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Zusammenfassung

Ein Ziel der komponentenbasierten Softwareentwicklung besteht in der Wiederverwendung be-
reits entwickelter Komponenten zur Verbesserung der Qualität und zur Verminderung der
Kosten des Softwareentwicklungsprozesses. Die Wiederverwendung von bestehenden Kompo-
nenten erfordert jedoch die sorgfältige Integration in das zu entwickelnde System und wird
erschwert durch unterschiedliche Middlewaretechnologien, unterschiedliche Kommunikations-
und Interoperationsmechanismen dieser Technologien sowie durch unterschiedliche und zum
Teil unvollständige Komponentenspezifikationen.

Das grundlegende Ziel dieser Arbeit ist die Unterstützung der Komponentenintegration durch
eine ausführliche Konfliktanalyse, welche bestehende Inkompatibilitäten von zu integrierenden
Komponenten aufzeigt. Dazu wird ein Framework bereitgestellt, welches es erlaubt, Kompo-
nenten unterschiedlicher Technologien im Rahmen eines UML-basierten Entwicklungsprozesses
zu prüfen und die (teil-) automatische Generierung von Konnektoren vorzubereiten.

Im Gegensatz zu bisherigen Ansätzen ermöglicht dieses Framework die Prüfung von Kompo-
nenten unterschiedlicher Middlewaretechnologien in Hinblick auf strukturelle, semantische und
kommunikative Differenzen. Insbesondere die Einbeziehung von Kommunikationseigenschaften,
welche die von den beteiligten Komponenten verwendeten Kommunikationsmechanismen der
zugrundeliegenden Middlewaretechnologien beschreiben, wird zur Zeit von keinem anderen In-
tegrationsframework angeboten.

Das vorgestellte Framework basiert auf einem modellzentrierten Ansatz im Rahmen der Model
Driven Architecture (MDA). Dies bedeutet, dass sowohl Komponentenspezifikationen auf ver-
schiedenen Ebenen verwaltet werden können als auch dass Modelltransformationen unterstützt
werden. Die Konfliktanalyse basiert auf einem kanonischen plattformunabhängigen Kompo-
nentenmodell, welches von Plattformspezifika abstrahiert. Komponenten, die auf Grundlage
einer speziellen Middlewaretechnologie definiert wurden, werden durch Modelltransformationen
in das kanonische Modell abstrahiert. Umgekehrt können jedoch auch plattformunabhängige
Komponentenspezifikationen in Spezifikationen spezieller Middlewaretechnologien spezialisiert
werden. Als Besonderheit unterstützt das Framework dabei parametrisierbare Modelltrans-
formationen, so dass sich je nach Nutzervorstellungen optimale Transformationen durchführen
lassen.

Um die Verwendung des Frameworks in unterschiedlichen Anwendungsszenarien und -domänen
zu ermöglichen, wurde es möglichst flexibel definiert. Somit können sowohl unterschiedliche
Middlewaretechnologien und Typsysteme als auch unterschiedliche Spezifikationssprachen in
das Framework integriert werden. Zudem können zusätzliche Daten als RDF Statements an
beliebige Elemente von Komponenten notiert und über zusätzliche Analyseverfahren ausge-
wertet werden.





Abstract

Component Based Software Engineering is an emerging discipline that aims at improving soft-
ware development by means of artifact reuse within a systematically applied construction pro-
cess. The idea of reuse involves integrating components rather than reinventing and reimple-
menting existing artifacts. Unfortunately, reuse of existing components is a complex undertak-
ing because of different technologies, different communication forms, and incomplete component
specifications.

The objective of this work concerns the improvement of component integration by providing
extended conflict analysis capabilities, which help to identify mismatches between components
that hinder a direct integration. The work defines a Framework for Component Conflict Analysis
and Composition that serves as a basis of component integration. The framework is able to
handle components of different technologies and it is compatible with a UML-based development
process. As a result, it provides the inevitable preparatory work that is required for a semi-
automatic connector generation.

Contrary to existing approaches, the framework allows analyzing components of different mid-
dleware technologies by checking compatibility between their type, behavior, and communica-
tion related property specifications. Especially, analysis of required and provided communica-
tion properties, which takes the middleware context of components into account is not available
in comparable integration frameworks.

Components of different technologies cannot be directly compared as they are defined relative
to different programming languages, type systems, and middleware technologies. Therefore, the
framework is based on a model centric approach within the scope of the Model-Driven Archi-
tecture (MDA). Consequently, the framework distinguishes platform independent and platform
dependent component specifications. Conflict analysis is based on a platform independent
canonical model that represents the least common denominator of components in middleware
technologies. Furthermore, the framework provides model transformations that allow abstrac-
tion and refinement of components between different abstraction levels. Thereby, the framework
supports parametric model transformations as a special feature, which take user requirements
into account and result in optimal translations.

In order to gain a solution, which is adaptable to different situations and application domains,
the framework offers a highly flexible architecture. Consequently, we can integrate new mid-
dleware technologies, their type systems as well as additional specification languages into the
framework.
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Chapter 1

Introduction

1.1 Motivation

Component Based Software Engineering is an emerging discipline that aims at improving soft-
ware development by means of artifact reuse within a systematically applied construction pro-
cess. The idea of reuse involves integrating components rather than reinventing and reimple-
mening existing artifacts.

We restrict the focus of this work to the technical aspects of component integration. Precisely,
we consider the question whether two components are compatible by analyzing several relation-
ships between their specifications. Two components are compatible if they can communicate
without encountering any mismatches regarding types, behavior and semantics. The relation-
ships we use for analysis originate in syntactic and semantic categories. Thereby, syntactic
aspects are defined via type systems and subtype relationships, whereas semantic specifications
are further distinguished into pre- and post-conditions, behavioral protocols and property-based
descriptions of the semantics (functionality) and the communication requirements of compo-
nents.

We further distinguish component integration by two steps: conflict analysis and connector
generation. Conflict analysis identifies mismatches between components. Conflicts are differ-
ences between component descriptions that hinder a direct integration. A connector resolves
the identified mismatches and therefore integrates the components. This work concentrates
on the first integration step. The second step is considered insofar as connector generation is
prepared and the approaches of conflict resolution that result in the specification of connector
parts are discussed.

Unfortunately, conflict analysis as needed for component integration is difficult to achieve for
several reasons:

Different interpretations of the term component. Similar to computer literature, where
several definitions of the term component have been proposed, technologies also diverge in
their handling of components. For example, entities such as programs, COM components,
Java classes, or Enterprise JavaBeans can be interpreted as components. Each of these
entities provides different structures and features as well as imposes different require-
ments on the environment. Therefore, features defined for a component in a particular
technology are not necessarily present in a component specification of another technol-
ogy. Therefore, we can neither directly compare components of different technologies nor
decide if a composition will fail.

Different technologies hinder direct comparison. Components of different technologies
cannot be directly compared, as they are defined relative to different programming lan-
guages, type systems, and middleware technologies. Furthermore, constraints are often
defined in different specification languages, which disallow direct checks.



4 Introduction

Different communication forms. Middleware technologies define similar but slightly differ-
ent communication mechanisms. Application components depend on the given mecha-
nisms of their underlying technology. A seamless interoperation requires the same com-
munication mechanism used by the involved application components. Consequently, an
integration of components of different technologies requires the analysis of communication
mechanisms. However, respective descriptions are often not available.

Incomplete component specifications. A sound integration requires the identification of
all conflicts between two or more components. Unfortunately, this is often a problem
because of under-specification of components, lack of formal methods, and unknown com-
munication properties of the components and the underlying technology.

Lack of support for software development. The natural environment to compare the ca-
pabilities and requirements of components is provided by modeling tools. Unfortunately,
most tools do not support modeling of components of different technologies. Therefore, a
comparison cannot directly be integrated in such tools, but must be manually performed
by the developer.

1.2 Prerequisites

A prerequisite for compositional analysis consists of defining an appropriate communication
model. This model needs to exactly specify the way components communicate.

In general, we perceive a component as an independent entity which provides and requires
particular interfaces. These interfaces describe ‘all’ dependencies of a component. Consequently,
each communication is based on the composition of these interfaces. A communication is
established by a connector that binds the participating components based on the provided and
required interfaces. Figure 1.1 shows an abstract representation of a component composition.

C1 C2K
I1 I1

Component

Binding via Interface I1

Connector

Figure 1.1: A Simple Component Binding

This model is a simplified version of communication models used in software architecture. It
abstracts from particular technologies and solely describes communication between abstract
entities.

A communicational model that aims to describe technology-specific components needs to take
into account the requirements of the underlying technologies. Communication between compo-
nents invariably takes place in the context of a technology. Each technology is represented by
a kind of ‘middleware’ component, i.e. a binary artifact. Each application component is bound
via a precisely defined mechanism to that middleware and cannot be used independently. Fig-
ure 1.2 shows a typical mechanism that uses stub and skeleton objects to integrate components
with respect to a particular middleware.

In this scenario, middleware plays a dual role: It is at the same time a connector that facilitates
the communication and a component that can be physically deployed in an appropriate location.

This indirect interpretation of communication holds true for many middleware technologies.
For example, Java RMI provides a transparent distributed communication by only imposing
two requirements: A server component must be a subclass of ‘java.rmi.UnicastRemoteObject’
and the communication interfaces must be lq extended’ from ‘java.rmi.Remote’1.

1Additional interfaces are required for exceptions, etc.
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Middleware K (Connector)

C1 C2

Stub Skeleton

I1 I1

Component

Connector = Component

Binding 

K

Figure 1.2: Component Binding is Subject to the Underlying Middleware

In principle, communication mechanisms such as procedure calls in Java or C can also be
interpreted within this model: A Java procedure call is interpreted by the Java Virtual Ma-
chine (VM). Additional actions such as security checks can be transparently performed by the
VM. C procedure calls are directly translated into object code. On this level the processor
interprets the call. Even here, additional actions such as testing for stack overflows can be
performed transparently. Consequently, communication can often be interpreted as dependent
from underlying objects. These objects create an indirection layer that hides complexity of
communication. In other words, a connection between two application components is essen-
tially a logical connection between these two components. The actual connection is realized by
components on a lower level. These components are at the same time connectors on a higher
abstraction level (n + 1).

Figure 1.3 shows a generic communication stack that describes a generalization of this princi-
ple. Components are placed on different levels relative to their position in a communication.
A component on a higher level depends on the components below. It needs to respect the
properties and constraints imposed by these components and can only communicate by means
of provided communication mechanisms. Alternatively, it can specialize and customize these
mechanisms (rarely done by application components).
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Figure 1.3: Component Communication Stack

Up to now, the communication stack does not give a precise answer to the problem of composing
entities originating in different technologies.

In order to compose components from different domains, an interceptor as defined in Section
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2.2 needs to be used. The key characteristic of an interceptor consists of the fact that its
constituting elements are located in both domains to be connected. We use this feature to
define a virtual interceptor domain:

A virtual interception domain specifies a virtual path between two different domains
that establish the basis for interoperability between these domains. The domain can
but need not be materialized by physical components.

Figure 1.4 shows the communication stack augmented with a virtual interceptor domain. If
components A1 and A2 are defined in different technologies and these technologies cannot
directly interoperate, components I1 and I2 represent physical components that are defined
according to one of the integration patterns as defined in Section 2.2.3. In this case, I1 and I2
need to rely on the features of the underlying middleware and operating systems to establish an
interoperation. If components A1 and A2 are defined in the same technology, the interception
level can either be omitted or be interpreted as consisting of the communication mechanism
elements of the middleware M . The presented connector implements an interceptor mechanism
on the middleware. However, an interceptor can also be implemented between the middleware
and the operating system.

Interceptor I (Virtual Interceptor Domain)

Connector K (Middleware)

Connector K’ (OS)

Cn+4

C(A1)n+3

C(M1)n+1

C(OS1)n

Cn+4

C(A2)n+3

C(M2)n+1

C(OS2)n
Physical Connection

Logical Connection
Application Level

Middleware Level

OS Level

. 

. 

. 

. 

. 

. 

Specialization: 
Property and 

Constraint  
Propagation

C(I1)n+2 C(I2)n+2Interceptor Level K

I

K’

Domain 1 Domain 2

Figure 1.4: Component Communication Stack

In summary, conflict analysis has to investigate the whole underlying communication stack
to identify conflicts. It is not sufficient to regard only application components. An analysis
needs to comprise properties and restrictions of the components below. A virtual interceptor
domain is normally not considered in conflict analysis. It usually represents the solution of an
integration of two mismatched components.

1.3 Objectives

The objective of this work is to define a Framework for Component Conflict Analysis and
Composition that serves as a basis of component integration and thus helps to provide answers
for the problems stated above. In doing this, we focus on conflict analysis of the technical aspects
of small to medium-sized components. In particular, we pursue the following objectives:

Support for a Canonical Component Model. The framework targets at the technical com-
parison of components that originate in object-oriented middleware technologies, such as
CORBA, COM, .NET, J2EE, Jini, etc. As component specifications of these technologies
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differ in form and content, a canonical representation is required that represents the least
common denominator of components in these technologies.

Support for Component Abstraction. As existing artifacts are specified in terms of con-
crete technologies, the framework has to provide transformation functionality to demerge
platform specific details of components such as type systems and to create a canonical
representation of those in order to create a basis for conflict analysis.

Conflict Analysis identifies mismatches between the technical specifications of two compo-
nents. The more kinds of conflicts are identified, the more accurate a cost assessment of
an integration effort will be. A solution can be generated in the form of a connector which
mediates the identified incompatibilities between a number of components. However, the
accuracy of a generated connector depends on the precision of conflict identification.

We therefore aim to check for as many conflict categories as possible and additionally
to create a highly customizable conflict analysis framework that is adaptable to different
requirements and for different technologies. At present, we support compatibility and
substitutability analysis of types, behavior and communication properties.

Support for Model Refinement. We aim to support model refinement because it is required
in order to generate platform specific connectors. Furthermore, it also realizes a proposed
advantage of Model-Driven Development: Reuse of Platform Independent Models (PIMs)
by providing transformations into arbitrary technologies.

Integration into Software Development. We believe that a framework for conflict analysis
and composition will only be useful in the context of CBSE if it seamlessly integrates with
design tools that are used in software development. As UML is the de facto modeling
language, we aim to support conflict identification from within UML tools.

A possible application scenario for the framework concerns integration and reuse of existing ar-
tifacts. In this sense, components are often termed as Commercials Off-the-Shelf (COTS) that
can be obtained from a component market, as it was first proposed by McIlroy [91] in 1968.
Unfortunately, reuse of COTS is not easily realized. There are two major problems of COTS
integration: The first problem concerns selection and identification of COTS that offer required
functionality and quality. The second problem concerns incompatibilities among current tech-
nologies that make it difficult to compose COTS. For these reasons, integration approaches
normally only consider COTS based on the same technology. Integration of components that
originate in different technologies is avoided, as it is a difficult and time-consuming task. The
proposed framework targets at the second problem as it mainly provides conflict analysis for
COTS integration.

1.4 Approach

We engage component integration and conflict analysis in particular by defining a framework
that provides the necessary functionality to satisfy each of the five objectives stated above.
The central aspect of the framework consists of a platform independent component model on
which conflict analysis is based. The components to be analysed and integrated, however, are
specified relative to a platform. The connector that integrates these components also has to be
specified according to particular technologies.

Therefore, an integration process as shown in Figure 1.5 consists of several sequential steps:

(1) Extraction of component specifications from artifacts.

In the first step, for each artifact a corresponding model is created. In terms of the MDA,
this model is a platform specific model (PSM), as it represents a direct mapping of a
technology’s relevant properties into a formal (model-based) representation. The OMG
already provides UML profiles for several technologies such as a CORBA profile or a
profile for entity relationship models.
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(2) Abstraction into a canonical representation.

PSM components are difficult to compare if they were defined in different technologies.
Therefore, Platform Specific Model (PSM) descriptions must be abstracted to a PIM level.
A canonical component model compensates differences in type systems or component
structures and provides a uniform view of communication properties.

(3) Conflict analysis.

The framework compares components on the platform independent level. Comparison is
based on formally defined relationships: subtypes, simulation, and property convergence.
Section 6 describes these relationships in more detail. As a result, conflicts are generated
to document incompatibilities - mismatches - between components.

(4) Conflict resolution and connector generation.

Based on the conflicts, the developer can semi-automatically define a connector between
two component types. Although not in the scope of this work, the framework can assist in
the process of connector generation by offering predefined mapping functions, structures
and an algorithm to generate a behavioral description of the connector.

(5) Refinement of canonic components into particular technology representations.

Connectors (as well as components) on the platform independent level can be refined for
specific technologies. Thereby, the transformation adds technology specific structures, co-
ordination and conversion logic to a connector. Our framework uses a rule-based approach
for model transformations. Rules can be parameterized to meet certain requirements of
users.

Component A Component B

<<PSM>> 
Component A

<<PSM>> 
Component B

<<PIM>> 
Component A

<<PIM>> 
Component B

Ontology-Based Framework

Structure 
Model

Behavior 
Model

Property 
Model

Conflict 
Model

Conflicts <<PIM>> 
Connector

<<PSM>> 
Connector

1

2

3 4

5

Figure 1.5: General Steps of Component Integration

1.5 Contributions

The contributions of this work arise from the simultaneous treatment of the problems stated
above.

(1) Conflict analysis is performed for type, protocol and communication specifications. Con-
sequently, a far better overview concerning the interoperability of components can be
achieved than by using analysis tools that deal with only one or two issues. As a result,
an estimation of integration costs becomes more accurate and simpler to calculate.

(2) In particular, communication properties are used for deciding compatibility and substi-
tutability. Communication properties are organized in taxonomies for each technology of
interest. A conflict analysis based on communication properties was presented in [79].
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(3) The framework is extensible for additional analysis methods such as ontology-based checks
and pre- and post-conditions. Moreover the language for protocol specifications is ex-
changeable and the type system customizable. The framework is described in [77], whereas
conflict analysis was presented in [78].

(4) The framework can be seen as a ‘minimal’ model-driven development system, as it sup-
ports models - especially component models - on different abstraction levels and further
provides transformation functionality between the models. It further provides function-
ality to store model descriptions and transformation in a component repository.

(5) The framework can be used in a UML-based development process, as UML models can
be transformed into the framework’s internal representation (RDF) and vice versa. The
framework’s models (platform independent and specific component models) are expressed
by UML profiles in order to describe the necessary transformations. Thus, each UML
tool can be used as a front-end if it supports stereotypes and tagged values. This is
achieved on the basis of the Evolution and Validation Framework [131], which we have
extended by a transformation service. Consequently, we are able to attach arbitrary
background information on UML elements and to interpret the background information
as RDF statements. This has been demonstrated for communication properties in [79].

We also support a tight integration of the framework and UML tools, as commands can be
encoded into UML diagrams. The framework’s services analyse the models and execute
the appropriate services.

(6) UML does not directly support reasoning. The framework however uses TRIPLE, which
is a deductive language based on RDF. As we are able to transform between UML and
RDF, we practically realize reasoning on UML.

(7) The framework further introduces flexible refinement operations on components. There-
fore, a transformation is adaptable to the requirements of the developer. This is contrary
to one-to-one transformations as defined in many software tools. In [25], we demonstrated
parameterized refinement transformations for Enterprise JavaBeans. Thereby, the trans-
formation can be optimized for certain situations based on existing J2EE patterns.

1.6 Outline

This work is divided into four parts. The first part describes communication and integration in
component-based systems. Chapter 2 describes communication from two perspectives: It first
discusses the technical aspects of communication followed by a survey of communication from an
architectural viewpoint. The first part also introduces the two operations of interest in this work:
checking compatibility and substitutability. Compatibility validates if two components are
interoperable, whereas substitutability checks if components are exchangeable. Finally, methods
for component integration are introduced. Component integration is realized by connectors that
solve the conflicts between otherwise incompatible components.

The second part describes the framework for conflict analysis. Chapter 3 introduces the two
processes of interest: component analysis and transformation. Chapter 4 further introduces a
communication taxonomy that augments type and behavior checks. Chapter 5 describes the
framework. It includes an architectural overview as well as a description of the core models of
the framework. Chapter 5 further describes the interaction with UML, which is achieved via
profiles, and informally describes a morphism between UML and RDF. Chapter 6 introduces
conflict analysis as performed by the framework. This part includes segments of previously
published papers: [77–79; 131].

The third part exemplifies the usage scenarios of the framework. Therefore, Chapter 7 describes
examples for conflict analysis and Chapter 8 describes parameterized model transformation as
presented in [25].
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The last part concludes the work and provides visions for future work as well as cooperations.

The appendices mainly include a UML Profile for the core models of the Ontology-Based Frame-
work (OBF) as well as taxonomies describing relevant communication properties of J2EE and
Microsoft .Net. A list of previously published papers that were integrated in this work is also
included as an appendix.



Chapter 2

Communication and Integration

This chapter first describes the technical foundations of communication and integration and
second introduces communication and interoperation from an architectural viewpoint. Commu-
nication or more precisely interprocess communication enables the composition of components
to complex systems, which in turn results in advantages such as higher reliability, concur-
rent and distributed computations, reuse and integration of preexisting components, or higher
throughput of client requests. Sophisticated architectures of distributed systems such as the
client-server architecture and its variations provide the basis for these advantages.

Section 2.1 consequently starts with an overview of the foundations of communication. This
includes a basic model of communication, communication protocols, basic interprocess commu-
nication (Section 2.1.1) as well as middleware communication mechanisms and services (Section
2.1.2).

Distributed applications are generally composed of several components. If some of the compo-
nents are pre-fabricated, reused or incompatible because of mismatched specifications, the issue
of component integration arises. We base the decision if two components are compatible on
formally defined relationships that identify mismatches in different areas of component specifi-
cations: subtype relationships, simulation of behavioral specification and relationships between
communication requirements. Section 2.2 describes component integration and interoperation.
This includes an overview of the important relationships deciding component compatibility and
substitutability. The section also includes some hints regarding the question of how to integrate
mismatched components.

Section 2.3 describes integration scenarios used throughout this work. This includes a short
description of legacy components (Section 2.3.1) and COTS (Section 2.3.2) as well as some
notes regarding program understanding. These aspects form potential application scenarios
of the framework developed in this work. As we assume that the components to be analysed
for compatibility and substitutability are specified in UML, we include a short description of
program understanding (Section 2.3.3). Program understanding is required in order to extract
the necessary information for a UML specification from legacy components and COTS.

Section 2.4 provides an overview of software architecture, type systems and behavioral specifica-
tion languages. These are the foundations specifying communication and interoperation at the
architectural level and are critical in deciding compatibility and substitutability of components.

2.1 Communication

According to the Reference Model of Open Distributed Processing (RM-ODP), we define com-
munication as

Definition 1 (Communication) “The conveyance of information between two or more ob-
jects as a result of one or more interactions, possibly involving some intermediate objects.
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[Thereby] an interaction takes place with the participation of the environment of the object”
[67, pp. 4-5].

Considering the definition of communication proposed by the RM-ODP, we can identify three
elementary parts out of which a communication is composed:

Communication 
EndPoint

Communication 
EndPointData Data

Control

Process A Process B

Protocol

Figure 2.1: Communication Model

Communication Endpoints. Communication requires at least two participants. Both par-
ticipants must agree upon the protocols used and the data to be submitted in order to
successfully initiate a communication.

Data. Communication involves the conveyance of information between participants. This in-
cludes the exchange of data in a well-defined format which is understood by both par-
ticipants. The format describes the types of data that can be exchanged as well as the
encoding of the data. For example, object-oriented systems such as CORBA use proto-
cols that describe data exchange encoded as binary data. On the contrary, Web Services
describe data exchange on the basis of XML (SOAP), which is based on text encoded
messages. This introduces overhead, as data encodings require more space and process-
ing time, but also allows for a simpler integration of different systems and middleware
technologies.

Control. Communication can be described by a protocol that the participants must respect in
order to interact with each other. In this respect control describes the kinds of messages
that can be exchanged and prescribes the order of the messages to be exchanged.

Figure 2.1 shows a respective model that exemplifies communication in terms of the described
elements.

Our view of a communication stem from software architecture, which distinguishes explicitly
between data and control issues. Shaw and Garlan [124] use, for example, a categorization of
architectural styles, which mainly consists of control and data-related criteria.

Focusing on distributed systems, both issues are mingled together in the definition of protocols.
According to Coulouris et. al. [40] a protocol is defined as follows:

Definition 2 (Protocol) “The term protocol is used to refer to a well-known set of rules and
formats to be used for communication between processes in order to perform a given task” [40,
p.76].

The definition mainly covers two aspects of communication - the exchange of messages between
communication endpoints that are described (ordered) by certain rules and the specification of
formats of exchanged data. Both issues correspond exactly to control and data as described
above.

Establishing communication between distributed processes is a difficult concern. It involves for
example the physical conveyance of information, marshaling of information to the formats sup-
ported by different processes in different environments, verification of correctness of submitted
data, ordering of transmitted data packets, resubmission of lost data and messages, etc.

As a response to these complex and difficult to handle problems, protocols are normally divided
into several layers from which each handles a particular problem. The OSI reference model [45]
defines seven layers that describe the most fundamental problems of communication. Each layer
uses the functionality provided by the next lower level to realize its functionality. The seven
layers of the OSI reference model can be described as follows:
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Physical Layer. The physical layer describes data exchange as electrical signals between phys-
ical communication endpoints. ISDN is an example of a protocol that is located on this
layer.

Data Link Layer. The data link layer mainly provides functionality to check the correctness
of the exchanged data between directly connected communication nodes (endpoints). An
example protocol for this layer is PPP.

Network Layer. The network layer specifies the routing of information packages in a network.
The de facto protocol on this layer is the IP protocol.

Transport Layer. The transport layer describes certain constraints between two or more com-
munication partners. It describes, for example, if a communication is reliable or not. A
reliable communication prescribes that communication packages are received in the cor-
rect order and that no package can be lost. The de facto protocols on this layer are
TCP for a reliable communication and UDP for an unreliable communication. This layer
also distinguishes between connection-oriented (TCP) and connection-less (UDP) forms
of communication.

Session Layer. The session layer extends the transport layer as it supports process synchro-
nization in communication sessions.

Presentation Layer. The presentation layer defines platform-independent data formats that
can be used to exchange information between communication endpoints in different envi-
ronments such as Windows and UNIX. This level can also be used to introduce encryption
in a communication. An example protocol on this level is SSL.

Application Layer. Protocols on this layer resolve the needs of particular applications. This
includes protocols such as FTP and SMTP.

Existing protocols do not exactly follow this reference model as they were often developed before
the model was released (e.g. TCP/IP) or they structure the levels slightly different according
to the requirements of a particular situation. Consequently, it is difficult to identify protocols
designed for the session layer or the representation layer. Therefore, we introduce a five layer
model as defined by Tannenbaum [135]. His model introduces a middleware layer instead of
the representation and the session layers. The middleware layer provides the communication
services used by application components to communicate with each other.

Physical Layer

Data Link Layer

Protocol Layer

Transport Layer

Middleware Layer

IPC & Marshalling

Communication Mechanisms (RMI, RPC,...)

Application Layer

Figure 2.2: Adapted Protocol Stack

Figure 2.2 shows the resulting model. This view also corresponds to the view of Coulouris
et. al. They also recognize the gap in the upper layers of the reference model. According to
Coulouris, “ the application, presentation and session layers are not clearly distinguished in
the Internet protocol stack” [40, p.78]. Consequently, they amalgamate the application and
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the presentation layers as a middleware layer1 and further the session and the transportation
layers, as existing protocols support this partitioning.

The middleware layer is further divided into two subsequent layers: Communication mechanisms
are defined in the upper middleware layer. These mechanisms are directly used by application
components to communicate with each other. The mechanisms are built upon an IPC protocol
layer that provides messages to exchange data and that also introduce services to transform
data according to the needs of each communication endpoint.

The positioning of middleware within the Open Systems Interconnection Reference Model reflect
the higher level of abstraction that is offered. Middleware hides the primitive IPC mechanisms as
provided by operating systems by supporting more sophisticated communication mechanisms
that can be used by application components. These mechanisms alleviate the development
of distributed applications by introducing transparencies and services such as transactions or
security.

In this respect, Coulouris et.al. [40] define Middleware as follows:

“The term middleware applies to a software layer that provides a programming ab-
straction as well as masking the heterogeneity of the underlying networks, hardware,
operating systems and programming languages” [40, p.16].

This definition does not clearly characterize middleware, as it does not describe the way in
which middleware overcomes heterogeneity and the different kinds of middleware available.

In this respect, Bernstein [23] proposes the following characteristics to describe middleware
more precisely:

• Middleware must support a wide range of applications. Middleware is a standardized and
general approach. An approach that aims at a specific scenario should not be considered
middleware.

• Middleware should be available on a wide range of platforms and further allow for com-
munication between components defined on these platforms.

• Middleware should support distributed communication.

• Middleware should support standard protocols, allowing the exchange of a middleware
product.

• Middleware services should perform its services transparently and via standard APIs to
allow for simplified development.

In summary, the middleware layer consists of two subsequent layers: A layer that provides basic
services for interprocess communication as well as the necessary functionality to transform data
for the communication endpoints and a layer that introduces the more sophisticated commu-
nication mechanisms of the middleware including services. The following two sections describe
both layers, as they will provide the focus for conflict identification.

2.1.1 Inter-Process Communication

Inter-Process communication can be categorized by the number of hosts involved: communica-
tion is either local to a single host or distributed between different hosts. Classic interprocess
mechanisms are shared memory, pipes, messages, and RPC. Thereby, shared memory forms an
exception as it is based on data exchange on the heap. Therefore, it is a very efficient form
of interprocess communication but is only applicable for communication on a single host. The
other forms of communication can either be used for local or distributed communication.

1Precisely, according to Coulouris, they can also be implemented separately for each application. However,
we do not consider this case in the following.
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IPC mechanisms define protocols to exchange messages between communication endpoints. A
respective message passing mechanism can be based on two operations: send and receive. Two
or more processes initiate communication with only these two operations by adhering to certain
restrictions and properties on these operations that are obliged by a particular IPC protocol. In
general, protocols rely either on Request or Request/Reply semantics2. A request corresponds
to a single message, whereas a request/reply protocol consists of two messages: A request is
sent from process A and received by process B. B computes the request and sends a reply back
to process A. This semantics corresponds in general to a remote method/function call.

Communication protocols as well as messages on which they are defined are normally provided
by operating systems with network capabilities. Thereby, the exact primitives, the supported
IPC mechanisms, and the available protocol stacks they provide are variable. Operating systems
are free to choose the granularity and the form of these factors. This can lead to optimizations
for particular communication mechanisms, as is often the case in experimental research systems.
However, most common operating systems such as Windows NT or UNIX derivates provide
mechanisms that use ‘Sockets’ as abstractions for communication endpoints and define IPC
mechanisms between them. Sockets refer to an IP number and a respective port.

A remote communication differs from a local communication in several aspects. In particular,
call semantics must be considered carefully, as in contrast with a local call several additional
sources of errors are introduced. For example, an operation can fail because the remote node
is offline or the remote node takes too much time to compute a request. Therefore, different
warranties regarding distributed calls are introduced, which yield the following semantics:

Maybe semantics initiates an operation exactly once but do not provide any reliability war-
ranties. It is therefore not guaranteed that the operation is successfully executed on the
server or even reaches the server.

At-least-once semantics repeats an operation if no reply is received in a given time. This
can be the case if the request is lost due to a network failure or that the server has not
completed the computations of the request in the given time. Consequently, this semantics
should only be used with idempotent operations.

At-most-once semantics repeats an operation until it is executed once. This semantics re-
quires a complex design of the server if operations are not idempotent. A solution concerns
the introduction of a history that caches already performed operations. For more details
see, for example, Coulouris [40].

Exactly-once semantics executes a remote operation exactly once. This semantic is difficult
to achieve and requires a sophisticated design of the involved processes.

Communication mechanisms can further be characterized by properties. The following proper-
ties are proposed by Coulouris [40]:

Synchronized Communication. Communication between participating processes can be char-
acterized as synchronous or asynchronous. A synchronous communication requires the
blocking of the message initiating process until a response of the addressed processes is
received. Thereby, blocking can be classified into several distinct forms. Table 2.1provides
an overview of different forms of blocking as defined by Tannenbaum [135].3

Message Destinations. Messages are normally targeted at only one receiver. In this case a
communication requires an initial step that constitutes a connection between two end-
points. Alternatively, a message can be broadcast to a group of processes. This kind of
communication does not require an established connection.

2Coulouris also introduces a Request/Reply/Acknowledge protocol that adds certain warranties on the reli-
ability of operations.

3Tai and Rouvellou also describe a similar matrix in [134].
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Persistent Transient
synchronous (b) Process A sends a message and

waits for an acknowledgment. The
acknowledgment is given by the
middleware. The called process B
receives the message the next time
it is started.

(d) The calling process A waits for
a receipt that the message were re-
ceived. The receipt is given from
B, even if the receiving process B
does not process the message imme-
diately.
(e) The calling process A waits for
the delivery of the message, which
means that the receiving process B
has received the message and started
processing of it.
(f) The calling process A awaits the
response for a message. The re-
sponse includes the results of the
message’s computation.

asynchronous (a) Process A sends a message and
resumes its computations. The mes-
sage is delivered by a middleware to
the called process B, even if the pro-
cess is not running at the moment.

(c) Process A sends a message to a
receiving process B. B needs to be
running in order to get the message.

Table 2.1: Six Forms of Message Passing Accoring to Tannenbaum [135]

Reliability and Ordering. Reliability describes whether a communication preserves data in-
tegrity and message ordering. A reliable communication provides guarantees about these
issues whereas in the case of an unreliable communication it is not guaranteed that all
messages are received. A protocol designed for unreliable communication is given with
UDP.

It should be noticed that each property can be related to the basic elements of communication:
synchronization corresponds to control, message destinations to communication endpoints, data
integrity to data, and message ordering to control.

2.1.2 Middleware Communication Mechanisms and Services

The second middleware layer (Figure 2.2) defines sophisticated communication mechanisms for
use with application components. The mechanisms are augmented with services such as trans-
action and security that provide valuable supplements of communication. The most common
mechanisms are defined on procedure call semantics and message passing.

Remote Procedure Call

A remote procedure call can be characterized as a synchronous communication mechanism be-
tween a client and a server which is based on a Request/Reply protocol. Important properties
of a procedure call include parameter passing and call semantics. Parameter passing can be
described, similar to a local call, as by-value and by-reference passing. By-value passing de-
scribes the transmission of a data value to a callee. The process involves the marshaling and
de-marshaling of the value. By-reference calls also concern the transmission of data structures.
Contrary to local calls, a reference, which corresponds to a pointer to a local object, cannot be
interpreted in a distributed environment. Therefore, the referenced structure must be copied
to the remote location.
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Remote Method Invocation

The advent of object-oriented programming languages also introduced object-oriented dis-
tributed communication. Thereby, communication depends on an object model with all its
features from which the most important for distributed communication are object references
and interfaces. Object references need to be unique in time and space to identify the correct
object. This can be achieved, for example, by constructing an object reference from an Internet
address, a timestamp, an object counter and an interface identifier.

Interfaces define the methods that can be called remotely. They provide the usual abstraction
from the implementation. There are two approaches to define interfaces for a remote invocation.
The first and more general approach uses an Interface Description Language (IDL) to define
a remote interface. The advantage of this approach is language independence. CORBA and
COM use IDLs to define interoperation between objects written in different languages. The
second form is used by Java RMI. The interface is defined like a normal Java interface. This
results in a more transparent integration of remote invocations.

In principal, a remote method invocation can be performed almost transparently. From a
programmer’s perspective it should be indistinguishable from a local call. However, additional
failure semantics and the higher latency of remote calls should not be defined transparently. Java
RMI resolves these requirements, for example, by the restriction that remote communication
must be defined via a special remote interface. Furthermore, remote method declarations must
contain remote exceptions that are used to express failure semantics in a distributed system.

Message Passing

Message passing cannot be characterized as easily as the former communication mechanisms
because several variations are used in middleware systems. Direct message passing, message
queues and publisher/subscriber form the most common mechanisms. Whereas direct message
passing is often used in a single application, message passing and publisher/subscriber decouple
applications in time and space. Both provide services to store messages in case a recipient is
not available. Respective products are, for example, Message Brokers and Event Services.

Important characteristics of message passing mechanisms are the degree of coupling between
processes, call semantics as introduced above, and the number of participants of a communi-
cation. Message passing mechanisms distinguish a variety of asynchronous and synchronous
message passing semantics. Table 2.1 shows a respective overview as defined by Tannenbaum
[135]. Contrary to procedure calls, message passing mechanisms support one-to-many commu-
nication. For example, in the publisher/subscriber model, several subscribers can register for
particular events of a single publisher.

Classification of Middleware Communication Mechanisms

Middleware communication mechanisms can be classified by a number of properties, similar to
the classification of communication in general. Thompson [137] provides a classification which
originally was taken from a report of the Gartner group. Table 2.2 shows the slightly adapted
classification consisting of properties describing the communication mechanism, the protocol,
the number of participants, and the synchronicity of the communication. It is obvious that
most mechanisms can be divided into two groups: asynchronous one-to-many communication
and synchronous one-to-one communication.

2.2 Integration

Component integration itself refers to the process of composing two or more components to
a more complex system. According to the IEEE glossary of software engineering terms [62],
integration is defined as follows:
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Communication Mechanism Protocol Participants Synchronicity
Remote Procedure Calls Request/Reply 1:1 synchronous
Remote Method Invocation Request/Reply 1:1 synchronous
Direct Messaging Request(Message) 1:1 asynchronous
Message Queues Request 1:n asynchronous
Publish/Subscribe Request 1:n asynchronous
Procedure Call Request/Reply 1:1 synchronous
Database Gateways (e.g. JDBC) Request/Reply 1:1 synchronous

Table 2.2: Properties of Middleware Communication Mechanisms (adapted from [137])

Definition 3 (Integration) “[Integration is ] the process of combining software components,
hardware components, or both into an overall system” [62, p.41].

The composed system forms another, more abstract kind of a component. This abstract com-
ponent can be composed of a number of interoperating distributed (primitive) components that
are coordinated in order to solve a complex problem. The abstract component can itself be fur-
ther integrated resulting in more complex systems. Consequently, components form a hierarchy
as proposed by several researchers such as Weber and Ehrig [144], Plasil [18], Kramer [85], etc.

The term interoperation refers to the exchange of data and control between components. A
definition of the term interoperation, which emphasizes the exchange of information, is also
given in the IEEE standard glossary.

“The ability of two or more systems or components to exchange information and to
use the information that has been exchanged” [62, p.42].

Another definition of interoperation, which is provided by Peter Wegner, also adds conflict
resolution to the meaning of the term:

“Interoperability is the ability of two or more entities to cooperate despite differences
in language, interface, and execution platform” [145, p.1].

This definition of interoperability comes close to our understanding of the term. In our view,
a proper component integration consists of two steps: in ‘the’ first step, a conflict analysis
process identifies conflicts between two components, whereas in ‘the’ second step a connector is
generated that compensates the conflicts to provide a seamless interoperation between compo-
nents. Consequently, we define the term interoperability as the amalgamation of both former
definitions:

Definition 4 (Interoperability) Interoperability refers to the ability of two components to
exchange information and to cooperate despite differences in language, interface, and execution
platform.4

Conflicts are incompatibilities in either the required and provided types, in the behavior of
components or in the communication requirements. A conflict is defined as follows:

Definition 5 (Conflict) A conflict is any mismatch between interfaces or behavior of two
components or any mismatch between their domains that impedes a seamless interoperation
between them.

The definition of interoperability as defined by Wegner [145] emphasizes an important point
of cooperation: Not only the component specifications need to correspond to each other, but

4The definition is based on [145] and [62].
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also the technological context must match. The context5 can be, for example, a middleware
technology such as CORBA or an operating system such as Unix. As the entities that represent
the context of a component can vary depending on the viewpoint of the observer, we use the
more appropriate term of a ‘domain’. A domain describes the relationship between components
and their context or environment. The term is defined by the RM-ODP as follows:

Definition 6 (Domain) “A set of objects, each of which is related by a characterizing rela-
tionship X to a controlling object” [67, p.9].

Thereby X can be interpreted as a ‘depends’ or ‘use’ relationship between application compo-
nents and their context, e.g. middleware such as CORBA or operating systems such as UNIX
form a technical domain.

Interoperability between mismatched components can be realized by providing a connector that
compensates the conflicts between components. A connector is a special kind of component
that does not contain application logic but only provides transformation and coordination logic.
The connector is often not directly visible to application developers.6

The RM-ODP uses the term ‘interceptor’ to refer to a connector that mediates conflicts between
different domains. An interceptor emphasizes the relevance of the context of components - the
domains - for composition.7

Definition 7 (Interceptor) “[An Interceptor is] placed at a boundary between . . . [two] do-
mains. An . . . interceptor

• performs checks to enforce or monitor policies on permitted interactions between basic
engineering objects in different domains;

• performs transformations to mask differences in interpretation of data by basic engineering
objects in different domains” [68, p.32].

2.2.1 Compatibility and Substitutability

Establishing interoperability concerns the process of composing components to realize a seamless
communication between them. The major question regarding this process pertains to the
decision of whether two components are compatible or not.

We regard compatibility between two components. Both components require and provide ser-
vices that are defined by interfaces. The interfaces consist of method declarations and behavioral
specifications. Further, both components are placed in a technological context that describes
their communication abilities.

We decide component compatibility by proving type, behavior, and property relationships.
Type and behavior relationships are based on well-known theoretical approaches. Property
relationships describe the required and provided abilities of the components regarding commu-
nication. They are described in a taxonomy that covers important aspects for communication.
Contrary to type and behavior specification, communication properties do not provide a ‘com-
plete’ description of a component. We propose that if a classification is based on carefully
chosen properties, communication mechanisms can be differentiated and the root causes of in-
compatibility can be determined. This augments type and behavior specifications, especially if
they are incompletely specified by providing an approximation of compatibility.

We believe that from a pragmatic perspective, a compatibility check of these relationships is
sufficient to guarantee a technical interoperability of components. In this respect, we define
compatibility as

5In this work, we perceive the context of a component as either the underlying middleware or operating
system. We further use the term ‘domain’ instead of the term ‘context’.

6The terms component and connector are discussed in Section 2.4.1.
7We use the term interceptor to emphasize this circumstance. Otherwise, we use the more general term of a

connector.



20 Communication and Integration

Definition 8 (Compatibility) Two components are compatible if they can interact with re-
gard to type, behavior and property relationships.

For component exchange, similar relationships can be used to verify the equivalence between
the legacy and the substituent component. We refer to the term substitutability to check for
component exchange:

Definition 9 (Substitutability) Two components are substitutable if they can be exchanged
without interfering with the functionality of particular components in any system configura-
tion. Substitutability can be decided by proving equivalence relationships. These include at least
subtyping of component interfaces and bisimulation of components’ behavior.

In the remainder of this section, we introduce a classification of relationships to determine
compatibility and substitutability. In general, we distinguish two categories of relationships
regarding syntactic and semantic interoperability between two components:

Type Interoperability defines relationships on the exposed and required interface types of
components. Two relationships can be distinguished: type equality, which verifies the
exchangeability of two components and subtype compatibility, which checks if two com-
ponents can be composed.

Both relationships are determinable and are ‘commonly’ used in typed programming lan-
guages and in middleware systems.

Semantic Interoperability covers different aspects of component specification. Unfortu-
nately, these aspects are not clearly denoted and consequently different terms are used for
the same aspects throughout the community. In the following, we employ the terms and
the categorization of Vallecillo et. al. [138]. They use the term ‘Semantic Interoperabil-
ity’ as a top level concept to further distinguish into: behavioral semantics and protocol
semantics.

Behavioral Semantics refers to the principle of ‘design by contract’ as introduced by
Meyer [97] to check for compatibility. Consequently, the caller needs to establish the
preconditions of the callee before a request and presumes valid post-conditions after a
response.

Vallecillo further introduces the term behavioral subtyping to prove if components are ex-
changeable. Several authors propose their own definitions of behavioral subtyping to check
for substitution.8 According to Zaremski and Wing [152, p.14] most of the approaches
are similar as they are based on

“pre-/post-condition specifications (1) to describe the behavior of types and (2)
to determine whether one type is a subtype of another.”

Consequently, behavioral specifications are mainly based on the analysis of pre- and post
conditions. These conditions can be annotated to components in several specification
languages such as Z [129], OCL [107], OCLPrime [133], Larch [59].

A disadvantage of behavioral specifications relates to difficulties in proving matching
specifications as “behavior-preserving subtyping is in general undecidable” [138, p.6].

Protocol semantics prescribes the order of operations within a communication. For-
malisms to express protocols often rests on a transition system to prove the validity of a
communication. Protocol semantics can also be specified in a number of formal languages.
Examples are Process Algebras such as CSP [61], ACP [17], or FSP [86], Petri Nets [116],
or Message Sequence Charts [64].

Protocol semantics allows checking several relationships: substitutability and compati-
bility of components as well as protocol properties. Substitutability can be decided by

8For an overview see [138] or [152].
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checking for bisimulation between components. In literature, several slightly different
definitions of bisimulation are proposed. An overview is given in Section 6.2. Compati-
bility can be decided by simulation relationships. Most research aims at proving process
equivalence. However, simulation can be defined by substracting the relationship that
establishes equivalent behavior between the callee to the caller from the respective bisim-
ulation definitions. An overview of simulation is also provided in Section 6.2. Based on
transition systems, properties such as deadlock or progress can also be checked.

Process algebra expressions and relationships are often checked by model checkers. For
several of the languages above, tools were developed that provide the necessary function-
ality for proofs and property checks. We use these tools for compatibility and substi-
tutability checks.

We call the former relationships formal, as we can prove their validity based on sophisticated
concepts, languages and tools. In practice, they are not sufficient: Firstly, they do not al-
low proving the ‘meaning’ of operations when composing components of different sources and
secondly, semantical specifications are complicated and therefore often omitted for ‘common’
application components. For both issues, approaches are proposed that aim to alleviate these
problems:

(1) Ontologies can be used to provide meaning to operations of different sources. In a re-
spective scenario, operations and components are augmented with meta information that
state their purpose and their intended semantics. Consequently, similar components can
be searched for in a repository and matches can be performed based on ‘matching’. An
ontology specifies a graph of related terms of a particular area. The meta information
that is attached to a component needs to originate from the same ontology to perform
semantic matches.

At present, research aims to augment component descriptions of web services with re-
spective meta information. Several matching algorithms based on annotated information
(see for example [111]) have been proposed to select similar components and to initiate
respective compatibility matches. Some early ontologies can be used to specify meta in-
formation in certain fields.9 However, a major problem of this approach concerns creating
an ontology so that a ‘common’ agreement can be found. Consequently, at present useful
ontologies are rare.

The framework proposed in this work can be easily extended to augment components with
meta information that stems from a particular ontology as it is based on RDF. However,
we do not exemplify a match on meta information that stems from a predefined ontology.
Instead, we present almost the same concept for communication taxonomies introduced
below.

(2) A description of the communication mechanism required by components to communi-
cate can, in principle, replace the information provided by semantic relationships. Some
approaches already exist that describe the communication as well as architectural re-
quirements of components [44; 93; 123; 124]. However, these approaches are restricted
to the architectural level and do not investigate the properties of existing middleware
technologies.

This work expands existing approaches, in particular the approach of Mehta [93] to define
communication mechanisms of middleware technologies. The resulting taxonomies can
be used to reason the compatibility and substitutability of application components of the
investigated middleware technologies. This can be used to first provide a quick estimation
of the compatibility of two components, which can be used, for example, to decide between
candidates for composition and second to partially substitute for semantic relationships
if these are not defined for the components of interest. Although a taxonomy based
reasoning cannot ‘exactly’ ensure the compatibility of components, it can describe the

9For a selection of ontologies refer to [9].
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requirements for communication which arises from the underlying technologies and can
therefore be used to estimate the costs of an integration. This work provides taxonomies
that describe communication mechanisms of .Net and J2EE.

The framework principally supports all kinds of compatibility checks between components be-
cause of the structure of the chosen framework. However, in this work, we restrict ourselves to
a configuration that proves type compatibility (subtype relationships), protocol compatibility
(simulation relationships) and communication compatibility.

2.2.2 Characterization of Integration

We distinguish integration based on two criteria: the number of processes in the integrated
system and the number of domains from which the involved components stem.

As a first criterion, we distinguish integration by the number of processes:

In-Process Integration describes a form of composition, in which the components are defined
in the form of shared libraries. Procedure calls are the usual kind of communication
in this scenario. Consequently many problems of a distributed communication such as
transactions and security are simplified.

Inter-Process Integration. Components are composed via a connector that realizes a form of
inter-process communication (IPC). Thereby, the connector mediates between components
that are possibly physically distributed and written for different contexts (e.g. different
middleware, programming languages, or operating systems).

Establishing a connection requires finding a communication mechanism that either can
directly be handled by both components or that can be mediated via the connector.

We can further classify integration by the number of domains that are involved in the resulting
system:

Single Domain Integration. Component composition takes place in a single context. Only
a single technology is involved in a composition. Consequently, we can interpret a com-
position as an integration of application components within a single technology.

Multiple Domain Integration. In this case, an integration combines two or more technolo-
gies. Consequently, an integration depends on a communication mechanism that is un-
derstood and supported by both technologies.

Table 2.3 provides some examples of integrated components in the two dimensional space that
is spanned by both classification dimensions.

2.2.3 Approaches for Connector Generation

This section provides an overview of general techniques for component integration. These
techniques can be used to approach connector generation.

Integration approaches can be classified by two dimensions: the level of abstraction from a
particular technology and the kinds of interoperability considered by an integration approach.
In particular, most integration approaches either target at a specific integration scenario for
particular technologies or they propose a general solution for a particular problem.

For the first class of integration approaches, software products are available that target at
component integration between particular technologies. For example, the COM/CAS Bridge
from Sun10 provides a COM view of Enterprise JavaBeans running in an Application Server.

10The COM/CAS Bridge as well as the ActiveX-Bridge are no longer supported by Sun.
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intra-process inter-process
single domain library usage. For example, Java

encapsulates libraries as Jar files.
application integration in the
context of a single technology.
This is the common case of com-
ponent integration.

multiple domains The Ontology-Based Domain
Repository (ODIS) uses this
approach to include the XSB
knowledge base via an in-process
integration. The ODIS is a Java
component, whereas XSB is a
C component that can be in-
stantiated from a shared library.
The two components can be
combined because Java provides
JNI that facilitates direct access
to C functions.

An integration in the context of
two different technologies. For
example, integration of a COM
component and a EJB compo-
nent via a connector such as
the CAS/Bridge or the ActiveX
bridge designed by Sun.

Table 2.3: Categorization of Integration

Therefore, Windows clients can use Enterprise JavaBeans via a COM interface. Examples of
other integration products are the Janeva [2], K2 [6], or JIntegra [4].

Abstract approaches cover different aspects of component interoperability: patterns mostly tar-
get at structural aspects of interoperability. Inveradi [65] provides an algorithm that generates
a protocol for a connector that integrates two otherwise incompatible components. She further
proves that the generated protocol is deadlock-free. Model correspondences [33] provide in-
teroperability by defining mappings between database schemata and provide functions to map
data types.

In the following, we provide an overview of some useful patterns for component integration
and give an overview of the algorithm of Inverardi. Both aspects support a semi-automatic
connector generation and can be used to resolve mismatches. We perceive a set of approaches
that cover all aspects of interoperability as a starting point for the second step of integration:
the generation of connectors that mediate existing conflicts between components.

Patterns

Adapter. An adapter aims at mismatched interfaces between two classes: the client and the
adaptee. The adapter compensates the different interfaces of these classes by providing
an additional layer of indirection between them. The kinds of conflicts addressed by the
adapter pattern are type conflicts.

The pattern was proposed by Gamma et. al. [52] in the context of a single object-oriented
technology. Both components are elements of the same technology and are executed in the
same process. The pattern, however, can also be adapted to components and middleware.
In this case, it addresses only components that are executed in the same middleware
instance. It does not address problems that occur in the context of distribution or several
middleware technologies.

Proxy. A proxy provides a kind of access control for a resource and handles all communication
directed at the resource. The reasons for introducing a proxy as a surrogate are manifold.
The reason which is relevant in the context of this work concerns location transparency.
The resource can be a distributed object on another machine.

In the context of component integration, a proxy can handle remote services required by
a local component. As the pattern does not deal directly with incompatible interfaces, it
can be combined with the adapter pattern.
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Broker. The broker pattern [32] addresses the problem of managing a remote client-server
communication. The complexity of remote communication is almost completely hidden
from application objects. It introduces a layer of indirection to organize the necessary
managing tasks which handle issues such as remote object identifiers, transactions, secu-
rity, location transparency, etc. The broker pattern is used in middleware systems such
as J2EE, .Net, and CORBA.

The broker introduces a proxy and a skeleton to provide local surrogates for the remote
object. Several brokers communicate via bridges that externalize object identifiers based
on standard protocols such as IIOP.

The pattern provides a kind of standard architecture of a connector for handling commu-
nication between distributed and incompatible components. It can be augmented with
several other patterns and idioms to handle certain mismatches between client and server.

Interceptor. An interceptor11 pattern is a refinement of the proxy and the broker pattern.
It mainly aims at transparently introducing additional services in a framework without
changing the framework. The pattern is of special interest as it is used in middleware
systems to handle client requests for component instances. The patterns introduce inter-
ceptors as well as dispatchers. A client can install custom interceptors in a framework
instance. The framework calls the interceptors via a dispatcher object whenever it reaches
a particular state. The dispatcher calls every installed interceptor object passing a special
context object which encapsulates state information of the framework.

The pattern also handles the problem of mismatched services between the client and the
server object.

Different integration approaches such as Keshav and Gamble [73] or Plasil and Bures [31] use
these and additional patterns for connector specification and generation.

Protocol Integration

The algorithm of Inverardi [65] generates the protocol of a connector that provides behavioral
interoperability between otherwise incompatible components. The algorithm has the following
properties:

• It it based on an architectural style, called ‘Connector Based Architecture’, which is
similar to the C2 style.

• It distinguishes between input and output actions, which are called requests and notifi-
cations.

• It uses communication channels to denote the link between the components and the
connector that integrates them.

Regarding the integration of components from different technologies, the algorithm suffers two
problems: First, methods are often named differently in components originating from different
sources. Consequently, correspondences must be defined between method names. Second, the
‘semantics’ of methods often do not exactly match. Therefore, a complex matching between
the operations is necessary, which is also not covered by the algorithm.

In the following, we give a short example of the algorithm based on the Mortgage Bank example
introducted in Section 5.3.2. The example consists of two components, ‘BLContractMgmt’ and
‘BLCalc’, which have the following process algebra expressions annotated:

11The interceptor pattern was introduced by Douglas et. al. [119]
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ContractMgmt:
R = (newContract→R1),
R1= (newContract→R1

|simulate→R1).

BLCalc:
Q = (getNewContract→Q1),
Q1= (getNewContract→Q1

|setRate→Q2),
Q2= (getNewContract→Q2

|setRate→Q2
|simulation→Q2).

As the Inverardi algorithm expects input and output actions, we split the action, which rep-
resents synchronous operations into an input and an output action. The input actions are
annotated by α whereas the output actions are annotated as α. Both extended expressions are
defined as follows:

ContractMgmt:

R = (newContract→ newContract → R1),
R1= (newContract→ newContract → R1

|simulate→ simulate → R1).

BLCalc:
Q = (getNewContract→ getNewContract → Q1),
Q1= (getNewContract→ getNewContract → Q1

|setRate→ setRate → Q2),
Q2= (getNewContract→ getNewContract →Q2

|setRate→ setRate → Q2
|simulation→ simulation → Q2).

The first step of the algorithm reverses the action labels to represent both expressions from
the viewpoint of a connector between both components. Inverardi calls the resulting transition
system an AS graph.12 In the second step, each action is exchanged by a sequence of an input
action followed by an output action. The exact rule is defined as follows:

• Each input action α is exchanged by an input action αc followed by an output action α?.
Thereby ‘c’ and ‘?’ denote communication channels which are associated with components:
‘c’ refers to a particular communication channel, whereas ‘?’ refers to any channel which
provides action α. This information is used in the last step of the algorithm, which unifies
action pairs of the form α? = αc, where ‘?’ is substituted by ‘c’.

• Each output action α is exchanged by an input action α? and an output action αc.

The resulting process descriptions are called EX graphs and are defined as follows for the
example expressions:

12We omitted the presentation of this step for this example.
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ContractMgmt:

EXR = (newContract1 → newContract? → newContract? →
newContract1 → EXR1),

EXR1 = (newContract→newContract? → newContract? →
newContract1 → EXR1
| simulate1 → simulate? → simulate? → simulate1 → EXR1).

BLCalc:
EXQ = (getNewContract? → getNewContract2 →

getNewContract2 → getNewContract? → EXQ1),
EXQ1 = (getNewContract? → getNewContrac2 →

getNewContract2 → getNewContract? → EXQ1
| setRate? → setRate2 →
setRate2 → setRate? → EXQ2),

EXQ2 = (getNewContract? → getNewContract2 →
getNewContract2 → getNewContract? → EXQ2
| setRate? → setRate2 →
setRate2 → setRate? → EXQ2
| simulation? → simulation? →
simulation2 → simulation? → EXQ2).

The last step of the algorithm generates a connector that mediates between both processes.
The step consists of a unification of the same actions from different components. Thereby, in
each step the action αc is matched with α? to yield a transition in the connector.

As mentioned above, the algorithm assumes the same action labels and does not cope with
complex relationship between actions. However, both issues are needed to generate a connector
for the example. The correspondences have to be defined by a developer. In the example, the
following two correspondences are defined:

(1) newContract ∼ getNewContract,

(2) simulate ∼ setRate → simulation.

The first correspondence fits easily in the unification algorithm proposed by Inverardi. Un-
fortunately the second correspondence is not as simple to integrate in the unification process
because the algorithm is based on the principle that a connector firstly receives an operation
from component A and forwards another operation to component B. Therefore all action are
organized as sequences of input action that are followed by output actions and we cannot sub-
stitute the correspondence for each simulated action because the connector would not support
an incoming simulated action from the ‘ContractMgmt’ component.

However, we can define another expression which represents the correspondence. This expres-
sion could, for example, represent a thread in the connector. For the example, the second
correspondence can be defined as:

ContractMgmt:

C2 = (simulate → setRate → setRate →
simulation → simulation → simulate → C2).

// the process that represents an EX-Graph
CREX = (simulate? → simulate3 →

setRate3 → setRate? →
setRate? → setRate3 →
simulation3 → simulation? →
simulation? → simulation3 →
simulate3 → simulate? → CREX).



2.3 Scenarios for Integration 27

The resulting connector definition can be generated by unification of the respective action pairs
as follows:

Connector:
K = (newContract1 → getNewContract2 → getNewContract2 →

newContract1 → K1),
K1 = (newContract1 → getNewContract2 → getNewContract2 →

newContract1 → K1
| simulate1 → simulate3 → setRate3 →
setRate2 → setRate2 → setRate3 →
simulation3 → simulation2 → simulation2 →
simulation3 → simulate3 → simulate1 → K1).

2.3 Scenarios for Integration

As the complexity of the integration scenario directly influences the intricacy of the analysis
process, we define the simplest but still useful scenario possible: two components that are
arranged in a classical client-server architecture. Figure 2.3 provides the conceptual model of
a client-server integration. The model supports all forms of integration mentioned in Section
2.2.2.

Thereby, we do not restrict the forms of communication to a particular mechanism. Both
components can rely on any form of communication supported by their context (see Figure
2.3). The context is either given by a middleware or an operating system that hosts the
components.

To integrate components, a suitable third domain needs to be found which is compatible with
both component domains. A connector mediates communication between the client and the
server component on the basis of the third domain. Therefore, the connector must be virtually
or physically part of all three domains.

Text
Client ServerConnector

Domain A Domain B
Domain C

Figure 2.3: Overview on the Integration Scenario

We can further imagine that the server is an existing artifact, which is either a legacy component
or a COTS, whereas the client can be either an artifact that needs to be composed with the
server or it is the specification of a component defined in a software development process.

The framework requires a UML description of both components for the analysis process. In
the following, we give an overview on the properties of both Legacy Systems and Commercials
Off-the-Shelf and summarize techniques to create the UML specifications from these artifacts.

2.3.1 Legacy System Migration

There are several definitions of the term ‘Legacy System’ proposed in literature. For example
Brodie&Stonebraker [29, p.3] define a legacy system as follows:

“A legacy information system is any information system that significantly resists
modification and evolution.”

Another definition was proposed by Bennett [22, p.1]. He defines a legacy system as
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“large software systems that we don’t know how to cope with but that are vital to
our organization.”

Both definitions do not directly describe which properties render a system as a ‘legacy’. They
also do not directly define the meaning of ‘significantly resists modification’ or ‘to cope with’.
However, summarizing their articles as well as descriptions from [27; 121] we can extract the
following characteristics of a legacy system:

• A legacy system is a ‘mission critical’ system of a company,

• It causes high maintenance costs as it runs on obsolete hardware and is written in an
early programming language or has no acceptable internal structure,

• It is difficult to create interfaces to communicate with external systems.

According to continuously changing business needs and the introduction of new technologies,
the maintenance costs of each system tend to increase over time. Consequently, legacy systems
need to be constantly maintained. In literature, several levels of maintenance are distinguished.
According to Seacord [27; 121] maintenance can be classified into three categories: Maintenance,
which refers to bug fixes and small functional improvements, modernization, which describes
all kinds of system restructuring and component exchange, and system replacement.

Several methods were proposed to modernize (reengineer) a legacy system into a new sys-
tem. These methods can mainly be classified into ‘redevelopment’ and incremental approaches:
Redevelopment, also known as ‘Big Bang’ or ‘Cold Turkey’ approaches create a new system.
Thereby, they completely exchange both systems. Redevelopment has a high risk of failure, as
the behavior of both the new and old system need to be identical to the context in which they are
executed. Incremental approach such as ‘Little Chicken’ [29], ‘Butterfly’ [27] or ‘Risk-Managed
Modernization (Horseshoe Model)’ [121] exchange or reengineer systems in small steps, which
result in lower risks for the stakeholders.

Modernization can be realized by using a number of techniques such as the ones described by
Seacord et. al. [121, pp.10-17]:

Retargeting refers to an exchange of the hardware of a system. The approach aims at cost
reduction as old hardware often implies expensive maintenance costs and at the same
time limited capabilities in comparison with newer systems. The application is ported
unchanged to the new hardware. The advantages depend on the enhanced capabilities of
the new hardware.

Revamping exchanges the User Interface (UI) of an application. The advantage of the ap-
proach relates to newer front-ends that have enhanced capabilities in comparison with
the original UI. Additionally, the modern UIs propose cheaper maintenance costs as they
often use common approaches such as web browsers or standard APIs.

Screen scraping is a particular approach of revamping, which wraps the old functionality
in modern UIs. Unfortunately, this does not change user guidance.

Integration of Commercials Off-the-Shelf replace system parts. Thereby, COTS are ob-
tained from the market to improve quality and reliability. A limitation of COTS relates
to their standardization, which becomes necessary to address a broader market. At it is
not always possible to customize COTS for a company’s needs, using them often requires
partial changes of the architecture or of the existing system environment. Therefore, their
usage benefits and their introduced costs need to be exactly calculated.

2.3.2 Commercials Off-The-Shelf

The idea of reuse involves composing components rather than reinventing and reimplementing
existing artifacts. In this sense, components are often termed as COTS that can be obtained
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from a component market, as was first proposed by McIlroy [91] in 1968. Unfortunately, there
is not yet a common understanding of what exactly constitutes COTS. An overview of popular
definitions is provided by the Data and Analysis Center for Software, which defines a classi-
fication matrix [101] for COTS. According to that classification, we can define a commercial
off-the-shelf as

“a reusable black-box unit with explicit context dependencies that originates from
an external source and allows only little or no modification.”

Unfortunately, COTS reuse is not as easy to be realized as reuse of ICs. Therefore, a marketplace
generally does not exist yet. The Software Engineering Institute (SEI) points out some reasons
for its non-existence [35]. It describes a marketplace as

“characterized by a vast array of products and product claims, extreme quality and
capability differences between products, and many product incompatibilities, even
when they purport to adhere to the same standards.”

Concerning this statement, there are two major problems of COTS integration: The first prob-
lem concerns selection and identification of COTS that offer required functionality and quality.
The second problem concerns incompatibilities among current technologies that make it difficult
to compose COTS.

Component Selection

How do we find a suitable component? This question is a prerequisite for integration. It
involves identification of components that are likely to correspond with the stated require-
ments. Today, this is difficult to achieve because of several problems: First, most existing
components are not registered in a repository. Second, there are only a few repositories
available. Third, there is no standard format of component description. However, there
are several approaches that aim to provide solutions to these problems. A promising ap-
proach is the Web Service [36] standard. It provides a format to describe services as well
as a standard for repositories.

How do we select the best-suited COTS for integration? Component selection refers to
the process of choosing the most adequate COTS for a stakeholder’s requirements. These
often refer to quality attributes such as performance, maintainability, conformance, etc. It
is possible that several COTS are appropriate for system integration, but are differently
well suited for different requirements. Today, there is practically no support to select
COTS based on quality attributes.13

Component Integration

How do we integrate COTS and the software development process? COTS are exist-
ing artifacts, whereas software development is concerned with the design of a system. A
design often represents a platform independent model of a system that is not bound to
a specific technology. Alternatively, it aims for a particular technology, but is placed on
an abstraction level that does not cover implementation details. COTS are specified in a
technology-specific format. Thus, there is a mismatch in the abstraction levels between
COTS and the objects regarded in software development.

How do we compare components? Comparison is an operation that identifies the similar-
ities and differences between components. Comparison between COTS of different tech-
nologies proves difficult, as considerable differences exist in their specifications. Another
problem concerns the degree of detail of those specifications. Components are rarely fully
specified in current technologies. Some facts are stated implicitly or not at all.

13Refer, for example, to [142].
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For both reasons, integration approaches normally only consider COTS based on the same
technology. Integration of components that originate in heterogeneous systems is avoided, as it
is a difficult and time-consuming task.

2.3.3 Analyzing Existing Software

Reconstruction of legacy systems is an important concern in system reengineering. It is also
important for COTS that are not fully specified. Reconstruction of a system’s architecture is
a complex task which is outside the scope of this work. However, as it is a precondition for a
UML specification of a system, we briefly summarize common analysis methods as defined by
Seacord [121, pp.61-64] that aim at source code analysis:

Static Program Analysis includes techniques to generate reports of the structure of ele-
ments and the relationships between elements. Reports include for example function call
hierarchies, type hierarchies and usage/dependency relationships. The information ex-
tracted via static program analysis is valuable to extract architectural descriptions of a
system. Unfortunately, static analysis cannot cover all necessary aspects for architectural
descriptions, as some issues of a program are only fixed at program execution. This in-
cludes late binding, function parameters as well as dynamic configuration of components,
which are often used in middleware systems.

Dynamic Analysis generates reports of elements and their relationships, but from a dynamic
(runtime) perspective. Therefore, techniques such as profiling are used to recover the
necessary information. Profiling analyses the control flow of a running system. It provides
information regarding the order of operation calls.

Slicing. Program slicing works on a component’s source code. It investigates programs by
marking or extracting statements that directly concern the properties of interest.

Redocumentation is a manual approach to code analysis. A developer analyses the func-
tionality of a program and creates appropriate documentation. However, the amount of
code that a developer can handle is limited. According to Seacord [121] a developer can
handle code up to a size of 50,000 lines.

Refactoring is a popular technique to improve code quality and functionality by methodically
modifying the internal structure of code. Fowler [49] provides a catalog of refactoring
techniques - similar to the pattern catalog of Gamma et. al. - that describes a number of
useful code transformations.

The presented methods aim at an analysis of a system’s source code. They provide statistics,
reports, or descriptions on the source. An architectural reconstruction, however, requires the
creation of higher level abstractions from these basic results. This mainly includes extraction of
architectural views, which describes the system from different perspectives such as configuration
of the system’s components or the used component types and their dependencies. As described
in [121] the extraction of architectural views is a highly iterative process that involves interaction
of the analysts and the stakeholder.

For a more complete description of system renovation and transformation, Seacord et. al. pro-
posed the Horseshoe model [121]. The model distinguishes three main processes: reconstruction,
transformation and refinement. All processes are required for legacy system migration. Recon-
struction aims at system analysis and is therefore a prerequisite for component analysis. The
process itself is outside the scope of this work. The transformation process covers program and
structure transformation and is supported by the framework. The refinement process is par-
tially supported. The framework supports parameterized model transformation,whereas code
generation is unsupported.
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2.4 Foundations for Component Specification

This section gives an overview of software architecture as well as on type and behavior descrip-
tions. Software architecture provides the basis for a canonical component description, whereas
types and behavior provide the basis for the ‘traditional’ conflict analysis. Types are used in
most middleware technologies. In contrast, behavior descriptions are often not supported by
these technologies as they are more difficult to handle. However, for both techniques a consid-
erable amount of knowledge exists, so that they provide the basis for deciding structural and
semantical interoperability. In the next chapter, we augment both concepts with reasoning on
communication properties.

2.4.1 Software Architecture

The term ‘Software Architecture’ is used in several fields of software engineering with slightly
different meanings. This led to numerous definitions of this term (see [3]). In the context of
this paper, we define Software Architecture as proposed by Bass et. al.:

Definition 10 (Software Architecture) “The software architecture of a program or com-
puting system is the structure or structures of the system, which comprise software elements,
the externally visible properties of those elements, and the relationships among them” [20, p.21].

This definition precisely defines the basic elements of software architecture: components, their
relationships, systems of these elements as well as properties. On the other hand, it is an
abstract definition as it does not exactly state the nature of components and their relationships.
Thus, we are free to interpret these terms, which we will do in the following subsections.

Software architecture focuses on a high-level viewpoint of software systems. This captures early
design decisions, but leaves implementation details undefined. This, in turn, provides several
advantages: a high-level description can be easily understood, it can be used in negotiations
with stakeholders, it documents early design decisions, it can be reused like a design pattern,
etc.

A general problem of software architecture is linked to the informal description of systems as
imprecise box and line diagrams. These frequently used representations often provide no se-
mantics of the meanings of the constructs used. This impedes a system’s analysis, rendering the
proposed advantages useless. To enable formal analysis, Architectural Description Languages
(ADL) as semi formal languages were proposed. Besides ADLs, other efforts for formalization
and standardization such as the IEEE 1471-2000 [63] or proposals for documentations such as
[38] exist, but are not in the focus of this work.

Software architecture also aims to classify systems based on certain characteristics. This is
done by defining a set of (functional) properties such as synchronicity of communication flows,
topology of a system, continuity of data flows, binding time of components, delivery policy of
messages, modes of data transfer, transactional secured interactions and many more. For a
more complete overview refer to [44; 95; 123]. A set of these properties restricted to particular
values constitutes an architectural style:

Definition 11 (Architectural Style) “An architectural style is a description of component
types and a pattern of their runtime control and/or data transfer. A style can be thought of as
a set of constraints on the component types and their pattern of interaction” [19, p.25].

In this definition the term ‘type’ is interpreted as a set of property/value pairs independent
from a component’s interface. Similar to types, properties constrain architectural elements.
Thus, they need to be taken into account during any composition effort. A conflict analysis
therefore requires a classification of relevant properties and property values. We describe this
issue in Chapter 4.
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In the following, we introduce the standard elements that are of interest for the framework.
Thereby, we first present commonly used definitions of each term and discuss these in the light
of component composition and conflict identification.

Component

Components are generally perceived as elements that perform the actual calculations in a sys-
tem, whereas connectors specify the communication that takes place between components. A
common definition that emphasizes the functional viewpoint of a component was proposed by
Shaw [124, p.165]:

“Component are the loci of computation and state.”

Unfortunately, this very abstract definition does not mention any technology dependencies, nor
does it clarify the constituting parts of a component. Moreover, in the context of component
integration, computation and state as mentioned in this definition are not directly of interest.
Both are hidden in the component body (black box view) and are interpreted no further. Solely
the interconnection points of a component as well as its associated properties are of interest.

A better suited definition of the term ‘component’ focuses on the actual configuration of com-
ponents at runtime. Here, the term ‘component’ denotes binary artifacts, i.e. executables that
are instantiated on a particular node. Thus, each component represents an instance such as a
web browser running on a computer. A system configuration then consists of several related
and communicating component instances. The OMG proposes this kind of view in UML 1.x.
They define

“A component represents a modular, deployable, and replaceable part of a system
that encapsulates implementation and exposes a set of interfaces. [...]

A component may be implemented by one or more artifacts, such as binary, exe-
cutable, or script files” [108, p.36].

Software architecture also chooses this view if particular properties of runtime systems such
as security or performance are of interest. Here, a runtime system describes the layout of
participating components, the allowed types of components and their properties of interest.
Furthermore, software architecture investigates components in a module view to describe the
structure of a component type as well as in an allocation view to describe the physical instan-
tiation of a system [38].

The former definition indicates that the interaction points are determined by interfaces. How-
ever, it does not define the exact requirements of these interfaces. A more exact definition, in
this respect, was proposed by Szyperski [132, p.34]:

“A component is a unit of composition with contractually specified interfaces and
explicit context dependencies only. A software component can be deployed inde-
pendently and is subject to composition by third parties. ”

This definition interprets interconnection points as contracts and ‘context dependencies’. Con-
tracts are attached to interface definitions and place additional constraints on the usage of a
component. They are stated between components on the same level of abstraction. We in-
terpret ‘context dependencies’ as implicit relations to components located at another level of
abstraction. For example, a context dependency relates application components to components
such as containers, which host these components, required databases, or the underlying OS.

A properly defined component composition, however, requires resolving these ‘context depen-
dencies’. Every interaction needs to be explicitly expressed via interfaces. A communication
between two Enterprise JavaBeans, for example, needs to take into account the underlying
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container. Consequently, the container needs to be modeled as a ‘canonic’ component14, too.
Furthermore, the container cannot be instantiated without an underlying operating system and
so on. For a more detailed discussion refer to Section 1.2.

OMG’s UML 2.0 proposal more precisely describes ‘context dependencies’. It also distinguishes
between a component type and a component instance:

“A component represents a modular part of a system that encapsulates its contents
and whose manifestations is replaceable within its environment. A component de-
fines its behavior in terms of provided and required interfaces. As such, a component
serves as a type, whose conformance is defined by these provided and required inter-
faces (encompassing both their static as well as dynamic semantics)” [104, p.110].

This definition is closely related to our definition but does not distinguish different abstraction
layers as used for model-driven development. In the light of the above remarks, we define a
component as follows:

Definition 12 (Component) A platform independent (canonic) component (PIC) is an ab-
stract entity of a particular type that consists of a body and ‘requires’ and ‘provides’ interfaces,
which are defined as contracts and properties associated with these parts. Properties define the
context of a component as defined in Definition 6. A component is independent as it has no
hidden dependencies besides the ones stated by the interfaces.

A platform specific component (PSC) has the same structure as a PIC. Different from a PIC,
it is specified in terms of its associated platform: A PSC’s interfaces are defined in the type
system of the platform and its properties - the context of the component - must correspond to
the abilities and requirements of its platform (domain).

‘Provides’ interfaces determine the exposed services of a component. ‘Requires’ interfaces iden-
tify demands of a component that are used in the body to realize a component’s services.
Thereby, the body represents a black box. Properties describe the context of a component. In
this work, a component’s context describes the communication mechanism15 the component
depends on. Interactions between components are defined exclusively via connectors, which
represent the ‘relationships’ within a system configuration.

Component types are defined in the metamodel of the Ontology-Based Framework for compo-
nent analysis and transformation, which is defined in Section 5.1. Component types describes
the vocabulary from which system configurations consisting of instances from these types can
be built. A system configuration describes the physical layout and the properties of a system.

Connector

The word ‘connector’ originates in the Latin word ‘connectere’ [Merriam-Webster], which ba-
sically means ‘to bind’. Following that definition, the term refers to a relation between com-
ponents. In software architecture, that relation is represented by a first-class architectural
element, the connector. A connector manages the control flow as well as the data flow between
components. Thereby, it takes into account all dependencies that are relevant for an interaction.
In other words, communication is exclusively conducted via connectors.

A popular definition of the term ‘connector’ was proposed by Shaw [124, p.165]:

“Connectors are the loci of relations among components.”

This definition expresses the above-mentioned role of a connector. However, it leaves many
unanswered questions:

14At the same time the container is a connector between these Enterprise JavaBeans.
15Communication mechanisms are described by a taxonomy, which is defined in Chapter 4.
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• What is the internal structure of a connector, if any?

• Which parts of a connector are mandatory?

• Which properties are relevant to classify communication?

• How are these properties attached to connectors?

• How do these properties characterize an architectural style?

• Which kinds of connectors exist in software systems?

We do not want to discuss all of these questions in this section. However, we want to point out
two different viewpoints of how connectors are perceived: from software architecture and from
technology specific settings.

Software Architecture View. Software architecture focuses on the properties of connectors,
which are used for analysis purposes. Thus, at an architectural level, a connector is treated
as a structured element that describes a link between components. This link is associated
with particular property values. These determine which kind of communication can take place
between components in a system bound by a particular connector. Properties are classified
into taxonomies such as the one by Medvidovic and Mehta [93–95], who try to identify existing
connector types. Furthermore, connectors need to explicitly provide and require interfaces, in
order to associate types and behavior. This information is needed for a formal description of a
system. It is, however, of no importance how a connector is realized in a particular technology.

Besides simply providing communication resources, a connector is also able to handle several
extra tasks. It can be used to modify the behavior as well as the data structure of passed
information. It also allows adding services such as transaction, security, or replication. These
tasks can be provided transparently.

Connectors are often used to overcome mismatches between components. In this regard, several
patterns were developed in order to describe the role of connectors in a composition on the
architectural level [73]. These patterns include proxies, bridges, mediators, links, etc.

Middleware View. Middleware aims for simplified development of large complex systems.
Therefore, each middleware technology provides a high-level framework as well as a number of
services that can be used to easily access the underlying communication and interaction mech-
anism. At a minimum, middleware supports a particular application domain and connectors
that reflect the needs of that domain. These connectors are well integrated into the technologies
and can be handled almost transparently. For example, a complex connector such as a remote
procedure call can almost be treated like a simple local call. A developer does not need to
write complex code to use remote calls. Thus, connectors are often not explicitly handled in
technology dependent component descriptions, but hidden within middleware. In summary,
middleware focuses only on a small subset of connectors, which is often not explicitly modeled
but can be customized to a certain degree.

Several middleware systems allow customizing the behavior of connections between components.
This mainly includes, specifying additional services such as logging and load balancing. Some
technologies provide a kind of ‘interceptor’ to attach arbitrary user defined services. As more
concrete examples, the JBoss Server [1] supports a call-back interface to intercept method calls
to Enterprise JavaBeans. The BEA WebLogic Server [21] provides a call-back interface in order
to specify customized load balancing. Microsoft offers integration techniques, so-called hooks,
which easily and transparently allow addition of interception code into existing software [71; 80].
However, customization is restricted to prefabricated connector types.

Definition 13 (Connector) A connector at a platform-independent level is a first-class entity
that links components based on their provided and required interfaces. It consists of interfaces
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that exactly match the component interfaces, a body that establishes the communication, and
associated properties that describe the kind of communication that the connector facilitates. A
platform specific connector links platform specific components.

Interface

As discussed above, interfaces define the interaction points of a component with its environment.
Accordingly, they are often defined as entities

“. . . for specifying a service. An interface gives a name to a collection of operations
that work together to carry out some logically interesting behavior of a system or a
part of a system” [76, p.2].

However, this definition does not mention which functionality an interface exactly has to de-
scribe. As mentioned previously, Szyperski exactly defines the role of an interface as a kind of
contract between a ‘supplier’ and a ‘consumer’. He defines a contract as

“. . . a specification attached to an interface that mutually binds the clients and
providers of that interface” [132, p.370].

We take up his position and interpret an interface similar to an ’Abstract Data Type’ (ADT)16.
An ADT consists of a set of operations, invariants and pre- and post-conditions. Operations
consist of a number of arguments, a return type and a set of possible exceptions. Arguments
consist of a name, a type, a direction, and an optional default value. Constraints define states
that have to be valid immediately before or after the end of the execution of an operation.
These constraints can be expressed in different languages such as Z [28] or Larch [59].

Almost all current middleware technologies use or support interfaces for component specifica-
tions. They either offer an Interface Description Language (IDL) or define interfaces directly
in an associated programming language. IDLs are trimmed according to the requirements of
each middleware. However, most IDLs offer elements such as operations or attributes that we
perceive as ‘canonic’elements of every technology.

Unfortunately, middleware technologies often only specify structural aspects - types - of in-
terfaces. They leave out behavior and properties. Thus almost all interface specifications are
incomplete as they cannot be used to identify behavioral conflicts or mismatched assumptions
on the environment.

Ports and Roles

Regarding system configurations, interfaces are not directly associated with components and
connectors. In fact, components are related via ports with interfaces, whereas connectors are
related via roles with interfaces. The main reason behind this indirection concerns multiplicities
of interfaces. Ports and roles allow defining how many interfaces can be bound by a component.
Another reason concerns binding of behavioral specifications. In principle, a component or a
connector can simultaneously execute a protocol in each port or role. Additionally, ports can be
used to describe communication requirements of connectors and components. In this respect,
a connector can be described with different communication requirements on each port. This is
the basis to describe connections between different middleware technologies.

In the framework, ports and port types are used to define behavior (protocols) as well as
properties (see Sections 5.1.3 and 4). We do not distinguish roles and ports in this work
because of the relativity of components and connectors.

16Contrary to an ADT, an interface provides no implementation.



36 Communication and Integration

System

A system describes a graph of interconnected components and connectors. These elements
are bound via ports and roles. A composition requires a match between ports and roles and
therefore between the interfaces associated with these elements

2.4.2 A Type System for Components

Type systems are well known in the context of programming languages, where they are used to
statically ensure the correctness of statements and whole programs. A typed language provides
considerable advantages compared to untyped languages, as it can be automatically checked
whether a statement such as ’if x+1 then ’a’ else 1 ’ is correct or not. This is achieved by
algorithms, which exploit a predefined typing relation to deduce the type for a statement. In
this respect, it is important to notice that types can only be used to prove the absence of certain
kinds of ‘bad behavior’. They cannot ensure ‘correctness’.

In our context, we use types to check if two components can be composed or not. More precisely,
we are interested in the question of whether there are type conflicts between components selected
for composition. In the following, we will trace back this question to the determination of
whether the interfaces of both components are in a subtype relationship. According to our
definition of a component, this is sufficient to guarantee structural compliance.

In the remainder of this section, we will briefly define the terms ‘type’ and ‘type system’. Based
on these, we will explain the properties of a subtype relationship between types. Furthermore,
we will investigate the problem of mapping type systems of several middleware systems into a
single system.

Type Systems

In order to clarify the term ‘type system’, we first precisely define the meaning of a type. In the
following, we will perceive a type as a set of values, where each value needs to satisfy particular
properties. For example, a 16 bit unsigned integer type is a set of natural numbers that is
constrained by a maximal (65535) boundary and a minimal (0) boundary. In the following, we
define a type by a quotation from Carelli/Wegner:

Definition 14 (Type) “There is a universe V of all values, containing simple values like
integers, data structures like pairs, records and variants, and functions. . . .A type is a set of
elements of V ” [34, p.14].

They use this definition to introduce type systems. Please note that this is a simplified view on
types. Cardelli/Wegner describe a far more complex theory of types, which is based on ‘Ideals’,
polymorphic types, etc. However, we do not address these advanced properties as they are not
required to describe most object-oriented middleware and therefore choose to use the above
definition.

Based on this definition, a type system consists of a set of types and a number of rules that
express relationships between types. Each type of a type system is either a basic type, which
has no internal structure (as far as the type system is concerned) or a composite type, such as
a record or a list. A type system assigns a single type to each well-formed term if a derivation
tree exists, or fails if there is no deduction for a term. In this respect, we define a type system
according to Pierce as follows:

Definition 15 (Type System) “A type system is a tractable syntactic method for proving
the absence of certain program behaviors by classifying phrases according to the kinds of values
they compute” [112, p.1].
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As an example of a simple type system, we present the three typing rules of the pure simply
typed λ-calculus as defined by Pierce [112]:

x : T ∈ Γ
Γ ` x : T

(2.1)

Γ, x : T1 ` t2 : T2

Γ ` λx : T1.t2 : T1 → T2
(2.2)

Γ ` t1 : T11 → T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(2.3)

In the simply typed λ-calculus a single function type exists T ::= T → T . The syntax of the
λ-calculus is described by only three kinds of valid terms:

(1) Variables: x,

(2) Abstractions: λx : T.t, where x : T represent a typed variable,

(3) Applications: t t, the application of two terms.

The ‘typing context (Γ)’ as defined in the typing rules from Pierce, is basically a set of mappings
from free variable names to their associated types. Thus, the rule ‘Γ ` t : T ’ states that term
t has type T , if all free variables in t are substituted by the Types assumed under the actual
typing context Γ. This technique of annotations is used in explicitly typed languages.

Subtype Relationship

A type system deduces the type of a term according to a set of given inference rules. However,
these rules often are stated too strictly. For example, the following expression is not well typed
(without subtyping),

void foo() {
long x;
int y = 1;

x = y;
}

because the types ‘long’ and ‘int’ are not identical. Nevertheless, it is obvious that it is safe to
assign the value of y to x.

In order to construct more flexible type systems, which allow type deductions of ‘safe’ terms, the
subtype relationship was introduced. Informally, a subtype corresponds to a subset relationship.
Thus, we can substitute the value of y for x because the set of integers is a subset of the set of
long integers.

We define a subtype as follows:

Definition 16 (Subtype) A subtype is a binary relationship between types, written S � T that
indicates that S can be substituted for T . It consists of a set of direct relations between basic
types and inference rules for complex types. A subtype relationship is reflexive and transitive.

According to this definition, separate inference rules need to be specified for each complex type.
Additionally, there are two basic rules: a reflexive and a transitive rule. The first rule states
that every type is a subtype of its self:
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T � T

The second defines a transitive relationship between types: if S is a subtype of U and U is a
subtype of T then S is also a subtype of T.

S � U U � T

S � T

Both rules are standard assumptions used for subtyping and were taken from Pierce [112].
Pierce additionally introduces rules for common complex data types such as records, tuples,
variants, lists, references, etc. In Section 5.1.2, we use his definitions for functions and records.
These rules constitute the foundation for the subtype relationships of components, connectors,
and interfaces.

A subtype relationship can be defined with several semantics and can have more sophisticated
properties as indicated here. A more complete introduction is given, for example, by [34; 112].

Type Conversion Between Different Type Systems

A major problem for the framework concerns different type systems of middleware technologies.
These differ in properties of basic types as well as in supported complex types. For example:
a Java ‘int’ is defined as a 32 bit type whereas a C ‘int’ can also be defined as a 16 bit type.
Furthermore, C supports pointers whereas Java does not, etc.

In general, there are two approaches to map types between different technologies. We can
provide one-to-one mapping rules that map between every technology or we can introduce a
single type system that participates in each mapping. We refer to the latter approach as a ‘star’
schema, because a single type system is in the center of each mapping. We use this approach
and provide a ‘minimal’ type system for Ontology-Based Framework for component analysis
and transformation (OBF), which we use for conflict analysis and model transformation. It
consists of only these types that are needed to decide for conflicts between components. The
other alternative would introduce additional costs as there are more connections to maintain.

Furthermore, the proposed approach fits well into a model-driven development that supports
abstractions and refinements between PIM and PSM level entities (see Figure 3.1). A PIM is
related to several PSMs. Correspondingly, a platform independent component model is related
to several platform specific component models.

2.4.3 Formal Languages for Behavior Specification

According to Lamsweerde [141, p.149], a formal specification

“is the expression in some formal language and at some level of abstraction, of a
collection of properties some system should satisfy.”

This definition neither prescribes the kind of system that is being specified nor the kinds of
properties of interest. This leaves room to interpret the meaning of a system: it can range from
a single component to a complex configuration of components within a system and its envi-
ronment. Properties of interest can be summarized as functional properties and non-functional
properties such as security and performance.

According to Wing [148], a formal specification language can be informally defined as a language
that

“provides a notation (its syntactic domain), a universe of objects (its semantic
domain), and a precise rule, defining which objects satisfy each specification. A
specification is [then] a sentence written in terms of the elements of the syntactic
domain” [148, p.10].
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Property-based Model-based
Sequential behavior Larch, OBJ, Anna VDM,Z
Concurrent behavior LTA+ CCS,CSP,FSP, Petri Nets

Table 2.4: Specification Language categorization based on distinctions between property-based
and model-based language paradigms and the kinds of system being specified

Specification languages can be characterized by two dimensions: their semantic domain and
their specification paradigm. In the context of component-based systems, the semantic domain
can be subdivided into sequential behavioral specifications and concurrent behavioral specifica-
tions. The former are used to describe the requirements and obligations of component services
(their provided functionality), whereas the latter are used to describe the synchronization be-
tween components.

Formal languages can further be characterized by their specification paradigm: the way they
state system assertions. Specification languages are often distinguished into model-based and
property-based languages (see Wing [148]). The former construct a model of the system usually
in terms of mathematical structures such as sets and functions. This kind of specification is
often based on states. It constrains possible states as well as their transitions. Property-based
specification languages define assertions with logical propositions (sets of equations), usually
based on an axiom system.

However, other characterizations were proposed claiming to give a more comprehensive classifi-
cation. For example, Lamsweerde [141] proposes such an alternative classification. Lamsweerde
distinguishes specification languages into the following categories:

History-based specifications, which assert the state of a system based on their past, current
and future states,

State-based specifications, which constrain behavior with pre- and post-conditions,

Transition-based specifications, which are based on state machines,

Functional specifications, which express system properties mainly with some kind of func-
tions (Lamsweerde distinguishes algebraic and higher-order functions), and

Operational specifications, which express behavioral properties for a number of concurrent
processes.

With regard to our objectives of component integration, we summarize popular specification
languages according to the characteristics relevant for the framework. Table 2.4 classifies specifi-
cation languages in two dimensions: sequential/concurrent behavioral specifications and model-
based/property-based approaches.

As mentioned before, the framework provides features to support behavioral specifications of
both sequential and concurrent behavior allowing conflict analysis. However, there are several
problems concerning this objective:

(1) A wide range of specification languages exist that can be used to define the behavior of
components. Each of these languages defines its own syntax and reasoning support. How
can these languages be supported in the framework?

(2) Another problem concerns conflict identification. How can conflicts be identified if the
involved components were specified with different specification languages? In contrast to
the approach in the structural model in which we map different type systems into a unique
(canonic) type system, it seems to be impossible to provide simple mappings for each of
the mentioned specification languages into a canonic representation. This gives rise to
the question whether it is impossible to provide an automated checking for behavioral
equivalence of components specified in different languages.
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In response to the first question, we equipped the framework with elements to handle sequential
and concurrent behavioral specifications. As we perceive the framework as a customizable tool,
we do not enforce a fixed specification language. It is up to the user to instantiate the framework
with appropriate specification languages and to provide mappings between different languages.
Thus, it is possible to use any of the languages mentioned above if the constraints can be
ascribed to components and connectors using the given framework classes.

Regarding the second question, we do not believe that an ultimate solution exists. However, we
designed the framework to at least partially solve this challenge for concurrent specifications.
As can be seen from Table 2.4, most popular specification languages for concurrent behavior
are model-based approaches. More precisely, they are often based on automata theory. If these
automata are interpreted as process graphs, they can be checked for simulation and bisimu-
lation equivalence. These equivalence relations compare the behavior of concurrent executing
processes.
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Chapter 3

Approach for Conflict Analysis

This chapter describes our approach to conflict analysis of software components, which always
compares two components for compatibility. Section 3.1 starts with a definition of requirements
for a conflict integration framework and presents the chosen technologies that satisfy these
requirements. Section 3.2 provides an overview of the framework’s architecture that fuses on
the presented technologies and meets the objectives stated in the introduction. Based on the
framework architecture and the technologies presented in Section 3.1, Section 3.3 introduces
two processes for component analysis, and transformations are presented. These describe the
major activities supported by the framework.

3.1 Technologies for the Conflict Analysis Framework

In order to achieve our objective of component analysis, we impose the following five require-
ments that must be provided by a conflict analysis framework:

• Definition of a canonical component model that allows describing important aspects of
components of different technologies. The model constitutes the basis for conflict analysis.

• Creation of an abstraction function that translates platform specific component descrip-
tions into the canonical component model.

• Proposition of conflict analysis functionality that identifies the most relevant conflicts
regarding an integration of two components.

• Creation of refinement functionality to create platform specfic component and connector
specifications from an abstract model.

• Integration in a UML-based software development process.

As mentioned before, each requirement alone can be satisfied by using a standard technology
or language. For example, UML is the de facto modeling language, whereas ADLs provide
canonic representations of components and connectors. However, neither UML nor ADLs di-
rectly support reasoning, which instead is provided for by deductive programming languages.
Furthermore, ADLs are often defined in proprietary formats and are not supported by a wide
range of tools. Model-Driven Development (MDD) supports models on several abstraction lay-
ers. It also supports model transformations. However, the MDA, which is the standard MDD
architecture, currently lacks a model transformation language. Furthermore, it is not compat-
ible with ADLs. Nevertheless, we believe that combinations of these technologies are able to
fulfil all these prerequisites together. We propose the following technology combination:

(1) UML as a front-end modeling language for the end-user.
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(2) MDA as an environment that handles models at several abstraction layers and that pro-
vides transformations between these layers.

(3) RDF/RDFS to express canonical components and particular technologies.

(4) TRIPLE to provide model transformation based on RDF and reasoning support.

(5) Feature Models to represent communication properties of technolgies and to realized pa-
rameterized transformations.

The surprising element is the decision to use RDF as the main component specification language.
RDF is a standardized language that can be used in several application areas. It is supported
by a growing number of tools. Furthermore, TRIPLE supports reasoning and transformation
on RDF.

In the following, we give an overview of the technologies and languages chosen for the conflict
analysis framework.

3.1.1 Architecture Description Languages

Software architecture aims at describing the structure and behavior of software systems on an
abstract level. Thereby, the details and source code of a system are suppressed and only the
‘gross aspects’ consisting of components and connectors and their configuration are described.

ADLs formalize architectural descriptions by providing syntax and semantics of the parts and
relationships of a system. The descriptions can be used to analyse systems on an architectural
level, before an implementation is accomplished. This provides advantages regarding a cost
reduction in software development. In particular, an ADL can be used to verify component
composition, to provide hierarchical descriptions of a system from different viewpoints, and to
analyse non-functional properties and semantics.

According to Medvidovic [92] an ADL should consist of three parts: explicit descriptions of
components, connectors, and their configurations in systems. He further defines the aspects
that should be described for each part, which contain for components and connectors among
other things definitions for syntax, semantics (behavior) and constraints. Medvidovic further
notes that an ADL is only useful in conjunction with tools that provide analysis capabilities.

In recent years, several Architecture Description Languages (ADLs) [55; 83–85] were developed
to describe the structure and behavior of architectural elements for specialized application
domains or for particular analysis requirements. A classification of these languages can be
found in [92].

However, there is no standard of architectural description. As a result, a number of different
concepts and language constructs were proposed. Unfortunately, most of these ADLs are incom-
patible. To cover this problem, the research community proposed two ADLs (ACME, xADL)
that both provide unified concepts, language elements and frameworks for interchange of ADL
descriptions. They divide available elements into two sets: standard elements and ‘enhanced’
elements. Standard elements are components, connectors, systems, ports (interaction points of
a component), roles (interaction points of a connector), hierarchical compositions, and map-
pings of internal and external interfaces in composite components. Enhanced elements are used
to analyse a particular problem and differ from ADL to ADL. Therefore, they are expressed by
property sets and can only be interpreted by tools supporting these elements. Both ADLs de-
fine the least common denominator of architectural elements, including canonical components.
Consequently, this framework is fundamentally based on the descriptions of these two ADLs.

Standard elements represent types of a ‘canonic’ type system. This enables dependency and
usage analysis, analysis of structural compliance of elements to an architectural style and conflict
identification of mismatched interfaces. The last point is important for component composition.
Components need compatible interfaces to be composed. In particular, a subtype relationship
is required between provides and requires interfaces of two components to be composed (see
Section 2.4.2).



3.1 Technologies for the Conflict Analysis Framework 45

3.1.2 Model-Driven Development

Component analysis requires a uniform representation of components. Components of different
technologies cannot be compared directly, because of inherent differences in their specifications,
such as different type systems, etc. Therefore, a concept is needed that describes a principal
method to abstract components from platform dependent artifacts into canonical representa-
tions.

One existing approach that describes component abstractions is given by Model-Driven De-
velopment [96]. Model-Driven Development proposes to model systems at a higher level of
abstraction - independent of a particular technology - and to automatically transform a design
into code. This kind of development promises faster time-to-marked and cost reduction because
specifications on a more abstract level simplify development.

In our case, we are interested in component abstraction. We start with platform specific com-
ponents and abstract them into a platform independent representation. Thereby, we assume
that each component specification not only consists of structural definitions but includes pre-
and post conditions, behavior descriptions, and a state model. In the following, we use the
terminology from the Model Driven Architecture (MDA) [98], which we perceive as a partic-
ular manifestation of Model-Driven Development, to describe component representations on
different levels and to describe transformations between these presentations.

The Model Driven Architecture is proposed by the OMG. It targets fully automated component
generation and distinguishes two kinds of models: platform independent models (PIM) and
platform specific models (PSM). We refer to a PSM if it is based on a particular form of
technology such as Enterprise JavaBeans, JavaBeans, Jini, etc. A PSM is normally described
in a modeling language such as UML and corresponds to an implementation of the system.
For example, the OMG provides several UML profiles (PSM) that describe a platform such
as Enterprise JavaBeans or CORBA in UML [109]. These profiles also define mappings in
order to automatically generate source code. Contrary to these models, platform independent
models (PIM) can be defined without reference to a platform, and therefore without describing
a particular form of technology. These kinds of models are usually specified using a modeling
language without using platform specific elements, e.g. platform specific types. Figure 3.1
shows the core concept of Model-Driven Development. It distinguishes the different kinds of
models as well as model transformations between them. In general, a PIM can result in several
PSMs. In particular, Figure 3.1 presents two mappings between a platform independent model
and the Enterprise JavaBeans technology, respectively the .Net Platform.

Unfortunately, the proposed advantages of Model-Driven Development cannot yet be realized
with MDA because automatic model transformations are required to gain an advantage towards
traditional source code development. Currently, the MDA lacks a transformation language to
perform the necessary mappings [57]. Therefore, the OMG issued a Request for Proposal for
Queries/Views/Transformations (QVT) [106].

Several proposals for model transformation have been recently published in response to that
RFP. These proposals can be classified regarding several categories such as how they define
transformation rules or rule application strategies.1

OBF uses TRIPLE as a transformation language. According to [42], a TRIPLE-based trans-
formation is a declarative relational model-to-model approach.

3.1.3 Feature Models

Feature models play an important role in the area of domain analysis. Introduced in FODA
[70] they serve as a description of the features of domain entities using and-or-trees enhanced
with some useful elements to express variability.

1Czarnecki and Helsen [42] provide a classification of model transformation approaches.
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Figure 3.1: Component-Based Models and Their Abstraction Levels

The root of a feature model is called a concept.2 It describes the ‘object’ of interest regarding
particular stakeholders. Features characterize the relevant properties of the concept:

“Features allow us to express the commonalities and differences between concept
instances. They are fundamental to formulating concise descriptions of concepts
with large degrees of variations among their instances” (Czarnecki & Eisenecker
[41, p.83]).

Thereby, they span a design space of possible instances. For example, our focus concerns
the description of communication - the concept - between several middleware technologies.
The subsequent features characterize communication variability by describing possible kinds of
communication. A feature instance is a feature model that does not contain any variability
elements. For all variability points in the original model, a choice has been made.

In the following, we do not use the original definition of feature models as introduced in FODA,
but refer to the representation as proposed by Czarnecki and Eisenecker [70]. Accordingly, a
feature model mainly consists of a diagram, and for each included feature of a description, a
rationale, an example, a number of stakeholders that the feature is of interest, and a number
of constraints.3

The diagram consists of several node types that differ in the degree of variability that they
allow. Figure 3.2 shows each of the node types, which are described as follows:

Mandatory Features. Mandatory features have to be included in a feature instance iff their
parent node is included in the instance. Mandatory features describe the invariant parts
of a concept or a parent feature. In a diagram they are represented by a filled circle.

Optional Features. Optional features may be included in a feature instance iff their parent
is included in the instance. They are represented by a blank circle.

Alternative Features. An alternative describes a set of features. If the parent feature is
included in a feature instance, exactly one feature of the set also needs to be included in
the instance. A group of alternative features is represented by a blank arc that spans a
set of mandatory features. In the following, we often refer to alternative features as ‘xor’
features.

2We regard concepts and features as synonyms. A concept is the root of a feature diagram. It defines the
context of analysis. However, the context is relative. If we aggregate feature models, the former context nodes
become normal features in a larger feature model.

3It furthermore contains some other aspects that are of no interest in the context of this work. The interested
reader may refer to Czarnecki and Eisenecker, [70], Chapter 4.
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Or Features. Or features also form a group. If the parent feature is included in a feature
instance, one or more of the features in the set also needs to be included in the instance.
The group is represented by a filled arc that spans the set of mandatory features.

Optional Alternative Features. This node type is similar to alternative features. In con-
trast to an alternative feature set, the included features are all defined optional. Conse-
quently, if the parent feature is included in a feature instance, at most one feature can be
selected for the instance.

Figure 4.1 shows an example of a feature model, which describes the communication features
of a SessionBean.
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Figure 3.2: Feature Model Node Types

3.1.4 Resource Description Framework

Resource Description Framework (RDF) is a standardized language of the W3C [149]. The goal
of RDF is to express information (metadata) about resources on the World Wide Web. Thereby,
a resource can refer to individuals, things, properties, or property values. Each resource is
identified by a Uniform Resource Identificator (URI). RDF can express properties of resources
as well as relations between resources.

Information about resources expressed by statements that consist of a subject, a predicate
and an object. The subject is a resource, for which information is attached by predicates.
Predicates refer to objects, which are either resources or constant values (literals). A RDF
model is consequently constituted by a set of those statements.

In order to exchange information, RDF models should conform to a schema that was defined
in RDF Schema (RDFS) [150]. RDFS schema can be compared to a type system in object-
oriented programming languages. It defines classes and properties of the classes for a domain
of interest. Based on a RDFS instance, applications are able to exchange RDF models. An
important difference between a type system and RDFS, however, consists of the treatment of
properties. In RDFS, properties are defined independent of a specific class. Another important
aspect of RDF concerns data types. RDF and RDFS do not define specific data types. Instead,
they define data types as special URIs that refer to a specific type system. As an example, data
types are often defined by referring to the types of XML Schema [26].

In this work, we use RDFS to define models for component types, behavior, and properties.
The structural model is based on ADL elements, which are important for conflict analysis.
Furthermore, several platform specific models that describe components of several middleware
technologies are also defined in RDFS. These models are used for model transformations.

3.1.5 TRIPLE

TRIPLE was proposed by Decker et. al. in [126]. TRIPLE is a language designed to provide
a reasoning service for the semantic web. TRIPLE facts are very similar to RDF statements.



48 Approach for Conflict Analysis

TRIPLE is based on F-Logic [74], which supports object-oriented features and distinguishes
between instance data and schema information (types/classes). TRIPLE states facts as tuples
(S,P,O,C): S for subject, the entity to be described; P is a predicate that states the relation
of interest; O stands for an Object, which is either a Literal or another tuple; C describes the
context within which the tuple is valid. The ‘context’ is a new construct that allows specifying
views of an object in different contexts. This feature is extremely helpful because it divides fact
bases into chunks that can be used as separate units.

An RDF statement can be formalized in TRIPLE as

subject[predicate->object]@context.

Constraints for building such statements are formulated with the special schema-vocabulary
RDFS, which essentially enables the definition of binary relation signatures [150]. For example
the statements

class1 [ rdfs:subClassOf -> class2 ].
prop [ rdfs:domain -> class2; rdfs:range -> class1 ].

express the following constraints: The statement s[prop → o] is valid if s is an instance of class1
or class2 and o is an instance of class1. Therefore

x [ rdf:type -> class1; prop -> y [ rdf:type -> class1 ]].

is a valid statement with regard to the schema statements above.

For the sake of readability, TRIPLE has been extended syntactically in [24]: Similar to F-Logic
the form p → {A,B} stands for {p → A; p → B}.
A TRIPLE-mapping is defined through a parameterized context. For example, the clause

forall X @inv(X) {
forall U,V V[requiredBy->U] <- U[requires->V]@X.

}

simply defines a mapping ‘inv’ which filters and inverts the association ‘requires’. The source
model of the mapping is the set of all statements in context X. For each instantiation of the
rule body with a statement of the source model a statement according to the rule head will be
produced. The target model contains these statements which are in the context inv(X). For
example, the query

forall s,p,o s[p->o]@inv(ctxExample).

transforms the source model with context ‘ctxExample’ to the target model with context
‘inv(ctxExample)’.

3.2 Architecture of the Conflict Analysis Framework

The architecture of the framework for ‘Component Conflict Analysis’ (Figure 3.3) is divided
up into five logical parts: part one consists of a UML modeling tool that is able to import
and export XMI.4 Part two is responsible for transformations between models formalized in
XML Metadata Interchange (XMI) and RDF. This transformation is realized as a service of

4XML Metadata Interchange (XMI)
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the Evolution and Validation Environment (EVE)5 [131]. We created the Analytical-Data-
on-Artifacts-and-Models repository6 (part three) to store all kinds of component specifications
regardless of whether they are formalized as XMI, RDF, artifacts or whether they represent
PIM or PSM specifications [118]. Component analysis and transformations are realized by the
Ontology-Based Framework for component analysis and transformation (OBF)7 (part four) [77].
Ontology-Based Framework for component analysis and transformation (OBF) uses external
tools (part five) to check for special consistency relationships such as subtypes, simulation, and
bisimulation.
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Figure 3.3: Architecture of the Framework for Component Conflict Analysis

3.2.1 UML Modeling Tools

UML modeling tools constitute the front end of the framework. Thereby, developers can use
the UML tool of their choice and operate the framework almost transparently. However, as
mentioned above a major limitation in the choice of the tool concerns XMI support. UML
tools should provide a standardized XMI import and export or appropriate filters need to be
specified that adjust the respective XMI streams.8

Component analysis requires the specification of components consistent to one of the provided
UML profiles of the framework.9 The profiles define a UML representation of the framework’s
models. The representation is formalized as a one-to-one mapping between the framework’s
elements and UML model elements. Most of the framework’s models are represented based
on UML class diagrams, where the standard elements such as the UML ‘class’ element are
annotated by stereotypes and tagged values. Therefore, most UML tools should be able to
handle these specifications.

5EVE is based on an idea of my colleage Jörn Guy Süs̈s. Together, we implemented the framework in a
student project. On basis of this implementation, I implemented the transformation service, which I needed for
the conversation into the OBF framework.

6The architecture of ADAM was developed by Felix Schmid as part of his master thesis. ADAM was
implemented in a student project.

7The OBF framework mainly consists of the core models needed for conflict analysis as well as of rules
describing model transformations and conflict analysis. Its execution environment is the ODIS tool, developed
by the Fraunhofer ISST.

8At present, EVE either works with standardized XMI as exported by Poseidon or supports Rational Rose
by providing filters that transform the proprietary format of Rose.

9A profile to describe platform independent components can be found in appendix B. A profile for specifying
Enterprise JavaBeans can be found in [146].
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3.2.2 The Evolution and Validation Environment

The Evolution and Validation Environment (EVE) [131] allows executing arbitrary services on
UML models. Thereby, the architecture of EVE is centered around serialized and standardized
models, creating a tool independent environment. EVE is based on a Meta-Object Facility
(MOF) repository and uses XMI to operate on models. In the context of this thesis, we define
a transformation service that converts models between XMI and RDF representations.

Figure 3.4 shows the basic concepts of EVE: Models specified in an arbitrary modeling tool are
extracted. Services are applied on these models in a sequential order. The results can either be
displayed or handed back to the modeling tool environment. Alternatively, a service can create
artifacts such as source code. EVE consists of the following basic components:
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Figure 3.4: Basic Concepts of the Evolution and Validation Environment

Models. The EVE framework is able to handle model instances that are based on a MOF
compliant metamodel, as it is based on the Netbeans MDR metadata repository.

Plugs. Modeling tools handle and store model instances in different proprietary formats. In
order to use these model instances, they have to be translated into proper XMI.10 Plugs
perform this translation and therefore provide the connection between modeling tools and
the framework.

Services. Services define functionality that can be applied to model instances. Typical exam-
ples of services are model validation, model evolution and model transformation.

Views. Views are components for immediate visual presentation of models and system or
service feedback. A view can be a HTML page, a RDF feedback, or an error report.
Views are also used to monitor the status of the EVE platform, as users must be able to
determine which services are available.

Artifacts. The term artifact refers to all data that does not represent a (UML) model instance.
Services may produce or consume arbitrary artifacts such as source code, reports, etc.
However, artifacts cannot be passed around in the primary framework. If services intend to
cooperate on the content of the artifact, then the artifact must be modeled, i.e. expressed
as a model instance and embedded into the model that is passed around. Otherwise the
services must define a private, proprietary communication channel.

We constructed the EVE framework on the basis of two architectural styles: The ‘pipe-and-
filter’ style [32; 124] was used to provide sequential operations on services. A strict ‘layered
systems’ style was applied to arrange the invocation capabilities of the framework (local access,
LAN access, WAN access) in different layers.

10Most modeling tools support an XMI dialect that more or less complies with the XMI Specification. Thus,
model instances have to be cleansed in order to become usable.
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We used the pipe-and-filter style to gain a transactionally secured composition of services.
Services represent particular functionality that can be composed in subsequent service calls.
Figure 3.5 shows an example instantiation of the EVE framework expressed in a pipe-and-filter
style. In the figure, two functionally independent services are composed. The transformation
is started by a plug component. A plug is an abstraction for model input or output: E.g. a
command line operation or plug-in for a tool such as Rational Rose or ArgoUML. It supplies
a model instance to the first or retrieves one from the last service. Each service performs
a particular operation on its source model and outputs a modified target model as well as
feedback and optional artifacts. Feedback refers to details of the services operation, e.g. error
messages or derivation traces. Artifacts are objects like generated code, etc. Each operation of
the framework ends either in a viewer or in a plug component.
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Figure 3.5: Main Architecture of EVE

EVE has been developed over the last two years at the TU Berlin and is mainly part of the
dissertation of Jörn Guy Süß.

3.2.3 Analytical-Data-on-Artifacts-and-Models

The Analytical-Data-on-Artifacts-and-Models (ADAM) repository [118] represents a generic
facility to store resources of arbitrary format and to handle meta information on these resources.
In the context of this work, ADAM is customized to handle component descriptions specified in
XMI and RDF, component transformations specified in TRIPLE, communication taxonomies
and component binaries. ADAM provides RDF Schema (RDFS) to handle relationships between
instances of these resources.
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Figure 3.6 provides an overview of ADAM. The figure shows a single component A that is stored
in several representations: It is stored as a PIM both in an RDF and an XMI representation,
and also as a specialized EJB PSM component. The relationship between the PIM and the EJB
PSM component is described by a transformation. The EJB PSM component is associated with
a corresponding communication taxonomy that describes the communication requirements of
A. Furthermore, A is stored as a binary artifact in the repository. The relationships between
these component elements are managed by ADAM via a customized RDFS, which describes
the components on different abstraction layers as well as their relationships. Besides the EJB
technology, the ADAM repository can be customized to supports additional component models.

ADAM is implemented as a Java component. It is based on Jena, the Semantic Web Framework
for Java [89], and can be customized for the requirements in different application areas. The
repository provides an open design which allows saving resources in different kinds of storage
systems. At present, it uses the file system and the Tamino XML database to store models and
artifacts. The metadata is stored in MySQL.

ADAM was developed in the scope of a student project at the TU Berlin. It was designed
within a master thesis [118].

3.2.4 Ontology-Based Framework and External Tools

The Ontology-Based Framework (OBF) for component conflict analysis consists of several RDF
schemata describing structure, behavior, communication properties, and conflicts as well as of
TRIPLE rules for component transformation and conflict analysis. OBF is implemented on top
of the Ontology-Based Domain Repository (ODIS) [24]. ODIS provides an environment for the
interpretation of TRIPLE rules and uses XSB, a deductive knowledge basis for rule evaluation.
OBF extends ODIS by adding several specialized tools for component conflict analysis.

At present, it uses a prototype implementation, which is written in Haskell to check for type
conflicts. Further, it uses the existing model checkers Aldebaran and fc2tools to check for
simulation and bisimulation conflicts and LTSA to identify deadlocks and progress violations.
OBF models are explained in Section 5.1, whereas conflict analysis is explained in Chapter 6.
We decided to use external tools instead of an implementation directly based on TRIPLE, as
these tools are already functional or are simpler to implement.

3.3 Processes for Conflict Analysis and Model Transfor-
mation

This section gives an overview of the process of conflict analysis as well as of the associated
process of component transformation. The second process is a necessary side effect of conflict
analysis.

3.3.1 Conflict Analysis Process

The conflict analysis process that is shown in figure 3.7 can be divided up into three parts:
The specification part covers the creation of component descriptions, the transformation part
transposes these descriptions into a canonical representation and the analysis part identifies
mismatches that hinder integration.

Specification

If a developer creates a new component, he is free to describe the structure and behavior as
well as to select appropriate communication properties and the technology of this component.
However, often binary artifacts are to be integrated. In this case, it can be extremely difficult
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to obtain the information necessary to create a UML specification. The first activity of figure
3.7 covers the creation of UML specifications from COTS and legacy systems. This usually
requires the application of reengineering techniques such as static or dynamic code analysis
to obtain information necessary to create component descriptions. Often tools are used to
reengineer artifacts in order to create a documentation and an architectural description. There
are a number of techniques, some of which are described in Section 2.3.3, that can be used for
reverse engineering.
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Figure 3.7: Conflict Analysis Process

Most of these analysis techniques are complex and their applicability depends on the particular
situation. Therefore, we do not investigate these activities in this work. We assume that
reengineering activities have already been applied to extract the information necessary to gain
a more or less complete specification of an artifact. We further assume that the structural
specification, e.g. the interfaces and types, are completely specified, whereas the behavior and
the property descriptions may be incomplete.

Transformation

If all required components are specified in UML, a developer can choose two components for
conflict analysis. He can further annotate information that is required for component analysis.
Useful annotations span among other directives such as property restrictions, which prescribe
communication and the component technology.

Conflict analysis is based on a platform independent canonical component model. This model
is represented by an RDFS component model, which we call the Platform Independent Com-
ponent Model (PICM). Therefore, the transformation activities involve the reinterpretations of
components specified in UML in terms of the PICM metamodel.

The transformation involves several steps, depending on the exact format of the UML compo-
nent descriptions. The steps are described in the transformation process (Section 3.3.2).

Analysis

Conflict analysis evaluates several essential criteria for component integration. Among others,
the following criteria are checked: type conformance, behavioral compatibility, existence or
absence of certain protocol properties, and compatibility of communication requirements.

The framework checks the actual specifications of two components for conflicts. We do not
impose any order or a sequence of the conflict categories in this process. A developer can
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analyse the conflict categories he is most interested in. However, we suggest to start either
with a structural analysis or with an analysis of the communication properties of components.
Checking of communication properties is especially useful, if the amount of integration work
between components of different technologies should be estimated, whereas type analysis is most
useful, if two components are already selected for integration. Identified mismatches between
certain parts and features of these components result in conflicts which are represented as RDF
statements. These results are presented to a developer, who then can decide how to proceed.

3.3.2 Model Transformation Process

The analysis process includes an activity for component abstraction. Figure 3.8 shows this activ-
ity as part of a general transformation service, which covers not only component abstraction but
also parameterized refinements. Thus, component descriptions can either be abstracted or re-
fined to more general or more specific descriptions. Consequently, the framework partly presents
a solution to the OMG’s Request for Proposal for Query/View/Transformations (QVT).

Submit to EVE

Select Components

Annotate Roles

Annotate Source & 
Target Technology

Select Features

Extract external Data

UML(XMI) to UML(RDF)

Target Transformation

Target(RDF) to UML(RDF)

UML(RDF) to UML(XMI)

UML(RDF) to Source(RDF)

ADAM

EVE

OBF

UML Tool

Abstraction?

External Data?
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[NO]

Profiled?

[YES]

[YES]

[NO]

[NO]

Figure 3.8: Transformation Process

The first activity of transformation involves the selection of UML component descriptions of
interest. The descriptions must be annotated with information specifying the intended source
and target technologies. This determines the direction of the transformation, which is either an
abstraction or a refinement. For a refinement additional information for a transformation can
be given: If a transformation is targeted at several components that are composed in a system,
the roles of the components in that system can be specified. The roles are used to trigger specific
mappings of the components under consideration of user requirements. User requirements are
specified by special features that are selected from an overall feature model. This results in a
parameterized and therefore flexible mapping of components. We have proposed this kind of
mapping in [25].11

We propose two approaches to select components for transformation and analysis: First, they
can be connected by dependency relationships which are annotated with a note, which gives the

11We give an overview of parameterized transformations in Section 8.1.
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framework a command to transform or compare these components. This method of encoding
commands directly in UML models and is completely tool independent. We proposed this
approach in [79]. The approach requires that annotated UML models be exported manually.
Alternatively, commands can be specified by issuing commands on a plug which has been
integrated into a UML modeling tool. This approach requires a kind of Plug-In support in the
modeling tool (see [131]).

The next activity serializes the components as XMI streams and transmits them to our XMI to
RDF transformation service. The service has been embedded in the Evolution and Validation
Environment. The service extracts the components as well as their attached annotations and
generates a RDF representation.12

At this point, the components are encoded as RDF statements relative to a UML metamodel.
Thereby, the RDF representation is an instance of a RDFS model, which conforms to the
UML metamodel that has been used by the UML tool in which the original UML component
description has been given. The framework contains several RDFS models that cover the major
versions of UML 1.x.

The next step of the transformation identifies external references in the attached information of
the components and tries to include external references into the RDF model. At present, this
activity concerns communication properties that can be referenced in the UML description.
Information concerning communication properties is stored in the ADAM repository. The
activity copies the respective definitions into the RDF model.

The UML(RDF) representation is treated differently, regarding the targeted transformation
operation. An abstraction transforms platform specific models into a platform independent
representation. At present, the only choice of abstraction results in the PICM component
representation, which is used for component analysis. A refinement operation transforms the
source model under consideration of specified features into the target technology. Both opera-
tions depend on the existence of appropriate transformation rules.

If the UML components are specified according to a framework’s profile, the former step is
preceded by a transformation of the component’s RDF(UML) representation to a representation
corresponding to the metamodel, which is described by the profile. Thus, the components are
reinterpreted (transformed) in terms of their metamodel. However, this operation depends on
the conformance of the UML components to a profile of the framework.

After a successful transformation the process is reversed: the components are reinterpreted in
terms of UML and are handed back to the UML tool.

3.4 Related Work

In the following, we will describe related work that aims at component integration. We will focus
the discussion on approaches which target integration from a software architecture’s perspective
and from a middleware context. Furthermore, we will look at approaches targeting the model-
driven perspective of integration. We will not discuss conflict identification. This issue will be
discussed in Section 4.4.

3.4.1 Architectural Frameworks

A yet unresolved problem of Software Architecture concerns component composition. A com-
position requires checking for compliance of structural and behavioral specifications as well as
of architectural properties.

In recent years, several Architecture Description Languages (ADLs) [55; 83–85] were proposed
to handle the structure and behavior of architectural elements. They define type systems to

12For a detailed description of this process see Section 5.2.2.
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handle structural aspects of composition and use formalisms such as Process Algebra [61; 86]
to identify and overcome interaction mismatches.

However, despite these formalisms, ‘architectural mismatches’ [53] still exist. According to Gar-
lan, they are caused by divergent architectural properties. The software architecture community
developed several frameworks to cope with component integration. The tools can be distin-
guished into two categories: Tools that only specify component compositions and component
interactions and tools that also enforce the architecture in an implementation.

AcmeStudio is an architectural modeling environment which is based on the Eclipse Platform.
AcmeStudio is based on Acme [54; 55]. AcmeStudio supports modeling with architectural
styles (Acme Families). Furthermore, it allows the definition of new styles and is able to
generate Acme descriptions from graphical representations. Acme is a second generation ADL.
It supports seven basic architectural elements: components, connectors, ports, roles, systems,
representations and rep-maps. Acme associates property definition with component descriptions
to support for a translation of definitions specified in other ADLs.

Archstudio from the University of California, Irvine, is another architectural framework. It is
based on the C2 architectural style [136]. C2 uses an asynchronous communication mechanism,
which is especially useful for development of GUI software. Archstudio is able to generate
Java programs. It thereby provides a link between architectural specifications and a particular
implementation technology.

ArchJava [10] also links abstract Architecture Description Languages and frameworks for the
design and integration of middleware systems. Contrary to most ADLs it includes new language
constructs into the Java Language. Therefore, the architecture and the implementation of
a system coincide with each other. ArchJava aims at ensuring the communication integrity
of an architecture: Communication between components is only allowed via explicit defined
connections. Recently ArchJava was integrated with AcmeStudio.

Similar to ArchJava are approaches such as ComponentJ [122] or ACOEL [130], which also
introduce components into the Java language or other mainstream languages. Both approaches
introduce type systems and subtyping for components. Further approaches in this area are, for
example, Gestalt [120] or Jiazzi [90].

3.4.2 Technology-Related Frameworks for Integration

Approaches such as SOFA/DCUP [113], Fractal [30], or OSGi [5] define component models and
standard services on a platform independent level and provide language mappings for several
technologies. This concept is similar to the middleware concept. However, the approaches
provide advanced concepts in comparison to currently used middleware such as CORBA, COM
etc. Components from different technologies are integrated by providing plugs that map these
components into the component model.Currently, all approaches provide language bindings for
at last the Java programming language. From the three approaches, the OSGi Service Platform
is developed by an industrial consortium which includes companies such as Nokia, Motorola or
BMW. The highlights of this platform include a standardized specification, flexible application
deployment and respective life-cycle management, which also includes remote management, and
a number of implemented service components from which can be chosen.

The Vienna Component Framework (VCF) [103] provides a meta-component model to describe
components of different middleware technologies. This metamodel supports the addition of
concrete middleware technologies via a standardized interface. A technology can be added to the
framework by implementing the interface. The framework supports integration of JavaBeans,
Enterprise JavaBeans, CORBA and COM components. Contrary to our framework, the VCF
does not guide component integration by providing conflict identification. It further does not
support a model-centered development process.

UniFrame [115] is similar framework, which targets at composing distributed ‘heterogeneous’
components. In our terminology, it generates an additional domain which uses adapters to
attach components of other technologies. Contrary to ArchJava, UniFrame does not support
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component generation. It provides a simple meta-data based model to describe components,
their functionality, and their service attributes. Uniframe does also not support conflict identifi-
cation. Instead, connector generation is based on the Prototype System Description Language,
which needs to be created manually. An interesting aspect of UniFrame is related to system
composition, which is based on Quality of Service attributes and calculations thereof. Each
component is required to provide information about Quality of Service attributes. The frame-
work calculates the optimal system from these attributes. Uniframe also provides a service
discovery service [127], which is used to discover optimal components from user queries. This
approach is similar to service discovery in the area of web services, but is based on the unified
meta-component model from UniFrame.

Other approaches aim at connector generation in the context of different technologies and dif-
ferent communication mechanisms. Bures and Plasil [31] provide an approach for connector
generation that takes four communication styles into account and creates a connector by as-
sembling several units, from which each unit provides a distinct functionality such as logging,
marshaling, encryption, etc. The approach further takes into account non-functional properties
which are considered in connector generation. A prototype is available for the SOFA/DCUP
component model [113]. Another approach from Spitznagel and Garlan [128] focuses on con-
nector generation based on protocol transformations. Although, this work is better placed in
the area of process algebra research, it aims at protocol generation to connect COTS products.
The paper uses FSP to specify the protocols and uses an ADL similar to Wright [11].

As mentioned before industrial solutions do not support a wide range of technologies but focus
on the integration of two particular technologies. Examples of products are Janeva [2], K2 [6],
or JIntegra [4].

3.4.3 Model-Driven Development

The framework is also related to the principles of Model-Driven Development [96]. It is con-
cerned with the transformation of components between different levels of abstraction. In par-
ticular, it can be seen as an application of the Model Driven Architecture [99] as defined by the
OMG. Model transformations are defined in TRIPLE. According to the classification of model
transformation approach provided by Czarnecki and Helsen [42] TRIPLE is a declarative re-
lational model-to-model approach. The framework supports several platform specific RDF
schemata that allow transformation of components specified relative to one of these schemata
into the platform independent schemata of OBF.
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Chapter 4

Communication Taxonomy

In this section, we propose to augment structural and behavioral component specifications with
an additional form of specification that describes the communication requirements of compo-
nents. This form of specification consists of a property-based description of communication
mechanisms of interest. As explained in Section 1.2, application components use one of the
provided communication mechanisms of their context for communication. A comparison of
the communication mechanisms required by components identifies mismatched properties that
hinder interoperation.

Communication mechanisms correspond to architectural connectors as they implement commu-
nication between components. In this respect, a property-based description of communication
identifies key constraints of connectors. These constraints partly correspond to type and be-
havior descriptions of components. However, the description is incomplete with regard to a
protocol specification and a structural specification as only key properties are included. These
properties consist of general restrictions that are implied by the underlying middleware.

Property descriptions of several communication mechanisms are composed into a taxonomy,
which describes key constraints of the mechanisms. We call this taxonomy a ‘communica-
tion taxonomy’, because it contains properties that describe the communicationm mechanism
used. These properties need to be compatible in order to allow ‘communication’ between two
components.

A communication taxonomy can further be used to support model refinement in MDA. It can be
used as a parameter to provide flexible mappings that are adapted regarding user requirements.

Section 4.1 starts with a motivation, which explains why comparison of communication prop-
erties is important. Section 4.2 introduces communication properties and the communication
taxonomy. We further explain our approach of defining a communication taxonomy based on
feature models (Section 4.3) and conclude the chapter with related work.

4.1 Motivation

We propose to augment component specifications with property-based specifications that de-
scribe the abilities and requirements of a component regarding communication. Such a spec-
ification provides an answer to two common interdependent problems: incomplete component
specifications and as a special case implicit assumptions of communication properties:

Incomplete Specifications. Incomplete specifications concern the degree of detail of compo-
nent specifications. Components are rarely fully specified in current technologies. Some
facts are stated implicitly or not at all. For example, a major problem of present middle-
ware technologies is that they ignore the need for a behavioral specification of components.
Most popular technologies do not associate this kind of information with their component
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definitions. Thus, it is unlikely that there will be a considerable amount of component
reuse based on these technologies, at least not without a time-consuming and cumbersome
integration process.

Implicit Assumptions. Another problem is implicit assumptions of component developers.
Within one technology, aspects regarding communication are often implicitly defined by
the structural and behavioral parts of a component specification but not named explicitly.
This is sufficient because in the context of one technology communication must be based
on predefined mechanisms which the technology transparently takes care of.

However, when dealing with more than one technology, with different communication
paradigms, or with adaptable communication mechanisms, it is likely that the require-
ments of components regarding communication will vary. This is especially a problem if
the technology of the component is unknown to the integrator. For example, components
of a distributed system often require an initialization of their communication. This often
involves contacting a name service. However, if the required initialization procedure is
not explicitly specified and the technology is unknown or not standardized, an integrator
needs to analyse a component to find out whether it needs initialization and to identify
the required order of procedure calls.

Regarding our discussion on the communication model (section 1.2), each component must be
seen in a technological context. The context provides abilities to a component but also im-
poses requirements that must be obeyed. Features describe the abilities and requirements given
to a component from its context. Thus, even without regarding the interfaces of a compo-
nent, certain assumptions on its communication abilities can be deduced solely by knowing its
technology context. For example, a Java1 component (a JavaBean), which uses no additional
services such as distributed communication, normally communicates via synchronous procedure
calls.2 It further cannot deal with default parameters nor handle pointers, as these features are
not defined in Java.

Inherited features are relevant in conflict analysis. A comparison of a Java SessionBean and
a C++ DCOM component will eventually result in mismatches, even if the canonical repre-
sentation of these components match in their structural and behavioral specifications, as both
‘technologies’ provide different features. For example, a mismatch between a Java and a C++
component will result because of different mechanisms for name resolution. Java uses, for ex-
ample, a hierarchical naming scheme whereas DCOM uses an attribute-based naming scheme.
A connector must mediate between both concepts.

An important property of a component’s feature description relates to the inherent variability
of some features. An EJB component, for example, can principally be based on asynchronous
communication (MessageBean) or on synchronous communication (SessionBean and Entity-
Bean). Furthermore, transaction handling can be enabled or disabled for an EJB by choosing
one of several transaction attributes in the deployment descriptor. Consequently, the knowledge
that a component is contained in the EJB technology does not fix all exposed features. Certain
features are still variable.

Our goal is to explicitly describe properties required for component composition in order to
reason about the compatibility of components. We therefore propose a taxonomy to describe
the communication mechanisms of several technologies. We believe that a communication
taxonomy allows a quick estimation of the compatibility of two components without relying on
a costly analysis from scratch. The taxonomy should also include technology-related metadata.
Technology-related information such as the language in which a component is written, platform
availability, or resulting costs provides additional information regarding the complexity of a
connector.

We argue to express the abilities of a component via features. Features are members of a general
communication taxonomy. They provide an overview of the abilities of components in the

1We define the abilities of Java as defined by the Java Language Specification [69] including the definitions
of the classes packaged in ’java.lang.’.

2Asynchronous communication is defined in JMS.
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context of certain technologies, which cannot be directly gained from investigating the interfaces
of a component. A consistent taxonomy can be defined containing all relevant properties for the
technology of interest. From this taxonomy specialized instances can be extracted that describe
concrete communication mechanisms of the technologies. The taxonomy can be reused for the
analysis of components of the particular technology. Considering the above discussion, we
impose two requirements on a communication taxonomy:

(1) A communication taxonomy must include relevant features of components that can cause
integration conflicts. The features should describe the abilities and requirements implied
by the surrounding technologies from which a component depends.

(2) A taxonomy must be able to express variability, as certain features can be customized.

4.2 Classification of Communication Mechanisms

Each communication mechanism establishes a particular kind of message exchange between
components by determining the exact conditions for a valid interaction in terms of message
exchange, protocols, data format, services, etc. Thereby, we interpret each mechanism as an
instance of the communication model as defined in section 1.2. As our communication model
defines three key elements: endpoints, control and data, each mechanism must include exact
specifications regarding these elements. In this work, we aim for a high-level classification of
communication mechanisms used in .Net and J2EE. We base the classification on a number of
key properties that characterize the constraints of each mechanism regarding the key elements
of the communication model.

4.2.1 Property-Based Classification

As mentioned above, a property-based classification of communication mechanisms comprises
a high-level characterization of certain key constraints of each mechanism. Therefore, the
classification is not as accurate as a type specification or a behavioral protocol specification.
Contrary to these specifications, it cannot be used in an interpretation that generates a ‘com-
plete’ representation of a mechanism in terms of a more specific model (e.g. source code). The
classification describes only important aspects and can therefore at most be used to generate
partial models (e.g. code templates). However, a ‘complete’ interpretation is not our intended
goal. We propose that if a classification is based on carefully chosen properties, mechanisms
can be differentiated and the root causes of incompatibility can be determined. This augments
type and behavior specifications, especially if they are incompletely specified, by providing an
approximation of compatibility.

Regarding these statements, the question arises: Which properties are needed for a useful
classification? Unfortunately, this question cannot be exactly answered as we cannot generally
state a criterion that determines whether the correct properties are chosen which describe
the key constraints of the mechanisms at hand and whether the mechanisms are described in
sufficient detail. The level of detail that appropriately describes mechanisms depends on the
task at hand. A simple selection of a communication category (e.g. messages or procedure calls)
can be based on a small set of properties, whereas a conflict analysis should include a large set of
properties. According to these reasons, we can only indicate criteria for significant properties.
In general, properties should be related to the key elements of the communication model and
further form a single taxonomy which consistently describes the mechanisms of interest. Only
a single taxonomy allows a meaningful comparison of explored mechanisms regardless of the
level of detail chosen. Properties should be selected if they are relevant for a communication
mechanism of one technology of interest. This can result in properties defined on a platform
specific level. In the context of this work, we restrict properties by choosing two middleware
technologies: J2EE and .Net.
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Persistency
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oriented
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COM
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Queues

Table 4.1: A Classification of Communication Mechanisms

A communication taxonomy should at least contain two independent dimensions that are chosen
from the three elements of the communication model. As an example, we define a simple
taxonomy consisting of three dimensions, from which each corresponds to one of the three
elements of the model and define two values for each property:

Communication can be related to the communication endpoints. A communication can either
be connection-less or connection-oriented.

Persistency describes the storage of data for a deferred communication. Data exchange be-
tween two endpoints can either be transient or persistent.

Coordination describes an aspect of message exchange. Message exchange between the end-
points can either be synchronous or asynchronous.

Using these dimensions, Table 4.1 shows the classification of common communication mech-
anisms, including mechanisms used by the middleware technologies of interest. However, the
expressiveness of this simple classification is limited as it can only distinguish between major
categories.

Consequently, the taxonomy has to be refined to express the differences between mechanisms
such as Java RMI and .Net Remoting more clearly. This can be done by adding appropriate
properties to the basic classification. Candidate properties for a refinement are for example,
parameter passing mode, error handling, cardinality, etc.

Besides properties that directly describe the key elements of the communication model, an-
other category of properties that can be commonly found in middleware needs to be described.
Middleware technologies often aggregate services such as transactions, security, monitoring,
cryptography with communication mechanisms to further simplify application development.

We can further distinguish properties in two categories: Explicit visible properties and trans-
parent properties. A transparent property is not directly visible in an analysis of a component
specified in a technology. At least eight transparencies [66] are defined in order to simplify
development and to provide other advantages. In the case that a communication mechanism
implements a transparency, some properties become transparent with regard to the specification
and the source code of a component. The identification of the exact values of these properties
requires the analysis of the specification or the source code of the mechanism.

On the contrary, explicit properties can be identified from the specification and the source
code of components. They either relate to the programming language and describe the proper-
ties of a language regarding communication or they directly relate to a special communication
mechanism. In particular, all customizable features are allocated in this category. Besides com-
patibility checks, customizable features are also useful for parameterized model transformations,
as they can be used to generate special platform specific component descriptions regarding the
variants chosen.
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4.2.2 Definition of a Communication Taxonomy

The assembly of an adequate communication taxonomy is a cumbersome and time-consuming
task. Fortunately, a number of existing approaches [44; 123] can be used as a foundation,
from which a taxonomy for the technologies of interest can be developed. In our opinion the
most useful and advanced taxonomy was proposed by Mehta and Medvidovic [93; 94]. Their
taxonomy defines eight connector types from which the procedure call connector is shown in
Figure 4.7. Each connector3 is characterized by a number of properties and allows for a fine
grained differentiation between similar mechanisms.

Unfortunately, Mehta’s taxonomy cannot directly be used for comparison of middleware com-
munication mechanisms for two reasons:
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Figure 4.1: Example of a Feature Model (FM) describing the Communication Properties of
SessionBeans.

• The taxonomy is defined on a platform independent level. Consequently, it does not
include some properties that we need to distinguish connectors of middleware technologies.

• It does not directly handle customization of connectors. Middleware technologies often
provide communication mechanisms that can be customized by a developer to a certain
degree. For example, Enterprise JavaBeans can be configured to handle transactions.
Therefore one of the six attributes defined in the EJB specification has to be selected for
each method of an Enterprise JavaBean. Therefore, we need to describe the exact rela-
tionships between properties offered by a connector and used by a particular component.

• The taxonomy includes properties that describe the interns of connectors. As we annotate
the properties to component’s and connector’s ports, this information is irrelevant for
conflict identification.

Consequently, we adapted Mehta’s taxonomy by introducing technology specific properties and
by introducing a mechanism to handle variability of properties. Precisely, we modified the
original taxonomy in the following way:

• We selected only properties that provide additional information about communication
mechanisms. Thereby, the properties must provide information that is not directly visible
in the type and behavior descriptions of components. The information4 must provide
knowledge of technology specifics and the underlying architectural styles that are relevant
for connector generation.

3A connector in the taxonomy corresponds to our notion of a communication mechanism.
4The information can be expressed by type and behavior descriptions but the necessary specification is often

missing or not necessary in the context of a single technology.
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• We omitted properties that are not relevant in the context of our proposed communica-
tion model. This particularly includes properties that deal with hardware issues, n-ary
relationships, or that describe properties for adapter functionality.

• Platform specific properties that describe communication in Java, J2EE and .Net were
analysed [51; 81] and added to the taxonomy. Figure 4.1 shows for example a part of
a feature model consisting of communication properties relevant for EJB Session Beans,
whereas Figure 4.2 shows a feature model describing Java procedure calls.

• Mandatory and optional properties are distinguished. Mandatory properties refer to struc-
tures and behavior that must be present, whereas for optional properties there is a choice
for implementation. Optional properties are interpreted differently regarding the type of
element they are attached to (see Section 4.3.2).

• The original Connector Taxonomy of Medvidovic/Mehta consists of eight connector types,
which as they claim, are sufficient to express most of the connectors which can be found
in present systems. These connector types were removed from the taxonomy. Instead,
properties are directly annotated to connector types5 (‘ConnectorType’) from the defined
platform independent ADL (see Section 4.3.1).

• Each property is precisely defined by a description.

• Properties with equal names are renamed to resolve ambiguities in handling component
descriptions.

A second taxonomy covers the aforementioned technological properties such as platforms (OSs),
programming languages, etc. As we have not found any existing taxonomy that covers these
properties, we have defined them from scratch. This taxonomy provides additional informa-
tion for a quick estimation of compatibility. The taxonomy is described in [102] and used for
component search, in the ADAM repository [118]. The approach can be compared to similar
approaches in the area of the semantic web for semantic matching6 such as the one proposed by
Paolucci [111]. However, the taxonomy is mostly limited to describing implementation aspects
and the purpose of components.
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Figure 4.2: Example of a Feature Model (FM) describing a Java Procedure Call: filled circles
represent mandatory features, empty circles represent optional features.

The communication taxonomy forms a consistent set of terms that describe the technologies
of interest with the same properties and on the same level of abstraction. This results in a
meaningful comparison of components written in these technologies. As we are mainly inter-
ested in Middleware technologies, we omit several properties and dimensions from the original
taxonomy, which are of no interest for the chosen mechanisms.

5Properties are more precisely annotated to the ports of connectors and components.
6Matching based on ontologies.
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Communication Taxonomy

In the following, we describe properties of the overall taxonomy augmented with platform
specific properties. Figure 4.3 provides an overview of the feature model of the taxonomy. In
the general taxonomy, most properties are optional properties that can be specialized for a
particular communication mechanism. The taxonomy is composed based on the works of Liao
[81] and Gädicke [51], who researched J2EE, Jini and .Net technologies. We use a simple table
consisting of two columns: property name and description. We mark top level properties with
bold font and properties that represent values with italic font. We further introduce a special
section in the description called ‘Interpretation’, which explaines the meaning of a property in
the taxonomy.
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Figure 4.3: The Communication Taxonomy

Property Name Description

Parameter Parameters denote the arguments that can be passed along
with a call to another routine, process or component. They
describe the abilities of a language or technology to handle
arguments, data transfer, exceptions, data types, etc. Pa-
rameters are visible in the interface declarations of compo-
nents and connectors.



66 Communication Taxonomy

Data Transfer Data transfer denotes the way data is passed to the receiving
routine. In general, there are two calling conventions: call by
value and call by reference. A subroutine call that uses a ‘by
value’ call first evaluates the argument and passes the value
to the receiving routine. A call ‘by reference’ submits the
address of the argument (indirect addressing) to the callee.
Consequently, the callee can modify the original argument.
In addition to these main variants, some derivations are de-
fined. For example, call by reference can be distinguished
into two cases: automatic and manual dereferencing of the
pointer. For example, C++ provides both modes by spec-
ifying a pointer (X *) or a reference (X &). A reference
automatically dereferences the argument.
Call by name is another calling convention proposed by some
programming languages such as ALGOL. It differs from the
‘normal’ cases as it passes the argument unevaluated. Each
time the callee references an argument provided ‘by-name’
the argument is re-evaluated.
The classification of Java regarding data transfer yields an
interesting case: Can Java handle by-reference parameter
passing? Java distinguishes two kinds of types: primitive
types and reference types (see [69] Chapter 4). For each
method invocation, a new activation frame is created for
the callee and the parameters are copied by value to this
frame. The callee works on the copies of the ‘original’ values.
However, if the callee accesses a variable of a reference type,
it can ‘globaly modify’ the referenced object. This effect can
be compared with that of reference types in C++. A C++
reference type encapsulates a pointer that is automatically
dereferenced, if accessed.
In summary, Java provides no concept to handle pointers
explicitly. This is a simplification to allow writing programs
more easily. Behind the scenes, however, Java handles ref-
erences. As this can effect globally defined objects, we con-
sider Java to also have ‘by-reference’ data transfer, even if
the official documentation only mentions parameter passing
by value.
Interpretation: The parameter describes the supported
modes of data transfer that must be compensated by a con-
nector. Thereby, reference parameters often require more
complex type mappings and bookkeeping capabilities in-
cluded into a connector. Konstantas [75] describes these
issues in detail. The property is mandatory if a technol-
ogy supports method arguments in general. The parameter
modes reflect the actual usage of parameters in a component.
For the taxonomy of the mechanism, they must be declared
optional if they are supported.

Reference Parameter passing by-reference.

Value Parameter passing by-value.

Name Parameter passing by-name.

Format The data format in which data is exchanged. The property
has to be delcared mandatory if parameters are supported by
a mechanism. For example, .Net supports binary and SOAP
data passing.
Interpretation: Different data formats must be handled and
transformed by a connector.

Binary Data is communicated in a binary format.

SOAP Data is communicated in a XML-based data format.
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Return Values The property describes if the result of a procedure call con-
tains error information, normal result values, or does not
support return parameters. Some technologies such as COM
use this mechanism to signal errors. The mechanism is often
used if a technology does not endue an exception mechanism.
The encoding of errors can often be identified by special re-
turn types (e.g. HRESULT in COM). It is also important as
many newer technologies rely on an exception mechanism to
signal errors which can lead to conflicts.
Interpretation: This property generally describes if a mech-
anism uses Return values to indicate errors or not. It is
mandatory if a mechanism supports return parameters.

Error Procedure call returns by convention an error status.

Result Return values of a procedure call imply no special meaning.

Implicit Invocation Implicit invocation refers firstly to an event mechanism for
which components register and are called back by an event
provider and secondly to an exception mechanism that is
implicitly invoked via a method, component, or the runtime
system in case of an error. Both aspects involve the transfer
of the control flow.
The first idea of an event mechanism is described by Shaw
and Garlan [124]. Exception mechanisms are often explained
in programming handbooks.
Interpretation: The property describes the possible effects
of a call. It should be declared mandatory if one of the
following effects can occur. The subproperties are selected
if a communication mechanism explicitly supports callbacks,
exceptions, or delegation by defining appropriate constructs
and the mechanism must be used or is used by a particular
component.

Exception An exception is triggered by an unforseen error. Exceptions
can be classified in two categories: exceptions that can be
handled by an application and exceptions that result in an
immediate termination of program execution.
In the taxonomy, a component annotated with this prop-
erty can make use of exception functionality. For example,
Java uses exceptions for remote method invocations, whereas
COM does not use exceptions but uses special error condi-
tions (HRESULT).

Callback A callback mechanism describes the general principle of reg-
istering a function to be called by an external resource. How-
ever, there are several slightly different application areas in
which the term is used, resulting in a wide variety of defini-
tions. Szyperski [132, p.48] defines a callback as follows: “A
callback is a procedure that is passed to a library at one point;
the callback is said to be registered with the library. At some
later point, the callback is then called by the library.” Ac-
cording to this definition, a callback can be described as an
external call of part of the application program. Callbacks
are often used in GUI programming. They also often refer
to an asynchronous event-mechanism.
A callback is important for the description of communication
as it reverses the control flow.
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Delegation Delegation is a concept to ‘reuse’ functionality of other ob-
jects. A receiving object does not handle the request com-
pletely by itself but ‘forwards’ the call to an inner object.
The difference between delegation and normal message pass-
ing is the passing of the receiving object’s reference to the
delegate. Therefore, the delegate can refer to the receiving
object explicitly. In this situation, the receiving object is ref-
ered to as the outer object, whereas the delegate is refered
to the inner object.
Delegation is in this sense similar to inheritance. The outer
object corresponds to the subclass, the inner object to the
super class. Thus, the call graphs of two objects being in an
inheritance relationship are similar to that of two objects -
with the same functionality - being in a delegation relation-
ship. However, delegation requires a ‘planned’ interface, it
is not possible if the object to be delegated is not designed
for such a relationship. For a more complete discussion re-
fer to Szyperski [132] or to Gamma et. al. [52], who uses
delegation in several design patterns.
For the taxonomy, delegation is interesting as it can provide
a coupling of components similar to an inheritance relation-
ship. However, it cannot be easily recognized by analysis
tools.

Distribution Distribution describes whether a communication mechanism
aims at supporting communication within a single process
or between several processes. This is important because the
meaning of parameter passing modes (value, reference) de-
pends on whether the communication of components is lo-
cal or distributed. Some communication mechanism such as
EJBs support both local and distributed communication. A
communication between two or more components can either
be local or remote. A local communication happens in the
same context, e.g. a process or a VM. Local communication
does not use the mechanisms of distributed communication.
This results in a more efficient form of communication.
Interpretation: Parameters are handled differently regard-
ing the distribution of components. If a mechanism supports
both local distribution (single process communication) and
remote distribution, the parameter passing models have dif-
ferent meanings. The property have to be declared manda-
tory. The subsequent properties has to be declared either
mandatory, if they are supported by a mechanism, or un-
supported.

Local Distribution The communication partner is expected in the same context.

Remote Distribution The communication is distributed and crosses process
boundaries.
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Synchronicity A fundamental characteristic of communication concerns the
behavior of a caller between the issue of a request and the
reply by the callee. The two major choices for the caller are
blocking or non-blocking. If a caller is blocked while wait-
ing for the result, it does no computations until the result
arrives. In the other case, the caller resumes computations
and either does not expect a result or receives the result by
a special operation.
Blocking can be further distinguished by the amount of time
that a caller awaits results. A time-out blocking returns after
a certain amount of time and the call is considered as failed.
Interpretation: Synchronicity is mandatory for each mecha-
nism. At-least one subproperty must be supported by each
communication mechanism.

Non-Blocking A caller resumes work while its request is pending.

Blocking A caller is frozen, while its request is pending.

Time-Out Blocking A caller gets blocked only for a certain amount of time.

Delivery Delivery directly refers to the call semantics of interprocess
communication as introduced in Section 2.1.1. It describes
the guarantees about a message delivery. It further describes
whether communication is point-to-point or point-to-many.
Interpretation: Delivery is mandatory for each commu-
nication mechanism. Furthermore, Delivery Mechanism is
mandatory and at least one delivery mechanism has to be
supported.

Delivery Semantics The call semantics of interprocess communication.
Interpretation: Delivery Semantics is mandatory for mech-
anisms that aim at distributed communication.

Best effort There are many definitions of this term. According to Em-
merich [46, p.121], best-effort calls “do not give any assur-
ance about the execution of the request.” Plasil [114] further
characterizes best-effort as a one-way asynchronous call.

Exactly-Once A remote call is executed exactly once.

At-Most-Once A remote call is executed at-most-once.

At-Least-Once A remote call is execute one or more times.

Delivery Mechanism The property describes the available mechanisms to commu-
nicate messages in a network. In general, three mechanisms
can be distinguished: Unicast, Multicast and Broadcast.

Unicast Unicast refers to a point-to-point communication between
two network nodes.

Multicast Multicast refers to an one-to-many communication. A node
sends a message to a group of other nodes. This form of
communication is often supported by the underlying net-
work. The IP protocol supports multicast groups with class
’D’ addresses, for example.

Broadcast Broadcast refers to a one-to-all communication. A message
is sent to every node in a network. As mentioned by Tan-
nenbaum, broadcasts can lead to inefficient communication
in large networks. Again, the IP protocol supports broad-
casts: Relative to the subnet mask, the broadcast address is
determined by all bits of the host’s part of an address set to
one.

Notification Refers to the method of event delivery. It distinguishes two
sub categories: delivery technique and selection of important
events/messages.
Interpretation: Notification is used to describe special event
mechanisms. It can be freely chosen for the description of a
communication mechanism.
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Technique A message can be exchanged in a number of differnt ways.
On the one end, an interested component can poll messages
from a source, or on the contrary, events can be distributed
via a central update that is uniformly delivered to all com-
ponents. In between, the publisher/subscriber technique can
be used, in which events are only delivered to subscribed (in-
terested) parties.
Interpretation: We define technique as a mandatory feature,
as we interpret the property as based on a standard notifi-
cation technique.

Polled A client polls an event source (busy waiting).

Publish/Subscribe An event source delivers message to all registered parties.

Central Update Events are distributed to all parties.

Point-To-Point Events are communicated between exactly two components.

Selection This property determines if event reception can be con-
strained by a client or not.

Event Patterns A receiver can select events by specifying some kind of filters.

Direct A receiver receives all events from a chanel and has to provide
a mechanism to handle the events.

State The property describes whether communication is able to
express a conversation between components, which is char-
acterized by handling of a state.
Interpretation: The property is mandatory for each commu-
nication mechanism. It describes whether a conversational
state can be maintained between communication partners or
not.

Stateless A communication only transfers data between components,
without being able to create a conversation between the com-
munication endpoints.

Stateful A communication can be controlled by a state describing
relevant properties of a communication. In this case, a state
can be changed in the callee and be accessed or modified in
subsequent communication calls.

Naming Mehta considers two subproperties of naming: structure-
based naming and attribute-based naming. Unfortunately,
he does not exactly describe the intended meaning of these
properties, so we interpret them as defined by Coulouris [40]:
The property structure-based naming refers to the general
structure of name, which can be either flat or hierarchical.
The property attribute-based naming refers to the fact that
the names also include attributes.
Interpretation: Naming is required if the communication
partners are not statically linked to each other.

Structure-Based Naming Structure-based describes names in a flat or in a hierarchical
namespace. A flat namespace uses simple identifiers to map
names to objects and is a finite space (provided that the
identifier of the name is of fixed size). On the contrary, a
hierarchical namespace is able to generate an infinite number
of names. Examples of services with structured namespaces
are Domain Name Service (DNS) and most file systems.

Hierarchical Hierarchical composeable names.

Flat A flat namespace.

Attribute-Based Naming A discovery service stores not only names but also attributes
to these names. Consequently, we can also search for names
with a number of known attributes. This property can be
augmented with particular properties of the technologies of
interest.
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Lifecycle This property determines special operations that initialize
and terminate data access. These operations need to be
executed prior to normal business operations.
Interpretation: The property must be selected if a special
operation is required.

Initialization A data source must be initialized before the content can be
accessed.

Termination A termination operation must be issued to terminate an
interaction between components. Otherwise, consequences
such as data integrity violations can occur.

Persistent This property describes that a component’s data is stored
on a non-volatile medium. Contrary to the former property,
which describes transient data handling, this property is rel-
evant for communication and classification of components, as
the stored data can often be accessed independently from a
particular component. Furthermore, it often refers to special
APIs such as JDBC or ODBC that must be used to access
particular components.
Interpretation: The property should be selected if persis-
tency is required or provided by a mechanism.

Raw access Raw data refers to ‘uninterpreted’ or proprietary data, that
is not encoded using a standard format. Raw data access
refers to propertary protocols and APIs that have to be used
for data access. Components that provide a proprietary for-
mat are often more difficult to modify and to exchange than
compoents that use standardized APIs.

File Access Data is stored in the file system. The format of the data
follows a standard format such as XML or RDF.

Database Access Data of a component is accessed by a database API such
as ODBC. Components that provide this property are often
database systems.

Concurrency The property describes whether a component needs to be
synchronized with other components on critical resources, or
if a component is itself a critical resource. The subproperties
describe the exact kind of concurrency needed for commu-
nication. As a component can be executed in different pro-
cesses or threads, this property provides information about
the supported synchronization mechanism.
Interpretation: Concurrency should be selected, if any form
of concurrency is associated with one of the communication
partners. It is not really relevant for the communication of
two components but necessary to describe simultanuous in-
teraction with other components. If a synchronization mech-
anism has to be used for communication, the property must
be selected. A potential connector has to mediate concurrent
access.

Semaphore A semaphore is a concept to synchronize concurrent pro-
cesses. The concept was originally developed by Dijkstra.

Rendezvous A rendezvous is a synchronization mechanism used by Ada
[8]. It is also a system call in the Plan 9 operating system
[7].

Monitor Monitors restrict access to a critical data structure to a single
thread: “A monitor encapsulates data, which can only be
observed and modified by monitor access procedures. Only a
single access procedure may be active at a time” [86, p.79].
As semaphores, monitors were introduced early in computer
science (see, for example, Hoare [60]).

Lock A lock is similar to a monitor as it is used to provide mutually
exclusive access to an object or another resource.
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Transaction Transactions are operations that form a logical unit. The
operations are normally applied on a database system and
transform a system from one consistent state to another con-
sistent state. A transaction therefore ensures the integrity
of the database. Usually transactions enforce several prop-
erties: atomicity, consistency, integrity and durability.
Contrary to Mehta’s taxonomy, we use other properties.
Nesting is unimportant as we associate the taxonomy with
ports. Thus, each transaction can be expressed as a flat
transaction via a connector.

Demarcation The property defines whether a transaction is autmatically
initiated by a component or if it has to be manually declared.
Interpretation: Demacartion is mandatory. A connector has
to eventually mediate between manually and automatically
initiated transactions.

Automatic A transaction is automatically started.

Manually A transaction needs to be started manually.

Awareness Transaction awareness describes if a component relies on
transactions. The subproperties of ‘Awareness’ describe the
exact form of a component’s support for transactions. In
middleware systems the granularity of this property is often
determined by operations of a component. Thus, each opera-
tion can require another transaction awareness property. We
support method granularity with feature model attributes.
Unfortunately, the awareness attributes of middleware tech-
nologies cannot directly be used because they are asymetric
and overlapping. For example, we cannot distinguish be-
tween supported, required, and mandatory awareness as de-
fined in the EJB specification, because if the callee delcares
awareness as mandatory but the caller declares awareness
as required, we get a mismatch ‘false positive’, because re-
quired implies mandatory awareness. Therefore, we restrict
ourselves to three attributes: new, supported, and none.
Interpretation: Awareness has to be delcared mandatory if
transactions have been selected. At least on subproperty of
awareness must be supported by each communication mech-
anism.

New A call to a method will start a new transaction.

Supported A method supports transactions. The transaction has to be
already started.

None The method does not support transactions.

Isolation Isolation is one of the ACID properties. It describes the
degree of isolation between transactions that are concur-
rently executed against a ‘component’, e.g. a database sys-
tem. Completely isolated transactions are called ‘serializ-
able’ transactions. This form of isolation does not result
in ‘anomalities’. However, serialized transactions are inef-
ficient, therefore other forms of isolation were introduced.
These levels usually cover three anomalities: dirty read, non-
repeatable read and phantom read.
Interpretation: Isolation is mandatory if transactions have
been selected.

Committed This isolation level does only forbid dirty-read. A dirty-
read lets a transaction query data that is not committed by
another transaction.

Repeatable This level forbids dirty-read and non-repeatable reads. A
non-repeatable read allows that committed modifications of
other transactions become visible in a transaction. The same
query therefore can result in different result sets.
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Serializable This level describes serializable transactions. No anomality
occurs in this transaction level.

Security This property represents the root property for security-
related properties.
Interpretation: Security is an optional service, which can be
supported or required. Each subproperty of security is also
optional and depends on the actual communication mecha-
nism.

Authentification Authentification refers to the identification of a user by the
system: ‘Authentication is the mechanism by which callers
and service providers prove to one another that they are act-
ing on behalf of specific users or systems’ [125].

Authorization Authorization checks if a particular resource can be accessed
by a user: “Authorization mechanisms limit interactions with
resources to collections of users or systems for the purpose
of enforcing integrity, confidentiality, or availability con-
straints” [125, p.293]. Authorization is usually enforced
with Access Control Lists (ACL). However, a second concept,
Capability Lists, exists that resolves authorization more effi-
ciently. For a differentiation between the two see Miller, Ye
and Shapiro [100].

Capabilities Authorization via capability lists.

Access Control Lists Authorization via ACLs.

Privacy The property describes how information is secured.

Encryption Communicated data is encrypted and third parties cannot
read the exchanged information. An encryption is imple-
mented by an appropriate cypher algorithm.

Integrity Integrity concerns the correctness of submitted data: “In-
tegrity mechanisms ensure that communication between en-
tities is not being tampered with by another party, especially
one that can intercept and modify their communications”
[125, p.304].

Redundancy We define ‘Redundancy’ as a form hash code that is attached
to a message and ensures the correctness of this message.
This form of protection is, for exmaple, used in J2EE and in
IPSec.

Certificates A certificate ensures that the data sent by a person/com-
ponent belongs to the right identity. Certificates are often
created by a Certificate Authority (CA).

Durability This property restrictes the validity of security settings to
either a single session or to multiple sessions. This property
determines if authorization is required before each commu-
nication.

Single session Security settings are valid for a single communication session.

Multi session Security settings are valid for several communication ses-
sions.

Pooling This property describes the ability of a component to store
connections and objects in a pool. This provides a faster
access to these objects or connections. In general, this prop-
erty is not necessary to describe communication as it does
not influence the behavior but only the performance of a
communication.
Interpretation: This property is an optional service that can
be used by a connector to optimize communication.

Binding This property describes the time of allocation of a compo-
nent.
Interpretation: The property is mandatory for each com-
munication mechanism.
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Compile-Time Two components are statically linked. This is a typical sce-
nario for a local composition of components. Often one com-
ponent is a shared library.

Run-time Two components are bound at run-time. This is the normal
scenario for distributed communication.

Taxonomy of Technological Aspects

The following table describes technology-related properties of the second taxonomy. This tax-
onomy is not directly used for conflict analysis but provides information about technology, lan-
guage, and specification level of a component. The taxonomy was developed by Neubus [102]
to support component transformation and mainly to allow searching for components based on
metadata. Neubus implemented a matching algorithm for component search in the ADAM
repository. We do not further describe this taxonomy as it is not used for conflict analysis.

Property Name Description

Name Name of the component.

Function A textual description of the functionality of a component.

Level The abstraction level of the component.

PIM Platform independent component description.

PSM Platform specific component description.

Artifact The component is only available as an artifact.

Keywords A collection of keywords that describe the functionality of
the component.

Language The language in which the component is written.

OS The Operating System on which the component can be exe-
cuted.

Memory consumption The amount of storage that is required by a component.

Storage consumption The amount of memory needed by a component.

Context The context needed by the component for execution. The
context can refer to an operating system, middleware or kind
of virtual machine.

Dependency A collection of dependencies of a component. These can
either refer to other components or to hardware.

4.3 Applications of the Communication Taxonomy

We express the communication taxonomy with a Feature Model. As mentioned in Section
3.1.3, feature models originate in the area of product lines and domain analysis and serve as a
description of variable and fixed features of domain entities using and-or-trees. Feature models
are adequate to model a communication taxonomy for the following reasons:

• They distinguish between optional and mandatory features. This differentiation is re-
quired for conflict analysis to deal with ‘unknown’ values. This issues is explained in
Section 6.3.

• At the same time feature models can be used for parameterized model transformations.
They can be used to generate platform specific component and connector descriptions from
a platform independent representation. Each feature triggers the generation of particular
structure and behavior. Section 4.3.3 introduces how feature models can be used for
parameterized model transformation.

In the following, we discuss how communication properties are to be attached to components
and connectors. We further give an overview of conflict analysis and model transformation.
Both issues are more completely discussed in chapters 6 and 8.
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4.3.1 Feature Annotations

We propose to annotate properties to components and connectors to describe their requirements
and abilities regarding communication. However, properties cannot be associated directly to
these elements but must be related to their exposed interfaces.

For example, imagine a configuration as shown in Figure 4.4. The components C1, C2, and
C3 are directly annotated with features7 expressing their abilities and requirements regarding
communication.

The connectors K1 and K2 have to mediate the differences between the communication features
exposed by the three components. Thus, they need to comply with two sets of communication
features imposed by the linked components. Consequently, we cannot attach the properties
directly, but must consider the relationships of the connectors K1 and K2 to their linked com-
ponents. The same holds true for components, because of the relativity of components and
connectors.

<<Component>> 
C2

<<Component>> 
C3

K2<<Component>> 
C1

K1

<<Feature>> 
RPC

<<Feature>> 
TX

<<Feature>> 
RPC

<<Feature>> 
PC

Figure 4.4: Direct Property Annotations to Components

Therefore, we bind communication features to the ports of components and connectors. Con-
sequently, a component/connector can expose different communication requirements on each
interface. Evolving our example from Figure 4.4 to an extended version, shown in Figure 4.5,
K2 and C2 handle two feature models for their connections.

<<Component>> 
C2

<<Component>> 
C3

<<Connector>> 
K2
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<<Port>> 
P1

<<requiredPort>> 

<<binds>>

<<providedPort>> 

<<binds>>
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<<Feature>> 
RPC

<<Component>> 
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<<Connector>> 
K2

<<Port>> 
P3

<<Port>> 
P4

<<requiredPort>> 

<<binds>>
<<binds>>

<<Feature>> 
PC

<<Feature>> 
PC

<<providedPort>> 

Figure 4.5: Property Annotations to Component Ports

4.3.2 Conflict Analysis

Concrete communication mechanisms are described via a subset of the properties included in
the communication taxonomy. A comparison of two mechanisms checks if the properties of both
mechanisms correspond to each other. Thereby, two interleaving aspects must be considered:
the role of the element, for which the instance is defined and the variability of the features in
the concrete taxonomies, which describe a particular communication mechanism.

7They are annotated with features describing a communication mechanism. The features are likely to contain
variable elements that allow customization of certain aspects of the mechanism such as support for transactions.
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We distinguish two kinds of elements: components and connectors. Properties attached to
these elements are interpreted differently regarding the element type. Properties linked to a
component describe the requirements of a component regarding communication. As explained
in Section 1.2 components are defined in a context. The context provides communication
mechanisms that are to be used by a component. For variable properties of the communication
mechanism, a component needs to specify if a property is used or not. On the contrary,
properties attached to a connector refer to the characteristics of a communication mechanism
itself and therefore can include variable properties.

Considering these statements, a comparison operation needs to take into account the variability
of properties8 and the types of the elements to be compared. In Section 6.3, we therefore define
compatibility matrices for the comparison of two components, two connectors, and between a
component and a connector.

4.3.3 Model Transformation

The Model Driven Architecture (MDA) relies on the transformations between different model
representations and therefore addresses the transformation of platform independent models
(PIM) into platform specific models (PSM) and vice versa. A transformation defines a rela-
tionship between models on different abstraction levels that gets a source model and generates
a target model. Figure 4.6(a) shows a transformation relationship between a PIM and several
PSMs. Often this relationship is implemented as a function that takes a source model and
generates a target model. The function triggers a set of fixed transformation rules that always
produce the same derivation. For example, a set type is always converted into a vector for a
translation of a UML model into Java source code.

As we have shown in [25] these transformations can also be represented by a single parameterized
transformation. A parameterization describes relevant variability points for a transformation.
It describes for example that a ‘set type’ can be represented in different languages such as
Java and in this language that the set can be transformed into particular concepts, e.g. a
Collection class or a Vector class. The selection of a particular mapping is encoded in the
parameters, which are chosen by a developer. Parameterized transformation can also be based
on more complex issues. In [25] we demonstrated a transformation of Enterprise JavaBeans
based on optimization issues. The choices of a developer result in transformations based on
J2EE patterns (see Section 8.1).

A feature instance (a feature model without variability points) triggers a particular mapping
from a PIM into a PSM. Figure 4.6(b) shows a mapping by a single function t that is parame-
terized by feature instances fi1, fi2, . . . fin.

PIM1

PSM1

PSM1

PSMn

t1

t2

tn . 
. 
.

PIM1

PSM1

PSM1

PSMn

t(fi1)

t(fi2)

t(fin)

a) One-to-One Transformations b) Parameterized Transformations

. 

. 

.

Figure 4.6: Representation of Parameterized Mappings

In our context, the communication taxonomy describes all relevant properties regarding com-
munication. A selection of particular features results in a particular mapping into a target

8A component also can expose variable properties, if actual property values are ‘unknown’ and the underlying
communication mechanism allows customization.
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model, for example into a model with stubs and skeletons and a protocol description specifying
synchronous communication.

4.3.4 Discussion

As mentioned above, we cannot generally state a criteria that determines if the correct properties
where chosen. Accordingly, we cannot be sure that the taxonomy covers each relevant conflict
in the actual form with the properties defined above. This is by no means our intention. We
rather claim that a communication taxonomy is valuable because it supports a quick analysis
of the communication capabilities of two components. Developers should be able to estimate
the necessary integration effort to connect to components. The advantage of the approach
relates to the concept of property-based conflict analysis in the context of our communication
model. Furthermore, the taxonomy can be augmented and adapted to further technologies. Any
missing property can be added to the taxonomy to complete conflict analysis. The downside
of the approach concerns the effort to create a taxonomy instance for a concrete technology.
However, a taxonomy has to be developed only once.

Another problem of the approach concerns the requirements that only symmetric and non-
overlapping properties can be chosen for the taxonomy. For example, the EJB technology
defines six transaction awareness attributes, including ‘requires’ and ‘mandatory’. The proper-
ties overlap as both require a transaction for their operation. However, a ‘requires’ method of
a callee component will create a transactional context if none is specified by a caller, whereas
a ‘mandatory’ method will throw an exception. The problem refers to the specification of the
attributes in the communication taxonomy. The conflict analysis algorithm will result in a
conflict if a ‘requires’ method is annotated with ‘requires’ and a ‘provides’ method is annotated
with ‘mandatory’.

This issue conflicts with our goal of model transformation. A transformation which is based on
the properties of the communication taxonomy will be less effective if we cannot include every
property of a technology in the taxonomy.

A further problem of classifying communication mechanisms relates to supported but optional
features that differ from implementation to implementation. The EJB standard for example
defines several transaction features and security features as optional. A vendor can choose
if he supports these features and in which way he supports them. We model these features
as optional properties of a technology. A component that requires or provides these special
optional features has to be executed on a suitable application server.

4.4 Related Work

In the following, we briefly describe related approaches that aim at a property-based charac-
terization of components and connectors: We consider Architectural Styles, Mehta’s Connector
Taxonomy as well as related approaches that also aim at conflict identification or at property-
based reasoning.

4.4.1 Architectural Styles

Architectural Styles were one of the early approaches in software architecture to classify systems.
A style specifies the parts of a system as well as properties that need to be satisfied in a system
configuration. Shaw and Garlan define an architectural style as follows:

“An architectural style defines a vocabulary of components and connector types,
and a set of constraints on how they can be combined” [124, p.20].

One possible application area of styles is the classification of systems regarding the composition
of their constituting parts. Shaw [123; 124] provides such a classification. A style is represented
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by a set of values that describe the kinds of components and connectors, the control and data
flow as well as their interactions in a system. Table 4.4 shows a part of that classification
and is directly taken from [123; 124]. Another application area infers resulting properties of a
particular style. A style, for example, is indicative of such aspects as system reconfiguration,
component exchange, and component adaptation.

In general, an architectural style takes a kind of ‘macro’ view of a system. It describes ‘coarse
grained’ properties that must hold for a whole system. These are helpful if we investigate
the system as a whole. However, only a few of these properties are relevant for deciding
compatibility of single components. Unfortunately, the classification provided by Architectural
Styles is not useful for analysing middleware technologies such as CORBA, J2EE, etc. These
systems show almost no differences in the classification, as middleware systems aim for similar
goals and are designed with similar architecture in mind.

4.4.2 Connector Taxonomy

Medvidovic/Mehta [93–95] propose a sophisticated taxonomy to describe communication prop-
erties of connectors. Part of this taxonomy, rendered by the ODIS repository [24], is shown
in Figure 4.7. It describes properties for a procedure call. This taxonomy consists of eight
connector types, each of which is described by several dimensions (complex properties) that
consist of subdimensions and values. Each connector can provide four kinds of service9:

Communication: It enables interaction between components,

Coordination: It controls the communication between components,

Conversion: It modifies passed information,

Facilitation: It allows adding extra services.

Figure 4.7: Procedure Call: Starting from the Connector Type Procedure Call, including Di-
mensions and Values as defined by Mehta [93]

Connectors in programming languages and middleware technologies can be described by select-
ing particular properties and extending the taxonomy.

9Services are more precisely described in Section 2.4.1.
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Table 4.4: Example of Architectural Styles as defined by Allan and Shaw [123].
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The taxonomy is platform independent as it does not contain platform specific values and
dimensions. Therefore, it needs to be extended to introduce technology dependent values as
well as new services (Jini Leases [14], Tupelspaces [50; 56]).

The analysis of middleware technologies in the context of Mehta’s connector taxonomy also
reveals several problems: The terms used in the taxonomy are not explicitly defined. For a
number of terms, a lot of different definitions are available. Some terms are ambiguous as
different interpretations in the taxonomy can be chosen. For example the property ‘Exceptions’
can refer to a method that throws an exception or one that is activated because of an exception.
The taxonomy describes connector types as part of the taxonomy. We feel that these types
should not be included in the taxonomy because connector types are the entities that are
described by properties, but they themselves are not properties.

4.4.3 Other Approaches

Other approaches aim to automatically discover mismatches based on conflicting characteristics.
Today, several approaches use taxonomies [44; 93; 95; 123] to categorize architectural properties
and further aim to automatically discover mismatches based on conflicting characteristics [11;
43; 72; 94; 151]. Most of these approaches concentrate on architectural mismatches and do not
handle structural and behavioral specifications.

Davis et. al. [44] propose an interesting approach to deal with unknown architectural properties.
They define twelve properties on three levels of abstraction and define rules between them.
Based on the rules, it becomes possible to deduce unknown system properties from known
properties. However, their properties are too abstract to be used for an exact estimation of
communication properties of a ‘system’. Furthermore, their rules are difficult to implement in
terms of a deductive programming language.

Pahl [110] also considers behavior. He encodes behavior directly in description logic. This
results in a more elegant language, but also does not allow a customization of specification
languages.

However, most of these approaches concentrate on architectural mismatches. They do not
handle technologies directly nor do they identify conflicts in structural and behavioral specifi-
cations. They can be classified into approaches using only a structure such as a table to describe
properties [11; 94] and in approaches which additionally provide reasoning support [43; 44; 72].
Approaches providing reasoning support often only support a subset of properties available in
the former category.

We propose to combine structural, behavioral and property specifications with a single ontology-
based framework. We check structural and behavioral specifications with the help of these
tools.10 Therefore, it becomes possible for a developer to customize the framework with different
kinds of formalisms. This is in particular interesting as a wide range of incompatible approaches
for behavioral specifications exist that differ in their languages and in their analysis capabilities.
Thus, specification languages such as Z [129], OCL [107; 133; 143], CSP [61], ACP [17], etc.
can be integrated in the system, if appropriate checker tools are available as external tools.
Furthermore, different type systems can also be defined for use in the framework. However,
possible type systems are restricted to features of object-oriented systems, which are found in
contemporary middleware systems.

10As we base compatibility checks on model checkers (see Section 3.2.4), we are restricted by the abilities of
these tools to solve the given protocols.



Chapter 5

Conflict Analysis Framework

The objective of this thesis concerns component conflict analysis in the context of a UML
based software development process. In Section 3.2 we provided an overview of a framework’s
architecture for conflict analysis and component transformation. The central component of
this architecture regarding conflict analysis and model transformation is the Ontology-Based
Framework for component analysis and transformation (OBF) component. OBF provides the
necessary platform independent component models to facilitate both analysis and transforma-
tion.

Section 5.1 describes the main models of OBF that we use for component descriptions, conflict
analysis and model transformation. Section 5.2 relates these models to a UML-based notation,
which uses profiles to create compatible component descriptions. Section 5.2.2 describes the
mapping between XMI and RDF that we defined for component exchange between the front-end
and the framework. Section 5.3 exemplifies specification of platform independent components
in UML. The last section discusses related work.

5.1 The Ontology-Based Framework

The framework provides models that cover the previously mentioned aspects of component
specification. The models are formulated in RDFS [150]. Unfortunately, RDFS only supports
a single level of metamodels. The representation of the structural model, however, requires two
levels: descriptions of types and instances. Therefore, both of these levels have been folded into
one model.

5.1.1 Structural Model

The structural model is divided into two parts: a vocabulary part (shown in Figure 5.1 and a
configuration part (shown in Figure 5.2). The vocabulary describes element types, on which
type checks are performed. It defines the set of valid elements to be used in the design of a
system. The main elements are component types, connector types, interface types, and port
types.

A system configuration consists of component and connector instances as well as of bindings
between them. The instances can be derived from previously defined component and connec-
tor types. A configuration composes components and connectors via the ‘binds’ relationship.
Furthermore, it provides ports to specify the multiplicity of interfaces.

Vocabulary Part. The elements of the structural model are combined by several relation-
ships. Two of these relationships indirectly describe the dependencies between interface types
and component respective connector types. Provide relations identify the services that are
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Figure 5.1: Vocabulary Part of the Structural Model

provided by a component type or a connector type. Thus, they indicate that the providing
entity implements these services. Requires relations describe the required functionality of a
component type or a connector type. Thus, an entity is dependent on services (entities) that
offer particular interface types. In a system, these entities have to be connected with a realiz-
ing entity in order to perform their services. Port types are located between entity types and
interface types. Port types are used to specify constraints (protocols and properties) relative
to an interface type.

Component and connector types can participate in a subtype relationship (single inheritance).
The core model defines the supertype1 relationship in order to indicate inheritance. On the
contrary, interface types use multiple inheritance. Multiple inheritance is expressed by the
extends relationship.

Types can be instantiated by the instanceof relationship. We enforce that every instance of a
component, connector, port, or interface has a particular type.

Despite the presence of the supertype relationship for component types and connector types, the
component model used in this framework is not hierarchical as it can be found for example in
Fractal [30]. A flat component model is sufficient to analyse conflicts between two components.
The supertype relationship is therefore only used to copy already defined interface specifications
to a new component.

However, as the framework uses a model-driven development approach, we can use a model
transformation to map the flat component model used by the framework into a hierarchical
component model.

Configuration Part. A system configuration describes a set of components and connectors
that are linked via ports. We do not explicitly distinguish between ports and roles. We assume
that a connector’s role is identical to the required or provided port of a component. Therefore,
we omit ‘roles’ in the following and describe configurations solely based on ports. The class
‘Port’ defines connection endpoints for these relationships. Each ‘port’ represents exactly one
interface. In order to describe a composition we need an additional relation. This relation
defines a connection between a particular component and a connector. It is specified as a bind
relation.

The actual version of the framework considers binary connectors only. Thus, a connector
binds exactly two components, or more precisely, it binds exactly one port of each component.

1The supertype relationship is the inverse of the subtype relationship.



5.1 The Ontology-Based Framework 83

CoreElement 
__________ 

name : Literal 

Element

Port
Entity

Interface Component

Connector

requiredPort

providedPort
represents

binds

Configuration
includes

InterfaceType

instanceOfIT

PortType

instanceOfPT

ConnectorType

instanceOfKT

Component

instanceOfCT
1

1

1 1 1

*

*
2

*

Figure 5.2: Configuration Part of the Structural Model

This approach is adequate for conflict analysis, where only a single connection between two
components is considered.2 As a connector refers directly to the components’ ports, the exact
linkage between the connector and two components can be calculated and connector ports need
not be specified explicitly.

The configuration part, also defines the ‘includes’ relationship that describes a runtime config-
uration consisting of components that are linked via connectors.

5.1.2 Type Model

The type system of the framework is shown in Figure 5.3. It mainly consists of an abstract
class ‘Type’ that is the root for basic types as well as for composite types. Basic types represent
the primitive types used in middleware technologies. Composite types describe more complex
structures such as records, functions, pairs, lists, etc.

In this work, we only provide a minimal type system. It consists of elements that are needed
in order to define component substitution and component composition. Therefore, we only
provide some general primitive types. This approach brings a certain degree of flexibility. The
framework can be adapted for use with different technologies. A user can define a type system
that is perfectly adapted to a particular situation.

The other types of the ‘minimal’ type system are operations, records, lists and element types.
An element type specializes to component, connector, and interface types.3

Typing Rules

Figure 5.3 directly defines the typing rules of the framework’s minimal type system. However,
we have to define some additional constraints:

Operations. Operations are defined as usual: They can have several arguments, a return
value and can point to several exceptions.

Exceptions. Exceptions are subtypes of records. They have no additional properties. We
introduce exceptions to distinguish them from normal records in the graphical user interface of

2Conflict analysis identifies conflicts between two port types of two component types. Therefore port types
have relations to interface types, protocol expressions and communication features.

3The definition of element type as a complex type would allow using component types, connector types, port
types, and interface types in the definition of attributes, results from operations, and list types. We disallow
these relationships as they do not correspond to the type systems of the focused object-oriented middleware.
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Figure 5.3: The Type Model of the Framework

the ODIS tool4

Records. Records are labeled sets of types. In this paper, we compare records by the names
of their elements. We do not impose constraints on the ordering of their elements.

Interface. Interfaces often consist of operations and attributes. We opted to only allow oper-
ations and no attributes as attributes can be described by get and set operations. Furthermore,
attributes are not directly supported by communication mechanisms such as RMI, but are
emulated by implicitly defined get and set methods.

Components & Connectors. Connectors and Components both consist of interfaces only.
We propose that a component must have at least one interface. A connector must offer one
‘provides’ and one ‘requires’ interfaces.

Element Types. We disallow using element types as attribute types, return values and list
types. The resulting types are not supported by the type systems of J2EE and .Net and
furthermore are not common in object-oriented languages.

5.1.3 Behavioral Model

Figure 5.4 shows the behavioral model of the framework. It mainly covers protocol specifications
that are associated with components or connectors and constraints to express pre- and post-
conditions as well as invariants. Constraints are handled by the class ‘Constraint’. This class
consists of three features: An ‘expression’ that is stated in a particular specification ‘language’
and the ‘kind’ of the constraint: invariant, pre or post-condition. Constraints can be specified
for each core element.

Protocol specifications are handled by the class ‘protocolExpression’. Each connector and com-
ponent type can have at most one protocol specification. As in the case of constraints, there are
no languages predefined. Thus, a user can customize the framework to handle protocol specifi-
cations specified in languages such as CCS, CSP, FSP, etc. Furthermore, the framework accepts
a corresponding transition system for that expression. It consists of states and actions between
these states. Each component or connector points transitively via a ‘protocolExpression’ to the

4In the implementation of the subtype algorithm exceptions are not distinguished from records.
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Figure 5.4: The Behavioral Model of the Framework

starting state of such a transition system. Furthermore, each action refers to an operation of
the described entity. Default predicates for conflict identification are based on these transition
systems.

Besides protocols that are associated with components or connectors types, protocols also can be
attached to port types via the ‘associatedProtocolExpression’ relationship. Protocols attached
to port types are used to analyse component composition.

5.1.4 Property Model

Our property model shown in Figure 5.5 defines a structure to create hierarchically connected
properties. It is defined as a feature model, described in FODA [70]. Each property is de-
scribed as a feature that can either be optional or mandatory. A feature can contain several
sub-features. Sub-features can be grouped by two operators, ‘xor’ and ‘or’, to describe possible
feature combinations. Furthermore, each feature can be associated with attributes (Feature-
Attributes) to state additional requirements. ‘EntityTypes’ can be associated with ‘Features’
by two relationships: one to describe communication properties (comProps) and one to state
technology-related properties (techProps).

The model also defines relationships between features: An ‘excludes’ relationship excludes one
feature (codomain of ‘excludes’), if another feature (domain) has been selected. On the contrary,
the ‘requires’ relationship enforces the selection of a feature (codomain) if a particular feature
(domain) has been selected.

5.1.5 Conflict Model

The conflict model, shown in Figure 5.6, covers all kinds of conflicts that are of interest for
component integration. Each conflict description handles a particular problem class that can
occur in the three models described above. Conflicts are generated by framework predicates
when requested by a developer. In this case they describe potential conflicts between two
components.

In particular the conflict model covers

Integrity & Type Conflicts: The former result from model instances that violate the in-
tegrity rules defined for the core models, whereas type conflicts correspond to mismatched
interface types of components selected for composition. Integrity conflicts5 are always

5Integrity constraints are not described in this work. They can be found in the technical report of the
framework [77].



86 Conflict Analysis Framework

Feature 
__________ 

fname : Literal 
fdescription : Literal

MandatoryFeatureOptionalFeature

VarElement

VarXOR VarOR

subFeature

excludes
requires

comProps
techProps

comProps
techProps

FeatureAttribute 
__________ 

faname : Literal 
favalue : Literal

feAttributes
PortType

Port

*

FeatureElement *

*
*
*
*

*
*

Figure 5.5: The Property Model of the Framework

Conflict 
__________ 

cause : Literal 

BinaryConflict

FeatureConflict TypeConflict

ProtocolConflict

BehavioralPropertyConflic
t

SimulationConflict 
__________ 

failureTrace : Literal 

NameConflictConstraintConflict 
__________ 

kindOfConstraint : 
Literal 

CoreElement
concerns

relates

FeatureElement

concernsFeature

Action

mismatchedName

Configuration

conflictConfiguration

1

1

1
11

contains
*

Figure 5.6: The Conflict Model of the Framework



5.2 UML Representation of the Framework’s Components 87

caused by instances of model elements that violate constraints of the framework and
therefore cannot be processed any further nor checked for compositional conflicts.

Type conflicts result from mismatched subtype relationships between two component
types. A ‘TypeConflict’ is defined as a kind of ‘BinaryConflict’ between two component
types. It is further specified by a pointer to the interface type for which no subtype
relationship can be calculated.

Behavior Conflicts: In general, three kinds of behavioral conflicts are covered: constraint
violations, protocol violations, and property violations (e.g. deadlocks). Protocol viola-
tions are either name conflicts, simulation or bisimulation conflicts. The former occurs if
the actions of one process do not have a counterpart in the compared process and no cor-
respondence exists that identifies different labeled actions. A prerequisite for simulation
and bisimulation are identical action labels of the compared process graphs. Simulation
and bisimulation conflicts are proven based on the chosen equivalence relationships.6 As
we aim to check these relationships with external tools, such as Aldebaran, FC2Tools,
LTSA, the set of algorithms may be customized. However, for each algorithm a check
predicate as well as a conflict generation predicate has to be defined.

Constraint violations refer to one or more constraints that are violated within the com-
parison of two components. This kind of conflict occurs if the pre- and post-conditions of
two components are incompatible.

Besides checking for equivalence relationships between components and/or connectors,
we can also verify certain properties of a composed system, consisting of a connector and
several components. System properties that can be checked include progress properties as
well as deadlocks. In terms of process algebra, these properties can be tested by existing
tools such as LTSA [82]. These tools allow testing properties based on parallelly-composed
process expressions (bound to components and a connector). A property conflict consists
of a field stating the kind of property violation, a reference to a ‘Configuration’ and
pointers to the elements (components and connectors) of a parallelly-composed system.

Property Conflicts: Property conflicts are described by the ProperyConflict class. Property
conflicts refine binary conflicts by a new relationship pointing to the property (FeatureEle-
ment) that caused the conflict.

5.2 UML Representation of the Framework’s Components

In order to integrate the conflict analysis framework in common software development processes
that use UML for the design stage, a mapping between the framework models and UML needs
to be defined. A prerequisite for the mapping concerns the identification of the framework’s
components in UML. We solve this requirement with UML profiles. These mainly use stereo-
typed UML classes to represent the framework’s entities (on the platform independent level and
on the platform specific level) in a one-to-one relationship. The mapping itself consists of two
parts: a transformation of XMI into RDF based on the UML metamodel and the reinterpreta-
tion of component instances, specified relative to the UML metamodel against the framework’s
metamodels.

In this section, we describe how the framework components are principally represented in UML
based on the defined PICM UML profile. The examples provided in Section 5.3 augment
this introduction by a complete overview of UML representations of all main models defined
by OBF. Furthermore, this section describes the mappings necessary to exchange component
descriptions between UML models and the framework.

6Section 6.2 introduces several relationships such as strong bisimulation or branching bisimulation that can
be used for conflict analysis provided that the used model checker supports the relationships.
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5.2.1 Representation of the Framework’s Components in UML

Each framework entity such as a component type or a connector type is represented by a single
UML ‘ModelElement’ that is annotated with a stereotype that is named like the corresponding
framework element. Some elements require a more complex treatment. For example, protocol
expressions are represented as tagged values. The UML Profile that describes the OBF core
models uses UML class diagrams and UML state diagrams to define the framework’s elements
(see Appendix B). It maps UML ModelElements and the elements of the framework one-to-one.
For class diagrams, the UML model elements ‘Class’ and ‘Dependency’ are used as a basis for
the mapping. For state diagrams, the UML elements ‘State’ and ‘Transition’ are used.
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<<ComponentType>> 
Client

<<provides>> <<requires>>

<<provides>> <<requires>>

<<Component>> 
S

<<Component>> 
C

<<Connector>> 
L

<<instanceOfKT>>

<<instanceOfCT>><<instanceOfCT>>

<<Port>> 
P1 

{Type=PS}

<<Port>> 
P2 

{Type=PC}

<<Interface>> 
I1 

{Type=Convert}

<<providedPort>>

<<providedPort>>

<<represents>>
<<represents>>

<<binds>>
<<binds>>

a) Vocabulary

b) Configuration

<<PortType>> 
PC

<<PortType>> 
PS

<<PortType>> 
PK1

<<PortType>> 
PK2

<<declares>>
<<declares>>

<<declares>>

<<declares>>

Figure 5.7: An Example Vocabulary and Configuration in UML

Figure 5.7 provides an example of the UML representation of the framework’s platform inde-
pendent components. Figure 5.7a describes two component types (‘Server’ and ‘Client’), which
provide and require respectively the interface type ‘Convert’. This interface is linked to the
components via two port types. Furthermore, a connector type ‘Linker’ requires and provides
the ‘Convert’ interface type. This connector type can therefore be used to describe interactions
between ‘Server’ and ‘Client’. A framework representation of this type description can be found
in Figure 5.8. As can be seen, both representations correspond to each other.

Figure 5.7(b) shows a detailed description of a configuration. It exposes a very detailed view
of a configuration. However, we often do not want to describe a binding on this detailed level.
Therefore, a shortcut notation is introduced. In UML, we allow describing a binding by a
simple dependency between both components. The dependency has to be stereotyped with a
prefix (C ::) followed by the names of the connector type and the interface type. The shortcut
notation can only be used if the required and provided interfaces of both components declare
the same interface type and if the ports to be bound can be identified unambiguously. The
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Figure 5.8: Example Vocabulary Rendered by ODIS

dependency has to point to the component that provides the interface. Figure 5.9 shows the
shortcut notation for a part of example 5.7.

<<Component>> 
S

<<Component>> 
C

<<C::Linker,Convert>>

Figure 5.9: The Shortcut Representation of a Binding

5.2.2 Transformation between UML and RDF

The transformation of a UML model, which is specified according to one of the supplied UML
profiles, is realized in two steps: In the first step a generic UML-to-RDF transformation is
applied, which results in the representation of UML models as RDF instances of the UML
metamodel. This step is a generic transformation of a UML model into an RDF representation.
Thereby, both versions of the model are instances of a UML metamodel, which is expressed
in MOF and in RDFS. The second step converts models that are defined relative to a UML
metamodel into a representation which is an instance of one of the OBF metamodels.

Creating an RDF Representation of a UML model

The first step of model transformation converts UML models, which are encoded as XMI data
streams, into a RDF representation. The resulting RDF model is consistent to a RDFS model,
which represents the UML metamodel of the UML source model in RDFS. Figure 5.10 denotes
this transformation as a ‘1:1 mapping’ between a UML metamodel and the corresponding RDFS
model on the MOF M2 layer. Based on these two metamodels, arbitrary UML models (M1
layer) can be translated into RDF.

Metamodel Transformation

The second step requires a model transformation between two different metamodels. The
transformation converts models that are instances of a UML 1.4 metamodel into models relative
to one of the available PICM or PSCM metamodels of OBF. This step only covers UML models
that are specified according to one of the provided UML profiles. As the profiles provide an
almost one-to-one representation of the framework’s metamodels in UML, transformation rules
orientate on stereotypes and tagged values to perform the mapping.
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Figure 5.10: Model Transformation between UML and the Framework

A Morphism between RDF and MOF

UML models and metamodels can be handled via a MOF repository implementation. MOF de-
fines a fixed four-layer architecture. The model transformation between UML and RDF targets
at the M2 level for a metamodel transformation of UML and at the M1 level for UML model
instance transformation. Both transformations are based on the MOF metamodel as defined
in [105, p.3-12].While in principle the MOF metamodel can be accessed in an implementation
at all levels using the reflection mechanism, we found that in practice it is advantageous to
use the generated interfaces of the corresponding model to guide the transformation. Thus, we
used the MOF metamodel to translate models on the M2 level. Consequently, we can not only
generate UML metamodels but also other M2 metamodels defined in MOF such as CWM. For
the M1 level, we instantiated MOF with the UML metamodel and therefore are able to address
UML elements directly.

For the specification of the framework’s components, we defined UML profiles that mainly
augment UML class diagrams and UML state diagrams. Therefore, we do not need to handle
every element of MOF for a translation on the M1 level. We exclude Behavioral Features from
our mapping, as we are not interested in expressing the behavior interface of the MOF repository.
As a consequence, the Constant, Structure Field and Parameter MOF metaclasses do not
need to be considered because they are not relevant for component specification. Constraints
similarly represent a ‘kind’ of a dynamic aspect and are therefore also excluded. Tags are
not considered because the standard states that “As a general rule, the definition of values
and meanings for ‘tag id’ strings is beyond the scope of the MOF specification” [105, p.2-20].
Imports are a visibility mechanism. RDF has global visibility and thus we do not need to map
this construct.

Mapping Approach

To map MOF elements into corresponding elements in RDF/RDFS, we need to preserve the
structure of the MOF model through adequate naming of elements. There are two options for
this: use of MOF-IDs as unique element identifiers or use of structured names composed from
a MOF Element’s Namespace and Name. RDF does not limit this choice, as a URI, which it
uses for identification, can encode arbitrary textual information. We thus based our choice of
mechanism on the simplicity of usage for the particular transformations.

Naming based on MOF-IDs relies on a built-in mechanism of MOF, which assigns unique iden-
tifiers within the scope of one repository extent. Thus within a model, which is always fully
contained in an extent, relative references are consistent. This approach has two disadvantages:
Representation of model elements in RDF becomes unreadable to humans. Furthermore, com-
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MOF RDFS

∀x ∈ Class · x :: name = N <rdfs:Class rdf:about=getURI(N)/>

∀x, y ∈ Class· <rdfs:Class rdf:about=getURI(N)>
x :: name = N, <rdfs:subClassOf>
x :: subclassOf = y, <rdfs:Class rdf:about=getURI(N2)/>
y :: name = N2 </rdfs:subClassOf>

</rdfs:Class>

∀x ∈ DataType · x :: name = N <rdfs:Class rdf:about=getURI(N)/>

∀x ∈ Class, y ∈ Attribute· <rdf:Property rdf:about=getURI(N2)>
x :: name = N1, <rdfs:domain rdf:resource=getURI(N1)/>
x :: contains = y, <rdfs:range rdf:resource=rdfs:Literal/>
y :: name = N2, </rdfs:Property>
y :: type = T,
isDataType(T )

∀x ∈ Class, y ∈ Reference· <rdf:Property rdf:about=getURI(N2)>
x :: name = N1, <rdfs:domain rdf:resource=getURI(N1)/>
x :: referencedEnd = y, <rdfs:range rdf:resource=getURI(T)/>
y :: name = N2, </rdfs:Property>
y :: type = T,

Table 5.1: Example Mapping Rules of a Model Transformation from MOF M2 to RDFS.

parisons are hard, because each time the MOF model is reinstantiated in the repository, IDs
are randomly reassigned. As an advantage, even elements that do not have a name can be
represented. We choose this approach to transform UML M1 models into RDF models.

Naming based on containment structure assumes that names of elements are unique within its
namespace. We can map such structured names into a URI in the following way: MMName-
space + NamespacePath + # + ElementName. The MMNamespace refers to a root URI,
which represents the metamodel, e.g. ’http://www.omg.org/uml/1.4/’. NamespacePath rep-
resents the double-colon delimited path leading to the model element of interest, e.g. ‘Core’.
The ‘ElementName’ provides the fragment part of the URI. Thus our example denotes as
“http://www.omg.org/uml/1.4/Core#Classifier”. Because M2 models hardly contain unnamed
Elements and we prefer expressiveness. We use this approach to map the M2 level.

Table 5.1 provides some of the mapping rules to transform MOF M2 models, e.g. the UML
metamodel into a RDFS representation. The left-hand side of the mapping applies a simple
logic-based syntax to the instances of the MOF metamodel.The right-hand side of the mapping
shows RDFS encoded in XML. The properties that are used on the left-hand side correspond
to the API functions provided by JMI, which is a standardized interface to manage MOF
implementations.

Attributes can refer not only to Classes, but also to Data Types. In our implementation, we
mapped, for practical reasons, references to data types not to the data type elements of the
UML metamodel, but to rdfs:Literal. Thus, we can directly annotate, for example, the name of
a Class as string and do not have to navigate via the ‘Name’ reference. The table only shows
this mapping for Attributes. Model element references are treated analogously. getURI(N) is
shorthand for baseNS() + packages(N) + # + N and creates a URI for a MOF element.

Implementation

In the context of this work, we decided to create a RDFS representation of the UML 1.4 [108]
metamodel.7 We have realized the transformation step based on two open source APIs: Jena
and Netbeans MDR. Jena handles RDF and RDFS models, the Netbeans MDR repository is a
MOF-based repository, which is able to handle all kinds of models for which MOF compliant
metamodels are defined.

7The RDFS can be obtained from URL.
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In principle, all kinds of models for which a MOF compliant metamodel exist can be translated in
the same way. The Netbeans MDR repository provides a reflection mechanism on metamodels
that can be used to generate RDF schemata. We have implemented an EVE service that
generates for arbitrary MOF 1.4 M2 metamodels a corresponding RDFS metamodel. 8

5.2.3 Integrity Conflicts

Integrity conflicts identify component specifications that are not compliant to the rules of the
core models.

These conflicts can occur in the translation of component specifications from UML into RDF,
as the transformation does not prevent invalid specifications.

We do not consider the integrity rules of the framework in this work. Please refer to [77] for an
exact definition of the imposed rules.

5.3 Examples

This section provides two examples to demonstrate component specification in the framework.
All examples present different aspects of component specification and are shown in a UML
representation and a framework representation: The dining philosophers example demonstrates
component type specifications as well as a system configuration. The mortage bank example
illustrates behavioral attachements and property annotations.

5.3.1 Dining Philosopher Example

Figure 5.11 shows a representation of the well known philosophers problem. The problem
is characterized by five philosophers that compete against limited resources (forks).9 The
example demonstrates properties and problems of concurrent programs. Figure 5.11 describes
philosophers and forks as component types, which are linked by the ‘PhilConnect’ connector
type. The upper part shows the simple vocabulary of the two involved component types, which
are linked via the IFork interface type.

The lower part of figure 5.11 shows a configuration of five philosophers and five forks. The
bindings between the philosophers are expressed by the shortcut notation introduced in Section
5.2.1.

Figure 5.12 shows a screenshot from the vocabulary part of the philosopher example: The UML
model was converted into RDF and the Metamodel transformed from UML into PICM.

5.3.2 Mortgage Bank Example

The second example (see Figure 5.13) shows two components that are part of a fictive customer
information system. They describe part of a possible simulation of financial development for
different forms of mortgage contracts. The BLContractMgmt component acts as a customer
facade. It uses calculations from a set of worker components described by the BLCalc component
type. Both component types are annotated with process descriptions expressed in FSP, a process
algebra proposed by Kramer and Magee [86].

In the UML profile, which can be found in appendix B, protocol expressions and language
attributes are defined as tagged values of a UML Class which is annotated with the PortType
stereotype. In Figure 5.13, however, we use a note to describe this information, because of
better readability.

8The UML2RDF metamodel translator is available for download from URL.
9For a brief explanation see [61].
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Figure 5.11: The Philosopher’s Problem Described by the UML Profile

Figure 5.12: Screenshot of the Philosopher Vocabulary
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<< ComponentType >>
BLContractMgmt

<< ComponentType >>
BLCalc

<< PortType >>
P1

<< requires >> 

<< InterfaceType >>
ContractSimulation

+ newBLContract ():BLContract
+ simulate (c:BLContract ):SimulationResult

<< Record >>
BLContract

<< Record >>
SimulationResult

<< declares >> 

<< PortType >>
P2

<< provides >> 

<< InterfaceType >>
ISimulate

+ getNewContract ():Contract
+ simulate (c:Contract ):Simulation
+ setRate(i:int ):void

<< Record >>
Contract

<< Record >>
Simulation

<< declares >> 

PAE(FSP):=
R=(newContract −> R1),
R1=(newContract −>R1 | simulate −> R1).

PAE(FS):=
Q = (getNewContract−>Q1),
Q1=(getNewContract−>Q1
        |setRate−>Q2),
Q2=(getNewContract−>Q2
       |setRate−>Q2
       |simulation−>Q2).

<< Mandatory >>
fmSessionBean

<< comProps >>

 

<< Mandatory >>
fmManagedComponent

<< comProps >>

 

Created with Poseidon for UML Community Edition. Not for Commercial Use.

Figure 5.13: Mortgage Bank Example

Figure 5.14 shows the BLContractMgmt component rendered by ODIS. As can be seen, the
protocol expression has been automatically translated into the required structure of the frame-
work. Furthermore, the roots of the attached communication properties are shown. Both
communication taxonomies are represented in figures 4.1 and 4.2.

Figure 5.14: Part of the Mortgage Bank Example Rendered By ODIS



Chapter 6

Conflict Analysis

Conflict analysis is the last step in the conflict analysis process described in Section 3.3.1.
It requires that components comply to several requirements: At first, components must be
specified in the Platform Independent Component Model. Consequently, their types must be
expressed in terms of the type system introduced in Section 5.1.2. The type system must
eventually be extended by basic (primitive) types that represent primitive types of the tech-
nologies from which the components originate. Furthermore, behavior descriptions attached to
the components must be stated in the same language and a tool must exist and be included in
the framework that can handle the language. At present, we use FSP [86] to specify protocols
as process algebra expressions and use the tools fc2tools [117], Aldebaran [47] and LTSA [86]
for conflict analysis. Finally, communication requirements of components must be described by
properties of the communication taxonomy defined in Section 4.2.

The framework provides two operations for conflict analysis between two components with
regard to type, behavior and communication specifications:

A Compatibility operation checks if two components can interact.

A Substitutability operation checks if two components can be exchanged.

Conflict analysis is checked between two port types. Therefore, the core model associates each
port type with type information (interface type), a behavior description and a communication
context. For compatibility analysis of two component types, a developer has to select two com-
ponent types and for each component type either a single requires or a provides port type (see
Figure 6.1 for an example of a compatibility check). As mentioned above, the component model
of the framework is flat. Consequently, we do not look at component dependencies between
subcomponents. For conflict analysis, we consider components as black-box specifications. The
developer has to choose the granularity level he is interested in.

Compatibility analysis for connectors is not defined. Substitutability is checked for all requires
and provides port types of both component types or connector types. Contrary to compatibility
checks, port types with the same relationship to a component type (either requires or provides)
are compared to decide substitutability.

The first three sections of this chapter describe conflict analysis in the respective areas and
define both operations for each area. The last section describes the implementation of the
operations.

6.1 Type Analysis

Type analysis is based on subtype relationships between components. In this section, we first
discuss the difference between nominal and structural subtyping, then we introduce the struc-
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<<ComponentType>> 
C1

<<ComponentType>> 
C2

<<PortType>> 
A1

<<PortType>> 
B2

<<provides>> 

<<OptionalFeature>> 
f1

<<OptionalFeature>> 
f2

<<requires>> <<comProps>> 
<<comProps>> 

<<InterfaceType>> 
t1

<<declares>> 

<<ProtocolExpression>> 
b1

<<associated 
ProtocolExpression>> 

<<InterfaceType>> 
t1

<<ProtocolExpression>> 
b1

<<declares>> 

<<associated 
ProtocolExpression>> 

compB

compT

compP

Figure 6.1: Conflict Analysis: Compatibility Checks

tural subtyping rules, specify compatibility and substitutability operations and discuss the
handling of important features of object-oriented languages that must be considered.

6.1.1 Nominal and Structural Subtyping

The subtyping rules defined in the following section describe structural subtyping. Two types t1
and t2 are in a subtype relationship t1 � t2 if they satisfy the subtyping rules. Object-oriented
languages as Java or C++ often do not use this form of subtyping but nominal subtyping.
Nominal subtyping declares subtypes explicitly in class declarations. Consequently, types t1
and t2 are only in a subtype relationship t1 � t2 if t1 references t2 in a class declaration (e.g. in
Java: class t1 extends t2). A discussion of the advantages and the disadvantages of nominal
subtyping can be found in [112].

As we are interested in checking the compatibility of components, which eventually have been
imported from different languages, we cannot rely on nominal subtyping. Instead, we use
structural subtyping to check for the relationships of complex types such as component types,
interfaces types, operations, etc. Only basic types are checked by using the explicit relationships
given in the type model. Consequently, the results of subtype analysis for two elements defined
in a single language can differ from the results obtained by a type checker of the language if
both types are not explicitly related by class extensions.

The type model introduced in Section 5.1.2 also defines explicit subtype relationships as el-
ements that are imported from object-oriented languages or from UML diagrams naturally
provide this information. We keep this information because first, it results in a compact graph
structure as we do not have to replicate the elements of each type for its subtypes and second,
because we additionally can check for an explicit relationship between types.

6.1.2 Subtyping Rules

Conflict analysis requires subtype rules for complex types1:

Functions. Subtyping of functions is often defined in literature [112; 132]: A function f1 :
T1 → T2 is a subtype of a function f2 : S1 → S2, written f1 � f2, if the propositions T2 � S2

and S1 � T1 are satisfied.

Operations. Based on this definition, subtyping for operations can be easily defined. There
is only one additional requirement: The exceptions of both operations also need to be in a
subtype relationship.

1We assume that all elements (instances) in the framework are correctly typed and that additional relation-
ships between basic types and for newly introduced complex types were given as needed.
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s = [1..o 1.attribute] = [1..o2.attribute]
o1.range � o2.range

∀e1 ∈ o1.exceptions∃e2 ∈ o2.exceptions · e1 � e2

∀i ∈ s · o2.attributei.aname.hasType � o1.dom.attributei.aname.hasType

o1 � o2

The first line of the rule defines a list s containing the number of arguments of both operations.
Thereby, both operations must have the same number of arguments. The second line demands
a covariant relationship of the return types. The third line requires a covariant relationship
between the declared exceptions of the subtype o1 and the supertype o2 for each exception of
the subtype. Thus, a subtyped operation is not allowed to throw more exceptions or exceptions
that are not subtypes of the exceptions thrown by the supertype operation. The fourth line
of the rule may be read as follows: Each attribute type at position i of the subtype o1 must
by in a contravariant relationship to the attribute type at the same position of the supertype
o2. Thereby, the reference ‘o2.attributei.aname.hasType’ represents the navigation in the type
model shown in Figure 5.3.

Exceptions. We treat exceptions as a special kind of record. Therefore, they are checked by
the record subtyping rule.

Records. We define the usual rules for record subtyping. The following rule represents a
combination of the ‘width’ rule and the ‘depth’ rule found in [112]. Thereby, record elements
are compared by name. Thus, a record A is a subtype of another record B, if all elements of B
are also available in A and the element types are in a covariant relationship.

∀f ∈ r1.elements∃g ∈ r2.elements · f.name = g.name ∧ g.hasType � f.hasType

r2 � r1

Records are used to represent classes of object-oriented languages. We restrict the elements
of records, which are used for subtype checks to operations and disallow direct manipulation
of instance variables, which would demand stronger subtyping rules. We furthermore do not
consider other advanced features of classes such as constructors or access attributes. For a
detailed discussion of class properties refer for example to Fisher and Mitchell [48].

Interfaces. A subtyping relationship between interfaces can be defined as follows:

∀o2 ∈ it2.operations∃o1 ∈ it1.operations · o1 � o2 ∧ o1.name = o2.name

it1 � it2

Thus, interface subtyping is defined in the same way as record subtyping. However, in our type
model the navigation uses different paths and constraints interface type elements to operation
types.

Lists. We treat lists as simple collections of objects of a particular type. The subtyping rule
corresponds to array subtyping as defined in [112]. As arrays can be accessed and manipulated
they are neither covariant nor contravariant.

l1.listType � l2.listType l2.listType � l1.listType

l1 � l2
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Components & Connectors. Components and Connectors consist of two sets of interfaces:
a ‘provides’ set and a ‘requires’ set. We define the following subset rules:

∀p2 ∈ ct2.provides.declares∃p1 ∈ ct1.provides.declares · p1 � p2

∀r1 ∈ ct1.requires.declares∃r2 ∈ ct2.requires.declares · r2 � r1

ct1 � ct2

Thus component ct1 needs to provide at least the services of ct2 but can have additional in-
terfaces. Furthermore, ct1 must have at most the requirements of ct2. Connectors are defined
analogous.

6.1.3 Compatibility and Substitutability

Compatibility Two components C1 and C2 are compatible - written C1 ‘compS’ C2 if there
exist two interfaces i1 ∈ C1.provides.delcares and i2.provides.delcares, which are in the sub-
type relationship: i2 � i1.

Component C1 uses the services or part of the services of C2. It cannot require more services
in i1 as there are available in i2. Therefore, they are compatible if i2 is a subtype of i1. In
this case, component instances of C1 and C2 can be related via a connector that binds the
port instances i1 and i2. We define this form of connection - a single connection involving a
single pair requires and provides ports - as the standard composition mechanism in distributed
systems.2

A binding of two components C1 and C2 via a connector KT is valid if there exist two interface
types ki ∈ KT.provides.delcares and k2 ∈ KT.requires.declares that are in the following
subtype relationships to the interface types i1 and i2 as defined above: k1 � i1 and i2 � k2.

Substitutability. Two element types E1 and E2, which are either ‘ComponentTypes’ or
‘ConnectorTypes’, can be exchanged - written E1

′exchangeS′ E2 - if the following predicate
evaluates to true:

∀i2 ∈ X2.provides.declares,∃i1 ∈ X1.provides.declares · i2 � i1∧
∀i3 ∈ X1.requires.declares,∃i4 ∈ X2.requires.declares · i4 � i3

where X1 and X2 are either of type ′ComponentType′ or of type ′ConnectorType′.

Consequently, a component C1 can be exchanged by a new component C2 if the new component
provides the same or more services to the environment and requires the same or less services
from the environment. The same holds true for the exchange of connectors. The predicate
is equivalent to the subtyping rule of component and connector types. Again, the expression
‘provides.declares’ refers to the interfaces that are attached to an element E via a provides port.

Both definitions are based on a flat component model. We therefore does not consider the
internal structure of two component types but only the external visible properties.

6.1.4 Constructors, Overloading and Recursion

Object-oriented languages often provide additional features that must be considered for subtype
checking. Object classes are usually initialized via constructors. Constructors, are usually
described in class definitions as well as in UML diagrams and therefore appear as class features

2This definition of a connection only considers a single connection between two ports. Other requires interfaces
of a component must be connected via additional ‘bindings’.
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in the platform independent component model. However, they are not considered as regular
members of classes [48; 69] and we therefore filter constructors so that they do not appear in
subtype checking.

Another problem is method overloading. Most object-oriented languages allow defining several
operations with the same name but different signatures. Therefore, names are not necessarily
unique. We treat this issue with the subtyping rules as stated above. We check that for each
operation o1 of the superclass an operation o2 of the same name exists such that o2 � o1.

Object-oriented languages also allow class types as return and argument parameter of opera-
tions. This can result in cyclic type structures. We treat this issue by defining a subtyping
algorithm that uses ‘Trails’ to remember the states already visited. A trail stores states of the
form t1 � t2 in a list. An algorithm for subtype checking (called by ‘check st t’) stores a tuple
of the actually checked types ((st, t)) in the trail and proceeds with recursive checks for the
components of st and t. Two recursive types t1 and t2 are in a subtype relationship t1 � t2 if
the checking algorithm reaches a state that has already been visited and no contradiction was
found. Trails as well as a subtyping algorithm for recursive types were defined by Cardelli and
Amadio in [13] for example.

6.2 Behavior Analysis

Conflict analysis in the behavioral model is based on either the annotated labeled transition
systems or on a particular process algebra, which has been provided by a user. Constraints are
not compared, as these require to instantiate the framework with a particular language such
as OCL or Z to define conflict predicates. Furthermore, constraints often cannot be compared
automatically and are checked via theorem provers. A theorem prover often requires a skilled
user to find a proof.

According to Glabbeek [140, p.559], “a process graph is a connected, rooted, edge-labeled and di-
rected graph” (a transition system). Each component can be interpreted as an entity that, when
deployed on a node (host system) can be associated with a process. To decide compatibility,
we identify the action names of two components and compare their process graphs (transition
systems). We distinguish two cases: Component composition and component substitution. In
the first case, a simulation of the two process graphs needs to be proven, i.e. can the service
provider handle each action of the client component. In the second case, bisimulation of the
old and new component needs to be proven, i.e. can they be exchanged transparently.

Process expressions can be annotated to component, connector types or to port types. The
former are used to identify conflicts for component substitution, whereas the latter are used to
decide component composition.

6.2.1 Equivalence Relationships

Informally, a simulation is an asymmetric relationship between two transition systems P and
Q - written P ⊆ Q. The relationship requires that for all transitions of P , Q offers respective
transitions. Thus, each action taken by P can be simulated by Q. More formally, we derive the
definition of a simulation from the definition of bisimulation as proposed by Glabbeek [140]:

Definition 17 (Simulation) As simulation is defined as a relation R on the nodes of graphs
g and h satisfying:

the roots of g and h are related by R,

if R(r, s) and r
a−→ r′, then there exists a node s′ such that s

a−→ s′ and R(r′, s′).

This definition is exactly the definition of ‘Bisimulation Equivalence’ (see next definition) as de-
fined by Glabbeek, except that the third condition is removed. In the following, we distinguish
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between different kinds of simulation (see Table 6.1). These correspond to the different defini-
tions of bisimulation (see Table 6.2) and mainly differ in the handling of τ -actions. Informally,
a silent action is an internal action of a process.

Bisimulation equivalence is defined by Glabbeek [140, p.559] as follows:

Definition 18 (Bisimulation Equivalence) “A bisimulation . . . is defined as a relation R
. . . on the nodes of graphs g and h satisfying:

(1) The roots of g and h are related by R;

(2) If R(r, s) and r
a−→ r′, then there exists a node s′ such that s

a−→ s′ and R(r′, s′);

(3) If R(r, s) and s
a−→ s′, then there exists a node r′ such that r

a−→ r′ and R(r′, s′). ”

Glabbeek distinguished four kinds of equivalence relations between process graphs, depending
whether silent actions are included and how they are handled. The four equivalence relationships
are defined in Table 6.2.

In the presence of silent actions it is important that an equivalence relationship preserves the
branching structure of a process graph. From the four equivalence relationships presented in
the table, only branching bisimulation preserves this structure. For a detailed description refer
to [16; 139; 140].

6.2.2 Compatibility and Substitutability

Compatibility. Figure 6.1 shows two components and their associated ports. The ports
are linked with two process algebra expressions. We use simulation to test whether the two
expressions are compatible.

Two components C1 and C2 are compatible regarding their protocols - written C1
′compB′ C2

if there is a simulation relationship C1 ⊆∗ C2.

The ∗ refers to one of the defined simulation relationships (strong, weak, eta, delay, branching).

A compatibility check starts with two protocol specifications. According to the defined process
of conflict analysis (Section 3.3) these specifications are associated with two components that
should be integrated. As we have no reason to hide any operation, we start analysis by testing
for a strong simulation relationship, which contains no τ -actions. If conflicts are identified, a
developer can specify correspondences between actions or use other relationships to trace the
reasons for mismatches and to create solutions to these mismatches.

Substitutability. Two components C1 and C2 are exchangeable regarding their protocols -
written C1

′exchangeB′ C2 if there is a bisimulation relationship C1 ↔∗C2.

The ∗ refers to one of the defined bisimulation equivalences shown in Table 6.2.

Substitutability requires a bisimulation relationship to hold. Again, we start analysis by using
strong bisimulation. A developer can modify the protocols by providing correspondences and
possibly τ -actions to resolve the mismatches. τ -actions can be used to hide additional functions
of the new component, which provide additional but optional behavior that is not required by
the environment.

6.3 Analysis of Communication Properties

We assume that the communication taxonomy as well as the taxonomy instances for technology
related features contain all relevant properties for communication of particular technologies of
interest. Component comparison is based on the comparison of annotated features. Two entities
are compatible if all features annotated to the ports of the entities are compatible. For example,
in figure 6.1 C1 and C2 are compatible - C ′

1compP ′C2, if the properties f1 and f2 are compatible.
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Equivalence Definition Silent
Relationship Actions

Strong Simulationa Two graphs g and h in Gb are (strongly) similar -
notation - g ⊆h h - if there exists a relation R between
the nodes of g and h (called a simulation) such that:

(1) The roots of g and h are related by R;

(2) If R(r, s) and r
a−→ r′, then there exists a node

s′ such that s
a−→ s′ and R(r′, s′).

no

Weak Simulation Two graphs g and h in G are (weakly) similar -
notation: g ⊆w h - if there exists an asymmetric
relation R between the nodes of g and h (called a
weak simulation) such that:

(1) The roots are related by R;

(2) If R(r, s) and r
a−→ r′, then either a = τ and

R(r′, s), or there exists a pathc s =⇒ s1
a−→

s2 =⇒ s′ such that R(r′, s′).

yes

Eta Simulation Two graphs g and h in G are η-similar - notation g ⊆η

h, if there exists an asymmetric relation R between
the nodes of g and h (called a η-simulation) such that:

(1) The roots are related by R;

(2) If R(r, s) and r
a−→ r′, then either a = τ

and R(r′, s), or there exists a path =⇒ s1
a−→

s2 =⇒ s′ such that R(r, s1) and R(r′, s′).

yes

Delayed Simulation Two graphs g and h in G are delay similar - notation
g ⊆d h - if there exists an asymmetric relation R be-
tween the nodes of g and h (called a delay simulation)
such that:

(1) The roots are related by R;

(2) If R(r, s) and r
a−→ r′, then either a = τ and

R(r′, s), or there exists a path s =⇒ s1
a−→

s2 =⇒ s′ such that R(r′, s2) and R(r′, s′).

yes

Branching Simulation Two graphs g and h in G are branching similar - no-
tation: g ⊆b h - if there exists an asymmetric relation
R between the nodes of g and h (called a branching
simulation) such that:

(1) The roots are related by R;

(2) If R(r, s) and r
a−→ r′, then either a = τ and

R(r′, s), or there exists a path s =⇒ s1
a−→

s2 =⇒ s′ such that R(r, s1), R(r′, s2) and
R(r′, s′).

yes

aThe following definitions are equivalent to the definitions of bisimulation shown in Table 6.2. They are
only changed to handle an asymmetric relationship between the graphs g and h. Consequently, the following
definitions correspond closely - almost one-to-one - to the definition of Glabbeeck [140]

bDomain of process graphs
cp ⇒ s ⇒ q is a sequence of actions with an arbitrary number of τ actions that is reduced to a after removing

the τ actions.

Table 6.1: Definitions of Simulation Relationships Based on the Definitions of Glabbeek [140,
pp.559-564].
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Equivalence Definition Silent
Relationship Actions

Strong Bisimulationa Two graphs g and h in Gb are (strongly) bisimilar -
notation - g↔hh - if there exists a symmetricc relation
R between the nodes of g and h (called a bisimulation)
such that:

(1) The roots of g and h are related by R;

(2) If R(r, s) and r
a−→ r′, then there exists a node

s′ such that s
a−→ s′ and R(r′, s′).

no

Weak Bisimulation Two graphs g and h in G are (weakly) bisimilar -
notation: g↔wh - if there exists a symmetric relation
R between the nodes of g and h (called a weak bisim-
ulation) such that:

(1) The roots are related by R;

(2) If R(r, s) and r
a−→ r′, then either a = τ and

R(r′, s), or there exists a pathd s =⇒ s1
a−→

s2 =⇒ s′ such that R(r′, s′).

yes

Eta Bisimulation Two graphs g and h in G are η-bisimilar - notation
g↔ηh, if there exists a symmetric relation R between
the nodes of g and h (called a η-bisimulation) such
that:

(1) The roots are related by R;

(2) If R(r, s) and r
a−→ r′, then either a = τ

and R(r′, s), or there exists a path =⇒ s1
a−→

s2 =⇒ s′ such that R(r, s1) and R(r′, s′).

yes

Delayed Bisimulation Two graphs g and h in G are delay bisimilar - notation
g↔dh - if there exists a symmetric relation R between
the nodes of g and h (called a delay bisimulation) such
that:

(1) The roots are related by R;

(2) If R(r, s) and r
a−→ r′, then either a = τ and

R(r′, s), or there exists a path s =⇒ s1
a−→

s2 =⇒ s′ such that R(r′, s2) and R(r′, s′).

yes

Branching Bisimulation Two graphs g and h in G are branching bisimilar -
notation: g↔bh - if there exists a symmetric relation
R between the nodes of g and h (called a branching
bisimulation) such that:

(1) The roots are related by R;

(2) If R(r, s) and r
a−→ r′, then either a = τ and

R(r′, s), or there exists a path s =⇒ s1
a−→

s2 =⇒ s′ such that R(r, s1), R(r′, s2) and
R(r′, s′).

yes

aWe use the term strong bisimulation instead of the original term ‘Bisimulation’. Glabbeek uses this term in
the online version ‘http://theory.stanford.edu/’.

bDomain of process graphs
cHere, Glabbeek defines a symmetric relationship. Consequently, the second rule in each of the following

definitions correspond to rules two and three of definition 18!
dp ⇒ s ⇒ q is a sequence of actions with an arbitrary number of τ actions, that is reduced to a, after

removing the τ actions.

Table 6.2: Definitions of Behavioral Equivalence Relationships as Defined by [140, pp.559-564].
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6.3.1 Requirements

We distinguish three types of properties that can be associated with components to describe
their communication capabilities and requirements: mandatory properties, optional properties
and unsupported properties. We further interpret the meaning of optional features differently
for components and connectors.

We need to deal with optional or ‘unknown’ values, because

(1) technologies support several properties of communication mechanisms that may be used
by application components, but are not compulsory. Consequently, we must distinguish
between a property that is supported as an option or that is required (mandatory).

(2) often, it is difficult to decide if a property is required by a component or not supported.
Middleware specifications describe communication protocols coarse grained only. Lower
level properties are often either partially described or omitted.

Therefore, if a property is optional in a communication mechanism assigned to a component and
evidence whether the property is required or not supported by a component cannot be found,
we must deal with ‘unknown’ values. We therefore distinguish between mandatory properties,
which are required for a communication, unsupported properties, which are not required, and
‘unknown’ properties, for which no evidence for or against their usage can be found. We model
‘unknown’ properties as optional properties in feature models. In a feature model, an optional
property can be selected for communication but it is not required. For components, we interpret
optional properties as ‘unknown’ values and generate warnings in an analysis process.

A component composition demands that all required features have been identified. We cannot
compose components for which we are not sure if particular properties such as transactions
are required or not. Furthermore, a composition of two components results in a connector
generation that fits the requirements of involved components. Such a connector generation is
not possible if the features are not clearly defined, i.e. there must not be any free variation
points (optional features) annotated to the components. Therefore, a warning indicates that a
developer must manually investigate the components and identify whether the properties are
used or are unsupported.

If optional features are attached to connectors, they are interpreted as supported features. If
a component requires a feature (mandatory) and a connector supports that feature, we can be
sure that the connector can actually communicate with the component, because it provides the
required functionality.

6.3.2 Compatibility and Substitutability

Compatibility. Regarding this discussion, we describe compatibility relationships ‘compP’
between elements E1 and E2 by comparing the feature models (taxonomy instances describing
a particular communication mechanism) that are attached to the ports of the elements E1 and
E2. The ports are connected to E1 and E2 via a requires and a provides relationship.3 We
define the compatibility operation for the following element combinations:

(1) Component ‘compP’ Component

This relationship needs to be true in order to compose two components. Two compo-
nents are only compatible if they are annotated with the same mandatory features and
the attributes of each feature are also compatible. The relationship ‘compP’ yields true

3We only consider a component composition by a single link between a requires and a provides interface.
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Component vs.
Component

mandatory optional unsupported

mandatory
√

w f
optional w w w
unsupported f w

√

w = warning
f = failure

Table 6.3: Compatibility Matrix between two Components

between two components C1 and C2 if the following proposition holds:

∀n ∈C1.r.comProps·
isMandatoryFeature(n) →
∃m ∈ C2.q.comProps·
n.fname = m.fname∧
isMandatoryFeature(m)

(6.1)

The symbols ‘r’ and ‘q’ refer to provides and requires ports of components. The follow-
ing two combinations are allowed (r = requires, q = provides) or (r = provides, q =
requires). The predicate requires for each mandatory (required) feature of component C1

a mandatory (supported) feature of the same name exists in C2. The predicate ‘isManda-
toryFeature’ iterates the feature model instance annotated to a component and identifies
mandatory features. Therefore, it selects features that are themselves mandatory and for
which all parent features are also mandatory.

Mismatches are generated for all other cases. The matrix shown in Table 6.3 shows the
generated mismatches for all value combinations.

(2) Component ‘compP’ Connector

This relationship indicates compatibility between components and connectors. A compo-
nent is compatible to a connector if the connector provides the properties required by the
component. Here, optional features are interpreted differently for the component and the
connector. The relationship yields true between a component C and a connector K if the
following propositions hold:

∀n ∈C.r.comProps·
isMandatoryFeature(n) →
∃m ∈ K.q.comProps·
n.fname = m.fname∧
(isMandatoryFeature(m)∨
isOptionalFeature(m))

(6.2)

∀n ∈C.r.comProps·
isOptionalFeature(n) →
∃m ∈ K.q.comProps·
n.fname = m.fname∧
isOptionalFeature(m)

(6.3)

The first predicate can be read as follows: for each mandatory feature of the component
must exist a corresponding property in the connector that is either mandatory or optional.
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Component vs.
Connector

mandatory optional unsupported

mandatory
√ √

f
optional w

√
w

unsupported f
√ √

w = warning
f = failure

Table 6.4: Compatibility Matrix between a Component and a Connector

We interpret optional values of a connector as features supported by the connector if they
are requested by a client component. The second predicate matches properties even if
they are defined optional by the component - it is unknown whether they are required
or not - because the connector supports the properties regardless of whether they are
required by the component or not. Generated mismatches are shown in Table 6.4.

Substitutability. We define substitutability similar to compatibility between the feature
models attached to two elements E1 and E2. Contrary to the compatibility relationships, the
models to be compared are attached via the same relationship to the ports of both elements.
Two components are exchangeable with regard to their communication - written E1 ‘exchangeP’
E2 - if for each feature model attached to a port of E1 a compatible model for a port E2 exists.
This is another difference from the compatibility check. For substitution, all feature models
attached to the ports of E1 must have compatible models in E2.

We define substitutability between two element combinations:

• Component ‘exchangeP’ Component. Two components C1 and C2 can be exchanged -
written C1 ‘exchange’ C2, if ∀r ∈ C2.X∃p ∈ C1.X, where X refers either to a ‘requires’
or an ‘provides’ relationship, the following predicates evaluate to true:

∀n ∈C2.X.comProps·
isMandatoryFeature(n) →
∃m ∈ C1.X.comProps·
n.fname = m.fname∧
isMandatoryFeature(m)

(6.4)

∀n ∈C1.X.comProps·
isMandatoryFeature(n) →
∃m ∈ C2.X.comProps·
n.fname = m.fname∧
isMandatoryFeature(m)

(6.5)

The predicates are almost identical to the predicate defined for component compatibility.
However, they perform the check from both sides. The number of mandatory features
must be invariant: The component must use the same context as the old component. A
new component cannot use a slightly changed environment with different properties.

• Connector ‘exchangeP’ Connector. Two connectors K1 and K2 can be exchanged - K1
‘exchange’ K2, if ∀r ∈ K1.X∃p ∈ K2.X, where X refers either to a ‘requires’ or an
‘provides’ relationship, the following predicate evaluates to true:
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Component vs.
Connector

mandatory optional unsupported

mandatory
√ √

f
optional

√ √ √

unsupported f
√ √

w = warning
f = failure

Table 6.5: Compatibility Matrix between two Connectors

∀n ∈K1.r.comProps·
isMandatoryFeature(n)∨
isOptionalFeature(n) →
∃m ∈ K2.p.comProps·
n.fname = m.fname∧
(isMandatoryFeature(m)∨
isOptionalFeature(m))

(6.6)

The predicate matches all features of both connectors that correspond to each other and
are either optional or mandatory. In each case, both connectors can deal with the required
properties of the other connector. The complete matrix describing the compatibility of
each feature combination can be found in Table 6.5.

6.4 Conflict Generation

Conflicts are generated in two steps: Firstly, mismatches are identified by predicates that are
based on the proposed relationships and secondly, conflict statements are generated based on
the identified violations. Examples of both rules are shown below.

forall ?c,?s,?f,?n,?pc,?ps
unsupportedMandatoryFeatures(?c,?pc,?s,?ps,?f)<-
getComFeatures(?c,?pc,?f)@core:Util and
hasOnlyMandatoryParentFeatures(?f)@core:Util and
getFeatureName(?f,?n)@core:Util and
isFeatureNotBound(?s,?ps,?n)@core:Util.

forall C,S,PC,PS @failure(C,S,PC,PS) {
forall ?x, ?f, ?ns
?ns:?x[sys:directType->core:FeatureConflict;

core:concerns->C;
core:relates->S;
core:concernsFeature->?ns:?f;
core:cause->’Mandatory feature of client unsupported by server.’]

<-
unsupportedMandatoryFeatures(C,PC,S,PS,?ns:?f)@core:Features and
concatConflict(?x,?f,’Failure’).

}

The upper predicate returns all mandatory features f of a client c bound to a port pc that are
unsupported by the server component s in port ps. Therefore, it first collects all communication
features attached to the client component to port pc and filters for the features that are itself
mandatory and for which all parent features are also mandatory (second predicate). In the



6.4 Conflict Generation 107

third line, it looks up the name of the feature and tests if the feature is unsupported by the
server (line four).

The second rule generates conflict statements. The rule is included in a parameterized mapping
with parameters C,PC, S and PS. C and S refer to component types, whereas PC and PS
refer to two interfaces of the components. The body of the rule identifies conflicts, which result
in new conflict statements in the head of the rule. The head generates conflict statements of
the form described by the conflict model in Section 5.1.5. In the framework, a complete set of
rules for each case shown in Table 6.3 are implemented.
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Chapter 7

Examples for Conflict Analysis

The previous sections discussed the idea and theory of conflict analysis. Conflict analysis
was embedded into a tool suite that supports different technologies, customization of conflict
analysis capabilities and model transformation.

In this section, we provide examples of conflict analysis. We describe the analysis process, give
examples for each conflict category, discuss two complex examples as well as the problems and
advantages of conflict analysis.

7.1 Analysis Process and Scenario Setup

This chapter covers the ‘Conflict Analysis’ step of the conflict analysis process described in
Section 3.3.1. Consequently, it identifies conflicts between platform independent component
descriptions, which have already been transformed from UML models and from platform specific
component descriptions.

Conflict analysis is an iterative process: Conflicts between two descriptions are identified using
the conflict predicates introduced before. Then, a user, who reviews the produced conflicts, can
specify correspondences between mismatched elements and reapply conflict analysis.

Correspondences supported by the framework include name matching and matching of operation
sequences used for behavioral analysis. The correspondences have to be specified by a user, as
the framework does not try to automatically identify matching operations. This would require a
kind of semantic matching as proposed, for example, by Paolucci et. al. [111] in the area of web
services. However, a user can augment the framework to support also semantic matching for
particular application areas as the framework is technically able to handle semantic matching.
A respective master thesis explores a kind of semantic matching in the context of the ADAM
repository [102].

The following examples are specified in UML and checked either in the Ontology-Based Domain
Repository (ODIS) framework or with respective tools such as Aldebaran and Haskell. We use
the following configuration of the conflict analysis and transformation framework:

• Type conflicts are identified based on a simple subtype algorithm that implements the
subtype rules as introduced in Section 6. The algorithm is implemented in Haskell. The
subtype rules are based on the rules described by Pierce [112] and Amadio [13].

For the purpose of the analysis, the framework’s type system has been initialized with
common primitive types and their subtype relations. The primitive type ‘void’1 is treated
as the ‘bottom’ type of the system. It is therefore a subtype of each type. The bottom
type can only appear as a return parameter of an operation.

1The ‘void’ type is exported as a primitive type from the used UML tool (Poseidon).
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The example algorithm supports recursive types and includes only public operations of
records for conflict analysis.

• Behavior conflicts are analysed with two external model checkers: LTSA and Aldebaran
[47]. We use LTSA to check for progress and deadlock properties of a component con-
figuration (not shown in the following examples) and Aldebaran to check for simulation
and bisimulation relationships. Therefore, the examples are annotated in the respective
process algebra language: FSP [86].

• Property conflicts are analysed based on the communication taxonomy introduced in
Section 4.2.2. The taxonomies for particular technologies were created by Gaedicke [51]
and Liao [81].

In the following, Section 7.2 exemplifies simple cases of conflict analysis, separated for each
of the three categories. The following two sections then describe more complex examples of
conflict analysis. Section 7.4 describes a data warehouse solution of Cedavis Ltd. that is written
in Java and should be integrated with .Net technology. The chapter concludes with a summary
of conflict analysis and a discussion of connector generation.

7.2 Basic Applications

In this section, we give three simple examples of conflict analysis. Thereby, we aim to create
an idea of the framework’s capabilities and do not aim at exhaustive examples that cover most
conflict categories. The first example discusses subtype analysis, the second simulation, and
the third communication conflicts. For each example, we first show the UML model, which is
compatible with the UML profile of the framework, then we describe the expected and found
conflicts.

7.2.1 Type Analysis

Figure 7.1 shows a simple UML component model that is defined according to the specified UML
profile. The model consists of two component types, their interface types, and some additional
elements describing the involved types. Thereby, UML classes without any stereotype are
treated as ‘Record’ types of the framework’s type system.

R1 
__________ 

attr1 : int 
attr2 : String 

__________ 
getAttr2() : String 
setAttr2(param1 : String):void

R2 
__________ 
attr3 : int 

R3 
__________ 
attr3 : int 

Class_4 
__________ 

walk(param_1:R3):void 

Class_5 
__________ 

go(param_1:R3):int 

<<InterfaceType>> 
IT1 

__________ 
foo1(param_1:long):Class_4 

<<InterfaceType>> 
IT2 

__________ 
foo2(param_1:int):Class_5 

<<PortType>> 
PT1

<<PortType>> 
PT2

<<ComponentType>> 
CT1

<<ComponentType>> 
CT2

<<declares>>

<<provides>><<requires>>

<<declares>>

Figure 7.1: Type Example UML Model

From the UML model, the framework generates the type expressions shown in Table 7.1. The
example CT1 and CT2 are defined on lines 18 and 19. The type expressions can directly be
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No. Type Expression

1. ref int=B ”int”

2. ref long=B ”long”

3. ref void=B ”void”

4. ref string=Rc ”String”NoST []

5. ref r2=Rc ”R2”NoST [(”attr3”,BT ref int),(”R1”,RT ref r1)]

6. ref class 4=Rc ”Class 4”(SubT (RT ref r1)) [(”walk”,OT ref walk)]

7. ref r1=Rc ”R1”NoST [(”attr2”,RT ref string),(”setAttr2”,OT
ref setattr2),(”attr1”,BT ref int),(”getAttr2”,OT ref getattr2)]

8. ref class 5=Rc ”Class 5”(SubT (RT ref r1)) [(”go”,OT ref go)]

9. ref r3=Rc ”R3”NoST [(”attr3”,BT ref int)]

10. ref setattr2=Op ”setAttr2”[(”param1”,RT ref string)] (BT (ref void)) []

11. ref go=Op ”go”[(”param 1”,RT ref r3)] (BT (ref int)) []

12. ref walk=Op ”walk”[(”param 1”,RT ref r3)] (BT (ref void)) []

13. ref foo1=Op ”foo1”[(”param 1”,BT ref long)] (RT (ref class 4)) []

14. ref getattr2=Op ”getAttr2”[] (RT (ref string)) []

15. ref foo2=Op ”foo2”[(”param 1”,BT ref int)] (RT (ref class 5)) []

16. ref it2=In ”IT2”[] [(OT ref foo2)]

17. ref it1=In ”IT1”[] [(OT ref foo1)]

18. ref ct1=Co ”CT1”[] [(IT (ref it1))]

19. ref ct2=Co ”CT2”[(IT (ref it2))] []

Table 7.1: Generated Types for Type Example

used with the Haskell subtype checker. The type expressions correspond to Haskell types shown
in Figure 7.2.

Given Figure 7.1, we expect the following subtype relationships - written <: - to hold:

• Record R2 (line 5) is a subtype (<:) of R3 (line 9).

• Record R3 is a subtype (<:) of R22.

• Record R1 (line 7) is an subtype (<:) of R1 and R2

• Record Class 4 (line 6), Class 5 (line 8) <: R1.

A comparison of Class 4 <: Class 5 or R1 <: Class 4 does not succeed as we define record
subtyping via the names of the included elements. Consequently, the type checker produces the
following conflict message (for R1 <: Class 4):

“ Mismatch between record types (R1 <: Class 4). Designated Subtype Record (R1)
has too few elements. Feature mismatch in Record. For walk exists no corresponding
element in the subtype term.”

Another conflict results from a comparison of the two operations from Class 4 and Class 5:
go (line 11) <: walk (line 12):

“ Mismatch between operation types (go <: walk). Mismatch between return types:
Basic types are not in a subtype relation. (BT (B ”int”)) (BT (B ”void”))”

Finally IT1 and IT2 are also not in a subtype relationship (IT2 <: IT1), because of naming
conflicts:

2As we check the subtype relationship only on the operations of classes (records) both records are empty and
therefore equivalent regarding the subtype relationship.
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1. Type definitions
> type Name = String
> data Basic = B Name
> deriving (Show,Eq)

Void is the bottom type rendered as
simple data type from UML:

> void = B ”void”

2. Complex Types
The following complex types are defined:

2a. Operations
> type Arg = (Name,Type)
> data Operation = Op Name [Arg] Type
> [TException]
> deriving (Show, Eq)

> type TException = Type

2c. Interfaces
> data Interface = In Name
> [Supertype]
> [TOperation]
> deriving (Show, Eq)

> type TOperation = Type

2d. Components
> data Component = Co Name
> [Interface]
> [Interface]
> deriving (Show, Eq)

2e. Connectors
> data Connector = Ko Name
> [Interface]
> [Interface]
> deriving (Show, Eq)

2f. Records
> data Record = Rc Name Supertype
> [Arg]
> deriving (Show, Eq)

> data Supertype = NoST | SubT Type
> deriving (Show, Eq)

2g. Lists
> data List = Lt Type
> deriving (Show, Eq)

2h. Root type definition
> data Type = BT Basic
> | OT Operation
> | IT Interface
> | CT Component
> | KT Connector
> | RT Record
> | LS List
> deriving (Show,Eq)

Figure 7.2: Haskell Type Constructors for Subtype Relationships.

“ Mismatch between interface types (IT2 <: IT1). For foo1 exists no corresponding
element in the subtype term.”

At this point, a developer can specify correspondences between names and then reapply conflict
analysis. If he defines the two correspondences: walk ∼ go for the operations of Class 4 and
Class 5, and foo1 ∼ foo2 for the operations in both interface types, the type check deduces
additional subtype relationships:

• Operation walk (line 12) <: go (line 11).

• Record Class 4 <: Class 5.

• Operation foo1 (line 13) <: foo2 (line 15).

• Interface Type IT1 (line 17) <: IT2 (line 16).

Compatibility Checks

According to Section 6 compatibility between two components C1 and C2 - written C1 ‘compS’
C2 is checked for a single pair of port types and their associated interface types. The components
C1 and C2 are compatible - written C1 ‘compS’ C2 if these interfaces i1 ∈ C1.provides.delcares
and i2.provides.delcares are in the subtype relationship: i2 � i1.

Consequently, CT1 and CT2 of the example are not directly compatible. Even if we compare
both components CT1 ‘compS’ CT2 under consideration of both correspondences defined above,
the predicate fails because no subtype relation between IT2 <: IT1 can be inferred:
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“Test compatibility (IT2<:IT1):
“Mismatch between interface types (IT2 <: IT1):

Mismatch between operation types (foo2 <: foo2):
Mismatch between return types:
Mismatch between record types (Class 5 <: Class 4):
Feature mismatch in Record:
Mismatch between operation types (go <: go):
Mismatch between return types:
Basic types are not in a subtype relation.
(BT (B ”int”)) (BT (B ”void”))

Mismatch between arguments:
Basic types are not in a subtype relation.
(BT (B ”long”)) (BT (B ”int”))”...

The conflict depends on a mismatch between the return types of the operations go and walk(go)
and on mismatched argument types of foo2 and foo2(foo1). Consequently, a connector is
required, which maps the differently named operations between both components and resolves
their subtype incompatibilities.

7.2.2 Protocol Analysis

We use the protocol descriptions of the Mortgage Bank example from section 5.3.2 to pro-
vide an example of protocol analysis. Both components in the example describe part of a
possible simulation of financial development for different forms of mortgage contracts. The
‘BLContractMgmt’ component acts as a customer facade. It uses calculations from a set of
worker components described by the ‘BLCalc’ component type. Both example components are
annotated with the following FSP protocol expressions:

ContractMgmt:
R = (newContract→R1),
R1= (newContract→R1

|simulate→R1).

BLCalc:
Q = (getNewContract→Q1),
Q1= (getNewContract→Q1

|setRate→Q2),
Q2= (getNewContract→Q2

|setRate→Q2
|simulation→Q2).

The expressions describe behavior of both components. ‘BLContractMgmt’ queries the ‘BLCalc’
component for an contract object, which is then used to simulate the terms of a mortgage under
consideration of a given rate. The corresponding transition system is shown in Figure 7.3.

For conflict analysis, we analyse the compatibility of ’BLContractMgmt’ ’compB’ ’BLCalc’. We
use the Aldebaran model checker to check for a simulation relationship between both process
expressions. The analysis results in a conflict for the first transition: ’BLContractMgmt’ can
do a ’getNewContract’ transition that is not available for ’BLCalc’. The mismatch results from
the different alphabets of both expressions Q and R.

Thus, a developer needs to specify correspondences between the action names. In the exam-
ple, the following two correspondences can be defined: getNewContract ∼ newContract and
simulation ∼ simulate.3 As a result, we obtain the following conflict from Aldebaran:

“ In the states (S1 = 1, S2 = 1) Only BLContractMgmt can do a ”simulate”-
transition from these states.”
(where S1 refers to BLContractMgmt and S2 to BLContract.)

3The ‘setRate’ operation has no direct counterpart in the process description of ‘BLContractMgmt’.
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This mismatch occurs because of a difference in specifying the rate for calculation. BLCalc
first needs a ‘setRate’ call before it can ‘simulate’ a contract. BLContractMgmt provides a
respective value as a parameter of ‘simulate’ and does not support an explicit operation to set
the rate. In summary, both expressions would correspond if we define another correspondence:
simulate ∼ setRate → simulation.

Figure 7.3: Transition system for the Mortgage Bank example.

7.2.3 Property Analysis

Figure 7.4 shows two components that we use to demonstrate the analysis of communication
properties. Both components expose and require their services via a Java EntityBean commu-
nication mechanism. They are connected to a feature model instance describing the communi-
cation properties of EntityBeans. The only difference in the components concerns transaction
support for their operations, which is specified by the awareness property. ‘QueryControl’ does
not support transactions, whereas ‘ComponentRepository’ requires transactions. Consequently,
the only conflict that should occur the both components should refer to this difference.

The annotation of an EntityBean communication model results in the addition of all commu-
nication properties of the respective communication mechanism to the component. The direct
annotations to the component override the respective features of the mechanism. In the ex-
ample, we get two EntityBean communication models annotated to both components. The
only difference is the properties annotated to ‘Transaction Awareness’. QueryControl has the
property ‘FeatureNone’ attached to the Transaction Awareness property, whereas Componen-
tRepository has the property ‘FeatureRequired’ associated with its instance of the awareness
property.

Different from the prior analysis example, property conflicts are checked directly in the frame-
work, without external tool support. The analysis predicates can be found in Section 6.3. They
are implemented in [77]. Communication properties are differentiated in two categories: failures
and warnings.

A computation of the failures between the communication properties of both example compo-
nents - ‘QueryControl’ ‘compP’ ‘ComponentRepository’ yields two conflicts:

“ 1. Feature53Required4 - Mandatory feature of server unsupported by client.
2. Feature52Never - Mandatory feature of client unsupported by server.”

Both conflicts describe the difference in the transaction awareness properties from the perspec-
tives of both components.

7.3 Federated Information System Example

The example shown in Figure 7.5 describes part of a mediator of a federated information system.
A mediator is a kind of middleware that performs queries against heterogeneous distributed data
sources (see for example [147]). If a client queries a mediator, the mediator first calculates which

4Features are enumerated in the implementation.
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<<ComponentType>> 
QueryControl <<ComponentType>> 

ComponentRepository

<<PortType>> 
RequiresRepository

<<Mandatory>> 
fm_EntityBean

<<PortType>> 
ProvidesRepository

<<Mandatory>> 
Transactions

<<Mandatory>> 
Transactions

<<Mandatory>> 
Awareness

<<Mandatory>> 
Awareness

<<Mandatory>> 
None

<<Mandatory>> 
Required

<<requires>> <<requires>>

<<comProps>> <<Mandatory>> 
fm_EntityBean

<<comProps>>

<<subFeatures>>

<<subFeatures>>

<<subFeatures>>

<<subFeatures>>

<<subFeatures>>

<<subFeatures>>

Figure 7.4: UML View on Communication Properties

data sources are capable of answering the query or part of it (Planner component). Then, it
queries these sources, integrates the answers and delivers the result back to the client.

The Planner calculates its plans based on specified interfaces of the data sources. These interface
descriptions are called query capabilities (QC). A query capability, shown at the bottom of
Figure 7.5, consists of parameters that a data source can process as well as of result attributes
returned by the data source. Query capabilities are managed by the ‘QCManager’ component
of the mediator. The Planner uses QCs, obtained by the QCManager, to decide which data
sources have to be queried. In the scenario, the old implementation of QCManager should
be replaced with a new implementation. The old component was implemented as a simple
Java class, which was located together with the Planner component in a single JVM. The new
QCManager component should be implemented as a SessionBean. It should communicate with
several Planner components in a distributed setting.

Figure 7.5 shows a UML representation of both components. The QCManager component
type is a platform independent representation of a SessionBean, whereas the Planner compo-
nent type is a platform independent representation of a Java class. QCManager is associated
with communication properties required by Session EJBs, whereas the Planner is linked with
communication properties of a normal Java component (class).

7.3.1 Type Compatibility

A check for compatibility of both components fails. The Planner component is not directly
compatible with the QCManager component. For compatibility, the interface ‘IQueryCapabil-
itiesNew’ must be a subtype of ‘IQueryCapabilities’. A comparison returns:

“ For getQCSet exists no corresponding element in the subtype term.”

A further check between the operations of both interfaces reveals that the operations ‘getQC’
and ‘getQCSet’ are similar. However, they are not in a subtype relationship - ‘getQC <: getQC-
Set’ - because the ‘Arguments are of different length.’ Operation ‘getQC’ requires a parameter
specifying for which data sources (specified by a URL) query capabilities should be returned.
The interface ‘IQueryCapabilitiesNew’ therefore provides the operation ‘getURLs’ to return the
URLs to all data source that are registered in QCManager. The Planner component, however,
tries to collect QueryCapabilities for all sources that are available in QCManager. Consequently,
the conflict that hinders compatibility between the components - Planner ‘compS’ QCManager
- depends on the one argument of ‘getQC’if we consider both operations as corresponding to
each other (getQC ∼ getQCSet).
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<<ComponentType>> 
Planner

<<InterfaceType>> 
IQueryCapabilities 

_____________________ 
getQCSet() : QCSet

<<ComponentType>> 
QCManager

<<requires>>
<<provides>>

<<Interface>> 
QC 

_____________________________________ 
getParameter(name: String) : Parameter 
getResultAttribute(name: String) : 
ResultAttribute 
getParameters() : Param 
getResultAttributes() : Result

<<PortType>> 
Planner 

PortType

<<declares>> <<PortType>> 
QCManager 
PortType1

<<InterfaceType>> 
IQueryCapabilitiesNew 

_____________________ 
getURLs():ListURL 
getQC(URL url) :QCSet 
throws NotExistsException

<<declares>>

<<Mandatory>> 
fmSessionBean

<<Mandatory>> 
fmJavaPC

<<comProps>><<comProps>>

JavaBean SessionBean

PAE(FSP):= 
Q=getQCSet->Q).

PAE(FSP):= 
R=(getURLs->R1), 
R1=(getURLs->R1 
     | getQC->R1).

<<List>> 
ListURL 

URL 
_____________________ 
location:String 
_____________________ 

<<Set>> 
Param 

<<Set>> 
Result 

ResultAttribute

Parameter 
<<Set>> 
QCSet 

<<Mandatory>> 
Transaction

<<Mandatory>> 
Security

<<subFeatures>> <<subFeatures>>

Figure 7.5: Federated Information System Example.

7.3.2 Behavioral Compatibility

In the example, two trivial process algebra expressions are attached to the components. The
first expression is attached to the requires port of the ‘Planner’ component, whereas the second
expression is bound to the provides port of ‘QCManager’:

Planner:
Q = (getQCSet→Q).

QCManager:
R = (getURLs→R1),
R1= (getURLs→R1

|getQC→R1).

Analysing both trivial expressions results in the obvious simulation conflict:

(S1 = 0, S2 = 0)
Only FedExampleQ.aut can do a ”getQCSet”-transition from these states. (where
S1 refers to Planner and S2 to QCManager.)

Consequently, there is no simulation relationship between the associated LTS. Furthermore,
a correspondence between the action labels getQCSet ∼ getQC does not create a simula-
tion. The correspondence getQCSet ∼ getURLs would result in a simulation, but is seman-
tically invalid, because both actions refer to different operations. The obvious correspondence
getQCset ∼ getURLs → getQC cannot be defined because it requires an intermediate com-
ponent that accepts the getQC call and forwards the sequence of both actions getURLs and
getQC. Consequently, a connector is required to implement this correspondence.

7.3.3 Communication Compatibility

The analysis of the example components yields several conflicts, a part of them are shown in
Figure 7.6. The main reasons for the 15 failures of Figure 7.6 can be interpreted as follows:
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• Transactions are unsupported by the Planner component but required by the QCMan-
agerComponent.

• The Planner component requires a static binding, whereas the QCManagerComponent as
a distributed component requires a dynamic binding and furthermore requires a initial-
ization based on a Naming service (JNDI).

• The QCManager requires an environment that provides security handling.

Figure 7.6: Property Conflicts - failures

7.4 Analysing the Cedavis Data Warehouse Tool

Cedavis Ltd. provides Business Intelligence (BI) solutions that aim at supporting a company’s
decision-making process. From a technical perspective Cedavis analyses and optimizes infor-
mation important to a company by providing data warehouse tools.

A data warehouse [88] is a large database, often containing data used for a company’s decision
support. Cedavis Ltd. aims to improve decisions by providing an Online Analytical Processing
(OLAP) tool that allows browsing and aggregating data via ad hoc queries. Thereby, data is
represented as a n dimensional data cube. A company decides, which dimensions as well as
which kind of statistics are of interest. This information constitutes the content of the data
cube. The OLAP tool aggregates this information and presents it to a user. The user can
explore the database by selecting dimensions of interest and defining filters on the data.

A major contribution of the Cedavis OLAP tool relates to performant calculations on issued
queries. This feature is technically realized by managing the data entirely on the heap of an
appropriate number of servers.

7.4.1 Example Application: Cedavis Health

The OLAP tool has been applied by customers of several business lines. Figure 7.7 shows a
screenshot of the Cedavis Web Analyzer customized for business information in a hospital.

The upper part of the Analyzer displays the categories of the underlying data cube inclusive
of the subdimension for each category. A user can drill down or refine the analysis by setting
filters on subdimensions. The lower left part shows information relevant to calculate the results
of queries. For a query a user has to select two dimensions and at least one value type.
Furthermore, he can select filters as mentioned above. The result of a query is displayed on the
lower right side.
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Figure 7.7: Cedavis Web Analyzer

7.4.2 Architecture

The Architecture of the Cedavis OLAP tool, shown in Figure 7.8, can be described as a four
tier architecture. The client tier consists of web clients that communicate with the application
server. At present, web clients are the only choice for accessing the Cedavis tool. The appli-
cation tier manages user-related activities such as queries, security, job control, and reports.
The persistency tier processes user queries based on the data actually stored on the heap. Fur-
thermore, it actualizes data from a data warehouse. The lowest tier consists of life databases
containing a company’s business data and a data warehouse which aggregates and manages this
data.

From a technical perspective, the Cedavis OLAP tool is written entirely in Java. It does not
take advantage of a middleware to implement its services, but only uses socket communication
between its distributed components. The main components in each tier are described as follows:

Web Analyzer. The Cedavis Web Analyzer component mainly provides a web representation
to the users. It further manages connections of clients and checks for security violations.
Data queried by the clients is stored in a cache to economize network transfer with the
query manager. The Web Analyzer is implemented as a Java web application using Servlet
and JSP technologies. Therefore, it is executed in an adequate Web Server such as the
Apache Server.

Query Manager. The Query Manager is realized as a ‘daemon’ that listens on a given port
for user requests. It processes queries and communicates with the data dispatcher to exe-
cute the queries. The Query Manager mainly implements a role-based security subsystem
including fine grained access rights for dimensions and subdimensions on any level. Fur-
ther, it manages job execution. Jobs are predefined queries that can be executed at a
given point in time.

Processing Server. Processing servers manage the data to be analysed on the heap. They are
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responsible for calculating the results of user queries. If the amount of data to be analysed
exceeds the captivity that can be handled by a single Java VM, processing servers can
be deployed on different servers. In this case, the data is split by means of a hashing
algorithms into several data sets that are managed by different servers. Consequently,
calculations are performed concurrently, which also results in a higher speed of calculation.

Query Dispatcher. The Query Dispatcher is a helper component that distributes queries and
collects responses from the processing servers.

Data Warehouse. In general, a company’s operating data cannot be used for analysis without
converting it into a suitable representation. Data conversion results in cleansed data that
is stored in the Cedavis Data Warehouse. Data conversion is performed based on rules
that need to be manually configured. Cedavis uses an external Extraction Transformation
and Loading (ETL) tool for data conversion.
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Processing 
Server

Processing 
Server

Data 
Dispatcher
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Manager

Web 
Analyzer
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Application 
Tier 

Client Client Client
Client Tier 

Operational 
DB

Operational 
DB

Figure 7.8: Architecture of the Cedavis OLAP Tool

7.4.3 Integration Scenario

As mentioned above, Cedavis presently provides solely a web interface to interact with its
analysis tool. The Web interface is appropriate for viewing and analysing data. However, it is
difficult to integrate the tool with other components to perform advanced operations, because
a tight coupling with applications such as Excel is not available.

Consequently, Cedavis decided to augment its tool with a .Net client based on .Net Remoting
technology. The client should be designed as a single component that allows querying the
database.

Figure 7.9 shows the intended .Net component. It is designed to request queries from the
database via the ‘ICedavisOLAP’ interface. The interface supports five operations: The ‘con-
nect’ and ‘close’ operations perform the connection with Cedavis ‘QueryManager’ components.
The ‘getDimensions’ and ‘getValueType’ operations query the connected processing server for
available dimensions such as, for example, cost unit or time frame as shown in Figure 7.7 as well
as for value types, which describe financial ratios of interest. The final operation ‘olapQuery’
performs queries against the connected Cedavis server. The operation requires arguments that
specify two dimensions as well as a list of value types that should be extracted from the database.
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Figure 7.9: Intended .Net Client Component for the Cedavis OLAP Tool

7.4.4 Analysis Process

This section describes a conflict analysis between the Cedavis tool and the proposed Windows
interface that is based on .Net Remoting. The analysis is performed according to the steps
described in Section 3.3.

Reengineering of the Cedavis Tool

The analysis process requires a UML representation of the existing Cedavis OLAP tool. In this
particular case, we created this representation automatically from Java source code by using the
Java import function of Poseidon UML. The most interesting classes with regard to database
queries are shown in Figure 7.10. The class ‘CedavisClient’ provides the key functionality to
perform database queries on Cedavis processing servers. It consists of operations for connection
initialization, retrieving information on available dimensions and value types as well as for
query execution. These functionalities, however, are provided via helper objects, which can be
retrieved from the ‘CedavisClient’ class.

For the Cedavis tool, ‘CedavisClient’ acts as a client of processing servers. In our scenario
however, we intend to use the client as a kind of ‘middle tier’ to access Cedavis processing
servers from the .Net world. Therefore, we defined a ‘CedavisServer’ component type, which
provides query functionality via the ‘ITServer’ interface type. The interface type provides the
four relevant operations for querying Cedavis processing servers. The four operations were
extracted from the ‘CedavisClient’ class: The ‘init’ operation creates a connection to a Cedavis
processing server. The ‘getValueTypeRepository’ and ‘getDimensionRepository’ return two
objects that can be used to query the respective information about dimensions and value types
as explained above. The ‘getQueryManager’ is used to perform the actual query.

Contrary to the intended .Net client, a query has to be assembled by instantiating a ‘Query’
object and assigning relevant information to it. A setup includes providing information about
the dimensions of the query (‘setXAxis’ and ‘setYAxis’ operations as defined in ‘Query’), value
types of interest (‘setSelectedVTs’), the identification of the query (‘setName’) and the required
granularity of the query result (‘setFilter’). A result consists of a two-dimensional table, which
is created over the two specified dimensions. Thereby, each dimension can be recursively sub-
divided into parts. For example a time span can be defined as an aggregation of subdimensions
such as months, which themselves are constituted of weeks, days, etc. A filter specifies, which
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subdimensions should be summarized and which should be made available as columns and rows
in the result.

In summary, a query consists of the following steps: Firstly, a connection to a Cedavis processing
server has to be established. Secondly, dimensions and value types have to be queried from the
server. Thirdly, a query has to be created and to be executed via the ‘ClientQueryManager’
class. This involves executing the ‘addQuery’ and ‘getQueryResult’ operations of that class. A
detailed process description, which has been created with the help of Cedavis developers, can
be found below.

Extraction Process

From the UML representation of the Cedavis tool including both component type specifications,
a XMI file was exported and translated into a RDF model based on the UML metamodel. The
model was directly transformed into the PICM as defined by the framework’s core models (see
Section 5.1).

Subtype Analysis

To check subtype compatibility between the client and the server component type, the sub-
type relationship between both component types is calculated based on the predicate ’compS’
as defined in Section 6.1. A check (ITServer <: ICedavisOLAP ) results in the following
mismatch:

“ Mismatch between interface types (ITServer <: ICedavisOLAP):
For getValueType exists no corresponding element in the subtype term.
For close exists no corresponding element in the subtype term.
For connect exists no corresponding element in the subtype term.
For olapQuery exists no corresponding element in the subtype term.
For getDimensions exists no corresponding element in the subtype term.”

This is an obvious result, as we defined a subtype relationship of interface types based on name
equivalence. Therefore, we needed to define correspondences between semantically equivalent
operations. We decided to use the following correspondences: close ∼ init, connect ∼ init,
olapquery ∼ getQueryManager, getDimension ∼ getDimensionRepository. This results in
the following slightly condensed conflict between ITServer <: ICedavisOLAP :
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Figure 7.10: Overview Cedavis Server Component
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“ Mismatch between interface types (ITServer <: ICedavisOLAP):
Mismatch between operation types (getValueTypeRepository <: getValueTypeReposi-

tory):
Mismatch between return types: Structural mismatch!

Mismatch between operation types (init <: init):
Arguments are of different length.
Mismatch between return types:
Basic types are not in a subtype relation. (BT (B ”boolean”)) (BT (B ”void”))

Mismatch between operation types (init <: init):
Arguments are of different length.
Mismatch between arguments:
Mismatch between record types (String <: ClientConnection):
Designated Subtype Record (String) has too few elements:
Feature mismatch in Record:
For changeUserPassword exists no corresponding element in the subtype term.
For setUserItem exists no corresponding element in the subtype term.”
For setModellInfo exists no corresponding element in the subtype term
For getModellInfo exists no corresponding element in the subtype term. . . .

Mismatch between operation types (getQueryManager <: getQueryManager)
Arguments are of different length.
Mismatch between return types.
Mismatch between record types (ClientQueryManager <: NetValueType):
Feature mismatch in Record:
For getX exists no corresponding element in the subtype term.. . .

Mismatch between operation types (getDimensionRepository <: getDimensionReposi-
tory):

Mismatch between return types: Structural mismatch!”

Both interface types are incompatible because of a different design. In ‘ICedavisOLAP’ inter-
face, we directly retrieve a list of dimensions, a list of value types, and assemble a query in a
single operation. In the ‘ITServer’ interface, we first retrieve manager objects on which we can
perform the operations. Consequently, the specified correspondences are semantically invalid
and a connector is needed to resolve the indirection layer required by the ‘ITServer’ interface
type.

However, we can check if the operations in ‘ICedavisOLAP’ are supported in the manager
objects by searching for corresponding functions in the utility objects:

connect. The corresponding operation for connect can be found by the ‘connect’ operation in
the ClientConnection class. A type check between both operations (ClientConnection-
.connect <: ICedavisOLAP.connect) succeeds.

close. Again the corresponding operation is the ‘close’ operation of the ‘ClientConnection’
class. A type check between both operations succeeds.

getDimension. The corresponding operation is ‘getDimensionRootGUIDs’ (not shown in the
figure) defined in the ‘ClientDimensionRepository’. A subtype check between both oper-
ations (‘ClientDimensionRepository.getDimensionRootGUIDs <: ICedavisOLAP.getDim-
ension’) fails because the return types of both operations are different. getDimensionRoot-
GUIDs has a string array as return value, whereas getDimension has a list of ‘Dimension’
as return value.

getValueType. The corresponding operation is ‘getValueTypeGUIDs’ (not shown in the fig-
ure) defined in the class ‘ClientValueTypeRepository’. Again the return types are in-
compatible. Operation ‘getValueType’returns a list of ValueType as shown in Figure
7.9, whereas ‘getValueTypeGUIDs’ returns a list of ValueTypeItem. However, this con-
flict is again a name mismatch between the ‘getID’ operation in ‘ValueType’ and the
corresponding operation ‘getGUID’ in ‘ValueTypeItem’.

olapQuery. For this operation no corresponding operation can be found in ‘ClientQueryMan-
ager’because a query is split into two operations ‘addQuery’ and ‘getQueryResult’.
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Behavioral Analysis

A check for behavioral compatibility between the ‘CedavisClient’ component type and the
‘CedavisServer’ component type involves testing for a simulation if the behavior of the ‘Ce-
davisClient’ component type can be simulated by the ‘CedavisServer’ component type. We use
FSP to specify the valid operation orders of both components. These result in two transition
systems that are checked for a simulation relationship. We use the Aldebaran model checker
for the test.

The behavior descriptions are annotated to the components ports (‘CedavisPort’ and ‘Client-
Port’). We omitted the description in the diagrams because of the size of the expressions.

The behavioral description associated with the ‘CedavisServer’ component type is very sim-
ple. It consists of an initial ‘init’ transition and subsequent transitions of the remaining three
actions: Q = (init → Q1), Q1 = (getQueryManager → Q1 | getV alueTypeRepository →
Q1 | getDimensionRepository → Q1). As the operations of both interface types do not corre-
spond to each other, it would not make sense to choose this process for compatibility analysis.
Therefore, we decided to model a process description involving not only the behavior of the
four operations defined in ‘ITServer’ but also of the relevant operations of the manager objects
associated with the operations of the interface type. Furthermore, we simplified the process
description to provide an impression of a ‘direct’ interface without intermediate manager ob-
jects. For example, a query for the dimensions of a Cedavis processing server would require
two calls: The first, ‘getDimensionRepository’, returns a ‘ClientDimensionRepository’ and the
second ‘getDimensionRootGUIDs’ on this object to retrieve the information. We modeled both
operations as a single transition (‘dim’). We also modeled the five operations on the ‘Query’
class that are necessary to pose a query.

We expressed the transition system of the CedavisServer component by a parallel composition,
which describes the valid operation sequences for a communication. The resulting transition
system, which we use for conflict analysis, consists of 38 states and 280 transitions:

// Definition of the CedavisServer Component/
Server=(init→R0),
R0= (ready1→R2 | close→Server),
R2 = (ready → R3| close→Server),
R3 = (query→R3 | close→Server).

// Abstraction for Dimensions
// getDimension = dim
DIM=(init→D1),
D1 =(dim→D2 | close→DIM),
D2 =(dim→D2 | ready1 → D3 | close→DIM),
D3 =(dim→D3 | close → DIM).

// Abstraction for Value Types
// getValueTypes = val
VAL=(init→V1),
V1 =(val→V2 | close→VAL),
V2 =(val→V2 | ready1 → V3 | close→VAL),
V3 =(val→V3 | close → VAL).

// The following five expressions represent the
// operations of the Query class.
// They can be called in any order.

// Abstraction for setName in a Query Object
Name=(ready1→N1|close→Name),
N1=(setN→N2 | close → Name),
N2=(ready → N3 | setN → N2 | close → Name),
N3=(setN → N3 | close → Name).

// Abstraction for the setXAxis operation
// in a Query object
SetX=(ready1→SetX1|close→SetX),
SetX1=(setX→SetX2 | close → SetX),
SetX2=(ready → SetX3 | setX → SetX2

| close → SetX),
SetX3=(setX → SetX3 | close → SetX).

// Abstraction for the setYAxis operation
// in a Query object
SetY=(ready1→SetY1|close→SetY),
SetY1=(setY→SetY2 | close → SetY),
SetY2=(ready → SetY3 | setY → SetY2

| close → SetY),
SetY3=(setY → SetY3 | close → SetY).

// Abstraction for the setFilter operation
// in a Query object
Fil=(ready1→Fil1|close→Fil),
Fil1=(setFil→Fil2 | close → Fil),
Fil2=(ready → Fil3 | setFil → Fil2

| close → Fil),
Fil3=(setFil → Fil3 | close → Fil).

// Abstraction for the setSelectedVTs oper-
ation
// in a Query object
VT=(ready1→VT1|close→VT),
VT1=(selVTs→VT2 | close → VT),
VT2=(ready → VT3 | selVTs → VT2

| close → VT),
VT3=(selVTs → VT3 | close → VT).

// Definition of the transition system for the Cedavis Server Component
‖CedavisServer=(Server‖DIM‖Name‖SetX‖VAL‖SetY‖Fil‖VT).

The protocol expression of the Client involves the operations of the ’ICedavisOLAP’ interface
type:
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CedavisClient = Q0,
Q0 = (init → Q1),
Q1 = (close → Q0

|dim → Q2
|val → Q5),

Q2 = (close → Q0
|dim → Q2
|val → Q3),

Q3 = (close → Q0
|dim, val → Q3
|ready1 → Q4),

Q4 = (close → Q0
|dim, query, val → Q4),

Q5 = (close → Q0
|dim → Q3
|val → Q5).

We already used the same action labels for both process descriptions to compare the processes
for a simulation relationship. A check with the Aldebaran model checker results in the following
conflict:

sequence 1:
initial states
(S1 = 0, S2 = 0)
”init”
(S1 = 1, S2 = 1)
”dim”
(S1 = 2, S2 = 37)
”val”
(S1 = 3, S2 = 3)
”ready1”
(S1 = 4, S2 = 4)
Only CedavisClient.aut can do a ”query”-transition from these states

The identified mismatch results from the fact that the CedavisClient component does not use a
‘Query’ object to initialize a query. It directly assembles the required parameters as attributes
in the call. Therefore, it does not use the five actions for initialization of a query object.
However, this is the only mismatch. If we define a correspondence for the query action of
the CedavisClient, which consists of a sequence of actions for explicit query initialization, e.g.
(query ∼ setN → setX → setY . . . ), we get a simulation relationship between both process
descriptions.

In summary, both components are incompatible regarding their types and their behavior. The
root cause for the mismatch can be determined by the usage of manager objects in the Cedavis-
Server component. A connector has to provide structure and behavior to establish a proper
communication.

Communication Analysis

Both components differ in their communication mechanism. The CedavisClient component uses
the .Net Remoting mechanism whereas the CedavisServer uses normal Java procedure calls.
The taxonomy instance for .Net Remoting is defined in the appendix (Figure C.4), whereas the
instance that describes a Java procedure call can be found in Figure 4.2.

An analysis of the differences between communication mechanisms result a number of conflicts
that can be summarized in two points:

(1) Both mechanisms have different assumptions about the distribution of communication.
Java Procedure Calls (PCs) assume local communication in a single JVM, whereas .Net
Remoting aims at distributed communication.
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(2) Consequently, Java PCs do not support name lookup and do not support the ‘At-Most-
Once’ delivery semantics for distributed calls.

7.5 Summary of Conflict Analysis

This chapter provided several examples for conflict analysis of small and medium-sized integra-
tion problems. The examples were discussed by directly using the framework (ODIS/OBF) for
conflict analysis. A front-end UML tool was only used to generate the UML models. In this
case, a developer directly use the framework to investigate compatibility and substitutability of
components. She can enter the respective analysis predicates, can further investigate the causes
of mismatches and can specify correspondences between names to modify analysis results.

The main point of this chapter was to demonstrate that conflict analysis is an iterative process.
A simple query for deciding the compatibility of two components does not provide enough
information to understand the causes of a conflict. A developer needs to interpret the results.
Iterative queries against particular types and the definition of correspondences provide a better
understanding on conflicts. Furthermore, conflict analysis locates the areas of mismatch so that
the user can concentrate on the right points. Thus, an experienced user would probably use
the ODIS/OBF framework directly instead of interacting via a UML tool with the framework.
It is cumbersome to further analyse compatibility directly from a UML tool as this means
to explicitly select elements for analysis and correspondences to consider in analysis. Each
iteration requires converting the UML model into the framework’s representation, to perform
the analysis and to deliver the results back to UML.

The conflict analysis framework should be customized for a particular application domain to
provide the best possible conflict analysis. Specialized languages and additional rules, which
cover the constraints of a domain provide a higher potential regarding conflict analysis of
that domain. Furthermore, the framework includes at the same time the capability of model
transformation. This can be used for automatic model abstraction, which is necessary to
perform analysis as well as for model generation. In particular domains, it should be possible
to generate parts of connectors, which bridge identified mismatches automatically.

A major problem of conflict analysis concerns UML tools and source code import. If a system
needs to be analysed for which source code is available (which was the case in the examples),
the source code first needs to be imported into a UML tool. The imported elements can then be
used for analysis. However, the way the source code is imported into UML is not standardized
and therefore tool dependent. For this work, we used Poseidon UML to import Java source
code. The tool includes some stereotypes and notes in the integration process that are - in
our opinion - tool dependent. These additional elements require special treatment in the RDF
transformation. It is likely that another tool introduces other elements or uses different mapping
rules.

Regarding connector generation, the identified conflicts are useful because they illuminate in-
tegration mismatches from a platform independent level. A direct comparison of the platform
specific types of two components does not easily show which types are easy and which are
more complicated to integrate. A platform independent view, however, shows the differences
in the light of an independent type system. Furthermore, communication properties describe
communication from a platform independent viewpoint. It is easier to identify conflicts from
the provided taxonomies than from searching in the source code. Consequently, it is simpler
to define connectors based on the platform independent conflicts. We will discuss connector
generation further in the last part of the work.

The examples provided in this section do not give an exhaustive overview of the conflicts that
can be identified by the framework. Further conflict categories concern substitutability of com-
ponents and property checking of component configurations. Substitutability of components is
similar to compatibility checking. However, other predicates are used which often impose further
constraints in comparison to compatibility predicates. In particular, deciding substitutability
demands equivalence checking to decide if a component can be replaced by another. Property
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conflicts describe deadlock and progress properties of a system (component configuration) and
are checked with LTSA.
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Chapter 8

Parameterized Transformations

This chapter gives an example of parameterized model transformation. The text is mainly
taken from a publication on the Middlware Conference [25], which was a joint work with my
colleagues Susanne Busse, Andreas Billig, and Jörn Guy Süß.

8.1 Motivation

The OMG proposes the Model Driven Architecture (MDA) [98] to target fully automated
component generation. Therefore, it distinguishes two kinds of models: platform independent
models (PIM) and platform specific models (PSM). A PSM is normally described in a modeling
language such as UML and corresponds in a one-to-one fashion to an implementation of the
system. A platform independent models (PIM) can be defined without reference to a platform,
and therefore without describing a particular form of technology.

A problem of many approaches for model transformation concerns the lack of customization
of refinement transformations. A transformation should be applied according to specific user
requirements. For example, a platform independent component should be transformed into
an EntityBean or a SessionBean according to particular requirements. Unfortunately, existing
software development tools (such as Rose, ArgoUML, etc.) do not support platform independent
models. They often provide source code mappings only for one or a small number of technologies:
These mappings are defined as one-to-one relationships between UML classes and source code
classes. As a consequence, it is rarely possible to customize these mappings according to user
requirements.

As a solution to the problem, we propose to realize PIM-to-PSM refinements with TRIPLE
rules. The concentration of PIM-to-PSM refinements allows handling transformations aimed
for several platforms such as Enterprise JavaBeans, CORBA, .Net, COM, etc. Furthermore,
TRIPLE rules are customizable, which allows parameterization of PIM-to-PSM transforma-
tions. We parameterize the rules with features to describe the situation when the rule should
be applied. Thus, a particular transformation is selected based on the requirements of a specific
situation.

This chapter first introduces the requirements for parameterized model transformation (Section
8.2). Then, Section 8.3 describes the different parts of an example, consisting of a platform
independent model, a feature model describing customization of EJB mappings, and a platform
specific EJB model. Section 8.4 describes two customized transformations of the PIM into EJB
PSMs. Section 8.5 discusses related work.
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8.2 Parameterized Model Transformation

Different from common practice we do not map a PIM directly into source code. Instead, we
map the PIM into a PSM expressed in UML. The appropriate mapping is chosen according to
selected requirements. A PIM-PSM transformation is based on three elements:

• the platform independent model that should be mapped. In our context this will be a
PIM represented as an instance of the framework’s metamodel. In particular, elements
like components are annotated with further properties that can be used to customize a
model transformation to the specific situation.

• a feature model instance describing requirements that should be considered in the trans-
formation. It is used to choosing an appropriate mapping. Thus, feature models allow
the customization of a model transformation.

• mappings that define rules for possible transformations. Mappings formally specify design
knowledge that is used when realizing a system with a specific middleware technology.
They enable the automatization of the transformation process.

A PIM-PSM transformation consists of three steps: First, the developer designs a system
independent from a platform technology. Second, he specifies his requirements for a specific
PIM-to-PSM transformation by choosing features from the feature model. This selection results
in a Feature Model Instance (FI), which does not contain any variation points. Third, the
framework transforms the PIM according to the specified requirements.

Formally, the basis for a parameterized model transformation is a set of Triple transformation
rules (see Section 3.1.5). Each rule takes the PIM and a Feature Model Instance model as input
arguments and creates a PSM which corresponds to the given requirements. In our framework
all participating models are defined as RDF models: A platform independent component model
is defined in Section 5.1, a feature model is defined in Section 3.1.3, and a platform specific
model to describe Enterprise JavaBeans is described in this section. On this basis, a mapping
can be defined as a TRIPLE-mapping with parameterized contexts:

∀PIM, FI @pim2psmMapping(PIM,FI){
//Transformation rule1
∀ < . . . necessaryV ariables . . . >

< . . . elements . . . > @PIM ∧
< . . . constraint . . . > @FI

−→
< . . . PSMelements . . . >

//Transformation rule2
. . .

8.3 Example

Our running example comes from federated information systems and was already described
in Section 7.3. We describe two possible PIM-to-PSM transformations from the platform in-
dependent model to EJB specific models regarding specific requirements on distribution and
optimization.

8.3.1 Platform Independent Model

Figure 8.1 shows the two components that are part of a mediator. Althought the example
is described in Section 7.3, we repeat the description for an overview: If a client queries a
mediator, the mediator first calculates which data sources are capable of answering the query
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or part of it by using the Planner component. Then, it queries these sources, integrates the
answers and delivers the result back to the client. The Planner calculates its plans based on
specified interfaces of the data sources. These interface descriptions are called query capabilities
(QC). A query capability consists of parameters that a data source can process as well as of
result attributes returned by the data source. In Figure 8.1, the QCManager component stores
the query capabilities (QC) of managed data sources. The Planner uses QC, obtained by the
QCManager, to decide which data sources have to be queried. These query plans are provided
to the execution component of a mediator.

Contrary to the former representation of the example, the figure also shows some annotations
that are used for the transformation later on. These annotations are properties describing
a component’s role regarding its interoperation with another component. For example, the
Planner is a client using the interface of the QCManager.

<<ComponentType>> 
Planner

<<InterfaceType>> 
IQueryCapabilities 

_____________________ 
getQCSet() : QCSet

<<ComponentType>> 
QCManager

<<requires>>
<<provides>>

QueryCapabilities 
_____________________________________ 
getParameter(name: String) : Parameter 
getResultAttribute(name: String) : 
ResultAttribute 
getParameters() : Param 
getResultAttributes() : Result

<<PortType>> 
Planner 

PortType

<<declares>> <<PortType>> 
QCManager 
PortType1<<declares>>

<<Mandatory>> 
fmSessionBean

<<Mandatory>> 
fmJavaPC

<<comProps>><<comProps>>

JavaBean SessionBean

Client Server

<<List>> 
ListURL 

URL 
_____________________ 
location:String 
_____________________ 

<<Set>> 
Param 

<<Set>> 
Result 

ResultAttribute

Parameter 
<<Set>> 
QCSet 

<<Mandatory>> 
Transaction

<<Mandatory>> 
Security

<<subFeatures>> <<subFeatures>>

Data

Query

Figure 8.1: Example - PIM Component Type View

8.3.2 A Feature Model for Optimization of EJB Transformations

We use feature models to manage transformation variants. Figures 8.5 and 8.6 show instances
of the feature model shown in Figure 8.2. The EJB feature model contains two points of
variation: Components can either be co-located or distributed and communication can be
further optimized for a minimal number of procedure calls or for an optimization of transmitted
data.1 A feature model instance (FI) represents the features chosen by the developer and is
the input for the PIM-PSM transformation. For example, Figure 8.5 contains a feature model
instance that describes a transformation in which both components are co-located and are
optimized for direct data transmission.

The developer chooses the features from the feature model that should be considered in a
specific transformation. We will examine a local PSM transformation optimized for the amount
of transmitted data, as well as a distributed PSM transformation optimized for the amount of
remote procedure calls. Both are realized with the EJB platform.

1In a local setting, data structures such as QueryCapabilities or Parameters can be accessed directly by the
planner component, as there is no communication overhead as for a remote communication.
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EJB PSM 
Architecture

Distribution Performance

Local Remote
Optimized 

procedure calls
Optimized 

transmitted data

Figure 8.2: Feature diagram for EJB-based architectures

8.3.3 A Platform Specific Model for EJB

EJB components are described according to the EJB Profile for UML [58]. They mainly consist
of a home interface, a remote interface and an implementation class. We use a slightly adapted
form of the profile because it doesn’t support EJB2.x local interfaces. Figure 8.3 shows a
simplified specification of the EJB model.

EJBElement

EntityBean SessionBean EJBInterface

Home

EJBSessionHome
Interface

EJBLocalHome 
Interface

Business

EJBRemote 
Interface

EJBLocal 
Interface

EJBImplementation

EJBrealizes
Home

EJBrealizes
Remote

EJBimplements

instantiate

Figure 8.3: The EJB Component Model

It is important to notice that the EJB specification and the Profile do not model connectors.
Thus, we have to translate connectors from the platform independent level into EJB Compo-
nents. Figure 8.4 shows the corresponding PSM metamodel for EJB expressed in TRIPLE.

Class [
typeOf -> { EJBElement, EJBImplementation, EJBEntityBean, SessionBean,

Home, Business, EJBSessionHomeInterface, EJBLocalHomeInterface,
EJBRemoteInterface, EJBLocalInterface } ].

EJBElement [
subClass -> EntityBean;
subClass -> SessionBean ].

EJBInterface [
subClass -> Home [

subClass -> EJBSessionHomeInterface;
subClass -> EJBLocalHomeInterface ];

subClass -> Business [
subClass -> EJBRemoteInterface;
subClass -> EJBLocalInterface ]

].

Property [ typeOf -> { EJBRealizesHome, EJBRealizesRemote, EJBImplements,
instantiate } ].

EJBRealizesHome [ domain -> EJBImplementation; range -> Home ].
EJBRealizesRemote [ domain -> EJBImplementation; range -> Business ].
EJBimplements [ domain -> EJBElement; range -> EJBImplementation ].
instantiate [ domain -> Home; range -> Business ].

Figure 8.4: Platform Specific Component Model for EJB expressed in TRIPLE
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<<EJBSessionBean>> 
Planner

<<EJBRemoteInterface>> 
PlannerRemote 

__________ 
<<EJBRemoteMethod>> execute() 
<<EJBRemoteMethod>> plan()

<<EJBSessionHomeInterface>> 
PlannerHome 
__________ 

<<EJBCreateMethod>> create()

<<instantiate>>

<<EJBImplementation>> 
PlannerBean

<<EJBRealizeRemote>>

<<EJBRealizeHome>>

<<EJBEntityBean>> 
QueryCapabilities

<<EJBLocalEntityHomeInterface>> 
QueryCapabilitesHome 

__________ 
<<EJBCreateMethod>> create() 
<<EJBFinderMethod>>findQCSet():Enumeration

<<EJBEntityBean>> 
Parameter

<<EJBEntityBean>> 
ResultAttribute

<<EJBLocalInterface>> 
QueryCapabilitiesRemote 

__________ 
<<EJBLocalMethod>> getResultAttribute() 

<<EJBLocalMethod>>getParameter()  . . .

EJB PSM 
Architecture

Distribution Performance

Local
Optimized 

transmitted data

a) Platform Independent Component Model b) Feature Model Instance

<<ComponentType>> 
Planner

<<Interface>> 
IQueryCapabilities 

_____________________ 
_____________________ 
getQCSet() : Set(QC)

<<ComponentType>> 
QCManager

Query 
Capabilities 

Parameter ResultAttribute

* 1..*Client

Server

Data

Query

c) Platform Specific Component Model

Figure 8.5: Example - PIM-PSM Transformation for a Local Configuration

8.4 PIM-PSM Transformation

Starting from the PIM of a mediator and the feature model for EJB architectures we show
two possible transformations to the EJB PSM. In our example the transformation is based on
patterns [12; 87] that were developed to optimize EJB communication and performance. We
will discuss a local and a distributed configuration of the mediator components.

Local Configuration Scenario

This transformation is done according to the features that were chosen by the developer: both
components are co-located and optimized for the amount of transmitted data. Using the pat-
terns in [12; 87] the transformation results in the PSCM shown in Figure 8.5. The Planner
component as a client in this example is mapped into a Session Bean because it is used as a
business logic component, e.g. it provides computations. The QCManager, which includes the
QC data structure (determined by the relationship to an element with a Data annotation), is
mapped into three EntityBeans, as it presents persistent data. We don’t need an extra QC-
Manager Bean as this component would introduce another layer of indirection. Instead, we
directly access the persistence layer. This leads to optimized data transfer, as we don’t have to
collect all data of the persistence layer and send it to the Planner component. Instead, data is
returned in the form of a set of references to locally available QC EntityBeans. The operation
to obtain all QC is renamed to findQCSet as described in the profile. If the Planner needs
parameters, it issues calls to obtain the required information.

In order to save space, only the Planner component in Figure 8.5 shows all parts of an EJB
according to the profile. Otherwise, we only show interesting parts of a bean and represent
other elements as small boxes.
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EJB PSM 
Architecture

Distribution Performance

Remote Optimized 
procedure calls

a) Platform Independent Component Model b) Feature Model Instance

<<ComponentType>> 
Planner

<<Interface>> 
IQueryCapabilities 

<<ComponentType>> 
QCManager

Query 
Capabilities 

Parameter ResultAttribute

* 1..*Client

Server

Data

c) Platform Specific  
     Component Model

<<EJBSessionBean>> 
QCManager

<<EJBSessionHomeInterface>> 
QCManagerHome 

__________ 
<<EJBCreateMethod>> create()

<<EJBRemoteInterface>> 
QCManagerRemote 

__________ 
<<EJBRemoteMethod>>getQCSet(): Enumerate

<<EJBEntityBean>> 
Parameter

<<EJBEntityBean>> 
ResultAttribute

<<EJBEntityBean>> 
QueryCapabilities

<<EJBSessionBean>> 
Planner

Figure 8.6: Example - PIM-PSM Transformation for a Distributed Configuration

Distributed Configuration Scenario

The distributed transformation optimizes remote procedure calls between distributed Plan-
ner components and a single QCManager component. Again, the transformation is based on
the chosen features from the feature model. Regarding the EJB platform, several patterns
for performance optimization were developed. We will use the Data Transfer Object pattern
(DTO)[12; 87] and the Data Transfer Object Factory pattern (DTOF)[87] for the PIM-to-PSM
transformation in this example.

Figure 8.6 shows the mapping result. The QCManager component is mapped into a stateless
SessionBean following the DTOF pattern that provides a facade to the persistence layer con-
sisting of three EntityBeans. The QCManager locally assembles Data Transfer Objects for each
query by calling the Entity Beans. Different from the local mapping these objects are copies of
persistent data. Thus, a query of the Planner component results in a single remote procedure
call.

Parameterized Transformations with TRIPLE

The specification of the mappings for our transformation2 described before consists of two parts:
the first one defines the general mapping from PIM elements to EJB, the second one defines
the mapping depending on the possible features.

Figure 8.7 shows part of the general mapping definition from PIM models to SessionBeans
or EntityBeans. The arguments of the bean mapping are the resource variables X, PIM, and

2The following rules, shown in figures 8.7 and 8.8, precisely cover the available choices of the feature model
shown in Figure 8.2.
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Kind. PIM is the context of the mapping source, X is the element from that source which
shall be mapped, and Kind states whether a SessionBean or an EntityBean shall be the result.
The mapping definition consists of one rule which expresses the following: If an element with
an appropriate provides InterfaceType can be derived within the source context (lower part of
the rule) then a Bean and the remote/home interfaces corresponding to the EJB PSM will be
generated (upper part (head) of the rule). The instantiation of the type-variables (B,R, H) in
the target structure depends on the Kind parameter, which determines whether an EntityBean
or an SessionBean should be generated. The mapping also copies the operations of the ‘provide’
interfaces into the remote interface of the Bean.

... // namespaces and abbreviations
// This is a transformation between the platform independent
// model and the EJB model.
// General mapping to create a bean.
forall X,PIM,Kind @ beanMapping(X,PIM,Kind) {

forall B,R,H,Y,TF,P,ZBEAN,ZREMOTE,ZHOME,ns,ns2,PT,N,NHOME,O
ns:X[sys:directType -> B; // create an EJB of type B

ejb:name->N;
ejb:EJBimplements-> ns:ZBEAN[

sys:directType->ejb:EJBImplementation;
ejb:EJBRealizesRemote->ns:ZREMOTE[

sys:directType->R;
ejb:operations->O; // copy operations in the
ejb:name->P]; // remote interface

ejb:EJBRealizesHome->ns:ZHOME [
sys:directType->H;
ejb:name->NHOME;
ejb:instantiate->ns:ZREMOTE

] ] ] <-
(ns:X[sys:directType->core:ComponentType;

core:name->N;
core:provides->PT[sys:directType->core:PortType;

core:declares->ns2:Y[core:name->P;
core:operations->O]]]@@PIM and

cond_(Kind=’Entity’,( // variables of an ’EntityBean’
B=ejb:EntityBean,
R=ejb:EJBLocalInterface,
H=ejb:EJBLocalHomeInterface),true

) and
cond_(Kind=’Session’,( // variables of an ’SessionBean’

B=ejb:SessionBean,
R=ejb:EJBRemoteInterface,
H=ejb:EJBSessionHomeInterface),true

) and
concat(ZBEAN,’Bean’,X) and // create literals
concat(ZREMOTE,’Remote’,Y) and
concat(ZHOME,’Home’,X),
concat(NHOME,N,’Home’)

).
}

Figure 8.7: Example - A General Bean Mapping Rule

Figure 8.8 shows the specific PIM-to-PSM-mapping depending on possible feature model in-
stances. Within the utility mapping util two specific FIs are considered: the distributed and the
local configuration variant. The mapping pim2psmMapping has two parameters: the context
of the PIM source PIM and the context of the feature instance FI. The body of the mapping
contains the mapping rules according to the variants of transformation explained above:

• Any client element is mapped to a session bean.

• A server will become a session bean if the variant of remote distribution is chosen.

• All aggregated elements of a data element are mapped to entity beans.

• A data element x also become an entity bean. If the variant of local data is chosen then
an EJB conform conversion of any Query-annotated operation which uses the interface
of x is placed within the home interface of the generated bean.
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8.5 Related Work

Several proposals for model transformation have been recently published in response to the
OMG’s RFP. These proposals can be classified regarding several categories such as how they
define transformation rules or rule application strategies. Czarnecki and Helsen [42] provide
a classification of model transformation approaches. According to this classification, our ap-
proach, which is based on TRIPLE, is a declarative relational model-to-model approach. Other
model transformation languages are based directly on UML. [133] for example defines an ex-
tension of the Object Constraint Language OCL using database manipulation operations of
SQL. We use an existing language - TRIPLE - to define mappings. Thus, the model transfor-
mation is ‘automatically’ done by the inference engine. It allows declaring transformations in
a very flexible and compact syntax, similar to F-Logic.3 Additionally, the TRIPLE concept of
parameterized contexts allows a modularization of rule sets and enables the reuse of mappings
by parameterized mapping specifications.

Additionally, our approach uses feature model instances, which describe mapping variants to
parameterize mappings. Feature models are important in the context of product line engineering
and domain analysis ([39; 41]). They are used to describe variants within a system family and
to generate applications as instances of this system family from the application’s specification.

Mostly, the generative approach is used on the implementation level. [15] defines the Ko-
brA methodology for a component-based engineering with UML very similar to our approach.
KobrA also contains the specification of variable parts of a system and feature models called de-
cision models. But these concepts are only discussed in the context of product line engineering.
We use them to support the general development process wherein alternative realizations must
be chosen according to the requirements. Additionally, [15] discusses no explicit specification
of relationships between decisions and realizing system variants so that the transformation has
to be done manually.

3As described in [57] a great advantage is the ability to express the model and instance level in a uniform
way and to define multiple targets in a single rule.
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... // namespaces and abbreviations
// helper predicates for feature model instance
forall FI @ util(FI) {

forall V,X,Y,Z remoteCall <-
X[sys:directType->core:MandatoryFeature;

core:name->’Distribution’; core:subFeatures->Y[
sys:directType->core:MandatoryFeature;
core:name->’Remote’]]@@FI and

V[sys:directType->core:MandatoryFeature;
core:name->’Performance’; core:subFeatures->Z[

sys:directType->core:MandatoryFeature;
core:name->’OptimizedProcedureCall’]]@@FI.

forall V,X,Y,Z localCall <-
X[sys:directType->core:MandatoryFeature;

core:name->’Distribution’; core:subFeatures->Y[
sys:directType->core:MandatoryFeature;
core:name->’Local’]]@@FI and

V[sys:directType->core:MandatoryFeature;
core:name->’Performance’; core:subFeatures->Z[

sys:directType->core:MandatoryFeature;
core:name->’OptimizedTransmittedData’]]@@FI.

}

forall fi isRemoteCall(fi) <- remoteCall@util(fi).
forall fi isLocalCall(fi) <- localCall@util(fi).

forall PIM,FI @ pim2psmMapping(PIM,FI) {

// Map Operations
forall S,P,O

S[sys:directType->ejb:Operation;ejb:name->?name]
<-

S[sys:directType->core:Operation;core:name->?name]@@PIM.
// Map other types
...

// Create Session Beans for ComponentTypes annotated with ’Client’
forall X,S,P,O,n,PRO

S[P->O]
<-

n:X[sys:directType->core:ComponentType;
core:properties->PRO[core:name->’Client’]]@@PIM and

S[P->O]@beanMapping(X,PIM,’Session’).

// Create Session Beans for ComponentTypes
// that are annotated as ’Server’ if the
// feature instance describes a remote scenario
forall X,S,P,O,n,PRO

S[P->O]
<-

n:X[sys:directType->core:ComponentType;
core:properties->PRO[core:name->’Server’]]@@PIM and

S[P->O]@beanMapping(X,PIM,’Session’) and
isRemoteCall(FI).

// Create EntityBeans for Instances and
// their components that are market as Data.
forall S,P,O,X,Y,L,n,m,PRO

S[P->O]
<-

m:X[core:properties->PRO[core:name->’Data’];core:elements->L[core:hasType->n:Y]]@@PIM and
S[P->O]@beanMappingRc(Y,PIM,’Entity’).

forall S,P,O,X,Y,L,n,m,PRO
S[P->O]

<-
m:X[core:properties->PRO[core:name->’Data’];core:elements->L[core:hasType->n:Y]]@@PIM and
S[P->O]@beanMappingRc(X,PIM,’Entity’).

// Create Operations as part of the Home interface
// of EntityBeans marked as ’Data’, if the
// operation is annotated with ’Query’ in a local scenario.
forall S,P,O,X,Y,L,n,m,PRO1,PRO2

S[P->O]
<-

m:Y[core:properties->PRO1[core:name->’Query’]]@@PIM and
n:X[core:properties->PRO2[core:name->’Data’]]@@PIM and
isLocalCall(FI) and S[P->O]@beanMappingQuery(X,PIM).

...
}

Figure 8.8: Example - Specific PIM-PSM Transformation Rules
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Chapter 9

Conclusion

This thesis presented a Framework for Component Conflict Analysis and Composition that
serves as a basis for component integration. The framework fulfils the required objectives for
component integration and is placed in a technological context that provides several advan-
tages compared to other approaches: It allows analysing components with type, behavior and
communication properties, it is adaptable for application domains and for additional kinds of
analysis and it integrates model transformation capabilities. In this section, we will summa-
rize the main objectives for component integration, the architecture of the framework and the
resulting advantages. Finally, we give an outlook for future research.

9.1 Objectives for Component Integration

In the work we divided component integration into two steps: Conflict Analysis and Connector
Generation. The work primarily aimed at the first step and focused on relationships to decide
compatibility and substitutability of components.

The work focused on the integration of small to medium-sized components that originate in
object-oriented middleware technologies such as CORBA, COM, .NET, Jini, etc. As component
specifications of these technologies differ in form, complexity and content, a canonical repre-
sentation was required that represented the least common denominator of components in these
technologies. The presented framework supports such a platform independent representation
by defining several models that represent the core concepts of components: structure, behavior
and communication properties.

As components are normally specified in terms of concrete technologies, they cannot be di-
rectly compared unless they are translated into the platform independent component models
provided by the framework. The framework principally supports model abstractions, which
demerge platform specific details from component descriptions and create a canonical represen-
tation of those components. In this thesis, however, we have concentrated the more complex
refinement transformation that transforms platform independent models into platform specific
models based on parameters which modify the results according to user requirements.

Based on the platform independent component model, we provided conflict analysis. We aimed
to check for as many conflict categories as possible, because the more conflicts the analysis
identifies, the more accurate the cost assessment of an integration effort will be. We proposed
two complex relationships for conflict analysis: A compatibility relationship checks if two com-
ponents can interact, whereas a substitutability relationship decides if two components can
be exchanged. Both relationships are composed of several other relationships that cover the
specification categories of components. These include subtype, simulation and bisimulation
relationships to cover essential conflict categories. It further introduced a new relationship that
evaluates the compliance of communication requirements based on the exposed features of two
components.
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We proposed two taxonomies to describe communication requirements as well as technology-
related metadata. The first taxonomy is a modified version of the connector taxonomy pro-
posed by Medvidovic/Mehta. We used this taxonomy, because it provides the most fine grained
properties available today. We modified the original taxonomy to describe communication in
currently available middleware systems and to express customizable properties of those com-
munication mechanisms. The second taxonomy covers technology-related properties.

A Property-based conflict analysis of components’ communication requirements is often under-
estimated at present. Only a few approaches cover property-based description and analysis.
Examples are the connector taxonomy of Mehta/Medvidovic or architectural styles proposed
by Allan/Shaw. However, a property-based analysis provides several advantages: Properties
can be used to transform conceptual models into specific representation covering particular
communication requirements and they allow gaining more information regarding incompletely
specified components.

Components are rarely fully specified in current technologies. Some facts are stated implicitly
or not at all. For example, a major problem of present middleware technologies is that they
ignore the need for a behavioral specification. Most popular technologies cannot associate this
kind of information with their component definitions. Furthermore, communication require-
ments are often not explicitly stated in middleware technologies. This is sufficient as in the
context of one technology communication must be based on predefined mechanisms for which
the technology transparently takes care of. However, when dealing with more than one technol-
ogy, with different communication paradigms, or with adaptable communication paradigms, it
is likely that the requirements of components regarding communication will vary. Consequently,
explicit knowledge about communication properties is required.

We further aimed to support model refinement. Model refinement covers component transfor-
mation from a platform independent level to a platform specific level. It is required to support
the second step of integration: connector generation. We proposed to use a property-based
transformation that is based on feature models to describe user requirements.

A parameterized transformation paves the way for design reuse. It becomes possible to reuse a
conceptual model for different technologies. One can create a EJB model or a CORBA model or
a model for another language from a single conceptual model. Regarding communication prop-
erties, different kinds of communication can be generated for a conceptual model. For example,
one can create an EJB component accepting synchronous communication (e.g. a SessionBean)
or a component accepting asynchronous communication (e.g. a MessageBean) from a single
conceptual component. Based on properties in a feature model, model transformation can also
be parameterized in a more flexible way. In [25], we demonstrated that model transformations
can be parameterized based on J2EE patterns.

As a last objective, we aimed to support a seamless integration with design tools used in software
development. As UML is the de facto modeling language, we support conflict analysis from
within UML tools.

9.2 Architecture of the Framework

The objective of this thesis concerns component conflict analysis in the context of a UML-
based software development process. As no technology is able to cover all objectives by itself,
we propose a technology combination to satisfy the objectives: We use UML as a front-end
modeling language for the end-user. We use concepts of Architecture Description Languages
to compose the platform independent component models on which conflict analysis is based.
As a formalization of those models, we chose RDF, as it is a standardized language that can
be easily used in several application domains. To cope with models on different abstraction
levels, we orientated on the Model-Driven Architecture of the OMG and implemented model
transformation on TRIPLE. TRIPLE, which is a ‘RDF-aware’ extension of F-Logic provides
reasoning support and at the same time allows describing parameterized mappings.
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The architecture of the framework was divided into five parts: The first part consists of a
UML modeling tool that is able to import and export XMI. The second part transforms models
between XMI and RDF. The third part, the Ontology-Based Framework, realizes component
analysis and transformations between platform independent and platform specific models. The
fourth part consists of several external tools that provide conflict analysis capabilities such as
type checking and model checking. The framework is augmented with a component repository,
which stores all kinds of component specification regardless of whether they are formalized as
XMI, RDF, artifacts or represent PIMs or PSMs.

Technically the framework is based on the ODIS repository, which itself is based on a deductive
knowledge base (XSB). The models and their associated rules that are used within the frame-
work are realized based on TRIPLE. Type and behavioral conflicts are checked with external
tools such as Haskell, LTSA, FDR, fc2tools, or Aldebaran. We used these tools because they
provide more sophisticated analysis than was possible with a deductive knowledge base.

9.3 Summary of Contributions

The framework explicitly aims at conflict analysis in several areas. It supports type and behav-
ior checks and additionally communication requirements of components. Consequently, a far
better overview concerning the interoperability of components can be achieved than by using
analysis tools that deal with only one or two issues. As a result, an estimation of integration
costs becomes more accurate and simpler to calculate. Furthermore, a user can customize the
framework with additional analysis methods or with different specification languages.

At the same time, the framework represents a ‘minimal’ model-driven development system.
It supports abstraction and refinement operations on models and handles models on different
abstraction levels. As mentioned above the refinement of models can be parameterized and
therefore adapted to satisfy user requirements. This is contrary to one-to-one transformations
that are usually provided by development tools.

The framework further supports a UML-based model driven development and integrates rea-
soning and transformation capabilities to ‘existing’ modeling tools. The framework uses RDF
to represent component specifications. UML models can be transformed into this internal rep-
resentation (RDF) and vice versa. Consequently, we are able to reason on UML models, which
is not directly supported by UML, and further to attach arbitrary background information on
UML elements and to interpret the background information as RDF statements.

9.4 Connector Generation

The framework provides the foundation for the second step of integration: connector generation.
Connector generation depends on the results of the analysis process. We propose to start
connector generation on the platform independent level and then to refine the connector for
particular technologies. This process is briefly described in the following steps. The first two of
these steps require user interaction. The fourth step can be customized for certain requirements.

(1) For each structural conflict a correspondence relationship needs to be specified manually
if possible. If correspondences cannot bridge identified incompatibilities in a reasonable
way, connector generation stops at this or at the next step. We distinguish between
mismatched operation and parameter names and mismatched types. A correspondence
is a relationship between operations of the client’s required interface and the server’s
provided interface. In case of a type mismatch an additional conversion function needs to
be defined manually (and implemented).

(2) For behavioral conflicts (protocol conflicts), a simulation conflict results if a server can-
not react on the issued operations of a client. A common cause relates to mismatched
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operation granularity. For example, the client issues an operation co1, but the server
requires an explicit initialization so1 before the request of the client can be handled by
another operation so2. In this case the connector needs to implement the correspondence
co1 ∼ (so1 → so2).

(3) Based on this information a platform independent connector can be automatically speci-
fied. We propose to use two kinds of diagrams to define a connector: a structural diagram
and a state diagram. The structural diagram consists of the internal operation needed to
map diverging types as well as of the required operations of the client. The behavioral
diagram specifies the mediation of the required operation orders of both components. We
can derive information for a connector’s behavior by utilizing the algorithm proposed by
Inverardi [65]. She defines an algorithm that handles behavioral mismatches between sev-
eral components by defining a connector that resolves these mismatches. The resulting
state diagram consists of transitions where the events correspond to the operations issued
by the client and the actions are either internal type transformations or called operations
of the server component.

(4) Based on the platform independent description, we transform the connector into platform
specific representations. The specified communication properties are important in this
step as they determine the structure and additional behavior of the resulting platform
specific connector. For example, if the property description requires a distributed con-
nector and a name server lookup, the connector can be mapped according to the proxy
pattern with an additional operation call to a name server.

9.5 Future Work

We plan to augment the framework with additional analysis capabilities and to enhance the
concept of parameterized transformation.

At present, matching algorithms for web services are developed that use ‘semantic’ matching
to improve the identification of suitable services. These algorithms are used to search for
components that are the most suitable compared to a given query. The ‘semantic’ matching
is often based on ontologies that are used for calculations. At present, a semantic matching
service is developed for the ADAM repository. This enables framework users to query for
suitable components that are stored in the ADAM repository based on metadata attached to
the components. The prototype of the searching algorithm uses a taxonomy, which describes
the technological requirements of a component. Further, the functionality of a component is
described. These metadata can be used for a ranking of suitable components. An advantage of
the framework compared to solutions for web services concerns the additional checking of types,
behavior and communication properties that can be calculated at the same time. Furthermore,
the framework supports different technologies, from which the web service technology is only
one possible incarnation. Consequently, we can search the database for components origin in
different technologies, which are specified on different abstraction levels.

We further plan to enhance parameterized transformation. We first exploit the defined com-
munication taxonomies for parameterized transformation. The customizable properties of a
communication mechanisms can naturally be used to describe mapping variations of platform
independent component descriptions for a particular technology. At the moment, parameterized
transformations for the Enterprise JavaBeans technology, which are based on the customizable
properties of the communication mechanisms defined for that technology, are being researched.

At the same time, we plan to provide mappings for J2EE patterns defined in the EJB com-
munity. The patterns represent optimized solutions for particular use cases. We exploit the
existing patterns in transformations so that a platform independent model can be optimized for
a particular use case. Contrary to the approach we already proposed at the Middleware 2004
conference, we encode the patterns and the available variations of the patterns as feature models
and do not create a feature model, which describes the applicability and the the consequences
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for a number of patterns. This solution, which was presented at the middleware conference, is
more complicated to extend than the new concept. However, we encode information regarding
the applicability and the consequences as feature attributes of the feature models describing
the patterns. This allows for an efficient search for suitable patterns.
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Appendix A

Acronyms

Acronyms

ADAM Analytical-Data-on-Artifacts-and-Models

ADL Architecture Description Language

CBSE Component Based Software Engineering

COTS Commercials Off-the-Shelf

DNS Domain Name Service

EJB Enterprise JavaBean

EVE Evolution and Validation Environment

FI Feature Model Instance

FM Feature Model

IC Integrated Circuit

LIS Legacy Information System

MDA Model Driven Architecture

MDD Model-Driven Development

MOF Meta-Object Facility

OBF Ontology-Based Framework for component analysis and transformation

ODIS Ontology-Based Domain Repository

OLAP Online Analytical Processing

OMG Object Management Group

PIM Platform Independent Model

PICM Platform Independent Component Model

PSM Platform Specific Model

RDF Resource Description Framework

RDFS RDF Schema
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152 Acronyms

RM-ODP Reference Model of Open Distributed Processing

UI User Interface

UML The Unified Modeling Language

URI Uniform Resource Identificator

W3C World Wide Web Consortium

XMI XML Metadata Interchange



Appendix B

UML Profile for the
Ontology-Based Framework

This section defines a UML representation of the framework’s models. The representation is
formalized as a profile that basically provides an one-to-one mapping between the framework’s
elements and UML model elements. Most of the framework models are represented based on
UML class diagrams, where the standard elements are annotated by stereotypes. The only
exception is the framework’s definition of state diagrams which is based on UML elements
defined for use within state diagrams.

The profile definition orientates on UML 1.4.21. However, it should be valid within most UML
1.x versions. The profile does not define a stereotype hierarchy. It differs from the OMG
recommendation as it provides no well-formedness rules expressed in OCL as we perceive the
profile as a representation of the framework’s models, we check validity by integrity rules defined
on the framework’s models.

In this section, we first give an overview of the diagram types together with a listing of the
defined stereotypes and then provide a description of each stereotype.

B.1 Stereotype Summary

The following profile defines four diagram types: a component type diagram, a run-time configuration

diagram, a behavior diagram, and a property diagram:

Component Type Diagram

1formal/04-07-02
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Name BaseClass Stereotype

ComponentType Class �ComponentType�

ConnectorType Class �ConnectorType�

InterfaceType Interface �InterfaceType�

PortType Class �PortType�

Record Class �Record�

List Class �List�

requires Dependency �requires�

provides Dependency �provides�

supertype Dependency �supertype�

extends Dependency �extends�

declares Dependency �declare�

refines Dependency �refines�

comProps Dependency �comProps�

techProps Dependency �techProps�

Configuration Diagram

A configuration diagram represents system configurations.

Name BaseClass Stereotype

Connector Class �Connector�

Component Class �Component�

Interface Interface �Interface�

Port Class �Port�

binds Association �binds�

requiredPort Dependency �requiredPort�

providedPort Dependency �providedPort�

represents Dependency �represents�

Behavior State Diagram

Name BaseClass Stereotype

State State �State�

Action Transition �Action�

Property Diagram

The property diagram defined a feature model for annotation of communication properties.

Name BaseClass Stereotype

MandatoryFeature Class �Mandatory�

OptionalFeature Class �Optional�

Xor Class �Xor�

Or Class �Or�

FeatureAttribute Class �FeatureAttribute�

subFeatures Dependency �subFeatures�

feAttributes Dependency �feAttributes�

excludes Dependency �f excludes�

requires Dependency �f requires�

These diagrams are placed within a particular model and a top level package:

Name BaseClass Stereotype

OBFStructuralModel Model �OBF SModel�

OBFStructuralPackage Package �OBF SPackage�
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B.2 Elements of the Component Type Diagram

In the following, we provide descriptions for each stereotype. We do not specify well-formedness con-

straints as mentioned above.

Element: ComponentType

Stereotype Base Class Description

�ComponentType� Class This element represents a component type. Its type
is calculated by aggregating the associated requires
& provides interface types, which are indirectly re-
ferred to via port types. The component body is
not represented by this element. It is not allowed
to place any UML features in this element. Features
are described by interface types associated with the
component type.

The notation used for a component specification is a class stereotyped as �ComponentType�. Only

one compartment of a class is needed as it is not allowed to add any feature (operations or attributes).

Tagged Values

The following tagged values can be associated with a component type.

Tagged Value Description

ProtocolExpression A protocol expression describes the behavior of a component type. This
expression defines the behavior of the whole component and is not used
for conflict analysis. A protocol expression can also be defined in a
comment in the following form: PAE(Language)=<expression>.

Language Language of the protocol expression. It is required if a protocol expres-
sion is defined.

property This tag associates a component type with context information. The
information is used for example to describe refinement mappings. The
tagged value corresponds to the property name defined in the core mod-
els. If also the property value as defined in the core model ‘property’
element needs to be specified or if several properties need to be as-
sociated with an stereotyped UML element, the properties are to be
specified as comments in the form: property(name)=value.

Element: ConnectorType

Stereotype Base Class Description

�ConnectorType� Class The type of a connector depends on the associated
interface types. It is not allowed to place any UML
feature in this element. Features are described by
interface types associated with the component type.

The notation used for a connector specification is a class stereotyped as �ConnectorType�.

Tagged Values

The following tagged values can be associated with a component type.
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Tagged Value Description

ProtocolExpression A protocol expression describes the behavior of a component type in
terms of a process algebra expression. The expression is no used for
conflict analysis.

Language Language of the protocol expression. It is required if a protocol expres-
sion is specified.

property This tag associates a component type with context information. The
information is used for example to describe refinement mappings.

Element: InterfaceType

Stereotype Base Class Description

�InterfaceType� Interface An interface type describes component interactions in
terms of operations. It consists of a set of operations.
Attributes have to be encapsulated as operations.

The notation used for an interface type is a UML interface stereotyped as �InterfaceType�. Alter-

natively, a UML class with the same stereotype can be used. Both elements are mapped into the

framework’s interface types.

Tagged Values

The following tagged value can be associated with an interface type.

Tagged Value Description

property This tag associates a component type with context information. The
information is used for example to describe refinement mappings.

Element: PortType

Stereotype Base Class Description

�PortType� Class A port type defines a point of interaction. The in-
teraction is expressed by an interface type and a pro-
tocol expression. Port types are referenced by com-
ponent types and connector types to declare required
and provided interface types. It is illegal to place any
feature in this element.

The notation used for a port type is a UML class stereotyped as �PortType�.

Tagged Values

The following tagged values can be associated with a component type.

Tagged Value Description

ProtocolExpression A protocol expression describes the behavior of a component type in
terms of a process algebra expression.

Language Language of the protocol expression.

property This tag associates a component type with context information. The
information is used for example to describe refinement mappings.

Element: Record

Stereotype Base Class Description

�Record� Class A record refers to a normal UML class. Each class
that has no stereotype or is stereotyped with ‘Record’
is translated into a Record in the framework.

The notation used for a port type is a UML class stereotyped as �Record�.
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Tagged Values

The following tagged values can be associated with a record type.

Tagged Value Description

property This tag associates a component type with context information. The
information is used for example to describe refinement mappings.

Element: List

Stereotype Base Class Description

�List� Class A list type represents any kind of array or collection.

The notation used for a port type is a UML class stereotyped as �List�.

Tagged Values

The following tagged values can be associated with a list type.

Tagged Value Description

property This tag associates a component type with context information. The
information is used for example to describe refinement mappings.

Relationship: Requires

Stereotype Base Class Description

�requires� Dependency A requires relationship defines services of a compo-
nent type or a connector type that are needed by this
element. The services are expressed via a port type.

The notation used for a requires relationship is a dependency stereotyped as �requires�.

Relationship: Provides

Stereotype Base Class Description

�provides� Dependency A provides relation identifies the services that are of-
fered by a component type or mediated by a connec-
tor type. This functionality is expressed via a port
type.

The notation used for a provides relationship is a dependency stereotyped as �provides�.

Relationship: Supertype

Stereotype Base Class Description

�supertype� Generalization The supertype relationship describes single inheri-
tance between component types or connector types.
It restricts the UML generalization to component and
connector types. The generalization hierarchy has to
be a tree.

Several modeling tools do not allow specifying a stereotype for a generalization. Therefore, we use a

dependency to visualize this relationship. Thus, the notation used for a supertype relationship is a

dependency stereotyped as �supertype�.
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Relationship: Extends

Stereotype Base Class Description

�extends� Generalization The extends relationship describes multiple inheri-
tance between interfaces. It restricts the UML gen-
eralization to interface types. The generalization hi-
erarchy can be a graph.

We use a dependency to visualize this relationship. Thus, the notation used for a extends relationship

is a dependency stereotyped as �extends�.

Relationship: Declares

Stereotype Base Class Description

�declares� Dependency This relationship links an interface type to a port
type.

The notation used for a declares relationship is a dependency stereotyped as �declares�.

Relationship: Refines

Stereotype Base Class Description

�refines� Generalization The refines relationship describes single inheritance
between port types. The generalization hierarchy has
to be a tree. The refines relationship is mainly used
to inherit the properties associated with a property
type.

We use a dependency to visualize this relationship. Thus, the notation used for a refines relationship

is a dependency stereotyped as �refines�.

Relationship: ComProps

Stereotype Base Class Description

�comProps� Dependency This relationship links a single feature to a port type.
The feature should correspond to a feature that is
predefined in a communication taxonomy or in a tech-
nology taxonomy.
If the port type extends another port type which
is also associated with features, the compProps re-
lationship overrides previously defined and equally
named features.
The property can be associated with component
types, connector types as well as with port types.

The notation used for a comProps relationship is a dependency stereotyped as �comProps�.

Relationship: TechProps

Stereotype Base Class Description

�comProps� Dependency This relationship corresponds to the ‘comProps’ re-
lationship. Instead of targeting on communication
properties it describes technology-related properties.

The notation used for a techProps relationship is a dependency stereotyped as �techProps�.
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Type Mappings

Type conversion between UML and the framework depends on the actual type system installed. As
mentioned above the framework only provides a basic type system for conflict identification. This type
system should be customized for the environment at hand. The mapping of the provided type system
is one-to-one:

• Primitive UML types are mapped to distinct basic types defined in the framework.

• UML operations are mapped to operations as defined by the framework, including arguments,
exceptions and return types.

• UML interfaces are mapped directly to interfaces of the framework.

• UML classes are mapped into record types.

• For other complex UML types a corresponding element needs to be defined in the framework.

B.3 Elements of the Configuration Diagram

This diagram shows the configuration of components and connectors. It is not used for conflict identi-

fication, only for the representation of systems.

Element: Component

Stereotype Base Class Description

�Component� Class This element describes a component instance in a
runtime configuration. This instance has to be of a
predefined type. It neither can redefine the interfaces
of the corresponding type nor can it change existing
properties or constraints.

Tagged Values

The following tagged value can be associated with a component type.
Tagged Value Description

Type The associated type of this instance as defined in a type model.

property This tag associates a component type with context information. The
information is used for example to describe refinement mappings.

Element: Connector

Stereotype Base Class Description

�Connector� Class This element describes connector instances in a run-
time configuration. The instances are always con-
nected with two components. Additionally, any in-
stance is related to a connector type.

The notation used for a connector instance is a class stereotyped as �Connector�.

Tagged Values

The following tagged value can be associated with a connector type.

Tagged Value Description

Type The associated type of this instance as defined in a type model.

property This tag associates a component type with context information. The
information is used for example to describe refinement mappings.



160 UML Profile for the Ontology-Based Framework

Element: Interface

Stereotype Base Class Description

�Interface� Class An interface describes the services required or pro-
vided by a component or mediated by a connector.
The services are attached to a port, which defines an
interaction point. An interface inherits every oper-
ation from it associated type. It is not allowed to
change the signature of this type.

The notation used for an interface instance is a class stereotyped as �Interface�. It can also be defined

as a UML class stereotyped as an interface.

Tagged Values

The following tagged value can be associated with an interface type.

Tagged Value Description

Type The associated type of this instance as defined in a type model.

property This tag associates a component type with context information. The
information is used for example to describe refinement mappings.

Element: Port

Stereotype Base Class Description

�Port� Class A port binds the interfaces of a component. It spec-
ifies the connection end points of a component. For
outgoing connections the port must be bound by a
‘requiredPort’ dependency to a component. An in-
coming connection is represented by a ‘providedPort’
dependency.

The notation used for a port is a class stereotyped as �Port�.

Tagged Values

The following tagged value can be associated with a port type.

Tagged Value Description

Type The associated type of this instance as defined in a type model.

property This tag associates a component type with context information. The
information is used for example to describe refinement mappings.

Relationship: Binds

Stereotype Base Class Description

�binds� Dependency The binds relationship defines a connection between
components via a connector. It links a connector with
a a port of a component. The connector needs to
provide a compatible port to that of the component.

The notation used for the bind relationship is a dependency stereotyped as �binds�.
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Relationship: RequiredPort

Stereotype Base Class Description

�requiredPort� Dependency The relationship binds a port to a component or a
connector. It corresponds to the ‘requires’ relation-
ship of the type model. It therefore describes the link
between components (connectors) and their required
interaction points. Interaction points are expressed
by a port and an interface.

The notation used for the relationship is a dependency stereotyped as �requiredPort�.

Relationship: ProvidedPort

Stereotype Base Class Description

�providedPort� Dependency The relationship corresponds to the ‘provides’ rela-
tionship of the type model. The semantics of the
relationship is analogue to that of the ‘requiredPort’
relationship described above.

The notation used for the relationship is a dependency stereotyped as �requiredPort�.

Relationship: Represents

Stereotype Base Class Description

�represents� Dependency The relationship corresponds to the ‘declares’ rela-
tionship of the type model. It associates a port to
exactly one interface.

The notation used for the relationship is a dependency stereotyped as �represents�.

B.4 Elements of the Behavior State Diagram

A state diagram can be used to describe the behavior of components in form of labeled transition

systems (LTS). Conflict analysis is based on the comparison of two LTS.

Element: State

Stereotype Base Class Description

�State� State This element represents a state as defined in UML. As
UML already defines state machines a normal state
diagram as defined by the UML can be used to de-
scribe a behavioral model of a component. A state
does not contain any features.

The notation used for a state is a UML state stereotyped as �State�.

Tagged Values

The following tagged value can be associated with a component type.

Tagged Value Description

property This tag associates a component type with context information. The
information is used for example to describe refinement mappings.
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Relationship: Action

Stereotype Base Class Description

�Action� Transition This element represents a transition between two
states. As UML defines this transition between
states, the ‘to’ and ‘from’ properties described by the
behavioral model are expressed by the UML ‘target’
and ‘source’ associations defined between transition
and StateVertex.

The notation used for a transition is a UML transition stereotyped as �State�.

Tagged Values

The following tagged value can be associated with a transition.

Tagged Value Description

refersTo Each transition has to be annotated with a tagged value, describing
the operation that is responsible for that transition. If it is not possible
in a modeling tool to attach a tagged value to a ‘UML association’
the ‘refersTo’ relationship can also be expressed by defining a UML
CallAction for each transition. The CallAction has to be linked to the
corresponding operation.

B.5 Elements of the Property Diagram

The property model describes hierarchies of properties. As explained in Section 5.1.4, we perceive

properties as features, which we use to create feature models. The following definitions can be used to

describe feature models and feature instances in UML2.

Element: MandatoryFeature

Stereotype Base Class Description

�Mandatory� Class This element represents a mandatory feature in a fea-
ture model.

The notation used for a mandatory feature is a UML class stereotyped as �Mandatory�.

Element: OptionalFeature

Stereotype Base Class Description

�Optional� Class This element represents an optional feature in a fea-
ture model.

The notation used for an optional feature is a UML class stereotyped as �Optional�.

Element: Xor

Stereotype Base Class Description

�Xor� Class Variability elements are either be alternatives or op-
tions. They are represented by filled or blank arcs
in a feature diagram. We explicitly model variabil-
ity elements as stereotyped UML classes. The ‘xor’
represents an alternative (filled arc).

The notation used for a ‘xor’ variability element is a UML class stereotyped as �Xor�.

2Other approaches to represent feature models in UML are proposed for example by [37].
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Element: Or

Stereotype Base Class Description

�Or� Class The ‘or’ represents an option group(blank arc).

The notation used for a ‘or’ variability element is a UML class stereotyped as �Or�.

Element: FeatureAttribute

Stereotype Base Class Description

�FAttribute� Class A common extension to feature models are attributes
that are attached to features. They are often used to
describe issues such as cardinality etc.

The notation used for a feature element is a UML class stereotyped as �FAttribute�.

Relationship: SubFeatures

Stereotype Base Class Description

�subFeatures� Dependency The relationship is used to organize features into a hi-
erarchy and variability elements. In a feature model,
a ‘subFeature’ represents an arc to a dependent fea-
ture.

The notation used for the relationship is a dependency stereotyped as �subFeatures�.

Relationship: feAttributes

Stereotype Base Class Description

�feAttributes� Dependency The relationship associates feature attributes to fea-
tures.

The notation used for the relationship is a dependency stereotyped as �feAttributes�.

Relationship: Excludes

Stereotype Base Class Description

�f excludes� Dependency Selection of the source feature prohibits a selection
of the target feature.

The notation used for the relationship is a dependency stereotyped as �f excludes�.

Relationship: Requires

Stereotype Base Class Description

�f requires� Dependency Selection of the source feature requires the selection
of the target feature.

The notation used for the relationship is a dependency stereotyped as �f requires�.

B.6 Well-Formedness Rules

We define no well-formedness rules for OCL as constraints normally are not checked in current modeling

tools. Instead, the constraints are formulated in Triple. At present, our group works on a service

that enables checking of OCL constraints based on metamodels. This service will allow checking the

described diagrams in UML tools such as Poseidon.
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Appendix C

Taxonomies

The appendix summaries the taxonomies of .Net and J2EE. The taxonomies are composed based
on the works of Liao [81] and Gädicke [51], who researched J2EE, Jini and .Net technologies.
Properties that describe the interna of a communication mechanism - the - implementation
have been removed.
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Figure C.1: Remote Method Invocation Taxonomy
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C.2 EntityBean Taxonomy
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C.3 Message Taxonomy
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C.4 Net Remoting Taxonomy
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C.5 Serviced Component Taxonomy
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