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Abstract
Purpose – The purpose of this paper is to present results from the EC funded project SHIFT (Smart High Integration Flex Technologies) on the
embedding in and the assembly on flex substrates of ultrathin chips.
Design/methodology/approach – Methods to embed chips in flex include flip-chip assembly and subsequent lamination, or the construction of a
separate ultra-thin chip package (UTCP) using spin-on polyimides and thin-film metallisation technology. Thinning and separation of the chips is done
using a “dicing-by-thinning” method.
Findings – The feasibility of both chip embedding methods has been demonstrated, as well as that of the chip thinning method. Lamination of four
layers of flex with ultrathin chips could be achieved without chip breakage. The UTCP technology results in a 60 mm package where also the 20mm
thick chip is bendable.
Research limitations/implications – Further development work includes reliability testing, embedding of the UTCP in conventional flex, and
construction of functional demonstrators using the developed technologies.
Originality/value – Thinning down silicon chips to thicknesses of 25mm and lower is an innovative technology, as well as assembly and embedding of
these chips in flexible substrates.
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Introduction

In electronic circuit technology there is a clear trend towards

mechanically flexible circuits, mainly for portable applications

where high compactness and reduced weight are important.

Furthermore, chips need to be assembled in bare die format

to reduce the size of the resulting circuit. Flip-chip is a quite

well known technology in this respect. In order to make use of

the 3D, embedding of components, especially chips is the

next step. Within the framework of the EC funded project

“SHIFT”, IMEC and TUB are developing two different

approaches to embed ultrathin active components on and in

multilayer flex boards (www.shift-project.org).
At TUB an ultra thin flip-chip is embedded into a build-up

layer of a flexible printed circuit (FPC).

The approach of IMEC is to provide an interposer,

permitting the testing of the chip before embedding and

providing a contact fan out with more relaxed pitches, thus

eliminating the need for precise placement and ultra high-

density printed circuit boards. Of course, in order to be able

to embed chip and interposer in the inner PCB or FPC layers,

the unit itself has to be extremely thin, using ultrathin

interposer layers and chips.
Fraunhofer-IZM thins dies by a Dicing-by-Thinning

(DbyT) process: chips are separated by grooves before

thinning. The thickness of the ultra-thin chips is in the range

20-30mm.

Flip chip in flex (FCF) technology

The flip chip in flex (FCF) technology of TUB aims at very

high-integration of electronic systems by:
. reduction of the chip thickness; and
. shortening of the interconnect length between

components using a 3D architecture of the wiring.
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The FPC used are made from commercial materials

consisting of 25mm polyimide and 17mm copper wiring.

Onto the substrates 20mm thin flip chips are mounted. The

electical interconnect is established using an anisotropic

conductive adhesive (ACA). Multiple flex boards with

assembled chips and adhesive foils can be stacked together

and laminated in a conventional stack press. Subsequently,

the layers of the board are interconnected by metallized

through holes or alternatively by micro vias. The process flow

is shown in Figure 1.
Prior to the embedding of thin chips into build-up layers,

bond pads on the chip have to be pre-conditioned. In the

present case this was acheived by deposition of 3mm thick

electroless Ni/Au bumps. Wafers were subsequently thinned/

diced (for process details see below).
The chips are assembled onto the flexible circuit, which was

structured by photolithography and etching. The polyimide

was 25mm and the Cu was 17mm thick. The thermode

bonding was performed with commercial flip chip bonder.

ACA was used to interconnect the chips electrically to the

substrate. A major challenge was the dispensing of a suitable

volume of ACA. A too large amount results in an undesired

spill-over of material to the side of the chip, see Figure 2.
Although, the electrical and mechanical properties of the

build-up are not impacted if ACA is spilled, heavy bond tool

contamination and process disturbance are a consequence.
Too small an amount fails to fill the gap between chip and
substrate. The latter may result in opens between chip and
substrate and therefore has to be avoided. The bonding
temperature at its maximum was 2308C and was held for 20 s,
followed by cooling at a rate of 108C/s. An 8.8 kg force during
bonding was applied before the maximum temperature was
reached and released when the temperature had dropped
below 1008C.
Multiple flex sheets, each with assembled thin chips, can

then be laminated together using acrylic adhesive laminate.
The press parameters were set to the conditions specified by
the supplier (,1908C and 15 bar for 2 h). The press book was
extremely hard to realize a smooth surface on the embedded
stack. No chip damage was observed with these conditions,
see Figure 3. In order to avoid warpage the depicted stack is
laminated so as to realize a symmetric build up. Contacts
between layers were established by through holes.

Ultra-Thin chip package (UTCP)

IMEC, together with the University of Ghent, has developed
a new concept for packaging ultra-thin chips: the UTCP. The
UTCP is based on embedding of ultra-thin chips

Figure 1 Process flow for FCF technology

(a) Flip chip mounting on flex substrate

(b) Lamination of layers with chips using
      adhesive films

(c) Drilling through holes

(d) Metallization of through holes and structuring
of outer layers

Figure 2 Thin chip after thermode bonding with ACA spilled around
the chip

Figure 3 Four layers of FPC with ultra thin flip chips symmetrically
laminated. White dots are the filler particles of the ACA
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(with thickness below 30mm) in polyimide. An overview of

the process flow for the UTCP is shown in Figure 1. The base

substrates are a polyimide layer spin coated on a rigid glass

carrier. For the fixation and the placement of the chips a

benzocyclobutene (BCB) is used as adhesive. The chip is

covered with the next polyimide layer. For the contacting to

the chip, contact openings to the bumps of the chips are laser

drilled and a TiW/Cu layer is sputtered and

photolithographically patterned. This metal layer provides a

fan out to the contacts of the chips. Finally, the whole package

can be released from the rigid carrier.
Typical thicknesses for the different layers are:

. polyimide: 20mm;

. BCB: , 5mm;

. chip: 20-30mm; and

. metallisation: , ¼ 1mm.

This results in a very thin flexible chip package (down to

50-60mm thickness) (Figure 4).
The base substrate is a 20mm polyimide layer spincoated

on a rigid glass carrier. The polyimide used for this is PI 2611,

HD Microsystems.
After processing, the package has to be released from the

rigid carrier. An easy release of the package from the rigid

substrate is obtained in a special way: before spinning the first

polyimide layer, the four edges of the square glass substrate

are coated with an adhesion promoter. The consequence of

this is that the first layer of polyimide adheres well to the

edges of the substrates, and has marginal adhesion strength to

the centre of the substrate. However, the adhesion to the

edges is sufficient to allow for the whole process cycle 1-6 as

shown in Figure 1. After processing the package can be cut

out in the area of marginal adhesion and thus peels off easily

from the rigid substrate.
An adhesive material is needed for fixation of the ultra-thin

chips on the base polyimide layer. The adhesive has to be

resistant to the high-curing temperature of the top polyimide,

PI 2611 (3508C). Several polymers were already compared for

full wafer bonding (Niklaus et al., 2001), in that study BCB

bonding offers the highest bond strengths. BCB is used as

bonding material.
It is very important to prevent void formation at the bond

interface. Voids can be caused by small air bubbles trapped

between the adhesive layer and the surface of the chip. These

bubbles can be prevented by placing the chips in a vacuum

environment during bonding. Another possible solution could

be found in dispensing a well-controlled amount of the

adhesive. While placing the chip the dispensed adhesive flows

from the middle of the surface to the edges of the chip without

air at the interface (Figure 5).

After curing the BCB at 3508C, the chip is fixed on the

polyimide layer. Then a covering polyimide (PI 2611) layer is

spincoated on this fixed die, with a thickness of 20mm. In

order to obtain a good adhesion between the top polyimide

layer and the (cured) base polyimide, this cured polyimide has

to be pre-treated. Before spin coating of the top polyimide

layer the cured layer is first plasma-treated for 2min in a

CHF3/O2 plasma followed by 2min in an oxygen plasma

treatment.
The cross section below was made after the cure of the top

polyimide: it is shows the good edge-coverage of the

spincoated top polyimide layer (Figure 6).
Contact openings to the bumps of the chips are laser drilled

through the top polyimide layer.
The best results are achieved using the tripled YAG-laser

with a shaped beam. Beam-shaping optics transform the

natural Gaussian irradiance profile to a near-uniform “top

hat” profile. This imaged beam removes the polyimide

material uniformly across the via, without creating

undesirable underlying metal damage at the centre of the

imaged spot (which is difficult to control with a Gaussian

beam). It is also found that substantially less irradiance dose is

required for drilling when using the reshaped beam profile.

A lower irradiance dose reduces considerably the thermal load

on the material and improves dramatically the overall hole

quality (and reduces the debris). Owing to the uniform profile

of the beam the tapering can also be better controlled

(Karnakis et al., 2001).
Via diameters with a top diameter down to 35mm can be

realized with a shaped beam.
Next, a top metal layer is sputtered, metallizing the contacts

to the chip and providing a fan-out (Figures 3 and 7).
Metallisation is realised by sputtering a 1mm TiW/Cu layer.

In order to have optimum adhesion strength of the sputtered

Figure 4 Overview UTCP process flow

PI on rigid carrier

dispense of BCB

placement (face up) of ultra-thin
chip

application of 20 µm top PI layer

opening vias by laser drilling

metallisation, lithography
 + release from carrier

Figure 5 Air bubble under the chip, after cure of BCB

Figure 6 Cross section of embedded chip

 I= 25.2 um

 I= 16.6 um

 I= 20.6 um

 I= 12.3 um

 I= 42.8 um

Embedding and assembly of ultrathin chips in multilayer flex boards

W. Christiaens et al.

Circuit World

Volume 34 · Number 3 · 2008 · 3–8

5



TiW/Cu layer on the top polyimide, reactive ion etching was

tested on spincoated polyimide layers as pre-metallization

surface treatment. We tested three different plasma

treatments:
1 CHF3/O2 (4/1) gas mixture;
2 O2 plasma; and
3 CHF3/O2 plasma þ O2 plasma.

Polyimide was spincoated on glass-substrates, cured, plasma

treated and then metallized with a 1mm sputtered TiW/Cu

layer.
All the samples passed the Scotch-tape test. In order to

perform a peel strength test the copper had to be plated up.

The sputtered copper was plated to a 25mm copper thickness

and then photolithographically patterned. The measured peel

strength on the samples treated with a CHF3/O2 plasma and

O2 plasma was higher than 1.6N/mm and the peel strength of

the metallisation on the oxygen treated polyimide was even

higher than 2N/mm.
Finally, the whole package (polyimide layers þ embedded

chip þ fan-out metallization) is released from the rigid

substrate. Chip, PI layers and metal are so thin, that the whole

package is bendable (Figure 8).
Typical thicknesses for the different layers are:

. polyimide: 20mm;

. BCB: , 5mm;

. chip: 20-30mm; and

. metallisation: , ¼ 1mm.

This results in a very thin flexible chip package (down to

60mm thickness) (Figure 9).

Wafer thinning and singularization into chips

Wafer thinning has become a key technology for the

semiconductor industry during recent years (Savioustok

et al., 1998). Most modern packaging technologies require

ICs to be thinner than the original wafer thickness. To reach

this goal, suitable processes have been developed, and

efficient thinning equipment is available. Recently, the chip

thickness of semiconductor products like smart cards,

contactless labels or power devices is below 150mm, and

will be reduced further.
This section explains the process chain from the wafer

output of the semiconductor manufacturer up to the

separated chips ready for pick and place. Standard wafer

thinning procedures consist of a sequence of grinding, fine

grinding and etching, which are well adjusted to each other to

deliver the required final thickness, minimum thickness

variation and best surface quality. Details of the thinning

process are described in Balde (2002). The first step from

ultra thin wafers to ultra thin chips is an adequate dicing

process. Normal sawing with a diamond blade can be used,

but sawing causes damage at the chip edge and seriously

reduces fracture resistance of the die, an issue which is rather

important for integration in flexible systems. Therefore, a

process called “dicing by thinning” is a better approach for

thin ICs.
This method starts already before the thinning procedure.

In a first step, trenches are sawn or etched in the scribe lines

of the wafer with a depth of the final chip thickness. After

bonding the device wafer to its handling substrate, thinning is

performed until the trenches are opened during the final spin-

etching process. If chip separation takes place during backside

spin-etching, the grooves are rounded by the etching medium

and possible residual micro-cracks are removed. In

consequence, such ICs show much higher fracture

resistance than chips sawed after thinning (Landesberger

et al., 2001). Etching of the scribe lines leads to the best

results looking at fracture resistance and additionally offers

the freedom of design of chip geometry (Figure 10).
For optimum results and simple processing steps, the scribe

lines should be pure silicon and should be free of additional

pattern and materials. This is mostly not the case for

Figure 8 Bended chip

Figure 9 Showing bendability of packaged chip

Figure 7 Fan out metallization
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commercial available wafers. Therefore, a modified DbyT

process was developed where a good edge quality is achieved

by a combination of sawing and etch processes (Feil et al.,

2004).
After thinning, the wafer is separated into single chips,

which have then to be transferred from the handling substrate

to a second carrier, e.g. a so-called “blue tape” or other kind

of carrier material, from which the pick and place process can

start. This process chain, up to pick and place, is

schematically shown in Figure 11.
For the purpose of demonstrating the functionality of ultra

thin chips, an indicator system on foil was developed by

Fraunhofer IZM. A polyimide substrate material with an

adhesive-less Cu plating was used. The circuit consists of an

electroluminescent indicator, two resistors, a driver IC and a

battery as power supply. The indicator is built up by several

screen printing steps and the resistors are also screen printed.

The driver IC is a charge pump and converts the battery DC

voltage of 3.7V into an AC voltage of about 100V. The

frequency depends on the external resistor value. The second

resistor is needed for turning the system on.
The chip size of the driver IC is 2.45 £ 1.6mm. As shown

in Figure 12, the contact pads of 100mm by 100mm size are

in some cases close to one another. The minimum distance is

only 60mm. Since, the IC is flip chip bonded, this value

corresponds with a minimum distance on the substrate side of

40mm for the I/O-pattern.
For the thinning and bonding process the contact pads of a

whole wafer get an additional protective metallization layer of

electroless Ni/Au. Then the wafer was thinned down to about

25mm corresponding to the described process. The chips are

mounted directly on the substrate by ACA flip chip bonding.
A lighting example is shown in Figure 13.

Conclusion

Two new embedding technologies for thin chips have been

developed: the FCF technology from TUB and the UTCP

from IMEC. IZM is thinning silicon wafers down to 20-

30mm. Before thinning, trenches are defined: this is the

DbyT.

Figure 10 Rounded corners of a 25mm thin chip; prepared by dry
etched grooves at front side of wafer and subsequent backside thinning

50x

50x

X = 603.0 um Y = 83.0 um D = 608.0 um
121.0 um

Figure 11 Schematic view of DbyT process and chip transfer to pick
and place tape

Device wafer

Device wafer

Device wafer

Carrier wafer

Carrier wafer Carrier wafer

Device wafer
having dry-
etched chip
grooves

Laminate double side
adhesive tape;
combination of
temperature- and UV-
releasable tape

Bonding of device and 
carrier wafer under
vacuum conditions;
Waferstack ready for
thinning

Backside thinning
(grinding,
etching) until front
side grooves are
opened

Remove chip / tape
ensemble by heating;
Transfer of chips onto
"pick-up tape"

Removal of tape
Chips ready for pick & place

Figure 12 Driver IC

Note: Reproduced from the only available original
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Figure 13 Lighting indicator on foil
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