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ABSTRACT
We developed a novel contactless frequency-domain thermoreflectance approach to study thermal transport, which is particularly convenient
when thermally anisotropic materials are considered. The method is based on a line-shaped heater geometry, produced with a holographic
diffractive optical element, instead of using a spot heater as in conventional thermoreflectance. The heater geometry is similar to the one
used in the 3-omega method, however, keeping all the technical advantages offered by non-contact methodologies. The present method is
especially suitable to determine all the elements of the thermal conductivity tensor, which is experimentally achieved by simply rotating the
sample with respect to the line-shaped optical heater. We provide the mathematical solution of the heat equation for the cases of anisotropic
substrates, thin films, and multilayer systems. This methodology allows an accurate determination of the thermal conductivity and does
not require complex modeling or intensive computational efforts to process the experimental data, i.e., the thermal conductivity is obtained
through a simple linear fit (“slope method”), in a similar fashion to the 3-omega method. We demonstrate the potential of this approach by
studying isotropic and anisotropic materials in a wide range of thermal conductivities. In particular, we have studied the following inorganic
and organic systems: (i) glass, Si, and Ge substrates (isotropic), (ii) β−Ga2O3 and a Kapton substrate (anisotropic), and (iii) a 285 nm thick
SiO2 thin film deposited on a Si substrate. The accuracy in the determination of the thermal conductivity is estimated as ≈5%, whereas the
temperature uncertainty is ΔT ≈ 3 mK.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0066166

I. INTRODUCTION

The study of thermal anisotropy in solids has recently drawn
considerable scientific and technological attention in different
fields.1–9 The ability to control heat transport through intrin-
sic or purposely engineered thermal anisotropy has the poten-
tial to open new routes to develop novel concepts toward smart
heat manipulation.10–13 In thermally anisotropic materials, thermal
anisotropy is evidenced by the different elements of the thermal

conductivity tensor (κij), leading to the tensorial expression of
Fourier’s law, qi = κij(∂T/∂xj

), where qi represents each of the com-
ponents of the vectorial heat flux, T is the temperature, and xj is the
spatial coordinate. The development of novel experimental method-
ologies to study anisotropic thermal transport has recently become
a relevant research objective. A considerable number of experi-
mental techniques and methodologies9,14–27 based on the variations
of the 3-omega method,28,29 time-domain thermoreflectance,30 and
frequency-domain thermoreflectance33 have been developed for this
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purpose, demonstrating their capability to obtain the components
of κij. The main differences between these approaches are the
dimensionality of the heat source (line or spot) and their contact or
contactless fashion (electrical resistor or focused optical spot). The
techniques developed in Refs. 15 and 16 are based on the geome-
try used in the 3-omega method, i.e., a long and narrow line-shaped
heat source. This geometry provides a main advantage, simultane-
ous thermal sensitivity to only two crystallographic directions, which
arises from the one-dimensional (1D) geometry of the heat source.
In other words, the temperature distribution in the direction along
the heat source (long narrow line) is uniform; hence, no heat flow
occurs in this direction, considerably simplifying the data analysis
process. The main drawbacks of the approaches given in Refs. 15 and
16 are (i) that electrical contacts must be deposited and contacted,
and (ii) the technical difficulties in studying electrical conductors,
since the transducer must be electrically insulated from the sample
by an intermediate insulating layer to avoid leakage of the electri-
cal current used to heat the resistor. On the other hand, contactless
techniques such as those reported in Refs. 9 and 17–27 are based
on small Gaussian or ellipse-shaped focused spots, i.e., sensitive to
all crystallographic directions simultaneously. Although this is not
an intrinsic impediment to obtain κij, it substantially complicates
the analysis of the measured data with respect to the case of an
elongated line-shaped heat source (sensitive to only two crystallo-
graphic directions simultaneously), as it is evident from Refs. 9 and
17–27. In addition, for Gaussian or ellipse-shaped small focused
spots, precise determination of the spatial intensity distribution of
the focused laser spot is required, which in some situations can
be challenging due to the highly asymmetric shape of the heater
spot.22,23 We note that for elongated line-shaped geometries of the
focused spot, the precise shape of the spot must not be necessar-
ily known to obtain the thermal properties of the samples (“slope
method”). The main objective of the present work is to provide a
new technical approach that combines the key advantages of the
experimental methods reported in Refs. 9 and 15–27 but with-
out their drawbacks, i.e., based on a one-dimensional heat source
configuration, which is focused on the surface of the samples in
a contactless fashion.

Here, we developed a novel experimental approach to measure
the thermal conductivity tensor in a contactless fashion, which is
advantageous to study isotropic and anisotropic materials and thin
films. This technique, which we refer to as “Anisotropic Thermore-
flectance Thermometry” (ATT), is based on the geometry used in the
3-omega method, but instead of using an electrical resistor, we use
a focused laser beam to define a long and narrow line-shaped heat
source, hence taking profit from the many advantages offered by this
geometry, such as, e.g., the determination of the thermal conductiv-
ity through the so-called “slope method.” We derive the fundamental
equations that lead to the solution of the problem for bulk, thin films,
and multilayer systems. The excellent experimental performance of
this methodology is demonstrated in isotropic bulk materials such
as glass, Si, and Ge, as well as for the case of thin films (SiO2 thin
films on Si substrates). Finally, we address its applicability to study
the thermal conductivity tensor in anisotropic materials such as
β-Ga2O3 and Kapton tape, showing that the present approach
requires minimum sample processing and data modeling, but keep-
ing at the same time a rather high experimental accuracy and
temperature sensitivity.

II. SOLUTION FOR A LONG AND NARROW HEATER
LINE WITH A GAUSSIAN LATERAL DISTRIBUTION

In this section, we derive the solution for the temperature
response of the system upon a line-shaped thermal excitation. In
particular, we provide the mathematical expressions necessary to
obtain the thermal conductivity for different geometries of the sam-
ple from the frequency-dependent thermal response. The problem
we aim at studying is the temperature response of a heterostruc-
ture subjected to a long and narrow line-shaped heat source. This
geometry is similar to that used in the 3-omega method,28,31 where
a narrow (≈10 μm) and long (≈1 mm) metallic resistor is deposited
on the surface of the sample, which is used simultaneously as the
heater and thermometer. However, in our case, the heater is opti-
cally defined by focusing a Gaussian laser on a line-shaped geometry
with uniform power distribution, which is achieved by diffractive
beam profile reconstruction. A schematic illustration of the studied
geometry is shown in Fig. 1, and the technical details are pro-
vided in Sec. III. The intensity distribution of the heat source in
the direction across the line is Gaussian, whereas it is almost uni-
form along the long axis (flat-top profile). We start by providing
the solution for the semi-infinite medium case, which we generalize
for the case of an anisotropic multilayer system using the formal-
ism developed by Borca-Tasciuc et al. in Ref. 31. We also provide
the limit for a large thermal penetration depth, which leads to the
so-called “slope method” for a semi-infinite anisotropic sample. We
recall that this method is particularly attractive because it allows an

FIG. 1. Schematic illustration of the studied geometry. The pump (405 nm, blue
line) and probe (532 nm, green) lasers are focused on a long and narrow line, as
indicated by the vertical blue and green lines, respectively. Note that the pump
and probe lasers were drawn with slightly different widths for the sake of clarity,
whereas the intensity distribution of both the lasers in the direction perpendicular
to its length is Gaussian; it has a flat-top (approximately uniform) distribution along
the long axis as indicated in the inset. We note that an approximately uniform
intensity distribution along the focused line is necessary to justify the use of Eq.
(1). Finally, we note that it is possible to address an arbitrary in-plane direction by
rotating the focused pump and probe lines in the plane containing the surface of
the sample.
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accurate and rather simple determination of the thermal conductiv-
ity since κ∝ [∂T/∂ ln(ω)]−1; hence, a linear fit of the experimental
data is sufficient to obtain the thermal conductivity with no addi-
tional assumptions and/or numerical modeling. Finally, the solution
for the case of a thin film on a semi-infinite substrate is also provided.
We note that although the mathematical treatment of this problem
is similar to that presented in Refs. 28 and 31, in our case, the heat
source intensity distribution in the direction perpendicular to the
long axis is Gaussian and not a step function as in the case of the
3-omega method,28 which must be taken into account in order to
obtain the correct thermal response of the system.

The solution of the heat equation for the temperature oscil-
lations, Tω(r, t), at the surface of a semi-infinite medium under a
harmonic excitation produced by a long and narrow surface line heat
source32 is used as the starting point,

Tω(r, t) =
p0

πκl
K0(qr) exp(i2ωt), (1)

where r and t are the radial (r is perpendicular to the narrow line and
r = 0 in the middle of the focused line) and temporal coordinates,
ω is the angular excitation/detection frequency (ω = 2πf ), p0 is the
power dissipated in the heater with length l, κ is the scalar (isotropic)
thermal conductivity of the semi-infinite medium, α = κ/(Cpρ) is
the thermal diffusivity, Cp is its heat capacity, ρ is the density, K0
is the zeroth order modified Bessel function of the second kind, and
q = (iω/α)1/2 is the thermal wavelength with its associated thermal
penetration depth, Λp = 1/∣q∣, which is defined as the spatial char-
acteristic decay length of K0(qr). The previous solution is strictly
valid for the ideal case of an infinitely long and narrow heat source.
The solution for the case of a heat source with a finite width is
obtained through convolution of Eq. (1) with the Gaussian power
distribution of the heat source. This procedure is further simpli-
fied by applying the convolution theorem: F{ f ⋅ g} = F{ f } ⋅F{g},
where F represents the Fourier transform, and by taking the inverse
Fourier transform of the resulting expression. Thus, we compute the
Fourier transform on the spatial coordinate of Eq. (1) and of the heat
source, Pi(r) = piI(σi, r) = pi

σi
√

π/2
exp[−2r2

/(σ2
i )], as

Fr[Tω(r)](ξ) = Tω(ξ) =
p0

πκl
1

√
ξ2 + q2

, (2)

Fr[Pi(r)](ξ) = Pi(ξ) = pi exp[−σ2
i ξ2
/8], (3)

where the index, i = p, pr, accounts for the pump or probe laser,
pi is the absorbed power, and σi is the 1/e2 radius of each laser.
The temperature response of the system under a Gaussian heat
source is obtained by multiplication of frequency-domain expres-
sions for the ideal line solution [Eq. (2)] and for the heat source
power distribution [Eq. (3)],

T′ω(ξ) =
pp

πκlp
exp[−σ2

p ξ2
/8]

√
ξ2 + q2

. (4)

After taking the inverse Fourier transform, we obtain the tempera-
ture at a distance r from the center of the heater as

T′ω(r) =
pp

πκlp∫
∞

0

exp[−σ2
p ξ2
/8]

√
ξ2 + q2

cos(ξr)dξ. (5)

In order to obtain a mathematical expression that can be
directly related to the experimental thermal response of the sys-
tem, Eq. (5) must be weighted by the normalized intensity dis-
tribution of the probe laser, Iprobe, which is also well represented
by a Gaussian line shape. This mathematical procedure was ini-
tially proposed by Cahill and has proven successful to obtain the
system response for the 3-omega method,28 time-domain thermore-
flectance,30 and frequency-domain thermoreflectance.33 Hence, we
obtain the following average temperature rise across the heater:

T′ω =
pp

πκlp∬
∞

0

Iprobe(r) exp[−σ2
p ξ2
/8]

√
ξ2 + q2

cos(ξr)dξdr, (6)

which after taking the integral in the spatial coordinate [i.e., the
Fourier transform of the probe laser intensity distribution; see Eq.
(3)] leads to the frequency-dependent temperature response of the
system,

T′ω =
pp

πκlp∫
∞

0

exp[−(σ2
p + σ2

pr)ξ2
/8]

√
ξ2 + q2

dξ. (7)

Equation (7) can be numerically solved to render the complex
thermal response of the specimen as a function of the excitation fre-
quency, f (ω = 2πf ). Of particular interest, we note that the low
frequency limit of Eq. (7) leads to a similar solution to the one
obtained in the case of the electrical 3-omega method, i.e., when the
thermal penetration depth is much larger than the size of the heater,
Λp = 1/∣q∣ =

√
α/(ω)≫ σp. In this case, the exponential function in

Eq. (7) can be expanded to the first non-trivial order, and the upper
limit of the integral is set to 1/σp (Λ≫ σp). The resultant expression
for the temperature response is

T′ω =
pp

πκlp∫
1/σp

0

1 − (σ2
p + σ2

pr)ξ2
/8

√
ξ2 + q2

dξ, (8)

which can be further simplified by setting σpr = σp and by taking the
definite integral as

T′ω =
pp

πκlp
[ln(
√

α/i
σ
) −

1
2

ln(ω) − 1/8 + ln(2)]. (9)

After rearranging and using the complex relation ln(−i) = iπ/2, we
obtain the following expression:

T′ω =
pp

2πκlp
[ln(

α
σ2 ) − ln(ω) − 1/4 + 2 ln(2) − i

π
2
], (10)

where the frequency dependence is given solely by the second term
on the right-hand side of the previous equation. We remark that the
solution obtained for Λp ≫ σ is similar to that obtained for the case
of the 3-omega method, which is a consequence of the similar line-
shaped heater geometry used in both the cases.

Finally, Eq. (7) can be generalized to the case of a multilayer
system through the model developed by Borca-Tarsciuc et al.31 We
reproduce here only the key ingredients that lead to the final expres-
sion for the temperature field. For a detailed derivation, we refer the
reader to the original publication,31

T′ω =
pp

πκ�1 lp∫
∞

0

exp[−(σ2
p + σ2

pr)ξ2
/8]

A1(ξ)B1(ξ)
dξ, (11)
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where A1 and B1 are defined as

Aj−1 =
Aj

κ�j Bj

κ�j−1Bj−1
− tanh(Bj−1dj−1)

1 − Aj
κ�j Bj

κ�j−1Bj−1
tanh(Bj−1dj−1)

, j = (2, . . . , n), (12)

Bj =

¿
Á
Á
ÁÀ

κ∥j
κ�j

ξ2 +
i2Cjρj(ω)

κ�j
, (13)

and

An = − tanh (Bndn)
s, (14)

where n is the number of layers counting from the top surface, i.e.,
n = 1 at the surface where the pump and probe lasers are focused,
n = “total number of layers” at the bottom layer, and Cj and ρj are
the specific heat and density of each layer, respectively. The para-
meter s sets the type of boundary condition at the bottom layer with
s = 0 for a semi-infinite substrate. When the substrate thickness is
finite, s = 1, for adiabatic boundary conditions, and s = −1, for the
case of isothermal boundary conditions. Finally, the thermal bound-
ary resistance (TBR) between two layers, KTBR, is modeled using the
usual assumptions, i.e., a 1 nm thick layer with a small heat capacity
(e.g., Cp ≈ 1 J Kg−1 C−1).

The solution for the temperature oscillations for the multilayer
case given by Eq. (11) includes the in-plane (κ∥, plane containing
the surface of the sample in Fig. 1) and cross-plane (κ�, direction
perpendicular to the surface of the sample in Fig. 1) components of
the thermal conductivity. Thus, rotating the sample with respect to
the heat source long axis leads to the projection of κij into the c-
plane. Finally, the low frequency limit (large penetration depth) of
Eq. (11) for the case of an anisotropic semi-infinite medium leads to
an expression similar to Eq. (10), as shown in Ref. 31,

T′ω =
pp

2πlp
√

κ�κ∥
[ln(

κ∥α
κ�σ2 ) − ln(ω) − 1/4 + 2 ln(2) − i

π
2
], (15)

where κ∥ is an arbitrary direction in the c-plane as defined in Fig. 1,
which is perpendicular to the direction defined by the heat source.
The previous equation implies that for the case of anisotropic sub-
strates, the thermal conductivity extracted from the slope method
senses simultaneously the cross-plane and in-plane components,
κeff =

√
κ�κ∥. We note that although the complete solution to the

multilayer case is given by Eq. (11), the low frequency approximation
considerably simplifies the data analysis process.

Finally, an expression for the thermal conductivity of a thin
film with thickness d deposited on a substrate is provided. We note
that in the lower frequency limit (large thermal penetration depth),
the thin film can be regarded as a thermal interface resistance, and
hence, it does not introduce any frequency-dependent response.
This arises from the fact that the thermal penetration depth in
the low frequency range, Λp = ∣q∣−1

= (iω/α)−1/2, is typically much
larger than the typical thickness of the thin films (≈100 nm). The
previous argument is strictly valid in the one-dimensional (1D)

heat flow limit, for which the thermal conductivity of the sub-
strate is larger than the thermal conductivity of the thin film, i.e.,
the substrate behaves as a heat sink. To obtain an expression for
the thermal conductivity of the thin film, the area of the Gaus-
sian laser spot is used to define the thermal interface resistance,
∫
∞

−∞
exp(−2r2

/σ)dr = σ
√

π/2. Thus, the thermal conductivity of
the thin film is

κTF =
Pd

lpσΔTTF
√

π/2
, (16)

where ΔTTF is the frequency independent temperature rise due to
the presence of the thin film with respect to the response of the bare
substrate (both including the Au transducer).

We summarize the equations that apply to each case depend-
ing on the geometry of the sample as follows, including a short
description of the key assumptions:

1. Isotropic substrate (general solution) → Eq. (7): The solution
can be obtained by numerical integration and is valid for
the whole frequency range provided that the substrate can be
considered as semi-infinite.

2. Isotropic substrate (Λp = ∣q∣−1
≫ σ) → Eq. (10): The solution

is valid when the thermal penetration depth (∣q∣−1
) is much

larger than the width, σ, of the Gaussian heat source. The
thermal conductivity is obtained from the slope method with
κ = [Pp/(2πlp)](∂T/∂ ln(ω))−1.

3. Anisotropic substrate (general solution)→ Eq. (11): The solu-
tion can be obtained by numerical integration and is valid for
the whole frequency range provided that the substrate can be
considered as semi-infinite.

4. Anisotropic substrate (Λp = ∣q∣−1
≫ σ) → Eq. (15): The solu-

tion is valid when the thermal penetration depth (∣q∣−1
) is

much bigger than the width, σ, of the Gaussian heat source.
The effective thermal conductivity is obtained from the slope
method as κeff = [Pp/(2πlp)](∂T/∂ ln( f ))−1, and it is related
to the components as κeff =

√
κ�κ∥.

5. Thin films on substrate → Eq. (16): This expression is valid
when the thermal conductivity of the substrate is larger than
the thermal conductivity of the thin film; rule of thumb
→ κsubstrate ⪆ 10κTF .

Figure 2 displays the numerical solution of Eq. (7) for the case
of glass and Si substrates as well as the numerical solution of Eq.
(11) for a SiO2/Si thin film using 10 mW of heater power. We plot
the frequency-dependent maximum temperature rise obtained using
the present method (ATT) as well as the corresponding solution
for the 3-omega geometry, which would correspond to a hypothet-
ical illumination beam with a square section in the sort axis [see
the inset of Fig. 2(a)]. Figure 2(a) displays the case of a glass sub-
strate coated with 60 nm of an Au transducer. As expected, the
temperature response approaches a linear dependence (in a loga-
rithmic frequency scale) for rather low frequencies (large thermal
penetration depth). Within the lower frequency range, the thermal
conductivity can be directly obtained through the “slope method,”
i.e., κ∝ [∂T/∂ ln(ω)]−1. For higher frequencies, the thermal pene-
tration depth decreases and becomes comparable with the width of
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FIG. 2. Numerical simulations of the maximum temperature oscillations obtained
using Eq. (11) are shown in full lines. (a) Glass/Au (bulk glass; 60 nm Au) and
(b) Si/Au (bulk Si; 60 nm Au) and Si/SiO2/Au (bulk Si; 285 nm SiO2; 60 nm Au).
For all the simulations, we used 10 mW of heater power, L = 1 mm for the length
of the line-shaped heater, and Gaussian cross sections σ(r = 1/e2) = 5 μm for
the pump and probe lasers. The calculated response for each sample assuming
a step function as the heater profile as used in a 3-omega experiment using the
same power density is shown as the dashed line.

the heat source, hence leading to deviations from the linear behavior
(in the logarithmic frequency scale) observed at lower frequencies.
Figure 2(b) displays the amplitude of the temperature oscillations
for a Si substrate and for a 285 nm thick SiO2 thin film deposited
on a Si substrate. For Si, the maximum temperature depends lin-
early on ln(ω), which is a direct consequence of the large thermal
penetration depth originated from its large thermal conductivity
(or, equivalently, thermal diffusivity → α = κC−1

p ρ−1). It is interest-
ing to note that in all studied cases, the temperature response is
similar to that obtained from the 3-omega method (dashed lines in
Fig. 2); however, for similar excitation spot sizes, the magnitude of
the temperature response of the present approach is always larger
as compared to the case of the 3-omega method. This originates
from the fact that the power density is larger by a factor

√
8/π for

a Gaussian intensity distribution with radius σ, as compared to a
step-function distribution with half width, b, when σ ≈ b. In con-
clusion, the thermal response obtained through the herein studied

geometry (long line with a Gaussian cross section) is similar to that
obtained through the geometry used in the 3-omega method (long
line with a square cross section). The only difference between these
approaches in terms of the temperature response is that the effec-
tive area of the heater region is different in each case (Gaussian vs
square cross section). However, note that the key advantage of our
approach is that it allows us to access an arbitrary in-plane direction
due to its contactless fashion.

III. EXPERIMENTAL APPROACH
A. Experimental setup and measurement procedure

The experimental setup used in the present experiments is
shown in the schematic illustration of Fig. 3. The experiments are
based on a frequency-domain pump-and-probe concept, where the
wavelength of the pump laser was set to λpump

= 405 nm (Omi-
cron A350) and the probe laser wavelength was λprobe

= 532 nm
(Cobolt SAMBA series), whereas the pump laser power was mod-
ulated with an external harmonic wave generator (Rigol DG5332)
between 63 Hz and 100 kHz, and the incident probe laser inten-
sity was constant in time. The power of the probe laser was kept
low in order avoid any heating effects, typically of the order of
hundreds of μW. On the other hand, the pump laser power was
increased until a temperature rise of the order of several degrees
was observed, depending on the thermal conductivity of the sam-
ple. The typical power used for the heater laser was in all cases
≈50 mW; however, this quantity was precisely measured for each
sample and optical alignment conditions. Both the lasers were

FIG. 3. Schematics of the experimental arrangement used in the present exper-
iments indicating each of the optical components. An optical image of the pump
(blue) and probe (green) lasers after intensity reconstruction is also shown.
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coupled into the main optical axis using several beam splitters
(BSs) and dichroic beam splitters. The diameter of the pump and
probe beams at the laser output was 1100 and 800 μm, respec-
tively, and their intensity distribution was Gaussian. Two beam
expanders were placed in the optical path of the lasers because the
beam diameter must be adjusted precisely for successful diffrac-
tive beam reconstruction, which was achieved through a custom
designed holographic diffractive optical element (DOE) purchased
from HOLO/OR Ltd. This element was placed just before an achro-
matic focusing lens (f = 50 mm). The DOE is one of the key elements
of the experimental setup because it is responsible for homogenizing
the intensity of the pump and probe lasers, i.e., the Gaussian distri-
bution is converted through diffraction into a line-shaped spot with
uniform intensity distribution along the long axis and with Gaussian
distribution in the perpendicular direction. Figure 3 also displays an
optical image of the pump and probe lasers after intensity recon-
struction using the DOE. We note that although there are several
ways to convert a Gaussian beam into a flat-top distribution, such
as, e.g., using a fiber with a square core to induce mode mixing or
simply using an optical diffuser in combination with a cylindrical
lens, we have observed that using a DOE leads to the best results
in terms of spot shape and size, and output pump laser power. The
back reflection of the lasers after focusing on the sample was cou-
pled into the detection arm using a BS, and the laser wavelength was
selected by two mechanically controlled notch filters. As the detec-
tor, we used a large area (5 × 5 mm2) AC-coupled balanced detector
(Thorlabs PDB210A/M-AC-SP). A sample of the probe laser (532
nm) was independently coupled to the second detector input. The
output of the AC-coupled balanced detector is sensitive to the dif-
ference between both the inputs. The purpose of such a detector is
reducing the intrinsic noise within the probe laser, typically 0.2%.
When the sample is excited by the harmonic pump laser, the out-
put of the detector was a frequency modulated signal arising from
the thermal oscillations on the surface of the sample. We note that
using such a balanced detector scheme is convenient mostly in the
lower frequency range, f < 5 kHz, because the total noise is domi-
nated by f −1 noise. In order to minimize the laser noise of the optical
path of the signal, reference lasers were kept similar within 10 cm,
and the input power on both the detectors was balanced. The pump
laser was also coupled to the detection system in order to obtain a
reference phase for the thermal signal, i.e., first, the pump laser sig-
nal (amplitude and phase) was measured by the lock-in amplifier
after which the mechanical notch filter was switched, and the ampli-
tude and phase of the thermal signal were obtained. This process was
sequentially repeated for each excitation frequency.

B. Temperature calibration
In order to convert the voltage measurement (V units) to tem-

perature (K units), several factors must be taken into account. First,
the amplitude of the reflectivity oscillations measured with the lock-
in amplifier (VAC) must be normalized by the DC reflectivity at
a probe wavelength of 532 nm (VDC). This process must be care-
fully done because the balanced detector and the low-noise amplifier
(LNA) involve several amplification stages of the modulated sig-
nal (thermal signal). Note that whereas VDC is measured by the
DC-coupled monitor outputs of the detector (not amplified), VAC
is obtained after signal subtraction with the reference optical input

(RF output), which involves an internal amplification stage. In addi-
tion, VAC was also externally amplified by a low-noise amplifier
(LNA) to 40 dB (two orders of magnitude). The AC (thermal sig-
nal) to DC (probe signal) amplification factor was determined for
each setting of the external LNA and ranges between 80× and 8000×.
Hence, after correcting VAC by the amplification factor, the resulting
voltage ratio can be related to the optical reflectivity as VAC/VDC
= ΔR/R0. Finally, the reflectivity change, ΔR/R0, is converted
to temperature by using the temperature coefficient of reflec-
tivity of the Au transducer. The photothermal response of the
Au transducer was calibrated studying a glass control sample
whose thermal conductivity was independently measured using the
3-omega method, obtaining a thermal conductivity of 0.9 W m−1

K−1. This value was used as the input calibration to obtain the tem-
perature coefficient of the reflectivity of the Au transducer of the
same glass sample through the application of the slope method using
Eq. (10). We have obtained (1/R0)[∂R/∂T] = 3 × 10−4 K−1 in good
agreement with the most reported values for Au.34 So far, we have
not observed an appreciable variation of this coefficient between
samples fabricated in different Au evaporation cycles because we
always use the same evaporation conditions. We have estimated
the temperature uncertainty of the method using a glass substrate
coated with a 60 nm thick Au transducer by measuring the mini-
mum detectable signal as compared to the calibrated temperature
rise in the samples. We have found that it is possible to measure
temperatures as low as ≈3 mK. This is possible mainly due to the
balanced detection scheme used for signal detection, which provides
a noise floor suppression of more than two orders of magnitude (50
dB). Regarding the accuracy in the determination of the thermal
conductivity, we have estimated an experimental accuracy of ≈5%,
which was statistically obtained by 30 successive measurements. We
recall that the glass sample was independently measured using the
3-omega method. A detailed study of the various error sources and
of the sensitivity for different frequencies will be considered for
future study.

C. Thermal boundary resistance
Regarding the phase lag of the optical reflectivity with respect

to the thermal harmonic excitation, it can be shown by solving Eq.
(7) that for substrates with rather low thermal conductivity such as
glass, the phase lag is almost independent of the thermal bound-
ary resistance (TBR) between the Au transducer and the substrate.
However, for substrates with higher thermal conductivity such as Si,
the phase lag is affected by the TBR, and hence, this method can
be also used to determine the TBR. Note that in both the previ-
ous cases, the geometry of the heat source also affects the phase lag,
and thus, its dimensions must be precisely measured. With respect
to the absolute value of the temperature rise, it can be also shown
through the solution of Eq. (7) that its logarithmic frequency deriva-
tive remains approximately unaffected, as expected for the “slope
method.” Finally, the thermal boundary resistance between layers
was modeled following the approach developed by Cahill,30 where
the heat diffusion equation is solved in the presence of a multilay-
ered system, and each layer has a finite thermal conductivity, heat
capacity, and thickness. The case of an interface is modeled assum-
ing a rather low heat capacity and a thickness of 1 nm, as described
in Ref. 30. A comprehensive review of the different models that can
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be used to account for the thermal boundary resistance can be found
in Ref. 35.

IV. RESULTS AND DISCUSSION
We have studied five bulk samples of glass, such as Si(100),

Ge(100), Ga2O3(201), Kapton tape, and a 285 nm thick SiO2 thin
film deposited on a Si(100) substrate (10–20 Ω cm). All samples
were coated with a 60 nm thick Au thin film (transducer), which was
thermally evaporated at a base pressure of 10−6 mbar. All measure-
ments were done under ambient conditions. Of particular interest,
we investigated a (201) oriented Ga2O3 substrate, which exhibits
strong in-plane thermal anisotropy. We show in this section that the
present method provides a straightforward means to determine the
in-plane components of the thermal conductivity tensor.

A. Isotropic materials and thin films
Figure 4 displays the experimental measurements of the ampli-

tude of the temperature oscillations as a function of the excitation
frequency for the case of glass, Si, Ge, and for a 285 nm thick SiO2/Si
thin film. For the glass substrate, shown in Fig. 4(a), the temperature
decays approximately linearly with ln(ω). However, as the frequency
increases, the frequency-dependent temperature rise gradually

FIG. 4. Maximum temperature rise as a function of the modulation frequency of the
heater for (a) a glass substrate and (b) Si and Ge substrates, and a 285 nm thick
SiO2/Si thin film.

deviates from the linear behavior observed at lower frequencies, in
good agreement with the calculations shown in Fig. 2. We recall
that the linear dependence observed at lower frequencies allows
the determination of the thermal conductivity directly through the
“slope method,” i.e., avoiding complex data modeling and numer-
ical fitting of the experimental data. This is a key aspect because in
order to quantitatively model the experimental data, it is necessary to
know the precise width of the line-shaped optical heater. However,
the slope of the linear dependence observed at lower frequencies is
independent to some extent of the width of the heater. A linear fit
to the data points in the frequency range up to ≈1 kHz results in a
thermal conductivity of 0.9 ± 0.05 W m−1 K−1.

In Fig. 4(b), we show the frequency-dependent temperature
response for the case of Si, Ge, and a 285 nm thick SiO2 thin film
deposited on a Si(100) substrate. Note that the used frequency range
is different as compared to the case of glass [see Fig. 4(a)], because
for the lower frequency range ( f ⪅ 1 kHz), the thermal penetra-
tion depth for Si and Ge becomes comparable with the thickness
of the substrates; hence, the thermal response is influenced by the
sample holder. The amplitude of the temperature rise is observed to
be dependent linearly on ln(ω) for Si and Ge, which resembles the
observations on the glass sample at lower frequencies. However, for
Si and Ge, the thermal penetration depth, Λp = 1/∣q∣ =

√
α/(ω), is

substantially larger as compared to the case of glass since Λp ∝
√

α,
where we recall that α = κ/(Cpρ) is the thermal diffusivity of the
sample. The thermal conductivity of the samples was obtained using
the slope method as 137 ± 7 and 52 ± 3 W m−1 K−1 for Si and Ge,
respectively, in good agreement with the generally accepted values
for Si and Ge.36

The frequency dependence of the temperature rise for the 285
nm thick SiO2/Si thin film is similar to the case of pure Si as shown
in Fig. 4(b), although a temperature offset arising from the presence
of the SiO2 thin film is observed. We recall that, similarly to the case
of the 3-omega method, no frequency dependence is introduced by
the presence of the thin film in the temperature rise. In other words,
if the thermal penetration depth is much larger than the thickness
of the thin films, no frequency dependence of the temperature rise
is expected. The thermal conductivity of this sample was 1.2 ± 3 W
m−1 K−1, which is a typical value for SiO2/Si thin films.

B. Anisotropic materials
Finally, we demonstrate the strengths of the present approach

for the study of the thermal properties of anisotropic materials. As
a model system, we chose the sesquioxide β-Ga2O3, which is the
most stable of several Ga2O3 polymorphs and crystallizes in the
monoclinic structure (space group C2/m) with pronounced optical,
electrical, and thermal anisotropies. Here, we present measurements
of a single crystal β-Ga2O3 substrate with the (201)-plane. Figure
5(a) displays the temperature rise as a function of the excitation fre-
quency for two perpendicular in-plane directions corresponding to
the [010] and �[010] crystallographic directions. A different tem-
perature response is observed for these two directions, with a lower
temperature rise along the [010] as compared to �[010]. The tem-
perature response is linear in the logarithmic scale up to ≈5 kHz,
whereas for higher frequencies, a similar deviation as previously
discussed for the case of glass is observed. Thus, the anisotropic
thermal conductivity is once more obtained directly by the “slope
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FIG. 5. (a) Temperature response curves in for β-Ga2O3 along the directions b
and b�. The frequency range below ≈10 kHz exhibits a linear response in the log-
arithmic frequency scale. (b) Polar plot of the thermal conductivity tensor projected
onto the (201)-plane of a β-Ga2O3 substrate. The vertical scale represents the
radial values of the thermal conductivity.

method” in this frequency range, i.e., without the need for numerical
fitting.

The complete determination of the thermal anisotropy within
the (201)-plane is then achieved by rotating the sample with respect
to the optical line-shaped heater. Figure 5(b) displays the in-plane
thermal conductivity as a function of the rotation angle using
10○ steps. We recall that for anisotropic samples, the temperature
response at each orientation of the line-shaped heater with respect
to the principal axes is determined by the values of the thermal
conductivity in both the directions perpendicular to the line heater,
simultaneously. The direction parallel to the line heater has a uni-
form temperature distribution, and thus, no heat flow is present in
this direction. The thermal conductivity along the direction j is thus
obtained using the following expression (see Sec. II):

κ j
eff =

√

κ[201]κ j, (17)

where κ[201] is the thermal conductivity along the [201] direc-
tion and κ j

eff is the measured effective thermal conductivity along
the direction j. The in-plane thermal anisotropy factor, i.e., the

ratio between the maximum and minimum κ within the (201)-
plane can be directly obtained from Fig. 5 [see Eq. (17)] as η
= 1.36. However, in order to quantitatively obtain the projection
of the thermal conductivity tensor on the (201)-plane, the out-
of-plane value of the thermal conductivity κ[201] must be known.
In order to obtain this value, we have studied the same sample
using conventional frequency-domain thermoreflectance33 based on
a Gaussian spot (with a spot size of ≈16 μm). We have focused
on the higher frequency range ( f > 100 kHz), where the thermal
response is one-dimensional, hence dominated by κ[201] for the
studied sample. We obtained κ[201]

= 9.1 W m−1 K−1 in good agree-
ment with the value reported in Ref. 22. We note that in order to
obtain all components of the thermal conductivity tensor, additional
measurements of different crystallographic planes are required. In
fact, the determination of the full thermal conductivity tensor for
β−Ga2O3 using the here presented anisotropic thermoreflectance
thermometry technique will be published in a forthcoming work.

FIG. 6. (a) Polarized optical image of a Kapton tape showing its optical anisotropy.
All images were recorded in the crossed polarization configuration, and the sample
was gradually rotated from 0○. (b) Polar plot of the thermal conductivity tensor
projected onto the plane of the sample. The vertical scale represents the radial
values of the thermal conductivity, and the full line is least-squares fits using an
elliptical function for the in-plane thermal conductivity distribution.
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Finally, in Fig. 6, we show the optical and thermal response of
a piece of Kapton tape. We aim at demonstrating that even if the
quality of the surface is far from ideal (arising in this case from
the fabrication process), it is still possible to determine in-plane
thermal anisotropy. In particular, the fabrication process of Kap-
ton tapes involves stretching of the material in one direction. Figure
6(a) displays a polarized optical image of the sample, where sur-
face inhomogeneities, roughness, and bubbles can be appreciated.
Moreover, the principal optical axis can be easily identified by opti-
cal polarization. All images were taken using a crossed polarization
configuration for different rotation angles of the sample, as shown in
the inset of Fig. 6. Accordingly, the thermal anisotropy scan exhibits
anisotropy in a direction coincident with the optical axis of the mate-
rial. We note that the dispersion of the points within Fig. 6(b) does
not only arise from experimental errors (indicated in Fig. 6) but also
from defects inherently present at the surface of the sample, which
can affect the temperature distribution.

V. CONCLUSIONS
We have developed a novel contactless experimental approach

suitable to study anisotropic thermal transport based on thermore-
flectance thermometry. We demonstrated its applicability to the
case of isotropic (Si and Ge), anisotropic (β-Ga2O3), and Kapton
bulk samples, as well as to thin films (SiO2/Si). The experimental
accuracy of the method in the determination of the thermal conduc-
tivity is ≈5%, whereas the temperature uncertainty is ΔT ≈ 3 mK.
The method combines all the advantages offered by non-contact
approaches, but keeping mathematical simplicity in the data evalu-
ation process. In fact, a simple linear fit to the frequency-dependent
temperature response (“slope method”) is sufficient to obtain the
thermal conductivity of the samples, similar to that in the case of
the 3-omega method. The key advantage of this approach from the
thermal perspective lies in the geometry of the heat source, which
provides simultaneous sensitivity to two crystallographic directions
(perpendicular to the heater line), whereas it is insensitive to the
direction parallel to the heater. This ability, together with its con-
tactless implementation, allows us to probe all in-plane directions by
continuous rotation of the sample. Hence, the method is particularly
convenient for measuring the projection of the thermal conductivity
tensor onto the plane corresponding to the surface of the samples.
We envisage that the present experimental approach provides a new
alternative to accurately determine the thermal conductivity tensor
in anisotropic materials.

ACKNOWLEDGMENTS
The authors acknowledge financial support from the Spanish

Ministerio de Economía, Industria y Competitividad, through Grant
No. CEX2019-000917-S (FUNFUTURE) in the framework of the
Spanish Severo Ochoa Centre of Excellence program and Grant
Nos. PID2020-119777GB-I00 (THERM2MAIN), PDC2021-121814-
I00 (COVEQ), PGC2018-095411-B-100 (RAINBOW), MAT2017-
90024-P (TANGENTS)-EI/FEDER, and 2020AEP141; the General-
itat de Catalunya through Grant Nos. 2017SGR488 and AGAUR
2018 PROD 00191; and from the European Research Council (ERC)
under Grant Agreement No. 648901.

AUTHOR DECLARATIONS
Conflict of Interest

The authors declare no conflict of interest.

Author Contributions

L.A.P. and K.X. contributed equally to this work.

DATA AVAILABILITY

The data that support the findings of this study are avail-
able within this article and from the corresponding author upon
reasonable request.

REFERENCES
1J. D. Renteria, S. Ramirez, H. Malekpour, B. Alonso, A. Centeno, A. Zurutuza, A.
I. Cocemasov, D. L. Nika, and A. A. Balandin, Adv. Funct. Mater. 25, 4664 (2015).
2H. Jang, J. D. Wood, C. R. Ryder, M. C. Hersam, and D. G. Cahill, Adv. Mater.
27, 8017 (2015).
3S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. S. Choe, A. Suslu, Y. Chen, C.
Ko, J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, and J. Wu, Nat.
Commun. 6, 8573 (2015).
4X. Li, Y. Liu, Q. Zheng, X. Yan, X. Yang, G. Lv, N. Xu, Y. Wang, M. Lu, K. Chen,
and J. Zhu, Appl. Phys. Lett. 111, 163102 (2017).
5G. Romano and A. M. Kolpak, Appl. Phys. Lett. 110, 093104 (2017).
6P. Jiang, X. Qian, X. Li, and R. Yang, Appl. Phys. Lett. 113, 232105 (2018).
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