Technische Universität Berlin
 Institut für Mathematik

Analysis of optimal boundary control of the Boussinesq approximation

Günter Bärwolff Michael Hinze

Preprint 10-2008

Preprint-Reihe des Instituts für Mathematik
Technische Universität Berlin

Analysis of optimal boundary control of the Boussinesq approximation

Günter Bärwolff ${ }^{1}$ and Michael Hinze ${ }^{2}$
${ }^{1}$ Technical University Berlin, Institute of Mathematics, Str. d. 17. Juni 135, D-10623 Berlin, Germany
${ }^{2}$ University of Hamburg, Department of Mathematics, Bundestr. 55, D-20146
Hamburg, Germany

Abstract

In the present paper we complement the work in [2] with presenting the analytical framework for general optimal boundary control problems of the Boussinesq approximation. We prove existence of optimal controls, use results of [6] to prove existence and uniqueness of solutions to state and the adjoint system, and derive first order necessary as well as second order sufficient optimality conditions.

Keywords: Time-dependent Boussinesq approximation, optimal boundary control, optimality conditions.

1 Introduction

In the present work we analyze the following optimal boundary control problem considered in [2];

$$
\begin{align*}
& (P) \quad\left\{\begin{array}{l}
\min J(y, \theta, u) \\
\text { s.t. } u \in U_{a d}
\end{array}\right. \text { and } \tag{1}\\
& y_{t}+(y \cdot \nabla) y-\nu \Delta y+\nabla p+\beta \theta \boldsymbol{g}=0 \quad \text { in } \Omega_{T}, \tag{2}\\
& -\operatorname{div} y=0 \quad \text { in } \Omega_{T}, \tag{3}\\
& \theta_{t}+(y \cdot \nabla) \theta-\chi \Delta \theta-f=0 \quad \text { in } \Omega_{T}, \tag{4}\\
& \left.\begin{array}{rl}
y=0, & \text { on } \Gamma_{T}, \\
\chi \frac{\partial \theta}{\partial \mathbf{n}}+b \theta=B u & \text { on } \Gamma_{T},
\end{array}\right\} \tag{5}
\end{align*}
$$

with initial conditions are chosen as

$$
\begin{align*}
& y=0 \text { in } \Omega \tag{6}\\
& \theta(0)=\theta_{0} \text { in } \Omega \tag{7}
\end{align*}
$$

with a given temperature field θ_{0}. Here, $\Omega \subset \mathbb{R}^{2}$ denotes the bounded flow domain with boundary Γ, and the time horizon is given by $[0, T]$. Further, $y=$ $\left(y_{1}, y_{2}, y_{3}\right)$ denotes the flow velocity vector field, p a pseudo pressure scaled by the density 1, and θ denotes the temperature. Furthermore, the function $B u$ denotes

[^0]the temperature flux on the boundary with u serving as abstract control variable. System (2)-(7) represents a mathematical model for the thermally driven flow of a semi-conductor melt with the viscosity $\nu>0$, thermometric conductivity $\chi>0$, and thermal expansion coefficient $\beta>0$, compare [2]. The force of gravity is denoted by $g \in \mathbb{R}^{3}$. Further $\Omega_{T}:=\Omega \times[0, T], \Gamma_{T}:=\Gamma \times[0, T]$, and $b>0$ denotes a coefficient which models the heat conductivity of the container walls which form the domain boundary $\Gamma . B: U \rightarrow L^{2}\left(0, T ; H^{-1 / 2}(\Gamma)\right)$ denotes the bounded, linear control operator which maps abstract controls of the Hilbert space U to feasible temperature boundary controls, and $U_{a d} \subseteq U$ the closed and convex set of admissible controls.

We consider cost functionals of separated type, i.e.

$$
J(y, \theta, u)=J_{1}(y, \theta)+J_{2}(u),
$$

where $J_{1}: W_{y} \times W_{\theta} \rightarrow \mathbb{R}, J_{2}: U \rightarrow \mathbb{R}$ are bounded from below, and are weakly lower semi-continuous, twice continuously Fréchet-differentiable with Lipschitz continuous second derivatives. Further, J_{2} is assumed to be radially unbounded, i.e. $J_{2}(u) \rightarrow \infty$ for $\|u\|_{U} \rightarrow \infty$. The spaces W_{y}, W_{θ} are specified in Section 2.

The following frequently considered examples are covered by this setting.
Example 1. Typical cost functionals are given by

$$
\begin{align*}
J_{1}(y, \theta) & =\frac{1}{2} \int_{0}^{T} \int_{\Omega}\left[|y-\bar{y}|^{2}+|\theta-\bar{\theta}|^{2}\right] d \Omega d t, \quad J_{2}(u)=\frac{\alpha}{2}\|u\|_{U}^{2} \tag{8}\\
J_{1}(y, \theta) & =\frac{1}{2} \int_{0}^{T} \int_{\Omega}\left[|c u r l y|^{2}+|\nabla \theta|^{2}\right] d \Omega d t, \quad J_{2}(u)=\frac{\alpha}{2}\|u\|_{U}^{2} \tag{9}
\end{align*}
$$

where $\bar{y} \in L^{2}(Q)^{2}$ and $\bar{\theta} \in L^{2}(Q)$ denote desired velocity and temperature fields respectively. The constant $\alpha>0$ denotes a weighting factor for the control costs.

Typical control operators and control spaces are given by

1. $U=L^{2}\left(\Gamma_{T}\right), B:=\mathcal{I}$, where $\mathcal{I}: U \rightarrow L^{2}\left(0, T ; H^{-1 / 2}(\Gamma)\right)$ denotes the injection. $U_{a d}:=\left\{u \in L^{2}\left(\Gamma_{T}\right) ; a \leq u \leq b\right.$ a.e. on $\left.\Gamma_{T}\right\}$, where $a, b \in L^{\infty}\left(\Gamma_{T}\right)$.
2. $U=L^{2}(0, T)^{m}, B u(t):=\sum_{i=1}^{m} u_{i}(t) f_{i}$, where $f_{i} \in H^{-1 / 2}(\Gamma), i=1, \ldots, m$. $U_{a d}:=\left\{u \in L^{2}(0, T) ; a \leq u \leq b\right.$ a.e. on $\left.(0, T)\right\}$, where $a, b \in L^{\infty}(0, T)$.
3. $U=\mathbb{R}^{m}, B u(t):=\sum_{i=1}^{m} u_{i} g_{i}(t)$, where $g_{i} \in L^{2}\left(0, T ; H^{-1 / 2}(\Gamma)\right), i=1, \ldots, m$. $U_{a d}:=\left\{u \in \mathbb{R}^{m} ; a \leq u \leq b\right.$ a.e. on $\left.(0, T)\right\}$, where $a<b$ componentwise in \mathbb{R}^{m}.
4. $U=\left\{u \in H^{1}\left(0, T ; L^{2}(\Gamma)\right) ; u(0)=0\right\} \equiv H_{0}$, where $B:=\mathcal{I}$, with $\mathcal{I}: U \rightarrow$ $L^{2}\left(0, T ; H^{-1 / 2}(\Gamma)\right)$ denoting the injection. $U_{a d}=U$.

A discussion of the related literature $[1,4,5,7-14]$ is given in [2]. Let us emphasize, that Belmiloudi in [5] discusses Robin boundary control in three spatial dimensions for a model related to the Boussinesq approximation, where he imposes certain smallness assumptions on the data and on the controls. The scope
of the present paper differs from that of Belmiloudi [5] in that it focusses on a functional analytic framework which is tailored to the algorithmic approach presented in [2]. In particular more general boundary controls are allowed and first and second order necessary, and second order suffient optimality conditions are presented. Moreover a different proof technique is used which is based on Gajewski's work [6].

Above, and from now onwards, derivatives w.r.t. time are denoted by the subscript t, i.e. $v_{t}:=\frac{\partial v}{\partial t}$.

2 Mathematical model

In order to formulate problem (P) mathematically we introduce the solenoidal spaces

$$
H=\left\{v \in L^{2}(\Omega), \operatorname{div} v=0\right\}, \quad V=\left\{v \in H_{0}^{1}(\Omega), \operatorname{div} v=0\right\}
$$

and set
$W_{y}=\left\{v \in L^{2}(V), v_{t} \in L^{2}\left(V^{*}\right)\right\}, \quad W_{\theta}=\left\{\theta \in L^{2}\left(H^{1}(\Omega)\right), \theta_{t} \in L^{2}\left(H^{1}(\Omega)^{*}\right)\right\}$.
Here, we abbreviate $L^{p}(Z)=L^{p}(0, T ; Z)$ for Z denoting a Banach space.
Next, we introduce the operator

$$
e: W_{y} \times W_{\theta} \times U \rightarrow L^{2}\left(V^{*}\right) \times H \times L^{2}\left(H^{1}(\Omega)^{*}\right) \times L^{2}(\Omega)=: Z^{*}
$$

by

$$
\begin{aligned}
& e(y, \theta, u)=\left(y_{t}+(y \cdot \nabla) y-\nu \Delta y+\beta \theta g, y(0)\right. \\
& \left.\quad \theta_{t}+(y \cdot \nabla) \theta-\chi \Delta \theta+E(b \theta-B u), \theta(0)\right)
\end{aligned}
$$

where

$$
E: L^{2}\left(H^{-1 / 2}(\Gamma)\right) \rightarrow L^{2}\left(H^{1}(\Omega)^{*}\right)
$$

defines a linear bounded operator whose action is defined by

$$
\langle E z, v\rangle_{L^{2}\left(H^{1}(\Omega)^{*}\right), L^{2}\left(H^{1}(\Omega)\right)}=\int_{0}^{T}\langle z, \gamma v\rangle_{\left.H^{-1 / 2}(\Gamma)\right), H^{1 / 2}(\Gamma)} d t
$$

with $\gamma: H^{1}(\Omega) \rightarrow H^{1 / 2}(\Gamma)$ denoting the trace operator. The action of e applied to an element
$z=\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \in Z=L^{2}(V) \times H \times L^{2}\left(H^{1}(\Omega)\right) \times L^{2}(\Omega)$ is given by

$$
\begin{array}{r}
\langle e(y, \theta, u), z\rangle_{Z^{*} Z}=\int_{0}^{T}\left\langle y_{t}, z_{1}\right\rangle_{V^{*} V} d t+\int_{0}^{T} \int_{\Omega} \nu \nabla y \nabla z_{1}+(y \cdot \nabla) y z_{1} d x d t+ \\
+\left(y(0), z_{2}\right)_{H}+\int_{0}^{T}\left\langle\theta_{t}, z_{3}\right\rangle_{H^{1 *} H^{1}} d t+\int_{0}^{T} \int_{\Omega} \chi \nabla \theta \nabla z_{3}+(y \cdot \nabla) \theta z_{3} d x d t+ \\
+\int_{0}^{T}\left[\int_{\Gamma} b \theta z_{3} d s-\left\langle B u, z_{3}\right\rangle_{H^{-1 / 2}(\Gamma) H^{1 / 2}(\Gamma)}\right] d t+\left(\theta(0), z_{4}\right)_{L^{2}(\Omega)} \\
=:\left\langle\left(e^{1}, e^{2}, e^{3}, e^{4}\right)(y, \theta, u), z\right\rangle_{Z^{*} Z}
\end{array}
$$

Using e, the system of state equations can be written in the form

$$
\begin{equation*}
e(y, \theta, u)=0 \text { in } Z^{*} . \tag{10}
\end{equation*}
$$

Considering [6, Bemerkung 2.1] together with [6, Satz 3.1,Folgerung 5.1] gives
Theorem 1. Let $f \in L^{2}\left(V^{*}\right), q \in L^{2}\left(H^{1}(\Omega)^{*}\right), y_{0} \in H, \theta_{0} \in L^{2}(\Omega)$ and $u \in U$. Then

$$
e(y, \theta, u)=\left(f, y_{0}, q, \theta_{0}\right) \text { in } Z^{*}
$$

admits a unique solution $(y, \theta) \in W_{y} \times W_{\theta}$.
For the differentiability of the operator e we prove
Theorem 2. The operator e is infinitely often Fréchet-differentiable with Lipschitz continuous second derivatives and vanishing derivatives of third and higher order. For the first and second derivatives there holds

$$
\begin{aligned}
e_{y}(y, \theta, u) v & =\left(v_{t}+(v \cdot \nabla) y+(y \cdot \nabla) v-\nu \Delta v, v(0),(v \cdot \nabla) \theta, 0\right) \\
e_{\theta}(y, \theta, u) s & =\left(\beta s g, 0, s_{t}+(y \cdot \nabla) s-\chi \Delta s+E(b s), s(0)\right) \\
e_{u}(y, \theta, u) \tilde{u} & =(0,0, E(-B \tilde{u}), 0) \\
e_{y \theta}[v, s] & =(0,0,(v \cdot \nabla) s, 0) \\
e_{\theta y}[s, v] & =(0,0,(v \cdot \nabla) s, 0) \\
e_{y y}\left[v_{1}, v_{2}\right] & =\left(\left(v_{2} \cdot \nabla\right) v_{1}+\left(v_{1} \cdot \nabla\right) v_{2}, 0,0,0\right)
\end{aligned}
$$

all other derivatives vanish.
Proof. Since e^{2}, e^{4} represent linear operators, it is sufficient to consider e^{1} and e^{3}. Let

$$
b_{\theta}(y, \theta, \chi):=\langle(y \cdot \nabla) \theta, \chi\rangle_{H^{1 *} H^{1}}
$$

and

$$
b_{y}(y, v, \phi):=\langle(y \cdot \nabla) v, \phi\rangle_{V^{*} V}
$$

Since we only consider two-dimensional spatial domains, it follows from [15, p. 293] that

$$
\begin{equation*}
\left|b_{\theta}(y, \theta, \chi)\right|^{2} \leq 2\|y\|_{H}\|y\|_{V}\|\theta\|_{L^{2}}\|\theta\|_{H^{1}}\|\chi\|_{H^{1}}^{2} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|b_{y}(y, v, \phi)\right|^{2} \leq 2\|y\|_{H}\|y\|_{V}\|v\|_{H}\|v\|_{V}\|\phi\|_{V}^{2} \tag{12}
\end{equation*}
$$

hold. In order to argue Lipschitz continuity of e^{1}, we estimate the difference

$$
\begin{aligned}
& \left\langle e^{1}(y, \theta, u)-e^{1}(\tilde{y}, \tilde{\theta}, \tilde{u}), \phi\right\rangle_{L^{2}\left(V^{*}\right) L^{2}(V)}= \\
& \left\langle(y-\tilde{y})_{t}+[(y-\tilde{y}) \cdot \nabla] \tilde{y}+(y \cdot \nabla)(y-\tilde{y}), \phi\right\rangle_{L^{2}\left(V^{*}\right) L^{2}(V)} \\
& \quad+\nu \int_{0}^{T}(\nabla(y-\tilde{y}), \nabla \phi)_{\left(L^{2}\right)^{2}} d t-\int_{0}^{T}((\theta-\tilde{\theta}) g, \phi)_{L^{2}} d t \\
& \leq \sqrt{2} \int_{0}^{T}\|y-\tilde{y}\|_{H}^{1 / 2}\|y-\tilde{y}\|_{V}^{1 / 2}\left(\|\tilde{y}\|_{H}^{1 / 2}\|\tilde{y}\|_{V}^{1 / 2}+\|y\|_{H}^{1 / 2}\|y\|_{V}^{1 / 2}\right)\|\phi\|_{V} d t \\
& \quad+C\left\{\|\theta-\tilde{\theta}\|_{W_{\theta}}+\|y-\tilde{y}\|_{W_{y}}\right\}\|\phi\|_{L^{2}(V)} \\
& \leq C\left\{\|y-\tilde{y}\|_{C(H)}^{1 / 2}\left(\|\tilde{y}\|_{C(H)}^{1 / 2}+\|y\|_{C(H)}^{1 / 2}\right)\left(\int_{0}^{T}\|y-\tilde{y}\|_{V}\left(\|\tilde{y}\|_{V}+\|y\|_{V}\right) d t\right)^{1 / 2}\right. \\
& \left.\quad+\|\theta-\tilde{\theta}\|_{W_{\theta}}+\|y-\tilde{y}\|_{W_{y}}\right\}\|\phi\|_{L^{2}(V)} \\
& \leq C\left\{\left(\|y\|_{W_{y}}+\|\tilde{y}\|_{W_{y}}+1\right)\|y-\tilde{y}\|_{W_{y}}+\|\theta-\tilde{\theta}\|_{W_{\theta}}\right\}\|\phi\|_{L^{2}(V)}
\end{aligned}
$$

Here, we have used the continuous embeddings

$$
W_{y}, W_{\theta} \hookrightarrow C([0, T] ; H), C\left([0, T] ; L^{2}(\Omega)\right)
$$

A similar estimate holds for e^{3}. In order to argue Fréchet differentiability, it is sufficient to consider component e^{3}, since component e^{1} admits a similar structure. We obtain
$e^{3}(y, \theta, u)-e^{3}(\tilde{y}, \tilde{\theta}, \tilde{u})-e_{(y, \theta, u)}^{3}(y, \theta, u)(y-\tilde{y}, \theta-\tilde{\theta}, u-\tilde{u})=[(y-\tilde{y}) \cdot \nabla](\theta-\tilde{\theta})$, so that estimation similar as above yields

$$
\begin{aligned}
& \left\|e^{3}(y, \theta, u)-e^{3}(\tilde{y}, \tilde{\theta}, \tilde{u})-e_{(y, \theta, u)}^{3}(y, \theta, u)(y-\tilde{y}, \theta-\tilde{\theta}, u-\tilde{u})\right\|_{L^{2}\left(H^{1}\right)} \\
& =\sup _{\|\chi\|_{L^{2}\left(H^{1}\right)}=1} \int_{0}^{T}\left|b_{\theta}(y-\tilde{y}, \theta-\tilde{\theta}, \chi)\right| d t \\
& \quad \leq C\|y-\tilde{y}\|_{W_{y}}\|\theta-\tilde{\theta}\|_{W_{\theta}}
\end{aligned}
$$

The expression for the second derivative can be verified by an estimate analogous to the one for the first derivative. The second derivative is independent of the point at which it is taken, and thus it is necessarily Lipschitz continuous.

From here onwards, it is appropriate to set $x=(y, \theta), W=W_{y} \times W_{\theta}$, and to denote derivatives with respect to (y, θ) accordingly.

Lemma 1. Let $(x, u) \in W \times U$. Then $e_{x}(x, u): W \rightarrow Z^{*}$ is a homeomorphism, and thus also $e_{x}^{*}: Z \rightarrow W^{*}$.

Proof. Let $\left(f, v_{0}, h, s_{0}\right) \in Z^{*}$. It suffices to prove that the system

$$
\begin{align*}
& v_{t}-\nu \Delta v+(y \cdot \nabla) v+(v \cdot \nabla) y+\nabla p_{v}+\beta s g=f \tag{13}\\
& v(0)=v_{0} \tag{14}\\
& s_{t}-\chi \Delta s+(y \cdot \nabla) s+(v \cdot \nabla) \theta=h \tag{15}\\
& s(0)=s_{0} \tag{16}
\end{align*}
$$

admits a unique solution $u=(v, s)$. With $a=\left(a^{1}, a^{2}, a^{3}\right), b=\left(b^{1}, b^{2}, b^{3}\right)$ we set

$$
B(a, b)=\binom{\left(a^{1,2} \cdot \nabla\right) b^{1,2}}{\left(a^{1,2} \cdot \nabla\right) b^{3}}, \quad C(b)=\binom{\beta b^{3} g}{0}
$$

and for $u=\left(v_{1}, v_{2}, s\right)$ we define

$$
A u=\left(\begin{array}{l}
\nu \Delta v_{1} \\
\nu \Delta v_{2} \\
\chi \Delta s
\end{array}\right) \quad \text { and } \quad F=\binom{f}{h}
$$

Then system (13) may be written as initial value problem in the form

$$
u^{\prime}+A u+B(x, u)+B(u, x)+C(u)=F, \quad u \in W, \quad u(0)=\left(v_{0}, s_{0}\right)
$$

and admits exactly the form of the system [6, 2.15] if there $B_{r}(u, u)$ is replaced by $B(x, u)+B(u, x)+C(u)$. This completes the proof since the analysis presented in [6] also applies to this slightly modified situation.

The action of the adjoint of the operator e_{x} applied to $z \in Z$ as an element of W^{*} is defined as

$$
\left\langle e_{x}(x, u)^{*} z, \tilde{x}\right\rangle_{W^{*} W}=\left\langle e_{x}(x, u) \tilde{x}, z\right\rangle_{Z^{*} Z}
$$

From lemma 1 we have

$$
\left\|e_{x}(x, u)^{*}\right\|_{\mathcal{L}\left(Z, W^{*}\right)}=\left\|e_{x}(x, u)\right\|_{\mathcal{L}\left(W, Z^{*}\right)},
$$

and for $g \in W^{*}$, the unique solution $w \in Z$ of $e_{x}(x, u) w=g$ in W^{*} satisfies

$$
\begin{equation*}
\|w\|_{Z} \leq C\|g\|_{W^{*}} \tag{17}
\end{equation*}
$$

The constant C depends on u through $x(u)$. Due to theorem 1 , it is meaningful to define the reduced functional

$$
\hat{J}(u)=J(x(u), u)
$$

where for given $u \in U$ the function $x(u)$ denotes the unique solution of $e(x, u)=$ 0 . Our optimization problem (1) then can be rewritten in the form

$$
(\hat{P}) \quad \min _{u \in U_{a d}} \hat{J}(u)
$$

Theorem 3. Problem (\hat{P}) admits a solution.
Proof. Since \hat{J} is bounded from below, we have $d:=\inf _{u \in U_{a d}} \hat{J} \geq-\infty$. Let $\left(u^{n}\right)$ denote a minimizing sequence, i.e. $\hat{J}\left(u^{n}\right) \rightarrow d$ for $n \rightarrow \infty$. Since J_{2} is radially unbounded we infer $\left\|u^{n}\right\|_{U} \leq M$ uniformly in n, so that $u^{n} \rightharpoonup u$ for a subsequence. Since $U_{a d}$ is convex and closed, it is weakly closed so that $u \in U_{a d}$ holds. For all u^{n} exists a unique x^{n} satisfying $e\left(x^{n}, u^{n}\right)=0$ and $\left\|x^{n}\right\|_{W} \leq M$ for all n. Since W is a Hilbert space, we have $x^{n} \rightharpoonup x$ for a further subsequence. Because of the compact embedding $W \hookrightarrow L^{2}([0, T] ; H) \times L^{2}(Q)$, we also have $x^{n} \rightarrow x \in W$ in $L^{2}(H) \times L^{2}(Q)$ for a further subsequence. Moreover, $W \hookrightarrow C(H)$, so that $x^{n} \rightharpoonup x$ weak-* in $L^{\infty}(H) \times L^{\infty}\left(L^{2}\right)$ for a further subsequence. Since B is bounded and linear it is weakly continuous so that we finally can proceed as in [15, chapter 3] to pass to the limit in the equation $0=e\left(x^{n}, u^{n}\right) \rightarrow e(x, u)$ for $n \rightarrow \infty$, i.e. $x=x(u)$.

Finally, u is a solution to (\hat{P}) since the cost functional is weakly lower semicontinuous, so that $\hat{J}(u) \leq \liminf _{n \rightarrow \infty} \hat{J}\left(u^{n}\right)=d$.

As a consequence of the previous theorems, the implicit function theorem, and the suppositions on the functional J, the functional \hat{J} is twice Fréchet differentiable with Lipschitz continuous second derivative.

In order to formulate necessary and sufficient optimality conditions we next specify the first and the second derivative of \hat{J}. For the first derivative we obtain

$$
\left\langle\hat{J}^{\prime}(u), \delta u\right\rangle_{U^{*} U}=\left\langle J_{x}(x, u), x^{\prime}(u) \delta u\right\rangle_{W^{*} W}+\left\langle J_{u}(x, u), \delta u\right\rangle_{U^{*} U} .
$$

Differentiation of the state equation $e(x, u)=0$ yields

$$
e_{x}(x, u) x^{\prime}(u)+e_{u}(x, u)=0 \quad \text { in } \quad Z^{*}
$$

and thus

$$
x^{\prime}(u) \delta u=-e_{x}(x, u)^{-1} e_{u}(x, u) \delta u
$$

Introducing the adjoint variable $\lambda=\left(\mu, \mu_{0}, \kappa, \kappa_{0}\right) \in Z$ by

$$
\lambda=e_{x}(x, u)^{-*} J_{x}(x, u)
$$

we obtain

$$
\hat{J}^{\prime}(u)=J_{u}(x, u)-e_{u}(x, u)^{*} \lambda
$$

Note that in our setting $e_{u}\left(x, u^{*}\right)=\left(0,0,-B^{*}, 0\right)$ holds.
Analogously, we obtain the second derivative of \hat{J} by differentiating $e_{x}(x, u)=$ 0 one more time to obtain

$$
x^{\prime \prime}(u)(\delta u, \delta v)=-e_{x}^{-1} e_{x x}(x, u)\left(x^{\prime}(u) \delta u, x^{\prime}(u) \delta v\right)
$$

Using this, we find

$$
\begin{aligned}
& \left\langle\hat{J}^{\prime \prime}(u) \delta u, \delta v\right\rangle_{U^{*} U}=\left\langle J_{x x}(x, u) x^{\prime}(u) \delta u, x^{\prime}(u) \delta v\right\rangle_{W^{*} W^{-}} \\
& \left\langle\lambda, e_{x x}(x, u)\left(x^{\prime}(u) \delta u, x^{\prime}(u) \delta v\right)\right\rangle_{Z, Z^{*}}+\left\langle J_{u u}(x, u) \delta u, \delta v\right\rangle_{U^{*}, U}
\end{aligned}
$$

For example 1 we have

- $B^{*}: L^{2}\left(0, T ; H^{1 / 2}(\Gamma)\right) \rightarrow L^{2}\left(\Gamma_{T}\right)^{*} \equiv L^{2}\left(\Gamma_{T}\right)$, so that B^{*} denotes the injection.
- $B^{*}: L^{2}\left(0, T ; H^{1 / 2}(\Gamma)\right) \rightarrow L^{2}(0, T)^{m}, v \mapsto\left(B^{*} v\right)_{i}(t)=\left\langle f_{i}, v\right\rangle_{H^{-1 / 2}(\Gamma) H^{1 / 2}(\Gamma)}$, for $i=1, \ldots, m$.
- $B^{*}: L^{2}\left(0, T ; H^{1 / 2}(\Gamma)\right) \rightarrow \mathbb{R}^{m} v \mapsto\left(B^{*} v\right)_{i}=\int_{0}^{T}\left\langle g_{i}(t), v(t)\right\rangle_{H^{-1 / 2}(\Gamma) H^{1 / 2}(\Gamma)} d t$, for $i=1, \ldots, m$.
- $B^{*}: L^{2}\left(0, T ; H^{1 / 2}(\Gamma)\right) \rightarrow H_{0}^{*}$ denotes the injection and we have

$$
\begin{aligned}
&\langle B u, f\rangle_{L^{2}\left(0, T ; H^{-1 / 2}(\Gamma)\right) L^{2}\left(0, T ; H^{1 / 2}(\Gamma)\right)}= \\
&\left\langle u, B^{*} f\right\rangle_{H_{0} H_{0}^{*}}=\langle u, f\rangle_{H_{0} H_{0}^{*}}= \\
& \quad(u, R f)_{H_{0}}=\int_{0}^{T} \int_{\Gamma}\left[u R f+u_{t}(R f)_{t}\right] d t
\end{aligned}
$$

where $R: H_{0}^{*} \rightarrow H_{0}$ denotes the Riesz operator, whose action in the present situation is defined through

$$
w=R f \Longleftrightarrow \int_{0}^{T} \int_{\Gamma}\left[v w+v_{t} w_{t}\right] d \Gamma d t=\langle v, f\rangle_{H_{0} H_{0}^{*}} \forall v \in H_{0}
$$

Thus

$$
B^{*} f=-w_{t t}+w
$$

For the cost functionals of example 1 we find

$$
\left\langle J_{x}(x, u), \tilde{x}\right\rangle_{W^{* W}}=\left\{\begin{array}{l}
\int_{Q}[(y-\bar{y}) \tilde{y}+(\theta-\bar{\theta}) \tilde{\theta} d x d t \\
\int_{Q}[-\operatorname{curl} y \operatorname{curl} \tilde{y}+\nabla \theta \nabla \tilde{\theta}] d x d t
\end{array}\right.
$$

and $\left\langle J_{u}(x, u), v\right\rangle_{U^{*}, U}=\alpha\langle u, v\rangle_{U^{*}, U}$, so that in fact $J_{x}(x, u)$ is an element of $L^{2}(Q)^{2} \times L^{2}(Q)$, or $L^{2}\left(V^{*}\right) \times L^{2}\left(0, T ; H^{1}(\Omega)^{*}\right)$, respectively. In these cases the adjoint variable has the form $\lambda=\left(\mu, \mu_{0}, \kappa, \kappa_{0}\right)$ with $\mu \in L^{2}(V), \mu_{t} \in L^{4 / 3}\left(V^{*}\right) \cap$ $W_{y}^{*}, \kappa \in L^{2}\left(H^{1}(\Omega)\right), \kappa_{t} \in L^{4 / 3}\left(H^{1}(\Omega)\right)^{*} \cap W_{\theta}^{*}$ (compare [11]),

$$
\begin{align*}
& -\mu_{t}-\nu \Delta \mu+(\nabla y)^{t} \mu-(y \cdot \nabla) \mu+\nabla \xi=-\kappa \nabla \theta+ \begin{cases}(y-\bar{y}) & \text { in } \Omega_{T}, \\
-\operatorname{curl} \operatorname{curl} y & \text { in } \Omega_{T},\end{cases} \\
& -\operatorname{div} \mu=0 \quad \text { in } \Omega_{T}, \\
& \mu=0 \quad \text { on } \Gamma_{T}, \\
& \mu(T)=0 \quad \text { in } \Omega, \\
& -\kappa_{t}-\chi \Delta \kappa-y \cdot \nabla \kappa=-\beta g \cdot \mu+\left\{\begin{array}{l}
(\theta-\bar{\theta}) \\
-\Delta \theta
\end{array} \quad \text { in } \Omega_{T},\right. \\
& \chi \frac{\partial \kappa}{\partial n}+b \kappa=0 \quad \text { on } \Gamma, \\
& \kappa(T)=0 \quad \text { in } \Omega, \tag{18}
\end{align*}
$$

and $\mu_{0}=\mu(0), \kappa_{0}=\kappa(0)$. We are now in the position to specify the first order necessary optimality condition for problem \hat{P}. Since \hat{J} is Fréchet differentiable it reads

$$
\left\langle\hat{J}^{\prime}(u), v-u\right\rangle_{U^{*} U} \geq 0 \quad \text { for all } v \in U_{a d}
$$

Finally let us specify a second order sufficient condition for a solution u of our control problem.
Theorem 4. Let u denote a solution of (\hat{P}), such that $J_{x}(x, u)$ is sufficiently small, where x denotes the state associated to u. Furthermore let us assume that $J_{u u}(x, u)$ is positive definite, i.e.

$$
\left\langle J_{u u}(x, u) v, v\right\rangle_{U^{*} U} \geq C\|v\|_{U}^{2}
$$

holds with some positive constant C, and $J_{x x}(x, u)$ is positive semi definite. Then $\hat{J}^{\prime \prime}(u)$ is positive definite.

Proof. We have

$$
\begin{aligned}
& \left\langle\hat{J}^{\prime \prime}(u) v, v\right\rangle_{U^{*} U}=\left\langle J_{x x}(x, u) x^{\prime}(u) v, x^{\prime}(u) v\right\rangle_{W^{*} W}- \\
& \left\langle\lambda, e_{x x}(x, u)\left(x^{\prime}(u) v, x^{\prime}(u) v\right)\right\rangle_{Z, Z^{*}}+\left\langle J_{u u}(x, u) v, v\right\rangle_{U^{*}, U} \\
& \geq C\|v\|_{U}^{2}-\left\langle\lambda, e_{x x}(x, u)\left(x^{\prime}(u) v, x^{\prime}(u) v\right)\right\rangle_{Z, Z^{*}} \\
& \geq C\|v\|_{U}^{2}-c(u)\|v\|_{U}^{2}\|\lambda\|_{Z} \geq C\|v\|_{U}^{2}-c(u)\|v\|_{U}^{2}\left\|J_{x}(x, u)\right\|_{W^{*}} \geq \frac{C}{2}\|v\|_{U}^{2}
\end{aligned}
$$

if $c(u)\left\|J_{x}(x, u)\right\|_{W^{*}} \leq \frac{C}{2}$.
Let us finally comment on the smallness assumption on J_{x}. For the trackingtype functional of Example 1 this assumption is satisfied if in the optimal solution the flowfield y and the temperature field θ are close to the desired fields \bar{y} and $\bar{\theta}$, say. In the case of minimizing the curl and the temperature stresses J_{x} is small if these quantities are small in the optimal solution, which is an realistic assumption.

3 Conclusion

In the present work we provide an analytical framework for optimal boundary control of instationary Boussinesq systems in two spatial dimensions. Among other things, we use the results of [6] to prove existence and uniqueness of solutions to the adjoint of the Boussinesq approximation. Furthermore we derive a first order necessary optimality condition and prove a second order sufficient optimality condition under some smallness assumptions on the derivatives of the cost functional.

Acknowledgment

The second author acknowledges support of the collaborative research center 609 Elektromagnetische Strömungsbeeinflussung in Metallurgie, Kristallzüchtung und Elektrochemie (SFB 609) located at the Technische Universität Dresden.

References

1. F. Abergel and R. Temam. On some Control Problems in Fluid Mechanics. Theoret. Comput. Fluid Dynamics, 1:303-325, 1990.
2. Bärwolff, G. and Hinze, M., Optimization of semiconductor melts. ZAMM, 86 (2006) 6
3. Bärwolff, G., König, F. and Seifert, G., Thermal buoyancy convection in vertical zone melting configurations. $Z A M M, 77$ (1997) 10
4. A. Belmiloudi. Regularity results and optimal control problems for the perturbation of the Boussinesq equations of the ocean. Numer. Funct. Anal., 21:623-651, 2000.
5. A. Belmiloudi. Robin-type boundary control problems for the nonlinear boussinesq type equations. J. Math. Anal. Appl., 273:428-456, 2002.
6. Gajewski, H., Zur iterativen Lösung der zweidimensionalen Boussinesq-Gleichungen. $Z A M M, 55$ (1975)
7. M. Gunzburger, E. Ozugurlu, J. Turner and H. Zhang. Controlling transport phenomena in the Czochralski crystal growth process. Journal of Crystal Growth, 234, 2002.
8. M. Gunzburger. Perspectives in Flow Control and Optimization. SIAM, Philadelphia, 2003
9. Hinze, M., Optimal and instantaneous control of the in-stationary Navier-Stokes equations, habilitation thesis TU Berlin 2000. Available online at the website www.math. uni-hamburg.de/home/hinze
10. M. Hinze and U. Matthes. Optimal and model predictive control of the boussinesq approximation. ISNM 155, 149-174 (2007).
11. Hinze, M. and Kunisch, K., Second order methods for optimal control of timedependent fluid flow. SIAM Journal of Control and Optimization, 40 (2001).
12. H. Lee. Analysis and computational methods of Dirichlet boundary optimal control problems for 2d boussinesq equations. Advances in Computational Mathematics, 19:255-275, 2003.
13. H. Lee and O.Y. Imanuvilov. Analysis of optimal control problems for the 2 d stationary boussinesq equations. Journal of Mathematical Analysis and Applications, 242:191-211, 2000.
14. H. Lee and O.Y. Imanuvilov. Analysis of Neumann boundary optimal control problems for the stationary boussinesq equations including solid media. SIAM Journal of Control and Optimization, 39:457-477, 2000.
15. Temam, R., Navier-Stokes Equations. North-Holland, 1979

[^0]: ${ }^{1}$ pseudo pressure p here means that p has the form $\hat{p}-\rho_{0}\left(x_{1}+x_{2}+x_{2}\right)$ with the scalar pressure \hat{p} and the mean density ρ_{0}

