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Abstract

In this thesis, we establish novel approaches to quantify model uncertainty and associated risks. We
are specifically concerned with model risk that is expressed in terms of an upper and lower bound
on the expectation of an aggregation functional of a real-valued random vector, whose law is only
partially known. In applications, the aggregation functional can be thought of as an option payoff
or a risk measure depending on asset prices or risk factors modelled by the random vector.

We establish several methods to derive bounds on expectations and show that these methods enjoy
features which are appealing for many practical applications, namely (i) they allow to incorporate
partial model information, which can often be obtained from data or is available in the form of
expert views, (ii) they apply to a large class of aggregation functionals, including typical option
payoffs or risk measures, (iii) they are tractable and can be implemented using numerical integration
techniques or linear optimization procedures.

Our approach is based on improvements of the well-known Fréchet–Hoeffding bounds in the pres-
ence of partial information on the model of the underlying random vector. We begin with the deriva-
tion of improved Fréchet–Hoeffding bounds that incorporate information such as e.g. the distance
to a reference model or properties of lower-dimensional marginals of the random vector. These
results extend the existing body of literature on improved bivariate Fréchet–Hoeffding bounds to
the higher-dimensional case and, moreover, they pertain to types of partial information that have
not been considered in the literature thus far. Furthermore, we show that the improved Fréchet–
Hoeffding bounds fail to be distribution functions under very weak conditions, which constitutes a
surprising difference to the bivariate case.

In order to translate the improved Fréchet–Hoeffding bounds into bounds on expectations, we de-
velop an appropriate integration theory so as to make sense of integrals with respect to integrators
that do not induce measures. This in turn allows us to extend existing results on multivariate stochas-
tic dominance and prove an integral characterization of orthant orders on a suitable extension of the
set of distribution functions. Using that the improved Fréchet–Hoeffding bounds are extremal in
the sense of orthant orders, we can then translate them into bounds on expectations over a class of
distributions that comply with available information. We demonstrate this approach in numerical
applications related to model-free derivatives pricing.

A fundamentally different approach is required in order to derive robust estimates for the Value-at-
Risk of aggregations, since Value-at-Risk is not amenable to our characterization of orthant orders.
In this work, we establish two distinct methods to address this problem. First, we derive Value-
at-Risk bounds when extreme value information on the underlying risk vector is available. This is
achieved by transforming the corresponding optimization problem into a standard Fréchet-problem
that can be solved by means of the Rearrangement Algorithm or the well-known Improved Standard
Bounds. Second, we develop a method to translate improved Fréchet–Hoeffding bounds into Value-
at-Risk estimates. To this end, we resort to a mass transport approach and apply the Monge–
Kantorovich Duality Theory to obtain sharp dual bounds on Value-at-Risk in the presence of partial
information. Based on this dual formulation we derive a tractable optimization scheme to compute
robust risk estimates. Moreover, we show that the well-known Improved Standard Bounds can be
recovered as special instances from our optimization procedure. Finally, numerical illustrations
suggest that our method typically yields Value-at-Risk bounds that are substantially narrower than
the Improved Standard Bounds using the same information.
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Zusammenfassung

In dieser Arbeit entwickeln wir Ansätze zur Quantifizierung von Modellunsicherheit und den damit
verbundenen Risiken. Zentraler Betrachtungsgegenstand sind Modellrisiken in Form von oberen
und unteren Schranken an den Erwartungswert einer Aggregationsfunktion, die von einem reellwer-
tigen Zufallsvektor mit partiell bekannter Verteilungsfunktion abhängt. In Anwendungen beschreibt
die Aggregationsfunktion beispielsweise das Auszahlungsprofil eines Derivats oder ein Risikomaß,
das von mehreren, durch den Zufallsvektor modellierten Basiswerten beziehungsweise Risikofak-
toren abhängt.

Hauptbestandteil der Arbeit ist die Entwicklung verschiedener Methoden zur Abschätzung von Er-
wartungswerten. Überdies verdeutlichen wir die praktische Bewandtnis der Verfahren, die (i) es
ermöglichen, partielle Modellinformationen – die in Anwendungen meist durch Datenauswertung
oder Expertenwissen gewonnen werden – in die Berechnung des Modellrisikos zu integrieren, (ii)
für eine relativ große Klasse von Aggregationsfunktionen gültig sind und die (iii) rechnerisch hand-
habbar sind, sodass sie mittels numerischer Integrationsmethoden oder linearer Optimierungsver-
fahren realisiert werden können.

Ausgangspunkt der Arbeit sind Verbesserungen der generischen Fréchet–Hoeffding Schranken unter
Berücksichtigung partieller Modellinformationen, wie beispielsweise der Distanz zu einem Re-
ferenzmodell. Hierdurch erweitern wir zum einen den umfangreichen Literaturkorpus zu verbesser-
ten bivariaten Fréchet–Hoeffding Schranken auf den höherdimensionalen Fall und zum anderen er-
lauben unsere Ergebnisse die Einbeziehung von Informationstypen, die bisher nicht in der Literatur
betrachtet wurden. Ferner beweisen wir unter schwachen Voraussetzungen, dass die verbesserten
Fréchet–Hoeffding Schranken keine Verteilungen sind, was einen bemerkenswerten Unterschied
zum zweidimensionalen Fall markiert.

Um Erwartungswerte mittels verbesserter Fréchet–Hoeffding Schranken abzuschätzen, entwick-
eln wir anschließend einen Integralbegriff für Integratoren, die kein Maß induzieren. Hiervon
ausgehend erweitern wir vorhandene Resultate über stochastische Ordnungen und beweisen eine
Integral-Charakterisierung der Orthantenordung auf einer geeigneten Erweiterung der Menge von
Wahrscheinlichkeitsverteilungen. Schließlich verknüpfen wir die Integral-Charakterisierung der
Ortanthenordnung mit den verbesserten Fréchet–Hoeffding Schranken zur Abschätzung von Er-
wartungswerten bezüglich einer Klasse von Wahrscheinlichkeitsverteilungen, die mit verfügbaren
Modellinformationen kompatibel sind. Dieses Verfahren illustrieren wir in numerischen Anwen-
dungen zur modellfreien Optionsbewertung.

Im zweiten Teil der Arbeit entwickeln wir zwei Ansätze zur Risikobewertung unter Modellun-
sicherheit mittels Value-at-Risk basierter Risikomaße. Zunächst nutzen wir Extremwertinformatio-
nen über den Risikovektor zur Berechnung robuster Value-at-Risk Schranken. Dies gelingt durch
eine Transformation der entsprechenden Optimierungsaufgabe in ein Standard-Fréchet-Problem,
welches durch Verfahren wie beispielsweise den Rearrangement Algorithmus oder die verbesserten
Standardschranken gelöst werden kann. Unser zweiter Ansatz ermöglicht die Anwendung ver-
besserter Fréchet–Hoeffding Schranken zur Abschätzung von Value-at-Risk. Hierzu benutzen wir
die Monge–Kantorovich Dualitätstheorie zur Herleitung scharfer dualer Risikoschranken mit par-
tieller Modellinformation. Auf Basis der dualen Formulierung entwickeln wir ferner ein numerisch
handhabbares Optimierungsschema zur Abschätzung von Value-at-Risk. Darüber hinaus zeigen
wir, dass die verbesserten Standardschranken einen Spezialfall unseres Schemas darstellen.
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1 Introduction

In recent years, there has been a surge of interest in model risk and uncertainty quantifica-
tion in many areas of applied mathematics. While traditionally the focus was on computing
quantities of interest given a certain model, one faces today more frequently the challenge
of estimating quantities in the absence of a fully specified model. This paradigm shift
arises from the observation that even sophisticated modelling techniques and validation
procedures cannot entirely eliminate the risk of model misspecification and the associated
uncertainty about the accuracy of a model. The consideration of model risk is relevant in
many applications ranging from engineering and hydrology to finance, since the conse-
quences of choosing an inaccurate model may be severe. The subprime mortgage crisis
that emerged in 2008 and which continues to burden economies until this day is a strik-
ing example, demonstrating the possible implications of the widespread use of inaccurate
models. Although it would be presumptuous to attribute the cause of this global economic
crisis to modelling practices alone, it is undeniably the case that inaccurate models created
a breeding ground for its emergence. Such negative implications are the main reason for
practitioners and regulators to integrate the quantification of risks arising from a lack of
model validity as a key element in their activities. These risks are usually referred to as
model risks. Especially in finance, industry-wide regulations such as the Basel Accord
or the Solvency Directive are increasingly focusing on provisions for model uncertainty,
which in turn calls for new mathematical approaches and methods to compute the respec-
tive risks.

The separation of risk and model uncertainty goes back to the economist Frank Knight who
observed that

“[t]he essential fact is that risk means in some cases a quantity susceptible
of measurement, while at other times it is something distinctly not of this char-
acter; and there are far reaching and crucial differences in the bearings of the
phenomenon depending on which of the two is really operating.”

c.f. [29]. Risk refers to unknown future outcomes or events whose probabilities are known
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1 Introduction

with accuracy, whereas uncertainty pertains to ambiguity about the probabilities them-
selves.

In a probabilistic setting, a model typically refers to the law of a random variable. In many
applications, individual risks are modelled by real valued random variables X1, ..., Xd on
a probability space (Ω,B,P), e.g. one can consider X1, ..., Xd modelling the prices of fi-
nancial assets at a future point in time or the size of prospective claims against an insurer.
Then X := (X1, ..., Xd) is an Rd-valued random vector with distribution F (x1, ..., xd) =
P(X1 ≤ x1, ..., Xd ≤ xd). Model uncertainty is expressed in terms of ambiguity about the
probability P. Specifically, instead of fixing one particular measure, one considers a set
of probability measures P on the measurable space (Ω,B) and each P ∈ P corresponds
to a different distribution function for X. Therefore we can express model uncertainty
equivalently in terms of a class of distribution functions F for the random vector X. The
associated model risk is then quantified by means of the expectation of ϕ(X) for a func-
tional ϕ : Rd → R. More specifically, since different models for the vector X may lead
to different values of the expectation EF [ϕ(X)], where EF denotes the expectation with
respect to the distribution F ∈ F , the model risk is quantified by the minimal and maximal
value of EF [ϕ(X)] where F ranges over the classF of admissible distributions. The choice
of admissible distributions is typically such that they comply with assumptions about the
model that are considered accurate or sufficiently reliable. The difference between the
maximal and the minimal value of the expectation indicates the magnitude of model risk,
i.e. a lower spread between the minimal and maximal expectation implies less model risk;
see e.g. Cont [13].

A classical example of this approach from option valuation are sub- and super-hedging
prices of call options on a single asset. These prices correspond to infF∈F EF [(X −K)+]
and supF∈F EF [(X −K)+] respectively where F is the set of all distributions for the ran-
dom variable X such that EF [X] = c for some constant c. Here, the condition EF [X] = c

is derived from the no-arbitrage hypothesis and thus it can be viewed as a reliable con-
straint on models for X . Then it follows that the expectation of (X −K)+ is bounded by
the universal arbitrage bounds

(c−K)+ ≤ EF [(X −K)+] ≤ c for all F ∈ F ,

and in many situations the bounds are in fact attained. This implies that the price of the
call option with payoff (X −K)+ lies in the interval [(c −K)+, c] when no assumptions
about the model for X are made except for it being arbitrage-free.
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In a wider sense, the quantification of model uncertainty involves the optimization over
a possibly constrained set of distribution functions, which is a delicate task in general.
The complexity of the problem depends on the properties of ϕ, the class of admissible
distributions, as well as on the dimension d, and solutions to the problem have evolved
along these aspects. In the literature, a significant demarcation line runs between the one-
dimensional (d = 1) and the high-dimensional (d > 1) case. This is due to the fact
that when d = 1 uncertainty stems from a single univariate random variable, whereas
when d > 1 uncertainty arises in the models for each of the d components as well as
the dependence structure between them. The dependence structure between constituents
of a random vector can be modelled separately from the univariate components by means
of a copula. Therefore, most of the literature focuses either on the one-dimensional case
or exclusively on uncertainty about the dependence structure (copula) between multiple
variables whose individual distributions are known. The latter is in the literature referred
to as dependence uncertainty, which will be the central framework of this thesis.

Dependence uncertainty arises naturally in many financial applications and the results in
this thesis are inspired by and apply to problems in derivatives pricing and risk manage-
ment, although the scope of our results is not limited to these areas of applications. In the
first part of this thesis, our concern is with the valuation of options that depend on multiple
underlyings at maturity modelled by X = (X1, ..., Xd). We assume that the univariate
risk-neutral distributions of each individual asset X1, ..., Xd can be inferred from market
prices of liquidly traded European options. Moreover, we suppose that prices of traded
options on two or more assets reveal partial information about the risk-neutral dependence
structure of X, e.g. the correlation between assets. We then seek to establish bounds on
prices of options with payoffs of the form ϕ(X) over the class of risk-neutral distribution
functions for X, that are compatible with the given market information. Distributions are
thus admissible when they comply with market data. Therefore the corresponding price
bounds are considered robust, or model-free, since they depend entirely on information
that is derived from market prices and no underlying model for X is assumed. In this
thesis we develop a novel approach to compute model-free bounds on option prices us-
ing partial information about the dependence structure of the underlyings. To this end,
we formulate the problem in terms of copulas and establish several improvements of the
well-known Fréchet–Hoeffding bounds that allow us to account for partial dependence in-
formation. Furthermore, we derive an integral characterization of multivariate stochastic
orders for quasi-copulas which relates the improved Fréchet–Hoeffding bounds to option
price bounds. Our approach is widely applicable and the bounds on option prices can be
computed via straight-forward numerical integration.
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1 Introduction

The second part of this thesis is devoted to the study of robust risk measurement in the pres-
ence of dependence uncertainty. In the context of risk evaluation, dependence uncertainty
emerges, on the one hand, from the limited amount of data and historical observations
available to estimate models for risk factors and, on the other hand, from the configuration
of risk management structures in financial institutions. Regarding the former, practition-
ers in risk management are often required to develop models for risk factors of interest.
The model development involves the estimation of distributions for risk factors based on
e.g. historical observations. In particular, when X = (X1, ..., Xd) is assumed to model an
Rd-valued vector of risk factors, the problem amounts to the estimation of a d-dimensional
distribution function. The number of observations needed to estimate a d-dimensional dis-
tribution appropriately increases however rapidly with respect to the dimension d. Hence,
the limited amount of data mostly allows for a rather accurate estimation of the univariate
distributions of the individual risks X1, ..., Xd, whereas at best partial information about
the joint distribution of X can be retrieved from data. The second source of dependence
uncertainty is inherent to hierarchical risk management structures of financial institutions.
On a corporate level, it is common to consider each department as a single risk entity. An
insurance company may e.g. consider its life, health and composite departments as individ-
ual risk units. Each unit then reports the distribution of its aggregated risk to the corporate
risk management which then joins this information to evaluate the company’s total or cor-
porate exposure. In this case, X1, ..., Xd model the individual risks of each unit, whose
distributions are given, while their dependence structure is at most partially known. The
corporate risk is usually quantified by means of a risk measure taking the form EF [ϕ(X)]
and higher values of the expectation indicate higher risk. Robust risk estimates are then
obtained by computing the maximal risk (expectation) over all joint distributions F for
X that are compatible with the available information. In this case, the set of admissible
distributions is derived from statistically reliable information.

Probably the most prominent and widespread risk measure in practice is the portfolio
Value-at-Risk which corresponds to the generalised inverse of the distribution function
of X1 + · · · + Xd. Deriving robust Value-at-Risk estimates thus involves the computation
of the minimal and maximal probability P(X1 + · · · + Xd < ·) over a class of admissible
distributions for X. In the presence of dependence uncertainty, this task turns out to be
highly non-trivial and even in the situation where only the marginal distributions of the
risk factors are given and no dependence information at all is prescribed, solutions have
been obtained only under very strong assumptions on the marginal distributions. There-
fore, a large part of the literature concentrates on the derivation of Value-at-Risk bounds
which may not be attainable but are reasonably narrow and sufficiently tractable as to be
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of relevance in practical applications. In this work, we develop two methods to compute
bounds on Value-at-Risk in the presence of dependence uncertainty. The methods provide
tractable ways to compute risk bounds which account for different types of partial depen-
dence information that are often available in practice. The first approach is based on a
transformation of the set of admissible distributions to a Fréchet class of distributions with
given marginals. This transformation makes the problem amenable to optimization tech-
niques for Fréchet classes, such as the Improved Standard Bounds or the Rearrangement
Algorithm, in order to compute Value-at-Risk estimates. In our second approach we de-
rive a dual characterization of the risk bounds and show that strong duality holds using the
Monge–Kantorovich Transport Theory. Based on the dual formulation, we then develop an
optimization scheme that allows us to compute Value-at-Risk bounds using partial depen-
dence information. Moreover, we show in numerical illustrations that our approach may
produce significantly narrower risk estimates when compared to bounds that are available
in the literature.

Mathematical results and outline

In Section 1.1 we introduce the basic mathematical notions used in this thesis and present
some preliminary results. Essential in our framework of dependence uncertainty is the
concept of a copula, which allows us to separate the individual behaviour of the constituents
of an Rd-valued random vector from the dependence structure between them. Specifically,
Sklar’s Theorem states that each d-dimensional distribution function F of a random vector
X = (X1, ..., Xd) can be written as

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)) for all (x1, ..., xd) ∈ Rd, (1.1)

where C : [0, 1]d → [0, 1] is a copula and F1, ..., Fd are the marginal distributions of
X1, ..., Xd. This implies that dependence uncertainty is in fact uncertainty about the copula
of X. Moreover, the expectation EF [ϕ(X)] for ϕ : Rd → R can be expressed as∫

Rd
ϕ(x1, ..., xd) dC(F1(x1), ..., Fd(xd)). (1.2)

Bounding EF [ϕ(X)] in the presence of dependence uncertainty is thus tantamount to the
computation of bounds on the integral in (1.2) over an admissible class of copulas. In this
work we develop novel approaches to derive bounds on the integral in (1.2) using partial
dependence information under different assumptions on the characteristics of ϕ. For the
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1 Introduction

informal discussion we omit the notation EF and use the term bounds on the expectation
E[ϕ(X)], referring tacitly to bounds on EF [ϕ(X)] for F ranging over a certain set of dis-
tribution functions.

Our first approach relates to the theory of multivariate stochastic dominance and integral
stochastic orders. Here a reference to the seminal work of Lehmann [31] and the first
comprehensive volumes on the theory of multivariate stochastic orders by Stoyan [62] and
Marshall and Olkin [38] is in order. A prominent concept for ordering random vectors is
that of orthant orders. For two random vectors X = (X1, ..., Xd) and Y = (Y1, ..., Yd)
with distribution functions FX and FY respectively, we say that Y dominates X in lower
orthant order if

FX(x1, ..., xd) ≤ FY(x1, ..., xd) for all (x1, ..., xd) ∈ Rd.

Similarly, Y dominates X in upper orthant order when

F−X(x1, ..., xd) ≤ F−Y(x1, ..., xd) for all (x1, ..., xd) ∈ Rd,

where F−X is the distribution of (−X1, ...,−Xd) and F−Y is defined analogously. These
orders admit a useful representation in terms of integrals and a complete characterization
of the lower and upper orthant order is presented in Müller and Stoyan [39]. In particular,
it holds that Y dominates X in lower orthant order if and only if E[ϕ(X)] ≤ E[ϕ(Y)] for
all ∆-antitonic ϕ and similarly Y dominates X in the upper orthant order when E[ϕ(X)] ≤
E[ϕ(Y)] for all ∆-monotonic ϕ. We defer the definition of ∆-antitonic and ∆-monotonic
functions to a subsequent chapter and confine ourselves to the remark that many functions
that are relevant in mathematical finance are ∆-antitonic or ∆-monotonic. The integral
characterization of orthant orders relates the problem of deriving bounds on the expectation
E[ϕ(X)], for ∆-antitonic or ∆-monotonic ϕ, to the computation of bounds on the distri-
bution function of X and −X, respectively. Moreover, it is evident from (1.1) that in our
setting of dependence uncertainty this is equivalent to bounding the copula of X and −X.
Generic bounds on the set of all copulas are given by the well-known Fréchet–Hoeffding
bounds. These bounds ignore however all the available information about the dependence
structure between the individual risk factors, such as correlations or orthant dependence.
Moreover, the corresponding bounds on the expectation are typically very wide, so that
the respective model risk estimates are of little practical relevance. The Fréchet–Hoeffding
bounds can however be improved when additional dependence information is available.

In Chapter 2 we derive several improvements of the Fréchet–Hoeffding bounds which ac-
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count for different types of partial dependence information. First, we establish improved
Fréchet–Hoeffding bounds on the set of copulas that coincide with a reference copula on
a compact subset of their domain. This subset can be thought of as a region where one
has accurate or reliable knowledge about the copula. In the bivariate case (d = 2), similar
improvements were previously obtained by Rachev and Rüschendorf [48], Nelsen [40],
Nelsen, Quesada-Molina, Rodriguez-Lallena, and Ubeda-Flores [41], as well as Tankov
[64]. Our results thus represent a natural extension of this line of research to higher-
dimensional copulas. Moreover, using this initial result we establish several other im-
provements of the Fréchet–Hoeffding bounds, accounting for types of dependence infor-
mation that have not been considered in the literature to date. An interesting question then
is, whether the improved Fréchet–Hoeffding bounds are again copulas. In the bivariate
case, Tankov [64] and Bernard, Jiang, and Vanduffel [8] answer this question in the af-
firmative for the improved Fréchet–Hoeffding bounds, including information on a subset,
under fairly general conditions. In stark contrast to this, we show that in higher-dimensions
the improved bounds with regional prescription fail to be copulas. The bounds are hence
proper quasi-copulas and therefore other improvements which we derive therefrom are
not expected to be copulas in general. This entails that the improved Fréchet–Hoeffding
bounds are not amenable to results on stochastic dominance and hence they cannot be
translated into bounds on the expectation. Even more delicate is the fact that the integral∫

Rd
ϕ(x1, ..., xd) dQ(F1(x1), ..., Fd(xd)), (1.3)

with respect to a quasi-copula Q is not well-defined, since Q does not induce a measure in
general.

To remedy this problem, we develop in Chapter 3 an alternative representation of the inte-
gral in (1.3) that allows for quasi-copulas as integrators. We then use this representation in
order to establish an integral characterization of orthant orders on the set of quasi-copulas,
analogous to previous results on multivariate stochastic orders. Specifically, we show that
our representation of multivariate integrals is monotonic with respect to the lower and up-
per orthant order on the set of quasi-copulas when ϕ is ∆-antitonic or ∆-monotonic respec-
tively. This in turn allows us to relate the improved Fréchet–Hoeffding bounds in Chapter
2 to bounds on the expectation E[ϕ(X)], using additional dependence information. En
passant, we also provide a means to relate the lower Fréchet–Hoeffding bound – which is
not a copula in general – to bounds on the expectation when no dependence information
at all is prescribed. We illustrate our approach in applications related to model-free option
pricing. Specifically, we compute bounds on option prices of the form E[ϕ(X)], where ϕ is
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1 Introduction

a payoff depending on multiple underlyings at maturity. We assume that information about
the risk-neutral marginal distributions of X as well as partial information about its depen-
dence structure can be inferred form market prices of traded derivatives. This information
is then used to derive improved Fréchet–Hoeffding bounds which we translate into option
price bounds applying our integral characterization of orthant orders. The computational
results show that the inclusion of additional dependence information typically leads to a
substantial improvement of the price bounds when compared to the marginals-only case.

Chapters 2 and 3 are largely based on Lux and Papapantoleon [34] and the results appeared
in [34, 35].

In Chapters 4 and 5 we study Value-at-Risk bounds in the presence of dependence uncer-
tainty and develop a second approach to relate copula information to bounds on expecta-
tions. We suppose that X models d risk factors with given marginal distributions. The
individual factors are aggregated by a componentwise increasing function ϕ : Rd → R to a
portfolio whose risk is quantified by means of Value-at-Risk. In applications, ϕ is typically
the sum of the individual risk factors. The Value-at-Risk of ϕ(X) is given by the inverse
of the left-continuous quantile function P(ϕ(X) < s), which can be expressed alterna-
tively in terms of the expectation E[1ϕ(X)<s]. In the situation of dependence uncertainty,
the quest is once more to compute estimates on the expectation E[1ϕ(X)<s] over a set of
admissible copulas for X. In general, the function x 7→ 1ϕ(x)<s is neither ∆-monotonic
nor ∆-antitonic – especially when ϕ is the sum of the individual risk factors – so that our
approach via stochastic orders does not apply.

The search for bounds on E[1ϕ(X)<s] under dependence uncertainty has an extensive his-
tory and several approaches to the problem have been developed. In Chapter 4, which
appeared in Lux and Papapantoleon [35], we make use of the Improved Standard Bounds
from Embrechts, Höing, and Juri [18] and Embrechts and Puccetti [16]. Their results al-
low us to translate lower pointwise bounds on the copula of X and −X into bounds on
the Value-at-Risk of ϕ(X). Using the Improved Standard Bounds in conjunction with the
lower Fréchet–Hoeffding bound – which holds for all copulas – yields estimates for the
Value-at-Risk in the absence of dependence information. We show in Chapter 4 that these
risk bounds can be improved when additional dependence information is available. To
this end we make use of the improved Fréchet–Hoeffding bounds presented in Chapter 2.
Moreover, we develop a novel approach to account for extreme value information in the
computation of Value-at-Risk estimates for the sumX1 + · · ·+Xd. Specifically, we assume
that the distributions of max{Xi1 , ..., Xin} or min{Xi1 , ..., Xin} are prescribed for several
subvectors of X indexed by 0 ≤ i1 ≤ · · · ≤ in ≤ d. Such additional information can
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be obtained using methods from extreme value theory and is therefore often available in
practice. In order to compute risk estimates which account for extreme value information
we translate the optimization problem over the class of distributions for X that comply
with the laws of the partial maxima or minima into an optimization over a Fréchet class
of distributions with given marginals. The idea is hence to incorporate the extreme value
information in terms of a modified marginals-only problem that can be solved by means of
the Improved Standard Bounds or the Rearrangement Algorithm presented in Embrechts,
Puccetti, and Rüschendorf [19].

Finally, in Chapter 5 we develop an approach to translate copula information into bounds
on the Value-at-Risk of ϕ(X). We suppose that an upper and a lower bound on the copula
of X are provided. This formulation differs from the Improved Standard Bounds which
only use one-sided information. We then apply the Monge–Kantorovich Transport Theory
to derive a sharp dual characterization of the minimal and maximal Value-at-Risk over ad-
missible copulas. The dual characterization holds for all lower semicontinuous aggregation
functions ϕ and its solution corresponds to an infinite dimensional optimization problem
which is both, analytically and numerically intractable. We therefore develop a numeri-
cally tractable reduction scheme based on the dual problem which allows us to compute
Value-at-Risk bounds using the copula information. In particular, the scheme can be solved
by means of linear optimization procedures. Moreover, we show that our scheme yields
asymptotically sharp bounds in the certainty limit, i.e. when the upper and the lower copula
bounds converge to a mutual limit copula. The computational ease is however achieved by
omitting the sharpness of the bounds, thus our reduction scheme does not produce sharp
bounds on Value-at-Risk in general. We show furthermore that the Improved Standard
Bounds from [18, 16] are particular instances of our reduction scheme and numerical il-
lustrations demonstrate that – given the same information – our scheme may produce sig-
nificantly narrower risk estimates. Finally, we illustrate how different types of dependence
information can be used in the computation of Value-at-Risk estimates by means of the
improved Fréchet–Hoeffding bounds derived in Chapter 2.
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1 Introduction

1.1 Notation and preliminary results

In this section we introduce the notation and some basic results that will be used throughout
this work. The section is largely based on Lux and Papapantoleon [34, Section 2].

Let d ≥ 2 be an integer. In the following, I denotes the unit interval [0, 1], while boldface
letters, e.g. u, v or x, denote vectors in Id, Rd or Rd = [−∞,∞]d with generic indexes.
Random vectors with values in Rd are denoted by X = (X1, ..., Xd) or S = (S1, ..., Sd) and
we use the latter typically in applications to refer to prices of financial assets. By 1A we
denote the indicator function of a set A ⊆ Rd and 1 denotes the d-dimensional unit vector
(1, ..., 1) ∈ Rd. Analogously, 0 refers to (0, ..., 0) ∈ Rd. Moreover,⊆ denotes the inclusion
between sets and ⊂ the proper inclusion. We refer to functions as increasing when they
are non-decreasing. For functions f, g : Rd → R we write f ≤ g, when f(x) ≤ g(x) for
all x ∈ Rd whereas we write u ≤ v for u = (u1, ..., ud),v = (v1, ..., vd) ∈ Rd, when
u1 ≤ v1, ..., ud ≤ vd as well as u < v when u1 < v1, ..., ud < vd. Finally, for a set S
equipped with a partial order≤ and a function f : S → R, we say that f is monotonic with
respect to ≤ if f(s) ≤ f(s′) for all s, s′ ∈ S with s ≤ s′.

The finite difference operator ∆ will be used frequently. It is defined for a function
f : Rd → R and a, b ∈ R with a ≤ b via

∆i
a,b f(x1, . . . , xd) = f(x1, . . . , xi−1, b, xi+1, . . . , xd)− f(x1, . . . , xi−1, a, xi+1, . . . , xd).

Definition 1.1.1. A function f : Rd → R is called d-increasing if for all rectangular subsets
H = (a1, b1]× · · · × (ad, bd] ⊂ Rd it holds that

Vf (H) := ∆d
ad,bd
◦ · · · ◦∆1

a1,b1 f ≥ 0. (1.4)

We call Vf (H) the f -volume of H .

Definition 1.1.2. A function Q : Id → I is a d-quasi-copula if the following properties
hold:

(QC1) Q satisfies, for all i ∈ {1, . . . , d}, the boundary conditions

Q(u1, . . . , ui = 0, . . . , ud) = 0 and Q(1, . . . , 1, ui, 1, . . . , 1) = ui.

(QC2) Q is increasing in each argument.

10



1.1 Notation and preliminary results

(QC3) Q is Lipschitz continuous, i.e. for all u,v ∈ Id

|Q(u1, . . . , ud)−Q(v1, . . . , vd)| ≤
d∑
i=1
|ui − vi|.

Moreover, Q is a d-copula if

(QC4) Q is d-increasing.

We denote the set of all d-quasi-copulas byQd and the set of all d-copulas by Cd. Obviously
Cd ⊂ Qd. In the following, we simply refer to a d-(quasi-)copula as (quasi-)copula if the
dimension is clear from the context. Furthermore, we refer to elements inQd\Cd as proper
quasi-copulas.

For univariate distribution functions F1, . . . , Fd we denote by F(F1, ..., Fd) the Fréchet
class of d-dimensional distribution functions F with marginal distributions F1, . . . , Fd, i.e.

F (∞, ...,∞, xi,∞, ....,∞) = Fi(xi) for all xi ∈ R and i = 1, ..., d.

Let C be a d-copula and consider univariate probability distribution functions F1, . . . , Fd.
Then F (x1, . . . , xd) := C(F1(x1), . . . , Fd(xd)), for all x ∈ Rd, defines a d-dimensional
distribution function with univariate margins F1, . . . , Fd, i.e. F ∈ F(F1, ..., Fd). The
converse also holds by Sklar’s Theorem, cf. Sklar [60]. That is, for each d-dimensional
distribution function F ∈ F(F1, ..., Fd), there exists a copula C such that F (x1, . . . , xd) =
C(F1(x1), . . . , Fd(xd)) for all x ∈ Rd. In this case, the copula C is unique if the marginals
are continuous. A simple proof of Sklar’s Theorem based on the distributional transform
can be found in Rüschendorf [58]. Sklar’s Theorem establishes a fundamental link between
copulas and multivariate distribution functions. Thus, given a random vector we refer to
its copula, i.e. the copula corresponding to the distribution function of this random vector.
Since the copula specifies the dependence properties of an Rd-valued random we refer
synonymously to the dependence structure or the copula of the random vector.

Let Q be a (quasi-)copula. We define its survival function as follows:

Q̂(u1, . . . , ud) := VQ((u1, 1]× · · · × (ud, 1]), u ∈ Id.

The survival function is illustrated for d = 3 below:
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Q̂(u1, u2, u3) = 1−Q(u1, 1, 1, )−Q(1, u2, 1)−Q(1, 1, u3)
+Q(u1, u2, 1) +Q(u1, 1, u3) +Q(1, u2, u3)−Q(u1, u2, u3).

It is well-known, that if C is a copula then the function Id 3 u 7→ Ĉ(1 − u) is again
a copula, namely the survival copula of C; see e.g. Georges, Lamy, Nicolas, Quibel,
and Roncalli [24]. In contrast, if Q is a quasi-copula then Id 3 u 7→ Q̂(1 − u) is not
a quasi-copula in general; see Example 1.1.1. Therefore we introduced the notion of a
quasi-survival function.

Definition 1.1.3. A function Q̂ : Id → I is a d-quasi-survival function if the map

Id 3 u 7→ Q̂(1− u)

is a d-quasi-copula.

We denote the set of all d-quasi-survival functions by Q̂d. In the following we also use the
notation Q̂(1− ·) to refer to the map u 7→ Q̂(1− u) for a quasi-survival function Q̂.

Note that for a distribution functionF of a random vector X = (X1, . . . , Xd) with marginals
F1, . . . , Fd and a corresponding copulaC, such that F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))
for all x ∈ Id, it holds that

P(X1 > x1, . . . , Xd > xd) = Ĉ(F1(x1), . . . , Fd(xd)). (1.5)

Definition 1.1.4. Let Q1, Q2 be d-quasi-copulas. Q2 is larger than Q1 in the lower orthant
order if Q1 ≤ Q2. Similarly, for copulas C1, C2 ∈ Cd, we say that C2 is larger than C1 in
upper orthant order if Ĉ1 ≤ Ĉ2.

The well-known Fréchet–Hoeffding Theorem establishes the minimal and maximal bounds
on the set of copulas or quasi-copulas in the lower orthant order. Specifically, for each
Q ∈ Cd or Q ∈ Qd, it holds that

Wd(u) := max
{

0,
d∑
i=1

ui − d+ 1
}
≤ Q(u) ≤ min{u1, . . . , ud} =: Md(u), (1.6)

for all u ∈ Id, i.e. Wd ≤ Q ≤ Md, where Wd and Md are the lower and upper Fréchet–
Hoeffding bounds respectively. The upper bound is a copula for all d ≥ 2, whereas the

12



1.1 Notation and preliminary results

lower bound is a copula only if d = 2 and a proper quasi-copula otherwise. A proof of this
theorem can be found in Genest, Molina, Lallena, and Sempi [23].

A bound over a set of copulas, resp. quasi-copulas, is called sharp if it belongs again to this
set. Thus, the upper bound is sharp for the set of copulas and quasi-copulas. Although the
lower bound is not sharp for the set of copulas unless d = 2, it is (pointwise) best-possible
for all d ∈ N in the following sense:

Wd(u) = inf
C∈Cd

C(u), u ∈ Id;

cf. Theorem 6 in Rüschendorf [53].

Since the properties of the Fréchet–Hoeffding bounds carry over to the set of survival
functions in a straightforward way, one obtains similarly for any survival function Q̂ ∈ Q̂d

that

Wd(1− u1, . . . , 1− ud) ≤ Q̂(u1, . . . , ud) ≤Md(1− u1, . . . , 1− ud), for all u ∈ Id.

Example 1.1.1. Consider the lower Fréchet-Hoeffding bound in dimension 3, i.e. W3.
Then W3 is a quasi-copula but Ŵ3(1 − ·) is not a quasi-copula again. To this end, notice
that quasi-copulas take values in the unit interval I, while

Ŵ3

(1
2 ,

1
2 ,

1
2

)
= −1

2 .

�
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2 Improved Fréchet–Hoeffding
bounds

In this chapter we derive improved Fréchet–Hoeffding bounds on copulas in the presence
of additional dependence information. The Fréchet–Hoeffding bounds in (1.6) are the best-
possible bounds on the set of all copulas Cd with respect to the lower orthant order. It thus
follows immediately from Sklar’s Theorem that every distribution function F in the Fréchet
class F(F1, ..., Fd) is bounded by

Wd(F1(x1), ..., Fd(xd)) ≤ F (x1, ..., xd) ≤Md(F1(x1), ..., Fd(xd)) for all x ∈ Rd,

and in the absence of dependence information these bounds cannot be narrowed further.

In the presence of additional dependence information the Fréchet–Hoeffding bounds can
be improved and several results in this respect for bivariate copulas (d = 2) are available
in the literature. Nelsen [40] derived improved Fréchet–Hoeffding bounds on the set of
2-copulas that are known at a single point of their domain. Similar improvements of the
bivariate Fréchet–Hoeffding bounds were provided by Rachev and Rüschendorf [48] when
the copula is known on an arbitrary set and by Nelsen et al. [41] for the case in which a
measure of association such as Kendall’s τ or Spearman’s ρ is prescribed. Tankov [64]
recently generalised these results, by improving the bivariate Fréchet–Hoeffding bounds if
the copula is known on a compact set or when the value of a monotonic functional of the
copula is prescribed. Since the bounds are in general not copulas but proper quasi-copulas,
Tankov also provided sufficient conditions under which the improved bounds are copulas.

In section 2.1 we establish novel improvements of the Fréchet–Hoeffding bounds on the
set of d-dimensional copulas and survival copulas, accounting for different types of depen-
dence information. Specifically, we derive bounds on d-(survival-)copulas whose values
are known on an arbitrary compact subset of Id. Moreover, we provide analogous im-
provements when the value of a monotonic functional of the copula is prescribed. Thereby
monotonic refers to the lower orthant order on the set of copulas or survival-copulas. Fur-
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thermore, we establish bounds on the set of copulas which lie in the vicinity of a reference
copula as measured by a statistical distance. We also obtain an explicit representation
of these bounds when the distance to the reference copula is measured in terms of the
Kolmogorov–Smirnov distance. Finally, we provide bounds on copulas given information
on their lower-dimensional marginals.

These results give rise to the natural question whether the improved Fréchet–Hoeffding
bounds are copulas and hence distribution functions. In section 2.2 we answer this question
in the negative, showing that the improved bounds are quasi-copulas but fail to be copulas
under fairly general conditions. This constitutes a surprising difference between the high-
dimensional and the bivariate case, in which Tankov [64] and Bernard et al. [8] showed
that the improved Fréchet–Hoeffding bounds are copulas under quite relaxed conditions.

The results presented in this chapter appeared in Lux and Papapantoleon [34, 35].

2.1 Improved Fréchet–Hoeffding bounds under
partial dependence information

In this section we derive bounds on d-copulas and d-survival copulas that improve the
universal Fréchet–Hoeffding bounds when partial information on the dependence struc-
ture is available. Our first result provides improved Fréchet–Hoeffding bounds, assuming
knowledge of the copula on a subset of Id. Specifically, we derive bounds on copulas C
that coincide with a reference copula C∗ on a compact subset S ⊆ Id, i.e. it holds that
C(x) = C∗(x) for all x ∈ S . In practice, the set S may correspond to a region that con-
tains enough historical observations to estimate C with sufficient accuracy from data, so
that we can assume that C is ‘known’ on S . This relates to the definition of the trusted
region in Bernard and Vanduffel [7], who also present several techniques and criteria to
select such regions in practice. If S is not equal to the entire domain of the copula, then
dependence uncertainty stems from the fact that C remains unknown on Id \ S . Similar re-
sults in the case d = 2 were obtained previously by Rachev and Rüschendorf [48], Nelsen
[40] and Tankov [64].

Theorem 2.1.1. Let S ⊂ Id be a compact set and Q∗ be a d-quasi-copula. Consider the set

QS,Q∗ :=
{
Q ∈ Qd : Q(x) = Q∗(x) for all x ∈ S

}
.
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Then, for all Q ∈ QS,Q∗ , it holds that

QS,Q
∗(u) ≤ Q(u) ≤ Q

S,Q∗(u) for all u ∈ Id,

QS,Q
∗(u) = Q(u) = Q

S,Q∗(u) for all u ∈ S,
(2.1)

where the bounds QS,Q
∗

and QS,Q
∗

are provided by

QS,Q
∗(u) = max

(
0,

d∑
i=1

ui − d+ 1,max
x∈S

{
Q∗(x)−

d∑
i=1

(xi − ui)+
})
,

Q
S,Q∗(u) = min

(
u1, . . . , ud,min

x∈S

{
Q∗(x) +

d∑
i=1

(ui − xi)+
})
.

(2.2)

Furthermore, the bounds QS,Q
∗
, Q
S,Q∗ are d-quasi-copulas, hence they are sharp.

Proof. We start by considering a prescription at a single point, i.e. we let S = {x} for x ∈
Id, and show that the statement is true forQ{x},Q∗ . In this case, analogous results were pro-
vided by Rodrı́guez-Lallena and Úbeda-Flores [49]. Below we present a simpler alternative
proof. So let Q ∈ Q{x},Q∗ be arbitrary and (u1, . . . , ud), (u1, . . . , ui−1, xi, ui+1, . . . , ud) ∈
Id, then it follows from the Lipschitz property of Q and the fact that Q is increasing in each
coordinate that

−(ui − xi)+ ≤ Q(u1, . . . , ui−1, xi, ui+1, . . . , ud)−Q(u1, . . . , ud) ≤ (xi − ui)+.

Using the telescoping sum

Q(x1, . . . , xd)−Q(u1, . . . , ud) = Q(x1, . . . , xd)−Q(u1, x2, . . . , xd) +Q(u1, x2, . . . , xd)
−Q(u1, u2, x3, . . . , xd) + · · ·+Q(u1, . . . , ud−1, xd)−Q(u1, . . . , ud)

we arrive at

−
d∑
i=1

(ui − xi)+ ≤ Q(x1, . . . , xd)−Q(u1, . . . , ud) ≤
d∑
i=1

(xi − ui)+

which is equivalent to

Q(x1, . . . , xd)−
d∑
i=1

(xi − ui)+ ≤ Q(u1, . . . , ud) ≤ Q(x1, . . . , xd) +
d∑
i=1

(ui − xi)+.

The prescription yields further that Q(x1, . . . , xd) = Q∗(x1, . . . , xd), from which follows
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that

Q∗(x1, . . . , xd)−
d∑
i=1

(xi − ui)+ ≤ Q(u1, . . . , ud) ≤ Q∗(x1, . . . , xd) +
d∑
i=1

(ui − xi)+,

while incorporating the Fréchet-Hoeffding bounds yields

max
{

0,
d∑
i=1

ui − d+ 1, Q∗(x1, . . . , xd)−
d∑
i=1

(xi − ui)+
}
≤ Q(u1, . . . , ud)

≤ min
{
u1, . . . , ud, Q

∗(x1, . . . , xd) +
d∑
i=1

(ui − xi)+
}
, (2.3)

showing that the inequalities in (2.1) are valid for S = {x}. Moreover, since Wd(x) ≤
Q∗(x) ≤Md(x) it holds that

Q{x},Q
∗(x) = max

{
0,

d∑
i=1

xi − d+ 1, Q∗(x1, . . . , xd)
}

= Q∗(x),

Q
{x},Q∗(x) = min

{
x1, . . . , xd, Q

∗(x1, . . . , xd)
}

= Q∗(x),

showing that the equalities in (2.1) are valid for S = {x}.

Next, let S be a compact set which is not a singleton and Q ∈ QS,Q∗ . We know from the
argument above that Q(u) ≥ Q{x},Q

∗(u) for all x ∈ S , therefore

Q(u) ≥ max
x∈S

{
Q{x},Q

∗(u)
}

= QS,Q
∗(u). (2.4)

Analogously we get for the upper bound that

Q(u) ≤ min
x∈S

{
Q
{x},Q∗(u)

}
= Q

S,Q∗(u), (2.5)

hence the inequalities in (2.1) are valid. Moreover, if u ∈ S then Q(u) = Q∗(u) for all
Q ∈ QS,Q∗ and using the Lipschitz property of quasi-copulas we obtain

max
x∈S

{
Q∗(x)−

d∑
i=1

(xi − ui)+
}

= Q∗(u) and min
x∈S

{
Q∗(x) +

d∑
i=1

(ui − xi)+
}

= Q∗(u),

hence using again that Q∗ satisfies the Fréchet–Hoeffding bounds we arrive at

QS,Q
∗(u) = Q(u) = Q

S,Q∗(u).
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2.1 Improved Fréchet–Hoeffding bounds under partial dependence information

Finally, it remains to show that both bounds are d-quasi-copulas.

• In order to show that (QC1) holds, first consider the case S = {x}. Let (u1, . . . , ud)
∈ Id with ui = 0 for one i ∈ {1, . . . , d}. Then QS,Q

∗
(u) is obviously zero, and

QS,Q
∗(u) = max

(
0, Q∗(x)− xi −

∑
j 6=i(xj − uj)+

)
= 0 because Q∗(x) ≤Md(x),

i.e. Q∗(x)−xi−
∑
j 6=i(xj −uj)+ ≤ 0 for all x ∈ S . Moreover for (u1, . . . , ud) ∈ Id

with ui = 1 for all i ∈ {1, . . . , d} \ {j}, the upper bound equals QS,Q
∗
(u) =

min
{
uj, Q

∗(x) +∑d
i=1(ui − xi)+

}
and since

Q∗(x) +
d∑
i=1

(ui − xi)+ = Q∗(x) +
∑

i∈{1,...,d}\{j}
(1− xi) + (uj − xj)+

= Q∗(x) + d− 1−
∑

i∈{1,...,d}\{j}
xi + (uj − xj)+

≥ Wd(x) + d− 1−
∑

i∈{1,...,d}\{j}
xi + (uj − xj)+

≥ xj + (uj − xj)+ ≥ uj,

it follows that Q∗(u) = uj , hence QS,Q
∗
(u) = uj . Similarly, the lower bound

amounts to QS,Q
∗(u) = max

(
0, uj, Q∗(x) − (xj − uj)+

)
which equals uj because

Q∗(x) − (xj − uj)+ ≤ Md(x) − (xj − uj)+ ≤ uj . The boundary conditions hold
analogously for S containing more than one element due to the continuity of the
maximum and minimum functions and relationships (2.4) and (2.5).

• Both bounds are obviously increasing in each variable, thus (QC2) holds.

• Finally, taking the pointwise minimum and maximum of Lipschitz functions pre-
serves the Lipschitz property, thus both bounds satisfy (QC3).

Remark 2.1.1. Note that the bounds in Theorem 2.1.1 hold analogously for prescriptions
on copulas, i.e for all copulas

C ∈ {C ∈ Cd : C(x) = Q∗(x) for all x ∈ S} =: CS,Q∗ ,

where Q∗ and S are as above it holds that QS,Q
∗(u) ≤ C(u) ≤ Q

S,Q∗(u) for all u ∈ Id.
Let us point out that the set CS,Q∗ may possibly be empty, depending on the prescription.
We do not investigate the requirements on the prescription for CS,Q∗ to be non-empty. A
detailed discussion of this issue in the two-dimensional case can be found in Mardani-Fard,
Sadooghi-Alvandi, and Shishebor [37]. �
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The following corollary establishes analogous bounds on quasi-survival functions with pre-
scribed values on a subset.

Corollary 2.1.2. Let S ⊂ Id be a compact set and Q̂∗ ∈ Q̂d be a quasi-survival function.
Consider the set

Q̂S,Q̂∗ :=
{
Q ∈ Q̂d : Q̂(x) = Q̂∗(x) for all x ∈ S

}
.

Then, for all Q̂ ∈ Q̂S,Q̂∗ , it holds that

Q̂
S,Q̂∗(u) ≤ Q̂(u) ≤ Q̂

S,Q̂∗
(u) for all u ∈ Id,

Q̂
S,Q̂∗(u) = Q̂(u) = Q̂

S,Q̂∗
(u) for all u ∈ S,

(2.6)

where the bounds are provided by

Q̂
S,Q̂∗(u) := QŜ,Q̂

∗(1−·)(1− u) and Q̂
S,Q̂∗

(u) := Q
Ŝ,Q̂∗(1−·)(1− u)

with Ŝ = {(1− x1, . . . , 1− xd) : (x1, . . . , xd) ∈ S}.

Proof. Let Q̂ ∈ Q̂S,Q̂∗ . Since Q̂(1− ·) is a quasi-copula that coincides with Q̂∗(1− ·) on
the set Ŝ we obtain, by an application of Theorem 2.1.1, that

QŜ,Q̂
∗(1−·)(u) ≤ Q̂(1− u) ≤ Q

Ŝ,Q̂∗(1−·)(u) for all u ∈ Id

which by a transformation of variables equals

QŜ,Q̂
∗(1−·)(1− u) ≤ Q̂(u) ≤ Q

Ŝ,Q̂∗(1−·)(1− u).

Next, we derive improved bounds on d-quasi-copulas when values of real-valued function-
als of the quasi-copulas are prescribed. Examples of such functionals are the multivariate
generalisations of Spearman’s rho and Kendall’s tau given in Taylor [65]. Moreover, in
the context of multi-asset option pricing, examples of such functionals are prices of spread
options. Similar results for d = 2 are provided by Nelsen, Quesada-Molina, Rodriguez-
Lallena, and Ubeda-Flores [41] and Tankov [64].

Remark 2.1.2. In the following, by slightly abusing notation, we sometimes write Q{u},α

and Q{u},α with α ∈ [Wd(u),Md(u)], instead of a quasi-copula function Q∗, and mean
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2.1 Improved Fréchet–Hoeffding bounds under partial dependence information

that Q∗(u) = α. �

Theorem 2.1.3. Let ρ : Qd → R be increasing with respect to the order ≤ on Qd and
continuous with respect to the pointwise convergence of quasi-copulas. Define

Qρ,θ := {Q ∈ Qd : ρ(Q) = θ}.

for θ ∈ (ρ(Wd), ρ(Md)). Then the following bounds hold

Qρ,θ(u) := min
{
Q(u) : Q ∈ Qρ,θ

}
=

ρ
−1
+ (u, θ), θ ∈

[
ρ
(
Q
{u},Wd(u))

, ρ(Md)
]
,

Wd(u), else,

and

Q
ρ,θ(u) := max

{
Q(u) : Q ∈ Qρ,θ

}
=

ρ
−1
− (u, θ), θ ∈

[
ρ(Wd), ρ

(
Q{u},Md(u)

)]
,

Md(u), else,

and these are again quasi-copulas. Here

ρ−1
− (u, θ) = max

{
r : ρ

(
Q{u},r

)
= θ

}
and ρ−1

+ (u, θ) = min
{
r : ρ

(
Q
{u},r) = θ

}
,

while the quasi-copulas Q{u},r and Q{u},r are given in Theorem 2.1.1 for r ∈ I.

Proof. We show that the upper bound is valid, while the proof for the lower bound follows
analogously. First, note that due to the continuity of ρ w.r.t. the pointwise convergence
of quasi-copulas and the compactness of Qd, we get that the set

{
Q(u) : Q ∈ Qρ,θ

}
is

compact, hence

sup
{
Q(u) : Q ∈ Qρ,θ

}
= max

{
Q(u) : Q ∈ Qρ,θ

}
.

Next, let θ ∈
[
ρ(Wd), ρ

(
Q{u},Md(u)

)]
. It follows from the continuity of r 7→ ρ

(
Q{u},r

)
that the set

{
r : ρ

(
Q{u},r

)
= θ

}
is closed and thus admits a maximum

r∗ ∈
{
r : ρ

(
Q{u},r

)
= θ

}
.

Since r∗ is such that ρ
(
Q{u},r

∗) = θ, which entails Q{u},r
∗ ∈ Qρ,θ, it follows that r∗ ≤

Q
ρ,θ(u). We show furthermore by contradiction that r∗ = Q

ρ,θ(u). To this end, assume that
r∗ < Q

ρ,θ(u). Then there exists a quasi-copula Q ∈ Qρ,θ with r∗ < Q(u) =: α. It follows
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2 Improved Fréchet–Hoeffding bounds

from the properties of the improved Fréchet–Hoeffding bound Q{u},α (c.f. Theorem 2.1.1)
that Q{u},α ≤ Q and thus, due to the monotonicity of ρ w.r.t. the lower orthant order, we
have that ρ

(
Q{u},α

)
≤ ρ(Q) = θ. Using again the continuity of r 7→ ρ

(
Q{u},r

)
, there

exists α∗ ∈ [α,Md(u)] with ρ
(
Q{u},α

)
= θ, which contradicts the maximality of r∗.

Now, let θ > ρ
(
Q{u},Md(u)

)
, then θ ∈

(
ρ
(
Q{u},Md(u)

)
, ρ(Md)

]
. Consider Qα = αMd +

(1 − α)Q{u},Md(u), for α ∈ [0, 1], then ρ(Q0) < θ and ρ(Q1) ≥ θ. Since α 7→ ρ(Qα) is
continuous there exists an α with ρ(Qα) = θ. Since Qα(u) = Md(u) for all α ∈ [0, 1] it
follows that Md(u) ≤ max

{
Q(u) : Q ∈ Qρ,θ

}
, while the reverse inequality holds due to

the upper Fréchet–Hoeffding bound.

Finally, using Theorem 2.1 in Rodrı́guez-Lallena and Úbeda-Flores [49] we get immedi-
ately that the bounds are again quasi-copulas.

Remark 2.1.3. The bounds Qρ,θ and Qρ,θ are not in the classQρ,θ in general. Consider e.g.
the case d = 2, then it follows from Tankov [64, Theorem 2] that

Qρ,θ(u) = min
{
Q(u) : Q ∈ Qρ,θ ∩ C2

}
,

Q
ρ,θ(u) = max

{
Q(u) : Q ∈ Qρ,θ ∩ C2

}
.

Moreover, for ρ being Kendall’s tau, i.e.

ρ : C2 3 C 7→
∫
I2
C(u1, u2) du1du2,

it follows from Nelsen et al. [41, Theorem 4] that

Qρ,θ(u1, u2) = max
{

0, u1 + u2 − 1, 1
2

[
(u1 + u2)−

√
(u1 − u2)2 + 1− θ

]}
,

Q
ρ,θ(u1, u2) = min

{
u1, u2,

1
2

[
(u1 + u2 − 1) +

√
(u1 + u2 − 1)2 + 1 + θ

]}
.

and Corollary 3(h) in [41] states that neither of the bounds is in the class Qρ,θ when ρ ∈
(−1, 1). �

Again, the bounds in Theorem 2.1.3 hold analogously for copulas, i.e. for ρ and θ as in
Theorem 2.1.3 we have Qρ,θ ≤ C ≤ Q

ρ,θ for all C ∈ {C ∈ Cd : ρ(C) = θ}. Moreover,
we obtain similar bounds for quasi-survival functions if the value of a functional which is
increasing with respect to ≤ on Q̂d is prescribed. The proof is analogous to the proof of
Theorem 2.1.3 and is therefore omitted.
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2.1 Improved Fréchet–Hoeffding bounds under partial dependence information

Corollary 2.1.4. Let ρ : Q̂d → R be increasing with respect to ≤ on the set of quasi-
survival functions Q̂d and continuous with respect to the pointwise convergence on Q̂d.
Define

Q̂ρ,θ :=
{
Q̂ ∈ Q̂d : ρ(Q̂) = θ

}
.

Then for all Q̂ ∈ Q̂ρ,θ it holds that

Q̂
ρ,θ(u) ≤ Q̂(u) ≤ Q̂

ρ,θ
(u) for all u ∈ Id,

where the bounds are provided by

Q̂
ρ,θ(u) :=

ρ
−1
+ (u, θ), θ ∈

[
ρ
(
Q̂
{u},Wd(1−u))

, ρ(Md(1− ·))
]

Wd(1− u), else,

and

Q̂
ρ,θ

(u) :=

ρ
−1
− (u, θ), θ ∈

[
ρ(Wd(1− ·)), ρ

(
Q̂
{u},Md(1−u))]

Md(1− u), else,

where

ρ−1
− (u, θ) = max

{
r : ρ

(
Q̂
{u},r) = θ

}
and ρ−1

+ (u, θ) = min
{
r : ρ

(
Q̂
{u},r)

= θ
}
,

while the quasi-copulas Q̂
{u},r

and Q̂
{u},r

for r ∈ I are given in Proposition 2.1.2.

We proceed with an improvement of the Fréchet–Hoeffding bounds on the set of (quasi-)
copulas that lie in the vicinity of a reference model as measured by a statistical distance.
More formally, we establish bounds on (quasi-)copulas C in the δ-neighbourhood of the
reference copula C∗, i.e. such that D(C,C∗) ≤ δ for a distance D. Our method applies
to a large class of statistical distances such as the Cramér-von-Mises or the Lp distances.
Having a bound on the distance to a reference model corresponds to a situation that arises
naturally in practice, when one tries to estimate or calibrate a copula to empirical data.
The estimation typically involves the minimization of a distance to the empirical copula
over a parametric family of copulas, i.e. D(Cθ, C∗) → minθ where C∗ is an empirical
copula and {Cθ}θ is a family of parametric copulas. This is in the literature often referred
to as minimal-distance or minimal-contrast estimation. Kole et al. [30] e.g. present sev-
eral distance-based techniques for selecting copulas in risk management. These estimation
procedures lend themselves immediately to the methodology we propose, as typically one
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2 Improved Fréchet–Hoeffding bounds

arrives at δ := minθD(Cθ, C∗) > 0, due to the fact that none of the models in the paramet-
ric class {Cθ}θ matches the empirical observations exactly, thus dependence uncertainty
remains. In this case, δ can be viewed as the inevitable risk of model misspecification due
to the choice of the parametric family {Cθ}θ.

Let us first define the minimal and maximal convolution between two quasi-copulas Q,Q′

as the pointwise minimum and maximum between them, i.e. (Q∧Q′)(u) = Q(u)∧Q′(u)
and (Q ∨Q′)(u) = Q(u) ∨Q′(u) respectively.

Definition 2.1.5. A function D : Qd × Qd → R+ is called a statistical distance if for
Q,Q′ ∈ Qd

D(Q,Q′) = 0 ⇐⇒ Q(u) = Q′(u) for all u ∈ Id.

Definition 2.1.6. A statistical distance D is monotonic with respect to the order ≤ on Qd,
if for Q,Q′, Q′′ ∈ Qd it holds

Q ≤ Q′ ≤ Q′′ =⇒ D(Q′, Q′′) ≤ D(Q,Q′′) and D(Q′′, Q′) ≤ D(Q′′, Q).

A statistical distance D is min- respectively max-stable if for Q,Q′ ∈ Qd it holds

D(Q,Q′) ≥ max{D(Q ∧Q′, Q),D(Q,Q ∧Q′)}
D(Q,Q′) ≥ max{D(Q ∨Q′, Q),D(Q,Q ∨Q′)}.

The following theorem establishes pointwise bounds on the set of quasi-copulas that are in
the δ-vicinity of a reference copula C∗ as measured by a statistical distance D.

Theorem 2.1.7. Let C∗ be a d-copula and D be a statistical distance which is continuous
with respect to the pointwise convergence of quasi-copulas, monotonic with respect to ≤
on Qd and and min/max-stable. Consider the set

QD,δ :=
{
Q ∈ Qd : D(Q,C∗) ≤ δ

}
for δ ∈ R+. Then

QD,δ(u) := min
{
α ∈ S(u) : D

(
Q
{u},α ∧ C∗, C∗

)
≤ δ

}
= min

{
Q(u) : Q ∈ QD,δ

}
,

Q
D,δ(u) := max

{
α ∈ S(u) : D

(
Q{u},α ∨ C∗, C∗

)
≤ δ

}
= max

{
Q(u) : Q ∈ QD,δ

}
,

where S(u) := [Wd(u),Md(u)], and both bounds are quasi-copulas.
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2.1 Improved Fréchet–Hoeffding bounds under partial dependence information

Proof. We show that the statement holds for the lower bound, while the proof for the upper
bound follows along the same lines. Fix an α ∈ [Wd(u),Md(u)] and a u ∈ Id, then the
map v 7→

(
Q
{u},α ∧ C∗

)
(v) is a quasi-copula; this follows by straightforward calculations

using the definition of the minimal convolution, see also Rodrı́guez-Lallena and Úbeda-
Flores [49, Theorem 2.1]. By definition, D is monotonic with respect to ≤ on Qd, thus it
follows for α, α ∈ [Wd(u),Md(u)] with α < α that

D
(
Q
{u},α ∧ C∗, C∗

)
≤ D

(
Q
{u},α ∧ C∗, C∗

)
,

due to the fact that Q{u},α ≤ Q
{u},α, which readily implies(

Q
{u},α ∧ C∗

)
≤
(
Q
{u},α ∧ C∗

)
≤ C∗.

Hence, the map

[Wd(u),Md(u)] 3 α 7→ D
(
Q
{u},α ∧ C∗, C∗

)
is decreasing. Moreover, as a consequence of the Arzelà–Ascoli Theorem, it follows that
for every sequence (αn)n ⊂ [Wd(u),Md(u)] with αn → α,

(
Q
{u},αn ∧ C∗

)
−−−→
n→∞

(
Q
{u},α ∧ C∗

)
uniformly and, since D is continuous with respect to the pointwise convergence of quasi-

copulas, it follows that α 7→ D
(
Q
{u},α ∧ C∗, C∗

)
is continuous. In addition, we have

that

D
(
Q
{u},Md ∧ C∗, C∗

)
= D

(
Md ∧ C∗, C∗

)
= D

(
C∗, C∗

)
= 0, (2.7)

due to the fact that C∗ ≤Md. We now distinguish between two cases:

(i) Let δ ≤ D
(
Q
{u},Wd ∧ C∗, C∗

)
. Then, due to the monotonicity and continuity of the

map [Wd(u),Md(u)] 3 α 7→ D
(
Q
{u},α ∧ C∗, C∗

)
and (2.7) it holds that the set

O :=
{
α : D

(
Q
{u},α ∧ C∗, C∗

)
= δ

}

is non-empty and compact. Define α∗ := min{α : α ∈ O}. We show that

min
{
Q(u) : Q ∈ QD,δ

}
= α∗.
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2 Improved Fréchet–Hoeffding bounds

On the one hand, it holds that min
{
Q(u) : Q ∈ QD,δ

}
≤ α∗. Indeed, considerQ{u},α

∗
∧ C∗

which is a quasi-copula and belongs to QD,δ since α∗ ∈ O. Then, we have that(
Q
{u},α∗ ∧ C∗

)
(u) = min{α∗, C∗(u)} = α∗,

using again that α∗ ∈ O and (2.7). Hence the inequality holds. On the other hand, we
show now that the inequality cannot be strict by contradiction. Assume there exists a
quasi-copula Q′ ∈ QD,δ with Q′(u) < α∗. Then it follows that

D(Q′, C∗) ≥ D
(
Q′ ∧ C∗, C∗

)
≥ D

(
Q
{u},Q′ ∧ C∗, C∗

)
≥ D

(
Q
{u},α∗ ∧ C∗, C∗

)
= δ,

(2.8)

where the first inequality follows from the min-stability of D, and the second and third
ones from its monotonicity properties. However, since Q′(u) /∈ O it follows that

D
(
Q
{u},Q′ ∧ C∗, C∗

)
6= δ,

hence (2.8) yields that D
(
Q
{u},Q′ ∧ C∗, C∗

)
> δ. This contradicts the assumption that

Q′ ∈ QD,δ, showing that indeed min
{
Q(u) : Q ∈ QD,δ

}
= α∗. Hence, the lower bound

holds for δ ≤ D
(
Q
{u},Wd ∧ C∗, C∗

)
.

(ii) Now, let δ > D
(
Q
{u},Wd ∧ C∗, C∗

)
, then it follows that

min
{
α ∈ [Wd(u),Md(u)] : D

(
Q
{u},α ∧ C∗, C∗

)
≤ δ

}
= Wd(u).

Moreover, since
(
Q
{u},Wd∧C∗

)
∈ QD,δ and every element inQD,δ is bounded from below

by Wd, it follows that min
{
Q(u) : Q ∈ QD,δ

}
= Wd(u). Hence, the lower bound holds in

this case as well.

Finally, it follows again from [49, Theorem 2.1] that the bounds are quasi-copulas, which
completes the proof.

Note, the bounds from Theorem 2.1.7 also apply to the set of copulas CD,δ := {C ∈
Cd : D(C,C∗) ≤ δ}, assuming that CD,δ 6= ∅, that is

QD,δ ≤ C ≤ Q
D,δ
, (2.9)
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2.1 Improved Fréchet–Hoeffding bounds under partial dependence information

for all C ∈ CD,δ, due to the fact that CD,δ ⊆ QD,δ.

Remark 2.1.4. IfD is not symmetric, the set {Q ∈ Qd : D(Q,C∗) ≤ δ}might not coincide
with the set {Q ∈ Qd : D(C∗, Q) ≤ δ}. In this case the bounds on
{Q ∈ Qd : D(C∗, Q) ≤ δ} are provided by

QD,δ(u) = min
{
α ∈ S(u) : D

(
C∗, Q

{u},α ∧ C∗
)
≤ δ

}
,

Q
D,δ(u) = max

{
α ∈ S(u) : D

(
C∗, Q{u},α ∨ C∗

)
≤ δ

}
.

�

Many well-known statistical distances satisfy the requirements of Theorem 2.1.7. Typical
examples are the Kolmogorov–Smirnov and the Cramér–von Mises distances, where

DKS(Q,Q′) := sup
u∈Id
|Q(u)−Q′(u)| and DCM(Q,Q′) :=

∫
Id
|Q(u)−Q′(u)|2du.

The same holds for all Lp distances with p ≥ 1, where

DLp(Q,Q′) :=
( ∫

Id
|Q(u)−Q′(u)|pdu

) 1
p

.

Distances with these properties are of particular interest in the theory of minimum distance
and minimum contrast estimation, where – as opposed to maximum likelihood methods –
parameters of distributions are estimated based on a statistical distance between the empir-
ical and the estimated distribution. These estimators have favorable properties in terms of
efficiency and robustness; see e.g. Spokoiny and Dickhaus [61, Chapter 2.8].

The computation of the bounds QD,δ and QD,δ in Theorem 2.1.7 involves the solution of
optimization problems, which can be computationally intricate depending on the distance
D. An explicit representation of the bounds is thus highly valuable for applications. The
following result shows that in the particular case of the Kolmogorov–Smirnov distance the
bounds can be computed explicitly.

Lemma 2.1.8. Let C∗ be a d-copula, δ ∈ R+, and consider the Kolmogorov–Smirnov
distance DKS. Then

QDKS,δ(u) = max
{
C∗(u)− δ,Wd(u)

}
and Q

DKS,δ(u) = min
{
C∗(u) + δ,Md(u)

}
.

Proof. We show that the statement holds for the lower bound QDKS,δ and omit the proof for
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2 Improved Fréchet–Hoeffding bounds

the upper bound QDKS,δ as it follows along the same lines. Due to
(
Q
{u},α ∧ C∗

)
≤ C∗ for

all α ∈ [Wd(u),Md(u)], it holds that

DKS

(
Q
{u},α ∧ C∗, C∗

)
= sup

x∈Id

∣∣∣∣(Q{u},α ∧ C∗)(x)− C∗(x)
∣∣∣∣ = sup

x∈Id

{
C∗(x)−Q{u},α(x)

}
.

Since supx∈Id
{
C∗(x) − Q{u},α(x)

}
= 0 when α > C∗(u), we can assume w.l.o.g. that

the minimum is attained for α ≤ C∗(u). Hence

min
{
α ∈ [Wd(u),Md(u)] : DKS

(
Q
{u},α ∧ C∗, C∗

)
≤ δ

}
= min

{
α ∈ [Wd(u), C∗(u)] : sup

x∈Id

{
C∗(x)−Q{u},α(x)

}
≤ δ

}
.

Then, using the definition of Q{u},α in (2.2), we obtain

sup
x∈Id

{
C∗(x)−Q{u},α(x)

}
= sup

x∈Id

{
C∗(x)−min

{
Md(x), α +

d∑
i=1

(xi − ui)+
}}

= sup
x∈Id

{
C∗(x)− α−

d∑
i=1

(xi − ui)+
}

= sup
x∈Id

{
C∗(x)−

d∑
i=1

(xi − ui)+
}
− α = C∗(u)− α,

where the second equality holds due to the fact that C∗(x) −Md(x) ≤ 0 for all x ∈ Id.
Hence, we conclude that

QDKS,δ(u) = min
{
α ∈ [Wd(u), C∗(u)] : C∗(u)− α ≤ δ

}
= min

{
α ∈ [Wd(u), C∗(u)] : C∗(u)− δ ≤ α

}
= max

{
C∗(u)− δ,Wd(u)

}
.

Analogously to Theorem 2.1.7, one can also consider the situation where information on
the quasi-survival function is available. Note that each statistical distance that measures
the discrepancy between quasi-copulas can easily be translated into a distance on quasi-
survival functions, i.e. if D is a statistical distance on Qd ×Qd, then

(Q̂, Q̂′) 7→ D
(
Q̂(1− ·), Q̂′(1− ·)

)
defines a distance on the set of quasi-survival functions.
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2.1 Improved Fréchet–Hoeffding bounds under partial dependence information

Corollary 2.1.9. Let Q̂∗ ∈ Q̂d and D be a statistical distance which is continuous with
respect to the pointwise convergence of quasi-survival functions, monotonic with respect
to ≤ on Q̂d and min/max-stable. Consider the set Q̂D,δ =

{
Q̂ ∈ Q̂d : D(Q̂, Q̂∗) ≤ δ

}
for

δ ∈ R+. Then

Q̂
D,δ(u) := min

{
α ∈ S(u) : D

(
Q̂
{u},α

∧ Q̂∗, Q̂∗
)
≤ δ

}
= min

{
Q̂(u) : Q̂ ∈ Q̂D,δ

}
Q̂
D,δ

(u) := max
{
α ∈ S(u) : D

(
Q̂
{u},α ∨ Q̂∗, Q̂∗

)
≤ δ

}
= max

{
Q̂(u) : Q̂ ∈ Q̂D,δ

}
.

The proof is analogous to the proof of Theorem 2.1.7 and is therefore omitted.

In the next theorem we derive improved Fréchet–Hoeffding bounds assuming that informa-
tion only on some lower-dimensional marginals of a quasi-copula is available. This result
corresponds to the situation when one is interested in a high-dimensional random vector,
however information on the dependence structure is only available for lower-dimensional
vectors thereof. As an example, in mathematical finance one is interested in options on
several assets, however information on the dependence structure – stemming e.g. from
prices of liquidly traded options – is typically available only on pairs of those assets.

Let us introduce a convenient subscript notation for the lower-dimensional marginals of a
quasi-copula. Consider a subset I = {i1, . . . , in} ⊂ {1, . . . , d} and define the projection
of a vector u ∈ Rd to the lower-dimensional space Rn via uI := (ui1 , . . . , uin) ∈ Rn.
Moreover, define the lift of the vector uI ∈ Rn to the higher-dimensional space Rd by
u′I =: v ∈ Rd where vi = ui if i ∈ I and vi = 1 if i /∈ I . Then, we can define the I-margin
of the d-quasi-copula Q via QI : In → I with uI 7→ Q(u′I).

Remark 2.1.5. Let u ∈ Id and I ⊂ {1, . . . , d}. Then, by first projecting u and then lifting
it back, we get that u ≤ u′I . Hence, by (QC2) we get that Q(u) ≤ QI(uI) = Q(u′I). �

Theorem 2.1.10. Let I1, . . . , Ik be subsets of {1, . . . , d} with |Ij| ≥ 2 for j ∈ {1, . . . , k}
and |Ii ∩ Ij| ≤ 1 for i, j ∈ {1, . . . , k}, i 6= j. Let Q

j
, Qj be |Ij|-quasi-copulas with

Q
j
≤ Qj for j = 1, . . . , k, and consider the set

QI =
{
Q ∈ Qd : Q

j
≤ QIj ≤ Qj, j = 1, . . . , k

}
,

where QIj are the Ij-margins of Q. Then QI is non-empty and the following bounds hold
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2 Improved Fréchet–Hoeffding bounds

QI(u) := min
{
Q(u) : Q ∈ QI

}
= max

(
max

j∈{1,...,k}

{
Q
j
(uIj) +

∑
l∈{1,...,d}\Ij

(ul − 1)
}
,Wd(u)

)
,

Q
I(u) := max

{
Q(u) : Q ∈ QI

}
= min

(
min

j∈{1,...,k}

{
Qj(uIj)

}
,Md(u)

)
.

Moreover QI , Q
I ∈ QI , hence the bounds are sharp.

Proof. Let Q ∈ QI and u ∈ Id. We first show that the upper bound QI is valid. It follows
directly from Remark 2.1.5 that

Q(u) ≤ Q(u′Ij) = QIj(uIj) ≤ Qj(uIj), for all j = 1, . . . , k,

hence Q(u) ≤ minj∈{1,...,k}
{
Qj(uIj)

}
. Incorporating the upper Fréchet–Hoeffding bound

yields QI . Moreover, (QC1) and (QC2) follow immediately since Qj are quasi-copulas
for j = 1, . . . , k, while QI is a composition of Lipschitz functions and hence Lipschitz
itself, i.e. (QC3) also holds. Thus QI is indeed a quasi-copula.

As for the lower bound, using once more the projection and lift operations and the Lipschitz
property of quasi-copulas we have

Q(u) ≥ Q(u′Ij) +
∑

l∈{1,...,d}\Ij

(ul − 1) = QIj(uIj) +
∑

l∈{1,...,d}\Ij

(ul − 1)

≥ Q
j
(uIj) +

∑
l∈{1,...,d}\Ij

(ul − 1), for all j = 1, . . . , k.

Therefore,

Q(u) ≥ max
j∈{1,...,k}

{
Q
j
(uIj) +

∑
l∈{1,...,d}\Ij

(ul − 1)
}
, (2.10)

and including the lower Fréchet–Hoeffding bound yields QI . In order to verify that QI is
a quasi-copula, first consider u ∈ Id with ui = 0 for at least one i ∈ {1, . . . , d}. Then
Wd(u) = 0,

Q
j
(uIj) +

∑
l∈{1,...,d}\Ij

(ul − 1) ≤ Q
j
(uIj)− 1 ≤ 0 if i ∈ {1, . . . , d} \ Ij,
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and
Q
j
(uIj) +

∑
l∈{1,...,d}\Ij

(ul − 1) =
∑

l∈{1,...,d}\Ij

(ul − 1) ≤ 0 if i ∈ Ij,

for all j = 1, . . . , k. Hence QI(u) = 0. In addition, for u ∈ Id with u = u′{i}, it follows
that Wd(u) = ui and

Q
j
(uIj) +

∑
l∈{1,...,d}\Ij

(ul − 1) = 1 + (ui − 1) = ui if i ∈ {1, . . . , d} \ Ij,

while clearly Q
j
(uIj) = ui if i ∈ Ij , for all j = 1, . . . , d. Hence QI(u) = ui, showing that

QI fulfills (QC1). (QC2) is immediate, while noting thatQI is a composition of Lipschitz
functions and hence Lipschitz itself shows that the lower bound is also a d-quasi-copula.

Finally, knowing that QI , Q
I are quasi-copulas it remains to show that both bounds are in

QI , i.e. we need to show that Q
j
≤
(
QI
)
Ij
,
(
Q
I
)
Ij
≤ Qj for all j = 1, . . . , k. For the

upper bound it holds by definition that
(
Q
I
)
Ij
≤ Qj for j = 1, . . . , k. Moreover since

|Ii ∩ Ij| ≤ 1 it follows that
(
Q
I
)
Ij

= Qj , hence Q
j
≤
(
Q
I
)
Ij
≤ Qj for j = 1, . . . , k and

Q
I ∈ QI . By the same argument it holds for the lower bound that

(
QI
)
Ij

= Q
j

for j =

1, . . . , d, thus Q
j
≤
(
QI
)
Ij
≤ Qj for j = 1, . . . , k, showing that Q

j
≤
(
QI
)
Ij
,
(
Q
I
)
Ij
≤

Qj holds indeed.

The bounds in Theorem 2.1.10 hold analogously for copulas. That is, for subsets I1, . . . ., Ik

and quasi-copulas Q
j
, Qj as in Theorem 2.1.10 and defining

CI :=
{
C ∈ Cd : Q

j
≤ CIj ≤ Qj, j = 1, . . . , k

}
,

it follows that QI ≤ C ≤ Q
I for all C ∈ CI .

Remark 2.1.6. Theorem 2.1.10 allows us to mix the different types of dependence infor-
mation considered so far on separate regions of the copula. Consider for example the set of
3-copulas C whose 2-margins C{1,2} coincide with a reference 2-copula C∗ on the subset
S = [a1, b1] × [a2, b2] whilst C{2,3} lies in the δ-neighbourhood of a 2-copula C ′. Then,
by first deriving bounds on the 2-margins C{1,2} and C{2,3} using Theorems 2.1.1 and 2.1.7
and then applying Theorem 2.1.10 with I1 = {1, 2} and I2 = {2, 3} one obtains bounds
on the 3-copula C. �

Finally, the subsequent corollary is a version of Theorem 2.1.10 for quasi-survival func-
tions. Its proof is analogous to the proof of Theorem 2.1.10 and is therefore also omitted.
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2 Improved Fréchet–Hoeffding bounds

Corollary 2.1.11. Let I1, . . . , Ik be subsets of {1, . . . , d} with |Ij| ≥ 2 for j ∈ {1, . . . , k}
and |Ii ∩ Ij| ≤ 1 for i, j ∈ {1, . . . , k}, i 6= j. Let Q̂

j
, Q̂j be |Ij|-quasi-survival functions

with Q̂
j
≤ Q̂j for j = 1, . . . , k and consider the set

Q̂I =
{
Q̂ ∈ Q̂d : Q̂

j
≤ Q̂Ij ≤ Q̂j, j = 1, . . . , k

}
,

where the Ij-margin of the quasi-survival function Q̂ is defined by

Id 3 u 7→ Q̂Ij(u1, ..., ud) := Q̂(u′1, ..., u′d)

with u′i = ui when i ∈ Ij and u′i = 0 if i ∈ {1, ..., d} \ Ij . Then it holds for all Q̂ ∈ Q̂I

Q̂
I
(u) ≤ Q̂(u) ≤ Q̂

I(u) for all u ∈ Id,

where

Q̂
I
(u) := Q

I(1− u) and Q̂
I(u) := QI(1− u),

while QI and QI are provided in Theorem 2.1.10, for the quasi-copulas Q̂j(1 − ·) and

Q̂j(1− ·) respectively, corresponding to Ij for j = 1, ..., k.

2.2 Are the improved Fréchet–Hoeffding bounds
copulas?

An interesting question arising now is under what conditions the improved Fréchet–Hoeffding
bounds are copulas and not merely quasi-copulas. Such conditions would allow us, for
example, to translate those bounds on the copulas into bounds on the expectations with
respect to the underlying random variables. Tankov [64] showed that if d = 2, then QS,Q

∗

and QS,Q
∗

are copulas under certain constraints on the set S . Specifically, if S is increas-
ing (also called comonotone), that is if (u1, u2), (v1, v2) ∈ S then u1 ≤ v1 and u2 ≤ v2 or
u1 ≥ v1 and u2 ≥ v2 hold, then the lower bound QS,Q

∗
is a copula. Conversely, if S is

decreasing (also called countermonotone), that is if (u1, u2), (v1, v2) ∈ S then u1 ≤ v1 and
u2 ≥ v2 or u1 ≥ v1 and u2 ≤ v2 hold, then the upper bound QS,Q

∗
is a copula. Bernard

et al. [8] relaxed these constraints and provided minimal conditions on S such that the
bounds are copulas. The situation however is more complicated for d > 2. On the one
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2.2 Are the improved Fréchet–Hoeffding bounds copulas?

hand, the notion of a decreasing set is not clear. On the other hand, the following coun-
terexample shows that the condition of S being an increasing set is not sufficient for QS,Q

∗

to be a copula.

Example 2.2.1. Let S =
{

(u, u, u) : u ∈
[
0, 1

2

]
∪
[

3
5 , 1

]}
⊂ I3 andQ∗ be the independence

copula, i.e. Q∗(u1, u2, u3) = u1u2u3 for (u1, u2, u3) ∈ I3. Then S is clearly an increasing
set, however QS,Q

∗
is not a copula. To this end, it suffices to show that the QS,Q

∗
-volume

of some subset of I3 is negative. Indeed, for
(

56
100 ,

3
5

]3
⊂ I3 after some straightforward

calculations we get that

VQS,Q∗

(( 56
100 ,

3
5

]3)
=
(3

5

)3
− 3

[(3
5

)3
−
(3

5 −
56
100

)]

+ 3
[(3

5

)3
− 2

(3
5 −

56
100

)]
−
(1

2

)3
= −0.029 < 0.

�

In the trivial case where S = Id and Q∗ is a d-copula, then both bounds from Theorem
2.1.1 are copulas for d > 2 since they equate to Q∗. Moreover, the upper bound is a copula
for d > 2 if it coincides with the upper Fréchet–Hoeffding bound. The next result shows
that essentially only in these trivial situations are the bounds copulas for d > 2. Out of
instructive reasons we first discuss the case d = 3, and then generalise the result for d > 3.

Theorem 2.2.1. Consider the compact subset S of I3

S =
(

[0, 1] \ (s1, s1 + ε1)
)
×
(

[0, 1] \ (s2, s2 + ε2)
)
×
(

[0, 1] \ (s3, s3 + ε3)
)
, (2.11)

for εi > 0, i = 1, 2, 3 and let C∗ be a 3-copula (or a 3-quasi-copula) such that

3∑
i=1

εi > C∗(s + εεε)− C∗(s) > 0, (2.12)

C∗(s) ≥ W3(s + εεε), (2.13)

where s = (s1, s2, s3), εεε = (ε1, ε2, ε3). Then QS,C
∗

is a proper quasi-copula.

Proof. Assume that C∗ is a d-copula and choose u = (u1, u2, u3) ∈ (s, s + εεε) such that
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2 Improved Fréchet–Hoeffding bounds

C∗(s + εεε)− C∗(s) <
3∑
i=1

(si + εi − ui) and (2.14)

C∗(s + εεε)− C∗(s) >
∑
i∈J

(si + εi − ui) for J = (1, 2), (2, 3), (1, 3); (2.15)

such a u exists due to (2.12). In order to show that QS,C
∗

is not 3-increasing, and thus not a
(proper) copula, it suffices to prove that VQS,C∗ ((u, s +εεε]) < 0. By the definition of VQS,C∗

we have

VQS,C∗ ((u, s + εεε]) = QS,C
∗(s + εεε)−QS,C∗(u1, s2 + ε2, s3 + ε3)

−QS,C∗(s1 + ε1, u2, s3 + ε3)−QS,C∗(s1 + ε1, s2 + ε2, u3)
+QS,C

∗(u1, u2, s3 + ε3) +QS,C
∗(u1, s2 + ε2, u3)

+QS,C
∗(s1 + ε1, u2, u3)−QS,C∗(u).

Analysing the summands we see that:

• QS,C
∗(s + εεε) = C∗(s + εεε) because (s + εεε) ∈ S .

• The expression maxx∈S
{
C∗(x)−∑3

i=1(xi− vi)+
}

where v = (u1, s2 + ε2, s3 + ε3)
attains its maximum either at x = s or at x = s +εεε, thus equals max{C∗(s), C∗(s +
εεε)− (s1 + ε1 − u1)}, while (2.15) yields that C∗(s + εεε)− (s1 + ε1 − u1) > C∗(s).
Moreover, (2.13) yields C∗(s) ≥ W3(s + εεε) ≥ W3(v), since u ∈ (s, s + εεε). Hence,

QS,C
∗(u1, s2 + ε2, s3 + ε3) = C∗(s + εεε)− (s1 + ε1 − u1),

while the expressions for the terms involving (s1 + ε1, u2, s3 + ε3) and (s1 + ε1, s2 +
ε2, u3) are analogous.

• Using the same argumentation, it follows that

QS,C
∗(u1, u2, s3 + ε3) = C∗(s + εεε)−

∑
i=1,2

(si + εi − ui),

while the expressions for the terms involving (u1, s2 + ε2, u3) and (s1 + ε1, u2, u3)
are analogous.

• Moreover, QS,C
∗(u) = C∗(s), which follows from (2.14).
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2.2 Are the improved Fréchet–Hoeffding bounds copulas?

Therefore, putting the pieces together and using (2.14) we get that

VQS,C∗ ((u, s + εεε]) = C∗(s + εεε)− 3C∗(s + εεε) +
3∑
i=1

(si + εi − ui)

+ 3C∗(s + εεε)− 2
3∑
i=1

(si + εi − ui)− C∗(s)

= C∗(s + εεε)− C∗(s)−
3∑
i=1

(si + εi − ui) < 0.

Hence, QS,C
∗

is indeed a proper quasi-copula.

The following result shows that the requirements in Theorem 2.2.1 are minimal, in the
sense that if the prescription set S is contained in a set of the form (2.11) then the lower
bound is a proper quasi-copula.

Corollary 2.2.2. Let C∗ be a 3-copula and S ⊂ I3 be compact. If there exists a compact
set S ′ ⊃ S such that S ′ and Q∗ := QS,C

∗
satisfy the assumptions of Theorem 2.2.1, then

QS,C
∗

is a proper quasi-copula.

Proof. Since Q∗ and S ′ fulfill the requirements of Theorem 2.2.1, it follows that QS
′,Q∗ is

a proper quasi-copula. Now, in order to prove that QS,C
∗

is also a proper quasi-copula we
show that QS

′,Q∗ = QS,C
∗
. Note first that QS,C

∗
is the pointwise lower bound on the set

QS,C∗ , i.e.

QS,C
∗(u) = min

{
Q(u) : Q ∈ QS,C∗

}
= min

{
Q(u) : Q ∈ Q3, Q(x) = C∗(x) for all x ∈ S

}
for all u ∈ I3. Analogously, QS

′,Q∗ is the pointwise lower bound of QS′,Q∗ . Using the
properties of the bounds and the fact that S ⊂ S ′, it follows that QS

′,Q∗(x) = Q∗(x) =
QS,C

∗(x) = C∗(x) for all x ∈ S . Hence, QS
′,Q∗ ∈ QS,C∗ , therefore it holds that

QS,C
∗(u) ≤ QS

′,Q∗(u) for all u ∈ I3. For the reverse inequality, note that for all x ∈ S ′ it
follows from the definition of Q∗ that QS,C

∗(x) = Q∗(x), hence QS,C
∗ ∈ QS′,Q∗ such that

QS,C
∗(u) ≥ QS

′,Q∗(u) for all u ∈ I3. Therefore, QS,C
∗ = QS

′,Q∗ and QS,C
∗

is indeed a
proper quasi-copula.

The next example illustrates Corollary 2.2.2 in the case when S is a singleton.

Example 2.2.2. Let d = 3 and C∗ be the independence copula, i.e. C∗(u1, u2, u3) =
u1u2u3, and S = {1

2}
3. Then, the bound QS,C

∗
is a proper quasi-copula since its volume is
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negative, for example VQS,C∗
((

5
10−

1
20 ,

5
10

]3)
= − 1

40 < 0, however Theorem 2.2.1 does not
apply since S is not of the form (2.11). Nevertheless, using Corollary 2.2.2, we can embed
S in a compact set S ′ such that S ′ and Q∗ := QS,C

∗
fulfill the conditions of Theorem 2.2.1.

To this end let S ′ =
(
[0, 1] \ (s, s+ ε)

)3
=
(
[0, 1] \ ( 4

10 ,
5
10)
)3

, then it follows

3∑
i=1

ε = 3
10 > Q∗

( 5
10 ,

5
10 ,

5
10

)
−Q∗

( 4
10 ,

4
10 ,

4
10

)
=
( 5

10

)3
> 0

and Q∗
( 4

10 ,
4
10 ,

4
10

)
= 0 ≥ W3

( 5
10 ,

5
10 ,

5
10

)
= 0.

Hence,Q∗ and S ′ fulfill conditions (2.12) and (2.13) of Theorem 2.2.1, thus it follows from
Corollary 2.2.2 that QS,C

∗
is a proper quasi-copula. �

Remark 2.2.1. Analogously to Theorem 2.2.1 and Corollary 2.2.2 one obtains that the
upper boundQS,C

∗
is a proper quasi-copula if the set S is of the form (2.11) and the copula

C∗ satisfies

3∑
i=1

εi > C∗(s + εεε)− C∗(s) > 0 and C∗(s + εεε) ≤M3(s),

or if S is contained in a compact set S ′ for which the above hold. The respective details
and proofs are provided in Theorem 2.2.5. �

We are now in the position to state the general result for d > 3. The proof follows the
same lines as the proof of 2.2.1. However, a more intricate notation is required for the
formulation of the result in higher dimensions.

Theorem 2.2.3. Consider the compact subset S of Id

S = [0, 1]× · · · × [0, 1]×
(

[0, 1] \ (si, si + εi)
)

︸ ︷︷ ︸
i−th component

× [0, 1]×· · ·× [0, 1]

×
(

[0, 1] \ (sj, sj + εj)
)

︸ ︷︷ ︸
j−th component

× [0, 1]×· · ·× [0, 1]×
(

[0, 1] \ (sk, sk + εk)
)

︸ ︷︷ ︸
k−th component

× [0, 1]×· · ·× [0, 1],

(2.16)

for s = (si, sj, sk), s = (si + εi, sj + εj, sk + εk) ∈ I3 and εi, εj, εk > 0. Moreover, let C∗
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2.2 Are the improved Fréchet–Hoeffding bounds copulas?

be a d-copula (or a d-quasi-copula) such that

3∑
i=1

εi > C∗(s′I)− C∗(s′I) > 0, (2.17)

C∗(s′I) ≥ Wd(s′I), (2.18)

where I := {i, j, k} and s′I , s′I are defined by the lift operation. Then QS,C
∗

is a proper
quasi-copula.

Proof. From Theorem 2.2.1 we know already that the statement holds if d = 3. For the
general case, i.e. d > 3, choose ul ∈ [0, 1] with ul ∈ (sl, sl + εl) for l ∈ I = {i, j, k}, such
that

C∗(s′I)− C∗(s′I) <
∑
l∈I

(sl + εl − ul) and

C∗(s′I)− C∗(s′I) >
∑
l∈J

(sl + εl − ul) for J = (i, j), (j, k), (i, k);

this exists due to (2.17). Then, considering the set

H = (0, 1]× · · · × (0, 1]× (ui, si + εi]× (0, 1]× · · · × (0, 1]× (uj, sj + εj]× (0, 1]× · · ·
× (0, 1]× (uj, sj + εj]× (0, 1]× · · · × (0, 1]

and using a similar argumentation as in the case d = 3 together with property (QC1), it
follows that

VQS,C∗ (H) = QS,C
∗(s′)−QS,C∗((ui, sj + εj, sk + εk)′

)
− . . .

+QS,C
∗((ui, uj, sk + εk)′

)
+ · · · −QS,C∗

(
u′I
)

= C∗
(
s′I
)
− 3C∗

(
s′I
)

+
∑
l∈I

(sl + εl − ul)

+ 3C∗
(
s′I
)
− 2

∑
l∈I

(sl + εl − ul)− C∗
(
s′I
)

= C∗
(
s′I
)
− C∗

(
s′I
)
−
∑
l∈I

(sl + εl − ul) < 0.

Hence, QS,C
∗

is a proper-quasi-copula.

The following corollary shows that the requirements in Theorem 2.2.3 are minimal, in the
sense that if the prescription set S is contained in a set of the form (2.16) then the lower
bound is a proper quasi-copula. Its proof is analogous to the proof of Corollary 2.2.2 and
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therefore omitted.

Corollary 2.2.4. Let C∗ be a d-copula and S ⊂ Id be compact. If there exists a compact
set S ′ ⊃ S such that S ′ and Q∗ := QS,C

∗
satisfy the assumptions of Theorem 2.2.3, then

QS,C
∗

is a proper quasi-copula.

Finally, we establish that the upper improved Fréchet–Hoeffding from Theorem 2.1.1 is
essentially only a copula in degenerate cases.

Theorem 2.2.5. Consider the compact subset S of Id in (2.16) for s = (si, sj, sk), s =
(si + εi, sj + εj, sk + εk) ∈ I3 and εi, εj, εk > 0. Let C∗ be a d-copula (or d-quasi-copula)
such that

3∑
i=1

εi > C∗(s′I)− C∗(s′I) > 0 and (2.19)

C∗(s′I) ≤Md(s′I), (2.20)

where I = {i, j, k} and s′I and s′I are defined by the lift operation. Then QS,C
∗

is a proper
quasi-copula.

Proof. We show that the result holds for d = 3. The general case for d > 3 follows as
in the proof of Theorem 2.2.3. Let C∗ be a 3-copula and S = I3 \ (s, s + εεε) for some
s ∈ [0, 1]3 and εi > 0, i = 1, 2, 3. Moreover, choose u = (u1, u2, u3) ∈ (s, s +εεε) such that

C∗(s + εεε)− C∗(s) <
3∑
i=1

(si + εi − ui) and (2.21)

C∗(s + εεε)− C∗(s) >
∑
i∈I

(si + εi − ui) for I = (1, 2), (2, 3), (1, 3); (2.22)

such a u exists due to (2.19). Now, in order to show that QS,C
∗

is not d-increasing, and
thus a proper quasi-copula, it suffices to prove that V

Q
S,C∗ ((s,u]) < 0. By the definition of

V
Q
S,C∗ we have

V
Q
S,C∗ ((s,u]) = Q

S,C∗(u)−QS,C
∗
(s1, u2, u3)−QS,C

∗
(u1, s2, u3)−QS,C

∗
(u1, u2, s3)

+Q
S,C∗(s1, s2, u3) +Q

S,C∗(s1, u2, s3) +Q
S,C∗(u1, s2, s3)−QS,C

∗
(s).

Analysing the summands we see that
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2.2 Are the improved Fréchet–Hoeffding bounds copulas?

• Q
S,C∗(u) = minx∈S

{
C∗(x)+∑3

i=1(xi−ui)+
}

= C∗(s+εεε), where the first equality
holds due to (2.20) and the second one due to (2.21).

• Q
S,C∗(s1, u2, u3) = minx∈S

{
C∗(x) + (s1 − x1)+ + (u2 − x2)+ + (u3 − x3)+

}
=

minx∈S
{
C∗(s + εεε), C∗(s) + (u2 − x2)+ + (u3 − x3)+

}
= C∗(s) + (u2 − s2) +

(u3− s3), where the first equality holds due to (2.20) and the third one due to (2.22).
The second equality holds since the minimum is only attained at either s or s + εεε.
Analogously it follows that QS,C

∗
(u1, s2, u3) = C∗(s) + (u1 − s1) + (u3 − s3) and

Q
S,C∗(u1, u2, s3) = C∗(s) + (u1 − s1) + (u2 − s2).

• Similarly, it follows that QS,C
∗
(s1, s2, u3) = C∗(s) + (u3 − s3), QS,C

∗
(u1, s2, s3) =

C∗(s) + (u1 − s1) and QS,C
∗
(s1, u2, s3) = C∗(s) + (u2 − s2).

• In addition, QS,C
∗
(s) = C∗(s) because s ∈ S .

Therefore, putting the pieces together and using (2.21), we get

VQS,C∗ ((s,u]) = C∗(s + εεε)− 3C∗(s)− 2
3∑
i=1

(ui − si) + 3C∗(s) +
3∑
i=1

(ui − si)− C∗(s)

= C∗(s + εεε)− C∗(s)−
3∑
i=1

(ui − si) < 0.

Thus QS,C
∗

is indeed a proper quasi-copula.

The following Corollary shows that the requirements in Theorem 2.2.5 are minimal in the
sense that if the prescription set is contained in a set of the form (2.16) then the upper
bound is a proper-quasi-copula. Its proof is analogous to the proof of Corollary 2.2.2 and
therefore omitted.

Corollary 2.2.6. Let C∗ be a d-copula and S ⊂ Id be compact. If there exists a compact
set S ′ ⊃ S such that S ′ and Q∗ := Q

S,C∗ satisfy the assumptions of Theorem 2.2.5, then
Q
S,C∗ is a proper quasi-copula.

The results presented in this section show that the improved Fréchet–Hoeffding bounds on
CS,C∗ , for a reference copula C∗, fail to be copulas in virtually all situations of interest; for
the definition of CS,C∗ see Remark 2.1.1. In particular, they are not sharp. This motivates
the question whether the bounds are at least pointwise best-possible in the sense that

QS,C
∗(u) = inf

{
C(u) : C ∈ CS,C∗

}
and Q

S,C∗(u) = sup
{
C(u) : C ∈ CS,C∗

}
,
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2 Improved Fréchet–Hoeffding bounds

for all u ∈ Id, under mild conditions on the set S . In our ongoing research we address this
question by means of a mass transport approach and a corresponding dual formulation of
the improved Fréchet–Hoeffding bounds.
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3 Stochastic dominance for
quasi-copulas and applications in
model-free option pricing

In this chapter we relate the improved Fréchet–Hoeffding bounds from Section 2.1 to
bounds on the expectation E[ϕ(X)] for ϕ : Rd

+ → R and an Rd
+-valued random vector

X = (X1, ..., Xd), whose probability distribution is partially unknown. Specifically, we
assume that the marginal distributions Fi of Xi are provided, while only partial informa-
tion on the copula of X is available.

To this end we resort to the theory of stochastic orders and stochastic dominance. However,
since the improved Fréchet–Hoeffding bounds are merely quasi-copulas, existing results
from stochastic order theory which translate bounds on the copula of X into bounds on
the expectation of ϕ(X) do not apply. Even worse, the integrals with respect to quasi-
copulas are not well-defined. Therefore, we derive in Section 3.1 an alternative represen-
tation of multivariate integrals with respect to copulas, which admits also quasi-copulas
as integrators, and establish integrability and continuity properties of this representation.
Moreover, we provide an integral characterization of the lower orthant order on the set of
quasi-copulas and quasi-survival functions in terms of generators consisting of ∆-antitonic
or ∆-monotonic functions, analogous to existing results on integral stochastic orders for
copulas. This enables us to compute bounds on the expectation of ϕ(X) that account for
the available information on the marginal distributions and the copula of X.

We then apply our results in order to compute model-free bounds on the prices of European
options in the presence of dependence uncertainty in Section 3.2. We assume that X models
the terminal value of financial assets whose risk-free marginal distributions can be inferred
from market prices of traded vanilla options on the individual constituents. Moreover,
we suppose that additional information on the dependence structure of X can be obtained
from prices of traded derivatives on X or a subset of its components. This could be e.g.
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3 Stochastic dominance for quasi-copulas and applications in option-pricing

information about the pairwise correlations of the components or prices of traded spread
options. Then, the improved Fréchet–Hoeffding bounds and the integral characterization
of the lower orthant order allow us to efficiently compute bounds on the set of arbitrage-
free prices of ϕ(X) that are compatible with the available information on the distribution of
X. Moreover, we illustrate in numerical applications that the improved Fréchet–Hoeffding
bounds typically lead to a significant improvement of the associated option price estimates
compared to the ones obtained from the ‘standard’ Fréchet–Hoeffding bounds.

The results in this chapter appeared in Lux and Papapantoleon [34].

3.1 Stochastic dominance for quasi-copulas

The aim of this section is to relate the lower orthant order on the set of quasi-copulas or
quasi-survival functions to expectations of the form E[ϕ(X)], for an Rd

+-valued random
vector X = (X1, . . . , Xd) with marginals F1, . . . , Fd and a function ϕ : Rd

+ → R. Using
Sklar’s Theorem, there exists a copulaC such that F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))
for all (x1, . . . , xd) ∈ Rd

+. The expectation hence becomes a function of the copula C.
Define the expectation operator via

πϕ(C) := E[ϕ(X)] =
∫
Rd
ϕ(x1, . . . , xd) dC(F1(x1), . . . , Fd(xd))

=
∫
Id
ϕ(F−1

1 (u1, ), . . . , F−1
d (ud)) dC(u1, . . . , ud). (3.1)

This definition however no longer applies when C is merely a quasi-copula since the in-
tegral in (3.1), and in particular the term dC, are no longer well defined. This is due
to the fact that a quasi-copula C does not necessarily induce a (signed) measure dC
to integrate against. Therefore, we establish a multivariate integration-by-parts formula
which allows for an alternative representation of πϕ(C) that is suitable for quasi-copulas.
Similar representations were obtained by Rüschendorf [52] for a ∆-monotonic function
ϕ fulfilling certain boundary conditions, and by Tankov [64] for general ∆-monotonic
ϕ : R2

+ → R. In addition, we establish properties of the function ϕ such that the extended
mapQd 3 Q 7→ πϕ(Q) is monotonic with respect to the lower orthant order on the setsQd

and Q̂d.

Rüschendorf [52] and Müller and Stoyan [39] show that for ϕ being ∆-antitonic or ∆-
monotonic the map Cd 3 C 7→ πϕ(C) is increasing with respect to ≤ on Cd and Ĉd

respectively. We define ∆-antitonic and ∆-monotonic functions as follows.
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3.1 Stochastic dominance for quasi-copulas

Definition 3.1.1. A functionϕ : Rd
+ → R is called ∆-antitonic if for every subset {i1, . . . , in}

⊆ {1, . . . , d} with n ≥ 2 and every hypercube ×nj=1(aj, bj] ⊂ Rn
+ it holds that

(−1)n∆i1
a1,b1 ◦ · · · ◦∆in

an,bn
ϕ(x) ≥ 0 for all x ∈ Rd

+.

Analogously, ϕ is called ∆-monotonic if for every subset {i1, . . . , in} ⊆ {1, . . . , d} with
n ≥ 2 and every hypercube ×nj=1(aj, bj] ⊂ Rn

+ it holds

∆i1
a1,b1 ◦ · · · ◦∆in

an,bn
ϕ(x) ≥ 0 for all x ∈ Rd

+.

As a consequence of Theorem 3.3.15 in Müller and Stoyan [39] we have forC,C ∈ Cd with
C ≤ C that πϕ(C) ≤ πϕ(C) for all bounded ∆-antitonic functions ϕ. Moreover, if for the
corresponding survival functions it holds that Ĉ ≤ Ĉ, then it follows that πϕ(C) ≤ πϕ(C)
for all bounded ∆-monotonic functions ϕ. In order to formulate analogous results for the
case when C,C are quasi-copulas, we first note that each right-continuous ∆-monotonic
or ∆-antitonic function ϕ : Rd

+ → R induces a possibly signed measure on the Borel σ-
Algebra of Rd

+, which we denote by µϕ; see Lemma 3.5 and Theorem 3.6 in Gaffke [22].
It holds in particular that

µϕ((a1, b1]× · · · × (ad, bd]) = Vϕ((a1, b1]× · · · × (ad, bd]), (3.2)

for hypercubes [a1, b1]×· · ·×[ad, bd] ⊂ Rd
+. Next we define for a subset I = {i1, . . . , in} ⊂

{1, . . . , d} the I-margin of ϕ via

ϕI : Rn
+ 3 (xi1 , . . . , xin) 7→ ϕ(x1, . . . , xd), with xk = 0 for all k /∈ I,

and the associated I-marginal measure µϕI , for which

µϕI ((ai1 , bi1 ]× · · · × (ain , bin ]) = VϕI ((ai1 , bi1 ]× · · · × (ain , bin ]).

Note that if I = {1, . . . , d} then µϕI equals µϕ, while if I ⊂ {1, . . . , d} then µϕI can be
viewed as a marginal measure of µϕ. Now define iteratively

for |I| = 1 : LIϕ(C) :=
∫
R+
ϕ{i1}(xi1) dFi1(xi1);

for |I| = 2 : LIϕ(C) :=− ϕ(0, ..., 0) + L{i1}ϕ (C) + L{i2}ϕ (C)

+
∫
R2

+

ĈI(Fi1(xi1), Fi2(xi2)) dµϕI (xi1 , xi2);
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3 Stochastic dominance for quasi-copulas and applications in option-pricing

for |I| = n > 2 : LIϕ(C) :=
∫
R|I|+

ĈI(Fi1(xi1), . . . , Fin(xin)) dµϕI (xi1 , . . . , xin)

+
∑

J⊂{1,...,n}
J 6=∅

(−1)|J |+1LJϕ(C),

where ĈI denotes the I-margin of the survival function of C. Moreover, in order to sim-
plify the notation in later applications we define for a survival function Ĉ of a d-copula
C the dual operator L̂Jϕ(Ĉ) := LJϕ(C). The following Proposition shows that L{1,...,d}ϕ and
L̂{1,...,d}ϕ are alternative representations of the map πϕ, in the sense that

πϕ(C) = L{1,...,d}ϕ (C) = L̂{1,...,d}ϕ (Ĉ)

for all copulas C.

Proposition 3.1.2. Let ϕ : Rd
+ → R be right-continuous, ∆-monotonic or ∆-antitonic and

C be a d-copula. Then πϕ(C) = L{1,...,d}ϕ (C) = L̂{1,...,d}ϕ (Ĉ).

Proof. Note first that the equalityL{1,...,d}ϕ (Ĉ) = L̂{1,...,d}ϕ (Ĉ) follows immediately from the
definition of L{1,...,d}ϕ and L̂{1,...,d}ϕ . It thus suffices to show that πϕ(C) = L{1,...,d}ϕ (C). To
this end, assume first that ϕ(x1, . . . , xd) = Vϕ((0, x1]×· · ·× (0, xd]) for all (x1, . . . , xd) ∈
Rd

+. An application of Fubini’s Theorem yields directly that

πϕ(C) =
∫
Rd+
ϕ(x1, . . . , xd) dC(F1(x1), . . . , Fd(xd))

=
∫
Rd+
Vϕ((0, x1]× · · · × (0, xd]) dC(F1(x1), . . . , Fd(xd))

=
∫
Rd+
µϕ((0, x1]× · · · × (0, xd]) dC(F1(x1), . . . , Fd(xd))

=
∫
Rd+

(∫
Rd+

1x′1<x1 · · ·1x′d<xddµϕ(x′1, . . . , x′d)
)

dC(F1(x1), . . . , Fd(xd))

=
∫
Rd+

(∫
Rd+

1x′1>x1 · · ·1x′d>xddC(F1(x′1), . . . , Fd(x′d))
)

dµϕ(x1, . . . , xd)

=
∫
Rd+
Ĉ(F1(x1), . . . , Fd(xd)) dµϕ(x1, . . . , xd), (3.3)

where the last equality follows from (1.5). Next, we drop the assumption ϕ(x1, . . . , xd) =
Vϕ((0, x1]× · · · × (0, xd]) and show that the general statement holds by induction over the
dimension d. By Proposition 2 in [64] we know that the statement is valid for d = 2. Now,
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3.1 Stochastic dominance for quasi-copulas

assume it holds true for d = n− 1, then for d = n we have that

ϕ(x1, . . . , xn) = Vϕ((0, x1]×· · ·× (0, xn])− [Vϕ((0, x1]×· · ·× (0, xn])−ϕ(x1, . . . , xn)].

Moreover, the term −[Vϕ((0, x1]× · · · × (0, xn])− ϕ(x1, . . . , xn)] can be expressed as

− [Vϕ((0, x1]× · · · × (0, xn])− ϕ(x1, . . . , xn)]
=

∑
(y1,...,yd)∈×ni=1{0,xi}

−(−1)|{i∈N : yi=0}|ϕ(y1, ..., yn) + ϕ(x1, ..., xn)

=
∑

(y1,...,yd)∈×ni=1{0,xi}
(−1)|{i∈N : yi=0}|+1ϕ(y1, ..., yn) + ϕ(x1, ..., xn)

=
∑

J⊆{1,...,n}
(−1)|J |+1ϕJ(x1, ..., xd) + ϕ(x1, ..., xn)

=
∑

J⊆{1,...,n}
J 6=∅

(−1)|J |+1ϕJ(x1, ..., xn),

(3.4)

It is hence the sum of functions ϕJ , each with domain Rn−|J |
+ and n− |J | ≤ n − 1 due to

J 6= ∅. It follows

πϕ(C) =
∫
ϕ(x1, . . . , xn) dC(F1(x1), . . . , Fn(xn))

=
∫
Vϕ((0, x1]× · · · × (0, xn]) dC(F1(x1), . . . , Fn(xn))

−
∫

[Vϕ((0, x1]× · · · × (0, xn])− ϕ(x1, . . . , xn)] dC(F1(x1), . . . , Fn(xn))

=
∫
Ĉ(F1(x1), . . . , Fn(xn)) dµϕ(x1, . . . , xn)

+
∫

[−Vϕ((0, x1]× · · · × (0, xn]) + ϕ(x1, . . . , xn)] dC(F1(x1), . . . , Fn(xn))

=
∫
Ĉ(F1(x1), . . . , Fn(xn)) dµϕ(x1, . . . , xn)

+
∫ [ ∑

J⊆{1,...,n}
J 6=∅

(−1)|J |+1ϕJ(x1, ..., xn)
]

dC(F1(x1), . . . , Fn(xn))

=
∫
Ĉ(F1(x1), . . . , Fn(xn)) dµϕ(x1, . . . , xn) +

∑
J⊆{1,...,n}

J 6=∅

(−1)|J |+1LJϕ(C),

where we apply equation (3.3) to
∫
Vϕ((0, x1]× · · · × (0, xn]) dC(F1(x1), . . . , Fn(xn)) in

order to obtain the third equality, and the fourth equality follows from (3.4). Finally we use
the induction hypothesis to obtain the last equality as for each J ⊆ {1, . . . , n} with J 6= ∅
the domain of ϕJ is Rn−|J | with n− |J | ≤ n− 1.
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3 Stochastic dominance for quasi-copulas and applications in option-pricing

Proposition 3.1.2 enables us to extend the notion of the expectation operator πϕ to quasi-
copulas and establish monotonicity properties for the generalised mapping.

Definition 3.1.3. Let ϕ : Rd
+ → R be right-continuous and ∆-antitonic or ∆-monotonic.

Then, the quasi-expectation operator for Q ∈ Qd is defined via

πϕ(Q) :=
∫
Rd+
Q̂(F1(x1), . . . , Fd(xd)) dµϕ(x1, . . . , xd) +

∑
J⊆{1,...,n}

J 6=∅

(−1)|J |+1LJϕ(Q).

Moreover, we define for a quasi-survival function Q̂ ∈ Q̂d the dual operator by

π̂ϕ(Q̂) :=
∫
Rd+
Q̂(F1(x1), . . . , Fd(xd)) dµϕ(x1, . . . , xd) +

∑
J⊆{1,...,n}

J 6=∅

(−1)|J |+1L̂Jϕ(Q̂).

Lemma 3.1.4. Let ϕ(x1, ..., xd) = 1x1≤y1,...,xd≤yd for (y1, ..., yd) ∈ Rd
+. Then it holds for

every quasi-copula Q ∈ Qd that πϕ(Q) = Q(F1(y1), ..., Fd(yd)).

Proof. For ease of notation we first recall the notion of the lift operator uJ for a sub-
set J ⊆ {1, ..., d} and u ∈ [0, 1]d: uJ = (v1, ..., vd) with vi = ui when i ∈ J and
vi = 1 for i /∈ J . We now show by induction that for every J ⊂ {1, ..., d} it holds that
LJϕ(Q) = Q

(
(F1(y1), ..., Fd(yd))J

)
. The assertion then follows immediately by choosing

J = {1, ..., d}.

When |J | = 2 we have

πϕ(Q) = −ϕ(0, ..., 0) + L{i1}ϕ (Q) + L{i2}ϕ (Q) +
∫
R2

+

Q̂J(Fi1(xi1), Fi2(xi2)) dµϕJ (xi1 , xi2)

= −1 +Q(1, ..., 1, Fi1(yi1), 1, ..., 1) +Q(1, ..., 1, Fi2(yi2), 1, ..., 1)
+ Q̂J(Fi1(ui1), Fi2(yi2))

= −1 + Fi1(yi1) + Fi2(yi2) + Q̂(0, ..., 0, Fi1(yi1), 0, ..., 0, Fi2(yi2), 0, ..., 0)
= Q

(
(F1(y1), ..., Fd(yd))J

)
,

(3.5)

where we apply the fact that ϕ(0, ..., 0) = 1 together with the definition of the survival
function Q̂, as well as

L{i1}ϕ (Q) =
∫
R+
ϕ(0, ..., 0, xi1 , 0, ..., 0) dFi1(xi1) =

∫
R+

1xi1≤yi1 dFi1(xi1)

= Fi1(yi1) = Q(1, ..., 1, Fi1(yi1), 1, ..., 1),
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3.1 Stochastic dominance for quasi-copulas

and analogously for L{i2}ϕ (Q). Hence, the assertion holds for |J | = d − 1. When |J | = d

we obtain

πϕ(Q) =
∫
Rd+
Q̂(F1(x1), . . . , Fd(xd)) dµϕ(x1, . . . , xd) +

∑
J⊆{1,...,d}

J 6=∅

(−1)|J |+1LJϕ(Q)

= (−1)d
{
Q̂(F1(y1), ..., Fd(yd))− [VQ((F1(y1), 1]× · · · × (Fd(yd), 1])

+ (−1)dQ(F1(y1), ..., Fd(yd))]
}

= (−1)d
{

(−1)dQ(F1(y1), ..., Fd(yd))
}

= Q(F1(y1), ..., Fd(yd)),

where we apply the induction hypothesis and the definition of the Q-volume VQ to obtain
the second equality and the third equality follows immediately from the definition of the
survival function, i.e. Q̂(F1(y1), ..., Fd(yd)) = VQ((F1(y1), 1] × · · · × (Fd(yd), 1]). The
proof is hence complete.

Theorem 3.1.5. Let Q,Q ∈ Qd and Q̂, Q̂ ∈ Q̂d, then it holds

(i) Q ≤ Q =⇒ πϕ(Q) ≤ πϕ(Q) for all ∆-antitonic ϕ : Rd
+ → R

s.t. the integrals exist;

(ii) Q̂ ≤ Q̂ =⇒ π̂ϕ(Q̂) ≤ π̂ϕ(Q̂) for all ∆-monotonic ϕ : Rd
+ → R

s.t. the integrals exist.

Moreover, if F1, . . . , Fd are continuous then the converse statements are also true.

Proof. We prove the statements assuming that the condition ϕ(x1, . . . , xd) = Vϕ((0, x1]×
· · · × (0, xd]) holds. The general case follows then by induction as in the proof of Proposi-
tion 3.1.2. Let ϕ be ∆-antitonic and Q ≤ Q, then it follows

πϕ(Q) =
∫
Rd+
Q̂(F1(x1), . . . , Fd(xd)) dµϕ(x1, . . . , xd)

=
∫
Rd+
VQ
(
(F1(x1), 1]× · · · × (Fd(xd), 1]

)
dµϕ(x1, . . . , xd)

=
∫
Rd+

{
Q(1, . . . , 1)−Q(F1(x1), 1, . . . , 1)− · · · −Q(1, . . . , 1, Fd(xd))

+Q(F1(x1), F2(x2), 1, . . . , 1) + · · ·+Q(1, . . . , 1, Fd−1(xd−1), Fd(xd))

− · · ·+ (−1)dQ(F1(x1), . . . ., Fd(xd))
}

dµϕ(x1, . . . , xd)
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3 Stochastic dominance for quasi-copulas and applications in option-pricing

=
∫
Rd+

{
Q(1, . . . , 1) +Q(F1(x1), 1, . . . , 1) + · · ·+Q(1, . . . , 1, Fd(xd))

+Q(F1(x1), F2(x2), 1, . . . , 1) + · · ·+Q(1, . . . , 1, Fd−1(xd−1), Fd(xd))

+ · · ·+Q(F1(x1), . . . ., Fd(xd))
}

d|µϕ|(x1, . . . , xd),

where for the last equality we use that ϕ is ∆-antitonic, hence µϕ has alternating signs. A
similar representation holds for πϕ(Q), thus

πϕ(Q)− πϕ(Q)

=
∫
Rd

{[
Q(F1(x1), 1, . . . , 1)−Q(F1(x1), 1, . . . , 1)

]
+ · · ·

+
[
Q(1, . . . , 1, Fd(xd)−Q(1, . . . , 1, Fd(xd))

]
+
[
Q(F1(x1), F2(x2), 1, . . . , 1)−Q(F1(x1), F2(x2), 1, . . . , 1)

]
+ · · ·

+
[
Q(1, . . . , 1, Fd−1(xd−1), Fd(xd))−Q(1, . . . , 1, Fd−1(xd−1), Fd(xd))

]
+ · · ·

+
[
Q(F1(x1), . . . ., Fd(xd))−Q(F1(x1), . . . , Fd(xd))

}
d|µϕ|(x1, . . . , xd) ≥ 0,

since Q ≤ Q. Hence assertion (i) is true. Regarding (ii), we have directly that

π̂ϕ(Q̂)− π̂ϕ(Q̂)

=
∫
Rd
Q̂(F1(x1), . . . , Fd(xd))− Q̂(F1(x1), . . . , Fd(xd)) dµϕ(x1, . . . , xd) ≥ 0,

where we used that ϕ is ∆-monotonic, thus µϕ is a positive measure, as well as Q̂ ≤ Q̂.

As for the converse statements, assume that F1, . . . , Fd are continuous. If πϕ(Q) ≤ πϕ(Q)
holds for all ∆-antitonic ϕ, then it holds in particular for all ϕ of the form ϕ(x1, . . . , xd) =
1x1≤u1,...,xd≤ud for arbitrary (u1, . . . , ud) ∈ (0,∞]d. An application of Lemma 3.1.4 then
yields

πϕ(Q) ≤ πϕ(Q) =⇒ Q(F1(u1), . . . , Fd(ud)) ≤ Q(F1(u1), . . . , Fd(ud)),

while from the fact that πϕ(Q) ≤ πϕ(Q) holds for all choices of (u1, . . . , ud) and the
continuity of the marginals it follows that (i) holds. Assertion (ii) follows by an analo-
gous argument. To this end, note that if π̂ϕ(Q̂) ≤ π̂ϕ(Q̂) holds for all ∆-monotonic ϕ,
then it holds in particular for ϕ of the form ϕ(x1, . . . , xd) = 1x1≥u1,...,xd≥ud for arbitrary
(u1, . . . , ud) ∈ (0,∞]d, so that Q̂(F1(u1), . . . , Fd(ud)) ≤ Q̂(F1(u1), . . . , Fd(ud)).
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3.1 Stochastic dominance for quasi-copulas

Finally, we provide an integrability condition for the extended map πϕ(·) based on the
marginals F1, . . . , Fd and the properties of the function ϕ. In particular, the finiteness of
πϕ(C) is independent of C being a copula or a proper quasi-copula.

Proposition 3.1.6. Let ϕ : Rd
+ → R be right-continuous, ∆-antitonic or ∆-monotonic such

that

∑
J⊂{1,...,d}

d∑
i=1


∫
R+
|ϕJ(x, . . . ., x)| dFi(x)

 <∞. (3.6)

Then the maps πϕ and π̂ϕ are well-defined and continuous with respect to the pointwise
convergence of quasi-copulas.

Proof. First, we show that for C ∈ Cd the expectation∫
Rd+
ϕ(x1, . . . , xd) dC(F1(x1), . . . , Fd(xd))

is finite by induction over the dimension d. By [64, Proposition 2] we know that the
statement is true for d = 2. Assume that the statement holds for d = n− 1, then for d = n

we have

|ϕ(x1, . . . , xn)|
= |Vϕ((0, x1]× · · · × (0, xn])− [Vϕ((0, x1]× · · · × (0, xn])− ϕ(x1, . . . , xn)]|
≤ |Vϕ((0, x1]× · · · × (0, xn])|+ |Vϕ((0, x1]× · · · × (0, xn])− ϕ(x1, . . . , xn)|
≤ |Vϕ((0, x1]n)|+ · · ·+ |Vϕ((0, xn]n)|+ |Vϕ((0, x1]× · · · × (0, xn])− ϕ(x1, . . . , xn)|

≤
n∑
i=1

∑
J⊂{1,...,n}

|ϕJ(xi, . . . , xi)|+ |Vϕ((0, x1]× · · · × (0, xn])− ϕ(x1, . . . , xn)|

≤
n∑
i=1

∑
J⊂{1,...,n}

|ϕJ(xi, . . . , xi)|+ const ·
∑

J⊂{1,...,n}
|ϕJ(x1, . . . , xn)|, (3.7)

where the second inequality follows from the definition of Vϕ and×ni=1(0, xi] ⊆
⋃n
i=1(0, xi]n.

Now, note that for J ⊂ {1, . . . , n}, ϕ is a function with domain R|J |+ where |J | < n, hence
by the induction hypothesis and (3.6) we get that∫

R|J|+

|ϕJ(x1, . . . ., xn)| dCJ(F1(x1), . . . , Fn(xn)) <∞
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for each J ⊂ {1, . . . , n}, where |J | ≤ n− 1. Hence

b := const ·
∑

J⊂{1,...,n}


∫
R|J|+

|ϕJ(x1, . . . ., xn)| dCJ(F1(x1), . . . , Fn(xn))

 <∞.

Finally, from (3.6) and (3.7) we obtain∫
Rn+
|ϕ(x1, . . . , xn)| dC(F1(x1), . . . , Fn(xn))

≤
∑

J⊂{1,...,n}

n∑
i=1


∫
R+
|ϕJ(x, . . . ., x)| dFi(x)

+ b <∞.

Hence the assertion is true for Cd 3 C 7→ πϕ(C). Now for the extended map, let Q be a
proper quasi-copula and assume that ϕ is ∆-antitonic. Then it follows from Theorem 3.1.5
and the properties of the upper Fréchet–Hoeffding bound that 0 ≤ πϕ(Q) ≤ πϕ(Md) <∞,
where the finiteness of πϕ(Md) follows from the fact that Md ∈ Cd. By the same token,
since all quasi-copulas are bounded from above by the upper Fréchet–Hoeffding bound
Md and the integrals with respect to Md exist, the dominated convergence theorem yields
that πϕ is continuous with respect to the pointwise convergence of quasi-copulas. The
well-definedness of π̂ϕ for ∆-monotonic ϕ follows analogously.

3.2 Applications in model-free finance

A direct application of our stochastic dominance results for quasi-copulas is the computa-
tion of bounds on the prices of multi-asset options assuming that the marginal distributions
of the assets fully known, while the dependence structure between them is only partially
known. Partial information on the joint behaviour of several underlyings can be inferred
from market prices of traded multi-asset derivatives such as spread or basket options. This
information then translates into improved Fréchet–Hoeffding bounds by the methods pre-
sented in Section 2.1. Finally, by an application of the stochastic dominance results in
section 3.1 we can relate the improved Fréchet–Hoeffding bounds to estimates on expec-
tations, and hence option prices. The resulting option price bounds are model-free in the
sense that they only depend on available market information and no model for the joint
risk-free distribution of the assets is assumed. The literature on model-free bounds for
multi-asset option prices focuses almost exclusively on basket options, see e.g. Hobson
et al. [27, 28], d’Aspremont and El Ghaoui [14] and Peña et al. [42], while Tankov [64]
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considers general payoff functions in a two-dimensional setting.

We consider European-style options whose payoffs depend on a positive random vector
S = (S1, . . . , Sd). The constituents of S represent the values of the option’s underlyings
at the time of maturity. In the absence of arbitrage opportunities, the existence of a risk-
neutral probability measure Q for S is guaranteed by the fundamental theorem of asset
pricing. Then, the price of an option on S equals the discounted expectation of its payoff
under a risk-neutral probability measure. We assume that all information about the risk-
neutral distribution of S or its constituents comes from prices of traded derivatives on these
assets, and that single-asset European call options with payoff (Si −K)+ for i = 1, . . . , d
and for all strikes K > 0 are liquidly traded in the market. Assuming zero interest rates,
the prices of these options are given by Πi

K = EQ[(Si − K)+]. Using these prices, one
can fully recover the risk neutral marginal distributions Fi of Si as shown by Breeden and
Litzenberger [11].

Let ϕ : Rd
+ → R be the payoff of a European-style option on S. Given the marginal risk-

neutral distributions F1, . . . , Fd of S1, . . . , Sd, the price of ϕ(S) becomes a function of the
copula C of S and is provided by the expectation operator as defined in (3.1), i.e.

EQ[ϕ(S1, . . . , Sd)] = πϕ(C).

Assuming that the only available information about the risk-neutral distribution of S is the
marginal distributions, the set of all arbitrage-free prices for ϕ(S) equals

Π := {πϕ(C) : C ∈ Cd}.

Moreover, if additional information on the copula C is available, one can narrow the set
of arbitrage-free prices by formulating respective constraints on the copula. Let therefore
C∗ represent any of the constrained sets of copulas from Section 2.1, and define the set of
arbitrage-free prices compatible with the respective constraints via

Π∗ := {πϕ(C) : C ∈ C∗}.

Since C∗ ⊂ C we have immediately that Π∗ ⊂ Π.

Theorem 3.1.5 yields that if the payoff ϕ is ∆-antitonic, then πϕ(C) is monotonically
increasing in the copula C with respect to the order ≤. Conversely if ϕ is ∆-monotonic,
then πϕ(C) is monotonically increasing in the survival-copula Ĉ with respect to ≤. In the
following result, we exploit this fact to compute bounds on the sets Π and Π∗.
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Proposition 3.2.1. Let ϕ be ∆-antitonic and C∗ be a constrained set of copulas. Then if
Q∗, Q

∗ ∈ Qd are bounds on C∗ in the sense that Q∗ ≤ C ≤ Q
∗ for all C ∈ C∗, it follows

that

πϕ(Wd) ≤ πϕ(Q∗) ≤ inf Π∗ ≤ πϕ(C) ≤ sup Π∗ ≤ πϕ(Q∗) ≤ πϕ(Md) = sup Π

for all C ∈ C∗ when the respective integrals exist. Moreover, it holds that inf Π = πϕ(Wd)
when d = 2. If ϕ is ∆-monotonic and Q̂

∗
, Q̂
∗
∈ Q̂d are bounds on C∗ in the sense that

Q̂
∗ ≤ Ĉ ≤ Q̂

∗
for all C ∈ C∗, then it follows that

π̂ϕ(Wd(1−·)) ≤ π̂ϕ(Q̂∗) ≤ inf Π∗ ≤ πϕ(C) ≤ sup Π∗ ≤ π̂ϕ(Q̂
∗
) ≤ π̂ϕ(Md(1−·)) = sup Π

for all C ∈ C∗ if the respective integrals exist and inf Π = π̂ϕ(Wd(1− ·)) holds if d = 2.

Proof. Let C ∈ C∗, then it holds that

Wd ≤ Q∗ ≤ C ≤ Q
∗ ≤Md,

and the result follows from Theorem 3.1.5(i) for a ∆-antitonic function ϕ. Note that
sup Π = πϕ(Md) since the upper Fréchet–Hoeffding bound is a copula. The second state-
ment follows analogously from the properties of the improved Fréchet–Hoeffding bounds
on survival functions and an application of Theorem 3.1.5(ii).

Remark 3.2.1. Let us point out that πϕ(Md) is an upper bound on the set of prices Π even
under weaker conditions on ϕ than ∆-antitonicity. This is due to the fact that the upper
Fréchet–Hoeffding bound is a copula and thus a sharp bound on the set of all copulas as
well as the properties of the support of the measure dMd. Hobson et al. [27] e.g. derive
upper bounds on basket options and show that they are attained by a comonotonic random
vector having copula Md. Moreover, Carlier [12] obtain bounds on Π for ϕ being mono-
tonic of order 2 using an optimal transport approach. Moreover, he shows that the bounds
are attained for a monotonic rearrangement of the a random vector which in turn leads to
the upper Fréchet–Hoeffding bound. �

Remark 3.2.2. LetQ∗ be any of the improved Fréchet–Hoeffding bounds from Section 2.1.
Then the inequality

inf Π ≤ πϕ(Q∗) (3.8)

does not hold in general. In particular, the sharp bound inf Π without additional depen-
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dence information might exceed the price bound obtained using Q∗. A sufficient condition
for (3.8) to hold is the existence of a copula C ∈ Cd such that C ≤ Q∗. However, this con-
dition is difficult to verify in practice. Moreover, in many cases inf Π cannot be computed
analytically so that a direct comparison of the bounds is mostly not possible. On the other
hand, one can resort to computational approaches in order to check whether (3.8) is satis-
fied. A numerical method to compute inf Π for continuous payoff functions ϕ, fulfilling a
minor growth condition, based on assignment problems is presented in Preischl [43]. This
approach thus lends itself for a direct comparison of the bounds. �

Let us recall that by Proposition 3.1.2 the computation of πϕ or π̂ϕ amounts to an integration
with respect to the measure µϕ that is induced by the function ϕ. Table 3.1 below provides
some examples of payoff functions ϕ, such that ϕ or −ϕ is ∆-antitonic or ∆-monotonic,
along with explicit representations of the integrals

∫
Q̂I(Fi1(xi1), . . . , Fin(xin)) dµϕI =:∫

g(xi1 , ..., xin) dµϕI in πϕ and π̂ϕ for I = {i1, ..., in}; see again Definition 3.1.3. An
important observation here is that the multidimensional integrals with respect to the copula
reduce to one-dimensional integrals, which makes the computation of option prices very
fast and efficient.

Remark 3.2.3 (Differentiable payoffs). Assume that the payoff function is differentiable,
i.e. the partial derivatives of the function ϕ exist, then we obtain the following representa-
tion for the integral with respect to µϕ:

∫
Rd+
g(x1, . . . , xd) dµϕ(x1, . . . , xd) =

∫
Rd+
g(x1, . . . , xd)

∂dϕ(x1, . . . , xd)
∂x1 · · · ∂xd

dx1 · · · dxd.

The formula holds since from the definition of the volume Vϕ we get that

Vϕ(H) =
∫
H

∂dϕ(x1, . . . , xd)
∂x1 · · · ∂xd

dx1 · · · dxd,

for every H-box in Rd
+. Differentiable ∆-antitonic functions occur in problems related

to utility maximization; see e.g. the definition of Mixex Utility Functions in Tsetlin and
Winkler [67]. �

Remark 3.2.4 (Basket and spread options). Although basket options on two underlyings
are ∆-monotonic, their higher-dimensional counterparts, i.e. ϕ : Rd

+ 3 (x1, ..., xd) 7→(∑d
i=1 αixi −K

)+
for αi, ..., αd ∈ R+, are neither ∆-monotonic nor ∆-antitonic in gen-

eral. However, from the monotonicity of bivariate basket options it follows that their
expectation is monotonic with respect to the lower and upper orthant order on the set
of 2-copulas. Therefore, prices of bivariate basket options provide information that can
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Payoff ϕ(x1, . . . , xd) ∆-anti-/monotonic
∫
g(xi1 , . . . , xin) dµϕI

Digital put on maximum
1max{x1,...,xd}≤K ϕ antitonic

g(K, . . . ,K), |I| even
−g(K, . . . ,K), |I| odd

Digital call on minimum
1min{x1,...,xd}≤K −ϕ monotonic

−g(K, . . . ,K), I = {1, . . . , d}
0, else

Call on minimum
(min{x1, . . . , xd} −K)+ ϕ monotonic


∫∞
K g(x, . . . , x)dx, I = {1, . . . , d}

0, else

Put on minimum
(K −min{x1, . . . , xd})+ −ϕ monotonic


∫K

0 g(x, . . . , x)dx, I = {1, . . . , d}
0, else

Call on maximum
(max{x1, . . . , xd} −K)+ −ϕ antitonic

−
∫∞
K g(x, . . . , x)dx, |I| even∫∞

K g(x, . . . , x)dx, |I| odd

Put on maximum
(K −max{x1, . . . , xd})+ ϕ antitonic

−
∫K

0 g(x, . . . , x)dx, |I| even∫K
0 g(x, . . . , x)dx |I| odd

Table 3.1: Examples of payoff functions for multi-asset options and the respective repre-
sentation of the integral with respect to the measure µϕ. The formulas for the
digital call on the maximum and the digital put on the minimum can be obtained
by a put-call parity.

be accounted for by Theorems 2.1.3 or 2.1.10. In particular, if ϕ : R2
+ 3 (x1, x2) 7→

(α1x1 +α2x2−K)+ then ϕ is ∆-monotonic for α1α2 > 0, thus ρ(C) := πϕ(C) is increas-
ing with respect to the lower orthant order on C2. Analogously, if ϕ is a spread option, i.e.
α1α2 < 0, then ρ(C) := −πϕ(C) is increasing with respect to the lower orthant order on
C2. Thus, by means of Theorem 2.1.3 one can translate market prices of basket or spread
options into improved Fréchet–Hoeffding bounds for 2-copulas which may then serve as
information to compute higher-dimensional bounds by means of Theorem 2.1.10. �

An interesting question arising naturally is under what conditions the bounds in Proposition
3.2.1 are sharp, in the sense that

inf Π∗ = πϕ(Q∗) and sup Π∗ = πϕ(Q∗), (3.9)
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and similarly for π̂ϕ(Q̂∗) and π̂ϕ(Q̂
∗
). In Section 2.2 we show that generally the improved

Fréchet–Hoeffding bounds fail to be copulas, hence they are not sharp. However, intro-
ducing rather strong conditions on the function ϕ we still obtain sharpness of the price
bounds in the sense of (3.9) when Q∗ and Q∗ are the improved Fréchet–Hoeffding bounds
provided in Theorem 2.1.1. In order to formulate such conditions we introduce the notion
of an increasing d-track as defined by Genest et al. [23].

Definition 3.2.2. Let G1, . . . , Gd be continuous, univariate distribution functions on R,
such that Gi(−∞) = 0 and Gi(∞) = 1 for i = 1, . . . , d. Then

T d := {(G1(x), . . . , Gd(x)) : x ∈ R} ⊂ Id

is an (increasing) d-track in Id.

The following result establishes sharpness of the option price bounds, under conditions
which are admittedly rather strong for practical applications.

Proposition 3.2.3. Let ϕ : Rd
+ → R be right-continuous, ∆-monotonic and such that

ϕ(x1, . . . , xd) = Vϕ((0, x1]× · · · × (0, xd]). Assume that

B := {(F1(x1), . . . , Fd(xd)) : x ∈ suppµϕ} ⊂ T d,

for some d-track T d. Moreover, consider the upper and lower bounds Q̂
S,Ĉ∗

, Q̂
S,Ĉ∗

from
Corollary 2.1.2, for a copula C∗. Then, if S ⊂ T d it follows that

inf{πϕ(C) : C ∈ ĈS,Ĉ∗} = π̂ϕ
(
Q̂
S,Ĉ∗)

and sup{πϕ(C) : C ∈ ĈS,Ĉ∗} = π̂ϕ
(
Q̂
S,Ĉ∗)

,

where ĈS,Ĉ∗ := {C ∈ Cd : Ĉ(x) = Ĉ∗(x), for all x ∈ S}.

Proof. Since u 7→ Q̂
S,Ĉ∗(1−u) and u 7→ Q̂

S,Ĉ∗
(1−u) are quasi-copulas and B is a subset

of a d-track T d, it follows from the properties of a quasi-copula (c.f. Rodriguez-Lallena

and Ubeda-Flores [50]) that there exist survival copulas Ĉ
S,Ĉ∗

and Ĉ
S,Ĉ∗

which coincide

with Q̂
S,Ĉ∗

and Q̂
S,Ĉ∗

respectively on T d. Hence, it follows for the lower bound

π̂ϕ
(
Q̂
S,Ĉ∗) =

∫
Rd
Q̂
S,Ĉ∗(F1(x1), . . . , Fd(xd)) dµϕ(x1, . . . , xd)

=
∫
B
Q̂
S,Ĉ∗(u1, ..., ud) dµϕ(F−1

1 (u1), . . . , F−1
d (ud))
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=
∫
B
Ĉ
S,Ĉ∗(u1, ..., ud) dµϕ(F−1

1 (u1), . . . , F−1
d (ud)) = π̂ϕ

(
Ĉ
S,Ĉ∗)

,

where we use the fact that ϕ(x1, . . . , xd) = Vϕ((0, x1]× · · · × (0, xd]) for the first equality

and the second equality follows from the definition of B as well as Q̂
S,Ĉ∗

and Ĉ
S,Ĉ∗

being
equal on T d, and thus also on B.

In addition, using that Ĉ
S,Ĉ∗

is a copula that coincides with Q̂
S,Ĉ∗

on T d and Q̂
S,Ĉ∗(u) =

Ĉ∗(u) for u ∈ S ⊂ T d, it follows that Ĉ
S,Ĉ∗ ∈ ĈS,Ĉ∗ , hence by the ∆-monotonicity of ϕ

we get that π̂ϕ(ĈS,Ĉ
∗

) = inf{πϕ(C) : C ∈ ĈS,Ĉ∗}. The proof for the upper bound can be
obtained in the same way.

Finally, we are ready to apply our results in order to compute bounds on prices of multi-
asset options when additional information on the dependence structure of S is available.
The following examples illustrate this approach for different payoff functions and different
kinds of additional information.

Example 3.2.1. Consider an option ϕ(S) on three assets S = (S1, S2, S3). We are inter-
ested in computing bounds on the price of ϕ(S) assuming that partial information on the
dependence structure of S is available. In particular, we assume that the marginal distri-
butions Si ∼ Fi are implied by the market prices of European call options. Moreover, we
assume that partial information on the dependence structure stems from market prices of
liquidly traded digital options of the form 1max{Si,Sj}<K for (i, j) = (1, 2), (1, 3), (2, 3) and
K ∈ R+. The prices of such options are immediately related to the copula C of S since

EQ[1max{S1,S2}<K ] = Q(S1 < K,S2 < K,S3 <∞) = C(F1(K), F2(K), 1),

and analogously for (i, j) = (1, 3), (2, 3), for some martingale measure Q.

Considering a set of strikes K := {K1, . . . , Kn}, one can recover the values of the copula
of S at several points. Let Π(i,j)

K denote the market price of a digital option on (Si, Sj) with
strike K. These market prices imply then the following prescription on the copula of S:

C(F1(K), F2(K), 1) = Π(1,2)
K ,

C(F1(K), 1, F3(K)) = Π(1,3)
K , (3.10)

C(1, F2(K), F3(K)) = Π(2,3)
K ,

for K ∈ K. Therefore, the collection of strikes induces a prescription on the copula on a
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compact subset of I3 of the form

S =
⋃
K∈K

(
F1(K), F2(K), 1

)
∪
(
F1(K), 1, F3(K)

)
∪
(

1, F2(K), F3(K)
)
.

The set of copulas that are compatible with this prescription is provided by

CS,Π =
{
C ∈ C3 : C(x) = Π(i,j)

K for all x ∈ S
}

;

see again (3.10). Hence, we can now employ Theorem 2.1.1 in order to compute the
improved Fréchet–Hoeffding bounds on the set CS,Π as follows:

Q
S,Π(u) = min

(
u1, u2, u3, min

(i,j),K

{
Π(i,j)
K +

∑
l=i,j

(
ul − Fl(K)

)+
})

QS,Π(u) = max
(

0,
3∑
i=1

ui − 2, max
(i,j),K,

q∈{1,2,3}\{i,j}

{
Π(i,j)
K −

∑
l=i,j

(
Fl(K)− ul

)+
+ (1− uq)

})
.

Observe that the minimum and maximum in the equations above are taken over the set S ,
using simply a more convenient parametrization. Using these improved Fréchet–Hoeffding
bounds, we can now apply Proposition 3.2.1 and compute bounds on the price of an op-
tion ϕ(S) depending on all three assets. That is, we can compute bounds on the set of
arbitrage-free option prices

{
πϕ(C) : C ∈ CS,Π

}
which are compatible with the informa-

tion stemming from pairwise digital options.

In order to illustrate our results, we consider a digital option depending on all three assets,
i.e. ϕ(S) = 1max{S1,S2,S3}<K . In order to generate prices of pairwise digital options, we use
the multivariate Black–Scholes model without drift, thus S = (S1, S2, S3) is multivariate
log-normally distributed with Si = si exp(−1

2 +Xi) where (X1, X2, X3) ∼ N (0,Σ) with

Σ =


1 ρ1,2 ρ1,3

ρ1,2 1 ρ2,3

ρ1,3 ρ2,3 1

 .

The following figures show the improved price bounds on the 3-asset digital option as
a function of the strike K, as well as the prices using the ‘standard’ Fréchet–Hoeffding
bounds where we fix the value, si = 10. As a benchmark, we also include the prices in the
Black–Scholes model. We consider two scenarios for the pairwise correlations: in the left
plot ρi,j = 0.3 and in the right plot ρ1,2 = 0.5, ρ1,3 = −0.5, ρ2,3 = 0.
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Figure 3.1: Bounds on the prices of 3-asset digital options as functions of the strike.

Observe that the improved Fréchet–Hoeffding bounds that account for the additional infor-
mation from market prices of pairwise digital options lead in both cases to a considerable
improvement of the option price bounds compared to the ones obtained with the ‘standard’
Fréchet–Hoeffding bounds. The improvement seems to be particularly pronounced if there
are negative and positive correlations among the constituents of S; see the right plot. �

Example 3.2.2. As a second example, we assume that digital options on S = (S1, S2, S3)
of the form 1min{S1,S2,S3}≥Ki for only two strikes K1, K2 ∈ R+ are observed in the market.
Their market prices are denoted by Π1,Π2, and immediately imply a prescription on the
survival copula Ĉ of S as follows:

Πi = Q(S1 ≥ Ki, S2 ≥ Ki, S3 ≥ Ki) = Ĉ(F1(Ki), F2(Ki), F3(Ki))

for i = 1, 2. This is a prescription on two points, hence

S = {(F1(Ki), F2(Ki), F3(Ki)) : i = 1, 2} ⊂ I3,

and we can employ Proposition 2.1.2 to compute the lower and upper bounds Q̂
S,Π

and

Q̂
S,Π

on the set of copulas ĈS,Π = {C ∈ C3 : Ĉ(x) = Πi, x ∈ S} which are compatible
with this prescription. We have that

Q̂
S,Π

(u) = min
(

1− u1, 1− u2, 1− u3,min
i=1,2

{
Πi +

3∑
l=1

(
Fl(Ki)− ul

)+
})
,

Q̂
S,Π(u) = max

(
0,

3∑
i=1

(1− ui)− 2,max
i=1,2

{
Πi −

3∑
l=1

(
ul − Fl(Ki)

)+
})
.
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Using these bounds, we can now apply Proposition 3.2.1 and compute improved bounds
on the set of arbitrage-free prices for a call option on the minimum of S, whose payoff
is ϕ(S) = (min{S1, S2, S3} − K)+. The set of prices for ϕ(S) that are compatible with
the market prices of given digital options is denoted by Π∗ =

{
π̂ϕ(Ĉ) : C ∈ ĈS,Π

}
, and

since ϕ is ∆-monotonic it holds that π̂ϕ(Q̂S,Π) ≤ π ≤ π̂ϕ(Q̂
S,Π

) for all π ∈ Π∗. The
computation of π̂ϕ(Q) reduces to

π̂ϕ(Q) =
∫ ∞
K

Q(F1(x), F2(x), F3(x)) dx,

see Table 3.1, which is an integral over a subset of the 3-track

{(F1(x), F2(x), F3(x)) : x ∈ R+} ⊃ {(F1(x), F2(x), F3(x)) : x ∈ [K,∞)} ⊃ S.

Hence, Lemma 3.2.3 yields that the price bounds π̂ϕ(Q̂S,Π) and π̂ϕ(Q̂
S,Π

) are sharp, that is

π̂ϕ
(
Q̂
S,Π) = inf{π : π ∈ Π∗} and π̂ϕ

(
Q̂
S,Π)

= sup{π : π ∈ Π∗}.

Analogous to the previous example we assume, for the sake of the numerical illustration,
that S follows the multivariate Black–Scholes model and the pairwise correlations are de-
noted by ρi,j . We then use this model to generate prices of digital options that determine
the prescription. The following figures depict the bounds on the prices of a call on the min-
imum of S stemming from the improved Fréchet–Hoeffding bounds as a function of the
strike K, as well as those from the ‘standard’ Fréchet–Hoeffding bounds. The price from
the multivariate Black–Scholes model is also included as a benchmark. Again we consider
two scenarios for the pairwise correlations: in the left plot ρi,j = 0 and in the right one
ρi,j = 0.5. We can observe once again, that the use of the additional information leads to a
significant improvement of the bounds relative to the ‘standard’ situation, although in this
example the additional information is merely two prices.
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Figure 3.2: Bounds on the prices of options on the minimum of S as functions of the strike.

phantom text �
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4 Dependence uncertainty in risk
aggregation

In this chapter we study the evaluation of multivariate risks under dependence uncertainty.
The quantification of model ambiguity in risk management has become a central issue in
financial applications due to tightening regulatory requirements (e.g. Basel III) regarding
provisions for model risks. Measuring risk under uncertainty often relates to the computa-
tion of bounds on probabilities of the form P(ψ(X) < s), where X = (X1, . . . , Xd) is an
Rd-valued random vector and ψ : Rd → R an aggregation function. Here X can be thought
of as a vector modelling d risks in a portfolio and ψ as a function to aggregate these risks.
The most commonly used aggregation function is the sum of the individual risks, while the
minimum and maximum are also possible choices.

Resuming the framework of dependence uncertainty, we assume that the marginal distri-
butions of the constituents Xi ∼ Fi for i = 1, . . . , d are known, while the dependence
structure between the components of X is at most partially known. We then derive bounds
on the quantile function of ψ(X) using the available information on the distribution of X.
By inversion, the bounds on the distribution of ψ(X) can be translated immediately into
estimates on the Value-at-Risk (VaR) of ψ(X).

Note that the quantile function P(ψ(X) < s) can be expressed analogously in terms of the
expectation E[1ψ(X)<s]. Thus for ϕ(x) = 1ψ(x)<s the problem relates to the discussion in
Chapter 3, where we use concepts from stochastic dominance to derive bounds on expec-
tations. These arguments apply in the same way to E[1ψ(X)<s] whenever x 7→ 1ψ(x)<s is
∆-monotonic or ∆-antitonic. For the most common aggregation function ψ(x1, ..., xd) =
x1 + · · ·+ xd it follows however that x 7→ 1ψ(x)<s is neither ∆-monotonic nor ∆-antitonic
when d > 2. This calls for a different approach to compute VaR bounds in the presence of
dependence uncertainty.

A significant part of the related literature focuses on the situation where only the marginals
F1, . . . , Fd are known and no information at all on the dependence structure of X is avail-
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able. In this case, explicit bounds on the distribution function of the sum of two random
variables, i.e. ψ(X) = X1 + X2, were derived by Makarov [36] and for more general ψ
and d = 2 by Rüschendorf [53] in the early 1980’s. These results were later generalised
for functions of more than two variables, for instance by Denuit, Genest, and Marceau
[15] for the sum of finitely many risks, and by Embrechts, Höing, and Juri [18] and Em-
brechts and Puccetti [16] for more general aggregation functions. These bounds however
may fail to be sharp. Therefore, numerical schemes to compute sharp bounds on quantile
functions of aggregations have become increasingly popular. The Rearrangement Algo-
rithm, which was introduced by Puccetti and Rüschendorf [44] and Embrechts, Puccetti,
and Rüschendorf [19], represents an efficient method to approximate sharp bounds on the
VaR of aggregations ψ(X), under additional requirements on the marginal distributions
F1, . . . , Fd. Alternatively, Wang et al. [70] used the concept of joint and complete mixabil-
ity to derive sharp bounds in the homogeneous case under some monotonicity requirements
on the marginals. However, the complete absence of information on the dependence struc-
ture typically leads to very wide bounds that are not sufficiently informative for practical
applications. In addition, a complete lack of information about the dependence structure
of X is often unrealistic, since quantities such as correlations or regions of the distribution
function of X can be estimated with a sufficient degree of accuracy. Therefore, the quest
for methods to improve the marginals-only bounds by including additional dependence
information has turned into a thriving area of mathematical research in recent years.

Several analytical and numerical approaches to derive risk bounds using additional de-
pendence information have been developed recently. Analytical bounds were derived by
Embrechts, Höing, and Juri [18] and Embrechts and Puccetti [16] for the case that a lower
bound on the copula of X is given. Moreover, Embrechts and Puccetti [17] and Puccetti and
Rüschendorf [46] establish bounds when the laws of some lower dimensional marginals of
X are known. Analytical bounds that account for positive or negative dependence assump-
tions were presented in Embrechts, Höing, and Juri [18] and Rüschendorf [56]. Bernard,
Rüschendorf, and Vanduffel [9] derive risk bounds when an upper bound on the variance
of ψ(X) is prescribed, and they present a numerical scheme to efficiently compute these
bounds. In addition, Bernard and Vanduffel [7] consider the case where the distribution of
X is known only on a subset of its domain and establish a version of the Rearrangement
Algorithm to account for this type of dependence information. A detailed account of this
literature can be found in the overview article Rüschendorf [59].

Continuing this line of research, in this chapter we develop alternative approaches to com-
pute VaR bounds for aggregations of multiple risks in the presence of dependence un-
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certainty. In Section 4.1 we first review the Improved Standard Bounds on VaR which
relate a lower bound on the copula of the risk vector to an upper bound on the aggregated
VaR for all componentwise increasing aggregation functions. The computation of the Im-
proved Standard Bounds typically involves the solution of a high-dimensional optimization
problem. For ψ being either the minimum or the maximum of the individual risks we de-
rive an explicit representation of the bounds that allows us to circumvent the optimization
problem. We then use the improved Fréchet–Hoeffding bounds presented in Section 2.1 in
conjunction with the Improved Standard Bounds in order to account for partial dependence
information in the computation of VaR estimates.

We proceed in Section 4.2 with the development of a reduction principle to incorporate
extreme value information, such as the distribution of partial minima or maxima of the
risk vector X, in the computation of risk bounds for the sum X1 + · · · + Xd. The term
partial maxima hereby refers to the maximum of lower dimensional marginals of X, i.e.
max{Xj1 , . . . , Xin} for 1 ≤ i1 ≤ · · · ≤ in ≤ d, and analogously for the minimum. We
thereby interpolate between the marginals-only case and the situation where the distribu-
tions of the lower-dimensional marginals of X are completely specified, as in [17, 46].
Extreme value information can typically be inferred form empirical data, with an appropri-
ate degree of accuracy, using tools from extreme value theory and is thus available in many
practical applications.

The results in this chapter appeared in Lux and Papapantoleon [35].

4.1 Standard and Improved Standard Bounds on
Value-at-Risk

We consider a vector of d risks X = (X1, . . . , Xd) and an aggregation function ψ : Rd →
R, and want to quantify the risk of ψ(X) by means of VaR. This corresponds to the quantile
function of ψ(X), i.e. when ψ(X) ∼ Fψ(X) then the VaR of ψ(X) for a certain confidence
level α ∈ (0, 1) is given by the quantity

VaRα(ψ(X)) :=
(
Fψ(X)

)−1
(α) = inf{x ∈ R : Fψ(X)(x) > α}.

Typical levels of α are close to 1 in practice, assuming that risks (or losses) correspond to
the right tail of the distribution. Once the distribution of ψ(X) is specified, the determi-
nation of VaR amounts to a simple inversion of the quantile function. If the distribution
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Fψ(X) is not known, but instead the joint law of X is given, then the problem lies in the
computation of the quantile function of ψ(X) from the law of X. In order to solve this
problem, one can resort to numerical integration techniques or Monte Carlo methods. For
the important case ψ(X) = X1 + · · ·+Xd, two efficient algorithms to determine the law of
the aggregated risk given the joint distribution of X are presented in Arbenz, Embrechts,
and Puccetti [1, 2].

In the situation of dependence uncertainty it follows that for most functionals ψ of interest,
neither the distribution of ψ(X) can be determined completely, nor can its risk be calcu-
lated exactly. Indeed, each model for X that is consistent with the available information
can produce a different risk estimate. Therefore, one is interested in deriving upper and
lower bounds on the risk of ψ(X) over the set of distributions that comply with the given
information. These bounds are then considered best or worst case estimates for the VaR of
ψ(X), given the available information about the distribution of X.

In the situation of complete dependence uncertainty, where only the marginals F1, . . . , Fd

are known and one has no information about the copula of X, bounds for the quantiles
of the sum X1 + · · · + Xd were derived in a series of papers, starting with the results
by Makarov [36] and Rüschendorf [54] for d = 2, and their extensions for d > 2 in
[21, 15, 18]. These bounds are in the literature referred to as Standard Bounds and they are
given by

max
{

sup
U(s)

(
F−1 (u1) +

d∑
i=2

Fi(ui)
)
− d+ 1, 0

}
≤ P(X1 + · · ·+Xd < s)

≤ min
{

inf
U(s)

d∑
i=1

F−i (ui), 1
}
,

(4.1)

where U(s) = {(u1, . . . , ud) ∈ Rd : u1 + · · ·+ud = s} and F−i denotes the left-continuous
version of Fi. These bounds hold for all random variables X with marginals F1, . . . , Fd,
and the corresponding bounds on the VaR of the sum X1 + · · · + Xd are given by the
respective inverse functions.

Embrechts et al. [18] and Embrechts and Puccetti [16] established improvements of the
Standard Bounds that account for a lower bound on the copula of X or its survival func-
tion. These bounds are in the literature referred to as Improved Standard Bounds and they
relate the problem of computing improved VaR estimates in the presence of additional de-
pendence information to the task of improving the Fréchet–Hoeffding bounds on copulas.
Specifically, they consider for an Rd-valued random vector X with marginals F1, . . . , Fd
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the following problem

mC0,ψ(s) := inf
{
PC(ψ(X) < s) : C ∈ Cd, C0 ≤ C

}
,

M
Ĉ1,ψ

(s) := sup
{
PC(ψ(X) < s) : C ∈ Cd, Ĉ1 ≤ Ĉ

}
,

for some copulas C0 and C1, where

PC(ψ(X) < s) :=
∫
Rd

1{ψ(x1,...,xd)<s} dC(F1(x1), . . . , Fd(xd)).

The following bounds on the quantities mC0,ψ(s) and M
Ĉ1,ψ

(s) were presented in [18, 16].

Theorem 4.1.1 (Improved Standard Bounds). Let X = (X1, ..., Xd) be an Rd-valued
random vector with copula C and marginals F1, . . . , Fd and let ψ : Rd → R be increasing
in each coordinate. Assume that there exist copulas C0, C1 such that C0 ≤ C and Ĉ1 ≤ Ĉ.
Then it holds that

mC0,ψ(s) ≥ sup
x1,...,xd−1∈R

C0
(
F1(x1), . . . , Fd−1(xd−1), F−d (ψ∗x−d(s))

)
=: mC0,ψ(s),

M
Ĉ1,ψ

(s) ≤ inf
x1,...,xd−1∈R

1− Ĉ1
(
F1(x1), . . . , Fd−1(xd−1), Fd(ψ∗x−d(s))

)
=: M

Ĉ1,ψ
(s),

where x−d = (x1, . . . , xd−1) and ψ∗x−d(s) := sup{xd ∈ R : ψ(x−d, xd) < s}.

A careful examination of the proof of Theorem 3.1 in Embrechts and Puccetti [16] reveals
that the result holds also when C0, resp. Ĉ1, is just increasing, resp. decreasing, in each
coordinate. Hence, they hold in particular when C0 is a quasi-copula and Ĉ1 a quasi-
survival function. The above bounds relate to the VaR of ψ(X) in the following way.

Remark 4.1.1. Let ψ : Rd → R be increasing in each component and the copula C of X be
such that Q0 ≤ C and Q̂1 ≤ Ĉ, for a quasi-copula Q0 and a quasi-survival function Q̂1.
Then

M
−1
Q̂1,ψ

(α) ≤ VaRα(ψ(X)) ≤ m−1
Q0,ψ(α).

�

Besides the aggregation functionψ(x1, . . . , xd) = x1+· · ·+xd, the operationsψ(x1, . . . , xd)
= max{x1, . . . , xd} and ψ(x1, . . . , xd) = min{x1, . . . , xd} are also of particular interest in
risk management, however fewer methods to handle dependence uncertainty for these op-
erations exist; cf. Embrechts et al. [20]. In the following proposition we establish bounds
for the minimum and maximum operations in the presence of copula bounds using straight-
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forward computations, and further we show that these bounds coincide with the ones from
Theorem 4.1.1.

Proposition 4.1.2. Let X = (X1, ..., Xd) be an Rd-valued random vector with copula C
and marginals F1, . . . , Fd, and let Q,Q be quasi-copulas. Then we have that

mQ,max(s) := inf
{
PC(max(X1, ..., Xd) < s) : Q ≤ C

}
≥ Q(F−1 (s), . . . , F−d (s)) = mQ,max(s)

MQ,max(s) := sup
{
PC(max(X1, ..., Xd) < s) : C ≤ Q

}
≤ Q(F−1 (s), . . . , F−d (s)),

Where mQ,max(s) is given in Theorem 4.1.1. Analogously, if Q̂ and Q̂ are quasi-survival
functions we obtain

m
Q̂,min

(s) := inf
{
PC(min(X1, ..., Xd) < s) : Ĉ ≤ Q̂

}
≥ 1− Q̂(F1(s), . . . , Fd(s))

M
Q̂,min(s) := sup

{
PC(min(X1, ..., Xd) < s) : Q̂ ≤ Ĉ

}
≤ 1− Q̂(F1(s), . . . , Fd(s)) = M

Q̂,min(s),

where M
Q̂,min(s) is given in Theorem 4.1.1.

Proof. Let ψ(x1, . . . , xd) = max{x1, . . . , xd}, then for any copula C we have that

PC(max{X1, . . . , Xd} < s) = PC(X1 < s, . . . , Xd < s) = C(F−1 (s), . . . , F−d (s)),

using Sklar’s Theorem for the last equality. Hence, it follows immediately that

mQ,max(s) = inf
{
C(F−1 (s), . . . , F−d (s)) : Q ≤ C

}
≥ Q(F−1 (s), . . . , F−d (s))

and MQ,max(s) = sup
{
C(F−1 (s), . . . , F−d (s)) : C ≤ Q

}
≤ Q(F−1 (s), . . . , F−d (s)).

Moreover, since

ψ∗x−d(s) = sup{xd ∈ R : ψ(x−d, xd) < s}

= sup{xd ∈ R : max{x1, . . . , xd} < s} =

s, x1, . . . , xd−1 < s

−∞, otherwise,
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we get from Theorem 4.1.1 that

mQ,max(s) = sup
x1,...,xd−1<s

Q
(
F1(x1), . . . , Fd−1(xd−1), F−d (ψ∗x−d(s))

)
= sup

x1,...,xd−1<s
Q
(
F1(x1), . . . , Fd−1(xd−1), F−d (s)

)
= Q(F−1 (s), . . . , F−d (s)),

where the last equality follows from the fact that Q is a quasi-copula, hence it is increasing
in each component such that the supremum is attained at (F−1 (s), . . . , F−d (s)).

Similarly, we have for ψ(x1, . . . , xd) = min{x1, . . . , xd} and any copula C that

PC(min{X1, . . . , Xd} < s) = 1− PC(min{X1, . . . , Xd} ≥ s)
= 1− Ĉ(F1(s), . . . , Fd(s)),

where the last equality follows from the definition of Ĉ. Hence it follows

m
Q̂,min

(s) = inf
{

1− Ĉ(F1(s), . . . , Fd(s)) : Ĉ ≤ Q̂
}
≥ 1− Q̂(F1(s), . . . , Fd(s))

and analogously M
Q̂,min(s) ≤ 1 − Q̂(F1(s), . . . , Fd(s)). Moreover, it follows from Theo-

rem 4.1.1 again that

M
Q̂,min(s) = inf

x1,...,xd−1<s
1− Q̂

(
F1(x1), . . . , Fd−1(xd−1), Fd(ψ∗x−d(s))

)
= inf

x1,...,xd−1<s
1− Q̂

(
F1(x1), . . . , Fd−1(xd−1), Fd(s))

)
= 1− Q̂

(
F1(s), . . . , Fd(s)

)
.

The proof is hence complete.

Combining the Improved Standard Bounds on VaR with the improved Fréchet–Hoeffding
bounds in Section 2.1 allows us to use different types of dependence information in the
computation of risk estimates. In the following we illustrate this procedure and derive
VaR bounds using the information that the copula of the risk vector lies the proximity of a
reference model.

Approaches to compute robust risk estimates over a class of models that lie in the vicin-
ity of a reference model have been proposed earlier in the literature. Glasserman and Xu
[25] derive robust bounds on the portfolio variance, the conditional VaR and the CVA over
the class of models within a relative entropy distance of a reference model. Barrieu and
Scandolo [3] establish bounds on the VaR of a univariate random variable given that its
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distribution is close to a reference distribution in the sense of the Kolmogorov–Smirnov or
Lévy distance. In a multivariate setting, Blanchet and Murthy [10] use an optimal transport
approach to derive robust bounds on quantities such as ruin probabilities, over a neighbour-
hood of models defined in terms of the Wasserstein distance.

Example 4.1.1. We consider a portfolio of three risks (X1, X2, X3) withX1 ∼ GP(0, 2, 0.5),
where GP(µ, ξ, σ) denotes the Generalised Pareto distribution with location, scale and
shape parameters equal to µ, ξ and σ respectively, and X2 ∼ LN (2, 0.5) as well as
X3 ∼ LN (1, 1), where LN (µ, σ) refers to the log-normal distribution with parameters
µ and σ. We assume that the reference model C∗ is a Student-t copula with equicorrelation
matrix and two degrees of freedom, and we are interested in computing bounds on the VaR
over the class of models in the δ-neighbourhood of C∗ as measured by the Kolmogorov–
Smirnov distance. In other words, we consider the class of copulas

CDKS,δ :=
{
C ∈ Cd : DKS(C,C∗) ≤ δ

}
,

and using Theorem 2.1.7 and Lemma 2.1.8 we obtain the bounds QDKS,δ and QDKS,δ on the
copulas in CDKS,δ.

Then, we apply Proposition 4.1.2 using QDKS,δ and QDKS,δ in order to compute estimates on
the VaR of max{X1, X2, X3} over the class of models in the vicinity of C∗. The following
table shows the confidence level α and the upper and lower Standard Bounds in the first two
columns. The third, fourth and fifth column contain the upper and lower improved bounds
based on the information on the distance from C∗ for different levels of the threshold δ.
Moreover we indicate the improvement over the Standard Bounds in percentage terms.
For the computation of these estimates we assumed that the pairwise correlations of the
t-copula C∗ equal 0.5. The results are rounded to one decimal number for the sake of
legibility.

α (lower : upper)
δ = 0.005

(lower : upper)
impr.

%
δ = 0.01

(lower : upper)
impr.

%
δ = 0.02

(lower : upper)
impr.

%
90% (14.0 : 18.0) (15.4 : 15.9) 87 (15.2 : 16.3) 72 (14.8 : 16.9) 47
95% (16.8 : 23.0) (19.3 : 20.8) 75 (18.8 : 21.8) 51 (17.8 : 21.7) 37
98% (24.2 : 32.6) (26.3 : 32.6) 25 (24.2 : 32.6) 0 (24.2 : 32.6) 0

Table 4.1: Standard and improved VaR bounds for max{X1, X2, X3} given a threshold on
the distance from the reference t-copula C∗ with pairwise correlation equal to
0.5.
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The next table is analogous to Table 4.1, but this time higher dependence is prescribed,
assuming that the pairwise correlations of the t-copula C∗ are equal to 0.9.

α (lower : upper)
δ = 0.005

(lower : upper)
impr.

%
δ = 0.01

(lower : upper)
impr.

%
δ = 0.02

(lower : upper)
impr.

%
90% (14.0 : 18.0) (14.5 : 15.0) 87 (14.3 : 15.3) 75 (14.0 : 15.8) 55
95% (16.8 : 23.0) (18.0 : 19.4) 77 (17.4 : 20.1) 56 (16.8 : 22.5) 8
98% (24.2 : 32.6) (24.2 : 31.0) 20 (24.2 : 32.6) 0 (24.2 : 32.6) 0

Table 4.2: Standard and improved VaR bounds for max{X1, X2, X3} given a threshold on
the distance from the reference t-copula C∗ with pairwise correlation equal to
0.9.

The following observations ensue from this example: (i) The addition of partial informa-
tion reduces significantly the spread between the upper and lower bounds. This reduc-
tion is more pronounced as the threshold δ decreases; in other words, the more reliable
the reference model, the more pronounced the reduction of model risk. (ii) The level of
improvement decreases, sometimes dramatically, with increasing confidence level α. In
particular, for α = 99% there was no improvement found, at least for the values of δ used
above. (iii) The improvement is more pronounced in the high-dependence scenario, with
improvements over the Standard Bounds of up to 87%. �

4.2 Improved bounds for Value-at-Risk using
extreme value information

In this section we improve the Standard Bounds on the VaR of the sumX1 + · · ·+Xd in the
situation where, besides the marginal distributions, the laws of the minima and maxima of
some subsets of the risks X1, . . . , Xd are known. Specifically, we assume that for a system
J1, . . . , Jm ⊂ {1, . . . , d} the distributions of maxj∈Jn Xj or minj∈Jn Xj for n = 1, . . . ,m
are given. This setting can be viewed as an interpolation between the marginals-only case
and the situation where the lower-dimensional marginals of the vectors (Xj)j∈Jn are com-
pletely specified. The latter setting has been studied extensively in the literature, and risk
bounds for aggregations of X given some of its lower-dimensional marginals were obtained
e.g. by Rüschendorf [55], Embrechts and Puccetti [17] and Puccetti and Rüschendorf
[46]. In practice however, it is often difficult to determine the distributions of the lower-
dimensional vectors (Xj)j∈Jn . In particular for large dimensions of the subsets, a vast
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amount of data is required to estimate the distribution of (Xj)j∈Jn with sufficient accuracy.
Thus, having complete information about lower-dimensional marginals of (X1, . . . , Xd)
turns out to be a rather strong assumption. Therefore, methods that interpolate between
this scenario and the marginals-only case are of practical interest. Extending the reduc-
tion principle in Puccetti and Rüschendorf [46], we develop in the following a method to
improve the Standard Bounds when instead of the distribution of (Xj)j∈Jn , only the dis-
tribution of the maximum maxj∈Jn Xj or minimum minj∈Jn Xj is known. Let us point
out that obtaining information about the maximum or minimum of a sequence of random
variables is the central theme of extreme value theory, which provides a rich collection of
methods for their estimation; see e.g. Beirlant, Goegebeur, Teugels, and Segers [6, Chapter
9].

Let us denote I := {1, . . . , d} and J := {1, . . . ,m}.

Theorem 4.2.1. Let (X1, . . . , Xd) be a random vector with marginals F1, . . . , Fd, and con-
sider a collection E = {J1, . . . , Jm} of subsets Jn ⊂ I for n ∈ J with

⋃
n∈J Jn = I.

Denote by Gn the distribution of Yn = maxj∈Jn Xj . Then it follows that

inf
{
P(X1 + · · ·+Xd ≤ s) : Xi ∼ Fi, i ∈ I,max

j∈Jn
Xj ∼ Gn, n ∈ J

}
≥ sup

(α1,...,αm)∈A
inf

{
P(α1Y1 + · · ·+ αmYm ≤ s) : Yn ∼ Gn, n ∈ J

}
=: mE,max(s),

where

A =
{

(α1, . . . , αm) ∈ Rm
+ :

m∑
n=1

αn max
j∈Jn

xj ≥
d∑
i=1

xi, for all (x1, . . . , xd) ∈ Rd
}
6= ∅.

Moreover if (X1, . . . , Xd) is Rd
+-valued, then

sup
{
P(X1 + · · ·+Xd ≤ s) : Xi ∼ Fi, i ∈ I,max

j∈Jn
Xj ∼ Gn, n ∈ J

}
≤ inf

(α1,...,αm)∈A
sup

{
P(α1Y1 + · · ·+ αmYm ≤ s) : Yn ∼ Gn, n ∈ J

}
=: ME,max(s),

where

A =
{

(α1, . . . , αm) ∈ Rm
+ :

m∑
n=1

αn max
j∈Jn

xj ≤
d∑
i=1

xi, for all (x1, . . . , xd) ∈ Rd
+

}
6= ∅.

Proof. We first show that the lower bound mE,max is valid. It follows from
⋃m
n=1 Jn =
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{1, . . . , d} that A 6= ∅. Indeed, choosing for instance αn = |Jn| we get that
∑
j∈Jn xj ≤

αn maxj∈Jn xj , for all (x1, . . . , xd) ∈ Rd and n = 1, . . . ,m. Hence

m∑
n=1

αn max
j∈Jn

xj ≥
m∑
n=1

∑
j∈Jn

xj ≥
d∑
i=1

xi for all (x1, . . . , xd) ∈ Rd.

Then, it follows for arbitrary (α1, . . . , αm) ∈ A that

{
m∑
n=1

αn max
j∈Jn

Xj ≤ s

}
⊆
{

d∑
i=1

Xi ≤ s

}
,

hence

inf
{
P(X1 + · · ·+Xd ≤ s) : Xi ∼ Fi, i ∈ I,max

j∈Jn
Xj ∼ Gn, n ∈ J

}
≥ inf

{
P
(

m∑
n=1

αn max
j∈Jn

Xj ≤ s

)
: Xi ∼ Fi, i ∈ I,max

j∈Jn
Xj ∼ Gn, n ∈ J

}
= inf

{
P(α1Y1 + · · ·+ αmYm ≤ s) : Yn ∼ Gn, n ∈ J ,

}
.

Now, since (α1, . . . , αm) ∈ Awas arbitrary, it follows that the lower bound holds by taking
the supremum over all elements in A.

Likewise for the upper bound, we note that since (X1, . . . , Xd) is Rd
+-valued, (0, . . . , 0) and

(1, . . . , 1) belong to A, hence it is not empty. Moreover, for arbitrary (α1, . . . , αm) ∈ A, it
follows that {

m∑
n=1

αn max
j∈Jn

Xj ≤ s

}
⊇
{

d∑
i=1

Xi ≤ s

}
,

due to the fact that (X1, . . . , Xd) is non-negative and
∑
j∈Jn xj ≥

∑m
n=1 αn maxj∈Jn xj .

Hence, we get that

sup
{
P(X1 + · · ·+Xd ≤ s) : Xi ∼ Fi, i ∈ I,max

j∈Jn
Xj ∼ Gn, n ∈ J

}
≤ sup

{
P
(

m∑
n=1

αn max
j∈Jn

Xj ≤ s

)
: Xi ∼ Fi, i ∈ I,max

j∈Jn
Xj ∼ Gn, n ∈ J

}
= sup

{
P(α1Y1 + · · ·+ αmYm ≤ s) : Yn ∼ Gn, n ∈ J

}
.

Since (α1, . . . , αm) ∈ A was arbitrary, it follows that the upper bound holds indeed.

Remark 4.2.1. The assumption
⋃m
n=1 Jn = {1, . . . , d} can always be met by adding sin-

gletons to E , i.e. Jn = {in} for in ∈ {1, . . . , d}, since the marginal distributions of
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4 Dependence uncertainty in risk aggregation

(X1, . . . , Xd) are known. However, the bounds are valid even when the marginal distribu-
tions are not known. �

By the same token, the following result establishes bounds on the quantile function of
X1 + · · ·+Xd when distributions of some minima are known.

Theorem 4.2.2. Consider the setting of Theorem 4.2.1 and denote by Hn the distribution
of Zn = minj∈Jn Xj . Then it follows that

sup
{
P(X1 + · · ·+Xd ≤ s) : Xi ∼ Fi, i ∈ I,min

j∈Jn
Xj ∼ Hn, n ∈ J

}
≤ inf

(α1,...,αm)∈B
sup

{
P(α1Z1 + · · ·+ αmZm ≤ s) : Zn ∼ Hn, n ∈ J

}
=: ME,min(s),

where

B =
{

(α1, . . . , αm) ∈ Rm
+ :

m∑
n=1

αn min
j∈Jn

xj ≤
d∑
i=1

xi, for all (x1, . . . , xd) ∈ Rd
}
6= ∅.

Moreover if (X1, . . . , Xd) is Rd
−-valued, then

inf
{
P(X1 + · · ·+Xd ≤ s) : Xi ∼ Fi, i ∈ I,min

j∈Jn
Xj ∼ Hn, n ∈ J

}
≥ sup

(α1,...,αm)∈B
inf

{
P(α1Z1 + · · ·+ αmZm ≤ s) : Zn ∼ Hn, n ∈ J

}
=: mE,min(s),

where

B =
{

(α1, . . . , αm) ∈ Rm
+ :

m∑
n=1

αn min
j∈Jn

xj ≥
d∑
i=1

xi, for all (x1, . . . , xd) ∈ Rd
−

}
6= ∅.

The proof follows along the same lines of argumentation as the proof of Theorem 4.2.1,
and is therefore omitted.

The computation of the bounds presented in Theorems 4.2.1 and 4.2.2 can be cumbersome
for two reasons. Firstly, for fixed (α1, . . . , αm) there does not exist a method to compute
sharp analytical bounds on the set

{
P(α1Y1 + · · ·+αmYm ≤ s) : Yn ∼ Gn, n = 1, . . . ,m},

except when m = 2. This problem can however be circumvented either by using the Stan-
dard Bounds in (4.1), or numerically, by an application of the Rearrangement Algorithm
of Embrechts et al. [19]. Using the Rearrangement Algorithm, we are able to approximate
upper and lower bounds on the set in an efficient way. Secondly, the determination of the
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4.2 Improved bounds for Value-at-Risk using extreme value information

sets A, A and B, B depends on the system J1, . . . , Jm and is, in general, not straightfor-
ward. However, the following application demonstrates that, even for possibly non-optimal
elements in A, A and B, B, the bounds in Theorems 4.2.1 and 4.2.2 yield a significant im-
provement over the Standard Bounds.

To this end we estimate the probability P(α1Y1 + · · ·+ αmYm ≤ s) for fixed (α1, . . . , αm)
by means of the Standard Bounds given in (4.1), i.e.

max
{

0, sup
U(s)

m∑
i=1

G−i

(
ui
αi

)
−m+ 1

}
≤ P(α1Y1 + · · ·+ αmYm ≤ s)

≤ min
{

1, inf
U(s)

m∑
i=1

G−i

(
ui
αi

)}
,

where U(s) = {(u1, . . . , um) ∈ Rm : u1 + · · · + um = s} and G−i denotes the left-
continuous version of Gi. Thus, the bounds mE,max and ME,max are estimated by

mE,max(s) ≥ sup
(α1,...,αm)∈A

max
{

0, sup
U(s)

m∑
i=1

G−i

(
ui
αi

)
−m+ 1

}
,

ME,max(s) ≤ inf
(α1,...,αm)∈A

min
{

1, inf
U(s)

m∑
i=1

G−i

(
ui
αi

)}
.

(4.2)

The following example illustrates the improvement achieved by the VaR bounds in (4.2),
that account for extreme value information.

Example 4.2.1. We consider a portfolio X = (X1, . . . , X6), where

X1, X2, X3 ∼ GP(0, 2, 0.5) and X4, X5, X6 ∼ GP(0, 4, 0.5),

for GP(µ, ξ, σ) denoting the Generalised Pareto distribution with location, scale and shape
parameters equal to µ, ξ and σ respectively. We then analyse the improvement over the
Standard Bounds when additional information on the dependence structure is taken into
account. In particular, we assume that the distributions Gn of the maxima maxj∈Jn Xj are
known for J1 = {1, 2, 3} and J2 = {4, 5, 6}. In this case, it follows from Theorem 4.2.1
and equation (4.2), that

sup
(α1,...,α8)∈A

max
{

0, sup
U(s)

(
G−1

(
u1

α1

)
+G−2

(
u2

α2

)
+

6∑
i=1

F−i

(
ui+2

αi+2

))
− 7

}
≤ inf

{
P(X1 + · · ·+X6 ≤ s) : X1, X2, X3 ∼ Pareto2, X4, X5, X6 ∼ Pareto4,

max
j∈Jn

Xn ∼ Gn, n = 1, 2
} (4.3)
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4 Dependence uncertainty in risk aggregation

and analogously

inf
(α1,...,α8)∈A

min
{

1, inf
U(s)

(
G−1

(
u1

α1

)
+G−2

(
u2

α2

)
+

6∑
i=1

F−i

(
ui+2

αi+2

))}
≥ sup

{
P(X1 + · · ·+X6 ≤ s) : X1, X1, X3 ∼ Pareto2, X4, X5, X6 ∼ Pareto4,

max
j∈Jn

Xn ∼ Gn, n = 1, 2
}
,

(4.4)

where U(s) = {(u1, . . . , u8) ∈ R8 : u1 + · · ·+u8 = s}. Note that the marginals F1, . . . , Fd

appear in the optimization since the distribution of the maximum of every individual vari-
able is known and equals the respective marginal distribution; i.e. max{Xi} = Xi ∼ Fi

for i = 1, . . . , d; see again Remark 4.2.1. The marginal distributions are thus accounted
for in the computation of the bounds.

The solution of the optimization problems in (4.3) and (4.4) yields estimates on the VaR of
the sum X1 + · · ·+X6 when the distributions of the partial maxima are taken into account.
Table 4.3 shows the α confidence level in the first column and the Standard Bounds, without
additional information, in the second column. The third and fourth columns contain the im-
proved VaR bounds that incorporate the extreme value information, as well as the improve-
ment over the Standard Bounds in percentage terms. In order to illustrate our method, we
need to know the distribution of the partial maxima. To this end, we assume that the vectors
(X1, X2, X3) and (X4, X5, X6) have Student-t copulas with equicorrelation matrices and
two degrees of freedom, and numerically determine the distribution of max{X1, X2, X3}
and max{X4, X5, X6}. In the third column it is assumed that the pairwise correlations of
(X1, X2, X3) are equal to 0.9 and the pairwise correlations of (X4, X5, X6) are equal to
0.6. In the fourth column the pairwise correlations amount to 0.5 and 0.2 respectively.

α lower upper
lower
impr.

upper
impr.

impr.
%

lower
impr.

upper
impr.

impr.
%

90% 17.3 251.3 22.2 168.6 37.4 27.8 201.6 25.7
95% 27.8 372.7 34.9 256.2 35.8 43.2 303.4 24.5
99% 72.1 884.2 88.4 626.7 33.7 106.5 732.2 23.0

Table 4.3: Standard and improved VaR bounds for the sum X1 + · · · + X6 with known
distribution of partial maxima for different confidence levels.

The observations made following Example 4.1.1 are largely valid also in the present one,
namely (i) the addition of partial dependence information allows to significantly reduce
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4.2 Improved bounds for Value-at-Risk using extreme value information

the spread between the upper and lower bounds. However, the model risk is still not neg-
ligible. (ii) The level of improvement decreases with increasing confidence level α. This
phenomenon has been observed already in the related literature; see e.g. [7]. (iii) The
improvement is more pronounced in the high-correlation scenario. The phenomenon that
the Improved Standard Bounds perform better when high dependence information is pre-
scribed has been encountered previously, see e.g. [47], and is due to the fact that higher
dependence leads to a more significant improvement of the lower bound on the copula,
which is then employed in the computation of the Improved Standard Bounds in Theorem
4.1.1. �

75





5 An optimal transport approach to
Value-at-Risk bounds with partial
dependence information

In this chapter we develop an optimal transport approach to derive bounds on the expec-
tation E[ϕ(X)] over a class of constrained distributions for the Rd-valued random vector
X = (X1, ..., Xd). We work in the setting of dependence uncertainty and assume that
X has marginal distributions F1, ..., Fd. Moreover, we suppose that an upper and a lower
bound on the copula of X are provided. Using this information, we derive in Section 5.1
sharp dual bounds on the expectation E[ϕ(X)] for lower semicontinuous ϕ. This extends
the results in Embrechts, Höing, and Juri [18] and Embrechts and Puccetti [16] regard-
ing the Improved Standard Bounds in two ways: (i) we show that the dual bounds are
sharp for rather general aggregation functions ϕ and (ii) we include two-sided information
on the copula of the random vector X. The proof of the dual characterization is based
on the Monge–Kantorovich Duality Theory and the corresponding bounds amount to an
infinite-dimensional optimization problem which is typically analytically and numerically
intractable. They however lend themselves to the development of a numerical scheme for
the computation of VaR estimates that account for the upper and lower copula bounds.
This is made rigorous in Section 5.2, where we develop a tractable optimization scheme to
compute bounds on the VaR of aggregations using the copula information. The scheme cor-
responds to an optimization over a subset of admissible functions for the respective dual
problems. Moreover, we show that the reduced scheme produces asymptotically sharp
bounds in the certainty limit, i.e. when the bounds on the copula converge to a mutual limit
copula. However, considering only a tractable subclass of admissible functions we obtain
VaR bounds which are not sharp in general. Furthermore, we show that the Improved Stan-
dard Bounds presented in Theorem 4.1.1 can be recovered as special cases of our reduced
scheme. Finally, we illustrate that our approach may produce significantly narrower VaR
estimates compared to the Improved Standard Bounds.
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5 An optimal transport approach to Value-at-Risk bounds with partial dependence information

5.1 Dual bounds on expectations using copula
information

In this section we derive sharp dual bounds on the expectation E[ϕ(X)] when a lower and
an upper bound on the copula C of X are provided. Let us first re-define the notation in
(3.1) and introduce

EC [ϕ(X)] := πϕ(C) =
∫
Rd
ϕ(x1, . . . , xd) dC(F1(x1), . . . , Fd(xd)),

for marginal distributions F1, ..., Fd and a copulaC. We use EC [ϕ(X)] to refer to the expec-
tation here since this notation is rather customary in the risk and optimal transport literature
and also because it proves convenient for some of the computations in this chapter.

We then consider the following primal problems:

Pϕ := inf
{
EC [ϕ] : C ∈ Cd, Q ≤ C ≤ Q

}
, (5.1)

Pϕ := sup
{
EC [ϕ] : C ∈ Cd, Q ≤ C ≤ Q

}
, (5.2)

for quasi-copulas Q and Q, with Q ≤ Q. Note that here – as opposed to previous chapters
– we do not assume that ϕ is of a particular form. In fact, the results in this section apply
to all lower semicontinuous functions ϕ fulfilling a minor growth condition.

Allowing quasi-copulas as bounds, there might not exist a copula that complies with the
constraints and so Cb :=

{
C ∈ Cd : Q ≤ C ≤ Q

}
= ∅. Consider e.g. Q = Q = Wd, then

Cb is empty whenever d > 2. In this case, we set Pϕ =∞ and Pϕ = −∞.

Remark 5.1.1. When the copula bounds are equal to the lower and upper Fréchet–Hoeffding
bounds, i.e. Q = Wd andQ = Md, then the optimization corresponds to a standard Fréchet
problem where no information at all about the dependence structure is prescribed. �

In the remainder of this section, we establish a sharp dual characterization of the primal
problems Pϕ and Pϕ. To this end, let us introduce the class

R :=
{
h =

k∑
n=1

αnΛun : k ∈ N, α1, ..., αk ≥ 0,u1, ...,uk ∈ Rd

}
,

where the functions Λu are of the form

Λu : Rd 3 (x1, ..., xd) 7→ 1x1≤u1,...,xd≤ud .
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5.1 Dual bounds on expectations using copula information

Hence, the elements in R are positive, linear combinations of indicator functions of rect-
angles of the form (−∞, u1] × · · · × (−∞, ud]. Analogously we denote the lower semi-
continuous version of Λu by

Λ−u : Rd 3 (x1, ..., xd) 7→ 1x1<u1,...,xd<ud ,

and for h = ∑k
n=1 αnΛun ∈ R we define h− := ∑k

n=1 αnΛ−un .

Note that for a copula C it holds that

EC [Λu] =
∫
Rd

Λu(x1, ..., xd) dC(F1(x1), ..., Fd(xd)) = C(Fd(x1), ..., Fd(xd)), (5.3)

and analogously we obtain that EC [Λ−u ] = C(F−d (u1), ..., F−d (ud)), where F−i is the left-
continuous version of Fi for i = 1, ..., n.

Moreover, let us define, for a quasi-copula Q and a function h = ∑k
n=1 αnΛun ∈ R,

Q(h) :=
k∑

n=1
αnQ

(
F1(un1 ), ..., Fd(und)

)
; Q(h−) :=

k∑
n=1

αnQ
(
F−1 (un1 ), ..., F−d (und)

)
.

If Q = C for a copula C, we have that Q(h) = EQ[h] as well as Q(h−) = EQ[h−].

This leads us to the dual problem corresponding to Pϕ:

Dϕ = sup
{
Q(h)−Q(g−) +

d∑
i=1

Ei[νi] : νi ∈ L(Fi), i = 1, ..., d,

h, g ∈ R s.t. h− g− +
d∑
i=1

νi ≤ ϕ

}
,

(5.4)

where Ei[νi] =
∫
νi dFi andL(Fi) is the class of Fi-integrable functions νi, i.e. Ei[νi] <∞,

for i = 1, ..., d. Analogously, for the upper bound Pϕ, the corresponding dual is given by

Dϕ = inf
{
Q(h−)−Q(g) +

d∑
i=1

Ei[νi] : νi ∈ L(Fi), i = 1, ..., d,

h, g ∈ R s.t. h− − g +
d∑
i=1

νi ≥ ϕ

}
.

(5.5)

Note, that the roles of Q and Q are reversed in Dϕ, i.e. we subtract the sum w.r.t. Q from
the sum w.r.t. Q in the formulation of Dϕ and vice versa for Dϕ. In the rest of this section,
we show that strong duality between the primal and the dual problem holds under mild
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5 An optimal transport approach to Value-at-Risk bounds with partial dependence information

conditions on the function ϕ, so that:

Pϕ = Dϕ and Pϕ = Dϕ.

Several approaches to proving duality results of this type have been established in the
literature. For instance, Rüschendorf [53] and Rüschendorf and Gaffke [51] establish du-
ality results for functionals of multivariate random variables with given marginals using
a Hahn-Banach separation argument. More recently, a duality result for the martingale
optimal transport problem was established by Beiglböck, Henry-Labordère, and Penkner
[5] using a minmax argument, and Bartl, Cheridito, Kupper, and Tangpi [4] derive a gen-
eral duality result for convex functionals with countably many marginal constraints using
the Daniell-Stone Theorem. An account of the history of the Monge–Kantorovich Duality
Theory and associated references can be found in the survey by Rüschendorf [57] or in the
book by Villani [68].

The proof of our Duality Theorem 5.1.4 below is based on the following auxiliary results.

Lemma 5.1.1 (Kantorovich Duality for copulas). Let ϕ : Rd → R be lower semicontinu-
ous and such that

d∑
i=1

%i(xi) ≥ |ϕ(x1, ..., xd)| for all (x1, ..., xd) ∈ Rd, (5.6)

for some continuous functions %i ∈ L(Fi), i = 1, ..., d. Then the following duality holds

inf
{
EC [ϕ] : C ∈ Cd

}
= sup


d∑
i=1

Ei[νi] : νi ∈ L(Fi), i = 1, ..., d,
d∑
i=1

νi ≤ ϕ

. (5.7)

Proof. The statement follows immediately by an application of Sklar’s Theorem. In par-
ticular, we have that

inf
{
EC [ϕ] : C ∈ Cd

}
= inf


∫
Rd
ϕ(x) dF (x) : F ∈ F(F1, ..., Fd)

.
Then, due to (5.6) we can apply the classical Kantorovich Duality Theorem (see e.g. [68,
Theorem 5.10 ] or [57, Theorem 3.1]) to the right-hand side of the equation and obtain
(5.7).

The following Lemma links the uniform convergence of copulas to the weak convergence
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5.1 Dual bounds on expectations using copula information

of the associated random vectors. The proof is an immediate consequence of Theorem 2.1
in Lindner and Szimayer [32] and therefore omitted.

Lemma 5.1.2. Let (Xn
1 , ..., X

n
d )n∈N be a sequence of Rd-valued random vectors with mar-

ginals Xn
i ∼ Fi for i = 1, ..., d and all n ∈ N. Moreover, denote by Cn the copula of

(Xn
1 , ..., X

n
d ) for n ∈ N. If the sequence of copulas Cn converges uniformly to a copula

C then (Xn
1 , ..., X

n
d ) converges weakly to a random vector (X1, ..., Xd) with marginals

F1, ..., Fd and copula C.

The following Minmax Theorem is presented as Corollary 2 in Terkelsen [66].

Lemma 5.1.3 (Minmax Theorem). Let B1 be a compact convex subset of a topological
vector space V1 and B2 be a convex subset of a vector space V2. If f : B1 × B2 → R is
such that

1. f(·, b2) is lower semicontinuous and convex on B1 for all b2 ∈ B2,

2. f(b1, ·) is concave on B2 for all b1 ∈ B1,

then
inf
b1∈B1

sup
b2∈B2

f(b1, b2) = sup
b2∈B2

inf
b1∈B1

f(b1, b2).

With these results, we are now in the position to establish our main duality theorem.

Theorem 5.1.4. Let ϕ : Rd → R be such that

d∑
i=1

%i(xi) ≥ |ϕ(x1, ..., xd)| for all (x1, ..., xd) ∈ Rd, (5.8)

for some continuous functions %i ∈ L(Fi), i = 1, ..., d. Moreover, assume that there exists
a copula C ∈ Cd with Q ≤ C ≤ Q. Then if ϕ is lower semicontinuous the following
duality holds:

Pϕ = Dϕ.

Conversely, when ϕ is upper semicontinuous the following duality holds:

Pϕ = Dϕ.

Moreover, the primal values are attained, i.e. there exist copulas C,C such that EC [ϕ] =
Pϕ and EC [ϕ] = Pϕ.
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5 An optimal transport approach to Value-at-Risk bounds with partial dependence information

Proof. We show that the statement holds for the lower bound, i.e. Dϕ = Pϕ. The proof
for the upper bound can be derived by applying analogous arguments to the function −ϕ.

First, assume that ϕ is bounded and continuous. By νi we refer to functions in L(Fi) for
i = 1, ..., d. It follows that

Dϕ = sup
h,g∈R

sup
ν1,...,νd

h−g−+
∑d

i=1 νi≤ϕ

{
Q(h)−Q(g−) +

d∑
i=1

Ei[νi]
}

(5.9)

= sup
h,g∈R

sup
ν1,...,νd∑d

i=1 νi≤ϕ−h+g−

{
Q(h)−Q(g−) +

d∑
i=1

Ei[νi]
}

(5.10)

= sup
h,g∈R

inf
C∈Cd

{
Q(h)−Q(g−) + EC [ϕ− h+ g−]

}
(5.11)

= sup
h,g∈R

inf
C∈Cd

{(
Q(h)− C(h)

)
−
(
Q(g−)− C(g−)

)
+ EC [ϕ]

}
(5.12)

= inf
C∈Cd

{
sup
h,g∈R

{(
Q(h)− C(h)

)
−
(
Q(g−)− C(g−)

)}
+ EC [ϕ]

}
(5.13)

= inf
C∈Cd

Q(h)≤C(h)≤Q(h), ∀h∈R

EC [ϕ] (5.14)

= inf
Q≤C≤Q

EC [ϕ] = Pϕ. (5.15)

Equation (5.11) follows from an application of Lemma 5.1.1 to the function ϕ′ := ϕ−h+
g−. Note, that the application of Lemma 5.1.1 is justified since ϕ′ is lower semicontinuous,
being the sum of the lower semicontinuous functions ϕ,−h and g−. Moreover, since h and
g are of the form

h =
k∑

n=1
αnΛun , g =

m∑
n=1

βnΛvn

for α1, ..., αk, β1, ..., βm ∈ R+, we obtain

|(ϕ+ h− g−)(x1, ..., xd)| ≤
d∑
i=1

%i(xi) +
k∑

n=1
αn +

m∑
n=1

βn.

Equation (5.12) then follows by rearranging the terms, using the linearity of the expectation
and the definition of the operator C(h) for h ∈ R. Now, applying the Minmax Theorem
5.1.3 to the function

f : Cd ×R2 3
(
C, (h, g)

)
7→
(
Q(h)− C(h)

)
−
(
Q(g−)− C(g−)

)
+ EC [ϕ]
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yields equation (5.13). Note, that the requirements of Theorem 5.1.3 are fulfilled, since

Cb =
{
C ∈ Cd : Q ≤ C ≤ Q

}
is a closed, bounded and equicontinuous subset of the topological space of all continuous
functions on Id, equipped with the uniform metric. Hence, it follows from the Arzelà-
Ascoli Theorem that Cb is compact. Moreover, Cb and R2 are convex sets. On the other
hand, it follows from Lemma 5.1.2 that for all h, g ∈ R the map f

(
· , (h, g)

)
is continuous

w.r.t. the uniform convergence of copulas since we assume ϕ to be bounded and continu-
ous. Furthermore, we have that f

(
· , (h, g)

)
is convex on Cd. Also, for all C ∈ Cd it holds

that f(C, ·) is linear on R2. To verify (5.14), assume that Q(h) ≤ C(h) ≤ Q(h) does not
hold for one h ∈ R, i.e. let w.l.o.g. C(h) < Q(h), then for each α > 0 it follows that

(
Q(αh)− C(αh)

)
= α

(
Q(h)− C(h)

)
> 0

and thus, by scaling α, the supremum is ∞ and C can be disregarded in the infimum in
(5.13). Hence, it holds that

Q(h) ≤ C(h) ≤ Q(h), for all h ∈ R.

This entails that Q(h) − C(h) ≤ 0 and −(Q(g) − C(g)) ≤ 0 for all (g, h) ∈ R2 and
thus the supremum is attained for h, g ≡ 0. Finally, (5.15) holds due to the fact that
Q(h) ≤ C(h) ≤ Q(h) for all h ∈ R implies

Q(F1(x1), ..., Fd(xd)) ≤ C(F1(x1), ..., Fd(xd)) ≤ Q(F1(x1), ..., Fd(xd))

for all (x1, ..., xd) ∈ Rd and EC [ϕ] = EC′ [ϕ] for all copulas C and C ′ with

C(F1(x1), ..., Fd(xd)) = C ′(F1(x1), ..., Fd(xd)).

We proceed by relaxing the condition of ϕ being bounded and continuous. So let ϕ merely
be lower semicontinuous. We can w.l.o.g. assume that ϕ ≥ 0 as otherwise there exist, due
to condition (5.8), functions %1, ...%d with ϕ+∑d

i=1 %i ≥ 0 and

Pϕ = P
ϕ+
∑d

i=1 %i
−

d∑
i=1

Ei[%i].

Now, since ϕ is lower semicontinuous there exists a sequence of positive, bounded, contin-
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5 An optimal transport approach to Value-at-Risk bounds with partial dependence information

uous functions ϕ1 ≤ ϕ2 ≤ · · · with ϕ = limn ϕn pointwise and Pϕn ≤ Pϕ. Furthermore,
due to the compactness of Cb there exist optimizers C1, C2, ... of Pϕ1 , Pϕ2 , ... and we can,
by passing to a subsequence, assume that C1, C2, ... converges to some C∗ ∈ Cb. Then it
follows by monotone convergence that

Pϕ ≤ EC∗ [ϕ] = lim
n

EC∗ [ϕn] = lim
n

lim
j

ECj [ϕn] ≤ lim
j

ECj [ϕj] = lim
j
Pϕj = lim

j
Dϕj .

Lastly, note that the optimizers of the primal problems are attained due to the compactness
of Cb which completes the proof.

Remark 5.1.2. Assuming the existence of a copula C ∈ Cd with Q ≤ C ≤ Q in The-
orem 5.1.4 rules out the degenerate situation where no probabilistic model exists which
is compatible with the prescribed information. Verifying this assumption however is a
delicate task in general. The existence of a copula C with Q ≤ C follows immedi-
ately from the fact that the upper Fréchet–Hoeffding bound Md is a copula and hence
Q ≤ Md. The difficulty thus lies in verifying C ≤ Q which fails e.g. when Q = Wd

and d > 2, where Wd is the lower Fréchet–Hoeffding bound. Nevertheless, when Q

and Q are improved Fréchet–Hoeffding bounds it is often straight-forward to verify that
{C ∈ Cd : Q ≤ C ≤ Q} 6= ∅. �

The following counter-example shows that the dual optimizers are not attained in general.

Example 5.1.1. Consider the case d = 2 and let F1 and F2 be uniform marginal distribution
on I. Moreover, let Q(u1, u2) = Q(u1, u2) = Π(u1, u2) = u1u2 for all (u1, u2) ∈ I2 and

consider ϕ : R2 → R : (u1, u2) 7→ 1ψ(u1,u2)<1 where ψ(u1, u2) =
√
u2

1 + u2
2, i.e. ϕ is the

characteristic function of the circular segment of the unit circle on I2. It then follows from
Q = Q = Π, that

Pϕ = Pϕ =
∫
I2
1√

u2
1+u2

2<1 du1du2 = π

4 .

Now, assume the dual optimizer for Dϕ is attained. Then it is of the form

f ∗ := h− g + ν1 + ν2 =
k∑

n=1
αnΛun +

m∑
n=1
−βnΛvn + ν1 + ν2

and since f ∗(u1, u2) ≤ 1ψ(u1,u2)<1 for all (u1, u2) ∈ I2 and EΠ[f ∗] = π
4 , we have that

f ∗(u1, u2) = (h− g + ν1 + ν2)(u1, u2) = 1ψ(u1,u2)<1 λ-a.s. (5.16)

Moreover, we can assume w.l.o.g. that ν1 ≡ ν2 ≡ 0 λ-a.s. since it follows from equation
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(5.16) that

(h− g)(u1, 1) = 1ψ(u1,1)<1 − ν1(u1)− ν2(1) = −ν1(u1)− c λ-a.s.

where the last inequality is due to 1ψ(u1,1)<1 = 0 λ-a.s. and c := ν2(1). Now, by the same
argument it follows that

(h− g)(1, u2) = −ν2(u2)− c′ λ-a.s.,

for c′ := ν1(1), and thus we obtain

(h− g)(u1, ud) =
(

k∑
n=1

αnΛun +
m∑
n=1
−βnΛvn

)
(u1, u2) = 1ψ(u1,u2)<1 λ-a.s.

This however, corresponds to a construction of the characteristic function of the circular
segment by a finite number of rectangular characteristic functions which contradicts the
impossibility of the squaring of the circle. �

5.2 A reduction scheme to compute bounds on
Value-at-Risk

The dual characterizations of Pϕ and Pϕ in Section 5.1 lend themselves to the development
of a scheme to compute VaR estimates, accounting for an upper and a lower bound on the
copula of the risks. In general, the dual problems are intractable and closed form solutions
have only been obtained in the situation where Q = Wd, Q = Md with homogeneous
marginals F1 = · · · = Fd fulfilling additional constraints; c.f. Puccetti and Rüschendorf
[45] and Wang and Wang [69]. We therefore develop in this section a scheme that cor-
responds to an optimization over a tractable subset of admissible functions for the duals
Dϕ and Dϕ and produces narrow VaR bounds. Furthermore, we show that the scheme
produces asymptotically sharp bounds in the certainty limit, i.e. when Q and Q converge
to some copula C.
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5 An optimal transport approach to Value-at-Risk bounds with partial dependence information

5.2.1 A reduction scheme for the lower bound

Consider the functionϕ(x1, ..., xd) = 1ψ(x1,...,xd)<s for componentwise increasingψ : Rd →
R and recall from (5.1) that our primal problem of interest reads

Pϕ := inf
{
EC [ϕ] : C ∈ Cd, Q ≤ C ≤ Q

}
,

for quasi-copulas Q and Q, whereas the corresponding dual problem is given in (5.4) by

Dϕ = sup
{
Q(h)−Q(g−) +

d∑
i=1

Ei[νi] : νi ∈ L(Fi), i = 1, ..., d,

h, g ∈ R s.t. h− g− +
d∑
i=1

νi ≤ ϕ

}
.

In the following, we identify admissible functions for the dual Dϕ by (d+ 2)-tuples in the
class

A :=
{

(h, g, ν1, ..., νd) : νi ∈ L(Fi), i = 1, ..., d, h, g ∈ R s.t. h− g− +
d∑
i=1

νi ≤ ϕ

}

and for each admissible tuple the corresponding value of the objective function amounts to

Q(h)−Q(g−) +
d∑
i=1

Ei[νi].

Regarding the Improved Standard Bounds in [18, 16], we note that when the copula C of
X is bounded from below by Q, i.e. Q ≤ C, then the lower Improved Standard Bound is
given by

EC [1ψ(X)<s] ≥ sup
u1,...,ud−1∈R

Q
(
F1(u1), . . . , Fd−1(ud−1), F−d (ψ∗u−d(s))

)
= mQ,ψ(s),

which corresponds, in the case of continuous marginals, to the maximization of Q(h) over
functions h = Λu ∈ R with u ∈

{(
u1, ..., ud−1, ψ

∗
u−d

(s)
)

: (u1, ...ud−1) ∈ Rd−1
}

. Hence,
mQ,ψ(s) can be viewed as an optimization over a – rather small – subset of admissible
elements in A, i.e. tuples of the form (h, 0, ..., 0) ∈ A.

Leveraging this observation, we develop an optimization scheme over a larger subset of
admissible functions. To this end, let us first consider admissible (h, g, ν1, ..., νd) with
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(A1) ν1, ..., νd ≡ 0,

(A2) h, g ∈ R�, where

R� :=
{

k∑
n=1

Λun : k ∈ N,u1, ...,uk ∈ Uψ(s)
}
,

and Uψ(s) = {(x1, ..., xd) ∈ Rd : ψ(x1, ..., xd) < s}. We thus obtain a subset of projections
of admissible functions in A given by

A� :=
{

(h, g) : h, g ∈ R� s.t. h− g− ≤ ϕ
}
.

The optimization over the subset A� remains however intractable due to the constraint
h − g− ≤ ϕ. Moreover, optimizing over A� requires a truncation of k and an appropriate
choice for such a truncation is not obvious. We therefore proceed with the development
of an unconstrained optimization scheme over a finite number of elements in Uψ(s). An
informal description and illustration of the scheme and the idea of the proofs is provided
in Section 5.4. We make use of the following notion of multisets (c.f. Syropoulos [63,
Definition 2]).

Definition 5.2.1. Let B be some set. A multiset over B is a pair 〈B, f〉 where f : B → N
and f is called multiplicity function.

Multisets generalise the notion of a set so as to allow for finite but multiple occurrences of
elements. The following example illustrates this feature.

Example 5.2.1. By the conventional notion of a set we have that B := {1, 1, 2} = {1, 2}.
Using the notion multisets we refer to {1, 1, 2} as 〈B, f〉 with f(1) = 2 and f(2) = 1. The
multiplicity function f hence counts the number of occurrences of each element of B. �

We establish the following Inclusion-Exclusion Principle for multisets as an auxiliary result
for our scheme.

Lemma 5.2.2 (Multiset Inclusion-Exclusion Principle). Let B1, ..., Bk ⊂ Rd and define
for m = 1, ..., k the multisets

〈Bo, f o〉, Bo := {Bi1 ∩ · · · ∩ Bim : 0 ≤ i1 ≤ · · · ≤ im ≤ k, m odd},
〈Be, f e〉, Be := {Bi1 ∩ · · · ∩ Bim : 0 ≤ i1 ≤ · · · ≤ im ≤ k, m even},

(5.17)
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where

f o(B) = |{(i1, ..., im) : 0 ≤ i1 ≤ · · · ≤ im ≤ k, m odd, B = Bi1 ∩ · · · ∩ Bim}|,

for B ∈ Bo and f e is defined analogously. Then

1B1∪···∪Bk =
∑
B∈Bo

(
f o(B)− f e(B)

)+
1B −

∑
B∈Be

(
f e(B)− f o(B)

)+
1B.

Proof. Applying the classical Inclusion-Exclusion Principle (see e.g. Loera et al. [33,
Lemma 6.1.2]) to 1B1∪···∪Bk yields

1B1∪···∪Bk =
∑
B∈Bo

f o(B) 1B −
∑
B∈Be

f e(B) 1B.

Then, by rearranging the terms and using the fact that f e(B) = 0 when B ∈ Bo \ Be and
f o(B) = 0 when B ∈ Be \ Bo we obtain

∑
B∈Bo

f o(B) 1B −
∑
B∈Be

f e(B)1B =
∑

B∈Bo\Be
f o(B) 1B −

∑
B∈Be\Bo

f e(B) 1B

+
∑

B∈Bo∩Be

(
f o(B)− f e(B)

)
1B.

The statement then follows from

(
f o(B)− f e(B)

)
=
(
f o(B)− f e(B)

)+
−
(
f e(B)− f o(B)

)+
.

which completes the proof.

Remark 5.2.1. Lemma 5.2.2 establishes a non-redundant version of the classical Inclusion-
Exclusion Principle. To illustrate this, consider B1, B2, B3 ∈ Rd such that B1 ∩ B2 ∩
B3 = B1 ∩B2 and B1 6= B2. Then applying the classical Inclusion-Exclusion Principle to
B1 ∪ B2 ∪B3 yields

1B1∪B2∪B3 =1B1 + 1B2 + 1B3 − 1B1∩B2 − 1B1∩B3 − 1B2∩B3 + 1B1∩B2∩B3 ,

where the terms −1B1∩B2 and +1B1∩B2∩B3 cancel each other out. This superfluous sub-
traction and addition of terms is avoided using the multisets 〈Bo, f o〉 and 〈Be, f e〉 as in
Lemma 5.2.2. Due to f o(B1 ∩ B2) = f e(B1 ∩ B2 ∩B3) we then obtain

1B1∪B2∪B3 = 1B1 + 1B2 + 1B3 − 1B1∩B3 − 1B2∩B3 ,
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5.2 A reduction scheme to compute bounds on Value-at-Risk

and thus a more parsimonious representation of 1B1∪B2∪B3 . �

In the following we denote the componentwise minimum of vectors u1, ...,uk ∈ Rd by

min(u1, ...,uk) =
(

min
n=1,...,k

{un1}, ..., min
n=1,...,k

{und}
)
.

Moreover, let us define the sets

Mo(u1, ...,uk) := {min(ui1 , ...,uim) : 0 ≤ i1 ≤ · · · ≤ im ≤ k m odd},
Me(u1, ...,uk) := {min(ui1 , ...,uim) : 0 ≤ i1 ≤ · · · ≤ im ≤ k m even}.

(5.18)

We refer to the multiplicity function

lo(u) := |{(i1, ..., im) : 0 ≤ i1 ≤ · · · ≤ im ≤ k, m odd, u = min(ui1 , ...,uim)}|

for u ∈ Mo(u1, ...,uk) as the multiplicity function associated toMo(u1, ...,uk) and de-
fine the multiplicity function associated to Me(u1, ...,uk), denoted by le, analogously.
The normalization of a vector u ∈ Rd by the marginals F1, ..., Fd is denoted by F (u) :=(
F1(u1), ..., Fd(ud)

)
as well as the left-continuous versionF−(u) :=

(
F−1 (u1), ..., F−d (ud)

)
.

Finally, for εεε := (ε, ..., ε) ∈ Rd and u ∈ Rd we denote u + εεε = (u1 + ε, ..., ud + ε).

Lemma 5.2.3. Let k ∈ N and u1, ...,uk ∈ Uψ(s). Define the functions

h :=
∑

u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Λu; gεεε :=

∑
u∈Me(u1,...,uk)

(
le(u)− lo(u)

)+
Λu+εεε,

for lo and le being the multiplicity functions associated toMo(u1, ...,uk) andMe(u1, ...,uk)
respectively. Then for every εεε > 0 it holds that (h, gεεε) is admissible for the dual problem
Dϕ, i.e. (h, gεεε) ∈ A�, and the value of the objective function is given by

∑
u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Q
(
F (u)

)
−

∑
u∈Me(u1,...,uk)

(
le(u)− lo(u)

)+
Q
(
F−(u+εεε)

)
.

Proof. It suffices to show that h − g−εεε ≤ ϕ for any εεε > 0. Recalling the notion of the
sublevel set

Uψ(s) =
{

(u1, ...ud) ∈ Rd : ψ(u1, ..., ud) < s
}
,
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5 An optimal transport approach to Value-at-Risk bounds with partial dependence information

we have for every (u1, ..., ud) ∈ Uψ(s) that

{
(x1, ..., xd) ∈ Rd : x1 ≤ u1, ..., xd ≤ ud

}
⊂
{

(x1, ..., xd) ∈ Rd : ψ(x1, · · · , xd) < s
}
,

due to the fact that ψ is increasing in each coordinate.

Hence, for u1, ...,uk ∈ Uψ(s) and Bn :=
{

(x1, ..., xd) ∈ Rd : x1 ≤ un1 , ..., xd ≤ und
}

for
n = 1, ..., k we have that

k⋃
n=1

Bn ⊂
{

(x1, ..., xd) ∈ Rd : ψ(x1, · · · , xd) < s
}
.

Now applying the Inclusion-Exclusion Principle for multisets (Lemma 5.2.2) to
⋃k
n=1 Bn

we obtain

1B1∪···∪Bk =
∑
B∈Bo

(
f o(B)− f e(B)

)+
1B −

∑
B∈Be

(
f e(B)− f o(B)

)+
1B,

where Bo and Be are as in (5.17) and f o, f e are the respective multiplicity functions. More-
over, we have for

⋂m
l=1 Bnl ∈ Bo ∪ Be that

m⋂
l=1

Bnl =
m⋂
l=1

{
(x1, ..., xd) ∈ Rd : x1 ≤ unl1 , ..., xd ≤ unld

}
=
{

(x1, ..., xd) ∈ Rd : x1 ≤ min(un1
1 , ..., u

nm
1 ), ..., xd ≤ min(un1

d , ..., u
nm
d )

}
= {x ∈ Rd : x ≤ min(un1 , ...,unm)},

and thus 1Bn1∩···∩Bnm = Λmin(un1 ,...,unm ) for min(un1 , ...,unm) ∈ Mo ∪ Me. Also, if
B = ⋂m

l=1 Bnl ∈ Bo we have that

f o(B) = lo(min(un1 , ...,unm))

and f e(B) = le(min(un1 , ...,unm)) for B = ⋂m
l=1 Bnl ∈ Be. In particular, it follows for

any εεε > 0 that

h(x)− g−εεε (x) ≤ h(x)− g0(x)

≤
∑

u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Λu(x)−

∑
u∈Me(u1,...,uk)

(
le(u)− lo(u)

)+
Λu(x)

=
∑
B∈Bo

(
f o(B)− f e(B)

)+
1B(x)−

∑
B∈Be

(
f e(B)− f o(B)

)+
1B(x)
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= 1B1∪···∪Bk(x) ≤ 1ψ(x)<s = ϕ(x)

for all x ∈ Rd and so (h, gεεε) ∈ A� which completes the proof.

We are now in the position to state the reduced optimization problem for Dϕ.

Corollary 5.2.4. Let ϕ(x1, ..., xd) = 1ψ(x1,...,xd)<s for ψ : Rd → R increasing in each
coordinate and let

D�
ϕ(k) := sup

{ ∑
u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Q
(
F (u)

)

−
∑

u∈Me(u1,...,uk)

(
le(u)− lo(u)

)+
Q
(
F (u)

)
: u1, ...,uk ∈ Uψ(s)

}
,

(5.19)

where lo and le are the canonical multiplicity functions associated toMo(u1, ...,uk) and
Me(u1, ...,uk) respectively. Then

D�
ϕ(k) ≤ D�

ϕ(k + 1) ≤ ... ≤ Dϕ.

Proof. We first show that D�
ϕ(k) ≤ D�

ϕ(k + 1) for k ∈ N. Therefore note that when uk =
uk+1 ∈ Uψ(s) it follows thatMo(u1, ...,uk+1) =Mo(u1, ...,uk) andMe(u1, ...,uk+1) =
Me(u1, ...,uk). Moreover, by straight-forward calculations we obtain

∑
u∈Mo(u1,...,uk+1)

(
lok+1(u)− lek+1(u)

)+
Q
(
F (u)

)
−

∑
u∈Me(u1,...,uk+1)

(
lek+1(u)− lok+1(u)

)+
Q
(
F (u)

)
=

∑
u∈Mo(u1,...,uk)

(
lok(u)− lek(u)

)+
Q
(
F (u)

)
−

∑
u∈Me(u1,...,uk)

(
lek(u)− lok(u)

)+
Q
(
F (u)

)
,

where loj , l
e
j are the canonical multiplicity functions associated toMo(u1, ...,uj) and

Me(u1, ...,uj), respectively for j = k, k + 1. This implies in particular that D�
ϕ(k) ≤

D�
ϕ(k + 1) for all k ∈ N.

Furthermore, the inequality D�
ϕ(k) ≤ Dϕ for all k ∈ N follows by an application of

Lemma 5.2.3 to (h, gεεε) where εεε > 0 and

h =
∑

u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Λu; gεεε =

∑
u∈Me(u1,...,uk)

(
le(u)− lo(u)

)+
Λu+εεε.
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This yields that (h, gεεε) ∈ A� and the respective value of the objective function is given by

∑
u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Q
(
F (u)

)
−

∑
u∈Me(u1,...,uk)

(
le(u)− lo(u)

)+
Q
(
F−(u+εεε)

)
.

In particular, we have for all k ∈ N that

sup
{ ∑

u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Q
(
F (u)

)

−
∑

u∈Me(u1,...,uk)

(
le(u)− lo(u)

)+
Q
(
F−(u + εεε)

)
: εεε > 0; u1, ...,uk ∈ Uψ(s)

}

=: c∗ ≤ Dϕ.

(5.20)

Moreover, it holds for all εεε > 0 that

∑
u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Q
(
F (u)

)
−

∑
u∈Me(u1,...,uk)

(
le(u)− lo(u)

)+
Q
(
F−(u + εεε)

)
≤

∑
u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Q
(
F (u)

)
−

∑
u∈Me(u1,...,uk)

(
le(u)− lo(u)

)+
Q
(
F (u)

)

as well as limεεε→0 Q
(
F−(u +εεε)

)
= Q

(
F (u)

)
due to the Lipschitz continuity of Q. Hence

using (5.20) it follows that

c∗ = sup
{ ∑

u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Q
(
F (u)

)

−
∑

u∈Me(u1,...,uk)

(
le(u)− lo(u)

)+
Q
(
F (u)

)
: u1, ...,uk ∈ Uψ(s)

}

which completes the proof.

Corollary 5.2.4 establishes a tractable optimization problem yielding a lower bound on Dϕ

and thus also on Pϕ. The optimization takes place over vectors in the sublevel set Uψ(s) and
the trade-off between the computational effort and the quality of the bound is moderated
by the variable k. For fixed k, D�

ϕ(k) amounts to a k · d dimensional optimization that can
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be solved with standard optimization packages. Note, that most mathematical program-
ming environments also provide efficient built-in procedures to compute the multiplicity
functions lo and le.

5.2.2 A reduction scheme for the upper bound

We proceed with the development of a similar reduction scheme based on the dual Dϕ.
Recall from (5.5) that

Dϕ = inf
{
Q(h−)−Q(g) +

d∑
i=1

Ei[νi] : νi ∈ L(Fi), i = 1, ..., d,

h, g ∈ R s.t. h− − g +
d∑
i=1

νi ≥ ϕ

}
.

We refer to the class of admissible functions for Dϕ by

A :=
{

(h, g, ν1, ..., νd) : νi ∈ L(Fi), i = 1, ..., d, h, g ∈ R s.t. h− − g +
d∑
i=1

νi ≥ ϕ

}

and for each admissible function the corresponding value of the objective function is given
by

Q(h−)−Q(g) +
d∑
i=1

Ei[νi].

Again, for our reduction scheme, we consider a subclass of admissible pairs (h, g) such
that h, g ∈ R�, i.e.

A� :=
{

(h, g) : h, g ∈ R� s.t. h− − g ≥ ϕ
}

We now turn to the formal construction of admissible functions in A� with an auxiliary
version of the multiset Inclusion-Exclusion Principle for intersections.

Lemma 5.2.5. Let Bn
1 , ..., B

n
d ⊂ Rd for n = 1, ..., k and k ∈ N and define

G(i1,...,ik) := (B1
i1 ∩ · · · ∩ B

k
ik

), for (i1, ..., ik) ∈ {1, ..., d}k; and B :=
k⋂

n=1

d⋃
l=1

Bn
l .
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Moreover, for an enumeration {i1, ..., idk} of the set {1, ..., d}k define the multisets

〈Go, f o〉, Go := {Gin1 ∩ · · · ∩Ginm : 0 ≤ n1 ≤ · · · ≤ nm ≤ k, m odd}
〈Ge, f e〉, Ge := {Gin1 ∩ · · · ∩Ginm : 0 ≤ n1 ≤ · · · ≤ nm ≤ k, m even}

(5.21)

where

f o(G) = |{(in1 , ..., inm) : 0 ≤ n1 ≤ · · · ≤ nm ≤ k, m odd, G = Gin1 ∩ · · · ∩Ginm}|

and f e is defined analogously. Then it holds that

1B =
∑
G∈Go

(
f o(G)− f e(G)

)+
1G −

∑
G∈Ge

(
f e(G)− f o(G)

)+
1G.

Proof. Since the union and the intersection of sets commute we have that B = Gi1 ∪ · · · ∪
Gikd and hence the statement follows by a straight-forward application of Lemma 5.2.2.

We are now ready to establish an explicit construction of admissible pairs (h, g) ∈ A�. To
this end, let us denote for u1, ...,uk ∈ Rd and an enumeration {i1, ..., idk} of {1, ..., d}k

Uin := min(pri1(u1), ..., prik(u
k)) for (i1, ..., ik) = in, n = 1, ..., dk,

where pri(u) := (∞, ...,∞, ui,∞, ...,∞) for i ∈ {1, ..., d}. Moreover, we define

Wo(u1, ...,uk) := {min(Uin1 , ...,Uinm ) : 0 ≤ n1 ≤ · · · ≤ nm ≤ k m odd}
=Mo(Ui1 , ...,Uidk)

We(u1, ...,uk) := {min(Uin1 , ...,Uinm ) : 0 ≤ n1 ≤ · · · ≤ nm ≤ k m even}
=Me(Ui1 , ...,Uidk).

(5.22)

Lemma 5.2.6. Let k ∈ N and u1, ...,uk ∈ U cψ(s). Define the functions

hεεε :=
∑

u∈Wo(u1,...,uk)
Λu+εεε; g :=

∑
u∈Wo(u1,...,uk)

Λu,

for lo and le being the multiplicity functions associated toWo(u1, ...,uk) andWe(u1, ...,uk)
respectively. Then for every εεε > 0 it holds that (hεεε, g) is admissible for the dual problem
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Dϕ, i.e. (hεεε, g) ∈ A�, and the value of the objective function is given by

∑
u∈Wo(u1,...,uk)

(
lo(u)− le(u)

)+
Q
(
F−(u+εεε)

)
−

∑
u∈We(u1,...,uk)

(
le(u)− lo(u)

)+
Q
(
F (u)

)
.

Proof. We need to show that h−εεε − g ≥ ϕ. Note, that for every (u1, ..., ud) ∈ U cψ(s) we
have that

{
(x1, ..., xd) ∈ Rd : x1 ≥ u1, ..., xd ≥ ud

}c
⊃
{

(x1, ..., xd) ∈ Rd : ψ(x1, · · · , xd) < s
}
,

due to the fact that ψ is increasing in each coordinate. Hence, for u1, ...,uk ∈ U cψ(s) and
Bn :=

{
(x1, ..., xd) ∈ Rd : x1 ≥ un1 , ..., xd ≥ und

}
for n = 1, ..., k it follows that

k⋂
n=1

Bc
n ⊃

{
(x1, ..., xd) ∈ Rd : ψ(x1, · · · , xd) < s

}
. (5.23)

Moreover, for n = 1, ..., k we have that

Bc
n =

d⋃
i=1

{
(x1, ..., xd) ∈ Rd : x < pr(un)i

}
,

which follows from

{
(x1, ..., xd) ∈ Rd : x1 ≥ u1, ..., xd ≥ ud

}c
=
(
[u1,∞)× · · · × [ud,∞)

)c
=

d⋃
i=1

R× · · · × R× (−∞, ui)× R× · · · × R

=
d⋃
i=1

{
(x1, ..., xd) ∈ Rd : x < pr(un)i

}
.

Hence, we obtain

k⋂
n=1

Bc
n =

k⋂
n=1

d⋃
i=1

{
(x1, ..., xd) ∈ Rd : x < pr(un)i

}
. (5.24)

Now, defining

Hn
i :=

{
(x1, ..., xd) ∈ Rd : x < pr(un)i)

}
, for i = 1, ..., d, n = 1, ..., k and

G(i1,...,ik) := H1
i1 ∩ · · · ∩H

k
ik
, (i1, ..., ik) ∈ {1, ..., d}k,

95



5 An optimal transport approach to Value-at-Risk bounds with partial dependence information

and applying Lemma 5.2.5 to equation (5.24) we arrive at

1Bc1∩···∩B
c
k

=
∑
G∈Go

(
f o(G)− f e(G)

)+
1G −

∑
G∈Ge

(
f e(G)− f o(G)

)+
1G,

where Go,Ge and f o, f e are defined in 5.21. Finally, note that for 1 ≤ n1 ≤ · · · ≤ nm ≤ dk

G(i1,...,ik) =
{

(x1, ..., xd) ∈ Rd : x < min
(

pri1(u1), ..., prik(u
k)
)}
,

so that with the definition of Ui for i ∈ {1, ..., d}k it follows for every 1 ≤ n1, ..., nm ≤ dk

that

m⋂
l=1
Ginl =

m⋂
l=1

{
(x1, ..., xd) ∈ Rd : x < Uinl

}
=
{

(x1, ..., xd) ∈ Rd : x < min(Uin1 , ...,Uinm )
}
,

and thus 1Gin1∩···∩Ginm = Λ−min(Uin1 ,...,Uinm ) for min(Uin1 , ...,Uinm ) ∈ Wo(u1, ...,uk) ∪
We(u1, ...,uk). In particular, using equation (5.23) and the fact that

lo(min(Uin1 , ...,Uinm )) = f o(G)

for G = ⋂m
l=1 Ginl ∈ Go and vice versa for le, we conclude that

h−εεε (x)− g(x) ≥ h−0 (x)− g−(x) = 1Bc1∩···∩B
c
k
(x) ≥ 1ψ(x)<s = ϕ(x)

for all x ∈ Rd, which completes the proof.

We are now in the position to establish our reduction scheme based on Dϕ. The proof of
the following corollary is analogous to the proof of Corollary 5.2.4 and therefore omitted.

Corollary 5.2.7. Let ϕ(x1, ..., xd) = 1ψ(x1,...,xd)<s for ψ : Rd → R increasing in each
coordinate and let

D
�
ϕ(k) := inf

{ ∑
u∈Wo(u1,...,uk)

(
lo(u)− le(u)

)+
Q
(
F (u)

)

−
∑

u∈Wo(u1,...,uk)

(
le(u)− lo(u)

)+
Q
(
F (u)

)
: u1, ...,uk ∈ U cψ(s)

}
,

(5.25)

where lo and le are the canonical multiplicity functions associated to Wo(u1, ...,uk) and
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5.2 A reduction scheme to compute bounds on Value-at-Risk

We(u1, ...,uk) respectively. Then

D
�
ϕ(k) ≥ D

�
ϕ(k + 1) ≥ ... ≥ Dϕ.

5.2.3 Sharp asymptotic bounds in the certainty limit

In general, the schemesD�
ϕ(k) andD�

ϕ(k) do not approximate the dual boundsDϕ andDϕ

respectively for k → ∞. In the homogeneous, complete dependence uncertainty case, i.e.
F1 = · · · = Fd = F and Q = Wd and Q = Md, Puccetti and Rüschendorf [45] derived
an explicit solution to the dual Dϕ under additional requirements on the marginals. They
showed, that the optimizer is of the form d · ν for a piecewise linear function ν ∈ L(F )
which cannot be represented by the linear combinations inR�.

The counterpart to the situation of complete dependence uncertainty is the case of certainty,
i.e. the limit when Q and Q converge from below and above respectively to a copula C. A
natural feature of any bound on the expectation of ϕ using the information from Q and Q
should be that it converges to EC [ϕ] as Q,Q → C. The following theorem shows that for
k →∞ the reduced bounds D�

ϕ(k) and D�
ϕ(k) indeed converge to the desired object in the

certainty limit.

Theorem 5.2.8. Let ϕ(x1, ..., xd) = 1ψ(x1,...,xd)<s for ψ : Rd → R increasing in each coor-
dinate. Moreover, define for k ∈ N

[
D�
ϕ(k)

]
(Q,Q) := sup

{ ∑
u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Q
(
F (u)

)

−
∑

u∈Me(u1,...,uk)

(
le(u)− lo(u)

)+
Q
(
F (u)

)
: u1, ...,uk ∈ Uψ(s)

}

whereMo(u1, ...,uk) andMe(u1, ...,uk) are defined in (5.18) and lo, le are the associated
multiplicity functions. Analogously, let

[
D

�
ϕ(k)

]
(Q,Q) := inf

{ ∑
u∈Wo(u1,...,uk)

(
f o(u)− f e(u)

)+
Q
(
F (u)

)

−
∑

u∈Wo(u1,...,uk)

(
f e(u)− f o(u)

)+
Q
(
F (u)

)
: u1, ...,uk ∈ U cψ(s)

}
.

where Wo(u1, ...,uk) and We(u1, ...,uk) as in (5.22) with associated multiplicity func-
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tions f o, f e. Then it holds for any copula C and sequences of quasi-copulas
(
Qj
)
j=1,2...

and
(
Q
j
)
j=1,2...

with Qj ≤ C ≤ Q
j for all j ∈ N and Qj, Q

j →j C pointwise, that

lim
j

inf
k

[
D

�
ϕ(k)

]
(Qj, Q

j) = lim
j

sup
k

[
D�
ϕ(k)

]
(Qj, Q

j) = PC(ψ(X1, ..., Xd) < s)

Proof. We show that

lim
j

sup
k

[
D�
ϕ(k)

]
(Qj, Q

j) = PC(ψ(X1, ..., Xd) < s).

The proof for D�
ϕ(k) follows along similar lines.

First, note that there exists a sequence u1,u2, ... ∈ Uψ(s) such that for

hk :=
∑

u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Λu; gk :=

∑
u∈Me(u1,...,uk)

(
le(u)−lo(u)

)+
Λu,

we have that hk − gk →k ϕ pointwise. To verify the existence of such a sequence one can
choose as (un)n=1,...,k, any discretization of the set Uψ(s), whose mesh converges to zero
for k →∞.

From the fact that u1,u2, ... ∈ Uψ(s) and the proof of Lemma 5.2.3 it follows that hk−gk ≤
ϕ for all k ∈ N, and the corresponding value of the objective function is given by

∑
u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Q
(
F (u)

)
−

∑
u∈Me(u1,...,uk)

(
le(u)−lo(u)

)+
Q
(
F (u)

)
≤
[
D�
ϕ(k)

]
(Qj, Q

j).
(5.26)

Using the fact that C is a copula and applying the Dominated Convergence Theorem yields

EC
[
hk − gk

]
→k EC [ϕ] = PC(ψ(X1, ..., Xd) < s). (5.27)

Therefore we can w.l.o.g. assume that for fixed j, there exists an N ∈ N such that

EC [hk − gk] ≥
[
D�
ϕ(k)

]
(Qj, Q

j) for all k ≥ N,

since otherwise

[
D�
ϕ(km)

]
(Qj, Q

j) ≥ EC [hkm − gkm ]→m EC [ϕ],
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along a subsequence (km)m and we are done.

We proceed by showing that the convergence

lim
j

sup
k

[
D�
ϕ(k)

]
(Qj, Q

j) = PC(ψ(X1, ..., Xd) < s)

holds. To this end, fix an arbitrary ε > 0. Due to (5.27) we can choose k ≥ N such that

∣∣∣PC(ψ(X1, ..., Xd) < s)− EC
[
hk − gk

]∣∣∣ < ε

2 . (5.28)

Moreover, the fact that quasi-copulas are Lipschitz continuous yields, by an application of
the Arzelà-Ascoli Theorem, that Qj →j C and Qj →j C uniformly. Thus, for

p :=
∑

u∈Mou1,...,uk)
lo(u) +

∑
u∈Me(u1,...,uk)

le(u)

we can choose an j ∈ N so that

‖C −Qj‖∞ + ‖C −Qj‖∞ <
ε

2p. (5.29)

With this choice of k and j we arrive at

∣∣∣PC(ψ(X1, ..., Xd) < s)−
[
D�
ϕ(k)

]
(Qj, Q

j)
∣∣∣

≤
∣∣∣PC(ψ(X1, ..., Xd) < s)− EC

[
hk − gk

]
+ EC

[
hk − gk

]
−
[
D�
ϕ(k)

]
(Qj, Q

j)
∣∣∣

≤
∣∣∣PC(ψ(X1, ..., Xd) < s)− EC

[
hk − gk

]∣∣∣
+
∣∣∣∣EC[hk − gk]− ( ∑

u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Qj
(
F (u)

)

−
∑

u∈Me(u1,...,uk)

(
le(u)− lo(u)

)+
Q
j
(
F (u)

))∣∣∣∣
<
ε

2 +
∣∣∣∣ ∑

u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
(
C(F (u))−Qj(F (u))

)

−
∑

u∈Me(u1,...,uk)

(
lo(u)− le(u)

)+
(
C(F (u))−Qj(F (u))

)∣∣∣∣
<
ε

2 + p
(
‖C −Qj‖∞ + ‖C −Qj‖∞

)
<
ε

2 + p
ε

2p = ε.

The second inequality is a consequence of equation (5.26) and the fact that EC [hk − gk] ≥[
D�
ϕ(k)

]
(Qj, Q

j). The third inequality follows from equation (5.28) and last inequality
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holds due to equation (5.29).

Finally, since ε was arbitrary we have shown that

lim
j

sup
k

[
D�
ϕ(k)

]
(Qj, Q

j) = PC(ψ(X1, ..., Xd) < s)

holds and hence the proof is complete.

5.3 Using information on the survival copula

In this section we show that the reduction schemes in Section 5.2.1 and 5.2.2 can be applied
similarly when information on the survival copula is provided. Specifically, we assume that
the copula of X is such that Q̂ ≤ Ĉ ≤ Q̂ where Ĉ is the survival-function of C and Q̂, Q̂
are quasi-survival functions. We hence consider the primal problems

P̂ϕ := inf
{
EC [ϕ] : C ∈ Cd, Q̂ ≤ Ĉ ≤ Q̂

}
, (5.30)

P̂ϕ := sup
{
EC [ϕ] : C ∈ Cd, Q̂ ≤ Ĉ ≤ Q̂

}
. (5.31)

Note that due to

Ĉ(F1(u1), ..., Fd(ud)) = P(X1 > u1, ..., Xd > ud) = P(−X1 < −u1, ...,−Xd < −ud),

for all u ∈ Id, the condition Q̂ ≤ Ĉ ≤ Q̂ is equivalent to Q ≤ C−X ≤ Q, where

Q(u) := Q̂(1− u), Q(u) := Q̂(1− u) and C−X is the copula of −X. In particular, since
Q and Q are quasi-copulas it follows from our Duality Theorem 5.1.4 and a transformation
of variables that the sharp dual bound corresponding to P̂ϕ is given by

P̂ϕ = D̂ϕ = sup
{
Q̂(h)− Q̂(g−) +

d∑
i=1

Ei[νi] : (h, g, ν1, ..., νd) ∈ Â
}
, (5.32)

where

Â :=
{

(h, g, ν1, ..., νd) : νi ∈ L(Fi), i = 1, ..., d, h, g ∈ R̂ s.t. h− g− +
d∑
i=1

νi ≤ ϕ

}
.

and

R̂ :=
{
h =

k∑
n=1

αnΛ̂un : k ∈ N, α1, ..., αk ≥ 0,u1, ...,uk ∈ Rd

}
,
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for Λ̂u of the form
Λ̂u : Rd 3 (x1, ..., xd) 7→ 1x1≥u1,...,xd≥ud .

Moreover, we denote Λ̂−u (x1, ..., xd) := 1x1>u1,...,xd>ud and h− for h ∈ R̂ is defined ac-
cordingly. Finally, for quasi-survival functions Q̂ and h = ∑k

n=1 αnΛ̂un ∈ R ∈ R̂ we
define,

Q(h) :=
k∑

n=1
αnQ̂

(
F1(un1 ), ..., Fd(und)

)
; Q(h−) :=

k∑
n=1

αnQ̂
(
F−1 (un1 ), ..., F−d (und)

)
.

Analogously, the sharp dual bound associated to P̂ϕ is equal to

P̂ϕ = D̂ϕ = inf
{
Q̂(h−)− Q̂(g) +

d∑
i=1

Ei[νi] : (h, g, ν1, ..., νd) ∈ Â
}
, (5.33)

where

Â :=
{

(h, g, ν1, ..., νd) : νi ∈ L(Fi), i = 1, ..., d, h, g ∈ R̂ s.t. h− − g +
d∑
i=1

νi ≥ ϕ

}
.

Based on these dual characterizations the following corollaries establish the corresponding
reduction schemes. Using the fact that

P(ψ(X1, ..., Xd) < s) = 1− P(ψ(X1, ..., Xd) ≥ s),

the proofs involve similar arguments as the proofs of Corollary 5.2.4 and 5.2.7 and there-
fore they are omitted. We denote the componentwise maximum of vectors u1, ...,uk ∈ Rd

by

max(u1, ...,uk) =
(

max
n=1,...,k

{un1}, ..., max
n=1,...,k

{und}
)
.

Corollary 5.3.1. Let ϕ(x1, ..., xd) = 1ψ(x1,...,xd)<s for ψ : Rd → R increasing in each
coordinate and let

D̂
�

ϕ(k) := inf
{

1−
∑

u∈M̂o(u1,...,uk)

(
lo(u)− le(u)

)+
Q̂
(
F (u)

)

−
∑

u∈M̂e(u1,...,uk)

(
le(u)− lo(u)

)+
Q̂
(
F (u)

)
: u1, ...,uk ∈ U cψ(s)

}
,

(5.34)
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where

M̂o(u1, ...,uk) := {max(ui1 , ...,uim) : 0 ≤ i1 ≤ · · · ≤ im ≤ k m odd},
M̂e(u1, ...,uk) := {max(ui1 , ...,uim) : 0 ≤ i1 ≤ · · · ≤ im ≤ k m even}.

and

lo(u) := |{(i1, ..., im) : 0 ≤ i1 ≤ · · · ≤ im ≤ k, m odd,u = max(ui1 , ...,uim)}|,
le(u) := |{(i1, ..., im) : 0 ≤ i1 ≤ · · · ≤ im ≤ k, m odd,u = max(ui1 , ...,uim)}|,

(5.35)

for u ∈ M̂o(u1, ...,uk) and u ∈ M̂e(u1, ...,uk) respectively. Then it holds that

D̂
�

ϕ(k) ≥ D̂
�

ϕ(k + 1) ≥ ... ≥ D̂ϕ.

Remark 5.3.1. Corollary 5.3.1 extends the upper Improved Standard Bound from Em-
brechts et al. [18] presented in Theorem 4.1.1 in the sense that

inf
h∈R̂

1− Q̂(h) = inf
u∈Uc

ψ
(s)

1− Q̂(F (u)) = M
Q̂,ψ

(s).

�

The following corollary establishes a similar reduction scheme for D̂. To this end, let us
denote for u1, ...,uk ∈ Rd and an enumeration {i1, ..., idk} of {1, ..., d}k

Ûin := max(p̂ri1(u1), ..., p̂rik(u
k)) for (i1, ..., ik) = in, n = 1, ..., dk,

where p̂ri(u) := (−∞, ...,−∞, ui,−∞, ...,−∞) for i ∈ {1, ..., d}.

Corollary 5.3.2. Let ϕ(x1, ..., xd) = 1ψ(x1,...,xd)<s for ψ : Rd → R increasing in each
coordinate and let

D̂
�

ϕ(k) := sup
{

1−
∑

u∈Ŵo(u1,...,uk)

(
lo(u)− le(u)

)+
Q̂
(
F (u)

)

−
∑

u∈Ŵo(u1,...,uk)

(
le(u)− lo(u)

)+
Q̂
(
F (u)

)
: u1, ...,uk ∈ Uψ(s)

}
,

(5.36)
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where

Ŵo(u1, ...,uk) := M̂o(Ûi1 , ..., Ûidk),
Ŵe(u1, ...,uk) := M̂e(Ûi1 , ..., Ûidk),

(5.37)

for an enumeration {i1, ..., idk} of {1, ..., d}k and lo, le are given in (5.35). Then it holds
that

D̂
�

ϕ(k) ≥ D̂
�

ϕ(k + 1) ≥ ... ≥ D̂ϕ.

5.4 Illustrations and numerical examples

In this section we provide an informal description of the reduction schemes in section
5.2.1 and 5.2.2 in order to illustrate the underlying ideas. Furthermore, we provide several
numerical examples comparing the performance of our reduction scheme to the Improved
Standard Bounds from [18, 16].

A graphical illustration of D�
ϕ(k)

For a graphical illustration of the scheme D�
ϕ(k) let us consider ψ(x1, x2) = x1 + x2

and F1, F2 uniform distributions on [0, 1]. Due to assumption (A1) and (A2), we consider
admissible functions which are sums of indicator functions of rectangular regions in Uψ(s),
as in

h− g =
k∑

n=1
Λuk −

m∑
n=1

Λvn ≤ 1x1+x2<s

for u1, ...,uk,v1, ...,vm ∈ Uψ(s) and k,m ∈ N. The corresponding value of the objective
function to be maximized is given by Q(h) − Q(g) for each pair h, g ∈ R�. Figure 5.1
illustrates the structure of admissible functions considered in the reduction scheme.

The gray triangular region in figure 5.1, corresponds to the area

Uψ(s) = {(u1, u2) ∈ I2 : u1 + u2 < s}

for s = 0.8. The upper LHS simply depicts the region Uψ(s). The green area in the upper
RHS figure corresponds to the rectangle [0, 0.4]2 ⊂ Uψ(s) as induced by the function
h = Λ(0.4,0.4), i.e. Λ(0.4,0.4)(u1, u2) = ϕ(u1, u2) = 1 for all (u1, u2) ∈ [0, 0.4]2. The value
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Figure 5.1: Constrained set of admissible functions

of the objective function for h is given by

Q(Λ(0.4,0.4)) = Q(F1(0.4), F2(0.4)) = Q(0.4, 0.4).

Similarly, the lower LHS represents the rectangles [0, 0.2] × [0, 0.6] and [0, 0.6] × [0, 0.2]
induced by Λ(0.2,0.6) and Λ(0.6,0.2). The red area corresponds to [0, 0.2] × [0, 0.2] where an
overlap occurs due to

h(u) = Λ(0.2,0.6)(u) + Λ(0.6,0.2)(u) = 2 > ϕ(u) for all u ∈ [0, 0.2]× [0, 0.2].

This overlap is then compensated by applying the Inclusion-Exclusion Principle and sub-
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tracting g = Λ(0.2,0.2), yielding the admissible function

h− g = Λ(0.2,0.6) + Λ(0.6,0.2) − Λ(0.2,0.2).

The respective value of the objective function is equal to Q(0.2, 0.6) + Q(0.6, 0.2) −
Q(0.2, 0.2). Finally, the lower RHS represents the function constructed by

h = Λ(0.2,0.6) + Λ(0.45,0.2) + Λ(0.6,0.05)

and an appropriate compensation of the overlap by g = Λ(0.2,0.2) + Λ(0.45,0.05) so that
(h, g) ∈ A� and the corresponding value of the objective function is equal to

Q(0.2, 0.6) +Q(0.45, 0.2) +Q(0.6, 0.05)−Q(0.2, 0.2)−Q(0.45, 0.05).

Note, that the construction of (h, g) depends entirely on the choice of u1, ...,uk ∈ Rd.
Specifically, maximizing over all (h, g) that are constructed in this way amounts to an op-
timization over u1, ...,uk ∈ Uψ(s), leading to our reduction scheme presented in Corollary
5.2.4.

A graphical illustration of D�
ϕ(k)

Using again ψ(x1, x2) = x1 + x2 and uniform distributions F1, F2 on [0, 1], let us illustrate
the idea of the scheme D�

ϕ(k). This time, (h, g) with h, g ∈ R� are admissible when

h− g =
k∑

n=1
Λuk −

m∑
n=1

Λvn ≥ 1x1+x2<s.

Figure 5.2 illustrates two possible constructions of admissible pairs (h, g). Again the green
area corresponds to {x ∈ [0, 1]2 : h(x) = 1} whereas the red shaded area marks overlaps
{x ∈ [0, 1]2 : h(x) > 1} which we compensate using the Inclusion Exclusion principle.
The LHS corresponds to

h− g = Λ(0.8,0.4) + Λ(0.4,0.8) − Λ(0.4,0.4)

and the respective value of the objective function amounts to Q(0.8, 0.4) + Q(0.4, 0.8) −
Q(0.4, 0.4). The RHS represents the admissible function given by h− g for

h = Λ(0.8,0.2) + Λ(0.2,0.8) + Λ(0.6,0.6); g = Λ(0.2,0.6) + Λ(0.6,0.2)
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Figure 5.2: Constrained set of admissible functions

with corresponding value of the objective function

Q(0.8, 0.2) +Q(0.2, 0.8)−Q(0.2, 0.6)−Q(0.6, 0.2).

Note, that in contrast toD�
ϕ(k) it does not suffice to consider h = ∑k

n=1 Λuk for u1, ...,uk ∈
Uψ(s). A construction of admissible functions in the spirit of section 5.2.1 is however
possible if we formulate it in terms of characteristic functions of upper level sets of the
form

{(x1, x2) : x1 ≥ u1, x2 ≥ u2},

for u in the complement U cψ(s). Returning to the LHS of figure 5.2 we then note that the
region

{x ∈ R2 : Λ(0.8,0.4)(x) + Λ(0.4,0.8)(x)− Λ(0.4,0.4)(x) = 1}

can be expressed in terms of complements of upper level sets via

(
[0.4, 1]× [0.4, 1]

)c
∩
(
[0, 1]× [0.8, 1]

)c
∩
(
[0.8, 1]× [0, 1]

)c
,

and a similar representation holds for the RHS. Moreover, we can represent the comple-
ments via (

[u1, 1]× [u2, 1]
)c

= ([0, u1]× [0, 1]) ∪ ([0, 1]× [0, u2]),

where the right-hand side of the equation is the union of sets that can be evaluated by
means of the quasi-copulas Q,Q. This construction is made rigorous in Lemma 5.2.6 and
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the resulting optimization is provided in Corollary 5.2.7.

Numerical examples

The following numerical example shows, how the reduction schemes can be applied in
order to account for copula information in the computation of VaR estimates. Our results
are compared to the Improved Standard Bounds using the same information.

Example 5.4.1. Consider an R2-valued risk vector (X1, X2) with copula C and Pareto2-
marginals. We assume that the copula C lies in the vicinity of a reference copula C∗ as
measured by the Kolmogorov–Smirnov distance, i.e.

DKS(C,C∗) ≤ δ

for some δ > 0. Hereby, C∗ is assumed to be a Gaussian copula with correlation ρ. We then
compute VaR estimates on the sumX1+X2, using the copula information via the reduction
schemes presented in Section 5.2.1 and 5.2.2. Applying Theorem 2.1.7 in conjunction with
the explicit representation of the improved Fréchet–Hoeffding bounds given in Corollary
2.1.8, we obtain

QDKS,δ(u) = max{C∗(u)− δ,W2(u)} ≤ C(u)

≤ min{C∗(u) + δ,M2(u)} = Q
DKS,δ(u),

(5.38)

for all u ∈ Id. Note that because of d = 2 the bounds apply analogously to the survival
function of C, i.e.

Q̂
DKS,δ ≤ Ĉ ≤ Q̂

DKS,δ
. (5.39)

Our reduction schemes now allow us to translate these improved Fréchet–Hoeffding bounds
into VaR estimates. As a benchmark to demonstrate the quality of our estimates, we com-
pare them to the Improved Standard Bounds, which are given by the inverses of the follow-
ing bounds on the quantile function of X1 +X2:

P(X1 +X2 < s) ≥ sup
x∈R

QDKS,δ
(
F1(x), F−2 (s− x)

)
P(X1 +X2 < s) ≤ inf

x∈R
1− Q̂DKS,δ

(
F1(x), F2(s− x)

)
.

The following tables show the values of the Improved Standard Bounds on the VaR of the
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5 An optimal transport approach to Value-at-Risk bounds with partial dependence information

sum X1 + X2 for different confidence levels α. These are compared to the VaR bounds
obtained by inverting D�

ϕ(k) and D�
ϕ(k), for k = 3 and ϕ(x1, x2) = 1x1+x2<s, along the

variable s. Analogously, we compute VaR estimates by inverting D̂
�

ϕ(k) and D̂
�

ϕ(k) with
k = 3, using the bounds on the survival copula in (5.39). We thus obtain two lower and
two upper VaR estimates for each α, of which the largest lower bound and the lowest upper
bound respectively are reported in each of the tables. For k ≥ 4 no further improvement of
the bounds was obtained. For the sake of legibility, the results are rounded to one decimal
place. Table 5.1 shows the VaR estimates for different levels of the correlation of the
reference copula and δ = 0.0001, while for Table 5.2 we assume that δ = 0.0005.

ρ = −0.5 ρ = 0 ρ = 0.5

α
i. standard
(low : up)

scheme
(low : up)

impr.
%

i. standard
(low : up)

scheme
(low : up)

impr.
%

i. standard
(low : up)

scheme
(low : up)

impr.
%

0.95 (1.5 : 10.7) (5.5 : 6.7) 86 (3.5 : 10.7) (5.5 : 7.1) 77 (3.5 : 10.1) (5.6 : 8.2) 61
0.99 (2.3 : 27) (13.1 : 16.2) 87 (4.3 : 27) (13.5 : 16.8) 85 (7.7 : 26.5) (14.1 : 20.5) 66
0.995 (2.8 : 38) (18.3 : 20.7) 93 (5.5 : 38) (19.5 : 23.8) 87 (10.4 : 38) (19.5 : 29.7) 63

Table 5.1: Improved Standard Bounds on VaR of X1 +X2 and VaR estimates via reduction
schemes using QDKS,δ and QDKS,δ for δ = 0.0001.

ρ = −0.5 ρ = 0 ρ = 0.5

α
i. standard
(low : up)

scheme
(low : up)

impr.
%

i. standard
(low : up)

scheme
(low : up)

impr.
%

i. standard
(low : up)

scheme
(low : up)

impr.
%

0.95 (1.5 : 10.7) (5.5 : 7.1) 82 (2.2 : 10.7) (5.5 : 7.9) 72 (3.4 : 10.2) (5.5 : 8.6) 54
0.99 (2.3 : 27) (13.1 : 16.6) 85 (4.3 : 27) (13.1 : 18.8) 74 (7.3 : 27) (14 : 22) 60
0.995 (2.8 : 38) (18.3 : 23.4) 85 (5.3 : 38) (19.2 : 27) 76 (9.9 : 38) (19.5 : 33.3) 50

Table 5.2: Improved Standard Bounds on VaR of X1 +X2 and VaR estimates via reduction
schemes using QDKS,δ and QDKS,δ for δ = 0.0005.

The improvement obtained by including two-sided information via the reduction scheme
ranges from 54% in the case of positive correlation and δ = 0.0005, up to a considerable
93% in the case of negative correlation and δ = 0.0001. Overall, the improvement is
more pronounced when negative correlation is prescribed. Moreover, the improvement is
particularly strong for high levels of the confidence threshold α, except for the case of
positive correlation and δ = 0.0005 . �
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5.4 Illustrations and numerical examples

Example 5.4.2. We now consider an R4-valued risk vector (X1, X2, X3, X4) with copula
C and Pareto2-marginals. Moreover, we assume that

CΣ ≤ C ≤ CΣ

where CΣ and CΣ denote 4-dimensional Gaussian copulas with correlation matrices Σ =
(ρ
ij

)i,j=1,...,4 and Σ = (ρij)i,j=1,...,4 respectively. Also, we assume that ρ
ij
≤ ρij for i, j =

1, ..., 4, which by Slepian’s Lemma guarantees non-degeneracy in the sense that CΣ ≤ CΣ;
c.f. also Gupta, Eaton, Olkin, Perlman, Savage, and Sobel [26, Theorem 5.1].

This corresponds to a situation of correlation uncertainty which occurs naturally in many
practical applications. Whenever correlation is estimated from data one obtains, rather than
an exact estimate, a confidence interval for the pairwise correlations (ρ

ij
, ρij) ⊂ [−1, 1], in

which the parameters lie with a certain probability. Moreover, we assume that bounds on
the survival function Ĉ are given by the respective survival functions of CΣ and CΣ, i.e.

CΣ(1− ·) ≤ Ĉ ≤ CΣ(1− ·).

We then relate the bounds on C and Ĉ respectively to the VaR of X1 + · · · + X4, using
our reduction schemes and again we compare the results to the Improved Standard Bounds
obtained fromCΣ andCΣ(1−·). Table 5.3 shows the results for different confidence levels
α, assuming that Σ and Σ are equicorrelation matrices with correlation parameters ρ and ρ
respectively. The VaR estimates were obtained by inverting D�

ϕ(5) and D�
ϕ(5) as well as

D̂
�

ϕ(5) and D̂
�

ϕ(5) for ϕ(x1, ..., x4) = 1x1+···+x4<s along the variable s. Thus, we obtain
two upper and two lower VaR estimates of which the largest lower bound and the lowest
upper bound are reported. No further improvement of the bounds was obtained for k > 5.
For the sake of legibility the results are rounded to full integers.

ρ = −0.1, ρ = 0.2 ρ = 0.3, ρ = 0.5

α
i. standard
(low : up)

scheme
(low : up)

impr.
%

i. standard
(low : up)

scheme
(low : up)

impr.
%

0.95 (3 : 32) (8 : 26) 38 (1 : 30) (7 : 29) 24
0.99 (9 : 74) (20 : 52) 51 (2 : 74) (18 : 63) 37
0.995 (13 : 104) (26 : 70) 52 (3 : 104) (25 : 86) 40

Table 5.3: Improved Standard Bounds on VaR of X1 + · · · + X4 and VaR estimates com-
puted via reduction schemes using CΣ and CΣ.
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The improvement of the spread reaches from 24% in the case of moderate positive corre-
lation up to 52% in the case of low correlation. Moreover, the improvement is particularly
pronounced for high levels of the confidence threshold α. �
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[53] L. Rüschendorf. Sharpness of the Fréchet-bounds. Z. Wahrsch. Verw. Gebiete, 57:
293–302, 1981.
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