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Zusammenfassung

Die elektronischen und optischen Eigenschaften von verspannten Halbleiter-

Quantenfäden und -Quantenpunkten realistischer Form und chemischer Zusam-

mensetzung werden theoretisch untersucht, d. h. im Rahmen des auf Verspan-

nungen erweiterten 8-Band-k·p-Modells unter Einbeziehung des piezoelektrischen

Effekts berechnet. Ausgehend von der elektronischen Struktur werden Absorp-

tionsspektren sowie die Eigenschaften von Mehrteilchenzuständen in solchen

Nanostrukturen berechnet und, soweit möglich, mit experimentellen Ergebnissen

verglichen. Bei derartigen Vergleichen ergibt sich in allen Fällen eine sehr gute

Übereinstimmung zwischen berechneten und gemessenen Eigenschaftsgrößen.

Hauptergebnis der Arbeit ist die Etablierung eines theoretischen Konzepts zur

realitätsnahen Modellierung von Quantenfäden und -punkten, dessen Genauigkeit

anhand eines Vergleichs mit der jüngsten Literatur entnommenen, empirischen

Pseudopotentialberechnungen quantifiziert wurde. Da das Modell keine zu vari-

ierenden Parameter enthält, können optische Eigenschaften gegebener Strukturen

tatsächlich vorhergesagt und nicht etwa nur experimentellen Befunden angepaßt

werden.

Anhand zweier Beispiele, nämlich (a) im Stranski-Krastanow-Modus gewach-

sener InAs/GaAs-Quantenpunkte und (b) V-Graben-Quantenfäden im InGaAs/-

AlGaAs-Materialsystem, wird die nichttriviale Korrelation zwischen den struk-

turellen und optischen Eigenschaften niederdimensionaler Halbleiterstrukturen

aufgezeigt. Der dominierende Einfluß der inhomogenen Verspannung und der

piezoelektrischen Felder auf die Struktur und Polarisationseigenschaften von

Absorptionsspektren geht aus der detailgetreuen Berechnung anschaulich hervor.

Vereinfachte Modelle, welche die Geometrie im Realraum durch elementare For-

men wie z. B. Kugeln oder Quader annähern, oder die Bandstruktur der betreffen-

den Halbleiter in entkoppelten Modellen wie der Effektivmasse-Näherung behan-

deln, sind in der Vergangenheit zwar häufigst benutzt worden, erweisen sich hier

jedoch als völlig ungeeignet.

Die besondere Detailtreue des Modells gestattet auch die Untersuchung von

Mehrteilchen-Zuständen in Quantenpunkten, wie Exzitonen, geladenen Exzito-

nen (Trionen) und Biexzitonen. Mittels der Konfigurations-Wechselwirkungs-

Methode kann die empfindliche Balance zwischen der Coulomb-Wechselwirkung

und dem Austausch-Korrelations-Effekt genau berechnet werden. Es zeigt sich,

daß die Bindungsenergien solcher Zustände je nach Gestalt, Zusammensetzung

und Größe der Quantenpunkte positiv oder negativ sein können. Ergebnisse

von Einzel-Quantenpunkt-Spektroskopie-Experimenten bestätigen die Existenz

dieser beiden Möglichkeiten. Auch die für Exzitonen berechnete Feinstruktur-

Aufspaltung infolge von Austausch-Effekten stimmt quantitativ mit an vergleich-

baren Quantenpunktstrukturen gemessenen Linienabständen überein.
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Insgesamt zeigt sich, daß die eingesetzte Modellierungsmethode quantitativ

stichhaltige Vorraussagen für konkrete Strukturen liefert und, ergänzend zu expe-

rimentellen Methoden, zur Aufklärung der physikalischen Zusammenhänge zwi-

schen strukturellen und elektronischen Eigenschaften eingesetzt werden kann. Die

für systematische Untersuchungen erforderliche Rechenkapazität wird durch die

Implementierung für Parallelrechner vom Typ Cray T3E gewährleistet.
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9.4 Resumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

9.5 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . 167



viii CONTENTS



Part I

Electronic Structure Calculation

by Eight-Band k·p Theory

1





Chapter 1

Introduction

The continuous progress in epitaxial growth and patterning technology offers to-

day unprecedented possibilities to fabricate isolated semiconductor heterostruc-

tures which exhibit quantum confinement of charge carriers in two and three spa-

tial (r) dimensions. The k vector spaces of confined (bound) electrons and holes

are zero-dimensional (0D) for quantum dots (QDs) [1–5] and one-dimensional

(1D) for quantum wires (QWRs) [6–8].

Theoretical predictions of the electronic properties of semiconductor QDs and

QWRs, as presented in this work, are important since they provide a link between

investigations of the structural and optical properties of such systems. Complex

numerical models are prerequisite for the simulation of the non-trivial impact

of the real structure (e. g., shape, chemical composition, inhomogeneous strain,

piezoelectricity) on the electronic and optical properties, eventually leading to

a comprehensive understanding of the manifold of experimental data available,

see, for instance, Ref. [9–12] for QDs and Ref. [13–16] for QWRs. Quantitatively

correct predictions will also ultimately provide guidance to tailor the properties

of optoelectronic devices based on self-organized QDs [17,18] or QWRs [8].

The realization of this potential depends on the predictive power of the chosen

theoretical model. It is commonly agreed that the inhomogeneous strain inher-

ently connected to the formation of strained QDs [19], e. g., within the InAs/GaAs

material systems, strongly influences their electronic structure. Band mixing ef-

fects, being caused by confinement in general and enhanced by the high dimension

and low symmetry of the confinement and by strain effects, are of equal signif-

icance. These insights promoted the use of various perturbation [20–23] and

multiband models [24–32] combined with adiabatic treatments of the strain ef-

fects [33,34], as well as tight-binding [35] and pseudopotential calculations [36–39],

whose fully numerical implementations allow to treat realistic geometrical and

chemical properties of the dots. Comparably detailed bandstructure calculations

of strained QWRs, taking into account strain, band-mixing, and piezoelectricity

3
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have for the first time been reported [40] in the frame of this work.

Among the above mentioned calculation methods the eight-band k ·p model

provides, at reasonable computational cost, a fast and transparent connection

between the electronic structure of QDs and certain bulk properties of the con-

stituent materials, easing to take into account arbitrary QD shapes and material

compositions, as well as strain, piezoelectricity, and band mixing. This renders

the eight-band k·p model attractive for a realistic analysis of large QD structures.

In this work, eight-band k ·p theory including strain and piezoelectricity is

applied to the calculation of the electronic and optical properties of strained

quantum dots and quantum wires of arbitrary shape and chemical composition.

The electronic structure, absorption spectra, and fine-structure properties of few-

particle states are calculated within one coherent framework. As it is mandatory

to assume realistic bulk properties of the constituent semiconductor materials,

the bandstructures near the Brillouin zone center are described by the eight-band

k·p Kane model including the conduction band, as well as the heavy hole, light

hole, and spin-orbit split off valence bands.

The specific heterostructures treated in this work are self-organized InAs QDs

in GaAs, grown by the Stranski-Krastanow mode, and V-groove QWRs of InGaAs

fabricated by growth on prepatterned substrates of AlGaAs or InP. The electronic

and optical properties of these lattice-mismatched heterostructures are strongly

influenced by pseudomorphic strain and piezoelectricity. The effects of inhomo-

geneous strain on the bandstructure of bulk semiconductors is included via linear

deformation potential theory as proposed by Pikus and Bir. The piezoelectric

effect is modeled including the image charge effects arising at heterointerfaces.

To calculate the strain, two different models are considered: The continuum me-

chanical approach for cubic materials and the atomistic valence force field model.

The overall intention of this work is to establish and validate an all-numerical

treatment allowing the flexible modeling of a variety of low-dimensional nanos-

tructures. The predictive power of the used method is demonstrated by com-

parison with prevailing second-principles calculations. Comparisons to various

experiments demonstrate outstanding agreement between calculated and mea-

sured quantities.



Chapter 2

The Eight-Band k·p Model

Including Strain

A large part of the fundamental understanding of the electronic structure of

semiconductors is due to the empirical pseudopotential (EP) method [41–44].

The form factors (shape parameters) of the pseudopotentials representing the

atoms in a semiconductor real lattice are empirically fitted in order to yield

selected, either experimentally known properties of the respective semiconductor

bulk material, or properties predicted by, e. g., first-principles calculations. As an

example, Fig. 2.1 shows the bandstructure of bulk InAs [45] at low temperature as

predicted by the EP method [46] together with the resulting, calculated valence

band (VB) density of states (DOS) and the VB DOS as derived from X-ray

photospectroscopy measurements [47].

For the present work, being dedicated to the electronic properties of low-

dimensional structures formed from direct semiconductors with zincblende lattice

structure (see Fig. 2.2), mainly that part of the bulk bandstructure is important

which is displayed on the left-hand side of Fig. 2.1, i. e. the bandstructure in a

region centered at the Γ-point (k = 0) shown in Fig. 2.2. As can be seen from

Fig. 2.3, this actually is a rather small fraction of the entire bulk bandstructure,

with respect to both the k-space extension and the energy range. In case of a

thermal population of the bands at non-zero temperature the band edges at the

Γ-point play, nevertheless, the most important role for optical transitions in a

direct semiconductor. Given a large energy difference between the fundamen-

tal transition at Γ and transitions in other valleys (like L or X), the Γ-point

bandstructure dominates even at non-thermal populations, e. g. at lasing.

The EP method is able to predict the entire complexity of a bandstructure, like

that shown in Fig. 2.3 for GaAs [42], from a relatively small1 set of form factors.

1In the order of 10 to 20 parameters are employed to describe strained bulk material [36].

5
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Figure 2.1:

Bulk bandstructure of InAs at 0 K [45] as predicted by the EP method (left), EP
calculated VB DOS (right: thin black line), and measured VB DOS from X-ray
photospectroscopy (right: thick gray line). The shaded frame on the right-hand
side indicates the energy range covered by the bandstructure diagram on the
left-hand side.

[001]

[100]

[010]

Bravais lattice Brillouin Zone

Figure 2.2:

Unit cells of the Bravais lattice (left) and the reciprocal lattice (right, Brillouin
zone) of a zincblende-type semiconductor [42]. Black spheres denote the cations
and hollow spheres the anions in polar crystals. The thick gray arrows (left)
show the principal crystal axes. The thick lines (right) indicate the directions the
bandstructure diagram in Fig. 2.1 refers to.

This suggests that the bandstructure part near Γ, being of interest here, may well

be described by perturbation theory around k = 0, using a comparable number

of (perturbationally defined) parameters. As motivated by Fig. 2.3, an expansion
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of the Γ-point electron wave function into s- and p-orbital functions appears

appropriate. At inclusion of the spin-orbit (SO) interaction, which is responsible

for the splitting ∆0 between the Γ8 and Γ7 VBs, a perturbation model requires a

basis of eight so called Bloch functions, s↑, x↑, y↑, z ↑, s↓, x↓, y↓, and z ↓, where

x, y, and z are the p-type Bloch functions refering to the three principal directions

in the crystal and the arrows denote the spin. The Hamiltonian with respect to

such a basis for the description of electrons in the Γ6 conduction band (CB) or

the Γ7 or Γ8 VBs is derived by the so called eight-band k·p method [33,48–53].

E( )k f

E f(  )*k

E f(  )*(1- )k

p p p
x y z

p p p
x y z

s

s

p

s

antibinding

binding

orbitals

orbitals

Term splitting
due to molecule formation

neglecting spin

Bandstructure

E
n
er

g
y
  
(e

V
)

Wave vector k

n = N exp[ -(E -E )/kT ]C C F

p = N exp[ -(E -E )/kT ]V F V

EV

EF

EC

EF

Figure 2.3:

Left: Bandstructure of GaAs [42] as calculated by the EP method. Right: Qual-
itative picture of the coarse structure of the left diagram, based on the term
splitting occurring during the formation of molecules. In the given case, the
splittings of the s and p levels arrange a situation where the upper s state ap-
pears at higher energy than the lower p states. The latter dominate the electron
wave-function shape in the bulk VB while the former determine the symmetry
of the bulk CB. The framed diagram (bottom) sketches the thermal population
of the resulting Γ-point bands, showing the CB and VB dispersions E(k), the
Fermi distribution f for two different temperatures (light and dark gray curves)
and the resulting electron and hole population densities.
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2.1 The eight-band k·p Hamiltonian

The key feature of the k·p method [48, 54, 55] is the so called envelope-function

ansatz based on Bloch’s theorem, according to which the electron wave function

in a coherent crystal lattice with translation symmetries can be separated into

(i) a Bloch part oscillating with the atomic distance as period, and (ii) a smooth

envelope function which, at most, exhibits variation on a mesoscopic scale. By

Löwdin perturbation theory the rapidly oscillating Bloch functions can be elim-

inated from the electron Hamiltonian, leaving quantum mechanical equations of

motion for the envelope functions only.

In the Kane model [48] the envelope functions ψ belonging to the eight above

Bloch functions are ordered as follows:

{ψs↑, ψx↑, ψy↑, ψz↑, ψs↓, ψx↓, ψy↓, ψz↓} .

With respect to this basis, the eight-band k ·p Hamiltonian has a 2 × 2 block

matrix form visualizing the structure of the spin projections in the presence of

SO interaction:

Ĥ =

(
G(k) Γ

−Γ G(−k)

)
(2.1)

where G and Γ are 4×4 matrices acting on either the ↑ or the ↓ envelope functions

(ψs, ψx, ψy, ψz), and the overlining denotes the complex conjugation. The matrix

Γ =




0 0 0 0

0 0 0 ∆0/3

0 0 0 −i ∆0/3

0 −∆0/3 i ∆0/3 0




couples the spin projections ↑ and ↓ due to the SO interaction causing the splitting

between the Γ8 and Γ7 VBs by ∆0 . The matrix G is composed from a potential

energy part G1 , a kinetic energy part G2 , a SO interaction part GSO , and a

strain dependent [33,49,52,56] part Gst :

G = G1 + G2 + GSO + Gst

with

G1 =




Ec i Pkx i Pky i Pkz

−i Pkx E ′
v 0 0

−i Pky 0 E ′
v 0

−i Pkz 0 0 E ′
v




,
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G2 =




A′k2 Bkykz Bkxkz Bkxky

Bkykz L′k2
x + M(k2

y + k2
z) N ′kxky N ′kxkz

Bkzkx N ′kxky L′k2
y + M(k2

x + k2
z) N ′kykz

Bkxky N ′kxkz N ′kykz L′k2
z + M(k2

x + k2
y)




,

GSO =




0 0 0 0

0 0 −i ∆0/3 0

0 i ∆0/3 0 0

0 0 0 0




,

Gst =




ac(εxx + εyy + εzz) b′εyz − i Pεxjk
j b′εzx − i Pεyjk

j b′εxy − i Pεzjk
j

b′εyz + i Pεxjk
j

{
lεxx+

m(εyy + εzz)

}
nεxy nεxz

b′εzx + i Pεyjk
j nεxy

{
lεyy+

m(εxx + εzz)

}
nεyz

b′εxy + i Pεzjk
j nεxz nεyz

{
lεzz+

m(εxx + εyy)

}




(2.2)

In the Einstein sum in Eq. (2.2) j = x, y, z. In the case of a strained semi-

conductor the εij are the components of the (symmetric) strain tensor for cubic

materials [57]. The CB edge Ec and the absolute, average VB energy E ′
v (defined

from the model-solid theory [58]), as well as the Kane parameters A′, L′, M , N ′,
and P , and the strain coefficients l, m, and n are calculated by [33,48]

Ec = Ev + Vext + E0

E ′
v = Ev + Vext − ∆0

3

A′ =
h̄2

2m0

(
1

me

− Ep

E0

E0 + 2∆0/3

E0 + ∆0

)

P =

√√√√ h̄2

2m0

Ep

L′ =
P 2

E0

− h̄2

2 m0

(1 + γ1 + 4γ2)

M = − h̄2

2 m0

(1 + γ1 − 2γ2)

N ′ =
P 2

E0

− 3 h̄2

m0

γ3

l = 2bv + ac − ag

m = ac − ag − bv

n =
√

3 dv

so that the eight-band k·p Hamiltonian for strained bulk is parametrized by
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• the fundamental band gap E0 ,

• the SO energy ∆0 ,

• the optical matrix parameter Ep ,

• the VB edge Ev ,

• the relative Γ-point CB mass me ,

• the three Luttinger parameters γ1 , γ2 , and γ3 ,

• the Kane parameter B,

• the hydrostatic CB deformation potential ac ,

• the hydrostatic band gap deformation potential ag ,

• the uniaxial ([100] direction) VB deformation potential bv ,

• the uniaxial ([111] direction) VB deformation potential dv ,

• the parameter b′ coupling the CB edge to shear strain,

• and an optional scalar potential Vext describing an electric field resulting,

e. g., from a built-in voltage in a p-n-junction, an externally applied voltage,

or a piezoelectric charging. Only the latter case is considered in this work.

The hydrostatic gap deformation potential is related to the hydrostatic CB and

VB deformation potentials by ag = ac − av . Using the relation

Ep =
3 E0 (E0 + ∆0)

∆0

(
γ1 − 1

mSO

)
,

the Kane parameters A′ and P can alternatively be calculated using mSO instead

of Ep [33].

The cubic strain tensor [57], represented by its independent components εxx, εxy,

εxz , εyy , εyz , and εzz , is defined for infinitesimal displacements, and its inclusion

to the k·p Hamiltonian by means of linear deformation potential theory [49, 56]

is based on the assumption of small strain, like |εij| < 0.05.

In calculations for bulk semiconductors, the VB edge energy Ev can have any

value as it only defines the energy gauge. In calculations of heterostructures,

however, Ev determines the CB and VB offsets at the heterojunctions.
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2.2 Heterostructures

In case of a heterostructure the above mentioned material parameters become spa-

tially dependent. If the heterostructure, in addition, is inhomogeneously strained

also the strain tensor is a function of the spatial position. The six Kane pa-

rameters A′, B, L′, M , N ′, and P , and the six strain components appear in the

matrix G in products together with the wave vector k. Since the spatial posi-

tion operator and the wave number operator do not commute, G – and thus the

Hamiltonian Ĥ – is not generically Hermitian for heterostructures.

In order to retain the Hermiticity of the Hamiltonian it is necessary to replace

any such product of wave vector components ki with a Kane parameter or a strain

component (both called Q below) by respective symmetrized products:

Qki → (Qki + kiQ)/2 ,

Qkikj → (kiQkj + kjQki)/2 ,

i, j = x, y, z .

Assuming identical Γ-point Bloch functions in all constituent materials of the

heterostructure the symmetrization implies probability flux conservation at all

heterointerfaces, regardless of their orientation [59].

Explicitly, inhomogeneous strain is treated in an adiabatic manner by this ap-

proach, but implicitly, part of the inhomogeneity (expressed by ∇ε̂ terms) effects

on the bandstructure is included to the Hamiltonian due to the symmetriza-

tion [34].

2.3 Material parameters

The eight-band k ·p Hamiltonian provides a rather detailed electronic model

of a semiconductor as it employs 15 parameters to describe the Brillouin zone

(BZ) center bandstructure in presence of a given strain situation, assuming that

these parameters are not strain-dependent theirselves. A strain dependence of,

e. g., the SO interaction [60] is neglected. Some of these parameters, as E0 ,

∆0 , and me , are known to large accuracy from experiments and are available

for all technologically important semiconductors from the literature. Others,

like the Luttinger parameters, Ep , ag , and E ′
v (i. e., band offsets), are more

difficult to determine experimentally since their measurement is mostly indirect

and complicated by trade-offs with other uncertain quantities. Hence, often a

variety of values exists for those parameters, necessitating a judicious selection.

There are also parameters for which experimental values either are not available or

show such a large spread that they provide poor guidance. For those, sometimes



12 CHAPTER 2. THE EIGHT-BAND K·P MODEL INCLUDING STRAIN

calculated values have to be assumed, or they are typically neglected due to the

lack of any reasonable estimate, as, e. g., B and b′.

As an example for the difficulties connected to the choice of values for the

linear deformation potentials, Fig. 2.4 displays various literature values (both

experimental and calculated) for the hydrostatic deformation potentials ac , ag ,

and av of GaAs, compiled from Ref. [45, 61, 62]. While the magnitude of the

gap deformation potential ag is relatively well determined, the distribution of

the hydrostatic band-gap shift over the CB and VB is considerably less easily

examined. It is not even evident whether the VB shifts to higher or lower energies

under tensile strain, a question which is relevant for the VB band offset at strained

heterojunctions. In the present work, average values have been employed, denoted

by the black disk in Fig. 2.4.

-20 -15 -10 -5 0
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-15
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Figure 2.4:

Literature values [45,61,62] for the hydrostatic deformation potentials ac (vertical
lines), ag (diagonal lines), and av (horizontal lines) of GaAs. The black disk
indicates the triple of values used in this work.

In addition to the uncertainties regarding the deformation potentials used in

linear deformation potential theory [56], the strain dependence of the band edges

is believed to be (weakly) non-linear, as suggested by experiments [63] and second-
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principles calculations [38,64,65]. For the modeling of moderately strained, pseu-

domorphic QWRs such effects may safely be neglected. In contrast, the strain

encountered in Stranski-Krastanow grown QDs reaches a magnitude where the

non-linear strain dependence of the band edges is, in principle, mandatory to

consider. The inclusion of these non-linearities to actual calculations is, however,

hampered by the persisting uncertainty whether a super linearity or a sublinearity

has to be assumed, see Fig. 2.5. As a ”compromise”, the inclusion of the non-

linearity is suspended in this work, in expectation of unambiguous answers to

this question.

0.00 0.01 0.02
0

200
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D
E

0
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)
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[Li et al.]Experiment
emp. pseudopot.    [Bouarissa et al.]
emp. pseudopot.    [Wang et al.]
8-band k•p [Wang et al.]
8-band k•p [Stier et al.]

Figure 2.5:

Hydrostatic strain dependence of the fundamental gap E0 of InAs according to
different calculations (gray lines) and one experiment (black line) made on mono-
layer thick InAs quantum wells in GaAs [63]. The change of E0 is plotted vs. the
change of the lattice constant. The solid gray lines show EP calculations [38,64],
the dashed gray lines are calculated from Eq. (2.1) using the material parameters
given in Ref. [38] and [31], respectively.

Another important, though insecure, material property is the VB offset at a

strained heterojunction. In the present approach, the problem is partitioned into

(i) the determination of an intrinsic, absolute band offset between bulk materi-

als not connected to each other, and (ii) the modification of this offset due to

strain, when matching the respective lattices. The second part requires ”only”

the knowledge of the strain on both sides of the interface, as well as the defor-

mation potentials of the respective materials. Effects resulting from interface

dipoles, or a possible dependency on the interface orientation or the order in
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which adjacent layers have been grown, are thereby neglected. The first part (i)

is based on the notion that the VB edge positions of different semiconductors are

defined on one and the same energy scale, thus presenting an intrinsic property

the bulk material [58,66,67].

These intrinsic band offsets have been derived from a variety of experiments for

the materials relevant to this work. The scatter of values for the (almost) lattice-

matched AlGaAs material system [62, 66, 68] is not as large as that obtained for

the InGaAs/InP material system shown in Fig. 2.6.

Figure 2.6:

Energy of the unstrained (intrinsic) VB edge of InxGa1−xAs relative to that of
InP. Triangles denote experimentally derived values for InGaAs/GaAs hetero-
junctions, circles refer to measurements on InGaAs/InP heterojunctions. The
solid line is a quadratic fit to all values represented by large symbols, neglecting
values represented by small symbols. The horizontal, long-dashed line indicates
the GaAs/InP VB offset. The short-dashed line is a theoretical prediction from
the model-solid theory [58]. The data points are compiled from Ref. [45, 62,69].

The solid line in Fig. 2.6 indicates the VB alignment assumed in this work, ob-

tained by a quadratic polynomial fit to selected experimental values (represented

by the large triangles and circles). The resulting VB energies of InGaAs on InP

are shown in Fig. 2.7, and those of InGaAs or AlGaAs on GaAs in Fig. 2.8.
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Figure 2.7:

Band edge energies of InGaAs on InP at room temperature, as assumed in this
work.

Figure 2.8:

Unstrained (intrinsic) band edge energies of InGaAs (black lines) and AlGaAs
(gray lines) at room temperature with respect to InP, as assumed in this work.
The vertical, dashed lines indicate the assumed band alignment at the heteroin-
terface of the QWR studied in Section 7.1.
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Chapter 3

Quantum-Confined

Heterostructures

The suitability of the eight-band k·p model for the modeling of strongly confining

and inhomogeneously strained nanostructures decreases with decreasing QD or

QWR sizes due to inherent, conceptional approximations [31,38, 70]. The major

limitations result from

• the validity of the k·p scheme being restricted to the immediate vicinity of

the BZ center Γ,

• the relatively small number of Bloch functions used for the expansion of

the wave functions (eight in the eight-band k·p model),

• the assumption of identical Bloch functions throughout the heterostructure

(regardless of material and strain variations),

• and the seeming arbitrariness of the envelope matching conditions at het-

erointerfaces.

Similar limitations do not exist in microscopic approaches like empirical pseu-

dopotential (EP) theory, which have potentially greater accuracy. To improve

the accuracy of the eight-band k·p model applied to small, highly strained QDs,

a generalized concept for using the eight-band k·p scheme in electronic structure

calculations of QDs is proposed, which overcomes part of the above theoretical

problems: In practice, it is sufficient to fit the k·p parameters of the constituent

materials to the known bulk bandstructures within an appropriately large BZ

segment around the Γ point. Thus the eight-band k ·p model, though origi-

nally derived for an infinitesimal k-space region around the Γ point [48] and

infinitesimal, homogeneous strain [56], yields accurate predictions even for QD

heterostructures with large quantization energies, strong inhomogeneous strain,

17
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and piezoelectric effects. After such an extension of the valid k-range the remain-

ing k·p approximations appear hardly significant, as shown in this chapter.

The concept is demonstrated for pyramidal InAs/GaAs QDs by a comparison

with atomistic calculations reported in Ref. [38]. The single-particle energy levels,

wave functions, Coulomb energies, and momentum matrix elements are calculated

and compared to the results of prevailing EP calculations for such QDs [36–39,71].

Prior to the calculation of confined levels, the k·p bulk bandstructure parameters

are fitted to reproduce the bulk bandstructures of InAs and GaAs, as derived by

the pseudopotential theory, to the largest possible extent. An assessment of the

eight-band k ·p model by comparison with experimental data is limited due to

the insufficient accuracy of available structural and optical data, as discussed in

Section 6.3.

The choice of InAs/GaAs QDs serves here as an example only: To model QD

structures formed by other materials one has, in the same manner as described

below, to determine the k·p parameters from fits to the respective bulk bandstruc-

tures as calculated from, e. g., first principles or (semi)empirical pseudopotential

theory, being available for all common semiconductors from the literature.

3.1 The model quantum dot

As a test bed for the explanation and demonstration of the proposed procedure,

a pyramidal InAs QD with {101} side facets and a base length of 20 lattice con-

stants (11.3 nm) on top of a one monolayer (ML) thick (001) wetting layer (WL)

of InAs is considered, which is coherently embedded in GaAs and thus under

pseudomorphic strain. The assumed temperature is 0 K. The electronic structure

of this model QD was calculated twice by the EP method, first neglecting the

SO interaction in the constituing bulk materials [37], and then including it [38].

The single-particle energy levels obtained from the two EP calculations are shown

in Fig. 3.1(a,b), respectively. The wave functions belonging to term scheme (a)

(neglecting SO interaction) are shown in Figs. 1 and 2 of Ref. [37]. The k·p cal-

culations in this chapter are going to be compared to term scheme (b) (including

SO interaction), the corresponding EP calculated wave functions are shown in

Fig. 3 of Ref. [38] and Fig. 2 of Ref. [71].

3.1.1 Strain effects

The strain distribution in the QD and surrounding barrier has a dominant influ-

ence on the electronic structure and constitutes, together with the deformation
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Figure 3.1:

Single-particle energy levels in the model QD assumed in this chapter, according
to different calculations. The electron (hole) energies refer to the CB (VB) edge
of the GaAs barrier far away from the dot (unstrained). (a): EP calculation
neglecting SO coupling in the bulk materials, from Ref. [37]. (b): EP calculation
including SO coupling and compared to the present calculations, from Ref. [38].
(c): Eight-band k·p calculation using the parameters from Table 3.1 and including
the piezoelectric effect. (d): Eight-band k·p calculation using the parameters from
Table 3.1 and neglecting the piezoelectric effect. (e): Eight-band k·p calculation
from Ref. [71], neglecting the piezoelectric effect.

potentials [56], critical input data for the k·p model. The strain calculation1 in

this chapter follows Ref. [38], using Keating’s valence force field model (Eq. (4.4)

in Section 4.1.2) with the elastic parameters from Ref. [26] and a 69a×69a×69a

supercell with periodic boundary conditions (a is the GaAs lattice constant).

By different conventions, the [110] direction in Ref. [38, 71] is the [110] direction

here and vice versa. The strain distribution possesses C2v symmetry due to the

atomistic property of the strain model which takes into account the inequivalence

1The strain distribution has been calculated by Marius Grundmann.
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between the [110] and [110] directions in the zincblende lattice (see Section 4.1.2).

The strain dependence of the bulk band edges is nonlinear according to the

EP calculation [65]: The fundamental bandgap E0 of (mainly) hydrostatically

strained bulk InAs scales sublinearly with the strain ε̂. It follows that linear defor-

mation potential theory [56] would overestimate E0 at large strain (Tr ε̂ ≈ −0.08)

by ∼ 50 meV if the values for the Γ-point deformation potentials were calculated

within the small-strain limit (|Tr ε̂| ≤ 0.01). To avoid such inaccuracies, hydro-

static non-linearities of E0 can be incorporated in a straight-forward way into

the k·p model using, for instance, experimentally known values of the respective

coefficients [63,69,72].

In the given case, however, the linear deformation potentials previously derived

from the EP calculation and listed in Table II of Ref. [38] fit well an average high-

strain regime:2 The local CB and VB edges at a position ∼ 3.8 nm below the

pyramid’s tip as calculated by eight-band k·p theory agree within 10 meV with

the EP calculated band edges shown in Fig. 5 of Ref. [38]. In view of this match,

linear deformation potential theory with the deformation potentials from Ref. [38]

are used for the intended comparison. Due to the small, but inevitable, deviations

between the confinement potentials in the EP and k·p calculations, any deviation

≤ 10 meV between the energy levels calculated by the respective models deserves

no discussion.

3.1.2 Piezoelectricity

The pseudopotentials [38] describe the reaction of the bulk bandstructure on the

elementary lattice deformations, i. e., due to hydrostatic pressure or uniaxial

stress along [100] or along [111]. However, due to the neglection of long-range

electric fields they do not correctly model the piezoelectric effect [73] arising for

uniaxial stress along [111] from the partial cancellation of the ionic polarization

and the compensating valence hull deformation [74–78]. The piezoelectric effect

can, on the other hand, be included into the k·p calculation in a straight-forward

manner described in Section 4.2, by using experimentally determined piezoelectric

moduli and adding an electrostatic potential to the Hamiltonian.

Thus, regarding piezoelectricity the comparability of the present k·p calcula-

tions with the previous EP calculations is limited. Nonetheless, self-organized

QDs are formed by a strain driven growth mechanism [19] and thus are al-

ways strained, while the constituent materials, like In(Ga)As/Ga(Al,P)As or

Cd(Zn,S)Se/Zn(S)Se, are piezoelectric. Hence, the inclusion of piezoelectricity

improves the description of reality. Second, the comparison made below between

k·p calculations including piezoelectricity and the EP calculations neglecting it

2This is also visualized by the intersection of the two light gray lines in Fig. 2.5.
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shows that the effects originating from the atomic structure anisotropy (ASA) [38]

between the [110] and [110] directions and from piezoelectricity are qualitatively

and quantitatively similar – although piezoelectricity is related to strain while

the ASA is not. Common to both mechanisms is the symmetry reduction of the

strained unit cell from C4v to C2v.

3.1.3 Bandstructure

So far, the concern has been to ensure good agreement between the potential en-

ergies of bound states in both calculations by realizing equivalent confinements.

Equally important is to assume possibly equivalent bulk dispersion relations in

order to create comparable starting points for the calculation of the kinetic ener-

gies by both methods. Therefore, the eight-band k·p bandstructure parameters

are selected here as to provide the best available agreement with the bulk band-

structures calculated from the pseudopotentials within the largest possible region

around the Γ-point. This intention advances beyond the calculation of the k·p
parameters from the zone-center wavefunctions according to their definitions by

perturbation theory [48,79].

This generalized notion of the k·p method aims at realizing the largest possible

validity range of the k·p calculated bandstructure. Given a different QD structure

formed by different materials, the prevailing bulk bandstructures of these mate-

rials, as known from first- or second-principles calculations or measurements, are

submitted to a parameter fit procedure [79, 80] yielding the optimal k ·p band-

structure parameters according to the above criterion. Thereby, a larger range

of validity of the k·p bandstructure on both the k- and the energy axis is made

available than by most of the usual k·p parameter values defined for the imme-

diate vicinity of Γ only. The approach is applicable to any direct semiconductor

whose bandstructure has been calculated or measured before. k·p parameters for

alloys can be derived accordingly or by appropriate interpolation.

Fig. 3.2(a) shows the present fit of the eight-band k·p bandstructure to the EP

calculated bandstructure of bulk InAs [81]. The k·p bandstructure is defined by

the Γ-point CB mass me, the Luttinger parameters γ1, γ2, γ3, the Kane parameter

B, the optical matrix parameter Ep = 2m0P
2/h̄2, the SO energy ∆0, and the gap

E0 [48]. Except for E0 (fixed) these parameters were fitted to reproduce the EP

bandstructure for |k| ≤ 1.8 nm−1. In the same manner the GaAs parameters were

fitted for |k| ≤ 1.5 nm−1 to an EP bandstructure compiled from Ref. [82,83]. The

resulting parameter values are summarized in Table 3.1.

The task to fit a given bandstructure within a possibly large region of the BZ

may force a departure from the usual literature values3 for the k·p parameters.

3See, e. g., Ref. [45].
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Figure 3.2:

Bandstructure of bulk InAs in the vicinity of k = 0 at 0 K, showing the CB, heavy
hole (HH), light hole (LH), and SO bands. Black narrow-dotted lines: EP calcu-
lation from Ref. [81]. Gray lines: Eight-band k·p calculation using the parameters
(a) from Table 3.1 or (b) from Ref. [71], respectively. (a): Gray rectangles show
the range of good agreement between the k·p and EP bandstructures. (b) The
black dashed line sketches the merging of the LH and SO bands to one band, as
obtained if the SO interaction is neglected in the EP calculation.

While the latter values describe the bandstructure within the immediate vicinity

of the Γ-point, they generally yield too steep CB and VB dispersions at larger |k|
values. Calculations of strongly quantized states using those parameters [45] will

therefore systematically overestimate the kinetic energies, i. e. the quantization.

In contrast, the values in Table 3.1 provide an improved description of the (EP)

bandstructure throughout a larger part of the BZ and a larger energetic range,

as marked by the gray shading in Fig. 3.2(a), sacrificing accuracy directly at the

Γ-point. Since significantly quantized states lay energetically well apart from the

band edges, the reduced accuracy at Γ is negligible for the electronic properties

of QD structures.

B = 0 in Table 3.1 is also a fit result, meaning that the bandstructures could,

as well, belong to a diamond structure semiconductor. The inversion asymmetry

of the bulk lattices is not important throughout the entire selected fitting range.

If the fit is restricted to a much smaller |k| range, B values in the order of 100-

200 meV nm2 are found for InAs. However, fixing B = 100 meV nm2 has little

influence on the bound QD states so that B = 0 is assumed in the calculations

here.
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Unit Value for InAs Value for GaAs

lattice constant nm 0.60553 0.56533

piezoelectric modulus e14 C m−2 0.045 0.16

static dielectric constant ε(0) — 14.6 13.18

SO energy ∆0 meV 378 261

optical matrix parameter Ep eV 12.12 17.52

Kane parameter B meV nm2 0 0

CB effective mass (Γ) me m0 0.0406 0.0904

Luttinger parameter γ1 10.08 4.47

Luttinger parameter γ2 4.57 1.52

Luttinger parameter γ3 5.11 2.16

CB-VB coupling by strain b′ meV 0 0

Table 3.1:

Material parameters used in the k ·p calculations of this chapter. For all other
properties the same values as in Ref. [38, 71] were taken.

To demonstrate the extended predictive power of the eight-band k ·p model

resulting from the explained parameter selection procedure, the 0D energy level

structure in the model QDs is calculated next. Thereafter, the results are com-

pared (i) to the prevailing EP calculations [38], demonstrating the high accuracy

of the eight-band k ·p calculation, and (ii) to previous eight-band k ·p calcula-

tions [71] using ”classically” defined parameters, demonstrating the importance

of the selection procedure and, thus, the related enhancement of accuracy.

The bound states in the model QD are calculated as described in Section 4.3, us-

ing the strain-dependent eight-band k·p Hamiltonian Eq. (2.1). By this approach

the strain is treated adiabatically, whereby strain inhomogeneity (expressed by

terms of ∇ε̂) is implicitly included [34] in a manner analogous to the treatment of

image charge effects in Eq. (4.12), i. e., by symmetrization [33] of εabkc products

in Eq. (2.2). For the calculation of the term scheme Fig. 3.1(c) the piezoelectric

effect was included according to Section 4.2, using the piezoelectric moduli from

Table 3.1. Term scheme Fig. 3.1(d) was calculated without piezoelectricity. The

Hamiltonian was discretized by finite differences (see Chapter 8) on a cubic mesh

with 72×72×60 voxels and 0.2827 nm spatial resolution (half the lattice constant

a of GaAs) and diagonalized by the algorithm described in Section 9.3.

From the single-particle eigenstates the momentum matrix elements of electron-

hole recombinations for given linear polarization are calculated using Eq. (4.21)

and Eq. (4.24). The (integral) transition matrix element is obtained by integrat-

ing Eq. (4.21) over all polarization directions. The Coulomb matrix elements
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between electrons and holes (denoted by C in Table 5.3) are calculated using the

bulk dielectric constants from Table 3.1 and including image charge effects.

3.2 Predicted quantum dot properties

The discussion is restricted to four bound CB and VB states, each, although ad-

ditional bound electron and hole states are obtained in the model QD. The states

are labeled by C for CB or V for VB plus an integer numbering the excitation

levels, 0 denoting the groundstates.

The projections of a bound-state wave function to the four Γ-point bulk bands,

s (CB), heavy hole (HH), light hole (LH), and SO – as displayed in Fig. 3.3(e-g) –

show that the total probability density looks like possessing a well-defined parity

if one of the projections has an intensity above 80%, i. e., if the contributions

from remote bands sum up to less than 20%. Otherwise the band mixing becomes

directly visible in the probability density by a smearing-out of nodal surfaces or

an entirely non-elementary shape.

3.2.1 Neglection of the piezoelectric effect

The calculation neglecting piezoelectricity corresponds one-to-one to the EP cal-

culation [38], as well as to another eight-band k·p calculation [71]. The present

results differ from those in Ref. [71] in some respects detailed below. The bound

states calculated without piezoelectricity are denoted by a tilde (̃ ) to distinguish

them from those calculated including piezoelectricity.

Wave function compositions and symmetries

The probability densities are plotted in Fig. 3.3(a,b) and Fig. 3.4(a,c). The CB

states exhibit a recognizable parity since the remote contributions from the VB

amount to 12-18% only. Vice versa, the s-type Bloch function contribution to

the VB states is less than 1.4%. The least mixed state is the hole groundstate Ṽ 0

which is even more HH-like (88.4%) than the electron groundstate C̃0 is s-like

(87.9%). From Ṽ 0 to Ṽ 3 the LH projection increases from 9% to 20% while the

SO projection stays between 2.2% and 4.7%. Thus (i) the calculation of the CB

states requires the inclusion of p-type Bloch functions whereas (ii) the s-type

Bloch functions are not so important for the VB states.

The weak C2v symmetry of the strain distribution is mainly reflected by the

order of the excited electron states C̃1 and C̃2. The spatial band edge profiles

shown in the top row of Fig. 3.4 favour an electron expansion along the [110]
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Figure 3.3:

Isosurface plots (25% of the maximum value) of total probability densities (a-d)
and VB projection intensities (e-g) of bound electron (a,c) and hole (b,d-g) states
in the model QD, calculated by eight-band k·p theory using the parameters from
Table 3.1 and including (c,d) or neglecting (a,b) the piezoelectric effect, respec-
tively. The surface triangulation shows the spatial resolution of the calculation.
The percent numbers in rows (e-g) are the integral intensities of the projections
to the HH, LH, or SO bulk bands, respectively, and the isosurfaces show their
shapes. For each state V 0 . . . V 3 the difference to 100% is the integral intensity
of the s-type Bloch function projection which is not shown here.

direction over one along [110]. The corresponding level separation of 0.3 meV

is, however, negligible since the ASA enters the k ·p calculation only via the
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Figure 3.4:

Top row: CB (cols. a,b) and VB (cols. c,d) edge profiles in a (001) cross section
plane 1.0 nm above the WL, pixelwise calculated from the strain dependent eight-
band k·p Hamiltonian Eq. (2.1). The energies refer to the CB edge of unstrained
InAs (being 1060 meV below the unstrained GaAs CB edge). For better contrast
a non-linear color scale is used. Due to piezoelectricity the profiles are C2v sym-
metric (cols. b,d) while at neglection of piezoelectricity the symmetry is almost
C4v (cols. a,c). Other rows: Corresponding probability densities of bound states
along the same section plane on a linear gray scale, calulated by eight-band k·p
theory using the parameters from Table 3.1.
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strain distribution. In the EP calculation the ASA has an additional, strain-

independent electronic effect leading to 24 meV separation of C̃1 and C̃2. The

VB groundstate Ṽ 0 shows a slight preference for the [110] direction but the

excited VB states prefer [110], like the CB states.

Spectral properties

The energy levels are shown in Fig. 3.1(d). The eight-band k·p CB (VB) levels are

47± 9 (45± 2) meV lower than those from the EP calculation while the ground-

state transition energy (C̃1 − Ṽ 1) agrees with the EP value within 2.5 meV.

Hence, the eight-band k ·p model predicts accurate kinetic (quantization) and

transition energies. Rigid spectral shifts of the magnitude of ∼ 46 meV occur,

e. g., when the band offsets at the heterojunction are altered by a similar amount.

Other potential reasons for a rigid shift are remaining deviations in the strain

dependence of the band edge profiles, or in the GaAs bandstructure. The shift

is considered insignificant here because (i) it is rigid, i. e., the energy differences

from the present calculation are very similar to the corresponding EP values, and

(ii) the spectral shift between the two EP calculations with [38] and without [37]

inclusion of the SO interaction is even larger.

The good agreement between the EP calculation and the present eight-band

k ·p calculation has to be contrasted with an earlier comparison stating larger

discrepancies [71]. The selection procedure for the k·p bandstructure parameters

proposed here is decisive, as detailed in the following.

Band mixing effects

The energy levels from the eight-band k ·p calculation in Ref. [71] are shown

in term scheme Fig. 3.1(e). The CB (VB) levels are in average 86 (12) meV

higher (lower) and the ground-state transition energy is 88 meV larger than the

values obtained here. The reason for this discrepancy is that in Ref. [71] different

bandstructure parameters were used which, for InAs, produce the bandstructure

shown in Fig. 3.2(b). This bandstructure does not approximate the EP band-

structure within a sufficiently large region around Γ. In the classical sense, the

parameters used in Ref. [71] yield a correct k·p representation, however, they do

not meet the high accuracy demands for QD calculations: Particularly the CB

and HH masses are too small, seen over a larger energy range, thus overestimating

the kinetic energies (overconfinement).

The somewhat too large LH-HH mass ratio in the calculation of Ref. [71] also

accounts for a cross-over of two excited VB states as compared to the EP calcula-

tion. Fig. 3.3(b) shows a pronounced leakage of the Ṽ 3 wavefunction towards the
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pyramid tip due to the large LH component (20%): Following the respective band

edge profiles HH wave functions tend to the pyramid bottom while LH ones are

attracted to the tip [39]. In agreement with the EP calculation the Ṽ 3 state cal-

culated here has the strongest LH component, realizing the most groundstate-like

projection to the LH band. In the k·p calculation of Ref. [71], however, this fea-

ture appeared already in Ṽ 2 due to the incorrect mass ratio which overestimates

the LH projection. Also the somewhat larger VB level separations obtained there

result from the smaller average VB mass.

The opposite case of an unnaturally small LH-HH mass ratio for large k values is

encountered if the SO interaction is neglected, as in an earlier EP calculation [37],

see Fig. 3.1(a). The corresponding bulk bandstructure is sketched by the dashed

line in Fig. 3.2(b) which shows the reduction of the Γ point VB structure to two

bands by merging the former LH and SO bands. The new ”LH” band is so much

lighter than the HH band that their mixing is largely suppressed. Eventually,

this results in an almost single-band representation involving only the HH band.

Then, bound VB states have well developed parities and smaller level separations,

the LH-related tendency to propagate to the pyramid tip is missing, and pairs of

rotated, similarly looking VB states are obtained instead, as shown in Ref. [37].

Hence, the inclusion of SO interaction is primarily necessary to enable a realistic

HH-LH mixing, rather than taking into account strong SO band contributions.

Optical properties

As detailed in Sections 4.4.1 and 6.1, basically all transitions are dipole-allowed in

strained pyramidal QDs although they show a large spread in intensity and polar-

isation. The transition matrix elements from the EP calculation and the present

eight-band k·p calculation agree within ±10% of the groundstate transition ma-

trix element. The least accurate values belong to the C̃1 → Ṽ 2, C̃2 → Ṽ 2,

and C̃3 → Ṽ 3 transitions and are overestimated due to the parallel, rather than

orthogonal, alignment of excited CB and VB states shown in Fig. 3.4(a,c). Inclu-

sion of piezoelectricity changes the geometrical alignment, see Fig. 3.4(b,d), and

improves the agreement between both calculations.

The in-plane polarization anisotropy (defined as I[110]/I[110]) of the ground-state

transition is 0.88 which, compared to the EP value 1.26, is rotated by 90◦. The

rotation occurs because both k·p ground-state wave functions are rotated with

respect to the EP calculation. The CB-VB Coulomb matrix elements agree with

the EP values within 2.9±1.1 meV. Such small deviations may well originate from

numerical details or the different approaches for treating the dielectric function.

Section 3.2.1 has shown that both the strain distribution and the strain-

independent ASA effect [38] give rise to a C2v symmetry of the bound states.
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However, the orientations of the excited CB states differ by 90◦ for both cases,

with consequences on the dipole transition polarizations. Hence, ASA and strain

cause opposite effects on the optical properties of InAs/GaAs pyramids.

3.2.2 Inclusion of piezoelectricity

The piezoelectric charging of the QD creates a quadrupole potential shown in

Fig. 4.7(d) which is also seen in the CB edge profile in Fig. 3.4(b). It forces the

CB (VB) states to prefer the [110] ([110]) direction, see Fig. 3.4(b,d), thus causing

a rotation of the first two exited CB states by 90◦ as compared to the situation

without piezoelectricity. Consequently, the piezoelectric effect has a very similar

impact on the optical poperties of the model QD as the ASA. The resulting

probability densities are shown in Fig. 3.3(c,d) and look virtually identical to

those from the EP calculation [38]. In particular, the V 3 state correctly shows

the characteristic LH leakage (”nose”) which is sensitive to the LH/HH band

mixing, as discussed above. The projections of the VB states to the HH, LH, and

SO bulk bands are shown in Fig. 3.3(e-g) and prove the LH related origin of the

”nose”. The percent values show that the band mixing is hardly influenced by

the piezoelectric effect.

The energy levels are shown in Fig. 3.1(c) and exhibit the same rigid shift com-

pared to the EP calculation as observed neglecting piezoelectricity (Fig. 3.1(d)).

The CB (VB) levels are 43 ± 6 (39 ± 3) meV lower than in the EP calculation,

the ground-state transition energy agrees within 4 meV. C1 and C2 are split by

9 meV now. The energy difference C3−C0 (V 3− V 0) agrees with the EP value

within 0.3 (3.5) meV. Thus the quantization energies of all considered states agree

well with each other. The k·p calculated CB-VB transition energies deviate from

the EP calculated ones by −4±6 meV only. The transition matrix elements agree

with the EP values within ±4% of the ground-state transition matrix element.

The ground-state transition in-plane polarization anisotropy is 1.12 and has the

same direction as in the EP calculation, like all other anisotropies. The Coulomb

matrix elements agree within 2.5± 0.5 meV.

Thus, taking into account the piezoelectric effect, a very close agreement be-

tween eight-band k·p and EP theory is observed. The remaining small differences

attributed to the different models and the intrinsic limitations of a given numer-

ical comparison are of no practical relevance.

3.2.3 Smaller quantum dots

A close agreement between the ”generalized” eight-band k ·p approach and an

advanced atomistic model has been proven for the specific case of InAs/GaAs
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QDs with 11.3 nm base length. For this size the effects of limited bandstructure

representation or the envelope function ansatz are negligible. For InAs/GaAs

QDs larger than the model QD (like in most experiments) the accuracy of the

k ·p method will further improve, doubtlessly providing for reliable theoretical

predictions.

The accuracy of the eight-band k·p model will, however, decrease for smaller

dots. The increasing kinetic energy finally brings even the parameter fitting

procedure proposed here to its limits. To determine this break-point the above

calculations including piezoelectricity are repeated for two smaller InAs/GaAs

QDs having pyramid base lengths b = 9.0 nm and b = 6.8 nm, which also were

modeled by the EP method [38].

The k ·p energy levels exhibit the same rigid shift by ∼ 46 meV compared to

the EP calculation as for b = 11.3 nm. After compensation of this shift, the

EP calculated CB (VB) states for b = 9.0 nm are reproduced with deviations of

+7 . . . + 27 meV (−1 . . . + 7 meV) and the groundstate transition energy agrees

within 8 meV, suggesting that this QD size is still reasonably well described by

the eight-band k·p model. The CB (VB) levels for even smaller dots (b = 6.8 nm)

deviate by +33 . . . + 55 meV (−20 . . .− 1 meV) from the EP values, and the k·p
groundstate transition energy is 33 meV larger than the EP value. The transition

energies of this dot size are overestimated due to the increasing deviation between

the k ·p and EP bulk bandstructures for |k| > 1.8 nm−1, see Fig. 3.2(a). This

k-space limit corresponds to a real space size of 3.5 nm which approaches the

height of this smallest QD.

Hence, the comparison regarding the InAs/GaAs material system shows a rea-

sonable agreement between eight-band k·p and EP calculations for b ≥ 9 nm. The

contributions from ”large-|k| states” are apparently negligible in this size range.

The valid QD size range for eight-band k·p calculations depends on the material

system, of course. However, the predictive power can be checked in advance by

determining the minimal feasible structural size from the maximal feasible |k|
value, using bandstructure diagrams like in Fig. 3.2.

3.3 Resumé

In order to improve the accuracy of the eight-band k ·p model in electronic

structure calculations of strongly confining and inhomogeneously strained QDs,

it is suggested to determine all k·p parameters from a fit to prevailing data on

the bulk bandstructures of all constituent materials in the heterostructure. The

goal of the fit procedure is the reproduction of a given bulk bandstructure by the

k·p model within an as large as possible region of the BZ.
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The size of this k-space region should correspond to the minimal structural

size in the real space. Thus the QDs must not be too small for typical semicon-

ductors. In the case of InAs/GaAs QDs high accuracy is achieved for pyramid

base lengths b ≥ 9 nm, matching well the experimentally known size range of

self-organized InAs QDs. Below this size, transition energies become increas-

ingly overestimated due to an increasing deviation between the true and the k·p
bandstructure. Second, linear deformation potentials used in the Pikus-Bir type

Hamiltonian should be adjusted as to fit the average large-strain situation in the

QDs, otherwise systematic deviations due to non-linearities in the true system

may occur. Alternatively, the eight-band k·p model is easily extended to include

hydrostatic band gap non-linearities.

The enhancement of accuracy achieved by the proposed fit procedure was

demonstrated by exemplaric calculations for InAs QDs. The eight-band k·p model

including the piezoelectric effect predicts the same electronic and optical proper-

ties for pyramidal InAs/GaAs quantum dots as the currently most advanced mi-

croscopic theory. The quantitative agreement between both approaches extends

even to fine details of band mixing effects in wave functions and yields an overall

accuracy of ∼ 10 meV for exciton transition energies. For practical electronic

structure calculations, in particular for comparison with experimental results,

the eight-band k·p method is fully valid. Its strength is the flexibility in treat-

ing realistic, large structures and (qua)ternary alloys like In(Ga)As/Ga(Al,P)As,

capturing the important effects of strain, piezoelectricity, and band mixing. This

renders the model ideally suited for field studies of the correlation of structural

and optical properties of strained, low-symmetry QD heterostructures.
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Chapter 4

Electronic Structure of Quantum

Dots

Three regimes of confinement may be distinguished by comparing the effective

radius R of the QD with the Bohr radii1 of electrons (ae
B) and holes (ah

B) in the

respective bulk material [1, 85, 86], where typically ae
B > ah

B : R > ae
B defines

weak confinement and leads to a quantization of the center-of-mass motion of

excitons while the exciton binding energy EX is mainly due to Coulomb interac-

tion. ae
B ≥ R ≥ ah

B defines the intermediate confinement regime where mainly

the electron is quantized, but not the hole. In this case quantum confinement

and Coulomb interaction have comparable influence on EX . Finally, ah
B > R

defines strong confinement where both carrier types become quantized and EX

is strongly increased by the structural confinement.

Already from a substantially simplified viewpoint employing effective-mass the-

ory with parabolic bands it becomes clear that three-dimensional (3D) strong

confinement lifts any k conservation in the bound states of charge carriers: The

Hamiltonian Ĥ = h̄2k2/(2m) + V (r) does not commute with k in any spatial

direction. Hence, neither k, nor the momentum p yield useful observables in such

systems. In absence of magnetic fields bound states in QDs are degenerate by

time-reversal symmetry [87,88].

According to single-band effective-mass theory the single-electron and -hole

energies in a rectangular QD (edge lengths Lx 6= Ly 6= Lz) with an infinitely high

potential barrier V (the extreme case of strong confinement) are given by

Ee,h
αβγ = Ec,v ± π2h̄2

2me,h

(
α2

L2
x

+
β2

L2
y

+
γ2

L2
z

)
, (4.1)

1The Bohr radius serves as an elementary length unit and is defined here as aB = h̄2/(me2)
[84] where m is the Γ-point effective mass of the CB or VB, respectively.

35
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[89] where ”+” (”−”) holds for electrons (holes), α, β, γ = 1, 2, . . . are integer

quantum numbers, and Ec and Ev denote the band edges of the bulk material

forming the QD. If the QD is spherical with radius R then

Ee,h
nl = Ec,v ± h̄2

2me,h

(
χnl

R

)2

(4.2)

[4] where n = 1, 2, . . . is the radial and l = 0, 1, . . . the angular quantum number,

and χnl is the n-th zero of the spherical Bessel function jl . An energy level scheme

according to Eq. (4.2) is shown in Fig. 4.1(a). For both dot shapes, the effective-

mass theory predicts simple selection rules for possible dipole transitions between

electrons and holes (∆α = ∆β = ∆γ = 0 and ∆n = ∆l = 0, respectively) as well

as for transitions between multi-exciton states [89].

electron states

hole states

electron states

hole states

0

(a) (b)

.  .  .

Figure 4.1:

Energy levels and allowed single-particle dipole transitions in a spherical QD with
infinite barrier, according to effective-mass theory (a) using parabolic bands and
yielding Eq. (4.2), and (b) including VB mixing (taken from Ref. [4]).

This picture is, however, too simplified to apply to real 0D semiconductor

structures. Apart from essentially different geometries encountered in lithograph-

ically defined or self-organized epitaxial QDs, realistic energy level schemes re-

quire modifications taking into account band-mixing effects, finite barrier heights,

strain effects and, if applicable, piezoelectricity, as already done in Chapter 3.

According to Eq. (4.2) there is orbital angular momentum conservation in the

spherical QD. This emerges from the mesoscopic central symmetry of V , which is
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artificially preserved on the microscopic (i. e., atomic) scale by assuming parabolic

bulk bands in effective-mass theory. In actual fact the valence bands are not even

isotropic, let alone parabolic (see Fig. 2.3 and Fig. 3.2), so that the mesoscopic

and microscopic symmetries of the confinement do not match. This causes a

mixing of, at least, the HH and LH bands in the 0D hole wavefunctions, with

the consequence of fundamentally altered wavefunction symmetries and 0D hole

energies. The remaining conservation values for spherical QDs are the parity

and the total angular momentum, the latter of which merges the mesoscopic

orbital angular momentum and the microscopic angular momentum of the Bloch

functions [4]. Fig. 4.1(b) shows an energy level scheme of a spherical QD taking

into account VB mixing. The modified hole wavefunction symmetries also lead

to different dipole selection rules as compared to Fig. 4.1(a): Formerly forbidden

transitions with ∆n 6= 0 acquire significant oscillator strength due to the VB

mixing. In materials with small SO energies ∆0, like InP or CdS, the mixing will

also involve the SO band [90]. In narrow-gap materials like InAs even the 0D

electron levels are affected by band mixing, as demonstrated in Section 3.2.1.

In buried QDs (being surrounded by another semiconductor material) the con-

fining barrier V is of finite height as defined by the band offsets. Hence there is

a finite number of bound states strongly depending on the QD size, as well as on

the geometrical shape and chemical composition. As the QDs become smaller the

energy separations between the levels increase (quantum size effect), and below

a certain size no bound state will exist at all.

In QDs formed in a lattice-mismatched material system like InAs/GaAs, nei-

ther the barrier heights along the heterointerface, nor the confinement poten-

tial values V (r) inside the QD are constant, due to pseudomorphic strain: The

spatially varying strain field modulates the band edges and thus their disconti-

nuities at each position r along the heterointerface. An additional contribution

to the confinement potentials may arise from a piezoelectric charging of the QD

heterostructure, scaling linearly with the QD size (to first order). Hence the

confinement itself is size dependent. In such QDs the two conservation values

still present in Fig. 4.1(b) do not exist anymore, and there are no good quantum

numbers which persist during a change of the QD size. Finite-barrier effects and

band mixing lead to a lifting of dipole selection rules, to pronounced optical po-

larization properties, and to an enhancement of mid-infrared optical transitions

between the 0D electrons or holes, respectively.

Few years ago the first experimental evidence using temperature dependent

cathodoluminescence experiments was obtained for the existence of 0D elec-

tronic states in self-organized InAs/GaAs QDs [91] which had been fabricated

by Stranski-Krastanow growth during molecular beam epitaxy. Since then this

type of dots has emerged as one of the most extensively studied QD systems [1].

Today, a large number of experimental results is available addressing the epi-
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taxy [92], as well as the structural, optical [93], and transport [94, 95] properties

of such dots. QD lasers operate at room temperature both cw and pulsed up to

≈ 10 GHz [17,18,96].

The size and shape of Stranski-Krastanow grown InAs QDs on GaAs (001) vary

dependent on the epitaxial method and, particularly, on the growth conditions

used: Pronounced pyramidal shape or a less pointed dome shape, side facets

oriented along {101} [97], {105} [98], {113} [99], {114} [100, 101], {136} [102],

rather flat disk-like structures [103], and different sizes of QDs [12] have been

observed.

Accordingly, low temperature spectra of a few or single QDs exhibit rich exci-

tonic structures, but differ according to the growth conditions [12, 104–109]. In

larger ensembles of QDs inhomogeneous line broadening of presently ≥ 18 meV

[12] due to fluctuations of size, shape and chemical composition disguises part

of this spectral structure. Nevertheless, transitions due to excited exciton states

are clearly visible in calorimetric absorption [91], photoluminescence (PL) [110],

and photoluminescence excitation (PLE) spectra [12,111–113], indicating the ex-

istence of several excited levels for both electrons and holes in self-organized

InAs/GaAs dots. Unambiguous assignment of the transitions is still pending,

although progress has been made, advancing well beyond interpretations based

on two-dimensional harmonic oscillator models (as detailed in Chapter 6.3). In

order to obtain meaningful interpretations, advanced numerical bandstructure

calculations need to be correlated with precise information about the structural

properties of the QDs [12].

Large effort has been spent since 1994 [114,115] at the electronic structure cal-

culation for this QD system. The dot shape was often assumed to be a pyramid

with {101} side facets, like in this chapter, in agreement with results in Ref. [97].

The energy levels have been calculated using conventional effective mass mod-

els [24,114], perturbational effective mass approaches [20,21,23], eight-band k·p
theory [25–32], tight-binding [35], and EP theory [36–39]. Thereby, varying pre-

dictions for both the number and actual energies of the levels were obtained, being

mainly due to varying assumptions about the bulk properties of the constituent

materials: As demonstrated in Chapter 3, eight-band k ·p and EP theory yield

quantitatively equivalent predictions if the same bulk properties are assumed in

both calculations, and differences between various k·p calculations reported are

primarily due do different material parameters used [31].

In the following, the size dependence of the electronic properties of capped,

single pyramidal InAs QDs with {101} facets on GaAs (001) is investigated for

the QD base length b range 10 nm ≤ b ≤ 20 nm using the eight-band k ·p
model. The influence of selected material parameter variations on the single-

particle energies is discussed. Also the influence of a truncation of the pyramid
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on the electronic properties was studied, and published in [116]. A similar study

concerning truncated InAs pyramids was reported in Ref. [32]. A size-dependence

study of pyramidal InAs dots, based on EP calculations, was reported in Ref. [38].

Since the impact of strain on the carrier confinement is comparable to that of

the band offset due to the variation of the chemical composition at the hetero-

junctions, the wave functions and energies are sensitive to the underlying strain

distribution (see also Section 3.1.1). Therefore, the influence of the chosen strain

model on the energy levels is investigated next: The continuum mechanical (CM)

model using the (experimentally) known elastic moduli C11, C12, C44 is compared

to a linearized valence force field (VFF) model, and to a CM calculation employ-

ing an incorrect value of C44 implicitly assumed in the VFF model.

4.1 Calculation of strain

The software for strain calculations according to the CM or VFF model was

developed and written by Marius Grundmann.

4.1.1 Continuum mechanical model

The total strain energy in the CM model is given by [57]

UCM =
1

2

∑

i,j,k,l

Cijklεijεkl . (4.3)

For a given structure UCM is minimized, using finite differences for the strains

εij = ∂ui/∂xj , where u is the displacement vector field. The elastic moduli Cijkl

are represented by the parameters C11, C12, and C44 for cubic crystals. The strain

distribution in capped InAs pyramids with b = 13.6 nm on a thin InAs WL in

GaAs, shown in Fig. 4.2 and Fig. 4.3, is calculated using ∼ 2.6 · 106 voxels and

a conjugate-gradient method for the total energy minimization. At interfaces,

the condition of a continuous stress tensor yields the proper boundary condi-

tions. In order to avoid oscillatory solutions arising when symmetric difference

quotients are used, the energies from the eight possible combinations of forward

and backward differences in the three directions are averaged.

4.1.2 Valence force field model

Sufficiently small QDs can also be directly modeled with the VFF model [117–

120]. The elastic energy of each atom is written in terms of the positions of

its nearest neighbor atoms and then added up for all atoms. In the version of
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Figure 4.2:

Strain distribution in and around an InAs pyramid (b = 13.6 nm) bounded by
{101} facets on a 1 ML thick InAs WL within a GaAs matrix, calculated according
to the CM model. The strain tensor components εxx (a,e), εxy (b,f), εxz (c,g),
and εzz (d,h) are shown in the (100) cross section planes through the pyramid
tip (a-d) and in the (001) cross section plane a few MLs above of the WL (e-h).

Keating [117], the elastic energy UVFF of the crystal is written as a sum over all

atoms i and given as

UVFF = Uα + Uβ , (4.4)
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Figure 4.3:

Strain distribution in and around an InAs pyramid (b = 13.6 nm) bounded by
{101} facets on a 1 ML thick InAs WL within a GaAs matrix, calculated according
to the CM model and plotted along [001] linescans: (a) through the WL far away
from the dot, (b) and (c) through the pyramid tip. (a) and (b) show the diagonal
elements of the strain tensor and (c) depicts the hydrostatic (H) and biaxial (B)
strain components: H = εxx + εyy + εzz , B2 = (εxx− εyy)2 + (εyy − εzz)2 + (εzz −
εxx)2 .

Uα =
1

4

∑

i


αij

4

∑

j

(rij · rij − 3d2
ij)

2

d2
ij


 , (4.5)

Uβ =
1

4

∑

i


∑

j

∑

k 6=j

βijk(rij · rik + 3dijdik)
2

2dijdik


 , (4.6)

where the sums over j and k run over the four tetrahedrally coordinated nearest

neighbor atoms, rij denotes the vector from the ith atom towards its jth neighbor,

and 4dij is the lattice constant of the binary (or elementary) i−j constituent. Uα

in Eq. (4.4) is non-zero when the bond length is changed from the strain-free state

and is thus called ”bond-stretching” interaction. Uβ in Eq. (4.4) is non-zero when

the angle between bonds is altered and is thus called ”bond-bending” interaction.

By comparison with the cubic strain tensor it follows that α and β can be

expressed in terms of C11 and C12 [117]:

α = (C11 + 3C12)d , (4.7)

β = (C11 − C12)d . (4.8)



42 CHAPTER 4. ELECTRONIC STRUCTURE OF QUANTUM DOTS

Si Ge GaAs InAs InP

κ 0.99 1.07 1.13 1.22 1.20

Table 4.1: Ratio κ according to Eq. (4.10) for different semiconductors.

In a ternary compound or across a heterointerface the β parameter is geometri-

cally averaged if the atoms j and k are not identical: βijk =
√

βijβik [121]. Since

this VFF model works with two parameters only, C44 is no independent elastic

modulus anymore but fixed to the value

C44 =
αβ

(α + β)d
, (4.9)

i. e. κ =
2C44(C11 + C12)

(C11 − C12)(C11 + 3C12)
≡ 1 . (4.10)

This relation is fulfilled for silicon. For a number of other important semiconduc-

tors there are deviations up to 22% (InAs), see table 4.1.

The potential of Eq. (4.4) is not harmonic, and this unharmonic Keating model

has been used in Chapter 3, motivated by Ref. [37–39,122]. However, as remarked

by Kane [120], anharmonic effects due to the higher order terms have not been

shown to be satisfactorily treated by this Keating model. In particular, the

third-order elastic moduli Cijk [123, 124] do not enter the theory. Therefore, the

linearized version of Uα and Uβ in Eq. (4.4), as proposed in Ref. [120], is used in

this work.2

In addition, second-nearest neighbor bond stretching, contiguous bond bend-

ing, and the so called MSBN interaction [126, 127] can be included to the VFF

model. The eight parameters of Solbrigs model [126, 127] are determined from

fits to experimental phonon dispersion curves. It has been applied to InAs/GaAs

pyramids [24] but is not pursued here in order to avoid its excessive numerical

expense. Instead, two more easily tractable models are compared: CM and the

linearized Keating model.

The differences between the strain distributions in a pyramid calculated within

the CM and the (linearized) VFF models are shown in Fig. 4.4. Two different

continuum mechanical models are compared, first CM with the correct value

of C44, and second CM[CVFF
44 ] where C44 takes the incorrect value implied by

the two-parameter Keating model according to Eq. (4.9). The main differences

between the VFF and CM models are:

2Most recently, after the submission of this thesis, a generalized VFF model taking also into
account C44 has been proposed [125].
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Figure 4.4:

Strain distributions in an InAs pyramid (b = 13.6 nm) on a 1 ML thick WL.
The differences between the (linearized) VFF model, the CM model, and CM
model with the value for C44 according to Eq. (4.9) used in VFF (CM[CVFF

44 ]) are
compared. (a) εxx, (b) εzz, (c) hydrostatic strain along [001] through the center
of the pyramid, (d) shear component εxz along [101], originating at the bottom
center of the pyramid. Solid (dashed) lines represent the difference between the
VFF and CM (CM[CVFF

44 ]) models. Dash-dotted lines show the difference between
the CM and CM[CVFF

44 ] models.

• At the tip of the pyramid the diagonal strain components εii analytically

diverge in continuum theory while the VFF model yields a finite value. A

numerical solution of the CM model using finite differences with a voxel

size of one atom yields a similar value, however.

• At interfaces the VFF and CM models differ on the atoms directly adjacent

to the interface, as shown in Fig. 4.5.

• In the volume, differences between VFF and CM (see Fig. 4.5) are mainly

due to the incorrect value of C44 in VFF. They almost disappear if VFF

is compared to CM[CVFF
44 ] which uses the incorrect C44 value according to

Eq. (4.9).
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Figure 4.5:

Comparison between the CM and VFF strain models. The strain tensor compo-
nents εxy and εzz as calculated by the CM (a,c) and VFF (b,d) models, respec-
tively, are plotted along a (001) cross section plane somewhat above the WL. The
numerical differences between the two models, ∆ε = εVFF − εCM are shown for
the strain tensor components εxx (e), εxy (f), εxz (g), and εzz (h).

• The symmetry of the CM strain tensor in the (001) plane is C4v. The tetra-

hedral configuration of atoms in the VFF model leads to a C2v symmetry,

i. e. strain components are different along the [110] and [110] directions.

This is visualized in Fig. 4.6, where the difference of the strain component
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εzz along the [110] and [110] directions is plotted. In the CM model (for

any value for C44) this difference is a priori zero.

The influence of these differences on the energy levels and wave functions of

charge carriers in the QD is discussed below.

Figure 4.6:

Difference of εzz along the [110] and [110] directions along a [110] linescan through
the center of an InAs pyramid (b = 13.6 nm) on a 1 ML thick WL, calculated
using the VFF model.

4.2 Piezoelectricity

Regardless of the chosen strain model, the symmetry of the carrier confinement

is only C2v due to piezoelectric [74–78] charging of the QD [114]. From the strain

tensor (εij) and the piezoelectric modulus e14 the piezoelectric charge density

ρp(r) = div [e14(r) · {εyz + εzy , εxz + εzx , εxy + εyx}(r)] (4.11)

is calculated. Eq. (4.11) introduces C2v symmetry to the Hamiltonian Eq. (4.14)

even when (εij) possesses C4v symmetry: The polarization charges mainly form

dipoles along the edges of the pyramid and the polarities of the dipoles alter

between inside and outside the QD as well as between neighbouring edges, see

Fig. 4.7(a). At edges along [1 1 1] and [1 1 1] the negative charges are located inside

the QD. This implies that the [110] direction will be the favourable direction for

the extension of hole wave-functions, while electrons will prefer to expand along

[110].
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Figure 4.7:

Piezoelectric charges (a) and their Coulomb potential (b-d) in a pyramidal InAs
QD with b = 12 nm. (a): Isosurfaces corresponding to volume charges of
±0.3 e nm−3 [114], light gray denotes positive charge and dark gray negative
charge. (b): Associated Coulomb potential isosurfaces [114], light gray denotes
+30meV and dark gray −30meV. (c,d): Cross section through the Coulomb
potential along a (001) plane somewhat above the WL in two different magnifica-
tions, (d) is a zoom into (c). The InAs/GaAs heterointerface is visible by means
of the image charge effect.

The associated Coulomb potential Vp(r) is obtained from the Poisson equation

Eq. (4.12),

ρp(r) = ε0∇ [εs(r)∇Vp(r)] (4.12)

⇔ ∆Vp(r) =
ρp(r)

ε0εs(r)
− 1

εs(r)
∇Vp(r) · ∇εs(r) , (4.13)

where εs(r) is the static dielectric constant of the respective material at position

r [128, 129]. The first term on the right-hand side of Eq. (4.13) refers to the

true three-dimensional charge density while the second is the contribution of

polarization surface charge densities due to discontinuous dielectric constants

at hetero-interfaces (the singularity of ∇εs is integrable), usually discussed as

image charge effect image charges [130–132]. Numerically, Eq. (4.12) needs to

be solved on a substantially larger space region than the bandstructure equation

Eq. (4.14), and using Dirichlet boundary conditions. Otherwise a too small spatial

modulation of Vp(r) may be obtained.

The piezoelectric potential Vp(r) is shown in Fig. 4.7(b-d) and scales essentially

proportionally to the QD size b. In the studied dot size range the piezoelectric

influence on the bound particle states dominates over that of immediate C2v

symmetry effects from the VFF strain distribution, as also discussed in Chapter

3.
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4.3 Bound single-particle states

The energy levels and wave functions of bound electron and hole states are cal-

culated using the 8-band k·p model outlined and validated in Part I. The spatial

representation of the Hamiltonian H yields a system

H (x, y, z, ∂x, ∂y, ∂z, ∂xx, ∂xy, ∂xz, ∂yy, ∂yz, ∂zz) Ψ(x, y, z) = E Ψ(x, y, z) (4.14)

of eight coupled partial differential equations for the eight complex envelope

functions

Ψ = (ψs↑, ψx↑, ψy↑, ψz↑, ψs↓, ψx↓, ψy↓, ψz↓) . (4.15)

Those eigensolutions (En, Ψn) of Eq. (4.14) that vanish on the boundary ∂G of

the calculation region G, i. e. the integrable ones, are the bound states of charge

carriers in the QD. The Hamiltonian is discretized using the finite-differences

method described in Chapter 8 and the discrete eigenproblem is solved by an

algorithm described in Section 9.3.

The k·p material parameters used in this chapter are summarized in Table 4.2.

These are conventional literature values which not have been derived according to

the procedure proposed in Chapter 3. The reason for neglecting that procedure

here is that the predictions obtained in the following, using the parameters from

Table 4.2, match significantly better recent experimental results [12] than the EP

calculations [36–39] used for comparison in Chapter 3, as discussed in Chapter

6.3. The proposal of Chapter 3 is more methodological, proving the sufficiency

of the eight-band k ·p model for the current purpose, while the actually most

plausible bulk bandstructures for InAs and GaAs are difficult to determine in

practice.

The electron and hole level energies and wavefunctions were calculated for four

different QD sizes (base lengths b: 10.2 nm, 13.6 nm, 17.0 nm, 20.4 nm) and using

two strain models (CM and VFF). The InAs/GaAs band alignment (see E ′
v in

Table 4.2) is assumed as suggested by Fig. 2.3, i. e., the offset in the unstrained

bulk VB edge is 186 meV (referred to as lineup ”A”, ∆Ec/∆Eg = 0.83). The

assumed temperature is 6.5 K.

4.3.1 Results for strain according to the CM model

Fig. 4.8 shows the energy levels for the strain distributions obtained by the CM

model. The WL ground-state levels shown are taken from Ref. [114], in agree-

ment with experimentally observed transition energies, and are assumed to be

independent from the QD size.
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Unit Value for IncGa1−cAs Ref.

a Å 5.6503 + 0.4050c [69]

E0 meV 1518− 1580c + 475c2 [69]

E ′
v meV −6920 + 231c− 58c2 [40, 69]

∆0 meV 340− 93c + 133c2 [45]

Ep meV (1.238− 0.2095c)1−me

me

3E0(E0+∆0)
3E0+2∆0

[53, 133]

me m0 0.0667− 0.0419c− 0.00254c2 [62]

γ1 1/[(1− c)/7.10 + c/19.7] [45,61]

γ2 1/[(1− c)/2.02 + c/8.4] [45,61]

γ3 1/[(1− c)/2.91 + c/9.3] [45,61]

B meV nm2 0 [33,40]

b′ meV 0 [33,40]

ac meV −8013 + 2933c [62]

ag meV −8233 + 2153c [62]

bv meV −1824 + 24c [45]

dv meV −5062 + 1462c [45]

C11 GPa 118.8− 35.5c [45, 61]

C12 GPa 53.8− 8.5c [45, 61]

C44 GPa 59.4− 19.8c [45, 61]

εs 13.18 + 1.42c [62]

e14 C m−2 0.160− 0.115c [62]

Table 4.2:

Indium gallium arsenide material parameters for 6.5K used for the QD calcula-
tions in this part of the work.
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Figure 4.8:

Electron and hole energies in pyramidal InAs/GaAs QDs for different sizes, cal-
culated using the CM strain model. The lines connect levels having the same
wave function symmetry, labeled by the appropriate ”quantum numbers” (see
the text on p. 50 for their explanation).
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Figure 4.9:

Tangential planes of the probability-density nodal surfaces used to label bound
states.

s part: 0.89 px part: 0.03 py part: 0.03 pz part: 0.05

Electron Ground State

s part: 0.01 px part: 0.46 py part: 0.46 pz part: 0.07

Hole Ground State

Figure 4.10:

Decomposition of the ground-state wave functions into their constituing single
envelopes (b = 13.6 nm). The numbers denote the integral probability of the
respective envelopes after summation over both spins. The electron ground state
is mainly represented by s-type Bloch functions while the hole ground state is
almost completely described by p-type Bloch functions.

The ”quantum numbers” are based on a depictive terminology to graphically

describe the shape of the probability density, and refer to the tangential planes of

the probability-density nodal surfaces in the order [110], [110], [001] (see Fig. 4.9).

These are, however, no true quantum numbers: As a consequence of band mixing,

nodal surfaces exist at most for single envelopes and usually have different orien-

tations for the p-type envelopes |x〉, |y〉, and |z〉 (see Fig. 4.10). The probability

density distributions obtained by (weighted) summation over all envelope con-
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tributions have no nodal surface, hence the states possess no well-defined parity,

see also the discussion in Section 3.2.1.

Due to the piezoelectric field shown in Fig. 4.7(d) the main directions of ex-

tension of the wave functions are [110] for electrons, see Fig. 4.11(a) (as well as

Fig. 3.3(c) and Fig. 3.4(b)), and [110] for holes, see Fig. 4.11(b,c) (as well as

Fig. 3.3(d) and Fig. 3.4(d)), while [ij1] only occurs in high energy states in large

QDs, see the electron state |001〉 in Fig. 4.11(a).
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000 210110010 200020
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Figure 4.11:

Probability density isosurfaces (p = 65%) of (a) the electron and (b) the hole
states for b = 20.4 nm, the strain is calculated using the CM model. (c) Hole
states for b = 13.6 nm and strain calculated using the VFF model. The large
shape differences between (b) and (c) are mainly due to the different dot sizes
and not due to the strain modeling. (d) Hole ground state for b = 13.6 nm from
an effective mass calculation using the same strain distribution as in (c). The
”quantum numbers” graphically describe the wave-function shapes and originally
count the nodal surfaces tangential to (110), (110), and (001), respectively (see
the text on p. 50 and Fig. 4.9).
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Electron levels (CM)

For QDs with b ≤ 10 nm at most one bound electron state is found, assuming

the k ·p parameters from Table 4.2,3 while for b = 20 nm there are as many as

12. The ground state is s-like (see also Fig. 4.10) for all considered dot sizes and

its shape is slighty elongated along [110]. The first and second excited, p-like,

states |100〉 and |010〉 form a non-degenerate pair, the energy separation between

them is approximately proportional to b, in agreement with the proportionality

between the piezoelectric potential and b. The separation between the average

energy of the p-like states and the s-like state decreases as the dot size increases.

Intermixing with WL states is not observed, i. e., bound electron wave functions

do not extend into the WL.

Hole levels (CM)

Bound hole states are generally confined to the bottom of the pyramid, see

Fig. 4.11(b,c), due to the dominant HH contribution in connection with the

present strain profile, as discussed on p. 28. Due to the pronounced band-mixing

effects discussed in Chapter 3 the shapes of bound holes depend strongly on the

QD size, as can be seen by comparing Fig. 4.11(b) (b = 20.4 nm) and Fig. 4.11(c)4

(b = 13.6 nm). The wave functions of excited hole states leak somewhat into

the WL. In contrast to single-band effective mass calculations using the same

strain distribution, and shown in Fig. 4.11(d), the ground-state wave functions

are pronouncedly elongated along [110] (see Fig. 4.11c), and also the excited

states differ significantly from effective mass results [114] with respect to both

the wave-function shapes and level separations.

In large QDs the ground-state wave functions are asymptotically torn into two

(see Fig. 4.11b), becoming almost degenerate with the first excited level (see

Fig. 4.8), thus realizing a geometrical symmetry breaking. In Fig. 4.8 higher

excited hole levels for b > 16 nm have not been calculated. The dependence

of the ground-state energy on the dot size is weaker than for electrons, due to

the larger average mass. The energetic splitting between the first and second

excited states (|010〉 and |020〉) is comparable to that of the electrons (|100〉 and

|010〉) but not strictly proportional to b anymore, and both states are not p-

like either. This underlines that 0D holes behave less classically than electrons

because of their greater sensitivity to band-mixing effects caused by the quantum

confinement.

3As shown in Section 3.2.3, four bound CB states can be predicted for such small dots if
different material parameters are used (for instance, those from Table 3.1).

4The VFF-based wave functions shown in Fig. 4.11(c) to facilitate the comparison with a
number of other works look very similar to the CM-based ones.
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4.3.2 Impact of input values

Table 4.3 shows some results regarding the influence of variations of selected input

parameters, like the InAs/GaAs band offset, on the calculated energy levels. A

related study was reported in Ref. [32].

Set Changed parameters Unit Values for GaAs Values for InAs

1 like no. 2, except

voxel size half lattice constant

2 reference set

3 like no. 2, except

e14 Cm−2 0.16 → 0 0.045 → 0

4 like no. 3, except

E ′
v meV -6920 → -6920 -6747 → -6670

5 like no. 4, except

Ep eV 28.0 → 22.71 22.2 → 20.2

6 like no. 5, except

ac meV -8013 → -7170

ag meV -8233 → -8330

bv meV -1824 → -1600

dv meV -5062 → -4230 -3600 → -3100

7 like no. 6, except

strain (εij) reduced by 10 %

Table 4.3: Changes in material parameters made in Fig. 4.12.

Discretization error

The k ·p material parameters from Table 4.2 are used in sets 1 and 2 of Table

4.3. In set 2 the finite-differences voxel size is the lattice constant, as throughout

this part. Set 1 is calculated on a twice as fine grid (8 times more voxels). By

comparing the two, the discretization error of the level energies calculated using

the grid of set 2 is estimated to be ≤ 10 meV. Since electron and hole energies

shift in the same direction, the error in transition energies is even smaller.

Different material parameters

Set 7 is similar to the data used in Ref. [26], and sets 3–6 show the transition

from set 2 to set 7 (subsequent sets include the changes of previous ones). In
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set 3 the piezoelectricity is turned off. In set 4 the band alignment is changed

from alignment A (see p. 47) to that calculated in Ref. [58] (called lineup ”B”)

where the unstrained VB offset at the InAs/GaAs heterojunction is 264 meV

(∆Ec/∆Eg = 0.76). In sets 5 and 6 the optical matrix parameter and the defor-

mation potentials are changed, respectively, and set 7 takes approximately into

account the different strain distributions assumed in Ref. [24,26].
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Figure 4.12:

Ground-state energies for b = 13.6 nm and different strain models and material
parameters, as listed in Tables 4.3 and 4.4. The dotted lines are guides-to-the-eye.

The resulting ground-state energy levels are plotted in Fig. 4.12. The piezo-

electricity has little influence on the ground-state energies, as also shown in

Fig. 3.1(c,d), but this must not distract from its importance for the excited

state wave functions and the related optical properties like oscillator strengths

and anisotropies, as discussed in Chapter 3 and below. The band alignment has

little influence on the transition energy. The scaling of strain has little influence

on the hole ground-state energy, because |av| ¿ |ac| for InAs (see Table 4.2).

For smaller optical matrix parameters Ep the transition energy increases which

is mainly due to the related effective decrease of the bulk conduction band mass,

the holes are much less affected.
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CM CM[CVFF
44 ] VFF

Ee
000 1292.9 1282.4 1274.5

Eh
000 166.5 173.1 176.2

∆E 1126.4 1109.2 1098.4

Table 4.4:

Ground-state energies (meV) of electrons and holes and the transition energy in
InAs pyramid (b = 13.6 nm) calculated for three different strain models.

InAs/GaAs band offsets An important parameter for the energy level posi-

tions of electrons and holes with respect to the GaAs barrier is the heterojunction

band line-up (see also p. 27). Unfortunately, this is one of the least accurately

known parameters at the same time. In case that lineup B (see p. 54) were closer

to reality than lineup A, the ground-state energies in QDs with b ≥ 13 nm would

shift upwards by ≈ 70 meV while the increase of kinetic energy of the holes is

approximately equal to the decrease of that of the electrons. Thus the ground-

state transition energies would increase by less than 15 meV. Some bound electron

states would disappear for large dots as compared to the results of Fig. 4.8, and

some new bound hole states would appear. The relation between the localization

energies of the electron and hole ground states would become almost inverted.

4.3.3 Results for strain according to the VFF model

Table 4.4 shows the ground-state energies of electrons and holes and the direct

transition energies calculated using the strain distributions according to the CM,

VFF, and CM[CVFF
44 ] models. The differences between CM[CVFF

44 ] and CM are

larger than between CM[CVFF
44 ] and VFF (see also Fig. 4.12) indicating that

the major part of the difference between CM and VFF is due to the incorrect

value of C44 in the VFF model rather than its atomistic character. Therefore it is

concluded that the CM model gives a more useful description than the (linearized)

VFF model. This holds the better the larger the QDs are.

The electron levels are almost rigidly shifted by −17 meV as compared to the

CM calculation, in agreement with the fact that CM and VFF produce effec-

tive electron confinement potentials differing by 20 meV [122]. The hole levels

are in average 11 meV stronger localized than according to the CM calculation,

otherwise no significant difference is observed. Further details concerning the

comparison of the CM and VFF strain models are published in Ref. [31].
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4.4 Dipole transitions

Within the dipole approximation the photon absorption cross section [134] of a

QD is proportional to

Mab = | ê · pab |2

where ê is the direction unit vector of the electric field of the linearly polarized,

incident light and pab is the momentum matrix element between the states |a〉
and |b〉. The matrix structure of the k·p momentum operator [52]

p =
m0

h̄

∂H

∂k
(4.16)

(H is the QD Hamiltonian from Eq. (4.14), k the wave vector, and m0 the free

electron mass) follows from Eq. (2.1):

p =

(
F 04

04 −F

)
with F =

∂G

∂k
, (4.17)

where 04 is the 4×4 zero matrix, and the overlining denotes the complex conjuga-

tion. The origin of dipole oscillator strength between eight-band k·p initial (Ψa)

and final (Ψb) states can be visualized by the following approximation [27, 53]

(which is not used in this work, however):

〈Ψa|ê · p|Ψb〉 =

〈
8∑

i=1

uiφ
(a)
i

∣∣∣∣∣ ê · p
∣∣∣∣∣∣

8∑

j=1

ujφ
(b)
j

〉

=
8∑

i=1

8∑

j=1

〈uiφ
(a)
i |ê · p|ujφ

(b)
j 〉

=
8∑

i=1

8∑

j=1

[
〈ui|ê · p|uj〉〈φ(a)

i |φ(b)
j 〉 + 〈φ(a)

i |ê · p|φ(b)
j 〉δij

]

≈
8∑

i=1

8∑

j=1

〈ui|ê · p|uj〉〈φ(a)
i |φ(b)

j 〉 (4.18)

=
8∑

i=1

8∑

j=1

〈ui|expx + eypy + ezpz|uj〉〈φ(a)
i |φ(b)

j 〉

=
8∑

i=1

8∑

j=1




ex 〈ui|px|uj〉
+ey 〈ui|py|uj〉
+ez 〈ui|pz|uj〉


 〈φ(a)

i |φ(b)
j 〉
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=

ex




〈s↑|px|x↑〉〈φ(a)
s↑ |φ(b)

x↑ 〉
+〈s↓|px|x↓〉〈φ(a)

s↓ |φ(b)
x↓ 〉

+〈x↑|px|s↑〉〈φ(a)
x↑ |φ(b)

s↑ 〉
+〈x↓|px|s↓〉〈φ(a)

x↓ |φ(b)
s↓ 〉




+

ey




〈s↑|py|y↑〉〈φ(a)
s↑ |φ(b)

y↑ 〉
+〈s↓|py|y↓〉〈φ(a)

s↓ |φ(b)
y↓ 〉

+〈y↑|py|s↑〉〈φ(a)
y↑ |φ(b)

s↑ 〉
+〈y↓|py|s↓〉〈φ(a)

y↓ |φ(b)
s↓ 〉




+

ez




〈s↑|pz|z↑〉〈φ(a)
s↑ |φ(b)

z↑ 〉
+〈s↓|pz|z↓〉〈φ(a)

s↓ |φ(b)
z↓ 〉

+〈z↑|pz|s↑〉〈φ(a)
z↑ |φ(b)

s↑ 〉
+〈z↓|pz|s↓〉〈φ(a)

z↓ |φ(b)
s↓ 〉




= −i
m0

h̄
P




ex


 〈φ(a)

s↑ |φ(b)
x↑ 〉 − 〈φ(a)

x↑ |φ(b)
s↑ 〉

+〈φ(a)
s↓ |φ(b)

x↓ 〉 − 〈φ(a)
x↓ |φ(b)

s↓ 〉


 +

ey


 〈φ(a)

s↑ |φ(b)
y↑ 〉 − 〈φ(a)

y↑ |φ(b)
s↑ 〉

+〈φ(a)
s↓ |φ(b)

y↓ 〉 − 〈φ(a)
y↓ |φ(b)
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 +

ez


 〈φ(a)

s↑ |φ(b)
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s↑ 〉

+〈φ(a)
s↓ |φ(b)

z↓ 〉 − 〈φ(a)
z↓ |φ(b)

s↓ 〉







. (4.19)

Here, ui denote the eight Bloch functions and φi the corresponding envelope

functions. The ”≈” sign in Eq. (4.18) refers to the basic envelope function ap-

proximation according to which each envelope φi is much slower varying than its

corresponding Bloch function ui , hence ∇φi terms can be neglected aside of ∇ui

terms. As can be seen from Eq. (4.19) oscillator strength arises, if applicable,

from significant overlap between the s-type envelopes of the initial state and the

p-type envelopes of the final state. Interband transitions usually yield larger val-

ues of Mab than intraband transitions, given the same orbital overlap between

the probability densities of the initial and final states.

By the use of Eq. (4.19) structural information about the QD would enter the

momentum matrix elements only via the wave functions of the initial and final

states, while the momentum operator p is reduced to a scalar optical matrix

element P . Such a curtailment is in obvious contrast to Eq. (4.17) where the

matrix F contains more information about the heterostructure than P : Eq. (4.19)

does not support a consistent definition of p with respect to H [52]. This short-

coming is avoided in the present work by using Eq. (4.16) instead:

pab =
m0

h̄
〈a|∂H

∂k
|b〉 , (4.20)

Mab =
m0

2

h̄2

∣∣∣∣∣ ê · 〈a|
∂H

∂k
|b〉

∣∣∣∣∣
2

,
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|a〉 and |b〉 represent the eight-band k·p envelope function vectors (φ1, . . . , φ8) as

in Eq. (4.15). Eq. (4.20) provides an appropriate treatment of the structural, k-,

and strain dependence of p and yields values of Mab consistent with Eq. (4.14).

In case that P (r) has a constant value for r inside the QD Eq. (4.19) suggests

a normalization of pab in order to eliminate the bulk contribution (represented

by the Bloch function part, −im0P/h̄) and to isolate the contribution from the

confined wave functions, i. e. their orbital overlap.5 This is achieved by scaling

Mab to the optical matrix parameter Ep (see p. 9) of the QD material (InAs),

yielding a dimensionless, scaled matrix element (SME)

I =
2

m0 Ep

Mab =
1

P 2

∣∣∣∣∣ ê · 〈a|
∂H

∂k
|b〉

∣∣∣∣∣
2

(4.21)

which is analogous to the overlap integral |〈a|b〉|2 determining the optical selec-

tion rules within the single-band effective-mass approximation [55]. However, in

the eight-band k·p model I depends on ê and describes, additionally, the polar-

ization anisotropy while in the single-band approximation the anisotropy must

be examined independently. To model the interaction of a QD with diffuse or

unpolarized light, I has to be averaged (absorption) or integrated (spontaneous

emission), respectively, over the respective directions of ê.

The SME I is not identical with the oscillator strength which is obtained from

Eq. (4.21) by replacing Ep with the transition energy Eab = |Ea − Eb| = h̄ωab

[42,88] and thus proportional to I by the factor Ep/Eab . The oscillator strength,

being proportional to absorption coefficients [28,42,53,88] or cross sections [134],

introduces to those a universal, explicit dependence on 1/Eab which is responsi-

ble for a significantly enhanced interaction of the QD with mid-infrared photons

as compared to visible or near-infrared photons (given the same irradiation in-

tensities and Mab values). This effect is due to the ωab -dependent interrelations

between the optical intensity S, the photon flux Φ, and the magnitude A of per-

turbation to the quantum-mechanical two-level system, as can be seen considering

the light field classically in the Coulomb gauge [135]: The electromagnetic wave

is completely represented by the vector potential A, and A ∝ |A|2 is proportional

to Φ/ω while S ∝ ωΦ. The photon loss is ∆Φ ∝ MabA so that the absorption

α ∝ ∆Φ/Φ is proportional to Mab/ωab . This elementary ω-dependence of α is

neglected throughout this work using I to characterize the impact of quantum

confinement effects on the optical properties of QDs, so that the SME is consid-

ered rather than the oscillator strength.

5The penetration of the confined particles into the surrounding barrier material, usually
having a different value of P , is neglected here.
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4.4.1 Time reversal symmetry

In absence of magnetic fields all single-particle levels in a QD are two-fold6 de-

generate by time reversal symmetry [87, 88]: If Ψ1 according to Eq. (4.15) is an

eigenvector to Eq. (4.14) then

Ψ2 =

(
04 −14

14 04

)
Ψ1 (4.22)

is another eigenvector belonging to the same energy and being orthogonal to Ψ1

(14 is the 4 × 4 identity matrix). Due to Eq. (4.22) the orthogonality relation

〈Ψ1|Ψ2〉 = 0 holds pointwise for each spatial coordinate r: The wave-function

product

Ψ1(r) ·Ψ2(r) ≡ 0 (4.23)

is a scalar product between two orthogonal, eight-dimensional envelope vectors

of the type Eq. (4.15).

In the presence of magnetic fields the time reversal symmetry is destroyed and

the associated single-particle level degeneracy lifted, thus Ψ1 and Ψ2 belong to

different energies then.

The 2 × 2 block matrix in Eq. (4.22) ”flips” the spin between the two basis

vectors Ψ1 and Ψ2 of the degenerate eigenspace. However, due to the presence of

Γ in Eq. (2.1) the spin-up (↑) and spin-down (↓) projections of the wave functions

Ψ1,2 are inevitably coupled, as in the bulk case [48], hence the presence of SO

interaction in the bulk materials (∆0 6= 0) prevents spin conservation also in the

QD: The spin yields no good quantum number for the single-particle states.

Moreover – unlike the bulk case – the band mixing effects discussed in Section

3.2.1 prevent a strict classification of 0D CB and VB states according to their

angular momenta, i. e., neither the bound electrons are | ± 1/2〉 states, nor the

(topmost) bound holes are | ± 3/2〉 states.

At time reversal symmetry the momentum matrix elements for single-particle

transitions (primarily electron-electron or hole-hole) are obtained by incoherent

averaging over the degenerate eigenspaces a and b, giving

| ê · pab |2 =
1

4

(
|ê · pa1b1|2 + |ê · pa2b1|2 + |ê · pa1b2|2 + |ê · pa2b2|2

)

=
1

2

(
|ê · pa1b1|2 + |ê · pa1b2|2

)
since (4.24)

pa2b1 = pa1b2 and

pa2b2 = −pa1b1 ,

6Accidental geometrical degeneracies may additionally enhance the multiplicity of an eigen-
value.
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where |a1〉 and |a2〉 (|b1〉 and |b2〉) satisfy Eq. (4.22). The resulting dependence

of I on the direction of ê is shown in Fig. 5.2(a) for the QD size b = 17 nm.

Eq. (4.24) cannot be reduced further since ∆0 6= 0 prevents a decoupling of the

orbital and spin parts of |b1〉 and |b2〉. However, in absence of strain7 and band

mixing pa1b1 and pa2b2 would, by convention, correspond to the dipole-allowed

(total angular momentum difference ∆M = ±1) transitions | − 1/2〉 → | + 3/2〉
and | + 1/2〉 → | − 3/2〉, respectively, while pa1b2 and pa2b1 would vanish since

being related to the dipole-forbidden (∆M = ±2) transitions | − 1/2〉 → |− 3/2〉
and |+1/2〉 → |+3/2〉, respectively. Hence, Mab calculated from Eq. (4.24) yields

a SME I corresponding to the half of the single-band overlap integral, |〈a|b〉|2/2 .

7As discussed in Section 3.2.1 and Ref. [39] the VB edge in the uppermost region of pyramidal
QDs is defined by the LH band, while near the bottom by the HH band, because of the particular
strain distribution. In other cases tensile strain may push the LH band edge atop of the HH
band edge. In such situations selection rules based on the total angular momentum are not
useful.



Chapter 5

Few-Particle States in Quantum

Dots

A demanding challenge in the modeling of 0D systems arises from the fact that

the energy level structure of a QD depends on the population of its levels with

charge carriers, i. e., renormalization effects play an elementary role in QD het-

erostructures. The considerations of Chapter 4 apply strictly to empty QDs only,

holding for the first charge carrier occupying the dot. As soon as more than one

electron or hole is confined in the QD, the impact of (i) direct1 Coulomb inter-

action, (ii) exchange effects [87], and (iii) correlation lead to the formation of

distinct many-body states with different energies and transition characteristics.

The balance between the three effects varies dependent on the type of many-

body state, i. e. the number of confined particles and their charges, and on the

confinement profile, in particular the size and symmetry of the QD. In the strong

confinement regime many-body effects act as a perturbation to the confinement

and excitons are weakly correlated (see p. 35). The direct Coulomb interaction

yields the largest contribution to the total energy of an exciton or biexciton

state as compared to the sum of energies of particles in ”corresponding” single-

particle states. The parentheses indicate that a strict correspondence between

a many-body state and certain single-particle states, being understood as initial

states for the formation of the correlated many-body state, does not exist. This

inexistence is caused by the correlation of particles in a many-body state which

can be visualized in different ways:

• Certain ”initial” single-particle states deform themselves under the influ-

ence of Coulomb interaction in order to minimize the total energy of the

resulting many-body state. Thus correlation means deformation of single-

1”Direct” denotes the classical electrostatic forces between classical electrons and holes, i. e.,
not Fermions.
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particle wave functions. It depends only on the extent of this deformation

whether the ”initial” states can be identified from a given many-body state.

The weak correlation present in the strong confinement regime often allows

such an identification, see also p. 72.

• If the empty QD possesses a sufficiently large number of bound CB and VB

states to serve as a, for practical purposes, complete orthonormal basis the

deformation of each ”initial” single-particle state can be expanded into a

series of excited states of that particle. The many-body state is thus ex-

panded into configurations built from the ground- and excited single-particle

states, and the correlation manifests itself by the significance of more than

one configuration within this expansion. In this picture, correlation means

configuration mixing.

The method related to this second notion of correlation is the configuration

interaction (CI) method. It is elegant, though not necessary [89,136–138], to use

the eigenstates of the empty QD as basis for many-body expansions in the strong

confinement regime [139–144], since the obtained basis configurations are already

similar to the weakly correlated many-body states, thus providing a quickly con-

verging approximation. The suitability of this choice implicitly exploiting the

perturbational character of many-body effects in the strong confinement regime

is limited in several directions, one of which is the assumption of strong confine-

ment itself:

• In the case of small QDs the number of existing eigenstates may be insuffi-

cient for a convergent expansion. In the limiting case where only one bound

CB and VB state exist, correlation cannot be modeled by a CI approach

neglecting continuum states.

• In the case of a type-II band alignment at the QD boundary surface, like in

the Ga(As)Sb/GaAs material system [1,145], only holes (e. g.) are bound in

the QD, while electrons are only localized by dots charged with holes. Elec-

trically neutral many-body states, like excitons [136,146,147], in such dots

cannot be modeled by a CI method relying on a single-particle eigenstate

basis.2

• In the intermediate (or even weak) confinement regime the correlation may

be so pronounced that an exceedingly large configuration basis becomes

necessary [138].

2However, a variational CI method using non-orthogonal basis functions depending on varia-
tional parameters is applicable to calculate type-II excitons in the Hartree approximation [136].



5.1. LDA IN THE HARTREE APPROXIMATION 63

These limitations can be overcome by self-consistent calculations in the frame

of the local density approximation (LDA) [31, 148–153] or the local spin density

approximation (LSDA) [20,22,154–159]. Both the self-consistent calculations and

the CI method offer the advantage over variational methods [106, 147, 160–164]

that they (i) do not minimize the total energy of the ground state over a restricted,

intuitive, parametric subspace, and (ii) readily yield excited many-body states.

5.1 LDA in the Hartree approximation

The self-consistent LDA3 is demonstrated calculating the exciton, trion, and biex-

citon ground states in the Hartree approximation [87], i. e., neglecting the ex-

change effects.

The exciton ground state is calculated using the ansatz of a separable exciton

wave function ΨX(re , rh) = Ψe(re)Ψh(rh) whose constituing single-electron (Ψe)

and -hole (Ψh) states are determined self-consistently [31]:

[H + Ve]Ψh = ẼhΨh , [H + Vh]Ψe = ẼeΨe , (5.1)

−e|Ψe|2 = ε0∇(εs∇Ve) , e|Ψh|2 = ε0∇(εs∇Vh) , (5.2)

H is the empty-dot Hamiltonian from Eq. (4.14). Thus the deformation of single-

particle wave functions is explicitly calculated, relating the procedure to the first

of the above notions of correlation. This approach is limited to the many-body

ground state but, on the other hand, requires only the single-particle ground

states, which renders it appropriate to the treatment also of the smallest dots in

Fig. 4.8. Like Eq. (4.12), Eq. (5.2) includes the image charge effect. Due to the

Hartree approximation used here the exciton ground state is four-fold degenerate.

This degeneracy can be split (i) by applying magnetic fields destroying the time

reversal symmetry and lifting the degeneracy of the single-particle levels, and

(ii) by exchange effects leaving the single-particle level structure unaltered. The

treatment of exchange effects requires to take into account the Fermion character

of electrons and holes, as accomplished by the Hartree-Fock approximation.

Using the notations

C = ( 〈Ψh|Ve|Ψh〉 − 〈Ψe|Vh|Ψe〉 )/2 (5.3)

Ce = 〈Ψe|Ve|Ψe〉 (5.4)

Ch = −〈Ψh|Vh|Ψh〉 (5.5)

3A more correct, though less common, terminology refers to these calculations as self-
consistent mean field theory [73]. The idea to call the present treatment LDA is based on
the mesoscopic notion of quasi-particles being represented by the envelope functions, neglect-
ing the true atomistic properties of the wave functions.
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b (nm) Ee
coul EX

LDA EX
CI p (direct) p (exciton)

10.2 24.8 26.1 27.7 0.056 0.052

13.6 24.3 21.7 23.7 0.098 0.089

17.0 20.7 15.6 17.5 0.18 0.15

20.4 17.8 11.0 12.5 0.26 0.16

Table 5.1:

Size (b) dependence of the electron ground-state Coulomb charging energy (Ee
coul),

the exciton ground-state binding energy (EX), and of the polarization anisotropy
index p for hypothetical direct recombination (direct) and excitonic recombina-
tion (exciton), self-consistently calculated in the Hartree LDA, and EX calculated
using CI in the Hartree approximation. All energies are given in meV, see the
text for their discussion. p is defined by Eq. (6.2) on p. 86.

the exciton binding energy EX and the exciton recombination energy E(X) in the

Hartree approximation are

E(X) = C + Ẽe − Ẽh , (5.6)

EX = Ee − Eh − E(X) , (5.7)

where Ee and Eh denote the single-electron and -hole energy, respectively (being

eigenvalues of H). The binding energy EX as a function of the QD size b is listed

in Table 5.1. As a consequence of the separable ansatz, the two-particle character

of the exciton is not appropriately captured by this approach, i. e., the treatment

of correlation is still restricted.4 However, the effect of this constraint on the total

energy is < 0.5 meV as determined from comparison with CI calculations in the

Hartree approximation also shown in Table 5.1. The actual differences between

both calculations range from 1.5 meV to 2.0 meV whereof 1.5 meV are caused

by different numerical procedures used for solving Eq. (5.2) in the LDA and CI

methods, respectively, i. e. the significant part of the differences is < 0.5 meV.

The radiative recombination of the exciton can be modeled inserting the self-

consistent states |Ψe〉 and |Ψh〉 from Eq. (5.1) as |a〉 and |b〉 into Eq. (4.20).

Though at self-consistency the eigenspaces a and b are not orthogonal any more

(since they belong to separate Hamiltonians differing in their confinement poten-

tial parts) pab is not affected because ∂H/∂k does not depend on scalar (elec-

trostatic) potentials. The oscillator strength obtained this way is a lower bound

4According to a more strict, though less common, notion self-consistent calculations assum-
ing separable many-body wave functions do not describe correlation at all, since correlation
then is defined as the difference between self-consistent mean field results and a true many-
body wave function as obtained by, e. g., full CI or quantum Monte-Carlo calculations [73].
This definition of correlation agrees better with that known from statistics, but is less graphical.
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for the true excitonic oscillator strength because the two-particle character of the

exciton was ignored by the separable wavefunction ansatz. Accordingly, an upper

bound is obtained for the optical anisotropy p defined by Eq. (6.2). Nevertheless,

the reduction of the excitonic anisotropy as compared to the direct recombination

becomes clear also from the Hartree LDA calculation, see Table 5.1.

The two-electron ground state is obtained in an analogous manner,

[H + Ve]Ψe = ẼeΨe , (5.8)

with Ve according to Eq. (5.2). The electron ground-state Coulomb charging

energy is Ee
coul = Ẽe − Ee and listed in Table 5.1.

The ground state of the negative trion (an exciton charged with one excess

electron) is obtained from

[H + 2Ve]Ψh = ẼhΨh , [H + Ve + Vh]Ψe = ẼeΨe

together with Eq. (5.2) and yields a recombination energy of

E(T−) = C + Ẽe − Ẽh .

The ground state of the positive trion (an exciton charged with one excess hole)

is obtained from

[H + Ve + Vh]Ψh = ẼhΨh , [H + 2Vh]Ψe = ẼeΨe

together with Eq. (5.2) and yields a recombination energy of

E(T+) = C + Ẽe − Ẽh .

The biexciton ground state is obtained from

[H + 2Ve + Vh]Ψh = ẼhΨh , [H + Ve + 2Vh]Ψe = ẼeΨe

together with Eq. (5.2) and has the energy

E(XX) = 2
(
Ẽe − Ẽh

)
+ 4C − Ce − Ch .

For pyramidal InAs/GaAs QDs with a base length of 17 nm the following energies

are obtained:

E(X) = 1027.0 meV

E(T−) = 1031.2 meV

E(T+) = 1027.5 meV

E(XX) = 2058.6 meV

E(XX) − E(X) = 1031.6 meV (biexciton recombination energy)

2E(X) − E(XX) = −4.5 meV (biexciton binding energy).
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Except from the smallest QDs with b = 10 nm the InAs/GaAs dots considered in

Chapter 4 possess enough single-particle energy levels to enable a CI treatment

of the many-body effects. A comparison with CI calculations in the Hartree-Fock

approximation shows that the Hartree LDA yields reasonable approximations

for the exciton ground state and the negative trion (≤ 1 meV significant5 error

for the 17 nm pyramid). In contrast, the ground-state energies of the positive

trion and the biexciton both are overestimated by ∼ 6 meV, suggesting that the

exchange-correlation effect (being neglected in the Hartree LDA) of the holes is

more pronounced than that of the electrons. The biexciton binding energy is

underestimated by ∼ 3 meV only, since the errors in the calculations of E(X) and

E(XX) partly compensate each other.

5.2 Configuration interaction calculations

In cases where the CI method is applicable to QD heterostructures it has the

advantage over the LDA (LSDA) method that it requires no (spin-polarization

dependent) parametrization for the exchange-correlation potential [22] but can

treat both the spin and the Fermion character of particles exactly. Especially in

connection with EP theory [144] or the eight-band k·p model (this chapter) as

underlying bandstructure calculation methods the long-range component of the

electron-hole exchange effect, which dominates over the short-range component

in the case of Wannier excitons [87, 88, 165], can be calculated directly from the

single-particle wavefunctions without further parameters. This advantage is not

available if the bulk CBs and VBs are decoupled in the underlying bandstructure

calculation, as in the case of single-band effective-mass based solutions of the

Hartree-Fock equation in QDs [106,108,138,141,161,163,166–170]. Therefore, the

CI method is prefered in this work for calculating the exciton and biexciton level

structure in not too small QDs, using pyramidal InAs/GaAs QDs with 17 nm

base length as an example.

The principal characteristic of the CI method is that it takes into account many-

body correlation by employing a parameter-free, non-separable ansatz for a true

many-body wave function. The ansatz is constructed as linear combination of

all configurations that can be built from a given set of single-particle eigenstates.

These configurations form a combinatorial, orthogonal basis into which the many-

body Hamiltonian is expanded. The many-body (eigen)states are obtained by di-

agonalizing that Hamiltonian. In the Hartree approximation [87], neglecting the

Fermion character of the single particles and thus exchange effects, the configu-

ration basis is obtained as cartesian product of the single-particle eigenstates. In

the Hartree-Fock approximation [87], including the Pauli principle (and thus ex-

5See p. 64.
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change effects), the basis is obtained by converting each element of the cartesian

product into a Slater determinant, thus using only antisymmetric basis states.

5.2.1 Fermion character and spin

If many-body states consisting of ne electrons ci and nh holes vj shall be calculated

on the basis of the lowest Ne bound CB states and the topmost Nh bound VB

states of Eq. (4.14), the CI basis contains

N =

(
Ne

ne

)
·
(
Nh

nh

)
(5.9)

elements. These are either distinct configurations

| c1(r1) . . . cne(rne) v1(rne+1) . . . vnh
(rne+nh

) 〉

(when using the Hartree approximation) or Slater determinants thereof,

1√
(ne + nh)!

∣∣∣∣∣∣∣∣

c1(r1) . . . cne(r1) v1(r1) . . . vnh
(r1)

. . . . . . . . . . . . . . . . . .

c1(rne+nh
) . . . cne(rne+nh

) v1(rne+nh
) . . . vnh

(rne+nh
)

∣∣∣∣∣∣∣∣
,

when using the Hartree-Fock approximation. The ri are spatial coordinates

while the spin parts of the states are accommodated in the wave functions ci and

vi : A separation of the orbital and spin parts of the 0D wave functions is – like in

the bulk case – prevented by the SO interaction in the bulk materials (∆0 6= 0).

Furthermore – unlike the bulk case – the pronounced band mixing in strongly

confining QDs merges the bulk HH and LH bands, thus suspending even total an-

gular momentum selection rules (see Secion 4.4.1). It follows that any treatment

of many-body fine-structure effects in QDs based on strict selection rules for the

total angular momentum [106,108,109,138,142,161,163,166–168,170] yields inac-

curate predictions of level degeneracies, ignoring the band mixing characteristic

to 0D structures. However, the basic pattern of the energetic exciton structure

is governed by the total angular momentum while the band mixing introduces a

perturbation, as shown below.

In the presence of magnetic fields the ci and vi belong all to different energies6

so that exciton level degeneracies are lifted even in absence of band mixing. The

CI approach is not changed by this in any respect [171].

The above antimetrization of the CI basis vectors in case of the Hartree-Fock

approximation requires the orthogonality of all single-particle states c1, . . . , cne ,

6Apart from possible accidental degeneracies.
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v1, . . . , vnh
, otherwise the Slater determinants do not correctly represent (anti-

symmetric) Fermion states. If both the CB states ci and the VB states vj are

obtained from the same Hamiltonian H, as in the case of EP or eight-band k·p
theory, they are orthogonal by default and generate an orthonormal basis for

both Hartree and Hartree-Fock calculations. In contrast, bandstructure mod-

els decoupling the bulk CBs and VBs require additional parameters (”exchange

strength constant”) to treat the ”exchange interaction” between CB and VB

states [138, 161, 163, 167]. In the EP and eight-band k ·p models, the 0D CB

and VB states are fully consistent and require solely an external assignment of

their charge. This renders the eight-band k ·p model superior to the six-band

k·p [172,173], four-band k·p [24,174], and single-band models for the treatment

of excitonic and biexcitonic properties in QDs.

5.2.2 Dielectric screening

The basis vectors for exciton calculations (ne = 1, nh = 1) are of the type | c1v2 〉
when using the Hartree approximation and | c1v2−c2v1 〉 when using the Hartree-

Fock approximation. They differ by the term | c2v1 〉 which sometimes is called

”exchange term” while the Hartree basis vector | c1v2 〉 is refered to as ”direct

Coulomb term”. It would be tempting to screen the two related matrix elements

by different dielectric constants [175] when calculating the direct Coulomb and

exchange energies, in order to take into account the different asymptotic screening

characteristics [4, 144, 176] of the long-ranged direct Coulomb interaction and

the short- or long-ranged exchange effects. However, such an approach ignores

the common origin of both matrix elements which describe one and the same

interaction (Coulomb) between Fermion particles. Within the current frame of

an eight-band k·p theory based CI treatment it would be inappropriate for further

two reasons:

• The envelope function approach is a priori questionable when applied to

Frenkel excitons [87], for which the short-range exchange is important. Vice

versa, the modeling of Wannier excitons, for which the k·p approach is better

suited, requires the same long-range screening for both the direct Coulomb

and exchange effects [144, 177]. In addition, only the long-range exchange

is sensitive to the shape of the QD [161].

• The associated, implicit loss of antisymmetry of the basis states would cause

severe complications of the CI method.

Hence, the CI calculations presented in this work employ only long-range

screening, applying the bulk dielectric constants of the constituing materials to all

Coulomb matrix elements (i. e., the ”direct Coulomb” and the ”exchange terms”)
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and taking into account image charge effects. A possibility to improve the treat-

ment of dielectric screening in a CI compatible fashion is to use a microscopic

dielectric function depending on both the individual electron and hole positions,

as well as on their distance [81, 144], thus unifying the ”long range” and ”short

range” properties. However, this is proprietary to microscopic approaches, e. g.

pseudopotential calculations.

5.2.3 Computational expense

The CI Hamiltonian rank for the calculation of excitons (X) is NX = NeNh and

that for biexcitons (XX) (ne = 2, nh = 2) is NXX = NeNh(Ne − 1)(Nh − 1)/4

according to Eq. (5.9), regardless of whether exchange effects are included. In

the case of the exciton the computational expense for evaluating one Hamiltonian

matrix element is doubled when advancing from the Hartree approximation to

the Hartree-Fock approach, due to the additional inclusion of the exchange term.

In the biexciton case the replacement of the Hartree basis vectors

| c1(r1) c2(r2) v1(r3) v2(r4) 〉

by antisymmetric Hartree-Fock basis vectors

1√
24

∣∣∣∣∣∣∣∣∣∣

c1(r1) c2(r1) v1(r1) v2(r1)

c1(r2) c2(r2) v1(r2) v2(r2)

c1(r3) c2(r3) v1(r3) v2(r3)

c1(r4) c2(r4) v1(r4) v2(r4)

∣∣∣∣∣∣∣∣∣∣

enhances the computational load for each matrix element by a factor 24. In

addition, the expense for setting up the whole Hamiltonian, i. e. calculating

all – possibly different7 – matrix elements, scales with ∼ N2/2 (the expense for

diagonalizing the matrix is negligible). Since the inclusion of the Pauli principle

is mandatory for the modeling of biexcitons, the CI calculations of exciton and

biexciton (in the Hartree-Fock approximation) differ with respect to the number

of algebraic terms by a factor

3

4
[ (Ne − 1) (Nh − 1) ]2 ,

i. e. a factor ∼ 1500 if 3 CB levels (Ne = 6) and 5 VB levels (Nh = 10) are

included. The biexciton (exciton) CI Hamiltonian then has a rank of NXX = 675

(NX = 60) and contains 63450 (1830) non-zero matrix elements, whose calcu-

lation can be reduced by complete economization to the evaluation of 136 (136)

7In presence of magnetic fields no symmetries are available.
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wave-function products, 166050 (3660) volume integrations, and 135 (81) solu-

tions of the 3D complex Poisson equation for the QD heterostructure including

image charge effects. Thus the total economization of the matrix-element calcu-

lation reduces the expense factor between the exciton and biexciton treatments

from ∼ 1500 to ∼ 50.

Nevertheless, the example illustrates the combinatorial progression of the calcu-

lation expense related to the exact8 treatment of many-body effects and explains

why the CI method, even when employing simplified bandstructure models in

connection with simplified real-structure models of the dot, is presently limited

to the treatment of two biexcitons [138]. This has to be compared to the present

work treating one biexciton including strain, band mixing, and SO interaction.

Systems of more than two biexcitons presently require different approaches, like

stochastic diagonalization [178] or quantum Monte-Carlo methods [179].

5.2.4 Exciton in the Hartree approximation

The Coulomb interaction between the electron and hole forming an exciton is

calculated expanding the exciton wave function Ψ(X) into a cartesian product

basis built from all available 0D electron (ca = Ψ(c)
a ) and hole states (vb = Ψ

(v)
b ):

Ψ(X) =
∑

a,b

ξab Ψ(c)
a Ψ

(v)
b , (5.10)

p(X) =
∑

a,b

ξab pab . (5.11)

p(X) corresponds to the dipole term of the interaction of Ψ(X) with light and the

pab are given by Eq. (4.20). Since exchange effects are neglected and no mag-

netic field is present each excitonic energy level |n〉 possesses a four-dimensional

orthonormal basis due to time reversal symmetry

{Ψn,1, Ψn,2, Ψn,3, Ψn,4}(X) .

The momentum matrix element of such a degenerate energy level with light hav-

ing an electric field vector parallel to the unit vector ê is obtained by incoherent

averaging over the eigenspace

| ê · p(X)
n |2 =

1

4

(
|ê · p(X)

n,1 |2 + |ê · p(X)
n,2 |2 + |ê · p(X)

n,3 |2 + |ê · p(X)
n,4 |2

)
, (5.12)

analogous to Eq. (4.24). The resulting dependence of the oscillator strength on

the E-field direction is shown in Fig. 5.2(b) for the QD size b = 17 nm.

8Assuming the convergence of the many-body state expansion for the given basis.
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The expansion coefficients ξab in Eq. (5.10) and Eq. (5.11) of all exciton states

|n, i〉 (i = 1, 2, 3, 4) are calculated by the Rayleigh-Ritz procedure, i. e., diagonal-

ization of the exciton Hamiltonian H(X) over the entire cartesian basis:

H(X) = Hc −Hv − e2

4πε0

1

εr(rc, rv)

1

|rc − rv| , (5.13)

H(X) (ξab)n,i = E(X)
n (ξab)n,i , (5.14)

where H is the single-particle Hamiltonian from Eq. (4.14), εr the dielectric func-

tion of the heterostructure, r the position operator, and E(X) the excitonic re-

combination energy. The subscripts c and v denote that the respective operators

(H, r) act only on the CB or VB part, respectively, of the exciton wave function

Eq. (5.10). The matrix elements of H(X) are

H
(X)
ab,jk =

[
E(c)

a − E
(v)
b

]
δajδbk (5.15)

− e2

4πε0

〈
Ψ(c)

a Ψ
(v)
b

∣∣∣ 1

εr(rc, rv)|rc − rv|
∣∣∣Ψ(c)

j Ψ
(v)
k

〉
,

where E(c)
a (E

(v)
b ) is the eigenvalue of H belonging to Ψ(c)

a (Ψ
(v)
b ), i. e., the single-

electron (-hole) energy. Taking care of the preceeding expense considerations

it is not recommended to evaluate Eq. (5.15) as is, since the calculation of the

sixfold integrals is tedious and does not permit a convenient treatment of the

dielectric function εr. A better way to calculate H(X) is to use Green’s formula

and decompose Eq. (5.15) into a solution of the Poisson equation (using the

nested iteration technique [180]) and a subsequent volume integration:9

∇
[
εr(rc)∇U (c)(rc)

]
=

e2

4πε0

Ψ(c)
a

†
(rc)Ψ

(c)
j (rc) , (5.16)

H
(X)
ab,jk =

[
E(c)

a − E
(v)
b

]
δajδbk +

〈
Ψ

(v)
b

∣∣∣ U (c)
∣∣∣Ψ(v)

k

〉
. (5.17)

The wave-function product on the right-hand side of Eq. (5.16) is a scalar product

of two eight-dimensional complex vectors of the type Eq. (4.15). By Eq. (5.16)

the spatial variation of the dielectric constant εr , leading to the image charge

effect, is taken into account. The decomposition of Eq. (5.15) is, in practice, a

prerequisite for the tractability of the CI approach since the numerical accuracy

required from the matrix elements is high in order to produce physically realistic

many-body eigenstates (ξab). The plausibility of calculated state vectors (ξab) can

be judged a posteriori, e. g., by checking whether the symmetries of the states or

their dipole transitions are compatible with those of the QD.

9In Eq. (5.16) and Eq. (5.17) the roles of the CB and VB parts can be interchanged, of
course.
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The correlation effect is expressed by the existence of off-diagonal matrix el-

ements H
(X)
ab,jk : Since H(X) in Eq. (5.14) is not diagonal its eigenvectors (ξab)n,i

generally mix different electron-hole configurations |Ψ(c)
a Ψ

(v)
b 〉 within each exci-

ton wave function Ψ
(X)
n,i in Eq. (5.10). However, in strongly confining dots most

often one configuration |Ψ(c)
a Ψ

(v)
b 〉 is dominant in a degenerate exciton state |n, i〉.

This is characteristic to weak correlation. Weakly correlated exciton states |n〉
can still be classified by the one dominant CB (|Ψ(c)

a 〉) and VB (|Ψ(v)
b 〉) contri-

bution, considering the Coulomb force an energetic correction only, as visualized

by Fig. 6.2. Such a classification is useful for the interpretation of spectroscopy

experiments which cannot resolve the fine structure due to exchange effects, like

those discussed in Section 6.3.

5.2.5 Excitonic finestructure

The momentum matrix elements associated with the antisymmetric exciton basis

vectors used in the Hartree-Fock approximation can be calculated from the elec-

tron picture. In the final state | b 〉, the ”vacuum” state, both electrons occupy

the VB while in the initial state | a 〉, the exciton, one electron (e. g., the second)

is excited to the CB:

| a 〉 = (| e1ve2v 〉 − | e2ve1v 〉)/
√

2 ,

| b 〉 = (| e1ve2c 〉 − | e2ce1v 〉)/
√

2 ,

〈 a |p | b 〉 = 〈 a |p1 + p2 | b 〉

=
1

2




〈 e1ve2v |p1 + p2 | e1ve2c 〉
−〈 e1ve2v |p1 + p2 | e2ce1v 〉
−〈 e2ve1v |p1 + p2 | e1ve2c 〉
+〈 e2ve1v |p1 + p2 | e2ce1v 〉




= (〈 e1ve2v |p2 | e1ve2c 〉+ 〈 e2ve1v |p1 | e2ce1v 〉)/2 (5.18)

= (〈 e1v | e1v 〉〈 e2v |p | e2c 〉+ 〈 e2v |p | e2c 〉〈 e1v | e1v 〉)/2
= 〈 e2v |p | e2c 〉 . (5.19)

The subscripts to p denote the spatial coordinate which p refers to. The reduc-

tion steps leading to Eq. (5.18) and Eq. (5.19) rely on the orthogonality of e1v ,

e2v , and e2c (see p. 67). Eq. (5.19) implies that the momentum matrix element

calculation needs not to distinguish between the Hartree and Hartree-Fock ap-

proximations for the exciton.10 Hence, Eq. (5.11) holds also in the Hartree-Fock

10This is a particular case of a general theorem for matrix elements of sums of one-particle
operators between determinantal states [88].
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basis state wave function momentum ME ∆M

b1 (|c1v1〉 − |v1c1〉) /
√

2 p11 -1

b2 (|c1v2〉 − |v2c1〉) /
√

2 p12 2

b3 (|c2v1〉 − |v1c2〉) /
√

2 p21 -2

b4 (|c2v2〉 − |v2c2〉) /
√

2 p22 1

Table 5.2:

Basis vectors for the Hartree-Fock calculation of the exciton ground-state
finestructure (neglecting correlation effects) together with the associated mo-
mentum matrix elements (MEs), as well as the changes in the total angular
momentum M , defined in hypothetical absence of strain and band mixing in the
0D wave functions.

approximation:

Ψ(X) =
∑

a,b

ξab

[
Ψ(c)

a (r1)Ψ
(v)
b (r2)−Ψ

(v)
b (r1)Ψ

(c)
a (r2)

]
/
√

2 , (5.20)

p(X) =
∑

a,b

ξab pab . (5.21)

In the strong confinement regime where excitons are weakly correlated and the

single-particle level separations are much larger than the exchange energies the

excitonic finestructure can qualitatively be understood neglecting correlation ef-

fects. Thus the CI Hamiltonian is expanded into four antisymmetric basis states,

see Table 5.2, constructed from the single electron (c1, c2) and hole (v1, v2) ground

states. In (hypothetical) absence of strain and band-mixing effects the single-

particle states would have the total angular momenta −1/2 (c1), 1/2 (c2), 3/2

(v1), and −3/2 (v2), assuming bound holes to possess projections to the bulk HH

band only. Then p12 = p21 = 0 in Table 5.2 and the coefficients ξ2 , ξ3 of b2 , b3 in

Eq. (5.20) yield no contribution to the momentum matrix element in Eq. (5.21).

Thus any state Ψ(X) with ξ1 = ξ4 = 0 in Eq. (5.20) is a dark exciton.

The time reversal symmetry in absence of magnetic fields causes the following

matrix elements to vanish according to Eq. (4.23):

〈 c1v1 | C | c1v2 〉 = 0

〈 c1v1 | C | c2v1 〉 = 0

〈 c1v1 | C | c2v2 〉 = 0

〈 c1v2 | C | c2v1 〉 = 0

〈 c1v2 | C | c2v2 〉 = 0

〈 c2v1 | C | c2v2 〉 = 0 where
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C =
e2

4πε0 εr [r(1), r(2)] |r(1) − r(2)|

(the superscripts denote the spatial coordinate which r refers to). The Hamilto-

nian for the lowest four exciton states, neglecting correlation and magnetic fields,

but including SO interaction in the bulk, as well as strain and band mixing in

the QD, expanded into the CI basis {b1 , b2 , b3 , b4} is thus

H(X0) = (E − C)14 +




x1 zh ze y1

zh x2 y2 −ze

ze y2 x2 −zh

y1 −ze −zh x1




(5.22)

with the matrix elements displayed in Table 5.3. E−C is the exciton ground-state

energy according to the Hartree approximation, and the 4 × 4 matrix describes

the finestructure due to the long-range exchange effect. Fig. 5.1 shows the energy

level structure according to Eq. (5.22) in a pyramidal InAs/GaAs QD with a base

length of 17 nm, calculated on varying levels of simplification.
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Figure 5.1:

Finestructure of the exciton ground state according to different models: (a) Ne-
glection of the bulk SO interaction, ∆0 = 0; (b) ∆0 6= 0, total angular momentum
conservation in a HH exciton (black markers) and in presence of band mixing
(gray marker and arrow); (c) inclusion of band mixing and simultaneous spin
”flips” of electron and hole; (d) additional inclusion of individual spin ”flips”;
(e) additional inclusion of correlation. The integers and marker lengths indicate
the multiplicities of the eigenvalues. The oscillator strengths of the four exciton
states X0, . . . , X3 according to (e) are shown in Fig. 5.2.
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E E(c) − E(v) — 1042.6744

C 〈 c1v1 |C| c1v1 〉, 0 16.6200

〈 c1v2 |C| c1v2 〉,
〈 c2v1 |C| c2v1 〉,
〈 c2v2 |C| c2v2 〉

Ce 〈 c1c2 |C| c1c2 〉 0 22.5161

Ch 〈 v1v2 |C| v1v2 〉 0 18.1906

x1 〈 c1v1 |C| v1c1 〉, 0 0.0814

〈 c2v2 |C| v2c2 〉
x2 〈 c1v2 |C| v2c1 〉, 0 0.0141

〈 c2v1 |C| v1c2 〉
y1 〈 c1v1 |C| v2c2 〉 ±2 -0.0065 −0.0003 i

y2 〈 c1v2 |C| v1c2 〉 ±4 -0.0075 −0.0028 i

ze 〈 c1v1 |C| v1c2 〉, ±1 0.0010 −0.0089 i

−〈 c1v2 |C| v2c2 〉
zh 〈 c1v1 |C| v2c1 〉, ±2 -0.0001 −0.0314 i

−〈 c2v1 |C| v2c2 〉

Table 5.3:

Definitions of the CI matrix elements in Eq. (5.22) and associated total angu-
lar momentum difference between the initial and final configurations (defined in
hypothetical absence of strain and band mixing in the 0D wave functions). The
numerical values (meV) refer to a pyramidal InAs/GaAs QD with a base length
of 17 nm.
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Neglection of SO interaction

In QDs formed from bulk materials without SO interaction (as considered in

Ref. [37]), ∆0 = 0, the single-particle spin yields a good quantum number [89,181]

and causes x2 , y1 , ze , and zh to vanish regardless of the dot shape, strain, or

band mixing, while x1 = y2 due to the identical orbital parts of c1 and c2 (v1 and

v2). Then Eq. (5.22) yields a spin singlet state with E0 = E −C − x1 and a spin

triplet state with E1 = E − C + x1 and 2x1 is called the singlet-triplet splitting

energy. The levels are shown in Fig. 5.1(a). As can be seen directly from the

resulting matrix structure of H(X0) the singlet state, being the ground state, and

one of the triplet states are dark while the two other triplet states are bright.

Hence only one exciton line at the triplet energy E1 will appear in dipole spectra.

The dark contribution to the triplet state cannot be isolated because of the level

degeneracy.

As obvious from Table 5.3, x1 = y2 is a poor approximation to the actual

situation governed by the SO interaction and band mixing effects.

Neglection of strain and band mixing

Including the SO interaction and assuming that the electrons have no VB projec-

tion (c1 = |1/2,−1/2〉, c2 = |1/2, 1/2〉) while the holes are pure HHs (having no

CB projection, v1 = |3/2, 3/2〉, v2 = |3/2,−3/2〉) the long-range exchange ma-

trix in Eq. (5.22) vanishes completely due to the total decoupling of the CB and

VB. However, taking into account the CB-VB interaction perturbatively leads

to the relation x1 = −x2 6= 0 [182] reflecting the HH wave-function symmetry

properties. Forcing, consistently, a conservation of the total angular momentum

leads to the neglection of y1 , y2 , ze , and zh, as can be seen from Table 5.3, and

yields two doublets at the energies E0 = E − C + x2 and E1 = E − C + x1 .

Since x2 = −x1 these doublets have the same energies as the previously discussed

spin singlet and triplet states, respectively, as shown by the black markers in

Fig. 5.1(b). The two-fold degenerate ground state is obviously dark, while the

upper doublet is bright. Hence, the dark and bright excitons are energetically

separated.

In the general case, the 0D wave functions mix all bulk bands, as detailed in

Sections 3.2.1 and 4, so that x2 6= −x1 (see Table 5.3). This affects mainly

the energy of the dark excitons since the matrix element x1 is absolutely largest

and exists in any approximation for the exchange effect. The change of E0 due to

band mixing effects (still assuming M to be a good quantum number) is shown by

the gray arrow and marker in Fig. 5.1(b) and visualizes the intrinsic limitation

of approaches which employ perturbation theory on the basis of total angular

momentum conservation [106,108,137,166,167,170,182]: Though the magnitudes
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of doublet splittings due to asymmetry effects may well be estimated, the energetic

positions of the doublets with respect to the Hartree ground state are obscured

by the neglection of band mixing.

Inclusion of band mixing

Both doublets are split into singlets by allowing simultaneous ”flips” of the elec-

tron and hole spins, as represented by y1 and y2 :

E0 = E − C + x2 − |y2| ,

E1 = E − C + x2 + |y2| ,

E2 = E − C + x1 − |y1| ,

E3 = E − C + x1 + |y1| ,

see Fig. 5.1(c). The energetic ordering of these levels is ensured by the relation

x1 À x2 > |y1| ≈ |y2|, see Table 5.3. Accordingly, |p11| = |p22| À |p12| = |p21| >
0, so that E0 and E1 still belong to ”almost dark” excitons while E2 and E3

belong to bright excitons. The ”dawn” of the dark exciton is only due to the

partial relaxation of the selection rule p12 = p21 = 0.

A mixing of the dark and bright exciton states is accomplished by individual

”flips” of the electron spin or the hole spin, represented by ze and zh , as can be

seen from Eq. (5.22). The remarkable magnitude of zh (see Table 5.3) for the

studied QDs can be understood from the fact that the ↑ and ↓ spin projections of

v1 are 85% and 15%, while those of c1 are 99.3% and 0.7%, respectively. Hence,

the hole spin is much less well-defined in the QD than the electron spin. The

individual spin ”flip” transitions mainly push the two pairs of (almost) dark and

bright states further apart, see Fig. 5.1(d), while mixing all momentum matrix

elements in Eq. (5.21). As a secondary effect, the splitting of either level pair is

modified. Still, the two lower exciton states yield much weaker dipole transitions

than the two upper. The intensity ratio in the studied case is of the order 103−104

and depends on the particular QD type. ”Almost dark” exciton ground states

resulting from the exchange effect have also been predicted for CdSe nanocrystals

using a density-matrix approach in the frame of a tight-binding model [183].

Inclusion of correlation

To take into account correlation effects the approximation Eq. (5.22) is given up

and a large basis CI calculation is performed using the 10 CB and 8 VB levels of

the InAs pyramid with b = 17 nm shown in Fig. 4.8. The CI basis now contains

320 Slater determinants, instead of 4 in Eq. (5.22), and the calculation of the
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51360 independent matrix elements of H(X) according to Eq. (5.17) requires (af-

ter economization) the evaluation of 666 wave-function products, 102720 volume

integrations, and 530 solutions of the 3D complex Poisson equation Eq. (5.16).

Primarily, the direct Coulomb energy, denoted by C in Eq. (5.22), in-

creases from 16.62 meV to 17.45 meV, but also the finestructure with respect

to the ground-state energy in the Hartree approximation changes, as shown in

Fig. 5.1(e). The resulting polarization dependent SMEs of the four exciton lev-

els X0, X1, X2, X3 are shown in Fig. 5.2. For comparison, also the polarization

dependencies in the (hypothetical) case of single-particle recombination, and for

the exciton according to the Hartree approximation, are shown in Fig. 5.2.

The plots Fig. 5.2(a) and (b) differ by the effects of the Coulomb correlation

which lowers the transition energy by 17.45 meV, reduces the in-plane polariza-

tion anisotropy11 from 0.18 to 0.15, and increases the polarization-averaged12

oscillator strength by 16% from 1.19 to 1.39. These Coulomb effects on the opti-

cal properties are relatively weak because of the strong confinement in the 17 nm

large InAs/GaAs QDs. By inclusion of the Fermion character of the single parti-

cles (exchange effect) the formerly fourfold degenerate exciton splits up into the

four levels shown in Fig. 5.1(e) having the different polarization characteristics

shown in Fig. 5.2(c-f). The sum of their oscillator strengths – as calculated by

analogy to Eq. (5.12) – yields a very similar polarization dependence and the same

ê direction average as in the Hartree approximation shown in plot (b). Hence,

the finestructure has no influence on the optical intensities in the presence of

sufficiently strong broadening, but will be completely disguised then.

The proportions between the direct Coulomb interaction, correlation, and ex-

change effects on the energy structure of the exciton are visualized in Fig. 5.3.

The largest contribution to the exciton ground-state energy, after (a) the sum

of the strain induced band-edge shifts and the kinetic quantization (630 meV)

plus the InAs band gap (413 meV), stems from (b) the direct Coulomb inter-

action (17 meV), followed by (c) the correlation (0.8 meV), and at least (d) the

exchange effect, yielding a splitting of 0.15 meV between the almost dark ground

state and the highest bright exciton in the quartet.

The calculated separation of 134 µeV between the average energies of the dark

and bright exciton states agrees well with an experimental value of ∼ 200 µeV

measured on self-assembled In0.4Ga0.6As dots with an average lateral size of ∼
20 nm [106]. The fact that the (calculated) value for InAs QDs is smaller than the

(measured) value for In0.4Ga0.6As dots is consistent with the material dependence

of the bulk exchange splitting [184]. To conclude,

11Defined by Eq. (6.2).
12The average over all polarization directions is related to the ”overall” oscillator strength

relevant for spontaneous emission life times.
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Figure 5.2:

SME according to Eq. (4.21) as function of the E-field direction ê of the in-
teracting light: (a) hypothetical single-particle recombination, calculated using
Eq. (4.20) and Eq. (4.24); (b) excitonic recombination according to the Hartree
approximation, calculated using Eq. (5.11) and Eq. (5.12); (c-f) excitonic recom-
bination according to the Hartree-Fock approximation (including band mixing
and correlation), calculated using Eq. (5.21) and shown in descending order of
transition energies (the latter are shown in Fig. 5.1(e)). (c,d) belong to the almost
degenerate bright exciton levels and (e,f) to the ”almost dark” excitons (note the
scale magnification by a factor 40).

• The 0D CB and VB single-particle ground states form four non-degenerate

exciton states even in absence of magnetic fields, as a consequence of band-

mixing effects in the confined wave functions.

• A non-degeneracy of exciton levels does not necessarily imply a structural

asymmetry of the QD, although structural asymmetry lifts level degen-

eracies in case they exist in a corresponding, structurally symmetric sys-

tem [106,170,182].
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Figure 5.3:

Energies of the four lowest exciton states according to different models: (a) hy-
pothetical single-particle recombination; (b) inclusion of direct Coulomb inter-
action, i. e., excitonic recombination neglecting exchange and correlation effects;
(c) excitonic recombination neglecting exchange effects; (d) full calculation. The
integers and marker lengths indicate the multiplicities of the eigenvalues. The
finestructure is not resolved by this plot, except by the lifted level degeneracy.

• The finestructure splitting in presence of band mixing and correlation is sig-

nificantly different from that predicted by perturbation theory proceeding

from total angular-momentum conservation.

• The notion of bright and dark excitons remains valid at inclusion of strain,

band mixing, and correlation, while the particular intensity ratios depend

on the QD system.

• The finestructure is unlikely to be resolved in spectroscopy experiments on

QD ensembles. A treatment of excitons in QD ensembles within the Hartree

approximation appears sufficiently accurate.

5.2.6 Trion ground states

The finestructure collapses if the exciton is charged with one excess electron or

hole, forming a negative (T−) or positive (T+) trion, respectively. The energy

levels of trions are two-fold degenerate [109] since the individual spin ”flip” ener-

gies of the two electrons (holes) in a negative (positive) trion cancel. Neglecting

correlation, the ground-state recombination energies are

E(T−) ≈ E + Ce − 2C + x1 + x2 and

E(T+) ≈ E + Ch − 2C + x1 + x2 ,
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using the notations from Table 5.3, Eq. (5.3), Eq. (5.4) and Eq. (5.5). Regard-

ing the negative trion, the neglection of correlation causes an overestimation of

E(T−) by 1.9 meV for a 17 nm InAs pyramid, as compared to a large basis CI

calculation. In contrast, the recombination energy E(T+) of the positive trion is

overestimated by 6 meV, like in the Hartree-LDA calculation (see p. 66). This

underlines that the exchange-correlation effect of the holes is more pronounced

than that of electrons in the studied example. Consequently, the positive trion in

the 17 nm InAs pyramid is binding as compared to the exciton, yielding a spec-

tral line on the low-energy side of the bright-exciton line, separated by 3.9 meV

(the Hartree LDA predicts an anti-binding positive trion). Differently, the nega-

tive trion in the 17 nm InAs pyramid is anti-binding as compared to the exciton,

since the large, positive difference between the direct Coulomb energies of both

states, Ce−C, is not compensated by electron-electron exchange-correlation: The

electron wave functions are more ”stiff” than the hole ones, mainly due to their

lighter mass. Hence, the negative trion yields a spectral line at a 4.6 meV higher

energy than the exciton.

Since the lack of a continuum prevents multi-particle complexes like trions and

biexcitons from dissociation, ”anti-binding” does not imply instability in a QD:

The confinement forces the formation also of energetically unfavourable states.

Generally, the trion energies depend strongly on the QD size [169], shape, and

chemical composition [164], and this sensitivity is further enhanced in case of the

biexciton. Both binding and anti-binding states are possible. The balance be-

tween the direct Coulomb interaction and the exchange-correlation effect requires

an accurate calculation: The example of the positive trion shows that even a self-

consistent LDA treatment may fail to correctly estimate the correlation energies.

Spectroscopic studies on ∼ 12 nm large, self-assembled InAs QDs revealed a

”mystery” spectral line 1.8 meV below the exciton line whose most likely origin

was considered a trion [109]. According to the present calculations this was

probably a positive trion, in opposition to previous trion line assignments for

such QDs based on self-consistent Hartree-LDA calculations [151]. Experimental

evidence for the existence of binding negative trions was obtained on lens-shaped

GaAs/AlGaAs QDs [185].

5.2.7 Biexciton energy levels

Neglecting correlation, the biexciton ground-state energy is

E(XX) ≈ 2E + Ce + Ch − 4C + 2(x1 + x2) ,

using the notations from Table 5.3. This is, however, an insufficient approxima-

tion as it predicts the biexciton to be always anti-binding. In the 17 nm InAs
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pyramid the exchange-correlation effect lowers the biexciton ground-state energy

by 7 meV. Fig. 5.4(a) shows the lowest biexciton levels in these QDs calculated

by large basis CI (675 Slater determinants) with and without the exchange effect.

Figure 5.4:

(a) Lowest biexciton energy levels from large basis CI calculations in the Hartree
and Hartree-Fock approximations, together with the ground state according to
the Hartree LDA. (b) Recombination energies of the four lowest biexciton states.
(c) Relative XX energy, i. e. E(XX) − 2E(X) = −BXX . The first excited state is
two-fold degenerate.

The Hartree approximation is fairly inaccurate, and the limitation of a sepa-

rable ansatz for the biexciton wave function becomes clear from a comparison

with the self-consistent LDA calculation from p. 65. In fact, the LDA yields a

ground-state energy which is only 1.2 meV lower than by the above approximation

neglecting correlation completely.

The ground state (Hartree-Fock approximation) consists to 80% of two electrons

and holes in their single-particle ground states, the remaining 20% are intermixed

excited-state configurations due to the correlation effect. The first two excited

biexciton states shown in Fig. 5.4 are essentially due to the excitation of one hole

from the ground state into the first excited state. The average excitation energy

of the biexciton (2.7 meV) is comparable to the separation of the respective single-

hole states (3.6 meV), but smaller due to the correlation effect. In the first excited

biexciton state the ground-state hole and the excited hole have mainly parallel

spin projections so that this level is two-fold degenerate. In the second excited,

non-degenerate biexciton state the two holes have predominantly opposite spin

projections.

Fig. 5.4(b) shows the predicted recombination energies E(XX) − E(X) of the

four lowest biexciton states. According to all used approximations the biexciton

ground-state recombination occurs at higher energy than for the exciton, thus the

biexciton is anti-binding in these dots, see Fig. 5.4(c), having a binding energy

2E(X) − E(XX) of −2 meV. Similar to the situation in the negative trion, the
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four-particle exchange-correlation is not sufficient to compensate the increase of

the direct Coulomb energy, Ce +Ch−2C > 0, when forcing two excitons into the

QD.

The reason is that the correlation is restricted by the piezoelectric effect in

the QD. The piezoelectric quadrupole potential shown in Fig. 4.7(d) separates

electrons and holes, as seen in Fig. 4.11(a,b), thus simultaneously reducing the

electron-hole attraction (and exchange) and increasing the pairwise Coulomb re-

pulsion. In this ”piezoelectric regime” the biexciton is consequently anti-binding.

Since the piezoelectric effect scales linearly with the QD size, the weaker charge

separation in smaller pyramids may enable the exchange-correlation to overcome

the net Coulomb repulsion, enabling the formation of binding biexcitons. The

qualitative dependence of the biexciton binding energy on the QD size is illus-

trated in Fig. 5.5.

Figure 5.5:

Qualitative size dependence of the biexciton binding energy BXX in piezoelectric,
pyramidal InAs/GaAs QDs. δ denotes the direct Coulomb energy, ξ the sum of
exchange and correlation energies.

The calculated size dependence of the biexciton binding energy is shown in

Fig. 5.6 where the QD size is parametrized by the related exciton ground-state

transition energy. Since the QDs with 10 nm base length are not eligible for

a CI treatment they are not included. The break-even between the Coulomb

and exchange-correlation effects is expected in InAs pyramid QDs with ∼ 13 nm

base length, having an exciton ground-state transition energy of ∼ 1.1 eV at

T = 7 K. For those dots, a resonance between the exciton and biexciton ground-

state recombinations is predicted.

Indeed, weakly anti-binding biexcitons with a binding energy of −0.7 meV have

been experimentally observed on ∼ 12 nm large, self-assembled InAs/GaAs QDs
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Calculated size dependence of the biexciton ground state binding energy in piezo-
electric, pyramidal InAs/GaAs QDs. The QD size is represented by the corre-
sponding exciton ground state transition energy from the Hartree approximation.
coul stands for the inclusion of direct Coulomb interaction, exch for the exchange
effect, and corr for the inclusion of correlation effects.

[109]. Binding biexcitons with a binding energy of 3 meV have been observed

on ∼ 20 nm large, self-assembled In0.4Ga0.6As/GaAs QDs [107]. This underlines

that the effects of few-particle interactions depend sensitively on the structural,

i. e., geometrical and chemical properties of the QD: In QDs which are less

strained or have less developed facets, or consist of less piezoelectric materials,

the C2v (quadrupole) component of the confinement potential is weaker, favoring

positive binding energies. A direct comparison between the present calculations

and experiments [107,109,151] is limited by the deviation of the grown QDs from

the InAs pyramid model used here.

Fig. 5.6 shows that the exchange effect has a negligible influence if correlation

is excluded. In this case, the biexciton binding energies according to the Hartree

and Hartree-Fock approximations differ only by approximately the singlet-triplet

splitting energy 2x1. Under the impact of correlation this difference increases by

one order of magnitude, demonstrating the coercitive interplay of exchange and

correlation in the biexciton state.

To conclude, the biexciton binding energy is a highly sensitive, local probe for

the confinement-dependent wave-function shapes in a QD.



Chapter 6

Optical Properties of Quantum

Dots

The modeling of the optical properties of QDs and, moreover, self-organized QD

ensembles is intricate even when restricted to the linear range. At sufficiently

low temperatures the population of an individual QD with charge carriers is

independent of that of others. No position-independent Fermi level exists and rate

equations with average level populations are incorrect. In general, an ensemble

of QDs has to be treated as a large set of microstates whose possible transitions

are modeled by master equations [186,187].

6.1 Calculated spectra

The absorption intensities and polarizations presented in this chapter are calcu-

lated using the CI method in the Hartree approximation as outlined in Section

5.2.4. In the spectroscopic experiments discussed in Section 6.3 unpolarized,

vertically incident excitation was used, hence ê ⊥ [001]. The relevant SME is

thus

I ∝ 1

2π

2π∫

0

∣∣∣p[100] cos φ + p[010] sin φ
∣∣∣
2
dφ

=
1

2

(
|p[100]|2 + |p[010]|2

)

= |p[100]|2 where (6.1)

p[100] = (1, 0, 0) · p(X)
n ,

p[010] = (0, 1, 0) · p(X)
n ,

using p(X)
n according to Eq. (5.12). I is proportional to the intensity for [100]

polarized excitation due to the equivalence of the [100] and [010] directions in

85



86 CHAPTER 6. OPTICAL PROPERTIES OF QUANTUM DOTS

(100) oriented pyramidal QDs.

6.1.1 Excitonic transitions

Fig. 6.1 shows the excitonic absorption spectra of QDs under vertical incidence of

unpolarized light, dependent on the dot size. The transitions have been broadened

artificially by Gaussians with 10 meV FWHM. Since, at least for the largest

dots, not all single-hole levels were calculated the spectra for b ≥ 17.0 nm are

incomplete at high energies.

The exciton spectra exhibit a large number of lines which mainly reflect the

presence of several excited electron states. The assignment of the absorption lines

to the respective single-particle transitions is also shown in Fig. 6.1 and justified

by the weak correlation of excitons in the dots, as discussed in Section 5.2.4.

Some electron states yield a significant oscillator strength with more than one

hole state, thus contributing to more than one line. On the other hand, one line

can be composed from several transitions, in particular, when the inhomogeneous

broadening becomes ≥ 18 meV, as it is in actual experiments.

A significant decrease of the SME of the ground-state transition with increasing

dot size is found. This is due to the piezoelectrically induced symmetry breaking

of the hole ground state reducing the overlap with the electron, see Fig. 4.11 (b)

vs. (c). For large dots the transition becomes spatially indirect. This results in a

decrease of the oscillator strength from 3.4 at b = 10 nm down to 1.5 at b = 20 nm

(assuming vertically incident, unpolarized light).

Fig. 6.2 demonstrates that the Coulomb correlation introduces mainly an en-

ergetic correction to the single-particle spectra, underlining the weak correlation

of exciton states in the strong confinement regime, as discussed on p. 78.

The general dependence of the SME on the E-field direction ê according to

Eq. (4.21) was shown in Fig. 5.2(b) for the ground-state transition in QDs with

b = 17 nm. There is a strong anisotropy between the [001] and [xy0] polarization

directions, and a weaker anisotropy between [110] and [110]. The latter reflects

the C2v symmetry of the single-particle wave functions and is somewhat reduced

by the correlation of electron and hole in the exciton ground state, as seen by

comparing Fig. 5.2(a) and (b). The excitonic transitions are generally expected

to be less anisotropic than the (inexisting) recombination of ”free” electrons and

holes, due to the Coulomb correlation effect. The polarization anisotropy between

the [110] and [110] directions,

p =
I[110] − I[110]

I[110] + I[110]

, (6.2)

of the ground-state transition is displayed in Table 5.1 for both cases, direct and
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Figure 6.1:

Calculated excitonic absorption spectra of InAs pyramid QDs with different sizes
b for unpolarized light under vertical incidence. The arrows with ”quantum num-
bers” (see p. 50) indicate the strongest single-particle configurations contributing
to the respective exciton. The SME I is calculated from Eq. (4.21) and Eq. (6.1).
The absorption lines are artificial Gaussians with 10 meV FWHM. The seemingly
missing transitions for b = 20.4 nm at energies above 1225 meV have not been
calculated.
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Figure 6.2:

Comparison of excitonic (a) and single-particle (b) unpolarized absorption spectra
under vertical incidence for the QD size b = 17 nm. The intensities are calculated
from Eq. (4.21) and Eq. (4.24) or Eq. (5.12), respectively, and broadened artifi-
cially by Gaussians with 7 meV FWHM. The Coulomb correlation causes mainly
an energetic shift of the transition lines while only modest intensity changes.

excitonic recombination, and as a function of the dot size b. p increases with

b, and so does its reduction due to Coulomb correlation, in accordance with the

weakening of the confinement in larger dots. The interaction with [001] polarized

light is much weaker than under vertical incidence for all calculated transitions,

as shown in Fig. 6.3.

6.1.2 Intraband transitions

The SMEs between electron levels are generally smaller than those representing

exciton transitions, and yield a stronger anisotropy. Both properties are con-
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Figure 6.3:

Calculated excitonic absorption spectra for different QD sizes b and polarization
directions. The SME I is given by Eq. (4.21) and Eq. (5.12). The absorption lines
are artificial Gaussians with 10 meV FWHM. The seemingly missing transitions
for b = 20.4 nm at energies above 1.2 eV have not been calculated.
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Figure 6.4:

Intraband absorption spectra, including electron-electron and hole-hole transi-
tions, of InAs pyramid QDs of different sizes b and for different polarization
directions. The SME I is calculated from Eq. (4.21), i. e. the explicit, reciprocal
dependence of the absorption on the transition energy (see p. 58) is omitted in
these plots. The absorption lines are artificial Gaussians with 10 meV FWHM.

sequences of the strict dominance of the s-type Bloch parts in the CB wave

functions (see Fig. 4.10). The mid-infrared absorption spectra for different polar-

ization directions are shown in Fig. 6.4 dependent on the dot size. The majority

of excited electron states is involved in allowed mid-infrared optical transitions.

The maximum of the mid-infrared absorption shifts to lower energies and becomes

significantly stronger as the dot size increases, due to an increasing number of
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allowed transitions. This increase is additionally enhanced by the explicit energy

dependence of the absorption (as discussed on p. 58). There is significant interac-

tion with vertically incident light [188], which is a completely different situation

from that in quantum wells. Thus mid-infrared light detectors for perpendicular

incidence of light can be realized using QDs [189,190].

6.2 Exciton phonon interaction

A first approximation to the coupling strength between the exciton ground state

in the strong confinement regime and longitudinal-optical (LO) bulk phonons can

be derived within an adiabatic treatment in the frame of the independent-phonon

model [191]. Assuming the separation between the confined single-particle ground

and first excited states to be larger than both the exciton binding energy and

the bulk LO phonon energy, the independent-phonon model predicts (at zero

temperature) a Poisson distribution of the excitonic oscillator strength over the

phonon sidebands with the expectation value S called Huang-Rhys parameter

[192]. The Huang-Rhys parameter for the inelastic LO-phonon scattering of the

exciton ground state in the Hartree approximation is [193]

S =
f0

2
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where |Ψe〉 and |Ψh〉 are self-consistent single-electron and -hole wave functions

obtained from Eq. (5.1), F denotes the 3D Fourier transformation [180], h̄ ωLO is

the bulk LO phonon energy of the QD material (InAs), and

f0 =

√
2πe2h̄ ωLO

(
1

ε∞
− 1

ε0

)

[194] is the Fröhlich constant of the QD material, with ε0 and ε∞ being the static

and high-frequency limits of the dielectric constant, respectively. The Bloch part

of the wave functions is neglected in Eq. (6.3) in accordance with the basic enve-

lope function approximation. Since the reference of Eq. (6.3) to the single-particle

picture is based on the assumption of strong confinement widely suppressing the

two-particle correlation, the separable ansatz underlying Eq. (5.1) to treat the

Coulomb correlation seems appropriate.
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As can be seen from Eq. (6.3) the Huang-Rhys parameter is sensitive to the

local charge, i. e. the difference between the probability densities of the (self-

consistent) electron and hole ground-states, which in the k-space is given by the

underbraced term ∆ψ(k). The latter is significantly influenced by the piezoelec-

tric effect reducing the spatial overlap of the two wave functions and thus the

dipole component of their interaction with photons. In contrast, the interaction

with LO phonons may be enhanced by the overlap reduction, due to the differ-

ent density of states of the LO phonons: Since ∆ψ(k) is averaged by 1/|k|2 the

concentration of large ∆ψ values near the Γ point caused by the piezoelectric

effect, see Fig. 6.5, results immediately in an increased Huang-Rhys parameter

S. Analogously, the Coulomb correlation effect tendentially reduces S and is,

hence, worth being included.

Figure 6.5:

Difference between the CB and VB ground-state probability densities, i. e. ∆ψ(k)
from Eq. (6.3), plotted along the (001) plane of the k space, (a) including the
piezoelectric effect and (b) neglecting it, calculated for the 17 nm large InAs
pyramid QD. The shown k-space region is 7.3 nm−1 × 7.3 nm−1 large. The color
scales of both plots are identical, linear, and scaled to the maximum of plot (a).

To conclude, the polar exciton-LO-phonon interaction in piezoelectrically

charged QDs is enhanced (as compared to the bulk case) [195–197] by the static

quadrupole potential shown in Fig. 4.7(d). Since the piezoelectric effect is size

dependent this enhancement is predicted to increase with the dot size, as shown

in Fig. 6.6. The connection between the exciton ground-state transition energy

and the Huang-Rhys parameter enables an experimental verification even with-

out precise knowledge about the QD size. A weaker size dependence of S, caused

by the strain distribution, is predicted neglecting piezoelectricity, see Fig. 6.6.

As discussed in Ref. [195, 196] and shown in Fig. 6.6 the agreement between

experiments (diamond markers) and the theory presented here is encouraging.
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Figure 6.6:

Size dependencies of the exciton ground-state transition energy (top) and the
Huang-Rhys parameter (bottom) in pyramidal InAs/GaAs QDs, calculated in-
cluding the piezoelectric effect or neglecting it, together with experimental val-
ues [195,196].

6.3 Comparison with experiments

A commonly taken experimental approach to the excited states in self-organized

QDs is PL spectroscopy at high excitation densities, taking advantage of state fill-

ing in the discrete density of states [9,10,198–200]. However, such measurements

probe the spectrum of highly populated QDs, which is subject to many-particle

effects, and are additionally restricted by the inhomogeneous broadening of the

QD ensemble. The experimental verification of detailed calculations requires (i)

to overcome the inhomogeneous broadening in the optical spectra and (ii) to

probe the absorption spectrum of empty QDs while (iii) knowing possibly much

about the structural properties of the QDs.
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The ensemble inhomogeneity is avoided in single-QD spectroscopy [91,106–109,

151,170,185,201–210], however, the comparison with calculations is hampered by

the practically unknown structural properties of the actually investigated single

QD. Alternatively, PLE spectroscopy on a QD ensemble allows to study the ab-

sorption of a subensemble of similar QDs defined by the detection energy. Such

spectra are still inhomogeneously broadened due to shape and composition fluc-

tuations but allow, at least, to study the dot-size dependence of excited exciton

states, i. e. the quantum size effect, by tuning the detection window across the

PL peak of the entire QD ensemble [211, 212]. Preconditions for a PLE study

of the excited state spectrum of QDs are an excellent material quality and a

high uniformity of the QDs. Attention must, in principle, be paid to the possi-

bility that restricted intradot relaxation [213, 214] might influence the shape of

the PLE spectra. However, multi-LO-phonon resonances can provide competing

recombination processes which efficiently depopulate excited QD states [111,215].

In the following, near-resonant PLE spectra of self-organized InAs/GaAs sam-

ples with different average QD sizes [12] are compared to the calculated spectra

shown in Fig. 6.1. Temperature-dependent measurements ensure that the PLE

spectra do correspond to empty-dot absorption spectra, being suitable for study-

ing the excited state transitions and their quantum size effect [12]. The spec-

troscopic experiments were performed by Robert Heitz on samples grown by Ilja

Mukhametzanov and Anupam Madhukar and are described in detail in Ref. [12].

The various QD samples were grown by molecular beam epitaxy on semi-

insulating GaAs(001) as described in Ref. [212, 216], depositing between 1.74

and 3.00 MLs InAs at 500◦C. In order to vary the structural properties of the

QD ensembles the InAs was deposited either continuously (C) [212] or in the vari-

able deposition amount (V) approach using a 1.74 ML InAs QD seed layer [216].

The latter method produces vertical pairs of differently sized QDs in which only

the larger QDs in the second layer are optically active [216, 217]. The samples

are dubbed C and V, respectively, followed by the amount of InAs deposited for

the active layer given in % of a ML (e. g., V300). The lateral size of the optically

active QDs is b ≤ 19 nm and their height ranges from 4 to 10 nm, whereby the

ensemble uniformity and the average aspect ratio of the islands increase along

with the average QD size [12].

Fig. 6.7 compares the results of PLE measurements on the sample V300 with the

calculations from Fig. 6.1. The excitation beam incidence (with a photon energy

Eexc) on the sample is nearly perpendicular, i. e., close to the [001] direction

and almost unpolarized, as assumed in Eq. (6.1). The detected exciton ground-

state luminescence intensity at 7 K is plotted on a logarithmic scale in a contour

plot as a function of the detection energy Edet and the excess excitation energy

∆E = Eexc−Edet , and assumed to be proportional to the photon absorption due

to exciton generation at Eexc .
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Figure 6.7:

PLE intensity of sample V300 at 7K as contour plot on a logarithmic scale
as function of the detection (Edet) and excess excitation (∆E = Eexc − Edet)
energies. The detection energy Edet identifies the exciton ground-state transition
energy and Eexc = ∆E + Edet is the energy of excited exciton states absorbing
the excitation beam photons at a rate assumed to be proportional to the detected
ground-state luminescence intensity. The arrow denotes the LO-phonon energy,
i. e. the resonances from phonon-generated excitons in the ground state.

The quantum size effect is clearly observable: An increasing detection energy,

i. e. ground-state transition energy, implies a decrease of the dot size and thus

an enhanced separation between the confined exciton states, similar to the size

dependence of the single-particle levels shown in Fig. 4.8. The black disks indi-

cate the calculated exciton states. The dominant excitation resonance, observed

at excess energies ∆E between 65 and 90 meV, is most intense in the energy gap

between the two- and three-LO-phonon processes [215] which supports the iden-

tification of the excitation resonances with excited state transitions, rather than

with phonon replica (the excess energy corresponding to the first LO-phonon

sideband is shown by the arrow).
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Fig. 6.8 compiles the excess excitation energies observed for the dominant PLE

resonances in the two samples containing the largest QDs (C300 and V300). The

most intense excitation resonances appear around excess energies ∆E of ∼ 80

and ∼ 160 meV, roughly corresponding to excited state transitions observed in

inhomogeneously broadened high-density PL. Additional weaker resonances are

resolved at ∼ 22, ∼ 60, ∼ 110, ∼ 130, and ∼ 190 meV. Line shape fits reveal

additional substructures for some of the resonances which have been omitted in

Fig. 6.8 for the sake of clarity. The excited state transition spectrum of the QDs is

considerably denser than expected from inhomogeneously broadened PL spectra.

The size-selective PLE spectra demonstrate the quantum size effect for large

self-organized InAs/GaAs QDs with ground state transition energies below ∼
1.13eV. For smaller QDs (Edet > 1.13 eV), as also contained in some other of

the investigated samples, the excitation resonance energies are less dependent on

the detection energy, in contrast to the theoretically predicted steeper relation

seen from Fig. 4.8. Partly even a reversed size dependence, i. e. an increasing

excess excitation energy at increasing QD size, is observed. Since previous stud-

ies suggest that the observation of a quantum-size dependence requires highly

uniform QDs [211] the evolution of the excited state spectrum for Edet > 1.13 eV

shown in Fig. 6.8 is likely to depend not only on the quantum size effect, but also

on changes in the average island shape and composition [218]. Therefore, the

discussion here is restricted to samples with nominally 3.00 ML InAs deposition,

containing the largest QDs and showing a clear quantum size effect [12]. These

large QDs appear to be well approximated by the idealized InAs pyramids with

{101} side facets.

Certainly, the shape and composition of islands formed in the Stranski-

Krastanow growth mode are controversial topics, especially in the case of over-

grown structures for which In segregation and interdiffusion may occur during the

cap layer growth. The persistent lack of detailed information on the structural

parameters of the QDs, as well as on the statistical distribution of these parame-

ters in an ensemble, is still a barrier for critical comparisons between experiments

and detailed calculations. Nevertheless, the PLE spectra demonstrate the nec-

essary progress established by all-numerical calculations, shown in Fig. 6.1 and

Fig. 6.3, over simplistic approaches like the harmonic oscillator model predicting

equally spaced transition lines: The observed wealth of absorption lines cannot

be labeled by one common quantum number for multiply degenerate CB and VB

states. The transitions might, however, be considered forming groups related to

the quantum numbers of CB states, see Fig. 6.9(a), since the level separations of

confined electrons are up to ∼ 3 times larger than of the holes, while the splitting

of the electron levels |100〉 and |010〉 is smaller than the quantization energies, as

discussed in Section 4.3.1.

As seen from Fig. 6.8, the present calculations are in qualitative agreement with
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Figure 6.8:

Energetic positions of the dominant PLE resonances observed on the samples
C300 (triangles) and V300 (disks). The lines represent the calculated exciton
states, whereby solid lines indicate large SMEs (at least 10% of the maximal
SME) and dotted lines correspond to weak transitions. The ”quantum numbers”
(see p. 50) refer to the dominant single-particle states (e − h) contributing to
the respective resonances. The arrows atop of the plot indicate the pyramid
base length b corresponding to the exciton ground-state energy according to the
calculation. The first LO-phonon sideband is shown as a horizontal dotted line.

the PLE measurements regarding the larger islands (Edet ≤ 1.13 eV), predicting

excited state absorption in those energy regions where excitation resonances are

observed. However, the level separations for a given ground-state transition en-

ergy Edet are systematically overestimated. Accordingly, given a pyramid base
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length b the calculations predict a ground-state transition energy 30−40 meV be-

low the experimental value [195], as already shown in Fig. 6.6. Hence, taking the

experimentally known base length as reference – instead of the detection energy

– introduces a phenomenological shift of the calculated ground-state transition

energies by ∼ 40 meV to higher energies and provides for improved agreement

with the experimentally observed excited state spectrum, as shown in Fig. 6.9.

Fig. 6.9(a) shows the calculated absorption spectrum for b = 17 nm. The agree-

ment with the PLE spectrum detected at the predicted ground-state transition

energy (1.025 eV) is only qualitative, see the solid line in Fig. 6.9(b). Better

agreement is found for a PLE spectrum detected at 1.069 eV for which the ex-

perimentally estimated QD size (b ≈ 17 nm [195]) matches that of the calculated

pyramid, see the dashed line in Fig. 6.9(b). A tentative assignment of the ob-

served excitation resonances to excitonic transitions based on their energy and

relative intensity is made in Ref. [12].

The resonances at ∆E = 50 . . . 120 meV are attributed to transitions from the

lowest excited CB states |C100〉 and |C010〉, being split by the C2v-symmetry of

the confinement (see Section 3.2.2), into different VB states. Fig. 6.10 displays

the energy difference between the |C100〉-|V 110〉 and |C010〉-|V 110〉 exciton tran-

sitions as function of the ground state transition energy. This difference increases

with increasing QD size, in contrast to the ordinary quantum size effect. Indeed,

the reversed size-dependence is in accord with the theory, see Fig. 4.8, due to size

dependence of the piezoelectric effect (see Section 4.2). The calculation (gray

circles) predicts the correct slope but underestimates the magnitude. The ASA

effect [38] discussed in Chapter 3 might account for the remaining discrepancy.

As already noted, the calculations fail to explain the PLE spectra of the small-

est QDs in the samples (Edet > 1.13 eV). The observed energy separations are

significantly smaller than predicted1 and seemingly lack any size dependence, see

Fig. 6.8: The excitation resonances at large detection energies seem to assume a

ladder corresponding to multiples of LO-phonon energies. Primarily, less struc-

tural information exists on the smaller islands, where shape and composition

changes play a more important role than for large dots. For instance, interdiffu-

sion decreases the confinement depth and increases the effective QD size, elevating

the exciton ground state energy and reducing the excited state separation [219].

Second, enhanced interaction with non-radiative recombination centers in the

barrier [215] or slower inter-level relaxation may occur in the smaller QDs.

The highest excited resonances show even a reversed size-dependence when

the transition energy approaches that of the WL. Coulomb interaction between

localized carriers in the QDs and their two-dimensional (2D) counterparts in the

1Part of this discrepancy may be related to the conventional choice of the k·p bandstructure
parameters used in this part of the work (see Chapter 3 for discussion).
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Figure 6.9:

(a) Calculated excitonic absorption spectrum for b = 17 nm, same data as in
Fig. 6.1 and Fig. 6.2(a). The transitions are represented by bars with lengths
indicating the relative magnitudes of the SMEs. The ”quantum numbers” (see
p. 50) refer to the dominant single-particle configurations (e−h) contributing to
the respective excitons. The arrows group the transition lines according to the
involved electron states, visualizing the prediction of quantum numbers n by a
harmonic oscillator model for the electrons. (b) Low temperature PLE spectra of
sample V300, either detected at the same exciton ground-state transition energy
as in the calculation (solid line), or for the same dot size as in the calculation
(dashed line).

WL would result in localized exciton states whereby the energy of the 2D carrier

is – independently of the dot size – pinned to the WL, thus forcing a reversed
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Figure 6.10:

Difference between the |C100〉-|V 110〉 and |C010〉-|V 110〉 exciton transition en-
ergies as function of the ground state transition energy, measured on various
samples or calculated. The inset shows exemplarically how the difference was
determined from the PLE spectra.

size dependence of the optical transition energy within a certain detection range.

In view of the uncertainties regarding the actual island shape and composition

in the samples, as well as some of the material parameters entering the calcula-

tions (as discussed in Sections 2.3 and 4.3.2), the overall agreement is satisfactory.

A comparably good agreement between k·p calculations and PLE measurements

was reported for colloidal, spherical InAs nanocrystals [220]. Another, equally

important test for the calculations is the splitting of the exciton localization en-

ergy between the CB and VB, i. e., the single-particle level positions with respect

to the barrier band edges, as shown in Fig. 4.8. In optical spectroscopy of exciton

transitions such information is only indirectly accessible, but it can be derived

from capacitance spectroscopy. Investigations of electron and hole localization

energies in self-organized InAs/GaAs QDs by deep level transient spectroscopy

demonstrate good agreement with the present predictions [95, 221].
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6.4 Resumé

The detailed theory of the electronic structure and optical properties of self-

organized InAs/GaAs QDs outlined in this part is coroborated by several exper-

iments. A variety of predictions has been confirmed semiquantitatively, whereby

the inevitable discrepancies between measured quantities and predicted values

are small enough to establish a validation of the theory:

• Single-particle level positions with respect to the barrier band edges, mea-

sured by deep level transient spectroscopy [95,221],

• optical transitions from excited exciton states, measured by PLE [12],

• exchange splitting (separation between the average dark and bright exciton

energies) and polarization properties of the exciton ground state, measured

by single-QD magnetoluminescence [106],

• recombination energies of trions, measured by excitation dependent PL

[109],

• sensitive dependence of the biexciton binding energy on the geometrical and

chemical structure of the QD, evidenced by the observation of binding [107]

and anti-binding [109] biexcitons,

• enhanced polar exciton-LO-phonon interaction, measured by PL [195].

The present treatment advances beyond previous work as it predicts all above

mentioned properties within one coherent frame work , and based on one and the

same QD model , rather than employing individually tailored models for each of

the observed effects, thus establishing the mutual consistency of the various prop-

erties. In addition, the theory does not lean on adjustable parameters, although

it is flexible to take into account arbitrary geometrical shapes and chemical com-

positions of QDs.

Its predictive power is limited by the lack of sufficiently detailed information

on the geometrical and chemical structure of the QDs, and by the uncertainty re-

garding several bulk properties of the constituent materials (as detailed in Section

2.3, Chapter 3, and Section 4.3.2).

The eight-band k ·p model adapted to QD calculations, in connection with

different many-particle interaction models, is a valid and capable tool aside of

experimental techniques for the investigation of epitaxial semiconductor QD het-

erostructures.
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Chapter 7

Bandstructure in Quantum Wires

Semiconductor QWRs have also attracted interest for laser applications because

of their potential for a reduction of the threshold current density [222] and the

increased gain and differential gain achieved by 2D confinement [8]. Technological

progress in the epitaxial fabrication of lattice-mismatched single and multiple

QWRs on non-planar substrates led to various types of pseudomorphic QWRs

among which V-groove QWRs have been intensively studied [6,7,13–16,223–228].

In the frame of this work, various representants of this QWR type were studied

theoretically on the basis of the eight-band k·p model. Several aspects of single-

particle confinement that have been discussed in Chapter 4 regarding the 3D

confinement in QDs also apply to the 2D confinement in QWRs. The following

considerations hence focus on the differences between QWRs and QDs originating

from the existence of free, 1D carrier motion along the wire direction.

To briefly recapitulate the basic electronic properties of QWRs [53, 229] a

straight wire of infinite length is considered, assuming the lateral confinement

profile to be constant along the wire. Choosing the z-axis parallel to the wire the

wave function of a charge carrier may be written as a product φ(z) ·ψ(x, y) where

φ(z) describes the unconfined part of the wave function and ψ(x, y) is the 2D con-

fined part. Within the single-band effective-mass approximation using parabolic

bands the confined part ψ(x, y) of an electron wave function is the solution of the

2D ”Schrödinger” equation H2d ψ(x, y) = Ei ψ(x, y) with i being the quantum

number and Ei the energy of the confined 1D state,

H2d(x, y) = − h̄2

2
∇

[
1

m∗(x, y)
∇

]
+ V (x, y) ,

and m∗ being the spatially dependent electron effective mass in the strained bulk

material. V is the spatial bulk CB edge profile. The unconfined part φ of the

wave function can be described by plane waves φ(z) = 1
ζ
exp (i kz z) with ζ being

a scaling factor. Accordingly, the longitudinal motion of electrons is described

103
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by a 1D wave ”vector” kz yielding a parabolic longitudinal energy dispersion:

Ee
QWR(kz) = Ei +

h̄2k2
z

2m∗
1D

(7.1)

where m∗
1D is the 1D, longitudinal effective mass. Unlike the situation in QDs,

each 2D quantized state i can be populated by more than two electrons, due to

the kz -continuous term in Eq. (7.1), so that electrons belonging to the same 1D

state i actually form subbands. For kz 6= 0 these are non-degenerate even at zero

magnetic fields, in contrast to the 0D single-particle levels in QDs. The resulting

density of states (DOS) is piecewise continuous:

ρQWR(E) =

√
2m∗

1D

π2h̄2

∑

i

1√
E − Ei

.

In thermal equilibrium each subband has a thermal population with an effective

carrier temperature T and, assuming infinitely high confining barriers V , the

number of electrons in each subband i is

n
(i)
QWR =

∞∫

0

ρQWR(E)f(E) dE = N
(i)
QWR F−1/2

(
EF − Ei

kBT

)
,

where f is the Fermi distribution,

F−1/2(z) =

∞∫

0

dx√
x [1 + exp(x− z)]

is the Fermi integral of order −1
2
, and

N
(i)
QWR =

√
2m∗

1DkBT

π2h̄2

is the effective 1D DOS of the i-th subband (kB is the Boltzmann constant). Like

in QDs, many-particle effects gain importance with increasing population of the

1D subbands, whereby the total Coulomb charge of the confined carriers may

alter the lateral confinement potential V . The latter effect can be taken into ac-

count by self-consistent mean field calculations [128,129,230–232]. Furthermore,

effects similar to the band-gap renormalization in bulk semiconductors have been

observed [233] whose interpretation is controversial [234–237]. Caused by growth

effects, the lateral shape of the QWR usually changes slightly along the wire and,

in QWR arrays, from wire to wire, leading to inhomogeneous broadening of the

level energies Ei. Additionally, longitudinal potential fluctuations (∂V/∂z 6= 0)

may localize charge carriers at low temperatures so that the QWR electronically

breaks up into an irregular chain of QDs [238].
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7.1 Eight-band k·p model of strained quantum

wires

In the following, the 1D subband structure as well as the CB, VB, and joint

DOS and the confined wave-function parts ψ at the subband edges of V-shaped

In0.2Ga0.8As/AlcGa1−cAs QWRs are calculated by eight-band k·p theory, as re-

ported in Ref. [40]. Like for strained QDs, a pronounced influence of the piezo-

electric potential on the bandstructure is found, aside of a marked spin-splitting

of the 1D VBs and non-parabolicity of the 1D CB.

The V-groove QWR with the nominal composition In0.2Ga0.8As is surrounded

by a graded composition barrier of AlcGa1−cAs whose aluminium content c in-

creases linearly with the vertical distance from the heterointerface, as visualized

in Fig. 7.1(a). Within 200 nm from the interface, c increases from 0.2 to 0.7, i. e.,

the QWR and barrier form a ”graded index separate confinement heterostruc-

ture” (GRINSCH). The cross section shape of the wire is taken directly from

a transmission electron microscopy image and digitized with 1 nm resolution,

yielding 13563 pixels. The growth direction [001] is assigned to the geometrical

coordinate y. The wire is elongated along the [110] direction assigned to the

coordinate z, while x refers to [110].

The lattice mismatch of +1.4% leads to mainly compressive strain in the QWR

which is much weaker than the strain in InAs/GaAs QDs. The strain distribution

shown in Fig. 7.1(c-f) is calculated within the CM model, yielding the strain ten-

sor ε̂ with respect to the principal crystal axes as a function of the position (x, y)

in the QWR cross section plane (110) [239]. From ε̂(x, y) the piezoelectric poten-

tial Vp(x, y) shown in Fig. 7.1(b) is calculated, possessing the same translation

symmetry as the QWR and, hence, being independent of z.

For the calculation of the continuous 1D-bandstructure in the direction z, where

carrier transport is possible, wave vector components kx, ky, kz with respect to

the geometrical coordinates are introduced,1 in order to take advantage of the

translational symmetry along [110]. Thus the envelope functions are separable,

as outlined above, into a plane wave φ(z) with the wave number kz and a confined

part Ψ(x, y) defined in the cross section plane. In the spatial representation of

the Hamiltonian, kx 7→ −i ∂x and ky 7→ −i ∂y while kz remains a real number.

Thus a system

Ĥ (x, y, kz, ∂x, ∂y, ∂xx, ∂xy, ∂yy) Ψ(x, y) = E Ψ(x, y) (7.2)

of eight partial differential equations for the eight envelope functions ψs↑, ψx↑,

1kx , ky , and kz are related to the principal crystal axes by the same rotation matrix as the
chosen local coordinate system (x, y, z).
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Figure 7.1:

(a) The unstrained bulk VB edge profile Ev(x, y) visualizes the shape of the V-
groove QWR (white) along a (110) cross section plane, as well as the GRINSCH
structure of the barrier (yellow). The pixel size is 1 nm2, being the spatial resolu-
tion of the finite differences grid. (b) Piezoelectric potential along the same cross
section plane. The spatial profiles of the strain tensor components are shown
along the same plane: (c) εxx , (d) εzz , (e) εxy , and (f) εxz . The resulting effec-
tive lateral confinement potentials for electrons and holes are shown in (g) and
(h), respectively.



7.1. EIGHT-BAND K·P MODEL OF STRAINED QUANTUM WIRES 107

Unit Value in IncGa1−cAs Ref.

E0 meV 1424− 1501c + 433c2 [69]

E ′
v meV −6920 + 231c− 58c2 [58, 69]

∆0 meV 340− 93c + 133c2 [45]

me m0 0.0667− 0.0419c [62]

mso m0 0.163− 0.023c [62, 68]

γ1 1/[(1− c)/7.10 + c/19.7] [45,61]

γ2 1/[(1− c)/2.02 + c/8.4] [45,61]

γ3 1/[(1− c)/2.91 + c/9.3] [45,61]

B meV nm2 0 [33,240]

b′ meV 0 [33,240]

ac meV −8013 + 2933c [62]

ag meV −8233 + 2153c [62]

bv meV −1824 + 24c [45]

dv meV −5062 + 1462c [45]

C11 GPa 118.8− 35.5c [45, 61]

C12 GPa 53.8− 8.5c [45, 61]

C44 GPa 59.4− 19.8c [45, 61]

εs 13.18 + 1.42c [62]

e14 C m−2 0.160− 0.115c [62]

Table 7.1:

Indium gallium arsenide material parameters for 300K used in this chapter.

ψy↑, ψz↑, ψs↓, ψx↓, ψy↓, and ψz↓ is obtained, analogously to Eq. (4.14). However,

Eq. (7.2) and its eigensolutions (En, Ψn) depend continuously on kz in the case

of a QWR, constituing the 1D bandstructure with kz as independent variable.

Since the strain in V-groove QWRs is significantly weaker than obtained by

Stranski-Krastanow QD growth (in order to enable a dislocation-free growth of

the wire) and since the quantization energies in QWRs are generally smaller than

in InAs/GaAs QDs (due to the larger size of the QWR) the arguments in Chapter

3 supporting the accuracy of the eight-band k ·p model doubtlessly hold here,

too. Further, the common literature values for the k·p parameters provide a good

description as the populated range of the 1D-bandstructure does not depart too

far from the Γ point. Tables 7.1 and 7.2 display the k ·p material parameters

used here for InGaAs and AlGaAs, respectively, at room temperature.

Fig. 7.2 shows the lowest four 1D CBs and the topmost twelve 1D VBs along

the z direction for kz in the range ± 0.2 nm−1. All subbands were calculated

separately, starting with a Gaussian random vector for the wave function Ψ at
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Unit Value in AlcGa1−cAs Ref.

E0 meV 1428 + 1572c− 553c2 [68]

E ′
v meV −6920− 433c− 24c2 [66, 68]

∆0 meV 340− 131c + 71c2 [68]

me m0 0.067 + 0.083c [68]

mso m0 0.165 + 0.135c [68]

γ1 1/[(1− c)/7.10 + c/3.76] [68]

γ2 1/[(1− c)/2.02 + c/0.90] [68]

γ3 1/[(1− c)/2.91 + c/1.42] [68]

B meV nm2 0 [33,240]

b′ meV 0 [33,240]

ac meV −8013 + 2373c [58]

ag meV −8233 + 123c [58]

bv meV −1824 + 124c [58]

dv meV −5062 + 512c [58]

C11 GPa 118.8 + 1.4c [68]

C12 GPa 53.8 + 3.2c [68]

C44 GPa 59.4− 0.5c [68]

εs 13.46

e14 C m−2 0.137

Table 7.2:

Aluminium gallium arsenide material parameters for 300 K used in this chap-
ter. The expression for E0(c) is a second-order Chebyshev approximation to
1424 + 1594c + c(c− 1)(1310c− 127) for c ≤ 0.45.
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kz = 0 and using the obtained wave function at each kz value as initial guess for

the next kz value, adjusting the search energy2 by second order extrapolation.

The energy zero in Fig. 7.2 is the CB edge of unstrained bulk In0.2Ga0.8As. The

VB states are labeled from top to bottom by |1, 1〉, |1, 2〉, |2, 1〉, |2, 2〉, a. s. o.,

taking into account the spin projection. The |·, 1〉 states are shown as solid lines

and the |·, 2〉 states as dashed lines.
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Figure 7.2:

Lowest four 1D CBs and topmost twelve 1D VBs in the QWR (each shown by
alternating solid and dashed lines). The energy zero is the CB edge of unstrained
bulk In0.2Ga0.8As.

2See Section 9.3.



110 CHAPTER 7. BANDSTRUCTURE IN QUANTUM WIRES

Between the |·, 1〉 and |·, 2〉 states a meV-range splitting is observed for kz 6= 0.

This spin splitting is caused by the mesoscopic violation of the spatial inversion

symmetry due to the irregular geometrical shape of the QWR, the strain field, and

the piezoelectric charging. The spin splitting leads to double peaks in the DOS.

Each peak doublet consists of a singularity accompanied by a finite discontinuity.

This is well seen in the VB-DOS, see Fig. 7.3.
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Figure 7.3:

The peak doublets in the VB DOS reflect the spin splitting in the 1D bandstruc-
ture.

In general, the spin splitting causes slightly increased homogeneous linewidths

of all transitions, as compared to the (hypothetical) unsplit case, and presents a

lower limit of the linewidth for disappearing interface roughness. Fig. 7.4 shows

the joint DOS for k-conserving transitions and visualizes the dominance of the

singularities at all subband edges. A weakening of the singularity peaks due to

electron-hole Coulomb correlation has been predicted on the basis of generalized

semiconductor Bloch equations [241]. The SMEs between 〈a| and spin-split states

|b, 1〉, |b, 2〉 may differ by a factor 100 only, reflecting a relaxation of spin-selection

rules due to band mixing.

The piezoelectric potential Vp effectively reduces the actually tapered QWR

thickness from < 23 nm to uniformly ∼ 7 nm. Hence, for holes the QWR looks

approximately like a bent quantum well, as can be seen in Fig. 7.1(h).

Eventually, the situation corresponds to the formation of three electronically

coupled sub-QWRs for holes along the lower interface, which have separate
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Figure 7.4:

Joint DOS for k-conserving transitions (without inhomogeneous broadening).

ground-states at kz = 0, see Fig. 7.5. The lowest of these, the true ground-

state |1, ·〉, is located in the center and followed by its first excited state |2, ·〉.
The next two states, |3, ·〉 and |4, ·〉, have a ∼ 7 meV larger quantization energy,

while their separation is only ∼ 0.5 meV. This gives rise to a weak left-right sym-

metry breaking producing the two other quasi-ground-states. Fig. 7.5 shows only

the left of them.

A previous study of the symmetry breaking in this QWR neglecting band mix-

ing [239] suggested that only the true ground-state |1, ·〉 is affected, rather than

also the second excited state. The eight-band k·p calculation discriminates this

inaccuracy and indicates that the single-band effective-mass approximation is

unsuited also to QWRs in such complex situations involving strain and piezo-

electricity within an irregular geometry. The main source of inaccuracy in the

present case is that different states, e. g. |1, ·〉 and |3, ·〉, experience different

directions of strongest confinement. Simple effective mass models are not flex-

ible enough to resemble this situation in the Hamiltonian. Even the 1D-CB is

non-parabolic: For kz = 0 . . . 1.4 nm−1 the ground-state effective mass increases

from 0.066 to 0.208, as shown in Fig. 7.6. Due to the large size of the QWR

the electron effective mass approximately takes on its bulk value at kz = 0. The

increase occurs at higher wave numbers kz , not until the wave function is more

affected by the structural and piezoelectric confinement.
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Figure 7.5:

Envelopes |ψ|2 of the Bloch functions |s ↑〉, |x ↑〉, and |z ↑〉 in the VB states |1, ·〉,
|2, ·〉, |3, ·〉, and |8, ·〉 at kz = 0, plotted along the (110) cross section plane.

7.2 Specific quantum wire structures

Analogous to the case of pyramidal QDs, the interplay of structural confinement,

strain, piezoelectricity, and band mixing gives rise to very particular optical prop-

erties of QWRs, some of which were studied theoretically in the frame of this

work.
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Figure 7.6: Longitudinal effective mass in the CB state |1, 1〉.

7.2.1 In0.15Ga0.85As/Al0.15Ga0.85As V-groove quantum wires

Fig. 7.7(a) shows polarization dependent PLE spectra of pseudomorphic

In0.15Ga0.85As/Al0.15Ga0.85As V-groove QWRs oriented along [110] by growth on

a prepatterned (001) substrate [16, 228]. Each peak corresponds to the transi-

tion from an electron to a hole subband in the QWR. The measured transitions

are compared to eight-band k ·p calculations based on the QWR cross section

shape known from transmission electron microscopy and assuming the nominal

chemical composition of the wire. The comparison indicates a high accuracy

of such calculations. Transitions between different subbands show different po-

larization anisotropies obeying no plain rules. The influence of the strain and

related piezoelectricity on the polarization of the optical absorption in irregu-

larly shaped QWRs can be seen from Fig. 7.7(b) showing the calculated optical

anisotropy spectra of a strained and an unstrained QWR having the same cross

section shape. A detailed discussion of the optical properties based on the calcu-

lations and PLE measurements is given in Ref. [16,228].

7.2.2 In0.7Ga0.3As/InP V-groove quantum wires

An extreme case of piezoelectric impact on the optical properties of QWRs

was found in In0.7Ga0.3As/InP V-groove QWRs [226], where a quenching of the

ground-state transition luminescence is predicted [225]: The dominant piezoelec-

tric field (in average 3.9 kVcm−1 in lateral direction) effectively partitions the

QWR into spatially distinct wires for electrons and holes, forcing a geometrical
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(a) (b)

Figure 7.7:

(a) PL, PLE, and polarization anisotropy (P ) spectra of pseudomorphic
In0.15Ga0.85As/Al0.15Ga0.85As V-groove QWRs. P is the anisotropy between the
polarization directions parallel (solid line) and perpendicular (dashed line) to
the QWR direction [110] in the substrate plane (001). The arrows indicate the
1D subband edge transitions according to eight-band k·p calculations based on
the actual QWR cross section geometry known from transmission electron mi-
croscopy. (b) Calculated anisotropies P of the strained QWR and of an ideally
lattice-matched GaAs/Al0.15Ga0.85As QWR having the same cross section shape.
The figures are taken from Ref. [16].

symmetry breaking of the uppermost 1D valence subband and realizing spatially

indirect transitions similar to the situation in type-II QWRs [128,129]. At mod-

erate optical excitation (< 100 Wcm−2) the injected carriers (< 5×105 cm−1) are

estimated to screen the field to ≥ 2.6 kVcm−1. This is only a weak screening of

the piezopotential so that the spatial electron-hole separation is not suspended,

enabling an experimental observation of the reduced ground-state luminescence

intensity. The study was published in Ref. [225].

7.2.3 Strained cleaved-edge overgrowth quantum wires

By cleaved-edge overgrowth, type-I QWRs can be fabricated which confine charge

carriers without providing a closed 2D heterojunction barrier. The confinement

in such QWRs can be enhanced by inhomogeneous strain, e. g. in the material

system In0.20Al0.80As/Al0.35Ga0.65As/GaAs. In contrast to less advanced band-

structure models, eight-band k ·p theory predicts localization energies of up to

90 meV in strained cleaved-edge overgrowth QWRs, as detailed in Ref. [242].
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Chapter 8

Finite Differences Method

To generate matrix representations H of the Hamiltonians Eq. (4.14) and

Eq. (7.2) a finite differences method (FDM) on a cubic grid is used [40], hav-

ing Ñ = Nx ·Ny nodes in the case of a QWR and Ñ = Nx ·Ny ·Nz in the case of

a QD. The real and imaginary parts of the envelope functions are represented by

Ñ -dimensional vectors, each. Accordingly, the differential operators and spatially

varying parameters in Eq. (2.1) become Ñ × Ñ real matrices, so that H is an

8Ñ × 8Ñ complex matrix and the (real) dimension of a complete wave-function

vector is N = 16Ñ . The Ñ × Ñ submatrices representing material parameters

or strain components are diagonal. The matrix representations of the differential

operators replacing the k components in Eq. (2.1) are chosen as to reproduce

the symmetry properties and commutation relations of the k components, while

assuring the numerical stability of the difference scheme.

This is accomplished by introducing two different matrices, D(+) and D(−), for

each partial derivative (∂x , ∂y , and – if applicable – ∂z), whereby

[D(+)]T = −D(−) .

The D(+)-type differentiator matrices are used in the upper right triangu-

lar matrix of H and the D(−)-type differentiator matrices in the lower left

triangular matrix. The discretizations of the symmetrized expressions for

Q∂x , Q∂y , Q∂z , Q∂xx , Q∂xy , Q∂xz , Q∂yy , Q∂yz , Q∂zz (see Section 2.2) are

obtained from the standard first order forward (backward) difference quotients

∂x
(+), ∂y

(+), ∂z
(+) (∂x

(−), ∂y
(−), ∂z

(−)) by

117
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Dx
(+)(Q) =

[
Q∂x

(+) + ∂x
(+)Q

]
/2 ,

Dx
(−)(Q) =

[
Q∂x

(−) + ∂x
(−)Q

]
/2 ,

Dy
(+)(Q) =

[
Q∂y

(+) + ∂y
(+)Q

]
/2 ,

Dy
(−)(Q) =

[
Q∂y

(−) + ∂y
(−)Q

]
/2 ,

Dz
(+)(Q) =

[
Q∂z

(+) + ∂z
(+)Q

]
/2 ,

Dz
(−)(Q) =

[
Q∂z

(−) + ∂z
(−)Q

]
/2 ,

Dxx(Q) =
[
∂x

(+)Q∂x
(−) + ∂x

(−)Q∂x
(+)

]
/2 ,

Dyy(Q) =
[
∂y

(+)Q∂y
(−) + ∂y

(−)Q∂y
(+)

]
/2 ,

Dzz(Q) =
[
∂z

(+)Q∂z
(−) + ∂z

(−)Q∂z
(+)

]
/2 ,

Dxy(Q) =
[
∂x

(+)Q∂y
(+) + ∂y

(+)Q∂x
(+) + ∂x

(−)Q∂y
(−) + ∂y

(−)Q∂x
(−)

]
/4 ,

Dxz(Q) =
[
∂x

(+)Q∂z
(+) + ∂z

(+)Q∂x
(+) + ∂x

(−)Q∂z
(−) + ∂z

(−)Q∂x
(−)

]
/4 ,

Dyz(Q) =
[
∂y

(+)Q∂z
(+) + ∂z

(+)Q∂y
(+) + ∂y

(−)Q∂z
(−) + ∂z

(−)Q∂y
(−)

]
/4 .

Expanding these expressions yields the actual difference quotients used in this

work. For Q being the identity matrix all of them reduce to standard differ-

ence quotients. The handling of boundary nodes for the realization of Neumann

conditions is standard.



Chapter 9

Calculation of Confined States

Quantum confined structures, like QWRs and QDs, differ from bulk material by

their finite spatial structure destroying the translation symmetry of the crystal

lattice in, at least, one spatial direction (two for QWRs, three for QDs). Band-

structure models can take this into account either on a microscopic scale, like the

tight-binding and pseudopotential methods, or on a mesoscopic scale, like the

envelope function approximation (EFA) methods. Regardless of the particular

nanostructure or theoretical concept, modeling approaches for the optical prop-

erties of semiconductor heterostructures share the necessity to describe both CB

and VB states, having to construct a Hamiltonian containing both the CB and

VB dispersions (or level structure) of the low-dimensional structure.

The requirement to expand the Hamiltonian into a finite basis for practical

calculations (discretization) introduces energy bounds (”cut-off”) to the Hamil-

tonian and leads to the existence of a ”maximally excited CB state” at extremely

high energy and a ”maximally excited VB state” at extremely low energy. These

states are not always physically realistic, but the associated upper and lower

bounds of the discrete spectrum lay far beyond the quantization energies of the

wanted, confined states. The desired wave functions (eigenvectors) must there-

fore be calculated without knowledge about the extreme eigenvalues and -vectors

of the Hamiltonian. This situation differs from, e. g., the solution of the Kohn-

Sham equations within density functional theory (DFT) where the groundstate

properties of a system are constructed from eigenvectors corresponding to the

lowest eigenvalues of a Hamiltonian employing the self-consistent, equilibrium

potential.

Within envelope function theory there are common approaches to decouple

the CB and VB parts of the Hamiltonian, either by treating their interaction

perturbatively [23] or by neglecting it. Representants of the latter category are

the four-band model [24, 174, 243, 244] and the six-band model [172, 173] for VB

states, and the (single band) effective mass approximation [48, 54, 55] originally
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derived for CB states, but also applied to VB states. These calculation schemes

offer the computational advantage that the confined CB (VB) states of interest

appear at the lower (upper) spectral edge of the Hamiltonian, being associated

to outermost eigenvalues. This facilitates their calculation substantially.

Partial justification for such approaches results from the fact that neglecting s-

type Bloch functions in calculations of confined VB states produces inaccuracies

often being tolerable (see Chapter 3). On the other hand, the neglection of p-

type Bloch functions in calculations of confined CB states causes more significant

errors. CB groundstate calculations based on decoupled bandstructure models

for the bulk materials can be improved by a perturbative inclusion of the remote

band effects originating from the VB. However, the accuracy of excited states

calculated by such methods is limited [23]. Hence, the CB-VB interaction should

be included not only for nanostructures formed from narrow-gap semiconductors,

like InAs, but also for wide-gap semiconductor materials, like InP, GaAs, or CdSe.

This chapter introduces the algorithm developed in the frame of this work to

solve the algebraic eigenproblem arising from the eight-band k·p model applied to

low-dimensional structures. It is emphasized that ready-to-run software for such

problems is extremely rare still today, let alone, five years ago, and that even

the theoretical background for the development of such procedures advances well

beyond textbook knowledge of numerical mathematics.

The algorithm proposed here is designed for the efficient calculation of inte-

rior eigenvalues and -vectors of Hamiltonians with dimensions N ∼ 107 without

reference to other eigenpairs. It is related to prevailing methods for the same

purpose [245–247] but performs faster in all present applications. The algorithm

is valuable for theoretical investigations of nanostructures also beyond this work,

as it is applicable to other kinds of Hamiltonians as well, for instance those arising

from tight-binding or pseudopotential methods.

The principal question having stimulated the achievements reported in this

chapter was: Which is the fastest method for calculating confined states from the

given eight-band k·p Hamiltonian for QWRs or QDs? The answer could only be

found by (i) a scrutiny of the available literature (taking into account advanced,

recently developed methods used in fields like DFT, EP theory, and quantum

chemistry) and (ii) seeking for options to improve the most promising candidate.

Such improvement was necessary since most of the known procedures designed

for the calculation of interior eigenvalues are inapplicable to the discrete eight-

band k·p Hamiltonian because of its exceedingly large rank. On the other hand,

the ”folded spectrum” method successfully employed in (mathematically) com-

parable EP calculations displays a potentially important draw-back, presenting

a challenge for improvement. Ideas for such improvement could be found by

analyzing a variety of iterative eigensolution methods, taking also into account
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procedures for the calculation of extreme eigenvalues.

The main obstacle encountered in the comparison of procedures introduced or

employed in more than 50 works is that benchmarks are rarely reported, and

that their results, if existing, are transferable to other Hamiltonians or calcula-

tion platforms only with caution. Hence, the effiency of reported procedures had

to be estimated based on their mathematical properties only, requiring a coarse

classification scheme for basic algorithm types, and deliberate individual anal-

ysis for numerous modifications within each category. Plenty of interrelations

between procedures, as identified by means of numerical analysis, eventually help

to organize the wealth of methods within a hierarchic system, which is outlined

in Section 9.2.

By the nature of the matter, the numerical analysis of recent, advanced proce-

dures derived from different algorithmic base types, is of pronouncedly technical

kind. Moreover, the presentation is condensed, taking care of its secondary role

within the frame of this work. Although the analysis in Section 9.2 was essential

for the accomplishment of the present work, it is not prerequisite for an adaption

of the proposed algorithm to other work. Therefore, readers seeking information

only on the structure and implementation of the improved algorithm, or its effi-

ciency, are encouraged to skip Sections 9.1 and 9.2, and to continue on p. 156.

The following section recapitulates fill-in structures of Hamiltonian representa-

tions arising in different bandstructure calculation methods, in order to motivate

the iterative ansatz underlying the algorithms relevant to this work.

9.1 Hamiltonian fill-in structures

In the semi-empirical tight-binding model [35, 183, 248–253] the Hamiltonian Ĥ

for the heterostructure is expanded into orbital functions ζi (i = 1, . . . , N) each

of which is assigned to a certain atom. Since only interactions between near(est)

neighbor atoms are considered each basis function ζi yields non-zero matrix el-

ements hij =< ζi|Ĥζj > only with a small, and essentially constant, number of

other functions ζj. Thus the overall number of non-zero matrix elements of Ĥ

is proportional to N instead of N2, and H = (hij) possesses a sparse matrix

representation. If large numbers of atoms are considered, e. g., 4047 for one free-

standing InAs QD [35], the rank is N = 20235, or even larger in other examples.

The EFA can be carried out in any representation of Ĥ, in particular the real

(r-)space or the reciprocal (k-)space. The most natural formulation of a het-

erostructure refers to the r-space and leads to a set of coupled partial differential

equations for the envelope functions Ψ, like Eq. (4.14) or Eq. (7.2). From such

sets a few eigensolutions shall be extracted, specified by an interval of interest
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for the eigenvalues. The goal is, in any representation, achieved by expanding

Ĥ into a basis B of N functions ζi(r[,k]) (discretization) yielding an algebraic,

generalized eigenproblem HΨ = λGΨ where G = B†B is the metric tensor of

the basis and H = B†ĤB is the projection of Ĥ onto span (B).

By the discretization Ĥ is mapped to G−1H. This is no equivalence transforma-

tion unless a complete, i. e. infinite, orthonormal basis B is used. In practice, one

always uses finite, i. e. incomplete, and often even non-unitary bases B, so that Ĥ

and its discrete counterpart have different eigenvalues, and the discrete eigenvec-

tor approximations are deflected from orthogonal projections of the eigenvectors

to the finite subspace. The most common non-unitary basis sets are those aris-

ing in finite differences methods (FDM). As the basis size N approaches infinity,

[G,H] → [0] so that the discretization asymptotically approaches an equivalence

transformation. Therefore, G is usually neglected also for finite N , i. e., replaced

with the identity matrix I. The true eigensolutions of Ĥ are obtained as the

asymptotical solutions (N →∞) of the discrete problem, as in the FDM, the

finite elements method (FEM), or Fourier type methods (FM). The FDM addi-

tionally requires that the discrete expressions for differentiations are asymptotic

approximants for the respective differential operators.

The feasible choices of B for multi-band EFA Hamiltonians may be categorized

according to the spatial overlap of the basis functions ζi(r[,k]). Plane waves

overlap in the entire r-space, while finite elements have common boundaries only,

and the basis functions underlying the FDM share single grid points only. The

plane wave expansion realizing the k-representation and used in FMs yields at

most non-zero matrix elements hij due to r-dependent terms, resulting in dense

projections H. In contrast, the FEM and FDM both produce sparse matrices H

of much larger rank than those obtained by FM.

The expense of handling dense matrices is prohibitively progressive in N : The

storage demand and the (floating point) operation count1 (OC) for matrix vector

multiplications scale with N2, while N is antiproportional to the spatial resolution

d represented by B in each spatial direction. Accordingly, for two- or three-

dimensionally confined structures the exponent of this power-law dependence is

4 or 6, respectively, soon becoming untractable. Hence, the main application

field of FM in the frame of the EFA are quantum well problems (pars pro toto see

Ref. [33,255]) although also a few EFA+FM calculations of QWRs were reported

[59, 173, 231, 239, 256]. The majority of EFA based studies of QWRs and QDs

used the FEM [244, 257–261] or FDM [31, 40, 114, 128, 148, 207, 262–267]. Other

studies took advantage of the sparse-matrix eigenproblems resulting from the

1The traditional neglection of integer operations aside of floating point operations in com-
plexity estimates is no more justified for the contemporary processor architectures (e. g., the
Intel Pentium, AMD K, or DEC Alpha families) allowing the execution of both operation types,
even simultaneously, within one clock cycle [254].
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tight-binding [35,248,250–252] or effective bond-orbital model (EBOM) [268,269]

approaches.

Pseudopotential methods also benefit from using plane waves, however, with-

out involving dense matrices. Relying on the plane-wave expansion, matrix vector

multiplications ĤΨ can be split into a k-space sparse multiplication and a r-space

sparse multiplication, connecting both by fast Fourier transformation [270]. Us-

ing this spectral method (SM) H is split and its parts are stored and applied

to Ψ within the different representations [267, 271]. Pseudopotential based DFT

calculations addressing the minimization of the total energy functional can be sep-

arated into an eigenproblem and a simultaneous self-consistency problem. Com-

mon solution methods [270, 272] therefore nest different iteration procedures for

improving the eigenvector approximation and for calculating the self-consistent

Kohn-Sham potential. Hence, total energy minimization problems are an addi-

tional field requiring powerful eigensolution algorithms [273].

The tractability of a large eigenproblem clearly requires avoiding dense matrices

(OC scales with N2) which not necessarily implies the use of sparse matrices (OC

scales with N) since there are representation-mixed evaluation schemes for HΨ

(OC scales with N log2 N). The only remaining criterion is that multiplications

HΨ can, in whatsoever manner, be calculated sufficiently fast. In the following

we will therefore refer to (linear) operators rather than matrices H. As for the

rest, self-consistency is not addressed.

The above considerations show that the calculation of bandstructures in semi-

conductor nanostructures almost naturally leads to the extraction of ¿ N eigen-

solutions, specified by an interval for the eigenvalue, from Hermitian operators

H with a rank N À 10, 000. These eigenvalues are not located near the upper

or lower bound of the spectrum of Ĥ and must, hence, be calculated without

knowledge about other eigenstates , due to the large rank.

9.2 Efficiency of prevailing eigensolvers

For the calculation of outermost (extreme) eigenvalues of very large matrices

plenty of procedures have been proposed and it is, of course, beyond the scope

of this work to review them (see Ref. [270, 274–278] for an introduction). De-

scriptions of such algorithms are widely scattered throughout the literature on

chemical physics, solid states physics, and computational physics / chemistry

while only some of them are considered in reviews or textbooks. This section

analyzes mathematically both basic procedures and auxiliary tools, quantifying

the computational efficiency on the basis of the asymptotic convergence rate. An

overview over the various methods is partly obscured by
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(i) auxiliary tools to improve existing procedures (e. g., new preconditioners

or specific implementations) and

(ii) modifications prior to the actual eigensolver, like (a) multigrid techniques

[180] and (b) eigenvalue economization methods partitioning a problem in

advance according to its geometrical, mechanical, dynamical, etc., structure

(e. g., finite elements, component mode synthesis, and singular perturba-

tion, respectively) [276].

The effort of this chapter is dedicated to the reduction of run time by ac-

celerated convergence. We concentrate on the actual eigensolver, taking only

marginally into account achievements from category (i) as these, generically, are

of very specialized character and strongly depend on the given operator H. The

whole variety of procedures can be ordered according to a hierarchy enabling

their straight-forward definition and comparison. As universal performance mea-

sure we consider the asymptotic convergence rate of a trial vector towards an

eigenvector at the (final) dimension N of the discrete problem: Though approxi-

mations for the (finally) desired discrete eigenpair can be obtained by preliminary

calculations at a lower dimension (e. g., within multigrid schemes) the final di-

agonalization within the full rank subspace still causes a significant, if not the

largest, contribution to the overall expense. Any concept from (i) and or (ii) may

provide additional improvement to the basic methods considered in the following,

but will hardly contravert the performance ranking dominated by the capabilities

of the basic eigensolvers.

Regarding the structure and large rank N of the discretized eight-band k ·p
Hamiltonian we generally assume below that any suitable algorithm refers to H

exclusively by forming matrix vector products Hx while being unable to trans-

pose, factorize, or invert H or significantly large submatrices thereof. Further-

more, we assume that the expense to calculate Hx dominates over all other

operations so that the most efficient algorithm needs the smallest number of such

multiplications. To construct an eigenvector u iterative algorithms exploit the

stationarity of the Rayleigh quotient ρ = (u†Hu)/(u†u) or of the residual norm

||Hu− ρu||.

9.2.1 Ordering scheme for iterative eigensolvers

The direct minimization methods [180,279] obey a known hierarchy with respect

to their efficiency:

preconditioned conjugate-gradient (PCG) >

conjugate gradient (CG) >
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gradient >

direction set >

coordinate relaxation methods.

So do the other algorithms used in previous bandstructure calculations:

generalized Davidson algorithm (GDA) >

Lanczos algorithm (LA) >

Chebyshev iteration (CI) >

simultaneous iteration >

subspace iteration >

The two enumerations mix basic algorithms with preconditioning techniques

while other methods, like preconditioned gradients or the preconditioned LA,

are missing. They are considered in Section 9.2.12.

The two above sets of methods meet on a common level defined by the CG

and LA which are equivalent in exact arithmetic. Hence we consider only the

CG and PCG algorithms being the most frequently used minimization methods

in the field. The second set of iterative methods can be subdivided into (i)

methods working with sequences of trial vectors and (ii) methods working upon

spaces spanned by sequences of trial vectors. Generally, the latter perform better

than the first. The methods from category (i) can be realized as two- or three-

term recurrences while the methods from category (ii) need at least three-term

recurrences, however, mostly multi-term recurrences with varying depth. This

reflects a more efficient accumulation of information, particularly in presence of

finite-precision arithmetic.

Although, from a differential geometry point of view, the two method sets dif-

fer not much, the second set is better suited for the spectral description favored

here. Therefore the second set is taken as example for explaining how, and to

which degree, information on an eigenvector is acquired, used, and maintained by

the respective algorithms. To establish the terminology used in this chapter we

consider in the following the most elementary iterative method for eigenvector

calculation, which at the same time lays the fundament for all advanced algo-

rithms to be considered.
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9.2.2 Power method

Consider a non-singular, Hermitian operator H of dimension and rank N with the

real eigenvalues λ1, . . . , λN in ascending order and the corresponding normalized

eigenvectors u1, . . . ,uN . Usually H is the discretized Hamiltonian. Only for the

sake of simplicity we assume that all eigenvalues are non-degenerate. However,

the procedures to be discussed cope with degenerate eigenvalues as well, in partic-

ular the simultaneous variants, whereby only some actual convergence rates will

change in an unspectacular way. Λ = λN−λ1 denotes the spread of H. Since H is

self-adjoint a normalized trial vector x can be expanded into the eigenvectors of

H, x =
∑N

j=1 cjuj . Then the multiplication Hx yields y =
∑N

j=1 λjcjuj . Hereby

either c1 or cN is amplified most, depending on whether |λ1| > |λN | or vice versa,

so that many successive multiplications (with subsequent normalization each) will

convert x either into u1 or uN . This is the fundamental mechanism of gaining

information on an eigenvector, and the particular procedure is known as vector

iteration or power method (PM) [277]. We consider a trial vector to contain ”new

information” if it is linearly independent of all previous trial vectors, regardless

how it is constructed. By this definition, gain of information is not conditional

on an actually done multiplication with H, which becomes relevant in Section

9.2.14.

If by appropriate gauge |λ2| ≥ |λN | then for large step counts s

||δx(s)|| = ||x(s) − u1|| ≤ C · κs = C · |λ2/λ1|s (9.1)

[274], i. e. the normalized vectors x(s) converge linearly to u1 . For linear

convergence we define the effective asymptotic convergence rate φ by κ1/(zφ) = 1/e

where z is the number of Hx multiplications required to construct a new trial

vector, i. e., a measure for the complexity of an iteration cycle (in most procedures

z = 1). Asymptotic means that we consider φ as s → ∞. Throughout this

chapter we use φ as the universal measure of performance. For the PM (z = 1)

φ = −1

z
ln κ ≈ (1− κ)/z = 1− |λ2/λ1|

< 2 γ where γ = (λ2 − λ1)/Λ (9.2)

is the gap ratio of λ1. φ depends on the energy gauge [277] and is maximal if

(λ2 + λN)/2 is chosen to be the energy zero, as will be shown in Section 9.2.7.

φ is related to the evolution of the quantity δx, i. e. to the convergence of

the eigenvector, which is most interesting in practice. Nevertheless, convergence

factors κ often refer to the Rayleigh quotient instead, i. e. to the convergence of

the eigenvalue,

ρ(s) = ρH [x(s)] =<x(s)|Hx(s)>/||x(s)||2
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or to the residual

r(s) = Hx(s) − ρ(s)x(s) .

For small ||δx(s)||, i. e. for large s, those values can be translated into the κ values

defined by Eq. (9.1):

if |ρ(s) − λ1| ≤ Cρ · κρ
s then κ =

√
κρ , (9.3)

if ||r(s)|| ≤ Cr · κr
s then κr ≤ κ ≤ √

κr . (9.4)

In many practical cases κ ≈ κr holds much better in Eq. (9.4) than the upper

bound.

The performance of the PM is characterized by the convergence rate φ according

to Eq. (9.2). Λ depends explicitly on the energetic cut-off inherent to the chosen

basis function set B and is usually much larger than the energy level separation

λ2 − λ1 between the ground state (λ1) and the first excited state (λ2) in the

nanostructure , so that γ ¿ 1, and the PM will converge extremely slow.

We note that φ does not depend on the rank N of H but only on its spectral

structure.2 This is common to all iterative algorithms. Consequently, the be-

havior of an iteration cannot be predicted on the basis of the rank or the fill-in

structure of the matrix representation H. The latter change dependent on the

discretization type while the spectral structure of H, characterized by the gap

ratio γ, may remain unaltered or change in a different way.

9.2.3 Spectral transformation

Eq. (9.2) shows that the properly shifted (gauged) PM can be accelerated by

increasing γ. The gap ratio γ of the multiplication operator in the PM will change

if H is replaced by some operator function A = f(H) since f directly affects

all eigenvalues. f must be chosen such that u1 is (at least approximately) an

eigenvector also of A and the corresponding eigenvalue µ1 of A remains extreme.

We define the eigenvalue mapping due to f by µj = f(λj) so that the µj in

general are not in ascending order. If the evaluation of Ax requires an expense

equivalent to z Hx multiplications then γ will have to increase by more than a

factor z in order to enhance the effective convergence rate of the PM.

Here we consider only analytic functions f , so that A is Hermitian and com-

mutes with H (non-analytic functions f will be considered from Section 9.2.10

2However, when the FDM is used for the eight-band k ·p Hamiltonian both the spread Λ
and the rank N of H depend on the grid spacing d, leading to the implicit relations Λ ∝ N

and φ ∝ N−1 for QWR calculations, and Λ ∝ Nd and φ ∝ N−1d−1 for QD calculations.
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on). Then only integer rational functions f are available since (by our assump-

tion) the inversion or complete factorization of H are impossible. Given the

polynomial degree z, the best polynomial f maximizes the ratio

min
j>1

|µ1 − µj|
max
i,j>1

|µi − µj| =
γA

1− γA

which is equivalent to maximizing the gap ratio γA of µ1. In order to possess

the desired min-max-property [274] f must be chosen to be the suitably shifted

Chebyshev polynomial Tz , and then

γA = z2γ − 2

3
z2(z2 − 1)γ2 + O(γ3) and (9.5)

φ ≈ 2

z
γA ≈ 2 z γ .

Thus the acceleration of the convergence of the PM is proportional to z. The

method to replace H with Tz(αH + βI) with fixed z and appropriate α, β in the

PM is known as Chebyshev accelerated power method [274, 277]. Obviously, the

larger z, the less iteration steps of the PM will be necessary. Thus, in absence of

an upper bound for z the ultimate Chebyshev acceleration is to make z so large

that only one step of the PM remains necessary. This idea leads to a qualitatively

different method which we refer to as Chebyshev iteration, and which will be

discussed in Section 9.2.8.

Another function f appreciated by practitioners is the exponential [148,150],

A = exp (−αH) + βI (α > 0) (9.6)

adopted from algorithms to solve the time-dependent Schrödinger equation [267,

280]. The fastest convergence of an exponentially transformed PM is achieved at

the shift

β = −1

2

[
e−αλ2 + e−αλN

]
(9.7)

making the iteration twice as fast as β = 0. The idea behind the use of Eq. (9.6)

is that the exponential can be evaluated approximately by splitting H according

to H = H1 + . . . + Hk and using exp (−αH) ≈ exp (−αH1) . . . exp (−αHk) . The

error of this approximation due to the possible non-commutativity of the Hi may

be as small as O(α3). The non-diagonal among the factors exp (−αHi) can be

evaluated by Cayley’s form [180],

exp (−αHi) ≈
[
I +

α

2
Hi

]−1 [
I − α

2
Hi

]
+ O(α2) ,
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if Hi can be inverted at moderate expense [148, 267]. In the optimal case the

overall expense of evaluating Eq. (9.6) is equivalent to z ≈ 1. Since Eq. (9.6)

produces the gap ratio

γA = γ

[
1 +

α

2
(λN − λ2) +

α2

12
(λN − λ2)(λN − 2λ2 + λ1) + O(α3)

]

α ≈ 2/Λ will yield an acceleration of the PM by a factor 2 (for z = 1 and β

according to Eq. (9.7)). The magnitude of α must not exceed 2/Λ much, due to

the various approximation errors inherent to the numerical evaluation of Eq. (9.6).

Hence, the net acceleration of the PM by an exponential spectral transformation

is strongly limited and, in particular, less than by the Chebyshev acceleration.

9.2.4 Simultaneous iteration

The vector iteration / PM is generalized to the subspace iteration by using M

orthonormal trial vectors x(m,s) in each iteration step in order to produce M̃ ≤ M

eigenvectors {u1, . . . ,uM̃} simultaneously, and analogous estimates of φ are found

[277]. The continous orthonormalization prevents the x(m,s) from converging to u1

altogether. The method is also known as Bauer’s method or Treppeniteration and

may be viewed as a reduced variant of the iterative extraction-orthogonalization

method (IEOM) [281] applied to stationary problems. It can be speeded up

considerably if in each step the x(m,s) are replaced with optimal approximations

v(m,s) of u1, . . . ,uM within the iterative subspace span [(x(m,s))].

To define this optimum, there are two criteria to choose from: either the min-

imal Rayleigh quotient or the minimal residual norm, as mentioned above. For

subspace dimensions < N both criteria yield different approximations [274], and

the existence of this alternative is crucial for the present development of an im-

proved algorithm. The Rayleigh-Ritz procedure (RR) [274] employs the minimal

Rayleigh quotient to obtain optimal eigenvector approximations within a given

subspace. Alternatively, the residual minimization method (RM) [278], also called

variance minimisation method [245], minimizes the residual norm. Both methods

serve to extract the present, but implicit, information on an eigenvector from a

subspace, i. e. their task is the use of information. In the following sections we

focus on methods for gaining and storing information, and for the sake of simplic-

ity we ignore the permanently existing alternative for the way to use information.

The RM, its applications, and its relationship to the RR will be considered in

Section 9.2.15. Until then, we only consider the RR which tacitly always may be

replaced with the RM.

Applying the RR to the x(m,s) in each step of a subspace iteration, and choosing

M À M̃ , defines the simultaneous iteration [274, 276], also called subspace
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iteration with projection [277]. It is superior to the subspace iteration since it

makes more use of information. However, this is not yet sufficient to solve the

problem of slow convergence caused by the trade-off φ < C/Λ with C being in

the order of λM − λ1.

9.2.5 Krylov methods

To overcome the antiproportionality between convergence rate φ and spread Λ it

is necessary to accumulate the information obtained during the iteration. Com-

plete storage in connection with extensive use of information is achieved by the

following procedure due to Arnoldi [277] (we consider the calculation of u1 only,

thus M = 1) which, however, is of explanatory interest only. In practice, this al-

gorithm is not implementated in the described way for symmetric eigenproblems,

for reasons explained in Section 9.2.14.

0.) Suppose that the sequence of all previous trial vectors x(s), s ≤ S, is stored

to serve as a basis of K(S) = span [(x(s))].

1.) The best approximation of u1 within K(S), the Ritz vector v(S), is calculated

by means of the RR (use of the entire information).

2.) Next, y = Hv(S) is calculated (gain of ”new information”).

Note that if v(S) = u1 then y = λ1v
(S) will give no ”new information”.

3.) If so, the procedure terminates. Otherwise we orthogonalize y against

x(1), . . . ,x(S), to eliminate any redundance from y, obtaining a vector b.

As the approximations due to v(s) become better, ||b|| → 0.

4.) Finally, b is normalized and appended to the sequence as new trial vector

x(S+1) (cumulative, redundance-free storage of the new information), S 7→
S + 1.

The x(s) are orthonormal in each step S and the representation of H with respect

to them is tridiagonal because H is Hermitian.

There is a relationship between this procedure and the PM. Given that none of

the x(s) is orthogonal to u1 the s-th trial vector is obtained from the start vector

x(1) by a polynomial Xs of H of degree s− 1:

x(s) = [Xs(H)]x(1) with Xs(H) =
s−1∑

n=0

pn,sH
n . (9.8)

Consequently, Hs−1x(1) is contained in K(s) for all s ≤ S so that

K(S) = span ({x(1), Hx(1), . . . , HS−1x(1)}) . (9.9)
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It follows that [277]

(i) K(S) is the span of all iterates of the PM for s ≤ S. It is called the (S−1)-th

Krylov space of x(1).

(ii) The Arnoldi procedure constructs the sequence of successive Krylov spaces

K(s) which is called the Krylov sequence of x(1).

(iii) Upon each element K(s) of this sequence, i. e. after each Hx multiplication,

the procedure executes the RR to obtain an optimal eigenvector approxi-

mation v(s).

In summary, the Arnoldi procedure performs the PM but does not wait for Hsx(1)

to converge to u1. Instead, after each step it gathers the complete information,

which it has stored for this purpose, and subjects it to a comprehensive evaluation

(the RR) yielding v(s) as the actual result. The resulting convergence rate of this

procedure is

φ ≥ 2
√

γ (9.10)

[274,277] (an intuitive argument for Eq. (9.10) obviating the Kaniel-Saad theory

is given in Section 9.2.8). Since
√

γ À γ (for γ ¿ 1) the accumulation of

information, permanently followed by the full exhaustion of the Krylov sequence

generated by the start vector, introduces a substantial acceleration, as compared

to the simultaneous iteration.

9.2.6 Three-term recurrences

The above described Arnoldi procedure is a multi-term recurrence explicitly us-

ing all trial vectors x(1), . . . ,x(S−1) to construct the new trial vector x(S), thus

being an S-term recurrence. However, assuming exact arithmetic it is possible

to perform the same algorithm by means of a three-term recurrence, t(s+1) =

f(t(s), t(s−1)) , which can even be done in two different ways. The first variant

constructs the orthogonal sequence t(s) = x(s) and is known as Lanczos algo-

rithm (LA) [274–276,282,283]. The second variant calculates the non-orthogonal

sequence t(s) = v(s) and is the Fletcher-Reeves type conjugate-gradient (CG)

method applied to the Rayleigh quotient ρH [180, 270, 271, 279, 284–286]. The

successive v(s) are mutually conjugate, i. e., orthogonal with respect to the met-

ric induced by H.

While the Arnoldi S-term recurrence runs stably as well in finite-precision

arithmetic the two three-term variants do not, and their mathematical equiva-

lence applies only for small step counts S or exact arithmetic. In finite precision
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arithmetic the respective trial vectors t(s) step by step loose their orthogonality

in the respective metric. The behavior is known as self-termination property of

the CG [275,287] or, in the LA, as Lanczos phenomenon [274,275,277]. It reduces

the efficiency because more Hx multiplications become necessary in practice than

required in theory. Measures to face this were proposed for both variants, namely

restarting (truncation) for both CG [180, 285] and LA [283], and reorthogonal-

ization for the LA [274,276,282].

In exact arithmetic the Fletcher-Reeves implementation of the CG is identical

to the Polak-Ribiere implementation [180] since ρH is a quadratic form. At finite

precision, however, the Polak-Ribiere algorithm switches smoothly to a gradi-

ent method as soon as self-termination occurs, thus arranging a secret restart.

Therefore, it is commonly prefered over the Fletcher-Reeves algorithm. In the

following we will not distinguish those variants and, instead, assume the even

more favorable, ideal behavior of the CG.

The reorthogonalization which can be included into the LA effectively con-

verts the three-term recurrence back to an S̃-term recurrence (3 ≤ S̃ ≤ S) so

that the Arnoldi S-term recurrence is equivalent to a LA with full reorthogo-

nalization [288] (for Hermitian H). According to our criterion for efficiency,

algorithms forcing orthogonality are preferable over approaches completely waiv-

ing reorthogonalization (as the LA variants proposed in, e. g., Ref. [275, 283] or

the CG method).

There is another practical three-term recurrence which is not known to suffer

from stability problems: The Chebyshev iteration (CI) [277, 289] explained in

Section 9.2.8. It is analogous to the identically named algorithm for the solution

of linear equation systems [287] but different from the Chebyshev accelerated

PM in Section 9.2.3. The CI is closely related to the molecular dynamics method

using a second order equation of motion, as detailed in Section 9.2.9.

We continue by deriving the CI from the PM. For the sake of clarity we will

drop any intermediate normalization of trial vectors. Hence, a fix vector of a

recurrence is no more recognized by x(s+1) = x(s) but by

x(s+1) = a · x(s) (9.11)

with an appropriate scalar a.
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9.2.7 Convergence rate of the power method

By the two-term recurrence x(s+1) = (αH +βI)x(s) the PM constructs the image

created from the start vector x(1) by the operator polynomial

x(s) = [(αH + βI)s−1]x(1) =
N∑

j=1

(αλj + β)s−1c
(1)
j uj , (9.12)

reaching the fastest convergence towards the eigenvector u1 if, e. g.,

α = 2/(λ2 − λN) and β = (λN + λ2)/(λN − λ2) . (9.13)

Then the polynomial Eq. (9.12) maps the eigenvalues of H according to

λ1 7→ ν
(s)
1 = [(1 + γ)/(1− γ)]s−1

λ2 7→ ν
(s)
2 = 1

λN 7→ ν
(s)
N = (−1)s−1

onto the amplification factors of the respective eigencomponents cjuj of x(1), see

Fig. 9.1. Thus, as s increases, ν3, . . . , νN−1 will vanish, ν2 and νN stagnate, and

only ν1 will increase. The convergence rate can be estimated from the ν
(s)
j by

φ ≈ 1

z
lim
s→∞


 ln

∣∣∣∣∣∣
ν

(s+1)
1

ν
(s)
1

∣∣∣∣∣∣
− 1

2
ln

∑N
j=2 |ν(s+1)

j c
(1)
j |2

∑N
j=2 |ν(s)

j c
(1)
j |2


 (9.14)

provided that ||δx(s)|| ¿ ||x(s)||. For α and β according to Eq. (9.13) and large

s both sums in Eq. (9.14) may be replaced with |c(1)
2 |2 + |c(1)

N |2 so that

φ ≈ ln [(1 + γ)/(1− γ)] = 2γ +O(γ2) ,

proving Eq. (9.2).

9.2.8 Chebyshev iteration

Instead of Eq. (9.12) the image of x(1) created by a different operator polynomial,

x(s) = [Ts−1(αH + βI)]x(1) , (9.15)

can be calculated by the three-term recurrence

x(s+1) = 2 (αH + βI)x(s) − x(s−1) (9.16)
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Figure 9.1:

Amplification factors ν(s) versus the eigenvalues ν(2) of A = αH+βI after 10 steps
(s = 11) of the power method (solid) and of the Chebyshev iteration (dashed).
For both algorithms it is optimal to choose α and β such that ν

(2)
2 = 1 and

ν
(2)
N = −1 or vice versa because then only |ν(2)

1 | > 1. The importance of accurate
shifting can clearly be seen.

constituing the CI. The advantage of the Chebyshev polynomials Eq. (9.15) is

that for the α and β values from Eq. (9.13)

ν
(s)
1 = Ts−1[(1 + γ)/(1− γ)] ≈ e2(s−1)

√
γ/2 (s > 1/

√
γ)

grows approximately exponentially as a function of s while all other νj are kept

oscillating between ±1, see Fig. 9.1. Due to the harmonic oscillation of ν2, . . . , νN

the two sums in Eq. (9.14) cancel in average. Hence, the CI has an average

convergence rate 0 ≤ φ ≤ 2
√

γ which heavily depends on the actual values of α

and β: Consider the operator A = αH +βI so that x(s) = [Ts−1(A)]x(1) and the

eigenvalues of A are ν
(2)
j . Then the CI converges to u1 if and only if

|ν(2)
1 | > max (1, |ν(2)

2 |, . . . , |ν(2)
N |) ⇒ φ ≥ 0 , (9.17)

and it converges fastest to u1 if

(
N

min
j=2

ν
(2)
j = −1 ∧ N

max
j=2

ν
(2)
j = 1 ) ⇒ φ ≈ 2

√
γ , (9.18)
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as can be seen from Fig. 9.1. There are two different pairs α, β satisfying

|ν(2)
2 | = |ν(2)

N | = 1 and providing the fastest possible convergence:

α = 2/(λ2 − λN) , β = (λN + λ2)/(λN − λ2) or (9.19)

α = 2/(λN − λ2) , β = (λ2 + λN)/(λ2 − λN) . (9.20)

In practice, it needs a true fine tuning to adjust either variant, but it is possible

to determine α and β automatically [289].

It is worth noticing that no other polynomial pk(H) of degree k could provide

a faster increase of ν
(k+1)
1 than Tk(A), because of the min-max property of the

Chebyshev polynomials [274, 287] already quoted in Section 9.2.3. Hence, in the

CI not a single Hx product could be saved by choosing A an integer rational func-

tion of degree z > 1: The resulting polynomial ps·z(H) of degree s · z would give

no larger ν
(s·z+1)
1 than Ts·z(A). In this sense Eq. (9.16) is an optimal recurrence

for eigenvector calculation, if α and β are properly adjusted.

The CI is substantially superior to the PM due to the exponential growth of

ν1 , but less efficient than the LA: First, the best polynomial to calculate x(s)

from x(1) is the one mapping v(1) to v(s) in the Arnoldi procedure discussed in

Section 9.2.5, Vs say , which certainly is different from Eq. (9.15). Second, the

performance of the LA does not depend on the choice of α and β, so the LA is

run with A = H.

The CI is related to the PM in the sense that both methods construct a poly-

nomial of H independent of the start vector x(1). At the same time, this is the

fundamental difference between the CI and the LA, reflecting a lacking use of

available information. Hence the convergence rate of the LA must be at least the

maximum of Eq. (9.18), as stated in Section 9.2.5.

9.2.9 Second order molecular dynamics

The molecular dynamics method relies on the numerical integration of an initial

value problem of the second order equation of motion (EOM)

m
d2x(t)

dt2
= −[H − σ(t)I]x(t)

for the purpose of eigenvector computation [270] (the inclusion of damping is

discussed in Section 9.2.10). A simultaneous calculation of M > 1 eigenvectors

from the EOM necessitates the imposal of constraints to force (i) orthogonality

and (ii) normalization of the trial vectors x({1,...,M},s) in each step s. While (i) is

required to preserve prevailing information, (ii) is due to computer arithmetics

only. Formally, either constraint may be added to the EOM as a set of Lagrange
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multipliers [270]. Alternatively, both constraints can be forced by separate or-

thonormalization between two iteration steps.

In the following we consider the calculation of u1 only, leaving (i) up to Section

9.2.10. To integrate the initial value problem numerically it is convenient to

employ Stoermer’s rule [180] (also called Verlet algorithm [290])

x(s+1) = 2x(s) − x(s−1) − δt2

m
(H − σ(s)I)x(s) (9.21)

obtained from the central difference discretization on the time axis with step

length δt. The local discretization error of Eq. (9.21) is O(δt4). Eq. (9.21) is

formally identical with an unpreconditioned second order (or two-step) iterative

method [287] for solving the homogeneous linear equation system (H−σI)x = 0.

Thus one might expect that it is necessary to choose σ = λ1 in order to obtain

x(∞) = u1. However, this is not the case: Every eigenvector uj of H is a fix

vector of Eq. (9.21) according to Eq. (9.11), regardless of σ. Thus, σ does not

depend on the wanted eigenvalue.

Nevertheless, the conventional mode to evaluate Eq. (9.21) is (i) to obey the

stability condition for numerical integration, δt2 ≤ 4m/Λ , and (ii) to choose

σ(s) = ρH [x(s)] (9.22)

[270]. Both is actually unnecessary: (i) A numerically stable integration is

required to calculate a proper trajectory but not for obtaining its stationary

asymptote, which is wanted here. Point (ii) actually intends to conserve the norm

of the wave function [270] which is not necessary either since normalization can

be forced outside of Eq. (9.21). Furthermore, (ii) causes a self-termination of the

convergence which could be avoided, thus significantly increasing the performance

during the final phase of convergence.

To explain how this can be achieved, we note that Eq. (9.21) is identical to

Eq. (9.16) due to the relations

δt2/m = −2α and σ = (1− β)/α . (9.23)

The following analysis of the second order molecular dynamics method is based

on this observation and on implicitly treating a non-stationary iteration as a

composite of successive stationary ones [287]. Hence we can apply knowledge

about the CI to Eq. (9.21).

For instance, we know in advance both the largest possible convergence rate,

φ ≈ 2
√

γ, and how to realize it. From Eq. (9.19) and Eq. (9.23) we obtain as

optimal parameters

δt2/m = 4/(λN − λ2) and σ = λ2
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which violate the stability condition for the numerical integration, though look-

ing similar to the conventional choice for using Eq. (9.21). In fact, the slightly

different choice of δt2/m employed here yields an increase of φ by γ3/2 only, which

may be considered negligible. The major advantage of the optimal CI parameters

over the conventional Verlet algorithm is due to the slightly different choice of

σ: Consider the conventional iteration and its asymptotic shift σ(s) = λ1 being

the limes of ρH [x(s)] as x(s) → u1 . In this situation ν
(2)
N = −1 and ν

(2)
1 = 1,

i. e., the condition Eq. (9.17) is violated. Consequently, as x(s) converges to u1

in the conventional iteration σ(s) converges to λ1 , and for σ(s) < λ2 the iteration

will further and further depart from Eq. (9.18), asymptotically even violating

Eq. (9.17). This results in the sub-linear, fading convergence (self-termination).

The serious draw-back of the conventional operation of Eq. (9.21) is only due to

the unnecessary incorporation of the normalization of the wavefunction into the

actual EOM leading to the particularly disadvantageous shifting strategy. The

conventional algorithm only performs well as long as ρH [x(s)] > λ2, i. e., while

considerations of the asymptotic behavior do not yet apply. However, for the

final phase the parameters should be adjusted as suggested above, in order to

avoid the self-termination.

As the second possible, optimal parameter choice Eq. (9.20) and Eq. (9.23)

yield

δt2/m = − 4/(λN − λ2) and σ = λN

which cause a violation of the stability condition for numerical integration, as

well. Also the above mentioned interpretation as solving the linear system

(H − λNI)x = 0 is misleading here: The optimal parameters yield an intention-

ally ”divergent” iteration which is exclusively appropriate for eigenvector calcula-

tion. The corresponding algorithm, overcoming the self-termination problem like

our previous parameter choice, was proposed in 1992 [291] and its equivalence to

the CI was observed immediately thereafter [292].

Finally it follows, that no higher-order difference quotients or advanced step-

ping procedures for the EOM integration would be able to accelerate the local

convergence further, as they eventually only yield different polynomials ps(H)

which cannot improve the convergence beyond the optimality of the CI, as ex-

plained in Section 9.2.8.

9.2.10 Modified second order molecular dynamics

Previous effort to improve the conventional algorithm focused on a prolongation

of δt by simplified analytic integration of the EOM [270, 293] which leads to the
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following recurrence: D is the diagonal of H, and Ω = [(D − σ(s)I)/m]1/2, then

x(s+1) = 2 [cos (δt Ω)]x(s) (9.24)

− 2 [I − cos (δt Ω)](D − σ(s)I)−1(H −D)x(s)

−x(s−1)

(still without damping). Expanding Eq. (9.24) to the second order of δt returns

Eq. (9.21), i. e., for small δt2/m no difference will occur in practice. To demon-

strate the possible advantage of Eq. (9.24) over Eq. (9.21) for larger time steps

we rewrite it in the scheme of Eq. (9.16), x(s+1) = 2Ax(s) − x(s−1) . Then

A = I + [cos (δt Ω)− I](D − σ(s)I)−1(H − σ(s)I) (9.25)

so that x(s) = [Ts−1(A)]x(1) if σ(i) = σ is constant for i < s.

Thus the CI is no longer performed with a linear transform A(H) but with a

non-analytic function A(H) which does not commute with H. Generally, such

a procedure is only appropriate if the desired, corresponding eigenvectors of H

and A do not differ too strongly and if the related spectral transformation does

not coalesce distinct eigenvalues of H within the region of interest. To examine

under which condition this is the case we consider first a diagonal H, thus D = H.

Then, from Eq. (9.25) follows

A = cos [(H − σI)δt2/m]1/2 and

ν
(s)
j = Ts−1

(
cos [(λj − σ)δt2/m]1/2

)

=





cosh
[
(s− 1)

√
(σ − λj)δt2/m

]
if λj < σ

cos
[
(s− 1)

√
(λj − σ)δt2/m

]
if λj ≥ σ

.

These expressions are the exact solution of the EOM with respect to c
(s)
j /c

(1)
j at

time t = (s − 1)δt so that the modified CI performs an exact integration of the

EOM when H is diagonal. Also here, Eq. (9.18) requires σ = λ2 . Then Eq. (9.14)

yields φ ≈
√

(λ2 − λ1)δt2/m . This is an improvement over Eq. (9.15) whenever

δt2/m > 4/Λ, i. e., for larger time steps than ”allowed” for the conventional

integration: For diagonal H the properly shifted cosine transformation Eq. (9.25)

enables an arbitrary acceleration without any deflection of eigenvectors. This

improvement is, however, conditional on keeping σ(s) ≥ λ2 or, at least, σ(s) > λ1:

Permitting σ(s) → λ1 by the use of Eq. (9.22) would cause φ ∝
√

σ(s) − λ1 → 0 in

the advanced procedure, as well, and would – regardless of the time step length

– cause a self-termination due to the asymptotic violation of Eq. (9.17).

For non-diagonal H, H 6= D and A from Eq. (9.25) is not necessarily Hermitian

anymore and [A,H] 6= 0, so that in the general case the replacement of H by A
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in the CI will deflect the eigenvectors, i. e. the stationary solutions of the EOM,

and introduce a systematic error x(∞) 6= u1 superponing the discretization error

introduced by the basis B. There are, however, exceptions: uj is an eigenvec-

tor also of limσ→λj
(A) (to the eigenvalue 1), since in the limit the last term in

Eq. (9.25) will vanish by multiplication with uj. It follows that the use of A ac-

cording to Eq. (9.25) is consistent [287] with the original eigenproblem Hx = λ1x

if and only if σ(s) → λ1 for s →∞. Hence only the conventional approach using

Eq. (9.22) exhibits no deflection of x(∞) and gives the exact eigenvector u1 for a

general (non-diagonal) Hermitian H.

By comparing Eq. (9.25) with the preconditioned second order iterative method

for solving (H − λ1I)x = 0 [287] we identify the preconditioning matrix

C = [I − cos (δt Ω)]−1(D − σ(s)I) . (9.26)

Hence the algorithm proposed in Ref. [293], based on analytic integration of the

EOM, may be viewed as a diagonally preconditioned CI . The preconditioning

by Eq. (9.26) and Eq. (9.22) may enhance the convergence even for dense H

but the acceleration is particularly significant for diagonally dominant H, as

demonstrated in Ref. [293]. However, forced by the demand for consistency, the

convergence rate decreases when σ(s) becomes smaller then λ2, which is the same

situation as for diagonal H.

The escape to nevertheless keep σ(s) ≥ λ2 implies eigenvector deflection,

θ = 6 (x(∞),u1) 6= 0, so that the use of A effects a substitution of H rather than

a preconditioning. One might accept this if ||δx(∞)|| =
√

2[1− Re(cos θ)] could

be kept in the order of magnitude of the discretization error. In turn, this might

require to fulfill the stability condition δt2/m ≤ 4/Λ so that, eventually, the use

of Eq. (9.25) would be less efficient than the linear transformation Eq. (9.19).

From this dilemma we conclude that the preconditioned CI using Eq. (9.26)

and Eq. (9.22) may, depending on H, be advantageous as long as σ(s) ≥ λ2 ,

but should be replaced with the normal CI using Eq. (9.19) in the final phase of

convergence where ρH [x(s)] < λ2 .

Damping

In the case of diagonally dominant H the performance of the molecular dynamics

method can be improved by introducing damping to the EOM [270]. This leads

to a different recurrence,

x(s+1) = 2EBx(s) − E2x(s−1) ,
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which, for constant σ, is equivalent to

x(s) = [Es−1Ts−1(B)]x(1) with (9.27)

B = [cosh (η δt |Ω|)] + [cos (δt Ω)− cosh (η δt |Ω|)](D − σI)−1(H − σI) (9.28)

E = [exp (−η δt |Ω|)] (9.29)

|Ω| = [|D − σI|/m]1/2

η ≥ 0 .

For diagonal H we obtain B = A and E = exp [−η (|H − σI| δt2/m)1/2] and

ν
(s)
j =





exp [−η(s− 1)
√

(σ − λj)δt2/m] cosh
[
(s− 1)

√
(σ − λj)δt2/m

]

if λj < σ ,

exp [−η(s− 1)
√

(λj − σ)δt2/m] cos
[
(s− 1)

√
(λj − σ)δt2/m

]

if λj ≥ σ

in the same manner as above. Eq. (9.14) with λ1 < σ < λ2 gives

φ ≈ δt√
m

[
(1− η)

√
σ − λ1 + η

√
λ2 − σ

]
.

It follows that η = 1 is the optimal damping if σ < (λ1 + λ2)/2 and η = 0

else. Thus the asymptotic convergence rate for σ → λ1 is not zero anymore

but φ ≈
√

(λ2 − λ1)δt2/m, i. e., the conventional use of Eq. (9.22) causes no

self-termination anymore. Hence, for diagonal H the damping offers a great

advantage over both Eq. (9.19) and Eq. (9.26): There is arbitrary acceleration of

the convergence even for ρH [x(s)] < λ2 .

However, for non-diagonal H (D 6= H) Eq. (9.27) is never consistent with

Hx = λ1x, except for η = 0. Since η = 0 is equivalent to Eq. (9.26) we conclude

that damping is not useful for Hamiltonians which are not diagonally dominant.

The preconditioning of iteration Eq. (9.21) by Eq. (9.26) succeeded to reduce

the required number of Hx products by up to 90% for a diagonally dominant H

[270]. For not diagonally dominant H, as the discrete eight-band k·p Hamiltonian,

such savings should not be expected.

The dilemma between sublinear asymptotic convergence and inconsistency,

arising for general choices of H, is not solved by analytical integration of the EOM

or damping, but only by implementations of Eq. (9.21) using δt2/m = 4/(λN−λ2)

and a fixed energy shift σ(s) = λ2 if ρH [x(s)] < λ2 . Thus the molecular dynamics

method merges into the CI, and the CI with automatical adjustment of α, β as

proposed in Ref. [289] would be the fastest numerical integration of the Newto-

nian second order EOM. To compute more eigenvectors the serial procedure with

implicit deflation [274,277,289,291,294] could be used.
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We finish the discussion of the second order molecular dynamics method with

the conclusion that none of the proposed variants gives a better performance than

the CI in the general case, so that the capability of the method ranks below that

of the LA, as regards the solution of large Hermitian eigenproblems.

9.2.11 Modified first order molecular dynamics

Analogous considerations apply to the molecular dynamics method using a first

order EOM [270],

m
dx(t)

dt
= −[H − σ(t)I]x(t) ,

to be integrated by the explicit Euler method,

x(s+1) = x(s) − δt

m
(H − σ(s)I)x(s) . (9.30)

Again, the constraints can be imposed separately and need not be incorporated

into the actual EOM. Eq. (9.30) is formally identical with an unpreconditioned

first order (or one-step) iterative method [287] for solving (H−σI)x = 0. Further,

Eq. (9.30) is a gradient method (or steepest-descent method) to minimize the

Rayleigh quotient ρH [279]. Further, it is equivalent to the PM Eq. (9.12) by

δt/m = −α and σ = (1 − β)/α. Hence, we know in advance that the fastest

possible convergence to u1 (with φ ≈ 2γ) is obtained whenever

δt

m
=

2

λ2 + λN − 2σ
.

Like Eq. (9.21) the iteration Eq. (9.30) can be speeded up by analytic integration

of the EOM. This leads to the PM, x(s+1) = Ax(s) , applied to

A = I + (exp [−(D − σ(s)I)δt/m]− I)(D − σ(s)I)−1(H − σ(s)I) (9.31)

[270]. From this we identify the preconditioning matrix

C = (I − exp [−(D − σ(s)I)δt/m])−1(D − σ(s)I) (9.32)

so that the algorithm using A is a preconditioned gradient method. Expanding

Eq. (9.31) to first order of δt returns Eq. (9.30) which is consistent with Hx = λ1x

if and only if σ = λ1. For diagonal H we find

ν
(s)
j = exp

[
−δt

m
(s− 1)(λj − σ)

]
.
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Applying Eq. (9.14) with σ = λ1 we obtain φ ≈ (λ2 − λ1)δt/m which is an

improvement over the unpreconditioned variant if δt/m > 1/Λ.

The next question is how the first order EOM compares to the second order

EOM in case of non-diagonal H.

9.2.12 Comparison of methods

The efficiency of a given method is determined by three independent criteria:

(i) The basic algorithm: Is it equivalent to the PM, the CI, the CG, the LA,

or etc.?

(ii) The preconditioner: How well is it suited for the given H?

(iii) The preconditioner: How well is it suited for the basic algorithm? In par-

ticular, does it support the optimal operating conditions for the basic algo-

rithm?

Any comparison of methods should take into account these three questions sep-

arately.

Concerning (i) we summarize the results from the preceeding sections: The least

efficient basic algorithm to calculate the ”groundstate” (ũ1, λ̃1) of an operator A

is the PM. It constructs the most primitive sequence of polynomials of A, (As),

in order to approximate the projector Π1 into the eigenspace spanned by ũ1. If

γ̃ denotes the gap ratio of A assigned to λ̃1 the optimally shifted PM has the

effective asymptotic convergence rate φ ≈ 2γ̃. The PM is equivalent to gradient

algorithms and to the 1st order EOM method. Better by far is the CI constructing

the sequence (Ts[A]). This sequence enables the fastest convergence towards Π1

possible, and the optimally shifted CI exhibits an average convergence rate of

φ ≈ 2
√

γ̃.

Given a particular start vector x(1) the actual intention behind constructing

Π1 is to delete all eigencomponents of x(1) being orthogonal to ũ1. Surely, this

process can be supported by granting some influence on the iteration procedure

to the start vector itself, i. e., by constructing the optimal sequence (Vs[A]) (see

p. 135) dependent on the particular start vector x(1). This opportunity is ignored

by both the PM and the CI, but exhausted by the Arnoldi procedure in Section

9.2.5 which ensures complete use of the available information.

The complete elimination of redundancy from the subspace basis leads to mu-

tual orthogonality of all trial vectors x(s). The convergence rate of the Arnoldi

procedure is φ ≥ 2
√

γ̃, independent of any linear adjustment of A like that nec-

essary in the PM and CI. There are more economical implementations of the
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Arnoldi procedure for Hermitian A, maintaining the orthogonality even without

performing a full orthogonalization in each step. These are the LA with partial

or selective reorthogonalization. There are also implementations which give up

the orthogonality (with respect to the metrics induced by I or A) under the im-

pact of round-off errors, as the LA without reorthogonalization or the CG. These

methods need a larger number of Ax products than those forcing orthogonality

and are therefore less efficient in our sense.

Before considering question (ii) we recall that the only way to accelerate a given

basic algorithm is to modify the spectral structure of the respective operator,

H 7→ A, in such a way that γA > zγH while u1 remains unaltered [277] (z is the

computational expense for evaluating Ax expressed in units of the expense for a

Hx multiplication). We may divide the possible functions f : H 7→ A to achieve

this goal into two classes. The first class leaves all eigenvectors unaltered by

[A,H] = 0 and thus consists of analytic f only. As shown in Section 9.2.3 there

is no increase of γA beyond Eq. (9.5) by this class. The enhancement obtained

thus is sufficient to accelerate the PM but not the CI: From Eq. (9.5) follows that

the effective convergence rate of the CI will even decrease by O(γ) for z > 1,

and the same holds for the LA. Hence, the only possibility to accelerate the CI

or LA is to choose f from the second class characterized by [A,H] 6= 0. Next we

consider questions (ii) and (iii) which refer to this second class, the non-analytic

functions, only.

9.2.13 Preconditioning

The aim of preconditioning is to spread the spectrum of H around λ1 and to

compress it elsewhere in order to increase γ. The most favorable arrangement

would be that all eigenvalues of A except for µ1 are (N−1)-fold degenerate since

then γA = 1. The minimal demand is that the eigenvector a1 of A corresponding

to µ1 is related to the eigenvector u1 of H corresponding to λ1 in an exactly

known and unique way. Traditionally, this is attempted by replacing H with

Ã = L−1(H − σI)(L†)−1 (9.33)

where L is a lower triangular matrix. Ã, L, and σ may depend on the step count

s, and σ → λ1 for s → ∞. Ã is Hermitian like H and ã1 = L†u1. Thus Ã is a

feasible substitute for H in any of the basic algorithms discussed, in particular

the CG and the symmetric LA. We emphasize on these two not only because they

are most efficient but also because they strongly rely on the Hermiticity of the

used operator Ã, unlike the PM or the CI. The implicit substitution of H by Ã in

the CG is standard and produces the PCG [180, 270, 271, 284, 287]. The explicit

substitution within the truncated, symmetric LA embedded into an outer loop
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for changing σ and L gives the preconditioned LA which has been demonstrated

to be very efficient, too [295].

Ã has the same spectrum as

A = C−1(H − σI) (9.34)

where C = LL†. Again, C and σ may depend on the step count s. Clearly, the

preconditioning matrix C shall be a possibly good, but first of all easily invertible,

approximation of H − σI in order to produce the desired spectral properties of

A stressed above.

At this point it is important to remember the following: If the almost singular

operator H − σI should be entirely invertible to acceptable accuracy at moder-

ate expense in whatsoever manner, then inverse iteration [21, 180, 274, 277, 296],

Rayleigh quotient iteration [277, 297], or a shift-and-invert LA [277, 282] should

be tried. The outstanding virtue of these methods is that they not only find

extreme eigenpairs very fast, but also interior eigenvalues as rapidly, thus solv-

ing completely satisfactory the computational problem discussed in this chapter.

However, it was our initial assumption that the shift-and-invert spectral trans-

formation is not applicable to the Hamiltonian H.

For general C, A according to Eq. (9.34) is not Hermitian, but consistent with

H if σ = λ1 (then a1 = u1). It is thus no feasible substitute for H in the CG or the

symmetric LA. However, it is possible in a different way to improve the Arnoldi

procedure from Section 9.2.5 by means of a preconditioner like Eq. (9.34), leading

to the GDA. For that purpose C can be generalized to indefinite matrices since a

Cholesky factorization is not required anymore. This offers better opportunity for

the construction of approximants to the indefinite operator H−σI than under the

restriction to positive-definite C [298]. Therefore, A may be appropriate despite

of being non-Hermitian.

If we hence waive the requirement for the existence of L, question (ii) on p. 142

reads: How to choose C for a given H? Here is where art begins. A large number

of preconditioners C derived by splitting of H − σI has been proposed. None

of them can be judged independently of the concrete Hamiltonian expansion H.

We will therefore only stress a few general aspects.

A problem is that many standard preconditioning techniques [287, 299], like

SOR, incomplete factorization, or SSOR, require explicit access to the matrix

elements of H. This is impossible, e. g., when a mixed representation of H is

used in order to avoid the handling of dense matrices like in the SM preferred

for pseudopotential calculations. In our implementation of the EFA/FDM there

is no access to single matrix elements either since H is encoded as a procedure

applying a linear mapping to the input vector. In such cases only very few matrix



9.2. EFFICIENCY OF PREVAILING EIGENSOLVERS 145

elements of H are explicitly known, like the diagonal ones and some selected off-

diagonal entries. Therefore, diagonal or otherwise very sparse matrices C happen

to become relevant preconditioners although, e. g., the SSOR preconditioner [300]

usually would give a very much larger γA.

Certainly, for any given H−σI there exists an optimal diagonal preconditioning

matrix Cmax producing the largest γA value possible for diagonal preconditioners.

Depending on H, the corresponding γA,max will be significantly or only a little bit

greater than γ. Since Cmax is unknown in the general case γA,max will rarely be

achieved, however, a suitable surrogate choice for C might yield a γA value close

to the optimum. For instance, according to first-order perturbation theory the

optimal correction vector to a trial vector v is obtained by multiplication with A

from Eq. (9.34) and

C = D − σI and σ = ρH(v) (9.35)

where D is the diagonal of H [298]. This preconditioner is used in the classical

Jacobi method for linear equation systems [287] and known to be efficient for

diagonally dominant H. Experiments with dense random matrices

H − σI = U diag(0, 1/N, . . . , 1− 1/N) U †

with unitary random U and ranks N ≤ 21 show that Eq. (9.35) yields

γA ≈ √
γH γA,max , thus improvement due to a diagonal preconditioner like

Eq. (9.35) is not conditional on the diagonal dominance or sparsity of H [298].

The performance of a given diagonal preconditioner C must be checked in

the particular case. To give suggestions, we point to Eq. (9.26) and Eq. (9.32).

A diagonal preconditioner specially designed for Hamiltonians arising in pseu-

dopotential calculations is derived as a Padé approximant to the kinetic energy

operator [270]:

C = (27I + 18K + 12K2 + 8K3)−1(27I + 18K + 12K2 + 8K3 + 16K4) ,

K = (D − [V ])/ks

where [V ] is the (diagonal) potential energy matrix and ks is the (scalar) average

kinetic energy in the state x(s). For large wave numbers this preconditioner

behaves similar to Eq. (9.35) in pseudopotential applications [272]. A related

non-diagonal preconditioner is the modified Jacobi operator [301]. Whenever a

non-diagonal C is at hand it should be tried [298]. In particular, block-diagonal

C may enhance the performance significantly [302]. It might also be considered

to evaluate Eq. (9.34) in an other representation than the usual one for H using

B [278].
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Question (iii) on p. 142 is already answered in parts: The original LA and

the CG require a symmetric positive definite preconditioner in order to find a

Hermitian A to operate on. Unless a shift-and-invert transformation is affordable,

these algorithms will be less flexible to employ various preconditioners helpful for

accessing interior eigenvalues. In contrast, the PM and CI require, in the general

case, a special linear transformation in order to arrange the optimal location of

the µj with respect to zero (in the PM) or to make them satisfy Eq. (9.17) and

Eq. (9.18) (in the CI), respectively. A linear transformation does not affect γA , of

course. However, as shown in the discussion of the molecular dynamics method

both the PM and the CI are open for potentially indefinite preconditioners. The

CG, LA, and the GDA (which is considered next) need no linear adjustment

due to their employment of the RR or residual minimization and, unlike the CG

and LA, the GDA may benefit also from indefinite preconditioners. Hence the

GDA offers the greatest flexibility for different preconditioners among all methods

discussed in this chapter.

9.2.14 Generalized Davidson algorithm

Preconditioning shall improve the acquisition of information. Hence, to improve

the Arnoldi procedure in Section 9.2.5 it is actually sufficient to substitute H by

A in step 2 only, rather than also in step 1 (see p. 130). The resulting procedure is

the GDA [298, 303]. The original Davidson algorithm (DA) [304–308] is defined

by Eq. (9.35) while the GDA leaves the choice of C open. Since the DA is a

particular case of the GDA we consider the GDA [306,307,309] only.

Even for the calculation of several eigenvectors we prefer to use the single-

vector variant in connection with implicit deflation [274, 277, 294]. Simultaneous

variants (block DA) are outlined in [306, 307, 309–312]. The single-vector GDA

for the calculation of the lowest eigenvalue and corresponding eigenvector of H,

in an implementation analogous to that of the improved algorithm to be proposed

below for the calculation of interior eigenpairs, proceeds as follows (S is the cycle

counter starting at zero):

0.) If S = 0 then (initialisation)

(a) an N -dimensional normalized random vector x(1) with Gaussian devi-

ates as components is generated and stored,

(b) its image h(1) = Hx(1) is calculated and stored,

(c) the scalar product h(1)†x(1) is calculated and stored as the (1,1) matrix

element of the 1× 1 Ritz matrix R(1),

(d) S = 1.
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Otherwise, the two sequences of (i) the previous trial vectors x(s) and (ii)

their images h(s) = Hx(s) (s = 1, . . . , S) are prevailing, forming the columns

of the two N × S matrices X(S) (i) and H(S) (ii), respectively.

The S × S Ritz matrix R(S) = H(S)†X(S) is prevailing, as well.

1.) If there exists a prevailing Ritz vector v(S−1) from the previous cycle it

is stored as a back-up potentially needed during a basis truncation in the

following step.

2.) RR: The Ritz vector v(S) =
∑S

s=1 asx
(s) is calculated from the S-dimensional

eigenvector a belonging to the lowest eigenvalue α of R(S) (use of informa-

tion).

If storing of two further vectors (x(S+1) and h(S+1)) would exceed the storage

capacity then (truncation)

(a) all x(s) and h(s) are disposed (s = 1, . . . , S),

(b) the back-up Ritz vector v(S−1) is orthonormalized against v(S),

(c) both vectors are stored as x(1) and x(2), respectively,

(d) their images h(s) = Hx(s) (s = 1, 2) are calculated3 and stored,

(e) the 2× 2 Ritz matrix R(2) is calculated,

(f) S = 2.

Otherwise the Ritz vector back-up v(S−1) is disposed.

3.) The image w =
∑S

s=1 ash
(s) of the Ritz vector v(S) is calculated.

4.) The residual r = w−αv(S) is calculated. If ||r||2 < tol the GDA terminates.

5.) If a preconditioner C is at hand (which is standard for the GDA) then

(a) σ is chosen according to a shifting strategy (for instance, σ = α),

(b) The pseudoresidual y = Av(S) = C−1[w−σv(S)] is calculated (gain of

information).

Otherwise, i. e. without preconditioning, y = w.

We call y a correction vector as it will serve to correct span[X(S)]

towards the wanted eigenspace span(u1) of H.

3These image vectors could, instead, have been constructed from the prevailing H(S) if the
latter had not been disposed in step (2a). However, it is more opportune to calculate the new
H(2) by actual Hx multiplications to prevent a cumulation of round-off errors during the entire
GDA.
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6.) The correction vector y is orthonormalized against the trial vector basis

X(S) yielding b (elimination of redundancy).

7.) b is appended to X(S) as a new column x(S+1) yielding X(S+1) (storage of

information).

8.) The image h(S+1) = Hx(S+1) is calculated (gain of information) and ap-

pended as a new column to the image vector set H(S) yielding H(S+1) (stor-

age of information).

9.) The Ritz matrix R(S) is updated by adding a new column c = X(S+1)†h(S+1)

as well as a new row c† , yielding R(S+1).

10.) S = S + 1 and the next cycle starts with step 1.

In step (6) the modified Gram-Schmidt procedure [274, 294] is explicitly per-

formed until all scalar products |<b|x(s) > | are less than the machine precision

ε (full orthogonalization) . Although it has been shown [276] that semiorthogo-

nalization, i. e. orthogonalization to the half machine precision (
√

ε), is sufficient

to produce stable and convergent algorithms, like in the LA, the full orthogo-

nalization in our implementation is motivated by the use of single-precision, i. e.

4-Byte, floating point numbers: The relative precision of this number representa-

tion is ε = 1.2× 10−7 and may be compared to the possible rank of H, N ≈ 107,

in order to visualize the urgent need not to waste one digit of accuracy during as

much as 1000 cycles. Accordingly, the evaluation of scalar products is performed

in double precision and only the result is recast to single precision.

The reason for the preference for single-precision over double-precision floating

point numbers is that thus the available memory capacity is effectively doubled,

being capable of additionally storing all image vectors h(s) without the need for

earlier, more frequent truncation in step (2). In our implementation X and H

are, like all other data, entirely kept in the core memory so that no read access

to disks ever occurs (and write access only for the purpose of saving intermediate

or the final results). Hence, periodical truncation down to two vectors of either

category (x and h) in step (2) is necessary. This temporarily slows down the

convergence somewhat, but in the final phase the GDA never becomes slower

than a CG using the same preconditioner [306]. Further economization towards

less storage demand or selective reorthogonalization does not appear possible as

the GDA is a true S-term recurrence.

The stopping criterion in step (4) ensures that the procedure stops if the wanted

eigenvector u1 is found rather than any other.

In the above implementation the procedure to gain information (according to

the definition on p. 126) is distributed over steps (5b) – multiplication with A –
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and (8) – multiplication with H, thus interlacing with the redundancy elimination

and information storage. This complication (from the explanatory viewpoint)

saves one Hx multiplication per cycle, as can be seen from a comparison with the

more easily explained, basic Arnoldi procedure described in Section 9.2.5: The

update of the Ritz matrix needed in step (1) of the Arnoldi procedure tacitly

requires one multiplication of H with the new basis vector x(S+1) appended in

step (4), in addition to the multiplication Hv(S) in step (2). The saving of one

Hx multiplication per cycle is conditional on the possibility to store the image

vectors h(s). If this is not possible, the GDA becomes particularly expensive, as

compared to the LA or CG, due to an a priori complexity of z = 2 (see p.126).

Since the GDA employs, partly, different operators to exploit information (H in

step (2)) and to acquire information (A in step (5b) and H in step (8)) it is impor-

tant that θ = 6 (a1,u1) ≈ 0, i. e. that A and H are consistent: Otherwise, step

(5b) will deliver information on useless, in the worst case random-like, hyperspace

directions which thus fail to establish any progress. In such a case the unsuitably

chosen precondioner C prevents the, otherwise extremely robust, Arnoldi-type

procedure from working properly since the correction vectors are systematically

destroyed instead of improved. In the following we discuss possibilites how such

situations arise and how they might be avoided.

Preconditioners for the GDA

The angle θ between the eigenvectors a1 of A and u1 of H certainly vanishes for

σ = λ1 in step (5a) of the GDA but, as λ1 is unknown, σ will always take on

guess values instead: σ is either chosen to be the Ritz value α from step (2),

σ = ρH [v(S)] , or another currently best approximation to λ1 [298] potentially

depending on the cycle count S. We refer to the decision procedure for choosing

σ as shifting strategy.

For practical considerations (rather than rigorous mathematical conclusions) we

may define an interval Σ(C) =]σmin; σmax[ such that θ ≈ 0 whenever σ ∈ Σ(C),

and call Σ(C) the consistency range corresponding to C. Via this definition

we have introduced a relation between the actually independent components of

the preconditioned operator A in Eq. (9.34), i. e., the spectral shift σ and the

preconditioner C. From this follows a requirement to the preconditioner C which

already was implicitly discussed in connection with the self-termination property

of the modified molecular dynamics methods:

The consistency range Σ(C) corresponding to C should be both (i)

well-positioned and (ii) as large as possible, in order to avoid a collision

with the shifting strategy.
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This condition for A is additional to its obligation to realize γA > γH . The

violation of the consistency condition, σ 6∈ Σ, is a typical source of failure for the

GDA, concerning the global convergence properties [298]. The Arnoldi procedure

in 9.2.5, being equivalent to C = I, exhibits an infinite consistency range and

thus tolerates potentially any shifting strategy.

A common way to construct the preconditioner C is the ansatz C = M − σI .

This ansatz requires, beside σ ∈ Σ, that σ is not too close to an eigenvalue of

M : Otherwise, C is ill-conditioned [277, 287] and its numerical inversion in step

(5b) will produce a random-like correction vector y, regardless of σ ∈ Σ, due to

cumulated round-off errors. This is a further source of failure in the GDA. When

using diagonal M it is trivial to control [298, 307] but for different structures of

M a sophisticated monitoring may be required to discover ill-conditioned C prior

to their use. A common procedure to solve the problem is to change σ a little

in case it happens to produce an ill-conditioned C. Non-diagonal C, such as

tridiagonal [114], may be efficient but are distinctly more difficult to handle than

diagonal C, due to the above outlined error sources.

Convergence rate of the GDA

It is difficult to estimate the asymptotic convergence rate φ of the GDA because

of the characteristic task splitting between H and A. We may only give a few

semi-quantitative arguments [298] which primarily are justified by observations

made in practice.

If only A was used in the steps (2) and (5b), and if neither σ nor C would vary

dependent on S, the GDA would behave similar to a preconditioned LA (apart

from the auxiliary overhead) and construct a Krylov space generated by A. In

this case

φ > 2
√

γA (9.36)

could be transfered from Eq. (9.10). The assumptions σ,C = const. are reason-

able for the local phase of convergence (which φ refers to) as the shifting strategy

will have to adjust σ ≈ λ1 in the end, in order to preserve the consistency of A

and H. If then in step (2) H is replaced with A, the intermediate eigenvector

approximations v(S) will change insignificantly, due to the consistency of A and

H for σ → λ1 , and hence the Krylov space will remain nearly unaltered.

Therefore, we assume Eq. (9.36) for the local convergence rate of the GDA. The

essential content of Eq. (9.36) is that φ is dominated by the operator used to gain

information, A in step (5b), rather than by the one used to exploit information,

H in step (2). The possibility for such a task separation between H and A is

founded on the consistency of the latter. The fact that the GDA is no Krylov
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method in case of a cycle-dependent shifting strategy is of no relevance for φ, but

offers the opportunity for an improvement of the global convergence properties.

9.2.15 Residual minimization

Since Section 9.2.5 we have considered possibilities to improve the acquisition

(→ flexible preconditioning by C) and maintenance (→ complete storage) of

information during iterative procedures for finding extreme eigenpairs of large,

non-factorizable, non-invertible Hermitian operators H. Next we consider a pos-

sibility to improve the use of information, as well, based on the existence of the

alternative ”RR or RM” as mentioned in Section 9.2.4.

The RR solves in each cycle S in step (2) the eigenproblem of the S×S Ritz

matrix

RRR = < X(S) |H X(S) >

to find the vector v(S) ∈ X minimizing the Rayleigh quotient, where X =

span (X(S)). In contrast, the RM determines v(S) as to minimize the residual

norm by solving the eigenproblem of

RRM = < (H − σI)X(S) | (H − σI)X(S) > (9.37)

= < X(S) | (H − σI)2 X(S) > . (9.38)

Thus the RM applied to H is equivalent to the RR applied to the operator

K = (H − σI)2 , (9.39)

meaning that the RM can be introduced to the GDA by formally replacing H with

K in step (2). The shifting strategy in step (5b) may nevertheless choose σ as

the currently best approximation for λ1 , regardless of where this approximation

is actually taken from. Even for the choice σ = α, i. e. the current Ritz value

(the smallest eigenvalue of RRR), the residuum r in step (4) obtained subsequent

to the RM has a smaller norm than by the RR. Hence, according to Eq. (9.4), the

RM effects a decrease of κ and thus an increase of φ. This acceleration is the basis

of the ”direct inversion in the iterative subspace” (DIIS) method [278, 313, 314].

Since K and A are consistent for σ → λ1 the RM will not obstruct the assumed

validity of Eq. (9.36) either. In particular, by use of Eq. (9.37) for updating RRM

the complexity of a cycle is still kept to be z = 1.

It has been found, however, that the global convergence towards u1 of an algo-

rithm entirely replacing the RR with the RM, e. g. the GDA in step (2), may be

unreliable [306, 314, 315]. If σ in every cycle is strictly chosen to be the current
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Ritz value α the procedure may terminate at a higher eigenvalue than λ1. We

found a different shifting strategy to be advantageous which chooses σ distinctly

below the Ritz value α or even pins σ at a constant value ≤ λ1 , in order to achieve

global convergence towards u1. Another possibility to find u1 is to combine the

RR and RM during the calculation of v(S) as suggested in Ref. [306]. Formally,

the latter variant employs both H and K in step (2) of the GDA.

9.3 Improved algorithm for interior eigenpairs

All of the methods considered so far find extreme eigenpairs only. The single-

vector variants yield either u1 or uN , while simultaneous variants or variants

using deflation techniques [274,277,294] either find u1 . . .uM or uN−M+1 . . .uN ,

depending on the spectral shift adjustment (in the PM, CI, and CG) or the

selection of Ritz values (in the LA and GDA).

This property is entirely based on the particular selection of the wanted infor-

mation during the steps labeled by ”use of information”. In the PM, CI, and

CG no selection occurs at all so that, via the gain mechanism explained in Sec-

tion 9.2.2, the dominance of the extreme eigenvalues determines the limes vector

x(∞) of the respective iteration completely. In contrast, in the LA and all its

preconditioned derivates (like the GDA) the selection is made by the RR or RM

by intentionally extracting the smallest (or largest) Ritz values (from H or K,

respectively) in each cycle. The intention in the frame of this work is, however,

to extract interior eigenpairs from H, specified by an interval for the eigenvalues

only.

The extraction of an approximant to a particular interior eigenvector from the

subspace X by means of the RR is possible if (i) a zeroth-order approximation of

that eigenvector is already known [305] or if (ii) X contains good approximations

to all eigenvectors belonging to eigenvalues between the wanted one and the

nearest spectral bound of H [306]. In the latter case the performance is based

on implicit deflation. If neither (i) nor (ii) is the case the extraction will fail,

as a matter of experience, due to the inability to select the proper Ritz vector

for improvement. To the author’s knowledge, it does not work to select a Ritz

pair from R(S) in step (2) according to the eigenvalue α only: In practice, such

procedures do not converge at all. On the other hand, the existence of possibility

(i) suggests that this failure is, in fact, only due to the bad selection criterion:

In Ref. [305] nothing but the criterion, which Ritz pair to take in step (2) of the

DA, has been changed as compared to the implementation of the GDA described

above.

The two criteria applying in cases (i) and (ii) are successful since each of them
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defines a desired property of the eigenvector rather than the eigenvalue. Hence,

it is at hand that the selection criterion

||r||2 → min. for σ = Esearch

in step (4) ensures local convergence towards the wanted, interior eigenpair as well

while the wanted eigenvector can be specified via its corresponding eigenvalue by

Esearch [245], as needed for this work. However, as discussed in Section 9.2.15 a

total replacement of the RR with the RM in step (2) of the GDA may obstruct

the global convergence of the procedure, either by terminating the iteration at an

unwanted eigenvector, or by causing a stagnation of the GDA within an endless

loop far away from any reasonable approximation of the desired eigenspace. This

inclination to failure in connection with the RM is a particular property of the

GDA, in connection with different – however, less efficient – basic algorithms the

RM does not necessarily cause problems [245,278].

Basic inventions

To, nevertheless, benefit from both the RM and the GDA, while avoiding the

discussed failure sources, a combination of RM and RR is proposed in this work :

• In step (2) of the GDA, see p. 147, we replace the RR with the RM, using

Eq. (9.37) with fixed σ = Esearch .

In contrast, in Ref. [306] σ = ρH [v(S)] is used. This dependence

introduces the possibility for the GDA to converge to an un-

wanted eigenvector and necessitates the invention of an appro-

priate rejection procedure. The present approach to fix σ to the

search energy in step (2) securely prevents the algorithm from

focussing on undesired eigenvectors.

• In steps (5b) to (9) of the GDA, see p. 147, we use two correction vectors:

(i) The conventional pseudoresidual y with respect to H and

(ii) a second pseudoresidual with respect to (H − EsearchI)2:

y = C1
−1 [ H − (Esearch + σ1) I ]v(S) and (9.40)

z = C2
−1 [ (H − EsearchI)2 − σ2 I ]v(S) . (9.41)

While y will be calculated and processed in each cycle S, z will only be

used in every ω-th cycle, i. e., if S mod ω = 0.
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In special cases of H, and in selected cycles, even a third correction vec-

tor can be employed. This is particularly advantageous for handling the

degeneracy of energy levels due to time reversal symmetry, where an ap-

proximant for the second basis vector of an eigenspace can be calculated

from a present eigenvector approximant by relation Eq. (4.22).

Unlike this approach, in Ref. [306] only y is used, formally cor-

responding to ω = ∞. Vice versa, the folded spectrum method

(FSM) [246, 271] uses only z, but never y. Also the RMM-DIIS

method [278] uses strictly one correction vector per cycle (which

additionally is constructed in a different way).

A complete waive of z [40,306] is inacceptable as it enables a stagnation of the

GDA within an endless loop caused by numerical linear dependence of y on X

(in such a case, b = 0 in step (6) prevents further changes of X and RRM). On

the other hand, waiving y is not known to obstruct the convergence but makes

the algorithm converge slower than possible by additionally using y.

The concrete value of ω is adjusted empirically to yield the maximal conver-

gence rate φ: While the inclusion of z to the trial vector basis X certainly improves

the information on the wanted eigenvector, its calculation and the subsequent

processing in step (9) enhance the complexity of the respective (ω-th) cycle from

z = 1 to z = 3. Thus the average convergence rate is

φ(ω) = − ω

ω + 2
ln κ(ω) .

The increase of κ(ω) for ω > 1 is partly compensated by the decreasing average

cycle complexity, z = (ω + 2)/ω, leading to the existence of an optimal ω value.

Advantage over prevailing methods

The convergence rate of the FSM is φFSM = −(ln κFSM)/2 . At least for ω = 1,

κ(ω) ≤ κFSM since the inclusion of y to X cannot deteriorate the quality of

span(X) as an approximant for span(uj) , but usually improves it. As a matter

of experience the improved GDA (IGDA) proposed here has a higher convergence

rate φ(ω) ≥ φ(1) ≥ φFSM than the FSM already for ω = 1, inspite of the then

50% larger z value. According to practical observation during this work, ω = 4

yields an even faster convergence, as demonstrated below by bench-marking.

The advantage of the IGDA over the FSM may additionally be visualized by

the following considerations. The original FSM [246] uses a PCG in the Polak-

Ribiere version to calculate the lowest (i. e., extreme) eigenvalues of the spectrally



9.3. IMPROVED ALGORITHM FOR INTERIOR EIGENPAIRS 155

transformed Hamiltonian

K = (H − EsearchI)2 . (9.42)

Thereby one preconditioner can be chosen which corresponds to C2 in Eq. (9.41)

but, in contrast to C2, needs to be positive definite according to Eq. (9.33). Apart

from overcoming this restriction, the IGDA has a second, independent choice C1

in Eq. (9.40) at hand, thus being more flexible for preconditioning than the FSM.

For the sake of simplicity, and in order to maintain the generality of the consid-

erations, we will neglect preconditioning in the benchmarks and compare only the

basic algorithms to each other. Thus, the FSM becomes a CG equivalent4 to the

Arnoldi procedure (see Section 9.2.5) applied to K from Eq. (9.42) instead of H,

still having a cycle complexity z = 2. In the IGDA, the waive for preconditioning

yields C1 = C2 = I in Eq. (9.40) and Eq. (9.41), so that

y = w − (Esearch + σ1)v
(S) and

z = Hw − 2Esearchw + (Esearch
2 − σ2)v

(S) .

When y is submitted to the steps (6) to (9) on p. 148 the term containing v(S)

will be deleted by the orthogonalization procedure as it is linearly dependent

on X. Hence, y = w = Hv(S) is an equivalent choice for the first correction

vector. If, thereafter, z is processed in the same way, the two scalar multiples

of w and v(S) will vanish accordingly (since w has already become a member of

X). Hence, z = Hw = H2v(S) is an equivalent choice for the second correction

vector. Consequently, a shifting strategy for determining σ1 in Eq. (9.40) and σ2

in Eq. (9.41) is obsolete in absence of preconditioners C1 and C2.

Without preconditioning the IGDA becomes a Krylov method constructing a

Krylov space of H while the unpreconditioned FSM constructs a Krylov space of

H2. Hence, the FSM effectively misses each second iterate of the IGDA while,

for ω ≥ 2, it has at least the same cycle complexity.

The effect of this deficiency can be demonstrated as follows. As an extreme, but

simple example we consider the calculation of u1 (which could be accomplished by

the conventional CG or GDA, of course). Thus we may choose σ = Esearch = λ1

in Eq. (9.37), obtaining the spectral gap of K in Eq. (9.42) as γK = γH
2. The

convergence rate of the unpreconditioned FSM is then given by Eq. (9.10):

φFSM ≥ √
γK = γH . (9.43)

4The equivalence of the CG and the Arnoldi procedure is conditional on the use of exact
arithmetic in the CG. For our bench-marking we assume this and emulate the CG by an
”unpreconditioned GDA” with large truncation intervals (all 200 cycles).
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In the considered example, the performance of the FSM is comparable to that

of the PM, and so is that of the LA when applied to K [283, 316]. In contrast,

the IGDA performs at least as the Arnoldi procedure since it (i) uses the same

correction vector as the latter (plus one additional correction vector in one out of

ω cycles), and (ii) is convergence-accelerated by the RM Eq. (9.37) using a fixed

shift σ. Hence, Eq. (9.10) yields

φIGDA ≥ 2ω

ω + 2

√
γH ≥ √

γH for ω ≥ 2 . (9.44)

The ”>” relations in Eq. (9.43) and Eq. (9.44) stem from the incorporation of

x(1) into the construction of Vs(H) (see Section 9.2.8), which could not be further

quantified. For the purpose of a comparison we might, however, ignore this and

replace ”≥” with ”≈”. Thus we conclude that the advantage of the IGDA over the

FSM is the larger, the closer to the spectral bounds of H the wanted eigenvalues

λj are located, i. e. the smaller min ( λj − λ1 , λN − λj ) is. The relatively slow

convergence of the FSM was already observed by its inventors [246].

Implementation

To calculate several interior eigenvectors from H, e. g. the lowest M CB states

in a QD, basically a single-vector version of the IGDA is used in connection with

implicit deflation [274, 277, 294]. Thereby, for all wanted states the same search

energy Esearch is specified which, in the example, is placed somewhat below the

expected CB groundstate energy, but well above the VB groundstate energy.

Thus the desired lowest CB states are properly identified (by their energies)

while the topmost VB states have energies too far apart from Esearch.

Then all M wanted (CB) states are iterated until convergence, one after an-

other, beginning with the CB groundstate which is energetically closest to Esearch.

To prevent the m-th iteration, m = 2, . . . , M , from converging to the CB ground-

state as well, every (correction) vector to be appended to the trial subspace basis

X is, prior to the appending, orthogonalized against all m− 1 already calculated

(CB) states (implicit deflation). Thus span (X) during the m-th iteration does

never contain the m − 1 already known states, and the iteration will therefore

converge to the first unknown state having an energy larger than Esearch. It is

advantageous to demand a larger accuracy than needed from the first calculated

states, in order to ensure that the finally required accuracy can be obtained,

though using deflation, for the highest wanted state, as well.

This concept works, without restrictions, as well if energy levels are degenerate,

as in the case of time reversal symmetry. Then for each eigenspace an orthonormal

basis is obtained, whereby the geometric multiplicity of each energy level can be
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determined from the calculation. Hence accidental degeneracies of confined levels

are always properly recognized.

Particularly in the presence of time reversal symmetry the calculation of each

second state is practically costless, as an outstanding approximate for the second

basis vector of the respective eigenspace can be obtained from the already known,

first basis vector by using Eq. (4.22).

In practice, the true implementation used in this work (and in the benchmarks)

enables phases of simultaneous iteration where, for instance, the two basis vec-

tors for the CB groundstate eigenspace still are being iterated for higher final

accuracy, while the iteration for the first excited CB state has already begun,

being in the initial, global phase of convergence. Such phases are visible in the

iteration histories shown in Fig. 9.3 and Fig. 9.2. However, the description of

details concerning the optional simultaneous process would make the implemen-

tation outline given below excessively complicated without being of fundamental

interest. Therefore, only the single-vector variant of the IGDA for the calcula-

tion of one interior eigenpair is presented here, neglecting even the recommended

exhaustion of time reversal symmetry, if applicable.

0.) If S = 0 then

(a) an N -dimensional initial guess vector x(1) is (i) random-generated, or

(ii) calculated from another eigenvector using, e. g., Eq. (4.22), or (iii)

taken from elsewhere, and stored,

(b) its image h(1) = (H − EsearchI)x(1) is calculated and stored,

(c) the scalar product h(1)†h(1) is calculated and stored as the (1,1) matrix

element of the 1× 1 RM matrix R(1),

(d) S = 1.

(e) Ω = 0.

Otherwise, the two sequences of the previous trial vectors x(s) and their

images h(s) = (H − EsearchI)x(s) (s = 1, . . . , S) are prevailing and form the

columns of the two N × S matrices X(S) and H(S), respectively.

The S × S RM matrix R(S) = H(S)†H(S) is also prevailing.

1.) If there exists a prevailing RM vector from the previous cycle it is stored

as a back-up potentially needed during a basis truncation in the following

step.

2.) RM: The RM vector v(S) =
∑S

s=1 asx
(s) is calculated from the S-dimensional

eigenvector a belonging to the lowest eigenvalue α of R(S).
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If storing all forthcoming correction vectors and their images would exceed

the storage capacity then

(a) all x(s) and h(s) are disposed (s = 1, . . . , S),

(b) the back-up RM vector is orthonormalized against v(S),

(c) both vectors are stored as x(1) and x(2), respectively,

(d) their images h(1) and h(2) are calculated explicitly and stored,

(e) the 2× 2 RM matrix R(2) is calculated,

(f) S = 2.

(g) Ω = 0.

Otherwise the RM vector back-up is disposed and Ω is incremented by one.

3.) The image w =
∑S

s=1 ash
(s) of the RM vector v(S) and the corresponding

Rayleigh quotient ρ = w†v are calculated.

4.) The residual r = w−ρv(S) is calculated. If ||r||2 < tol the IGDA terminates.

5.) σ1 and σ2 are chosen according to a shifting strategy, for instance, σ1 = ρ

and σ2 = σ1
2.

6.) The first correction vector

y = C1
−1 [w − σ1v

(S) ]

is calculated, orthonormalized against X(S), and then appended to the latter

as a new column x(S+1) yielding X(S+1). The image of x(S+1) is calculated

and appended as a new column h(S+1) to H(S) yielding H(S+1). The RM

matrix R(S) is updated by adding a new column c = H(S+1)†h(S+1) as well

as a new row c† , yielding R(S+1), and S is incremented by one.

7.) If Ω mod ω = 0 then

the second correction vector

z = C2
−1 [ (H − EsearchI)w − σ2v

(S−1) ]

is calculated5 and further processed like y in step (6).

8.) The next cycle starts with step 1.

5Note that the same RM vector v as in step (6) is used here since the cycle counter S has
already been incremented.
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The termination criterion in step (4) in principle permits the IGDA to termi-

nate at a higher eigenpair than the wanted, as well, since strictly the Rayleigh

quotient ρ is used to calculate the residual norm. However, as a matter of expe-

rience the global convergence to the eigenpair closest to Esearch is ensured by the

incorporation of z in step (7).

The suggestion to choose σ2 = ρ2 in step (5) is based on the fact that this is

generally is a better approximation to the smallest eigenvalue of (H − EsearchI)2

than α: Note that α = ρ2 + ||r||22 (which, in practice, is the most sensitive check

whether H is truly Hermitian).

9.3.1 Benchmarks

The efficiency of the IGDA was explained in theory, giving various arguments that

the IGDA has a higher convergence rate than prevailing methods used in the field

for the calculation of interior eigenpairs (apart from shift-and-invert algorithms

which are impractical in the given case). Finally, benchmarks are presented to

contrast the IGDA with the FSM which is considered the most efficient alternative

method. In order not to loose generality by considering certain preconditioners,

the basic, unpreconditioned algorithms are going to be compared here.

The unpreconditioned IGDA, defined by C1 = I and σ1 = 0 in step (6) and

C2 = I and σ2 = 0 in step (7), becomes equivalent to the unpreconditioned FSM

(in exact arithmetic) by (i) choosing ω = 1 and (ii) omitting step (6), as explained

in Section 9.3. Thus, without the implementation of a true CG procedure, an

indirect comparison of both methods becomes possible which, at least, is reliable

with respect to the convergence rate. Since both methods take into account the

spectral properties of H in approximately the same manner, the comparison may

even be considered to characterize the difference between the IGDA and the FSM

in general.

As a practical example for the comparison of the (unpreconditioned variants of)

IGDA and FSM the electronic eigenstates of the QD from Chapter 3 as shown

in Fig. 3.1(c) are calculated. Thereby two different FDM grid spacings d are

compared in order also to demonstrate the impact of the related spectral structure

of H on the convergence rate: The ”coarse” grid uses d = a (as throughout

Part II) with a being the lattice constant, while the ”fine” grid employs the

original resolution of the calculations in Chapter 3 (and in set 1 of Table 4.3),

d = a/2. The differences between corresponding eigenpairs calculated using

both grid resolutions are small, as discussed in Section 4.3.2. In all benchmark

calculations the bases X and H were truncated at S = 200 in step (2) in order

to keep the influence of truncation on the convergence properties minimal.

On the coarse grid (d = a) the QD and the surrounding barrier are represented
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by 36×36×30 voxels yielding a real Hamiltonian rank of N = 622080 (38880 grid

points to all of which eight complex variables for the eight bands are assigned).

The calculation of the lowest (highest) four pairwise degenerate CB (VB) levels,

like those shown in Fig. 3.1(c), requires two runs with different search energies

Esearch yielding eight eigenvectors, each. The search energies for both runs, given

on the same scales as in Fig. 3.1, are Esearch = −460 meV for the CB states and

Esearch = 258 meV for the VB states. The iteration histories of the two runs

are shown in Fig. 9.2 displaying the residual norm ||r||2 in step (4) of the IGDA

(or the modified IGDA simulating the FSM, respectively) over the number of

performed Hx multiplications. From such plots the convergence rate is easily

determined directly.

The accuracy goal ”tol” for ||r|| in step (4) is 0.1 meV and indicated in the plots

by a solid line. With this residual tolerance for the eigenvectors the eigenvalues

are, in practice, converged to full (single) machine precision, corresponding to

∼ 0.1 µeV. However, to calculate M = 8 eigenvectors using the same search

energy in connection with deflation the accuracy goal of the m-th eigenvector

(m = 1, . . . , M) is set to 2(M−m)/2 · tol, as explained above. Therefore all states

but the highest (lowest) wanted CB (VB) state are continued to be iterated

even for ||r|| < tol. Nevertheless, a new state vector is added for simultaneous

processing as soon as tol has been reached. Since, in this example, each second

eigenvector approximant can be calculated from a prevailing approximant by

means of Eq. (4.22), tol is usually achieved already for the initial guess, hence a

third state vector is added immediately. The temporarily simultaneous iteration

of thus three vectors manifests itself in a kink of the residual norm curve at

||r|| ≈ tol, as three vectors require three times as much Hx multiplications to get

improved as compared to a single vector. The convergence rate of each vector is,

however, hardly influenced by the simultaneous iteration indicating that a block

variant offers no advantages concerning the local convergence rate [306].

From comparing the FSM (gray squares) and the IGDA with ω = 4 (black

circles) in Fig. 9.2 the superior performance of the latter is well seen. Second,

the advantage of the IGDA over the FSM is the larger, the more dense the

Hamiltonian spectrum is in the region of interest. The average separation of

the CB levels is about five times larger than that of the VB levels, hence the

VB states require 2.5 (1.8) times more Hx multiplications than the CB states

when using the FSM (IGDA). The difference between the two factors reveals

the different scaling behaviours of the convergence rate φ with the spectral gap

γj = (λj+1 − λj)/Λ in both methods.

Another decrease of γj by a factor ∼ 4 is obtained when changing from the

coarse to the fine grid. Thereby, the explicit dependence of the second order

difference quotients of the FDM (see Section 8) on d causes an increase of the

spread Λ of H by a factor ∼ 4 while the energy level separations λj+1−λj in the
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Figure 9.2:

Iteration history of the calculation of eight CB and VB states, each, in the model
QD from Chapter 3 using a grid spacing equal to the lattice constant. Black
circles show the residual norm of the eigenvector approximations in step (4) of
the IGDA (see p. 158) over the number of performed Hx multiplications for ω = 4
(see p. 154). Gray squares refer to the FSM emulation described in the text on
p. 159.
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QD remain essentially unaltered. The FSM reacts to this with a multiplication

count increased by an average factor 2.6 while the IGDA multiplication count

increases by a factor 2.1, see Fig. 9.3. On the fine grid (d = a/2) the structure is

represented by 72× 72× 60 voxels yielding a Hamiltonian rank of N = 4976640.

The gray circles in Fig. 9.3 show that the IGDA is faster than the FSM even

for ω = 1, i. e. the decrease of the convergence factor κ is more significant than

the increase of the average cycle complexity z (see Section 9.3) when changing

from the FSM to the IGDA.

9.3.2 Programming considerations

The bandstructure calculations for QWRs were carried out on DEC Alpha AXP

600 workstations with clockrates between 266 and 433 MHz [40] using DEC Pascal

source code written by the author.

The QD eigenstate calculations, in particular the above benchmarks, were per-

formed on a Cray T3E-1200LC136/900LC272 parallel computer6 (see Fig. 9.4)

operated by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB).

The software for the electronic structure calculation in QD heterostructures was

written and developed by the author and consists of three parts. The first part

runs on a Compaq XP 1000 workstation (formerly DEC Alpha AXP 600, clock

rate 500 MHz, 1.1 GB RAM7) and (i) preprocesses any structural information

about the QD, (ii) compiles code files defining the bandstructure model to be

used (the eight-band k·p model in our case), and (iii) generates one file containing

a sparse representation the discrete Hamiltonian as well as the value of Esearch.

This program part is encoded in DEC Pascal. The Hamiltonian data file is passed

to the T3E parallel computer for eigenvector calculation.

The code for this second part of the software running under the operating

system UNICOS/mk 2.0.5.33 is written in Cray Fortran 90 (used for all numeri-

cal core routines, like differential operators and vector algebra) and ”lint-free”8

ANSI C (used for everything else, like I/O9, memory management, and the al-

gorithmic administration). Indeed, Fortran yields considerably faster code for

the numerics than C in our case, due to the call by reference convention for sub-

routine parameters in connection with the requirement for explicit specification

of pointer targets, which in combination enable a more efficient functional-unit

6Produced by the Silicon Graphics company Cray Research Inc. (CRI).
7random access memory
8lint is a programming accessory (C program checker) on UNIX systems used (i) to test

the ANSI standard conformity of C source code and (ii) to discover commonly made mistakes
which would not be objected by the compiler as they do not violate language standards.

9Input/Output
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Figure 9.3:

Iteration history of the calculation of eight CB and four VB states in the model
QD from Chapter 3 using a grid spacing equal to half the lattice constant. Black
(lightgray) circles show the residual norm of the eigenvector approximations in
step (4) of the IGDA (see p. 158) over the number of performed Hx multiplica-
tions for ω = 4 (ω = 1) (see p. 154). Gray squares refer to the FSM emulation
described in the text on p. 159.
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Figure 9.4:

c© CRI. Scalable parallel computer Cray T3E [317, 318]: Up to 2048 process-
ing elements (nodes), based on the DEC Alpha 21164 microprocessor [254] with
direct mapped first-level cache and equipped with a special support circuitry fea-
turing stream detection for accelerated unit-stride access to the local RAM (up to
875MB/s memory bandwidth), are connected within a three-dimensional torus
with an interprocessor network memory bandwidth of up to 350 MB/s (for com-
parison: current hard-disk drives used in personal computers offer bandwidths
of ∼ 20MB/s). Depending on the clock rate (450 MHz or 600MHz) each node
delivers a peak performance of 900 or 1200 millions of 64-bit floating point op-
erations per second (flops), realized if all data are kept in registers. The T3E
is a ”multiple instruction multiple data” (MIMD) architecture, i. e., each node
executes an individual instruction code using local data. The torus operation is
coordinated by, e. g. eight, command nodes. The machine ”berte” in the ZIB
(berte.zib.de), used in this work for the electronic structure calculations of
QD heterostructures, has 272 nodes with 450 MHz clock rate and 136 nodes with
600MHz, forming a heterogeneous cluster with 70 GB distributed RAM and an
application peak performance of 0.38 Teraflops. In the worldwide supercomputer
performance ranking (www.top500.org) including also military facilities ”berte”
kept rank 54 in 06/2000.

optimization by the compiler [254]. The parallelization of the program is based

on geometrical domain decomposition within two spatial directions, partitioning

the QD heterostructure into congruent rectangular columns each of which being

processed by one T3E node. The interprocessor communication is encoded using

the Message Passing Interface (MPI) language and needed for the updating of

common boundary points as well as for global operations, like scalar products

and temporal synchronization. The number of nodes to be used is chosen at run
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time and depends on the desired speed, the overall RAM size required, and the

grid size: The partition columns should not have a too large base area in order

to enable a sufficient array blocking [254] to support optimal cache performance.

The memory management of this program is optimized with respect to the

first-level data cache use in order to enable an as large as possible data load rate

from the RAM. This is important since the RAM access imposes the principal

limitation to the overall performance of the program: the CPU10 of a node usually

spends more time waiting for data to be fetched from or put to the RAM, than for

doing the relatively few arithmetic operations on them. The eigenvector calcula-

tion employs, to almost 100%, typical vector operations (one Hx multiplication

may consist of, e. g., 64 multiplications with diagonal matrices, 72 first order and

72 second order differentiations applied to vectors having as much components as

the grid has mesh points, as well as a corresponding number of vector additions)

while the T3E is not truly specialized to vector calculations. The performance of

the given code on the given machine is limited by the achieved rate of cacheable

stores.

To widen this bottle-neck, the special stream detection hardware of the T3E

nodes efficiently supports strictly sequential (unit-stride) RAM accesses by accel-

erated feeding of the first-level cache using a read-ahead hardware feature [318].

The first-level cache is backed by a three-way set-associative [254] second-level

cache before requests go off-chip to the physical RAM. Making possibly ample use

of this circuitry layout requires to strictly avoid cache conflicts and, via the di-

rect mapping [254] of the RAM to the first-level cache, imposes conditions on the

address alignment of coherent data blocks being processed simultaneously. These

requirements aim at initiating a possibly large number of data streams [318] and

lead to the set-up of different vector ”classes” being aligned to different first-level

cache lines. Since the vector size (being common to all classes) shall be flexible it

is unknown at compile-time, so that the block alignment (”padding”) is explicitly

organized by the program at run-time. As result of such a memory management

the Hx multiplications perform with average11 sustained12 flops rates between

∼ 90 and ∼ 170 Mflops per node, depending on the number of used nodes (typ-

ically between 8 and 100) and their clock rates. The second order difference

quotient operators yield up to ∼ 280 Mflops per node which means that, in this

case, a linear algebra application reaches unusual 23% of the theoretically possible

peak performance.

The third and last part of the software, running again on the DEC/Compaq

10central processing unit
11The average is taken over all different vector operations involved in one Hx multiplication.
12The rate represents an average throughout the execution time for a complete Hx multipli-

cation.
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workstation and being written in DEC Pascal, converts the eigenvectors retrieved

from the T3E computer to another format making them appropriate for visual-

ization and passing to further software (for the calculation of momentum matrix

elements and few-particle state properties) and links them to the input data

from the first program, thus generating a complete project description of the QD

heterostructure on the single-particle level.

9.4 Resumé

A comparative efficiency analysis of iterative eigensolution methods used in cur-

rent bandstructure calculations of quantum confined nanostructures has been

given. It covers, as basic algorithms, the power method, Chebyshev iteration,

conjugate-gradients method, Lanczos algorithm, and the generalized Davidson

algorithm, including several aspects of preconditioning. Among others, the molec-

ular dynamics methods of first and second order were shown to be preconditioned

variants of the power method and the Chebyshev iteration, respectively. En pas-

sant, an uncommon approach to overcome the poor local convergence of the con-

ventional second order molecular dynamics method as an eigensolver was found.

A novel, improved variant of the generalized Davidson algorithm, specially tai-

lored for the calculation of interior eigenpairs – as necessary in realistic bandstruc-

ture calculations – has been developed, analyzed theoretically, and benchmarked.

The algorithm labeled IGDA (improved generalized Davidson algorithm) relies

strongly on residual minimization. It serves the same purpose as the folded spec-

trum method [246] and the spectral transformation Lanczos procedure [316] but

was shown to be more efficient than both. The IGDA was hence used throughout

this work. Its implementation has been described in detail, taking care of selected

programming concerns.

The IGDA can readily be applied to other Hamiltonians describing single par-

ticles in realistic nanostructures as well, e. g. in the frame of tight-binding or

pseudopotential calculations. The computational progress established by this

work is not restricted to the k·p envelope function approach.
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9.5 Summary and Outlook

In this work, eight-band k·p theory including strain and piezoelectricity has been

applied to the calculation of the electronic and optical properties of strained quan-

tum dots and quantum wires of realistic shape and chemical composition. Based

on the electronic structure, absorption spectra and the properties of few-particle

states were calculated and compared to available experiments, demonstrating

outstanding agreement between calculated and measured quantities. The most

important, overall achievement by this work is that a tractable, computational

framework was established whose accuracy has been validated by comparison

with independent second-principles calculations. Since no adjustable parameters

are employed (except from insufficiently accurate bulk material properties) the

theoretical framework outlined here possesses a generic predictive power.

The success of the presented calculations is based on the use of a theoretical

model which, first of all, allows taking into account a realistic real structure for

the quantum dot or wire, concerning both the geometrical shape and the chem-

ical composition of the entire heterostructure. As specific nanostructures, self-

organized InAs quantum dots in GaAs, grown by the Stranski-Krastanow mode,

and V-groove quantum wires of InGaAs fabricated by growth on prepatterned

substrates of AlGaAs or InP have been modeled.

To model a quantum wire, its cross section shape as known from transmission

electron microscopy, as well as its nominal chemical composition are directly

used to calculate the conduction and valence band structures in the transport

direction. From these, the one-dimensional joint density of states is calculated

which governs the structure of the absorption spectrum. These calculations were

the first of their kind and published in 1996.

The irregular shape of the wire, its inhomogeneous strain distribution, and the

piezoelectric effect create a confinement situation which markedly differs from

what would be expected considering solely the geometrical shape seen in mi-

croscopy. The overall structure of the one-dimensional electronic subbands re-

sults in a recognizable way from the three above mentioned impact factors, which

directly visualizes the influence of the structural properties on the electronic and

optical properties. The polarizations of optical absorption in strained and un-

strained quantum wires differ significantly. These findings indicate that less ad-

vanced theoretical approaches fail to describe the complex interrelation between

the real structure and the electronic structure. A comparison with photolumi-

nescence excitation spectroscopy experiments demonstrates the high accuracy of

the present calculations.

The Stranski-Krastanow grown InAs quantum dots are in the order of 10 nm

large so that the quantization energies of confined charge carriers are much larger
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than in the wires. The predictive power of the eight-band k·p model also for such

structures is ensured by a deliberate choice of the material parameters for the bulk

semiconductors: Given that the k·p calculated bulk bandstructure describes the

actual bulk bandstructure well up to sufficiently high energies and wave numbers,

also the predicted zero-dimensional states in quantum dots are modeled reliably,

as demonstrated for the first time in this work. A direct comparison with recent

empirical pseudopotential calculations proves the accuracy of the eight-band k·p
calculation to be ∼ 10 meV. This renders the eight-band k ·p model fully valid

for the theoretical analysis of expitaxial, strained quantum dots.

The electronic properties of InAs quantum dots were calculated exemplarically

assuming a pyramidal dot shape. Most probably, this is an idealization of the

true shape. However, structural investigations of self-organized InAs/GaAs quan-

tum dots suggest a variety of possible geometries without decisively favoring one

shape. The assumption of an InAs pyramid for the dot shape introduces, though

in agreement with transmission electron miscroscopy results, one of the greatest

uncertainties to the calculations and limits their comparison to experiments a

priori.

Based on the pyramid model, the electronic level structure in the dots was

calculated, examining also the influence of material parameter uncertainties and

of different strain models on the calculated bound states. The confined wave

functions of electrons and holes in these quantum dots exhibit a pronounced

mixing of the Brillouin zone center bulk bands, preventing their classification

as, e. g., heavy holes or light holes. This has consequences on the fine-structure

of confined excitons in such dots: Even in absence of magnetic fields the fine-

structure of the exciton ground state accommodates no degenerate levels. The

predicted exciton level splitting due to exchange effects agrees excellently with

single-quantum-dot spectroscopy results.

The calculation of few-particle states in InAs/GaAs quantum dots was ac-

complished by a configuration interaction treatment, including the long-range

exchange effects aside of the direct Coulomb interaction and correlation. Thus,

trions and biexcitons were modeled, and it was shown that the binding ener-

gies of these states sensitively depend on the quantum dot shape and size. The

binding energies of biexcitons can be positive or negative, in agreement with

single-quantum-dot spectroscopy results.

Optical absorption spectra due to excitons or intraband transitions were calcu-

lated in the dipole approximation. The pronounced dependencies of the spectra

on the dot size or the polarization direction are clearly related to the real structure

of the quantum dot via the wave-function shapes. This is particularly well seen

on the enhancement of the polar exciton-phonon interaction in piezoelectrically

charged quantum dots which, for the first time, was predicted in the frame of
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this work in ample agreement with experiments. Like in the quantum wire case,

the calculation directly visualizes the impact of the dot geometry on the optical

properties, enabling conclusions being partly transferable to other QD systems.

The present calculations for InAs/GaAs quantum dots also contributed to the

first unambiguous proof of the quantum size effect in self-organized, Stranski-

Krastanow-grown quantum dots. Spectroscopy on various high-quality quantum

dot samples largely confirms the predicted dependence of excited exciton state

transition energies on the quantum dot size, indicating at the same time that

the major limitation of the theory results from lacking information on the real

structure and chemical composition of the dots.

The application of the presented approach to forthcoming systematic investi-

gations of the correlation between the structural and optical properties of low-

dimensional semiconductor structures relies on the use of supercomputing re-

sources. As a secondary achievement within this work, the currently fastest

existing algorithm for the calculation of interior eigenpairs from very large, non-

transposable, non-factorizable, non-invertible, Hermitian matrices has been de-

veloped. Benchmarks prove the enhanced performance of the procedure, whose

implementation is described in detail, allowing its adaption to other work. As

a specific implementation, the algorithm was encoded for a parallel computer of

the type Cray T3E.
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V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kop’ev, Zh. I. Alferov,
Phys. Rev. Lett. 74, 4043 (1995).

[92] F. Heinrichsdorff, MOCVD growth and laser applications of In(Ga)As/GaAs
Quantum Dots, Thesis (Mensch & Buch Verlag, Berlin, 1998).

[93] M. Grundmann, O. Stier, S. Bognár, C. Ribbat, F. Heinrichsdorff, D. Bimberg,
phys. stat. sol. (a) 178, 255 (2000).

[94] M. Fricke, A. Lorke, J. P. Kotthaus, G. Medeiros-Ribeiro, P. M. Petroff,
Europhys. Lett. 36, 197 (1996).

[95] C. M. A. Kapteyn, F. Heinrichsdorff, O. Stier, R. Heitz, M. Grundmann,
N. D. Zakharov, D. Bimberg, P. Werner, Phys. Rev. B 60, 14265 (1999).

[96] M.-H. Mao, F. Heinrichsdorff, A. Krost, D. Bimberg, Electron. Lett. 33, 1641
(1997).

[97] S. Ruvimov, P. Werner, K. Scheerschmidt, J. Heydenreich, U. Richter,
N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, A. Yu. Egorov,
P. S. Kop’ev, Zh. I. Alferov, Phys. Rev. B 51, 14766 (1995).

[98] G. S. Solomon, M. C. Larson, J. S. Harris, Appl. Phys. Lett. 69, 1897 (1996).

[99] Y. Nabetani, T. Ishikawa, S. Noda, A. Sasaki, J. Appl. Phys. 76, 347 (1994).

[100] J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. André, O. Vatel,
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J. P. Kotthaus, G. Medeiros-Ribeiro, P. M. Petroff, S. Huant, Phys. Rev. B 58,
16221 (1998).

[178] H. De Raedt, M. Frick, Physics Reports 231, 107 (1993)

[179] A. J. Williamson, A. Franceschetti, A. Zunger, Europhysics Letters, to be
published.

[180] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling,
Numerical Recipes in C (Cambridge University Press, 1992).

[181] Y. Z. Hu, M. Lindberg, S. W. Koch, Phys. Rev. B 42, 1713 (1990).

[182] E. L. Ivchenko, phys. stat. sol. (a) 164, 487 (1997).

[183] S. Yokojima, T. Meier, S. Mukamel, J. Chem. Phys. 106, 3837 (1996).

[184] H. Fu, L. W. Wang, A. Zunger, Phys. Rev. B 59, 5568 (1999).

[185] A. Hartmann, Y. Ducommun, E. Kapon, U. Hohenester, E. Molinari,
Phys. Rev. Lett. 84, 5648 (2000).

[186] M. Grundmann, D. Bimberg, Phys. Rev. B 55, 9740 (1997).

[187] M. Grundmann, D. Bimberg, Jpn. J. Appl. Phys. 36, 4181 (1997).

[188] S. Sauvage, P. Boucaud, J. -M. Gérard, V. Thierry-Mieg, Phys. Rev. B 58,
10562 (1998).

[189] S. J. Chua, S. J. Xu, X. H. Zhang, X. C. Wang, T. Mei, W. J. Fan, C. H. Wang,
J. Jiang, X. G. Xie, Appl. Phys. Lett. 73, 1997 (1998).

[190] J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, M. Dutta,
IEEE J. Quant. Elec. 35, 936 (1999).

[191] G. D. Mahan, Many-Particle Physics (Plenum, New York, 1981).

[192] K. Huang, A. Rhys, Proc. R. Soc. London, Ser. A 204, 406 (1950).

[193] S. Nomura, T. Kobayashi, Phys. Rev. B 45, 1305 (1992).

[194] S. Rudin, T. L. Reinecke, Phys. Rev. B 41, 3017 (1990).

[195] R. Heitz, I. Mukhametzanov, O. Stier, A. Madhukar, D. Bimberg,
Phys. Rev. Lett. 83, 4654 (1999).

[196] R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, D. Bimberg, Physica E
7, 398 (2000).
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[294] A. KieÃlbasiński, H. Schwetlick, Numerische lineare Algebra (VEB Deutscher
Verlag der Wissenschaften, Berlin, 1988).

[295] R. B. Morgan, D. S. Scott, SIAM J. Sci. Comput. 14, 585 (1993).

[296] A. H. Sameh, J. A. Wisniewski, SIAM J. Numer. Anal. 19, 1243 (1982).

[297] F. A. Dul, K. Arczewski, J. Comp. Phys. 111, 89 (1994).

[298] R. B. Morgan, D. S. Scott, SIAM J. Sci. Stat. Comput. 7, 817 (1986).

[299] R. Bru, C. Corral, A. Martinez, J. Mas, SIAM J. Matrix Anal. Appl. 16, 1210
(1995).

[300] D. J. Evans, J. Shanehchi, Comp. Meth. Appl. Mech. Eng. 31, 251 (1982).

[301] J. L. Martins, M. L. Cohen, Phys. Rev. B 37, 6134 (1988).

[302] R. B. Morgan, J. Comp. Phys. 89, 241 (1990).

[303] R. B. Morgan, J. Comp. Phys. 101, 287 (1992).

[304] E. R. Davidson, J. Comp. Phys. 17, 87 (1975).

[305] W. Butscher, W. E. Kammer, J. Comp. Phys. 20, 313 (1976).

[306] C. W. Murray, S. C. Racine, E. R. Davidson, J. Comp. Phys. 103, 382 (1992).

[307] E. R. Davidson, Comp. Phys. 7, 519 (1993).

[308] A. Stathopoulos, C. F. Fischer, Comp. Phys. Comm. 79, 268 (1994).

[309] E. R. Davidson, J. Phys. A 13, L179 (1980).

[310] N. Kosugi, J. Comp. Phys. 55, 426 (1984).

[311] L. Borges, S. Oliveira, J. Comp. Phys. 144, 727 (1998).



BIBLIOGRAPHY 185

[312] T. Sommerfeld, F. Tarantelli, J. Chem. Phys. 112, 2106 (2000).

[313] T. P. Hamilton, P. Pulay, J. Chem. Phys. 84, 5728 (1986).

[314] H. Kim, B. D. Yu, J. Ihm, J. Phys. A 27, 1343 (1994).

[315] J. L. Martins, N. Troullier, Phys. Rev. B 43, 2213 (1991).

[316] V. Dolcher, G. Grosso, L. Martinelli, G. Pastori Parravicini, Phys. Rev. B 53,
10813 (1996).

[317] E. Anderson, J. Brooks, C. Grassl, S. Scott, Performance of the CRAY T3E
Multiprocessor, WWW document, Cray Research Inc.

[318] E. Anderson, J. Brooks, T. Hewitt, The Benchmarkers’s Guide to
Single-Processor Optimization for CRAY T3E Systems, WWW document, Cray
Research Inc.



186 Index

Index

0D . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1D . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2D . . . . . . . . . . . . . . . . . . . . . . . . . 98
3D . . . . . . . . . . . . . . . . . . . . . . . . . 35

absorption coefficient . . . . . . . . . . . 58
absorption cross section . . . . . . . . . . 56
accumulation of information 125, 130, 131
acquisition of information . . . . 126, 146
adiabatic . . . . . . . . . . . . . . . . . . . . 91
alloy . . . . . . . . . . . . . . . . . . . . . . . . 21
angular momentum . . . . . . . . 37, 59, 67
angular momentum conservation . . . 36
angular quantum number . . . . . . . . 36
anisotropy . . . . . . . . . . . . . . . 65, 113
antimetrization . . . . . . . . . . . . . . . . 67
Arnoldi procedure . . . . . . 130, 142, 150
ASA . . . . . . . . . . . . . . . . . . . . . . . . 21
atomic structure anisotropy . . . . 21, 25
average valence band energy . . . . . . . 9

band alignment . . . . . . . . . . . 47, 54, 62
band mixing . . . 3, 37, 50, 52, 59, 67, 79
band offset . . . . . . . . . . . . . . . . 10, 13
band-gap renormalization . . . . . . . 104
basis function . . . . . . . . . . . . . . . . . 62
Bauer’s method . . . . . . . . . . . . . . 129
benchmark . . . . . . . . . . . . . . . . . . 159
Bessel function . . . . . . . . . . . . . . . . 36
biexciton . . . . . . . . . . . . . . . . . 65, 81
Bloch function . . . . . . . . . . . . . . 7, 17
Bloch theorem . . . . . . . . . . . . . . . . . 8
block Davidson algorithm . . . . 146, 160
Bohr radius . . . . . . . . . . . . . . . . . . 35
bond bending/stretching . . . . . . 41, 42
bound state . . . . . . . . . . . . . . . . . . 47
boundary condition . . . . . . . . . . . . . 39
Bravais lattice . . . . . . . . . . . . . . . . . 6
Brillouin zone . . . . . . . . . . . . . . . . . . 6
broadening . . . . . . . . . . . . . . . 93, 104
BZ . . . . . . . . . . . . . . . . . . . . . . . . . 11

cache performance . . . . . . . . . . . . 165
calorimetric absorption . . . . . . . . . . 38
capacitance spectroscopy . . . . . . . . 100
carrier temperature . . . . . . . . . . . . 104
cartesian product . . . . . . . . . . . 66, 70

cathodoluminescence . . . . . . . . . . . . 37
Cayley form . . . . . . . . . . . . . . . . . 128
CB . . . . . . . . . . . . . . . . . . . . . . . . . . 7
center-of-mass motion . . . . . . . . . . . 35
CG . . . . . . . . . . . . . . . . . . . . . . . 124
charge . . . . . . . . . . . . . 65, 68, 80, 104
Chebyshev accelerated power method 128
Chebyshev iteration . . . . . . . . 125, 132
Chebyshev polynomial . . . . . . . 128, 134
CI . . . . . . . . . . . . . . . . . . 62, 125, 132
cleaved-edge overgrowth . . . . . . iv, 114
CM . . . . . . . . . . . . . . . . . . . . . . . . 39
colloidal dots . . . . . . . . . . . . . . . . 100
comparison IGDA vs. FSM . . . . . . 159
complex conjugation . . . . . . . . . . . . . 8
complexity . . . . 126, 149, 151, 154, 162
configuration interaction . . . . . . 62, 66
configuration mixing . . . . . . . . . . . . 62
confinement . . . . . . . . . . iv, 35, 37, 88
conjugate . . . . . . . . . . . . . . . . . . . 131
conjugate-gradient method . . . . . . .

. . . . . . . . . . . . . 39, 124, 131, 159
conservation . . . . . . . . . . 35–37, 59, 76
consistency range . . . . . . . . . . . . . 149
consistent . . . . . . . . . . . . . 57, 139, 149
constraint . . . . . . . . . . . . . . . . . . . 135
continuum mechanical strain model .

. . . . . . . . . . . . . . . . . . 39, 47, 55
convergence factor . . . . . . . . . . 126, 162
convergence rate 126, 133, 134, 150, 154
coordinate relaxation method . . . . 125
correction vector . . . . . . . 147, 149, 150
correlation . . . . . . . . . . 61, 64, 81, 110
Coulomb charging energy . . . . . . . . 65
Coulomb interaction . . . . . . . . . . . . 61
Coulomb matrix element . . . . . . 23, 28
Coulomb term . . . . . . . . . . . . . . . . 68
Cray T3E . . . . . . . . . . . . . . . . . . . 164
CRI . . . . . . . . . . . . . . . . . . . . . . . 162
cut-off . . . . . . . . . . . . . . . . . . 119, 127

DA . . . . . . . . . . . . . . . . . . . . . . . 146
dark exciton . . . . . . . . . . . . . . . . . . 73
Davidson algorithm . . . . . . . . . . . . 146
decoupled bandstructure models . . .

. . . . . . . . . . . . . . . . . 66, 68, 120
deep level transient spectroscopy . . 100



Index 187

deflection of eigenvectors . . . . . . . . 138
deformation potential . . . . . . . . 10, 18
degeneracy . . . . 59, 63, 70, 79, 154, 157
density functional theory . . . . . . . . 119
density of states . . . . . . . . . . . . . . 104
DFT . . . . . . . . . . . . . . . . . . . . . . 119
diagonal dominance . . . . . . . . . . . . 145
dielectric constant . . . . . . . . . . . 46, 68
dielectric function . . . . . . . . . . . . . . 69
dielectric screening . . . . . . . . . . . . . 68
difference quotient . . . . . . . . . 39, 160
DIIS . . . . . . . . . . . . . . . . . . . . . . 151
dipole . . . . . . . . . . . . . . . . . . . . . . . 45
dipole transition . . . . . . . . . . . . . . . 56
direction set method . . . . . . . . . . . 125
Dirichlet boundary conditions . . . . . 46
discretization . . . . . . . 47, 53, 119, 122
discretization error . . . . . . 53, 136, 139
displacement . . . . . . . . . . . . . . . . . . 39
dissociation . . . . . . . . . . . . . . . . . . 81
domain decomposition . . . . . . . . . . 164
DOS . . . . . . . . . . . . . . . . . . . . 5, 104
double precision . . . . . . . . . . . . . . 148

EBOM . . . . . . . . . . . . . . . . . . . . . 123
economization . . . . . . . . . . . . . . . . . 69
EFA . . . . . . . . . . . . . . . . . . . . . . . 119
effective mass approximation . . . . . .

. . . . . . 35, 38, 52, 66, 68, 111, 119
efficiency . . . . . . . . . . . . . . . . . . . 142
eigenproblem . . . . . . . . . . . . . . . . 120
eigenvalue economization . . . . . . . . 124
elastic moduli . . . . . . . . . . . . . . 39, 42
electron picture . . . . . . . . . . . . . . . . 72
elimination of redundancy . . . . . . . 148
empirical pseudopotential method 5, 17
envelope function . . . . . . . . . 8, 47, 50
envelope function approximation . . . 57
EOM . . . . . . . . . . . . . . . . . . . . . . 135
EP . . . . . . . . . . . . . . . . . . . . . . . 5, 17
epitaxy . . . . . . . . . . . . . . . . . . . 37, 94
equation of motion . . . . . . . . . . . . 135
equivalence transformation . . . . . . 122
Euler method . . . . . . . . . . . . . . . . 141
exact arithmetic . . . . . . . . . . . 125, 155
exchange . . . . . . . . . . . . . . . 61, 63, 66
exchange splitting . . . . . . . . . . . . . . 78
exchange strength constant . . . . . . . 68
exchange term . . . . . . . . . . . . . . . . 68

exchange-correlation potential . . . . . 66
exciton binding energy . . . . . . . 35, 64
exciton ground state . . . . . . . . . . . . 63
exciton phonon interaction . . . . iii, 91
exponential spectral transformation 128
extreme eigenvalues . . . . . . . . . 119, 123

fast Fourier transformation . . . . . . 123
FDM . . . . . . . . . . . . . . . . . . . 117, 122
FEM . . . . . . . . . . . . . . . . . . . . . . 122
Fermi integral . . . . . . . . . . . . . . . . 104
Fermi level . . . . . . . . . . . . . . . . . . . 85
Fermion . . . . . . . . . . . . . . . . . . . . . 66
finite barrier . . . . . . . . . . . . . . . . . . 37
finite-differences method . . . . . . 39, 47
finite-precision arithmetic . . . . 125, 131
fix vector . . . . . . . . . . . . . . . . 132, 136
Fletcher-Reeves . . . . . . . . . . . . . . 131
floating point operations . . . . . . . . 122
flops . . . . . . . . . . . . . . . . . . . . . . . 164
fluctuations . . . . . . . . . . . . . . . . . . 38
FM . . . . . . . . . . . . . . . . . . . . . . . 122
folded spectrum method . . . . . . . . 154
four-band model . . . . . . . . . . . 68, 119
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