin, 2009). In the
past decades, several concepts and considerations were established for software design
— Modularity, Information Hiding, Abstraction, Reusability, Usability or Extensibility are
prominent examples. These goals are partially competitive. Following solely the con-
cept Abstraction might lead to the development of a General Problem Solver, an approach
from the early ages of artificial intelligence that contributed to Al-planning (Russel
and Norvig, 2010, p.393) but was also criticized for its misleading name (McDermott,
1976). Even the question of the general problem is considered irresolvable. Thus, one
ends in a “specific question” for a “specific general problem” that can be solved by a
single software. In respect to software design, this implies some trade-offs and design
decisions that are unique for each piece of software. In the following, trade-offs and
methodologies of software design for MATSim are discussed.

Multi Agent Transport Simulation implies that a number of concepts are used. For
each of them, agent-based (transport) models, transport simulation, and forecasting
models many books and publications exist (e.g. Weiss, 1999; Russel and Norvig, 2010;
Nagel, 2005). In this work, MATSim is considered as a software that enables usage of
default functionality to answer transport analysis and forecasting problems on a high,
agent-based resolution, but for large-scale applications. Large-scale implies some level
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of abstraction to enable computationally affordable simulation and problem solving.
Multi-agent based transport simulations are often implemented by separating a sim-
ulation of physical constraints from a simulation of agents. Agents interact with the
physical constraints, e.g., as travelers in the transport system, or as control algorithms
for traffic light control. Interaction may change certain aspects of the physical con-
straints. Yet, certain constraints should not be violated; for example, synthetic persons
should be required to consume time while physically moving from one location to an-
other rather than being teleported in zero time (which is possible in the computer but
not in reality).

Developed by different groups of developers, MATSim is the work of many; at the time
of writing main developers are located at ETH Zurich, senozon AG, and TU Berlin.
Even more heterogeneous is the group of users. In consequence there are several, dif-
ferent, domain-specific perspectives on the software.

Users of MATSim typically come from transport and civil engineering domains and
are aiming to solve problems for which the agent-based modeling approach is more
suited than more traditional four step process modeling. The typical use-case starts
with the collection and preparation of data. Then, several simulations are run on a
cluster for several days and compared afterwards. Often, this must be repeated several
times as data may contain errors that do not become visible until simulation results are
retrieved. If no automatic calibration is available, repetition of simulation runs might
be needed to calibrate the model. Multi-agent simulation pays off when heterogeneous
user preferences, time dependent user reactions, or/and microscopic modeling of pub-
lic transport are studied, (e.g. Rieser et al., 2008; Grether et al., 2009b; Neumann and
Nagel, 2010). At the time these studies were undertaken, there was no default soft-
ware support for the required functionality; MATSim had to be extended by custom
model components. Today, some of this functionality is available in MATSim or as a
contributing project. However, modeling problems at this high level of detail make it
hard to define a default methodology and implementation that suits every user. So, a
user quickly finds himself in the second group, the researchers.

Advanced users may reach a point at which the model implemented in MATSim is not
sufficient to answer their questions. Then, they start researching extended or different
modeling approaches. In many cases, these models shall be applied to or implemented
with MATSim. Currently, such work is done, e.g., in the field of evacuation (Ldmmel
and Flotterod, 2009; Flotterod and Lammel, 2010), destination choice of travelers (Horni
etal., 2012) the planning and analysis of urban development in cooperation with the Ur-
banSim project (Nicolai et al., 2011), or models enabling the simulation of electric vehi-
cles (Waraich et al., 2009b). Addition of functionality to the basic algorithm or changes
to small parts of it are sufficient in most cases. A strong computer science background is
helpful but cannot be expected. But researchers must be able to implement their model.
How far this software based modeling is trustworthy in terms of good scientific practice
is still subject to ongoing discussions (Joppa et al., 2013). Making modeling frameworks
like MATSim more modular, reusable, and expandable can reduce the lines of code to
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be rewritten for a different modeling approach. Thus, the confidence in the scientific
contribution may be improved.

From a computer science perspective, MATSim can be seen as substrate delivering
plausible, network wide traffic patterns, that can be used to test agent-based con-
cepts (e.g. Bazzan et al., 2008; Bazzan, 2009). Furthermore computer science may
provide programming languages and methodology that make extension of software as
simple as possible. Choosing the most suitable approach, set-up of methodology, and
implementation of core concepts is the task of software engineering. Optimally, this
should be invisible to other users.

Unfortunately, invisibility is not reached. This chapter explains parts of the methodol-
ogy and set-up that was chosen in the last years in order to improve the first prototyp-
ical 2007 version of MATSim. Motivated by the different perspectives on the software
the main goals are Modularity, Reusability and Extensibility. As most users come with
a non computer science background practical solutions are required. Full knowledge
of Gamma et al. (1995); Fowler (2004b); Martin (2009) cannot be expected. If the soft-
ware architecture is based on a subset of these concepts, the overhead to understand the
underlying software engineering is reduced. The following reviews and explains the
chosen subset. Two software design patterns, i.e., Abstract Factory and Observer (Gamma
et al., 1995), in conjunction with some other software design approaches improve the
main design goals. As an example for an extension of the MATSim core algorithm, the
chapter shows how a traffic signal implementation can be attached to the simulation.

The rest of the chapter is organized as follows: First, in Sec. 4.2 the main thoughts and
used concepts from Gamma et al. (1995) are reviewed. Readers aware of the book can
skip most of the section. In addition, the section reviews other methods for software
design. Sec. 4.3 sketches the central algorithm and outlines the state of MATSim when
this work was started in 2007. Then, Sec. 4.4 and Sec. 4.5 discuss some key issues of
extensibility for OO software and explain consequences by example. In Sec. 4.6 the de-
sign of MATSim at time of writing is explained, while Sec. 4.7 shows how an extension
for the simulation of traffic signals can be designed by the same principles and used as
plugin for MATSim. The chapter ends with a discussion and conclusion.

Please note that Sec. 4.6 reuses material from Grether and Nagel (2013b).

4.2. Software Design & Development

In his code refactoring handbook, Fowler (2004b, p. xiii) states “Design patterns provide
targets for refactoring”. This section shortly reviews terminology and relevant design
patterns from Gamma et al. (1995) to provide a basic foundation for the subsequent
sections. Afterwards some other principles of OO software design are collected and
reviewed.
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4.2.1. Object-Oriented Software Design

Solutions to frequent software design problems for OO-software are collected in Gamma
et al. (1995). Each solution is a design pattern that describes an abstract template for a
software structure. Concrete implementation may differ in detail with respect to the
programming language. The design patterns can be used independently from the cho-
sen language.

Design patterns have a unique name and are categorized by scope and three different
pattern-purposes: 1) creational, 2) structural and 3) behavioral. Categorization helps to
understand and select specific patterns. The names of the patterns provide a common
namespace for tools. For each pattern motivation, documentation and solutions for ex-
ample problems are available. Thus, Gamma et al. (1995) provide not only solutions
to common problems, they define a namespace for the tools in the box. The concrete
solution to a software design problem can be seen as selection, combination and im-
plementation of certain tools. Selection and combination of design patterns need some
care. Use of too many patterns may complicate design, increase maintenance costs, and
result in a loss of performance.

Before the design patterns of interest are reviewed, some terminology and principles
require a short introduction.

Terminology

To solve OO design problems independently from the programming language an ab-
stract terminology is required. The following shortly introduces the nomenclature
from Gamma et al. (1995).

The basic idea of OO programming is the specification of classes of objects. Objects
support certain operations. An operation’s signature consists of its name, parameters
and return type!. An object’s interface is the set of all signatures provided by the object.
The interface of an object is the only way to communicate with the object.

A type is a name for a specific interface. Types can consist of a subset of the signatures
provided by an object. Thus, one object may have many types. Types can be orga-
nized hierarchically: A subtype contains all operations of its parent type. If a type is
derived from a supertype, this is called type-inheritance. Objects of a subtype can be used
at all places where the supertype is required because they fulfill, by construction, the
interface of the supertype.

A request sent to an object must match one operation of the object’s signature. The
implementation of the operation may differ between objects while the associated types
stay fixed. Which implementation is executed is determined at run-time, this is called

I This is the abstract definition of signature by Gamma et al. (1995). Interpretation in Java is different
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dynamic binding. Thus, objects that match the same type may be substituted, this is
called polymorphism.

Each object is an instance of a certain class and can be created by instantiating the class.
Classes specify the set of operations, their implementation, and the internal data of the
object. Classes can be organized hierarchically in analogy to types. A class may be
subclass of a parent class, i.e., all data and operations of the parent class are available
in the subclass. This is called class inheritance.

Classes can be concrete or abstract. One cannot instantiate objects from an abstract class.
Abstract classes define a part of their subclasses” interface and may provide implemen-
tation of operations. All other classes are called concrete.

The operations of an object must be implemented in the class defining the object. Thus,
the class definition implicitly defines one type of the object. Objects, however, may
have many other types. If two objects are of same type they do not have to be created
from the same class.

Some design patterns depend on the distinction between class and interface inheritance.
Class inheritance means inheritance of implementation. Its main purpose is to avoid
reimplementation of already existing operations. In contrast, interface or type inher-
itance defines relations between types. By specifying inheritance between two types
nothing is said about the implementation. Many programming languages, however,
do not make a clear distinction between type and class inheritance. While expert pro-
grammers are aware of the distinction, for non-experts this is often confusing. The
interplay between the different types and their type inheritance hierarchy is essential
for many design patterns. Some patterns may not work if the type of an object is only
defined by the implementing class.

Principles of OO Software Design

Gamma et al. (1995) propose two principles of OO software design. The first is “Pro-
gram to an interface, not an implementation”. Main motivation for the principle is to en-
able polymorphism and to clearly separate a client’s needs for certain operations from
potential implementations. This leads to reduced dependencies between different sub-
systems of software and thus reduces maintenance effort. Creational patterns can help
to enforce this principle

The second principle is “favor object composition over class inheritance”. Object composi-
tion denotes the creation of new functionality by assembling already existing objects.
To make code reusable, class inheritance can be used. Class inheritance is often called
white-box reuse as the inheriting class’ internals are often visible to the subclasses and
thus breaking encapsulation. Changes in the superclass mostly imply changes in sub-
classes. In contrast, object composition needs no information about the internals of the
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public class B implements A {
private A delegate;

public Object operationFromA () {
return delegate.operationFromA();

}
}

Listing 4.1: Sketch of a delegation implementation in Java

objects to assemble and is called black-box reuse. Class inheritance is defined at com-
pile time, object composition, however, at run time. Thus, object composition is more
flexible and ensures encapsulation in contrast to class inheritance that has the advan-
tage to be more straightforward for many non-expert programmers.

Delegation is a special way of object composition that is considered as powerful as
class inheritance. Instead of subclassing a class A by class B, delegation means that B
references an instance of A. Methods invoked on B that are already implemented in
class A are bypassed to this instance of class A via the reference. Listing 4.1 shows
the implementation of delegation in class B in Java assuming there is a appropriate
interface for class A.

4.2.2. Design Patterns

As structural design patterns are not required in the subsequent sections, the following
reviews the essential creational and behavioral patterns, only.

Creational Patterns

Essentially, the group of creational patterns consists of two patterns — “Abstract Fac-
tory and Builder yield objects whose only responsibilities are creating other objects” (Gamma
et al., 1995, p. 13). The main advantage of creational patterns is the encapsulation of
knowledge about implementation, thus encourage use of interfaces and types instead
of concrete implementations (“products”).

Creation of objects can be simple or complex. Simple means that only the concrete
implementation for a type is specified. Complex build processes are used for the com-
position of an object by use of several other objects. For simple object creation Abstract
Factory is the pattern of choice, for complex build processes Builder is used (Gamma
et al., 1995, pp. 105-106).

Abstract Factory can be implemented with Factory Methods. The idea behind Factory
Method is to avoid direct instantiations of objects (calls of the constructor) by placing
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public class DefaultFooFactory implements FooFactory ({

public Foo createFoo () {
return new DefaultFoo();

}
}

Listing 4.2: Abstract Factory implementation in Java

this code in a separate method. Using Abstract Factory means to locate the Factory
Method in a separate class. Listing 4.2 shows an example implementation of Abstract
Factory in Java.

Behavioral Patterns

Following Gamma et al. (1995, p. 221), Behavioral patterns look at responsibilities and,
even more important, at the communication between objects. Their focus is on object
interconnectivity while control flow is hidden.

One of the most prominent patterns is the Iterator pattern that defines a standard to loop
over elements of a container. Who had to think once for some seconds while balancing
over array indices or pointers, may have made the experience that getting his head free
for other coding issues clearly shows some advantages. Luckily, Iterator is nowadays
standard concept of most programming languages and their syntax encourages use of
Iterators.

The Observer pattern, also known as Model View Controller (MVC) Pattern, is another
example for a behavioral pattern. Most of the recently upcoming www application
frameworks ships and advertises some kind of MVC implementation?. Observer in-
tends to structure dependencies of object communication, i.e., by defining a Subject
and Observers®. Modifications of the Subject trigger the notification of the Observers
about the change. The Subject may have any number of Observers. Awareness of their
concrete structure is not required. The Subject is just broadcasting change messages.
Thus, the Observer pattern allows decoupling of classes because of the unidirectional
communication between them — from the Subject to the Observers. The order in that
Observers are notified is not specified by the pattern. Observers should be independent
from each other. The undefined order of message broadcasting enforces the decoupling
of Observers. If developers of the core Subjects are in a situation “when a change to one
object requires changing others, and you don’t know how many objects need to be changed” and
“an object should be able to notify other objects without making assumptions about who these

2e.g., http://framework.zend.com/, last access 24.07.2013
3In the MVC nomenclature, the Subject is called Model while Observers are referred as Views.
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objects are” (Gamma et al., 1995, p. 294). Use of the Observer pattern might be a good
choice.

The Visitor pattern intends to ease adding new operations to an OO type hierarchy
while the classes defining the hierarchy should not be changed. The general idea is to
define the new operation not on the type hierarchy itself but by the implementation
of a parallel hierarchy of Visitors. After registering an Visitor instance at the original
hierarchy, the new operation is invoked via a callback function to the parallel hierarchy.
While Visitor eases to add new operations, its overall structure is rather complicated.
Also, it complicates adding new elements to the original type hierarchy and may break
encapsulation (Gamma et al., 1995, pp. 335).

The behavioral pattern Template Method is applied in nearly each software that has more
than one execution path. The general idea is to define an abstract algorithm whose
concrete steps can be redefined in specific implementations.

4.2.3. The Java Programming Language

Gamma et al. (1995) provides example implementations of patterns in Smalltalk and
C++. The concepts discussed in this chapter are implemented in the Java programming
language. Readers interested in example pattern implementations for Java are referred
to Metsker and Wake (2006). In the following, some important conceptual differences
between Java and C++ are reviewed.

In C++, classes and abstract classes are available but no explicit interface or type defini-
tions. Conceptually, interfaces or type definitions are available. The syntax to specify an
interface, however, makes use of an abstract class. C++ supports multiple inheritance,
i.e., each class may have several parent classes.

In contrast, Java permits multiple inheritance only for explicit Java-interfaces. A Java-
interface is a special syntax construct: It is a name for a set of abstract methods and
constants that is similar to the definition of a type. Java-classes can implement one or
many interfaces, implying that the implementing class defines each abstract method of
these interfaces. Java-class inheritance is restricted to one parent class, multiple inheri-
tance is only allowed for interfaces. As result, Java language constructs encourage the
distinction between class and interface inheritance and the explicit definition of types
that are completely independent from implementation.

4.2.4. Grand Redesigns and Choice of Programming Language

“The grand redesign in the sky” (Martin, 2009, pp. 4) is a story about the attempt to replace
a production software completely by a redesigned version. While the development of
the redesign took place, the development and improvement of the “old”, still running
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production software kept on. At the end, the old production software was never re-
placed by the redesign because the redesign never caught up the functionality of the
production software. Other stories report that grand redesigns can work*, but result in
much effort.

Need for design patterns and OO-concepts can be reduced if the programming lan-
guage and their underlying concepts are chosen carefully (Heinlein, 2007). So, why
think about design patterns and other sophisticated OO-concepts when a change of
programming language can solve the problem?

The concepts of a new language can be appealing but other requirements and restric-
tions might exist. Project requirements can comprise availability of IDEs, build manage-
ment, and continuous integration tools. Available time and skills of developers might
also imposes some restrictions and might require initial motivation and training effort.
This is fairly important as programming styles typically should not be transfered 1 : 1
from language to language. If developers are taking over their programming style for
the old language to the new language they might write a huge amount of code that
is no longer needed due to improved concepts in the new language. Project specific
constraints and requirements may motivate and restrain a change of programming lan-
guage at the same time. Reimplementation in a new programming language can be
considered as hard as a Grand Redesign. One might conclude that if a project once is
set up it will stick to its initial programming language, forever. A way out of this trap
can be a slowly drifting translation to a new language. This gets easier, the more seam-
less the integration of the programming languages is possible, i.e., the more IDE, build
management, and continuous integration tools can be used for two languages that can
exchange information without huge effort for migration. Luckily, for the Java world,
the number of such tools currently increases with the rise of languages as Groovy or
Scala®.

4.2.5. Coupling and Cohesion

Probably two of the oldest concepts for software architecture are coupling and cohesion
(also cohesiveness) (Stevens et al., 1974). Coupling is a software engineering standard
term used to describe the degree and the type of dependency between software ele-
ments. Coupling is low when dependencies are few and weak. Cohesion refers to the
strength of the relationship between the functions of a software element. High cohe-
sion means that all operations bundled in a software element are required for fulfilling
the element’s main task and only few other functions exist that do not contribute to
this task. For both coupling and cohesion many different attempts to define software
metrics have been published. Metrics and software measurements are however out of

‘e.g., http://www.wired.com/wiredenterprise/2013/06/facebook-hhvm-saga/3/, last access
25.07.2013
Ssee http://groovy.codehaus.org/ and http://www.scala-lang.org/, last access 26.07.2013
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scope for the project of interest. Low coupling and high cohesion are used as a more gen-
eral design goal that is not backed by numerical measurements. Readers are referred
to Fowler (2001) for a further introduction to this high level view on the two concepts.

4.2.6. Data and Hybrids

Martin (2009, pp. 93) discusses the differences that may be made between Objects and
Data Structures. Objects expose methods to their user that allow the modification of the
hidden data and state within the object. Data structures are, technically speaking, also
objects that solely offer access to data. Data structure objects do not hide an internal
state and do not have methods.

In certain programming languages, however, also data structures may have methods
that are used to access the fields containing the data — so called getters and setters. In
Java getters and setters can be added to data structures, e.g., because of the require-
ment to define interfaces for data structure objects or use of the bean specification that
requires a getter and setter for nearly all fields of a bean. If data structures and behav-
ioral objects are not clearly separated a getFoo() method can be both: A simple getter
for a field value or a method that is returning the desired field value but meanwhile
has some side-effects. The latter is considered as bad programming style as the caller of
the method might not be aware of the side-effect. Martin (2009, p. 99) calls such struc-
tures, that possess properties of data structures and behavioral objects, Hybrids. Some
functions of a Hybrid define behaviour and modify the object’s state while other func-
tions are just accessors to its encapsulated data. Existence of Hybrids complicates the
extension of objects” behavior as well as adding new data structures. Overall, Martin
(2009, p. 99) concludes that Hybrids should be avoided and “are indicative of a muddled
design”.

4.3. MATSim in 2007

This work was started mid 2007. The first release (MATSim_20070516)° of MATSim
appeared a few month before. This section summarizes the software architecture of
this first release and sketches some resulting problems. In principle, the main steps
of the algorithm presented in Sec. 2.1 have been implemented in the first releases but
functionality was limited to car traffic only.

The software architecture in MATSim_20070516 was at a rather prototypical state. It
was a reimplementation of the C++ precursor that was developed and used for many
studies(e.g. Cetin, 2005; Raney, 2005; Charypar, 2008). First design drafts to improve
architecture have been proposed by Rieser (2006) covering thoughts on modularity and
setup of control flow, see Fig. 4.1a. Also, first unit tests had been set up and were run

bsee http://sourceforge.net/projects/matsim/files/MATSim/, last access 11-01-2013
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over night in a non-standardized, self-scripted procedure (Rieser, 2006). An overview
of the software at this time is shown in Fig. 4.1b.
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(a) The control flow of MATSim in 2006
(source: Rieser (2006))
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(b) Overview of MATSIm in 2006
(source: Balmer (2007))

Figure 4.1.: The control flow of MATSim in 2006

In 2007, MATSim had (and still has) the following three major data containers:
Network: A collection of links and a collection of nodes, making up the road network.

Population: A collection of all virtual persons, where each person may contain plans
(see Sec. 2.1).

Configuration: All information relevant for the configuration of a run.

The developers had made a decision to consider these data containers as singletons,
with the reasoning that MATSim was oriented towards large-scale simulation, meaning
that it was not expected that a simulation might use two of these containers simultane-
ously.

They also had made a decision to make them globally accessible by static methods.
Access to them could be gained by methods such as Gbl.getNetwork(). This approach
was displaying several problems sketched in the following.

The central data containers were accessible from everywhere. All methods could, as
a side effect, access or even modify the contents of these containers, which was done
quite often. The method names usually were not reflecting these side effect. Thus,
method names were not trustworthy. To avoid mistakes, one had to check recursively
all subroutine calls for side effects.

This also meant that methods could only be reliably reused when all containers were
filled with meaningful data. Otherwise, it would happen quite often that somewhere in
the call hierarchy of a method access to one of the global containers or its content was
needed, stopping the execution with a null pointer exception.

Further, class inheritance was used to add behavior to the central classes. For exam-
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ple, there was Node as explained above, RouteNode extends Node as data class to store
the intermediate results of the Dijkstra algorithm, and MobsimNode extends RouteNode
which contained the intersection logic of the traffic flow model. Similarly, there was
DriverAgent extends Person, which contained the driving logic. Everything was put
into one inheritance hierarchy in order to instantiate the objects only once and save
both on memory and on time to instantiate objects.

In consequence, it was impossible to replace one object type by another. For example,
it was not possible to replace the default driver agent by some specialized driver agent
which could do, e.g., within-day replanning. Putting DriverAgent behind an interface
(and introducing programmable factories at the right level) would have solved that
issue, but there would still have problems with the objects “in the middle” of the hier-
archy: For example, replacing RouteNode by an alternative class to try out alternative
routing algorithms was nearly impossible in a pluggable way since one would have
needed to tell the DriverAgent to now inherit from that alternative class.

Also, functionality was typically added directly into the behavioral object. In conse-
quence, central objects were modified by everybody with repository access, typically
without a test case. Given that the central objects did not expose all internals, people
had no alternative.

On a more abstract level, the approach meant that central MATSim objects — links,
nodes, and persons — were implemented as hybrids, reflecting, as data classes, the ma-
terial from the input files while on the other hand having lots of internal behavior.

Another result of this approach was also that the objects in the central containers refer-
enced each other: Synthetic persons, which are members of the population container,
referred to links, which are members of the network container. These references were
resolved during object instantiation, which was done during file parsing. In conse-
quence, the population container could normally not be parsed without having pre-
viously parsed a network which would resolve all link references in the population
container. As a result, it was not possible to process the population without having
a network, meaning that the population part of the code could neither be used, nor
maintained, or tested without the network part of the code.

The build process of the build server and of some users was defined via a make file.
In contrast, developers were advised to set up their Java classpath for their integrated
development environment (IDE) of choice manually. This implied, that the libraries and
dependencies the source code is compiled to and run with, was not specified. The order
of manual selection within the graphical user interface of the IDE was specifying the
behavior of the executed code. In the worst case, each developer compiled and tested a
different software. In order to reduce impact of the problem, a project convention was to
use as little externally provided code as possible. This led to the implementation of, e.g.,

custom logging, coordinate reference system transformations, or “streaming” parsers’.

’Streaming means that data is read from disk processed and written to disk again
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All functionality was required and had to be available quickly. In consequence, some of
the functionality was implemented at unconventional places. E.g. Factory Methods were
implemented somewhere in the inheritance hierarchy and were not only used to create
objects, but also for XML parsing. The structure shown in Fig. 4.1b was not reflected by
the code.

Functional extension was ongoing or in planning. In addition to the major three data
containers, other components referenced the major containers and were available via
globally accessible static methods. In conjunction with the use of class inheritance this
led to a high coupling and low cohesion of modules. Reuse of code, e.g., for analysis of
simulation results, was hard.

Summarizing, extensibility was possible, but quite difficult and resulted in complicated
type hierarchies. The maintenance costs for the code base were increasing. The next
section considers options to improve the situation by use of plain Java.

4.4. Patterns, Java & Extensibility

The need for design patterns depends on the programming language. Each language
has a set of native language constructs as, e.g., control flow statements. These native
constructs often include design patterns. E.g., inheritance is a typical design pattern
that comes with all OO programming languages. In pure procedural languages such
as C it would be a useful pattern (Gamma et al., 1995). Another example is the Iter-
ator pattern that is available as syntactic construct in most modern OO programming
language as, e.g., Java or Ruby. Heinlein (2003, 2007) provides a detailed analysis how
well chosen native language constructs can reduce the need for patterns.

Based on the considerations in Sec. 4.2.4, there is neither an alternative programming
language in sight which would make programming in the context of MATSim much
easier, nor is such a switch of the programming language easily feasible. Thus, the sub-
sequent analysis focuses on the extensibility of Java, its limits, and how design patterns
may improve the situation. First, dimensions of extensibility are defined for a simple
type hierarchy. Then, an exemplary use case is provided. For the use case two distinct
software designs are introduced. The first is really simple and uses no Design Patterns.
It is similar to many constructs found in the 2007 release of MATSim. The second design
is more complex and reflects the architecture of the current MATSim codebase. The two
designs are then extended in all dimensions in order to show how extensibility works
out in Java.

Readers that prefer real code to text and code snippets can checkout the examples by
executing git clone https://github.com/dgrether/diss.git on the command line®.

8the source-code-management system git must be installed on your machine, see git-scm.com
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+print(): String

Atomic Binary Unary
I I
Constant Addition Substraction Negation

Figure 4.2.: Typical object-oriented type hierarchy. Green: Vertical extension, Red: hor-
izontal extension (source: simplified version from Heinlein (2003))

4.4.1. OO Type Hierarchy — Expressions

Heinlein (2003) states that the only available dimension for extensibility that is avail-
able in a direct and modular fashion in common OO programming languages is ver-
tical extension. He shows how future programming languages can support the other
two dimensions of extension in a more natural and thus user-/programmer-friendly
manner. As an example, he uses a simple type hierarchy that represents arithmetic
expressions.

Fig. 4.2 shows parts of this type hierarchy. The basic type is Expression defining a
method evaluate() for all subtypes that represent the different elements of basic arith-
metic. E.g., the expression 17 4 4 consists of two objects of type Constant that are used
as left and right expression of an Addition object. Heinlein (2003) distinguishes three
dimensions of extensibility in OO programming:

o Vertical extensions: extensions of the type hierarchy, e.g., add a type for Unary
Negation (green).

¢ Behavioural extension: extensions or even restrictive modifications of the original
behaviour of operations, e.g., to swap the behavior of the method evaluate() in the
classes Addition and Subtraction or to print some debug output to a log stream
before evaluation is done.

e Horizontal extensions: extension of the set of operations available on types, e.g.,
add method print() to Expression (red).
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Calculator Expression

+calculate(): int +eval(): int
Constant Addition
+Constant(value:int): Constant +Addition(left:Expression,
right:Expression): Addition

Figure 4.3.: Software design for the simple calculator

4.4.2. Use Case — Calculator

A typical use case for the type hierarchy shown in Fig. 4.2 could be a Calculator ob-
ject with a single method int calculate(..). Parts of the program are skipped that deal
with parsing and representing the input data. This data is assumed to be available as
parameter of createExpression(..), e.g., as data transfer objects (DTO), see Martin (2009,
p-100). Suppose the input is 17 + 4. Then, Calculator.calculate(17 +4) has to create
two expressions of type Constant and one expression of type Addition. The left part
of the Addition is the Constant representing 17 while the right part is the Constant for
4.

Indeed, the Calculator and the Expression hierarchy are simple examples and at a
first glance the design seems to be exaggerated. The structure of the example, how-
ever, is a minimalistic version of many real-world software architectures. Suppose the
Calculator is a simplified form of the MATSim Controler class. Then, the Expression
type hierarchy can be seen as a pendant to the classes used to model MATSim’s al-
gorithm. As the example and the real-world problem are quite similar a transfer of
software design from the example to MATSim is feasible.

In the following, the Calculator and the Expression type hierarchy are used to explain
how the three dimensions of extensibility can be provided. The analysis is restricted
to Java as programming language and reveals where, due to the language concepts of
Java, extensibility comes to its limits.

Simple Calculator Design

A naive, straightforward design for the calculator is shown in Fig. 4.3. A Java-interface
Expression defines a type for expressions with a single method eval() returning an in-
teger. Expression is implemented by two classes: Constant and Addition. Besides the
method eval() the classes provide public constructors. The method calculate() of the
Calculator class uses this hierarchy, e.g., to calculate the outcome of 17 + 4. The code
of calculate() is shown in Listing 4.3.
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Figure 4.4.: Software design for the advanced calculator

public class SimpleCalculator ({
public int calculate () {

Expression a = new Constant(17);
Expression b = new Constant(4);
Expression add = new Addition(a, b);

return add.eval();

Listing 4.3: Simple calculator, Usage for 17 + 4

Advanced Calculator Design

Advanced Calculator A more advanced design for the calculator is shown in Fig. 4.4. The type hierarchy
for Expression is provided as Java-interfaces. In the same package, a Java-interface
for a factory with creational methods for Constant and Addition is specified. In a sec-
ond package, a default implementation is provided. Implementations for Constant and
Addition are only visible within the package. The only exposed class is the Default-
ExpressionFactory that must implement all methods of ExpressionFactory. The calcu-
lator has an attribute that holds the default implementation of ExpressionFactory and
provides getters and setters for it. The code of the Calculator class is shown in List-
ing 4.4. At a first glance, functionality is the same as for the Simple Calculator. The
more complicated design pays off when extensions or modifications of the code have
to be implemented.

public class ExtensibleCalculator ({
private ExpressionFactory factory =
new DefaultExpressionFactory();

public int calculate () {
Expression a factory.createConstant (23);
Expression b = factory.createConstant(19);
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Expression add = factory.createAddition(a, b);
return add.eval();

}
Listing 4.4: Advanced calculator

4.4.3. Extensibility of the Calculator

The two Calculator designs and implementations of the preceding section are extended
in all three dimensions.

Vertical extension: Negation

As exemplary vertical extension Negation shall be available to the calculator as subtype
of Expression, see Fig. 4.2. The method calculate of the Calculator implementation
shall now calculate the result of —(17 4 4).

Listing 4.5 shows a possible approach for the simple design. The code of the calculate()
method is copied from the simple calculator (see Listing 4.3) and a new line is added
that negates the Addition. The class Negation is added as implementation of the -
Expression Java-interface.

public class SimpleNegationCalculator extends SimpleCalculator ({
public int calculate() {

int add = super.calculate();
Expression ¢ = new Constant(add);
Negation neg = new Negation(c);

return neg.eval();

}
}

Listing 4.5: Simple calculator with vertical extension for Negation

In contrast, Listing 4.6 shows the extension for the advanced design. Delegation is
used for everything concerning the calculation of 17 + 4. The constructor expects a
Calculator as parameter. The instance passed is used as delegate. The Negation-
ExpressionFactory instance is created using the Calculator’s factory as delegate for all
operations already available while the method createNegation(Expression e) is added
to the factory. In the setFactory(..) method the NegationExpressionFactory instance is
passed as factory object to the delegate. The method calculate() makes use of the del-
egate Calculator to calculate 17 + 4. Then it creates a Negation from the result and
returns its evaluation.
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public class NegationCalculator |

private ExpressionFactory factory,
private ExtensibleCalculator delegate;

public NegationCalulator (ExtensibleCalculator delegate) {
this.delegate = delegate;
this.factory = new NegationExpressionFactoryImpl(delegate.
getFactory());

}

public int calculate () {
int add = this.delegate.calculate();
Expression ¢ = this.factory.createConstant(add);
Expression neg = this.factory.createNegation(c);
return neg.eval();

}

public void setFactory(NegationExpressionFactory factory) |{
this.factory = factory,
this.delegate.setFactory(factory);

}
}

Listing 4.6: Advanced negation calculator

The native language concepts of Java comprise inheritance. Implementation of vertical
extensions is relatively easy. Thus, at this point, the simple implementation is more
intuitive. The advanced design pays off when other extensions shall be combined with
a vertical extension.

Behavioral extension: Debug

As showcase for a behavioral extension, a debug functionality shall be added to the cal-
culator in addition to the negation extension. All implementations of Expression shall
call a print function before evaluating itself. The print function sends the expression to
a stream before it is evaluated, e.g., DEBUG: —(17+4).

If the simple design is extended, one needs to implement calculate() again from
scratch. However, to wrap a few lines around the code of the original SimpleCalculator
as in the vertical extension is no longer sufficient. The behavior of the objects created
within calculate() must be extended. Listing 4.7 shows a potential reimplementation.
Internally, the debug classes could make use of inheritance. E.g., DebugConstant ex-
tends the Constant implementation from the SimpleCalculator. Listing 4.8 sketches
such an implementation. This ensures that the same code is used for evaluation and
only the functionality for debugging needs to be written from scratch. In terms of
overall extensibility, this is, however, not helpful.
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public class SimpleNegationDebugCalculator {
public int calculate() {
Expression a = new DebugConstant(17);

Expression b = new DebugConstant(4);
Expression add = new DebugAddition(a, b);
Expression neg = new DebugNegation(add);

return neg.eval();

Listing 4.7: Simple calculator with debug extension

public DebugConstant extends Constant |
public DebugConstant (int c){
super(c);
}
public int eval() {
this.printToDebugStream(super.getValue());
return super.eval();

}
}

Listing 4.8: Implementation of DebugConstant for the simple calculator

With the advanced design the debugging functionality can be added to the code for the
Calculator or the NegationCalculator. The code is used without any modifications.
There is no need to copy existing code. A factory, that creates instances with additional
debug functionality, has to be set as shown in Listing 4.9.

public static void main(String[] args){
NegationCalculator nc = new NegationCalculator();
nc.setFactory(new DebugNegationExpressionFactory(nc.getFactory())
)
nc.calculate ()

}

Listing 4.9: Main for the advanced calculator with debug functionality

This DebugNegationExpressionFactory applies the factory provided by one of the Cal-
culators. It serves as delegate to create Expression instances. Listing 4.10 sketches one
of the create methods. This ensures that the evaluation functionality is implemented
only once.

public Constant createConstant(int c)

Constant cons = this.delegate.createConstant(c);
return new DebugConstant(cons);

}

Listing 4.10: Snippet from the expression factory implementation for the advanced
calculator with debug functionality
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Also applying delegation, these instances are wrapped in DebugExpression instances.
Before the evaluate() method of the delegate is called, the desired output is generated.
An example implementation is sketched in Listing 4.11.

public DebugConstant implements Constant {
public DebugConstant (Constant delegate) {
this.delegate = delegate;

}

public int eval() {
this.printToDebugStream(delegate);
return this.delegate.eval();

}
}

Listing 4.11: Implementation of DebugConstant for the advanced calculator

To extend the simple calculator behaviorally, one starts to implement from scratch. The
eval() method has not to be reimplemented as it can be inherited via class inheritance.
In contrast, the behavioral extension of the advanced calculator only requires a factory.
The factory can be applied to a calculator by a customized main() method in that also
the concrete calculator implementation is specified. Both calculators of the advanced
design, i.e., ExtensibleCalculator or NegationCalculator, can be used with the same
factory implementation.

Horizontal extension: Print

As an example for a horizontal extension a print() method shall be added to Expression
and all subtypes. This implies that all implementations that subtype Expression have
to be modified. If all source code is available and modifiable, this can be realized with
some effort. Otherwise, the change breaks API — the Application Programming Interface
that defines access to a software component.

An API break can be avoided. The type definition for Expression is extended by a
subtype PrintExpression. The print() method is specified in this subtype. Applying
this to all other subtypes of Expression results in the type hierarchy shown in Fig. 4.5a.
One can observe, that multiple inheritance is required — at least for the definitions of
the types.

The simple calculator design uses only one Java-interface, Expression. All other types
are defined by classes and do not support multiple inheritance. Thus, to implement the
print extension in a non API breaking fashion, some of the methods and classes must be
reimplemented from scratch. Similar to the behavioral extension, debug, the calculate
() method has to be reimplemented. Within the method the objects implementing the
print functionality have to be instantiated. Thereby, the specific calculator is specified
and can not be changed without further reimplementation.
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PrintBinary
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PrintConstant PrintAddition right:Expression): PrintAddition

(a) Non API breaking type hierarchy for the print exten- (b) Factories for the advanced design
sion

Figure 4.5.: Horizontal extension: print, advanced calculator

When the print extension is implemented, the design of the advanced calculator pays
off. The type hierarchy depicted in Fig. 4.5a can be implemented 1 : 1 as Java-
interfaces are used consequently. ExpressionFactory is extended by a Java-interface
PrintExpressionFactory, see Fig. 4.5b. The factory methods of this Java-interface re-
turn subtypes of PrintExpression. Classes that implement the new print Java-interfaces
can make use of delegation. An implementation of the PrintExpressionFactory can be
used with all existing calculators. Code that does not need the print functionality is not
affected.

Modules that require the print functionality have to ensure that an instance of Print
ExpressionFactory is set in the calculator, before any object is created. Then, they
can cast the objects of type Expression created by any ExpressionFactory to Print-
Expression and use the new print() method. One may argue that this cast exhibits some
bad smell of code. However, print is an extension to the original calculator. The API
of the original calculator never pretended to support a print method for expressions.
If the print method is required, one refers to the extended API. The cast expresses this
requirement and fails if it is not met.

4.4.4. Discussion & Conclusion

One could conclude that Java code can be extended in all three dimensions if design of
the advanced calculator is applied. Supported by the native language construct inher-
itance, vertical extensions are straightforward. They can be realized with sole class in-
heritance. Horizontal and behavioral extensions, however, get complicated when class
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inheritance is used. The amount of code that needs to be reimplemented from scratch
increases with each extension. Use of Abstract Factory, Java-interfaces, and delegation
reduces the amount of reimplemented code. Then, also behavioral extensions can be
added without much effort. Horizontal extensions, however, seem to be the hardest
extension, also for the advanced design. Even in the small example for the calculator,
the type hierarchy gets quite complicated after one single horizontal extension. Sup-
pose, a real-world type hierarchy is extended horizontally one or even several times.
It is obvious, that the resulting type hierarchy gets hard to understand and difficult to
maintain.

Use of factories, Java-interfaces, and delegation pays off, if several extensions shall be
combined. As shown in the advanced calculator example, a well designed factory can
reduce the amount of reimplemented code. In the calculator example, the number of
lines is quite small. For real-world applications, however, the number of lines increases
quickly. Then, the assembly of software components gets nontransparent and is prone
to errors. The problems with horizontal extensions, however, persist.

One may argue that for horizontal extensions the visitor pattern can be implemented.
Following Gamma et al. (1995, pp. 335), Visitor is worth further consideration if the
visited type hierarchy is quite stable — a requirement that is at odds with the desire
for other extensions. Among the design patterns in Gamma et al. (1995), Visitor is one
of the most complex patterns. Thus, one should consider the implementation of the
Visitor pattern carefully.

Without a Visitor implementation, at least one single horizontal extension is feasible, if
Java-interfaces are used. This is well suited for prototypes. In particular, if a prototype
is a candidate for integration into the main type hierarchy, the advanced design may
reduce effort. As long as the prototype is under development, the type hierarchy can
be extended similar to the type hierarchy of the print extension. Existing software tests,
that are not affected by the extension, can be run for the prototype and the main type
hierarchy. The tests have to be rerun with each factory implementation, further changes
are not required. Then, if the prototype is selected for integration, one can ensure that
previously existing functionality is not affected by the integrated extension — as far as
the functionality is covered by software tests.

Overall, the use of Abstract Factory, Java-interfaces, and delegation seems to pay off for
a software relying on pure Java. Their application for extension, however, comes with
some complexity.

4.5. Dependency Injection & Aspects

The considerations of the last section take concepts into account that rely on the knowl-
edge and use of pure Java. Pure Java has the advantage that language basics and usage
are well established and can be taught and learned quickly. At TU Berlin, a 4 hour, one
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term class for engineers is sufficient to teach students the basics they need to attend
the class that teaches application of MATSim. But, pure Java has some limitations and
is conceptually not straightforward as one needs at least delegation, well designed in-
terfaces, and factories to handle extensibility up to a certain limit. Tools that are not
standard Java but enable Dependency Injection can help, but may increase overhead for
getting started. This section discusses if and how Dependency Injection might improve
extensibility.

4.5.1. Dependency Injection & Spring

Dependency Injection is a more specific name for a concept that is also referred as Inver-
sion of Control (IoC) (Fowler, 2004a). What does Inversion of Control or Dependency In-
jection mean? Before a software module can be constructed, the dependencies required
by the module must be instantiated. Dependency Injection provides conventions to
specify the dependencies of modules apart from their source code. A Dependency In-
jection mechanism constructs software modules. Thereby, it reads the specification,
instantiates the dependencies, and injects them into the module.

In the advanced calculator example of the preceding section a specific factory has to
be instantiated before an Calculator implementation can be used. This establishes a
dependency from the Calculator to the ExpressionFactory. The dependency was re-
solved by a custom main(..) method for each variant of the calculator. This stops the
debug or print functionality being a plugin (Fowler, 2004a).

The Spring framework® is an addition to standard Java. Its rich, highly modular, and
well documented set of features can reduce programming overhead in Java standalone-
and web-application development. At time of writing, the recent release documenta-
tion (Johnson et al., 2013) covers topics as, e.g., modules for dependency injection, data
access and validation, or a language extension of Java for Aspect-Oriented Programming.
In the following example, the calculator example is constructed with the IoC container
of Spring.

4.5.2. Dependency Injected Calculator

The components of the calculator example (Sec. 4.4.2) are assembled with Spring’s De-
pendency Injection mechanism'?. For each extension of the calculator a different main()
method is required. Therein, the different parts of the Calculator are instantiated and
plugged together. In the advanced design, this main() consists of the following steps
— instantiate the ExpressionFactory and the Calculator, instruct the Calculator to use
the factory, and compute the result.

9see www. springsource.org/, last access 14.02.2013

10Examples for the calculator in this section can be retrieved via git clone https://github.com/
dgrether/diss.git ——branch springbranch on the command line if git is installed properly.
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Applying Spring’s dependency injection mechanism, the main() method do not have
to be rewritten for every variant of the calculator. Listing 4.12 shows a potential ap-
plication of Spring’s ApplicationContext to push assembly of the calculator to a XML
file: calculator.xml. The ApplicationContext automatically instantiates all modules
(beans) configured in the XML file and injects their dependencies. Afterwards, from -
ApplicationContext a completely configured Calculator instance can be retrieved to
calculate the result.

public static void main(String[] args) f{
ApplicationContext context = new FileSystemXmlApplicationContext (
new String[] {"./src/main/config/calculator.xml"});
Calculator calc = context.getBean(Calculator.class);
System.out.println("Result: " + calc.calculate());

}

Listing 4.12: main method using spring for the calculator example

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans" ..>

<bean id="expressionFactory" class="de.dgrether.diss.expressions.defaultimpl.

DefaultExpressionFactory" />
<bean id="calculator" class="de.dgrether.diss.AddCalculator">
<property name="factory" ref="expressionFactory" />

</bean>

</beans>

Listing 4.13: Dependency Injection with spring & XML for the advanced caculator
example

An example Spring XML configuration for the advanced calculator is shown in List-
ing 4.13. The first <bean. .> element states that the DefaultExpressionFactory should be
available within the container under the id "expressionFactory". The second <bean. .>
element then advices Spring to instantiate an AddCalculator and pass the object with id
"expressionFactory" via AddCalculator.setFactory(..) to this AddCaculator instance.

The presented example applies a pure XML configuration to Spring’s Dependency In-
jection. In principle, the XML configuration of each <bean..> element can contain any
number of NAME — VALUE properties. These are set to the instance via appropri-
ate setNAME(VALUE) methods. Alternatively, the specification of the dependencies and
parameters can be defined via Java code.

4.5.3. Discussion

For the calculator example, the steps to instantiate and run the application can be en-
coded in four lines of code. Assembly of real software, however, is normally more
complicated, the number of lines of code increases rapidly. The more complex the as-
sembly, the higher is the possibility that domain specific code is mixed with code for
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component setup and assembly. In consequence code reuse and combination of plugins
gets harder.

The preceding example illustrates the straightforward use of Dependency Injection.
Additional components can be plugged into a core software without touching the core
components. There is no need for customized main(..) methods. This results in a de-
coupling of object initialization and production code. If core software and plugins are
developed by project contributors that do not work in the same group or do not even
share a jointly modified codebase, decoupling is considered very helpful. For plugins,
the advantage is obvious. In contrast, the assembly of core software modules via exter-
nal configuration files and Dependency Injection does not have to ease the development
process. A configuration, that is spread over several files, may not be administrable for
some projects (Fowler, 2004a). If Dependency Injection for core software proves bene-
ficial depends on the development process, the preferences of team members, and the
size of the modules. Thus, an advice cannot be provided on this level of abstraction.

If component assembly is taken by Spring the Abstract Factory pattern to provide exten-
sions gets dispensable. Both, Abstract Factory and Dependency Injection help to make
“a system independent of how its products are created and composed” and make a system con-
figurable with “multiple families of products”(Gamma et al., 1995, p. 88). However, De-
pendency Injection cannot enforce independence of how the products are “represented”.
Neither the relationship between object families that shall be used together is enforced,
nor the use of interfaces. Thus, Abstract Factory may still be required in addition to de-
pendency injection. Possibly not on the top level of a software, but for the inner design
of complex modules that are target of further development and extension. Then, the
abstract factory implementations provided in the calculator example could be replaced
by a more intuitive implementation. Their application should be reconsidered, if Java
is extended by additional language concepts.

For the Java programming language exist additions that provide Aspect-Oriented Pro-
gramming (AOP) functionality, e.g., Spring or Aspect]'!. The available features for aspect-
oriented programming depend on the addition. With the aspect-oriented addition of
Spring, aspects can be applied the same way as in Aspect], except that only a 80 % sub-
set of Aspect]’s functionality is available. Readers that are not familiar with AOP but
know design patterns can view aspects as something similar to a Friend or Visitor Pat-
tern implementation that is available as native concept of the programming language.
As a seamless addition to Java, aspect orientation offers “another way of thinking about
program structure” (Johnson et al., 2013, p. 193). Aspect orientation may ease extensibil-
ity of Java as horizontal extensions can be realized by aspects. With the new language
constructs, however, one would also expect new pitfalls. For a rather small domain,
as the transport modeling domain for that MATSim is developed, sorting out oppor-
tunities and pitfalls may be overwhelming. Introducing aspect programming may be
similarly difficult as changing the programming language (Sec. 4.2.4).

Hsee eclipse.org/aspectj/, last access 15.02.2013
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4.5.4. Conclusion

Overall, Dependency Injection and other features of Spring could help to ease develop-
ment of MATSim. Especially for plug-ins, dependency injection is considered helpful.
For the core software, this is not obvious and should be subject to further discussion by
core developers.

Other Spring features as, e.g., the standardized access to data structures can also help to
focus more on the domain, i.e., the modeling of transportation. However, in a commu-
nity like MATSim where developers are not necessarily computer scientists one could
not expect each developer to read 717 pages technical manual before getting started.
Instead, a subset of Spring features can be defined. Then, a faster briefing of developers
may be provided.

At the time of writing, the developer team!? is of the opinion that a spring-like config-
uration of MATSim can also be achieved by making the set-up process of a simulation
sufficiently sequential, scriptable, and pluggable. Sorting out the set-up process in such
a way would also be a pre-requisite before moving to a framework like Spring. Also,
at the point the MATSim components are not considered to be sufficiently general to
justify a move to a component framework.

4.6. Software Design of MATSim

In this section, parts of the overall software design for the 2012 version of MATSim are
presented. For different components of MATSim potential extensions are discussed.

4.6.1. Overall Architecture

MATSim is implemented in pure Java, frameworks like spring or language additions
as Aspect] are not used.

Build processes for Java software can be managed by Apache Maven!®. Maven resolves
the problem concerning the build process and encourages developers to use other open
source libraries instead of reimplementing functionality that is clearly not within the
domain of transport engineering. Furthermore, it allows the convenient setup of stan-
dard continuous integration tools and provides standardized builds.

The overall architecture of the first release of MATSim in 2007 was rather fuzzy. Cou-
pling was high and modularization at a preliminary stage. Complex code inheritance
hierarchies and global variables persisting the state of modules reduced Reusability and

12e.g., see https://matsim.atlassian.net/browse/MATSIM-142, last access 27.11.2013
135ee maven.apache . org, last access 16.01.2013
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Figure 4.6.: Layered architectures, left: general layer structure, right: layers of MATSim

Extensibility. Especially Hybrids, i.e., objects that possess properties of data structures
and provide functionality, reduced Modularity.

Layered architectures, “that should be familiar to anyone who works with information sys-
tems” (Fowler, 2001) can help to reduce coupling, improve modularization and sort out
dependencies between modules. The typical overall layer structure is shown on the
left side of Fig. 4.6. It consists of a Database, a Mapper implementation accessing the
concrete Database, an abstract interface for Mappers, the Domain to be modeled in the
software, and a User interface.

This typical layered approach is applied to MATSim. The right side of Fig. 4.6 shows a
colored version of the control flow of MATSim that is used for documentation in many
sources. In yellow, the mapper to the Database is depicted, blue elements represent the
main modules of the Domain while green is the User interface layer.

Motivated by the considerations in Sec. 4.4, the software design for MATSim uses
mainly two design patterns from Gamma et al. (1995). First, Abstract Factories are
provided that construct the central components of the software and force use of Java-
interfaces instead of implementations. Second, in order to make control flow and object
communication transparent, the Observer pattern is applied frequently.

4.6.2. Database & Mapper Layer

Microscopic transport simulation can potentially make use of lots of data. None of the
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institutions participating in the development focusses on data modeling, nor is expert
knowledge for modeling data ubiquitous at the developer side. Due to this consid-
eration, the amount of data structures required by the core algorithm is reduced to a
minimum: An abstract graph representation of a transport network, and a population
of virtual persons that are travelling within the transport network. For both data struc-
tures, corresponding mapper interfaces and implementations are provided. These can
be added to a mapper container, the Scenario. Additionally, access to the mapper for
the configuration is provided. Within the iteration cycle, access to the data is granted
via Scenario.

For many studies, more data is needed than provided by network and population. Data
sources are heterogeneous and may vary from study to study. In consequence, a man-
ually programmed simulation logic must be encoded against specific concepts derived
from data. Effort of implementation is reduced if these concepts can be accessed in a
type-safe manner. Maintenance cost increase significantly and extensibility is reduced if
central parts of the central algorithm need to parse Strings that have to be well formed.
Thus, modules that extend the core simulation functionality are expected to implement
their own data mappers. These can be added to Scenario as shown in Listing 4.14!4.

public void addScenarioElement(Object o);
public boolean removeScenarioElement(Object o);
public <T> T getScenarioElement(Class<? extends T> klass);

Listing 4.14: Extension of Scenario: Signature

The Signature of the getScenarioElement (. .) method may look a bit scary, but usage is
simple, as shown in Listing 4.15: A custom data mapper of type MyData is added to an
instance of Scenario. Later, it is retrieved via the getScenarioElement(..) method in a
type-safe manner.

MyData data = new MyData();
scenario.addScenarioElement (data);

MyData data2 = scenario.getScenarioElement(MyData.class);

Listing 4.15: Extension of Scenario: Usage

4.6.3. Domain: Simulation, Scoring and Replanning

The central algorithm of MATSim consists of three steps: Simulation, Scoring and Re-
planning. As indicated by Fig. 4.6, each step is associated with a separate module.
In 2007, the functionality of these modules was rather limited, while the number of
users willing to extend the software was growing fast. The standard way to enhance
or replace those modules was to extend a central Controler class and to over-ride the

14Note, that the syntax in the current, 2013 version, was slightly changed, see https://matsim.
atlassian.net/browse/MATSIM-68, last access 27.11.2013
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relevant methods that would configure or run each of those steps. This lead to the
following problems:

e Extensions, which were developed in this way, were normally not “orthogonal”,
i.e., one could rarely use both extended functionalities simultaneously. Such or-
thogonality, however, was clearly a core interest in order to make MATSim capa-
ble to address more and more transportation planning problems.

e The Controler was not specifically designed for inheritance. In particular, the con-
trol flow was distributed over many methods, and each of them could be over-
ridden. In consequence, changes to the control flow could easily break derived
classes, for example by moving a control statement to a method that was overrid-
den (and thus ignored) by a downstream users.

Thus, a simple method for functional extension of these modules was required. The
control flow and communication between these modules, however, should become in-
visible to enforce modularization.

In order to hide implementation details of the core modules, Java-interfaces are ex-
tracted from the concrete implementations of the 2007 version. Use of these interfaces
is encouraged by Abstract Factories creating the modules. On this top-level view on the
domain, interfaces can be rather abstract. E.g., Listing 4.16 shows the top-level inter-
face that a mobility simulation needs to implement in order to work within MATSim,
while Listing 4.17 shows the appropriate interface of the factory creating the mobility
simulation.

public interface Mobsim {
public void run();

}
Listing 4.16: Top-level Java-interface for a mobility simulation

public interface MobsimFactory {
public Mobsim createMobsim(Scenario sc, EventsManager eventsManager);

}

Listing 4.17: Top-level factory to create a mobility simulation
This enables users to replace the mobility simulation completely if their requirements
are not met by the default implementation.

In order to hide control flow and communication between modules, the Observer pat-
tern is used at two places:

o First, the mobility simulation uses the same Observer implementation for Events
as found in the 2007 release. The mobility simulation retrieves access to an Events
Manager when it is created via the factory method, see Listing 4.17.
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e Second, new functionality to the steps of the central algorithm can also be added
via an Observer: The state of the iterative relaxation process represents the Subject
of the pattern. States are, e.g., startup and initialization completed, the start of an
iteration, the end of microsimulation execution, the end of the scoring or the end
of the iteration cycle!®. The central algorithm of MATSim alternates the states
of the subject (currently implemented in the Controler class). Users can provide
custom implementations for Observers. This allows addition of functionality at
each point of the iterative process. E.g., code for analysis could be added at the
end of each iteration without touching any code concerning setup and control
flow of the overall simulation process.

The combination of Abstract Factory and Observer makes the central algorithm ex-
tensible. Users can connect to the core algorithm at each step and add their specific
Observer implementation that may provide any required additional functionality. If
the core modules do not fit needs, they can be replaced completely. Thus, the overall
process is considered to be flexible and extensible. However, replacing a whole mod-
ule of the core algorithm, as e.g., a complete replacement of the mobility simulation,
can result in much effort. Therefore, default models and implementations are required,
which are also suited for extension and customization. These default models require
interface definitions to provide extensions access to their functionality.

4.6.4. Default Models & Implementations

Obviously, specifications of abstract interfaces cannot be run as there is no implemen-
tation. Thus, there is a certain amount of default implementations that can be used and
configured via the configuration file of MATSim. If a user states he uses MATSim, he
should refer to the default implementation. His specific set of configuration options
should be documented, if non-default parameters are used. If users add or modify
code, it is expected that code modifications are also documented and published. In or-
der to reduce documentation effort and amount of code to be rewritten, certain parts of
the default implementations may be reused. To ease effort default implementations are
hidden behind abstract type specifications suitable for customization.

If Delegation and the patterns Abstract Factory and Observer are used consequently,
extensibility can be realized up to a certain extent. In addition, the resulting software
architecture can be understood by knowledge of the two patterns and the concept of
delegation. E.g., the default production mobility simulation of TU Berlin (referred as
Qsim) uses the Observer pattern twice: First, the Event mechanism can be used by Ob-
servers to get informed about things that happen in the simulation. A second Observer
implementation is provided for the control flow of the mobility simulation. E.g., one
can register an Observer that is informed when the mobility simulation is set up, in-
cremented, or shut down. By use of a Factory creation of objects for virtual persons

15500 www.matsim. org/node/602 for the official documentation, last access 17.01.2013
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or other agents fed into the mobility simulation can be changed. Default behaviour of
virtual persons thus can be customized. This repetition of concepts and patterns results
in a Matryoshka Doll. Each time one of the modules of overall simulation is unfold,
same concepts appear. Thus, the overhead to understand design concepts required for
extension and modification is reduced.

Provided that existing source code should not be touched functional extension is pos-
sible by use of patterns as Abstract Factory and Observer in conjunction with the lan-
guage concepts of Java. However, extensibility is also restricted by this set of pro-
gramming concepts. Instead of extending existing types horizontally, new operations
can also be added as completely separated modules. Then, the default modules re-
quire some interface definitions to communicate with the extensions. The Observer
implementations provide this interfaces. The next section shows the design of such an
extension for a module to simulate traffic signal control.

4.7. Traffic Signals Extension

Traffic signal control is an important element of urban transport systems. For the pur-
pose of transport forecasting and simulation, the inclusion of traffic signal control may
be desired, but because of the need for extensive amounts of data, it may not be feasi-
ble.

In the following, the design and implementation of a software architecture is proposed
that allows the modeling of traffic signal control as an optional component of MAT-
Sim. Software design and implementation follow the design patterns used in the core
of MATSim. Instead of being modeled as extensions to the MATSim type hierarchy,
the model is a stand-alone extension that is coupled to MATSim via one concrete Java-
interface declaration that has to be implemented by the mobility simulation. It was
possible to solve all other coupling by the Abstract Factory or Observer implementa-
tions reviewed in the previous sections.

The traffic signal module for MATSim consists of three components: A data mapper
providing access to a database, a component that plugs the module into MATSim, and
a default implementation for fixed-time control. All components can ease the imple-
mentation of further models for traffic signal.

4.7.1. Data

For microscopic simulation of traffic signals, minimally a description of the real-world
traffic signals is needed, i.e., at which locations in the network traffic signals are located
and which links or turning moves of the network are influenced by them. Individual
traffic signals are often assigned to groups; each traffic signal of a group shows the
same color. In addition, the data format should allow to specify the control strategy
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Figure 4.8.: Components of the default module for traffic signals and their connection
to MATSim

used for sets of groups. Optionally, one should be able to specify legal constraints. This
includes the time of amber or red-amber a traffic signal needs to show before it can
switch to red or green. Intergreens specify the time signals have to be all red before a
signal can switch to green. All this data is provided by a mapper interface to a database
called SignalsData. The design of the data mapper is sketched in Fig. 4.7. SignalsData
provides access to the subcomponents. The mapper is added to the Scenario and thus
is available at relevant places within the simulation process. The SignalsData mapper
and its child containers are behind interfaces to ensure that the current XML Schema
based data format can be replaced by something else, e.g., a database or web-service.

4.7.2. Default Model & Implementation

Several components are identified that can be used to model and microsimulate traffic
signals. Fig. 4.8 shows types of the MATSim core modules from the package org.matsim
(blue). Furthermore, main types of the traffic signal extension are shown with their
dependencies to the core modules. These components and dependencies are reviewed
in the following.

First, a component that represents the real-world infrastructure is required. It serves
as interface to a mobility simulation, i.e., it communicates the color of traffic signals to
links of the transport network. The communication is realized by the Java-interfaces
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Signal and SignalizeableItem of Fig. 4.8. The latter is the Java-interface within org.
matsim. It has to be implemented by mobility simulations in order to support traffic
signals. Two currently available implementations are QLinkImpl and PedestrianSignal

The second required component provides traffic signal control strategies for signalized
intersections. For real-world applications, it should be possible to control each signal-
ized intersection with a different control strategy. For this, the SignalSystemController
Java-interface of Fig. 4.8 can be used. This component can be seen as agent if an agent-
paradigm is applied. Via the SignalSystem, the control strategy can access and switch
the state of the infrastructure representation, i.e., the Signal instances. Furthermore,
access to the EventsManager instance of org.matsim is provided in order to feed changes
of signalization back to the central Events” Observer implementation.

The third component provides a tool for control strategy implementations that reduces
the amount of code to switch a signal group from red to green. In between, colors red-
amber and amber may be shown for a certain time. This time depends on legal con-
straints which, in turn, may depend on the layout of the crossing or on the speed-limit.
The AmberLogic Java-interface is accessible via SignalSystem. The logic receives requests
to change color between red and green and translates them into a color sequence that
shows also the required time of red-amber and amber light.

The last component is a logic that checks if conflicting approaches of a junction got a
right-of-way at the same time, producing a warning or an error in such a case. This
component is necessary since none of the current mobility simulations available within
org.matsim represents vehicle collisions. Thus, the component is quite important to
ensure validity of the control strategy. The IntergreensLogic in Fig. 4.8 provides this
functionality. It is a View on the EventsManager of org.matsim and thus completely de-
coupled from other components of the traffic signal extension.

4.7.3. Integration into MATSim

The Observer implementation of the top-level simulation process is used to plug the
traffic signal extension into MATSim. After notification that the simulation is at start-
up, the signals data is loaded. At the beginning of each iteration, the simulation model
for traffic signal control is set up. At the end of simulation some data is persisted. The
Observer for the control flow of the mobility simulation is used to update the state of
the traffic signal control during execution of mobility simulation.

As traffic signals are considered important but still optional for transport simulations, a
central factory at the top level of the domain layer is added. Using this factory, the com-
plete module can be exchanged easily, or the default implementation can be retrieved
for further customization of its components. Each component can be exchanged or
customized via factories.
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4.8. Discussion

4.8.1. Overall Design of MATSim

Java as programming language still seems to pay off. Due to its static typing and ex-
cellent IDE support, even unexperienced programmers can get their work with MAT-
Sim done quickly. In particular, preparation of data for simulation scenarios and cus-
tomized analysis can be done with little knowledge of Java.

The application of Apache Maven for MATSim seems a good choice to build Java ap-
plications. At time of writing, Maven got one of the standard build management tools
for Java applications and is well integrated into all major IDEs. Due to Maven’s de-
pendency resolution problems concerning the build path can still occur but no longer
accidentally. Employment of other open source libraries supplying non domain func-
tionality is straightforward and encouraged. Non domain problems can be solved with
little programming effort. E.g., logging is no longer implemented within MATSim but
handled by Log4], one of the standard libraries for logging in Java. A wide range of op-
tions to customize Log4] is available, more than ever implemented in the 2007 version
of MATSim.

All global singletons are removed completely, hybrids are fading. Extensions to stan-
dard input data can be added to the Scenario. The mechanism described in this chapter
can also be found in the API of spring’s ApplicationContext. Thus, this appears to be
standard functionality for extensible Java software. The layered architecture discour-
ages creation of new Hybrids. Extension and customization of data, however, is still is
possible. The layers help to separate data from core functionality.

If problems get more complex and MATSim shall be extended, Java has some limita-
tions due to its pure static typed OO nature. Most of these problems can be solved
by knowledge and use of the two Design Patterns — Abstract Factory and Observer.
The clear limits of the approach are illustrated in Sec. 4.4. Vertical and behavioral ex-
tensions can be implemented with Abstract Factory, Delegation, and Java-interfaces.
Horizontal extensions, however, are hard to realize and result in somehow messy type
hierarchies. Thus, horizontal extensions require some other solution. The Visitor pat-
tern or aspect-oriented programming are considered inapplicable in respect to other
constraints for the software. But, horizontal extensions can be replaced by extensions
that use the Observer implementations. Instead of adding new methods to the MATSim
core type hierarchy, the functionality can be implemented in completely new compo-
nents. These components can be (de-)coupled to MATSim via the Observer pattern
implementations. One could argue that this reduces cohesion as functionality, that be-
longs together, is not modeled by the same component. On the other hand, one could
also state that this increases cohesion on the long run as the transportation domain is
structured and decoupled encouraged by the design of the software. At the beginning,
cohesion of an extension connected as Observer to MATSim may be low. Over time,
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when additional functionality is added to the extension, cohesion may increase while
coupling is still at a low level.

Software Design Patterns should be selected carefully. If the full spectrum of patterns
collected in Gamma et al. (1995) is applied, expert knowledge is required to understand
the software. The two patterns, Abstract Factory and Observer, can be understood
with relative ease, especially compared to other patterns, as, e.g., Visitor. They are
the standard solution for many problems and are among the best known and most
frequently used patterns in OO languages.

The patterns encourage use of interfaces instead of implementations. The existence of
a Java-interface communicates a certain level of design thoughts for a module. The
mental barrier to jump over the hurdle to change an Java-interface seems to be higher
than just to change some implementation. With the use of Java-interfaces it is more
likely that a new module is added instead of inflating existing modules by not cohe-
sive functionality. Thus, the development towards principal software design goals and
especially Modularity is encouraged.

The chapter shows how extensibility can be provided up to a certain extent without
changing core components. But the approach is limited. Code applying Abstract Fac-
tory and delegation gets hard to understand if several modules are interlaced and used
together. The rise of complexity, however, is not a result of the proposed approach.
Rather, the complexity is the outcome of the joint usage of several components with
interlacing functionality that is hidden by one or more layers of abstraction.

The Observer pattern lacks the definition of the sequence which Observer implemen-
tations are informed about changes of the Subject. This might be seen as drawback,
but is actually the quintessence of Observer pattern — encapsulating functionality in
modules that can be used independently. Thereby, control flow between the modules
is reduced to a minimum. The subject informs its observer in a not defined sequence
about changes, i.e., “you don’t want these objects tightly coupled” (Gamma et al., 1995,
p- 294). This strong decoupling results in plug-ins that do not depend on each other.
Completely independent plug-ins are advantageous compared to the monolithic struc-
ture MATSim had in 2007. This limitation of the approach could be resolved in further
steps, e.g., by use of spring.

The transition of the current design to spring’s dependency injection could be real-
ized with relatively little effort. Mainly, some top-level factories are no longer needed.
Though springs dependency injection must be learned by developers, overall complex-
ity is reduced further. Spring provides a standardized definition for plug-ins. In the
current state of MATSim each plug-in is configured differently. Spring’s dependency
injection mechanism could further improve the plug-in architecture.

Overall, still not all work is done. In comparison to the 2007 release, however, the
software design of MATSim was improved. MATSim is a living project with growing
user and developer community.
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Figure 4.9.: Changes on package org.matsim and org.matsim.signalsystem

4.8.2. Traffic Signals Extension

MATSim now comes with a traffic signal module containing a default implementa-
tion for fixed-time traffic signal control. The chapter explains how the module is at-
tached to MATSim with the current software design. The architecture of the module
follows the same concepts as the core software in order to reduce complexity. The mod-
ule requires the mobility simulation of MATSim to implement a single Java-interface
(SignalizeableItem). All other communication between the MATSim core and the traf-
fic signal module can be realized by use of the different Observer implementations.
Thus, the extension features a high cohesion while coupling is low.

All components of the traffic signal module can be customized, replaced, or extended
without changing the default implementation or core components of MATSim. Due
to the use of Java-interfaces, delegation, and Abstract Factory each component can be
exchanged separately. The default traffic signal module provides an implementation
for fixed-time traffic signal control. For Chapter 5 an extension modeling a traffic-
responsive signal control is added by solely implementing the algorithm for traffic-
responsive control and the code for the assembly of the components. For the represen-
tation of real-world infrastructure, computation of amber times, and coupling to MAT-
Sim the code of the default implementation is reused and not rewritten from scratch.
Thus, the chosen architecture provides reusable software components and seems to
have the required flexibility for extensions.

Maintenance of the implementation was quite cheap during the last years. Fig. 4.9a
shows in blue the changes recorded by the version control system (subversion) to all
core code of MATSim within the package org.matsim between 2010 and 2012. Changes
to the package org.matsim.signalsystems, which contains the model specification and
the fixed-time control implementation, are shown in red. While org.matsim in total was
changed quite frequently, changes to org.matsim.signalsystems are rare. This affirms
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the low coupling between org.matsim.signalsystems and the rest of org.matsim. The
changes to the traffic signal module occurred mainly due to feature improvements and
bug fixes by the developer responsible for the extension. E.g., during the period 2010-
2012 a feature for visualization was added to the package, also the intergreen logic was
developed. Fig. 4.9b shows same information as Fig. 4.9a, but removes all changes due
to these bug fixes and improvements. Red changes nearly disappear, confirming the
argument that coupling is low.

Overall, this shows that the chosen approach is modular, reusable, uses few patterns,
but is extensible.

4.9. Findings

This chapter explains parts of the methodology chosen for the software design of the
Multi-Agent Transport Simulation, MATSim. The design focusses on standard archi-
tectures and Design Patterns to ease Usability and improve Extensibility of the soft-
ware. Several design options to improve Extensibility of Java are discussed on a small
example. Based on the resulting subset of design principles, patterns, and tools, the
software design of MATSim is explained. It is shown that an extension for traffic sig-
nal control can be attached to MATSim using this subset. As both, MATSim and the
extension, apply the same reduced subset of concepts, the approach can be understood
with little effort. Reduction of concepts leads to a clear and in terms of a pure Java
software straightforward architecture. As the approach enforces Modularity and Ab-
straction overhead of maintenance is reduced while Reusability and Extensibility are
provided.
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Chapter 5

Network Effects of Traffic Signal Control

The simulation of network wide effects caused by a change of traffic signal control is
subject of this chapter. First, some backgrounds are provided. These serve as motiva-
tion for a first study, that explains how traffic signals may interact with traffic patterns
(Sec. 5.1). Then, based on real-world data, a large-scale scenario is set up (Sec. 5.2).
Sec. 5.3 provides a case study for this scenario that illustrates, how traffic-responsive
signal control may help in certain situations. Afterwards, in Sec. 5.4, first results of
an ongoing research project are presented that aims at optimization and network wide
analysis of traffic signal control.

Please note that the case study provided in Sec. 5.3 uses material from Grether et al.
(2011).

5.1. Backgrounds and lllustrative Example

5.1.1. Motivation

On the short-run interaction of traffic signals and travelers is obvious — staying le-
gal, travelers have to stop in front of a red light. Under consideration of longer time
horizons, at least travelers’ route and departure time choice may be influenced by the
implemented traffic signal control strategy. If one route, between two locations A and
B, is considerably faster than other options, one can leave location A later arriving at
the same time at B if the fast route is chosen. The speed advantage may no longer hold
if all travelers are aware of the advantage. An interaction between the route choice of
travelers and the implemented signal control strategy evolves.

This interaction can happen on different time scales and is considered rather indirect
— as long as traffic signals are not communicating in real time with routing devices
or cars (e.g. Braun et al., 2009). Waiting in front of a red traffic signal is an inevitable
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penalty that has to be paid after route choice is made. Learning these penalties might
happen within-day, day-to-day, monthly or yearly. This is in contrast to congestion
pricing methods. Feasible congestion pricing schemes should communicate the amount
of toll for a road to travelers before they enter the road. Thus, traffic signals are a rather
indirect method for traffic control.

Traffic signal control can improve overall network performance. Many different control
strategies promise improvements. Models that capture the interaction between signal
control and travelers’ choices can be used diversely — to improve traffic signal control
or to predict the outcome of the traffic system if such a strategy is implemented. The
latter is the aim of this work.

Traffic Signal Control

Fixed-time traffic signal control periodically assigns a well-defined green-split for each
approach of a junction. Traditionally, for optimization of fixed-time signals different
regimes of equilibrium traffic flow are determined for several periods of time, e.g.,
weekday morning, midday, evening and night plus a separate estimate for weekends.
These traffic flows serve as input for optimization (e.g. Webster, 1961; Allsop, 1972,
1991; Robertson, 1969).

With upcoming availability of sensors and computer technology these optimizations
provided the basis for traffic-actuated signal control strategies. Based on detector input
fixed-time signal parameters as green times, cycle, and offsets are adjusted to cur-
rent traffic situations on the fly. Some actuated approaches use logical operators and
functions to adjust signal timings (Friedrich, 2002). More advanced methods as, e.g.,
SCOOT (Hunt et al., 1981; Robertson and Bretherton, 1991; Bretherton et al., 2004), MO-
TION (Bielefeldt and Busch, 1994; Busch and Kruse, 2001; Brilon et al., 2009), or BAL-
ANCE (GEVAS software Systementwicklung und Verkehrsinformatik GmbH, 2011;
Braun et al., 2009) use macro- and mesoscopic traffic models to predict effects of adjust-
ments of signal timings for a certain time horizon.

Recent approaches for traffic signal control no longer need a fixed-time control that is
adjusted. Instead, the signal program is build completely on-the-fly based on sensor
information. These methods originate from different areas of science. One finds rather
conceptual studies and methods that can and are used in practice. An example for the
latter is TUC (traffic-responsive urban control) (Diakaki et al., 2002; Christina Diakaki
et al., 2003; Kraus et al., 2010; Aboudolas et al., 2010; Kouvelas et al., 2011) a control
theoretic strategy that uses a linear-quadratic regulator approach to control green splits
based on a store-and-forward model of urban traffic. Due its polynomial complexity
TUC can be used in real time monitoring the whole transport network. Optional ex-
tensions to TUC provide cycle time adjustments, offset optimization, and public transit
priority. Also practice ready is the approach proposed by Limmer (2007); Limmer and
Helbing (2008, 2010). In undersaturated traffic conditions a priority based optimization
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of scheduling minimizes local waiting times. A second module stabilizes the optimiza-
tion when traffic density increases. Green waves are established locally by a prediction
model for future arrivals. Rather conceptual is the approach proposed by Cools et al.
(2007); Gershenson and Rosenblueth (2009) that looks at traffic as a self-organizing sys-
tem (Elmenreich et al., 2009). Traffic signals can be controlled by a set of simple rules,
coordination evolves from the interaction between cars and signals. Sensor informa-
tion, however, can be erroneous as some detectors may not work at all or provide
incorrect data. If sensor data is erroneous, quality of an adaptive signal control may
drop. This problem is addressed by Oertel and Wagner (2011). Advanced traffic detec-
tion technologies as, e.g., GPS data or video processing, measure the delay imposed to
individual vehicles approaching a signal. When the delay is below a certain threshold a
queue clearing policy terminates a green phase. Noteworthy, in simulation studies, the
signal control outperforms other approaches when only a part of the individual vehicle
delays can be detected.

Intelligent agents (Russel and Norvig, 2010) can be used to control traffic signals of
one or several junctions (Bazzan, 2005). Reinforcement learning techniques enable the
agents to control traffic flows (Bazzan, 2005; Bazzan et al., 2010b; Bazzan, 2009). Besides
agent-based approaches, signalized junctions can be controlled by other techniques as
autonomic and organic computing (Prothmann et al., 2010).

Models for Traffic Signal Control

Using Wardrop equilibrium assumptions and continuous link costs, Smith (1979a)
shows the existence of a unique and stable static traffic equilibrium. This provides
the underlying theory to prove, that traffic signal control influences route choice (Smith,
1979b). The existence of a dynamic traffic equilibrium is studied by Smith (1993). Smith
and van Vuren (1993) propose an optimization algorithm for dynamic assignments that
takes traffic-responsive signal control into account. The dynamic formulations do not
consider the physical extent of queues, they are built up on point-queues.

The combined modeling of the traffic signal control and traffic assignment is subject of
several other research lines. Meneguzzer (1997) reviews their initial roots and defines
the combined traffic assignment and control problem (CTAC) as finding a tuple (f*,g*) of
traffic flows f and signal settings ¢ under policy P that fulfills

f* = f[g"(f*)] or equivalently g* = g"[f(g")]

where f° is a function mapping signal settings to equilibrium traffic flows and ¢* a
function mapping from traffic flows to signal settings under policy P. Nicely, the for-
mulation shows the mutual interaction of traffic patterns and signal settings. A similar
problem formulation is given by Cascetta et al. (2006), studying the difference between
global and local signal optimization. The time horizon, on that these interactions take
place, is not captured by the formulations.
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Solution techniques for game theoretical models and mathematical programs with
equilibrium constraints are similar, especially for bi-level, Stackelberg games (Hollan-
der and Prashker, 2006). Game theory provides techniques and terminology to describe
the social dilemma of self-interest vs cooperation between distinct players. For trans-
portation systems game theory provides “a framework for modeling interactions between
groups of decision makers when individual actions jointly determine the outcome” (Fisk, 1984).
The definition of a “leader” is required to model the decisions of a transport authority
and the response of traffic participants as Stackelberg game. Mathematical programs
also comprise such assumptions but they often are intrinsic to the model and not dis-
cussed. A broad review of games used to model and analyze transport systems was
undertaken by Hollander and Prashker (2006). Classical game theory is static an explicit
representation of time is missing. In most cases traffic flows are modeled statically.

Under the assumption that interactions between travelers and traffic signals over space
and time have nicely behaved mathematical properties Hu and Mahmassani (1997)
use DYNASMART? for simulation. Traffic signal control and travelers’ reactions are
studied in a day-to-day and real-time context. Traffic-responsive control may improve
throughput of a traffic network. The peak load of the network stays equal. The travelers
use the improvements to reduce schedule delay (Hu and Mahmassani, 1997). Burgh-
out and Wahlstedt (2007) build a hybrid simulation by a combination of a microscopic
and a mesoscopic traffic simulation model. The replacement of a fixed-time control
by a traffic-actuated signal control at two junctions changes the travel patterns in the
city-wide network.

Game-theoretic formulations for the dynamic interactions between traffic control and
traffic assignment are given by Chen and Ben-Akiva (1998). Depending on the type of
game used to model the problem, the quality of the solution with respect to the objective
function differs. The solution of a monopoly game represents the optimal solution that
can be used as benchmark. A Stackelberg equilibrium is superior to the Cournot-Nash
equilibrium as user reactions are anticipated (Chen and Ben-Akiva, 1998)>.

Mutual effects between road users and two different road authorities responsible for
traffic signal control are investigate by van Zuylen and Taale (2004) in an analytic, static
setup, and by simulation. In a Stackelberg game, one of the road authorities takes the
role of the leader. The other authority and the road users react to the decisions of the

Isee http://mctrans.ce.ufl.edu/featured/dynasmart/, last access 17.05.2013

2 The Cournot-Nash equilibrium is defined as follows: “In a noncooperative game between a traffic
authority and highway users, a combination of strategies (g*, h*) is a Cournot(-Nash) equilibrium <
control plan g* is the traffic authority’s best response to flow 1*, and flow 1* is the users’ best response
to control plan ¢g*” (from Chen and Ben-Akiva, 1998).
The Stackelberg equilibrium improves over the Cournot equilibrium in that the traffic control authority
anticipates the users’ reactions: “.. ., a strategy combination (g*, #*) is a Stackelberg equilibrium < it
solves the following bilevel programming problem: ming Z[g, 1*(g)] such that flow h*(g) is the users’
best response”, where Z is the traffic authority’s objective function (after Chen and Ben-Akiva, 1998).
In the system optimum (= monopoly game), the traffic authority also controls the user flows; the
optimization problem becomes: min, j, Z[g, h].
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leader. Results for the analytical solution differ according to the leader of the Stack-
elberg game. Same holds for the presented dynamic simulation studies. Best results,
however, are reported when both authorities cooperate and anticipate the road users’
reaction on the traffic signal control. Noteworthy, the simulation model takes into ac-
count physical queue length (Taale and Van Zuylen, 2003) and is refined in further
works to capture spill-back effects between links of the transport network (Taale, 2008).
In a more general context, the importance of modeling physical queues for dynamic
assignment is emphasized by Daganzo (1998). The temporary limited effect of queue
spill-back in conjunction with a dynamic assignment may lead to situations where the
equilibrium is no longer unique.

In general, agent- and mechanism-design both can benefit from use of game the-
ory (Russel and Norvig, 2010, pp. 666). Most mentioned approaches use classical game
theory and the Nash equilibrium assumptions, i.e., the impact of a strategy is assumed
to be fully known by all players. The approaches modeling interactions between traffic
control and travelers that take time-scales into account use iterative solution techniques.
Traffic assignment is solved iteratively and at least partly via simulation. Hu and Mah-
massani (1997) report amongst other as result the number of “days” ® until convergence
as measure of effectiveness. To describe the dynamic interactions between players, also
evolutionary game theory can be used (e.g. Hofbauer and Sigmund, 1998). While clas-
sical game theory looks for equilibrium solutions, evolutionary game theory searches
strategies that are evolutionarily stable (Bazzan, 2009, p. 348). Thus, use of evolutionary
game theory helps when learning processes are included in the model. E.g., the agents
that learn to control signalized junctions proposed in Bazzan (2005) are useful if they
are able to learn quickly but useless if learning takes infinite time. Evolution seems
plausible on both sides of the game — Bazzan et al. (e.g. 2008) signalized junctions and
car drivers are modeled as learning agents.

lllustrative Example

The following example considers two aspects of the mutual interaction between traffic
signal control and travelers — the time scales of interaction and the physical represen-
tation of queues. The interaction of traffic signal control might be interpreted as Stack-
elberg game. In case of a fixed-time controlled network the transport authority is the
leader setting up a signal control strategy while travelers adopt. This leader-follower
relation is no longer clear if a fixed-time signal control is replaced by a traffic-responsive
control. But first, some simulation results on a small, toy network are presented.

3one iteration represents one day
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Base case

5.1.2. Scenarios and Simulations

Figure 5.1.: Network. The widths of the links indicate their capacities, but are not pro-

portional.
Links Length [m] | Lanes | vg [m/s] | cfion [velt/h] | cstorage [veh] | ttss [S]
1&2&6&7 1000.0 3 10.0 36000.0 1000 100.0
3&5 1000.0 1 10.0 7200.0 200 100.0
4 1000.0 1 10.0 1800.0 133 100.0

Table 5.1.: Network parameters

Network Let us start with the network of Fig. 5.1, described in more detail in Table 5.1.
The important feature is that there is a bottleneck on link 4 shortly before node 5, and
an alternative, but longer route to node 5 with higher capacity. The situation could be
caused by link 4 going through the center of a city and links 3 & 5 providing a by-pass.

Demand Let us further assume a demand of 5000 vehicles (veh), originating on link 1,
with a rate of 2 veh/sec (i.e., 7200 veh / h), with its destination on link 7. The demand is
constructed in a way that

o the bottleneck link 4 by itself does not have sufficient capacity

o the bottleneck link 4 together with the alternative route does have sufficient capac-
ity

e all upstream and downstream links, i.e., 1, 2, 6, and 7, always have more than
sufficient capacity

lterations Now let us assume a situation where that demand occurs repeatedly every
day. Let us also make the usual assumption that travelers follow her or his own inter-
est, i.e., that the system goes to a Nash equilibrium. The actual implementation is as
follows:
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Figure 5.2.: Number of users of the direct route (link 4) and of the bypass (links 3 & 5)

1. Initially, every traveler has a plan that corresponds to the fastest free speed route,
i.e., via link 4.

2. The traffic traffic flow simulation (Sec. 2.2 & 3.2.4) is executed. The travel time of
every individual plan is memorized by the corresponding traveler.

3. In every iteration, 10% of all travelers obtain an additional plan, which contains
the route that would have been approximately fastest in the previous iteration?.

All other travelers choose one of the existing plans(= route) according to the Ran-
dom Utility Model (Sec. 2). The travel time experienced in the network loading is
used as (negative) Utility V.

4. Goto 2.
The iterations are run until a stable outcome is clearly discernible, see, e.g., Fig. 5.2a.

For the synthetic scenario here, the travelers have no other alternative than taking the
other route. In reality, they may also consider different departure times, different modes
of transport, etc.

Results The result, as Fig. 5.2a shows, is that about 1100 travelers use the direct route
while the remaining approximately 3900 travelers use the bypass. This is accompanied
by congestion upstream of the bottleneck on link 4, see Fig. 5.3a, that builds up with
the early travelers, and dissolves with the final ones, see Fig. 5.3b. Clearly, the conges-
tion makes the direct route option appropriately slower, until the alternative becomes
equally attractive.

4 That route depends on the traveler’s departure time. MATSim contains a time dependent router that
aggregates link travel times into time bins of 15 mins. That temporal resolution is insufficient for the
situation here. For this study the size of the time bins is set to 1 second.
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(a) The queue is balanced (b) The queue resolves

Figure 5.3.: Base case, screenshots
The sum of all travel times is approx. 890 i, on average 641 sec per traveler.

Expansion of the direct route

One may consider the expansion of the direct route. The iterations were thus repeated
with everything the same except that the flow capacity of link 4 was expanded to
5400veh/h. Note that this is still not enough to serve all demand on the direct route
under stationary conditions.

As a result, all travelers use the direct route (Fig. 5.2b). However, the sum of all travel
times has increased to approx. 1161k, or 836 sec on average per traveler. As Daganzo
(1998) pointed out, this is another variant of the Braess paradoxon (Braess, 1968), where
the construction of additional infrastructure may in fact lead to a decrease in perfor-
mance. The reason here is that the congestion before the direct route on link 4 spills
over node 3. That is, travelers are already caught in the direct route congestion on
link 2.

The wait time in a queue, w, is given by the number of vehicles in the queue, ngueue,
divided by the service rate, o,

w = ”queue/ﬂout .

The critical point where congestion spills over from link 4 to link 2 is when the queue
length that is necessary to balance the travel times on the alternative, given by w = !,
is equal to the storage capacity of the link:

L _ pqalt
Cstomge - nqueue =t qout -

From this, one obtains the critical flow capacity of the link:
crit _

%ut Cstor/tta“L .

Inserting cstorage = 133.3 veh and t3%> = 200 sec one obtains
qf,iff ~ 0.66 veh/sec ~ 2400veh/h .

Any flow capacity above that number will lead to a balancing queue that is longer than
link 4 and thus spills back into link 2. When a traveler in that queue reaches node 3,
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Figure 5.4.: Number of users of the direct route (link 4) and of the bypass (links 3 & 5)

from there on link 4 is faster than the bypass. Therefore, under Nash conditions nobody
selects the bypass anymore.

One thing to remember is that, under Nash conditions, “balancing” queues need to get
longer when the capacity of the bottleneck is expanded. The queue only goes away
when the capacity of the bottleneck is expanded sufficiently to serve all demand.

Adding an adaptive signal

Now, let us put an adaptive traffic light at node 5 which gives priority to link 5 over
link 4°. This might be motivated by a transportation policy which attempts to make
people use the bypass around the city instead of the direct route through the city.

The simulation (Fig. 5.4a) converges to the solution that uses the direct route, in spite of
the adaptive signal that gives priority to the bypass. Curiously, however, it is possible
to make the iterations converge to a solution that uses the bypass when there is an initial
“shock” in the form of red light on link 4 for the initial 600 seconds of the simulation
(Fig. 5.4b). Under the current setup the initial red on link 4 could also be achieved by
additional vehicles that leave the bypass. The adaptive signal would then give right of
way to this vehicles.

The existence of two stable states is consistent with the predictions of Daganzo (1998).
The reason why the second state is also stable is that the initial shock makes the adap-
tive signal operate in a way that reduces capacity on link 4. As a result, the “balancing”
queue gets short enough so that an equilibrium decision can be made at node 3. This,

5The traffic light switches link 4 to red light when a vehicle arrives at the end of link 5. If there are no
vehicles at the end of link 5, link 4 gets green light.
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in turn, generates enough traffic flow along the bypass to keep the adaptive signal in a
low capacity state for link 4.

However, in contrast to what one might expect, the system does not reach sponta-
neously one or the other state depending on randomness during the transient phase.
the initial shock is necessary to push the system into the other state. The reason lies in
the interaction between the within-day dynamics of the system and the day-to-day dy-
namics of the evolutionary learning. For this, let us look at the vehicles in the sequence
in which they enter the system:

e When the first vehicle arrives at node 3, taking the direct route is always the best
option.

e The same holds for the 2nd, 3rd, 4th, ... vehicle. As a result, a queue forms
upstream of the bottleneck.

e The interesting point is when that queue reaches node 3. Since the bottleneck is
operating at capacity 5400 veh/h, we know from Sec. 5.1.2 that in this situation
link 4 remains the faster option.

In consequence, the vehicle that joins the queue when the queue has reached
node 3 will select link 4.

So will, for the same reason, all following vehicles: They may join the queue
upstream of node 3, but once they have made it to node 3, the direct route is
faster.

Overall, for all vehicles link 4 is the Nash solution.

The other state is not even stable when the system is started in that state. The problem
is that for early vehicles, it is always better to take the direct route. However, as long
as nobody takes the bypass, the capacity reduction for the direct route is not activated.
And, as long as the capacity reduction for the direct route is not activated, the queue
grows beyond node 3 while at node 3 the direct route remains faster.

Thus, the only way to stabilise the bypass solution is by an initial shock that keeps
the adaptive traffic signal activated long enough until the first “normal” travelers have
reached it via the bypass.

Replacing the adaptive by fixed-time signal control

Assume now the same situation as in Sec. 5.1.2, i.e., that the capacity of the direct route
is expanded, and a traffic signal is added at node 5. In contrast to the adaptive sig-
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nal from Sec. 5.1.2 now a fixed-time control is used. The fixed-time schedule gives a
capacity of 1800 veh/h to link 4, and 7200 veh /h to link 5.°

It should immediately be clear that this does not need to be simulated, since it repre-
sents the same situation as described in Sec. 5.1.2. Thus, the bypass solution will be
stable. Since the bypass solution also leads, in the average, to lower travel times, this
means that the fixed-time signal control is able to enforce a better solution in a situation where
the adaptive signal control is unable to do so.

5.1.3. Discussion

Clearly, the results hinge at the assumption that the flow capacity expansions of link 4
are not accompanied by storage capacity expansions. More practically speaking, capac-
ity expansions usually go along with more lanes, which automatically increases storage
capacity. This assumption is, however, no longer fulfilled when the bottleneck is rather
short, such as Fig. 1 implies. In such situations, it is quite plausible that flow capacity is
expanded while storage capacity remains constant. Expansion of flow capacity without
an increase of storage capacity are also plausible when a fixed-time signal control is re-
placed by a traffic-responsive control. Limmer and Helbing (2010), for example, argue
that responsive signals are able to use slack capacity that fixed-time signal control is not
able to use. While we agree with this argument, it nevertheless needs to be balanced
with the loss of influence over the drivers’ routing as outlined above. It may also be
possible to combine adaptive and fixed-time strategies to reap the combined benefits,
for example by keeping the adaptive control in desired capacity range.

The presented results illustrate the importance of the spatial dimension of queues, that
can also be found in (e.g. Daganzo, 1998; Burghout and Wahlstedt, 2007; Taale, 2008).
In a model with point queues the situation where the bypass is not used at all would
not occur at all (Daganzo, 1998). With point queues the link upstream to the bottleneck
link (link 2 in Fig. 5.1) is not affected by the spill-back. That implies that at some point
diverting to the bypass is less costly than waiting in front of the bottleneck.

Thus, traffic signal control approaches that do not take spill-back effects into account
may not be able to predict such situations correctly. Some of the approaches mentioned
in Sec. 5.1.1 are aware of the problem. TUC implements a “gating feature” (Diakaki
et al., 2002) that prevents down-stream links from oversaturation. The same objec-
tive has the solution proposed by Lammer and Treiber (2012) within the signal con-
trolled sub-network upstream traffic signals are responsible to prevent oversaturation
of downstream junctions. For the network in Fig. 5.1 an additional traffic signal at
node 3 would be required that prevents link 4 from oversaturation.

6 In the simulation, this can for example be achieved by expanding the direct route to 7200 veh/h and
giving it 25% of the green split, and expanding the bypass to 9600 vel:/h and giving it 75% of the green
split. In practice, it could also be achieved by just adjusting the layout of the intersection.
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Other approaches predict traffic states for a certain time horizon considering spill-back
and oversaturation (e.g. Taale, 2008; Gartner and Stamatiadis, 2007). This may resolve
the problem if time-scales for prediction and user reaction are modeled accordingly.

The adaptive signal control used for this study is indeed too simple to be compared
with the sophisticated approaches from literature. It is constructed as extreme traffic-
responsive opposite to fixed-time control and can be used in conjunction with game
theory to explain the observations. With fixed-time control, the demand follows the
signals which is a Stackelberg game, where the fixed-time control is the strategy of the
leader, e.g., a transport authority. In case of adaptive control, the time-scales of user
reactions should be considered. Then, the game theoretic interpretation is no longer
obvious (Taale, 2008, pp. 11). For the provided example, it is important to note that
the fixed-time control, i.e., the Stackelberg game, can enforce a policy that would not be
Nash-stable by itself. The adaptive control, however, cannot enforce the solution. Thus,
can we improve the adaptive control to anticipate user reactions perfectly?

Roughgarden (2006) shows that solutions for Braess network instances are NP-hard if
travelers route selfishly. To determine a network design that optimizes routing for a
Braess like network, one has to build the entire network. In the worst case, one has to
decide link by link if it is better to use the link or not.

Following Daganzo (1998), the network used in this section is a special instance of a
Braess instance. The overall question is no longer to use a link or not but rather how
much maximum flow a link should provide. The latter includes the cases where flow
is 0 or maximal. This is, the problem can be seen as a Braess instance with an even
bigger solution space. One may assume that the bigger solution space is not reducing
complexity of the problem. Thus, strategies for traffic signal optimization that take
travelers’ reactions into account have to solve a NP-hard problem.

More practically speaking, NP-hard means that solution algorithms for the exact prob-
lem cannot be found with bound computation time. The classical solution technique
is approximation. E.g. by using a rolling horizon strategy one can predict short term
reactions on transport demand on actuated signal control by a dynamic traffic assign-
ment model (Gartner and Stamatiadis, 2007). Due to the nature of rolling horizon there
is a limitation of the predicted time-scale. If this time horizon is long enough to predict
long-term user reactions cannot be guaranteed. Furthermore, in order to save compu-
tation time the forecasting model might be not accurate enough to predict all effects.

This can be resolved by simulations that represent traffic and user behavior more realis-
tically (Hu and Mahmassani, 1997). The complete approximation methodology for the
combined traffic and assignment and control problem can be run in conjunction with a
more elaborated simulation model (Burghout and Wahlstedt, 2007). No proof can given
that the chosen simulation and scenario reveals all possible effects of a adaptive signal
control. However, there is at least a possibility to detect them.
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Micro-simulation based assessment of solutions for the combined traffic assignment
and control problem also enables us to compare different methodologies facing the
problem. Most of the more modern traffic-actuated signal control strategies reviewed in
Sec. 5.1.1 are of at least partial algorithmic nature and cannot be evaluated by models
that need a mathematical description of the signal control under consideration. Mi-
crosimulation, however, can asses both types.

5.1.4. Conclusion

This study looks at the combined traffic control and assignment problem from several
perspectives. It investigates how the quality of the solution changes when one side
learns faster or slower than the other. Learning more slowly makes one the leader in a
Stackelberg game (e.g. Nagel et al., 2004). Faster learning on one side may also change
the type of game completely. Furthermore, the section illustrates the importance to
include spill-back in transport models.

Overall, we would argue that before a congested region switches from a fixed-time to
a traffic-responsive signal control, it should evaluate the consequences with a model
that includes demand reactions to changes in the signal control. Evaluation should
take place with a distinct model for demand reactions than the model that is eventually
used to predict effects of signal control.

To our knowledge, very few simulation models do that. The reason, presumably, is
that on the one hand one needs a dynamic model, since adaptive signal control unfolds
over time. On the other hand, however, the (simulation) model needs to be able to treat
regions large enough for re-routing decisions to make sense.

5.2. Cottbus Scenario

The network of the last section is clearly not realistic. To simulate a real-world scenario,
at least some fixed-time signal schedules and junction layouts are required. Data for
Zurich, Munich and Berlin was inspected. In part, fixed-time schedules are available.
The matching of traffic signal locations to junction layouts was not covered by all data
in a machine processable data format 7. Within the ADVEST project, fixed-time control
schedules and turn pocket layouts were recorded manually® for the work presented
in Kohler and Strehler (2010). In the following a scenario is set up around this data.

"The Berlin network has approx. 2000 signalized junctions. Each is controlled by up to 4 fixed-time
schedules for weekdays. On top of the fixed-time control some logic programs are set up for many
junctions. The layout of junctions is given as technical drawing that is not connected to the control
schedules. Converting this data manually is not an option.

8Acknowleclgements to Martin Strehler, BTU Cottbus
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The scenario is located in the federal state of Brandenburg, in Germany. It covers the
area of the administrative district “Spree-Neifle” that is enclosing the city of Cottbus,
plus the City of Cottbus itself.

5.2.1. Network & Population

The network is taken from openstreetmap data’. The network is created for an 100 %
sample. In the administrative district “Spree-Neifie” only the main roads are included
while for the city of Cottbus also side roads are considered. The network consists of
4’417 nodes and 10’600 links and is depicted in Fig. 5.5a. Fig. 5.5b shows the network
on top of the “Corine Land Cover” landuse (European Environment Agency, 2011)
provided by European Environmental Agency. In green forests and agricultural areas
are depicted.

In the city of Cottbus live around 100°000 inhabitants while approx. 128’000 people re-
side in the administrative district Spree-Neifse. The synthetic population used for the
simulation is based on data taken from the German employment agency (Wietholter
etal., 2010). The data contains the number of commuters for each 2-tuple (home-work)

Istate 09-2010, see www . openstreetmap. org, last access 03.10.2013. Technically, the open street map con-
version of MATSim is used OsmNetworkReader.
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(c) Home locations (d) Work locations

Figure 5.5.: Synthetic population for the Cottbus scenario, geospatial locations of activ-
ities

of municipalities in Germany. Virtual persons in MATSim need a geographic coordi-
nate for their activities. If this coordinate is drawn randomly, solely based on munic-
ipality boarders, home and work activity locations are uniformly distributed over all
the area, i.e., most of them in woods and fields. Thus, activity locations are drawn ran-
domly in combination with the landuse data. The coordinate has to be in the area of the
municipality. In case of a home activity, it must be located in urban fabric areas while in
case of a work location, also industrial or commercial areas are allowed. The resulting
home activity locations are shown in Fig. 5.5¢c, while Fig. 5.5d shows activity locations
for work.

The work activity must start between 7 and 9 am; initially every commuter starts at
a random time in this interval and ends work 8.5 hours later. Work must end before
6 pm, afterwards no further utility is gained by performing an activity of type work.
The typical durations of home and work activity are set to 15.5 hours and 8.5 hours,
respectively. The modal split for the area of interest can be taken from the base year
of ITP/BVU (2005) and is set to 55% car trips. This results in 33’479 commuters travel-
ling by car.
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(a) Location within city of Cottbus (b) Signalized area in detail

Figure 5.6.: Cottbus network, area with traffic signals

5.2.2. Traffic Signals

The fixed-time control is taken from Kohler and Strehler (2010). Due to the higher
resolution of the transport network, some of the originally recorded fixed-time control
schedules are invalid and removed, data for 22 junctions is available. Fig. 5.6 shows
their location on the transport network. All signal control plans have a cycle of 90
seconds and run all day (00:00 to 24:00). Green splits are taken from the system that
was run in 2009, and offsets are the result of the optimization presented in Kéhler and
Strehler (2010). The demand used for optimization differs from the commuter demand
used in this work. This reflects the typical situation of optimized fixed-time control:
Signals are optimized to a certain demand once, but while the demand changes over
time the fixed-time control is not re-adjusted (Bell and Bretherton, 1986).

5.2.3. Base Case

A base case for further Cottbus simulation runs is computed using the network, syn-
thetic population and traffic signal control. The simulation is run with the commuter
population until the outcome seems stable, in this case for 500 iterations. In each it-
eration, 10 % of the commuters can choose new routes while another 10 % can vary
their departure times. The only available mode is car. Then innovation is switched off,
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Figure 5.7.: Cottbus base case: After 1000 iterations a route and time distribution is
learned

i.e., another 500 iterations are run where no new plans are generated. Each commuter
chooses out of a set of 4 plans using the multinomial logit model, see Sec. 2 for details.
The network is created for a 100 % sample. The demand comprises commuter traffic,
but other traffic is not included, e.g., commercial traffic. The scale parameters a ¢, and
&storage Of the traffic flow model are both set to 0.7.

The resulting relaxed transport demand serves as input for the for further simulations.
In contrast to the initial synthetic population the relaxed transport demand features a
route and time distribution that is learned according to the constraints of the transport
network and the utility function. The results of this learning process are shown in
Fig. 5.7 that depicts the number of travelers departing, arriving or traveling over time
of day for first and last iteration.

Clearly, this scenario has many free parameters that are adjusted by rule of thumb only.
For other available scenarios, more data and better calibration is available, but neither
signal control data nor junction layouts. For a simulation of traffic signal control the
Cottbus scenario is the best available scenario. In comparison to toy networks it features
many artefacts of real-world networks.

5.3. lllustrative Application: Cottbus, Football Event

The Cottbus scenario is now used to illustrate the influence of traffic signal control.
When it comes to a big event, the fixed-time control of the base case scenario is com-
pared with a simple traffic-actuated control.
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Figure 5.8.: Schedules for traffic signal control (source: Titze (2008))

5.3.1. Traffic-Actuated Signal Control

In this chapter a signal control strategy from industry called SYLVIA! is used (Schlot-
hauer & Wauer Ingenieurgesellschaft fiir Stralenverkehr mbH & Co. KG, 2011, 2010).
Originally developed by Siemens in the nineties (Krimmling, 1995), currently Schlot-
hauer & Wauer!!, a German engineering company, is developing and supporting this
signal control strategy. SYLVIA is not a closed, unique algorithm for signal control.
Rather, it consists of several modules that can be used standalone or in conjunction.

In this work, one of the main features of SYLVIA is applied, the traffic-actuated stage
length control. This is based on pretimed fixed-time schedules. An example fixed-time
schedule with a cycle of 70 seconds, three signals for car traffic (K1 - K3), and two
signals for pedestrian traffic (F1, F2) is shown in Fig. 5.8a. For traffic-actuated stage
length control, first the fixed-time schedule is compressed to a base schedule (Fig. 5.8b).
Green of all signals is reduced to a minimal time, in this example to about 10 to 12
seconds. The cycle of the base plan is thus reduced to 38 seconds. Then, extension
points are specified. An extension point is a point in the base plan where, if desired,
the green time can be extended. A traffic engineer manually specifies extension points,
minimal and maximal extension times for each signal, and a condition for extension.
The condition for the green time extension of a signal is set with respect to the detectors
that are available at the junction. The base schedule is then processed similar to a fixed-
time schedule, i.e., a periodic timer controls when a signal is green, according to the
green times specified in the base schedule. If the timer reaches an extension point,
the condition for extension is checked. While the condition is true, the green time is
extended and the timer is stopped. The signal switches to red, if the condition is false
or a maximum extension time is reached. Then, the timer is reactivated and continues
the processing of the base schedule. To pause and continue the timer during extension
ensures, that the amount of all red time between conflicting signals is the same as for
the fixed-time schedule.

In practice, the base schedules and conditions for extension are set up manually by a

10“Gygtem Leipzig fiir die Verkehrabhéngige Individuelle Steuerung von Lichtsignal Anlagen”
Hgee http://www.schlothauer.de/en/index.html, last access 17.01.2011
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specialist junction by junction. In this work, for sake of example, the base schedules
and conditions are retrieved algorithmically from the fixed-time control schedules of
the Cottbus base case. Phase ordering, amber times, and all red times are taken over.
For all phases, the initial green time is set to 5 seconds. If after 4 seconds green time
vehicles are still approaching the signals of a phase, the green time is extended up to
a maximum, that is set to the corresponding phase length of the fixed-time schedule
multiplied by 1.5, or at maximum to the length of the fixed-time schedule. Within one
cycle, overall extension time is bounded by the difference between the cycle of the fixed-
time schedule and the cycle of the base schedule. The bounded overall extension time
implies that the later a phase is triggered by the base schedule, less overall extension
time may be available. This is clearly not realistic in certain situations, but preserves
the coordination of the fixed-time schedules.

5.3.2. Event: Football

The football stadium of Cottbus lies inside the ring road in the south-east of the city
area and accomodates up to 22528 fans'?. The local football club “FC Energie Cottbus”
currently plays in Germany’s second league so that it may happen that some kind of
derby takes place on a normal weekday, thus interfering with the regular commuter
traffic. In the area of the stadium around 2000 parking lots are available!®. Thus in
addition to the commuters, a synthetic population with up to 2000 persons travelling
to the stadium by car is created. Itis assumed that 25 % of these fans come from Cottbus,
while the other 75 % come from the “Spree-Neifle” area, and that all fans start their trips
between 17:00 and 18:00.

5.3.3. Run Sequences

The runs sequence of the base case is performed with three different signal control
strategies: In a first simulation sequence, all traffic signals are switched off. This can
be used as a lower bound for results concerning signal control since it assumes that
vehicles are able to traverse a crossing without any accident, i.e., they are able to drive
“through each other”. The next sequence uses the fixed-time setup. In the third, final,
sequence, all traffic signals are controlled by the traffic-actuated control.

5.3.4. Results

Simulation results for the commuter scenario are depicted in Fig. 5.9a. The number of
vehicles simultaneousely on the road is plotted over the time-of-day. The results are
quite similar for all signal control strategies.

2nttp: / /v, fcenergie.de/verein/stadion/home.php, last access 14.02.2011
Bhttp://www.ssb-cottbus.de/sportstaetten/sdf/, last access 14.02.2011

93


http://www.fcenergie.de/verein/stadion/home.php
http://www.ssb-cottbus.de/sportstaetten/sdf/

—— 01:10
no signals

T T T T T T T T T
no signals —+—

5000 T 01:08
fixed-time coNtro| m— £ 01:06 fixed-time control —>—
E 4000 - traffic-actuated contro| = | E 01:04 traffic-actuated control
o = 01:02
5 € 01:00
> 3000 B = :
5 T 00:58
I s 00:56
£ 2000 1 7 = 00:54
2 2 00:52
1000 - 7 o 00:50
©  00:48
0 " 1 L L 1 " 0046 1 1
06:00 08:00 10:00 12:00 14:00 16:00 18:00 0 500 1000 1500 2000
time of day [hh:mm] number of football fans

(a) No vs. fixed-time vs. traffic-actuated signal (b) Average travel time for unexpected event
control, commuter traffic, iteration 1000 traffic, iteration 1000

Figure 5.9.: Simulation results

A change of signal control has more effect if some unexpected traffic occurs on the net-
work. In the last iteration of the run sequences, in addition to the commuters 0 to 2000
vehicles drive to the football stadium of Cottbus during the evening peak. Fig. 5.9b
plots the number of football fans on the x-axis, and the average travel time of all trav-
elers on the y-axis. Without any additional vehicles, the traffic-actuated signal control
leads to a gain of approx. 1 min per traveler. The more additional traffic is approaching
the stadium, the more the traffic-actuated control saves travel time. In the case where
2000 additional vehicles are on the road, travel time savings reach ca. 15 min per trav-
eler.

5.3.5. Computation Time

The computation was run on an Intel Xeon Westmere Hexacore architecture using 1 core
for the microsimulation. Without simulation of lanes and traffic signals, one execution
of the mobility simulation takes on average 13 seconds computation time. If the lanes
are switched on, one execution of the mobility simulation takes 14 seconds. If addi-
tionally traffic signals are simulated it needs 16 seconds. Each iteration on average 17
seconds are required for scoring, replanning, and output. One complete run sequence
(1000 iterations) takes 9 h and 12 min. The large number of iterations is necessary for
a sufficient number of co-eolutionary learning iterations between the adaptive traffic
signals and the adaptive agents.

5.3.6. Discussion

The presented example shows clearly the advantage of traffic-actuated signal control
strategies. The traffic-actuated control used in this example, however, clearly benefits
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from the fairly mild conditions of the base case. Fig. 5.9a shows, that switching on
signal control has only little influence on overall traffic patterns. In the base case, traffic
is only slightly jammed and a situation as described in Sec. 5.1 is unlikely to occur. The
next section studies options for further calibration.

5.4. Optimization and Network Wide Analysis of Traffic Signal
Control

5.4.1. Density, Speed, Flow

Traffic density p, speed v and flow g on a single link compose the fundamental dia-
gram. It is assumed that the general relation between the three variables is g = p x v.
Typically, three regimes exist on a single link — an under-saturated state, a saturated
state and an oversaturated state. For the queue model used in this work, in the under-
saturated state the number of vehicles traveling on the link is smaller than the maxi-
mum possible capacity of the link, while in the saturated stated the number of vehi-
cles is fluctuating around this capacity. A single link cannot show the oversaturated
regime. The oversaturated state arises, if vehicles cannot leave a link because of con-
gestion on downstream links. The queue model produces travel times that correspond
to these regimes (Simon et al., 1999). The oversaturated state is unrealistically nar-
row but captured (Agarwal et al., 2013). This is illustrated by the flow-density plot in
Fig. 5.10a. Modifications to the queue dynamics can produce a more realistic oversat-
urated state (Charypar, 2008), Fig. 5.10b. MATSim currently comes with two mobility
simulations that differ in the queue dynamics. The default mobility simulation applies
the queue model proposed in Gawron (1998b); Simon et al. (1999); Cetin et al. (2003);
Cetin (2005) as described in Sec. 3.2.2. The other is a reimplementation of the model
by Charypar (2008) in Java (Waraich et al., 2009a).

Gartner and Wagner (2004) use the fundamental relation to analyse the influence of
traffic signal coordination on the traffic flow of signalized arterials. Results are based
on simulation studies that use the cellular automaton model by Nagel and Schrecken-
berg (1992) in a system with closed boundaries, the density is the variable that sets up
the fundamental diagram. Using this setup, the delay that results from (lack of) signal
coordination can be studied. It turns out, that coordination mostly affects the through-
put of the arterial in the under- and oversaturated state. In the saturated state influence
is less or not existing.

With the recent work of Daganzo (2007); Daganzo and Geroliminis (2008); Geroliminis
and Daganzo (2008) an idea from the late 1960ties experienced a renaissance in trans-
port research — the Macroscopic Fundamental Diagram (MFD). Similar to the fundamental
diagram of single links, the MFD comprises the relation between density, speed and
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Figure 5.10.: Flow-density plots for different queue models for traffic flow

flow in a transport network. Empirical existence of the MFD can be shown based on
detector and GPS data (Geroliminis and Daganzo, 2008).

Both, the fundamental diagram for single links as well as the MFD do not have to
be well-defined for arbitrary networks. The selection of the subnetwork is important
to retrieve a well-defined MFD from MATSim output (Zheng et al., 2012). Note, that
the results of the paper apply the traffic flow model from Charypar (2008); Waraich
et al. (2009a)'*. Furthermore, in urban networks the location of measurements on road
segments is important (Wagner et al., 2009). Summarizing, currently a lot of work is
done to gather more knowledge about the fundamental relations of density, speed, and
flow for transport networks. In this chapter, we will not join the overall discussion.
The three values are used, to study the influence of different signal control strategies
on several subnetworks.

The spatial extend of the scenario is much bigger than the area covered by traffic sig-
nals. From the simulation output, we retrieve the time at that a vehicle enters or leaves
a link. In an agent-based simulation, each individual vehicle can be tracked over its
complete journey. Some constraints of detectors can be neglected. To capture effects of
signalization for different spatial extends or subnetworks, all metering is based on links.
This allows us to “zoom” to an area of interest. To stay consistent with other results for
MATSim, derivation of density and flow is taken similar to Zheng et al. (2012):

e Space mean density in the subnetwork for time interval T = [19, 71| (referred as

4Information not obvious by reading the paper, but confirmed by personal communication with one of
the authors.
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“density” in the remainder of this chapter)

N. ) kil
KT:TT} WlthL:;li'ni,NT:k;OEk—qk,

whereby for each link i of the subnetwork, /; denotes the length and #; the number
of lanes, N; denotes the number of vehicles in the subnetwork during 7, and
ex and gi the number of vehicles that enter or leave the subnetwork at time &,
respectively.

e Space mean flow in the subnetwork for time interval T = [1, 71] (referred as
“flow” in the remainder of this chapter)

 Yi(qie i my)
Qr = Yi(li-n) 7

whereby [;, and n; denote the same as before, and g; ; is the number of vehicles
that leave a link 7 of the subnetwork within 7.

In addition, travel time, speed, vehicle kilometers, and delay are metered. Except the
speed, they are not required for the results in this section, but for the subsequent sec-
tions. Definitions are introduced here as they refer to the same metering.

For each vehicle j that enters or leaves a link i of length /; in the (sub-)network under
consideration, the following values are metered:

e Overall travel time (referred as “travel time”)
t=Y_Y ttj,
i
whereby tt;; is the travel time of vehicle j required to traverse link i.

e Space mean speed (referred as “speed” or v)

s kil Mkl

= = - = 7
t Zithtl] ZZZ] ]

Z)i]'

the spatially weighted harmonic mean of all speeds metered per link i and vehi-
cle j. If speed is given for a time interval, the time at that the vehicle has left the
link specifies the interval.

e Vehicle kilometers (referred as “veh km”)
veh km = Elej;
i

the total distance traveled in the subnetwork.
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e Overall delay (referred as “delay”)
delay =Y Y ttij — thrg;
ij

the sum of all delay, whereby tt;; is the travel time required to traverse link 7 in
freeflow conditions.

First, we analyse the base case. The time interval for the measurements is set to
T = 5min. Fig. 5.11a shows the flow-density relation for the full network. Note,
that the scales of axis are normalized for each single study presented in the following
to ease the comparison of the graphics. Density and flow shown in Fig. 5.11a are at low
values. The full network for the urban and rural area might be too diverse. Thus, we
focus on a subnetwork in the signalized area. Fig. 5.14a depicts the subnetwork in de-
tail, that is referred as optimization graph in in the following. To analyse effects on traffic
signal control, this area might be more informative. The flow density plot is depicted in
Fig. 5.11b. The scatter can be explained by Fig. 5.11c depicting the number of travelers
over time of day in the optimization graph subnetwork, each hour of day is drawn in
a different color. The same coloring is used in the flow-density plot in Fig. 5.11d that
shows only values metered during the morning peak. One can clearly observe that
flow measurements are less when the network fills with vehicles, while at same density
levels, measurements are higher when the network gets empty again. This might be
an issue of the metering as vehicles are considered to be within the network as soon
they enter the first link of the network. In contrast, flow is metered each time a vehicle
leaves a link. Furthermore, the figure can explain the high peak at the beginning of the
morning peak. This seems to be an artefact of the queue model used for simulation.
While the network is filled with vehicles, queues get longer but are spatially not long
enough to influence other links. Then, some links are jammed and the spill-back starts
to affect other links upstream. The system then falls back to the state colored in green
and blue in Fig. 5.11d.

In terms of the model parameters a flow and Astorage (Sec. 3.2.2), the base case is uncal-
ibrated. So far, the two parameters were set by rule of thumb similar to many other
studies that do not work with a full (100 %) demand. The flow-density plots might re-
veal further insights. The parameter a o, is varied in {0.7,0.5,0.3}. The simulation is
run with different choice dimensions for travelers. For the last simulation run astorage is
adjusted according to afjo,. All results refer to the optimization graph subnetwork.

First, we look at the simulation in that travelers have no choice dimension. Therefore,
the last iteration of the base case is rerun. Fig. 5.12a shows the flow-density diagram,
Fig. 5.12b the speed-density plot. With higher values for af,,, flow and speed are
increased at lower density levels.

Then, route choice is added. The last iteration of the base case is continued for another
1000 iterations with the same setup as the base case. Route choice, however, is the only
available choice dimension. Fig. 5.12c and Fig. 5.12d show the resulting flow-density
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Figure 5.11.: Flow-density relations and travel patterns

and speed-density plots, respectively. Densities are lower than in the no reaction simu-
lation runs. Most travelers can avoid congested areas by the choice of new routes.

Results of simulations for route and time choice are shown in Fig. 5.12e and Fig. 5.12f.
Densities decrease for all three values of afjoy.

The joint variation of afjy, and asporage is then depicted by Fig. 5.12g and Fig. 5.12h.
Both plots have a similar shape as the previous results.

The results illustrate, how the queue model reproduces the general relation of g =
p x v. For the results with afj,, = 0.3 at several density levels small decreasing tails
of flow can be observed. The optimization graph subnetwork might be too diverse to
show a well-defined MFD. The more choice dimensions are available, the more density
stabilizes at a certain level. Given that traffic congestion is quite noticeable in Cottbus
at certain times of the day, the model could be calibrated with afjo, = &storage = 0.3.
As discussions with local experts revealed, the subnetwork under consideration is only
slightly jammed. Thus, the parameter settings « flow = Qstorage = 0.7 deliver plausible
results and are not changed for the studies in the next section.

99

Findings



flow[veh]

flow[veh]

flow[veh]

flow[veh]

100

density[veh/km]

flow 0.7 +
flow0.5 X
flow 0.3 ¥

(a) No reaction

5 10 15 20 25

30

35

density[veh/km]

flow 0.7 +
flow0.5 X
flow 0.3 %

(c) Routes

5 10 15 20 25

30

35

5 10 15 20

density[veh/km]

flow 0.7 +
flow0.5 X
flow 0.3

(e) Times & Routes

25

30

35

5 10 15 20

density[veh/km]

storage & flow 0.7
storage & flow 0.5
storage & flow 0.3

(g) Times & Routes

25

+
X
*

30

35

speed[km/h]

speed[km/h]

speed[km/h]

speed[km/h]

25 30

density[veh/km]
flow 0.7 +
flow0.5 X
flow 0.3 ¥

(b) No reaction

80 T T T T T
70% B
60 ik 4
50 B
40 -
30 k. .
20 R > .
10 R T .
o EHK KKK m | | |
0 5 10 15 20 25 30 35
density[veh/km]
flow 0.7 +
flow0.5 X
flow 0.3 ¥
(d) Routes
80 T T T T T T
70 -
60 B
50 B
40 B
30 B
20 -
10 -
0 1 1 1 1 1 1
0 5 10 15 20 25 30 35
density[veh/km]
flow0.7 +
flow 0.5 X
flow 0.3  *
(f) Times & Routes
T T T T T
1 1 1 1 1 ]
0 5 10 15 20 25 30 35

density[veh/km]

storage & flow 0.7 +
storage & flow 0.5 X
storage & flow 0.3 %

(h) Times & Routes

Figure 5.12.: Variation of system wide flow & storage capacity



5.4.2. Optimization Model for Fixed-time Control

The optimization model, developed and run by Kohler and Strehler (2010, 2011); Strehler Model

(2012) (BTU Cottbus), delivers a solution where signals are optimized jointly with the
traffic assignment. At time of writing, the model is capable to optimize coordination of
fixed-time signals and assignment. The inclusion of green splits in the optimization
is planned for future work. For optimization, strict mathematical mixed integer lin-
ear programming (MIP) is applied. The model is based on a cyclically time-expanded
graph G = (V,E). Edges need some costs, that are the transit times at freespeed
t : E — Np and capacities u : E — Ny. Origin-Destination (O-D) pairs with a certain
amount of flow serve as input for traffic demand. These commodities start and end
at vertices of the graph. Then, a static assignment is performed on the time expanded
graph. No flow can be assigned to edges that connect vertices on that traffic is stopped
by a red traffic signal. The objective function minimizes the sum of all travel times on
edges times the flow assigned to the edge.

Calculation of exact signal coordination is a complex problem. The problem solved
by the optimization model is considered to be NP-hard, a proof is given by Kohler and
Strehler (2010); Strehler (2012). In practical terms, NP-hard means that the time required
for the computation of the solution increases exponentially with the size of the input!.
Kohler and Strehler (2010); Strehler (2012) apply strict mathematical programming to
cope with complexity. At time of writing, the model cannot be applied to large-scale
networks and a huge number of commodities.

So far, the optimization model is evaluated with several scenarios (Kohler and Strehler,
2010, 2011; Strehler, 2012) that are all relatively small. Amongst others, also the traffic
signals in the inner city area of Cottbus are optimized. The network used in these stud-
ies is shown in Fig. 5.13. The transport demand is created from local expert knowledge.
Commodities between 10 different origins and destinations are modeled. The output
of the joint optimization is then analysed with two simulation tools (ptv VISSIM and
MATSim) and compared against “random” coordinations. The routes within the sim-
ulations are fixed to those computed by the optimization. Koéhler and Strehler (2011)
report that travel times vary only slightly between the two simulation models. Overall
travel time is reduced by 24 %.

In a potential real-world application, however, travelers can not be forced to the routes
provided by the optimization. But, by an improved coordination, there might be an
incentive to travel along these routes. Further reactions could evolve, including de-
parture time choice, mode choice, destination choice, etc. A first attempt to study the
reactions on an improved coordination is presented in the following. The Cottbus base
case of Sec. 5.2 serves as scenario. This requires a process to convert the scenario to the

15This is a rather coarse explanation of NP-hard problems, in theory there might be an algorithm solving
the problem in polynomial time, that was not found, yet.
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Overall Process

Figure 5.13.: Cottbus network, used for optimization of traffic signal coordination
in Kohler and Strehler (2010, 2011); Strehler (2012) (source: own figure,
network data provided by M. Strehler)

optimization model. Further, the size of the real-world instance has to be reduced until
the problem is solvable by the optimization.

5.4.3. Conversion of Models

The conversion of fixed-time traffic signal control from the simulation to the optimiza-
tion model is straightforward and is successfully used for the studies in Kohler and
Strehler (2010, 2011); Strehler (2012). In contrast, converting the network and the de-
mand of the base case from Sec. 5.2 to the optimization model is more complex. The
semantics of input is different and the problem size has to be reduced. The following
steps are described in the subsequent paragraphs:

e Reduce the network size so that it is computationally feasible for the optimization
model.

e Convert the demand from X,y coordinates (MATSim convention) to aggregated
commodities starting at nodes of the reduced network (optimization model con-
vention).

o Adjust the parameters of the network and demand conversion so that the opti-
mization model generates useful results within acceptable running times.

e Combine the single steps to a meaningful conversion process.
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(a) Subnetwork (black) for the signalized area (b) Subnetwork as graph, not required vertices
are removed

Figure 5.14.: Reduction of network size

Reduction of Network Size

The bounding box around the signalized area is used to reduce the size of the network.
All links of the full network are retrieved that start or end in this bounding box. This
part or the network is still too big to be used as input for the optimization model. Its
size is further reduced heuristically. Only links are selected that cover the bounding
box and that have one of the following properties:

e Asignalis located at one of the nodes that define the start or end point of the link.
e The speed limit of the link is greater than 10m/s.

o The link is part of the shortest path between signalized nodes. For the shortest
path calculations the length of each link defines the cost function.

The resulting subnetwork is shown by the black lines in Fig. 5.14a, the black dashed
lines depict the bounding box.

This subnetwork still contains nodes that are not essential for a graph representation in
terms of Sec. 3.1. Nodes with only one incoming and outgoing link in each direction
that possess exactly same properties (vertices of degree 2 in an undirected graph) are
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Persons to
Commodities

(a) O-D pairs with minimum flow of 50 vehi- (b) O-D pairs with minimum flow of 10 vehi-
cles cles

Figure 5.15.: Synthetic population of the Cottbus scenario converted to commodities

removed. The resulting graph is shown in blue in Fig. 5.14b. The gray network in
the background is identical to the network shown in black in Fig. 5.14a. In a last step,
crossings are unfold in the sense of Kohler and Strehler (2010, 2011); Strehler (2012).
The resulting graph serves as input for the optimization model.

Conversion of Demand

With the results of the base case presented in Sec. 5.2 a dynamic traffic assignment for
the virtual population is available. This assignment is converted to static commodities
under the assumption that 1 vehicle is equivalent to 1 unit of flow. The morning and
the evening peak are converted separately, but using the same procedure. If a route
of a virtual person traverses links of the subnetwork shown in black in Fig. 5.14a an
O-D pair is created. The first link on the route that is contained by the subnetwork is
the origin. The destination is the last link on the route within the subnetwork. If the
O-D pair for the link was already created for a different route, the flow for the existing
O-D pair is increased by one. If the subnetwork is traversed several times by a route,
more than one O-D pair is affected. The resulting O-D pairs are then mapped to the
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reduced graph representation shown in Fig. 5.14b and serve as commodities for the
optimization.

Parameter Adjustments

Flow is one for many commodities. Others have a flow of up to approx. 300 vehicles.
After a first experiment, it turned out, that the optimization is not capable to calculate
a good solution for all commodities. To limit the number of commodities, a threshold
is introduced. If the flow of a commodity is less than the threshold, the commodity is
refused. Fig. 5.15 shows the effect of this threshold: In Fig. 5.15a only commodities are
depicted that have a minimum flow of 50. Fig. 5.15b shows O-D pairs with minimum
flow of 10. The threshold of 50 removes around 55 % of overall flow in the subnetwork,
the threshold of 10 approx. 28 %.

The graph used for optimization needs transit times and capacities as attributes for each
edge. As transit time the travel time at freespeed is taken from the simulation network.
The commodities are gathered for a certain time interval ATpp from the simulation,
e.g., the duration of the morning peak. The simulation network specifies the maximum
flow cf1o,y per At. These intervals can be used to resolve time dependency of capacity. To
derive capacities of the static graph, also the effect of the refused commodities should
be considered. If the threshold refuses 7y of the overall flow in the subnetwork, the
capacity of each edge in the optimization model is set to

ATop

(1-7) 'Cflow‘T

Note, that the subsequent results are computed with v = 0.0 instead of approx. v =
0.55 (minimum flow 50) or ¥ = 0.28 (minimum flow 10).

The traffic assignment that results from the optimization model for all commodities
with flow greater 10.0 is shown in Fig. 5.16.

Conversion Process

The traffic assignment of the base case is converted for the morning (05:30 to 09:30) and
the evening (13:30 to 18:30) peak. The outputs of the conversion are solved by the op-
timization separately. Then, only the coordination of traffic signals is converted back
to the simulation model. In contrast to the base case, coordination for the morning and
evening peak differs. The fixed-time control of the simulation exchanges the coordina-
tions at noon.
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[ 0.01-260
[ 260-520
[ 520-780
I 780-1040
B 1040- 1300

Figure 5.16.: Traffic assignment of the optimization model. Edges are colored by to-
tal flow assigned. (Source: Own figure, based on results provided by
M. Strehler)
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@ Optimization
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Figure 5.17.: Run sequence for simulation of different traffic signal control strategies

5.4.4. Simulation Setup

All simulation runs presented in the following use the outcome of the base case for the
Cottbus scenario presented in Sec. 5.2. Thus, the traffic system is brought into equilib-
rium according to the choice dimensions “routes” and “times” with the baseline fixed-
time control.

Four different setups of traffic signal control are simulated and referred as:
e Base case: the fixed-time control of the base case.

e Optimization, commodities > 50: The optimization of traffic signal coordination
for the commodity > 50 threshold. The solver was stopped with a duality gap of
approx. 20 %.

e Optimization, commodities > 10: The optimization of traffic signal coordination
for the commodity > 10 threshold. The solver was stopped with a duality gap of
approx. 27 %.

o Traffic-actuated control: The traffic-actuated signal control of the illustrative ap-
plication in Sec. 5.3.

Both optimizations were runl® for at least 24 i, for the commodity > 50 threshold, ap-
prox. 6 million MIP-Iterations were calculated. Due to the larger problem size, the so-
lution for the commodity > 10 threshold was run for approx. 2 million MIP-Iterations.
The so-called duality gap serves as indicator for the quality of the calculated solution.
There is, however, no valid interpretation for a reduction of the duality gap by 7 %. One
question is if the improved gap results in significant improvements of the solution.

The system reaction is studied for two choice dimensions. In the first setup, travelers

16 Optimizations are run by Martin Strehler at BTU Cottbus, who kindly provided this details.
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Interpretation

User Reactions

cannot change their routes or departure times. Then, travelers may change their routes
while their departure times stay fixed.

All simulation runs start with the outcome of the base case in iteration 1000. If travelers
have no choice one iteration is sufficient to determine the outcome of simulation'”. If
route choice is enabled, the simulation setup of the base case is repeated without time
choice. Up to iteration 1500, in each iteration 10 % of the travelers may change their
routes. From iteration 1500 up to iteration 2000 only the logit model is active to switch
between existing plans.

The setup of simulation runs is sketched in Fig. 5.17 and can be interpreted as follows:
Traffic signal control is subject to change in a transport system at its current state. The
traffic signal control was optimized by Kohler and Strehler (2010), but the demand has
changed. The continued base case serves as reference if nothing is undertaken. The
two optimizations and the traffic-actuated signal control are potential options for im-
provements. The effects of the different signal control strategies are compared to the
continued base case.

5.4.5. Spatial Dimensions

The results of the simulation runs are analyzed for three (sub-)networks!8. In the fol-
lowing, this three networks are referred as:

e Full network: The full network shown in Fig. 5.5a. Overall effects on the transport
system can be observed.

e Optimization graph: The subnetwork that is used to construct the graph for the
optimization model, i.e., the black colored network in Fig. 5.14a.

o Cottbus city area: The complement network of the optimization graph network
with a limited extent, i.e., the black colored links in the dashed bounding box in
Fig. 5.18.

5.4.6. Results

First, the outcome of the optimization, commodities > 10 simulation run with route
choice, is compared with the base case. An impression of user reactions on the change of
traffic signal control is shown in Fig. 5.19a. Each dot denotes the location of an activity
performed by a virtual person. Red dots mark activity locations of persons traveling
through the signalized area if signals are not changed, but avoid the area in case signal

7This assumption holds as long as traffic signals are not learning over iterations

18The spatial resolution of the simulation output is based on networks. Input can be specified by geospa-
tial coordinates. Some tests revealed that the complexity of code required for analysis of simulation
results is increased if a truly geospatial resolution is used for analysis.
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Figure 5.18.: Subnetwork constructed by the complement of the network sent to the
optimization model and cut at some outer rim (black lines). The bounding
box around the signalized area is depicted in light green

control is changed. Green dots belong to travelers” activities that are attracted to travel
through the signalized area if signal control is changed. No clear pattern is visible. This
is contrasted by Fig. 5.19b that in the same way compares the outcome of the traffic-
actuated control with the base case. One can clearly observe, that the traffic-actuated
control attracts travelers to travel through the signalized area.

For the same simulations, Fig. 5.20 shows the difference between the traffic assignments
of the morning peak with the base case. The more flow is assigned after a change of sig-
nal control, the more red each single link is colored. For some paths in the network the
optimized coordination (Fig. 5.20a) encourages a certain direction by establishing green
waves while the other direction seems to repel traffic due to a lack of coordination.
The assignment for the traffic-actuated control (Fig. 5.20b) reveals stronger differences.
Some links in the network are preferred to others, but there is no clear pattern.
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Full Network

(a) Optimization, commodities > 10 (b) Traffic-actuated control

Figure 5.19.: Activity locations of travelers attracted (green) or repelled (red) by a
change of traffic signal control

Spatial Dimensions

The network wide effects of signal control can be examined by the measurements of
travel time, speed, vehicle kilometers, and delay as defined in Sec. 5.4.1. The time
horizon for the metering is set to the full day. Besides absolute measurements, the
percentaged variation of these values is calculated by

Msc — My
7
Mp
whereby my, refers to a measurement of the base case and m. to the corresponding
value for a change in signal control.

First, to gather a picture of network wide reactions, the full network is inspected. If
no choice dimension is enabled (Tab. 5.21a), travel time and speed decrease while delay
increases for all changes of signal control. If the system is changed to the traffic-actuated
control this results in a shock. For the optimized coordinations, the overall effect is,
however, marginal.
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Figure 5.20.: Difference of traffic assignments for the morning peak. The base case is
compared to changes of traffic signal control

A different situation is observed, if route choice is enabled (Tab. 5.21b). Both optimiza-
tions result in higher travel times and vehicle kilometers, speed and delay are less than
in the base case, the overall change is still marginal. In contrast to the no choice sim-
ulations, the traffic-actuated control has a positive impact on all values, i.e., less travel
time, vehicle kilometers, and delay at higher speed.

These results are reflected by the flow/speed-density plots for the optimization graph
subnetwork. For all plots, measurements are taken with a time interval T = 5min.
Fig. 5.22 shows the plots for the setup where travelers have no choice. For all changes
of signal control, speeds are lower at higher levels of density. The plots for the traffic-
actuated control reflect the collapse of the transport system.

If route choice is switched on, both optimizations result in less delay within the op-
timization graph while the delay in the city area increases (Fig. 5.21c and Fig. 5.21d).
Waiting times are shifted to the outer rim of the optimization graph network. The sig-
nalized area gets less attractive for through traffic. Vehicles kilometers and travel time
within the area are reduced. This is consistent with the illustration in Fig. 5.19a. Trav-
elers avoid the optimization graph network.

The traffic-actuated control reduces delay within the optimization graph network while
the delay in the complementary city area network increases. Vehicle kilometers within
the optimization graph network increase and are reduced in the city area network.
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Speeds are higher in both areas, travel time is reduced. This is reflected by the according
flow/speed-density plots (T = 5min) in Fig. 5.23. Due to the improved signalization,
more travelers make their journey through the optimization graph network.
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simulation run tt At [%] v Av[%] | vehkm A veh delay A delay
[hh:mm] [km/h] [km] km[%] | [hh:mm] [%]

base case 15543:54  100.00 57.33 0.00 | 891166 100.00 | 1604:24 100.00

optimization, 15626:55  100.53 57.03 -0.30 | 891166 100.00 | 1687:25 105.17

commodities >

10

optimization, 15585:06  100.27 57.18 -0.15 | 891166 100.00 | 1645:35 102.57

commodities >

50

traffic-actuated | 29906:41 |192:40) 2980 2753 | 891166  100.00 | 15967:11  995.21

control

(a) Full network, no choice

simulation run tt At [%] v Av[%] | vehkm A veh delay A delay
[hh:mm)] [km /h] [km]  km [%] | [hh:mm)] [%]

base case 15480:49  100.00 57.52 0.00 | 890521 100.00 | 1571:36 100.00

optimization, 15521:59  100.27 57.44 -0.08 | 891572 100.12 | 1571:19 99.98

commodities >

10

optimization, 15516:18  100.23 57.44 -0.09 891204 100.08 | 1563:48 99.50

commodities >

50

traffic-actuated | 15159:27 97.92 58.40 0.87 | 885275 99.41 | 1416:25 90.13

control

(b) Full network, route choice

simulation run tt At [%] v Av[%] | vehkm A veh delay A delay
[hh:mm)] [km/h] [km] km [%] | [hh:mm)] [%]

base case 1972:49 100.00 30.78 0.00 60719 100.00 933:26 100.00

optimization, 1919:40 97.31 31.01 0.23 59528 98.04 894:51 95.87

commodities >

10

optimization, 1938:34 98.26 30.69 -0.09 59491 97.98 918:35 98.41

commodities >

50

traffic-actuated | 1936:48 98.17 33.77 2.99 65397 107.70 821:01 87.96

control

(c) Optimization graph, route choice

simulation run tt o Att[%] v Av[%] | vehkm A veh delay A delay
[hh:mm] [km/h] [km] km [%] | [hh:mm] [%]

base case 2444:16 100.00 46.30 0.00 113178 100.00 158:52 100.00

optimization, 2500:50 102.31 45.61 -0.69 114061 100.78 181:19 114.13

commodities >

10

optimization, 2497:28 102.18 45.76 -0.54 114282 100.98 173:48 109.41

commodities >

50

traffic-actuated | 2370:55 97.00 47.61 1.31 112884 99.74 164:41 103.66

control

(d) City area, route choice

Figure 5.21.: Results for different traffic signal control strategies and (sub-)networks.
Each table compares the overall travel time ¢, the space mean speed v,
the vehicle kilometers traveled within the (sub-)network, and the overaB
delay to the continued base case
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Figure 5.22.: Flow /Speed-density plots for the optimization graph subnetwork if travel-
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Figure 5.23.: Flow /Speed-density plots for the optimization graph subnetwork if trav-
elers choose new routes. Each plot compares the continued base case with a

change of traffic signal control
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5.4.7. Discussion

First, one should point out that the comparison between the traffic-actuated control
and the optimized coordination of fixed-time control is not fair. The traffic-actuated
control can modify green splits. The optimization is not able to do so, yet, and changes
coordination only. The comparison illustrates effects when certain parameters of sig-
nalization are changed. Results are not advanced enough to judge the different signal
control strategies.

The base case is set up on a fixed-time control that was already optimized, but with
a different demand. This provides a strong contrast to many other studies, that com-
pare results to random green splits or coordination. The overall effects of the joint
re-optimization of coordination and demand are relatively small. As expected, with-
out route choice the system comes out slightly worse. Travelers cannot benefit from
the changed coordination as they cannot change routes, the optimization, however,
assumes that routes are adjusted to the improved coordination. If route choice is avail-
able, vehicle kilometers traveled within the optimization graph decrease while they
increase in the surrounding area and the full network. Thus, the optimization pushes
away traffic from the signalized area. The detailed representation of the demand that
serves as input for optimization is not improving the overall system. The results should
be complemented by a study that compares the optimized coordination to a more ran-
dom coordination that is subject to current work.

The effects observed by a change to traffic-actuated signal control highly depends on
the enabled choice dimensions. Without route choice, the traffic system collapses. This
is an artefact of the algorithmic approximation of the adjustments that are, in practice,
carefully set by traffic engineers. Extension of green time is not balanced between dif-
ferent approaches of a junction. If too much green time is allocated for one approach,
there is only little green time left for the others. In principle, this artefact could be
avoided by a manual adjustment of minimum and maximum green times. More ad-
vanced approaches for traffic signal control (e.g. Limmer, 2007) do not need this man-
ual calibration and might be considered for further studies. Then, an explicit definition
of all red times is required. The current approach ensures by construction that all-red
times are not used for green time extension. With route choice, travelers’ route reaction
compensates the drawbacks of the implemented traffic-actuated control algorithm. The
overall system performance is improved in terms of travel time, speed, and delay. As
vehicle kilometers increase for the optimization graph subnetwork and decrease for the
other subnetworks under consideration, more travelers are attracted to routes through
the optimization graph. There, they travel at higher speeds, with less delay.

The traffic assignment produced by the optimization model (Fig. 5.16) assigns no flow
to certain edges, in particular to the inbound edges at the boundaries. The origin of
a commodity is a vertex of the graph that is used for optimization. The outcome of
the demand conversion uses edges of the graph to define the O-D pairs. To gather
commodities the downstream vertex of the O-D pair is selected as origin. This can be
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changed to the upstream vertex without effort. A detailed analysis revealed that this
has no effects on optimization. When the downstream vertex is unfold to the junction
layout of the optimization model the commodity is inserted upstream of the junction.
The traffic signals at the boundaries are thus target to optimization.

To improve conversion, the oy parameter should be adjusted to reflect the refused de-
mand. This is not straightforward, as the overall flow of all commodities has to be
smaller than the “minimal cut”!? of the graph used for optimization. Otherwise, the
problem can not be solved by the optimization. This study checks overall feasibility,
the parameter <y is not adjusted.

The presented conversion process applies some heuristics to shrink the network to a
size feasible for optimization. M. Strehler and E. Kohler (BTU Cottbus) report some
progress in performance improvements of the solver that is not available, yet. As soon
these improvements are available, the heuristics are no longer required and can be re-
moved from the conversion process. Further, the same base case simulation run serves
as input for optimization of morning and evening peak. Probably, similar to Rieser
et al. (2008); Grether et al. (2008), the optimization of the morning peak has effects on
the traffic patterns in the evening. A intermediate simulation study, that solely captures
effects of an optimization for the morning peak, might be considered. Based on these
results, the evening peak could be optimized with the adjusted demand.

The scenario for Cottbus and the surrounding area has one major drawback. There
is no data for calibration available. The illustrative application in Sec. 5.3 reveals the
marginal effect of signalization on travel patterns. A further calibration would improve
plausibility of results. The flow-density calculations and plots help to calibrate the base
case. One could calibrate further by traffic signals that are switched on and off. Then,
the results from Gartner and Wagner (2004) could be taken as reference, as they rely
on a more accurate traffic flow model. Overall, the Cottbus scenario is considered as
nice instance. It is not too computational expensive and features many aspects of real-
world transport systems. Fixed-time schedules for traffic signal control are available.
Furthermore, it is based on data publicly available and could be published under a
open source data license?” as reference scenario.

The setup of simulation runs might appear complicated. Intrinsic to the simulation
process is a certain amount of randomness. This may complicate analysis, e.g., when
a result of iteration 1000 is compared with a result of iteration 2000. The chosen setup
reduces this kind of noise in conjunction with a reasonable interpretation.

The subnetworks used for analysis lack in part a real geospatial interpretation. Not
all links within the signalized area are covered by the optimization graph subnetwork.
The network results from the conversion process to the optimization model. To im-
prove geospatial interpretation, clearly all links should be included for analysis. The

9Minimal cut refers to the multi-commodity, max-flow-min-cut problem (e.g. Ford and Fulkerson, 1962)
specific to the formulation of the optimization model.
2Oe.g., http://opendatacommons.org/licenses/odbl/, last access 17.11.2013
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comparison with the complement network, however, is not affected by the geospatial
inaccuracies of the networks. Complement networks are considered as good approach
to analyse effects between subnetworks.

5.4.8. Summary

Overall, the simulation setup, the conversion to the optimization, and the assessment
of optimization results by the simulation produces meaningful results. Network wide
effects due to changes in traffic signal control can be analyzed in detail by the pre-
sented setup. It turns out, that evaluation of traffic-responsive signal control comes out
completely different when evaluated without or with route choice. Yet, as stated, the
optimization results have to be interpreted with care since so far they only optimize
coordination but no green splits. Further, the re-optimization of already optimized co-
ordination has only little effects, even if the demand changes. The investigations so far
give no indication that the better representation of demand for the optimization lead to
obviously better fixed-time control. Under re-routing, as a tendency, the optimization
seems to be pushing traffic away from the controlled part of the network, while the
adaptive approach seems to be pulling traffic into it.

5.5. Findings

This chapter explains, how network effects that result from changes of traffic signal
control can evolve. A simulation approach for analysis of these effects is presented.
The presented illustrative example explains, how traffic signal control can influence
overall traffic patterns within a transport networks. A switch from a fixed-time to a
traffic-responsive control may result in traffic patterns that are worse as before. Then,
the modelling and setup of a real-world, large-scale scenario is presented. The scenario
can be made open source and may serve as reference for other studies. It serves as
basis for the preceding, preliminary results from an ongoing research project started
in Feb. 2013. So far, the project has not made enough progression to gather a general
conclusion. The presented results, however, illustrate, how network wide effects from
changes of traffic signal control can be simulated and analyzed on a large-scale.
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Chapter 6

Modeling and Simulation of Air Transport
Systems

To analyze, forecast, and assess changes in air transport infrastructure and service, this
chapter employs a simulation and forecasting approach for individual passenger re-
actions. Methods and techniques of multi-agent simulation for urban transport fore-
casting are used. The focus is directed on the passengers and their choice between
competitive mid-distance transport modes.

The approach to represent air transport technology, i.e. aircraft, airports, and air traffic
control, is based on the notion that queueing theory is frequently used to model air
transport systems (e.g. Clarke et al., 2007; Hansen et al., 2009; Nikoleris and Hansen,
2012; Pyrgiotis et al., 2011) and makes use of the queue model reviewed in Chapter 3.
Further, the public transit model of MATSim (Sec. 2.5) represents public transit vehicles
and stops. Airports and aircraft are microscopically modeled the same way as bus stops
and buses.

Passengers are represented microscopically as multi-agent demand for air transporta-
tion. Their choice of transport mode, routes, and departure time is restricted by the
capacity provided by the simulation model for air transport technology. Choice mod-
eling is kept on a low level of detail to verify overall feasibility. The chapter discusses
several options to refine the approach.

After some further motiviation and backgrounds, the air technology model is presented
in Sec. 6.3. Then, in Sec. 6.4, the focus is directed on the passenger demand. First, the
simulation model is used as a black box. Then, the box is opened to resolve some
limitations. Potential improvements and applications are discussed in Sec. 6.5. The
chapter ends with a summary.

Please note that Sec. 6.3 contains and extends material published in Grether et al. (2013).
Sec. 6.4 reuses and extends the preliminary results from Grether and Nagel (2013a).
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6.1. Mid-Distance Transport

In Italy, recently a private company started providing 2.5 h non-stop train rides between
Milano and Rome!. From Paris, nearly all major French cities can be reached by high-
speed train in 2-4 /i trips?. For the journey Berlin-Frankfurt in Germany, a 4 1 non-stop
rail connection is provided®. Many airlines provide flights between all these destina-
tions that take between 1 and 2. When comparing travel times, the additional access
time to the airport or railway railway station needs to be included. Overall travel times
are often not that different between middle range rail on one side, and air transporta-
tion on the other.

Following recent forecasts, in 2030, 13 major EU airports will operate at least eight
hours at full capacity a day (Commission, 2011). Legal opening hour constraints limit
operations to a certain time frame. Yet even increasing opening hours for airports may
not resolve capacity bottlenecks, since it may not be possible to move enough demand
away from the peak hours.

In contrast, railway stations are normally not as much exposed to restrictions of open-
ing hours due to noise protection as airports are. Also, in comparison with airports, rail-
way stations mostly feature a more central geospatial location in urban areas. Slightly
longer travel times can be compensated for by shorter access times and longer opening
hours. Passenger demand and technology supply for mid-distance railway or air trans-
portation may interact and are time dependent over a day or even a longer period.

To provide more capacity, railway or air transport networks may be target of planned
extensions. New infrastructure is often accompanied by new emissions of noise and
pollutants and is, thus, subject to lengthy planning, negotiation, and high private and
public costs (Bubalo and Daduna, 2012). However, improvements on infrastructure
may improve quality of journeys or offer even new possibilities of transportation. Iden-
tification and appraisal of these disadvantages and benefits is one of the key subjects in
infrastructure planning.

Mutual reactions on several scales may arise if one or several transport measures cause
positive or negative benefits for certain travelers. For each transport system user,
changes in price, travel times, schedule, or available transport modes may have dif-
ferent impacts, which depend on planned activities, available budget and geospatial
location.

Ihttp://www.italotreno.it last access 19.12.2012
Zyww . tgv-europe . com/en/, last access 11.09.2012
Swww.bahn . com, last access 11.09.2012
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6.2. Models for Air Transport Systems

Many commercial simulation tools for air traffic are available, e.g., SIMMOD?#, CAST?,
AirTOp®, RAMSrams plus’, or Total Airspace and Airport Modeler (TAAM)8. All of
them provide high level of detail models for airports and airspace; some of them use
multi-agent architectures for different actors of the scene, e.g., for airport controllers, air
traffic management, etc. Also in research, simulation toolkits of a high level of detail are
available (e.g. Bilimoria et al., 2000; Sweet et al., 2002; Alam et al., 2008). All of them
aim at detailed simulations of air traffic to improve air traffic management concepts.
Neither commercial nor scientific simulation frameworks support agent-based model-
ing of individual passengers on all stages of a flight. In contrast, Clarke et al. (2007)
propose an event-based simulation approach, MEANSMIT, that targets at the simula-
tion of air traffic flow management concepts, airline scheduling and strategic planning.
Passengers are explicitly included, but only during their journey. The representation of
passengers enables a detailed modelling of (de-)boarding, connection flight availability,
and decision making when flights shall be cancelled. MEANSMIT uses a queue model
to simulate aircraft movement.

Queueing theory and queue models are widely used to model the technology of air
transportation systems. For example, Pyrgiotis et al. (2011) use queueing theory to
model the propagation of delay through the network. Effects of new airspace manage-
ment technologies are studied by Nikoleris and Hansen (2012).

As queue models seem to be well suited to model air transport systems, this work ap-
plies the queue model explained in Sec. 3.2.2 in the context of traffic signal control.
The model provides several parameters for an explicitly modeled segment of a trans-
port network: The maximum flow that can pass a segment, the maximum amount of
vehicles on the segment, and a maximum velocity per segment or vehicle. Several seg-
ments can be connected, building a transport network, on which individual vehicles
can be simulated. Segments are modeled as FIFO (first-in first-out) queues, nodes can
be interpreted as servers. Thus, the modeling of the road network is quite similar to
queueing theory approaches in air transport (e.g. Pyrgiotis et al., 2011). However, the
proposed model is not solved analytically but by simulation. While analytical solvable
models may conserve computational resources, a computational fast simulation model
enables an agent-based modeling of every individual throughout the complete simula-
tion lifecycle in complex scenarios. For the technology side of air transport systems, the
approach is quite similar to the approach chosen in MEANS—MIT (Clarke et al., 2007).
It is, however, more detailed in respect to the passenger model.

www.airporttools. com, last access 22.10.2012
www.airport-consultants.com, last access 22.10.2012
www.airtopsoft.com, last access 22.10.2012
www.ramsplus.com, last access 22.10.2012

www . jeppesen. com/taam, last access 22.10.2012
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6.3. Air Transport Technology

This section focusses on the technology side of air transport networks. First, available
data sources are reviewed. Then, it is shown how airports and aircraft can be modeled
microscopically by a queue model based network representation and a simulation ap-
proach for urban transport systems. At the end of the section simulation studies are
presented that show how the model can represent runway capacity and delay.

6.3.1. Data Sources

The air traffic technology model takes advantage of data provided by OAG Aviation”.
An OAG snapshot of worldwide direct flights in September 2009 is available for sched-
ule generation. All flights with IATA!? airport codes, flight times, flight numbers and
designators, aircraft types, available seats, and distance between airport are gathered
from the database and processed. Codeshares, multi-stop flights, buses and trains with
flight numbers, and cargo flights are filtered out of the schedule during the generation
process.

Relevant data for schedule and network generation is excerpted from the OAG data
using all flights departing on a Tuesday, taking each specific flight number into account
only once. This may not always result in complete flight cycles, e.g., when the outbound
and inbound flight operate on different days of the week. Compared to using all flights
of an entire week, the network may be incomplete, as certain destinations are only
served on specific days.

To enable a meaningful visualization, coordinates for airports are required. Since the
OAG data does not include any airport coordinates, two alternative sources are con-
sulted. OpenNav'!! is an online database of aeronautical navigation information fea-
turing airport coordinates that may be retrieved with a web query based on the IATA
airport code. Coordinates for those airports not available on openNav are prompted
in the same manner from the Great Circle Mapper!?, which also includes a searchable
database of airports. Worldwide, a total of 2683 airports with IATA code is retrieved
from these data sources. The scenario used in this work contains all Europe to world-
wide, non-stop flights. For this scenario 73 airports are missing in our database!® while
for the majority of 808 airports coordinates are available. Airports for which no coordi-
nates were available were removed for the present study.

Airport capacity data is available from many sources. However, no machine-readable
source was found. Thus, the 50 busiest European airports in terms of total passengers

9
10
11
12

www.oagaviation.com, last access 08.08.2012

see www.iata.org, last access 17.11.2013

www . opennav . com, last access 09.08.2012

www. gcmap . com, last access 09.08.2012

13Bus and train stations with TATA code are counted as missing airports when no coordinates are found.
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(a) Airport layout and characteristics (b) Network layout

Figure 6.1.: Layout of the air network

per year were taken from wikipedia!4, and data for those airports was researched man-
ually. A list of airport capacity information is given in Appendix B, together with the
source for each information item. The list provides separate capacities for departures
and arrivals. All remaining airports are modeled with arrival and departure capacities
of 60 aircraft per hour each. This is considerably more capacity than what these airports
provide in reality.

6.3.2. Modeling

Based on the presented data an air network, a flight schedule and aircraft are generated
as a precondition to run an air traffic simulation.

Network and Airports

The modelling of the air network aims at a simulation by the queue model reviewed
and explained in Sec. 3.2.2. The network consists of airports, each showing an identical

len, wikipedia.org/wiki/List_of_the_busiest_airports_in_Europe, last access 05.08.2012
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layout, and point-to-point connections in between. Every runway is solely used either
for inbound or outbound flights with taxiways connecting the runways to the apron.
The latter accommodates a transit stop, i.e., the terminal, where flight movements orig-
inate and terminate (see Fig. 6.1a).

The two runways of each airport possess a restriction of flow capacity (cfio) that is
varied in the subsequent simulation runs. Furthermore, not more than one aircraft
(unit [veh]) can be simultaneously on a runway. This is modeled by setting the cstorage
parameter of the queue model accordingly. If the flow capacity restriction (cf1o) should
have any influence on the model the storage capacity restriction should be at least as
equal to /vy - cfo, Whereby | denotes the length of the runway and vy, the speed
limit. If the storage capacity restriction is smaller, flow constraints would not have any
effect. As both values flow and storage capacity shall be set, the speed limit is varied
according to the chosen value for flow capacity. E.g., for an outbound runway of an
airport with an outbound flow capacity of 60 veh/h on a 1500 m runway with a storage

capacity constraint of 1 veh, the speed limit is set to W =90km/h.

Each airport pair is directly connected by airway links, one for each flight and direction
of travel (see Fig. 6.1b). The maximum speed on any of these links is calculated based on
the distance and flight duration provided by OAG. Times for taxi, take-off, and landing
are also taken into account, i.e., the flight duration is reduced by the time needed from
push-back to airborne before the maximum speed for an airway link is calculated.

To simplify matters, ATS (Air Traffic Services) routes are not implemented. Further, de-
spite data could be gathered, no permission for use is retrieved so far. Note however,
that each flight has an individual link that could be interpreted as route, each possess-
ing individual characteristics. Fig. 6.2 shows parts of the network for simulation of
European air traffic.

Flight Schedule

The flight schedule is taken from the OAG data and translated to a MATSim Transit
Schedule (Sec. 2.5) containing information about each line, route, and departure. For
each airline that offers a connection between two airports, a transit line is generated. A
transit route, which represents the route on the air traffic network, is created for each
flight offered by this airline. The route contains the links belonging to the airport repre-
sentation plus the specific link for this flight connecting the airports” out- and inbound
runway. After take-off, mutual interferences of aircrafts en-route are not included in
the model. Tab. 6.1 lists the number of (not included) airports, direct origin-destination
(O-D) connections and flight movements for three different area pairs.

For matters of consistency, all local times are converted into Coordinated Univer-
sal Time (UTC). This ensures aircraft taking off and landing at the scheduled times
throughout all time zones and also enables the model to reflect incoming and outgoing
waves at hub airports worldwide at the appropriate times.
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Aircraft

To represent individual aircraft in the simulation, transit vehicles are created on the
basis of OAG data IATA aircraft codes, operating airlines, and seating capacities are
reflected in the respective aircraft representation for every flight. Information about
boarding times, i.e., passenger flow per door over time, is not available, but could be
set for each aircraft type. One aircraft per flight is generated, thus delays resulting from
a delayed incoming aircraft are not modeled. Accordingly, no aircraft rotations and
vehicle trip chains are implemented for the time being. The maximum velocity of each
aircraft is set to twofold sonic speed, since speed limitations are set for each airway link
of the network.

6.3.3. Results

Results of a simulation for flights to, from, and within Europe (referred as “Europe to
worldwide” in Tab. 6.1) are presented in the following. Several versions of the model
are simulated allowing a comparison of a model without capacity constraints, a model
with runway capacity constraints, and a model including some delay. The simulation
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3 Experiments

Unlimited Runway
Capacities

Uniform Capacity 60/h

Area pair Airports  Airports O-D Flights Flights

missing Pairs missing
Worldwide 2333 81 27496 56376 2644
Europe to worldwide 808 16 14156 21425 577
Germany to worldwide 269 3 2814 4394 189

Table 6.1.: Numbers for different geospatial extents of the model
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Figure 6.3.: Arrivals and departures over time of day. Europe to worldwide model with
high runway capacities.

is run for one iteration which starts at midnight and continues until after 40 i the last
flight has arrived at its destination.

Delay resulting from changes of runway capacity is studied in three experiments.
Scheduled flight times from the OAG data are compared to the simulated time each
flight needs from gate to gate, i.e., its departure transit stop facility to its arrival transit
stop facility. The resulting arrival delay distributions are shown in Fig. 6.4.

First, the simulation is run with unrealistically high runway capacities. As expected,
all flights are on time. Fig. 6.3 shows the simulated number of departures and arrivals
over time of day. Clearly, one can observe the morning departure peak between 05:00
and 07:00 UTC. The resulting delay distribution is depicted in Fig. 6.4a.

Second, in order to test sensitivity, all runway capacities are set to 60veh/h , i.e., on
each runway one take-off or landing per minute is possible. This is effectively larger
than in reality for most airports, except for Paris, Charles de Gaulle (CDG) and Am-
sterdam, Schiphol (AMS), where it is less (Appendix B). The impact on the system is
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more profound than one might expect, the delay distribution is shown in Fig. 6.4b:
10589 flights, i.e., 49.2 % of the simulated 21425 flights, arrive at their scheduled time;
99.6 % of the flights possess less than 16 min delay. The most delayed flight arrives
28 min after scheduled arrival.

In the third experiment regarding delays, airport specific data is used for capacity of
runways (Sec. 6.3.1, Appendix B). Each modeled airport’s arrival runway is set to the
arrival capacity from the table, and each departure runway is set to the departure ca-
pacity from the table. If no data is available, each runway’s capacity is set to 60 veh/h
as in the previous experiment; since these are fairly large capacities, this implies that
the model will generate few if any delays at those airports. Fig. 6.4c shows that the
resulting overall delay distribution is similar to the simulation run which was based on
homogeneous runway capacities (Fig. 6.4b). 45.5 % of all flights arrive at the scheduled
minute, while 99.2 % have a delay less than 16 min. The latest arrival is 32 min beyond
schedule.

Limited runway capacities are a source of delay (Bubalo and Daduna, 2012). The pre-
sented experiments show that the model can capture these delays. By themselves, how-
ever, restricted runway capacities can only explain a small part of overall delay. For
2011, the Central Office for Delay Analysis (CODA) reports that 37.1 % of all flights
were delayed on departure (Central Office for Delay Analysis, 2012), with an average
delay of 27.6 min. Those CODA values for 2011 are used for a rough approximation of
randomly occurring delay in the simulation, as follows. In a preprocessing, a 37.1 %
sample of all simulated flights is drawn, using a uniform distribution. The length of
delay is then drawn from a normal distribution with a mean of 27.6 min and a standard
deviation of 13.8 min, and added to the scheduled departure time. In order to get a
clear picture of the effects of this method, the simulation is first run without capacity
constraints. The resulting overall delays are shown in Fig. 6.4d; delayed flights show
the expected shape of a normal distribution around 27.6 min. For the next simulation
run, the model with airport specific runway capacities is simulated jointly with the
random delay. About 39 % of all flights are now delayed more than five minutes, the
average delay is 27.90 min. The resulting overall delay distribution (Fig. 6.4e) still pos-
sesses the shape of the normal distribution, but effects of runway capacity restrictions
are observable as well.

In Figs. 6.4e and 6.4d, delays are generated by first deciding if an aircraft is delayed,
and then generate a delay as a normal distribution with mean 27.6 min and standard
deviation 13.8 min. This model stems from the definition of delay used by the operators.
It produces, however, implausible results in the sense that it makes delays of about
10 min less probable than delays of around 30 min. In consequence, another model is
tried where arrival times are distributed around a delay of 0 min. Since late delays are
more probable than early delays, an asymmetric distribution was chosen, namely the
Gumbel distribution with a cumulative distribution function

Fla) = et "
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and parameters u = 0 and B = 6.47min. Results for this model including airport
specific runway capacities are shown in Fig. 6.4f. The shape of the simulated delay
distribution appears quite similar to the delay distribution shown in the CODA re-
port (Central Office for Delay Analysis, 2012, Fig. 13). For a detailed statistical analysis
the raw data of the aggregated values presented in Central Office for Delay Analysis
(2012) is required.
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6.3.4. Interpretation & Discussion

The results show that the proposed approach can model some important characteristics
of air traffic technology. In particular, runway capacity restrictions can be added to the
model.

The current model uses two separate links for the runways of an airport, one for ar-
rival and another for departure. In reality, it might happen that both runways are used
for the same purpose for periods of time. The model could possibly be improved by
modeling both runways as one link. When doing this, however, more elements of air
traffic control would need to be included, such as prioritization between incoming and
outgoing aircraft. Furthermore, values for capacity and speed of the runway have to be
adjusted.

Also, the model of the air network is not capturing delays resulting from en-route ca-
pacity constraints that may occur in the real ATS route network. Due to differences in
air traffic flow and capacity management strategies, the present model may be more
appropriate to model US airspace than EU airspace. Following Lulli and Odoni (2007),
en-route delay in the US airspace accumulates at the destination airport while the Euro-
pean air traffic management captures delay already during the flight. For the European
airspace the time dependent network attributes feature of the simulation (Sec. 3.1.2)
that can vary a link’s flow capacity, or set speed limits for certain time periods could
be applied to get a more realistic representation. Finally, the ATS route network itself
could be included in the modeling process if exact data and routes are provided.

Reactive delays due to delayed incoming aircraft are not reproduced as aircraft rota-
tions are currently not included in the model. The multi-agent approach is, in general,
particularly suitable to model reactive delays. One would either need detailed trip-
planning and scheduling data from private companies, or appropriate approximation
algorithms for these elements to include reactive delays. The modeling itself is then
straightforward.

Not explicitly modeled reasons for delay can, in principle, be captured by draws from
an appropriate probability distribution. The probability distribution hinges clearly on
the data available for calibration and the explicitly modeled sources of delay. Because
of the lack of detailed data for delays, statistical analysis is limited. The presented
results, however, show two options how not explicitly modeled reasons for delay can
be captured.

6.4. Passenger Demand

With the results from the previous section, an air transport technology model is avail-
able. This section shows how a passenger demand for air transport can be modeled on
top of the technology with the multi-agent approach.
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6.4.1. Data Sources

There are many different ways in which passenger demand for transport systems can
be generated (e.g. Balmer, 2007). One option is to start with origin-destination (O-D)
flows between geographical regions. In a European context, possible data-sources in-
clude OAG Aviation!® and eurostat'®. They provide data about passengers; O-D flows,
however, are not provided. Data-sources geographically limited to Germany as in “Der
Flughafenverband”!” or ITP/BVU (2005) do not come with O-D data, neither. The lat-
ter may have O-D relationships available in an upcoming version. The German In-
stitute of Air Transport and Airport Research (DLR, Institut fiir Flughafenwesen und
Luftverkehr) provides monthly statistics containing O-D flows'®, but the pdf-format
provided is not suited for machine reading, and data is only available up to 09-2010.
DESTATIS' provides O-D data by airport for German air traffic in a machine readable
format. Data is available for whole years or a specific month. DESTATIS data is thus
used in the following to create an agent-based air transport demand for Germany.

The passenger demand is based on the data for 09-2009 in order to be consistent with
the flight schedule of the air transport technology model (Sec. 6.3). DESTATIS pro-
vides data for passenger movements within Germany in two different representations
(referred as data sets 5.1.1 and 5.1.2). The number of O-D trips between airports is cap-
tured in two different ways. For all pairs of airports, the number of direct trips between
the airports is given in the data set 5.1.1. Furthermore, the second data set, 5.1.2, con-
tains O-D pairs that do not include transfers, but the final destination. E.g., one person
flying from Hamburg (HAM) via Frankfurt (FRA) to Munich (MUC) is contained in the
data set 5.1.2 as one O-D pair: HAM — MUC. The 5.1.1 data counts this person twice,
once on the O-D pair HAM — FRA and once on FRA — MUC.

The passenger demand of the second data set, 5.1.2, is used to create the synthetic pop-
ulation. For each O-D pair the number of trips is scaled from monthly to daily values
by a division by 30. Then, for each O-D pair and trip a virtual person is created. The
resulting synthetic population contains 51832 virtual persons, 1550 trips from the origi-
nal data are neglected as origin and destination are equal. Each virtual person performs
two activities, one at the origin and the other at the destination airport. Both activities
are of same type, thus time spent performing both activities is accumulated before it is
evaluated by the utility function according to equation (2.3). A typical duration, t., of
21 h is set for this activity type. In between the two activities a flight leg is scheduled,
connecting origin and destination. As is common, the demand does not specify if a
direct flight from O to D is chosen or the virtual person is on a route containing one or

15
16
17

www.oagaviation.com, last access 08.08.2012

ec.europa.eu/eurostat, last access 10.09.2012

www.adv.aero, last access 10.09.2012

Bhttp://www.dlr.de/fw/en/desktopdefault . aspx/tabid-2961/9753_read-19683/, last  access
10.09.2012

3estatis.de, Fachserie 8 Reihe 6, last access 10.09.2012

131

Data Providers

DESTATIS

Passengers, Synthetic
Population


www.oagaviation.com
ec.europa.eu/eurostat
www.adv.aero
http://www.dlr.de/fw/en/desktopdefault.aspx/tabid-2961/9753_read-19683/
destatis.de

Parameters

Simulation Runs

Computation Time

Zeroth lteration

more transfers. The time virtual persons arrive at the origin airport and start waiting
for a connection is drawn randomly from a uniform distribution in 04:00 to 18:00, UTC.
This reflects estimated typical opening hours of airports in Europe.

6.4.2. Simulation Setup

The synthetic population serves as input for the simulation. As scenario for air trans-
port technology, the Europe to world wide model with no delays and no effective run-
way capacity restrictions from Sec. 6.3 is used. The assignment of concrete flights to the
desired O-D connection, i.e., the passenger routing, is calculated by the default public
transit routing module of MATSim (Sec. 2.5). The routing basically looks for a least
cost path in terms of travel time. The graph used for routing is constructed from the
information contained in the transit schedule. Each flight is represented by an edge.
Transfers are modelled by additional edges, that are implicitly added to the graph. To
penalize transfers, the routing assumes an additional cost of cjiyeswitcn for each trans-
fer edge. The same parameter is also considered by the scoring function, i.e., a (dis-
yutility of —cjineswitcn is added to the score of a virtual person for each transfer. The
simulation is run several times using different values of the cjj,eswitcn, parameter, i.e.,
Clineswitch € {0, —6,—12,—18,—24, -30} / trans fer®.

Each simulation is run for 600 iterations. In each iteration, 10 % of the virtual persons
may shift their departure time randomly within a 2 interval. The amount of shift is
drawn from a uniform distribution. Another 10 % may seek a new route, i.e., a con-
nection between origin and destination. Each passenger chooses out of a set of 5 plans
using the multinomial logit model (Sec. 2.1). The outcome is stable after 500 iterations,
thus departure time choice and routing are switched off. For another 100 iterations
only the logit model is used by the passengers to select a plan. Empirically, fixing the
choice set for the last 100 iterations reduces the noise of learning and eases analysis and
intepretation of results.

One iteration takes around 5 min on an Intel Xeon Processor (2.67 GHz) using one core
for the execution of mobility simulation and two cores for the replanning modules.
Overall computation time for one simulation run is roughly 2 days.

6.4.3. Results

First, to show the effects of routing, the result after the zeroth simulated iteration is
presented. Each virtual person gets a connection assigned based on a generalized cost
routing for the connection and the preset departure time. Fig 6.5a shows the number
of travelers en-route, i.e., waiting for a flight or traveling by plane, as a function of
the time-of-day. Some passengers are still waiting for a flight at midnight. As only

20Note, that ¢jjespitcn cannot be set to values > 0 as a standard least cost path calculator cannot handle
positive costs for edges.
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Figure 6.5.: Passengers waiting for a flight or traveling by plane over time of day

one day of operation is simulated, these passengers are stuck and will not reach their
destination. The number of these stuck passengers is decreasing with the increasing
disutility of line switch.

The output after 600 iterations is depicted in Fig. 6.5b. The shape of all curves is dif-
ferent from the shape of the zeroth iteration. One can identify two morning and two
evening peaks. Some passengers still get stuck at the end of the day, but fewer than in
the Oth iteration. In addition, the influence of the ¢jiyeswitcn parameter is diminishing in
respect to the stuck passengers.

To study the influence of the cjjpeswitcn parameter, the simulation results are compared
with the input data. Recall, that the synthetic population is generated based on O-D
pairs that may contain transfers (0d},qps fers), while other data directly counts the number
of passengers on actual direct flights (0djyect). The latter is used to evaluate the accuracy
of the model. For comparison, the number of passengers on direct flights is calculated
for each O-D pair (sim jyec;) from the simulation results.

Based on these data sets, the mean square error ¢ is computed as

0.2 — ZiEOD(Simdirect(i) B Oddirect(i))z
|OD| '

whereby |OD| denotes the number of O-D pairs, sitt ;... (i) the simulated passengers
on a direct flight between the O-D pair 7, and o0d ;. (i) the same, but retrieved from
data. With the same values, the (unsigned) mean relative error for each O-D relation is
calculated as

ZiEOD |(Simdirect(i) - Oddirect(i))‘/Oddirect(i)

mean rel error = 0D

Tab. 6.2 shows the results for these calculations. The first line contains the comparison
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of the two sets of input data from DESTATIS, i.e., in the above formulas, singj.e. is
replaced by 0dyypsfers- This serves as reference as it would assume that all demand is
served by direct flights. All simulation runs explain the data better than that reference.
Mean square error, variance, and number of stuck passengers increase with decreasing
values of ¢jjeswiten- The relative error, however, decreases. So far, variance and relative
error are hard to interpret, as they point in opposite directions. First, the reasons for
stuck passengers are analyzed in detail.

2

Clineswitch o o meanrel error stuck
0dransfer — 0girect | 12640 112 1.75 -
-0 9293 96 0.36 320
-6 9878 99 0.35 338
-12 10361 102 0.33 350
-18 10552 103 0.32 378
-24 10916 104 0.32 373
-30 11090 105 0.32 386

Table 6.2.: Simulation results for different values of ¢j;,,pswitch, iteration 600

Some passengers fail to reach their destination, they get stuck. This is considered unre-
alistic, as only trips within Germany are modeled, which are usually completed within
a few hours without any requirement for an overnight stay at an airport. Filtered by
flights in Germany, Fig. 6.6a depicts passengers in aircraft and seats therein over time
of day. Getting stuck is not a consequence of a general lack of seats: at any time of day,
there are more seats than demand. There are many reasons why stuck passengers can
arise in such a situation. Further analysis of the simulation results leads to the following
insights for the c¢jjyeswitcn = 0 scenario:

e 92 passengers are stuck because there is no seat, and there is no other flight by the
same airline later during the day to which they would be shifted otherwise.

e 228 passengers are stuck at an airport because there is no connection after their
departure time between that airport and their destination airport.

To study the influence of departure time on available connections, several simulations
are run that set the departure time of each passenger being stuck to 04:00 UTC, i.e.,
before the first aircraft is departing. Simulation results produced similar findings as
presented above.

Thus, it is worth looking more closely at the relation between passengers being stuck
and the capacity of seats offered for each O-D pair. For each O-D pair, one can obtain the
number of travelers that plan to travel from O to D, i.e., the number of virtual persons,
0dransfer (data set 5.1.1). Further, the number of seats offered on that O-D pair can be
retrieved from simulation input data. Fig. 6.6b plots the number of travelers that are
stuck on their planned O-D connection over the difference between seats and 0dyys fer-
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Figure 6.6.: Potential reasons for stuck passengers

To improve visibility the figure is cut at values where available seats increase demand
by more than 800 — the number of stuck persons is always 0. Apparently, passengers
get more likely stuck the more the requested demand is equal or greater than overall
capacity.

6.4.4. Adding an Alternative Mode

To gain further insights, in the following a slightly different simulation setup is applied.
The additional cost for each transfer is fixed to ¢jeswitcn = 0 and has no influence on
the model. Instead, a second option for mode choice is added. Each virtual person
can now choose between the micro-simulated air transport options and an alternative
mode. The alternative mode has no capacity restrictions. Furthermore, passengers that
travel with the alternative mode can start directly at their desired departure time. The
travel time, tf, is computed by the microsimulation with an estimation of the beeline
distance between the O-D pair 4 and a velocity v, i.e., tt = d/v. This velocity is varied in
several simulation runs, i.e., v € {100,150, 200, 250,300} [km/h]. If the alternative mode
is chosen, the (dis-)utilities for traveling in the scoring are calculated accordingly.

Each person in the synthetic population obtains a second plan that uses the alternative
mode. With this population the simulation is again run for 600 iterations. Like in the
previous simulations 10 % of the virtual persons may shift their departure times while
another 10 % seek a different route between origin and destination in the air transport
network. Additionally, further 10 % of virtual persons may change mode, i.e., they can
switch between the air traffic mode and the alternative mode. After 500 iterations all
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vlkm /h] o? o meanrel error stuck
O srasfor — Ogireet | 12640 112 1.75 .
100 9388 97 0.37 67
150 9911 100 0.35 50
200 12075 110 0.37 6
250 13759 117 0.39 0
300 13790 117 0.42 0

Table 6.3.: Simulation results including an alternative mode at different speeds v

v[km/h] | #air mode #alt. mode #stuck | air mode[%] alt. mode[%)] stuck[%]
100 51143 622 67 98.67 01.20 00.13
150 50213 1569 50 96.88 03.03 00.10
200 48541 3285 6 93.65 06.34 00.01
250 46748 5084 0 90.19 09.81 00.00
300 43698 8134 0 84.31 15.69 00.00

Table 6.4.: Modal split for different speeds of the alternative mode, iteration 600

choice modules are switched off, thus for the last 100 iterations the logit model is used
by passengers to select one of their plans.

From the output of the 600th iteration, the same numbers as for the previous simulation
runs are calculated (Tab. 6.3). If the speed of the alternative mode is 100 or 150 km /h
mean square and relative error are quite similar to the previous results. The number of
stuck passengers, however, is remarkably reduced from approx. 320 to 67. Alternative
mode speeds higher than 150km/h further reduce the number of stuck passengers.
Both error values increase. As passengers no longer get stuck, the model seems more
plausible, but deviates from the given data.

The increasing speed of the alternative mode affects the modal split (Tab. 6.4). While
for a v = 100km/h the alternative mode is chosen by 1.2 % of the passengers, a mode
alternative with a speed of 300 ki /I attracts 15.69 % of travelers.

Fig. 6.7 illustrates temporal effects for the alternative mode at speeds of 100 km /h and
300 km/h. One can observe that passengers using air transport follow the time distri-
bution of the offered capacity. In contrast, travelers on the alternative mode are spread
over time of day. This is plausible considering the setup of simulation: Passengers have
no time constraints that force them to arrive at a certain time at their destination. De-
parture times are equally distributed between 04:00 and 18:00, UTC, and then randomly
mutated during the iterations. As the alternative mode is always available there is no
constraint within the model that ties passengers to any departure time.

One might conclude with these results. A more accurate inspection of the results, how-
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Figure 6.7.: Passengers waiting for a flight or traveling by plane or by the alternative
mode over time of day, iteration 600

ever, raises the question why travelers on both modes have a tendency to depart early
in the morning. Furthermore, if a not capacity constrained alternative is available, one
might wonder why travelers prefer to get stuck instead of traveling on the alternative
mode. One can reveal further insights by a closer look at the implemented algorithm.

The public transit used for the simulation runs boards passengers to transit vehicles
in order of appearance at the transit stop. If the passenger capacity of the vehicle is
reached, passengers can no longer board. If there is passenger capacity available in a
subsequent transit vehicle of the same line, passengers may board this vehicle (Rieser,
2010, p. 67). For the air transport model, this implies that the earlier travelers arrive at
the airport, the higher is the probability they get a seat. This explains the passengers’
tendency towards earlier flights, even though the modeling is not specifying any con-
straints that justify this behavior. To understand the shift towards earlier departures in
case of the alternative mode, a closer look at the mode choice model is required.

The mode choice model tested and validated in (Rieser et al., 2009) specified a constraint
for the plan database: Only one mode can be set for each plan. At least one plan of every
mode is kept in the plan database of every virtual person. This constraint was removed
in further studies, motivated by the need of more complex plans. In the current version,
each leg between two activities can have a different mode. The mode of each leg is then
varied randomly over the iterations (Rieser, 2010, p. 77).

Aware of these changes, one can now explain why travelers get stuck even if there is
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an alternative. Slow speeds of the alternative mode implicate a dominance of the air
transport mode. If there is a seat on a flight, travelers receive a higher score than by
traveling on the alternative mode. For the first 500 iterations, some virtual persons try
different routes, times, or modes. Thus, during this phase a certain amount of seats is
not occupied. More virtual persons validate the air mode as good choice than there are
available seats. The corresponding plans get a higher score than the plans for the alter-
native mode and shift towards earlier departure times. Recall, that the plan with the
lowest score is deleted when the number of plans excesses a certain threshold (Sec. 2.1).
For the first 500 iterations, this is the plan for the alternative mode. If plans for the
alternative mode are recreated, they are copied from an air mode plan and obtain its
departure time. Then, choice dimensions are switched off. Only the logit model is used
for selection of existing plans. Travelers, that have tried the alternative mode in the
previous iteration, switch back to the air transport mode with a high probability. This
results in a lack of seats that are then allocated by time of arrival. Passengers rejected to
board their flight get stuck. The probability to avoid getting stuck is higher the earlier
one arrives at the airport. As the plan for the alternative mode is deleted before air
transport plans, in most cases the plan database of a virtual person no longer contains
this option. Otherwise, passengers may switch to the alternative mode with a tendency
towards an early departure.

This analysis reveals several problems to be solved in the overall simulation process
before air transport specific questions can be addressed further. In the following, a po-
tential solution is presented that prevents passengers to get stuck. Theoretically, one
could increase the threshold for the maximum number of plans per person to infinity.
In practice, this is not feasible, as memory is limited. The solution used for the study
in (Rieser et al., 2009) cannot be applied to more complex plans. Some more complex
heuristic is required to measure the similarity of plans. This heuristic can be imple-
mented by a functionality similar to the path size logit formulation (e.g. Frejinger and
Bierlaire, 2007). That is, a score penalty, Bps - In PS;,, can be added to a plan when it is
similar to other plans, whereby Bps is a scale parameter and PS;, measures similarity

by

Iy 1
PS;, = —
N a;,. LiYjec, %
whereby T'; is the set of legs in plan i, C, the set of plans of person 1, and 4,; the overlap
function. &,; equals 1 if leg a is contained in plan j and 0 otherwise?!. The scheduled

travel time of leg a is I;, and L; denotes the sum of all scheduled travel times of plan
L.

Then, instead of removing the plan with the lowest score, the plan i of a virtual person

21 A leg for the air transport mode is already contained in the plan database if transit line and route are
equal. Legs of the alternative mode are considered equal, if they connect the same activity locations by
equal travel times. Note, that this implementation may be subject to change.

138



12000 ——F— 7 ———[————— T
air mode (slow alt.
alternative mode (slow alt.
air mode (fast alt.
alternative mode (fast alt.

10000

NP

8000

6000

4000

number of passengers en-route

2000

00:00 04:00 08:00 12:00 16:00 20:00 00:00

time of day [hh:mm]

Figure 6.8.: Results with random selector for plan removal, iteration 600. Passengers
waiting for a flight or traveling by plane or by the alternative mode over
time of day

n for deletion is selected randomly with probability

p(i) o e #(VitPrsInPSiy)
where V; is the score, y the sensitivity parameter from Eq. 2.2, and Bps, PS;, denote the
same as above.

The simulation runs are repeated with the same setup as for the runs that includes the
alternative mode. Plans are deleted by the presented random selector, Bps = 60. Fig. 6.8
shows the resulting travel patterns over time for alternative modes at speed 100 km/h
and 300 km /h. Travelers on the alternative mode are distributed more homogeneously
over time of day. The speed increase of the alternative mode attracts more passengers.
This is reflected by the modal splits in Tab. 6.5. Only one passenger gets stuck at the end
of day. The mean square error is higher than without the alternative mode (Tab. 6.6).
This is plausible as the data for the demand only contains air transport trips.

6.5. Discussion

Overall, the results show that a microscopic, agent-based simulation of passenger de-
mand for air transport is feasible. Most passengers are able to learn the constraints of
air transport technology and arrive at their desired destination.
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vlkm/h] | #air mode # alt. mode #stuck | air mode[%] alt. mode[%] stuck[%]
100 49280 2551 1 95.08 04.92 00.00
150 44835 6996 1 86.50 13.50 00.00
200 39929 11902 1 77.04 22.96 00.00
250 34332 17499 1 66.24 33.76 00.00
300 27270 24562 0 52.61 47.39 00.00

Table 6.5.: Results with random selector for plan removal, iteration 600. Modal split for
different speeds of the alternative mode

vlkm /h] o? o meanrel error stuck
O rams for — Ogirect | 12640 112 1.75 -
100 10367 102 0.35 1
150 13820 118 0.43 1
200 18651 137 0.56 1
250 25291 159 0.68 1
300 36059 190 0.76 0

Table 6.6.: Results with random selector for plan removal, iteration 600. Simulation
results including an alternative mode at different speeds v

6.5.1. Air Transport Only

Without the alternative mode, the only available transport mode is a capacity restricted
flight connection that is served in discrete, irregular time intervals. The number of stuck
passengers is higher than for the simulation runs with the alternative mode. Passengers
get more likely stuck on O-D pairs where the demand excesses seat capacity. This may
have model extrinsic and intrinsic reasons.

Choice, quality, and preprocessing of available data sources is extrinsic. The quality of
the simulation model’s outcome hinges at the data available. For older versions of the
air transport passenger demand, DESTATIS data for 09-2011 were used??. The air trans-
port technology model, however, was created on a 09-2009 flight schedule. The num-
ber of starts of flights within Germany increased slightly between 2009 and 2011 (DLR,
2012, p. 23). Assuming that the number of available seats is increased accordingly,
the simulation model provided too little capacity, at least on certain O-D pairs. As
result, the number of passengers that had not reached their destination but got stuck
was much higher. These results can be found in Appendix C. With the availability of
09-2009 DESTATIS data, the overall quality of results increased. The replacement of
the 2011 data by 2009 data reduced the number of stuck passenger significantly, from

22 For some reason, DESTATIS provides historical data up to 01-2010. Older data is not available. Special
thanks to Dr. Tobias Grosche for providing the 2009 DESTATIS data.
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around 1500 to 350 travelers.

Data is provided on a monthly basis, while the time horizon of the simulation model is
one day. The number of trips per day is retrieved on the assumption that trips are uni-
formly distributed over all days of a month. The remaining 350 stuck passengers might
be resolved by a more accurate distribution. Otherwise, a longer time horizon could
be simulated®®. This would also include flights that are not departing on a Tuesday.
Possibly, travelers no longer get stuck.

The problem of stuck passenger can be model-intrinsic. If there is only one, early, con-
nection to a hub per day, departure times of some passengers might be too late to reach
that connection. The random departure time mutation may not be able to find that con-
nection for all passengers. This has been ruled out for the current setup but should be
considered in further studies.

Alternatively, it may be the case that passengers have a connection that works in theory,
but they are “crowded out” by other passengers who arrive earlier at the gate. They
would make it if either of them would take a different route. The current approach
would not find such a solution, since passengers do not take into account the costs they
impose on others, see Limmel and Flotterod (2009) for an approach to take that into ac-
count. The real-world solution presumably would be to raise prices on congested seats
until one or the other passenger re-routes. Currently, all passengers have homogeneous
values of time. For a more meaningful price modeling, more heterogeneous attributes
of passengers can be included. As the present model is based on sole O-D data, it does
not include such a process. In principle, other data, as e.g. Lorenz curves and median
incomes, can be merged with the O-D data (Kickhofer et al., 2011).

An alternative approach to remove some of these shortcomings might be to use a router
that generates a larger diversity of routes even for the same departure time. Such a
router would be able to point a passenger to a route where seats are available without
by itself knowing about seat availability. That approach would, however, not address
the issue that some passengers might need to switch their path in order to allow others
to obtain a feasible path. In Graf (2013), a first prototype of such a router is tested in a
different context. First tests for the flight model revealed only slight improvements. As
more diverse routes are dominated by the direct connection, they are removed by the
algorithm similar to routes on slow alternative modes. After this more general problem
is solved, a more diverse routing should be reconsidered.

6.5.2. Alternative Mode

The alternative mode can be interpreted as mixture between train, bus, or car connec-
tion availability. Clearly, the results hinge at the assumption that the alternative mode

23Note, that this requires some changes in the source code that may not be resolved by sole customizations
of MATSim. Please ask the developers before running MATSim for a longer time horizon.
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is always available and not capacity restricted. All passengers on the alternative mode
face the same travel speed. This assumption is too coarse for the presented scenario.
E.g., average speed and temporal availability of train connections depends on the O-D
pair. In principle, the alternative mode could be refined by inclusion of O-D pair depen-
dent average speed data. Alternatively, train, bus, and car can be simulated explicitly,
featuring capacity restrictions and mutual interactions. For illustration of the overall
modeling approach, however, a homogeneous velocity for the alternative mode seems
to be more appropriate.

The effects evoked by the availability of the alternative mode are illustrative. The data
for the demand provides O-D pairs for air transport, but not for car, train or bus trips.
Thus, the simulation results should get worse when the alternative mode is added. This
is reflected by the presented results. For more plausible interpretations, further data for
demand on other modes is required. Alternatively, the 2011 data could be used.

6.5.3. Overall Approach

All modeling approaches explain the routing of passengers in more detail than it can
be solely retrieved from the input data. The quantity of reaction, however, seems to be
relatively small. Most passengers use a direct connection. Besides the issues discussed
so far, this is highly plausible. Consider the geospatial extent of the demand. Flying
within Germany is often not worth it, if the connection includes a transfer. Then, em-
pirically it is faster to travel by train, car, or bus. To gain further insights, the geospatial
extent of the modeled demand could be increased. Data for all Europe is still hard to
collect. DESTATIS data, however, contains also O-D data for worldwide trips touching
Germany. Adding these O-D pairs to the presented approach is conceptually straight-
forward. The number of connections that contain a transfer should increase. Also, seat
occupancy gets a valid interpretation.

Passengers are modeled without explicit desired departure or arrival times. The simu-
lation approach can capture such individual time constraints. Input data for this study,
however, contains monthly O-D pairs without any further information about time dis-
tribution. A detailed modeling of individual time constraints is not considered in this
study. With some more data, the information can be added without big effort.

Clearly, potential applications of the proposed model depend on type and detail of in-
cluded information. In general, application for policy planning allows a more detailed
evaluation of the effects from mid-distance travel policies that includes consideration
of mode alternatives. The approach could also be useful for private companies, plan-
ning flight-schedules and capacities on different connections. The impacts of changes
on customers can be assessed on a high level of detail.
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6.6. Findings

In the first part of this chapter, a microscopic modeling approach for air transport tech-
nology is presented. A multi-agent simulation, originally developed for urban trans-
port planning and forecasting, is used. Aircraft are represented microscopically, featur-
ing attributes as speed, available seats, and boarding constraints. The air traffic network
and flight performance is captured at a low level of detail as air traffic management
applications are not intended. Despite the lack of detail, some relevant aspects of con-
gestion and delays can be captured by a queue model for traffic flow. The queue model
is computationally relatively cheap so large scenarios can be simulated. As proof of
example results for the Europe to world air transport are presented. Overall modeling
of technology is similar to the approach by Clarke et al. (2007), the level of detail is,
however, coarser. In principle, in the same way as Clarke et al. (2007), further models
for, e.g., gates, taxiing, weather or airline operations could be added to the presented
approach. In contrast, and going beyond Clarke et al. (2007), passengers are captured
at all stages of their trip. Further, passengers traveling on alternative transport modes
can be simulated.

An agent-based modeling of passengers is subject of the second part of this chapter.
For this, a passenger demand for the German national air transport system is set up.
The computationally affordable simulation technique enables an iterative, simulation-
based assignment of passengers to flights of the Europe to world wide model for air
transport technology. Furthermore, alternative transport modes can be added. Overall,
the presented results look promising. Some problems of the overall simulation tech-
nique are uncovered. These are more general and not specific to air transport systems.
Several solutions are presented and discussed. Potentially, the overall problem can be
solved with some of them. Further research, however, is required before the passenger
model can be refined and calibrated. Then, the model may help to get a more detailed
picture of mid-distance travel patterns.
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Chapter 7

Conclusion

The thesis covers three areas: traffic signal control, air transport systems and software
engineering. Observations are made from a software engineering perspective within
the development process of a multi-agent transport simulation — MATSim.

Traffic signal control can be simulated with the multi-agent approach. Traffic flow at
signalized intersections is simulated by a queue model (Gawron, 1998b; Simon et al.,
1999; Cetin, 2005). This is the default traffic flow model of the simulation. Going be-
yond (Gawron, 1998b; Simon et al., 1999; Cetin, 2005), the thesis provides a detailed
specification for the modeling of traffic signals. The traffic signal model and the under-
lying implementation are optional extensions to the overall simulation process. It can
be employed without modifications of the transport network. The implementation can
be extended or exchanged completely. Based on the traffic signal model, network wide
effects on travel patterns are studied that result from a change of traffic signal control.
Traffic patterns can be worse, if a fixed-time control is replaced by a traffic-responsive
control. It is shown, that the simulation can capture these instabilities. First results from
an ongoing project indicate, that different choice dimensions of travelers influence the
evaluation of traffic signal control. An optimized coordination of fixed-time control
appears quite stable for different choice dimensions and travel patterns. The overall
approach is suited to study network wide effects of traffic-responsive and optimized
traffic signal control.

The multi-agent simulation can be applied to air transport systems. Therefore, it is
shown, how technology of air transport systems can be modeled. Then, individual
passengers are modeled on all stages of their trip including their choice of transport
mode. Thus, competitive markets, e.g., between high speed rail and air transport, can
be analyzed. Results reveal, however, a more general problem of the currently imple-
mented mode choice model. A potential solution is presented, that may provide further
insights and implications to improve the quality of the software.

The software engineering part of this thesis explains backgrounds and implications
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of the design decisions undertaken while the first 2007 prototype of MATSim was re-
designed. The prototype was a monolithic piece of hard to customize software, and
thus not suited for further research. The redesign targets at a modular, extensible ar-
chitecture that permits researchers to modify or add certain components to the overall
simulation. As proof of concept, the module for fixed-time traffic signal control is pro-
vided as extension. The module is completely decoupled from the overall simulation
approach and can be replaced in part, or completely.

Decoupled modules increase quality of software based research. They are more stable
than monolithic software structures. The latter face the problem that each refactoring
of some component implies changes to many other components. A change to a compo-
nent may imply that code reviews and proofs of concept have to be repeated. Clearly,
sole decoupling is not solving all problems of research software. Revisiting the argu-
mentation in the motivation of this thesis, there is no general answer how to write and
maintain research software. Further, there is no overall agreement to responsibilities
for selection, testing, and technical documentation of software based research. Fre-
quently, none of these steps is undertaken carefully. Thus, software based research may
indeed be considered critically. Within a single work these problems obviously cannot
be solved.

Some contributions, however, can be found within this thesis and may support further
considerations. Based on well established concepts from computer science and soft-
ware engineering, it is argued that concerns should be separated. This applies to the
separation of data, computational functions, and user iterfaces, as well as to the use
of standards instead of customized solutions. Code (peer) reviews are eased by such
architectures. A reviewer can focus on the part of the software that is subject to the
review.

The code is open source, version controled, and hosted on a publicly accessible server.
The build sequence of the software is, besides abuse, reproduceable. In conjunction
with the information provided in Appendix A, the presented simulation runs can be
reproduced. Within the open source software development process, branching is fre-
quently used. Branching is considered helpful for the development of new software
components. For peer reviewing software functionality, however, branching is cum-
bersome. The complexity to understand changes made to a branch increases quickly.
The review and all studies must be repeated, when the branch is merged with the main
development code. Therefore, the software architecture described in this thesis encour-
ages customizable code. The responsiblity to motivate and describe such customiza-
tions accurately has to be beared by the researcher. Journals, that publish the research
results, may encourage researchers to provide such documentation.

The results for the air transport model presented in Chapter 6 nicely illustrate the devel-
opment cycle of the simulation. A simulation model, that provides plausible answers
to partial problems, can be programmed much faster than it can be made consistent
with theory. A lack of resources for more theoretical considerations may explain this
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practice, but also, a lack of generally accepted or applicable theory. The latter may mo-
tivate further theoretical work that is eased by the white box simulation. Awareness of
this development cycle is considered essential for researches. Before certain features of
the simulation are selected for further studies, some tests are essential. Clearly, further
improvements can be undertaken to support software selection and use.

Peer reviewed software may support the selection process of researchers. But, as long
as software is under development, there is a strong incentive to use more recent ver-
sions of a software than the peer reviewed version. Functionality, that worked in the
peer reviewed version, can be faulty in a newer version. Further, sole peer reviewing
might not uncover all effects that emerge from the implemented algorithmic. These
deficiencies could be remedied in part by a certain set of default scenarios. For certain
builds of a software, these scenarios can be analyzed automatically. The outcome of
analysis then could be provided to researchers, e.g., as pdf file, and may help to select
a certain software. Further, it may help reviewers to assess changes made to default
functionality. Such scenarios can be set up on artifical instances that allow theoretical
calculations (e.g. Rieser et al., 2009), and on real-world instances. The latter requires
publicly available data, that is still hard to gather for the transportation domain. In the
last years, however, situation improved significantly in some areas, e.g., by the avail-
ablity of openstreetmap data. Currently, a lot of effort is undertaken for open access to
public transit schedules.

In this thesis, several big fields of transport engineering are considered. Each of them
could, indeed, be adressed in more detail. Specialization, however, impedes a broader
view on the multi-agent simulation, that seems to be required for maintenance. This
consideration may justify the chosen approach. Therefore, at some points in this work,
we stop under the assumption that someone can take over who is more specialized in
the field, fully aware that we don’t know what we don’t know.
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Appendix A

Simulation Setups and Configuration

In the following, the technical documentation for the results presented within this
thesis is provided. This includes a revision that points to the subversion repository,
currently hosted at sourceforge (svn://svn.code.sf.net/p/matsim/source/matsim-
source). In conjunction with maven as build management, on the command line mvn
assembly:assembly provides a build of the software. Further, the path of the executable
Java class is provided. The .1log file then provides an overview of defaults and pa-
rameters of extensions that are not used at all. Names apply to the given subversion
revision and might have changed in the up-to-date head revision. The (sub-)version
management system allows to trace these redefinitions. For each study, an example
configuration is listed in conjunction with the parameter that is varied. With a high
probability, the configuration is not accepted by the current version of MATSim, but by
the provided code revision. Further explanations for variation of simulation setup can
be found in the corresponding chapters of the thesis.

A.1. Network Effects of Traffic Signal Control

A.1.1. lllustrative Example

MATSim revision: 120219 (2012-07-17 18:29:03)

Base Case & Direct Route Expansion

Executable: playground.dgrether.daganzo2012.Daganzo2012Run

The network is varied for the two simulation runs.
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svn://svn.code.sf.net/p/matsim/source/ matsim-source
svn://svn.code.sf.net/p/matsim/source/ matsim-source

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE config SYSTEM "http://www.matsim.org/files/dtd/config_v1.dtd"
L
<IENTITY INPUTBASE "/net/homes2/extern/grether/netils3/shared-svn/studies/
dgrether/daganzo2012/scenario_2/">
<!ENTITY OUTPUTBASE "/net/homes2/extern/grether/netils3/matsimOutput/
runib74/">

>
<config>
<module name="controler" >
<param name="enableLinkToLinkRouting" value="false" />
<param name="eventsFileFormat" value="xzml" />
<param name="firstIteration" value="0" />
<param name="lastIteration" value="2000" />
<param name="mobsim" value="qgsim" />
<param name="outputDirectory" value="&OUTPUTBASE;" />
<param name="runId" value="1574" />
<param name="writeEventsInterval" value="1000" />
<param name="writePlansInterval" value="1000" />
<param name="writeSnapshotsInterval" value="1000" />
</module>

<module name="global" >
<param name="coordinateSystem" value="Atlantis" />
<param name="numberOfThreads" value="1" />
<param name="randomSeed" value="4711" />

</module>

<module name="network" >
<param name="inputNetworkFile" value="&INPUTBASE;network21l.xml" />
</module>

<module name="otfvis" >
<param name="linkwidthIsProportionalTo" value="numberOfLanes" />
</module>

<module name="planCalcScore" >
<param name="BrainExpBeta" value="2.0" />
<param name="PathSizeLogitBeta" value="1.0" />
<param name="activityClosingTime_O" value="undefined" />
<param name="activityEarliestEndTime_0" value="undefined" />
<param name="activityLatestStartTime_0" value="undefined" />
<param name="activityMinimalDuration_O" value="undefined" />
<param name="activityOpeningTime_0" value="undefined" />
<param name="activityPriority_0" value="1.0" />
<param name="activityType_0" value="h" />
<param name="activityTypicalDuration_0" value="24:00:00" />
<param name="constantBike" value="0.0" />
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<param name="constantCar" value="0.0" />
<param name="constantPt" value="0.0" />
<param name="constantWalk" value="0.0" />
<param name="earlyDeparture" value="-0.0" />
<param name="lateArrival" value="0.0" />
<param name="learningRate" value="1.0" />
<param name="marginalUtilityOfMoney" value="1.0" />
<param name="marginalUtlOfDistanceWalk" value="0.0" />
<param name="monetaryDistanceCostRateCar" value="0.0" />
<param name="monetaryDistanceCostRatePt" value="0.0" />
<param name="performing" value="0.0" />
<param name="traveling" value="-6.0" />
<param name="travelingBike" value="-6.0" />
<param name="travelingPt" value="-6.0" />
<param name="travelingWalk" value="-6.0" />
<param name="utilityOfLineSwitch" value="-1.0" />
<param name="waiting" value="0.0" />
</module>

<module name="plans" >
<param name="inputPlansFile" value="&INPUTBASE;/plans.xml" />
</module>

<module name="gsim" >
<param name="flowCapacityFactor" value="1.0" />
<param name="numberOfThreads" value="1" />
<param name="removeStuckVehicles" value="false" />
<param name="stuckTime" value="100.0" />
<param name="simStarttimeInterpretation" value="
max0fStarttimeAndEarliestActivityEnd" />
<param name="snapshotStyle" value="queue" />
<param name="snapshotperiod" value="00:00:10" />
<param name="startTime" value="00:00:00" />
<param name="storageCapacityFactor" value="1.0" />
<param name="vehicleBehavior" value="exception" />
</module>

<module name="strategy" >
<param name="ModuleProbability_1" value="0.9" />
<param name="Module_1" value="ChangeExpBeta" />
<param name="ModuleProbability_2" value="0.1" />
<param name="Module_2" value="ReRoute" />
<param name="maxAgentPlanMemorySize" value="5" />
</module>

<module name="travelTimeCalculator" >
<param name="calculateLinkToLinkTravelTimes" value="false" />
<param name="calculateLinkTravelTimes" value="true" />
<param name="travelTimeBinSize" value="1" />
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<param name="travelTimeCalculator" value="TravelTimeCalculatorArray" />
</module>

<module name="vspExperimental" >
<param name="activityDurationInterpretation" value="minOfDurationAndEndTime"
/>
<param name="vspDefaultsCheckingLevel" value="abort" />
<param name="usingOpportunityCostOfTimeForPtRouting" value="true" />
</module>
</config>

Adding an Adaptive Signal

Executable: playground.dgrether.daganzo2012.Daganzo2012SimpleAdaptiveRun

The parameter "initialRedOn4" is varied.

<?xml version="1.0" encoding="UTF-8"7>

<!DOCTYPE config SYSTEM "http://www.matsim.org/files/dtd/config_v1.dtd"

[

<!ENTITY INPUTBASE "/net/homes2/extern/grether/netils3/shared-svn/studies/
dgrether/daganzo2012/scenario_2/">

<I!ENTITY OUTPUTBASE "/net/homes2/extern/grether/netils3/matsimOutput/
runl579/">

<config>

<module name="controler" >
<param name="enableLinkToLinkRouting" value="false" />
<param name="eventsFileFormat" value="xml" />
<param name="firstIteration" value="0" />
<param name="lastIteration" value="2000" />
<param name="mobsim" value="gsim" />
<param name="outputDirectory" value="&OUTPUTBASE;" />
<param name="runId" value="1579" />
<param name="writeEventsInterval" value="1000" />
<param name="writePlansInterval" value="1000" />
<param name="writeSnapshotsInterval" value="1000" />
</module>

<module name="daganzo2012">
<param name="initialRedOn4" value="0" />
</module>

<module name="global" >
<param name="coordinateSystem" value="Atlantis" />
<param name="numberQfThreads" value="1" />
<param name="randomSeed" value="4711" />
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</module>

<module name="network" >

<param name="inputNetworkFile" value="&INPUTBASE;network22.xml" />

</module>

<module name="otfvis" >

<param name="linkwidthIsProportionalTo" value="numberOfLanes" />

</module>

<module name="planCalcScore" >

<param name="BrainExpBeta" value="2.0" />
<param name="PathSizeLogitBeta" value="1.0" />
<param name="activityClosingTime_0" value="undefined" />
<param name="activityEarliestEndTime_0" value="undefined" />
<param name="activityLatestStartTime_0" value="undefined" />
<param name="activityMinimalDuration_0" value="undefined" />
<param name="activityOpeningTime_0" value="undefined" />
<param name="activityPriority_O" value="1.0" />
<param name="activityType_O" value="h" />
<param name="activityTypicalDuration_0" value="24:00:00" />
<param name="constantBike" value="0.0" />
<param name="constantCar" value="0.0" />
<param name="constantPt" value="0.0" />
<param name="constantWalk" value="0.0" />
<param name="earlyDeparture" value="-0.0" />
<param name="lateArrival" value="0.0" />
<param name="learningRate" value="1.0" />
<param name="marginalUtilityOfMoney" value="1.0" />
<param name="marginalUtlOfDistanceWalk" value="0.0" />
<param name="monetaryDistanceCostRateCar" value="0.0" />
<param name="monetaryDistanceCostRatePt" value="0.0" />
<param name="performing" value="0.0" />
<param name="traveling" value="-6.0" />
<param name="travelingBike" value="-6.0" />
<param name="travelingPt" value="-6.0" />
<param name="travelingWalk" value="-6.0" />
<param name="utilityOfLineSwitch" value="-1.0" />
<param name="waiting" value="0.0" />

</module>

<module name="plans" >

<param

name="inputPlansFile" value="&INPUTBASE;/plans.xml" />

</module>

<module name="qgsim" >

<param
<param
<param

name="flowCapacityFactor" value="1.0" />
name="number0fThreads" value="1" />
name="removeStuckVehicles" value="false" />
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<param
<param

name="stuckTime" value="100.0" />
name="simStarttimeInterpretation" value="

max0fStarttimeAndEarliestActivityEnd" />

<param name="snapshotStyle" value="queue" />

<param name="snapshotperiod" value="00:00:10" />

<param name="startTime" value="00:00:00" />

<param name="storageCapacityFactor" value="1.0" />

<param name="vehicleBehavior" value="exception" />
</module>

<module name="strategy" >

<param name="ModuleProbability_1" value="0.9" />

<param name="Module_1" value="ChangeExpBeta" />

<param name="ModuleProbability_2" value="0.1" />

<param name="Module_2" value="ReRoute" />

<param name="maxAgentPlanMemorySize" value="5" />
</module>

<module name="travelTimeCalculator" >

<param name="calculateLinkToLinkTravelTimes" value="false" />

<param name="calculateLinkTravelTimes" value="true" />

<param name="travelTimeBinSize" value="1" />

<param name="travelTimeCalculator" value="TravelTimeCalculatorArray" />
</module>

<module name="vspExperimental" >

<param name="activityDurationInterpretation" value="minOfDurationAndEndTime"
/>
<param name="vspDefaultsCheckingLevel" value="abort" />
<param name="usingOpportunityCostOfTimeForPtRouting" value="true" />
</module>
</config>

A.1.2. Cottbus Scenario

MATSim revision: 120407 (2012-07-27 15:05:10)

Executable: playground.dgrether.DgController

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE config SYSTEM "http://www.matsim.org/files/dtd/config_v1.dtd"

[

<!ENTITY INPUTBASE "/net/homes2/extern/grether/netils3/shared-svn/studies/
dgrether/cottbus/cottbus_feb_fix/">

<IENTITY OUTPUTBASE "/net/homes2/extern/grether/netils3/matsimOutput/
runl712/">
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<config>
<module name="global" >
<param name="numberOfThreads" value="2" />
</module>

<module name="controler" >
<param name="enableLinkToLinkRouting" value="true" />
<param name="eventsFileFormat" value="xml" />
<param name="firstIteration" value="0" />
<param name="lastIteration" value="1000" />
<param name="outputDirectory" value="&0OUTPUTBASE;" />
<param name="runId" value="1712" />
<param name="writeEventsInterval" value="100" />
<param name="writePlansInterval" value="100" />
<param name="writeSnapshotsInterval" value="100" />
<param name="mobsim" value="qgsim" />
<param name="snapshotFormat" value="otfvis" />
</module>

<module name="network" >
<param name="inputNetworkFile" value="&INPUTBASE;network_wgs84_utm33n.xml.gz
n />
<param name="laneDefinitionsFile" value="&INPUTBASE;lanes.xml" />
</module>

<module name="planCalcScore" >
<param name="learningRate" value="1.0" />
<param name="BrainExpBeta" value="2.0" />

<param name="lateArrival" value="-18" />
<param name="performing" value="+6" />
<param name="traveling" value="-6" />

<param name="activityType_0" value="home" /> <!-- home -->
<param name="activityPriority_O" value="1" />
<param name="activityTypicalDuration_O" value="15:30:00" />

<param name="activityType_1" value="work" /> <!-- work -->
<param name="activityPriority_1" value="1" />

<param name="activityTypicalDuration_1" value="08:30:00" />
<param name="activityLatestStartTime_1" value="09:00:00" />
<param name="activityOpeningTime_1" value="07:00:00" />
<param name="activityClosingTime_1" value="18:00:00" />

<param name="activityType_2" value="fb" /> <!-- football -->
<param name="activityPriority_2" value="1" />

<param name="activityTypicalDuration_2" value="02:30:00" />
<param name="activitylLatestStartTime_2" value="17:30:00" />
<param name="activityOpeningTime_2" value="17:00:00" />
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<param name="activityClosingTime_2" value="20:15:00" />
</module>

<module name="plans" >
<param name="inputPlansFile" value="&INPUTBASE;
cb_spn_gemeinde_nachfrage_landuse/
commuter_population_wgs84_utm33n_car_only.xml.gz" />
</module>

<module name="gsim" >
<param name="numberOfThreads" value="1" />
<param name="removeStuckVehicles" value="false" />
<param name="snapshotStyle" value="queue" />
<param name="snapshotperiod" value="00:05:00" />
<param name="stuckTime" value="100.0" />
<param name="flowCapacityFactor" value="0.70" />
<param name="storageCapacityFactor" value="0.70" />
</module>

<module name="scenario" >

<param name="useLanes" value="true" />

<param name="useSignalsystems" value="true" />
</module>

<module name="signalsystems" >
<param name="ambertimes" value="&INPUTBASE;amber_times.xml.gz" />
<param name="signalcontrol" value="&INPUTBASE;signal_control.xml" />
<param name="signalgroups" value="&INPUTBASE;signal_groups.xml" />
<param name="signalsystems" value="&INPUTBASE;signal_systems.xml" />
</module>

<module name="strategy" >
<param name="maxAgentPlanMemorySize" value="4" />
<param name="Module_1" value="ChangeExpBeta" />
<param name="ModuleProbability_1" value="0.8" />
<param name="Module_2" value="ReRoute" />
<param name="ModuleProbability_2" value="0.1" />
<param name="Module_3" value="TimeAllocationMutator" />
<param name="ModuleProbability_3" value="0.1" />
<param name="ModuleDisableAfterIteration_2" value="500" />
<param name="ModuleDisableAfterIteration_3" value="500" />
</module>

<module name="travelTimeCalculator" >
<param name="calculateLinkToLinkTravelTimes" value="true" />
<param name="calculateLinkTravelTimes" value="true" />

</module>

<module name="TimeAllocationMutator" >
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<param name="mutationRange" value="7200" />
</module>

<module name="vspExperimental" >
<param name="activityDurationInterpretation" value="endTimeOnly" />
<param name="vspDefaultsCheckingLevel" value="abort" />
<param name="usingOpportunityCostOfTimeForPtRouting" value="true" />
</module>
</config>

A.1.3. Optimization and Network Wide Analysis of Traffic Signal Control

Density, Speed, Flow

MATSIm revision: r25540 (2013-08-12 17:00:00)
Executable: playground.dgrether.DgController

The parameters "flowCapacityFactor" and "storageCapacityFactor" are varied.
p P y g P ¥y

<?xml version="1.0" encoding="UTF-8"7>

<!DOCTYPE config SYSTEM "http://www.matsim.org/files/dtd/config_v1.dtd"

L

<!ENTITY INPUTBASE "/net/homes2/extern/grether/netils3/shared-svn/studies/
dgrether/cottbus/cottbus_feb_fix/">

<!ENTITY PROJECTSBASE "/net/homes2/extern/grether/netils3/shared-svn/projects/
cottbus/cb2ks2010/">

<IENTITY OUTPUTBASE "/net/homes2/extern/grether/netils3/matsimOutput/runi950/

Il>
]
>
<config>

<module name="global" >
<param name="numberOfThreads" value="2" />
</module>

<module name="controler" >
<param name="enableLinkToLinkRouting" value="true" />
<param name="eventsFileFormat" value="xml" />
<param name="firstIteration" value="0" />
<param name="lastIteration" value="1000" />
<param name="outputDirectory" value="&0OUTPUTBASE;" />
<param name="runId" value="1950" />
<param name="writeEventsInterval" value="100" />
<param name="writePlansInterval" value="100" />
<param name="writeSnapshotsInterval" value="100" />
<param name="mobsim" value="qgsim" />
<param name="snapshotFormat" value="otfvis" />
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</module>

<module name="gsim" >
<param name="numberOfThreads" value="1" />
<param name="removeStuckVehicles" value="false" />
<param name="snapshotStyle" value="queue" />
<param name="snapshotperiod" value="00:05:00" />
<param name="stuckTime" value="100.0" />
<param name="flowCapacityFactor" value="0.50" />
<param name="storageCapacityFactor" value="0.50" />
<param name="nodeOffset" value="40.0" />

</module>

<module name="otfvis" >
<param name="agentSize" value="70.0" />
<param name="linkWidth" value="30.0" />
<param name="linkwidthIsProportionalTo" value="numberOfLanes" />
<param name="showTeleportation" value="false" />
</module>

<module name="scenario" >

<param name="useLanes" value="true" />

<param name="useSignalsystems" value="true" />
</module>

<module name="network" >
<param name="inputNetworkFile" value="&INPUTBASE;network_wgs84_utm33n.xml.gz
n />
<param name="laneDefinitionsFile" value="&INPUTBASE;lanes.xml" />
</module>

<module name="plans" >
<param name="inputPlansFile" value="&INPUTBASE;
cb_spn_gemeinde_nachfrage_landuse/
commuter_population_wgs84_utm33n_car_only.xml.gz" />
</module>

<module name="signalsystems" >
<param name="ambertimes" value="&INPUTBASE;amber_times.xml.gz" />
<param name="signalcontrol" value="&INPUTBASE;signal_control_no_13.xml" />
<param name="signalgroups" value="&INPUTBASE;signal_groups_no_13.xml" />
<param name="signalsystems" value="&INPUTBASE;signal_systems_no_13.xml" />
</module>

<module name="planCalcScore" >

<param name="learningRate" value="1.0" />
<param name="BrainExpBeta" value="2.0" />
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<param name="lateArrival" value="-18" />

<param name="performing" value="+6" />

<param name="traveling" value="-6" />

<param name="activityType_0" value="home" />

<param name="activityPriority_0" value="1" />

<param name="activityTypicalDuration_0" value="15:30

<param name="activityType_1" value="work" />

<param name="activityPriority_1" value="1" />

<param name="activityTypicalDuration_1" value="08:30

<param name="activityLatestStartTime_1" value="09:00

<param name="activityOpeningTime_1" value="07:00:00"

<param name="activityClosingTime_1" value="18:00:00"

<param name="activityType_2" value="fb" />

<param name="activityPriority_2" value="1" />

<param name="activityTypicalDuration_2" value="02:30

<param name="activityLatestStartTime_2" value="17:30

<param name="activityOpeningTime_2" value="17:00:00"

<param name="activityClosingTime_2" value="20:15:00"
</module>

<module name="strategy" >

100"

:00"
:00"

/>
/>

100"
100"

/>
/>

/>

/>

/>
/>

/>
/>

<param name="maxAgentPlanMemorySize" value="4" />

<param name="Module_1" value="ChangeExpBeta" />

<param name="ModuleProbability_1" value="0.8" />

<param name="Module_2" value="ReRoute" />

<param name="ModuleProbability_2" value="0.1" />

<param name="Module_3" value="TimeAllocationMutator"

<param name="ModuleProbability_3" value="0.1" />

<param name="ModuleDisableAfterIteration_2" value="500" />

<param name="ModuleDisableAfterIteration_3" value="500" />
</module>

<module name="travelTimeCalculator" >

<param name="calculateLinkToLinkTravelTimes" value="true" />

<param name="calculateLinkTravelTimes" value="true" />
</module>

<module name="TimeAllocationMutator" >

<param

name="mutationRange" value="7200" />

</module>

<module name="vspExperimental" >
<param name="activityDurationInterpretation" value="tryEndTimeThenDuration"

/>

<param name="vspDefaultsCheckinglevel" value="abort" />
<param name="removingUnnecessaryPlanAttributes" value="true" />
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</module>
</config>

A.1.4. Results

MATSim revision: r20407 (2012-07-27 15:05:10)
Executable: playground.dgrether.DgController

The parameter "signalcontrol" is varied.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE config SYSTEM "http://www.matsim.org/files/dtd/config_v1.dtd"
[
<!ENTITY INPUTBASE "/net/homes2/extern/grether/netils3/shared-svn/studies/
dgrether/cottbus/cottbus_feb_fix/">
<IENTITY OUTPUTBASE "/net/homes2/extern/grether/netils3/matsimOutput/
runl912/">
<!ENTITY PROJECTSBASE "/net/homes2/extern/grether/netils3/shared-svn/
projects/cottbus/cb2ks2010/">
<!ENTITY RUNBASE "/net/homes2/extern/grether/netils3/runs-svn/">
]

>
<config>
<module name="scenario" >
<param name="useLanes" value="true" />
<param name="useSignalsystems" value="true" />
</module>

<module name="network" >

<param name="inputNetworkFile" value="&INPUTBASE;network_wgs84_utm33n.xml.gz

n />
<param name="laneDefinitionsFile" value="&INPUTBASE;lanes.xml" />
</module>

<module name="plans" >
<param name="inputPlansFile" value="&RUNBASE;runl1712/1712.output_plans.xml.
gz" />
</module>

<module name="signalsystems" >
<param name="ambertimes" value="&INPUTBASE;amber_times.xml.gz" />
<param name="signalcontrol" value="&PROJECTSBASE;2013-07-31_minflow_50/
merged_signal_control_ksm_50m_sol_ksm_50a_sol.xml" />
<param name="signalgroups" value="&INPUTBASE;signal_groups_no_13.xml" />
<param name="signalsystems" value="&INPUTBASE;signal_systems_no_13.xml" />
</module>
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<module name="global" >
<param name="numberQfThreads" value="2" />
</module>

<module name="controler" >
<param name="enableLinkToLinkRouting" value="true" />
<param name="eventsFileFormat" value="xml" />
<param name="firstIteration" value="1000" />
<param name="lastIteration" value="2000" />
<param name="outputDirectory" value="&OUTPUTBASE;" />
<param name="runId" value="1912" />
<param name="writeEventsInterval" value="100" />
<param name="writePlansInterval" value="100" />
<param name="writeSnapshotsInterval" value="100" />
<param name="mobsim" value="gsim" />
<param name="snapshotFormat" value="otfvis" />
</module>

<module name="strategy" >
<param name="maxAgentPlanMemorySize" value="4" />
<param name="Module_1" value="ChangeExpBeta" />
<param name="ModuleProbability_1" value="0.9" />
<param name="Module_2" value="ReRoute" />
<param name="ModuleProbability_2" value="0.1" />
<param name="ModuleDisableAfterIteration_2" value="1500" />
<!--<param name="Module_3" value="TimeAllocationMutator" />
<param name="ModuleProbability_3" value="0.1" />
<param name="ModuleDisableAfterIteration_3" value="1500" />-->
</module>

<module name="gsim" >
<param name="numberQfThreads" value="1" />
<param name="removeStuckVehicles" value="false" />
<param name="snapshotStyle" value="queue" />
<param name="snapshotperiod" value="00:05:00" />
<param name="stuckTime" value="100.0" />
<param name="flowCapacityFactor" value="0.70" />
<param name="storageCapacityFactor" value="0.70" />
</module>

<module name="planCalcScore" >
<param name="learningRate" value="1.0" />
<param name="BrainExpBeta" value="2.0" />

<param name="lateArrival" value="-18" />

<param name="performing" value="+6" />
<param name="traveling" value="-6" />
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<param name="activityType_0" value="home" />

<param name="activityPriority_0" value="1" />

<param name="activityTypicalDuration_0" value="15:30:

<param name="activityType_1" value="work" />

<param name="activityPriority_1" value="1" />

<param name="activityTypicalDuration_1" value="08:30

<param name="activityLatestStartTime_1" value="09:00:

<param name="activityOpeningTime_1" value="07:00:00"

<param name="activityClosingTime_1" value="18:00:00"

<param name="activityType_2" value="fb" />

<param name="activityPriority_2" value="1" />

<param name="activityTypicalDuration_2" value="02:30:

<param name="activityLatestStartTime_2" value="17:30:

<param name="activityOpeningTime_2" value="17:00:00"

<param name="activityClosingTime_2" value="20:15:00"
</module>

<module name="travelTimeCalculator" >
<param name="calculateLinkToLinkTravelTimes" value="true" />
<param name="calculateLinkTravelTimes" value="true" />
</module>

<module name="TimeAllocationMutator" >

<param

name="mutationRange" value="7200" />

</module>

<module name="vspExperimental" >
<param name="activityDurationInterpretation" value="endTimeOnly" />
<param name="vspDefaultsCheckinglevel" value="abort" />
<param name="usingOpportunityCostOfTimeForPtRouting" value="true" />
</module>

</config>
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/>

A.2. Modeling and Simulation of Air Transport Systems

A.2.1. Air Transport Technology

MATSim revision: r20407 (2012-08-03 15:05:10)

Execuﬂﬁﬂe:playground.fuerbas.SfAirController,fordekQIViarandonndravalayground

.fuerbas.DgFlightDelayController

The parameter "inputNetworkFile" is varied.
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<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE config SYSTEM "http://www.matsim.org/files/dtd/config_v1.dtd"
L
<!ENTITY INPUTBASE "/net/ils3/dgrether/shared-svn/studies/countries/eu/
flight/dg_oag_tuesday_flight_model_2_runways_3600vph/">
<!ENTITY OUTPUTBASE "/net/ils3/dgrether/matsimQutput/runi812/">

>
<config>
<module name="global" >
<param name="coordinateSystem" value="EPSG:3395" />
<param name="numberQfThreads" value="1" />
<param name="randomSeed" value="4711" />
</module>

<module name="network" >
<param name="inputNetworkFile" value="&INPUTBASE;air_network.xml" />
</module>

<module name="plans" >
<param name="inputPlansFile" value="null" />
</module>

<module name="scenario" >
<param name="useTransit" value="true" />
<param name="useVehicles" value="true" />
</module>

<module name="transit" >
<param name="transitModes" value="pt" />
<param name="transitScheduleFile" value="&INPUTBASE;flight_transit_schedule.
xml" />
<param name="vehiclesFile" value="&INPUTBASE;flight_transit_vehicles.xml" />
</module>

<module name="controler" >
<param name="eventsFileFormat" value="xml" />
<param name="firstIteration" value="0" />
<param name="lastIteration" value="0" />
<param name="outputDirectory" value="&OUTPUTBASE;" />
<param name="runId" value="1812" />
<param name="writeEventsInterval" value="1" />
<param name="snapshotFormat" value="otfvis" />
<param name="mobsim" value="gsim" />
</module>

<module name="qgsim" >
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<param name="flowCapacityFactor" value="1.0" />
<param name="storageCapacityFactor" value="1.0" />
<param name="removeStuckVehicles" value="false" />
<param name="simStarttimelnterpretation" value="
max0fStarttimeAndEarliestActivityEnd" />
<param name="snapshotStyle" value="queue" />
<param name="snapshotperiod" value="00:05:00" />
<param name="stuckTime" value="100.0" />
</module>

<module name="otfvis" >

<param name="linkWidth" value="50.0" />

<param name="showTeleportation" value="false" />
</module>

<module name="planCalcScore" >
<param name="BrainExpBeta" value="2.0" />
<param name="performing" value="6.0" />
<param name="traveling" value="-6.0" />
<param name="travelingPt" value="-6.0" />
<param name="lateArrival" value="-18.0" />
<param name="travelingWalk" value="-6.0" />

</module>

<module name="strategy" >
<param name="ModuleProbability_1" value="0.9" />
<param name="ModuleProbability_2" value="0.1" />
<param name="Module_1" value="ChangeExpBeta" />
<param name="Module_2" value="ReRoute" />
<param name="maxAgentPlanMemorySize" value="4" />
</module>

<module name="TimeAllocationMutator">
<param name="mutationRange" value="7200.0" />
</module>

<module name="vspExperimental" >
<param name="usingOpportunityCostOfTimeForPtRouting" value="true" />
<param name="vspDefaultsCheckingLevel" value="abort" />
<param name="removingUnnecessaryPlanAttributes" value="true" />-->
</module>
</config>

A.2.2. Passenger Demand

MATSim revision : 124284 (2013-05-24 18:09:32)
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Executable: playground.fuerbas.DgFlightControllerStucked

Air Transport Only

The parameter "utilityOfLineSwitch" is varied.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE config SYSTEM "http://www.matsim.org/files/dtd/config_v1.dtd"
[
<!ENTITY INPUTBASE "/net/ils3/dgrether/shared-svn/studies/countries/eu/
flight/dg_oag_tuesday_flight_model_2_runways_3600vph_storage_restriction
/ll>
<!ENTITY OUTPUTBASE "/net/ils3/dgrether/matsimOutput/runi876/">

>
<config>
<module name="global" >
<param name="coordinateSystem" value="EPSG:3395" />
<param name="numberQfThreads" value="2" />
<param name="randomSeed" value="4711" />
</module>

<module name="network" >
<param name="inputNetworkFile" value="&INPUTBASE;air_network.xml" />
</module>

<module name="plans" >
<param name="inputPlansFile" value="&INPUTBASE;../../../de/flight/demand/
destatis/2009_september/population_september_2009_tabelle_2.2.2.xml.gz"
/>

</module>

<module name="scenario" >
<param name="useTransit" value="true" />
<param name="useVehicles" value="true" />
</module>

<module name="transit" >
<param name="transitScheduleFile" value="&INPUTBASE;flight_transit_schedule.
xml" />
<param name="vehiclesFile" value="&INPUTBASE;flight_transit_vehicles.xml" />
</module>

<module name="controler" >
<param name="eventsFileFormat" value="xml" />
<param name="firstIteration" value="0" />
<param name="lastIteration" value="600" />
<param name="outputDirectory" value="&OUTPUTBASE;" />
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<param name="runId" value="1876" />
<param name="writeEventsInterval" value="100" />
<param name="mobsim" value="gsim" />

</module>

<module name="qgsim" >
<param name="flowCapacityFactor" value="1.0" />
<param name="storageCapacityFactor" value="1.0" />
<param name="removeStuckVehicles" value="false" />
<param name="simStarttimeInterpretation" value="
max0fStarttimeAndEarliestActivityEnd" />
<param name="snapshotStyle" value="queue" />
<param name="stuckTime" value="100.0" />
<param name="endTime" value="40:00:00" />
<param name="numberOfThreads" value="1" />
</module>

<module name="otfvis" >

<param name="linkWidth" value="50.0" />

<param name="showTeleportation" value="false" />
</module>

<module name="planCalcScore" >
<param name="BrainExpBeta" value="2.0" />
<param name="performing" value="6.0" />
<param name="traveling" value="-6.0" />
<param name="travelingPt" value="-6.0" />
<param name="lateArrival" value="-18.0" />
<param name="travelingWalk" value="-6.0" />
<param name="utilityOfLineSwitch" value="-0.0" />
<param name="activityType_0" value="home" />
<param name="activityTypicalDuration_0" value="21:00:00" />
</module>

<module name="strategy" >
<param name="ModuleProbability_1" value="0.8" />
<param name="ModuleProbability_2" value="0.1" />
<param name="ModuleProbability_3" value="0.1" />
<param name="Module_1" value="ChangeExpBeta" />
<param name="Module_2" value="ReRoute" />
<param name="ModuleDisableAfterIteration_2" value="500" />
<param name="Module_3" value="TransitTimeAllocationMutator" />
<param name="ModuleDisableAfterIteration_3" value="500" />
<param name="maxAgentPlanMemorySize" value="5" />
</module>

<module name="TimeAllocationMutator">

<param name="mutationRange" value="7200.0" />
</module>
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<module name="vspExperimental" >
<param name="usingOpportunityCostOfTimeForPtRouting" value="true" />
<param name="vspDefaultsCheckinglLevel" value="warn" />
<param name="isGeneratingBoardingDeniedEvent" value="true" />
</module>
</config>

Alternative Mode

The parameter "teleportedModeSpeed_train" is varied.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE config SYSTEM "http://www.matsim.org/files/dtd/config_v1.dtd"
[
<!ENTITY INPUTBASE "/net/ils3/dgrether/shared-svn/studies/countries/eu/
flight/dg_oag_tuesday_flight_model_2_runways_3600vph_storage_restriction
/||>
<!ENTITY OUTPUTBASE "/net/ils3/dgrether/matsimQutput/run1903/">

>
<config>
<module name="global" >
<param name="coordinateSystem" value="EPSG:3395" />
<param name="numberQfThreads" value="2" />
<param name="randomSeed" value="4711" />
</module>

<module name="network" >
<param name="inputNetworkFile" value="&INPUTBASE;air_network.xml" />
</module>

<module name="plans" >
<param name="inputPlansFile" value="&INPUTBASE;../../../de/flight/demand/
destatis/2009_september/population_september_2009_tabelle_2.2.2.xml.gz"
/>
</module>

<module name="scenario" >
<param name="useTransit" value="true" />
<param name="useVehicles" value="true" />
</module>

<module name="transit" >
<param name="transitScheduleFile" value="&INPUTBASE;flight_transit_schedule.
xml" />
<param name="vehiclesFile" value="&INPUTBASE;flight_transit_vehicles.xml" />
</module>
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<module name="controler" >
<param name="eventsFileFormat" value="xml" />
<param name="firstIteration" value="0" />
<param name="lastIteration" value="600" />
<param name="outputDirectory" value="&OUTPUTBASE;" />
<param name="runId" value="1903" />
<param name="writeEventsInterval" value="100" />
<param name="mobsim" value="qgsim" />
</module>

<module name="qgsim" >
<param name="flowCapacityFactor" value="1.0" />
<param name="storageCapacityFactor" value="1.0" />
<param name="removeStuckVehicles" value="false" />
<param name="simStarttimeInterpretation" value="
max0fStarttimeAndEarliestActivityEnd" />
<param name="snapshotStyle" value="queue" />
<param name="stuckTime" value="100.0" />
<param name="endTime" value="40:00:00" />
<param name="numberOfThreads" value="1" />
</module>

<module name="otfvis" >

<param name="linkWidth" value="50.0" />

<param name="showTeleportation" value="false" />
</module>

<module name="planscalcroute" >
<param name="beelineDistanceFactor" value="0.8" />
<param name="networkModes" value="car" />
<param name="teleportedModeSpeed_train" value="27.777777778" />
<param name="teleportedModeFreespeedFactor_pt" value="2.0" />
<param name="teleportedModeSpeed_bike" value="4.166666666666667" />
<param name="teleportedModeSpeed_undefined" value="13.88888888888889" />
<param name="teleportedModeSpeed_walk" value="0.8333333333333333" />
</module>

<module name="planCalcScore" >
<param name="BrainExpBeta" value="2.0" />
<param name="performing" value="6.0" />
<param name="traveling" value="-6.0" />
<param name="travelingPt" value="-6.0" />
<param name="lateArrival" value="-18.0" />
<param name="travelingWalk" value="-6.0" />
<param name="travelingOther" value="-6.0" />
<param name="utilityOfLineSwitch" value="-0.0" />
<param name="activityType_0" value="home" />
<param name="activityTypicalDuration_0" value="21:00:00" />
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</module>

<module name="changeLegMode">

<param name="modes" value="pt,train" />

<param name="ignoreCarAvailability" value="true" />
</module>

<module name="strategy" >
<param name="maxAgentPlanMemorySize" value="5" />
<param name="ModuleProbability_1" value="0.7" />
<param name="Module_1" value="ChangeExpBeta" />

<param name="ModuleProbability_2" value="0.1" />
<param name="Module_2" value="ReRoute" />
<param name="ModuleDisableAfterIteration_2" value="500" />

<param name="ModuleProbability_3" value="0.1" />
<param name="ModuleDisableAfterIteration_3" value="500" />
<param name="Module_3" value="TransitTimeAllocationMutator" />

<param name="ModuleProbability_4" value="0.1" />

<param name="Module_4" value="TransitChangeLegMode" />

<param name="ModuleDisableAfterIteration_4" value="500" />
</module>

<module name="TimeAllocationMutator">
<param name="mutationRange" value="7200.0" />
</module>

<module name="vspExperimental" >
<param name="vspDefaultsCheckingLevel" value="warn" />
<param name="isGeneratingBoardingDeniedEvent" value="true" />
<param name="removingUnnecessaryPlanAttributes" value="true" />-->
</module>
</config>

Path Size Logit for Plan Deletion

MATSim revision : 124284 (2013-05-24 18:09:32), playground revision: 125919, merged
into 124284 manually to keep MATSim revision stable.

Executable: playground. fuerbas.FlightControllerPSRemove.

The parameter "teleportedModeSpeed_train" is varied.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE config SYSTEM "http://www.matsim.org/files/dtd/config_v1.dtd"
L
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<!ENTITY INPUTBASE "/net/ils3/dgrether/shared-svn/studies/countries/eu/
flight/dg_oag_tuesday_flight_model_2_runways_3600vph_storage_restriction
/ll>

<!ENTITY OUTPUTBASE "/net/ils3/dgrether/matsimOutput/run1893/">

>
<config>
<module name="global" >
<param name="coordinateSystem" value="EPSG:3395" />
<param name="numberOfThreads" value="2" />
<param name="randomSeed" value="4711" />
</module>

<module name="network" >
<param name="inputNetworkFile" value="&INPUTBASE;air_network.xml" />
</module>

<module name="plans" >
<param name="inputPlansFile" value="&INPUTBASE;../../../de/flight/demand/
destatis/2009_september/population_september_2009_tabelle_2.2.2.xml.gz"
/>

</module>

<module name="scenario" >
<param name="useTransit" value="true" />
<param name="useVehicles" value="true" />
</module>

<module name="transit" >
<param name="transitScheduleFile" value="&INPUTBASE;flight_transit_schedule.
xml" />
<param name="vehiclesFile" value="&INPUTBASE;flight_transit_vehicles.xml" />
</module>

<module name="controler" >
<param name="eventsFileFormat" value="xml" />
<param name="firstIteration" value="0" />
<param name="lastIteration" value="600" />
<param name="outputDirectory" value="&OUTPUTBASE;" />
<param name="runId" value="1893" />
<param name="writeEventsInterval" value="100" />
<param name="mobsim" value="qsim" />
</module>

<module name="qgsim" >
<param name="flowCapacityFactor" value="1.0" />
<param name="storageCapacityFactor" value="1.0" />
<param name="removeStuckVehicles" value="false" />
<param name="simStarttimeInterpretation" value="
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max0fStarttimeAndEarliestActivityEnd" />
<param name="snapshotStyle" value="queue" />
<param name="stuckTime" value="100.0" />
<param name="endTime" value="40:00:00" />
<param name="numberQfThreads" value="1" />
</module>

<module name="otfvis" >

<param name="linkWidth" value="50.0" />

<param name="showTeleportation" value="false" />
</module>

<module name="planscalcroute" >
<param name="beelineDistanceFactor" value="0.8" />
<param name="networkModes" value="car" />
<param name="teleportedModeSpeed_train" value="27.777777778" />
<param name="teleportedModeFreespeedFactor_pt" value="2.0" />
<param name="teleportedModeSpeed_bike" value="4.166666666666667" />
<param name="teleportedModeSpeed_undefined" value="13.88888888888889" />
<param name="teleportedModeSpeed_walk" value="0.8333333333333333" />
</module>

<module name="planCalcScore" >
<param name="PathSizeLogitBeta" value="60" />
<param name="BrainExpBeta" value="2.0" />
<param name="performing" value="6.0" />
<param name="traveling" value="-6.0" />
<param name="travelingPt" value="-6.0" />
<param name="lateArrival" value="-18.0" />
<param name="travelingWalk" value="-6.0" />
<param name="travelingOther" value="-6.0" />
<param name="utilityOfLineSwitch" value="-0.0" />
<param name="activityType_0" value="home" />
<param name="activityTypicalDuration_O" value="21:00:00" />
</module>

<module name="changeLegMode">

<param name="modes" value="pt,train" />

<param name="ignoreCarAvailability" value="true" />
</module>

<module name="strategy" >
<param name="maxAgentPlanMemorySize" value="5" />
<param name="ModuleProbability_1" value="0.7" />
<param name="Module_1" value="ChangeExpBeta" />

<param name="ModuleProbability_2" value="0.1" />
<param name="Module_2" value="ReRoute" />
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<param name="ModuleDisableAfterIteration_2" value="500" />

<param name="ModuleProbability_3" value="0.1" />
<param name="ModuleDisableAfterIteration_3" value="500" />
<param name="Module_3" value="TransitTimeAllocationMutator" />

<param name="ModuleProbability_4" value="0.1" />

<param name="Module_4" value="TransitChangeLegMode" />

<param name="ModuleDisableAfterIteration_4" value="500" />
</module>

<module name="TimeAllocationMutator">
<param name="mutationRange" value="7200.0" />
</module>

<module name="vspExperimental" >
<param name="vspDefaultsCheckinglLevel" value="warn" />
<param name="isGeneratingBoardingDeniedEvent" value="true" />
<param name="removingUnnecessaryPlanAttributes" value="true" />-->
</module>
</config>
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Appendix B

Airport Capacity

For selected Airportshttp://en.wikipedia.org/wiki/List_of_the_busiest_airports_
in_Europe, 05.08.2012:

Num Code Dep Arr Total Source

01 LHR 460 44.0 900 http://www.eurocontrol.int/sites/
default/files/content/documents/nm/
reports/network-operations-annual-
report-2011-annex-02.pdf

02 CDG 63.0 540 109.0 http://www.cohor.org/

03 FRA 50.0 43.0 93.0 http://www.eurocontrol.int/sites/
default/files/content/documents/nm/
reports/network-operations-annual-
report-2011-annex-02.pdf

04 AMS 740 68.0 1120 http://www.eurocontrol.int/sites/
default/files/content/documents/nm/
reports/network-operations-annual-
report-2011-annex-02.pdf

05 MAD 50.0 48.0 n/a http://www.eurocontrol.int/sites/
default/files/content/documents/nm/
reports/network-operations—annual-
report-2011-annex-02.pdf

06 MUC 580 58.0 90.0 http://www.eurocontrol.int/sites/
default/files/content/documents/nm/
reports/network-operations-annual-
report-2011-annex-02.pdf

08 IST 280 28.0 50.0 http://www.eurocontrol.int/sites/
default/files/content/documents/nm/
reports/network-operations-annual-
report-2011-annex-02.pdf
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Num Code

09

10

11
13

14

15

18

20

22

23

24

26

27

28

29
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BCN

LGW

ORY
AYT

ZRH

PMI

VIE

DUS

ARN

MAN
BRU
STN

TXL

HEL

LIS

Dep
36.0

28.0

24.0
25.0

41.0

33.0

50.0

36.0

42.0
35.0
40.0
28.0

30.0

40.0

26.0

Arr
36.0

27.0

27.0
25.0

36.0

33.0

48.0

33.0

42.0
33.0
35.0
28.0

30.0

36.0

26.0

Total
64.0

52.0

n/a
45.0

66.0

62.0

68.0

47.0

84.0
61.0
45.0
50.0

52.0

76.0

38.0

Source
http://www.eurocontrol.int/sites/
default/files/content/documents/nm/
reports/network-operations-annual-
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31
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39

41
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NCE
CGN
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WAW

BUD

Dep
27.0

36.0

8.0

33.0

30.0
40.0

32.0

28.0

30.0

Arr
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22.0

8.0

33.0

26.0
40.0

32.0

26.0

26.0

Total
53.0

36.0
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46.0

50.0
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42.0

38.0

n/a
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Appendix C

Passenger Demand for Air Transport Systems
2011 Data

The following tables and figures are derived from simulation runs for the air transport
passenger demand model based on data from 09-2011. They are structurally equal to
the results presented in Sec. 6.4 and not explained further. In contrast to the 2009 data,
the synthetic population contains 65251 virtual persons, 1304 trips from the original
data are neglected as origin and destination are equal. See Sec. 6.4 for definitions and
interpretations.

C.1. Results 2009 vs 2011

16000 16000 T
2011 data 2011 data
, 4000 2009 data T 14000 = 2009 data
‘g 12000 e % 12000 - e
g 10000 [ . % 10000
B gooo | - S 8000 |
o 3
s 6000 | e @ 6000 -
£ 8
§ 4000 - 4 S 4000 |
2000 | e 2000
0 . (ORI ST SN ST ST S T S NN 0 L " L L L "
00:00 04:00 08:00 12:00 16:00 20:00 00:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00
time of day [hh:mm] time of day [hh:mm]

(a) 2009 vs 2011 passengers waiting for a flight (b) 2009 vs 2011 passengers traveling by plane,
or traveling by plane over time of day,  cjipeswiren = 0, iteration 600
Clineswitch = 0, iteration 600

Figure C.1.: 2009 vs 2011 data
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C.2. 2011 Data — No Random Selector for Plan Removal

C.2.1. No Alternative Mode

L B B L B B I I I
20000 - 20000 - line switch 0 N
o o IIllne S\{wtsh{g —_—
3 15000 |- 3 15000 |- Ine switch - .
I z line switch -18 ———
o s / line switch -24
g— 10000 | _g— 10000 [ v/”’\ line switch -30 _
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time of day [hh:mm] time of day [hh:mm]
(a) After Oth iteration (b) After 600th iteration

Figure C.2.: 09-2011 Data: Travelers en-route, i.e., waiting for a flight or traveling by
plane, over time of day

Clineswitch 0> ¢ meanrel error stuck
0dransfer — 0girect | 6715 82 1.56 -

-0 5248 72 0.55 1534
-6 5586 75 0.53 1469
-12 5713 76 0.65 1448
-18 5777 76 0.63 1480
-24 5785 76 0.62 1458
-30 5810 76 0.61 1456

Table C.1.: 09-2011 Data: Simulation results for different values of cjeswitch
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(a) Passengers and available seats over time (b) Correlation between the available seats, the
within Germany demand for seats and the number of pas-
sengers being stuck

Figure C.3.: 09-2011 Data: Potential reasons for stuck passengers
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C.2.2. Adding an Alternative Mode

v[km /h]

2

o meanrel error stuck

Odtransfer - Oddirect 6715

100
150
200
250
300

o
82
5380 73
5605 75
6334 80
7580 87
11239 106

1.56

0.40
0.39
0.38
0.43
0.37

185
69
33
29

9

Table C.2.: 09-2011 Data: Simulation results for different values of v, simulation with
alternative mode

air mode[ %]

alt. mode[%] stuck[%]

v[km/h] | #airmode #alt. mode # stuck
100 62726 2340 185
150 61379 3803 69
200 59491 5727 33
250 57248 7974 29
300 54089 11153 9

96.13
94.07
91.17
87.74
82.89

03.59 00.28
05.83 00.11
08.78 00.05
12.22 00.04
17.09 00.01

Table C.3.: 09-2011 Data: Modal split for different speeds of the alternative mode
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Figure C.4.: 09-2011 Data: Passengers waiting for a flight or traveling by plane or by the
alternative mode over time of day
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C.3. 2011 Data — Random Selector for Plan Removal

v[km /h] o? o meanrel error stuck
O ransfer — Oireer | 12640 112 1.75 -
100 3958 63 0.36 2
150 4273 65 0.37 1
200 7034 84 0.49 1
250 13013 114 0.59 1
300 23255 152 0.70 2

Table C.4.: 09-2011 Data & Random Selector for Plan Removal: Simulation results for
different values of v

140 —mMmm™——4——+—+— 77—+ 71—+ +——"—7"—" "7
air mode (slow alt.) =
alternative mode (slow alt.) ==
12000 |- air mode (fast alt.) =—— |
alternative mode (fast alt.)
10000 .

8000

6000

4000

number of passengers en-route

2000

00:00 04:00 08:00 12:00 16:00 20:00 00:00
time of day [hh:mm]

Figure C.5.: 09-2011 Data & Random Selector for Plan Removal: Passengers waiting for
a flight or traveling by plane or by the alternative mode over time of day
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vlkm/h] | #airmode #alt. mode # stuck | air mode[%] alt. mode[%] stuck[%]
100 59647 5602 2 91.41 08.59 00.00
150 54220 11030 1 83.09 16.90 00.00
200 48213 17037 1 73.89 26.11 00.00
250 41280 23970 1 63.26 36.74 00.00
300 32709 32540 2 50.13 49.87 00.00

Table C.5.: 09-2011 Data & Random Selector for Plan Removal: Modal split for different
speeds of the alternative mode
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