Structural Neural Learning
Machines

vorgelegt von
Diplom-Mathematiker, Diplom-Informatiker
Brijnesh Johannes Jain

von der Fakultat IV Elektrotechnik und Informatik
der Technischen Universitat Berlin
zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

- Dr.rer.nat. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof.r. K. Obermayer
Berichter: Prof. Dr. F. Wysotzki
Berichter: Prof. Dr. S. Wrobel

Tag der wissenschaftlichen Aussprache: 14. Juli 2005

Berlin 2005
DR&3

To my grandmother

Abstract

Learning on structural patterns from examples gives rise to two challenging prob-
lems:

" the combination of structural and statistical pattern recognition;

® the integration of the symbolic and sub-symbolic paradigm.

The present work is devoted to the above issues, focusing on the construction of
structural neural learning machines for adaptive processing of attributed graphs.

The first part of this thesis is concerned with the graph matching problem arising
in the feed-forward pass of structural neural learning machines. We start with an
introduction to structural pattern recognition from the perspective of the graph
matching problem. To provide a generic mathematical framework, we transform
all common graph matching problems to a generalized form of the maximum
clique problem. Next, we derive an equivalent continuous quadratic program of
the generalized clique problem. To minimize the quadratic program, we propose
a selective attention control system (ACS) that ensures convergence to feasible
solutions, requires no tuning of system parameters, and optimally adapts its system
parameters during computation. Based on the proposed ACS, the remainder of the
first part deals with advanced techniques for special graph matching problems.
We present a two-stage neural network solution to the noisy graph isomorphism
problem, an anytime ACS algorithm that can be interrupted at any time and return
a result of guaranteed quality, and a self-organizing classifier for graphs combining
the principle elimination of competition with concepts from anytime computing.

The second part of this thesis focuses on the problem of formulating learning rules
to minimize structural error criteria as functions of attributed weight graphs. The
starting point is the structural dot product. Though it is not an inner product, we
show that the structural dot product of attributed graphs has the same geometrical
properties as the standard dot product of vectors. In addition, the structural dot
product gives rise to the key result of this contribution: parts of the powerful
machinery of differential analysis can be applied to the domain of attributed graphs.
In particular, we show that the gradient of a permutation invariant function on
attributed graphs is a well-defined graph pointing in the direction of steepest
increase. Since the structural dot product is only smooth almost everywhere, we
accommodate nonsmooth techniques to minimize structural functions on attributed
graphs. Using the mathematical toolkit at hand, we construct structural neural
learning machines and analyze their basic principles and mechanisms.

The resulting structural neural learning machines constitute a generic framework
that directly operates on attributed graphs. As such, they neither have to cope with
uncontrollable loss of structural information when transforming graphs to simpler
data types, nor with the reconstruction problem:.

Acknowledgements

I would like to thank the following people:

® my supervisor Prof. Dr. Fritz Wysotzki

Prof. Dr. S. Wrobel for being the second referee of this work

P. Geibel, S. Bischoff, and B. Hammer for scientific cooperation

" my nice collegues I. Ehmke, P. Geibel, C. Gips, C. Lippke, U. Schmid
® my project and master students

= J. Brinning from Modilingua Berlin for proofreading

® my parents and my sister

Nina & Lea Anouk

V1%L

Contents

5

Introduction
1.1 Basic Notations and Definitions

Graph Matching

The Graph Matching Problem

2.1 Introduction
2.2 Graph-Based Representations
2.3 Structural Proximityo Lo
2.4 The Graph Matching Problem
2.5 Optimization e
2.6 Conclusion e

Graph Matching as Clique Search

3.1 Imtroduction.
3.2 The Basic Graph Matching Problem
3.3 A Quadratic Integer Program for Graph Matching
3.4 The Maximum Weighted Clique Problem
3.5 A Clique Formulation of the Graph Matching Problem
3.6 Continuous Formulation of the Maximum Weight Clique Problem . .
3.7 Conclusion

Hopfield Clique Networks

4.1 TIntroduction. e
4.2 Hopfield Models
4.3 Hopfield Networks for Combinatorial Optimization Problems .
4.4 The Hopfield Clique Theorem
4.5 Hopfield Clique Networks
4.6 Experiments. L e
4.7 Conclusion

Weighted Graph Isomorphism
5.1 Imtroduction.
5.2 Imexact Graph Isomorphism

11
18
24
31
34

37
37
39
41
43
46
57
64

65
65
66
71
80
85
93
111

5.3 Representation of the Search Space
5.4 Exact Vertex Invariants
5.5 Inexact Vertex Invariants
5.6 A Neural Graph Isomorphism Algorithm
5.7 Experimental Results.
5.8 Conclusion L e e e

6 Neural Anytime Computation
6.1 Introduction
6.2 Anytime Algorithms oL
6.3 Anytime Hopfield Models
6.4 Experiments.o
6.5 Conclusion e

7 Structural Winner-Takes-All Classifiers
7.1 Introduction. e
7.2 The Pandemonium and the WTA Pandemonium Model
7.3 Winner-Takes-All Networks for Maximum Selection
7.4 Structural Winner-Takes-All Classifiers.
7.5 Experiments. oL
7.6 Conclusion

11 Learning Machines for Structures

8 Introduction to Structural Learning
8.1 Supervised Learning Lo o
8.2 Unsupervised Learning o,
8.3 Structural Learning

9 The Structural Dot Product
9.1 Introduction. e
9.2 Vector Representations of Attributed Graphs
9.3 Dot Products and Inner Products
9.4 Matrix Dot Products
9.5 Structural Dot Products
9.6 Geometry of Structures L o oL
9.7 Conclusiono

10 Analysis of Functions on Graphs
10.1 Introduction
10.2 Metric Spaces of Structures
10.3 Functions on Attributed Graphs
10.4 Differentiability e
10.5 Optimization Lo

147
147
148
154
155
159

161
161
162
165
167
172
187

189

191
191
193
194

199
199
200
203
204
205
209
219

)

10.6 Conclusion e e e e 234
11 Nonsmooth Analysis 237
11.1 Introduction e e e 237
11.2 Generalized Gradients, 238
11.3 Pointwise Maximizers i i i 245
11.4 Nonsmooth Optimization 247
11.5 Conclusion e e e 251
12 Structural Single-Layer Networks 253
12.1 Model of a Structural Neuron 253
12.2 Structural Linear Discriminant Functions 255
12.3 Structural Learning 259
12.4 Structural Perceptronso 0oL 261
12.5 Conclusion e e e 270
13 Structural Multi-Layer Networks 271
13.1 Structural Model of Multi Layer Neural Networks. 271
13.2 Representational Capabilities 273
13.3 Subgradient Backpropagation Algorithm 279
13.4 Conclusion 282
14 Structural Competitive Learning 285
14.1 Simple Competitive Learning for Feature Vectors 285
14.2 Structural Competitive Learning 287
14.3 Advanced Models of Structural Competitive Learning 290
14.4 Conclusion e e e 294
15 Experiments 297
15.1 Function ApproximationI 297
15.2 Function Approximation II 299
15.3 Classification e e e 301
15.4 Clustering o 304
15.5 Conclusion 307
16 Conclusion 309
A Algorithms 313
A.1 Hopfield Models 313
A.2 Other Meta-Heuristics 319
B Experimental Settings 323
B.1 Performance Evaluation 323
B.2 Datasets 324

B.3 Synthetic Test Graphs 326

11

References 328

List of Symbols

image (¢(i), ¢(j)) of item (i, j)

set of edges

edge set of graph X

hypothesis

item set of graph X

linear map

set of neighbors of vertex i

set of neighbors of vertex ¢ in X
rotation/relabeling operation

parameterized structural dot product

set of vertices

vertex set of graph X

weight graph of structural unit ¢
association graph of X and Y

graph

induced subgraph of graph X induced by U
structural dot product of graphs X and Y
graphs X and Y are isomorphic
permutation 7 acting on vertices of graph X
unlabeling operation

discrete interval {n,n +1,...,m} of integers
discrete interval from n to m in steps of s
limiter function

set of simple or binary graphs

set of normalized graphs

set of weighted graphs

set of binary values {0, 1}

space of labeled graphs

16
12
14
191
15
227
15
15
227
227
12
14
253
50
12
16
205
17
202
227

68
17
17
17

201

T

List of Symbols

A(X)
A(S)
Aco(X)
Aw(X)

RV
R[X]

R

BF(va)
Bé([Z]ap)

R(X,Y)
R(#)

set of complex attributed graphs of order n
maximum degree of graph X

diagonal of S x S

maximum co-degree of graph X

maximum weight degree of graph X

space of unlabeled graphs

imaginary edges of a complex graph
imaginary vertices of a complex graph
imaginary part of a complex graph X

set of natural numbers

set of (n X n)-permutation matrices

set of real numbers

real edges of a complex graph

real vertices of a complex graph

real part of complex graph X

set of positive real numbers

set of nonnegative real numbers

set of attributes

open ball with center Z € G4 and radius p
open ball with center [Z] € [G4] and radius p
set of all cliques of graph X

set of all maximum weight cliques of graph X
set of all maximal weight cliques of graph X
domain of morphism ¢

hypothesis space

set of isomorphisms from X to Y

set of partial morphisms from X to Y

set of p-morphisms from X to Y

set of optimal rotations of X towards Y
range of morphism ¢

set of optimal relabelings of X and Y
arbitrary set

set of k-element subsets of S

set of (n x m)-matrices with entries from S

set of all permutations acting on Sxy

vector representation of the unlabeled graph [X]

200
15

15
16
201
18
18
18

202

18
18
18

13
223
223

46

46

46

16
191

17

25

47
207

17
207

116
202

List of Symbols

supp(f)

input space

output space

labeled training sample

threshold function

probabilistic threshold function
unit interval [0, 1]

vector representation of matrix X
co-degree of vertex i

degree of vertex 1

minimum degree of graph X

structural Frobenius metric between graphs X and Y

minimum co-degree of graph X
minimum weight degree of graph X
null attribute

comptability function

compatibility value of items ¢ and j
weight of clique C

weight of X

set of real numbers including +oo
generalized gradient of f at a2
morphism between graphs
permutation

support of pointwise maximizer f

set of real numbers including —oo
charactersitic vector of vertex subset C'
diagonal matrix of matrix X

(n x n)-dimensional identity matrix
(n x n)-dimensional matrix of all ones
off-diagonal matrix of matrix X
Kronecker k-product of graphs X and Y
matrix

matrix dot product of X and Y
transpose of matrix X

diagonal of matrix X

n-dimensional vector of all ones

i-th unit vector

v

191
191
191
68
69

42
15
15
15
213
15
16
13
39
25
44
26

241

16
116
245

38

41

204

ot Ot &Y L

TVt

List of Symbols

%
vecXp
wij

£

vector (n-tuple)

dot product of vectors & and y

transpose of x

j-th column of matrix X

i-th row of matrix X

weight degree of vertex 4

set of non-edges

non-edge set of graph X

closed ball with center Z € G4 and radius p
closed ball with center [Z] € [G4] and radius p
structural function on unlabeled space [(GA]
logistic function

arbitrary transfer function of standard/structural unit ¢
bias/threshold of unit i

external input of standard unit ¢

image ¢(i) of vertex i

loss function

activation of standard/structural unit 4
permuted matrix X

weight connecting units ¢ and j

output of standard/structural unit 4

203

16
12
14
223
223
226
68
67
254
67
16
191
67
202
67
67

1 Introduction

In most areas of pattern recognition it is common practice to represent data in
terms of feature vectors residing in a Euclidean space, because the Euclidean
space provides powerful analytical techniques for data analysis usually not available
for other representations. Feature-based vector representations, however, are too
limited for many relevant application areas including domains such as computer
vision, chemical graphs, bioinformatics, or text mining.

The poor representational capabilities of feature vectors triggered the field of
structural pattern recognition in the early 1970s. The premise of structural pat-
tern recognition is that the data to be analyzed are composed of interrelated con-
stituents. In addition, the data may be corrupted by noise and structural variation.
It turns out that dynamic data structures like strings, trees, and graphs are a
more versatile and expressive tool for repesenting structured data. Typical prob-
lems in structural pattern recognition are classification and clustering of structural
descriptions of images in computer vision [30, 131, 183, 237, 310] and quantitative
structure-activity relationships in chemistry [261, 262, 306, 341, 342].

The expressive power and flexibility of graphs to describe structured patterns is
undermined by the following problems, which we identify as the two fundamental
problems of structural pattern recognition:

1. Computational intractability arises when comparing two structural descrip-
tion. This is a common task, because many methods in pattern recognition are
based on the fundamental concept of proximity. Measuring the proximity of two
graphs in terms of their structural characteristics is generally an NP-complete
graph matching problem.

2. Analytical intractability is caused by the lack of practical algebraic operations
such as the sum of graphs. Thus, useful characterizations of an inner product
or basic statistical concepts like the mean of a set of graphs are undefined or at
least intricate. As a consequence, many traditional statistical pattern recognition
paradigms and analytical methods are inapplicable for graphs.

Consequently, the fundamental problems of structural pattern recognition trig-
gered two main directions of research:

1. Development of graph matching algorithms.

2. Combination of structural and statistical pattern recognition.

Introduction

Research on devising efficient graph matching algorithms is almost as old as
the field of structural pattern recognition. Meanwhile, this area has developed
into a mature field that has produced a number of powerful matching methods.
Nevertheless, devising optimization methods for NP-complete problems, like the
graph matching problem, will remain an active research direction — at least unless
proven P = NP.

Research on the second fundamental problem, analytical intractability, is still a
widely unexplored, but intriguing and emergent field. With the advent of efficient
optimization methods and powerful computational resources, attention gradually
shifted towards bridging the gap between structural and statistical pattern recogni-
tion. Most work abandons the unexploited domain of graphs towards more accessi-
ble domains that provide methodologically sound and technically mature methods
for intelligent data analysis. But structural pattern recognition also demands tech-
niques, which directly operate on graphs [47, 195]. This demand is in line with the
goal of the neural network community to integrate the symbolic and sub-symbolic
paradigm [97, 133, 340]. Current neural approaches operate on a a rather restricted
class of linear and quasi-linear structures like strings, trees, and directed acyclic
graphs.

The goal of this thesis is to contribute to both issues, (1) the combination of
structural and statistical pattern recognition, and (2) integration of symbolic and
sub-symbolic learning. To this end, we construct structural neural learning machines
for adaptive processing of arbitrary graphs. The elementary building block is a
structural model of a neuron, which we refer to as a structural unit, or s-unit.
Construction of s-units poses two questions:

1. How should the activation of an s-unit be computed?

2. How should the weights associated with an s-unit be adjusted?

To answer the first question, we propose two modifications of standard units. In
the standard case, a conventional unit is associated with a weight vector w. For
a given input vector x, the activation of that unit is then determined by the dot
product wTx. To compute the activation of an s-unit, we replace the weight vector
by a weight graph, and the dot product by a similar concept for graphs called the
structural dot product. In the guise of the structural dot product, we encounter both
fundamental problems of structural pattern recognition:

1. Computational intractability. Determining the structural dot product is an
NP-complete graph matching problem.

2. Analytical intractability. As opposed to the standard dot product, the struc-
tural dot product is not bilinear.

To avoid uncontrolled loss of structural information, we accept that determining
the activation of an s-unit is NP-complete. Thus, all we can do is devise new
or improve existing graph matching algorithms for computing the structural dot
product.

Introduction

Since the structural dot product is not bilinear, an answer to the second ques-
tion is more complicated than it is for standard units. To overcome analytical
intractability, we show that the structural dot product is the key to another ge-
ometry of structures and to differential analysis of permutation invariant functions
on graphs. Entering both realms, we derive the necessary theoretical results to
establish a sound mathematical foundation, upon which we formulate structural
learning rules. These rules exploit gradient-like information to minimize structural
error criteria as functions of the weight graphs.

Thesis Outline

Both fundamental problems of structural pattern recognition also pervade the
construction of structural neural learning machines and therefore give rise to a
natural segmentation of this thesis in two parts. Part I is concerned with the graph
matching problem to determine the activation of an s-unit. Part II deals with the
problem of learning in structural domains. Parts of the results have been already
published in [108, 134, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189].

Part T

The first part of this thesis is devoted to the graph matching problem. Chapter 2
provides an overview of relevant issues in structural pattern recognition. Moreover,
it establishes a common basis in terms of definitions and notations, which the
subsequent chapters of both parts will refer to.

Chapters 3 and 4 present a generic view on all common graph matching algo-
rithms reported in the literature. For this, we generalize classical clique problems to
the maximum weight clique problem, where weights are assigned to both the vertices
and edges of the underlying graph. In Chapter 3, we propose sufficient conditions to
view graph matching as weighted clique search. Furthermore, we present an equiv-
alent continuous characterization of the maximum weight clique problem. Based on
the continuous formulation, Chapter 4 offers a generic solution to a broad range
of graph matching problems. The main contribution is a novel selective attention
control system that ensures convergence to feasible solutions, requires no tuning of
system parameters, and optimally adapts the system parameters during run time.
The last feature allows us to interpret the system in cognitive-psychological terms
of selective attention.

Chapters 5, 6, and 7 are devoted to advanced techniques for special graph
matching problems. In Chapter 5, we propose a noise-tolerant neural algorithm
for the graph isomorphism problem. Chapter 6 introduces the idea of real-time
neural networks for combinatorial optimization problems that can be interrupted
at any point in time and provide meaningful results. In the last chapter of Part I, we
propose a self-organizing classifier for graphs by combining the principle elimination
of competition with concepts from anytime computing.

4 Introduction

Part 11

The second part of this thesis is devoted to the construction of structural neural
learning machines. We begin with an overview in Chapter 8 and provide the
necessary background relevant for subsequent chapters.

Chapters 9, 10, and 11 constitute the theoretical foundation to structural learn-
ing. Chapter 9 introduces the structural dot product and develops another geometry
of structures. Based on the structural dot product, Chapter 10 draws relevant con-
cepts from differential analysis to the domain of attributed graphs. Since the struc-
tural dot product is not differentiable, we accommodate results from nonsmooth
analysis for functions on graphs in Chapter 11.

Chapters 12, 13, and 14 propose structural neural learning machines that adap-
tively process attributed graphs. In Chapter 12, we are concerned with structural
single-layer and in Chapter 13 with structural multi-layer feed-forward networks.
Chapter 14 is devoted to structural competitive networks.

Finally, Chapter 16 presents an overall conclusion of this thesis.

Appendix

Appendix A describes algorithms not developed but used in this thesis, and
Appendix B describes experimental settings.

1.1 Basic Notations and Definitions

We conclude the introduction with a compilation of basic notations and definitions
that are used throughout the thesis.

By R we denote the set of real numbers, by R the set of positive real numbers,
and by RY the set of nonnegative real numbers. We write R to denote RU {oco} and
R for RU {—oc}. The set of natural numbers including zero is denoted by N. By
B = {0, 1} we denote the set of binary values.

Let S be a set. The set A(S) = {(i,i) : i € S} is called the diagonal of S x S.
By S* we denote the set of all k-element subsets of S.

Let © < y be real numbers. Then

[z,y] ={z € R: 2 < z < z} is the closed interval of z and y

Jz,y] ={2z € R: 2 < 2z < z} is the left open interval of x and y
® [z,y[={z € R:2z < z <z} is the right open interval of z and y

Je,y[={2z € R:x < z < z} is the open interval of z and y.

The unit interval is of the form

= U =0,1].

1.1 Basic Notations and Definitions 5

For natural numbers n < m we denote the discrete interval of n and m by
" n:m]={keN:n<k<m}
We denote the discrete interval from n to m in steps of s by

mn:s:ml={n+ks: n<n+ks<m,keN}

Matrix Algebra

Let S be a set. The set of (n x m)-matrices with entries from S is denoted by S™*™.
Matrices from S™*™ appear as upper case bold face letters X, Y, Z. N-tuples of
S" = S™*! are denoted by lower case letters with bold face x, y, z. We always
consider n-tuples as columns. By X T and T we denote the transpose of matrix X
and n-tuple x, respectively.

Frequently, S is a set of n-tuples of the form S = 7¢ for some set 7. Then a
matrix X of S”*™ is of the form X = (x;;), where the components x;; of X are
n-tuples. When X € R™*™ the components of X appear in normal face letters

L. = (wﬂ, Li2y .- ,a:,—m)T

)

we denote the i-th row of X and by

the j-th column of X.
The vector e,, € R™ of all ones is of the form

e,=(1,...,1)".
By u; € R™, we denote the i-th unit vector
u; = (0,...,0,1,0,...0)T,

where only the i-th component has value one and all other components are zero.
Let X = (z;5) be an (n x n)-matrix from R"*". By I,, we denote the identity-
matrix

Introduction

and by J,, the (n X n)-matrix from R™*" of all ones

11 1
11 1
J, =
11 1

11 0 0
0 I292 0
Dx =
0 0 Tnn

By Ox = X — Dx we denote the off-diagonal matriz of X. The diagonal dx of
X is the n-dimensional vector dx = (211, %22, .., Tnn)T.

I Graph Matching

2 The Graph Matching Problem

The aim of this chapter is to set a basic context to outline the graph matching
problem. We systematically dissect different concepts related to the graph matching
problem that are frequently summarized to a single functional unit in the literature.
Our atomized approach will turn out to be useful in gaining more insight into the
common structure of diverse graph matching problems. In addition, this chapter
serves to introduce the terminology upon which subsequent chapters will build.

2.1 Introduction

One primary goal of pattern recognition is to uncover the hidden structure of a given
dataset in order to generate a compact representation of the data and to enable
symbolic data processing concepts [145]. In domains where traditional techniques
from statistical pattern recognition do not directly apply, the concept of proximity
may provide a bridge between structural and statistical pattern recognition [120].
If data is represented by attributed graphs, a proximity-based pattern recognition
system can be characterized by the following basic steps:

Graph-based representation
Definition of a structural proximity measure
Graph matching formulation

Optimization

SIS .

Proximity-based data analysis

Contemporary literature often summarizes points (1)-(4) or at least (2)-(3) when
referring to the graph matching problem. We do not follow this convention in order
to accentuate the semantic and functional differences between the individual stages
in structural pattern recognition, and to provide a foundation to pursue a rigorous
mathematical treatment in subsequent chapters.

Several applications of pattern recognition based on structural proximities have
been reported in the literature. Examples include image analysis [83, 284, 330], doc-
ument processing [22, 235, 346], chemoinformatics [61, 295, 314], image databases
(31, 157, 287], and video analysis [326].

10

The Graph Matching Problem

An Example

To illustrate the problem, let us consider the somewhat imaginary problem of rec-
ognizing mandala diagrams. Mandala is the Sanskrit word for circle. Two examples
of mandala diagrams are shown in Figure 2.1. A mandala contains different geo-

Figure 2.1 Two Asian mandalas.

metric figures like circles, triangles, and other shapes, as well as symbols such as
e.g. diamonds, bells, and wheels. There are many semantic types of mandalas, each
of which is characterized by a certain arrangement of geometrical shapes and sym-
bols. Assume that we want to automate the process of classifying a given set of
mandala diagrams according to their semantic type.

Graph-Based Representation. A central aspect in almost any pattern recog-
nition problem is that of achieving an appropriate representation in order to suc-
cessfully extract the structure from the given data. We therefore require that an
appropriate representation should simply and naturally reveal the structural rela-
tionships between the components, and should enable us to express the true but
hidden structure of the data. If our data is of a complex nature, graph-based rep-
resentation might be appropriate to capture relevant structural information.

In our example, we assume that a preprocessor and feature extractor identifies
all symbols and geometrical shapes together with their absolute coordinates in the
mandala diagram.l Together with their spatial relationships, the identified entities
are then represented by an attributed graph. In order to classify the given mandala,
this representation should be invariant to translation, scaling, and rotation.

We consider graph-based representations in Section 2.2. For a discussion on
closely related subproblems like preprocessing, feature extraction, or noise, we refer
to [32, 77].

Structural Proximity Measure. What we seek is a representation in which
attributed graphs that belong to the same category or concept are somehow
closer to one another than attributed graphs belonging to different categories. The
common technique for assessing closeness among patterns is based on the definition

1. How a preprocessor or feature extractor retrieves the desired information is a problem
in computer vision and will not be considered here. A recent explanation of that issue can
be found in the dissertation by Bischoff [30].

2.2 Graph-Based Representations 11

of a suitable proximity measure. A proximity for graph-based representations is
usually a similarity or distance function defined on pairs of attributed graphs.
Structural proximity measures are proximities that evaluate structurally consistent
or inconsistent subgraphs.

To determine the semantic type of a mandala diagram, we search for the presence
or absence of characteristic structural arrangements of symbols and geometrical
shapes. Since mandalas are typically handcrafted and therefore hardly identical,
an exact correspondence between entities and their spatial relationship is unlikely.
Therefore, some noise model is required to cope with structural errors or distortions.

Section 2.3 formally introduces and discusses structural proximity measures.

Graph Matching Problem. The key problem of most structural proximity
measures is that their computation is an NP-complete combinatorial optimization
problem [24, 367]. Optimization problems associated with a structural proximity
measure constitute the class of graph matching problems the central theme not
only of this chapter, but also of Part I of this thesis. In Section 2.4, we introduce the
graph matching problem and present some important and commonly used problem
instances.

Optimization. The specific formulation of the graph matching problem determines
the optimization methods we can apply to solve that problem. Section 2.5 provides
an overview of existing optimization techniques for the graph matching problem.

Data Analysis. Once the proximities are evaluated, we can transfer them to a
module for data analysis. Examples of such systems are pairwise clustering [145],
nearest neighbor methods, the pairwise proximity classifier proposed by Graepel
et al. [126], dissimilarity kernel classifiers proposed by Pekalska et al. [278], and
Support Vector Machines [106], provided that the structural proximity measure at
hand is a kernel. Since we focus on graph matching problems, we do not further
discuss methods for data analysis. Instead, we refer to the thesis of Pekalska [277]
for a detailed exposition on proximity-based pattern recognition.

To refer to our introductory example, a nearest neighbor classifier for categorizing
mandalas according to their semantic type is a simple and a natural choice.

Final Remark. In the following, it is now reasonable to consider more manageable
synthetic image patterns rather than complex mandala diagrams.

2.2 Graph-Based Representations

It is generally accepted that attributed graphs are an appropriate tool to model
complex objects from diverse domains such as chemistry [15, 38, 351], computer
vision [19, 20, 328], and power-law distributed or scale-free networks like Internet
router topologies [84], the World-Wide Web [210], and metabolic networks [190].
A directed graph is a pair X = (V, E) of finite sets satisfying E C VZ\ A(V),
where A(V) = {(i,4) : i € V} is the diagonal of V2. The elements of V are the
vertices of X; the elements of E are its arcs. An arc (i,j) € E is oriented from

12

The Graph Matching Problem

1 to j. We call X an wundirected or simple graph if (i,7) implies (j,4) for all arcs
(i,7) € E. The elements of E in an undirected graph are its edges. Occasionally, we
also write {7,j} to denote an edge connecting vertex ¢ and j. Pairs (7,) that are
not in EUA(V) are called non-edges. By E we denote the set of all non-edges of X.
For convenience of presentation, we will consider only simple graphs. Nevertheless,
we stress that the whole theory also applies for directed graphs.

Figure 2.2 shows the usual way to plot an undirected graph. We draw a dot for
each vertex and join two of these dots by a line if the corresponding two vertices are
connected by an edge. How these dots and lines are plotted is irrelevant. What is
relevant is the structural information about vertices and their pairwise relationships.

Figure 2.2 Plot of graph X = (V,E) with vertex set V = [1:5] and edge set
E= {{17 2}7 {27 3}a {37 4}7 {37 5}a {47 5}}

In structural pattern recognition, simple graphs are useful to describe the basic
constituents of a complex or structured object. Basic constituents of a complex
object are atomic entities, and the relationship between pairs of atomic entities. In
a graph-based representation of a complex object, vertices represent atomic entities
and edges a certain relationship between entities. Figure 2.3 shows a graphical
representation of a simple image pattern. The atomic entities of the pattern are
segments of identical color. A pair of entities is related if their corresponding
segments are adjacent. Referring to our original problem in recognizing mandala
diagrams, segments in our simplistic image pattern may represent geometrical
shapes or symbols.

Figure 2.3 Image pattern and its representation as a simple graph. The left part
shows the raw data. The middle part identifies the basic constituents of the image
pattern. Finally, the right part shows the structural representation of the image
pattern as a simple graph.

Simple graphs do not describe properties of entities and their relationship. Such
a representation is often not appropriate for applications in structural pattern
recognition. For example, Figure 2.4 shows a different image pattern, which is

2.2 Graph-Based Representations 13

usually not considered similar with the first pattern from Figure 2.3. Yet their
structural representations as simple graphs are equivalent.

Figure 2.4 A second image pattern and its representation as a simple graph. The
structural representation of this image pattern is equivalent to that of Figure 2.4.

In our search for a more appropriate representation to distinguish between
both patterns, we might annotate vertices and edges with attributes that describe
relevant features of the entities and their relationships. Examples of vertex features
are form, surface area, and color of the corresponding segments. Edge features
might be the distance between the centers or the length of the common boundary of
corresponding adjacent segments. Figure 2.5 shows representations of both sample
patterns as attributed graphs. To unclutter the plots, only color attributes are
annotated at the vertices.

pink
gold
blue

Figure 2.5 Image patterns and their representations as attributed graphs. For
convenience of presentation, only color attributes are attached to vertices.

o
.

In order to formalize the concept of attributed graphs, let A be a set of attributes
containing a distinguished symbol e denoting the void or null attribute. If vertex
and edge attributes need to be explicitly distinguished, the set A can be decomposed
into disjoint sets Ay of vertex attributes and Ag of edges attributes, for example
by introducing a flag as an additional attribute. Since vertex attributes must be
distinct from e, we require that the null attribute € is in Ag.

Unless otherwise stated, we do not impose any restriction on A. That is, an
attribute from A might be a symbol, numerical value, feature vector, function, or
anything that is appropriate to describe the basic constituents of a complex object.

14

The Graph Matching Problem

We denote attributes from A4 by bold face letters a to indicate that their potential
domain is broader than the domain of one-dimensional symbolic or numerical
feature spaces.

An attributed graph is a triple X = (V, E, X)) consisting of a simple graph (V, E)
and an (attributed) adjacency matriz X = (z;;) € AVI*!VI such that

1. XT=X
2. Tjj =€ = (’L,j) cFE

for all i,j € V. The first condition requires that X is symmetric to conform to
bidirectional edges of undirected graphs. The second condition colors each vertex
and each edge with an attribute from A \ {e}. Non-edges are colored with the null
attribute e. Although the adjacency matrix captures the whole structure of X, it
is technically advantageous to carry along the sets V and E. For convenience, the
term graph occasionally refers to an attributed graph.

Given the denotation of an attributed graph, we have an expressive tool to
appropriately describe the basic constituents of complex objects. In addition, graph-
based representations admit descriptions of objects that are invariant under scaling,
translation, and rotation. A representation of complex objects by fixed-dimensional
feature vectors may result in a loss of structural information. What makes feature
vectors too unwieldy to capture structural information is their fixed dimension
and strict ordering. Fixed dimensionality bounds the number of atomic entities of a
complex object that can be recorded by a feature vector to a maximum limit. Strict
ordering of the components of a feature vector may result in completely different
representations of the same object and is therefore inappropriate for data analysis.

In the remainder of this section, we introduce important notations and definitions
that will be used throughout this thesis. In addition, we introduce two nonstandard
concepts, namely items and complex graphs.

2.2.1 Notations and Basic Definitions

A graph with vertex set V is called graph on V. The vertex set of a graph X
is referred to as V(X), its edge set as F(X), its non-edge set as E(X), and its
attributed adjacency matrix as X = (x;;). By G4 we denote the set of attributed
graphs with attributes from A.

The number |X| = |V| of vertices of a graph X is its order or size. Here we only
consider graphs of finite order. We use a labeling of the vertex set V' in order to
deal with it conveniently. A labeling is a bijective mapping v : V — {1,...,|V[}.
Using v, each vertex of V' can be identified with a certain number from [1:]V|]. We
use these numbers to name the vertices.

2.2.2 TItems of a Graph

The notion of an item is rarely used in graph-based representation although it is
useful to unclutter the text from tedious case distinctions.

2.2 Graph-Based Representations 15

We call I(X) = V(X) x V(X) the set of items of a graph X. An item 7 = (i1,12)
of X gives rise to the following notations:

e V(X)ifip = io,

m i E(X) if (i1,i2) € B(X),

m j cB(X) if (i1,12) € B(X),

=T,

Moreover, we may now identify A(V (X)) and V(X).
2.2.3 Degree of a Vertex

Let X = (V, E, X) be a graph. Two vertices i, j of X are adjacent, or neighbors, if
(i,7) € E(X). The set of neighbors of a vertex i in X is denoted by Nx (i). Here, as
elsewhere, we drop the subscript referring to the graph under consideration if the
reference is clear, and briefly write N (7). The set of vertices not adjacent to vertex
1 is given by

N(i) = VA {NG) U{i}}.

A vertex i is incident with an edge (k,l) € E(X) if either ¢ = k or ¢ = [. An isolated
vertex is a vertex not incident to an edge. The graph X is complete if all vertices
of X are pairwise adjacent.
The degree deg(i) of a vertex i in X is the number |N(i)| of neighbors of i. The
numbers
0(X) = mindeg(i
(X) = min deg(i)
A(X) = maxdeg(i)
are the minimum and mazimum degree of X. The co-degree degco(i) of i is the
number of vertices not adjacent to i. Hence, we have dege, (i) = |X| — deg(i). The
minimum and mazximum co-degree are defined by

deo(X) = Izlél‘l/l degeo(i)

Ao(X) = max degeo (7).

Suppose that X = (V, E, X) is a graph with attributes from R, where ¢ = —oc.
The weight degree degy (i) of a vertex i in X is the quantity

degy (i) = Z zjj.
JEN(9)
Thus, degy (i) is the total weight over all neighbors of 4. Similarly,
Y) = mi ,
dw(X) = min degw (7)
Ay (X) = deg., (i
(X) = max degw(i)

16

The Graph Matching Problem

are the minimum and mazximum weight degree of X.

2.2.4 Subgraphs and Cliques

Let X = (V,E,X) and X' = (V/, E’, X") be graphs. We say X' is a subgraph of
X, written as X’ C X if the following properties are satisfied

LV CV,
2. FFCE,
3. aj; = x;; for all (i,j) € B' UA(V").

If X’C Xand E' = ENV’'xV’, then X’ is an induced subgraph of X. An induced
subgraph X’ contains all edges (i,j) € E with 4,5 € V’. Thus, the set V' induces
X’ in X. More generally, if U is a subset of vertices from V, then X [U] denotes the
subgraph induced by U. In particular, we have X' = X [V’].

A clique of X is a subset C' C V such that X[C] is complete. A maximal clique
of X is a clique C with

cco = Cc=C.

Hence, a maximal clique is not properly contained in any other clique. A mazimum
clique is a clique with maximum cardinality of vertices. That is, C' is maximum
clique of X if, and only if,

G > 1]

for all cliques C’ of X.
2.2.5 Graph Morphisms

Let X and Y be graphs. A morphism from X to Y is a mapping
6:V(X) = V(Y), i i’

A morphism is structureless in the sense that neither relations nor attributes need
to be preserved. A morphism ¢ : V(X) — V(Y induces a mapping on I(X) in the
following way: For (i,7) € I(X) we define

(i.5)" = (i*.5%).

A partial morphism from X to Y is a morphism ¢ defined on a subset of V(X).
The domain of ¢ is the set

D(¢) = {i € V(X) : Ij € V(Y) such that i® = j}.

For a given item (i,j) of X, we write (i,7) € D(¢) if i € D(¢) and j € D(¢).
This slight abuse of notation simplifies technicalities considerably. Therefore, we

2.2 Graph-Based Representations 17

will make use of both notations ¢ € D(¢) and (i, j) € D(¢). Similarly, the range of
¢ is the set

R(¢) ={j € V(Y) : Ji € V(X) such that j =i?}.

As for the domain of ¢, we say item (i,7) of Y is a member of R(¢) if i € R(¢)
and j € R(¢).

A monomorphism is an injective morphism. A monomorphism preserves vertex
and non-vertex items.

A homomorphism from X to Y is a morphism ¢ : V(X) — V(Y such that

1. @y = y;0
2. i € E(Y) whenever i € E(X)

for all 2 € I(X). A homomorphism preserves attributes and demands that edges of
X are mapped to edges of Y. Two vertices ¢ and j of X may be mapped to a single
vertex of Y if attributes are preserved and if ¢ and j are not adjacent in X. We call
X and Y homomorphic if there is a homomorphism from X to Y.

An isomorphism from X to Y is a bijective morphism ¢ : V(X) — V(Y) such
that

Loz =y;0
2. i € BE(X) if, and only if, i¥ € E(Y)

for all 4 € I(X). We call X and Y isomorphic, writing X ~ Y if there is an
isomorphism between X and Y. By Zx y, we denote the set of isomorphisms from
XtoY.

2.2.6 Special Classes of Attributed Graphs

Let X = (V, E, X) be an arbitrary graph of the particular class of attributed graphs
under consideration.

1. Simple or Binary Graphs

Let A =B and € = 0. Then any element X of Gp is a simple or binary graph. In
contrast to conventional definitions of an adjacency matrix, the diagonal elements
of X are all equal to the value 1.

2. Normalized Graphs

Let A = U and € = 0. Then any element of Gy is a normalized graph. Vertices
and edges of a normalized graph are colored with positive scalars from the unit
interval U. We assign the weight 0 to non-edges.

3. Weighted Graphs

Let A =R and € = —oo. Then any element of G is a weighted graph. A weighted
graph assigns real valued weights to its vertices and edges. Non-edges are colored
by the weight e.

18

The Graph Matching Problem

2.2.7 Complex Graphs

Next, we introduce a new concept that will be useful to simplify theoretical
considerations.

A complex attributed graph is a triple X = (V, E, X) cousisting of a finite set
V #) of vertices, a set E C V x V \ A(E) of edges, and a (complex attributed)
adjacency matrix X = (z;;) € AlVI*IVI such that

1. XT=X

2. Tij =€ = (i,j)€V2\E
foralli,j € V. A complex graph differs from the standard definition of an attributed
graph only in the second condition. The null attribute € is no longer confined to
non-edges, but may also be used to color vertices. This implies that a complex

graph may have edges incident with vertices colored with e.
We distinguish between imaginary and real parts of a complex graph. By

RV ={ieV : x; #e}
and
IV =VARV]
we denote the subset of real and imaginary vertices, resp., of X. Similarly,
R|E] = ENR[V)?
and
J[E] = E\ R[FE]

are the subsets of real and imaginary edges, resp., of X. The real part R[X] of a
complex graph X is the subgraph X [%[V]] induced by RR[V]. Thus, the real part
of X is an attributed graph. The imaginary part J[X] of X consists of imaginary
vertices from J[V] and edges incident to those vertices.

2.3 Structural Proximity

Proximity is an important concept for various applications in pattern recognition
and related areas. This particularly holds for domains without a useful algebraic
structure. For example, in the domain of attributed graphs, it is unclear how to
model well-defined algebraic operations such as addition and scalar multiplication
that are invariant under permutations of the vertices, and at the same time useful
for defining statistical concepts like the mean or variance of a sample of graphs.
But without an appropriate algebraic model, the rich arsenal of mathematical
tools for data analysis in Euclidean spaces remains unavailable in the domain of

2.8 Structural Prozimity 19

attributed graphs. For this reason, exploiting spatial relationships among attributed
graphs using pairwise proximities is one key issue of concern in structural pattern
recognition.

There are numerous ways to measure proximities between graphs. Here, we
focus on structural prorimities that measure common structural consistent and
inconsistent parts. Structural proximity measures are not only widely applied in
structural pattern recognition [60, 367]. There is also strong evidence that human
cognitive models of comparison and analogy establish relational correspondences
between structured objects [110, 122, 158, 192, 204, 236].

Since this chapter is intended to set the stage of the graph matching problem, we
only consider proximities that are based on a single structural concept, namely the
mazimum common induced subgraph. As we will see in conjunction with the next
section, our approach serves to stress the difference between the terms structural
proximity measure and graph matching problem, which are widely used synony-
mously in the literature. A systematic and detailed overview of similarity measures
for structures is given in Schidler’s dissertation [311]. Downs & Willet [76] provide
an extended review of similarity measures for chemical structures.

2.3.1 Proximity Measures

To meet the requirements of applications in structural pattern recognition, we have
to model proximity relations between attributed graphs in a mathematical way. The
usual approach measures proximities by a similarity or, alternatively, by a distance
function. Care must be taken to adopt standard definitions of proximity measures,
because structurally identical (isomorphic) graphs are in general mathematically
unequal.

Similarity
A (symmetric) similarity measure is a function
S g.A X g.A - [Smina Smax]

such that

B X ~Y = 5(X,Y) = Smax
= S(X.Y) = s(Y, X)
for all X,Y € G4. The interval limits spjn and Spax denote minimal and maximal
similarity. Both limits are real numbers from R with Syin < Smax. Common choices
of spmin and spax are
Smin = 0 and Spax = 1,
Smin = 0 and Spax = 00,

Smin = —m and Spax = M.

20

The Graph Matching Problem

It is noteworthy that some applications use asymmetric measures [270, 288, 298].
Moreover, there are strong arguments that human perception to similarity reveals
significant and systematic asymmetries [220, 274, 361].

Dissimilarity

It is often convenient to measure the dissimilarity of attributed graphs by a distance
measure. A distance measure is a function

d:Gaxga— Ry
such that
1. d(X,Y) >0

2. d(X,Y) =d(Y,X)
3.X~Y = d(X,Y)=0

for all X,Y € G4. A distance measure is a metric if the following properties for all
X,Y, 7 € G4 are also satisfied:

4. d(X,)Y)=0= X~Y
5. d(X,Z) <d(X,Y)+d(Y, Z).

Intuitively, smaller distances between graphs mean larger similarities and vice versa.
Transformations Between Similarities and Distances

Similarity and dissimilarity are dual concepts such that there are various methods
to transform similarity to distance measures and vice versa. For example, let d be
a distance measure. Then

1

S(X, Y) = m

is a similarity measure. For further examples of transformations, we refer to

[311, 343].

2.3.2 Structural Proximities

Simple but popular examples of structural proximity measures are centered around
the maximum common induced subgraph (MCIS). In the following, we review the
concept of MCIS and provide some examples of proximities based on that concept.

The Mazimum Common Induced Subgraph

A common induced subgraph of attributed graphs X and Y is a graph Z isomorphic
to induced subgraphs of X and Y. A mazimum common induced subgraph of X

2.8 Structural Prozimity 21

and Y is a common induced subgraph of maximum order. Intuitively, the larger the
order of Z, the more similar X and Y are considered. This similarity concept was
apparently first applied in the 1970s by Levi [228], Ambler et al. [10], and Barrow
& Burstall [19]. Since then, it has been continuously used in various problems
[280, 295, 312, 317, 388].

Initial efforts to ground the concept of MCIS on a firm mathematical footing
were made by Zelinka [396] in 1975. For binary graphs X and Y of equal order
| X | =1|Y| = n, Zelinka showed that

dz(X,Y)=n—|Z|

is a distance metric, where 7 is a MCIS of X and Y. In 1982, Kaden [197] extended
Zelinka’s result and showed for graphs X and Y of arbitrary order that

dic1(X, V) = max (|X1, [v]) - |7]
and equivalently
7]

dra(X.Y)=1-
maX(’X

)

Y\)

are distance metrics, where again Z is a MCIS of X and Y. Furthermore, in the
same work, Kaden introduced a distance metric based on the minimum common
induced supergraph 7' of X and Y

dics(X,Y) = |2'] = min (| X[, [v]).

A common induced supergraph of X and Y is a graph Z’ such that X’ and Y’ are
isomorphic to induced subgraphs of Z’. If Z’ has minimum cardinality of vertices,
we call Z" a minimum common induced supergraph (MCIS’) of X and Y. Kaden
showed that

dx1(X,Y) =dgs3(X,Y).

Similarly, Bunke et al. [49] showed that a MCIS’ can be expressed in terms of a
MCIS.?

In order to cope with the requirements of applications, the stringent structural
conditions associated with the concept of MCIS have been relaxed by several
researchers. In 2001, Fernandez & Valiente [89] relaxed the condition of induction
and showed that

drv(X,Y) =|2'| — |Z]

2. Obviously unaware of Kaden’s work, Bunke & Shearer [50] rediscovered Kaden’s second
metric di2 in 1998. In addition, Bunke et al. [49] reintroduced the concept of the minimum
common induced supergraph as a similarity measure.

22

The Graph Matching Problem

is a metric, where Z’ is the MCIS’ and Z the MCIS of X and Y. In 1999, Schidler
& Wysotzki [311, 314] generalized a variant of Kaden’s second metric dxo and
suggested a family of metrics by incorporating similarities for vertex and edge
attributes. A few years later, in 2004, Hidovi¢ & Pelillo [142] and Torsello et al. [354]
proposed metrics combining the MCIS and similarities of vertex attributes. The core
of their metrics is closely related to the family of the Schiadler & Wysotzki metrics.

@ (b) (© (d)
Figure 2.6 Measuring similarity of image patterns using the concept of maximum
common induced subgraph. Column (a) shows the raw data, column (b) identifies
the basic constituents of the image pattern, column (c¢) shows the graph based
representations X and Y of both images, and column (d) shows a common induced
subgraph Z of X and Y. Vertices are colored with the color of their corresponding
segments. Two vertices are connected by an edge if the corresponding segments

are adjacent. The induced subgraphs of X and Y that are isomorphic to Z are
highlighted.

Q/
N

@//

Ezxample 2.1

Consider the problem of measuring the similarity of the two images patterns given in
Figure 2.6(a). We transform this problem to that of measuring the similarity of two
attributed graphs using the concept of the MCIS. Figure 2.6(d) shows that a maximum
common induced subgraph Z is of order |Z| = 4. Using |X| = |Y| = 5, Kaden’s metric
dr2 gives

4

Structural Similarity Measures Based on the MCIS

Given a structural concept like the MCIS, different proximity measures can be
defined. Several of those measures correspond to similarity coefficients originally
defined on binary feature vectors. Table 2.1 summarizes seven graph-based similar-
ity coefficients based on the MCIS.

Given the notation of Table 2.1, let Z’ = (X UY)/Z denote the union of X and

2.8 Structural Prozimity

Graph-based coefficients

Feature-based coefficients

Reference s(X,Y) Reference s(x,y)
Wallis ct al. [377] ———21 | Jaccard/Tanimoto ~ ————
' IXI+[Y] =12 r+y+z
2] 2
Kaden [197] —————— | Braun-Blanquet —
max (|X], |Y]) max(z, y)
12 . :
Johnson [193, 194] Cosine
XY VIY
2|Z| . 2z
Johnson [193, 194 —— Dice
S I e ity
Ellis et al. [80] L Asymmetric S
min (| X[, [Y]) min(z, y)
i 1Z||X] + |Z]|Y] . zr + 2y
Ellis et al. [80 —— | Kul sk —_—
is et al. [80] XY ulczynski 52y
, 1ZIIX] +12]]Y] z
Ellis et al. —_— kal and th T a—
is et al. [80] 2IXY] Sokal and Snea DT —

23

Table 2.1 Graph-based and corresponding feature-based similarity coefficients.
The quantity |Z| is the order of the MCIS of graphs X and Y. The vectors = and y
are binary vectors from B™. The quantity z is the number of bits set in both vectors
x and y, z is the number of bits set in vector z and not in vector y, and y is the
number of bits set in vector y and not in vector x.

Y, where we identify the induced subgraphs X’ ~ Z of X and Y’ ~ Z of Y in Z'.
We may regard Z’ as the graph obtained by gluing the disjoint graphs X and Y
along their induced subgraphs X’ and Y’ via an isomorphism ¢ € Zx- y. It can be
shown that Z’ is a MCIS' of X and Y [49]. Note that Z’ is not uniquely determined,
even not up to isomorphism, since Z’ depends on X', Y’, and the isomorphism
¢ € Ix/y:. But what is uniquely determined are the orders of X, Y, and Z within
Z'. This justifies our ambiguous but more intuitive notation (X U Y) /7.

The relationship between graph-based and feature-based similarity coefficients
becomes evident if we regard « and y as binary vectors of length |Z’|. We set a bit
in @ (and y) if the corresponding vertex in Z’ belongs to X (and Y'). Bits that are
set in both vectors and y correspond to vertices of X’ and Y’ via ¢ in Z’. Then
by construction, |X| 4+ |Y| = & + y — z or equivalently, | X| 4+ |Y| - |Z] = z + y.
Finally, it is noteworthy that feature-based similarity coefficients can be extended to

corresponding structural similarity coefficients based on other concepts of structural

relationships including, for example, the family of metrics suggested by Schadler &
Wysotzki [311, 314] and the metrics proposed by Torsello et al. [354].
As for feature-based similarity coefficients, optimal selection of graph-based

24

The Graph Matching Problem

similarity coefficients as shown in Table 2.1 is problem dependent and may have a
significant impact on the effectiveness of a pattern recognition system. A systematic
comparison of structural similarity coefficients based on the same structural concept
is widely unexplored. First investigations on that issue can be found in [296, 316,
354].

Complexity

All structural similarity measures shown in Table 2.1 require that the order of a
MCIS of the given graphs be compared. Determining the order of a MCIS is an NP-
complete combinatorial optimization problem. This is an immediate consequence
of the NP-completeness of the induced subgraph isomorphism problem [104], which
is a special case of the MCIS problem.3 Hence, determining structural similarities
based on the concept of MCIS is intractable.

Computational inefficiency holds for almost all structural measures [24] and is
the starting point of extensive research on algorithms and heuristics to determine
structural similarities. A well-known exception is the graph isomorphism problem.4
It is still an open question whether the graph isomorphism problem lies in NP-
complete or in P. We refer to Chapter 5 for a detailed discussion.

2.4 The Graph Matching Problem

The graph matching problem consists of determining a structural proximity. The
proximity measure determines the constraints and the objective function to be
optimized. As indicated in the previous section, a family of different proximity
measures may rely on the same structural concept, for example the MCIS, whose
determination is usually intractable. In order to gain more insight into the problem
and to apply generic algorithms, we abstract from the trivial terms of a structural
proximity measure and solely focus on its intractable part.

This section introduces a formal definition of graph matching problems and
provides some basic problem formulations commonly used in structural pattern
recognition. Most other graph matching problems are either variations or can be
reduced to one of the basic forms.

A graph matching problem is a combinatorial optimization problem of the form

maximize f ((b, X, Y)

(2.1)
subject to ¢ e M,

3. A formal definition of the induced subgraph isomorphism problem is provided in the
next section.
4. A formal definition of the graph isomorphism problem is presented in the next section.

2.4 The Graph Matching Problem 25

EXACT GRAPH MATCHING PROBLEMS

Graph matching problem MC Mxy
maximum common subgraph partial monomorphisms
2 maximum common induced subgraph partial isomorphisms
(a) induced subgraph isomorphism (|x|<|v|) total isomorphisms
(b) graph isomorphism (|x|=|v]) total isomorphisms
3 maximum common homomorphic subgraph partial homomorphisms
(a) subgraph homomorphism (|x|<|v|) total homomorphisms

Table 2.2 Selected examples of exact graph matching problems.

where the feasible region M is a subset of the set Mx y of partial morphisms
from X to Y. The function f to be maximized is the graph matching objective or
matching objective.

As already mentioned, several proximity measures can be derived from an optimal
solution ¢* € M or the optimal value f* = f(¢*) of (2.1). In particular, f* is a
similarity of X and Y.

Let us consider some examples of the most common graph matching problems.
To characterize their different forms, it is sometimes useful to take the perspective
of model-based pattern recognition. From the point of view of model-based pattern
recognition, we regard X as a data graph and Y as a model graph. In loose terms,
the task of graph matching is to recognize to which extent the data graph fits to
the model graph. Two kind of corruptions may occur when representing real-world
data by attributed graphs:

» Structural errors refer to missing or additional vertices and edges caused by
missing data, defective preprocessing, or flawed feature extraction.

® Noise refers to corrupted measurements of vertex and edge attributes.

In the following, we distinguish between ezact and ineract graph matching
problems as summarized in Table 2.2 and 2.3, respectively. The definitions given
in both tables emanate from the graph matching problem (2.1) formulated as an
optimization problem. Note that we present a more general definition of exact graph
matching problems than usually found in the literature.

2.4.1 Exact Graph Matching Problems

Exact graph matching problems aim at maximizing exact matches of vertices, edges,
and non-edges over the feasible region M C Mx y. Inconsistencies of attributes
do not contribute to the matching objective f of (2.1). From the perspective of
model-based pattern recognition, exact graph matching problems are appropriate
for coping with structural errors caused by missing vertices or edges.

Let X and Y be attributed graphs from G4 with adjacency matrices X = (x;;)

26

The Graph Matching Problem

and Y = (y;;). Consider the matching objective

F(6,XY) = Y ke,

1€D(¢)

where #;; denotes the compatibility value of item 4 € I(X) and item j € I(Y).> We
incorporate the condition of exact matches into the compatibility values by defining

ay wl:yJ,ZGV(X),]EV(Y)
(

e ap : i€B(X),jeB(Y) '
0 : otherwise

for all items 2 of X and j of Y. The nonnegative constants ay-, ag, and ag weight the
contribution of exact matches between vertices, edges, and non-edges, respectively,
to the matching objective f.

An exact graph matching problem is then defined by

maximize f o, X, Y Z Kige
icD($) i (2.3)
subject to ¢e M

Depending on the properties of the feasible region M, we obtain different types of
exact graph matching problems as shown in Table 2.2. We obtain further types of
exact graph matching problems by imposing other properties on M.

In order to provide a graph-theoretic meaning for the examples of exact graph
matching problems given in Table 2.2, we define the weight w(X) of X by

w(X) = av|V(X)|+ ag|BX)| + ag|E(X)).

Note that w(X) depends on the weight parameters oy, ag, and ag. For convenience
of presentation, we do not make the dependence explicit. Given the particular form
of the feasible region M as provided in Table 2.2, it is now straightforward to
show that the following problems are special instances of the exact graph matching
problem (2.3).

1. Mazimum Common Subgraph Problem

An attributed graph Z € G4 is a common subgraph of X and Y if there are
subgraphs X’ C X and Y’ C Y such that Z ~ X’ and Z ~ Y’. The maximum
common subgraph problem of X and Y is that of finding a common subgraph Z
with maximum weight w(Z2).

2. Mazimum Common Induced Subgraph Problem
The maximum common induced subgraph problem of X and Y lies in finding a

5. Recall that (i,j) € D(¢) if i € D(¢) and j € D(¢). Hence, the notation ¢ € D(¢) makes
sense.

2.4 The Graph Matching Problem 27

common induced subgraph Z with maximum weight w(Z). For ay = 1, ag = 0,
and az = 0, we obtain the MCIS problem as defined in Section 2.3.2.

(a) Induced Subgraph Isomorphism Problem
The induced subgraph isomorphism problem is that of deciding whether one
graph is isomorphic to an induced subgraph of the other graph.

(b) Graph Isomorphism Problem,
The graph isomorphism problem consists of deciding whether two given
graphs are isomorphic.

3. Maximum Common Homomorphic Subgraph Problem
The maximum common homomorphic subgraph problem of X and Y asks for a
common homomorphic subgraph Z of maximum weight w(Z7).

(a) Subgraph Homomorphism Problem
The subgraph homomorphism problem is that of deciding whether one graph
is homomorphic to a subgraph of the other graph.

Remark 2.2

For all types of common morphic subgraphs problems, the reference graphs of the
feasible region M are X and Y, and not the particular subgraphs between which we
try to establish a feasible morphism.

Variations

We obtain variations of the basic forms of exact graph matching problems if
we demand additional properties like connectivity, maximization of a common
substructure with respect to the cardinality of vertices or edges. As a reference
problem we consider the maximum common subgraph problem.

1. Vertex-Mazimum Common Subgraph
The vertex-maximum common subgraph problem asks for a common subgraph
with maximum cardinality of vertices. Choose ay =1, ag = 0, and az = 0.

2. Edge-Mazimum Common Subgraph

The edge-maximum common subgraph problem asks for a common subgraph
with maximum cardinality of edges. Choose, for example, ay = 1, ag = 1, and
OéE =0.

3. Mazimum Common Connected Subgraph

The maximum common connected subgraph problem asks for a common con-
nected subgraph with maximum weight. Here, we require that M is the set of
monomorphisms between connected subgraphs of X and Y.

2.4.2 Inexact Graph Matching Problems

The stringent constraints of exact matches are too rigid, in particular, when vertex
and edge attributes are noisy. In these cases, it is useful to introduce some degree

28

The Graph Matching Problem

INEXACT GRAPH MATCHING PROBLEMS

Graph matching problem MC Mxy
best M-morphic graph matching M
probabilistic graph matching (v(v)u {ey}) total morphisms
error correcting graph matching total monomorphisms

Table 2.3 Examples of inexact graph matching problems.

of noise tolerance or inexactness into the formulation of graph matching problems.
From the perspective of model-based pattern recognition, inexact graph matching
problems are appropriate for handling problems in which data graphs are corrupted
by both structural errors and noise. We examine three types of inexact graph
matching problems summarized in Table 2.3.

Again, we consider attributed graphs X and Y from G4 with adjacency matrices
X = (z;) and Y = (yi5)-

Best M-morphic Graph Matching Problems

Assume that the set A of vertex and edge attributes is decomposed into disjoint
sets Ay of vertex attributes and Ag of edges attributes. Recall that such a
decomposition of A is possible and that ¢ € Ag. Let

SvZ.AV XAv—>[0,1]

sg:Ag X Ag — [0,1]

be similarity functions defined on the set of vertex and edges attributes. Consider
the following compatibility values between items of X and Y

ey :{ sv(zs,yj) 1€ V(X), jeV(Y)

(2.4)
sp(xs,y;) @ otherwise

for all items 2z of X and 3 of Y. The best M-morphic graph matching problem is of
the form

maximize f((b, X, Y) = Z Kige
ieD(9) (2.5)
subject to peM

with compatibility coefficients ;5 as defined in (2.4). Typically, the feasible region
M is the set of partial morphisms or partial monomorphisms from X to Y.

Probabilistic Graph Matching Problem

In probabilistic graph matching, a probability model is drawn to measure com-
patibility between items. The aim is to then find a morphism from X to Y that

2.4 The Graph Matching Problem 29

maximizes a global maximum a posteriori probability.

To describe the probabilistic graph matching problem in formal terms, we first
introduce a distinguished null color ey for vertices not contained in A. Next, we
extend the model Y by including an isolated vertex with null color ey .

The probabilistic graph matching problem is defined by

maximize f(¢, X, Y) = P(¢|X, Y)

(2.6)
subject to ¢ Mxy,

where the matching objective P(¢|X , Y) is the a posteriori probability of ¢ given
the measurements X and Y.0 Applying Bayes Theorem, we obtain

P(¢|X, Y) _ p();’(i[ci)/];(d))

(2.7)
where P(¢) is the joint prior for ¢. The quantities p(X,Y|¢) and p(X,Y’) are the
conditional measurement density and the probability density functions, respectively,
for the sets of measurements.

From a conceptual point of view, the critical constituents of (2.7) are appropriate
models for the conditional measurement density p(X,Y|¢) and the prior P(¢).
The quantity p(X, Y'|¢) models the distribution of the known measurements given
a match ¢. The prior P(¢) measures the overall consistency of a morphism. Note
that we may ignore p(X,Y"), since it does not affect maximization of (2.6).

Error Correcting Graph Matching Problem

The error correcting graph matching problem lies in determining the graph edit-
distance of X and Y. The graph edit-distance is defined as the minimum cost over
all sequences of basic edit operations that transform X into Y. Following common
use, the set of basic edit operations are substitution, insertion, and deletion of items.
Different cost functions can be assigned to each edit operation.

From the perspective of model-based pattern recognition, edit operations are
transformations of items in order to correct structural errors and noise in the
attributes. Typically, edit operation for corruptions that are likely to occur have
low cost. Similarly, we usually assign high cost to edit operations for unlikely
corruptions.

The sequences of edit operations that make X and Y isomorphic can be identified
with the partial monomorphisms ¢ : V(X) — V(Y. Each partial monomorphism
¢ induces a bijection ¢ : D(¢) — R(¢p) from the domain D(¢) to the range R(¢) of
¢. In terms of ¢, the edit operations have the following form

» Substitution: An item 4 from D(¢) is substituted by item % from R(¢).

6. In accordance with the terminology used in [386] we refer to X and Y as the sets of
measurements. Note that [386] only considers unary measurements for vertices.

30

The Graph Matching Problem

® Deletion: Items i of D(¢) = I(X) \ D(¢) are deleted from X.
» [nsertion: Items j from R(¢) = I(Y) \ R(¢) are inserted into Y.

If ; = y;4, the substitution 7 by 3% is called identical substitution. The cost of a
partial monomorphism ¢ is then defined by

f QZS,X Y Z C’del Z Ozns Z Csub 7/ 'L (28)

i1€D(¢) JE€R(9) 1€D(d

where Cy(2) is the cost of deleting item ¢ of X, Cjp,5(2) is the cost of inserting an
item % into Y, and Cjsyp(,J) is the cost of substituting an item i from X by an
item 7 of Y. We assume that all costs are nonnegative.

The minimum graph edit problem is then of the form

minimize flo, XY
() (2.9)
subject to ¢ eM

where M is the subset of all partial monomorphisms from X to Y. The global
minimum E, of (2.9) is the graph edit distance of X and Y.

Remark 2.3

The concept of graph edit distance generalizes the Levenshtein edit distance origi-
nally defined for strings [227]. In 1977, Selkow [322] extended the Levenshtein edit
distance to trees. A few years later, Sanfeliu & Fu [309] and Eshera & Fu [83]
proposed edit distances for graphs. The graph edit distance can be considered as an
example of a prorimity measure that incorporates both structurally consistent and
inconsistent correspondences. The graph edit distance and related prorimity mea-
sures have been also discussed in [48, 325, 337, 358, 359].

2.4.3 Complexity

The maximum common subgraph problem is NP-complete [65]. The graph isomor-
phism problem is suspected to be a candidate for a problem that is neither in P nor
NP-complete, provided that P#£NP [212]. The induced subgraph isomorphism prob-
lem is a well-known NP-complete problem [104]. The maximum common induced
subgraph problem is at least of the same complexity, because it contains the in-
duced subgraph isomorphism problem as a special case. The graph homomorphism
problem generalizes the minimum graph coloring problem, which is well-known to
be NP-complete [65]. The best M-morphic and error correcting graph matching
problems generalize the maximum common subgraph problem and are therefore
NP-complete. The probabilistic graph matching problem is closely related to the
satisfiability problem SAT, which is well-known to be NP-complete [104]. As a con-
sequence, the graph matching problem in its most general form is, in the worst case,
NP-complete.

2.5 Optimization 31

2.5 Optimization

The particular formulation of the graph matching problem determines which algo-
rithis we can use to solve the problem. Since Barrow & Popplestone [20] intro-
duced graph-based representations in high-level computer vision, many algorithms
and heuristics have been devised to solve a variety of graph matching problems.

Following Gold & Rangarajan [116], most graph matching algorithms can be
divided into search-based and optimization-based methods. Search-based methods
cast the graph matching problem to a search problem in a state space, which is then
solved by a search algorithm. Optimization-based methods formulate the graph
matching problem as a constrained nonlinear optimization problem in order to
apply techniques from nonlinear mathematical programming.

The goal of this section is to illustrate the diversity of solution methods for
particular instances of the graph matching problem. Therefore, this section reviews
some common techniques for solving graph matching problems. In particular, we
consider

1. Tree search

2. Neural networks

3. Relaxation labeling
4

. Other optimization methods

Tree search belongs to the class of search-based methods. The other three methods
are optimization-based methods. For an overview of more specialized methods see
[60].

2.5.1 Tree Search

Tree search methods are based on the idea of iteratively expanding partial mor-
phisms by adding a new pair of feasible vertices. They differ in the order partial
morphisms are visited. In general, tree search methods provide optimal solutions,
but require exponential time in the worst case.

The standard and apparently most widely used algorithm for graph and (induced)
subgraph isomorphism problems is the one proposed by Ullman [362].7 Ullman'’s
algorithm uses a sequential backtracking tree search enhanced with a look ahead
function to prune the search space. In its original version, Ullman’s algorithm can be
applied to simple graphs only. Tree search techniques based on backtracking, branch
& bound algorithms, and the A* algorithm for more general exact and inexact graph
matching problems have been addressed by [48, 61, 82, 254, 324, 358, 359].

7. The term (induced) subgraphs abbreviates subgraphs and induced subgraphs.

32

The Graph Matching Problem

2.5.2 Neural Networks and Related Energy Minimizing Techniques

Neural networks have been applied to the best (mono)morphic graph matching
problem. First connectionist algorithms for solving graph matching problems are
attributed to Cooper [62], Kree & Zippelius [218], and von der Malsburg [374]
in 1988, and Li [230], Mjolsness et al. [265] and Wysotzki [387] in 1989. Most
pioneering solutions to the best monomorphic graph matching problem are based
on the framework of Hopfield and Tank [149].

The general approach of Hopfield and Tank to solve combinatorial optimization
problems maps the objective function of the optimization problem to an energy
function of the Hopfield network. The constraints of the problem are included in
the energy function as penalty terms. In the context of the best monomorphic graph
matching problem, the constraints are so-called two-way winner takes all (WTA)
constraints. One direction of WTA constraints requires that any vertex i of graph
X is mapped to one vertex j of graph Y at most. The image j of vertex i can
then be considered as the winner for ¢ among all competitors from V(Y'). The other
direction of WTA constraints requires that each vertex j of Y is the preimage of
one vertex ¢ of X at most. Similarly, the preimage of i is the winner for j among all
competitors from V(X). Obviously, the two-way WTA constraints aim to enforce
that the solutions of the Hopfield model correspond to well-defined and injective
partial morphisms from X to Y. Once the Hopfield model has been initialized,
the network dynamic minimizes the energy function until it converges to a local
minimum.

Application of early Hopfield networks to graph matching problems fail for the
following reason [336]: often the network converges to local minima of the energy
function that corresponds either to infeasible solutions or to feasible solutions that
are far from being optimal. Since the penalty terms of the energy function do not
necessarily enforce the two-way WTA constraints, they are also referred to as soft
constraints.

To mitigate this problem, Peterson & Soderberg [285] adopted techniques from
statistical physics to solve combinatorial optimization problems with neural net-
works. Simié¢ [332] incorporated the method of deterministic annealing into the
elastic net algorithm proposed by Durbin & Willshaw [78] for the best monomorphic
graph matching problem. Deterministic annealing convexifies the energy function
in order to avoid local minima. Suganthan et al. [345] uses Potts glass approxima-
tion for the best morphic graph matching problem. Potts glass enforces one-way
WTA constraints via the softmax principle and can therefore be regarded as an
implementation of hard constraints.

But even if we use Potts glass, the monomorphic graph matching problems
require two-way WTA constraints. Therefore, the energy function must still include
penalty terms to implement the other set of WTA constraints. A breakthrough
to ensure feasibility was made by Aiyer et al. [6], who showed that a sufficiently
large penalty term ensures validity of the solution. The problem is that too large
penalty terms force the network to converge rapidly to a feasible, but poor solution.

2.5 Optimization

33

This impaired behavior, however, can be compensated with deterministic annealing
techniques. In [313], Schidler & Wysotzki derived a lower bound for the penalty
term to ensure feasibility. In addition, they replaced the deterministic annealing
scheme by an exterior penalty point method. Pelillo [279] transformed the maximum
common induced subgraph problem to a spurious free version of the Motzkin Strauss
Theorem, which is then solved using replicator equations from theoretical biology.
Other types of connectionist approaches were also proposed for graph matching
such as Kohonen networks [392].

2.5.3 Relaxation Labeling

According to Gold & Rangarajan [116], the earliest and most successful continu-
ous optimization methods use some form of relaxation labeling. Within a graph
matching framework, the basic labeling problem is to find a labeling that assigns
vertices of the data graph X to vertices of the model graph Y without violating
the constraints. Continuous relaxation algorithms for solving the labeling problem
use label weights that measure the extent to which an assignment is accepted. Ini-
tially, each vertex i from X is associated with a weight vector — usually consisting
of probabilities that measures the likelihood of labeling ¢ with vertices from
Y. The goal of relaxation techniques is to iteratively reduce inconsistencies of the
initial labeling with respect to a coherence matching objective. After convergence,
each vertex of X is labeled with the vertex of Y having the largest label weight.
Thus, classical relaxation methods enforce one-way WTA constraints in such that
feasible labelings correspond to morphisms from X to Y.

One example of pioneering work for this approach was made by Fischler &
Elschlager [93] in 1973. A relaxation labeling algorithm that gained enormous pop-
ularity because of its simplicity is the method proposed by Rosenfeld et al. [304] in
1976. Faugeras & Price [87] first exploited the Rosenfeld-Hummel-Zucker relaxation
scheme for the graph matching domain. From the perspective of Hummel & Zucker
[159] in 1983, analysis of relaxation labeling within the probabilistic framework is
unsuccessful, because it requires various independence assumptions and, at best,
leads to an approximate understanding of only one iteration of the process. As an
alternative to probabilistic and heuristic approaches to relaxation labeling, Hum-
mel & Zucker extended the optimization viewpoint of Faugeras & Berthod [86] and
treated relaxation labeling from a more basic foundation. Despite the statement
by Hummel & Zucker, research on probabilistic relaxation schemes continued. A
breakthrough in the theoretical justification of probabilistic relaxation using the
Bayesian framework is attributed to Christmas et al. [57] and Kittler & Hancock
[209]. Wilson & Hancock [386] derived a statistical model for probabilistic relaxation
within a purely structural domain. Since then, further techniques of probabilistic
graph matching have been proposed by [90, 272, 353]. A more recent method by Luo
& Hancock [243] employs the Expectation-Maximization algorithm on probabilistic
graph matching problems.

34

The Graph Matching Problem

2.5.4 Other Optimization Methods

Besides neural networks and continuous relaxation algorithms, a number of non-
linear optimization techniques have been proposed. We distinguish between dis-
crete and continuous optimization methods. Attempts to apply techniques to
graph matching problems over discrete spaces include, for example, genetic search
[67, 334, 344], simulated annealing [139], and tabu search [384]. Yet, continuous op-
timization methods are commonly preferred to their discrete counterpart, because
their dynamical behavior and convergence properties are usually better understood.
Therefore, the main focus is on continuous optimization methods.

The most powerful solutions have been devised for graph matching problems with
two-way WTA constraints. The graduated assignment algorithm, independently
developed by Gold & Rangarajan [116] and Ishii & Sato [163], sets the benchmark
with respect to solution quality and speed. From the improved results obtained
by using Potts glass, it was widely accepted that optimization schemes using
hard constraints via softmax are superior than those using soft constraints via
penalty terms [117, 164, 285, 345]. Consequently, Gold & Rangarajan and Ishii &
Sato developed a technique termed graduated assignment or soft assign to enforce
hard constraints in both directions. Soft assign operates as an interlocked softmax
loop based on a mathematical result of Sinkhorn [335]. One problem of graduated
assignment is that the performance of the algorithm declines significantly at mid
and high levels of structural corruption [91]. To mitigate this problem, Lozano
& Escolano [238] incorporated diffusion kernels into the energy function of the
graduated assignment algorithm.

Recently, van Wyk et al. proposed a series of approximate least-squares graph
matching algorithms [368, 369, 370, 371]. Their algorithms perform non-Bayesian
graph matching without explicit calculation of compatibility values and enforce the
two-way WTA constraints using projection methods.

Schellewald et al. [315] used semidefinite programming techniques for the max-
imum common subgraph problem of simple graphs. Their approach is based on
convex relaxation so that no tuning parameters have to be determined.

Spectral methods to monomorphic graph matching problems for weighted graphs
of equal order were apparently proposed for the first time by Umeyama [363] in
1988. More sophisticated techniques using eigendecomposition have been suggested
by [52, 216, 244, 320, 323, 391]. The advantage of spectral methods is their low
computational complexity but their sensitivity to noise is disadvantageous.

2.6 Conclusion

This chapter introduced basic concepts of structural pattern recognition primarily
from the perspective of the graph matching problem. An appropriate graph-based
representation of a given set of complex objects and the choice of proximity
measure are of crucial importance for uncovering the hidden structure of the data.

2.6 Conclusion

35

For this reason, structural proximity measures are a preferred choice in many
applications of structural pattern recognition. The major difficulty with almost
all structural measures is that their computation is an NP-complete combinatorial
optimization problem. Therefore, as for many combinatorial optimization problems,
an appropriate formulation of the graph matching problem is of crucial importance
to efficiently solve the intractable problem of determining a structural proximity
measure. As a consequence, considerable effort has been directed at devising a
variety of optimization algorithms for graph matching problems. In the next two
chapters, we will present a unified view of most common graph matching problems
and propose a generic optimization algorithm.

We conclude this chapter by addressing an important open problem in structural
pattern recognition. A main focus of research was and still is devoted to the graph
matching problem. By now, we have well established and powerful optimization
techniques at our disposal. This issue enables research on other, more complex tasks
in structural pattern recognition. A good optimization algorithm is important to
practically execute data analysis in the domain of graphs. But it is conceptually
useless to solve the primary problem in pattern recognition — to uncover the
true but unknown structure of the data. To solve this key problem, we need a
suitable model of our problem domain, which is an appropriate representation of
the data and a carefully chosen proximity measure. Systematic investigations and
empirical comparisons in this direction are underrepresented. Exceptional examples
of systematic investigations on structural similarity measures can be found in
Raymond & Willett [296], Torsello et al. [352], and Schenker et al. [316]. As a
consequence, we have paved navigable streets and constructed fast cars, but have
a poor map to help us arrive at our goal. This circumstance may give rise to the
criticism that the specific graph matching algorithm, and not the problem domain
itself, fits our model.

3 Graph Matching as Clique Search

This chapter presents a generic graph-theorectical view for different types of graph
matching problems. We provide a necessary and sufficient condition so that graph
matching problems are equivalent to a clique search in a derived association graph.
To this end, we generalize classical clique problems to the maximum weight clique
problem. To enable application of continuous optimization methods, we present an
equivalent continuous characterization of the maximum weight clique problem.

3.1 Introduction

As shown in Section 2, the graph matching problem appears in diverse forms, each
of which can be solved by a variety of optimization techniques. Specialization to
specific matching problems has produced powerful algorithms. An example is the
graduated assignment algorithm [116, 163], which is applicable only to the best
monomorphic graph matching problem.

A generic view on the graph matching problem is attractive because it

® simplifies analysis of common characteristics,
® enables development of generic algorithms, and

® provides easier access to graph matching problems for the unskilled practioner.

Despite the advantages offered by a generic framework, only little effort has been
directed towards this issue. The few existing approaches provide a common view
of certain exact graph matching problems as a clique search problem in a derived
association graph [55, 282].1

In this chapter, we generalize the association graph framework and show that
graph matching constrained over closed feasible regions (domains) is equivalent to
a clique search in an extended association graph. The closedness property of the
feasible region is a sufficient and necessary condition that holds for most common
graph matching problems. This result reveals a common misconception that a clique
search is merely a special technique for solving certain types of graph matching
problems. The difference between solutions based on association graph techniques

1. A formal definition of an association graph is given in Section 3.5.

38

Graph Matching as Clique Search

and other optimization methods is that the former makes the equivalence between
graph matching and clique search explicit, whereas the latter implicitly performs a
clique search.

En route to achieving our central objective, we arrive at results that are inter-
esting on their own. In particular, the most relevant are

1. a proof technique to simplify showing whether a new graph matching problem
is equivalent to a clique problem in an association graph, and

2. an equivalent continuous formulation of the maximum weight clique problem.

Referring to the first result, former and current association graph techniques provide
a complete new proof for each graph matching problem of interest in order to
establish equivalence between graph matching and clique search. Using the proposed
technique, it all boils down to showing that the feasible region under consideration
is closed with respect to some property. The second result is useful, because it allows
us to apply a rich arsenal of continuous optimization methods.

This chapter is organized as follows. Section 3.2 provides a generic descriptive
characterization of the graph matching problem. In Section 3.3, we transform
the descriptive characterization into an equivalent quadratic integer program. The
integer program links the graph matching problem with clique search. Section 3.4
extends standard clique problems to the maximum weight clique problems. The key
result of this chapter is presented in Section 3.5. We prove that graph matching
is equivalent to clique search in an extended association graph, provided some
closedness property is satisfied. Section 3.6 presents a continuous formulation of the
maximum weight clique problem. Finally, Section 3.7 concludes with a summary of
the main results and an outlook for further research.

We conclude this section with a summary of some important notations that will
be used in this chapter.

Notation 3.1
Let A = (a;j) be an (n x n)-matrix with entries from a set A. Then

® Dy = diag(aii,. .., an,) denotes the diagonal matriz of A,
® Op = A — Dy denotes the off-diagonal matriz of A,

" da=(ai1,...,an,)T denotes the diagonal of A.

Let X be a graph on V and let C C V be a clique. Then 1¢ = (c1, ..., ¢p,)T denotes
the characteristic vector of C whose elements are of the form

1 : 1eC
C; =
0 : otherwise

for all ¢ € [1: n).

3.2 The Basic Graph Matching Problem 39

3.2 The Basic Graph Matching Problem

This section provides a generic declarative formulation of the graph matching
problem.

Let
gl = {(X,i) : X eg,ie I(X)}

be the set of pairs consisting of items together with their respective graphs. A
compatibility function is a symmetric, nonnegative function of the form

kG x G - R, ((X,4),(Y.5)) — rsxv(i7) =r((X,1).(Y.5)).

We drop the subscripts of kxy (2,) referring to the underlying graphs X and Y if
the reference is clear, and write x;5. A compatibility function measures the degree
of compatibility, or consistency, between two items of given graphs. Since x allows
us to consider the structural context of an item, a compatibility function extends
the concept of similarity functions on vertex and edge attributes.

Consider the basic graph matching problem (BGMP)

maximize flo) = Z Kizo
i€D(¢) (3.1)
subject to e M,

where the feasible region M is a subset of the set M x y of partial morphisms from
XtoY.

Remark 3.2

The matching objective in formulation (3.1) of the BGMP is suitable for both
undirected and directed attributed graphs. Consider a non-vertex item (i,7) of X.
Assume that ¢ € Mxy is a feasible morphism with i® = k and j* = l. The
mapping ¢ on {i,j} determines a mapping on both directions (i,j) and (j,4) in the
obvious manner. Since ¢ is feasible, the mappings (i,7)? = (k,1) and (j,1)® = (I, k)
are feasible. Therefore, both compatibility values k;jr and Kji, contribute to
the matching objective. If the graphs under consideration are undirected, then the
matching objective counts each edge twice.

Formulation (3.1) is sufficiently general in capturing a broad range of common
graph matching problems. To underpin this, we cast the formulations of Section 2.4
to a BGMP. All exact graph matching problems and the best M-morphic graph
matching problem have been introduced in Section 2.4 in the form of a BGMP. So it
is left to show that probabilisitic and error correcting graph matching are BGMPs.

40

Graph Matching as Clique Search

Probabilistic Graph Matching Problems

Probabilisitic graph matching problems are usually solved by a Bayesian inference
scheme that does not require explicit calculation of compatibility values in advance.
Conceptually, there are compatibility values and a probabilistic graph matching
problem turns out to be a BGMP over the set of all total morphisms, where we
extend the graph Y by an isolated vertex with null attribute ey .

Error Correcting Graph Matching Problems

To transform the error correcting graph matching problem (2.9) to an equivalent
BGMP, we modify the set of attributes A and the graphs X and Y.

We expand A4 by including the distinguished symbols i and d. Let A’ = Au{i,d}
denote the expanded set of attributes. [tems with attribute i and d are called insert-
items and delete-items, respectively.

Next, we assume that X and Y are of order |X| = n and |Y| = m. We expand
X by adding m insert-vertices with attribute i. Similarly, we enhance Y by adding
n delete-vertices with attribute d. We denote the expanded versions of X and
Y by X’ and Y’, respectively. Each insert-vertex of X’ is connected to all other
n+m — 1 vertices by insert-edges with attribute i. Similarly, each delete-vertex of
Y is connected to all other n + m — 1 vertices by delete-edges with attribute d.

To define an appropriate compatibility function x for the minimum graph edit
problem, we first introduce some auxiliary notations. By V(X,a) we denote the
subset of all vertices of X that have attribute a. Furthermore, let C’,, be a
nonnegative real-valued function on I(X’) x I(Y”) such that

;o) Csw(i,3) @ i€ l(X), jelY)
sub(”’a]) - .
0 : otherwise

Now we consider the following compatibility values of X’ and Y’

—Caali) i€ V(X),jeV(Y,a)
kij = _Czns(J) XS V(Xla i)a .7 € V(Y) (32)
—ClLp(3,73) : otherwise

for all items 2z of X’ and j of Y’. Then the BGMP over the set of all total
monomorphisms from X’ to Y’ is equivalent to the error correcting graph matching
problem (2.9). Note that we consider negative costs as compatibility values to turn
the minimization problem (2.9) into a maximization problem as in (3.1).

The following remark is important for practical issues.

Remark 3.3

Suppose that Caei (1) = cder and Cins(J) = cins are constant functions on V(X)) and
V(Y), respectively. Then it is sufficient to expand X by only one insert-vertez and
Y by only one delete-vertex. This is possible, because

3.8 A Quadratic Integer Program for Graph Matching 41

[] K/i_’i = K’i’j

® 5 and v’ must not be mapped to the same vertex of Y’

for all distinct insert-vertices © and v’ from X'. Hence, we may safely contract all
insert-vertices to exactly one insert-vertex. A similar statement holds for delete-
vertices.

Aligning both graphs to the same order n+m serves technical simplicity to avoid
tedious case distinctions between the monomorphic and non-monomorphic part of
a morphism between the expanded graphs.

3.3 A Quadratic Integer Program for Graph Matching

In this section, we cast the BGMP (3.1) to an associated constrained quadratic
integer program. The quadratic program can be viewed as a basis for diverse
optimization techniques such as soft assign [116], semidefinite programming [315],
or eigendecomposition [363]. In addition, it links graph matching to a clique search.

Let X and Y be attributed graphs from G4 of order |X| = n and |Y]| = m.
Assume that we are given a compatibility function s defined on G[I] x G[I]. For any
item (i,7) of X, the compatibility function x induces a weighted (m x m)-matrix
kY of the form

Kijat -+ Kijim
Iiin:

Rijom1 **° Kijmm

The matrix ;;Y is the compatibility matriz of graph Y and item ¢ € I(X). Using
compatibility matrices, we can extend the classical definition of a Kronecker product
of matrices (see [136]). The Kronecker k-product of X and Y is a real-valued
(n+-m x n-m)-matrix of the form

k11Y k1Y - kRY

I<J21Y KQQY s HgnY
X®Y =

Iinly IinQY e ,‘innY

To rewrite the BGMP in terms of the Kronecker x-product, we need a matrix
representation for the partial morphisms from Mx y. The matrix representation
of p € Mx y is a matrix M = (m;;) of the form

1 : ifi®=j
mij = .
0 : otherwise

42

Graph Matching as Clique Search

1l 1T
2 2
X Y

Figure 3.1 Shown are two attributed graphs X and Y of order 2. Different colors
of vertices correspond to different attributes. The edges of X and Y are labeled
with the same attribute.

In general terms, a match matriz is a matrix M = (m;;) € B"*™ with

m
Z msj S 1
j=1

for all i € [1:n]. A match matrix has, at most, one entry with value 1 in each row.
It is easy to see that the set M"™*™ of (n x m)-match matrices are in one-to-one
correspondence with the set set of partial morphisms Mx y.

Given a compatibility function k, the BGMP is equivalent to the following
constrained quadratic integer program

maximize f(M) = vec(M)TK vec(M)

(3.3)
subject to M e M,

where M is a subset of M™*™ K = X ® Y is the Kronecker k-product of X
and Y, and vec(M) is the vector obtained by stacking the rows of matrix M to a
column vector

vec(M) = (M1, Mimy e e s Mply ooy Mpm)"
Problem (3.3) is the desired quadratic integer program of the basic graph matching
problem (QIP) .

Example 3.4
Consider the attributed graphs X and Y shown in Figure 3.1. Assume that our goal is to
solve the graph isomorphism problem. As compatibility values, we choose

1+ =z =yj; and [{i1,d2}] = [{j1, j2}
Kij = .
0 : otherwise

for all items i = (i1,42) of X and j = (j1,72) of Y.2 The chosen compatibility values
correspond to those given in (2.2) by setting av = ag = a = 1. Thus, arbitrary graphs
X’ and Y’ of order n are isomorphic, if the optimal solution of the BGMP has value
n?. This can be seen as follows: An isomorphism consistently maps n vertex items and

2. The formula for k;; is based on the following trick: for a vertex item 2 = (i1,12) the
set {i1,12} consists of one element, because i1 = i2. For non-vertex items 4 = (i1,142), the
set {41,142} consists of exactly two elements. Hence, k;; = 1 if, and only if, items ¢ € I(X)
and j € I(Y') are both either vertex or non-vertex items with the same attribute.

8.4 The Mazimum Weighted Cliqgue Problem 43

n(n — 1) non-vertex items. Since x counts each consistent mapping of an item once, we
obtain n+n(n—1) = n?. Therefore, in our example, we expect that the matching objective
of the QIP has maximum value 4.

The k-Kronecker product X ® Y is of the form

K11,11 Ki11,12 | K12,11 K12,12

K11,21 K11,22 | K12,21 K12,22

XRY =

K21,11 K21,12 | K22,11 K22,12

— Ol O
S == O
S = O

1
0
0
0

K21,21 K21,22 | K22,21 K22,22

where both matrices are partitioned into blocks of compatibility matrices of Y with items
from X. For example, the upper left submatrix k11 Y of X ® Y shows that vertex 1 of X
is only compatible to vertex 2 of Y.

For the graph isomorphism problem, the set of feasible match matrices are all (2 x 2)-

permutation matrices
1 1
I= 0 and P = 0 .
0 1 1 0

Stacking the rows of I and P yields
vec(I) = (1,0,0,1)T and vec(P) = (0,1,1,0)T.
Evaluating the matching objective f of the QIP for I and P gives
fI) =vec(I)"X ®Y vec(I) = 2

and
f(P) =vec(P)"X ®Y vec(P) = 4.
This shows that P is the optimal solution of the QIP. Since f(P) = 4, both graphs X

and Y are — as expected — isomorphic. The isomorphism represented by P gives the
assignments 1 — 2 and 2 — 1.

3.4 The Maximum Weighted Clique Problem

The mazimum clique problem (MCP) is a classical problem in combinatorial op-
timization. It was one of the first problems shown to be NP-complete [200]. An
important generalization of the MCP is the mazimum vertex-weight clique problem
(MVCP). Given a weighted graph, the MVCP asks for a clique with the largest
total weight over its vertices. Obviously, the MCP is a special case of the MVCP
when all vertices are labeled with identical positive weights. Therefore, the MVCP
is at least of the same complexity as the MCP. Both the MCP and the MVCP have
many applications such as information retrieval [16], stereo vision correspondence
[151], and shape recognition [284]. Further applications can be found in [36, 276].
A largely unknown and barely investigated extension of the classical MCP and
MVCP is the mazimum weight b-clique problem (MWCPy). Given a complete
weighted graph X, the MWCP, asks for a clique C' with, at most, b vertices
and the largest total weight over all vertices and edges of X[C]. The MWCP,
is NP-complete, since the classical MCP reduces polynomially to it [161, 248].

44

Graph Matching as Clique Search

Applications of the MWCP;, include, for example, location theory [81, 221, 293, 339)
and molecular biology [160].

In this section, we suggest a generalization of the MCP and the MVCP that
is closely related to the MWCP,, but more appropriate in representing graph
matching problems. We obtain the mazimum weight clique problem (MWCP) from
the MWCP;, by abandoning completeness of the underlying graph and the limiting
threshold b. Though the formulation of the MWCP is a straightforward extension
of the classical MCP in the same line with the MVCP, neither its mathematical
formalization nor its theoretical analysis apparantly have been considered in the
respective literature.

We will show that from the perspective of complexity theory, the MWCP is unin-
teresting, because it can be polynomially converted to the MVCP. Hence, for com-
puter theorists and mathematicans there is no reason to consider the MWCP. But
from a practical point of view, converting the MWCP to a MVCP is computation-
ally unacceptable, particularly for graph matching problems. Nevertheless, potential
applications of the MWCP are either unknown in the community of combinatorial
otimization and graph theory, or did not lead to a mathematical formalization as
in [31, 314].

Let X = (V, E, X) be a weighted graph from Gg. In the following, we assume that
the void symbol e represents —oo with €0 = 0. The weight w(C) of a clique C of
X is defined by

1
w(C) = 5(1L0x10) +1kdx, (3.4)
where Ox = X — Dx is the off-diagonal matrix of X, dx is the diagonal of X,
and 1¢ is the characteristic vector of clique C. The next result shows that definition

(3.4) makes sense and is a well defined scalar. That is, w(C') has no undefined term
ae with a #£ 0.

Proposition 3.1
Let C be a clique of a weighted graph X. Then w(C) € R.

Proof Let O = Ox be the off-diagonal matrix of X, and let = 1¢ denote
the characteristic vector of clique C. By definition of a weighted graph, vertices are
associated with real valued attributes. Hence, from dx € R" follows zTdx € R.
Now suppose that 7Oz ¢ R. Then there are indices 4,7 € [1 : n] such that
0;;2,x; ¢ R. Thus, we have 0;; = € and z; = z; = 1. From z; = x; = 1, it follows
that ¢ and j are members of C. Since 0;; = € implies that (4, j) is a non-edge, we
have the contradiction that vertices ¢ and j are not connected in X [C]. This implies
7Oz € R. Combining the results of both parts yields the assertion. |

8.4 The Mazimum Weighted Cliqgue Problem 45

The mazximum weight clique problem is an integer quadratic problem of the form

1
maximize f(le) = 3 (1-('; Oxlc) + 1EdX (3.5)

subject to C € Cx,

where Cx is the set of all cliques of X.

It is useful to distinguish between global and local maxima of f .3 The local
maxima of f correspond to the maximal weight cliques of X. A mazimal weight
clique of X is a clique C € Cx such that

CCC = w0 >w(l)

for all cliques C’ of X. It is impossible to enlarge a maximal weight clique C to a
clique with higher weight. If all vertices and edges of X are associated with positive
weights, a maximal weight clique is not a proper subset of another clique.

The global maxima of f correspond to the maximum weight cliques of X. A
mazimum weight clique of X is a clique C' € Cx with maximum total weight over
its vertices and edges. Note that, because of the factor 1/2 in (3.4), the weight of
each edge of X[C] contributes only once to w(C). Obviously, a maximum weight
clique is a maximal weight clique, whereas the converse does not generally hold.

The next examples show some special cases of the MWCP, including the standard
MCP and MVCP.

Example 3.5
We assume that X = (V, E, X) is a normalized graph from Gy. Vertices and edges of a
normalized graph are associated with positive weights from]0, 1]. We may set ¢ = 0 for
the void attribute.
1. Mazimum Cliqgue Problem (MCP)
The MCP calls for a clique with maximum cardinality of vertices. Hence, we can
neglect vertex and edge weights and assume that X is a binary graph. Then the
MCP is a special instance of a MWCP.

2. Mazximum Vertex Weight Clique Problem (MVCP)
The MVCP lies in finding a clique with maximum total weight over the vertices
only. Thus, we may assume that all edges of X have identical weight xp. If
miniev Tii

X2
then the MVCP is a special instance of the MWCP. The upper bound of xr ensures
that edges do not outweigh any vertex weight.
3. Mazimum Edge Weight Clique Problem (MECP)
The MECP asks for a clique with maximum total weight over the edges only. We
may assume that all vertices of X have identical weight zv . If

TE <

MING,j)eE Tij

WS

3. Note that the term local mazimum of an integer problem depends on how we define a
local neighborhood of some point.

46

Graph Matching as Clique Search

then the MECP is a special instance of the MWCP. The upper bound of v ensures
that vertices do not outweigh edge weights.

The following remark shows that the MWCP and MECP polynomially reduce to
the classical MVCP.

Remark 3.6

The MWCP and MECP can be easily converted to a MVCP. Just introduce for each
weighted edge a new vertexr with the corresponding weight and connect that vertex
to all (old and new) vertices that may be in one clique with that edge.

Conversion of the MWCP to a MVCP expands the size n of the original graph by
an order of magnitude O(nz). The quadratic order expansion is unacceptable in a
practical setting. This holds in particular for graph matching problems.

We conclude this section with some notations for later use.

Notation 3.7
Let X be a weighted graph.
® Cx denotes the set of all cliques of X.
= C% denotes the set of all maximal weight cliques of X.

® C% denotes the set of all maximum weight cliques of X.

3.5 A Clique Formulation of the Graph Matching Problem

Graph matching as a clique search has a long tradition since the pioneering work
of Ambler et al. [10]. They transformed the maximum common subgraph problem4
to the problem of finding a maximum clique in an association graph. What makes
their framework so useful is that they reduce the matching problem to an important
graph-theoretic problem, for which a solid theory and powerful algorithms have been
devised. Since then, this framework has been applied to several graph matching
problems in computer vision and chemoinformatics [19, 151, 165, 208, 284, 295,
372, 389].

To generalize association graph techniques, Chen & Yun [55] compiled results
from [19, 54, 199], showing that the maximum common (induced) subgraph problem
and its derivations can be casted to a MCP. Pelillo [282] extended this collection by
transforming the problem of matching free trees® to the MVCP so that connectivity
is preserved. Bunke [46] showed that for special cost functions, the error correcting
graph matching problem and the maximum common subgraph are equivalent. As a
consequence, special graph edit distances can be computed via clique search in an

4. The classical maximum common subgraph problem asks for a common subgraph with
maximum cardinality of vertices. Hence, we may choose ay =1, ap =0, ag = 0.
5. A free tree is a directed acyclic graph without a root.

3.5 A Clique Formulation of the Graph Matching Problem 47

association graph. Schidler & Wysotzki [314] mapped the best monomorphic graph
matching problem to a MWCP without presenting a sound theoretical justification
of their transformation.

In this section, we provide the key result of this chapter, an equivalence rela-
tionship between graph matching and clique search, as long as some necessary and
sufficient condition is satisfied. This condition demands that the feasible region is
closed with respect to some local property.

3.5.1 Closed Sets of p-Morphisms

The formulation of the BGMP given in (3.1) is too general to admit an equivalent
maximum weight clique formulation. The reason is that the feasible region M is
not closed in some sense that will now be specified in detail.

The set of partial morphisms Mx y from X to Y determines the binary relation

Rxy ={(i,4) € I(X) x I(Y) : 3¢ € Mx,y such that 5% = j}.
Obviously, the function graph
[(¢) = {(3,5) € D(9) x R(9) : i” = j}

of a partial morphism ¢ € Mx y is a subset of nyy.G Now let p be a property
defined on Rx,y. Then p induces a binary relation

R;;(’Y ={r € Rx,y : r has property p}.

Items ¢ of X and j of Y are called p-similar, written as ¢ ~y j, if (¢,7) is in Rg(’y.
A p-morphism is a partial morphism ¢ € Mx y such that the function graph I'(¢)
is a subset of Rg(’y. Thus, a p-morphism locally preserves the property p. Two
subgraphs X’ of X and Y’ of Y are called p-morphic if there is a p-morphism from
X to Y with X' = X[D(¢)] and Y’ = Y [R(¢)]. By M§<,Y’ we denote the subset
of all p-morphisms from Mx y. A subset M of Mx y is called p-closed if p is a
property on Rxy and M = M*;(’Y,
The next result provides some important examples of p-closed sets.

Proposition 3.2
The following subsets of Mxy are p-closed:

1. M}QY = set of all partial morphisms

6. The term graph is uniformly used by mathematicans to denote two different objects:
(1) a structure consisting of a set of vertices and edges and (2) a relation consisting of
all pairs of input-output values determined by a function. To distinguish between graphs
from graph theory and graphs from analytical geometry, we refer to the former as graphs
and to the latter as function graphs.

48

Graph Matching as Clique Search

2. ./\/l%(’y = set of all partial monomorphisms
3. M%(,Y = set of all partial homomorphisms

4. ./\/lj‘;(’y = set of all partial isomorphisms

Proof We only show the assertion for the set M‘)lm,. The proofs for the other sets
are similar. Let X and Y be attributed graphs with adjacency matrices X = (x;;)
and Y = (y;;). We define a property p on Rx,y such that

Rg{,y = {(iaj) €NX)XI(Y) : @ = yj,|{ir,i2}| = |{j1;j2}|},
where ¢ = (i1,42) and § = (j1,j2). The condition

[{i1,i2}| = {41, 42} (3.6)

requires that both ¢ and j are either vertex items or non-vertex items. Thus, Rggy
relates isomorphic items in the sense that there exists a partial isomorphism ¢
between X and Y such that i = j.

Next, we show that Mﬁ(,y = M’;(yy. Let ¢ be a partial isomorphism from X
to Y, let 4 be an item of X, and let 4* = j be the image of 4 in Y. Since ¢ is
a partial isomorphism, we have x; = y;. In addition, from the bijectivity of ¢
follows (3.6). Hence, the function graph I'(¢) of ¢ is a subset of Rx y. This proves
My S MKy

Now assume that ¢ is a p-morphism from Mg(yy. Since I'(¢) is a subset of Rx,y,
it is sufficient to show that ¢ is bijective. Assume that ¢ is not bijective. Then ¢
is not injective, because ¢ is a partial morphism. Hence, there are distinct vertices
i1,z of X with i? = i$ contradicting (3.6). This proves Mggyy - Mﬁf,y. Combining
both results yields the assertion. |

Next, we provide an example of a subset of partial morphisms that is not p-closed.

Example 3.8
Consider the set Mﬁ?‘; of partial morphisms ¢ with

|D(¢)] <m < |X],

m)

where m > 2. There is no property p on Rx,y such that Mg(’y is p-closed.

Proof Let p denote the property on Rx,y such that Mx,y is p-closed. According to
Proposition 3.2, such a property exists. Consider the subset Mg)y It is easy to see that

U I(¢) = Rg{,y-

(2)
PEMXy

On one hand, the relation RE(’Y is too large, because it admits arbitrary partial morphisms
as p-morphisms. On the other hand, R‘;(’Y is a minimal set in the following sense: If we
remove an element (4,j) from Rg(’y, then the morphism ¢ € Mg?)y with 4% = j is no
longer a p-morphism. This shows the assertion. |

3.5 A Clique Formulation of the Graph Matching Problem 49

The following proposition summarizes some simple but useful rules to express
complex p-closed sets in terms of simple ones.

Proposition 3.3
Let p1 and pa be properties on Rxy. Then

1. p=p1 Ap2 is a property on Rxy and
P MP 4
MX,Y — M)(I,Y n M}?,Y
2. p=p1Vp2 is a property on Rx,y and
Mggy = Mg(l,Y U Mg(z,Y
3. p=-p1 is a property on Rxy and
My = My \ M,

Proof The proof is almost trivial. Therefore, we only exemplify the proof of the
first assertion. Clearly, with p; and p2, the conjunction p is also a property on Rx y.
Now observe that

’Rg(yy = {r € Rx,y : 7 has property p = p; Ap2} = Rg(l’y N ’R';;f"y.
Hence,

peMi, ©T(9) CRYy ©T(0) CRYE,y NRE, & e MY, NME .

3.5.2 The p-Graph Matching Problem

For a property p on Rx y, the p-graph matching problem (pGMP) is defined by

maximize (6, X,Y) = Z Kz
i€D(9) (3.7)

: p
subject to »eMyy.

From Proposition 3.2 and 3.3 follows that problem (3.7) is sufficiently general to
encompass a broad range of graph matching problems including those listed in
Section 2.4.

In order to cast a pGMP to an equivalent MWCP, it is useful to distinguish
between global and local maxima of (3.7).7 The local maxima of f correpond to
maximal weight p-morphisms of ./\/lggy. A mazimal weight p-morphism of ./\/lggy

7. As for the maximum weight clique formulation, the notion local mazimum depends on
how we define a neighborhood of a p-morphism.

50

Graph Matching as Clique Search

is a p-morphism ¢ : V(X) — V(Y') such that

D(¢) SD) = f(d) = f(¥)

for all p-morphisms ¢ € M§(7y. Thus, it is impossible to extend the domain of
a maximal weight p-morphism in order to increase the matching objective f. The
global maxima of f correspond to the maximum weight p-morphism of ./\/lg(yy. A
mazimum weight p-morphism of M’;(,Y is a p-morphism that maximizes f.

Notation 3.9
Consider the p-GMP (3.7).

» Sy = M¥ , denotes the feasible region of all p-morphisms.
=S ; denotes the subset of all maximal weight p-morphisms.

® S} denotes the subset of all maximum weight p-morphisms.

We use Sy instead of ./\/lg(,y to indicate an optimization point of view. The set Sy
is the set of feasible solution points of the matching objective f. We write M’;{’Y
to indicate a descriptive approach of the graph matching problem.

3.5.3 A Clique Formulation of the pGMP

The link between the pGMP and the MWCP is the quadratic integer program
(3.3) presented in Section 3.3. We transform (3.3) to a MWCP by reshaping the
Kronecker k-product X ® Y. This transformation leads us to the notion of the
k-association graph.

Let K = (k4j11) be the Kronecker x-product of X and Y. Consider the matrix
Z with elements

Sin g = Kijkt 2 A (i) ~p (kD)
1o € : otherwise

for all items (i,7) € I(X) and (k,1) € I(Y). We obtain Z from the Kronecker k-
product by rearranging the elements and deleting entries corresponding to incom-
patible items with respect to ~y. A k-association graph Z = X ¢ Y is a complex
graph determined by the adjacency matrix

Z=Z+Z" - D;. (3.8)
This definition may require some elucidatory remarks:

® Recall that a complex graph is not related to the field of complex numbers. A
complex graph is composed of a proper graph in a graph-theoretical sense and of
dangling edges. See also Section 2.2.7 for a detailed definition.

m Every graph isomorphic to Z is a k-association graph. Hence, we write Z is a
k-association graph rather than the k-association graph of X and Y.

3.5 A Clique Formulation of the Graph Matching Problem 51

z

Figure 3.2 Shown are the two attributed graphs X and Y from Example 3.4 and
their k-association graph Z = X ¢Y defined by the matrix Z. The real part R[Z] of
Z is highlighted. The imaginary part 3[Z] consists of the rest of Z. The thin line is
a dangling edge connecting the two imaginary vertices of Z.

® 7 is a complex graph, because it may have vertices associated with the void
attribute e. The real part JR[Z] of Z is a weighted graph with vertex and edge set

V(R(2]) = {(i.) € VO x V(Y) & (i) ~p ()
B(R2]) = { ((i.k). (5,1) € V(Z) x V(Z) 5 (1.5) ~ (K1)}

= Definition (3.8) of Z is motivated to accommodate matching problems of
directed and undirected attributed graphs. Recall from Remark 3.2 that either,
both, or neither of the compatibility values x;;x and kj;, contribute to the
matching objective of the pGMP, provided that (i, j) is a non-vertex item of X
that can be mapped to (k,1) € I(Y).

As opposed to the pGMP, the weight clique formulation (3.5) is defined for
undirected graphs and counts edges only once. This definition is in line with
the definitions of the classical MCP and MVCP. To ensure equivalence between
graph matching and clique search, we define Z as in (3.8).

= Definition (3.8) involves undefined arithmetic operations with the symbol e.
We set x ¢ = € for all x € R.

In the following, we consider some examples. To illustrate the transformation from
the Kronecker x-product to a k-association graph, let us enhance Example 3.4.

Ezxzample 3.10
We again consider the graphs shown in Figure 3.1 of Section 3.3 with xk-Kronecker product
K =X ®Y of the form

K11,11 Ki1,12 | K12,11 Ki12,12 0 0|0 1

K — K11,21 K11,22 | K12,21 K12,22 _ 0O 111 O
B K21,11 K21,12 | K22,11 K22,12 0 11 0
K21,21 K21,22 | K22,21 k22,22 1 070 O

52

Graph Matching as Clique Search

1 X-Y|Xx-vY
X2 :I__SY
2-2

3 3-0

Figure 3.3 A k-association graph Z of binary graphs X and Y for the maximum
common induced subgraph problem. For convenience, we assume compatibility val-
ues such that each vertex and each edge of Z is colored with weight 1. Maximum
cliques are highlighted. The table on the right hand side shows the vertex corre-
spondences derived from both maximum cliques.

Rearranging the elements of K in the order of Z gives

K11,11 Ki1,12 K11,21 K11,22 0 0 0 1
K- K12,11 Ki12,12 Ki2,21 Ki12,22 _ 0 1 1 0
K21,11 K21,12 K21,21 K21,22 0 1 1 0
K22,11 K22,12 K2221 K22,22 1 0 0 O

In this particular example, the matrices K and K coincide. Next we delete matrix
elements corresponding to incompatible items and multiply off-diagonal elements by 2
in order to obtain the adjacencey matrix Z of the x-association graph Z = X o Y. Here,
incompatibilities correspond to zero entries in K. We arrive at

€ 2
2 €
1 €

2 € € €

Figure 3.2 shows the resulting complex graph Z and its real part R[Z]. In the plot, the
vertices of Z are arranged in a matrix form. A vertex of Z positioned in the i-th row
and j-th column is colored with z;;:;. All edges of Z are labeled with 2. Since R[Z] is a
complete and positively weighted graph, its vertices form a maximum weight clique with
weight 4. This is in exact correspondence with the optimal value obtained in Example 3.4.

Deriving a k-association graph from the Kronecker s-product is counter-intuitive,
but useful to establish a link to the pGMP. The next example shows how we can
construct an association graph directly from the graph X and Y to be matched.

Ezxample 3.11
Figure 3.3 shows a k-association graph Z = X ¢Y of two isomorphic binary graphs X
and Y for solving the common induced subgraph isomorphism problem. We choose the
compatibility function (2.2) with ey = 1, g = a = 0.5. Thus, all vertices and edges of
Z are colored with 1.

Items are inserted into Z if pairs of items from X and Y are p-similar:

3.5 A Clique Formulation of the Graph Matching Problem 53

1. Since all vertices of X and Y have the same color 1, the k-association graph 7 is
a graph consisting of nine vertices and with an empty imaginary part. Each vertex
of Z can be written as (¢,7) with ¢ € V(X), j € V(Y), and 4,5 € [1:3]. Note that
we have annotated a stroke to vertices of Y for convenience of distinction. In the
plot, the vertices of Z are arranged in matrix form so that vertex (%, j) is positioned
in the i-th row and j-th column.

2. Edges are inserted into Z whenever the relations in X and Y coincide. Vertices
(1,1") and (2,2") are adjacent in Z, because (1,2) is an edge of X and (1’,2') is an
edge of Y. Similarly, vertices (1,1’) and (3,3’) are adjacent in Z, because (1,3) and
(1/,3") are both non-edges in X and Y, respectively.

3. Non-edges occur in Z to incorporate constraints or whenever the relations in X
and Y differ. Vertices (1,1") and (1,2') are not connected by an edge in Z, because
the correspondences 1 — 1’ and 1 — 2’ violate the constraint that we maximize over
well-defined partial mappings. Similarly, vertices (1,1") and (2,1") are not adjacent
in Z, because the correspondences 1 — 1’ and 2 — 1’ violate the constraint that
we maximize over partial isomorphisms. Finally, vertices (1,1’) and (2,3’) are not
adjacent, because (1,2) is an edge in X but (1’,3') is a non-edge in Y.

Although we are only concerned with the real part RR[Z] of Z, we refer to the
complex graph Z for the sake of technical presentation.8 With the concept of a
k-association graph, we are now in the position to cast a pGMP to an equivalent
MWCP. To formulate Theorem 3.1, we make use of Notation 3.9 on page 50.

Theorem 3.1 (Clique Formulation of Graph Matching)
Let X oY be a k-association graph of attributed graphs X and Y. Then the p GMP
of X and Y is equivalent to the MWCP of the real part Z = ‘R [X o Y] , that 1is,
there are bijections

1. 2:Cz — Sy

2. &% Cf — S

3. &*:Cy — S}

with

for all cliques C € Cz.

Proof For the real part Z of X oY we refer to the ordering of vertices of
the complex graph X ¢ Y. According to Notation 3.9 on page 50, we may write
Sy = Mg(yy. Since we can identify morphisms with match matrices, we consider
the subset My "™ of match matrices representing morphisms from ./\/lg(yy. We first

8. Referring to Z allows us to retain the numbering of vertices and to refer to relevant
elements of the Kronecker k-product.

54

Graph Matching as Clique Search

show that there is a bijection
®:Cz — My*™, Cr~ Mg

such that w(C) = f(Mc) for all C € Cz, where f is the matching objective of the
pGMP (3.7). With each clique C' € Cz we associate a matrix M¢ = (m;;) such
that

1 : if(q,5)eC
mi; =
0 : otherwise

We show that M is feasible, that is, Mc € My™™. Let i, j € [1:n] and k,1 € [1:m]
be indices such that m;, = mj; = 1. By construction, (i, k) and (j,1) are members
of clique C. Since Z[C] is complete, there is an edge incident with (4, k) and (j,1).
Hence, (i, j) ~p (k,1) and, therefore, I'(M¢) C Rgm,. This implies M¢ € Mp*™.

Similarly, with each feasible match matrix M = (m;;) we associate a subset C'as
of V(X) x V(Y) with

(’L,]) eCpm & m;; = 1.

Since M is feasible, C'ps is a clique in Z. It is straightforward to show that both
associations give rise to well-defined mappings

®:Cyz — My*™, Cw Mc
and
P My*™ —Cz, M — Cur.

From ® o &’ = id on My "™ and &' o ® = id on Cyz, it follows that ® is bijective.
It remains to show that w(C) = f(My¢) for all C € Cz. Let C be a clique of Z
with adjacency matrix Z = (z;x ;). From 1¢ = vec(Mc) follows

w(C) = %(150210) +1%d,
= % (Vec(Mc)TOz vec(Mc¢)) + vec(Mc)Td,,.
We define
zZ' = %Oz + Dz.
Then we can rewrite w(C) in terms of Z’ = (zj; ;) by
w(C) = vec(Mc)" Z' vec(Mc) .

Let (i,j) € I(X) and (k,l) € I(Y), and let M = (m;;) € My™™ be a feasible
match matrix. We distinguish between two cases:

Case 1 ((i,j) ~yp (k,1)): We have myxmy = 1 and zj; ;; = Kij k-

3.5 A Clique Formulation of the Graph Matching Problem 55
Case 2 ((i,J) #p (k,1)): We have mypmy = 0 and 2], ;; = €.
Hence, for feasible match matrices M = (mg;), all terms 2, ,m, m; are well
defined and we have the equality

z;k,jlmikmjl = Rij kt Mg M-
Thus, we may replace Z’ by K and obtain
w(C) = vec(M¢c)"K vec(Mc) = f(Mc).

Bijection of ®* and ®* follows from the bijection of ® and the relation w(C) =
f(Mg) for all C € Cz. This completes the proof. [|

From Proposition 3.2 together with Theorem 3.1, it follows that all graph matching
problems of Section 2.4 are equivalent to the MWCP in an association graph.

Corollary 3.1
Let X and Y be attributed graphs. Then the following problems are equivalent to
the MWCP in R [XOY]:
1. maximum common subgraph problem
2. maximum common induced subgraph problem
(a) induced subgraph isomorphism problem
(b) graph isomorphism problem
3. maximum common homomorphic subgraph problem
(a) subgraph homomorphism problem
4. best M-morphic graph matching problem
5. probabilistic graph matching problem
6. error correcting graph matching problem

For problems (5) and (6), the graphs X and Y refer to the extended graphs (see
Section 3.2).

Corollary 3.1 is interesting for two reasons. First, it indicates that in order to
show equivalence between graph matching and clique search, it must be shown that
the feasible region of a graph matching problem is p-closed. Second, it shows that
a variety of common graph matching problems can be transformed to the MWCP
in an association graph.

Remark 3.12

Note that p-closedness depends on an appropriate description of the feasible region.
Consider, for example, the problem of matching trees in order to find the mazi-
mum common connected and induced subgraph. This matching problem arises in
e.g. shape recognition formulated in terms of shock tree matching [284]. It is un-
clear, how to express the set of partial isomorphisms that preserve connectivity as a

56

Graph Matching as Clique Search

local property on Rxy. An appropriate description of the feasible region M would
be that M is the set of all partial isomorphisms that can be extended to a connectiv-
ity preserving partial isomorphism. Using a property p as derived in [284], we can
show that M is p-closed. The feasible region then also consists of partial isomor-
phisms between unconnected induced subgraphs. Only the maximal and mazimum
weight p-morphisms preserve connectivity.

The next example enhances Example 3.11 in order to illustrate the equivalence
between the pGMP and the MWCP in an associated k-association graph.

Example 3.13

Consider the graphs X and Y shown in Figure 3.3. In this example the MWCP reduces to
the classical MCP. Since X and Y are isomorphic, the maximum weight p-morphisms are
the isomorphisms between X and Y given in the table on the right hand side of Figure
3.3. As highlighted in the plot, the two isomorphisms are in one-to-one correspondence
with the maximum cliques

Cr ={(1.1),(2,2),(3,3)}
Cs ={(1,3),(2,2),(3,1}.

Furthermore, we have four maximal cliques of order 2 corresponding to four partial
isomorphisms that cannot be extended:

cr ={(1,2),(2,1)}
cy ={(1,2'),(2,3)}
cy ={(2,1),3.2)}
ci ={(3,2),(2.3)}.

Thus, maximal cliques are in one-to-one correspondence with the maximal weight p-
morphisms.

Since all cliques with at least two vertices are maximal, the remaining cliques of Z are
singletons. Clearly, each vertex of Z is also a partial isomorphism. In addition, there are
no other partial isomorphisms. Hence, putting it all together, we have shown a one-to-one
correspondence between the cliques of Z and the partial isomorphisms from X to Y.

We can use the pGMP of Examples 3.11 and 3.13 to show that p-closedness is a
necessary condition to establish equivalence between the pGMP and the MWCP.
Suppose, for example, that our goal is to find the maximum common induced
subgraph of order 2 at most. This corresponds to a feasible region M consisting of
all partial isomorphisms ¢ with |D(¢)| < 2. As in Example 3.8, we can show that
there is no property p on Rx,y such that M is p-closed. Moreover, we have

U F(¢) = Rg(,Ya

pEM

where g denotes the property for arbitrary partial isomorphisms. Hence, we arrive
at the same k-association graph as in Example 3.11 showing that the union of
three cliques of order 2 can result in a clique of order 3. Therefore, our matching
problem is not equivalent to the MWCP. This supports that p-closedness is not
only a sufficient, but also a necessary condition.

3.6 Continuous Formulation of the Maximum Weight Clique Problem 57

Interpretation

The common view of the graph matching problem in contemporary literature is that
of an optimization or search problem. From both points of view, the graph matching
problem asks for a feasible morphism between two given graphs that maximizes
some matching objective. Theorem 3.1 provides a pure graph-theoretical view of
the matching problem.

Given two graphs X and Y, a partial morphism ¢ is a mapping between the
vertex sets V(X) and V(Y). The basic components of ¢ are correspondences of
the form i — j with i € V(X) and j € V(Y). A k-association graph Z = X oY
represents the space of all possible correpondences between vertices from X and
Y. Vertices of the imaginary part of Z represent incompatible correspondences
and can therefore be ignored. The remaining vertices from the real part of Z
represent the space of compatible correspondences. Edges of R[Z] serve to represent
compatible correspondences between relations (edges and non-edges) in X and Y.
Compatibility values assigned to the vertices and edges of RR[Z] measure to which
extent both kinds of correspondences are compatible. Non-edges of R[Z], as well as
the imaginary part of Z, represent infeasible correspondences and thus implement
the constraints of the graph matching problem. By construction, the cliques of R[Z]
represent the feasible morphisms from X to Y and the maximum weight cliques of
R[Z], the solutions to the original graph matching problem.

3.6 Continuous Formulation of the Maximum Weight Clique Problem

The MWCP is a discrete or combinatorial optimization problem in which the
term discrete refers to the discrete feasible domain. Solution methods for discrete
optimization problems can be classified into search-based and continuous-based
approaches. A typical search-based method explores a finite discrete space to
construct a solution by generating a sequence of partial solutions. Continuous-
based methods extremize continuous characterizations of the discrete problem.
These characterizations include equivalent continuous formulations of the discrete
optimization problem or embed the discrete domain in a larger continuous space
(relaxation). The topological and geometric properties of continuous approaches
can be exploited to apply existing or to develop new algorithms for solving discrete
optimization problems.

An appropriate formulation of an optimization problem is essential in solving that
problem. The Motzkin-Strauss formulation [271] and its spurious-free extensions
[35, 112, 283] are popular continuous characterizations of the classical MCP, for
which efficient heuristics have been devised. What makes the expanded version of
the Motzkin-Strauss Theorem so useful is a one-to-one correspondence between its
optimal (local) solutions and the maximum (maximal) cliques of the underlying
graph. Though the Motzkin-Strauss Theorem has been generalized to the MVCP
[112, 37], it is unclear how to derive a generalization to the MWCP.

58

Graph Matching as Clique Search

This section therefore follows a different approach and maps the MWCP to
a continuous quadratic form constrained over the unit hypercube so that there
is a clear one-to-one correspondence between the optimal (local) solution of the
quadratic form and the maximum (maximal) weight cliques.

Assume that X = (V, E, X) is a normalized graph from Gy, where ¢ = 0. In the
context of graph matching, we can make this assumption without loss of generality
whenever the compatibility values are nonnegative. In order to provide a continuous
characterization of the MWCP, we introduce the constraint matric A = (a;;) with
elements

1 if (4,9) cE
aij = .
0 : otherwise.

From a similar argumentation as in the proof of Proposition 3.1, it follows that
xTAx =0

if x is a characteristic vector of a clique in X. Using the constraint matrix A, we
define the matrix

where p is an appropriately chosen penalty term parameter. By
C = dX

we denote the diagonal of X. Consider the continuous quadratic problem
1

minimize flz) = —§wTQa: —c'z (3.9)

subject to x e U

Theorem 3.2 shows that formulation (3.9) and the MWCP are equivalent, pro-
vided that the penalty term g is sufficiently large. Recall from Section 2.2.3 that
A, (X) denotes the maximum weight degree of X.

Theorem 3.2 (Continuous Formulation of the MWCP)
Consider the quadratic program (3.9). Assume that the penalty term u satisfies the
following inequality
0> A (X) + el (3.10)
Then
1. CeCy & zc €Sy,
2. Celx & mc €Sy,

3. all minima of f in U™ are strict,

3.6 Continuous Formulation of the Maximum Weight Clique Problem 59

where 7 (S}) denotes the set of local (global) minima of f.

In the remainder of this section we prove Theorem 3.2.
3.6.1 Proof

We first summarize the notations we use in our derivation.

Notation 3.14

u; i-th unit vector with u; = §;; forall 1 < j <n

tr(A) trace of matrix A

| A norm of matrix A
O the off-diagonal matrix Ox = X — Dx of matrix X
0,4 (p x g)-matrix whose elements are all equal to 0

Note that the existence of a minimum point is established by Weierstrass’ Theorem
stating that any continuous function on a compact set S attains its minimum in S.
To show that @ is indefinite, we require the following Lemma.

Lemma 3.1
Let Q be the matriz of the quadratic program (3.9). Then

QI > 0.

Proof We have Q = O —pA, where O = (0;5) and A = (a;;) are complementary
(n x n)-matrices, ie. 0;;a;; = 0 for all 7, j € V. Since u > 0 and at least one of
both matrices O and A is non-zero, we have Q = O — A # 0y, ,. From Q # 0, ,,
follows ||Q]| > 0. [|

Lemma 3.2
The matriz Q of the nonlinear program (3.9) is indefinite.

Proof By definition of O and A, we have do = da = 0. This implies that
dg = do — pda = 0. From dg = 0 follows tr(Q) = Y., ¢ = 0. Since Q is
symmetric, it has n real eigenvalues ~1,..., 7, which are not necessarily distinct.
Now the norm and trace of @ can be expressed in terms of its eigenvalues

n 1/2
QI = <Z 73)
=1
tr(Q) = Z%‘-
i=1

According to Lemma 3.1, we have ||@Q| > 0. Hence, there exists an eigenvalue

60

Graph Matching as Clique Search

v # 0. From ; # 0 and tr(Q) = 0, it follows that there is an an eigenvalue y; # 0
such that v;v; < 0. Thus, Q has positive and negative eigenvalues. This proves that
Q is indefinite. |

The next result states that the minima of f are located at the extreme points of
the hypercube U". Extreme points of U™ are the points from the subset B™. The
set of interior points of U™ is defined by |0, 1[™.

Lemma 3.3
Consider the nonlinear program (3.9). Let x* € SfX be a minimum point of f in
U™. Then x* is an extreme point.

Proof According to Lemma 3.2, the Hessian Hy(x) = —Q of f is indefinite for
all © € R™. Thus, f does not satisfy the second-order necessary conditions for the
unconstrained case ([239], 6.1, Prop. 3). Therefore, the minimum point x* is not
an interior point of the unit hypercube U".

Now assume that @ = x* is neither an extreme point nor an interior point of U™.
We show that there is a feasible direction d at x along which f is decreasing. We
have

flx)— flx+d) = f%mTQm —c'z + %(m +d)"Q(x+d)+ c"(z+d)
= %dTQd +d"'Qx +c'd
= %dTQd+dew, (3.11)
where fz = (fay,---, fa,)7 is the gradient of f at @. Since x is not an extreme

point, there exists at least one k € [1:n] with 0 < 2 < 1. We distinguish between
two cases.

Case 1: Assume that there is a k € [1:n] such that 0 <z < 1 and f,, #0. Let €
be a positive constant satisfying z; £ € U. Then d = —e sgn(f,,)us is a feasible
direction at @, where uj denotes the k-th unit vector of R™. Since the diagonal
of @Q is zero, the first term of (3.11) is

1
EdTQd = Qkkdi =0.
Substituting d into the second term of (3.11) yields

dT.fw = —ssgn(ka)ka =—€ |fﬂck| <0.

Putting it all together we obtain f(x)— f(x+d) < 0. Hence, @ is not a minimum
point.

Case 2: Assume that f,, = 0 for all k € [1:n] with 0 < z; < 1. The partial

3.6 Continuous Formulation of the Maximum Weight Clique Problem 61

derivative f,, of f at xj is of the form

n
for =D arjzj+ o = 0.
j=1
N——
=S

Since ¢ > 0 by definition, there is at least one negative term gg;x; in the sum S
for some [€ [1:n]. Hence, we have 2; > 0 and ¢y = —p. Separating the sum S
into the special term j = [and all the rest yields

n
Jan = —pay + quj:vj +cr=0.
j=1
J#l
From
n
p> A(X) + el > D arjm; + ek,
j=1
il
it follows that x; < 1; otherwise f,, would be negative. Since z; €]0,1[, we
have f;, = 0 by assumption. Thus, there exists a constant ¢ > 0 such that

zp+e € [0,1] and 2; — e € [0,1]. Obviously, d = e(ur — ;) is a feasible direction
at . Substituting d into (3.11) yields

flx) — f(x+d) = qudrd; + dig fo), + di fa,-

Since fz, = fz, = 0, the term dyf;, + difs, vanishes. With ¢; = —p and
drd; = —e? we arrive at

f(@) — f(x+d) = pe* > 0.
Thus, ® is not a minimum point.
Combining cases 1 and 2 proves that @ is not a minimum point. Consequently, if a
minimum point exists, then it is an extreme point. |

A direct implication of Lemma 3.3 results in the following corollary.

Corollary 3.2

All minima of the nonlinear program (3.9) are strict.

The next result shows that the characteristic vectors of maximal cliques are local
minimizers of f.

Lemma 3.4
Consider the nonlinear program (3.9). Let C be a maximal weight clique of X . Then
the characteristic vector 1¢ of C' is a local minimum of f.

62

Graph Matching as Clique Search

Proof Let fu = (fuy,---s fu,)T be the gradient of f at £ = 1¢. To prove that
x = (x1,...,2,)7 is a local minimum of f, it is sufficient to show that f1d > 0 for
each feasible direction d. We first show the assertion for feasible directions d = e, uy
parallel to the axes of the hypercube with suitable chosen ¢, € [—-1,+1] \ {0}. We
have

f;d = Ek?fl‘k',

where
fmk = - E qkjTj — Ck.
jecC
We consider two cases:

Case 1: Assume that x; = 1. A feasible direction along uy, is of the form d = exuy,
with €5 < 0. Since C is a clique containing vertex k£, we have ax; = 0 and
therefore,

Qkj = Okj — pakj = og; > 0
for all j € C. Together with ¢, > 0, this yields f;, < 0. Since € < 0, we arrive at
frld=epfs, >0.

Case 2: Assume that z; = 0. In this case, a feasible direction d along uy is of the
form d = ejuy, with g5, > 0. By assumption, C' is maximal. Hence, C U {k} is not
a clique. Consequently, there is a vertex [€ C with (k,l) € E giving

Qi1 = O — pagg = —p < 0.
From [€ C follows z; = 1. Hence, we have
for ==y —cx = par = Y arjwy — o > p— (Au(X) + [lefloo) > 0.
jec jec
G
From g > 0 and f,, > 0 follows f1d = ey fs, > 0.

It remains to show that fld > 0 for any feasible direction. A feasible direction
can be written as a linear combination of the standard basis d = eyu; + - - +epuy,

where €1, ..., &, are appropriately chosen so that @ 4+ d € U". Then we have
n
Frd=> eifo, =D ifo,t+ Y &ifn,
i=1 icC j¢c

From our distinction of cases, it follows that ¢; f, is positive for all 7 € V. Hence,
we have f1d > 0. |

Next we establish a one-to-one correspondence between the maximal cliques of X
and the local minima of f.

3.6 Continuous Formulation of the Maximum Weight Clique Problem 63

Lemma 3.5
Consider the nonlinear program (3.9). The mapping

¢:Cx =8, Crxc

1s bijective.

Proof Let P(V) denote the set of all subsets of V. The mapping
Y :PV)—=B", Uw~—1y

associates each subset U of V with its characteristics vector 1y. It is easy to
show that 1 is well-defined and bijective. Hence, the extreme points of U™ can
be identified with the subsets of V. To prove that the restriction ’(/)|C)>; = ¢ is
bijective is equivalent to showing that C € C¥ < 1c €S Jf

=: Follows from Lemma 3.4.

<: Let x € Sf be a local minimum point. Then there is a subset C' with 1¢ = @.
Assume that C' is not a maximal clique. Let us consider the following two cases.

Case 1: Assume that C is a clique, but not maximal. Then there is a vertex k € V
such that C' U {k} is a clique. Moreover, d = euy, with 0 < ¢ < 1 is a feasible
direction such that

fld=cf,, <O0.

Case 2: Assume that C' is not a clique. Then |C] > 1, because a singleton C' is
always a clique. Consequently, there are vertices k,l € V such that (k,) €E. Let
d = cuy with —1 < e < 0. Then d is a feasible direction at @ such that

fad=cfo, =¢ | pa *Z%jfvj —c | <0.
G
Combining both cases proves that there is a direction at x along which f
decreases. This contradicts the assumption that « is a local minimum. Hence, x is
a maximal clique. [|

Proof of Theorem 3.2
The first assertion follows from Lemma 3.5. The third assertion follows from
Corollary 3.2.

Thus it remains to show the second assertion. Observe that maximizing

1
w(lc) = 515010 + l-cr«dX

over all C' € Cx is equivalent to maximizing

1
w(le) = 51501 — g 1LA1, +1%dx

=0

64

Graph Matching as Clique Search

over all C' € Cx. This in turn is equivalent to minimizing

1
f(lc) = —§1EQ 1, —1c

over all C' € Cx, where Q@ = O — uA and ¢ = dx. Together with Lemma 3.5, this
proves the second assertion. |

3.7 Conclusion

In this chapter, we showed that the pGMP is equivalent to the MWCP in a k-
association graph. This result is interesting for the following reasons:

® [t provides a generic view of diverse graph matching problems, including
probabilistic matching and error correcting graph matching.

® [t provides a pure graph-theoretical view of the problem, for which generic
solution methods can be adopted from the classical MCP and MVCP.

® [t reveals a common misconception that the association graph framework is a
special technique to solve special graph matching problems.

A necessary prerequisite to establish this key result is a formal extension of the
standard MCP and MVCP to the MWCP.

The proposed necessary and sufficient condition of p-closedness simplifies proofs
for equivalence between graph matching and clique search in a x-association graph.
Using the Clique Formulation of Graph Matching Theorem, proofs can now be
reduced to show that the set of feasible morphisms is p-closed for some local
property p.

To apply existing and develop new continuous optimization methods, we pre-
sented an equivalent continuous formulation of the MWCP. The next chapter is
devoted to this issue.

4 Hopfield Clique Networks

In the last chapter, we showed that graph matching problems constrained over
closed feasible regions are equivalent to the maximum weight clique problem. The
present chapter proposes a new continuous Hopfield model for solving the maximum
weight clique problem. Its distinguishing features are as follows. The proposed
System

® provides a generic optimization-based solution to p-graph matching problems,
® ensures convergence to feasible solutions,

® requires no tuning of system parameters, and

optimally adapts the system parameters to its current state.

The last feature allows us to interpret the model in terms of selective attention
from the field of cognitive psychology. In experiments on the MWCP and on graph
matching problems, we assess the performance of our novel approach.

4.1 Introduction

For any NP-complete combinatorial optimization problem, exact search algorithms,
such as branch and bound or dynamic programming, have exponential computation
time in the worst case. Because of this, exact approaches limit us to solve only mod-
erately sized problem instances. Therefore, in practice, heuristic search algorithms
are necessary to find satisfactory solutions within an acceptable time limit.

The combinatorial optimization problem considered here are graph matching
problems in disguise of the MWCP. Since it is our primary concern to construct
neural learning machines for attributed graphs within a pure connectionist frame-
work, we require that a solution for the MWCP is (i) implemented by a neural
network and (ii) sufficiently fast enough to process huge datasets of large graphs.

Several neural and related energy minimizing methods have been devised to solve
the standard MCP [37, 99, 100, 102, 162, 167, 284, 378, 393]. Apparently, only two
approaches that address the maximum vertex-weight clique problem (MVCP) are
reported in the literature . The first approach by Ballard et al. [17] encodes the MVCP
into a neural network architecture without presenting any experimental results. In
addition, their approach lacks theoretical guarantees of convergence to a feasible
solution. The second approach by Bomze et al. [37] expands the Motzkin-Strauss

66 Hopfield Clique Networks

formulation of the MCP [271] to the MVCP. To solve the expanded Motzkin-Strauss
formulation, Bomze et al. applied the replicator equations from evolutionary game
theory [144, 381]. It is, however, unclear how to further expand the Motzkin-Strauss
formulation to the MWCP.

In disguise of the graph matching problem, the MWCP, in a more or less strict
form, has been implicitly solved by [30, 230, 311, 345]. Previous approaches put the
main emphasis on the graph matching problem. In [311], Schédler first recognizes
that her graph matching problem corresponds to a MWCP without providing a
rigorous mathematical formalization. In order to formulate a generic solver for
graph matching problems, this chapter takes a different approach. We abstract
from the graph matching problem and put the main emphasis on the MWCP.

In this chapter, we propose a Hopfield model for the MWCP, called Attention
Control System (ACS). To ensure convergence to a feasible solution corresponding
to a maximal weight clique, we derive bounds for the system parameters. The
bounds are simple to compute and provide a basis for optimal parameter selection
so that no tuning of system parameters is required. To speed up convergence without
loss of solution quality, the dynamics of the ACS model optimally adapts its system
parameters with respect to the subset of active units. Since this approach allows a
metaphor of selective attention, we coined the model Attention Control System.

In the next section, we briefly review Hopfield models. Applications of Hopfield
models and its variant to combinatorial optimization problems are discussed in
Section 4.3. Section 4.4 establishes the Hopfield Clique Theorem. The Hopfield
Clique Theorem provides bounds for the system parameters to ensure convergence
to a fixed point. The theoretical results give rise to a basic form of a Hopfield clique
model and its improved variant, the Attention Control System. Both algorithms
are described in Section 4.5. Section 4.6 presents experiments. Finally, we conclude
with a discussion in Section 4.7.

4.2 Hopfield Models

The aim of this section is to introduce Hopfield models and their variants from an
engineering perspective. Since we are primarily interested in numerical solutions
for combinatorial optimization problems, only discrete-time models are considered.
Detailed elaborations on Hopfield networks that discuss aspects and properties not
mentioned here can be found in [40, 138, 166]. For a comprehensive analysis of the
dynamical behavior of Hopfield models see [11, 119, 141]. An extensive overview of
biological neural networks is provided in [198].

In analogy to physical systems, Hopfield [147, 148, 149, 150] proposed networks of
simple interacting artificial neurons that exhibit useful collective emergent phenom-
ena such as content addressable memories or solutions to combinatorial optimiza-
tion problems. As any model of an artificial neural network, Hopfield networks are
specified by three basic entities:

4.2 Hopfield Models

67

® models of neurons (processing units),
= models of synaptic interconnections (topology), and

= models of neural interactions (dynamics).!

In the following, we examine these entities in detail.
4.2.1 Processing Units: Models of a Neuron

A simplistic model of a biological neuron is a processing unit or, simply, a unit that
constitutes a generic building block of any artificial neural network. We identify the
following components of a neuronal model:

® Processing unit. A processing unit represents the cell body (soma) of a biolog-
ical neuron. At time ¢, each unit i has an internal state or activation u;(t) € R
and an external state or output x;(t) € R.

® Weights. Each unit i receives input signals z;(t) from other units j via its
connecting links or synapses. The weight w;; characterizes the strength of a
synapse connecting pre-synaptic unit j with post-synaptic unit . Weights can be
positive or negative depending on whether the corresponding units interact in an
excitatory or inhibitory manner.

® Activation function. An activation function updates the internal state of unit 4
according to

’U,,‘(t + 1) = (1 — dl)ul(t) + Zwijq;j(t) + hi,

where d; € [0, 1] denotes the decay-term of unit ¢, and h; is an external input.

» Transfer function. The output x;(t) of unit ¢ is related to its activation u;(t)
by a non-decreasing transfer function

i(t) = gi(ui(t))-
For the sake of simplicity, we sometimes omit the time index ¢ and write u; and x;
instead of w;(t) and x;(t).
Transfer Functions
A transfer function characterizes the output behavior of a unit and therefore the

overall dynamics of a neural network. Depending on the choice of transfer function,
we divide units into three categories:

1. A treatment of feed-forward and recurrent neural networks from a dynamical systems’
point of view is presented in [119].

68 Hopfield Clique Networks

® discrete units,

" analog units, and

® stochastic units.
Discrete units can only assume a finite number of possible output values. Analog
units have a continuous-valued response. The output values of stochastic units are
discrete values drawn from a probability distribution. Though stochastic units are
also discrete-valued, the term discrete unit only refers to units for which the transfer
function is discrete-valued and deterministic.

In the following, we list some examples of typical transfer functions.

® Discrete units

o Threshold function. The threshold function is defined by

U;) =
0 : ifu; <0

Units with threshold function are commonly referred to as McCulloch-Pitts
units, in recognition of the pioneering work by McCulloch and Pitts [253].
» Analog units
s Logistic function. A logistic or Fermi function is of the form
1
Uj) = ———————
95(Z) 1 +exp(_/6ui)7

where the parameter 3 > 0 denotes the gain. The logistic function assumes
values from |0, 1] and the gain controls the slope of the transfer function.
In the high-gain limit (8 — o0), the logistic function gz approximates the
threshold function ©.

s Limiter function. The piecewise-linear limiter function is defined by

1 : if Buy > 1
[uilg =14 Pu; : f0<Pu; <1
0 : ifu;<0

where 8 > 0 is the gain. The limiter function assumes its lower and upper
saturation point at 0 and 1, respectively.

m Stochastic units

s Probabilistic threshold function. The probabilistic threshold function is of
the form

1 : with probability P(u;

0 : with probability 1 — P(u;)

where P(u;) is the activation probability. A standard choice of P(u;) is given

4.2 Hopfield Models

69

by the logistic function
1

1 —i—exp(—%) 7

where T is a pseudo-temperature or, simply, temperature.

Plui) = g4 (ui) =

4.2.2 Hopfield Topologies: Models of Synaptic Interconnections

Processing units as generic building blocks can be assembled into complex networks.
We focus on recurrent neural networks that generalize Hopfield’s original models
(147, 148].

The topology of a general Hopfield network is composed of n fully interconnected
units of the same type such that

1. Wij = Wy;

2. Wi = 0

3. h; >0
for all 4, j € [1: n]. The first property requires that the weights are symmetric, the
second that there is no self-interaction, and the third that the externally applied

inputs are nonnegative. Analysis of Hopfield networks with weaker restrictions on
the weights and external inputs can be found in [42, 43, 124].

4.2.3 Hopfield Dynamics: Models of Neural Interactions

Given an initial activation, a Hopfield model repeatedly updates its internal and
external states according to an update rule of the form

wit +1) = (1= di)ui(t) + Y wijm;(t) + hi (4.1a)

where \; €]0,1] is the step size parameter of unit .
There are different ways of implementing the update. Here, we consider the
following sequential and parallel mode:

® Sequential Mode. At each time step, a randomly selected unit updates its
internal and external state.

" Parallel Mode. At each time step, all units simultaneously update their internal
and external state.

Examples of classical discrete-time Hopfield models are shown in Table 4.1.
Note that the discrete-time Hopfield’84 model is derived from Hopfield’s original
continuous-time analog model [148] using the Euler discretization.

To study the long-term behavior of interacting units that evolve under update

70

Hopfield Clique Networks

Model Update mode Unit g(ui) d; i Reference
Hopfield’'82 model sequential discrete O(u;) 1 1 [147]
Hopfield’'84 model sequential analog gg(u;) 1]0,1] [148, 379]
Little model parallel discrete O(u;) 1 1 [233]
Iterated-map model parallel analog gg(u;) 1 1 [51], [252]

Table 4.1 Four models of discrete-time Hopfield dynamics.

rule (4.1), it is useful to view Hopfield models as dynamical systems. We informally
present, some basic concepts of neurodynamics necessary for further understanding
and refer to [138, 143] for mathematical treatment.

The state of a Hopfield model at time step t is defined by the vector x; composed
of all outputs x;(t). The set of all possible states a Hopfield model can assume is
referred to as its state space. Starting from an initial activation, update rule (4.1)
generates a sequence of states (z¢):>o called the trajectory of the dynamical system,
given the initial activation xq.

The relevant question here is what kind of dynamical behavior do we expect from
our system? To discuss this, we categorize different types of trajectories according
to their convergence properties. We distinguish between convergence to fized points,
convergence to limit cycles, and chaotic behavior.

1. Fized Points. A fixed point is a state that repeats itself during the dynamical
process. A fixed point £ is stable if nearby trajectories remain close to €. Otherwise
a fixed point is unstable.

2. Limit Cycle. A limit cycle is a finite sequence of at least two states that
periodically repeat themselves under the dynamical process.

3. Chaos. Chaos refers to trajectories that evolve in the state space in an
uncorrelated and irregular fashion.

From an optimization point of view, we want convergence to stable fixed points,
which encode feasible solutions of the underlying problem. Fixed points, which
represent infeasible solutions, limit cycles, or chaotic behavior are all undesirable.

A useful mathematical tool to determine global stability of dynamical systems is
Liapunov’s direct method. The basic idea is to construct a scalar-valued Liapunov
or energy function over the state space of the dynamical system, which is bounded
below and non-increasing along all trajectories. If such an energy function exists
and the system is well-behaved, then the long-term behavior of a Hopfield model
can be characterized in a qualitative way.2

What makes Liapunov’s direct method so useful is that it enables us to analyze
the long-term behavior without solving the state space equations of the system. The
main problem with this method is that constructive principles to find an energy

2. A rigorous mathematical introduction to Liapunov functions can be found in [224, 305].

4.8 Hopfield Networks for Combinatorial Optimization Problems 71

function are unknown.
As an example, consider the sequential discrete Hopfield’82 model. Given an
initial activation, the dynamics of that model minimizes the energy function

Blo) = —5 Y0 Y wsai(ey(t) - 3 i) (4.2

until convergence to a fixed point corresponding to a local minimum point of E.

Table 4.2 summarizes the main convergence characteristics of the models pre-
sented in Table 4.1. From the table we see that sequential updating schemes lead
to stable fixed points, whereas trajectories evolving in parallel mode may converge
to fixed points and period-two oscillations. At first glance, sequential dynamics
seems to be more appropriate for application to optimization problems than paral-
lel dynamics, because of its well-behaved convergence properties. But in numerical
simulations, in particular on parallel computers, sequential models are much slower
than their parallel counterparts. Thus, the design of Hopfield models is a trade-off
between stability and speed.

Model Fixed points Limit cycles Chaos Reference
Hopfield’82 model + - — [147, 141]
Hopfield’84 model + — — [379]
Little’s model + + — [141]
Iterated-map network + + — [141, 252]

Table 4.2 Main characteristics of discrete-time Hopfield models, provided that
the weights are symmetric, self-interactions are zero, and external inputs are
nonnegative. Limit cycles occurring in parallel models have length two. References
indicate where proofs can be found.

4.3 Hopfield Networks for Combinatorial Optimization Problems

In this section, we describe how to apply Hopfield networks to combinatorial
optimization problems (COP). In addition, we discuss some improved variants of
Hopfield’s original model.

From now on, we use the more concise vector notation to describe the Hopfield
dynamics, rather than the classical scalar notation. We use the following notations:

72

Hopfield Clique Networks

ug activation vector uy = (uy(t), ..., up (t))T
Ty state vector ; = (z1(t), ... ,mn(t))T
w symmetric weight matrix W = (w;;) with zero diagonal
w; i-th row w;; = (wi1, ..., Wwin)" of W
h external input vector b = (hy,..., k)T
g(u) component-wise transfer function g(u) = (g(u1),... ,g(un))T

The Hopfield & Tank [149] approach to approximately solve COPs maps the
objective function of the optimization problem to an equivalent energy function
of the network. The constraints of the problem are included in the energy function
as penalty terms, such that the global minima of the energy function correspond
to the solutions of the COP.

Assume that we are given a COP defined by the following quadratic integer program

T

1
minimize flx) = —§mTQ;v —c'z

subject to Ax=b (4.3)
x € B",

where @ € R™*" is symmetric, ¢ € R", A € R™*", and b € R™. The Hopfield &
Tank (HT) energy function is of the form

B(@) = f(@) - Y mlala - bi). (.4)

where a;. is the column vector representing the i-th row of A, and p; > 0 is a penalty

parameter that is chosen to reflect the relative importance of the i-th constraint
T

1

energy function F.

a;x = b;. It is easy to verify that a constrained minimum of f also minimizes the

To infer a standard energy function in terms of weights and external inputs as in
(4.2), we expand the HT energy function (4.4). Then weights w;; are the coefficients
of quadratic terms x;x;, and external inputs h; are the coefficients of linear terms
x;. Constant terms can be neglected, because they do not effect minimization. Thus,
we arrive at an energy function of the form

E(x) = f%a:tTWa: —h'z, (4.5)
which corresponds to the energy function (4.2) of the Hopfield’82 model. The main
challenge is how to minimize F in order to find a satisfactory solution within an
acceptable period of time. The simplest and most straightforward possibility is to
apply the Hopfield’82 dynamics, because it ensures gradient descent of the energy
function until convergence to a fixed point. As an example, Algorithm 1 describes

4.8 Hopfield Networks for Combinatorial Optimization Problems 73

the Hopfield’82 method to solve the optimization problem (4.3).

Algorithm 1 (Hopfield’82 Algorithm)

Input:

W — weights

h - external inputs
Initialization:

set activation u
Procedure:
repeat
randomly select a unit ¢
U; = 'wlTa: + h;
@i = O(uq)
until convergence to a fixed point

Output:

The Hopfield’82 Algorithm and its variations discussed in the previous section
performed unsatisfactory or even failed when applied to problems of combinatorial
optimization [385]. The main defects of the general Hopfield model are:

® infeasible solutions caused by spurious local minima,
m feasible solutions of poor quality,
® oscillations in parallel mode, and

® slow convergence.

These shortcomings have inspired modifications of the general Hopfield model.
Perhaps the most successful methods are based on principles of statistical mechanics
and their deterministic approximations. In the remainder of this section, we first
discuss three types of stochastic machines, the Boltzmann, Cauchy, and Gaussian
machines. Next, we describe mean-field and Potts mean-field annealing, two efficient
approximations of stochastic machines. As final methods, we consider chaotic
networks and exterior-point penalty networks. We conclude this section with some
final remarks.

4.3.1 Boltzmann Machine

The Boltzmann machine proposed by Ackley et al. [3] is apparently one of the first
neural models inspired by principles from statistical mechanics. The topology of
a Boltzmann machine complies with a stochastic Hopfield model. The activation
probabilities P(u;) are of the form

P(u;) = g1 (u;) = ga(wla + h;) .

T

74

Hopfield Clique Networks

To minimize the energy F, the Boltzmann machine generates a controlled sequence
of local updates (balancing) combined with a reduction of the global temperature
T (annealing).

Balancing: Suppose that x is the current state of the Boltzmann machine. A local
update step proceeds as follows:
1. Randomly select a unit <.
2. Apply the following update rule
w=wlz+h
x; = Op(u;).
This process is repeated until convergence to thermal equilibrium. A fundamental

result from statistical mechanics shows that in thermal equilibrium, the proba-
bility distribution of the states & € B™ obeys the Boltzmann-Gibbs distribution

Plz) = < exp (‘E (’”)> , (4.6)

where Z is a normalizing factor.

Annealing: Decrease (anneal) the temperature 7'. Boltzmann machines use a loga-
rithmic schedule of the form

To
T=Ty= %
" log(k)’

where Ty is the initial temperature and k is the annealing-time index.

Starting with a large initial value T' = Tj, the Boltzmann machine iteratively
performs balancing and annealing until no increase of the energy is accepted for
K consecutive decrements of the temperature T. The final frozen state is then
returned as solution of the COP.

For T' > 0, stochastic units assign any neighboring state a nonzero probability
to be accepted. This mechanism enables the machine to escape from local minima.
From the Boltzmann-Gibbs distribution, it follows that high temperatures reduce
energy differences among the states. In this phase, the system performs coarse
exploration of the state space. As the temperature is lowered, the probabilities
concentrate on low-energy states. Consequently, the search exploits local terrain of
low energy.

If annealing of the temperature is governed by the logarithmic schedule, the
Boltzmann machine will converge to the global minimum, provided that new
candidate states are drawn from a Gaussian distribution [109]. The problem with
this approach is its prohibitively slow convergence.

Remark 4.1

The difference of the Boltzmann machine algorithm and simulated annealing [207]
lies in the choice of the activation probability P(u;). But the difference is only
minor, because both methods lead to the same stationary distribution and have the

4.8 Hopfield Networks for Combinatorial Optimization Problems 75

same convergence properties [1].
4.3.2 Cauchy Machines

The Cauchy Machine [348, 350] is an improved variant of the Boltzmann machine.
The modifications are:

® Stochastic units with activation probability

%

1 1
Pu;) ==+ - arctan (?) .

2
m Faster annealing schedule

To
where Tj is the initial temperature and k is the annealing-time index.

The random sampling obeys a Cauchy distribution rather than a Boltzmann
distribution. Since a Cauchy distribution has a fatter tail than the Gaussian form
of a Boltzmann distribution, not only local random walks as in Gaussian sampling
are produced, but also global random leaps. This permits easier access to test local
minima in the search for a global minimum. As a consequence, the Cauchy machine
can apply an exponentially faster annealing schedule than the Boltzmann machine
to statistically find a global minimum. Convergence to a global optimum is shown
in [348] for an annealing schedule no faster than (4.7).

4.3.3 Gaussian Machines

Gaussian Machines [7] are analog Hopfield models that update their state according
to the following dynamical rule

U; :’w;IZCB—i-hi—l-I/i

where v; is a stochastic term caused by random noise. This noise is Gaussian dis-
tributed with a zero mean and a variance controlled by the temperature parameter
T. At high values of T the noise has a large variance and therefore enforces coarse
exploration of the state space. As T decreases, variance becomes smaller and leads
to a fine search in a local neighborhood.

By appropriate parameter selection of the Gaussian machine, we can derive the
the Hopfield’82 model, the Hopfield’84 model, and the Boltzmann machine. As the
Boltzmann machine, the Gaussian noise term only produces local random walks.

76

Hopfield Clique Networks

4.3.4 Mean-Field Annealing

Mean-field annealing [285] is a deterministic approximation of stochastic machines,
which is computationally more efficient than the Boltzmann machine and its
variations. The mean-field system replaces the binary outputs z; € B of the
Boltzmann machine by their mean or average behavior < z; > € U. Since 1—gg(u) =
gs(—u), we can derive from P(u;) = g1 (u;) the following transition probabilities

g (u;)
0) = g (—ue).

For a single unit i, the average state at temperature T is

= N

<z;>=1-Pr; =1)+0-P(x; =0) = g1 (u;).

T

Using this expression, we first equate the average < x; > in terms of the averages
< x; > and then apply the Euler discretization to obtain the discrete-time mean-
field dynamics

<$i>:(1_)\i) <x;> —1—)\1'9% (w1<$>+hi), (4.8)
where A; > 0. This update rule minimizes the energy of an analog Hopfield model
1
Ep(z) = ficcTWa: —~hTz —T-H(z),

where H is a convex term of the form
n
H(x)=- in log(z;) + (1 — ;) log(1 — ;).
i=1

At high temperature T', the energy is dominated by the convex term H(x) and has
a unique global minimum. This convex term serves to smooth out local minima. By
gradually lowering T', the influence of the convex term vanishes until the original
energy at T' = 0 is recovered.

Like the Boltzmann machine, the mean-field algorithm performs balancing and
annealing. The stochastic dynamics of the Boltzmann machine is replaced by a
sequential or parallel deterministic approximation (4.8). Given a temperature T,
balancing aims at approximating the Boltzmann-Gibbs distribution. In the limit,
lowering the temperature 1" — 0 gradually transforms g, ,7 to a threshold function
© and enforces the trajectory into a corner of the hypercube.

We present an example illustrating the behavior of the mean-field approach. This
example will turn out to be useful when discussing the limitations of mean-field
annealing on the MWCP.

Example 4.2
Figure 4.1 illustrates the mean-field procedure and shows a potential problem when using
deterministic annealing.

4.8 Hopfield Networks for Combinatorial Optimization Problems 77

0 0

=100t T=1000 /7 -10r+ T=100 /A

- L \@® 4
200 —20 | i

=300 7
=30 7

=400 —
500 1 401 1
—600 - o 4 =50 r J o q

-700 | | | | -60 | | |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
@ (b)

-6 1 1 1 1 -6 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(€) ®

Figure 4.1 Energy function of mean-field annealing for different values of the
temperature 7. The original energy function to be minimized is shown in (f). The
mean-field procedure solves a sequence of energy functions (Er). For each T, filled-
in circles indicate initial states, and outlined circles final states. Although the global
minimum of E is at x4, = 0, the mean-field procedure will converge to z; = 1.

The original energy function E' = Ej to be minimized is depicted for 7' = 0. To minimize
E, the mean-field procedure solves a sequence (E7) of minimization problems, where Er is
composed of the original energy E and the convex term —T H. For the sake of presentation,
we assume that the initial temperature 7" = 1000 is lowered in large steps to the values
T = 100,50, 10,1,0. At T' = 0, we replace g, by ©. For each temperature, filled-in circles
indicate the energy of the initial state, and outlined circles the energy of the final state
of the system. Note that the final state of the system at a given temperature 7' is usually
close to a local minimum of Er.

From the plots, we see that at high temperatures the convex term —7T'H dominates the
energy Er. By lowering 7', more and more structure of the original energy E emerges.

78

Hopfield Clique Networks

The structure of E turns out to be inconvenient for the mean-field algorithm. The energy
E has a global minimum at x4 = 0 and a local minimum at x; = 1. The basin of z4 is a
narrow kloof, whereas the basin of z; is a wide valley dominating the energy functions Er.
The trajectories have no chance to escape to the basin of attraction of x4, and therefore
converge to the local minimum x;.

4.3.5 Potts Mean-Field Annealing

For a number of combinatorial optimization problems, the corresponding energy
function to be minimized can be written as

1 n m n m n m
E(z) = —3 E E E Wikl TijThl — E E hijxij,
=1 j=1 k=1 (=1 =1 j=1

where feasible solutions satisfy the constraints

> ay=1 (4.9)
j=1

for all i € [1: n].

From an algorithmic point of view, the Potts system and the standard mean-
field method differ only in the way they update their state. The Potts equations
are given by

n m
U5 = Z Z Wikt Tt + hij (4.10&)

k=11=1
exp (—2)
vy =17 (4.10b)

As mean-field annealing, the Potts dynamics solves a controlled sequence (FEr) of
problems, where each subproblem Er involves the original energy function E and a
convex term T - H (x). Thus, everything said about mean-field annealing also holds
for the Potts mean-field annealing.

The advantage of the Potts dynamics is that the search is performed in a relevant
lower dimensional subspace. To see this, we collect all units 71, ...,2m in a row to a
Pott unit with output state ®; = (z1,...,%im). The softmaz function (4.10b)
enforces the outputs of the Potts units to satisfy the constraints (4.9). Hence,
the trajectories of each Potts unit evolve in an (m — 1)-dimensional constraint
plane instead of in the original m-dimensional unit hypercube. It has been shown
empirically that systems using Potts units as hard implementation of (4.9) exhibit
better performance than similar systems using soft constraints via penalty terms
[285, 286].

4.8 Hopfield Networks for Combinatorial Optimization Problems 79

Remark 4.3

Note that the Potts dynamics is only applicable to graph matching problems con-
strained over subsets of morphisms. From a conceptual point of view, all p-graph
matching problems considered in Section 3.5 fall into this realm. But for reasons of
computational efficiency, it is advisable to reduce error correcting graph matching
problems and certain graph matching problems in computer vision [30, 31] to prob-
lems constrained over a subset of relations instead of morphisms (see also Remark
3.8). Hence, there are no longer one-way constraints induced by the well-definedness
of a morphism. For such problems, solutions like the Potts dynamics, which imple-
ment hard constraints via softmax become inapplicable.

4.3.6 Chaotic Hopfield Models

Inspired by biological neurons with chaotic characteristics, Aihara et al. [4] sug-
gested Hopfield models consisting of refractory units that exhibit chaotic behavior.
Chaotic dynamics is useful for improving solution quality, but their unstable be-
havior is difficult to control in order to obtain a feasible solution. Chen & Aihara
[56] combined the advantages of conventional and chaotic neurodynamics and intro-
duced a temperature parameter together with the usual annealing process. At high
temperatures, the transiently chaotic dynamics of the Chen-Aihara model searches
for a global minimum. During annealing, the system becomes gradually stable and
converges to a fixed point at low temperatures.
Chaotic Hopfield models minimize energy functions of the form

E(x) = Fu(x) + Ho(z),

where Ep is the original energy function of the associated non-chaotic Hopfield
model and H¢ is an additional term that modifies the energy landscape. Chen and
Aihara used the energy modifier

T
HC:—QJ

ZT(

T — e)a
where e is the vector of all ones. The discrete-time dynamics that minimizes the
modified energy E can be derived by using the Euler discretization of the system

dui o dE

dt dt’
As T approaches 0, the term H¢ vanishes and the original objective function to be
minimized is recovered. In contrast to the Boltzmann machine and its variations

and approximations, the temperature T' declines monotonically at each time step.
4.3.7 Penalty Annealing

The HT energy function (4.5) includes several terms, each of which competes to
be minimized. Appropriate choice of the penalty parameters u; is crucial to avoid

80 Hopfield Clique Networks

spurious local minima and to ensure feasible solutions. Parameter tuning of several
penalty parameters u; and their analysis is intricate. A more convenient formulation
of the HT energy function is of the form

E(x) = f(z) + pEp(z), (4.11)

where the term Ep incorporates the constraints given by Ax = b of problem (4.3).

Aiyer [5] showed that a sufficiently large penalty parameter ;1 ensures validity of
a solution. A large value for u, which is necessary to ensure feasible solutions, is
impractical for the following reasons:

" The term puFEp dominates the energy function F. Hence, more emphasis is
placed on minimizing Ep rather than the objective function f(x) of the original
COP.

= With u, the gradient of E' becomes large. Thus, the system evolves according
to the Hopfield dynamics with a large step size, which is susceptible to unstable
oscillations or premature termination to a feasible solution of poor quality.

To overcome these difficulties, Jagota [167] and Schédler [311] augmented Hopfield
models with exterior-point penalty methods from nonlinear programming [239].
Starting with a low initial value pg of the penalty parameter, a penalty annealing
method minimizes a finite sequence (Ej) of problems

Ey(x) = f(®) + ppEp(),

where the sequence (uy) is strictly increasing. Each subproblem Ej can be solved
with an appropriate Hopfield dynamics.

4.3.8 Concluding Remarks

Since Hopfield & Tank [149] demonstrated that quadratic COP could be solved us-
ing Hopfield networks, several alternatives have been proposed to improve solution
quality. Some approaches, including Boltzmann machines, their stochastic variants,
and their deterministic approximations, are considered to be competitive with other
meta-heuristics in terms of solution quality [336].

The main limitations of the systems described in this section are twofold: first,
they require tuning of several problem dependent system parameters, and second,
satisfactory results usually go hand in hand with long computation times. Both
disadvantages constitute the starting point of a new technique for solving COPs
with Hopfield networks. We present this technique in the next section.

4.4 The Hopfield Clique Theorem

This section is devoted to the presentation and mathematical analysis of a parallel
analog Hopfield dynamics for the MWCP. Provided that the system parameters

4.4 The Hopfield Clique Theorem 81

satisfy some simple and relatively tight bounds, we prove that the proposed dy-
namics ensures convergence to fixed points. In conjunction with Theorem 3.2 on
the continuous formulation of the MWCP, we conclude that the stable fixed points
of the proposed dynamics are in one-to-one correspondence to the maximal weight
cliques of the graph under consideration.

Let X = (V,E, X) be a normalized graph from Gy. Recall from Section 3.6 that
the continuous formulation of the MWCP is of the form
1
minimize z)=——2'Qr —c'z
fl@) = —527Q i
subject to xelUn,

where @ = X — Dx — pA, p is a penalty parameter, A the constraint matrix,
and ¢ = dx is the diagonal of X. We map the optimization problem to an energy
function of the form

1
E(z) = fimTWm —h'z, (4.13)

where W = MA@ and h = Ac. The positive constant A controls the step size of the
following parallel discrete-time dynamics

Upr1 = Up +)\(th + c) (4.14a)
Tiy1 = g(ut+1)7 (414b)

where g : R — [0, 1] is a non-decreasing transfer function with Lipschitz constant L.
Examples of transfer function satisfying the requirements of (4.14) are the logistic
function gg(u) with Lipschitz constant L = (3/4 and the piecewise linear limiter
function [u]g with Lipschitz constant L = (3.

Since A is positive, the objective f of (4.12) and the energy function E are
equivalent. Hence, by Theorem 3.2, the problem of minimizing F is equivalent
to the MWCP of X. We show that the Hopfield dynamics (4.14) minimizes F and
converges to fixed points only, provided that the step size A is appropriately chosen.

Theorem 4.1 (Hopfield Clique Theorem)
Consider an analog Hopfield model with parallel discrete-time dynamics (4.14). Let
T =1/L, where L is the Lipschitz constant of the transfer function g. If

2T

A< ST pbeaX)’

then
E(zi11) < E(z4)

for allt > 0. In addition, the dynamics (4.14) converges to stable fized points only.

Recall from Section 2.2.3 that 6(X) is the minimum degree of X and Ac(X) the

82

Hopfield Clique Networks

maximum co-degree of X. Note that the energy function (4.13) can have unstable
fixed points. From the proof of Theorem 3.2, it follows that the set of unstable
fixed points has Lebesgue-measure zero. Hence, we can force the trajectory to leave
the unstable invariant set by imposing random noise to the activation vector of the
network.

The remainder of this section proves Theorem 4.1.

4.4.1 Proof

First we introduce some notations.

Notation 4.4

SN Y
I o
| 8 8 & &

S

B

|

>

SH
|
8
s
!
g
I
H\
|
8

Next, we show two auxiliary results.

Lemma 4.1
We have

T||d|* < ~Egd
for all T > 0.

Proof From v/ = u+ Wz + h and —E, = Wz + h follows —E, = u/ — u.
Hence
n

—Eld=(u —u)"(z' —x) = Z(u; —w;) (@] — x;).

i=1

Note that 2 — z; = g(u}) — g(u;). Since g is a non-decreasing function, the terms
(ul —u;)(x; — x;) are nonnegative. Therefore, we may write

(i = wa) (2 — @) = |uj — wil |j — i

for all i € V. By assumption, ¢ satisfies the Lipschitz condition with Lipschitz
constant L. This implies that

|7} — x| < L|uj — wl

4.4 The Hopfield Clique Theorem 83

for all i € V. From L =T~ follows
T o) — x| < |u} —u;

and therefore

n n
2
Td|> =T) |oj—wl” <Y Juj = wil 2} — 25 = ~Ejd.
i=1 i=1

Lemma 4.2
Let T > 0. Then W +2T1,, is positive definite.

Proof 1t is sufficient to show that W 4+ 271, is diagonal dominant, i.e.

j=1

J#i
foralli € V. Since W = \Q =)\(X —Dx —/AA), the absolute values of the entries
of W are of the form

0 : ifi=j
A :if (i,5) €E
for all i, j € V. Hence, dw = 0 and therefore the proof reduces to the statement
n
> Jwy| <2T.
j=1
j#i
Substituting the expressions for w;; yields
Do lwgl=A(Y @it Y n| = A(degu(i) + pdegeo(0))
j=1 JEN(3) JEN()
V)
for all i € V. We define
p=max {degw(i) + jrdegeo(i) }-
Since p satisfies
1> Aw(X) + fleflc > Aw(X),
we have

P> pAo(X) > Aw(X) + p(Aco(X) — 1).

84

Hopfield Clique Networks

Hence, the maximum p can be attained only for vertices ¢ with maximal co-degree
degeo(?) = Aco(X). Such vertices i have minimum degree, that is deg(i) = §(X).
Since all weights x;; are from U, we obtain

p < 6(X) + pAco(X).

Using this bound gives

n

Z ‘w”| <X < A(&(X) +NACO(X))
j=1
J#i

for all ¢ € V. Finally, from

0<A< 27
§(X) + pAco(X)
follows
n

Z |w,-j| <27

j=1

J#i
for all ¢ € V. This shows that W 4 2T, is diagonal dominant. |

Proof of Theorem 4.1: We have

1 1
E(z')— E(x) = —§w'TWa;' —hTz’ + §wTWw +hTz

= f% (' "TWa' —z"Wa) — h'd
= —% (d™Wd+2d"Wz) —h'd
1

= —§dTWd —d" Wz —h'd
1
~ —5d"Wd+ELd.
Using the inequality —ETd > T'||d||? proven in Lemma 4.1, we obtain
1 1
E(@') - B(@) < ~5d"Wd — T|[d|* = —5d" (W +2TL,)d.

The last equation follows from ||d||> = d"d = d"I,d. According to Lemma 4.2,
the matrix W + 2T'I,, is positive definite. Hence, we have E(z’) — E(x) < 0 and
E(z’) — E(x) < 0 if and only if & # «’. This shows that no cycles can occur and
therefore establishes convergence to fixed points only.

|

4.5 Hopfield Clique Networks 85

4.5 Hopfield Clique Networks

Theorems 3.6 and 4.1 establish the mathematical foundation to formulate a Hopfield
model that requires no tuning of system parameters. On this basis, Section 4.5.1
proposes a simple Hopfield Clique Network and discusses some design issues,
including optimal parameter selection in particular. To improve computation speed
without loss of solution quality, we incorporate a novel technique in the dynamics of
the simple Hopfield Clique Network. This technique adapts the system parameters
according to the subproblem induced by the current set of active units. Such an
approach is possible, because we know how to select an optimal parameter setting
for each problem instance. We call the improved model Attention Control System,
as it allows an interpretation in terms of selective attention. Section 4.5.2 is devoted
to the attention model.

4.5.1 A Basic Hopfield Clique Algorithm

Algorithm 2 describes the basic Hopfield Clique Network (HCN) procedure based
on the results of Theorems 3.6 and 4.1.

Algorithm 2 (Hopfield Clique Network Algorithm)

Input:
X - weighted graph X = (V, E, X)
e — positive constant
Initialization:

set activation u

p= 2w (X) +elloc + ¢

P
8(X) + pAco(X)

W = A(X — Dx — pA)

h = Mdx

Procedure:
repeat
u=u+Wa+h
@ = g(u)
until convergence to a stable fixed point

Output:

The critical system parameters of the HCN algorithm are the penalty u and the
step size A. Theorem 3.2 on the continuous formulation of the MWCP provides a
lower bound

By = Ay (X) + el

86

Hopfield Clique Networks

of i to ensure feasibility.3 The Hopfield Clique Theorem 4.1 provides an upper
bound

oT
§(X) 4 Ao (X)

By =

of \ to ensure energy descent. In the following, we show how to optimally select
both parameters and discuss some other design decisions.

Transfer Function

The choice of transfer function g is a problem dependent design decision for which a
general statement regarding optimality is unknown. But there are some qualitative
properties of transfer functions that are worth mentioning.

Consider the logistic function gg(u) and the piecewise-linear limiter function [u]g.
The gain 3 determines the Lipschitz constant L and controls the slope of the transfer
function. Lowering the gain shifts internal states (activations) closer to the origin
and refines the search. Conversely, at high gains, the internal states are displaced
far from the origin and a coarse-grained search near the corners of the hypercube
is performed. Since the upper bound B) is proportional to T = L~ 1, the step size
A largely absorbs the effects of the gain.

The main difference between both transfer functions is that logistic dynamics
bounds trajectories to the interior of the unit hypercube and trajectories generated
by limiter dynamics can also evolve through boundary points of the hypercube. This
difference may affect the convergence behavior. In contrast to units with limiter
transfer functions, logistic units with negative activation still contribute to the
activation of all other units.

Step Size Parameter \

The step size A controls the convergence behavior of any steepest descent method.
Small values of A lead to slow convergence, and too large values of A may cause
jamming (zig-zagging).

Jamming occurs when the descent directions d; and d;,1 at two consecutive time
steps point in opposite directions. In mathematical terms, we have

did, , <0. (4.15)

From the proof of the Hopfield Clique Theorem 4.1 follows that E decreases along
the line segment [xt, $t+1j|. This implies that

diE, , >0,

3. Recall from Section 2.2.3 that Ay (X) is the maximum weight degree of X.
4. Recall from Section 2.2.3 that §(X) is the minimum degree and Aco(X) the maximum
co-degree of X.

4.5 Hopfield Clique Networks 87

where E; 1 is the gradient of E at time step ¢ + 1. If —F;; is a feasible direction,
then the next descent direction d;; = —FE; 1 satisfies (4.15). Thus, jamming does
not occur in the interior of the hypercube, but can be caused if descent along d;
runs against a face of the hypercube.

If the transfer function is the logistic function, all trajectories remain in the
interior of the hypercube and no jamming occurs. For limiter transfer functions,
jamming may occur in a limited controlled manner without effecting convergence
speed. Uncontrolled oscillation that degrades the convergence rate is unlikely,
because E decreases along the line segment [y, @;11].

Since uncontrolled jamming does not occur, we may choose any value for the
step size A bounded above by B)y. To present an optimal choice of A with respect
to the requirements of neural learning machines for attributed graphs, we examine
the upper bound B). A simple calculation for 7" = 1 shows that the magnitude of
the upper bound B, of X is of order

o(%) < By < 0(%2) . (4.16)

From the estimations of B), we can expect a degrading convergence rate for increas-
ing dimension n. Figure 4.2 illustrates the major problem of this phenomenon. The
plot shows that even for problem instances of small order, the step size becomes
small compared to the distance to be covered. As a consequence, the HCN will also
exhibit slow convergence for the largest admissible step size A < B,. Hence, the
best we can do to meet the requirements of neural learning machines for graphs is
to choose

)*ZB)\—E

as optimal step size, where € > 0 is as small as possible.
Penalty Parameter |

As pointed out in Section 4.3.7, choosing too large a value for p makes our system
Upp1 = Ut + Wg(wt) +h

ill-conditioned in the sense that small changes in u; can lead to relatively large
changes in u;11. As a consequence, more emphasis is placed on minimizing con-
straint violations and the system prematurely terminates at a solution point of
poor quality. Examining the upper bound B) of X reveals that the unfavorable ef-
fects of larger values for p are mostly compensated by a smaller step size A. From
our discussion on the optimal choice of A\, smaller step sizes further slow down the
convergence process. Hence, the optimal choice for the penalty parameter is

[T

where € > 0 is as small as possible.

88

Hopfield Clique Networks

1 2 3 4 5 6 7 8 9 10

Figure 4.2 The red line shows the length of the diagonal of an n-dimensional
hypercube U™ as a function of n € [1 : 10]. The shaded region indicates where we
may expect the upper bound B, of the step size A. Assume that the initial state is
approximately at the center of U". The problem is that the distance to be covered
increases of order O(y/n), but the step size decreases of order O(1/n?) in the worst
case.

Initial Activation

As a gradient descent method, solution quality of HCN strongly depends on an
appropriate choice of the initial point. The problem of choosing a suitable initial
solution is one of the major shortcomings of gradient descent methods. Though
HCN requires no tuning of system parameters to find a solution, it requires domain
knowledge to obtain satisfactory solutions by appropriate initialization of the
activation vector.

Termination

Models that use the limiter transfer function will converge after a finite number
of updates to a corner of the unit hypercube. Checking stability for termination is
straightforward and requires no additional parameters.

In contrast, trajectories evolving under logistic dynamics converge to a stable
fixed point but never reach it. The common way to terminate the logistic system is
after a prespecified number of iterations or when the change of the output states is
less than a given threshold. Since we want to avoid problem dependent parameters
that must be selected manually, we formulate a termination criterion for both
transfer functions that requires no tuning parameters.

Termination Criterion: Terminate Algorithm 2 when the following condition is
satisfied

O(u;) = O(WO(u,) + h). (4.17)

4.5 Hopfield Clique Networks 89

The threshold function © transforms an internal state w into a characteristic
vector 1y of a subset U of vertices from X. From the proof of Theorems 3.2 and
4.1, it follows that (4.17) holds if and only if ©(u;) is a fixed point. Once (4.17)
holds, there is no need to wait until the trajectory saturates in a corner of the
hypercube.

Noteworthy is that in practical implementation, computation of the termination
criterion (4.17) does not require a second quadratic iteration cycle at each update
step.

4.5.2 Selective Attention Control Systems

Even for simple problem instances, the small step size A of the HCN Algorithm
induces slow convergence behavior. To improve convergence speed without loss of
solution quality, the Attention Control System (ACS) optimally adapts the system
parameters 4 and A of the Hopfield Clique Network at each iteration step.

Suppose that we want to solve the MWCP for the graph X = (V, E, X) of order
| X | = n. At each update step, the ACS algorithm proceeds as follows:

1. Stimuli Priorization. Partition the vertex set V into a set V, of active units i
with u; > 0 and a set V}, of passive units j with u; < 0.5

2. Attention Selection. Determine the subgraph X, = X[V,] induced by the
active units and recompute the penalty p and the step size A with respect to X,.

3. Competition. Update the state of all n units according to the HCN dynamics.

Algorithm 3 summarizes the complete ACS procedure. For convenience of presen-
tation, we consider the limiter transfer function. By

B, (Xa) = Ay (Xa) + [lef oo
2T
5(Xa) +p ACO(XG) ’

we denote the lower and upper bound of 1 and A with respect to the subgraph X,.

Whenever at least one unit changes from being active to passive, the trajectory
hits a face F, of the unit hypercube U™. Unless no unit changes from being passive
to active, the trajectory moves along the surface F,. The surface F, corresponds
to the search space of the MWCP for the induced subgraph X,. Since X, has less
vertices than X, we have B, (X,) < B,(X) and Bx(X,) > Bx(X). For fastest
convergence, we first lower p to B, (X,) — € and then increase the step size A to the

By (X.) =

value By(X,) —e. As a consequence, the dynamics forces the pace to cover smaller
distances in a reduced subspace. Figure 4.3 illustrates a typical behavior of ACS.
The dynamics updates the state of all its active and passive units. Only active

5. For the sake of simplicity, we identify vertices of X with the corresponding units of the
Hopfield model.

90

Hopfield Clique Networks

Algorithm 3 (Attention Control System Algorithm)

Input:
X - weighted graph X = (V, E, X)
e — positive constant
Initialization:

set activation u

Procedure:
repeat
Adjust system parameters i and A:
o Vo={ieV :u; >0}
o Xoq = X[Va]
o u=DB,(Xa)+e
e \=B)\(Xa) —¢
Update network
° u:u-l—/\(X—DX —uA)a)—l—/\dX
ca=lu,
until convergence to a stable fixed point

Output: @

units contribute to the activation of a unit. Passive units remain quiescent and
do not stimulate other units. Limiter transfer functions automatically satisfy this
condition. The dynamics for logistic transfer functions requires some minor mod-
ifications to behave as desired. Note that units corresponding to members of a
maximal weight clique can become passive during evolution and must therefore be
reactivated.

Controlled Forgetting

To further improve speed, a forgetting mechanism can be introduced. Several
criteria to forget a passive unit are possible. We suggest three simple criteria:

1. Delete a passive unit in the network when its activation decays below a given
(negative) threshold.

2. Delete a passive unit in the network when its activation has been decreasing
for a given period of time.

3. Delete a passive unit in the network when the gradient of its activation is
below a given (negative) threshold.

Once a unit is deleted, it is excluded from the updating process. The difference
between a forgotten (or deleted) and a passive unit is that the former is excluded
from the updating process. Thus, this mechanism is useful for problem instances
of large order (> 10000), because it enables us to reduce the problem to a
computationally manageable size. Appropriate choice of the parameters for a

4.5 Hopfield Clique Networks 91

active units penalty — . —
inhibition step size
1000 ‘ ‘ =

100
10

0.1+
0.01 -

0.001
0.0001 +

le-05E L | ! 4
0 5 10 15 20
iterations

Figure 4.3 [Illustration of how selected parameters of ACS vary with evolving
time. A random weighted graph of order 1000 is given. Vertex and edge weights
were sampled from a uniform distribution over U. The red solid line at the top
shows the number n of active units, the brown dashed-dotted line is the penalty
parameter u, the light blue dashed line presents the inhibition Au, and the solid
blue line at the bottom shows the step size A. At iteration step 0, ACS and HCS
have the same values. After a few iteration steps, the number of active units of ACS
sharply decreased. The step size was adapted according to the subgraph induced
by the active units and therefore sharply increased.

forgetting criterion are essential for a satisfactory trade-off between accuracy and
speed. We do not further consider controlled forgetting, because our focus is on a
system that requires no tuning of critical system parameters.

4.5.3 Selective Attention — A Metaphor

This subsection provides an interpretation of ACS in terms of selective attention
from the field of cognitive science. The purpose of this interpretation is an at-
tempt to indicate possible links between neural network models from the pure
optimization-based point of view and cognitive psychology. It is important to stress
that the goal is neither to claim a new model for selective attention nor to provide
a coherent neural implementation of a cognitive model.

Selective attention is a mechanism that preferentially selects a subset of relevant or
important information from given data for further processing. Since the capacity
for processing information is limited, the ability to filter out unwanted information
is essential for effective cognitive performance.

In an extreme view, limited capacity for processing information allows us to
conveniently classify limitations of attention in divided and focused attention. In
divided attention paradigms, the subject is required to divide its attention between
many stimuli. Limits are seen, because not many things can be attended to at
once. As a general rule, subjects find it extremely difficult to divide their attention.

92

Hopfield Clique Networks

When there are more stimuli to be attended to, performance is reduced. In focused
attention paradigms, subjects attempt to focus all available attention on just one
type of stimuli, largely ignoring and/or excluding all other inputs.

Selectivity — the ability to focus attention on relevant stimuli — is achieved
by an enhancement of processing relevant information. Attentive processing of
relevant information may be achieved by mechanisms that impede the processing
of irrelevant information, whereby inhibitory processes play an important role in
selective attention.

On the basis of neuroimaging and psychological experiments, de Fockert et al. [70]
conjectured that selective attention relies on the working memory to prioritize stim-
uli for processing relevant information. They predicted that a higher working mem-
ory load increases distractor processing. To clarify the conjecture, we briefly ex-
plain the terms working memory, memory load, and distractor processing. Working
memory is a more contemporary term for short-term memory. It conceptualizes an
active system for temporarily storing and manipulating information needed in the
execution of complex cognitive tasks [14]. Working memory load is the amount of
information kept in mind at any given time. Distractors are irrelevant stimuli. Thus
distractor processing refers to the processing of unwanted information.

As indicated by Levy and Pashler [229], several authors assume that processing
relevant stimuli (targets) requires and engages some amount of limited resources.
When the resources are engaged in processing targets, they are not available for
processing distractors. But if they are not engaged in target processing, they are
tdle and suspectible to being captured by the distracting stimuli, resulting in their
processing [357].

To draw a metaphoric analogy of models from selective attention to the ACS,
we consider a visual scene consisting of several isolated, abutting, or overlapping
objects. The cognitive task is to detect the occurrence of a particular type of
object. Visual stimuli received by the perceptual system are transformed to an
internal mental model of the image. Information is encoded in the ACS working
memory, where the units of maximal cliques are distributed representations of the
objects in the scene. Competition by lateral inhibition filters out unattended stimuli
and identifies regions of interest. The competitive bottom-up mechanism can be
directed by a top-down control by applying an additional external input. Top-down
controls the information relevant to the task. Active units model potential relevant
stimuli and passive units represent distractor stimuli. Passive units decay or can be
reactivated when attention shifts to focus on other parts of the region.

The inverse A~! of the step size is a crucial system parameter system. It may be
interpreted as a measure of memory load or resources engaged in processing stimuli.
Large values for the step size correspond to low memory load and vice versa. Recall
from our discussion on the step size parameter that the upper bound B) decreases
with increasing number n of vertices of the given graph. Hence, B;l increases with
n, which corresponds with the property of memory load that load increases as items
are presented. This correspondence is consistent in the sense that response time of
both the metaphoric and the cognitive attentional models increase with the number

4.6 Experiments

93

n of items presented.6

At the same time, the quantity A~! may serve as a measure for resources engaged
in processing stimuli. The difference between ACS and HCN is that the former shifts
all its resources to relevant regions by adapting the step size appropriately, whereas
the latter becomes more and more idle in the sense that distracting stimuli are
processed.

Hence, in our metaphoric ACS model, inhibition is essential to identify relevant
stimuli, but it is not sufficient to shift attention to that stimuli. Shifting attention
to relevant stimuli is modeled by adapting the step size .

We conclude with a final remark on an interpretation of ACS with controlled
forgetting. In cognitive psychology, forgetting is the inability to retrieve previously
stored information. Because it is unknown how memories are precisely stored, it is
not possible to say exactly how an individual forgets. Among a number of theories,
one model of forgetting is based on decay theory [25]. Decay theory suggests that
stored information will be lost, unless it is revised regularly over time. Decay theory
models motivated our model of controlled forgetting.

4.6 Experiments

This section discusses empirical issues related to the ACS. Section 4.6.1 serves
to illustrate the effects of selective attention. In Section 4.6.2, we compare the
performance of ACS applied to the MWCP against the performance of selected
Hopfield network approaches. In Sections 4.6.3 and 4.6.4, we evaluate ACS on the
problem of comparing segmented images and chemical graphs, respectively.

4.6.1 Selective Attention

To illustrate the effects of selective attention, we compared the performance of
ACS with the basic HCN. Both algorithms were applied to the MWCP of random
weighted graphs, where weights have been assigned according to an independent and
identically distributed sampling scheme over |0, 1]. Details of the graph generator
are described in Appendix B.3. We conducted two experiments:

1. In the first experiment, we investigated how selective attention depends on the
edge probability, or density, p of the test graphs. The chosen edge probabilities
are p = 0.1,0.2,...,0.9. For each edge probability p, we generated 100 weighted
random graphs of order n = 100.

2. The second experiment serves to study how selective attention depends on
the size n of the test graphs. For each size n € [25: 25 : 250], we generated 100

6. For example, Howard et al. [156] empirically showed that response time increases with
the number of item presented.

94

Hopfield Clique Networks

240 280
I ACs 240 I ACS
200 |9 Hen 0 HCN
160 200
2 & 160 -
% 120 - T
= g 1201
80 - 80 |
40 - 40 1
o 0l (|
001 02 03 04 05 06 0.7 08 0.9 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9
edge density edge density
(a) Average clique weights (b) Average number of iterations

Figure 4.4 Results of ACS (red) and HCN (gold) applied to the MWCP of random
weighted graphs of order n = 100. Shown are (a) the average solution quality and
(b) the average computation time of both algorithms for varying edge probabilities.
Thin bars in (b) indicate the standard deviation of the average time.

weighted random graphs with edge probability p = 0.75.7

Figures 4.4 and 4.5 summarize the average performance of ACS and HCN for both
experiments.

From the plots of Figures 4.4(a) and 4.5(a), we see that the solution quality
of ACS and HCN is almost the same. This is exactly what we expect because of
the shape of the energy landscape and the choice of the step size A. A curious
phenomenon is that on average the ACS always returned slightly better solutions
than the HCN. Though the penalty parameter . of HCN is incommensurately large
after a number of units have been inhibited, its adverse effects are largely absorbed
by the step size A. The ratio wacs/wmen of the average maximal clique weights
found by ACS and HCN lies within the range [1.0,1.08] and independent of size
and density.

As expected from the discussion on the effects of selective attention (see Figure
4.3), ACS significantly outperformed HCN with respect to computation time as
shown in Figures 4.4(b) and 4.5(b). In addition, the plots indicate that the average
number of iterations of the ACS scarcely increases with increasing size, and is almost
constant for varying density.

To summarize, the principle of selective attention significantly improves con-
vergence speed and scaling with problem size. In addition, it exhibits a robust
convergence behavior with respect to varying edge probabilities.

7. Recall that [n : s : m] denotes the set of all elements from n to m in steps of s.

4.6 Experiments

95

90 1200
8o | [l ACS T ACS T
70 | [I_HCN 10007 |5 hewn +
» 60 - 2 800 4
< 50 4 o
=2 ® B
g 40/ g 600
30 400
e 200
10 - ’-\-L m
0 A ol IL1]
25 50 75 100 125150175 200 225 250 25 50 75 100125150 175200 225 250
size size
(a) Average clique weight (b) Average number of iterations

Figure 4.5 Results of ACS (red) and HCN (gold) applied to the MWCP of
weighted random graphs with fixed edge probability p = 0.75. Shown are (a) the
average solution quality and (b) the average computation time of both algorithms
for varying size. Thin bars in (b) indicate the standard deviation of the average
time.

4.6.2 Maximum Weight Clique Problem

In this series of experiments, we assessed the performance of the ACS applied to
the MWCP of synthetic test graphs. We considered the MWCP, because the focus
is on generic solutions to p-GMPs, which are captured by MWCPs in a derived
association graph.

Selected Algorithms

To compare the results of ACS, we selected the following Hopfield models:

Acronym Method State space Convergence
EPP Exterior-Point Penalty Network discrete fast
SD Steepest Descent discrete fast
SSD Steepest Stochastic Descent discrete slow
MFA Mean-Field Annealing continuous slow
RAC Repeated Attention Control continuous fast

The algorithms and their parameter settings are presented in Appendix A. For the
standard MCP, the algorithms EPP, SD, SSD, and MFA have been systematically
investigated by [167]. We slightly modified these algorithms to make them applicable
to the MWCP. The fifth algorithm, RAC, runs ACS n/10 times with different
random initial activations, where n is the order of the input graph.

The selection of algorithms against which to compare ACS was motivated by the

96

Hopfield Clique Networks

following factors:

1. Our primary focus is on efficient neural network solutions to the MWCP.
Therefore, the selected algorithms for comparison are extensions of known Hop-
field models.

2. Since the MWCP has not been previously systematically investigated, the
selected Hopfield models for comparison should be easily extendable to the
MWCP.

3. The order of association graphs increases quadratically with the order of
the input graphs to be matched. For problems that involve a huge number
of comparisons of large graphs, good approximations of the MWCP obtained
by slower methods are useless. The algorithms selected for comparison should
therefore trade-off speed and accuracy in favor of speed.

We excluded the most powerful connectionist solutions to the standard MCP
— the Binary Neural Network [99] and the RaClique algorithm [393] — from our
comparative study, because both algorithms have been empirically proved to be too
slow for large-scaled problems.

EPP and SD are fast solutions for the standard MCP. SD and ACS are both
algorithms that neither can escape from local minima, nor use any other sophisti-
cated technique to improve solution quality. Therefore, we also considered SSD and
RAC. Both algorithms introduce some randomness and run SD and ACS, respec-
tively, several times to obtain better approximations. SSD uses a stochastic version
of SD. RAC varies the initial activation with each call of ACS using the principle
of selective attention. For further details we refer to Appendix A.1.2. Here, the
number of SD runs called by SDD is twice as much as the number of ACS runs
called by RAC.

The MFA algorithm applied to the MCP performed reasonably well on various
test suites and on DIMACS benchmarks graphs [191]. Though MFA is faster than
the Binary Neural Network and RaClique, it is still too slow for our purposes. We
nonetheless included MFA in our test suite in order to investigate the potential
applicability of mean-field techniques to the MWCP.

Selected Test Graphs

We applied the algorithms to the MWCP of weighted random graphs (G1) and
weighted k-random cliques graphs (G2). To assign weights to the vertices and edges,
we used an irregular uniform sampling scheme for G1 graphs and an independent
Gaussian distributed sampling scheme for G2 graphs. Appendix B.3 describes
the generators of the test data. Note that the MWCP for large graphs with an
independent and identically distributed sampling scheme basicly maximizes the
cardinality of vertices. For this reason, we sampled the weights from an irregular
and a Gaussian distribution.

Since Jagota’s systematic investigations [167], unweighted random graphs and

4.6 Experiments

97

k-random cliques graphs are commonly used in the neural network literature to
evaluate the performance of various Hopfield models for the MCP. From a structural
point of view, random graphs are attractive because they cover a wide variety of
structural properties including, for example, (non)-connectivity, (non)-cyclic, and
(non)-planarity. Random cliques graphs are interesting because they cover a broad
range of clique sizes.

Statements about the hardness of test graphs for the the MCP are, in general, no
longer valid for the MWCP. For this reason, we excluded the DIMACS benchmark
set [191].

FEvaluation Procedure

We conducted four series of experiments:

1D Graphs Order n pork Trials

EX0 Gl 100 p€lo, 1] 1000
EX00 g1 1000 pe€lo,1] 1000
EX0 G2 100 ke[3:10] 1000
EX0 G2 1000 ke[5:20] 1000

The parameter p denotes the edge probability of weighted random graphs and k
is the the number of randomly generated cliques in the k-random cliques graph
model. In each trial, the corresponding parameter p or k, respectively, was drawn
from a uniform distribution on the specified interval. Since SSD and MFA are too
time consuming, we excluded both algorithms from experiments on test graphs with
n = 1000 vertices.

Numerical Results

To analyze the results, we used performance profiles as described in Appendix B.1.

Figure 4.6 presents the performance profiles of each algorithm using the clique
weight as performance measure. From the plots we see that RAC clearly outper-
forms all other algorithms in all four test series. For graphs of order 100, RAC
returned the best solution in about 70% of all trials. This percentage increases for
graphs of order 1000 to about 90%. This can be verified in Figure 4.6 by looking at
the values p(0) of RAC. In all 4000 trials, the solution found by RAC deviates at
most about 10%-20% from the best solution found by any of the selected algorithms.
All other algorithms deviate about 50%, or even more from the best solution.

Among the remaining algorithms, ACS averages and is roughly equivalent to its
discrete counterpart SD. It is notable that R runs of ACS called by RAC using the
principle of selective attention for different initial states are significantly superior
than 2R runs of a stochastic version of SD called by SDD.

98 Hopfield Clique Networks

e 1f.
v
7 0.8
EPP
SD 7 0.6
SSD - a |
MFA - 0.4
RAC ----|| ozt
ACS ——
0 I I I I L 0 S L L L I L L L
0 0.2 0.4 0.6 0.8 1 0 0102 03 04 05 06 0.7 0.8
weight deviation weight deviation
(a) ELY — Profiles for clique weight (b) BP0 — Profiles for clique weight

0 1 1 1 1 1 1 1 1 0 L : L L 1 1 1 L
0 01 02 03 04 05 06 0.7 0.8 0 01 02 03 04 05 06 07
weight deviation weight deviation
(c) EEY — Profiles for clique weight (d) BP0 — Profiles for clique weight

Figure 4.6 Performance profiles of the selected algorithms using clique weight T as
performance measure. For each algorithm, the quantity p(7) shows the fraction of
solutions that deviate 100 - T % at most from the best solution found by any of the
algorithms.

4.6 Experiments

99

RAC - ==]

ACS ——

0 . . . ! ! 0

0 0.2 0.4 0.6 0.8 1 0 01 02 03 04 05 06
size deviation size deviation

(a) EEY — Profiles for clique size (b) ELY — Profiles for clique size

Figure 4.7 Performance profiles of the selected algorithms using cligue size (cardi-
nality of vertices) 7 as performance measure. For each algorithm, the quantity p(r)
shows the fraction of solutions that deviate 100-7 % at most from the best solution
found by any of the algorithms.

It is instructive to note that MFA performs worst and is even clearly outperformed
by SD and EPP. The result contrasts to the results for the standard MCP on
the unweighted counterparts of G1 and G2 graphs [167]. This phenomenon is
closely related to the problem illustrated in Example 4.2 on page 76. The original
energy landscape £ = Ey (T = 0) to be minimized is dominated by the large
penalty parameter u. Regions with less inhibitory connections have wider basins
of attractions and vice versa. As indicated in Example 4.2, MFA is more likely
to settle in wide basins. Consequently, this procedure works fine when cliques of
large weight have, in average, more neighbors than cliques of less weight. This
holds for the standard MCP on unweighted G1 and G2 graphs and explains the
outstanding performance of MFA shown in [167]. For the MWCP, the weight of a
clique is generally unrelated to its size. Hence, for G1 and G2 graphs, MFA tries to
maximize the size of a clique rather than its weight. Figure 4.7 supports this claim,
showing the performance profiles for the size of a clique. Together with Figures
4.6(a) and 4.6(c), we see that MFA has the largest disparity between weight and
size of a clique. In contrast, ACS searches for maximal cliques with the highest
average weight per item.

Figure 4.8 presents the performance profiles using clock time as performance
measure. The plots show that ACS is the fastest algorithm in all 4000 trials. In
addition, ACS scales better than EPP, SD, and RAC with the number of vertices.

If we regard ACS as a special case of RAC, the overall result of this empirical
study is that RAC significantly outperforms all other algorithms with respect to
solution quality and computation time.

100 Hopfield Clique Networks

(o

0.8
0.6
0.4
0.2

100
time factor

SD

MFA
RAC ---

ACS —

(a) EZY — Profiles for time

time factor

(c) E1G020 — Profiles for time

1
0.8
0.6
0.4
0.2
O L~
1 10
time factor
(b) EZP0 — Profiles for time
1 : i 3
i i
0.8 i ; 1
i i
o 0.6 i :’ 1
; ;
041 i ; 1
; ;
0.2 i ; EPP ----
0 . 2 |SD e
1 10 RAC -----
time factor ACS

(d) E1G0200 — Profiles for time

Figure 4.8 Performance profiles of the selected algorithms using clock time T as
performance measure. For each algorithm, the quantity p(7) shows the fraction of
solutions that are 7 times slower than the fastest algorithm at most.

4.6 Experiments

101

4.6.3 Similarity of Segmented Images

Image retrieval based on image features has attracted considerable attention in
recent years [30, 31, 256, 331]. Results obtained by standard approaches using
color and edge histograms are fast, but their results are unsatisfactory because
they ignore semantic information. Bischoff et al. [31] suggested representing images
by attributed graphs to enable the search of images, which contain prespecified
semantic objects such as cars, houses, or trees. One problem with this approach
is that graph-based representations in image retrieval are too slow due to the
computational complexity of the graph matching problem and the lack of fast
algorithms.

To reduce computation time, the goal of this empirical study is to propose and
evaluate a compact framework using ACS in order to compute a structural similarity
measure for segmented images as suggested by Bischoff et al. [31].

Problem Formulation

Given an input image, the goal of image retrieval is to identify a small subset of
images from a dataset, which are most similar to the input. Here, we consider the
task of emulating what humans would intuitively perceive as similar. Although
this is a rather unspecific setting — at least from the perspective of a computer
scientist — we might nevertheless assume, for example, that humans will usually
perceive images 1 and 2 in Figure 4.9 as being more similar than images 1 and 3.
Furthermore, images 1 and 3 might in turn be perceived as more similar than images
1 and 13. To provide a more precise setting, we divide the images in Figure 4.9 into
different categories as shown in Table 4.3. The problem at hand is to provide a
similarity measure and an algorithm that perceive images within the same category
as similar, and images from different categories as dissimilar.

Images Category

1-2 FARMER 1
3-6 FARMER II
7-12 FISH

13-21 NEWSREADER I
22-24 NEWSREADER II
25-26 OUTDOOR

27-29 MAN

30-32 WOMAN

33-37 ASIAN

38-39 CAMERA

Table 4.3 Categories of Images shown in Figure 4.9.

102

Hopfield Clique Networks

The Bischoff-Reuf3- Wysotzki Measure

To emulate human judgment of similarity, we transform the problem of comparing
images to the problem of comparing attributed graphs. The resulting Bischoff-Reuf3-
Wysotzki measure was proposed in [31].

What makes comparison of segmented images so difficult is the unstable behavior
of a segmentation procedure in regard to slightly varying illumination conditions,
camera positions, and algorithm parameters. For example, image 1 and 2 in Figure
4.9 have 50 and 37 segments, respectively. To cope with this problem, we adopt the
approach suggested by Bischoff et al. [31] and approximate a structural similarity
measure based on the Consistent Labeling Problem.®

First, we transform each segmented image to a complete attributed graph. For
a given image, each vertex represents a segment. A vertex is labeled with a 166-
dimensional feature vector describing the visual properties of the corresponding
segment. T'wo vertices are connected by an edge labeled with the Euclidean distance
between the centers of the corresponding segments.

Next, we formulate the graph matching problem. Assume that X and Y are
attributed graphs representing two given images. As usual, let X = (x;;) and
Y = (yi;) be the attributed adjacency matrices. The compatibility values for items
2 of X and j of Y are of the form

where sy and sp are functions that measure the similarity of vertex and edge
attributes. The following remarks might be helpful:

1. Arguments of sy and sg have different dimensions (166 vs. 1). This difference
is expressed in the notation of the arguments.

2. To define sg, we implicitly assume that each vertex has a loop with attribute
0. We did not make loops explicit in order to avoid notational confusion.

Both similarity functions are parameterizations of
s(@s,y5) = [1 = allzs — yjll] 4

where [.]g denotes the limiter function with gain 8 = 1. The chosen values were
a =5 for sy and a = 2.5 for sg.

8. See [30] and [383] for a description of the Consistent Labeling Problem.

4.6 Ezxperiments 108

%
S
-,

‘. _rigj . ,
S S0
\ i1 Iim {7

) =L o @7 4

< -IM pg

WL I'l:‘f o E‘x] e
i |F}~ = .

3 [
“ = .I @® -
a .‘7.' A ’
= F.ér-.y ‘é E.‘-vd | st
: i 2

9]

g

o

"-_II

=
15 L
\-";“

L= giT | m L -
| (,)4 r&i‘ LAY g

[W’r:‘ OE e Sl
Iﬁgﬁl Ly e D

\&J'&%‘ﬁn: '

o
[e fou

B

Figure 4.9 Dataset of 39 segmented images.

104

Hopfield Clique Networks

Now consider the graph matching problem

1
maximize f(¢,X, Y) = m Z Kiijj
i€D(p)
4.18
subject to j=1i% ()

peM,
where M denotes the subset of partial morphisms ¢ € Mx y from X to Y with
1€ D(¢) = Ko > 0

for all items ¢ € D(¢). Note that the matching objective f only sums vertex
similarities. Edge similarities serve to formulate the constraints of the problem.
Thus, problem (4.18) tries to find a consistent labeling of vertices from X in terms of
vertices from Y with maximal accumulated similarity of the labelings. Consistency
is specified by the feasible region M.

What makes formulation 4.18 so useful is that it enables us to group small
segments of X within a local neighborhood to a single large segment of Y, provided
that all segments involved have similar visual properties. The function sg thereby
controls the locality of the neighborhood, and sy the similarity of segments. This
approach slightly differs from its original formulation in [31], where the local
neighborhood is expressed in terms of adjacency relations.

Since (4.18) is not symmetric, i.e. f(¢, X,Y) # f(4,Y, X), Bischoff et al. [31]
suggested the structural similarity measure

S(6Y) = 5 (F6°, X,Y) + f(°, Y. X)), (119

where ¢* and * are optimal solutions of the respective matching problems. A
characteristic feature of the Bischoff-Reufl-Wysotzki measure (4.19) is that it allows
a bi-directional mapping of smaller segments within a local neighborhood of one
image to a single large segment of the second image. This feature makes the Bischoff-
Reu3-Wysotzki measure robust against unstable segmentation.

Computing the Bischoff-Reuf3- Wysotzki Measure

Computation of the Bischoff-Reufl-Wysotzki measure involves the solution of two
graph matching problems (4.18). For each graph matching problem, it is easy to see
that the feasible region M is p-closed. According to Theorem 3.1, problem (4.18) is
equivalent to the maximum vertex-weight clique problem (MVCP) in an association
graph. Hence, it is feasible to apply ACS for approximately solving problem (4.18).

Since image retrieval requires fast solutions, solving two graph matching problems
in order to determine a single structural similarity is counterproductive. We propose
an approach that approximates the Bischoff-Reuf-Wysotzki measure by solving a
single graph matching problem of the same complexity as either of both original
matching problems.

4.6 Experiments

105

Assume that X and Y are attributed graphs representing two given images.
Let X oY and Y ¢ X denote the association graphs for the matching objectives
flo, X, Y) and f(¢,Y, X). The association graphs X ¢Y and Y ¢ X are defined on
the same set of vertices, which can be obtained from one another by relabeling. But
X oY and Y ¢ X may have non-isomorphic edge structures. By symmetry of sg,
an edge between two vertices in both association graphs either exists or is missing
in at least one of both graphs. We merge X ¢Y and Y ¢ X to an association graph
Z = (XoY)II(Y ¢ X) by taking the union of the edge sets, where we identify
identical edges of X ¢ Y and Y ¢ X. Formally, the vertex set of Z is defined by

V(Z)=V(XoY)
and its edge set by
E(Z) = {(ik,jl) : (ik,jl) € E(X oY)V (ki,lj) € E(Y o X)}.

The weights assigned to vertices and edges of Z are then determined by X ¢ Y,
Y ¢ X and the scaling of the Bischoff-Reu-Wysotzki measure.

The MVCP formulation for Z is not equivalent to, but provides a lower bound of
the Bischoff-Reuf-Wysotzki measure. By construction of Z, each maximal (vertex-
weight) clique C of Z can be decomposed into cliques Cx of X oY and Cy of Yo X
such that their union is C. Since each vertex weight is counted once and the sets
Cx and Cy may overlap, the maximum weight clique of Z is not larger than the
Bischoff-Reu3-Wysotzki measure.

Selected Algorithm

We evaluated the performance of the following three algorithms on the problem of
approximating the Bischoff-Reul-Wysotzki measure.

Acronym Method

PMF Potts Mean-Field Annealing
ACS Attention Control System
MAC Merged Attention Control

The PMF algorithm and its parameter settings are presented in Appendix A. In con-
trast to the MFA algorithm applied in Section 4.6.2, PMF used a quenched anneal-
ing schedule. As in [31], PMF and ACS approximate the Bischoff-Reufl-Wysotzki
measure by solving two graph matching problems (4.18). On the other hand, MAC
requires the solution of only one graph matching problem to approximate the same
measure. The MAC algorithm runs ACS on the merged association graph. Note
that the edge structure of a merged association graph makes PMF inapplicable to
the merged problem.

Bischoff et al. [31] applied the Competitive Layer Model proposed by Wersing

106

Hopfield Clique Networks

[383] and PMF to the matching problem (4.18). Since the PMF algorithm returned
better approximations within shorter computation times, we selected PMF to
compare it against ACS and MAC.

Fvaluation Procedure

The segmented images to be compared are shown in Figure 4.9. The segmentation
procedure is described in [30]. Additional information on the data is provided in
Appendix B.2.1.

For each pair of segmented images, the selected algorithms approximated the
Bischoff-Reu3-Wysotzki measure. Hence, PMF and ACS solved 1, 560 graph match-
ing problems and MAC solved 780 matching problems.

The algorithms were implemented in Java using JDK 1.2. Experiments were
executed on a multi-server Sparc SUNW Ultra-4.

Numerical Results

Figure 4.4 presents pairwise approximations of the Bischoff-Reufl-Wysotzki measure
computed by the selected algorithms.

o —
. il
|-7 i B
L o _m
(a) PMF (b) ACS (¢) MAC

Figure 4.10 Shown are 2D visualizations of pairwise Bischoff-Reu3-Wysotzki
similarities for (a) PMF, (b) ACS, and (¢) MAC. Bright grey levels correspond
to large similarity values. Rows and columns of the similarity matrices are ordered
by the identity of the images given in Figure 4.9. Black squares in the diagonal
outline the inter-similarities of images in the same category.

In absolute terms, the similarity matrices indicate that PMF exhibited the best
average performance, MAC ranked second, and ACS performed worst.

We arrive at a completely different result when we assess the solution quality in
terms of what humans would perceive as being similar. In our problem formulation,
we asked for a system that exhibits highest similarity values between pairs of images

4.6 Experiments

107

within the same category. Since PMF performed worst on pairs of images within the
same category and best on pairs of images from different categories, separation of
different categories is smeared. MAC performed best on pairs of images within the
same category, and ACS worst on images from different categories. Both approaches
provide satisfactory separation of different categories.

It is notable that ACS and MAC also perceive images of e.g. category FARMER
I and FARMER II as more similar than an image from one of either FARMER
category and an image from any other category. This observation does not apply
for PMF.

time (sec)
min max avg dev
PMF 0.04 57.16 1.17 15.77
ACS 0.04 1.40 0.10 0.01
MAC 0.02 1.09 0.05 0.00

Table 4.4 Clock times of selected algorithms for approximating the pairwise
Bischoff-Reufl-Wysotzki similarities. Time was measured in seconds.

Table 4.4 summarizes the computation times of the selected algorithms. As
expected, MAC was, on the average about twice as fast as ACS and 23 times
faster than PMF. Since solution quality of MAC and ACS are satisfactory, both
algorithms constitute a further step forward in the design of fast image retrieval
systems.

4.6.4 Similarity of Chemical Compounds

The most prevalent approaches to measure structural similarity of chemical graphs
are premised on the maximum common induced subgraph [294]. These techniques
calculate similarities that are intuitive and admit easy visualization of the common
substructures [59, 349]. Historically, measures based on the maximum common
induced subgraph have suffered from its computational intractability.

Because of its good time performance in previous experiments, we evaluated ACS
on the maximum common induced subgraph problem for chemical compounds. For
this purpose we used the MUTAGENESIS dataset described in Appendix B.2.2.
The dataset consists of 230 chemical compounds. Each compound was transformed
to an attributed graph. Atoms were represented by vertices, and bonds by edges.
We colored each vertex with the element symbol of the corresponding atom. Type
and electrical charge of an atom have not been considered. Edges were colored
with the type of bond between the corresponding atoms. We considered all possible
pairwise comparisons between two distinct structures of the dataset, giving a total
of 26, 335 comparisons.

108

Hopfield Clique Networks

Selected Algorithms

We compared the performance of the ACS with the performance of the following

metaheuristics:
Acronym Method Reference
TAB Reactive Tabu Search [21]
REP Replicator Equations [280]
SA Simulated Annealing [146]
SD Steepest Descent [167]

The selection of algorithms with which to compare the ACS was motivated by

the following factors:

1. Since long computation times are one reason for less attention to structural
similarity measures in chemistry literature, the selected algorithms should be
fast.

2. Reactive Tabu Search proposed by Battiti & Tecchiolli [21] is one of the most
successful metaheuristics for the maximum clique problem. The algorithm is
selected to serve as a benchmark in regard to solution quality.

3. Replicator Equations were first applied to the MCP by Pelillo [284]. The
replicator dynamics solves the Motzkin-Strauss Formulation of the MCP. One
attractive feature of this approach is that it implements hard constraints instead
of soft constraints via penalty terms. In addition, a search is performed in a state
space of one dimension less than in that of ACS. Details of the algorithm and its
context are presented in Appendix A.2.1.

We selected the Replicator algorithm because of its simplicity, effectiveness, and
the considerable attention it is given in the graph matching literature.

4. Simulated Annealing as suggested by Homer & Peinado [146] combines a sim-
ulated annealing and exterior point penalty method using a quenched annealing
schedule for both control parameters, temperature and penalty. The algorithm is
described in Appendix A.2.2.

The algorithm is selected, because it is fast and ranked among the best heuristics
for maximum clique presented at the DIMACS challenge [191]. In addition,
simulated annealing has been successfully applied to graphs with up to 10,000
vertices and outperformed other competing algorithms.

5. Steepest Descent proposed by Jagota [167] is selected as a benchmark for what
we should at least expect. The algorithm is described in Appendix A.1.3.

Fvaluation Procedure

The selected algorithms computed the cardinality of the maximum common induced
subgraph for each pair of distinct chemical graphs from the MUTAGENESIS

4.6 Experiments

109

dataset. For this, an association graph Z is derived from a pair of given chemical
graphs X and Y such that the common induced subgraphs of X and Y correspond
to the cliques of Z.

For Reactive Tabu Search, we used the C++ implementation by [21}.9 The
maximal CPU-time dedicated for each comparison executed by Tabu Search was
set to 5 seconds. Since the other algorithms were implemented in Java using JDK
1.2 and measuring their time performance involved clock time, a fair comparison
of time performances is only possible for ACS, REP, SA, and SD. All experiments
were executed on a multi-server Sparc SUNW Ultra-4.

Numerical Results

Figure 4.11 depicts the performance profiles of the selected algorithms. Table 4.5
summarizes the results using absolute values.

The performance profiles for the clique size metric shows that TAB always found
the best solution. To assess the deviation of the average solution quality of TAB from
the optimal solution, we randomly sampled a small subset of 100 chemical graph
matching problems and solved the sampled problems with an exact algorithm. In
all 100 trials, TAB returned the global optimal solution. Hence, we assume that
TAB has found the optimal solution in almost all 26, 335 trials.

Solution quality of REP, SA, and ACS is roughly equivalent and superior to
SD. As indicated by Figure 4.11(a), in about 75% of all trials, REP, SA, and ACS
returned the same clique size as TAB. By our assumption of the performance of
TAB, the percentage of optimal solutions found by REP, SA, and ACS is about the
same order of magnitude. In average, as shown by Table 4.5, REP, SA, and ACS
deviate only about 2% from the best solution.

With respect to time, ACS is the fastest algorithm in all trials. As shown in
Table 4.5, REP, SA, and SD are about 4-5 times slower than ACS. Though time
measurements are biased towards TAB due to a faster programming language and
better time metric, ACS is still about 55 times faster than TAB.

To summarize, ACS is competitive with other fast heuristics regarding to solution
quality and exhibits the best trade-off between accuracy and speed.

9. The implementation is available at http://rtm.science.unitn.it/intertools/clique/
(3/31/2004).

110

Hopfield Clique Networks

1 ’ ,‘: o
s
] 08 s :
!
TAB - =] 0.6 15 1
REP - -- - | “oal i REP - -
SA -i-- ' i SA -
0.6 SD_ e] 02p £ SD i
ACS — £ ACS ——
0.5 ‘ ‘ PR 0 bt ‘ ‘ ‘ ‘ : ‘
0 0.1 0.2 0.3 0.4 2 4 6 8§ 10 12 14
deviation time factor
(a) Profiles for size of clique (b) Profiles for clock time

Figure 4.11 Results of 26,335 pairwise comparisons of distinct chemical graphs
from the MUTAGENESIS dataset. Shown are the performance profiles for (a) clique
size and (b) clock time. Performance profile of TAB for the time metric are excluded,
because the time performance of TAB is measured by CPU-time.

Clique size Time (msec)

avg dev min max avg fac total
ACS 13.12 0.02 1 775 89.5 1.0 39’
TAB 13.45 0.00 5000 5000 5000.0 55.9 36h34’
REP 13.18 0.02 4 7750 433.8 4.8 3h10’
SA 13.12 0.02 3 4263 364.8 4.1 2h40’
SD 12.87 0.04 2 5976 469.3 5.2 3h43

Table 4.5 Shown are absolute results of the algorithms for comparison of chemical
graphs from the MUTAGENESIS dataset. The third column with identifier dev
shows the deviation 1 — avg/avg™ of the average clique size avg of an algorithm
from the best average clique size avg* = 13.45. Similarly, the seventh column
with identifier fac shows the ratio avg/avg* of the average time performance avg
of an algorithm and the best average time performance avg* = 89.5. The other
columns are self-explanatory. Note that TAB is implemented in C++4 and all other
algorithms in Java. In addition, the times for TAB are CPU-times, whereas the
other time data refer to clock time.

4.7 Conclusion 111

4.7 Conclusion

This chapter presented a novel technique for solving combinatorial optimization
problems using Hopfield networks. To develop this technique, we derived a compu-
tationally simple procedure to iteratively adapt the optimal system parameters to
the current active subspace.

In experiments, we found three advantages of the proposed system: first, as
opposed to almost all other techniques, the system requires no tuning of system
parameters; second, the system is fast and scales well with increasing problem size;
and third, compared to other solvers, the system exhibits a better speed-accuracy
trade-off.

In conjunction with Chapter 3, we now have a manageable framework to solve
a broad range of graph matching problems. Together with a solver that requires
no tuning of system parameters, the generic approach via the MWCP makes the
framework easily accessible to the unskilled practioner.

We conclude this chapter with a threefold outlook. The scene has been set for
generic solutions to a wide variety of graph matching problems. It is beyond the
scope of this work to devise and explore powerful solutions for the MWCP from
other domains including, for example, nonlinear and quadratic programming.

Neural network models exploiting the new technique of selective attention is not
confined to solving clique problems. In Chapter 7, we present another selective
attention model for distance-based classification problems.

Finally, investigations on large scale problems using ACS applying the principle
of controlled forgetting have not been considered here. We conjecture that careful
deleting of passive units makes ACS attractive as a fast solver for the MWCP on
graphs of order larger than 10, 000.

5 Weighted Graph Isomorphism

In 1996, Fortin [96] claimed that neural network solutions to the graph isomorphism
problem cannot be used unmodified in a practical setting. Though considerable
improvements have been made since the above statement was published, Fortin’s
claim still remains true. Comparing accuracy and execution times reveals that
contemporary neural network solutions are not competitive with standard solutions
to the graph isomorphism problem.

We devote this chapter the proposition of a two-stage neural network solution
that

® is competitive with the most powerful solutions to standard graph isomorphism
® outperforms other approaches to inexact graph isomorphism problems.
The proposed solution is based on a neural refinement procedure to reduce the
search space, followed by an energy-minimizing matching process. Experiments

on chemical, random, and random weighted graphs with up to 5,000 vertices are
presented and discussed.

5.1 Introduction

The graph isomorphism problem (GIP) consists of deciding whether two given
graphs are structurally equivalent, i.e. whether there is a bijective mapping from
the vertices of one graph to the vertices of the second graph such that the adjacency
relationship is preserved. The problem has received considerable attention because
of its practical implications and unresolved complexity status.

Applications include e.g. the identification of isomorphic molecular structures
in chemistry [2, 211, 297, 390], scene analysis [10], detection of kinematic chains
[292], optimal routing of messages in multistage interconnecting networks [69], or
the construction and enumeration of combinatorial configurations [64].

Theoretical interest in the GIP originates from the persistent difficulty in char-
acterizing its computational complexity. The GIP is still unsolved in the sense that
there is neither an NP-completeness proof, nor has an efficient algorithm with poly-
nomial complexity yet been found. For an exposition on the complexity of the GIP
and its relative position within the class NP see [212].

The inezxact graph isomorphism problem is a straightforward extension of the GIP.

114 Weighted Graph Isomorphism

Inexact graph isomorphism asks for structural equivalence accepting small devia-
tions in the vertex and edge attributes. Since inexact isomorphism generalizes the
standard GIP, it is of at least the same complexity. Inexact GIP finds applications
in computer vision [290, 291].

Despite its practical and theoretical importance, neural networks and related
heuristics are not competitive with standard solutions to the GIP. Even the most
powerful approaches proposed by Pelillo [280, 281] and Rangarajan et al. [290, 291]
require a prohibitive amount of time and are too erroneous on graphs with only
100 vertices. Even if we are willing to accept a small degree of uncertainty, neural
solutions to the GIP are useless in a practical setting.

The situation is much better for inexact GMPs. On random weighted graphs,
neural network solutions like the Lagrangian Relazation Network [291] and the Op-
timizing Network Architecture [290] are significantly superior than other approaches
such as the eigendecomposition approach [363], the polynomial transform approach
[8], and the linear programming approach [9]. Nevertheless, the execution times
of all these algorithms are still prohibitively slow since they do not exploit the
structure of the graphs under consideration.

The aim of this chapter is twofold: first, we want to make neural network solutions
competitive to efficient standard solutions for exact GMPs; second, we want to
further improve the performance of neural networks for inexact GMPs. For this
purpose, we first extend the well-known concept of vertex invariants for exact graph
isomorphisms to their inexact counterpart. To assess the effects of vertex invariants,
we suggest a novel representation of the search space in terms of perfect matchings of
a bipartite graph. Next, we propose a two-stage neural graph isomorphism algorithm
for exact and inexact GIPs. In a preprocessing step, a neural refinement procedure
classifies the vertices of both graphs under consideration into subsets of structural
similar vertices. In a second step, the ACS algorithm performs an isomorphism test
exploiting the information from the previous stage. We assessed the effectiveness of
the proposed approach on graphs with 100-5000 vertices and on chemical molecules.

The remainder of this chapter is organized as follows: The next Section presents a
statement of the problem and introduces basic definitions. In Section 5.3, we provide
a representation of the search space in terms of bipartite graphs. Section 5.4 reviews
vertex invariants. In Section 5.5, we extend the framework of vertex invariants to
inexact graph isomorphism. Section 5.7 presents and discusses experiments, and
finally, Section 5.8 summarizes the results and presents an outlook on further
research.

5.2 Inexact Graph Isomorphism

Throughout this chapter, we assume that X and Y are weighted graphs from Ggr
with adjacency matrices X = (z;;) and Y = (y;;). The null attribute is defined
by € = 0. We refer to X as the model and to Y as the data graph. An important
concept to define inexact graph isomorphisms is the noise tolerance threshold ™ > 0.

5.2 Inexact Graph Isomorphism 115

The noise tolerance 7 controls to which extent vertex and edge attributes of the
data graphs can be regarded as noisy copies of the vertex and edge attributes of
the model graph.

We call X and Y 7-isomorphic, if there exists a bijection

o:V(X) = V(Y), irsi?
with
[zi = Yiolloe <7

for all items ¢ € I(X). Such a mapping ¢ is called a T-isomorphism. By T X,y Wwe
denote the set of all T-isomorphisms ¢ : V(X) — V(Y. The graph T-isomorphism
problem lies in deciding whether two given graphs are T-isomorphic. For 7 = 0 we
obtain the standard definition of graph isomorphism.

Note that the definition of a 7-isomorphism allows mapping between edges with
attribute a@ € A of one graph and non-edges of the other graph if ||aljc < 7.

Clearly, the graph 7-isomorphism problem lies in class NP. Since it includes
the graph isomorphism problem, graph T-isomorphism is at least of the same
complexity. Therefore, we suspect that any algorithm for graph 7-isomorphism is
inefficient unless it is shown that graph 7-isomorphism is in class P.

In the remainder of this section, we introduce some basic definitions and notations
for later use in our theoretical considerations.

Basic Definitions and Notations

Covers and Partitions.

A family C = {V4,...,Vi} of nonempty subsets V; C V with V = |J, V; is called
a cover of V. The elements of a cover are its clusters. A partition P of a set V
is a cover of V' whose members are pairwise disjoint. The elements of a partition
are usually called its cells. We say a cover C of V is finer than a cover C’ of V,
written as C < C’, if every cluster of C is a subset of some cluster of C’. Under these
conditions, C’ is coarser than C.

Ezact and Inexact Automorphisms.

A T-automorphism of X is a 7-isomorphism from X to itself. By Aut,(X), we
denote the set of all T-automorphisms of X. Two vertices ¢, j € V(X) are 7-
similar, written as i ~, j, if there exists a T-automorphism ¢ with i® = j. The
T-automorphism cover C(X) of X is a cover of V(X) induced by ~.. For 7 = 0,
Aut(X) is a permutation group. The relation ~ is an equivalence relation, which
induces an automorphism partition Px of X. A cell of Px is called orbit.

Bipartite Graphs and Matchings.
A graph X is called bipartite if V(X) admits a partition into two cells (U, U’) such
that E(X) C UxU'UU’ x U. Hence, vertices in the same cell must not be adjacent.

116 Weighted Graph Isomorphism

The bipartite graph X is called complete if E(X)=U x U' UU’ x U. A complete
bipartite graph with partition cells (U, U’) is also denoted by K, ,,/, where n = |U]|
and n/ = |U’| are the number of vertices of its partition cells. A bipartite graph
with partition cells (U, U’) is balanced if |U| = |U’|.

A rmatching of a graph X is a subset M C E(X) such that no two different edges
are incident with a common vertex. A perfect matching is a matching that covers
all vertices of X. It is noteworthy that the terms matching of a graph and graph
matching have different meanings. It will be clear from the context which of the
terms we refer to so that no confusion should arise.

Direct Sum of Graphs.
Let X and Y be graphs of order | X| = n and |Y| = m. The direct sum Z = X &Y
is a graph with vertex set V(Z) = V(X)UV(Y), edge set V(E) = E(X)UE(Y),
and adjacency matrix

where X and Y are the adjacency matrices of X and Y.

Notation for Ezact and Inexact Concepts.

Like 7-isomorphism or T-automorphism, a 7-concept is called exact concept if 7 = 0,
and inezact concept otherwise. For 7 = 0, we omit the prefix “r-” and write
isomorphism, automorphism, and so on.

5.3 Representation of the Search Space

An appropriate representation of the search space is essential to devise efficient
solutions to the given problem and to gain insight into its structure. In this section,
we focus on the latter issue and represent the search space in terms of perfect
matchings of a bipartite graph. The chosen representation is useful to analyze the
effects of vertex invariants.!

Assume that X and Y are attributed graphs of order n. The intrinsic search space
of graph 7-isomorphism is the set Sxy of all n! bijections ¢ : V(X) — V(Y). Any
algorithm for solving the graph 7-isomorphism problem of X and Y tries to find a
bijection ¢ € Sxy that satisfies the properties of a 7-isomorphism. Reducing the
search space aims at identifying potential candidates for 7-isomorphism that satisfy
predetermined necessary conditions.

Closely related to Sxy is the set S, of all permutations acting on [1 : n].

1. Vertex invariants are introduced in Section 5.4.

5.8 Representation of the Search Space 117

Given bijective labelings vx on V(X) and vy on V(Y), we obtain the following
commutative diagram

l"’(lw (5.1)

[1:n] —— [1:n]

for all ¢ € Sxy. Since all mappings involved in diagram (5.1) are bijective,
we can identify the vertex mappings ¢ € Sxy with permutations = € §,, via
¢ = z/;l omovx. Hence, the set S, is an alternative representation of the intrinsic
search space Sxy.

A representation of the search space in terms of the set S, is attractive because
Sy, forms a group under multiplication (i.e. composition of mappings) called sym-
metric group. This in turn links the graph isomorphism problem to the theory of
permutation groups, a basic concept in algebra and combinatorics. This branch in
mathematics provides powerful tools, which have been successfully applied to graph
isomorphism and related problems. But we can no longer apply these techniques to
more general graph matching problems including graph 7-isomorphism problems.

For studying the effects of vertex r-invariants, we replace the search space Sxy
with the set S¥y 2 Sxy of all partial bijections from V(X) to V(Y). Reducing
the search space then aims at discarding partial bijections from S¥-, which violate
necessary conditions to establish T-isomorphism.

It is useful to represent the set S¥, as a complete bipartite graph K, ,. The
bipartition ([1:n],[1:n]) of K, , represents the vertices of X and Y via vy' and
vy . Edges (i, j) of K, represent bijections ¢ : {i} — {j} of singletons. Matchings
of K, bijectively correspond to partial bijections from Sy and perfect matchings
to total bijections from Sxy. Thus, the set of perfect matchings of K, , is an
equivalent representation of the search space Sxy.

Discarding partial bijections from 8%, is equivalent to deleting matchings in
K,, . The resulting graph is a bipartite graph with hopefully less cardinality of
perfect matchings. Note that discarding edges from an arbitrary bipartite graph
does not necessarily decrease the number of perfect matchings.

Determining the complexity of the reduced search space comes down to the
problem of enumerating perfect matchings of a bipartite graph. This problem
is generally at least as hard as any NP-complete problem [365]. Kasteleyn [203]
introduced an elegant technique to enumerate perfect matchings in planar graphs.
His approach roughly reduces the problem to the computation of a determinant,
and has been extended to a broad class of graphs, the so-called Pfaffian graphs
[92]. Though it has been shown that Pfaffian bipartite graphs do not comprise the
set of all balanced bipartite graphs, the basic concept of Kasteleyn’s method, the
permanent of a matrix, is still useful to bound the number of perfect matchings in
a bipartite graph.

118 Weighted Graph Isomorphism

The permanent of an (n x n)-matrix A = (a;;) € R"*™ is defined by

per(A) = Z Haii¢'

$ES,, i=1

Note that the permanent is the determinant without alternating sign. Though the
permanent seems to be similar to the determinant, its computation — as opposed
to the determinant is hard [66].

Now we want to relate the permanent to the number of perfect matchings of a
bipartite graph. Assume that B is a bipartite graph of even order 2n with balanced
bipartition (U, U’). The biadjacency matriz B = (b;;) of B is an (n x n)-matrix of

the form?2

bij =

1 : if(i,5) e E(B)N(U xU")
0 : otherwise.

Then the permanent of B counts the number of perfect matchings in B: each perfect
matching corresponds to a bijection from U to U’. Such a bijection corresponds to
a permutation ¢ € S,, with

b11¢:"':bnn¢:1.

5.4 Exact Vertex Invariants

An exact vertex invariant is a property of vertices that is preserved under any
isomorphism. For exact isomorphism problems, the concept of the vertex invariant is
a practical technique for reducing the search space. In this section, we briefly review
vertex invariants and propose a theoretical framework for analyzing their effects.
The aim is to establish a comprehensive foundation for inexact vertex invariants.

Let G[V] ={(X,i) : X € G, i € V(X)} be the set of all pairs (X,) consisting of
an attributed graph X and a vertex ¢ of X. A function f : G[V] — RP? is an ezact
vertex invariant if

¢ €Ixy = f(X,i)=f(Y,i%

for all i € V(X). We call the vector f(X,4) an exact invariant of vertex i. For the
sake of simplicity, we omit the term exact when it is clear from the context that
7 = 0. To illustrate the concept of a vertex invariant, let us consider some simple
examples.

Ezxzample 5.1

2. Note that the biadjacency matrix B is not the adjacency matrix A of B. The matrix B
is a square-matrix representation of the strict upper triangular matrix of A. The difference
becomes evident by observing that B is an (n x n)-matrix and A a (2n X 2n)-matrix.

5.4 Ezact Vertex Invariants 119

Let X be a graph and let ¢ be a vertex of X.

1. Degree of a vertex: The best known and most frequently used vertex invariant is
the degree of a vertex.

2. Longest path: The longest path invariant of vertex 7 is the length of a longest
path starting at i.

3. k-Paths: The k-path invariant assigns each vertex the number of vertices reach-
able along a path of length k.

4. k-cliques: The k-cliques invariant of vertex i is the number of different cliques of
size k that contain 1.

5. Distance sequence: The distance sequence invariant of vertex i is an n-dimensional
vector p where py, is the k-path invariant of ¢ for all k& € [1:n].

Note that 1-4 are examples of one-dimensional vertex invariants. The distance sequence
is an example of an n-dimensional vertex invariant. Further higher dimensional vertex
invariants can be constructed by combining several one-dimensional vertex invariants.

Since vertex invariants are preserved under isomorphisms, only vertices with the
same invariant can be mapped onto each other. We can therefore restrict our
permutations from S,, to those that correspond to invariant preserving bijections
from Sxy. To illustrate the effects of vertex invariants, consider the graphs X and
Y depicted in Figure 5.1. Assume that we use the degree as a vertex invariant. Since
both graphs are of order n = 3, the original search space S,, is of order n! = 6. Any
isomorphism between X and Y maps vertices of the same degree onto each other.
Hence, the search space reduces to 2 permutations, each of which is an isomorphism.
Both permutations are shown in Figure 5.1.

3 3 2 permutations
AN V 3 i
1-3 1-2

1 2 1 2-2 2-3
X v 3-1 3-1

Figure 5.1 Example of isomorphic graphs X and Y. The degree invariant reduces
the search space from 6 to 2 permutations. In this particular example, both
permutations, which are shown in the table at the right, are also isomorphisms
from X to Y.

The following remarks are important.

= Consider two vertices with the same invariant. Then there is not necessarily
an isomorphism mapping both vertices onto one another. Figure 5.2 provides an
example. Both graphs X and Y have three vertices with degree 1, two vertices
with degree 2, and one vertex with degree 3. Hence, there exists a bijection
between V(X)) and V(Y'), mapping vertices of the same degree onto each other.
Since X and Y are not isomorphic, none of these bijections is an isomorphism.

120

Weighted Graph Isomorphism

D SO SR

X Y

Figure 5.2 Example of non-isomorphic graphs X and Y for which bijective
mappings ¢ : V(X) — V(Y) that preserve the degree of the vertices exist.

®m The use of vertex invariants is considered to be a black art, because vertex
invariants not always result in any decrease of the search space. A simple example
are regular graphs of the same order and the same degree.3 Since each vertex of
a regular graph has the same degree, the degree invariance does not lead to a
reduced search space. The art of using vertex invariants consists in composing
appropriate invariants for a particular class of graphs, which are simple to
compute.

® The previous item requires invariants, which are simple to compute. The reason
is that many isomorphism problems can be solved directly in less time than it
takes to determine more powerful invariants such as, for example, the k-cliques
invariant.

Next, we determine to which extent vertex invariants reduce the search space.
Though it is straightforward to asses the effects of exact invariants, we follow a
different approach. The framework presented here serves to set the foundation for
analyzing inexact vertex invariants.

A vertex invariant f induces a balanced bipartite graph B = X xy Y with
bipartition (V(X),V(Y)) and edge set

B(B) = {(i.4) € V(X) x V(Y) : f(X.0) = (X,))}.

Each edge in B connects a vertex of X with a vertex of Y if and only if both vertices
have equal invariant. We color the vertices i of B by

P f(X0) @ ifieV(X)
Yl i) s ifie V(Y.

Then the colors partition the vertex set V(B) into a set Ps(X,Y") of equivalence
classes with

for all cells U € Ps(X,Y). We call B a bipartite association of X and Y induced

3. A regular graph is a graph X with §(X) = A(X). Regular graphs of the same order
and degree are not necessarily isomorphic. For example, cubic graphs of order n = 18 have
41, 301 isomorphism classes [211].

5.4 Ezact Vertex Invariants 121

by the vertex invariant f. The associated partition P¢(X,Y) of V(B) is called
mvariant partition.

A necessary condition for X and Y to be isomorphic is that any bipartite
association of X and Y can be decomposed into disjoint balanced bipartite graphs
induced by the cells of its invariant partition.

Proposition 5.1
Let X and Y be attributed graphs of order n, and let B = X %7 Y be a bipartite
association induced by a vertex invariant f. If X and Y are isomorphic, then

(BG1) B= € B

UeP;(X,Y)
U
(BG2) U e€Py(X,)Y) = U~ Ky m, where m = |—2|

Proof Let P =Ps(X,Y). We first show (BG1).
(BG1): Since P is a partition of the vertex set V(B), we have

V(B = (] U.
UueP

It is sufficient to show that no edge connects vertices from different cells. Let i € U
and j € U’ be vertices from distinct cells U, U’ € P. Then f; # f; and therefore,
(i,4) ¢ E(B).

(BG2): Consider the cell U € P. Let nx : U — V(X) and 7y : U — V(Y) be the
projections of U to the partition cells of B[U]. Since X and Y are isomorphic and f
is a vertex invariant, we have |7 x (U)| = |wy (U)|. Thus, B[U] is a balanced bipartite
graph with bipartition (ﬂ'X(U), my (U)) Moreover, B[U] is complete bipartite,
because all vertices of B[U] have the same color. Finally, set m = wx (U). Then we
have |U| = 2m and B[U] ~ K m. |

According to (BG1), the induced subgraphs B[U] induced by the cells U € P;(X,Y)
are the components of B. In addition, from (BG2), it follows that each component
BJ|U] of B is a complete bipartite graph isomorphic to K, .

Given the partition P(X,Y’) of the bipartite association B, we can precisely
specify the complexity of the search space.

Proposition 5.2
Let B = X x4 Y be a bipartite association of X andY satisfying (BG1) and (BG2).
Then

B DY
per(B) = [] (7 ! (5.2)
UePs(X,Y)
where B is the biadjacency matriz of B.

Proof Let P =P¢(X,Y), and let M(Z) denote the set of perfect matchings of a
given graph Z. According to (BG2), each component of B is an induced subgraph

122

Weighted Graph Isomorphism

isomorphic to a complete bipartite graph K, ». Thus, each component has m!
perfect matchings. Due to (BG1), a perfect matching M of B is of the form

M = U My,

where My = M N E(B[U]) is a perfect matching of B[U]. The set M(B) is of the
form

M(B) = { U My My e M(B[U])}.

UeP

Hence, there are

I weon- 11 (%)

UEePs(X,Y) UePs(X,Y)

possible ways to combine perfect matchings of the components to a perfect matching
of B. The assertion follows from per(B) = |M(B)|. |

Proposition 5.2 is interesting for two reasons: first, it tells us that a vertex invariant
f reduces the complexity of the search space S,, from n! to the permanent per(B)
of the bipartite association B = X x¢ Y determined by f; second, equation (5.2)
indicates how to reduce the search space S,.

Since an invariant partition decomposes the vertex set of a bipartite association B
into disjoint subsets, the permanent per(B) becomes smaller the finer an invariant
partition is. The granularity of an invariant partition depends on the chosen vertex
invariant. Thus, reducing the search space using vertex invariants aims at refining
the invariant partition. Refinement of an invariant partition is bounded by the
automorphism partition of X and Y.

Proposition 5.3
Let B= X ;Y be a bipartite association of X and Y satisfying (BG1) and (BG2).
Then

per(B)> [vI= [U,
UecAut(X) UecAut(Y)

where B is the biadjacency matriz of B.

Before presenting a proof, the following comments might be helpful:

= Observe that the cells U in Proposition 5.3 are subsets of V(X) and V(Y),
respectively, whereas U in Proposition 5.2 refers to subsets of V(B). This explains
cancellation of the factor 1/2 in Proposition 5.3.

® The first product in Proposition 5.3 runs over all cells of the automorphism
partition of X and the second product is taken over all cells of the automorphism

5.5 Inexact Vertex Invariants 128

partition of Y. Thus, Proposition 5.3 states that isomorphic graphs yield the same
products. In the proof we show a stronger relationship between the automorphism
partitions of isomorphic graph.

Now let us turn to the proof of Proposition 5.3.

Proof Let Py(X,Y) be the invariant partition of V(B). Projections of cells
U € P¢(X,Y) to the partition cells V(X) and V(Y') of B induce partitions Py(X)
of V(X) and P#(Y) of V(Y). The partitions P¢(X) and Ps(Y) have the following
properties:

L |[Ps(X)] = [Py (Y)]
2. 4,jeU = f(X,i)= f(Y,i) for all U € Ps(X)
3. for all U € Py(X) there is a U’ € Py(Y) with fu = fur,

where fy = fyr denotes the unique color of the vertices from the cells U € P¢(X)
and U’ € Py(Y). Conversely, any pair of partitions Px of V(X) and Py of
V(YY) satistying (1)-(3) for some vertex invariant f induces an invariant partition
Ps(X,Y) of V(B). Hence, we have

per(B) = H U = H |U]!.

UEPf(X) UGPf(Y)

Since any vertex invariant f is constant on the orbits of Aut(X) and Aut(Y),
the automorphism partitions P(X) and P(Y') are finer than P;(X) and Ps(Y),
respectively. Let g be a vertex invariant that classifies vertices of a graph according
to its automorphism partition. Then the automorphism partitions P(X) and P(Y)
satisfy (1)-(3) and induce an invariant partition Py(X,Y") on vertices of the bipartite
association X %4 Y. From the equivalence of invariant partitions P;(X,Y’) and
the induced pairs (P(X),Ps(Y)), it follows that Py(X,Y’) is the finest invariant
partition. This proves the assertion. |

5.5 Inexact Vertex Invariants

In this section, we extend the concept of vertex invariants to inexact vertex
invariants for graph 7-isomorphism problems. To analyze the effects of inexact
vertex invariants, we generalize the framework of bipartite associations and study
their permanents.

A function
GVl =R, (X,d) = (fu(Xod)... o, fp(X,4))
is a (p-dimensional) vertex T-invariant, if

peTfy = |f(X,0) - (Vi) <7

124

Weighted Graph Isomorphism

for all i € V(X). We call the vector f(X,i) T-invariant of i. For 7 = 0 we obtain
the standard notion of an exact vertex invariant.

The next Proposition 5.4 provides some examples of one-dimensional vertex 7-
invariants.

Proposition 5.4

Let X be a normalized graph from Gy with adjacency matric X = (x;5), let i be a
verter of X, and let T be a noise tolerance threshold. Then the following functions
are vertexr T-tnvariants:

L S(X,i) = - degy (i)
2 F(X.0) = |@illoc

Proof Let Y be another normalized graph from Gy with adjacency matrix ¥ =
(yi)- Suppose that X and Y are 7-isomorphic. Let ¢ € 7 Xy be a T-isomorphism,
and let 7 be a vertex of Y with r = i?,

1. We have

1 1 n n

|[£(X,0) = F(Y,r)| =] degy (i) — degu(r)| = ~ > 21 = Yy
j=1 s=1
Ji e

Since ¢ is a bijection we may rewrite the last equation to

, 1|
’f(Xal) - f(YaT)| = n szg — Yrjo| -
7
Applying the triangle inequality gives
1 n
’f(XaZ) - f(Y,’f‘)| S E Z |1‘z] - yrj¢ .
i
From the definition of a 7-isomorphism follows
|23 = Yrge| = [|7is — yrjo|| < 7
Hence, we find

This proves the first assertion.

2. Let z = f(X,i) and g = f(Y,r). Then there are vertices j € V(X) and s € V(Y)
such that z;; = Z and y,s = §. Since ¢ is bijective, we can find vertices k € V(X)
and t € V(Y) with k¢ = s and j¢ = ¢. From the definition of a 7-isomorphism, it

5.5 Inexact Vertex Invariants 125

follows that

|Z — yre| = @55 — Yre| = |55 — Yivjo| = ||ij — viojo|| < 7
and

|Zik — Y| = [Tire — Yrs| = |Tik — Yisrs| = | Tik — Yiore | < 7 (5.4)

Our goal is to show

<T.

=

[f(X,0) = f(Y.r)| = |7 —
We distinguish three cases to this end:
Case 1: Assume that
(—9)(@ —yr) =0.

This implies £ = y or T = y,+. The case ¥ = ¥y is trivial. Suppose that = = y,.
From

Tig ST =Yrt Y
together with (5.4) follows
2 =gl < |z — gl < 7.
Case 2: Now assume that
(—y)(x —yr) <O.

From y,; < g follows y,+ < T < y. In addition, we have z;; < T < y. Hence, with
(5.4) we obtain

17 —g| < |owa — 9] < 7.
Case 3: Finally, assume that
(=)@ —yrt) > 0.

We consider two further cases: (a) both terms are positive or (b) both terms are
negative. If (a) holds, then y,; <y < z and therefore, by applying (5.3) we obtain

[T =gl < [T —yn| <.
If (b) holds, we have

Iik§f<yrt§g'

126

Weighted Graph Isomorphism

By using (5.4) we arrive at
|7 — 9| <|ziw -yl <7

As for exact invariants, we want to assess to which extent a vertex r-invariant
reduces the search space. For this, we extend the concept of bipartite association
and replace associated invariant partitions by invariant covers.

A vertex 7-invariant f induces a bipartite T-association B = XY . The bipartite
graph B is balanced with bipartition (V(X), V(Y)) and edge set

E(B) = {(i.4) € V(X) x V(Y) ¢ [£(X.0) = f(¥.5) o < 7}

Two vertices of B are connected by an edge if and only if their 7-invariants do not
differ by more than 7 with respect to the maximum norm. We color the vertices of
X,Y,and B by

o[e v
T\ i) s itie vy

The colors partition the vertex sets V(X), V(Y), and V(B) into covers C¢(X),
Cs(y), and Cf(X,Y), called invariant covers. For a cluster U of any of the invariant
clusters, we find that

ijeU < |Ifi = fill o

We say a subset of vertices U is invariant with respect to f if U is a subset of a
cluster.

Suppose that X and Y are isomorphic. What makes analysis of vertex r-invariant
more complicated than in the exact counterpart is that invariant covers do not
behave as well as invariant partitions. Projections of clusters U € C¢(X,Y") to the
partition cells V(X) and V(Y') of B are not necessarily clusters of C;(X) and C;(Y").
As a consequence, an invariant cover Cy(X,Y) does not necessarily satisfy (BG1)
and (BG2) of Proposition 5.1. Hence, we can not use Proposition 5.2 to assess
the complexity of the reduced search space. But what we can do is estimate the
complexity of the search space by using a famous result, which was conjectured by
Minc [263] and proven by Brégman [41].

Theorem 5.1 (Minc-Brégman Theorem)
Let A € B"*™ be a matriz where row i sums to r; for all i € [L:n]. Then

per(A) < H(rz')r% (5.5)

Proof [41]. []

5.5 Inexact Vertex Invariants 127

We can directly apply the Minc-Bréegman Theorem to bound the complexity of the
reduced search space.

Corollary 5.1
Let X and Y be attributed graphs of order n, and let B = X x5 Y be a bipartite
T-association induced by vertex invariant f. Then

per(B H deg(i)!) des(d) | (5.6)
i=1

where B is the biadjacency matriz of B.

From inequality (5.6), it follows that the best we can do to reduce the search space is
reduce the upper bound of the permanent per(B) by removing irrelevant edges. To
provide a technique to remove irrelevant edges, we proceed as follows: first, we show
in Proposition 5.5 that finer invariant covers of V(X) and V(Y result in a finer
invariant cover of V(B). Next, Proposition 5.6 states that finer invariant covers
have fewer edges. Finally, in Proposition 5.7, we show that the 7T-automorphism
cover is the finest invariant cover.

Proposition 5.5

Suppose that X x¢ Y and X x4 Y are bipartite T-associations of X and Y induced by
vertex T-invariants f and g, respectively. From C(X) < Cy(X) and C¢(Y) < Cy(Y)
follows C;(X,Y) < C4(X,Y).

Proof Let C € C¢(X,Y) be a cluster. We show that there is a cluster C' €
Cy(X,Y) with C C C'. Let Crx) and Crey) be the projections of C to the
partition cells V(X) and V(Y) of X x4 Y. Since C is invariant with respect to
f, the clusters Cr(x) and Cr(y) are also invariant with respect to f. Hence, there
are clusters C'x € C¢(X) and Cy € C4(Y") with Cr(x) € Cx and Cryy € Cy. From
Cr(X) <Cy(X) and C¢(Y') < Cy(Y), it follows that there are clusters C € Cy(X)
and C§. € Cy(Y) with Cx C C% and Cy C Cy.. Hence, we have Cr(x) € C% and
Cryy € Cy. This implies that C is invariant with respect to g. Therefore, C' is
either a cluster or a subset of a cluster of C4(X,Y"). This proves the assertion. W

Proposition 5.6

Let By = X x; Y and By = X x4 Y be bipartite T-associations of X andY induced
by vertex T-invariants f and g, respectively. From C¢(X,Y) < Cy(X,Y) follows
E(By) < E(By).

Proof By definition of bipartite m-associations, we may identify the vertex sets
of By and B,. Therefore, we may write V = V(By) = V(B,). Now let i € V be a
vertex. It is sufficient to show that N¢(i) < Ny(i), where Nf(i) and Ny(i) are the
neighbors of i in By and By, respectively. Since N (i) = Ng (i) U {i} is invariant
with respect to f, there is a cluster C' € C4(X,Y) w1th N+() C C. By assumption,

128 Weighted Graph Isomorphism

Cf(X,Y) is finer than C4(X,Y). Hence, there is a cluster C' € Cy(X,Y) with
C C C'. From NJT(Z) C C C (' follows N}"(z) C N, (i). This implies the assertion.
|

Proposition 5.7
Let X be a graph, and let f be a vertex T-invariant. Then

C(X) = Cf (X)a
where C(X) is the T-automorphism cover of X.

Proof Let C € C(X) be a cluster of the 7-automorphism cover. We show that
there is a cluster C" € Cy(X) with C C C’. Let i,j € C. Then there is a 7-
automorphism ¢ with ¢ = j. This implies ||f(X,i) — f(X,j)|lcc < 7. Since f is
a vertex T-invariant, there is a cluster C” € C¢(X) with 4,5 € C’. Hence, we have
Cao<C f (G) |

Propositions 5.5, 5.6 and 5.7 tell us what we can do to reduce the search space for
inexact graph isomorphism problems. Given two graphs X and Y, we use vertex
T-invariants to approximate the 7-automorphism covers C(X) and C(Y). Finer
invariant covers of V(X) and V(Y') induce a finer invariant cover of the vertices of
the bipartite T-association. In turn, finer invariant covers of vertices of bipartite 7-
associations reduce the number of edges. According to the Minc-Brégman Theorem,
fewer edges may lower the bound of the permanent as given in (5.6). A lower bound
hopefully indicates a smaller permanent and therefore a less complex search space.
The 7-automorphism cover bounds to the extent we can reduce the search space
using vertex T-invariants.

5.6 A Neural Graph Isomorphism Algorithm

The aim of this section is to propose a two-stage neural network approach to solve
exact and inexact graph isomorphism problems. The first stage is a neural vertex
classification procedure based on vertex invariants. In a second stage, the network
tests for isomorphism.

Algorithm 4 outlines the basic form of a Neural Graph Isomorphism (NGI) algo-
rithm. Here, NGI calls ACS (Attention Control System) to establish isomorphism
or non-isomorphism. By C' we denote the clique returned by ACS.

5.6 A Neural Graph Isomorphism Algorithm 129

Algorithm 4 (NGl — Neural Graph Isomorphism Algorithm)

Input:
X — normalized graph of order n
Y - normalized graph of order n
7 — noise tolerance threshold
Procedure:

Neural Refinement Procedure
approximate T-automorphism cover C(X)
approximate T-automorphism cover C(Y")
Neural Isomorphism Test Procedure
construct a T-association graph X o, Y
C =ACS(X ¢orY)

Output: YES if |C| = n, NO otherwise

Before describing the neural refinement and isomorphism test procedure of NGI,
we introduce some notation to simplify technicalities.

All neural networks involved in NGI are Hopfield networks associated with a
graph. Networks for approximating the 7-automorphism covers C(X) and C(Y)
are associated with X and Y, respectively. The network for testing isomorphism
is associated with an association graph X ¢, Y. For a given graph Z, a Hopfield
network $)z associated with Z consists of |Z| fully connected units. For the sake of
simplicity, we identify the units of)z with the vertices of Z. The dynamics of $z
is of the form (4.1). For the sake of readability, we restate the update rule of $z.
Using the same notations as in Section 4.2 and 4.3, we have

Ut41 = (1 - d)ut + W:Bt + h

Tt41 = g(ut+1)-
5.6.1 A Neural Refinement Procedure

At any time ¢, the internal state u; of a Hopfield model £~ associated with a graph
7 gives rise to a function

fe:GIVI =R, (Z,i) — ui(t). (5.7)
We are interested in the conditions under which f; is a vertex r-invariant.
Ezxact Graph Isomorphism
Consider a Hopfield model $)z associated with a normalized graph Z. Theorem 5.2

specifies the weights, external inputs, and initial activation of 7 for which f; is an
exact vertex invariant.

150

Weighted Graph Isomorphism

Theorem 5.2

Let Z = (V,E, Z) be a normalized graph with adjacency matric Z = (z;;), let Hz
be a Hopfield model associated with Z, and let ¥ : R — R be a real-valued function.
Assume that for all i,j € V, the following properties hold:

1. wij = 19(27;]'),
2. h; = hj,
Then
i1~] = uz(t) = Uj(t)
foralli,j €V and all t > 0.

Proof Let i,j € V be vertices with i ~ j and ¢ € Aut(Z) with j = i?. For
t = 0 the assertion follows from u;(0) = ¥(z;;) = ¥(2;;) = u;(0). Now assume that
u;(t) = w;(t) holds for some ¢ > 0. Since u;(t) = wu;(t), we have z;(t) = z;(t).
Furthermore, any automorphism preserves adjacency relations. Hence,

wik = V(zik) = V(2jpe) = Wjks-
Then by induction, we have

wi(t+1) = (1 — dyui(t) + Y wirzk(t) + h;
ki
= (1= dyuy(t) + Y wipears (1) + hy
ko
= Uj(t—l—l).

A Hopfield network $)7 satisfying properties (1)-(3) of Theorem 5.2 is a refinement
procedure that approximates the automorphism partition of Z. At each time step
t, the internal state u; induces a partition Py(X) of V(7). Two vertices ¢ and j
are members of the same cell from P;(X) if, and only if, u;(t) = u;(t). The initial
activation induces an initial partition Po(X), which is iteratively refined according
to update rule (4.1). Refinement terminates when the current partition Py (X) is not
finer than the previous partition P;_1(G). Algorithm 5 summarizes the refinement
procedure.

In the simplest form, we can derive a partition P¢(X) from wu; by collecting
vertices ¢ in the same cell if, and only if, their corresponding units have identical
activation. To obtain finer partitions, we may proceed as follows: Let u; be the
current activation of $z, and let P;_1(X) = {C’l, .. ,Cp} be the partition at time
t — 1. We partition each cell Cj, € P;_1(X) into sub-cells Ci1,...,Crq, such that
i,j € Cy if, and only if, u;(t) = u;(t) for all I € [1 : gx]. The partition P;(X) at

5.6 A Neural Graph Isomorphism Algorithm 131

Algorithm 5 (NVR — Neural Vertex Refinement Algorithm)

Input:
Z — normalized graph of order n

Initialization:
construct $z satisfying (1)-(3) of Theorem 5.2
sett =0
Procedure:
repeat
increment ¢
update $)z according to the rule (4.1)
derive partition P¢(X) from w
until Pt(X) A Ptfl(X)

Output: P;_1(X)

time ¢ is then of the form
Pu(X) = {Cn,...,Clql,.‘.,Cpl,...,Cpqp}.

In this way, refinement terminates when P;(X) = P;_1(X).

We can express the difference between both refinement procedures in terms of
vertex invariants. At time ¢, simple refinement uses f; as a vertex invariant, whereas
the alternative form applies the t-dimensional invariant f; = (fo,..., fi) to derive
the partition P (X).

It remains to show that the neural refinement procedure of $z terminates.

Theorem 5.3
Let $z be a Hopfield network associated with a graph Z. Then Algorithm 5 termi-
nates within finite time.

Proof Since Z is finite, there is only a finite number of distinct partitions of V(7).
In addition, the relation < defines a partial order on the set of vertex partitions.
Hence, there exists a ty such that Py, (7) is not finer than Py, _1(7). [|

The next example illustrates how a neural refinement procedure operates.

Example 5.2

Consider the graph Z given in Figure 5.3. The graph consists of |Z| = 6 vertices. Thus,
the cardinality of the search space Sg is 6! = 720. We reduce the search space using the
refinement procedure

Ut4+1 — Ut =+ th, (58)

where W = (wj;) is of the form

i — 1 : if(4,5) € E(Z)
v 0 : otherwise

152

Weighted Graph Isomorphism

t=0 t=1 t=2 t=3
13
*23
z 29
K
6 17e17
Cells 1 3 5 5

Figure 5.3 Neural refinement procedure. The quantities attached to the vertices
show the output state of the corresponding units. Vertices with the same state
belong to the same cell. To highlight their membership to a cell, vertices from the
same cell are drawn with the same color. Initially, the activation of each unit is set
to 1. Thus, at t = 0, the partition Py(Z) consists of the single cell V(Z). States are
updated according to rule (5.8). The refinement procedure terminates at time step
t = 3 when the number of cells does not increase.

for all 4,7 € V(Z). The output is related to the activation via the identical transfer
function, i.e. ; = u:. According to (5.8), the state of a unit 7 is updated by adding its
own state and the states of all its neighbors. This procedure is a slight modification of
Morgan’s procedure [269].

The network $)z is initialized by z;(0) = 1 for all ¢ € V(Z). Hence, at ¢ = 0 the
partition is of the form Py(Z) = {V(Z)}. At the next time step ¢ = 1, the state of $z is
z4(1) = deg(i) + 1, determining the same partition as the degree invariant. We obtain the
partition P1(Z) = {C1, C2,C3}, where Cy collects all vertices of degree d (and state d+ 1)
for d € [1 : 3]. Since we have three vertices of degree 1, two vertices of degree 2, and one
vertex of degree 3, the search space is reduced to

3
[Jlcir=381-21-11=12

i=1

elements.

Further application of (5.8) until the number of cells does not increase results in a
partition P2(Z) = Ps(Z) consisting of five cells. As shown in Figure 5.3, P3(Z) has four
cells containing one vertex and one cell containing two vertices. Hence, after termination
the search space is reduced to 2 elements.

Inexact Graph Isomorphism
Again, we assume that $)z is a Hopfield network associated with a normalized graph

Z. As in the exact case, we are interested in the conditions under which the internal
states of Hz are vertex 7-invariants.

5.6 A Neural Graph Isomorphism Algorithm 138

Theorem 5.4

Let Z = (V,E, Z) be a normalized graph with adjacency matriz Z = (z;;), let Hz be
a Hopfield model associated with Z, and let g : R — U denote the transfer function
of all units of Hz. Assume that)z satisfies the following properties for alli,j € V:

1.d=1
2. hy =hy
3. The weights w;; of Hz are of the form

o 3(?11) L if (i) €v

0 : if (i,5) ¢ F
4. The function g is Lipschitz continuous with Lipschitz constant L <1
5. u;(0) = zi;
Then

ivej o = u(t)) <7

foralli,j € V(G) and all t > 0.

Proof Without loss of generality, we assume that the external input is zero,
iie. h = 0,. Let 4,5 € V be two vertices with i ~, j and ¢ € Aut(Z) with
i? = j. Clearly, the assertion holds for ¢t = 0, since

|ui(0) = us(0)] = [0 — 25/ < 7
by property (5). Now assume that |u;(t) — u;(t)| < 7 for some t > 0. By induction

we have

st + 1) = wj(t+ 1) = D wikz(t) = Y wipewgo(t)

k#i kb#j

= ﬁ Zzikxk(t) - Z Zjko Lo (1)

P -y
1
= 3n-1) Z Zikwg(t) — Z(Zik + it) (ke (t) + Trr)
ki ki
with 7, = zepe — zik and T = xpe () — zk(t). We have | 75| = |zjope — 2ik| < 7.

Furthermore, from |u;(t) — u;(t)] < 7 by assumption, together with

|2i(t) = 2 (8)] < fui(t) — w;(t)]

184

Weighted Graph Isomorphism

by property (4), follows || < 7. Hence,

ﬁ ZTkaik + anxk(t) + ZTikak

ki ki ki

< ﬁ S s+ Y len(t) +7(n - 1)

k#i k#i
<2(n—1)
-
< _ _
S 3m-D) (2(n 1)+ 7(n 1))
<3(n—1)
=T.

The inequality from the second to the third line uses ’xk(t)’ < 1. This proves the
assertion. |

Note that condition (3) of Theorem 5.4 averages out the errors |z;; — 2| when
mapping all edges incident to vertex ¢ to the edges incident to vertex k.

A Hopfield network $ 7 that satisfies properties (1)-(5) of Theorem 5.4 approxi-
mates the T-automorphism cover of Z. At time t, the internal state u; induces an
invariant cover Ct(Z) of V(Z). Each cluster C of C¢(Z) collects all vertices i,j € V
with |u;(t) —u;(t)] < 7. Starting with an initial invariant cover Co(Z) induced by uo,
the refinement mechanism is essentially the same as in the exact counterpart. Hence,
we may adapt Algorithm 5 to the conditions of inexact graph isomorphism. Instead
of partitions P(Z) of V, we derive invariant covers C;(Z) at each time step ¢. The
refinement algorithm terminates when the current invariant cover is not finer than
the previous one. As in the exact case, we may use either f; or f; = (fo,..., ft) as
vertex 7T-invariant at time step ¢. Convergence of the inexact refinement procedure
follows from the same argumentation as in the proof of Theorem 5.3.

5.6.2 A Neural Isomorphism Test Procedure

Since exact and inexact graph isomorphism problems are p-graph matching prob-
lems, we can apply Theorem 3.1 to transform graph 7-isomorphism to a maximum
clique search in an association graph. We exploit information about the partitions
and invariant covers from the refinement procedure to reduce the order of the as-
sociation graph.

Let X and Y be normalized graphs, and let f be a vertex 7-invariant. Here, f
is the invariant that induces the partition and invariant cover, respectively, of the
refinement procedure. As usual, let X = (z;;) and Y = (y;;) be the attributed
adjacency matrices. The compatibility values for items 2 of X and j of Y are of the

5.6 A Neural Graph Isomorphism Algorithm 135

form
sv(ziyy) : i€ V(X).geV(Y)

o
“ sp(ziyy) @ 1€ V(X)) jev(y)d

where sy and sg are functions that measure the similarity of vertex and non-vertex
items. Vertex similarity is defined by

L i - sl <
0 : otherwise

sv (i, Yj5) = {

for all i € V(X) and j € V(Y). The similarity measure for non-vertex items is of
the form

1 |x,-—yj‘§7'

0 : otherwise

sE(Ti, Yj) :{

for all 4 € V(X)) and j € V(Y)I2L
We express the graph 7-isomorphism problem as an optimization problem

maximize f(¢, X, Y) = Z Kiqo
ieD(¢) (5.9)
subject to e Mxy.

The graphs X and Y are isomorphic if, and only if, there is a morphism ¢ € Mx y
with f(¢, X,Y) = n?. In this case, ¢ consistently maps all n? items of X to the n?
items of Y. Hence, ¢ is a 7-isomorphism.

Problem (5.9) is a p-graph matching problem and can therefore be transformed
to a maximum clique problem in an association graph X ¢ Y. The vertex and edge
set of an association graph X ¢ Y are of the form

V(XoY)= {(i,j) EV(X)x V(Y) : ||f(X,i) - F(V.5)] < T}
E(XOY) = {(’Lk]l) S V(XOY)[2] : |Iij — ykl| <, z;éj’k 7& l}

Thus, testing X and Y for isomorphism is equivalent to finding a maximum clique
with n vertices in X o Y.

Using vertex T-invariants may reduce the order of X ¢Y such that undesirable
maximal cliques disappear, whereas all maximum cliques are preserved. Note that
construction of the association graph already reduces the search space. Vertices for
which sy (x4, y;;) = 0 cannot be mapped onto each other by a T-isomorphism and
are therefore excluded.

136 Weighted Graph Isomorphism

5.7 Experimental Results

We evaluated the performance of NGI on random graphs, chemical molecules, and
random weighted graphs.

5.7.1 Random Binary Graphs

In our first test series, we assessed the performance of NGI applied to the graph
isomorphism problem of random graphs. Random graphs are one standard test set
for graph isomorphism problems in the structural pattern recognition and neural
network community [95, 280, 290, 291, 332].

Setting of NGI

We used f; from (5.7) as vertex invariant. In addition, for sparse graphs we used
the number ¢; of connected components Z; of order i € {1,2,3} as graph invariant.
A component Z; of order i is a path of length i—1 if ¢ € {1, 2, 3}. Since isomorphic
graphs have the same number of components, it is sufficient to compare the numbers
n;. If the graphs under consideration pass that test, the components Z; can be
discarded and isomorphism testing continues on the reduced graphs consisting of
the remaining components.

Selected Algorithms

We compared the performance of NGI with the performance of the following graph
isomorphism algorithms:

Acronym Method Implementation Reference
REP Replicator Equations Java [280]
ULL Ullman’s algorithm C++ [362]
VF VF algorithm C++ [63]

For random graphs with edge probability p > 0.1, the REP approach proposed by
Pelillo [280] is the most powerful method that has been reported in neural network
literature. For those graphs, REP outperformed the Lagrangian relaxation network
[291], the optimizing network architecture [290], and Simic’s constrained networks
approach [332]. The algorithm is described in Appendix A.2.1. We used the original
parameters presented in [280], which are 7 = 1077, k = 10, and z¢ = e,,/n. In
his approach, Pelillo transformed the GIP to a clique search problem in a reduced
association graph using the vertex degree invariant.

ULL and VF are both exact algorithms that guarantee to return a correct
solution. We selected ULL for comparison with NGI, because it is still one of the
most commonly used algorithms for graph and subgraph isomorphism problems.

5.7 Ezxperimental Results 137

VF was chosen, as it is one of the fastest graph isomorphism algorithm available.
On the problems considered here, the performance of VF is, in average, roughly
equivalent to the performance of Nauty proposed by McKay [255].4

FEvaluation Procedure

We conducted three test series. In all experiments, we considered pairs of graphs
(X,Y), where X is an n-vertex random graph with edge probability p and Y is a
randomly permuted copy of X. Since X and Y are isomorphic if, and only if, the
complements X andY are isomorphic, it is sufficient to consider edge probabilities
p <0.5.

1. Ezperiment 1: Comparison of NGI and REP
In our first experiment, we compared the performance of NGI with the perfor-
mance of REP. The chosen parameters were

n € {100}
p € {0.01,0.03,0.05,0.1,0.2,0.3,0.4, 0.5}

For each n and each p, we generated 100 pairs of random graphs.

2. Ezperiment 2: Comparison of NGI, ULL, and VF

The second test series compared NGI against ULL and VF. We chose the following

parameters5:

n € [100 : 100 : 1000]
p € [0.05,0.5].
For each n, we generated 100 pairs of random graphs, where p was sampled from a

uniform distribution over [0.05, 0.5]. Since ULL requires connected input graphs,
the parameter p is bounded below by 0.05.

3. Ezperiment 3: Comparison of NGI and VF for Graphs or Order > 1000
In our last experiment, we assessed the performance of NGI for random graphs
of order n > 1000. The chosen parameters were

n € [1000 : 500 : 5000]

p €]0.0,0.5].

For each n, we generated 1,000 pairs of random graphs, where p was sampled as
in the second experiment.

4. In the literature, Nauty is considered to be the fastest isomorphism algorithm today.
We preferred VF to Nauty, because it is much easier to handle and simpler to integrate
in our test environment.

5. Recall that [n : s : m] denotes the set of all elements from n to m in steps of s.

138

Weighted Graph Isomorphism

100000 ———
10005 REP --a-|]
100F A :
100]
1r A, 1
0o1r T -~

0.01 g‘v 1

0.001+ * *
0 0 0.1 0.2 0.3 0.4 0.5
density

msec

Figure 5.4 Average clock times of REP and NGI for isomorphism tests on 100-
vertex random graphs with varying edge probability. Time was measured in msec.

REP NGI

P avg std avg std fac
0.01 | 10,253.000 5,995.90 | 0.006 0.01 | 1,525,700.0
0.03 3,994.900 1,802.60 | 0.002 — | 1,637,300.0
0.05 222.510 251.40 | 0.001 — 176,600.0
0.10 3.291 1.13 | 0.001 — 2,697.4
0.20 0.534 0.12 | 0.001 — 392.4
0.30 0.245 0.05 | 0.001 — 191.5
0.40 0.167 0.03 | 0.001 — 133.3
0.50 0.146 0.03 | 0.001 — 104.4

Table 5.1 Average clock times (sec) and standard deviation of REP and NGI for
isomorphism tests on 100-vertex random graphs with varying edge probability. The
last column with identifier fac shows the factor by which NGI is faster than REP.
For p = 0.01, we forced REP to terminate prematurely after 10,000 iterations in all
trials. Note that standard deviation of NGI for p > 0.03 is less than 0.01.

For direct comparison of execution times, we implemented NGI and REP in Java
using JDK 1.2. For ULL and VF we used the C++ implementations by [63, 95].6
All experiments were executed on a multi-server Sparc SUNW Ultra-4.
Numerical Results

In all three experiments, NGI always returned a correct solution.

Ezxperiment 1: Comparison of NGI and REP

6. The implementations are available at http://amalfi.dis.unina.it/graph/
(03/31/2004).

5.7 Ezxperimental Results 139

2
VT I—]
VF ----- T
14 |NGI — =T
10 T
10° P

msec

T T T T T T T T
100 200 300 400 500 600 700 800 900 1000

size

Figure 5.5 Average clock times of ULL, VF, and NGI for isomorphism tests on
random graphs of varying size. Time was measured in msec. Note that ULL and VF
have been implemented in C++4, and NGI in Java.

For p = 0.01, we prematurely terminated REP after 10, 000 iterations. For p > 0.03,
REP always returned a correct solution. To obtain a general overview, Figure 5.4
depicts the average execution times of NGI and REP. Table 5.1 presents the results
in a more detailed form.

From the results, we see that NGI was about 100 up to 1.5-10° times faster than
REP. The time performance of REP degraded with decreasing edge probability,
because the degree invariant becomes useless for very sparse graphs. This obser-
vation and the superior results of NGI indicate that structural preprocessing can
have considerably more impact on the performance than sophisticated and powerful
energy minimization methods like the Lagrangian relaxation network [291] or the
optimizing network architecture [290].

Ezxperiment 2: Comparison of NGI, ULL, and VF

As in the first experiment, Figure 5.5 serves to provide a general overview of the
time performance of NGI, ULL, and VF. More detailed results are summarized in
Table 5.2.

Although a fair time comparison is not possible because of different implementa-
tion languages, we see that the Java implementation of NGI is significantly faster
than the C++ implementations of ULL and VF. The results

® confirm that previous approaches from the neural network community like REP
are not even competitive with standard methods like ULL, and
® show that neural network solutions to the GIP can be made competitive with
powerful methods like VF.

Ezperiment 3: Evaluation of NGI for Graphs or Order > 1000

Table 5.3 summarizes the results of our last test series. Since we obtain a similar

140

Weighted Graph Isomorphism

ULL VF NGI
n avg std avg std avg std
100 0.041 0.008 | 0.005 0.005 | 0.001 0.001
200 0.285 0.038 | 0.014 0.007 | 0.004 0.002
300 0.946 0.105 | 0.032 0.013 | 0.008 0.002
400 2.223 0.140 | 0.058 0.024 | 0.013 0.004
500 4.696 0.330 | 0.099 0.044 | 0.022 0.013
600 7.587 0.375 | 0.140 0.067 | 0.027 0.003
700 | 12.536 0.534 | 0.213 0.097 | 0.040 0.008
800 | 18.886 0.928 | 0.277 0.154 | 0.056 0.043
900 | 27.397 1.339 | 0.331 0.155 | 0.067 0.033
1000 | 40.201 1.849 | 0.396 0.180 | 0.074 0.013

Table 5.2 Average clock times (sec) and standard deviation of ULL, VF, and NGI
for isomorphism tests on random graphs with varying size. Note that ULL and VF
have been implemented in C++, and NGI in Java.

picture as in the second experiment, we did not include a plot for a general overview.
The results indicate that NGI scales better than VF with increasing problem size.

5.7.2 Chemical Compounds

The aim of this experiment is to study the effects of neural refinement procedures
when the graphs to compare have a high degree of symmetry. For this, we applied
NGI to the problem of identifying chemical compounds from the MUTAGENESIS
dataset.” The compounds were transformed to chemical graphs in the same way as
in Section 4.6.4. Again, we only used element symbols as attributes for vertices and
bond types as attributes for edges.

Setting of NGI

The refinement procedure of NGI used f: = (fo,..., ft) as vertex invariant (see
p. 131). In addition, non-edges (i, j) € E(X) and (k,1) € E(Y) are considered to be
compatible if d;; = di;, where d,s denotes the distance between vertices r and s.
Note that the distance is an edge invariant, which can also be obtained by evolving
a neural network.

7. Appendix B.2.2 describes the MUTAGENESIS dataset.

5.7 FExperimental Results 141

VF NGI

n avg std | avg std fac
1000 0.46 0.25 | 0.07 0.01 | 6.4
1500 1.22 0.72 | 0.16 0.06 | 7.5
2000 1.99 1.02 | 0.28 0.05 | 7.0
2500 3.65 244 | 043 0.05 | 85
3000 5.37 3.35 | 0.64 0.09 | 8.4
3500 8.92 4.99 | 0.87 0.09 | 10.3
4000 | 10.76 6.53 | 1.13 0.11 | 9.5
4500 | 16.33 10.47 | 1.48 0.17 | 11.0
5000 | 18.76 12.33 | 1.83 0.19 | 10.2

Table 5.3 Average clock times (sec) and standard deviation of VF and NGI
for isomorphism tests on random graphs of varying order. The last column with
identifier fac shows the factor by which NGI is faster than VF. Note that a fair
comparison is not possible, because VF has been implemented in C++4, and NGI
in Java.

Selected Algorithms

We compared the performance of NGI with the performance of the following

algorithms:
Acronym Method Reference
REP Replicator Equations [280]
SA Simulated Annealing [146]
SD Steepest Descent [167]
ACS Attention Control System Sec. 4.5.2

The algorithms were selected for the same reasons as in Section 4.6.4. A pseudo-
code for the algorithms is presented in Appendix A. We excluded Tabu Search,
because the correct solution of each isomorphism test was known in advance.

Fvaluation Procedure

For each chemical graph X, we generated a randomly permuted copy Y. The
selected algorithms computed the cardinality of the maximum common induced
subgraph X and Y via maximum clique search in an association graph Z. An
algorithm solved the isomorphism problem when the size of the clique found was
equal to the order of X and Y.

The algorithms were implemented in Java using JDK 1.2. Experiments were
executed on a multi-server Sparc SUNW Ultra-4.

142

Weighted Graph Isomorphism

1 1 b
0.8 0.8+
0.6 L

a N 0.6

0.4 0.4r
0.2 02r

0 == L L L L L L 0 ety

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 1 10 100 1000
deviation time factor
(a) Profiles for size of clique (b) Profiles for clock time

Figure 5.6 Results of 230 isomorphism tests of chemical graphs from the MUTA-
GENESIS dataset. Shown are the performance profiles for (a) clique size and (b)
clock time.

Numerical Results

Figure 5.6 presents the performance profiles of the selected algorithms for clique
size and clock time. From the plots it is evident that NGI clearly outperformed the
other algorithms in regard to solution quality and time. As shown in Figure 5.6(a)
and Table 5.4, NGI found a correct solution in all 230 trials and is an average of 30
times faster than ACS, and an average of more than 100 times faster than the other
algorithms. From Figure 5.6(b) we see that ACS is a good choice as a subroutine
in NGI, because ACS is significantly faster than REP, SA, and SD. The results
underpin the effectiveness of refinement procedures for the GIP.

Regarding solution quality, it is notable that REP, SA, and ACS are no longer
roughly equivalent as in the experiments of Section 4.6.4. The plot in Figure 5.6(a)
shows that REP is clearly superior to the other simple heuristics SA, SD, and ACS.
The performance of SA degraded to the poor performance of SD in such that ACS
is ranked second.

Although a fair comparison is not possible, it should be mentioned that NGI is
about 50 times faster than the algorithm proposed by [2] applied on synthetical
protein molecules of about the same size.

5.7.3 Random Weighted Graphs

In our last test series, we applied NGI to the 7-isomorphism problem of random
weighted graphs. We chose random weighted graphs as test graphs to enable
comparison with other algorithms.

Selected Algorithms

For comparison, we considered the Lagrangian Relaxzation Network (LRN) proposed
by [291] and the Optimizing Network Architecture (ONA) proposed by [290].

5.7 Ezxperimental Results 148

time (msec)

error avg fac
NGI 0.00 3.2 1.0
REP 0.11 338.6 105.8
SA 0.97 692.6 2164
SD 0.94 896.9 280.3
ACS 0.61 102.6 32.1

Table 5.4 Shown are the error and average time behavior of the algorithm for
the isomorphism problem of chemical graphs from the MUTAGENESIS dataset.
The column with identifier error shows the error rate, the column with identifier
avg shows the average computation time measured in msec, and the column with
identifier fac shows the ratio avg/avg* of the average time performance avg of an
algorithm and the best average time performance avg* = 3.2.

Both algorithms have performed best on inexact graph isomorphism problems and
outperformed the eigendecomposition approach [363], the polynomial transform
approach [8], and the linear programming approach [9].

FEvaluation Procedure

For each 7-isomorphism test we generated pairs of graphs (X,Y") as follows: First,
we created a random graph X with n vertices and edge probability p. Vertices and
edges were colored with weights drawn from a uniform distribution over]0, 1]. To
construct Y, we randomly permuted X and added random noise to the vertex and
edge weights of Y. Noise was sampled from a uniform distribution over the interval
[—=7,47]. The chosen parameters were n = 100, 500,1000, p = 0.25,0.5,0.75, 1.0,
and 7 = a/n with a = 1.0, 0.5, 0.25, 0.1. We generated 100 examples for each pair
(n,a) giving a total of 6 000 isomorphism tests for NGI. LRN and ONA have been
applied by Rangarajan et al. [291, 290] only on complete random weighted graphs
of order 100 with varying noise levels.

NGI was implemented in Java using JDK 1.2. Experiments were executed on
a multi-server Sparc SUNW Ultra-4 with a CPU clock rate of 900.0 MHz and a
memory clock rate of 150.0 MHz. As reported in [291, 290], LRN and ONA were
both executed on Silicon Graphics Indigo workstations with R4000 and R4400
processors. According to Silicon Graphics Computer Systems, the CPU clock rate
of R4000 and R4400 processors are 100 and 150 Mhz, respectively.

Numerical Results
NGI returned a correct solution on all 6000 trials. Table 5.5 shows the average

computation times. We see that NGI performed best on sparse graphs with a low
noise level and worse on dense graphs with a high noise level. For various noise

144

Weighted Graph Isomorphism

noise factor «
| n | p [10 075 05 025 o1
100 6 5 4 4 3
500 | 0.25 || 119 115 112 108 92
1000 549 537 531 519 448
100 6 5 5 4 4
500 | 0.50 || 135 129 126 121 107
1000 663 642 629 620 562
100 8 6 5 5 4
500 | 0.75 || 1561 142 134 131 119
1000 675 716 721 716 675
100 10 7 6 5 4
500 | 1.00 || 173 156 146 140 129
1000 879 841 818 800 774

Table 5.5 Results of r-isomorphism tests on random weighted graphs. Shown are
the average clock times in msec required by NGI.

levels, LRN also returned a correct solution for the graph 7r-isomorphism problem
on graphs of order 100 in all trials. The same holds for ONA, provided the noise
level is sufficiently low.

Since LRN and ONA were implemented in a different programming language
and have been executed on slower machines, comparison of execution times with
NGI is intricate. Nevertheless, if the ratio of CPU clock rates of two machines
differs significantly from the ratio of execution times of two algorithms running on
the respective machines, we can at least make qualitative statements on the time
performance of both algorithms.

The execution time of LRN for matching graphs of order 100 was, on average,
about 20-30 minutes on a SGI workstation. ONA required an average of about
80 seconds on the same type of machine. In contrast, the average execution times
of NGI to match 100-vertex graphs were in the range of 0.003-0.01 seconds on a
Sparc SUNW Ultra-4 machine. It is notable that NGI for graphs of order 1000 is
still about 80 times faster than ONA for graphs of order 100.

Although the algorithms ran on different machines, we may conclude that NGI
is significantly faster than LRN and ONA for the following reasons: first, the CPU
clock rate of a Sparc SUNW Ultra-4 is only about 6-9 times faster than the CPU
clock rate of an SGI workstation with R4000 and R4400 processors; second, the
average execution time of NGI on graphs of order 100 is roughly 10*-107 times
faster than the execution times of LRN and ONA on problem instances of the same
size.

To summarize, if noise was sufficiently low so that the structure of a graph is not
disrupted, NGI outperformed LRN and ONA. For increasing noise level, the graph
T-isomorphism problem gradually turned into a general graph matching problem.

5.8 Conclusion 145

Hence, the refinement procedure of NGI became gradually ineffective, resulting in
a degraded performance.

5.8 Conclusion

In this chapter, we presented a two-stage neural network solution to the graph
T-isomorphism problem. In the first stage a neural refinement procedure classifies
vertices into clusters (cells) using vertex 7-invariants. The second stage performs
isomorphism testing through a clique search in a reduced association graph. We
justified this approach by studying the permanents of the bipartite association
derived from both graphs under consideration.

Experiments indicate that NGI is (i) superior than neural and other energy
minimizing methods, and (ii) competitive with the most powerful solutions to the
GIP. Two direct implications of these results are that neural refinement is (i) capable
of discovering structural properties of vertices within a graph, and (ii) of greater
impact than sophisticated energy minimization methods.

The results suggest pursuing research in the following directions: (i) enhance NGI
with more sophisticated vertex invariants, (ii) incorporate edge and graph invariants
into NGI, and (iii) test the improved NGI on harder problems.

6 Neural Anytime Computation

In this chapter, we present real-time neural networks for combinatorial optimization
problems that can be interrupted at any point in time and provide meaningful
results. In addition, the quality of results improves with increasing computation
time. Such systems are essential for successful operation in domains where it is
computationally infeasible or economically undesirable to complete deliberation.
The proposed approach is based on ideas from anytime computing, which is a well-
known approach of real-time systems in Artificial Intelligence.

6.1 Introduction

This section is devoted to the construction of real-time systems, a fundamental prob-
lem in computer science and artificial intelligence. A real-time system is a system
that is subject to constraint in time. In almost all cases, the computation required
to return an optimal solution to a complex task will degrade the system’s overall
utility. A successful system therefore trades off solution quality for computation
time [33, 68, 154, 226, 333, 375, 398].

An important approach of real-time systems in Artificial Intelligence are anytime
algorithms [33]. An anytime algorithm is an algorithm that provides approximate
answers to computationally difficult problems so that

1. an answer is available at any time in the execution of the algorithm and

2. the quality of the answer improves with increasing execution time.

Anytime algorithms can be categorized into interruptible and contract algorithms
[308]. Interruptible algorithms return meaningful results even when unexpectedly
interrupted. Contract algorithms guarantee to produce a result within an allocated
time that must be specified in advance. If interrupted before the allocated deadline,
a contract, algorithm may yield useless results. In many applications, interruptible
algorithms are more appropriate, but also more difficult to construct [400].

Continuing development of anytime algorithms since the end of the 1980s has led
to successful applications in diverse areas such as the evaluation of belief networks
[155, 382], planning and scheduling [34, 399], database query processing [327],
constraint satisfaction [98, 376], and real-time control systems [29)].

It is notable that there have been almost no attempts to incorporate anytime

148 Neural Anytime Computation

characteristics in the design of neural networks for solving combinatorial optimiza-
tion problems. In [103], Gallone & Charpillet proposed a contract Mean-Field algo-
rithm for scheduling problems. In their work, contract time was predetermined by
varying the initial temperature of a fixed annealing schedule. Research on interrupt-
ible neural computation is lacking. This is notable, because connectionist modelers
emphasize robustness as one attractive feature of neural networks. Robustness in
the neural network community, however, is commonly referred to as fault tolerance
with respect to distortions in input data or damaged parts of the neural archi-
tecture. Time-dependent fault tolerance in the sense that neural networks can be
unexpectedly interrupted at any time while still producing meaningful results has
not, yet been considered in the context of combinatorial optimization. Thus, the
central question of this chapter is

Can neural networks operate robustly in real-time environments?

The answer is yes, and evidence will be provided in this and the next chapter.
After reviewing anytime algorithms in the next section, we present a framework for
constructing anytime Hopfield models for combinatorial optimization problems in
Section 6.3. Experiments are presented and discussed in Section 6.4. Finally, this
chapter concludes with Section 6.5.

6.2 Anytime Algorithms

An anytime algorithm is an iterative algorithm that can be interrupted and provide
an approximate result at any time. Usually the quality of the result improves
gradually with increasing computation time up to an optimal solution. This section
briefly reviews basic elements of anytime algorithms. For a detailed discussion on
anytime algorithms see [398].

The term anytime algorithm was coined by Dean & Boddy [71, 72] in the late
1980s in their work on time-dependent planning. During the same period, simi-
lar models of anytime computing were developed by Horvitz [152, 153] and Liu
et al. [234]. Precursors of algorithms with anytime characteristics have been stud-
ied in diverse areas including numerical approximation, heuristic search, dynamic
programming, Monte Carlo algorithms, and database query handling [107]. The
common spirit of these different approaches is the perception that the time re-
quired to compute an optimal solution will typically reduce the overall wtility of
an algorithm. Therefore, construction of systems that trade solution quality for
computation time is conducive to their overall utility.

Originally, Dean & Boddy [71, 72] introduced the term anytime algorithm for a
class of algorithms with the following properties:

1. Interruptibility. The algorithm can be terminated at any time and will still
return some result.

6.2 Anytime Algorithms 149

2. Well-Behaved Improvement. The quality of results returned improve in some
well-behaved manner as a function of time.

3. Preemptability. The algorithm can be suspended and resumed with minimal
overhead.

Further properties of anytime algorithms have been found desirable to meet the
necessities of diverse resource-bounded applications. Following [400], desired prop-
erties of anytime algorithms from the standpoint of meta-level control include:

4. Measurable Quality. The quality of an approximate result can be precisely
determined. An example of a measurable quality is the distance between the
approximate result and the correct result.

5. Recognizable Quality. The quality of an approximate result can be determined
at run time, i.e. within constant time.

6. Monotonicity. The quality of the result is a nondecreasing function of the
time. If quality is recognizable, we can achieve monotonicity by returning the
best result generated so far, rather than the last generated result.

7. Consistency. The quality of the result correlates with computation time and
input quality. Usually, quality of an algorithm’s results for a given amount of
time is scattered given various input instances. Consistency means that variance
is sufficiently narrow so that quality prediction can be performed.

8. Diminishing Returns. The improvement of solution quality diminishes over
computation time.

Note that properties (4)-(8) can be used in any combination to specify property (2).
The properties of an anytime algorithm for a specific problem domain are usually
summarized in a performance profile.

The three main components of an anytime algorithm are an iterative algorithmic
map, a well-behaved quality measure, and a performance profile. To describe the
three components, consider the following optimization problem

maximize f(x)
(6.1)
subject to T X,

where X denotes the solution space. To illustrate some features of anytime algo-
rithms, we occasionally assume that problem (6.1) refers to a MCP.

Anytime Algorithmic Maps

Initiated at &y € X, an iterative algorithmic map A generates a sequence (x;) of
states defined by

Li41 = A(a:t)

150

Neural Anytime Computation

Note that an algorithmic map A is more generally a state-to-set mapping. Although
A(z:) is a subset of X, algorithm A generates a sequence in the following manner:
given an initial point xq, the algorithm generates sequences through the iteration

Ti41 S A(wt)

We refer to [239] for more details.

Incorporation of anytime characteristics into the algorithmic map A requires
only slight modifications for many standard techniques such as stochastic iterative
sampling [222] or local search algorithms like hill-climbing [307], tabu search [114,
115], and simulated annealing [1, 207, 366]. Other types of algorithms that can
be converted to anytime computation procedures include (but are not limited to)
numerical approximation algorithms (e.g. for Taylor series approximation) [73, 74]
and dynamic programming [23].

Algorithm 6 outlines a simple anytime version of the algorithmic map A. The
subset F C X of feasible solutions depends on the problem at hand. For the MCP,
we may, for example, choose F as the set of cliques. By « we denote the state
generated by the algorithmic map A, and y € F is the best feasible solution found
so far. For a given quality measure @, the improvement condition is a function

IC: X x F — {true, false}, (z,y)—z € FAQ(x)> Qy)

that returns true if, and only if, « is feasible and of better quality than y. Note
that in order to determine IC(x,y), it is more convenient in some cases to evaluate
a simpler expression equivalent to € F A Q(x) > Q(y).

Algorithm 6 (Anytime A)

Input:

IC - improvement criterion

X — solution space

F — subset of feasible solutions
Initialization:

if @ ¢ F then choose & € F
y = register(x)
Procedure:
repeat
x = A(x)
if IC(x,y) then y = register(x)
if signal then break

until convergence

Output: y

The anytime A algorithm starts by quickly generating a feasible solution from
scratch and registering that solution. Registration makes a result available when
the algorithm terminates or is interrupted. Next, the algorithm repeatedly tries to

6.2 Anytime Algorithms 151

perform an improvement step by generating a new state x;11 = A(x;) and then
checking the improvement condition IC(xsy1,y). If ;1 satisfies the improvement
condition with respect to y, the new state a1 is registered and replaces the ex-
isting solution y. The algorithm terminates after convergence or once it receives
an interruption signal. An anytime algorithm handles interrupts by scanning inter-
ruption signals at regular intervals. In the particular pseudo-code of Algorithm 6,
interruption signals are scanned cyclically after each iteration.

Quality Measures

Quality measures are used to monitor the progress of an anytime algorithm in
problem solving, to characterize its performance, and to allocate computational
resources effectively. Here, a quality measure for an anytime algorithm A is a
function of the form

Q:}—XR+*}R: (zt,t)l—)Q(:l),t).

The value Q; = Q(x4, t) is called intermediate result of A at time ¢. An intermediate
result provides a preliminary estimate of the unknown optimal solution given the
allocated time. A meaningful quality measure should measure some aspect of the
algorithm’s output that improves over time, at least on the average.

The overall utility of an algorithm for a given problem domain hinges on an
appropriate design of the quality measure. Since different types of algorithms have
completely different ways to approach an approximate or optimal solution, quality
measures must be designed to meet the characteristics of the problem domain and
the algorithms they evaluate.

Performance Profiles

Performance profiles enable an efficient meta-level control of anytime algorithms.
A performance profile characterizes the expected solution quality as a function of
computation time. A compact representation of performance information is the
expected performance profile (EPP) [33, 152]. Given a quality measure @, the EPP
of an algorithm A is a function

E:Ry =R, t— E[Q4],

which maps computation time to the expected quality of the result. EPPs are useful
when the variance of the quality distribution is small at any point in time. For large
variances of the quality distribution, a performance interval profile (PIP) [398] is
more suitable than EPPs. A PIP of an algorithm A with quality measure @ is a
function

IT:Ry —=RXR, ¢+ [L, Uy,

152

Neural Anytime Computation

where
Lt S Q(.’I;,t) S Ut

forall x € F and t € Ry

To generate a performance profile, we sample a representative set of input
instances and record the solution quality of A at certain points in time for each input
instance. The set of solution qualities over all sampled input instances and points
in time is the quality map of A. We use the quality map to construct a performance
profile of the anytime algorithm. An example of a fictitious performance profile is
presented in Figure 6.1.

Solution A
Quality

Quality Map Expected Quality
(Performance Profile)

>
L

Time

Figure 6.1 Example of a performance profile. The grey shaded cloud represents
the quality map. The performance profile as an estimation of the expected quality
is depicted by a solid orange line.

6.2.1 An Example

We conclude this introductory review on anytime algorithms with an example
that summarizes the distinguishing features of anytime computation. Although this
example is simplistic and presents an idealized picture, it is still useful to highlight
the characteristic benefits of anytime algorithms.

Consider Figure 6.2 that illustrates utility maximization performed by anytime
computation. Here, utility is defined as a function that balances solution quality
and computation costs. In this particular example, the utility function is of the
simple form

utility = solution quality — time cost.

The plot depicts the solution quality as a function of time for four types of

6.2 Anytime Algorithms 158

Solution
Quality
Optimal
Anytime
P Standard TM Standard QM
- g]- RS
PA ~
% o — -
- - \ N
< }
~. N Time
Cost ~ A
Se e
> \
. . \
\ \

N 1 Anytime Utility

Figure 6.2 Solution quality and utility of optimal, ezact, approzimate, and anytime
algorithms. Solid lines show quality functions and filled circles indicate the utility of
an algorithm after termination. The color red refers to optimal algorithms, blue to
exact algorithms that maximize quality (Standard QM), light blue to approximate
algorithms that minimize time (Standard TM), and orange to anytime algorithms.
Dashed lines show the cost function (black) and the utility function of anytime
algorithms (dark red).

algorithms and their utility after termination. In addition, a cost function describes
the expected loss of utility as a function of time in the absence of a solution.

An optimal algorithm returns an optimal solution in no time. The quality function
of an optimal algorithm is a step function that rises to maximal quality at ¢ = 0.
Maximal utility of an optimal algorithm is achieved at ¢ = 0 and coincides with
maximal quality.

Standard algorithms either maximize solution quality (Standard QM) or minimize
computation time (Standard TM). Standard QM algorithms are exact algorithms
that guarantee to return an optimal solution after a certain time. Standard TM
algorithms are referred to as approximate algorithms that produce an acceptable
solution as fast as possible. Certainly, Hopfield models for solving combinatorial
optimization problems belong to the class of standard TM algorithms that minimize
computation time.

The quality function of a Standard QM algorithm is a step function with mini-
mum quality during computation, which rises to maximal quality after termination.
Unfortunately, by that time the solution returned by a Standard QM algorithm is
of little use. The algorithm returns a result at a point in time when the cost is
very high. Therefore, the utility of a Standard QM algorithm after termination is
negative. This shortcoming of Standard QM algorithms motivated researchers to
develop approximate algorithms, i.e. Standard TM algorithms. As indicated by the
plot, Standard TM algorithms may provide satisfactory results, but still they have
unsatisfactory small overall utility.

154 Neural Anytime Computation

As opposed to standard algorithms, an anytime algorithm generates suboptimal
results at any time when solution quality increases with time. Combining quality
and cost, a time allocation can be determined that maximizes the utility of an
anytime algorithm.

6.3 Anytime Hopfield Models

The aim of this section is to present an anytime Hopfield model for solving
combinatorial optimization problems.

Perhaps one reason why anytime computing has not been considered in neural
network design for combinatorial optimization problems is that neural network
methods spend most of their overall computation time approaching a feasible
solution by evolving through an infeasible region. This compels us to slightly modify
the traditional definition of a quality measure and to limit the use of anytime
computing as outlined in Algorithm 6. Then everything comes down to devising
suitable quality measures that map the states of an anytime Hopfield model to
meaningful intermediary results of the unknown optimal solution.

Let $ be a Hopfield model for solving problem (6.1). Our first modification relaxes
the constraint on the domain of a quality measure. A quality measure for) is a
function of the form

Q:XXR+_’Ra (.’E,t)'—)Q(w,t)

In contrast to the standard definition of a quality measure, a quality measure for
$H admits both feasible and infeasible states as input. An example of a quality
measure for §) is the Euclidean distance of & € X and the closest optimal solution
x* € F. Note that a quality reflecting the distance of an approximate solution from
X and an optimal solution from F is independent of time and measurable, but not
recognizable.

The second modification restricts the use of anytime Hopfield models to problems
in which we are interested in the constrained objective value f(a*) of an optimal
solution x*, rather than in the solution «* itself. This restriction is a consequence
of the convergence characteristics of Hopfield models. Algorithm 7 presents a basic
form of an anytime) algorithm. For convenience, we write @y instead of Q(xy, t).

In the remainder of this section, we propose a family of quality measures for the
MCP that meets the specific needs of the convergence behavior of Hopfield models.

Quality Measures
Since Hopfield models exhibit a black box behavior, it is difficult to construct non-

trivial quality measures that at least approach the optimal quality from below
with increasing computation time. What we can do is formulate heuristic quality

6.4 Ezperiments

155

Algorithm 7 (Anytime §))

Input:
@ — Hopfield quality measure
X = solution space
Initialization:
sett =0
set ¢y € X
Q* = register(Q:)
Procedure:
repeat

@1 = H(we)
if Qi1 > Q* then Q* = register(Q¢+1)
t=t+1
if signal then break
until convergence

Output: Q*

measures that approximate a desired property of a quality measure.

To propose a family of quality measures for Hopfield models, we assume that
problem (6.1) refers to a MCP of some given graph Z. Let $z be a Hopfield model
associated with Z. For a given state & of $z, we define the sets V,(x) of active
vertices and o (z) of active non-edges by

Vo(x)={ieV(Z) : z; >0}
Buw) = {(i-) €B(2) : i, € Va(@)}.

Note that we identify vertices, edges, and non-edges of Z with their corresponding
units, excitatory, and inhibitory connections of $)z. A family of quality measures
for 7 with problem dependent control parameter ; is of the form

Q(z,t) = max (O, |Va(z)| — %Ea(wﬂ). (6.2)

The parameter ~; controls to which extent we penalize active non-edges. A proper
choice of 7 is crucial for maximizing the utility of $). Too small values for 7; may
result in intermediate results Q; that exceed the quality Q(xz*,t¢) of an optimal
solution x*. If we choose ; too large, the performance profile for anytime §) may
degenerate to a step function as for standard $).

6.4

Experiments

The experiments serve to illustrate some features of anytime $ procedures and to
indicate that neural networks for combinatorial optimization problems are potential

156

Neural Anytime Computation

capable of performing robustly in real-time environments. Results are presented
with an emphasis on conceptual issues rather than experimental exhaustion.

In all experiments, we plugged the Attention Control System (ACS) presented
in Section 4.5.2 as our chosen Hopfield model $) into Algorithm 7.

6.4.1 Anytime ACS for the Maximum Clique Problem

In our first experiment, we applied the anytime ACS algorithm to the MCP of 100
random graphs Z of order n = 2500 and edge probability p = 0.75. Construction of
random graphs is presented in Appendix B. We applied (6.2) as a quality measure
with control parameter

0.0065 : 0<t<3

0.07 : 3<t<h
Tt =

0.2 1 5<t<8

0.240.07t—7) : 8<t
Numerical Results

Figure 6.3 shows the expected performance profiles for anytime ACS and standard
ACS.

In all trials, the quality measure (6.2) as applied in Algorithm 7 satisfied the
following properties for all ¢ > 0:

1. 0< @

2. Qt < Qt+1
3. Qt S U.)(Z),

where w(7) is the cardinality of a maximum clique of Z. The first property follows
from the definition of @ and the second property from the improvement condition
in Algorithm 7. The third property cannot be proven for the general case. In this
test series the third property was empirically satisfied. This can be seen in the plot
by observing that each black dot referring to a solution quality at a certain time
step for some input graph lies below or on the line of maximum quality 1.0. In
addition, @ is diminishing on average for ¢ > 13 with decreasing variance of the
distribution of solution qualities.

By satisfying properties (1)-(3) in all trials, the anytime ACS always provided a
result of guaranteed quality in terms of a lower bound of the optimal solution at
any point in time. Together with the property of diminishing returns for ¢t > 13,
the performance profile for the anytime ACS can be used for efficient meta-control
such as allocating execution times in advance in order to maximize the expected
utility.

6.4 FEzxperiments 157

0.8

quality

041
0.2f ~

O0 5 10 15 20 25 30 35
iterations

Figure 6.3 Expected performance profile for anytime ACS (orange) and standard

ACS (blue) applied to the MCP on 100 random graphs of order 2,500 and edge

probability 0.75. The performance profiles show the average solution quality relative

to the maximum solution quality. The red dashed lines indicate the confidence

interval around the performance profile for anytime ACS at confidence level o =

0.05. Black dots depict the distribution of solution qualities Q(z, t) for anytime ACS
as a function of time ¢ over all 100 input instances.

6.4.2 A Simple Classification Task

In our second experiment, we applied anytime ACS to a simple two-category
classification problem. We have chosen (6.2) as a quality measure with

0.017 : 0<t<3

0.01 : 3<t<5h
Yt =

0.15 : <t

0.1540.02(t—7) : 8<t

For each classification task, we first randomly generated two models Y; and Y5
representing category C; and Cs, respectively. Both models were random graphs of
order n = 25. The chosen edge probabilities were p; = 0.3 for Y7 and ps = 0.7 for
Y5. Next, we selected a category C; and created a noisy copy X of Y; according to
the following procedure:

Create a copy X of Y;.

Delete each vertex of X with 5% probability.

Insert for each vertex of X a new vertex with 5% probability.

Connect newly created vertices to all other vertices with probability p;.

Flip edges (non-edges) to non-edges (edges) with 2.5% probability.

AT e A

Randomly permute X.

158

Neural Anytime Computation

0.6]

quality

0 L L L L 1
0 10 20 30 40 50 60

time

Figure 6.4 Expected performance profile for anytime ACS (orange) and standard
ACS (blue) applied to a two-category classification problem. The performance
profile for both algorithms shows the average classification accuracy as a function
of time.

We created 250 pairs (Y7,Y32) of models and 125 noisy copies of each of both
models. We generated new models in each trial to make the results independent of a
specific pair of models. We used a nearest neighbor classifier based on the maximum
common induced subgraph.

Figure 6.4 summarizes the results. From the plot we see that the classification
accuracy of an anytime ACS after a few iterations is slightly better than a random
guess. Until time ¢ = 30, accuracy of an anytime ACS remains roughly constant.
Improvement of accuracy when t is in the range [30 : 40] is shown in Table
6.1. According to the table, the chosen quality measure approximates the order
preserving property

s(X,Y) > s(X,Y') = Q> Q;

at the final stage of the relaxation process of ACS. Hereby, s(,) denotes a similarity
measure defined by the size of a maximum common induced subgraph. The quality
measures @ and @} refer to problem s(X,Y) and s(X,Y”), respectively.

This simple example shows that an anytime ACS can be used to design an
agent of bounded rationality [333] for decision problems, which aims at finding the
least-cost or best-return decision, rather than optimizing or evaluating all possible
alternatives.

t 30 31 32 33 34 35 36 37 38 39 40
Q: 0.66 0.69 0.71 0.76 0.82 0.87 0.91 093 0.95 097 0.97

Table 6.1 Average classification accuracy of anytime ACS for ¢ € [30 : 40].

6.5 Conclusion 159

6.5 Conclusion

In this chapter we presented anytime Hopfield models, which can be interrupted
at any time to provide a meaningful answer. Because of the particular convergence
characteristics of Hopfield networks, anytime computing is limited to problems in
which one is interested in maximizing an objective value of a solution rather than
in the solution itself. We proposed a family of quality measures for the MCP to
monitor the progress of quality improvement of an anytime Hopfield model and
to construct performance profiles. In initial experiments, we indicated that neural
networks for combinatorial optimization problems can be converted to anytime
networks that trade solution quality for computation time.

The scene has been set for neural anytime computation in the domain of com-
binatorial optimization. It is beyond the scope of this work to explore anytime
characteristics of neural energy minimizers in detail. To establish neural anytime
computation as an alternative, extensive research on basic issues is necessary, in-
cluding investigations on anytime behavior of different Hopfield models, construc-
tion of suitable quality measures and meaningful performance profiles, as well as
extensive application to real-world problems. But instead of purely adopting meth-
ods from classical anytime computation, further research on neural anytime com-
putation should aim at developing new anytime systems that more naturally fit
to the paradigm of neural networks. An example is a winner-takes-all classifier for
structures presented in the next chapter, which interrupts unfavorable subsystems
in a self-organizing manner.

7 Structural Winner-Takes-All Classifiers

Nearest neighbor (NN) classifiers are the most natural and common approach in
structural pattern recognition for solving multi-category problems. A template-
matching procedure computes the structural proximities between a given input
and all the models representing the categories. The nearest neighbor rule then
assigns the input to the category represented by the nearest model. To improve
the utility of an NN classifier, this chapter proposes a novel winner-takes-all
(WTA) classifier. The system combines techniques from anytime computing with
the principle elimination of competition. The basic idea is to dynamically allocate
computing resources to promising input-model pairs in a self-organizing manner.
This approach results in a fast classifier suitable for recognition problems with
pairwise dissimilar models.

7.1 Introduction

Assume that we are given a set of k model graphs
Y={Y1,..., Y} CGa
together with a set of categories
C={C,...,C},

where model Y; represents category C; for all i € [1: k]. The goal is to assign
an input graph X € G4 to one of the categories of C on the basis of the given
preclassified models from).

Because an appropriate probability model for attributed graphs is usually un-
known, the most natural and common choice of a classifier is based on the nearest
neighbor (NN) rule with respect to some proximity measure [30, 131, 130, 242, 310,
311, 330]. Given a structural similarity measure s, an NN classifier first computes
or approximates the k similarities s(X,Y7),...,s(X,Y)) between the input graph
X and all the models from). This step is referred to as template or prototype
matching. Next, a mazimum selector identifies the largest similarity

s(X,Yi+) = max s(X,Y;).
1€ [1:k]

162 Structural Winner-Takes-All Classifiers

Finally, the NN rule assigns X to category C;« corresponding to s(X, Y;«).

The computational bottleneck of NN classifiers is that k different graph matching
problems need to be solved to classify an input X. Since the graph matching problem
is intractable, NN classifiers applying standard graph matching algorithm51 are
too time consuming, even for moderate-scaled problems. As argued in Chapter 6,
utility can be improved by replacing exact and approximate matching algorithms
by anytime algorithms. It is, however, unclear when to interrupt computation to
maximize the utility of an anytime NN classifier. Another cause of inefficiency is
that both NN classifiers, standard and anytime, treat all matching pairs (X,Y;) on
an equal footing, regardless how the matching process improves with computation
time. In terms of selective attentional systems, standard and anytime NN classifiers
do not preferentially select promising alternatives for further processing by filtering
out unwanted information.

In this chapter, we propose a winner-takes-all (WTA) classifier for graphs within
a pure connectionist framework. The key idea is to implement a mechanism of selec-
tive attention by combining concepts from anytime computation with the principle
elimination of competition. The WTA classifier is composed of two separate layers.
The bottom layer consists of k subnetworks $);, each of which is a Hopfield model
to approximate the structural similarity s(X,Y;). The top layer is an inhibitory
winner-takes-all network for maximum selection. During computation the subnet-
works in the bottom layer pass evidence of their intermediate states to the top layer.
Given the evidence provided by the subnetworks, the competitive WTA mechanism
in the top layer focuses on promising and interrupts unfavorable subnetworks un-
til one subnetwork $;+ wins the competition. The input is then assigned to the
category corresponding to the winner of the competition.

This chapter is organized as follows: Section 7.2 contrasts traditional approaches
of NN classifiers with the proposed WTA classifier using the Pandemonium model.
In Section 7.3, we review inhibitory WTA networks for maximum selection. Section
7.4 proposes the structural WTA classifier. We present and discuss experiments
in Section 7.5, before concluding the chapter with a summary and an outlook on
further research.

7.2 The Pandemonium and the WTA Pandemonium Model

To point out the main difference between standard and anytime NN classifiers on
the one hand and WTA classifiers on the other hand, we adopt a position based on
the Pandemonium model [321].

The Pandemonium model proposed by Selfridge [321] consists of four separate lay-
ers. Each layer is composed of demons specialized for specific tasks. The bottom

1. As in Section 6.2.1, standard algorithms are either exact or approximate algorithms.

7.2 The Pandemonium and the WTA Pandemonium Model 1638

Pandemonium WTA Pandemonium

Decision Demon
identify category

WTA Demons

represent categories
compete and inhibit q

Cognitive Demons
represent categories

Feature Demon
detect features

Feature Demon
detect features

Image Demon Image Demon
encode input encode input

Figure 7.1 Classical Pandemonium model (left) and WTA Pandemonium model
(right) adopted for a 4-category problem in a structural domain. Communication
between demons from lower layers to upper layers is indicated by solid black
lines. Each feature demon is connected to a uniquely determined cognitive demon.
A connected pair of a feature and cognitive demon represent a model-category
pair. Note that in a more general setting, feature demons may communicate their
results to more than one cognitive demon. The red lines represent the inhibitory
nature of communication among WTA demons. The on-off switches in the WTA
Pandemonium model indicate the principle elimination of competition. An on-switch
means that the feature and WTA demons at the end points of the corresponding
connection participate in the competition. Otherwise, if the switch is turned off,
the corresponding feature and WTA demons are mute.

layer consists of image demons that convert the raw data to an internal repre-
sentation that higher level demons can process. The second layer is composed of
feature demons that scan the output of the image demons. When they detect cer-
tain features, they scream. The louder a feature demon screams, the more confident
the demon is that it detected the feature. The third layer is composed of cognitive
demons that represent the different categories. Cognitive demons weight the evi-
dence provided from the screams of the feature demons and scream the amount of
evidence up to the decision demon in the top layer. The decision demon listens to
the loudest scream from the cognitive demons, and then decides what category is
being presented.

Standard and anytime NN classifiers fit into the Pandemonium model. Given
a structural object, an image demon converts the raw structure to an attributed
graph X. Feature demons are implemented by standard or anytime graph matching
algorithms. The features to detect are structural correspondences of X with the
models from). Cognitive demons weight the results provided by the feature demons
in terms of the underlying similarity or quality measure. The decision demon finally
assigns the input graph X to the category corresponding to the nearest model

164

Structural Winner-Takes-All Classifiers

Time Standard NN Anytime WTA
° '
l 2
5
5
77 77 7
10 8
15 14 14 14 14
Total 56 28 22

Figure 7.2 Distribution of computation times for standard NN, anytime NN, and
WTA classifier. Shown are the termination times of four feature demons. A fea-
ture demon terminates after convergence or interruption. Pandemonium classifiers
allocate computational resources equally. WTA Pandemonium classifiers allocate
computational resources dynamically in a competitive manner.

or highest quality. From the perspective of the Pandemonium model, the main
difference between standard and anytime NN classifiers is only the point in time
when the decision demon is able to make a decision. In the standard case, a decision
can be made only after convergence of all graph matching algorithms. In anytime
computing, the decision demon can decide at any time.

The WTA Pandemonium model differs from the Pandemonium model in the
following way: decision making is based on self-organization rather than on a
supervising decision demon. To implement self-organization, the cognitive demons
directly compete among each other. The louder a cognitive demon screams, the
more it intimidates (inhibits) its cognitive competitors. An inhibited cognitive
demon becomes silent and prompts its feature demons to suspend screaming. The
cognitive demon that wins the competition assigns the input to the category it
represents. Thus, cognitive demons in the WTA Pandemonium are both cognitive
and decisive. We occasionally refer to cognitive demons in the WTA Pandemonium
model as WTA demons. Figure 7.1 presents a simplified schematic view of the
Pandemonium model and WTA Pandemonium model in the context of structural
template matching.

In contrast to the classical Pandemonium model, the WTA Pandemonium model
dynamically allocates computational resources in a competitive manner. Figure 7.2
illustrates this feature, for which we assume that classification accuracy of each
classifier is approximately at the same level. The main contingent of computational
resources is consumed by the feature demons, each of which solves a graph matching
problem. Standard and anytime NN classifier treat the feature demons equally,
regardless how loudly or quietly they scream. The feature demons in the classical

7.8 Winner-Takes-All Networks for Maxzimum Selection 165

Pandemonium model may either complete their computations or are all interrupted
at the same time. In contrast, WTA demons compete among each other, whereby
demons that scream louder result in interruption of more moderate demons. The
mechanism dynamically allocates computational resources for louder demons and
deprives inhibited demons. In our idealized example, the utility is maximized for
WTA Pandemoniums, because it requires less total computation time for decision
making than the classical Pandemonium models. Our example is idealized for two
reasons. First, it is unclear when to interrupt anytime NN classifiers to obtain
satisfactory results; second, formulating appropriate quality measures such that a
competitive decision does not result in a substantial loss of classification accuracy
is a non-trivial task.

7.3 Winner-Takes-All Networks for Maximum Selection

This section reviews inhibitory WTA networks for maximum selection, which
constitute the foundation for designing WTA classifiers.

Assume that we are given a set of k real-valued numbers
Viy..., 0 ER
with unique maximum

Vi = IMmax vj.
1€[1:k]

One connectionist architecture to identify the maximum value v;« is an inhibitory
winner-takes-all network called MAXNET [231]. A MAXNET is composed of k
pairwise inhibitory connected units. Discrete-time dynamics is of the form

U1 = Uy + W:Et + ht (71&)
Tiy1 = Wit o, (7.1b)

where u; is the activation vector and x; the output state of MAXNET. The weight
matrix W = (w;;) is given by

{w, D i
Wij =)
0 : 1=

where the quantity wr < 0 is the inhibition of MAXNET. The vector h; represents
an externally applied input. For u € R, the function

u : u>0
lulo =
0 : u<o0

denotes the linear threshold function. The linear threshold function is an un-

166

Structural Winner-Takes-All Classifiers

bounded, piecewise linear function with lower saturation 0. As usual, |u]g is defined
componentwise on u € R*, i.e.

|_’U,J0 = (L’U,ljg, ceey Lukjg)—r.

The lack of an upper saturation is necessary to exclude spurious ambiguous states
[132, 231, 299, 383]. As a consequence, we have the following MAXNET Convergence
Theorem.

Theorem 7.1 (MAXNET Convergence Theorem)
Let ug = (ul(O),...,uk(O))T be the initial activation of MAXNET. Assume that
the following conditions are satisfied:
1. The mazimum u;«(0) = m[a)é} u;(0) is positive and uniquely determined.
1€(1:
1

2. The inhibition is in the range 0 < |w1| < P

3. The external input is of the form hy = Ok for all t > 0.

Then the dynamics (7.1) of MAXNET converges after a finite number of iterations
to a stable fized point x of the form

@@ﬂ__{1 Cifi =

0 : otherwise
for all i € [1:k].
Proof [217]. |

Note that we use the threshold function © to characterize the stable states of
MAXNET.?

If the sufficient conditions (1)-(3) of Theorem 7.1 are satisfied, MAXNET con-
verges to a state where the unit with highest initial activation has positive output
and all other units are inhibited. This property makes MAXNET amenable to max-
imum selection of a given k-tuple v = (vy,...,v;)7 of input values. Algorithm 8
describes the MAXNET algorithm. After convergence to a stable state, the algo-
rithm returns the index ¢* referring to the maximum value of v. We call unit ¢* the
winner of the competition.

2. Recall from Section 4.2 that the threshold function © is given by

@(w)z{ 1 : >0

0 : =<0

for 2 € R. In addition, ©(x) denotes the shortcut for (©(z1),..., @(mk))T for © € R”.

7.4 Structural Winner-Takes-All Classifiers 167

Algorithm 8 (MAXNET Algorithm)

Input:
v — vector of k real valued numbers with unique maximum

wy — inhibition
h — external input

Initialization:
set ugp = v
Procedure:
repeat
u=u+Wa+h
z = |ujo
until e}g@(w) =1

Output: * with z;+ > 0

Sufficient conditions for convergence of MAXNET after a finite number of iter-
ation steps, where the external input h; = h is constant over time with h # Oy
are shown in [184]. Similar and other techniques to select a maximum can be found
in [88, 150, 214, 232, 395, 394]. In [249], maximum selection is generalized to K-
WTA networks that identify the largest K of k real numbers. For further results
on inhibitory WTA networks we refer to [184, 85, 217, 247, 347].

7.4 Structural Winner-Takes-All Classifiers

Let s be a structural similarity measure on G4. Suppose that
Y={M",....Y} Cu
is a set of £ model graphs representing the corresponding categories
C={C,...,Cx}.

The task of a structural WTA classifier is to assign a given data graph X € G4 to
one of the k categories corresponding to the largest similarity
s(X,Yi+) = max s(X,Y;).
i€[1:k]
This section proposes a self-organizing WTA classifier that combines concepts

from anytime computing with the principle elimination of competition to improve
performance over classical Pandemonium NN classifiers.

168

Structural Winner-Takes-All Classifiers

output layer

M
) 13
@ D @

monitor M monitor M monitor fM

matching layer

Figure 7.3 Architecture of a structural WTA classifier for three categories. Red
lines refer to inhibitory connections and blue lines to excitatory connections. Darker
shading of the output units represent higher activation. In each subnetwork of
the matching layer, a maximum clique of the corresponding association graph is
highlighted.

7.4.1 Architecture

To describe the architecture, we follow a different approach than suggested by the
WTA Pandemonium model in Section 7.2. A structural WTA classifier is composed
of a decision or output layer, a matching layer, and a coupling of both layers. Figure
7.3 depicts an example of a structural WTA classifier. In the following, we describe
the three basic components of the system.

1. Decision layer: The decision layer is a MAXNET architecture consisting of k
output units, where output unit ¢ represents category C;.

2. Matching layer: A matching layer is composed of k subnetworks and & moni-
tors.

(a) Subnetworks: Each subnetwork £); is an anytime Hopfield network de-
signed to approximately solve s(X,Y;) by a clique search in a derived as-
sociation graph X ¢ Y;. Note that the topology of the subnetworks in the
matching layer varies dynamically with the data graph X applied to the
system.

(b) Monitors: Conceptually, a monitor 9; for 9; is a device that observes
the progress of §; by evaluating its output states in terms of a quality
measure

QzUm xRy — R, (mat) }_’Qi(wat):

7.4 Structural Winner-Takes-All Classifiers 169

where n; is the order of the association graph X ¢ Y;. The quality @Q;(x,t)
of $; can be viewed as an intermediate result at time ¢ for the unknown but
true similarity s(X,Y;).
3. Coupling: Matching and decision layer are coupled via feed-forward connec-
tions. Each monitor 9; is connected by a feed-forward link to output unit 3.
These links relate a subnetwork $; with its representative output unit i. We call
a pair 2; = ($;,1) an alternative.
A connection between monitor 9t; and output unit 7 either persists or is released.
Figure 7.3 indicates the possible states of a connection by a symbolic switch. If
the connection for alternative 2; persists, we say 2; is enabled. Similarly, an
alternative 2; is called disabled if the corresponding connection is released.

7.4.2 The Algorithm

The structural WTA algorithm proceeds first by initializing the activations of all
units in the matching and decision layer. In addition, the connections between
subnetworks and output units are established. Once the network has been properly
initialized, the decision process of a structural WTA classifier involves intertwined
execution of four basic steps, matching, monitoring, competition, and focusing, until
one output unit wins the competition.

1. Initialization.

® Decision Layer: The initial activation u;(0) of each output unit 7 is set to
an identical positive value u;(0) = a > 0 for all ¢ € [1:£].

® Matching Layer: Units of the subnetworks $); are initialized in the same
way as a decoupled network §; for approximately solving the structural
similarity s(X,Y;).

= Coupling: All alternatives 2; = ($);,4) are enabled. By £ = [1:k] we denote
the set of indices of enabled alternatives.

2. Matching. For all ¢ € &, simultaneously update all subnetworks $); for one
iteration step according to
uj = (1—duj+ W'zl +h' (7.2a)
zp = (1= Nz, +Mg(up,). (7.2b)
Update rule (7.2) is discussed in Section 4.2.
3. Monitoring. Compute the quality

Qi<t>={Qi(§%’t) ;i

of state i provided by §; at time ¢ for all i € [1:k]. Propagate the quality Q;(t)
to output unit 7.

170

Structural Winner-Takes-All Classifiers

4. Competition. Update MAXNET in the decision layer for one iteration step
according to

Ut+1 = Ut + W:Bt + q¢ (73&)

Tir1 = [Usr1]o; (7.3b)

where the vector q; collects the intermediate results Q;(t) received from the
matching layer. The dynamics of MAXNET is discussed in Section 7.3.

5. Focusing. Set
E={ie1l:k] : zi(t+1) >0},

where z;(t 4+ 1) is the updated output state of the i-th unit in the decision layer.
Alternatives 2; = ($;,1) with 2;(¢) > 0 but 2;(t + 1) < 0 lost the competition
and are disabled. Disabling eliminates alternatives ; from further competition
and interrupts the computation of their subnetworks $);.

The procedure terminates when one output unit wins the competition or all
subnetworks have converged to a stable state. In the latter case, we select an output
unit ¢* as the winner of the competition if the solution found by subnetwork ;- is
maximal over the set of solutions returned by all the subnetworks in the matching
layer.

In the following, we discuss monitoring and focusing. Both components are
essential to the design of efficient and accurate structural WTA classifiers.

7.4.3 Monitoring

Monitoring plays a central role in a structural WTA classifier, because decision
making is based on information provided by monitors. A monitor 9%; observes the
progress of a subnetwork §); in the matching layer by computing quality values Q;(t)
and propagating them to output unit 7 at certain points in time. Constructing
monitors therefore involves two design decisions: first, the particular form of a
quality measure, and second, the time intervals at which a monitor observes a
subnetwork.

Quality Measures

To enable fast and accurate decision making, we need appropriate quality measures.
A desired property of quality measures is discriminability. Given an input graph
X, we call a set Q = {Ql, ey Qk} of quality measures discriminable for X at ¢ if
X €Ci» = Q+(t) = max Q;(t). (7.4)

i€[1:k]
Note that discriminability of quality measures depends on the input and on the
time. It is unclear how to formulate a set of quality measures that satisfies property

7.4 Structural Winner-Takes-All Classifiers 171

(7.4) for all inputs X at some point of time ¢x. Therefore, the best we can do is
formulate problem-dependent quality measures that approximate property (7.4).
But even if we know that a set Q@ of quality measures is discriminable, the black
box behavior of Hopfield models provides no information as to which time the set
Q is discriminable for a given input. Following the idiom “it is easier to hit a fly
with a swatter than with a needle”, we place the responsibility for decision making
on MAXNET. For decision making, MAXNET considers quality values over some
period of time (swatter), rather than quality values at a single point in time (needle)
as accomplished by anytime NN classifiers.

To propose a family of quality measures, it is sufficient to consider a single
subnetwork. This allows us to drop index ¢ that refers to components related to
category C;. Let Z = X oY be an association graph of model Y and input X. By
$Hz we denote a Hopfield model associated with Z. As in Section 6.3, we define

Va(x) ={ieV(Z) : z; > 0}

Eo(@) = {(i.j) € B(Z) : 1,5 € Va(@)}

Eo(x) = {(i,j) €E(Z) : i,j € Va(z)}.
as active set of vertices, edges, and non-edges for a given output state x. As usual,
we identify vertices, edges, and non-edges of Z with their corresponding units,

excitatory, and inhibitory connections in $)z. We suggest the following family of
quality measures for §z

Q(z,t) = Z Qv(xi,t)—f— Z QE(mi,xj,t)
i€V (z) (1,5)€ Ea(x)

+ > @Qulesait)

(i2j)EEa(®)

(7.5)

where Qv, Qg, and Qf are problem dependent functions that depend on the
outputs of the units and on time. The functions Qv and Qg reward active vertices
and edges; the function @)z penalizes active non-edges. The parameter 7; is an offset
that prevents premature elimination from competition and resolves ambiguities. An
alternative approach is to scale the quality measures appropriately.

Synchronization of Monitors

Synchronization of monitors refers to specifying the time intervals at which a mon-
itor observes a subnetwork. Synchronizing monitors is motivated by the following
factors:

1. Exhaustive monitoring of the subnetworks at each time step consumes com-
puting resources, particularly if determining the quality of a result is of non-trivial
complexity.

2. Hopfield models associated to graphs of different size and structure may have
different relaxation times. Since longer relaxation times usually cause slower

172 Structural Winner-Takes-All Classifiers

progress, competition may be biased towards networks with faster relaxation
times.

Referring to the first issue, we can introduce a time gap during which the subnet-
works evolve without being monitored. To meet the second issue, we can specify
different time gaps for different relaxation times where the time gap increases with
the relaxation time of a subnetwork.

MAXNET in the output layer may either evolve synchronously or asynchronously
with the monitors. In synchronous mode, MAXNET is idle until all monitors in the
matching layer have sent the quality values to the corresponding output units.
In asynchronous mode, MAXNET continues to evolve regardless whether a new
quality value has been observed or not. The external input of an output unit is
then the most recent quality value of the corresponding subnetwork.

7.4.4 Focusing

In contrast to standard approaches where resources are equally distributed, the
distinguishing feature of focusing is that resources are dynamically allocated in a
competitive manner according to quality performances. Attention is shifted towards
favorable subnetworks, and unfavorable subnetworks are filtered out. A subnetwork
$; is considered to be favorable for a given input X if the intermediate results
indicate an above average match between X and Y; averaged over all enabled al-
ternatives. If a subnetwork is considered to be favorable, it may continue its com-
putation. Unfavorable subnetworks are interrupted and the alternative is excluded
from further competition. Since disabling reduces the number of alternatives, we
may optionally increase the inhibition of MAXNET to adapt the pressure of com-
petition with the number of enabled competitors. For example, we may choose the
absolute value |wr| of the inhibition parameter close to A = 1/(|€|—1), where |€] is
the number of enabled alternatives. According to Theorem 7.1, the quantity X is the
time-dependent upper bound for |w;|, which ensures a well-behaved convergence.

As the Attention Control System (ACS), focusing of structural WTA classifiers
admits an interpretation in terms of selective attention. The main difference be-
tween ACS and structural WTA classifiers is that inhibition of MAXNET not only
identifies relevant stimuli, but also shifts attention to that stimuli. We refer to
Section 4.5.2 for a more detailed discussion on selective attention.

7.5 Experiments

This section serves to assess the performance of the WTA classifier. Section 7.5.1
presents an empirical sensitivity analysis using random attributed graphs. We ex-
amined how the WTA classifier performed under controlled variation of experi-
mental and operational parameters. In Sections 7.5.2 and 7.5.3, we evaluated the
performance of the WTA algorithm on synthetic character recognition and image

7.5 FExperiments

178

classification.

In all experiments, we applied the ACS algorithm proposed in Section 4.5.2
as a matching procedure for the WTA and NN classifier. The algorithms were
implemented in Java using JDK 1.2. All experiments were run on a multi-server
Sparc SUNW Ultra-4.

7.5.1 Sensitivity Study

The aim of this section is to evaluate how the WTA classifier performs under
controlled variation of

1. the pairwise similarities s(Y;,Y;) among all the models Y;,Y; €),
2. the inhibition parameter w; of MAXNET,

3. the number k = |)| of models, and
4

. the size n of models

Variation of structural corruption and noise imposed on the input graphs is covered
in the experiment on synthetic character recognition presented in Section 7.5.2.

In all four experiments, we assumed the following basic test suite. The default
parameters of the test suite are summarized in Table 7.5.1.

Test Suite

In all experiments, we considered random attributed graphs with edge probability
p = 0.5 and discrete attribute set A4 = {0, 1,2}, where € = 0 is the null attribute. We
used an additional attribute a = 2 to introduce more diversity into the graphs. To
generate the data for a single classification task, we applied the following procedure:

1. Generate a base graph B of order |B| = n. The base graph served as the
starting point for deriving the models.

2. Create k models Y; € Y by applying a corruption model on the base graph
B with noise probability Py. For low (high) values of Py, the corruption model
produces a set) of models with high (low) pairwise similarities. The corruption
model is described below.

3. Randomly select a category C; from C.
4. Generate an input graph X of the selected category C; by applying the same

corruption model as in step 2 on the model Y; with noise probability Px.

In each trial, we generated a new base graph and new models to ensure that the
results are independent of a particular set of models.

Given a graph Z and a noise probability P, the following corruption model
generates a perturbed copy of Z:

= Recolor each item ¢ € I(Z) with probability P:

1. Draw a random number p from a uniform distribution over U.

174

Structural Winner-Takes-All Classifiers

Default Setting
n = 50 order of base graph B

k = number of models

Py =5% noise probability for models

Py = 1% noise probability for input graphs
wr = —r& inhibition of MAXNET

Table 7.1 Default parameters of the basic test suite for the sensitivity study in
Section 7.5.1. Note that the inhibition w; is adapted to the number |€] of enabled
alternatives.

2. If p < P, randomly select an attribute a from A.

3. Recolor item 7 with attribute a.

The above corruption model introduces noise in the attributes and structural
variation in the number of vertices and edges. This is achieved by random insertion,
deletion, and attribute substitution of edges and vertices. We imposed the following
restriction: no vertices were inserted when generating the models from the base
graph B. Thus, the expected order of the models was (1 - %Py) n, where n = | B).
To generate an input graph X as a corrupted version of a model Y;, the order of X
was bounded from above by n.

Setting of the Classifiers

Let X be an input and Y be a model graph from G4. For decision making, we
selected the following similarity and quality measure:

1. Similarity measure for the NN classifier: The chosen similarity measure for
the NN rule is the order of the maximum common induced subgraph of two given
graphs.

2. Quality measure for the WTA classifier: Let Z be an association graph of
X and Y, and let $Hz be the Hopfield model associated with Z. For the WTA
classifier, we used the quality measure (7.4) with component functions

Qv (zi, t) =x;
Qe(zri,z;,t) =0
1
Qp(zi, 25,1) = —5 (2 + z)
Yt = 0.1.

Note that x; refers to the output of unit ¢ in . It is easy to see that the
compound quality measure

Q=Qv+Qe+Qz+

7.5 FExperiments

175

is directly related to the similarity measure of the NN classifier. After conver-
gence, () — v is the size of a maximal clique in Z found by $z. Since maximal
cliques in Z are in one-to-one correspondence with the maximal common induced
subgraphs of X and Y, the relationship between the chosen similarity and quality
measure is evident.

FEvaluation Procedure

In all four experiments, we varied a single parameter as follows:

® FExperiment 1: Varying Pairwise Similarity of the Models

To generate models with different expected pairwise similarities, we varied the
noise probability Py. The chosen values were Py = {1%,5%, 10%, 15%, 20%}.
For each value Py, we generated 500 test instances, giving a total of 2,500 trials.

® Frperiment 2: Varying the Inhibition Parameter of MAXNET

The chosen values for the inhibition parameter wr = —A\/k = \/5 were deter-
mined by selecting A € {0.1} U [0.25 : 0.25 : 2.5]. In contrast to all other ex-
periments, we kept the inhibition w; fixed to the value —\/k throughout a run,
rather than adapting it to the number of enabled alternatives (see Table 7.5.1).
We generated 500 test instances for each value of A, giving a total of 5,500 tri-
als. Since an NN classifier has no inhibition parameter, we only examined the
behavior of the WTA classifier.

® FExperiment 3: Varying the Number of Models
The chosen numbers of models were k € [2 : 8]. For each number k, we generated
500 test instances, giving a total of 3,500 trials.

® FExperiment 4: Varying the Order of Models

We varied the expected order of the models via the order of the base graph.
The selected orders n of the base graph were n € [10 : 10 : 50]. For each n, we
generated 500 test instances, giving a total of 2,500 trials.

Numerical Results

Figures 7.4-7.7 summarize the results. In all four experiments, we made the
following observations:

®= On average, the NN classifier more accurately predicts the correct category
than the WTA classifier.

® As expected, the WTA classifier is significantly faster than the NN classifier.
= Computation time of the WTA and NN classifier deviated roughly 15-20%
and 10%, respectively, from the average. This result indicates that elimination

of competition leads to a less predictable run time behavior than convergence of
subnetworks to a stable state.

176

Structural Winner-Takes-All Classifiers

[mm WTA = NN]| [mm WTA = NN|
T T T 14 ; . .
1 b -
> 0.8 1 86) 8.7 (8;9). 1
S 79| | - 1
5 0.6 1 -
3}
8 ,
< 0.4 1
0.2 1 |
0 |
001 005 01 015 0.2 0 001 005 01 0415 0.2
s %
(a) Estimated classification accuracy (b) Average computation time

Figure 7.4 Results of Exzperiment 1 for varying noise probability Py. Low values of Py
correspond to high inter similarity of the models. Subfigure (a): estimated classification
accuracy. Capped bars indicate the confidence intervals at level o = 0.05. Subfigure (b):
average computation time measured in sec. The dashed line shows the average factor by
which the WTA classifier was faster than the NN classifier.

[y

Ay

o ©
o ™

inability
D

accuracy
time

I
»~

o
N

o

(a) Estimated classification accuracy (b) Average computation time

Figure 7.5 Results of Fxperiment 2 for varying inhibition parameter w;. Variation of
wr is controlled by A. Shown are the estimated classification accuracy (a) and the average
computation time (b) measured in sec. Capped bars indicate the confidence intervals at
level a = 0.05. The light blue shaded region shows the range of optimal utility.

7.5 FExperiments 177

20 : : : |
1 b L i
| 16F]
> 0.8 L J
€ 06 - o 120]
8 S [(80) (79) (79]
& 0.4 1 8r s--e---]
0.2 . 4]
0 - 0 L]
8 2 3 4 5 6 7 8
k
(a) Estimated classification accuracy (b) Average computation time

Figure 7.6 Results of Ezperiment 8 for varying number k of models. Subfigure (a):
estimated classification accuracy. Capped bars indicate the confidence intervals at level
a = 0.05. Subfigure (b): average computation time measured in sec. The dashed line shows
the average factor by which the WTA classifier was faster than the NN classifier.

1] 12F]
> 08 | 101 1
8 8t 1
506 1 g
0.4 Al |
0.2 1 2t |
0 0
n
(a) Estimated classification accuracy (b) Average computation time

Figure 7.7 Results of Experiment 4 for varying order n of the models. Subfigure (a):
estimated classification accuracy. Capped bars indicate the confidence intervals at level
a = 0.05. Subfigure (b): average computation time measured in sec. The dashed line
shows the average factor by which the WTA classifier was faster than the NN classifier. For
n = 10, average times were less than system accuracy (1 msec) and therefore extrapolated.

178

Structural Winner-Takes-All Classifiers

Next, we discuss the particularities that occured in the individual experiments:

® Frperiment 1: Varying Pairwise Similarity of the Models

For increasing pairwise dissimilarity of the models, classification accuracy of the
WTA classifier approached the performance of the NN classifier. At the same
time, the factor by which WTA was faster than NN increased.

® Erperiment 2: Varying the Inhibition Parameter of MAXNET

There were two critical values Ay < Ao for the parameter wj;. The critical
values determined the range of optimal utility of the WTA classifier. Utility was
maximized if the absolute value ’w 1‘ of the inhibition was chosen from the range
[)\1 /5, A2/ 5]. In this case, classification accuracy was at a constant but high level.
In addition, computation time was low and slightly decreased for increasing |w T ’
For ’w 1| < A1/5, inhibition was too low and computation time rapidly increased
with decreasing |w 1‘ without gain in classification accuracy. At the other extreme,
when "IU[’ > A2/5, the inhibition was too strong and the WTA classifier rapidly
terminated in almost all cases to a state where all output units of MAXNET
were inhibited. Hence, in those cases the WTA classifier was unable to make a
decision.

Note that |wr| = A2/5 is larger than the upper bound provided by Theorem 7.1.
Nevertheless, the critical value Ay typically decreases with increasing number k
of models. On the other hand, the smaller critical value A; is independent from k.
Hence, we may expect that the range of optimal utility diminishes with increasing
k. In addition, for increasing values of k, the principle elimination of competition
becomes more and more ineffective. As a consequence, run time performance of
the WTA classifier declines.

® Erperiment 3: Varying the Number of Models

As predicted in Experiment 2, the WTA classifier scaled inferior with the number
of models than the NN classifier did with respect to both accuracy and run time.
Since we adapted the inhibition to the number of enabled alternatives during run
time, the decline of time performance is kept within an acceptable limit.

® FErperiment 4: Varying the Order of Models

Although the differences in accuracy are not statistically significant, they may
indicate that prediction of the WTA classifier is best for a problem dependent
size of the underlying graphs. For graphs too small, the perturbance model might
yield highly similar graphs. This explains the larger error of both classifiers for
models of order n = 10. For graphs too large, differences in the quality measure
may disappear at initial stages of the computation due to the large normalization
factor and the linear threshold function. The WTA classifier may therefore favor
the subnetwork with the fastest relaxation time. From the perspective of run
time, the results show that the WTA classifier scales better with the size of the
models than the NN classifier.

The conclusion we draw from the results is that the WTA classifier performed

best for a small number of pairwise dissimilar models. To cope efficiently with a

7.5 FExperiments

179

Figure 7.8 Shown are examples of handwritten characters and corrupted data.
The corruption model randomly rotates the image, inserts spurious points, deletes
points, and adds Gaussian noise with zero mean and standard deviation o. Row 1:
model characters. Row 2: sample data characters corrupted with standard deviation
o = 4. Row 3: sample data characters corrupted with standard deviation o = 8.

large number of models, we suggest construction of hierarchically organized WTA
classifiers, in which each classifier considers only a small subset of all models.

7.5.2 Synthetic Character Recognition

In order to test the WTA algorithm in a more applied setting, we examined
the problem of synthetic character recognition based on finding correspondences
between model and data. This problem frequently arises in computer vision [127,
291]. The goal is to investigate the robustness of the WTA classifier against
corruption in the input data.

Problem Formulation

Consider five models of handwritten characters Y = {’A’, 'B’, ’C’, 'D’, 'E’} as
shown in the first row of Figure 7.8. The models were drawn using an X windows
interface. The black pixels of each model were expressed as a set of points in the
2D plane.

The recognition problem consists of assigning a corrupted input image X to one
of the five model characters. A corrupted version X of a given model Y €) was
generated according to the following procedure:

1. Copy Y to X.

180

Structural Winner-Takes-All Classifiers

Order of Models
A B C D E
335 486 280 311 409

Table 7.2 Shown is the order of the graphs representing the model characters.

2. Randomly rotate X around its barycenter. The barycenter of an image is the
mean of its points in the 2D plane.

3. Insert a new spurious point for each point with 10% probability. A new point
is drawn from a uniform distribution over the dimensions of the image.

4. Delete each point of X with 10% probability. Spurious points generated in the
previous step are excluded from deletion.

5. Add Gaussian noise with a zero mean and standard deviation o from the
coordinates of each point of X.

The second and third rows of Figure 7.8 show examples of corrupted data images
generated by the above procedure for 0 = 4 and o = 8, respectively.

Graph-based Representation

Let Z be an image with point set Pz = {z1,..., z,}. Each element z; represents a
black pixel by its coordinates in the 2D plane. We transformed the point set Pz to
a complete weighted graph GGz — invariant to rotation, translation, and scaling.

The vertices of Gz represented the points from Pz. To determine vertex and
edge weights, we first computed the Euclidean distances

. lzi —pzll @ i=j o
dZZuY =) VZ,]El:p,
9 {na—an:i¢j [t-7)

where 11z denotes the mean of Pz (or the barycenter of the image). The distance dz
is invariant to rotation and translation of Z. To obtain scale invariance and make
the representation robust against noise, we first ordered the distances dz (i, j). Let
r be the rank of distance dz (i,). Then the weight assigned to item (i, 5) € I(Gz)
was the normalized rank 2r/(n(n — 1)), where r € [1 : n(n —1)/2]. Since dz(i,j) =
dz(j,1), the adjacency matrix of Gz is symmetric.

Table 7.2 shows the order of the graphs representing the model characters. Since
the probability of deleting and inserting points was equal, the expected order of
corrupted graphs derived from model Y coincided with the order of Y.

In the following, we identify the notation for the image Z, the point set Pz, and its
graph-based representation Gz. As a common notation, we adopt the notation for
the image. From the context it will be clear which representation form is addressed.

7.5 FExperiments

181

FEvaluation Procedure

The chosen values for the standard deviation to perturb the position of the points
were o € [1 : 10]. For each pair (Y;,0), we created 100 corrupted data characters
giving a total of 5,000 classification tasks.

Setting of the Classifiers

Let X and Y be complete weighted graphs. For decision making, we selected the
following similarity and quality measure.

1. Similarity measure for the NN classifier: Consider the compatibility values

,{..:{ [1—avle —ysl], : $€V(X),jeV(Y)
N [l—OéEIIi—yj\JO : 1€ E(X),je EY)

for all items 4 € I(X) and j € I(Y). Note that X and Y are complete. Hence,
the compatibilities between all non-vertex items are specified.

The parameters ay and ag control which vertex and edge correspondences shall
contribute to the structural similarity measure. We have chosen ay = 1000
and ag = 100. The selected similarity measure is determined by the following
optimization problem

1
maximize f(¢, X, Y) = Kiié
max (|X|7 |Y|) ie%;() (7.6)
subject to ¢ e M,
where M is the subset of all partial monomorphisms from X to Y. Since M is p-

closed, we can transform problem (7.6) to an equivalent MWCP in an association
graph (see Theorem 3.1).

2. Quality measure for the WTA classifier: Let Z be an association graph of X
and Y for problem (7.6), and let Z = (z;;) be the adjacency matrix of Z. We
used the quality measure (7.4) with component functions

Qv (zi,t) = x4
Qr(zi, zj,t) = 2
1
Qp(ti,z;,t) = —5 (@i + ;)
Yt = 0.1.

Again, z; refers to the output of unit 7 in $)z. The compound quality Q was of
the form

Q= L%(QV +Qr + QE)J + Ve,
4 0

where we included a normalization factor. In addition, the linear threshold

182

Structural Winner-Takes-All Classifiers

WTA NN

o e [a1, az] @ [a1, az]
1 1.00 [0.96,1.00] 0.92 [0.85,0.96]
2 099 [0.951.00] 0.88 [0.80,0.93]
\ : \ ; w 3 0.98 [0.93,1.00] 0.83 [0.74,0.89]
e] 4 096 [0.90,0.99] 0.80 [0.71,0.87]
5 08/ e N] 5 092 [0.85,096] 0.79 [0.70,0.86]
g 0.6 4 6 0.88 [0.80,0.93] 0.71 [0.61,0.79]
8 o4l] 7 081 [0.72,0.88] 0.74 [0.65,0.82]
o2l NN+ 8 0.73 [0.63,0.81] 0.74 [0.64,0.81]
WTA -+ 9 0.70 [0.60,0.78] 0.69 [0.59,0.78]
]

o
=
[e)

0.62 [0.52,0.71] 0.66 [0.56,0.75

(a) (b)

Figure 7.9 Estimated classification accuracy of the WTA classifier (red line) and
the NN classifier (golden line) for noisy characters as a function of the noise level o.
The table in (b) shows the numerical values of the average classification accuracy
and the confidence intervals at level a = 0.05.

function |.|o ensured that only nonnegative values were sent to the decision
layer. As in Section 7.5.1, it is easy to establish a relationship between the chosen
similarity and quality measure.

Numerical Results

The average computation times were 24 msec for the WTA and 250 msec for the
NN classifier. The average was derived from all 5,000 trials.

Figure 7.9 presents the average classification accuracy of both classifiers as a
function of the standard deviation o. As expected, accuracy of both classifiers
degraded with increasing corruption of the input data. For low noise levels o, the
WTA classifier was superior to the NN classifier. It is unclear whether the larger
error rate of the NN classifier was caused by a wrong choice or poor approximation
of the similarity measure. Other choices of similarity measures did not improve the
results of NN. This result underpins the importance of choosing appropriate quality
and similarity measures, which are not only problem dependent, but also tailored
to the characteristics of the algorithm.

As a final remark, we note that the state of the art algorithm for computing the
underlying similarity measure is the Graduated Assignment algorithm [116]. Using
the standard setting, an NN classifier employing the Graduated Assignment algo-
rithm failed for this problem. Average computation time for a single classification
task was about 20 min. Thus, for a single match, Graduated Assignment required
about 4 min. The NN classifier using the ACS procedure was about 5,000 times
faster. The factor ay in the formulation of the similarity measure eliminated most

7.5 FExperiments

183

potential vertex correspondences so that the resulting association graphs are kept
small. Since almost all vertices of both graphs under consideration had at least one
match, Graduated Assignment compared graphs of roughly the same order as shown
in Table 7.2. In contrast, ACS solved a clique problem in a dense association graph
of order up to 800 (where almost all vertices of both graphs were involved). The
complexity of that problem corresponds to a graph matching problem, in which the
graph to be compared are both of order /800 ~ 28. To contrast the different time
performances, we note that the WTA classifier was about 50,000 times faster than
the Graduated Assignment algorithm. For this reason, we excluded the Graduated
Assignment algorithm for comparison with the WTA classifier.

7.5.3 Image Recognition

In our final experiment, we applied the WTA classifier to an image recognition
problem. We used two subsets of the segmented images described in Section 4.6.2
and Appendix B.2.1.

FEvaluation Procedure

We conducted two test series. The first test series was a 4-category and the second
test series an 8-category problem. The segmented images of both problems and
their categories are shown in Figure 7.10 and 7.11.

The evaluation procedure was identical for both test series. For one cycle, we first
randomly selected a model from each category. Next, we presented each image to
the WTA and NN classifier. We conducted 100 cycles giving a total of 2,600 trials
for the 4-category and 3,600 trials for the 8-category problem. We ensured that
each cycle used a different set of models.

Setting of the Classifiers

For decision making, we selected the following similarity and quality measure :

1. Similarity measure for the NN classifier: For the NN rule, we have chosen
the Bischoff-Reuf3-Wysotzki measure. To approximate that measure, we applied
the technique of merged association graphs. Both the measure and the merging
technique are described in Section 4.6.3.

2. Quality measure for the WTA classifier: For the WTA classifier, we used the
same quality measure as in Section 7.5.2 based on the merged association graph
of the Bischoff-Reufl-Wysotzki measure.

Numerical Results

Table 7.3 summarizes the results of both test series. In line with experiment 3 of
Section 7.5.1, performance of the WTA classifier was satisfactory for the 4-category

184

Structural Winner-Takes-All Classifiers

m———
- m G
AL i L-é s

ﬂh‘;_' 5

P‘-r)

&v s .

“??
3y
L&.

~

7 [Ihu I

A}zﬁ

;ﬁiﬁiﬂﬁrm m 7l {

\at,nl’

[] FARMER
[] FisH

[| NEWSREADER

[] asiaN

Figure 7.10 Dataset of 26 segmented images from 4 different categories.

7.5 FExperiments 185

D e

]
D.
FQ
w
oy

)
Il! a4

4% 5 °
e e ¥

A

fn“

T

TE TR e

4]
= o g

¥

7
\

Fg - 2 ‘_zq
M L
= |]
|5 Tl
oy

Van.

=

‘4)
-~ "',
-s#_'__ :
/-

R
rE)
W

o il
&
o

D,

<@
=y
o |

o
&9

[] FARMER [] NEWSREADER2 [ASIAN
[FisH [] ouTboor B cameErA
[] NEWSREADERL [MAN

Figure 7.11 Dataset of 36 segmented images from 8 different categories.

186

Structural Winner-Takes-All Classifiers

error WTA NN time WTA NN
4-categories 0.5% 0.4% 4-categories 14 82
8-categories 9.8% 1.6% 8-categories 31 95

Table 7.3 Results of the 4-category and 8-category problem. Shown are the
percentages of misclassifications of the WTA and NN classifier (left) and their
average computation time in msec (right).

WTA NN
FA FI NR AS FA FI NR AS
FA 0 0 0 0 FA 0 0 0 0
FI 0 0 0 0 FI 0 0 0 0
NR 0 0 0 0.5 NR 0 0 0 0.4
AS 0 0 0 0 AS 0 0 0 0

Table 7.4 Results of the 4-category problem. Shown are the confusion matrices for
the WTA classifier (left) and the NN classifier (right). An entry in the i-th row and
j-th column shows the percentage with which an image of category Y; was identified
as an image of category Y;. The acronyms represent the following categories: FA =
FARMER, FI = FISH, NR = NEWSREADER, and AS = ASTAN.

problem and degraded in the 8-category problem with respect to accuracy and
speed. In particular, the average factor by which the WTA classifier was faster
than the NN classifier declined to about 3, which was the lowest of all experiments.
To explain this phenomenon, we consider the average time performance of the
NN classifier. From Table 7.3, we see that the NN classifiers required an average
of 82 msec to make a decision in the 4-category problem, and 95 msec in the 8-
category problem. Thus, doubling the number of models did not double the average
computation time as is the case for the WTA classifier. Since the NN classifier spent
most of its computation time matching input-model pairs from the same category,
adding further models from the four other categories did not strongly influence the
time performance. Thus, we have a similar effect as in experiment 4 of Section 7.5.1.

The confusion matrices of both classifiers for the 4-category and 8-category prob-
lem are presented in Tables 7.4, 7.5, and 7.6. In the 4-category problem, misclas-
sification of both classifiers was caused by mistaking images from the category
NEWSREADER for images from the category ASTAN. As opposed to the 4-category
problem, causes for misclassifications of both classifiers differ in the 8-category prob-
lem. This shows that elimination of competition behaves differently than maximum
selection, despite the fact that the quality measure was derived from the chosen
similarity measure.

To summarize, the results confirm our previous observations on random data
that the WTA classifier satisfactorily performed for a small number of pairwise
dissimilar models.

7.6 Conclusion 187

WTA
FA FI N1 N2 OD MA AS CA
FA 0 0 0 0 0 0 0 0
FI 0 0 0 0 0 0 0 0
N1 0 0 0 2.4 0 0 0 0
N2 0 0 0 0 0 0 0 0
OD 0 0 0 0 0 0 0 0
MA 0 0 0 0 0 0 0 0
AS 0 0 01 6.0 0 0 0 0
CA 0 0 0 0.3 0 1.0 0 0

Table 7.5 Results of the 8-category problem. Shown is the confusion matrix
for the WTA classifier. Entries represent percentages of misclassifications. The
acronyms represent the following categories: FA = FARMER, FI = FISH, N1 =
NEWSREADERI1, N2 = NEWSREADER2, OD = OUTDOOR, MA = MAN, AS
= ASTAN, and CA = CAMERA.

NN
FA FI N1 N2 OD MA AS CA
FA 0 0 0 0 0 0 0 0
FI 0 0 0 0 0 0 0 0
N1 0 0 0 1.0 0 0.1 0.3 0
N2 0 0 0 0 0 0 0 0
OD 0 0 0 0 0 0 0 0
MA 0 0 0 0 0 0 0 0
AS 0 0 0 0.2 0 0 0 0
CA 0 0 0 0 0 0 0 0

Table 7.6 Results of the 8-category problem. Shown is the confusion matrix for
the NN classifier. Matrix entries and acronyms have the same meaning as in Table
7.5.

7.6 Conclusion

In this chapter, we presented and examined a WTA classifier for structures. The
WTA classifier implements a mechanism of selective attention by combining tech-
niques from anytime computing with the principle elimination of competition. In
contrast to traditional approaches, computing resources are dynamically allocated
in a competitive manner. subnetworks with high quality are considered to be promis-
ing and may proceed with their computation, whereas subnetworks with poor qual-
ity are interrupted and excluded from further competition.

In extensive empirical studies we showed that the WTA classifier is best suited for
a small number of pairwise dissimilar models. There are two disadvantages inherent
to the WTA approach. The first problem is that formulating an appropriate quality
measure is complicated and highly problem dependent. The second dilemma is that

188

Structural Winner-Takes-All Classifiers

the principle elimination of competition is a pure heuristic, which is difficult to
analyze in mathematical terms.

We conclude this chapter with an outlook on further research. To cope with a
large number of models, construction of hierarchically organized WTA classifiers
may provide a solution. In addition, extension to K-nearest neighbor competition
is straightforward. First investigations are presented in [174]. Finally, learning
appropriate models for the WTA classifier is considered in the next part of this
thesis.

II Learning Machines for Structures

8 Introduction to Structural Learning

The aim of this chapter is to provide a brief introduction to the basic settings
of supervised and unsupervised learning. Furthermore, its objective is to motivate
structural neural learning machines by discussing the shortcomings of some existing
methods in structural learning. Sections 8.1 and 8.2 briefly review the basic super-
vised and unsupervised learning task. In Section 8.3, we discuss selected methods
commonly used in structural learning to motivate structural neural learning ma-
chines.

8.1 Swupervised Learning
This section is devoted to a brief overview of the basic setting of supervised learning.

Let X C G4 be an input domain of attributed graphs, and let) be a set of output
values. Assume that we are given a training sample

zZ = {(Xlayl)v"'v(mep)} CAxY

consisting of p training graphs X; € X C G4 drawn from some input space X
together with corresponding output values y; €). For the sake of convenience, we
assume that the sample Z is drawn independently and identically distributed (iid)
according to some unknown distribution function Fyy. On the basis of the given
sample Z, the goal of supervised learning is to find a function (hypothesis)

H: X =Y

from a hypothesis space1 ‘H that best predicts the output values of unseen data
(X,y) according to some optimality criterion.

To precisely specify an optimality criterion for learning, we introduce the notion
of loss or risk. A loss function

[:Yx)Y—R

1. A hypothesis space is simply a set of functions (hypotheses) that are considered by a
particular learning machine.

192

Introduction to Structural Learning

is a function that measures the discrepancy I(z,y) between the actual output value
H(X) = z and the desired output value y. Based on a loss function I, the risk
functional

R:H—R, Hw— R[H|=Exy[l(H(X),))]

is useful to measure the quality of a given hypothesis H € H. Now we are able to
present a formal definition of supervised learning. For a given iid sample Z, the
goal is to find a hypothesis H* € ‘H such that

H* = arg;lnei% R[H]. (8.1)

Thus, supervised learning minimizes the risk functional R over the hypothesis space
‘H on the basis of a training sample Z.

The main problem of supervised learning as defined in (8.1) is that we are
in general unable to evaluate the risk functional R[H] for a given hypothesis
H, because the joint distribution Fyy is unknown. The only information at our
disposal is contained in the training sample Z. To overcome this problem, we use
the inductive principle of empirical risk minimization [373]. The basic idea of this
principle is to estimate the unknown risk functional R[H] of a given hypothesis
H € H by the empirical risk

Remp|H, Z] =

p
Zl Ly yz
i=1

where x; = H(X;) is the output of hypothesis H given the input data X;. The
empirical risk function solely relies on the information contained in the training

EIH

sample Z. The principle of empirical risk minimization then approximates the
hypothesis H* of (8.1) by

HZ,,p, = arg 11_}161% Remp[H, Z].

It turns out that empirical risk minimization does not guarantee a small actual
risk, if the number p of training examples is limited. To obtain a consistent learning
principle, uniform convergence as defined by

lim P (sup |R[H] — Remp[H. ZH) =
|2]—00
is a necessary and sufficient condition.

In this chapter, we focus on two types of supervised learning problems, classifi-
cation and function approximation. The former problem can be viewed as a special
case of the latter one, where the function to be approximated takes values from a
finite discrete set.

8.2 Unsupervised Learning 1983

8.2 Unsupervised Learning
In this section, we briefly describe the basic setting of unsupervised learning.

Suppose that we are given a training sample
X = {Xl,...,Xp} cz

consisting of p unlabeled training patterns X; drawn from some pattern space Z.
The basic task of central clustering is to find k cluster centers or models

y={Nn,....,}CZ

such that a cost function also known as average distortion

E(M,y;X)==>"%"my;D(X,,Y;) (8.2)

j=11i=1

"=

is minimized with respect to a given distortion measure D. The average distortion
E(M,Y;X) is a function of the variables M and) given the set X’ of training
patterns. The size k of the cluster set) has to be determined a priori or by a
problem dependent complexity measure [44]. The matrix M = (m;;) is a binary
membership matriz from BP*F with the constraints

P
> my =1 (8.3)
j=1

for all i = [1: p]. The constraints assure that each data point is represented by

a unique model. Fuzzy clustering or topology preserving clustering methods like
self-organizing feature maps relax the hard constraints on the membership matrix
M and demand entries m;; in the range of [0, 1] subject to (8.3).

An appropriate distortion measure D depends on the particular application
domain. For feature vectors, the most common choice of D is the quadratic cost
function

D(z,y) = |z — y|

with x,y € R%.

Finding a minimum of the average distortion (8.2) is effectively a search of optimal
assignments m;; in the discrete space of membership matrices with exponentially
many states. Various strategies have been proposed to optimize (8.2). These can
be generally divided into two categories: hard optimizers that only adjust the
model closest to a given input, and soft optimizers that adjust a set of models
for a given input. Examples of hard optimizers are the K-means algorithm [168]
and simple competitive learning [166]. Soft optimizers include, for example, self-
organizing feature maps [213] or probabilistic partitioning algorithms [45].

194 Introduction to Structural Learning

8.3 Structural Learning

The goal of this section is to motivate structural neural learning machines. To this
end, we briefly review some common approaches in structural learning and discuss
their limitations.

Structural learning refers to learning on data represented in terms of graphs.
Learning on graphs is difficult for two main reasons:

1. There is no natural labeling of the items in a graph. To compare graphs,
correspondences between the items of both graphs must be established.

2. There is structural variation in the domain of graphs in the sense that for
different graphs, the number of vertices and edges may vary.

As a consequence, it is unclear how to provide a well-defined formulation of simple
statistical concepts for data analysis like the mean or variance of a given set
of graphs. This shortcoming motivates research on combining structural pattern
recognition with statistical methods [47, 195]. Among the few approaches that
bridge the gap between structural and statistical pattern recognition, we discuss
(1) pairwise proximity-based methods, (2) kernel methods, (3) pointwise embedding
into vector spaces, and (4) recurrent neural networks.

Proximity-Based Methods

Given a finite set of objects, proximity-based methods represent each data point
by a set of proximities to the other data points of that set. This approach is often
motivated by the assumption that proximity is more important than a feature or
a class, because it is the proximity measure that serves as a crucial factor in the
process of human recognition and categorization [79, 123, 277]. For an overview
on learning algorithms designed for pairwise proximity data, we refer to [277] for
classification problems and [145] for clustering problems.

Problems: Successful application of proximity-based methods highly depends on
the definition of an appropriate proximity measure. The choice of a proximity mea-
sure, however, is problem dependent and often requires expert domain knowledge.
Proximity-based methods applied to attributed graphs face the additional problem
that the characteristics of structural proximity measures are not well investigated.
The main reason for this shortcoming is that the choice of a proximity measure
implicitly presupposes knowledge about the distribution of the data. Since it is
unclear how to transfer elementary statistical concepts like the mean or variance
to the domain of attributed graphs, we may find it intricate to formulate suitable
probabilistic models for attributed graphs for solving problems in structural pattern
recognition.

Another disadvantage is that calculating the proximities between all pairs of

8.8 Structural Learning 195

data points is computationally inefficient, requiring a complexity of at least O(pz),
where p is the number of data points. For structural proximity measures, we are
faced with the problem of (approximately) solving O(pg) graph matching problems,
which may be intractable in a practical setting.

A third problem with proximity-based methods is the reconstruction problem.
The reconstruction problem calls for the data in the original space given a point in
the proximity space. It is unclear to what extent reconstruction of original data by
given points in the proximity space is distorted.

Finally, we note that proximity-based methods usually require knowledge of the
training sample as a whole and are therefore not intended for incremental learning
problems.

Pointwise Embedding into Vector Spaces

The goal of pointwise embeddings is to transform graphs to vectors in an Euclidean
space, where we have a plethora of powerful techniques for intelligent data analysis
at our disposal. Multidimensional scaling [77] and related tools constitute popular
unsupervised techniques for data visualization. These methods aim at projecting
given data points to low dimensions, whereby pairwise proximities are preserved
as far as possible. Another approach is to directly extract feature vectors from the
graphs. Popular approaches rely on graph-spectral decomposition methods [244].
Features of weighted graphs are extracted from the eigenvalues and eigenvectors of
graph Laplacians. These features can be used to represent the structure of a graph
and are easy to compute.

Problems: Approaches that use pairwise proximities have the same shortcomings as
pairwise proximity-based methods. Challenging problems of spectral decomposition
are (i) the reconstruction problem, and (ii) noise sensitivity.

Kernel Methods

Training and classification of the support vector machine (SVM) can be formulated
in terms of k(x, @;), @; being a support vector and k the kernel. Thus, a modification
of the kernel to more complex data allows transfer of the SVM to more complex
domains. In such, the resulting classification model can be interpreted as a linear
classifier in a high dimensional feature space if, and only if, the kernel decomposes
into k(x,y) = ®(x) - D(y). This is valid for positive definite kernels. Analogously,
other kernel based methods such as kernel principal component analysis rely solely
on an appropriate choice of k, and the task thus reduces to the design of kernels
for structured data.

Recently, various methods of extending kernels to nonstandard data have been
proposed. An overview of kernels for structures is presented in [106]. For kernels
based on common substructures, [137, 380] introduced the basic principle of compos-
ite kernels. Simple kernels defined on subparts of given structures can be extended

196

Introduction to Structural Learning

by generic operations to more complex, convolutional kernels. In particular, strong
closure properties for positive definite kernels hold, allowing easy construction of
problem specific versions.

Problems: As a proximity-based method, the problems of pairwise proximity data
transfer to kernel methods.

In addition, evaluating a complete structural kernel that captures the whole struc-
ture of the graphs under consideration is computationally inefficient. Otherwise, we
would have an efficient method to solve the graph isomorphism problem, which is
not suspected to be in class P. Standard approaches in structural pattern recogni-
tion solve the complexity problem by applying approximate methods. This does not
work for support vector learning, because approximation of a complete structural
kernel may result in an indefinite Gram matrix. A second problem is the number
of support vectors after learning. Although we may use approximate solutions to
predict the outcome of unseen data, approximation of hard problems for even a
moderate number of support vectors is impracticable.

This motivated the search for alternative graph kernels, which are less expensive
to compute [105, 201, 202]. Such kernels are problem dependent and may work fine
for selected problems. But in a general setting, loss of structural information may
be uncontrollable.

Recursive Neural Networks

Recursive neural networks decompose the structures into constituents and recur-
sively process the basic parts. In doing so, the data already processed sets a context
for further computation in such that the single parts can be integrated to a whole
structure.

Simple recursive networks constitute a well-established tool for time series data.
Assume z; denotes the sequence entry at time point ¢. Then the dynamic is given by
the equation ¢; = f(x¢, ci—1) whereby f is some function computed by the network,
and c¢; denotes the network state at time point ¢. A more detailed overview of
recursive network models can be found in [219]. This dynamic can immediately be
generalized to more complex recursive structures. Recursive networks as presented
in [97, 125, 133, 340] process tree structures as inputs. Given a binary tree T with
root label x and subtrees L and R, the state of the network cp after processing T’
is defined as ey = f(z,cp, cr).

Recursive models have been thoroughly investigated mainly for supervised learn-
ing. An overview of various aspects including learnability, dynamical properties,
and training algorithms can be found in [135]. An increasing interest in unsuper-
vised recursive processing of structured data can be observed, where we refer to
[12, 18] for overviews of this topic.

Problems: According to the recursive paradigm, RNNs can only process linear and
quasi-linear structures like strings (sequences), trees, and directed positional acyclic

8.8 Structural Learning 197

graphs.2 Obviously, directed positional acyclic graphs constitute a rather restricted
class of graphs for problems in structural pattern recognition. The usual strategy
to overcome this limitation is to propose heuristics, which transform more general
classes of graphs to recursive structures, which in turn can be processed by an RNN.
As for pairwise proximity-based approaches and embeddings into vector spaces,
transformation of highly structured data into a space of less structured data may
occur at the expense of structural information.

Structural Neural Learning Machines

Although the long term vision of combining structural and statistical pattern
recognition has been formulated, only little progress has been made to achieve
powerful tools for intelligent data analysis, in particular for methods that directly
operate in the domain of attributed graphs. All approaches discussed in the previous
section aim at leaving the unexploited domain of attributed graphs in favor of less
expressive domains, for which more powerful analytical techniques are available.
Recursive neural networks differ from the other approaches in such that they operate
on a subdomain of the domain of attributed graphs.

Our goal is to construct learning machines that directly operate on attributed
graphs. Since we are also interested in integrating the symbolic and sub-symbolic
paradigm, Part IT aims at constructing structural neural learning machines that

® can adaptively process arbitrary attributed graphs,

® capture structural information of the data,

® are robust against noise in the attributes and structural errors,

® are computationally more efficient as structural proximity-based methods, and

® can be performed in batch and incremental mode.

What we want is a general framework for classification, function approximation, and
clustering problems without restriction to certain classes of graphs. Also, most of
the disadvantages of other approaches should be avoided including, for example,
the reconstruction problem and the problem of uncontrolled loss of structural
information.

The starting point of the second part of this work is the clustering method for
weighted graphs proposed by Gold et al. [118]. Their work focus on minimizing
a clustering objective from an algorithmic point of view. Here, we present a
principled and generic machinery that can be used to construct structural neural
learning machines, and is independent of the particular optimization algorithm for
minimizing an error criterion.

2. A positional graph is a graph on which each vertex has a prespecified order.

9 The Structural Dot Product

This chapter proposes the fundamental concept of the structural dot product for
attributed graphs. Based on this concept, we develop a theory on the geometry
of structures. We show that the structural dot product is a structural similarity
measure with the same geometrical properties as the conventional dot product for
feature vectors. By introducing the structural dot product, we lay the ground for
differential analysis of functions defined on graphs.

9.1 Introduction

To determine the activation of a conventional unit, we evaluate the dot product
of a vector of input signals and a weight vector. Since the dot product is linear in
one variable, we can exploit its gradient information to formulate learning rules for
minimizing error functions of neural learning machines.

To construct neural learning machines for graphs, the key idea is to replace the
weight vector associated with conventional units by a weight graph, and the dot
product by a suitable structural similarity measure. Both modifications are simple
and their practical realization is of technical nature. What remains is the problem of
formulating iterative methods for optimizing functions defined on attributed graphs.
Descent techniques that use local information of the objective to be optimized are
inapplicable, because a meaningful concept of a derivative for functions on graphs
is apparently unknown [195].

The aim of this section is to establish a theoretical basis upon which we can
formulate concepts of a derivative for functions on graphs. The key concept is the
structural dot product for attributed graphs, which extends the dot product concept
for feature vectors. Extension of the dot product is motivated by the assumption
that an extended version shares many properties with its original concept and
therefore simplifies construction and analysis of structural neural learning machines.
Geometrical results derived from the structural dot product confirm our assumption
to some extent. In particular, we can show that the structural dot product is a dot
product in a geometrical sense. Most importantly, as we will see in the next chapter,
the structural dot product enables us to construct spaces for which concepts of a
derivative of functions on those spaces can be defined. This completely justifies our
approach.

200

The Structural Dot Product

To commence, we present a geometrical view of complex attributed graphs in
the next section. This view motivates the structural dot product and another
theory on the geometry of structures. What makes the whole development of our
theory complicated is that the structural dot product is a dot product, but not
an inner product. Therefore, Section 9.3 is intended to accentuate the difference
of a dot product and an inner product. In Section 9.4, we extend the dot product
of attributed matrices, where the attributes are elements of some inner product
space. Section 9.5 proposes the structural dot product of two attributed graphs as a
maximizer of their adjacency matrices over all possible labelings of the vertices. In
Section 9.6, we develop a theory of the geometry of structures. The results constitute
one important part of our mathematical toolkit for analyzing functions on graphs.
We conclude with a summary in Section 9.7.

9.2 Vector Representations of Attributed Graphs

The aim of this section is to present a geometrical view of attributed graphs.
The geometrical point of view motivates the whole theory developed in this and
subsequent chapters. Moreover, it is aimed at introducing the common terminology
for this part.

Let V be an inner product space over a field K with null element 0 € V. Suppose
that V is equipped with an inner product (., .). For convenience, we restrict ourselves
to the Euclidean space V = R? with the usual scalar product, but point out that it
is possible to extend the whole theory to the more general case of arbitrary inner
product K-vector spaces V.

In what follows, the set 4 of attributes is a subset from R?. Unless otherwise
stated, the null element 0, € R is contained in A.

Complex Attributed Graphs of Bounded Order

Let G} be the set of complex attributed graphs of order n with the null element
04 € A as null attribute e. Note that complex graphs are unrelated to complex
numbers. The term complez refers to graphs that are composed of a proper graph
in a graph-theoretical sense and fictitious (imaginary) vertices and edges. For a
definition of complex graphs we refer to Section 2.2.7.

Graphs of order less than n can be aligned to graphs of order n by adding
isolated vertices tagged with the null attribute € = 04. Suppose that X is a complex
attributed graph of order m < n. To align X, we insert p = n — m vertices such
that the adjacency matrix X’ of the aligned graph X' is of the form

XI . (X Om,p)
Op:m OP:p l

9.2 Vector Representations of Attributed Graphs 201

where 0, p, 0pm, and 0, , are padding zero matrices. Note that each entry of a
zero matrix O, is a d-dimensional zero vector 04 € A.

By aligning, we can embed real attributed graphs of order less than n into GJ}.
Since all what matters is that the graphs are finite, we assume that n is sufficiently
large. Hence, we may drop the superscript n and simply write G4 instead of G}.

Remark 9.1

Aligning graphs is a purely technical trick to enable a derivation of strong mathe-
matical results. In a practical implementation of neural learning machines, aligning
is done implicitly. This is one important key issue to make structural neural learn-
ing machines beneficial for data analysis in the domain of graphs. To clarify this
issue, we will occasionally return to this remark.

Labeled and Unlabeled Graphs in Fuclidean Spaces

In the following, we show how attributed graphs can be embedded into a Euclidean
space. The geometrical view presented here is useful to get a clear picture of the
whole theory developed in this and the following chapters.

Let X = (V, E, X) be an attributed graph from G4. We use a labeling to name the
vertices. A labeling is a bijection v : V' — [1:n] that assigns each vertex v € V' a
unique number v(v). We use the numbers as identifiers for the vertices to deal with
them conveniently.

We call the set G4 the space of labeled graphs. In this space, we consider two
graphs as equal whenever their adjacency matrices are equal. Thus, the space may
distinguish between isomorphic graphs that arise from one another by relabeling
the vertices. A null graph 0 of G4 is a graph, in which each item is assigned the null
attribute e. Since the adjacency matrix of a null graph is invariant under relabeling
of its vertices, we may speak about the uniquely determined null graph of Gy4.

Let ~ be the isomorphism relation defined on G4. The quotient set

[Ga] = Ga/ ~,

of isomorphism classes is called the space of unlabeled graphs. The space of labeled
and unlabeled graphs is related by the mapping

H : G.A - [GAL X = [X]a

which transforms a labeled graph to an unlabeled graph. We call the mapping [.]
unlabeling operation.

We may view the space G4 as the set of all attributed matrices from A™*". This
allows us to geometrically represent an unlabeled graph as a set of vectors in a
Euclidean space. To this end, we consider a representative X = (V, E, X) of an
unlabeled graph [X]. Then the equivalence class [X] is completely described by

X]={X":71€eS,},

202

The Structural Dot Product

Figure 9.1 Vector representations of the unlabeled graphs [X] and [Y]. Blue refers
to vectors from V;x; and red to the vector from V.

where S, is the set of all permutations acting on V', and X™ denotes the graph
obtained by applying @ on the vertices of X. In terms of attributed adjacency
matrices, we can equivalently write

[X]={Xp: Xp=P'XP, Pcll"},

where II" is the set of all (n x n)-permutation matrices. The vector representation
a = vec(A) of an attributed matrix A = a;; is obtained by concatenating its
columns. Thus, a is of the form

_ T
a—(alla-"7an17a12a-"7an2a-"aa1n:-"aann) .

1st column 2nd column nth column

Note that a is a d - n-dimensional vector, because each attribute a;; is a d-
dimensional vector. Using the vector representation of the attributed adjacency
matrices, we obtain the desired Euclidean representation of the unlabeled graph
1X]

Vix| = {zp : xp = vec (Xp), P 11"},

In this representation, each vector p represents a labeled graph. Note that the
cardinality [Vxj| depends on the number and size of the cells of the automorphism
partition of X. To illustrate this, we provide the following example.

Example 9.2
Suppose that A C R.

1. Let [X] be the unlabeled graph consisting of two isolated vertices with weight
2 and 3. Since [X] has two vertices, there are 2! ways to label the vertices. The
resulting adjacency matrices are of the form

X:20 and X':30.
0 3 0 2

Since X # X', the labeled graphs X and X' are unequal in G4. The vector

9.3 Dot Products and Inner Products 203

representations of X and X’ are of the form

x = vec(X) = (2,0,0,3)7
x' = vec(X') = (3,0,0,2)7
giving
Vix) = {z,z'}.
2. Consider a weighted graph Y with two isolated vertices with equal weight 1.
Then the adjacency matrix
1
Y = 0
0 1

of Y is invariant under any permutation of both vertices. Hence, the set V}y] consists
of a singleton y = vec(Y') = (1,0,0,1)T.
Thus, [X] and [Y] are unlabeled graphs of equal order but with different numbers of
labeled representatives. All the vectors of Vix; and V}yj lie in the plane spanned by the
unit vectors w1 = (1,0,0,0)T and us = (0,0,1,0)T. Thus, we are able to illustrate the
vector representations of [X] and [Y]. Figure 9.1 shows their position in the plane.

9.3 Dot Products and Inner Products

This section serves to accentuate the difference of a dot product and an inner
product. The dot product describes the geometric relationship of two vectors,
whereas the inner product is a purely algebraic concept, which generalizes the dot
product in arbitrary vector spaces. What we want is a concept for graphs similar
to an inner product of vectors. In non-vector spaces without well-defined algebraic
operations like the domain of attributed graphs, it is unclear how to formulate an
inner product. An alternative approach is using the geometrical definition of a dot
product, which is independent of algebraic operations.

The dot product of two vectors & and y is defined by
x -y = [lz[|ly]| cos 0,

where 6 is the angle between the vectors and ||.|| is the Euclidean norm. It follows
that & -y = 0 if x is perpendicular to y. Provided that y is normalized, the dot
product therefore has the geometric interpretation as the length of the orthogonal
projection of « onto the line Ry.

A trigonometric calculation yields

z-y=a'y,

showing that the dot product is the usual scalar product. The characteristic proper-
ties of a scalar product lead to the definition of an inner product. An inner product
(.,.y on R™ is a positive definite symmetric bilinear form. In detail, an inner product
satisfies the following properties: let x,y,z € R™ be vectors, and let w € R be a
constant. Then we have

204

The Structural Dot Product

1. (z,z) >0

2. (x,xz) =0 if, and only if, x =0
3. (@,9) = (y,)

4 (x+y.z)=(wy) +(y,2)

5. (we, g) = w (@, y)

9.4 Matrix Dot Products

In this section, we extend the dot product of vectors to attributed matrices and
define the matrix dot product space.

Let A = R? be a Euclidean space, and let A™*™ be the set of attributed (n x n)-
matrices. An attributed matrix X € A"*" is then of the form X = (x;;) where
the entries x;; are d-dimensional vectors.

Let N = n?. We may regard A"*™ as the N-fold direct sum of A by stacking
the columns of each matrix to a N-dimensional tuple with components from A.
Expanding the components, we obtain a (dN)-dimensional vector over R. Then, as
a direct sum of a vector space, the set A"*" is itself a vector space over R with
addition

X +Y = (@i; +yi5)
and scalar multiplication
wX = (wx;;)

for all X = (x45), Y = (y4;) € A"*", and w € R. In addition, the inner product
on A induces an inner product

n n

i=1 j=1
on A"*™ called matrixz dot product. Thus, together with the matrix dot product e,
(A™*™, +) forms an inner product space called matriz dot product space.

Finally, we introduce scalar-matriz multiplication, a concept combining ordinary
scalar and matrix multiplication. This concept enables us, for example, to rearrange
rows and columns of an attributed matrix in terms of matrix operations. The left
scalar-matriz multiplication Z = W X of a real-valued matrix W € R"*" and an
attributed matrix X € A™*" is defined by

n
Zij = E WikThj
k=1

for all ¢, j € [1:n]. Note that each term wjrxy; is a scalar multiplication of a scalar

9.5 Structural Dot Products 205

wy, with a vector xy;. In addition, Z is an attributed matrix. Similarly, the right
scalar-matriz multiplication Z = X W is of the form

n
Zij = E Lfj Wik
k=1

for all 4,5 € [1:n]. As for standard matrix multiplication, the left and right scalar-
matrix multiplication are not commutative. For convenience, we do not distinguish
between scalar-matrix multiplication and the usual matrix multiplication in our
notation.

To illustrate the use of the scalar-matrix multiplication, consider an attributed
matrix X and a permutation matrix P € II". The effect of the right scalar-matrix
multiplication X P of X and P is to permute the columns of X in the same way
that the columns of the identity matrix I,, were permuted in forming P.

9.5 Structural Dot Products

The structural dot product is the first of two supporting pillars for construction
of neural learning machines for attributed graphs. We introduce the structural dot
product and discuss some issues from the perspective of graph matching.

First, we introduce addition and scalar multiplication on the space of labeled graphs
G4 by regarding it as a Euclidean space of matrices. Let X and Y be attributed
graphs with adjacency matrix X and Y, and let w € R be a scalar. Then

X+Y=ZwithZ=X+Y
wX =7 with Z =wX.
Addition and scalar multiplication of graphs are defined via the usual component-
wise addition and scalar multiplication of their adjacency matrices. Thus, the triple
(Ga,+,-) is a vector space called structural space. Clearly, the sum of graphs de-

pends on the particular labeling of their vertices and is therefore meaningless in a
graph-theoretical sense.

A structural dot product X oY of X and Y is of the form

XeY =max XpeY = max P'’XPeY. (9.1)
Pelin Pelin

The next result tells us that the definition of a structural dot product is well-defined,
i.e. independent of the labeling of the vertices of Y.

Lemma 9.1
Let X and Y be attributed graphs with adjacency matrices X and Y . Then

1%2}1)% XPOY = P%%)ISI" XPOYQ. (92)

206

The Structural Dot Product

Proof By definition of the matrix dot product, we have
XeY =Q'XQeQ'YQ
for all @ € II". Then
P XPeQ'YQ=QP'XPQ"eQQ'YQQT
for all P,@Q € II"™. From QQT = I, follows
QP'XPQTeQQ'YQRQ" =QP'™XPQTeY.

Together with the usual matrix multiplication, permutation matrices form a group.
Hence, there exists a permutation matrix R € II" with R = PQT. This shows that
for all permutation matrices P, Q € II", there is a permutation matrix R € II"
such that

R'™XReY =QP'XPQ"eY. (9.3)
Conversely, for each R € II", we have

R'XReY=R'XReI!YI,. (9.4)
The assertion follows from (9.3) and (9.4). |
We provide a geometrical interpretation to get an intuitive idea about the structural
dot product of the given graphs X and Y. To this end, we consider the vector

representations V|x) and V}y of the unlabeled graphs [X] and [Y]. Then we can
express the structural dot product in terms of Vxj and V}y) by

XeY = max z'y,
TEVx]
where y € V}y) is arbitrarily chosen. Note that 2Ty is the inner product derived
from the matrix dot product X e Y. From Lemma 9.1, it follows that Ty is
independent of the choice of y. Since all the vectors of Vx| have the same length,
the structural dot product is the inner product of vectors from V|x; and V|y| with
the smallest enclosing angle. This is illustrated by the next example.

Example 9.3
Suppose that A C R. Consider the labeled graphs X and Y determined by their adjacency

matrices
X = Lo and Y = 3.0 .
0 5 0 1

The vector representations of the unlabeled graphs [X] and [Y] are

V[X] = {iL’ = (13070: 5)T7 x' = (5,07 0,]_)T}
Vi) = {y=3.0,0,1)T,y" = (1,0,0,3)"}.

9.5 Structural Dot Products 207

Figure 9.2 Geometrical interpretation of the structural product X Y. Blue refers
to [X] and red to [Y].

Since the structural dot product maximizes problem (9.2), we have
XeY :max{m-y,m-y',m' ~y,m/-y'}
= max {8,16,16,8} = 16.
Thus, the structural dot product is the inner product
! !
Ty =x -y.

As shown in Figure 9.2, the pairs (z,y’) and (2’,y) are the vectors from V x} X V}y; with
the smallest angle.

Definitions: The geometrical interpretation prompts some definitions. Let X and
Y be attributed graphs from Gy4.

1. Optimal Rotation: An optimal rotation of X towards Y is a permutation
matrix P with!

X.Y:XP.Y.

By R(X,Y) C II", we denote the set of all optimal rotations of X towards Y.

2. Optimal Relabeling: We call a permutation © € §,, an optimal relabeling of X
to Y if its matrix representation P, € II" is an optimal rotation of X towards Y.
By Rx,y € S,, we denote the set of all permutations that are optimal relabelings
of X toY.

3. Angle: Given an optimal rotation P € R(X,Y), the angle between X and YV’
is the angle 6 € [0, 7] between the vectors vec(Xp) and vec(Y). Since

lll = [l=’l and [yl = lly’]|

for all @, &’ € Vix) and all y,y’ € Vy], the angle of X and Y is well-defined
according to Lemma 9.1.

1. Note that an optimal rotation P maximizes (9.1),i.e. XpeY > XgeY forall Q € II".
Hence, we may write X ¢ Y = XpeY.

208

The Structural Dot Product

Note that optimal rotations and optimal relabelings are different representations
for the same concept. We shall make use of both notions.

9.5.1 Complexity of the Structural Dot Product

We show that determination of the structural dot product is NP-complete.

Proposition 9.1
Problem (9.1) is NP-complete.

Proof Let X and Y be binary graphs of order |X| = n and |Y| = m. As usual
X = (z;5) and Y = (y;;) denote the respective adjacency matrices. Then we can
rewrite (9.1) by

XeY = nglla")im Z Z Z Zpripijrsyija (95)

where TI"*™ denotes the set of all (n x m)-permutation submatrices, and p,; and
psj are elements of P. Since all elements occuring on the right hand side of (9.5) are
either one or zero, maximizing (9.5) is equivalent to maximizing the number of terms
DriPsjTrsYij for which all four elements are one. This in turn is equivalent to finding
the maximum number of matching edges in two graphs. Hence, problem (9.5) is
equivalent to the maximum common subgraph problem, which is NP-complete [104].
Since the maximum common subgraph problem is a special case of the structural
dot product, problem (9.1) is, in the worst case, also NP-complete. |

The proof of Proposition 9.1 has two notable implications:

= As shown in (9.5), computing the structural dot product requires no alignment
of the smaller graph to the size of the larger one. This implication is important
for practical issues, especially because of the intractability of the structural dot
product. See also Remark 9.1.

® Let s(X,Y) denote the number of items of a maximum common subgraph of
binary graphs X and Y. From the proof of Proposition 9.1, it follows that s(X,Y")
is equal to the structural dot product X Y. Hence, all properties of the structural
dot product also hold for s(X,Y"). This implication provides a new geometrical
view on the maximum common subgraph, which is illustrated in Section 9.6.

Since problem (9.1) is a graph matching problem, we pose the question as to
whether there is an equivalent transformation of the structural dot product to the
MWCP in an association graph. Since vertex and edge attributes may have negative
values, transformation to an equivalent MWCP is not straightforward as it is for
the standard problems listed in Corollary 3.1.

Proposition 9.2
Problem (9.1) is equivalent to the MWCP in an association graph.

9.6 Geometry of Structures 209

Proof Throughout the proof, we consider the matrix representations of partial
morphisms from X to Y. Let X and Y be attributed graphs from G4 of order
|X| = n and |Y'| = m with adjacency matrices X = (x;;) and Y = (y;;). Similarly,
as in the proof of Proposition 9.1, we may rewrite (9.1) by

Xev=_mex 33 nnelus

r=11i=1 s=1 j=1

Let L : R — R be a linear function with 0 < L ([y;;) < 1 for all r,s,i,j. It is
easy to show that such a linear function exists. Clearly, a maximizer P for problem
(9.1) is also a maximizer for the matching objective

FPXY) =3 Z Z mepsjb (zy:5) (9.6)

over the feasible region II"*™ of all (n X m)-permutation sub-matrices. This holds
only because the feasible region of problem (9.1) consists of total monomorphisms
and contains no partial monomorphisms. Since L is a transformation of all terms
x] y;; to the interval]0,1], we may relax the feasible region to the set M of
all partial monomorphisms from X to Y without effecting maximization of (9.6).
According to Proposition 3.2, the feasible region M is p-closed. Hence, by Theorem
3.1, problem (9.6) constrained over M is equivalent to the MWCP in an association
graph X ¢ Y. This implies that the maximum weight cliques of X ¢Y are in one-
to-one correspondence with the optimal solutions of problem (9.1). |

9.6 Geometry of Structures

This section derives fundamental geometrical ideas from the notion of the structural
dot product. Besides other geometrical properties, we show that the structural dot
product is a conventional dot product in the sense that

XeY = HXHHYH cosf,

where 6 is a well-defined angle between X and Y.

In contrast to standard dot products, a structural dot product is not bilinear and
therefore not an inner product. This shortcoming makes construction of tools for
data analysis complicated. But we can show that structural dot products share
some useful properties with inner products. We begin our analysis by providing
some basic properties of the structural dot product.

210 The Structural Dot Product

Algebraic Properties

Proposition 9.3
Let X, Y, Z € Gy be attributed graphs with adjacency matric X, Y, and Z,
respectively. Then

. XeX=XeX >0 (positive definite, part 1)

2. XeX=0s X=0,, (positive definite, part 2)

3. XeY =YeX (symmetric)

4. wX oY =w(X oY) for all w € R} (positive homogeneous)

5. (X 4+Y)eZ<XeY+YeZ (sublinear)

6. XY = XeX=YeX (invariant under relabeling)
Proof

1. Let P be a an optimal rotation of X towards Y. Since the matrix dot product
is an inner product, we have

XeX =P XPeX =|P'XP| | X]| cosa,
where a is the angle between vec(PTX P) and vec(X). From
P'XPeP'XP=XeX
follows
IPTXP| = [|x].
Hence,
XeoX=|X|cosa < X eX.

A structural dot product maximizes the matrix dot product of the adjacency
matrices over all rotations. Therefore we have

XOXEI;EXIHOX:XOX.
Combining the last two inequalities yields
XeX=XeX >0,

where the positiveness of the structural dot product follows from the positiveness
of the matrix dot product.

2. Follows directly from the positive definiteness of the matrix dot product.

3. Let P be an optimal rotation of X towards Y. Since the matrix dot product

9.6 Geometry of Structures 211

is symmetric, we have

XeY=P'XPeY
=Y eP'XP
=QYQ" e QP'XPQ"
for all permutation matrices @ € IT". Applying Lemma 9.1 yields X oY < Y e X.

With the same argumentation, we obtain Y ¢ X < X eY'. Finally, combining both
inequalities proves the third property.

4. Since w > 0, we have

wX Y = max PT(wX)PoY

Pclln

= max (PTXP . Y)
Pcll»

= w(X ° Y).

5. Let P be an optimal rotation of X + Y towards Z. Then
(X+Y)eZ=P' (X +Y)PeZ
= (PTXP + PTYP) o Z
=P"'XPeZ+P'YPeZ
<max Q"XQeZ + max R'"YRe Z
Qelln Relln
=XeZ+Yel

6. Let X ~ Y. Then there are permutation matrices P and Q with Y = PTXP
and X = QTY Q. The assertion follows from combining the two inequalities
XOX:én%x R'XReX >P'XPeX=YeX=YeX
e n

YOX:én%x RYReX>Q'YQeX=XeX=XeX.
oTin

The Generalized Frobenius Norm for Structures

A norm on G4 is a function
[1:Ga =R, X | X|
with the following properties for all X,Y € G4 and all w € R:
LJX]|=0&e X=0
2. [JwX| = fwl[|X]|
3 X+Y < X[+ 1Y)

Although the structural product is not an inner product, it induces a norm in the
usual way.

212

The Structural Dot Product

Figure 9.3 Graphs as points on a ball Bixj. Shown are the vector representations
Vix] and Vyy from the unlabeled graphs [X] and [Y] of Example 9.2.

Theorem 9.1
The function

Il:Ga— R, X—vVXeX
1S @ norm.

Proof Consider the vector space AY with N = n?. Then from elementary linear
algebra, it follows that

2] = VaTz

is a norm on AY. Now let X be an attributed graph of order n with adjacency
matrix X. Applying the vec-operator on X yields a vector x = vec(X) € AV.
From

VXeX=VXeX=VzTx

follows the assertion. | |

We call the norm |.|| defined in Theorem 9.1 a generalized Frobenius norm. It
generalizes the Frobenius norm

|A||> = tr (ATA)

of matrices with real-valued entries.

Since the norm of a graph X is independent of its labeling, we have the following
geometric interpretation: the unlabeled graph [X] is a set of points on a ball
Bix) with center 0 € A" and radius || X|. The points are given by the vector
representation Vixj of [X]. Each vector of Vx; is a support of Bjx;. Figure 9.3
provides an illustrative example.

A direct implication of Theorem 9.1 is that

IX -Y[=V(X-Y)e(X -Y) (9.7)

is a metric on Gy, called generalized Frobenius metric. It is important to note that
| X — X’|| can be nonzero for isomorphic graphs X and X’. Hence, the generalized

9.6 Geometry of Structures 213

Frobenius metric depends on the labeling of the graphs and is therefore meaningless
in a graph-theoretical sense.

Remark 9.4

It is notable that the structural dot product induces the same norm as the stan-
dard dot product. Consequently, the generalized Frobenius metric is actually the
Fuclidean metric when we regard the vector representation of the labeled graphs.

The Structural Frobenius Metric

The generalized Frobenius norm is not appropriate in some cases, because distinct
isomorphic graphs from G4 have nonzero Frobenius distance. The generalized
Frobenius metric is derived from the generalized Frobenius norm in the standard
manner. Another way to derive a metric from the generalized Frobenius norm is to
take the structure of the given graphs into account. We define the distance measure

§(X.Y) = | Xp —Y|

min
Pclln
for all X,Y € G4. The distance §(X,Y) minimizes the Frobenius metric over all
labelings of the vertices. The next result shows how the distance ¢ is related to the
structural dot product.

Lemma 9.2
Let X andY be attributed graphs. Then

5(XY) = JIX2 = 2(X o V) + V2.
Proof We have
O(X.Y)* = min |[PXP Y|’
= min { (PTXP - Y) o (PTXP - Y) |.
From the bilinearity of the matrix dot product follows

6(X,Y)? = min {PTXPePTXP 2(P'XPeY)+YeY}
perr

min (X7~ 2(PXP o)+ |¥]?)

The terms | X|| and ||Y]|| are constant for all permutation matrices. Thus, min-
imizing the last equation is equivalent to maximizing the term PTXP e Y. We
obtain

5K V) = X[- g 2(PTXP oY) + ¥
= x| 2(x o)+

Taking the square root yields the assumption. |

21

The Structural Dot Product

Theorem 9.2 proves that ¢§ is indeed a metric. Because of Lemma 9.2, we call the
metric § structural Frobenius metric induced by the structural dot product.

Theorem 9.2
The mapping

0:Gu x Gy — R, (X,Y) — §(X,Y)
is a distance metric on Gy.
Proof Let X,Y, and Z be attributed graphs.

1. First we show that §(X,Y) =0 if, and only if, X ~ Y.
=: Let §(X,Y) = 0. Then there is an optimal rotation P of X towards Y with

|[PTXP-Y| =o0.

Thus, we have PTX P =Y. This proves X ~ Y.
<: Let X ~ Y. From Proposition 9.3(6) together with Lemma 9.2 follows
0(X,Y)? = [X[? - 2(X oY) + V]2

= [IX]* = 2(X o X) + |1 X]?

=0.
2. Next we show that §(X,Y") = §(Y, X): follows from Proposition 9.3(3) together
with Lemma 9.2.
3. Finally, we show that 0(X,Z) < §(X,Y) +0(Y,Z): let P € R(X,Z) and
Q € R(Y, Z) be optimal rotations. Suppose that R is a permutation matrix such
that

§(X,Y)=||R'XR-Q'YQ]|.
According to Lemma 9.1, such a permutation matrix R exists. Then we have
§(X,2)=||PTXP-Q'YQ+Q'YQ - Z|
<[|PTXP-Q'YQ| +|Q"YQ - Z|
<|RTXR-QTYQ|| + [QTYQ - Z||
=0(X,Y)+4(Y, 7).
|
The structural Frobenius norm gives rise to the following geometrical interpretation.
Suppose that X and Y are graphs with vector representations V|x) and Vjy). The

vectors of Vx| are the supports of the ball B|x|. Each support & € Vx| defines a
sector S, with

z2€8, = 2z'x>2T2!

for all ” € Vix;. The sector Sy consists of all points that are closer to @ than

9.6 Geometry of Structures 215

Figure 9.4 Geometrical interpretation of the structural Frobenius metric of given
graphs X and Y. The supports and z’ of [X] determine sectors S, and S,,. Since
the vector representation y of Y lies in sector S,-, the distance §(X,Y) is equal to
the Euclidean distance of z’ and y.

to any other support from V|x. Thus, the supports of B|x| determine a Voronoi
tessellation. To compute the structural Frobenius norm §(X,Y"), we first determine
the sector in which the vector representation y of the labeled graph Y falls and
then determine the Euclidean distance between the support of that sector and the
vector y. The resulting distance is independent of the labeling of Y.

Example 9.5
Consider the labeled graphs X and Y from Example 9.3. The vector representation of the
unlabeled graph [X] is
Vix) = {x=(1,0,0,5)", 2" = (5,0,0,1)"}.
The vectors = and x’ determine sectors S and S,/. The vector representation of the

labeled graph Y is y = (3,0,0,1)T. The vector y is an element of the sector S,,. Hence,
the structural Frobenius metric is given by

§(X,Y) =" —y|.

Figure 9.4 illustrates this example.
The Structural Cauchy-Schwarz Inequality

The following Theorem extends a famous inequality known as the Cauchy-Schwarz
inequality.

Theorem 9.3 (Structural Cauchy-Schwarz Inequality)
Let X and Y be attributed graphs. Then

| X o Y| < [|X[|[[[]
Proof Let P be an optimal rotation of X towards Y. Then we have

|XeY|=|PTXPeY|.

216

The Structural Dot Product

From the Cauchy-Schwarz inequality for the matrix dot product follows

(X o Y| < [|[PXP||Y] = [[X]|[¥]-

The Angle of Attributed Graphs

Using the structural Cauchy-Schwarz inequality, we are in the position to show that
the angle of attributed graphs has a geometrical meaning. For two nonzero graphs
X and Y, the angle 6 € [0, 7] between X and Y is defined (indirectly in terms of
its cosine) by

XeY
cosf = —————. (9.8)
X

The structural Cauchy-Schwarz inequality shown in Theorem 9.3 implies that

XeY
Soormon <
XY

and thus assures that this angle is well-defined. Although a structural dot product
X oY is not an inner product, (9.8) shows that X e Y has the same geometrical
properties as the standard dot product.

As an aside, having the concept of an angle for attributed graphs, we are in the
position of defining structural orthogonality in the usual way.

The Structural Minkowski Inequality

Consider the product space
GﬁZGAX--- XGA.
A —
p times

An element of G4 is a tuple of the form (X;)? | with X; € G4 for alli € [1:p]. A
useful tool is the structural Minkowski inequality.

Theorem 9.4 Structural Minkowski Inequality
Let (X;)!_, and (Y;)}_, be tuples of attributed graphs from GY. Then we have

ZP:XH/ o (Xi+Y;) < Zp:Xi-Xﬁ XP:YZ--YZ-.
i=1] 1

Proof Without loss of generality, we may assume that

p
> (Xi+Yi)e(Xi+Y;)>0.
i=1

9.6 Geometry of Structures 217

Since the structural dot product is sublinear, we have
P P P
D(Xi+Yi)e(Xi+Y) <> (Xi+Yi)eXi+ > (Xi+Yi)eYi
i=1 i=1 i=1

From the structural Cauchy-Schwarz inequality, it follows that

[(Xi + Vi) o Xu| < || X0 + Y3 || x|
|(Xi +Y3) o Yi| < [|X; + Vi |3
for all i € [1: p]. This gives the inequality

S (X4 Vi) e (X4 1) Z||X+Y!HX||+Z||X+Y||HY||

i=1

=A =B

The terms A and B at the right hand side of the last inequality can be viewed as
standard scalar-product of vectors from RP. Applying the usual Cauchy-Schwarz
inequality yields

P P
= \ PR dINDI Rk
i=1 i=1

p p
CENDIIEER D
=1 =1

We arrive at

p p
> (Xi+Yi) e (Xi+) \IZHXJFYHJZH)QHQ
i=1 i=1

+J§\|X¢+nwiumf-

Since HXZ- + Y;H2 = (X,- + Y;) ° (Xi + Yi), the assertion follows from dividing both
sides of the last inequality by the term

_XP;HXZ-H@HQ.

218

The Structural Dot Product

9.6.1 The Weighted Mean

Next, we define the weighted mean of graphs. Let M, X, and Y be the adjacency
matrices of the graphs M, X, and Y, respectively, and let n € [0, 1] be a constant.
An attributed graph M is a weighted mean of X and Y if there is an optimal
rotation P from X towards Y such that

M=nXp+(1-n)Y. (9.9)

Note that the unlabeled weighted mean [M] is in general not uniquely determined,
because X p needs not be uniquely determined. But Theorem 9.5 shows that M is
at least a weighted mean of X and Y in a metrical sense.

Theorem 9.5

Let M, X, and Y be attributed graphs with adjacency matrices M, X, and Y.
Let P € R(X,Y) be an optimal rotation of X towards Y, and let n € [0,1] be a
constant. Suppose that there is an optimal rotation P € R(X,Y) with

M =nXp+(1—-1n)Y.
Then the following equations hold:

S(X, M) = (1 n)8(X,Y)
§(M,Y) =nd(X,Y).

Proof We only show the first equation. The proof for the second equation is
similar. We begin by showing that P is also an optimal rotation of X towards M.
For this, let Q € I1™. Note that

Q' XQeM =Q'XQoe (nPTXP +(1- n)Y)
_ n(QTXQ . PTXP) +(1-1) (QTXQ . Y).

From the proof of Proposition 9.3(1) follows

Q' XQeP'XP<P'XPeP'XP=XeX.
By assumption, P is an optimal rotation of X towards Y and therefore

Q' XQeY <P'XPeY =XeY.
Combining both inequalities finally yields

Q'™ XQeM <P'XPeM

for all @ € II". Hence, P is an optimal rotation of X towards M. Now we are in

9.7 Conclusion 219

the position to show the first equation. We have
§(X,M)=||PTXP— M|
= HPTXP —-nP'XP—(1- n)YH
—(1-n)||P"XP Y|
= (1 =n)é(X,Y).

Equality of the second and third line follows from Proposition 9.3(4) using w =
1—n>0. |

9.7 Conclusion

This chapter proposed a structural dot product for attributed graphs as an analogon
to the standard dot product for vectors. We derived a geometrical view of structures
and proved the following key properties of the structural dot product:

1. Determining X e Y is an NP-complete graph matching problem.

2. X oY can be mapped to an equivalent MWCP in an association graph.
3. X oY induces a generalized Frobenius norm and metric.
4.

X oY induces a structural Frobenius metric as a minimizer of the generalized
Frobenius metric.

5. The structural Cauchy-Schwarz and structural Minkowski inequality holds.
6. We have

X oy = x]|¥]| cost

where 6 € [0, 7] is a well-defined angle of X and Y.

7. Let P € R(X,Y) be an optimal rotation. The graph determined by the
adjacency matrix

nXp+(1—nY
is a weighted mean of X and Y in a Euclidean sense.

Since the structural dot product induces a metric, we can introduce concepts
from topology and infinitesimal analysis, including open and closed neighborhoods,
limits, and continuity. If we can show that each Cauchy sequence of attributed
graphs converges, then we are in the position to introduce concepts of a derivative
for functions on graphs. The next chapter is devoted to these issues.

10

Analysis of Functions on Graphs

In 2001, Jolion [195] published a counter paper discussing some trends and chal-
lenges towards the next generation of graph-based representations. In the context
of combining structural and statistical pattern recognition, he noted:

“What is the meaning of the derivative of a (function at a) graph? Maybe
this is only nonsense. However, if we can somehow define this concept, we
can move from discrete to continuous optimization. What about a Newton-
Raphson’s algorithm working in a space of graphs? In order to compute or
estimate a derivative, one may first be able to compute a difference. So what
is the meaning of a difference between two graphs? Not possible?”

One of the key issues for the success of almost any learning machine in the domain
of feature spaces, which is missing in the domain of attributed graphs, are powerful
mathematical tools to minimize error functions using local gradient information.
Jolion’s statement indicates that the concept of a derivative of functions defined on
attributed graphs seems to be far off.

This chapter is devoted to answering the questions posed by Jolion. In particular,
we show that the gradient of a differentiable real-valued function on attributed
graphs is a well-defined attributed graph pointing in the direction of steepest
ascent. This result facilitates application of iterative algorithms based on local
gradient information to optimize smooth functions on attributed graphs. Besides
the structural dot product, differential analysis of structural functions constitutes
the second of two supporting pillars for the construction of neural learning machines
for attributed graphs.

10.1 Introduction

In the previous chapter, we suggested the structural dot product as a combiner of an
input graph and weight graph to determine the activation of a unit. Feeding input
graphs into a network is half of the story; the other half is formulating learning rules
that minimize some error function defined on attributed graphs. Usually, a learning
rule uses local gradient information of the error function. Gradient information, in
turn, presupposes existence of a derivative. A concept of a derivative for functions
of attributed graphs is unknown, as indicated by Jolion [195]. This shortcoming is

222

Analysis of Functions on Graphs

part of the more general problem of a lack of mathematical tools for data analysis
in the domain of attributed graphs, as several researchers [47, 120, 121, 126, 244]
point out.

In this chapter, we show how we can transfer concepts from differential analysis
of functions on vector spaces to permutation invariant functions on graph spaces
in a meaningful way. The key idea is to work with two metric spaces. The first
metric space consists of the set of labeled graphs together with the generalized
Frobenius metric. The space of labeled graphs is a Banach space isomorphic to
a Euclidean space. In Banach spaces, we have all the analytical concepts at our
disposal, including, for example, limits, continuity, and differentiability. But the
main problem is that all these concepts appear meaningless in the sense that certain
analytical concepts or properties could depend on the particular labeling of the
vertices. To keep track of the structural properties, we consult a second metric space,
the set of all unlabeled graphs (isomorphism classes) together with the structural
Frobenius metric. This space captures full information of the structure of a graph
and abstracts from the particular labeling. Since algebraic operations on unlabeled
graphs are undefined, it is impossible to define a derivative of functions on unlabeled
graphs. Transition from labeled to unlabeled graphs combines the advantages of
both metric spaces, namely analytical with structural traceability. As a result, we
can show that analytical concepts defined in the space of labeled graphs have a
well-defined structural meaning in the space of unlabeled graphs.

This chapter is organized as follows: In Section 10.2, we introduce metric spaces
of labeled and unlabeled graphs and the notion of limit. Section 10.3 introduces
structural functions on attributed graphs and the notion of continuity. Differentia-
bility is considered in Section 10.4, and optimization of smooth structural functions
in Section 10.5. Finally, Section 10.6 concludes with a summary and an outlook on
further research.

10.2

Metric Spaces of Structures

In this section, we introduce two metric spaces, the space of labeled graphs together
with the generalized Frobenius metric, and the space of unlabeled graphs together
with the structural Frobenius metric. Metric spaces have enough structure to
introduce the notion of limit. We show that the limit of a sequence of labeled graphs
is a well-defined structural concept independent of the labeling of the vertices. Using
the concept of limit, we can show that the space of labeled graphs is a Banach space
and the space of unlabeled graphs is complete.

A metric space is a pair (S,d) consisting of a set S and a metric d defined on S.
The metric d defines a topology on &, where the open balls with center z € S and
radius p are of the form

B(z,p)={x €S :d(z x) < p}.

10.2 Metric Spaces of Structures 223

The open ball B(z, p) is called p-neighborhood of z. By

B(z,p)={x €S :d(z x) < p}.
we denote the closed ball with center z and radius p.

To investigate functions on attributed graphs, we consider two metric spaces
coevally:

1. Labeled Graph Space (Gu,|.||): Obviously, G4 together with the generalized
Frobenius metric ||.|| is a metric space. Since G4 is finite dimensional, the resulting
metric space is isomorphic to a Euclidean space [205]. We denote the open
and closed balls with center Z € G4 and radius p by Br(Z,p) and Br(Z, p),
respectively. The subscript F in Br(Z, p) emphasizes that the underlying metric
is the generalized Frobenius metric.

2. Unlabeled Graph Space ([GA] ,0): According to Lemma 9.1 and 9.2, the struc-
tural Frobenius metric § is independent of the labeling of its arguments. Hence,
§ is well-defined in [G4]. From Theorem 9.2 then, it follows that ([G4],0) is a
metric space. By B;s([Z], p) we denote the open ball and by Bs([Z], p) the closed
ball with center [Z] and radius p. The subscript 0 in Bs(Z, p) emphasizes that
the underlying metric is the structural Frobenius metric.

An immediate consequence is that unlabeling preserves open and closed sets in
some way.

Lemma 10.1
Let Z € Gy be an attributed graph and let p > 0 be a positive constant. Then

X € Br(Z.p) = [X] € Bs([Z], p)
X €Brp(Z.p) = [X]€Bs(1Z],p)-

Proof The assertion directly follows from

o([X], [Y]) = 6(X,Y) [Xp-Y|[<X =Y.

= min
Pelln
[|

The converse statement of Lemma 10.1 is invalid, because labeling of an unlabeled
graph is not well-defined. Next, we show that convergence of a sequence of labeled
graphs is preserved by unlabeling.

Lemma 10.2
Suppose that (X;) = (X;)$2, is a convergent sequence of attributed graphs in Ga
with limit Z. Then

lim [X,] = [2].

71— 00

Proof Let € > 0. Since (X;) is convergent to Z in Gu, there is an ip > 0 such

224

Analysis of Functions on Graphs

that X; € Br(Z,¢) for all i > iy. From Lemma 10.1, it follows [X;] € B;s([Z],¢).
This implies convergence of ([X;]) to [Z]. |

Suppose that (X;) is convergent with limit Z. From Lemma 10.1 follows that

lim X[=27

11— 00
for all 7 € S,,. This shows that the convergence behavior is locally independent of
the labeling of the vertices. For the same reasons as in Lemma 10.1, convergence of

a sequence of unlabeled graphs does not imply convergence of a sequence of labeled
graphs. This is illustrated by the following example.

Example 10.1

Suppose that Z € Ga is an attributed graph with Z # Z™ for m € S,. The sequence
([X:]) of unlabeled graphs in [Ga] with [X;] = [Z] for all i > 0 is convergent with limit
[Z]. Since labeling of the vertices of unlabeled graphs is not well-defined, there are n!
possibilities to label the vertices of each element of the sequence ([X;]). Depending on the
chosen labeling, the resulting sequence of labeled graphs (X;) may or may not converge.
If we choose X; = Z for all ¢ > 0, then the sequence (X;) trivially converges to Z. But
the sequence (X;) with

X;

Z™ : dimod2=0
Z : imod2=1

for all i > 0 diverges.

Suppose that (S,d) is a metric space. A Cauchy sequence is a sequence (X;) in S
so that for every positive real number £ > 0, there is an integer ig > 0 with

d(XZ,XJ) <e

for all integers 7, j > ig. A metric space in which every Cauchy sequence has a limit
is called complete. A complete normed vector space is a Banach space. Obviously,
(G, |I|l) is a Banach space.

Since [GA} has no algebraic structure, it is not a vector space and therefore can
never be a Banach space. Hence, the best we can do is to show whether ([(GA] , 5)
is a complete space.

Theorem 10.1
In [GA] every Cauchy sequence converges to a limit in [GA].

Proof Let ([X;]) be a Cauchy sequence in [Ga]. We first show that ([X;]) is
bounded. For this, we choose £ = 1. Since ([XZ]) is a Cauchy sequence, we can find
an integer ig > 0 with

6([Xz]a [XJ]) <1

10.2 Metric Spaces of Structures 225

for all 4, j > i¢. From Lemma 9.2 follows

51, 12]) = 80,) = /1267 — 20X, 0) + [,

Applying the structural Cauchy-Schwarz inequality (Theorem 9.3) yields

80, X;) = | X = 2|6 + 1 X2
—] - 1%

This implies ||XZ|| - HXJH < 1 for all i, 5 > ip. In particular, for k = ig+ 1, we have
HX1H <1+ HX’CH for all 7 > ig. Hence, from

] < mase {1260 X (1] =

for all i > 0, it follows that ([X;]) is bounded. Clearly, the sequence ([X;]) is
contained in the closed ball B5(0, M), which is a compact subset of the metric space
[GA]. Then by the theorem of Bolzano-Weierstrass for metric spaces, the sequence
([X;]) has a convergent subsequence ([X/]) with limit [Z]. It remains to show that

the whole sequence ([X;]) converges to [Z]. For any € > 0, we can find an ig > 0

with
€

5([Xi]v [X]]) < 5

for all i, j > 4g. Since ([X/]) is a subsequence with limit [Z], there is a k > iy with
€
§([Xx], [2]) < 5

Since § is a metric, we have

5(1X.).[2]) < 5(1X.). [Xa]) + 5([Xal. [2]) <

This shows that ([X;]) converges to [Z]. [|

From Theorem 10.1, it follows that ([GA] , 5) is a complete metric space.

We conclude this section with some remarks on product spaces of labeled and
unlabeled graphs. Since G4 is isomorphic to a Euclidean space of dimension N, the
product space

GQZGAX---XGA
—_———
p times

is isomorphic to a Fuclidean space of dimension p/N. An element of G4 is a vector
of the form (X;)?_, with X; € G4 for all i € [1:p]. The generalized Frobenius norm
on GY is defined by

| (X3P 1H ZX.X

226 Analysis of Functions on Graphs

Using the structural Minkowski inequality proven in Theorem 9.4, it is straightfor-
ward to check that ||| is also a norm on the product space G/. The norm on the
product space induces the generalized Frobenius metric on Gﬁ in the usual way.
The structural Frobenius metric of (X;)?_; and (Y;)?_; is given by

(60) = XL 1P = 230 X o ¥ 002,

10.3 Functions on Attributed Graphs

This section introduces and studies functions on attributed graphs that are invariant
under relabeling of the vertices.

A function on attributed graphs is a mapping
[:GY =S, (Xl,...,Xp)r—>f(X1,...,Xp). (10.1)
We say f is a structural function if it satisfies the permutation invariance property
f(Xl,...,Xp) =f (Xfl,...,X;P)

for all (X1,...,X,) € G4 and all permutations 1, ...,m, € S,. For convenience of
presentation, we focus on functions defined on Gy4.

Suppose that f : G4 — S is a structural function. The unlabeling operation gives
rise to a uniquely determined function f: [G A] — & so that the following diagram
commutes:

| 7
s 4. s
Uniqueness of f follows from the permutation invariance property of f and [.].
Hence, we may identify structural functions f on G4 with functions on [GA].
A useful property of structural functions is that they are closed under linear
combination, multiplication, and composition.

Proposition 10.1
Let w1, wy € R. Suppose that f, f1,f2: G4 — S and g : G4 — Gy are structural
functions.

Lowfi+wafa: Gy — S, X wyfi(X)+wsfo(X)
2. f1f2 . G_A — S, X s fl(X)fQ(X)
3. fog:Ga— S, X f(g(X))

10.3 Functions on Attributed Graphs 227

are structural functions.

Proof Trivial. |

Next, we provide simple examples of functions on attributed graphs, which are
partly important for the following considerations.

Ezxample 10.2

Structural proximity measures and graph invariants like maximum clique weight, weighted
degree, diameter, and so on are structural functions on graphs. In addition, consider the
following functions:

1. Unlabeling operation. The function
[]:Ga = [Ga], X [X]
is trivially a structural function.
2. Linear map. Let W € G4 be a graph with adjacency matrix W . Then the function
Lw:Ga—R, X—WeX

violates, in general, the permutation invariant property.

3. Rotation/Relabeling. Let ™ € S, be a permutation. The function
RW:GA—)GA, XI—PXW

trivially violates the permutation invariant property. A rotation or relabeling is a
homomorphism of vector spaces in the sense that

Rr(X+Y)=R«(X)+ Rx(Y)
Rr(wX) = wRx(X)
for all X, Y € G4 and all w € R. Since the second equation is evident, we only show

the first equation. Let X and Y be the adjacency matrices of X and Y. Suppose
that P is the permutation matrix representing 7. We have

Ri(X+Y)=(X+Y)"=P (X +Y)P
=P'XP+P'YP
= X"+ Y™ = Ro(X) + Ra(Y).
4. Parameterized structural dot product. Let W € G4 be a graph. The structural

dot product
Sw:Gas— R, X—WeX

with parameter W is a structural function. The function Sw can be expressed as a
pointwise maximizer of linear maps

Sw(X) = max Lw~(X) = max Wp e X,
TESh Pcll™
where Wp, W, and X denote the adjacency matrices of W™, W, and X.
A metric space has sufficient structure to define continuity of functions. The next

result shows that continuity of a structural function f at Z implies continuity of jA’
at [Z].

228

Analysis of Functions on Graphs

Lemma 10.3
Let (S,d) be a metric space. Suppose that f : G4 — S is a structural function. If f
is continuous at Z € Ga, then the function f is continuous at [Z].

Proof Let e > 0. From continuity of f at Z, it follows that there exists a positive
constant p > 0 with

d(f(X), [(Z)) <«

for all X € Bp(Z, p). From Lemma 10.1, together with the fact that f is a structural
function, it follows that

d(f((X)), f(12) = d(f(X), f(Z)) <&
for all [X] € Bs([Z], p). Hence, f is convergent at [Z]. |

Lemma 10.3 is useful because in order to determine continuity of a function f at
[Z], it is sufficient to check whether f is continuous for an arbitrary labeling of [Z],
e.g. Z. In addition, from continuity of f at Z, we can conclude continuity of f at
Z™ for all m € S,,.

Example 10.3
The functions (1)-(4) from Example 10.2 are continuous. Note that only functions (1) and
(4) are structural functions.

1. Unlabeling operation: Continuity of [.] follows from Lemma 10.2.

2. Linear map: Continuity of Ly follows from the continuity of linear maps in
Euclidean spaces.

3. Rotation/Relabeling: Continuity of R, follows from Lemma 10.3.

4. Parameterized structural dot product: Continuity of Sy follows from the fact that
a pointwise maximizer of continuous linear maps is continuous.

10.4 Differentiability

A Banach space provides enough structure to define concepts of a derivative. Hence,
it is straightforward to apply an analysis of differentiable functions to structural
functions on G4. Since algebraic operations in [G A] are unknown, we cannot define
a derivative of functions on [G4]. But we can use the complete metric space [G]
to investigate whether the derivative of a function on G4 is a well-defined graph-
theoretical concept.

Consider a function f : G4 — R. The Fréchet derivative of f at X € G4 is a linear
map

Df(X):Gq—R, Wi Df(X)-W =Df(X)(W)

10.4 Differentiability 229

such that the limit

L FCEW) - FO0) - DGO W

=0
W] —0 W

exists for any non-zero W € G4. The function f issaid to be Fréchet differentiable at
X if its derivative exists at that point. If S C Gy, then f is said to be differentiable
on S if f is differentiable at every point X € S. Under these conditions the following
properties of the Fréchet derivative are preserved:

1. Differentiability at X € G4 implies continuity at X.
2. Df =0, where f is constant.
3. Df =W, where f(X) =W e X + h is a linear map.
4. Existence of rules of calculus.
(a) Linearity:
D(w1f1 + U)Qfg)(X) -W = wlDfl(X) -W + U)QDfQ(X) -W
(b) Product Rule:
D(f1f2)(X) - W = foa(X)Df1(X) - W + f1(X)Dfo(X) - W
(¢) Chain Rule:

D(fz0 fi)(X)-W = Dfa(f1(X)) - (Dfr(X) - W)

From elementary calculus, it follows that the derivative of a structural function f
at X is a linear map of the form

Df(X)-W =Lag(W)=GeW.

The graph G determined by the adjacency matrix G is the gradient V f(X) of f at
X pointing in the direction of steepest ascent. We pose two crucial questions:

1. Does the derivative of f at X™ exist for all m € S,, %
2. Is the gradient of f at X isomorphic to the gradient of f at X™?

Theorem 10.2 answers both questions positively.

Theorem 10.2
Let f: Gy — R be Fréchet differentiable at X € Gga. If f is a structural function,
then f is Fréchet differentiable at X™ € G4 with

Df(X)=RroDf(XT) (10.2)
foradlmeS,.

Proof Let (Df)™ (XT™) be a shortcut notation for the composition Ry o Df (X™).
We first assume that f is Fréchet differentiable at X™ € G4 for all # € S, and

230

Analysis of Functions on Graphs

prove (10.2). Suppose that there is a permutation 7 € S,, with
L=Df(X)# (Df)" (X") =L".

Note that L and L’ are linear maps on G4. For W # 0 we define the mappings
fX+W) - f(X) - L(W)
Wl
fXT+WT) — f(XT) — L'(WT)
Wl

r(W) =

TW(W) =

Note that the generalized Frobenius norm is independent of the labeling, i.e. [|W|| =
|[W™||. Since f is Fréchet differentiable at X and X™, we have

lim #(W)=0 and lim r,(W)=0
[Wi—o0 Wi—o

for any sequence W — 0. Using the mappings r and r,, we approximate f in a
neighborhood of X and X™ by the linear functions L and L’ and obtain

F(X+W)=f(X)+LW)+r(W) W] (10.3a)
J(XT+WT) = f(XT) 4+ L'(WT) +r (W) [|[W]. (10.3b)

From linearity of R, it follows that X™ 4+ W™ = (X + W)™. Since f is a structural
function, we have f(X + W) = f((X +W)™) = f(X™+ W7™) and f(X) = f(X7).
Subtracting equation (10.3b) from (10.3a) yields

L(W) = L'(W™) = (r(W) — (W) - | W] (10.4)

Let w € R with w # 0, and let H # 0 be a complex attributed graph from Gy.
Since equation (10.4) holds for any W, it also holds for W = wH. For sufficiently
small w, equation (10.4) reduces to

L(H)-L'(H™) = (r,r(wH) — r(wH)) RzalR
Taking the limit w — 0 yields
L(H)-L'(H™) = 0.

Let us rewrite the last equation in terms of attributed matrices. Suppose that the
linear mappings L and L’ are of the form L(X) = Le X and L/(X) = L'eX. With
P €11, as a matrix representation of =, we have

L(H) —L'(H")=LeH — L' « PTHP
—LeH-PL'PTeH
= 0.

Since H was chosen arbitrarily, we have L = PL’PT and therefore, L’ = PTLP.
Hence, L’ = L™ = (Df)™(X™) contradicts our assumption and proves equation

10.4 Differentiability 231

(10.2).

Now it is easy to show that f is Fréchet differentiable at X™ for all = € §,,.
Consider the mapping r, defined by
SXT+ W) — f(X7T) - L™(W)

(W) = Tl

Using a similar argumentation as in the first part of the proof, we have

f(X+W)=f(X)-PTLP e PTWP

)=]
From
PTLPePTWP=LeW
follows
ra(W) = f(X—i_W)]é/(f()_L.W
X W) - fX) - L(W)
W

=Tw.

The existence of the Fréchet derivative of f at X™ follows by taking the limit. W

From Theorem 10.2, it follows that

1. the existence of a derivative is independent from the labeling and

2. the gradients at isomorphic graphs are isomorphic.

In particular, the gradient of f at X™ is obtained by the gradient of X in the same
way as X™ is obtained from X.
Example 10.4

Consider functions (1)-(4) from Example 10.2. Since we have defined the derivative for
real-valued functions only, we are not able to discuss differentiability for all four functions.

1. Unlabeling operation: The unlabeling operation |[.| is not real-valued.

2. Linear map: A linear map Lw(X) = W e X is differentiable with gradient
Vf(X)=W. It is easy to verify that DLw (X) depends continuously on X.

3. Rotation/Relabeling: The rotation Ry is not real-valued.

4. Parameterized structural dot product: A pointwise maximizer of Fréchet differ-
entiable functions is in general not Fréchet differentiable. As we will see in the
next chapter, the parameterized structural dot product Sw is Fréchet differentiable
almost everywhere except on a set with Lebesgue measure zero.

We conclude this section by presenting a necessary first-order condition for a local
optimum solution X, of a continuously Fréchet differentiable (smooth) function f.
Analogous to elementary calculus, the gradient at a local optimal solution X, is
the null graph 0. Note that the null graph is invariant under relabeling.

232

Analysis of Functions on Graphs

10.5 Optimization

In this section, we address the issue of optimizing Fréchet differentiable functions
on attributed graphs from the perspective of minimizing error functions of neural
learning machines.

A simple learning problem in structural pattern recognition, including the training
of neural networks, can be posed as an optimization problem of the form

minimize f(X) = Zf;:l fAz(X)

(10.5)
subject to X € [Ga],

where fq : [GA] — R are the component functions of f To solve problem (10.5)
using optimization methods based on local gradient information, we relax the
domain [GA] and move to the space G4. Then problem (10.5) is equivalent to

minimize f(X)= 5:1 fi(X)

(10.6)
subject to X € Gy,

where f is the unique structural function with f(X) = f([X]). We assume that the
component functions f; : G4 — R are differentiable. Then the objective f is also a
differentiable structural function.

Note that this assumption is stronger than it may appear at first glance. For
instance, the parameterized structural dot product Sy fails to satisfy this condition
at exceptional points. Hence, we can not assume that useful error functions built
upon the structural dot product are differentiable. But what we can say is that such
error functions are differentiable almost everywhere, as shown in the next chapter.
Therefore, it is justifiable to first investigate the smooth case before turning to
nonsmooth functions.

Nonlinear optimization of differentiable functions is one of the most important
areas of applied mathematics. An overview of standard techniques can be found
in [26, 27, 94, 239]. Since G4 is a Banach space isomorphic to a Euclidean vector
space, optimization methods that operate in R™ also work in G4.

Typically, optimization procedures are iterative algorithmic maps A that start
from a given initial point Xy € G4. The algorithmic map iteratively generates a
sequence (X;) of labeled graphs by X;1 € A(X;), which hopefully converges to an
optimal solution X,. A basic algorithm to iteratively solve problem (10.6) has the
following form:

10.

5

Optimization

233
Algorithm 9 (Basic Iterative Algorithm)
Initialization:
set Xo € G4 and t =0
Procedure:
repeat
find Dy € G with f(X¢ +nDy¢) < f(X¢) for some n > 0 (direction finding)
find m; > 0 such that n; &~ argming>o f(X¢ + nDy¢) (line search)
set X¢41 =Xe+meDerandt =t +1 (updating)
until @; is sufficiently close to X (termination criterion)
Output: X;

The simplest iterative algorithms have been devised for problems (10.5) with
smooth objective f. Popular examples are gradient, line conjugate gradient, and
(Quasi-) Newton methods. All these approaches exploit derivative information from
the objective function f. Direction finding may reduce to determine the direction
opposite to the gradient, which is locally the direction of steepest descent. Line
search usually applies efficient univariate methods from optimization of differen-
tiable functions or some polynomial interpolation. Finally, useful termination cri-
teria can be derived from the necessary condition for a local optimum of smooth
functions, stating that the gradient must be zero at each local solution.

New in Algorithm 9 is that the direction D; is an attributed graph, which locally
points in a direction of ascent. The direction D; is structurally independent of the
labeling of X;. Suppose that X/ is a relabeled version of X; for some 7 € S,,. Then

F(Xi+nDy) = f(Rx(X; +nDy))
= f(RW(Xt) + an(Dt)),

where equality in the first line follows from the fact that f is invariant under
permutations. Equality in the second line follows from linearity of relabeling. Hence,
we have

1 =X+ mDf = (Xe+mDy)" = X[\

Clearly, X;11 and X/, are structurally equivalent (isomorphic). This shows that
Algorithm 9 is independent of the labeling and performs a well-defined descent of
the objective function fof the original problem (10.5).

Basically, we may choose the most effective optimization technique to minimize
the error function of a neural network. For a discussion on efficient learning
algorithms for standard neural networks, we refer to [32, 138, 275]. Since our goal
is to construct structural neural learning machines, it is sufficient to consider any
optimization method. Once constructive existence of such systems has been proved,
the focus may shift to efficiency. Hence, it is compatible with our goals to restrict

234

Analysis of Functions on Graphs

ourselves to simple optimization methods.

For training neural networks in the domain of feature vectors, incremental
gradient descent is a simple standard technique for minimizing the network’s error
function. Incremental gradient descent in its simplest form differs from standard
gradient descent in that at each iteration ¢, X is changed incrementally by a
sequence of p sub-iterations. Each sub-iteration ¢ is a gradient descent step for
the ¢-th component function f;. Thus, an iteration step from ¢ to ¢ + 1 consists of
a cycle of p sub-iteration steps. Incremental gradient methods are supported by a
number of theoretical convergence analyses [28, 101, 128, 245, 246, 251, 360], and
by empirical evidence of superior convergence behavior compared with standard
(batch) gradient methods [275]. Algorithm 10 presents an incremental gradient
descent procedure, which cycles through the component functions f, with fixed
order.1

Algorithm 10 (Incremental Gradient Descent Algorithm)

Initialization:
set Xg € G4 andt =0

Procedure:
repeat
set)?t,l = X
for g € [1:p]
find Gt,q = V fq(Xt,q) (direction finding)
choose ¢, > 0 (line search)
set Xt7q+1 = Xt,q + 1t.qGt,q (incremental-updating)
end for
set X¢41 =)ﬁft’p+1 andt=t+1 (updating)
until X sufficiently close to X« (termination criterion)
Output: X;

10.6 Conclusion

In this chapter we presented a structurally consistent approach to the differential
analysis of structural functions on attributed graphs. The key result is that the
gradient of a real-valued structural function at some graph is a well-defined graph
pointing in the direction of steepest ascent. This result allows us to apply any
gradient-based optimization method to optimize differentiable structural functions.

1. In a practical setting, the component functions of f are usually randomly chosen at
each sub-iteration step. For analytical purposes, we assume a fixed order.

10.6 Conclusion

235

Three ideas have been combined to establish differential analysis on structural
functions: first, construction of the structural dot product in analogy to the con-
ventional dot product, which is the root of Euclidean spaces. Second, relaxation of
the notion of a real graph to a complex graph in order to obtain complete metric
spaces. For incomplete spaces, transition to the limit may not be possible and the
derivative is undefined. Third, coeval consideration of the space of labeled graphs
together with the space of unlabeled graphs. The former space enables us to apply
analytical concepts and the latter keeps track of the structural information of those
concepts.

We conclude this chapter with a twofold outlook. First, note that we only have
derived results necessary for the construction of neural learning machines. But
the door is open to explore the analysis and calculus of variations for structural
functions. Further investigations might provide useful tools to efficiently solve
problems in structural pattern recognition using alternative learning procedures.
Second, the key problem is that error functions of neural learning machines are
functions built upon the parameterized structural dot product. Since the structural
dot product is not differentiable, we cannot expect that useful error functions are
differentiable. Hence, gradient-based techniques are inapplicable and lead to the
field of nonsmooth analysis, which will be discussed in the next chapter.

11

Nonsmooth Analysis

Learning is usually posed as an optimization problem. If the objective function
of the optimization problem is smooth, we can exploit derivative information to
perform local descent. But if the objective is nonsmooth, we need generalized
concepts of a derivative. In this chapter, we introduce basic definitions and results
from nonsmooth analysis and apply them to nonsmooth structural functions.

11.1 Introduction

As shown in the previous chapter, the parameterized structural dot product is
nonsmooth. We can therefore assume that error functions defined on the structural
dot product are in general also nonsmooth. To minimize nonsmooth functions,
we need generalized concepts of a derivative. The study of generalized derivative
concepts emerged in the early 1970’s and has now gradually developed into a mature
field of mathematics called nonsmooth analysis.

The success of the Fréchet derivative concept to analyze smooth functions is
based on the following properties:

(D1) The function g(x) = f(&) + Df(€)(x — &) is a first order approximation of f
at € such that

oy @ —g@)] _
Jim e =0, (11.1)

(D3) The first order approximation g of f is an affine function that is considerably
simpler than the original function f 1

(D3) The rules of calculus enable us to compute the derivative of complicated
functions that are compositions of simpler functions.

To analyze a function f in a neighborhood of some point &, we can only exploit

1. An affine function is a function of the form
g:R" —R™, x+— Az + b,

where A € R™*™ and b € R™.

238

Nonsmooth Analysis

the properties of a Fréchet derivative when f is actually Fréchet differentiable at &.
This requirement is too strong for many applications including, for example, con-
trol theory and nonlinear programming. Therefore, various alternative concepts of
the Fréchet and other classical derivatives of smooth analysis have been suggested,
which allow us to establish an analysis of nonsmooth functions. The proposed gen-
eralized derivative concepts replace the nonexistent classical derivative to describe
the local behavior for every point in the domain of functions of a particular class.

The starting point for the analysis of nonsmooth function is the theory of convex
sets and convex functions by Fenchel, Rockefellar, and others for which [301] is a
standard reference. Clarke generalized the subdifferential concept of convex analysis
to the broader class of locally Lipschitz continuous functions by introducing a
relaxed version of the directional derivative [58]. His contribution was a milestone
in nonconvex, nonsmooth analysis and initiated a vivid activity for systematically
studying nonsmooth problems. Clarke’s approach, however, has some limitations
that lead to developments of other generalized derivative concepts, for example the
co-derivatives proposed by Mordukhovich [267, 268], Michel and Penot’s derivatives
[259], and B-derivatives introduced by Treiman [355, 356]. Although the different
concepts of generalized derivatives are very useful for analytical purposes, their
definitions are often complicated and hard to calculate. Since we have an additional
complexity overhead when dealing with graphs, the focus is on derivative concepts
that are simple to compute, yet sufficiently general in order to obtain the necessary
theoretical results.

This chapter introduces basic definitions and results from nonsmooth analysis
tailored to the specific needs of structural neural learning machines. For more
general and comprehensive treatments we refer to [58, 301]. Section 11.2 provides
the basic mathematical toolkit. In Section 11.3, we apply the results of nonsmooth
analysis to the parameterized structural dot product. Optimization methods for
nonsmooth structural functions are discussed in Section 11.4. Finally, Section 11.5
concludes this chapter.

11.2 Generalized Gradients

In this section we gather the basic toolkit that will be used later to minimize
nonsmooth error functions on attributed graphs. Parts of the treatment are based
on [58, 240].

Terminology

Throughout this section, our setting is the vector space R™ equipped with an inner
product Ty and the usual norm ||z|| = VaTz. Let £ € R" be a point. By & — & we
denote a sequence ()32, in R™ with lim; o, @; = £. Similarly, « | 0 is a notational

shortcut for a sequence ()2, in Rg with lim; . a; = €. We define the sum of

11.2 Generalized Gradients 239

two sets S and S’ in R™ by
S+8={x+y:xecSycs}.
For w € R we define

wS:{wm : mES}.
The Lipschitz Condition

An important class of nonsmooth functions are locally Lipschitz continuous func-
tions. Let U C R™ be an open set. A function f : U — R is Lipschitz continuous
on V C U if there exists a constant L such that

|f(x) = f(y)| < L|j= -y (11.2)

for all ,y € V. The constant L satisfying (11.2) is called Lipschitz constant for f
on V. The function f is locally Lipschitz continuous if every point @ € U admits a
neighborhood V' C U of « on which f is Lipschitz continuous.

Note that a locally Lipschitz continuous function needs neither be differentiable,
nor admits directional derivatives in the classical sense. Conversely, it can be shown
that a differentiable function is locally Lipschitz continuous.

According to Rademacher’s Theorem 11.1, locally Lipschitz functions are Fréchet
differentiable almost everywhere. Let Dy C U denote the set of all © € U at which
f admits a Fréchet derivative D f(x).

Theorem 11.1 (Rademacher’s Theorem)
Let U C R™ be a nonempty open set, and let f : U — R be a locally Lipschitz
continuous function. Then the set

Qy =U\Dy
has Lebesgue measure zero.

Proof [397]. |

Directional Derivatives and Bouligand Subdifferentials
Consider the function f: U — R defined on the open set U C R™. The function f
is directionally differentiable at € € U if the limit

d) —

al0 «

exists for all directions d € R™. In this case, the value f’(&€,d) is the directional
derivative of f at £ in the direction d. We call the function f directionally
differentiable if f is directionally differentiable at all points € U.

240

Nonsmooth Analysis

The directional derivative of f at £ can be regarded as a mapping
(&) R" =R, d— f'(&d).

If f/(¢,.) is a linear mapping, then f is Gdteauz differentiable at €. Thus, the
directional derivative naturally generalizes the classical Gateaux derivative. From
elementary calculus, it follows that Gateaux differentiability is a weaker concept
than Fréchet differentiability in the sense that a Fréchet differentiable function is
also Gateaux differentiable, but the converse statement does not hold in general.
For locally Lipschitz continuous functions on finite dimensional Banach spaces,
however, Gateaux and Fréchet differentiability coincide.

Although the directional derivative is usually practicable to determine, it is in
general of limited interest because of its poor first order approximation properties.
But as for Gateaux and Fréchet differentiability in smooth analysis, the situation
is different for locally Lipschitz continuous functions on finite dimensional Banach
spaces.

Theorem 11.2
Let f : U — R be locally Lipschitz continuous on the open set U C R™. If f is
directionally differentiable at € € U, then

@) - £©) - fEea—g)

li =0, (11.3)
w—¢ |z — ||

where — £ is a sequence in U converging to .

Proof [318]. |

Suppose that f from Theorem 11.2 is directionally differentiable at £€. The classical
definition of Fréchet differentiability is recovered by requiring that the mapping
f'(&,.) is linear. The existence of the limit (11.3) links the directional derivative
concept to the Fréchet derivative in such that the key properties (Dq)-(D3) are
preserved in some Wauy.2 Property (D7) of first order approximation directly follows
from Theorem 11.2 using the existence of the limit (11.3). Referring to property
(D2), the approximation function g(x) = f(&)+f' (&, —&) of f in a neighborhood of
£ is not necessarily affine, but still considerably simpler, because f’(&,.) is positively
homogeneous.3 As we will see later, property (Ds3), the rules of calculus, applies to
a certain extent.

So far, we have considered directional derivatives that locally characterize the
change of a function along a given direction. Now we turn to a concept that
generalizes the gradient for nonsmooth functions. Let f : U — R be a locally

2. Properties (Dj)-(D3) are formulated on page 237.
3. A function h : U — R is positively homogeneous at £ € U, if h(a€) = ah(§) for all
a > 0.

11.2 Generalized Gradients 241

Lipschitz continuous function defined on the open set U C R™. The set
Opf(€) ={veR" : 3w}, C Dyst.y= Jim Vf(x:)}

is called the Bouligand-subdifferential (B-subdifferential) of f at &. Note that the
definition of a B-subdifferential makes sense, because a locally Lipschitz continuous
function is Fréchet differentiable almost everywhere by Rademacher’s Theorem 11.1.
Hence, the gradients V f(x;) exist.

As opposed to the directional derivative, the concept of B-subdifferential is too
weak to preserve the existence of calculus rules. A stronger and more promising
concept, for locally Lipschitz continuous functions is the generalized gradient based
on Clarke derivatives [58].

Clarke Derivatives and Generalized Gradients

Let f : U — R be a locally Lipschitz continuous function defined on the open set
U C R™. The Clarke directional derivative (Clarke derivative) of f at & € U in the
direction d € R" is defined by
d) —
£°(¢.d) = timsup LEF 0D 2 (@)

al0 @
r—E&

where a | 0 and © — &£ are sequences such that + ad is always in U.

The concept of the Clarke derivative is naturally linked to the concept of strict
differentiability [58] rather than that of Fréchet differentiability. It differs from
traditional definitions of directional derivatives in the following ways: first, it does
not presuppose the existence of a limit; second, it involves the behavior in a
neighborhood of &; third, the base point @ of the difference quotient varies.

The generalized gradient Of(€) of f at £ is the set

f(&)={~v: f°(&d)>~"dfor all d € R"}.

The elements of the generalized gradient df (&) are called subgradients of f at .
Theorem 11.3 summarizes some properties of the generalized gradient.

Theorem 11.3
Let f:U — R be a locally Lipschitz continuous function with Lipschitz constant L
defined on the open set U C R™. Then the following holds for & € U:

L. 0f(€) = con(dBf(€))-

. Of (&) is nonempty, compact, and conver.

2
3. Iyl £ L for all vy € 0f(€).
4. For any direction d € R™, we have

fo(€,d) =max{yTd : vy € R"}.

242

Nonsmooth Analysis

5. If f is continuously Fréchet differentiable in a neighborhood of & then

Opf(€) =0f(€) ={Vf(©))}.
Proof [58, 240]. |

The first property relates the generalized gradient to the B-subdifferential. Convex-
ification of the B-subdifferential yields stronger rules of calculus. Note that dp f (&)
is nonempty and compact, but not convex in general. The fourth property indi-
cates that the Clarke directional derivative and the generalized gradients lead to
dual concepts that are obtainable from one another. Referring to the fifth property,
it is necessary to require continuous differentiability rather than differentiability to
prove equality.

Regular Functions

Regular functions are an important class of functions for which we can derive strong
theoretical results.

The Clarke derivative is a useful concept for nonsmooth analysis of locally
Lipschitz functions, because it allows a systematic extension of generalized gradients
for convex functions to the class of locally Lipschitz functions. For convex functions,
the Clarke derivative reduces to the directional derivative.* But in general, equality
fo(€,d) = f'(€,d) is not satisfied, even if f/(£,d) exists. This equality, however,
yields strong theoretical advantages. Therefore, it is reasonable to investigate
functions for which the Clarke derivative and directional derivative are equivalent.
These functions are called regular functions.

To present a definition of regular functions in formal terms, let f : U — R
be a locally Lipschitz continuous function on the open set U C R™. We say f is
(subdifferentially) reqular at € € U if the following conditions are satisfied:

1. f is directionally differentiable at &
2. fo(&,d) = f'(&,d) for all d € R™.

The next result provides examples of regular functions and shows how we can
construct complex regular functions from simple ones.

Theorem 11.4
Let f, f1,..., fx : U — R be locally Lipschitz continuous functions defined on the
open set U C R™, and let € € U be a point.

1. Convex and continuously Fréchet differentiable functions are regular.

2. Let wy,...,wi € Rg be nonnegative values. If f1,..., fi are reqular at &, then
the nonnegative linear combination f = wy f1 + -+ + wi fx is reqular at &.

4. Note that convex functions are locally Lipschitz continuous.

11.2 Generalized Gradients 243

3. Suppose that f1 is reqular at & and fo is continuously Fréchet differentiable at
&. Then fyo f1 is regular at €.

4. If f1,..., fr are reqular at &, then f = max{f1,..., fx} is reqular at €.
Proof [58, 240]. [|

Basic Calculus

We now proceed to show parts of the third key property (Ds) of a classical deriva-
tive, the existence of calculus rules. This property is indispensable for practical use,
because it facilitates the calculation of 9 f when f is composed of simple functionals
through linear combination, maximization, composition, and so on. Here we only
focus on rules we actually need for our purposes.

The first result shows that the directional derivative and the generalized gradient
are closed under linear combination.

Theorem 11.5
Let f1, fo : U — R be locally Lipschitz continuous functions defined on the open set
U C R". Suppose that f1 and fs are directionally differentiable at & € U. Then

1. Scalar multiples: wfy is directionally differentiable at & for all w € R and
(a) O(af1)(§) = adfi(€)
(b) (af1)'(§,d) = afi(§.d) for all d € R".
2. Finite Sums: f1 + f2 is directionally differentiable at & and
(a) O(f1+ f2)(§) € 0f1(8) + 0 f2(€)
(b) (fr+ f2) (& d) = fi(§,d) + [2(&, d) for all d € R™.

If f1 and fo are regular, equality holds in (2.a).
Proof [58, 318]. |

Note that directional differentiability is not required to state (1.a) and (2.a). The
next result establishes the chain rule for a special setting.

Theorem 11.6 (Chain Rule)

Let U CR™ and V C R be open sets. If f: U — R is locally Lipschitz continuous
and directionally differentiable at € € U and g : V — R continuously Fréchet
differentiable at ¢ = f(€), then the function h = go f is directionally differentiable
at €& and

Oh(€&) =Vg({) o af (&)
W€ d)=Vg(C)f'(§,d)
for all d € R™.

244

Nonsmooth Analysis

Proof [58, 240, 318]. (]

The meaning of Vg(¢) o df(€) is that any element of Oh(€) can be represented as
a composition of linear maps defined by Vg(¢) and df(&). That is, for any element
1, € Oh(E), there is an element v € Jf(€) such that

Yhe = Vg(() - (v}w)

for all z € R™.
Necessary Optimality Condition

A necessary condition for a local optimum point @, of a continuously Fréchet
differentiable function is that the gradient vanishes at x.. If the necessary condition
is not satisfied, the gradient provides valuable information about how to approach a
local optimum. In this case, the opposite of the gradient is the direction of steepest
descent. We want to formulate a similar property for the generalized gradient at a
local optimum solution.

Theorem 11.7 presents a necessary optimality condition for locally Lipschitz
continuous functions.

Theorem 11.7
Let f : U — R be locally Lipschitz continuous functions defined on the open set
U CR™ If f attains a local minimum or mazimum at & € U, then

0 < If(§).
Proof [250] |
Suppose that 0 fails to belong to the generalized gradient 0 f(€). Then by Theorem

11.7, the vector € cannot be a local optimal solution of f. We would like to find a
nonzero vector § such that there is an & > 0 with

fl&+ad) < f(&)
for all 0 < « <a&. We call the vector & descent direction of f at x.

Proposition 11.1
Let f be locally Lipschitz on R™, and let & € R™ be a nonoptimal point. Suppose
that . € Of(€) is a subgradient with minimal norm. Then the vector

6= —7.

1s a descent direction.

Proof [58]. |

11.8 Pointwise Mazximizers 245

11.3 Pointwise Maximizers

In this Section, we analyze pointwise maximizers of locally Lipschitz functions and
relate the results to pointwise maximizers defined by the structural dot product.

Let f1,..., fx : U — R be locally Lipschitz continuous functions defined on the open
subset U C R™. The pointwise mazximizer of fi,..., fr is a function f : U — R of
the form

flx) = max{fl(m), e ,fk(a:)}.

We call the set

supp(f) = {f1,---. fx}

the support of f, and its elements f; € supp(f) the support functions of f.Let & € U
be a point. By supp(f, &) we denote the set of all support functions f; € supp(f)
with f,(€) = f(€).

Even if all support functions are Fréchet differentiable, the pointwise maximizer
may not be. But what we can show is that the pointwise maximizer of locally Lip-
schitz continuous (continuously Fréchet differentiable) support functions is locally
Lipschitz continuous (regular).

Theorem 11.8
Let U C R™ be a nonempty open set, and let f : U — R be a pointwise mazimizer
with finite support supp(f) = {f1,-.., fx}. Then

1. if f1,..., fx are locally Lipschitz, f is locally Lipschitz.

2. if f1,..., fr are continuously differentiable, f is reqular.

Proof [240]. [|

An immediate consequence of Rademacher’s Theorem 11.1 and Theorem 11.8 is
that pointwise maximizers of locally Lipschitz continuous support functions are
Fréchet differentiable almost everywhere.

Corollary 11.1
Let f : U — R™ be a pointwise maximizer of locally Lipschitz continuous support
functions. Then Qy = U \ Dy has Lebesgue measure zero.

For continuously Fréchet differentiable support functions of a pointwise maxi-
mizer, we can provide simple characterizations of the Clarke derivative and the
generalized gradient.

Proposition 11.2
Let U C R™ be a nonempty open set, and let f : U — R be a pointwise mazimizer
with finite support supp(f) = {f1,--., fx}. Suppose that f1,..., fr are continuously

246

Nonsmooth Analysis

Fréchet differentiable at &€ € U. Then

L fo(¢,d) = max {Vf;(§)Td : fi €supp(f.€)}
2. 0f(&) = con{Vfi(¢) : fi € supp(f,€)}
Proof [240]. |

Note that the Clarke derivative of the pointwise maximizer in Proposition 11.2 is
equal to the directional derivative, because the pointwise maximizer of continuously
Fréchet differentiable supports is regular according to Theorem 11.4.

Parameterized Structural Dot Products

Consider the space G4 of labeled graphs of bounded order n with attributes from
A. Suppose that W is a complex attributed graph from G4. As shown in Section
10.3, the parameterized structural dot product

Sw:Gq4 - R, X—WeX
is a pointwise maximizer with support
supp (Sw) = {Lp : Lp(X)=WpeX, Pell"},

where Wp = PTW P, W, and X are the adjacency matrices of Wp, W, and X.
Each support function Lp € supp(f) is a linear map. As shown in Section 10.4, Lp
is continuously Fréchet differentiable with gradient VLp(X) = Wp.

Applying the results of Section 11.3 to the pointwise maximizer Sy, results in a
number of properties:

1. Since the support functions of Sy, are continuously Fréchet differentiable, the
pointwise maximizer Sy is regular and therefore locally Lipschitz continuous.
Hence, by Rademacher’s Theorem 11.1, the parameterized structural dot product
Sw is Fréchet differentiable almost everywhere. At differentiable points X, there
exists a unique linear map Lp with Sy (X) = Lp(X). Hence, the gradient of
Sw at X is of the form

VSw(X)=VLp(X)=Wp.
2. From Proposition 11.2, property (1), it follows that

Siy (X, D) = Siy (X, D)
=max {WpeD : PcIl" with Lp € supp (Sw.X)},

where D € G4 is an attributed graph with adjacency matrix D, called direction
graph.
3. According to Proposition 11.2, property (2), the generalized gradient of Sy

11.4 Nomsmooth Optimization 247

at X is of the form

dSw(X) =con{VLp(X) : Lp € supp (Sw,X)}
= con{Wp : P 11" with Lp € supp (SW,X)}.

4. Let f : R — R be a continuously Fréchet differentiable function. Then the
function g = f o Sy is regular and we may apply the chain rule:

(a) The Clarke directional derivative of g is of the form
§°(X.D) = ¢/(X, D) = ['(X « W)Si(X. D) = /(X « W) - (W" # D),
where
W* =max {WpeD : Pcll" with Lp € supp (Sw, X)}.
(b) For the generalized gradient of g at X we have
09(X) = ['(X «)OS (X).

Note that f/(X e W) is the classical Fréchet derivative of f at X o W.

11.4 Nonsmooth Optimization

In this section, we address the issue of optimizing nonsmooth functions from the
perspective of minimizing error functions of neural learning machines.

Recall from Section 10.5 that our goal is to solve the following optimization problem

minimize f(x) = Py Fi(X)

(11.4)
subject to X e [GA],

where fq : [G A] — R are the component functions of f To solve (11.4), we changed
the metric space and considered the following equivalent formulation

minimize f(X)= 22:1 fi(X)

(11.5)
subject to X € Gy,

where f is the unique structural function with f(X) = f([X]). In Section 10.5,
we assumed that the component functions f, : G4 — R are differentiable. Now
we focus on problem (11.5), where the component functions f, are supposed to be
regular functions. Then the objective f is also regular according to Theorem 11.4.
Since G4 is isomorphic to a Euclidean vector space, we may identify a labeled graph
with a vector. Hence, the notion of regularity for structural functions makes sense
and the whole theory developed in this chapter is applicable to problem (11.5).
Note that regularity is an appropriate assumption, because the parameterized

248

Nonsmooth Analysis

structural dot product is a regular function and the composition of a smooth
function with a regular function is also regular. Hence, error functions of neural
learning machines that are smooth for feature vectors are regular for attributed
graphs.

In Section 10.5, we presented a basic iterative procedure to minimize smooth
objective functions of (11.4). The situation is completely different for nonsmooth
objective functions. Nonsmoothness of the objective makes optimization compli-
cated and additional effort is necessary to construct well-behaved descent proce-
dures. The hardest and most challenging problem is direction finding, because the
direction opposite to a subgradient is not necessarily a direction of descent. As a
consequence, classical line search procedures can no longer be applied unmodified
in nonsmooth optimization.

Existing iterative algorithms for nonsmooth optimization problems can be
roughly categorized into subgradient methods and bundle methods. Both approaches
assume that (a) the objective is locally Lipschitz continuous, (b) we can evaluate
the objective value at each point, and (c) we can determine a subgradient at each
point.

To prove constructive existence of structural neural learning machines, incre-
mental subgradient methods turn out to be a good choice, because they are a
simple extension of gradient descent methods. According to [13, 250], bundle meth-
ods are considered to be more practicable for functions defined on feature vectors.
To which extent this empirical observation is valid for nonsmooth functions on at-
tributed graph is an open problem. In the context of structural pattern recognition,
an answer to this problem falls into the realm of finding the most efficient learning
procedure for structures. Since this issue exceeds the scope of this thesis, we only
consider subgradient methods and refer to [250] for an introductory overview of
bundle methods.

Subgradient Methods

Subgradient methods can be viewed as a straightforward generalization of gradient
descent, where the gradient V f(X;) of an objective f is replaced by an arbitrary
subgradient Dy € Of(X:). Algorithm 11 describes a principal method for solving
problem (11.4), where the objective f is supposed to be nonsmooth. For detailed
expositions on subgradient techniques, we refer to [26, 264, 289, 329].

11.4 Nomsmooth Optimization 249

Algorithm 11 (Basic Subgradient Algorithm)

Initialization:
set Xo € G4 and t =0

Procedure:
repeat
determine Dy € 0f(X¢) (direction finding)
choose nt > 0 (line search)
set X¢41 =Xe+meDerandt =t +1 (updating)
until some criterion is satisfied (termination criterion)
OQutput: =

The subgradient algorithm basically operates in the same way as the gradient
descent method presented in Algorithm 9 for smooth functions. By Rademacher’s
Theorem 11.1, we may assume that in almost all iteration steps, the objective f is
Fréchet differentiable at the current point X;. Hence, the generalized gradient of f
at X; coincides with the gradient V f(X,).5 Direction finding is therefore identical to
gradient descent methods in almost all cases. At exceptional points, f is nonsmooth.
In these cases, the subgradient method selects an arbitrary subgradient from the
generalized gradient 0f(X;). For example, suppose that the objective f is the
composition goSy of a smooth function g : R — R and the parameterized structural
dot product Sy . Then direction finding selects a gradient VLp(X;) = Wp from a
linear map Lp € supp (SW, Xt) and constructs a direction according to

Dy = g’(W L4 Xt)WPa

where the Fréchet derivative ¢'(W e X;) of g at W e X; is a well-defined scalar.
With a similar argumentation as for smooth objectives, Algorithm 11 is indepen-
dent of the labeling of the vertices and aims at minimizing the objective function
f of the orignal problem (11.4) in the same way as the objective f for the relaxed
problem (11.5).
The simple idea of replacing the gradient by an arbitrary subgradient has some
limitations:

1. At nonsmooth points, the direction opposite of an arbitrary subgradient is not
always a direction of descent.

2. Standard termination criteria that exploit necessary conditions for local op-

tima are inapplicable to subgradient methods, because an arbitrary subgradient
may not contain any information about the optimality criterion 0 € df(x).

5. In strict terms, the generalized gradient of f at X is of the form 9f(X) = {Vf(X)} if
f is smooth at X.

250

Nonsmooth Analysis

3. Only weak convergence results of subgradient methods are known [329].

According to Proposition 11.1, all problems can be solved by choosing a subgradient
v € 0f(X:) with minimal length in the direction finding step of Algorithm 11.
This requires knowledge of all subgradients at each iteration point X;, which
can be computationally intractable, particularly for functions on graphs whose
evaluation is NP-complete. Although subgradient methods that ensure a decrease of
the objective f at each iteration step are computationally intractable, they provide
a theoretically sound method for the analysis of structural neural learning machines.

In a practical setting, the above stated problems are solved as follows. Since the
subgradient method is not a pure descent method, it is common to keep track of
the best solution found so far. At each step we set

f* _ f(XO) : t=0
¢ min { f(X; 1), (X))} : >0
In addition, to enforce convergence and termination, we gradually decrease the step

size n;. The following result from Lemaréchal [225] provides a theoretically justified
choice of step sizes.

Lemma 11.1

Let X, be a solution of problem (11.4). Suppose that X; is not a solution and
D; € 0f(Xt). Then

161 = X <[X0 = X

whenever

JX0) — [(X.)

0< Ny < 2.
Dl

Thus, at each iteration we have

t
[[Xo — X¢| < Zm-
i=0
Proof [225], p. 544 and p. 545. |

To ensure global convergence, Lemma 11.1 implies choosing the step sizes
according to

1t | 0 such that Znt = 0.

t=0

Incremental Subgradient Methods

As incremental gradient descent procedures, the incremental subgradient method
updates X; incrementally through a cycle of p sub-iterations, where the ¢-th sub-

11.

5

Conclusion

251

iteration is a subgradient step for the component function f,. It has been shown
that incremental subgradient methods exhibit a behavior similar to incremental
gradient descent [206, 273, 338].

Algorithm 12 presents a basic form of an incremental subgradient method for
structural functions in line with the incremental gradient procedure described in
Section 10.

Algorithm 12 (Incremental Subgradient Algorithm)

Initialization:

set Xo € G4 and t =0

Procedure:
repeat
set)th = Xt
for g € [1:p]
choose Di,q € 3fq(Xt,q) (direction finding)
choose 7¢,q > 0 (line search)
set X¢q01 = Xt,q +Nt,9Dt.q (incremental-updating)
end for
set X¢y1 =)Z'M,Jrl andt=t+1 (updating)
until some criterion is satisfied (termination criterion)
Output: X;

11.5 Conclusion

In this chapter, we presented basic concepts and results from nonsmooth analysis
to formulate subgradient methods for optimizing structural functions. We showed
that compositions of smooth functions and the structural dot product are regular
structural functions. For regular functions, the Fréchet derivative exists almost
everywhere and the subgradient method is applicable.

This was the last of three chapters aimed at establishing the theoretical foun-
dation for structural neural learning machines. The following chapters apply the
theory to formulate supervised and unsupervised neural learning algorithms for
attributed graphs.

12

Structural Single-Layer Networks

In the previous three chapters, we laid the theoretical groundwork for adaptive
processing of attributed graphs. This chapter and the next propose supervised
structural neural learning machines. The goal is to present the basic principles
and mechanisms of structural neural learning machines.

In this chapter, we are concerned with single layer feedforward networks for at-
tributed graphs. In Section 12.1, we propose a structural model of a neuron. Section
12.2 discusses the representational capabilities of structural units for classification
problems. We show that a structural unit implements a structural linear discrim-
inant function. In Section 12.3, we adopt incremental subgradient techniques to
minimize empirical risk functionals. The treatment applies to classification and
function approximation problems. Section 12.4 extends Rosenblatt’s perceptron to
attributed graphs. We present a structural version of the perceptron criterion, de-
rive a learning rule, and prove a convergence theorem.

12.1 Model of a Structural Neuron

This section extends the classical model of a neuron for feature vectors to a
structural model that is capable of processing attributed graphs.

In line with the presentation of standard neuronal models provided in Section 4.2,
we identify the following components of a neuronal model for structures:

1. Structural Unit. A structural unit (s-unit) is a processing device that trans-
forms attributed graphs to real values. An s-unit 7 has an activation u; and an
output ;.

2. Weight graph. An s-unit 7 is associated with a weight graph W from the set
G4 of complex attributed graphs.1

3. Activation function. Given an input graph X from G4, the activation of s-unit

1. Note that the terms weight graph and weighted graph are different notions. The former
is a complex graph with attributes from A = R?, whereas the latter is a real graph with
attributes from R.

254

Structural Single-Layer Networks

1 is of the form
uy=W'e X +h,

where h' denotes the bias or threshold.

4. Transfer function. The output x; of s-unit ¢ is related to its activation by
z; = g(u;) = g(Wi X + h)
where ¢ is a non-decreasing transfer function.

A single layer feedforward network composed of s-units implements a functional
relationship

H:Ga—R™, XHig(WioX—i—hi). (12.1)
=1

We call networks that realize functions of the form (12.1) structural networks or
s-networks.

The following notation integrates the bias into the weight graph. This is a
common technique in the standard case to simplify the mathematical analysis of
conventional neural networks. The same holds for s-networks.

Notation 12.1
By W we denote the extended weight graph with adjacency matriz

. (h o
W = .
0, W

Similarly, we extend any input graph X to a graph X by inserting an isolated vertex
with weight 1 in such that the adjacency matriz of X is of the form

< (1 o
0, X

Then the structural dot product of the extended graphs is defined by

P

X oW = max PTX\POW,
peipt?
where TI} T is the subset of all (n+1)x (n+1)-permutation matrices P = (p;;) with
prk = 1. Thus, the definition of the structural dot product of extended graphs slightly

differs from its original definition in the sense that the first vertex of X must not
be permuted.

In the remainder of this section we provide some remarks, which might clarify
some issues.

1. Note that no confusion can arise between output x; of s-unit ¢ and elements

12.2 Structural Linear Discriminant Functions 255

x;; of the adjacency matrix X = (x;;). The former has a single index referring
to its s-unit and the latter is annotated with a pair of indices referring to an item
of X.

2. An input graph is usually a real attributed graph from G4 and therefore
a proper graph in a a graph-theoretical sense. For weight graphs, we admit
imaginary vertices and edges. This is necessary to obtain a complete metric
space. Completeness of a metric space in turn is required to define concepts
of a derivative for error criteria as functions of W. In supervised learning, it does
not matter whether a weight graph W has imaginary items or not, because W
is not intended to represent objects from the underlying problem domain. Thus,
the proposed structural model of a neuron is feasible.

12.2 Structural Linear Discriminant Functions

In this section, we focus on classification problems. We show that single layer s-
networks implement structural linear discriminant functions. We first consider the
two-category case in Section 12.2.1 and then briefly sketch the multi-category case
in Section 12.2.2.

12.2.1 The Two-Category Case

We begin by reviewing the geometrical interpretation of conventional units for
feature vectors. For a more detailed treatment we refer to [32, 77]. Suppose that
we are given an input pattern & € R™. The activation of a conventional unit can
be written as

u(x) =w'x + h,

where w € R" is the weight vector associated with that unit and h € R denotes the
bias. The equation u(x) = 0 defines a hyperplane, which divides the input space
in two decision regions, one for each category. The orientation of the hyperplane is
determined by the weight vector w, and its location by the bias h. The activation
w'x + h of the perceptron is proportional to the signed distance from x to the
hyperplane.

The origin of a geometrical interpretation of conventional units are the geomet-
rical properties of the dot product. Since the structural and the conventional dot
product have some geometrical properties in common, s-units admit a similar geo-
metrical interpretation. We show that an s-unit separates the input space by a
decision surface composed of hyperplane segments. Each hyperplane segment is or-
thogonal to a labeled representative W of the unlabeled weight graph [W]. The
location of a hyperplane segment is determined by the bias h and the sector of
the labeled graph W orthogonal to that segment. The activation W e X + h of the
s-perceptron is proportional to the signed distance from X to its designated hyper-

256

Structural Single-Layer Networks

Figure 12.1 Structural linear decision surface Dy, where f(X) = We X +h =0
separates the input space in two regions R: with f(X) > 0 (light blue) and R2 with
f(X) <0 (gold). The decision surface Dy (red line) is composed of the hyperplane
segments D1, Dy, and Ds. The sectors of the spokes representing the labeled graphs
W1, Ws, and W3 are indicated by the bold-faced dashed lines. The adjacency matrix
X of the input X is closest to the spoke representing Ws and is therefore classified
by the local discriminant function f3 = W3 e X + h.

plane. Figure 12.1 presents a schematic example of the decision surface defined by
an s-unit.
An s-unit determines a discriminant function of the form

F(X)=WeX+h (12.2)

such that an input graph X is assigned to class C; if f(X) > 0, and to class Co
it f(X) < 0. Note that X can ordinarily be assigned to either class if H(X) = 0.
Here, without loss of generality, we have chosen to assign X to class Cs.

We can express the discriminant by

F(X) = Sw(X) + fa(X),

where Sy (X) = We X is the parameterized structural dot product and f5(X) = h
is a constant function. Since Sy (X) and fj,(X) are independent of the labeling of
X, the discriminant f is a structural function. From Section 11.3, it follows that
Sw(X) and therefore the discriminant function f is piecewise linear. Thus, the set

Dy={XeX: f(X)=0}

is composed of hyperplane segments. The decision surface Dy defined by f separates

12.2 Structural Linear Discriminant Functions 257

the input space X’ in two decision regions

Ri={XeX: f(X)>0}
Ry={XeX: f(X)<0}.

Graphs located in decision region R, are assigned to class C; and graphs from Ro
are assigned to class Cs.

To characterize the decision surface Dy, we consider the vector representation
Viw) of the unlabeled graph [W]. Each vector w € V) is a spoke of the ball
B = Bp(0,h/||W]|) with center 0 and radius h/|[W|. We call the ball B¢ decision
wheel of the structural discriminant f. Each spoke w is orthogonal to a hyperplane
H,, tangent to the decision wheel. The decision surface D; is then of the form

Dy= |J HuwnSuw,

weViw

where Sy, is the sector of w. Each hyperplane segment D,, = H,, N S,, divides a
sector in the two regions Rq N .Sy and Ra N Sy- Thus, the structural discriminant
f behaves locally like a linear discriminant.

Now suppose that w is the spoke closest to X. Then X is located in sector Sy,
and we have

fX)=WeX+h=wTa+h.
The following properties hold:

1. Within its sector Sy, a spoke w points to the decision region R;. This follows
from f(X)=w"z + h > 0 whenever X € R;.

2. The discriminant function f(X) gives an algebraic measure of the distance
from @ to the hyperplane H,,. The signed distance from x to the hyperplane H,,
is given by

f(X)

Taw .
Wl
The distance r is positive if X lies in Ry and non-positive otherwise.

3. Let 74 be the signed distance from x to the hyperplane segment D,,. Then
|[ray| < |Fan|, Where inequality holds whenever the orthogonal projection X+ of X
onto Hy, is not in D,,. Clearly, we have r, = 0 if, and only if, 7#,, = 0, because
D = S N Hyp.

As a structural function, f(X) is independent of the labeling of X. Relabeling the
vertices may rotate X to another sector by preserving all geometrical properties
without leaving the decision region.

To summarize, the discriminant function defined in (12.2) divides the input space
by a decision surface composed of hyperplane segments. The segments are tangent
to the decision wheel of f around the origin with a radius determined by the bias

258

Structural Single-Layer Networks

h. The orientation of the segments are determined by the spokes of the decision
wheel. The value r = f(X)/||W]| is the signed distance from X to its designated
hyperplane. The absolute value |r| is a lower bound to the absolute distance from
X to its designated hyperplane segment. To classify an input X, we first identify
the sector of a spoke closest to X and then determine the local decision region into
which X falls.

Limatation

The representational capabilities of an s-unit are limited to special piecewise linear
decision surfaces. The hyperplane segments of a decision surface are related via
relabeling of spokes. Hence, an s-unit cannot represent an arbitrary piecewise linear
decision surface. This issue is closely related to the important concepts of capacity
and VC dimension from statistical learning theory. Despite its importance, it is
beyond the scope of this work to cover all aspects of structural neural learning
machines.

12.2.2 The Multi-Category Case

Structural linear discriminants can be easily extended to multi-category problems
in more than one way [77]. Here, we consider a simple approach to illustrate how
standard techniques for the multi-category case can be combined with structural
discriminants.

Suppose that we are given m classes Cy, ..., C,,. We consider a single layer network
composed of m threshold s-units, where s-unit ¢ responds to class C;. Each s-unit ¢
determines a structural linear discriminant function

fi(X)=W'e X +hi,

A new input graph X is assigned to class C; if f;(X) > f;(X) for all j # i. The
decision rule divides the input space X into m decision regions R;, with f;(X)
being the largest discriminant if X lies in R;. If the decision regions R; and R; are
adjacent, we have

(WieX —WieX)+ (hi—h)=0.

Since the structural dot product is not bilinear, we cannot simply factor out the
term X. But what we can do is consider the sectors into which X falls. Suppose that
w; € Vjw+) and w; € V] are spokes closest to X. Then X is in the intersection

Sij = S'u')i M S'U.)j‘

From

12.8 Structural Learning 259

it follows that the vector w;; = w; — w; and the difference h’ — h? determine a
hyperplane H;; dividing the intersection S;; into local decision regions for class C;
and C;. The signed distance from X to H;; is given by

filX) — f3(X)
[|
It is important to note that not the spokes, but rather their differences are
important. The difference w;; determines a graph W with

zbjjm < WY e X.

Hence, w;; needs not be a spoke closest to X.

12.3 Structural Learning

So far in this chapter we have discussed what s-units are and what they represent.
The remainder of this chapter is concerned with the training of single layer s-
networks to learn an unknown functional relationship from a given sample of labeled
data. This section serves to provide the general setting of supervised structural
learning with single layer s-networks.

In the following, we integrate the bias into the weight graph as described in Notation
12.1. To unclutter the notation, we drop the ~-accent and simple write, by abuse
of notation, W instead of W, X instead of)?, and I1" instead of H;’H.

Now suppose that we are given a training sample

Z = {(Xlayl)v"'v(XP’yp)} CaxY

consisting of p training graphs X; € X C G4 drawn from some input space X
together with corresponding output values y; € Y C R. Without loss of generality,
we assume that the outputs are real-valued. Extension to vector-valued outputs is
straightforward.

Following the inductive principle of empirical risk minimization, the goal is to find
a weight graph W € G4 such that the hypothesis Hy (X) = g(W e X) minimizes
an error function (empirical risk functional) of the form

E:Gy—R, W EW)= zp:Ei(W) (12.3)

constrained over the training sample Z. The quantity
Ei(W) = Uz, y;)

is the error (loss), which measures the discrepancy between the actual output
x; = g(W e X;) predicted by hypothesis Hy and the correct label y; of the i-

260

Structural Single-Layer Networks

th training graph X;. To emphasize functional dependence of the the loss I(x;,y;)
on W via z; = g(W e X;), we use the more intuitive notation E;(W).

We now derive an incremental subgradient algorithm to minimize (12.3). Since
the structural function Sx (W) = W e X is nonsmooth, we cannot expect that the
error criterion

B(W) = B(Sx(W)

is smooth. Hence, standard techniques that minimize smooth versions of (12.3) are
inapplicable. But under the assumption that E(W) is a regular function, we may
adopt incremental subgradient methods as described by Algorithm 12 in Section
11.4.

A precondition to ensure that E(W) is a regular function is that the transfer
function g(u) and the loss [(z, y) are smooth in v and z, respectively, for all u, x € R.
Here, u = W e X refers to the activation and x = g(u) to the output of an s-
unit. Thus, by the chain rule of elementary calculus, £ is smooth as a function of
u = Sx(W). According to Theorem 11.4, the composition E(W) = E(Sx(W)) of a
smooth function E in u and a regular function Sx in W is regular. From Theorem
11.6, it follows that the generalized gradient OE (W) of E at W is of the form

OE(W) = E'(Sx(W))dSx (W).
We introduce a notation
§ = E'(Sx(W)), (12.4)

where ¢ is the sensitivity of an s-unit [77]. Evaluation of § is straightforward. From
definition (12.4) we have

5 =9 (u)- E'(z).

It remains to choose a subgradient from the generalized gradient 9Sx (W). For any
optimal relabeling © of X to W, the relabeled graph X™ is a subgradient from
0Sx (W). Combining the results yields

6X™ =g (u)- E'(z)- X™ € OE(W).

Hence, 6X™ is a subgradient from 0F (W) and we obtain the subgradient learning
rule

WeW-n-6-X". (12.5)

Plugging the subgradient learning rule (12.5) into the general Incremental Subgra-
dient Algorithm 12 (Section 11.4) yields a learning procedure to minimize the error
criterion (12.3). The procedure is shown in Algorithm 13.

12.4 Structural Perceptrons 261

Algorithm 13 (Incremental Subgradient Learning)

Input:
Z - training sample {(X1,y1),-..,(Xp,yp)} € X X Y
Initialization:
set Wy € G4
Procedure:
repeat
for all i € [1:p] do
compute sensitivity §
choose learning rate 7
choose optimal relabeling 7 € Rx, w
update W =W —ndXT
end for
until some criterion is satisfied
Output: Hy : X — W e X

Note that a regular error criterion is locally Lipschitz continuous. Hence, E is
smooth almost everywhere and the chosen subgradient coincides with the gradient
of E.

12.4 Structural Perceptrons

This section extends Rosenblatt’s perceptron from the domain of feature vectors to
the domain of attributed graphs. Rosenblatt [302, 303] studied a single threshold
unit with adjustable weights and bias for two-category classification problems. To
appropriately adjust the weights and bias, he proposed a learning algorithm and
showed that it converges to a correct solution, provided that the feature vectors
are drawn from two linearly separable classes (i.e. the decision boundary of both
classes forms a hyperplane). The proof of convergence is known as the perceptron
convergence theorem. To extend Rosenblatt’s perceptron to attributed graphs, we
adapt the learning algorithm to the structural domain. In addition, we prove a
weaker version of the perceptron convergence theorem for structurally separable
problems.

An s-perceptron is a threshold s-unit with a threshold transfer function of the form

O(u;) =

+1 ifui>0
-1 : ifuy; <0

For mathematical convenience, we consider the bipolar threshold function with
outputs from {#1} instead of the binary threshold function with outputs from

262

Structural Single-Layer Networks

{0,1}.2
Suppose now that we are given a training sample

Z2= {(thl)v"'v(Xvap)} C & x {il}

consisting of p training graphs X; € X C G4 drawn from some input space X
together with corresponding labels y; € {£1}. Label y = —1 encodes class Cy, and
label y = +1 class Cy. A training sample Z is called structural linearly separable if
there exists a discriminant function Hyy» with

Hy-(X)=0(W e X) =y

for all training examples (X,y) € Z. The weight graph W* is called separating
graph or solution graph.

12.4.1 The Structural Perceptron Criterion

The goal is to find a weight graph W so that an s-perceptron minimizes the following
structural perceptron criterion

EPFT (W) = > —yi(W e Xy), (12.6)

where (W) is the set of training graphs X; misclassified by the hypothesis
Hw(X;) = ©(W e X;). Since yZ(W ° Xi) < 0 if X, is misclassified, EP¢"° is
nonnegative, being zero only if W is a separating graph or if X is on the decision
boundary.

The error criterion EP¢"¢(W) is continuous and piecewise linear as a function
of u = Sx(W) = W e X with discontinuities in its gradient. Hence, EP¢"¢(W) is
locally Lipschitz continuous, since EP*"“(u) and Sx (W) are both locally Lipschitz
continuous.

The standard perceptron criterion is proportional to the sum of the absolute
distances from the misclassified training patterns to the decision hyperplane. The
situation is different for the structural perceptron criterion (12.6). Let #(1¥) denote
the sum of the absolute distances from the misclassified training graphs to the
decision surface. According to the discussion in Section 12.2.1, we have

B Eperc (W)

r(W) = = < 7).

This poses the question as to whether there exists a weight graph W with

2. Note that both threshold functions are obtainable from one another via 20 (u;) — 1.

12.4 Structural Perceptrons 263

With a similar argumentation as in Section 12.2.1, page 257, item 3, we have
r(W)=0 < #(W)=0.

Thus, extension of the standard perceptron criterion to its structural counterpart
is feasible.

Remark 12.2
In general, the functions

—Sw(X) = —(W e X)
S w(X)=(-W)eX =W e(—X)

are unequal. The function —Sw is a pointwise minimizer, which first mazimizes the
matriz dot product Wp e X over all P € II" and then takes the additive inverse
of that mazimum. The second function S_w is the usual pointwise mazimizer of
the support functions (—Wp) e X for all P € TI". Therefore, we cannot move the
class label y; inside the structural dot product W e X; to bring all training graphs X;
into the same decision region. This normalization of training examples is commonly
done for feature vectors to simplify the treatment.

12.4.2 Minimizing the Structural Perceptron Criterion

We now want to present an incremental procedure to minimize the structural
perceptron criterion (12.6). Since EP¢"¢(W) is locally Lipschitz continuous but not
regular, we cannot inconsiderately adapt the Incremental Subgradient Learning
Algorithm 13.

Suppose that example (X;,y;) € Z is presented to the s-perceptron at iteration
step t. Then an incremental learning procedure is concerned with the i-th compo-
nent function EP*"® = —y,;(W e X;). Clearly, EP“"“ is a regular function. But the

function

Eferc . X1 ¢ (‘:(Wt)

ﬁm0={ 0 X, eE&W)

is only regular at W whenever EP“"“(W) 2 0. Thus, care must be taken at irregular
points of EF"C.

Since the s-perceptron criterion is locally Lipschitz, it has a generalized gradient
at any point from G4. Hence, the following approach for the s-perceptron learning

rule makes sense
Wip1 — Wy — n: Gy, (12.7)

where Gy € 0f;(W) is a subgradient from the generalized gradient 0 f;(W). Hence,
everything comes down to selecting an appropriate subgradient G;. We distinguish
the following cases:

264

Structural Single-Layer Networks

1. EP?"“(W;) > 0: In this case, X; is misclassified and by definition of f;, we have
fi(W) = —y;(W; @ X;). Let m be an optimal relabeling of X; towards W;. Then

Gy = -y X]

is a subgradient from 9 f;(W;).

2. EP"(W;) < 0: In this case, X, is correctly classified and by definition of f;,
we have f;(W;) = 0. From continuity of EY*"“(W,), it follows that f;(W) = 0
for all W from a sufficiently small p-neighborhood B (W4, p) of W;. Hence, f; is
constant on Bp(W, p) and therefore smooth at W;. In addition, the generalized
gradient 0f;(W;) coincides with the gradient V f;(W;) = 0, where 0 denotes the
null graph. Thus,

GtZO

is a subgradient from 9 f;(W;).
3. EP"(W;) = 0: We distinguish two further cases.

(a) X; € E(Wy): In this case, X; lies on the decision surface but is misclas-
sified. This occurs when X; is from class C1. Our goal is to adjust W; such
that X; is correctly classified. We have f;(W) = —y;(W; e X;) = 0. From the
first case, it follows that

Gy = —yz’XZT

is a subgradient from 0 f; (W), where 7 is an optimal relabeling of X; to W;.
Now let us check whether X, is correctly classified by the new hypothesis
Hyw,,,(X;). Let P be the matrix representation of the optimal relabeling =
of X; to Wy, and let @ be an optimal rotation of X; towards W;;1. We have

HWt+1 (XZ) = Wt+1 o X; = (Wt - 77th) o X;
= (W, +ny,PTX,P) e QT X,Q.

From the equation in the last line it is straightforward to show that Q = P
is an optimal rotation of X; towards W;.1. Thus with Xp = PTX P, we
get
Hw,, (Xi) = (Wt + UtinP) e Xp
=W;eXp+nyXpeXp
= Hw,(X) +ny: Xpe Xp.

Since X; is from class C1, we have y = 1. From || X |2 > 0 for X # 0 follows
the desired improvement

HWt+1 (Xz) > HWt (Xz) = 0.

(b) X; ¢ E(Wy): In this case, X; lies on the decision surface, but is correctly

12.

Structural Perceptrons 265

classified. This occurs when X is from class Cs. Since there is no mistake,
no update is necessary. This can be derived by choosing

Gy =0

as a subgradient from 0 f;(W;). This is feasible, because f;(W + aD) is zero
along any direction graph D pointing into region Rs.

To summarize, the subgradient Gy of the structural perceptron learning rule (12.7)
is of the form

J

G — _in;r X, € g(Wt)
‘ 0 c X, ¢ E(Wy)

where 7 is an optimal relabeling of X; to W;.

Since G; = 0 whenever an input is correctly classified, the s-perceptron algorithm
is a mistake-driven incremental subgradient method (see Algorithm 14). Given a
misclassified example (X,y), updating of the weight graph involves the following
steps: first, select an optimal relabeling © of X to W; second, relabel X to X™;
third, update the weight graph W by adding nyX™.

Figure 12.2 illustrates learning rule (12.7). In geometrical terms, adjusting the
bias stretches or shrinks the decision wheel, and adjusting the weight graph shears
the spokes. It is possible that updating the weight graph collapses two spokes to a
single spoke. Similarly, collapsed spokes may be sheared apart by applying update
rule (12.7).

Algorithm 14 (Structural Perceptron Algorithm)

Input:
Z - training sample consisting of p examples (X1,y1),...,(Xp,yp) € X x {£1}
Initialization:
set W =0
Procedure:
repeat
for all i € [1:p] do
T; = @(W . Xi)
if z; # y; then
choose learning rate n
choose optimal relabeling 7 € Rx, w
update W =W +ny; X
end for
until some criterion is satisfied

Output: Hyy : X — (W e X)

266

Structural Single-Layer Networks

Figure 12.2 Geometrical illustration of update rule (12.7). For convenience, we
uncouple the bias h from the extended weight graph and consider the usual weight
graph W and bias h separately. Suppose that example X labeled with y = 1 is
misclassified by hypothesis H(X) = We X +h as y = —1. In (a), we consider the
vector representations Vixj and V) of the unlabeled graphs [X] and [W]. We choose
an arbitrary labeled representative X of [X] and determine the spoke W closest to
X. Both labeled graphs, X and W, are highlighted. Since the misclassified example
X has label y = 1, we add X to W. The effect of W+ X to all labeled representatives
of [W + X] is indicated in (b) and (c). Finally, (d) shows the updated weight graph
and the resulting decision regions.

Since the s-perceptron criterion EP¢"(W) is locally Lipschitz, it is differentiable
almost everywhere. Thus, from the perspective of differentiability, we have a similar
situation as in the case of the standard perceptron criterion.

12.4.3 Structural Perceptron Convergence Theorem
Given a structural linearly separable training sample, we want to present a conver-

gence result for Algorithm 14.
The standard perceptron convergence theorem states that the perceptron algo-

12.4 Structural Perceptrons 267

rithm finds a solution that correctly classifies the examples of a linearly separable
training sample after a finite number of iteration steps. In addition, the theorem is
shown for a constant learning rate n, = 1 for all ¢ > 0.

The main problem in extending the standard perceptron convergence theorem to
Algorithm 14 is that known proofs exploit the bilinearity property of the inner
product. Since the structural dot product is not bilinear, it is unclear how to
derive a strong convergence result similar to the one of the standard case. Weaker
convergence results can be obtained by bounding the behavior of the average error
EPeT¢ over time. In particular, we show that the structural perceptron converges in
the limit to a solution graph when we decrease the learning rate appropriately at
each iteration step.

We use the following notation: let 7 = (¢ mod p) + 1 for all ¢ > 0, where p
is the cardinality of the training sample Z. The subscript ¢ in EP", X3, and y;
refers to the j-th component function EY" of EP*" and the j-th training example
(X;,y;) € Z. With this notation at hand, we formulate the following important
result.

Lemma 12.1

Consider the structural perceptron criterion (12.6) for a structural linearly separable
training sample Z with solution graph W*. Let x = maX,c[1.p) || X;||, and let Wy be
the initial weight graph. Then there are positive constants g, ...,e¢ such that

2
S(Wo, W)™ +2° 5 ot
2t mineo.4) 7

t
1 erc
=Y EFTW) < (12.8)
=0

whenever 0 < n; < ¢e; for all i € [0:t].

Proof Suppose that X; is misclassified. Without loss of generality, we assume
that the identity matrix I = I,, is an optimal rotation of X; towards the current
weight graph W;. The weight graph is then updated according to

Wiv1 = Wi + niye Xt
First we show that there exists a constant €; > 0 such that the intersection
RW*, Wip1) NR(W*, W)

of the sets of optimal rotations of W* towards W11 and towards W} is non-empty,
provided that 0 < 7y < 4. Let

— _ T *
f(W) —II)Ié%)gpr(W) —FI’%;;I\%P W*PeW

be the pointwise maximizer with linear support functions determined by W*. The
directional derivative of f at W; in direction y; X; is of the form

(W, yp X)) = maX{pr(Wt) ey X : fp € supp(f, Wt)}

Without loss of generality, we assume that fr € supp(f, W) with f/(W;,y: X)) =

268

Structural Single-Layer Networks

V f1(W:) ey X;. Note that such a fr exists, because f is directionally differentiable
at W;. We have

JWe + ay Xy) — f(Wh)
«
_ iy MEXPEI PTW*Pe (W +ay,X,) — W* e W,
al0 «
= VfI(Wt) oy X; =W" ey X,.

I Wi,y Xe) = Ll%

Hence, there is an ¢; > 0 such that

JWi + aye Xy) = fr(We + ay: Xt)
for all « € [0, &;]. This implies that

I e ROW*, Wip1) NR(W*, Wy).

Next, we examine the distance from the updated weight graph W;,; to the
separating graph W*. We have

2

HWt+1 -w = HWt + ey X — W

= |We = W*|" + 209, X1 0 (W = W7) 4 02| X

2
)

where we cancelled y? = 1 in the third term of the last line. Since W; is a spoke
closest to X, we have

EP"(Wy) = —yp Xy @« Wy > 0.

Although I is an optimal rotation of W* towards W; 4+ n,y; X;, it need not be an
optimal rotation towards X;. This observation implies that

—y Xy o W* < EP" (W) = 0.

The equality EY*"(W*) = 0 follows from the fact that W* is a separating graph.
From

2y Xy 0 (Wy — W*) < —2n, (Efe’"c(Wt) _ Ef”%W*))
= =20 EYTC(Wy)
follows

(Weer =W |* < | Wi = W ||* = 2n BP7(W) 4 | X
< |We = W|” + 20 BPTU(WG) +

12.4 Structural Perceptrons 269
where y = max;c(1.p) | Xi]|. Applying the above inequality recursively, we obtain

t t
Weer =W ||* < [[Wo = WP =23 me B (we) +2¢° 3t
i=0 i=0
t

t
< |[Wo — W =20, Y EPTEW) + 222 Y,
=1 i=0

where 7, = min;¢ g, ¢ denotes the minimal learning rate. Note that 7; < ¢; for all
i € [0:t], where ¢; is chosen in the same way as described in the first part of this
proof. Let

1<
=230 B
=0
be the average error. We have

t
2 < |[Wo — WH|* + 202 > .

i=0

Dividing both sides by 2t7, yields the assertion. |

From equation (12.8), we can directly derive convergence results. For ¢ > 0 let

t

1
,uferc — z Z EZPET‘C(Wi)
i=0
denote the average error of the component functions E{“"“, ... EP"*. Given the

assumptions in Lemma 12.1, we consider two types of rules for the learning rate ;.

1. Constant Learning Rate. If , = n, the average error is bounded by

%) 2 2,2
e < 6(VV0,W) + 2x°tn .
L= 2tn

Taking the limit, we have

S(Wo, W*)* + 2%t
=X

. erc .
tliglo we s tlggo 2tn
This shows that for a constant learning rate n the average error converges to a
value bounded above by x27. The immediate implication of this result is twofold:
first, we cannot guarantee convergence to a separation graph, but we can bound
the expected error; and second, we can control the bound of the expected error
by the magnitude of the learning rate.

2. Stochastic Approzimation. Suppose that the learning rate satisfies

Inl>=>_"n <oo, > mi=o0.
1=0 1=0

270 Structural Single-Layer Networks

A typical example is 7, = a/(8 +t), where @ > 0 and $ > 0. Then we have

! 5(Wo. W*)* + 23 nl* _ ¢

o pere <
e B 2 ZE:O Ui 2 Z::O i 7

where C' is a positive constant bounding the nominator of the second term in the

above inequality. Taking the limit ¢ — oo shows that the expected error converges

to zero. Since the component functions E7“",..., EP"¢ are nonnegative, the

Structural Perceptron Algorithm 14 converges to a separating graph.

As opposed to the standard perceptron, an s-perceptron ensures convergence to
a solution graph for structurally separable patterns only in the limit, provided that
the learning rate is decreased according to the principle of stochastic approximation.
Note that this result does not imply that an s-perceptron cannot find a solution
graph after a finite number of iteration steps. Theorem 12.1 summarizes the second
convergence result.

Theorem 12.1

Consider the structural perceptron criterion (12.6) for a structural linearly separable
training sample Z with solution graph W*. Suppose that the learning rate decreases
according to the rule

oo oo
Zn?<oo and Zm:oo.
i=0 i=0

Then we have

12.5 Conclusion

In this chapter, we presented single layer feedforward s-networks for adaptive pro-
cessing of attributed graphs. For classification problems, a single s-unit represents
a structural linear decision surface composed of hyperplane segments, which are in-
terrelated via relabeling of the spokes. For a structurally separable training sample,
we showed that an s-perceptron can, at least in the limit, learn what it repre-
sents. In addition, we presented an incremental subgradient learning algorithm for
classification and function approximation problems.

We conclude with a twofold outlook. The foundation has been established for
structural neural learning machines. It is beyond the scope of this work to provide an
exhaustive compilation of theoretical results, including results on statistical learning
theory as available for standard neural networks.

The limitations of single layer s-networks in terms of the range of functions they
can represent shifts the focus of interest to multi layer s-networks. We examine
multi layer s-networks in the next chapter.

13

Structural Multi-Layer Networks

As argued in the previous chapter, s-networks having a single layer of adaptive
weights are limited in terms of the class of structural functions they can represent.
This chapter is devoted to multi layer networks for attributed graphs that imple-
ment a broader range of structural functions. In Section 13.1, we propose a struc-
tural model of multi layer feedforward networks. Section 13.2 provides some results
on representational capabilities of structural multi layer networks. To learn what a
structural network can represent, Section 13.3 extends the error back-propagation
algorithm to structural networks for finding the generalized gradients of an error
function with respect to the weights and biases.

13.1 Structural Model of Multi Layer Neural Networks

A multi layer neural network for attributed graphs is either a single layer s-network,
or a single layer s-network coupled with a standard multi layer neural network for
feature vectors. In a multi layer s-network, the s-units in the first layer provide the
input signals for the conventional units in the second layer.

Figure 13.1 shows an example of a three layer s-network. It has an input terminal
whose role is to feed attributed graphs into the network. The first layer of units
are s-units. The second and third layer of units are conventional units. The outputs
of s-units in the first layer form a vector, which provides the input of the second
layer of units. Units in the last layer are the output units of the s-network. All other
units, regardless whether of conventional or structural type, are called hidden units,
because their activations and outputs are invisible for the external environment.

Note that in the literature on standard multi layer networks, different conventions
are used for counting layers. Here, we count layers of units in a feedforward direction,
beginning with the layer of s-units as the first layer. Layers of weights refer to
the layers of adaptive weights. Thus, the first layer of weights are the weight
graphs associated with the s-units. Following this convention, each layer of weights
corresponds to a layer of units. Hence, we may speak loosely about layers or the
r-th layer when referring to the units, weights or both components in that layer.

Consider an s-network consisting of ¢ layers. Suppose that layer r consists of
m, units for r € [1:¢], where output layer ¢ has my = m units. The first layer

272

Structural Multi- Layer Networks

el
hidden units e
/W o bias

hidden s—units

input terminal

Figure 13.1 Example of a feedforward s-network consisting of three layers of
adjustable weights. Input units are depicted by black circles, s-units by large
blue circles, and conventional units by light blue circles. The input terminal has
matrix form. To feed an input graph X into the network, the adjacency matrix
of X is applied to the terminal. Diagonal elements of the terminal receive input
signals from vertex attributes and off-diagonal elements from non-vertex attributes
of X. Similarly, connections emanating from diagonal elements represent vertex
attributes, and connections emanating from off-diagonal elements represent non-
vertex attributes of a weight graph. For each s-unit, the terminal performs an
appropriate relabeling of X to maximize the structural dot product with the
associated weight graph. The output of the s-units forms a three-dimensional vector
and can therefore be regarded as input of a standard multi layer network. The biases
are shown as extra input and hidden units, respectively, with fixed output 1.

implements a function
HD gy - R™, Xz = (g(ugl)) ,...,g(ugz))T,
where the vector 1) € R™! collects the output values
x§1) _ g(ul(-l)) = g(W'e X + 1)

of all s-units i, and g represents the transfer function. As usual, W* and h? denote
the weight graph and bias associated with s-unit i. Indices referring to the first
layer are enclosed in parentheses. We will use this convention for layers of higher
rank as well. We dropped the layer index for W* = W*1) and h* = h'(1) because
weight graphs and biases in the first layer can be identified by the superscript index
1 referring to the associated s-unit. For weights and biases in the following layers,
reference to their associated units is indicated by a subscript index 1.
Similarly, each layer r € [2:£] implements a function

HO R R 2l a0 = (o) o))

18.2 Representational Capabilities 278

The output vector of layer r € [2:4] is of the form
) =g (um) —g (Ww)w(r—l) n h(r)) 7

where W (") € Rm»*mr—1 denotes the weight matrix describing the connections from
layer — 1 to layer r. Each row 'wl(-;r) of W) is composed of m,_, weights wg-)
connecting unit j from layer r — 1 with unit 7 from layer . The vector h(") € R~
collects the biases of all the m, units in layer r.We assume that the transfer function
g is identical for all units within the same layer, but may vary from layer to layer.
The particular form of ¢ can be recovered by the layer index r of its argument (.

Merging the modules of the first and the following layers gives an s-network that

implements a functional relationship of the form

H:Gi—R" Xw—z,=HYo...o H® o HV(X). (13.1)

13.2 Representational Capabilities

This section discusses which classes of functions can be represented by multi layer
s-networks. For the same reason as in the standard case, the constructive proofs
presented here are of little practical value [32]. Their purpose is to characterize the
hypothesis space covered by different s-network architectures. In what follows, we
assume that arbitrary large networks can be constructed if needed.

Let

~

f:[U]—R™
be a function defined on a subset of the space [Ga] of unlabeled graphs. What
we want to know is whether there is a multi layer s-network that implements
f at least to arbitrary accuracy. To respond to this question, we consider the
space G4 of labeled graphs. The function f gives rise to a uniquely determined

structural function f on a subset U of G4 with f(X) = f([X]). Since the space G4
is isomorphic to a Euclidean space AY (N = n?), the following diagram commutes:

[]

AN vec G.A [GA]

= b l7

R™ R™ R™
id id

The vec-operation transforms a labeled graph W from G4 to its vector represen-
tation w = vec(W) by concatenating the columns of its adjacency matrix W. By
abuse of notation, we apply the vec-operation on labeled graphs rather than on
their adjacency matrices.

With the commutative diagram in mind, we first state a conjecture for which we

274

Structural Multi- Layer Networks

neither know a proof, nor a counterexample.

Conjecture 13.1
Let [U] C [GA] be a subset of the space of unlabeled graphs. A function

f:[U]HRm

can be represented by an s-network (to arbitrary accuracy) if fY¢° can be represented
by a conventional neural network architecture (to arbitrary accuracy).

Suppose that f¥°¢ is a function, which can be implemented by a conventional
multi layer network 1. It is unclear how to show the existence of an s-network
N, that implements f Converting 91 to M, is intricate for two reasons: first, it is
unclear how to construct an s-network e that implements the vec-operation. If
we know how to construct Myec, all we have to do to obtain the desired s-network
N, is join the output of Nyee with the input of the conventional network 1. Second,
if there is no s-network Myec, we have to substitute each unit 7 in the first layer of
M by one or more s-units. Suppose that w; is the weight vector and h; the bias
associated with unit 4. Then for any input pattern = € AY, the activation w; is
defined by

u(z) =wlx + h.

Let X and X’ be isomorphic graphs with & = vec(X) # vec(X’) = «’. Then the
problem we face is that the activation of unit ¢ may possibly differ for different
input patterns and @’, i.e. u;(@) # w;(x’). The situation for s-units is completely
different. Since the structural dot product is a structural function, the activation
of an s-unit ¢ is of the form

w(X)=W'eX +h! =W'e X'+ h' = u;(X).

It is unclear how to synthesize the different behavior of conventional and s-units.

Validity of Conjecture 13.1 would provide an answer to our question raised above
for the broad class of functions that can be represented by conventional multi layer
neural networks. Unless there is no proof to support the conjecture, we have to
construct s-networks for particular classes of functions. In the following, we present
constructive proofs for the representational capabilities of s-networks for selected
examples of structural functions.

The first example shows that any structural boolean function on binary graphs
can be represented by a two layer s-network consisting of threshold s-units in the
hidden layer, and a single conventional threshold unit in the output layer.

18.2 Representational Capabilities 275

Theorem 13.1
Let Gy be the set of binary graphs with attributes from B = {0, 1}, and let

f: [QB] —)B

be a structural dichotomy. Suppose that weight graphs associated with s-units are
elements of the set Gp: of complex graphs with attributes from B = {£1}. Then
there exists a two layer s-network that implements a function H with H(X) = f(X)
for all graphs X € Gg.

Proof The null attributes of Gy and Gp/ are eg = 0 and ez = —1. We define the
mapping

idgp’ : G — Gmr, X +— Xp
with
XpoeX=XeX. (13.2)

The mapping idpp’ exists and satisfies the permutation invariant property. To show
existence of Xp/, we replace the null attribute eg of non-edges in X by the null
attribute eps. Clearly, Xy satisfies (13.2). Hence, by construction, idgps is well-
defined and bijective with inverse mapping idg'g. We show that idpps satisfies the
permutation invariant property. Let Y be isomorphic to X. Then Yps is isomorphic
to Xp, and

XB/.X:X.X:X.Y:XE/.Y:YB/.Y
Next, we show that
Xp oY <XeX (13.3)

for all binary graphs Y € Gg not isomorphic to X. Since X and Y are both binary
graphs, it is easy to see that

XeY < XelX.

We distinguish three cases:

Case 1: Let |Y| < | X|. Then from d = | X| — |Y| > 0, it follows that
XeY < XeX-d< XelX.
Since ep < €, we have
Xp oY <XeY <XeX.

Case 2: Let |Y| = |X]|. Since Y is not isomorphic to X, there is at least one

276

Structural Multi- Layer Networks

mismatch between non-vertex items. Hence, we have
XeV < XeX-1<XeX.

With the same argumentation as in the first case, we find that Xp e Y < X ¢ X.

Case 3: Let |Y| > | X|. We have d = |Y| — | X| > 0. Since Xp' has attributes from
B’ with null attribute egr = —1, alignment of X/ to the size of Y adds dummy
items labeled with ep. Hence, we have

Xp oY <XeY —-2d< X eX.

Combining the results of the three case shows (13.3).

Now we turn to the actual part of the proof. Let f be a structural function Gg
with f(X) = f([X]) for all X € Gs. The number of binary graphs of bounded
order is finite. Hence, the sets Gs and [Gg| are finite, because we assumed that all
graphs are of bounded order n. We take one hidden threshold s-unit i[x) for every
unlabeled graph [X] € [Gs] with F([X]) = 1. The weight graph WXl associated
with s-unit i[x) is of the form

WX = Xp,.

We set the bias of i[x] to hixl =1 — X e X. Then the activation u;
is given by

x] of s-unit 7[X]

Uiy = Wixl oY + WXl = Xy o Y + hUXI,
Using kX1 =1 — X e X, we find from the first part of the proof that

Tijx) = © (“i[XJ) = {

1 @ X'~X

0 : otherwise

for any input graph X'’. Hence, the proof is complete if we connect each hidden
s-unit to a single output threshold unit with weight +1 and set its bias to 0. |
The proof of Theorem 13.1 allows a generalization to dichotomies on the set Gga of

attributed graphs colored with attributes from B¢,

Corollary 13.1
Any structural dichotomy

f: [Q]Bd} — B
can be represented by a two layer s-network consisting of threshold units.

Proof Let A=DB? and let A’ = {£1}%. The null attributes of G4 and G4+ are
€4 =04 and €4 = —ey4. We define the mapping

id‘A_A/:g.A—>g_A/7 XHXA/

18.2 Representational Capabilities 277

with
XpoX=XeX.

The assertion follows from a similar argumentation as in the proof of Theorem 13.1.
|

The constructions in Theorem 13.1 and Corollary 13.1 are of little practical use,
because we merely store the input graphs and abandon the capability of the s-
network to generalize. But as in the standard case, the construction illustrates the
concept of a structural template. Each hidden s-unit serves as a structural template
for the corresponding input graph in the sense that it only fires when the input
matches the template graph. As an immediate consequence, we may state that any
classification problem on finite graphs colored with symbolic attributes from a finite
set of symbols can be solved by a two layer s-network.

Now we turn from binary to continuous attributes. The next result shows that
an s-network can approximate any decision boundary to arbitrary accuracy.

Theorem 13.2
Let A =R< be the set of vertex and edge attributes. Suppose that

f: [GA] — B

is a dichotomy. Let R = f’l({O}) denote the region of all attributed graphs X € Ga

with f(X) = 0. Then a three layer s-network can approzimate region R to arbitrary
accuracy.

Proof We embed G4 into the vector space AN (N = n?), where each labeled
graph X is represented by the vector x = vec(X) € V|x). Since f is a structural
function, the function fY¢¢is constant on the set V|xj. It is sufficient to show that
a two layer s-network with one output unit can generate a hypercube of any size
and position in AY. To this end, we consider the vectors

2
w1 = Uy, W = Up+1, w3 = —Uq, Wy = —Up+1,

where wu; denotes the i-th unit vector of AN. Thus, w1 is the vector representation
of the labeled complex graph W' consisting of a single isolated vertex colored
with attribute ey. Note that e, is the d-dimensional vector of all ones. All other
items of W1 are colored with the null attribute € = 0. Similarly, ws is the vector
representation of the labeled complex graph W?2 consisting of an imaginary edge
colored with eg; all other items of W?2 are colored with e. The structure of the
labeled graphs W3 and W* represented by w3z and wy directly follows from W1
and W2,
Let h* < 0 for all i = [1:4]. Each function

Hi(X)=W'e X +h'

278

Structural Multi- Layer Networks

determines a decision surface in AN composed of hyperplane segments parallel to
the coordinate axes with distance h® to the origin (note that HWZH = 1). Assume
that h' is identical to h for all ¢ = [1:4]. Then the region R’ of all graphs X
satisfying

Hi(X)<0

for all ¢« = [1:4] is a hypercube with center 04 and diagonal V/2h. By varying
h',...,h*, we can control the size and position of the hypercube. Hence, the
following network architecture generates an arbitrary hypercube as a decision region
for all graphs X with f(X) = 0. The first layer consists of four structural threshold
units, each of which is associated with one of the weight graphs W* defined above,
and has a bias h’. The output layer consists of a conventional threshold unit. The
connections from s-units to the output unit have weight 1. The bias of the output
unit is set to —3. Hence, the output unit fires a 1 if, and only if, all hidden s-units
have output 1. In turn, the latter occurs if, and only if, a graph from the hypercube
R’ is presented to the network.

Now everything comes down to the case of feature vectors and the assertion
follows by applying the construction proposed by [231]. |

For the same reasons as in the case of feature vectors, the constructive proof of
Theorem 13.2 is of little practical value. The construction requires specification
of the decision boundary in advance and typically results in s-networks with
large number of connections. But we obtain a notable result when comparing the
complexity of s-networks with that of conventional networks. The existence proof
of networks to approximate a decision boundary to arbitrary accuracy in the case
of feature vectors follows the same line as the proof of Theorem 13.2. Suppose that
we are given feature vectors of dimension n. Then we need 2n units in the first layer
to determine a single hypercube as a decision region. Each group of 2n units in the
first layer is connected to a single unit in the second layer. In addition, each of the
2n + 1 units has a bias. This gives 2n? + 4n + 1 adjustable weights and biases for
representing a single hypercube in R™.

Now let us consider the complexity of s-networks. Suppose that the weight graphs
are all of order n. Regardless of the magnitude of n, we always need four s-units in
the first layer and one conventional unit in the second layer to determine a single
hypercube. Since the weight graphs are supposed to be undirected, the number of
distinct weights associated with an s-unit is n(n+1)/2. This gives a total of 2n(n+1)
adjustable weights in the first layer. Including the biases, we have 2n? 4+ 2n + 4 free
parameters in the first layer. Adding the weights to the conventional unit in the
second layer and its bias finally gives a total of 2n2 + 2n + 9 adjustable weights and
parameters to respond to a single hypercube.

Provided that n > 4, an s-network with weight graphs of order n requires less
weights and biases to represent a hypercube in a quadratically higher dimensional
space RN than a conventional network in the n-dimensional space R™. Intuitively,

18.8 Subgradient Backpropagation Algorithm 279

this result is somewhat surprising, because the number of weights of an s-unit
depends quadratically on its order. But the permutation invariance of the structural
dot product compensates the high number of weights associated with an s-unit by
allowing construction of more complex decision regions as in the case of conventional
units.

In our last example, we show that any smooth structural function on a compact
subset of G4 can be approximated by an s-network to arbitrary accuracy.

Theorem 13.3
Suppose that

f:U—R™

18 a smooth structural function on a compact subset U of Gy4. Then a three layer
s-network can approximate f to any desired accuracy.

Proof We use the same architecture as in the proof of Theorem 13.2, but replace
the threshold transfer function by the logistic activation function in the hidden
layers and by a linear transfer function in the output layer. Then the proof follows
from [223]. [|

The results on the expressive power of s-networks indicate what we can potentially
expect, but they provide no useful means for obtaining appropriate weights to
solve practical pattern recognition problems. The main reason is that in a practical
setting, the function to be approximated by an s-network is unknown. Hence, we
are unable to specify the weights in advance. The next subsection shows how
we can obtain suitable weights to approximate a given, but unknown, functional
relationship.

13.3 Subgradient Backpropagation Algorithm

We now turn to the problem of how an s-network can learn a given functional rela-
tionship. As previously mentioned, the learning problem is posed as a minimization
problem of a suitable error criterion as a function of the weights.

In the following, we consider extended weight and input graphs as described in
Notation 12.1. To unclutter the notation, we drop the ~-accent.

Assume that we are given a training sample
zZ= {(leyl)v' ce (vayp)} - X x y

consisting of p training graphs Xy € X C G4 drawn from some input space X
together with corresponding output values y, € Y € R™. The problem is to

280

Structural Multi- Layer Networks

estimate an unknown functional relation
f: X =Y

given the training sample Z and a hypothesis space H of functions H : X —).
Here we are concerned with a hypothesis space H consisting of functions of the form
(13.1) that can be implemented by a multi layer s-network. In addition, we assume
that all transfer functions occuring in (13.1) are continuously Fréchet differentiable.

Following the principle of empirical risk minimization, the basic approach in
learning defines a suitable error criterion as a function of the weights and biases
that is then minimized by matching the network outputs with the desired outputs.
Here we shall consider error functions of the general form

EW) =Y E,W),

q=1

where E,(W) = [(z, y) expresses the error (loss) of the network’s output &, = :c((f)

against the desired output y when presented with input graph X,;. The set W
represents all the adjustable weights (including biases) in the s-network. It is useful
to distinguish between weights from the first layer and weights from the remaining
layers. We write

W=W,UW,,

where W represents all the weights associated with s-units in the first layer and
W, represents all the weights associated with conventional units in the subsequent
layers.

If the loss [is continuously Fréchet differentiable as a function of @, the error E is
continuously Fréchet differentiable as a function of the weights from W,. Since the
structural dot product W e X is regular as a function of W and all other functions
applied on W e X are continuously Fréchet differentiable, the error E is regular
as a function of the weights from Ws. Hence, we can apply the standard back-
propagation rule for layers r € [2: /] followed by a subgradient back-propagation
rule for the first layer. Note that the generalized gradient of a continuously Fréchet
differentiable function consists of a single subgradient, namely the gradient of that
function. Hence, we may denote the whole back-propagation pass from the output
layer to the first layer as a subgradient back-propagation algorithm.

Before describing the interaction of the back-propagation pass for the standard
and the structural part of the s-network, we first outline how incremental learning
of an s-network proceeds:

1. Feedforward Pass. Present the next training example (X,,y,) € Z to the s-
network. Calculate the activation vectors (") and output vectors (") for all ¢
layers in the s-network by application of (13.1).

2. Error Back-Propagation to Layer r = 2. Starting from the output layer r = ¢,

18.8 Subgradient Backpropagation Algorithm 281

successively evaluate the partial derivatives

OE,
oW)

for all adjustable weights W (") in each layer r until the second layer r = 2.

3. Error Back-Propagation to Layer r = 1. Evaluate subgradients
Gr € 0E, (W)

for all s-units k in the first layer.

4. Updating. Adjust all weights from W using the partial derivatives and subgra-
dients provided by the back-propagation pass.

We discussed the feedforward pass in Section 13.1. Hence, it is sufficient to focus
on the remaining three steps 2-4.

Step 2: Error Back-Propagation to Layer r = 2

For r € [2: /], the partial derivatives of E, with respect to the weights wz(;)
evaluated using the standard back-propagation procedure. According to the chain
rule, we have

are

E E, oul” _
K, OEq Ou; :6(T)1‘§.T 1)’

Owg) - 8u§.” awg;-) !

where the sensitivity
(r) _ 0E,
' oul"

(13.4)

of unit 7 in layer r describes the overall error changes within the unit’s activation.
Differentiation of (13.4) for the output units & yields

o) =g/ (ul”) V(e).

where y;, is the desired output of unit k in layer £ and xj, is the actual output of that
unit when the network is presented input graph X,. To evaluate 5/(5)7 we substitute
appropriate expressions for ¢’ <u,(f)) and !'(xg, yr), which are known once we have
specified the architecture of the s-network and the loss function.

To evaluate the sensitivity 6§-T) of conventional units j in hidden layers r > 2,

application of the chain rule gives
50 = ¢ (ug’")) 3w, (13.5)
k

The sensitivity 5]@ of a hidden unit can be obtained by propagating the sensitiv-

ities 5,(€T+1) backwards from units of the next higher layer. Since we know how to

282

Structural Multi- Layer Networks

determine the sensitivities of the output units, it follows that by recursively apply-
ing the back-propagation formula (13.5), we can evaluate the sensitivities for all
conventional units.

Step 3: Error Back-Propagation to Layer r = 1

We now want to determine an arbitrary subgradient from the generalized gradient
0k, (WZ) for each s-unit ¢ in the first layer. The component function £, is
continuously Fréchet differentiable as a function of the activation ul(-l) and the
activation ugl) =S X, (WZ) is regular as a function of W?. Then E, is regular
at W' and we can adapt the subgradient learning rule (12.5) presented in Section
12.3. The generalized gradient of E, at W is of the form

E, (W) = sjg) 0 0Sx, (W7).

i

€)
i
can be computed with the back-propagation formula (13.5) using the sensitivities

The partial derivative of E; with respect to u,;” is the sensitivity 551) of s-unit ¢ and

5;2) of the units in the second layer. Hence,
sSVXT € 0B, (W)
[q q
is a subgradient for any optimal relabeling 7 € Ry, w:.
Step 4: Updating

From the preceding discussion, we arrive at two update rules. The first update
rule adjusts weights from layers r > 2 based on gradient descent and the second
update rule adjusts weights from the first layer based on subgradient methods. The
compound update rule for incremental learning is of the form

wz(;) — wg) + n5£r)x§-r_1), (2<r<¥)
Wi e Wi s Xr,

where m € Ry, i is an optimal relabeling.

13.4 Conclusion

In this chapter, we presented multi layer feedforward s-networks for adaptive pro-
cessing of attributed graphs. We showed that a two layer s-network with threshold
s-units in the first layer and conventional threshold units in the second layer can
represent any structural dichotomy to arbitrary accuracy. In addition, a three layer
s-network can approximate any structural smooth function on a compact subset of
G4- To learn what an s-network can represent, we proposed an incremental subgra-

18.4 Conclusion

283

dient backpropagation algorithm, which combines standard backpropagation with
subgradient methods.

Since the central goal was to provide basic principles and mechanisms of struc-
tural neural learning machines, it is beyond the scope of this work to explore all the
important results related to standard neural learning machines. Therefore, further
research objectives of interest are concerned with the approximation properties of
multi layer s-networks, improved learning techniques, generalization ability, reg-
ularization, and extension of other supervised neural learning approaches to the
structural domain.

14

Structural Competitive Learning

In the preceding chapters, we studied supervised structural neural learning ma-
chines. This chapter is devoted to unsupervised structural learning. We extend
competitive learning algorithms to attributed graphs. The aim of competitive net-
works is to cluster or categorize the input data. In Section 14.1, we first review
simple competitive learning for feature vectors. Then Section 14.2 extends sim-
ple competitive learning to attributed graphs. Finally, in Section 14.3, we extend
improved techniques of competitive learning to structural data as Self-Organizing
Maps, Vector Quantization, and Adaptive Resonance Theory.

14.1 Simple Competitive Learning for Feature Vectors

Simple competitive learning constitutes the simplest connectionist model for unsu-
pervised learning and may be regarded as a building block for advanced techniques
including, for example, Self-organizing Maps [213, 214, 215], Vector Quantization
[214], and Adaptive Resonance Theory [129].

In this section, we review simple competitive learning for feature vectors. A more
detailed presentation including a discussion on its well-known limitations can be
found in [166].

In simple competitive learning, the pattern space Z is usually a subset of a
Euclidean space R%. Given the training sample

X ={w,...,z,} C Z,
the goal of competitive learning is to find £ models
Y=A{y1,....us} € Z

such that the average distortion E(M,)Y; X) is minimized using gradient descent in
sequential or incremental mode.

A winner-take-all (WTA) network is the simplest form of a competitive neural
network. It consists of a single layer of k inhibitory connected output units. Each
output unit ¢ is associated with a model y; €)Y in the sense that its activation
is determined by y]z for a given input pattern € R™. Note that without their
associated models, the units of the WTA network form a MAXNET as described

286

Structural Competitive Learning

in Section 7.3.

The competitive learning algorithm aims at moving the models y €) to centers
of the clusters in the input data X by using a competitive learning rule. Once the
learning algorithm has converged, it can be applied as a pattern classifier where an
input pattern is assigned to the class represented by the winner of the competition.

To find cluster structures in the input data and choose the cluster centers
accordingly, competitive learning proceeds as follows. First initialize the models
y € Y. Then reiterate the following steps over the available set of input patterns
from Z until convergence:

1. Sampling. Select the next training pattern @ € A in turn or in random order.
Alternatively, if the training sample X is not available a priori, draw an input
pattern @ from the pattern space Z with a certain probability. Apply the input
pattern x to the network.

2. Similarity Matching. Find the best matching or winning unit i* for which the
associated model y;« is closest to the current input pattern a with respect to the
Euclidean distance. Formally, the winning unit ¢* is given by

1* = arg min ||z — y;l|.

5 min = vl

If the models y; are normalized, then minimizing the Euclidean distance of input
pattern and model y; is equivalent to maximizing the activation u; = sz:c of
unit i. The activations u; provide the basis for competition among the units 4,
where the particular unit with the largest activation is declared as the winner of
the competition.

3. Updating. Adjust the model y;+ associated with the best matching unit i* by
using the standard competitive learning rule

Yix < Yi* =+ n(x — ’yz*)7 (141)

where 7 is a time decreasing learning rate. Rule (14.1) moves model y;» closer to
the current input pattern . This makes the winning unit ¢* more likely to win
the competition on that pattern in the future. Gradually decreasing the learning
rate to zero freezes the learned models.

Appropriate initialization and training of the network will gradually shift the models
to the centers of the clusters. Algorithm 15 summarizes the simple competitive
learning algorithm.

14.2 Structural Competitive Learning 287

Algorithm 15 (Simple Competitive Learning)

Input:
X - training sample ®1,...,xp € Z
k — size of cluster set
Initialize:
set ¥V ={y1,..-yr}
Procedure:
repeat
randomly select © € X
determine ¢* = argmin, ||@ — y;||
update y;+ = y;+ + (e — yix)
decrease 7
until no noticeable changes in) are observed
Output: Y = {y1,...yx}

Simple competitive learning aims at minimizing the average distortion [300]

k
1
EM,Y;X) = - Zmijnxi - yj||27
P =
where the gradient
OE z ()
27 s (s — s
3y, 2 ij\Li — Yj

is just the sum of the changes Ay; = x; — y; of the standard rule (14.1) over all
input patterns x; for which j is the winning unit.

14.2 Structural Competitive Learning

Structural competitive learning operates on a subset Z of the set of attributed
graphs G 4. Consider the training sample

X={X,....,X,} CZ,

consisting of attributed graphs from Z. The goal of structural competitive learning
is to find k model graphs

y={v,...v;}CZ

such that the average distortion E(M, Y; X') is minimized using generalized gradient
descent in sequential mode.
Structural competitive learning differs from simple competitive learning for fea-

288

Structural Competitive Learning

ture vectors in the following points:

1. Structural Units. Standard units of the WTA architecture are replaced by
structural units (s-units). We associate a model graph Y; with each s-unit 4.
2. Similarity matching. Given an input graph X, the best matching or winning
s-unit is defined by

¢ = arg min §(X,Y; 14.2

gie[l:k} (s z)a ()

where 4 is the structural Frobenius metric induced by the structural dot product.
If the models are normalized, that is, ||Y;|| = 1 for all ¢, then the best matching
criterion given in (14.2) is equivalent to

1" = arg max X o Y.

1€ [1:k]

3. Update rule. Following the standard competitive learning rule (14.1), the
structural competitive learning rule is of the form

Yie — Y +n(XT—Y;), (14.3)

where 7 is an optimal relabeling of X to Yj+. By reorganizing the terms on the
right hand side of (14.3), we obtain

Yie = nX"+ (1 n)Y.

According to Theorem 9.5, the updated model is a weighted mean of the current
input graph X and model Y;«. Hence, rule (14.3) moves model Y;+ closer to
X. Since the function X e Y« is Fréchet differentiable almost everywhere, the
direction X™ of movement is uniquely determined. At singular points, which
only exceptionally occur, several directions of movement exist.

Figure 14.1 illustrates an example of the architecture of an inhibitory WTA s-

network for competitive learning. Note that the architecture is closely related to
the architecture of the structural WTA classifier presented in Section 7.4. The
structural competitive learning procedure is summarized in Algorithm 16.

14.2 Structural Competitive Learning 289

input terminal

Figure 14.1 Example of a winner-takes-all s-network consisting of three inhibitory
connected s-units. Input units are depicted by black circles and s-units by large blue
circles. The input terminal relabels applied input graphs X appropriately for each
s-unit. The highlighted dashed connections are inhibitory; the rest are excitatory.

Algorithm 16 (Structural Competitive Learning)

Input:
X - training sample consisting of p input graphs X1,..., X, € Z
k — size of cluster set
Initialize:
set Y = {Y1,...Y;}
Procedure:
repeat
randomly select X € X
determine ¢* = argmin; (X, Y;)
select m € Rx y;.
update Yix = Yix + 0 (X™ — Vi)
decrease 7
until no noticeable changes in) are observed
Output: Y = {Y1,... Y%}

Note that the learned cluster centers are attributed graphs from G4, provided that
the training sample X and the initial models are drawn from G4. This contrasts with
supervised neural learning for structures, where weight graphs may be adjusted to
complex attributed graphs with real and imaginary part. Hence, the learned cluster
centers are proper graphs in a graph-theoretical sense.

Structural competitive learning performs an incremental subgradient descent of
the average distortion

E(M,Y; X) = > mid(Xi, ;)2

j=1i=1

DN | =

290 Structural Competitive Learning

The component function of E(M,Y; X) for the i-th example X; can be written as

1
Ei(M,Y) = 50(X;, Yie)?,
where Y« is the winning s-unit when X is presented to the network. According to

Lemma 9.2, we have

0(Xi,Yir)? = || Xil|* — 2X; 0 Yie + ||V ||?

The term || X;||? is constant as a function of Y;+, and therefore has the null graph as
its gradient. The term ||Y;j«||?> = Y;+ @ Y;« is continuously Fréchet differentiable with
gradient 2Y;«. This follows from Theorem 9.1. Finally, the term Sx,(Y;+) = X; @Y«
is generalized differentiable. Hence, for any optimal relabeling © of X; to Y;« the
relabeled graph X7 is a subgradient from Sy, (Y;»). From the rules of calculus for
locally Lipschitz continuous functions (see Theorem 11.5 and 11.6), we obtain

Yi- — X[€ 0E;(M,).
Thus, the resulting structural learning rule
Yie =Yie +0(X" i)

is in exact accordance with the structural learning rule given in Algorithm 16.
Applying the Principle Elimination of Competition

After learning, we may use the trained WTA network as a structural pattern clas-
sifier for unseen data. Provided that the learned models are pairwise dissimilar, we
can improve utility of the structural classifier by applying the principle elimination
of competition as proposed in Section 7.4. In addition, we may use elimination of
competition during learning in the finetuning phase. Given an input X, the WTA
classifier rapidly identifies the winning unit ¢, without completing computation of
any of the k distances §(X,Y1),...,d8(X,Y%). Next, the distortion §(X,Y;,) and an
optimal relabeling 7 of X to Y;, is determined. Finally, the model Y;, is updated
according to the structural competitive learning rule.

14.3 Advanced Models of Structural Competitive Learning

In this section, we sketch how three standard models of unsupervised neural
learning machines, namely Adaptive Resonance Theory, Kohonen Maps, and Vector
Quantization, can be extended to the domain of attributed graphs.

14.8 Advanced Models of Structural Competitive Learning 291

14.3.1 Structural Adaptive Resonance Theory

One shortcoming of simple competitive learning for feature vectors is that conver-
gence to a stable set of cluster centers is not guaranteed. The winning unit may
continue to change even when the same input patterns are continuously presented.
One way to enforce convergence is to freeze the learned cluster centers by gradually
lowering the learning rate 7. But then the system loses its plasticity, that is, its
capability to react appropriately to new input data. This phenomenon is known as
the Grossberg’s stability and plasticity dilemma [129].

For structural competitive learning, Grossberg’s stability and plasticity dilemma
holds a fortiori. We present a structural version for the ART1 algorithm and show
that the stability and plasticity dilemma is also resolved in the domain of binary
graphs.

The Structural ART1 Algorithm

Output s-units ¢ can be enabled or disabled. Initially, each model Y; associated with
1 is a fully connected binary graph. We call s-unit i uncommitted unless Y; has been
updated. For a new input graph X from Gy, the algorithm proceeds as follows:

1. Enabling. Enable all the output s-unit.

2. Similarity Matching. Determine the winner ¢* among the enabled output s-
units according to

e XeY;
Il Y

where HYj ||1 denotes the number of bits set in Y;. The quantity p; > 0 models
small random noise to break ties. Exit if all output s-units are disabled.

3. Resonate Test whether X and Y;- are sufficiently similar by evaluating the
boolean expression

r =

XeV,]

— >,
X,

where v is the wvigilance parameter. If r is true, there is resonance; go to step 4.
Otherwise, model Y;- is rejected; disable s-unit ¢* and go to step 2.

4. Update rule. Adjust Y;+ according to the rule
Y=Y, NPTXP,

where P is an optimal rotation from X towards Y;«. The logical operator A deletes
all bits in the adjacency matrix Y;« that are not also in the adjacency matrix
PTXP.

292

Structural Competitive Learning

As the standard procedure, the structural ART1 either terminates in step 4 and
outputs ¢*, or in step 2 without providing an output. The next results shows that
the structural ART1 algorithm solves Grossberg’s stability and plasticity dilemma.

Theorem 14.1
Let X be a finite training sample. After repeated presentations of X, structural
ART1 stabilizes to a set of fixed cluster centers. After convergence, we have

1. Y; € Gp
2.Y; £0
3.itj = Yi#Y]

Proof We embed the problem into the Euclidean space AY, where N = n?. The
vectorized training set is given by

X = {J vixy,

Xex

where V| xj is the vector representation of the unlabeled graph [X]. Tt is sufficient
to consider an arbitrary labeling of each model such that

Vv ={yi : yi = vec(;), Y; € Y}

is the set of vectorized models. The structural ART1 algorithm turns into the
standard ART1 procedure for feature vectors, where the current input vector
presented to the network depends on the chosen input graph X and the chosen
optimal rotation P in step 4. Stability of standard ART1 follows from [53, 266] and
implies stability of structural ART1.

It remains to show properties (1)-(3).

1. Consider binary graphs X and Y without imaginary parts. Clearly, the
conjunction Z = X A'Y is a binary complex graph. Suppose that (i,7) € E(Z) is
an imaginary edge. Then at least one of the vertices 7 and j of Z is imaginary.
Without loss of generality, we assume that ¢ € V(Z) is imaginary. Then from
zii = xii Ny = 0 follows 2;; = 0 or y;; = 0. Again, we may assume without loss
of generality that z;; = 0. Since X is a real graph without an imaginary part,
we have z;; = 0 for all j. This implies z;; = x;; A y;; = 0. This contradicts the
assumption that (4, 7) is imaginary.

2. Since none of the graphs from X is zero, an optimal rotation from an input
towards a model maps at least real vertices on one another.

3. Follows from [53, 266] using the conversion of structural to standard ART1.

14.8 Advanced Models of Structural Competitive Learning 293

14.3.2 Structural Kohonen Maps

A topographic map is a neighborhood relation-preserving map from the input
space to the output space. The input space is a subset Z of attributed graphs
Ga, represented by the training sample X'. The output space is usually a set
of competitive s-units, geometrically arranged in a one-dimensional line or two-
dimensional plane. In a topographic map, structures from a neighborhood in the
input space with respect to some metric are mapped to s-units located within
a corresponding neighborhood in the output space according to its geometrical
arrangement.

For inputs that are represented by feature vectors, different types of topographic
maps have been considered. The most common type are Kohonen maps [215].

In structural competitive learning, only the models associated with the winner
are updated. In addition, updating of the models does not consider the spatial
relations among the s-units in the WTA network. Kohonen maps modify structural
competitive learning in three ways to enable spatial organization:

1. Geometrical arrangement of structural units. Structural units are generally
arranged in a one or two-dimensional array. Each s-unit can be thought of
being connected to its immediate neighbors by an edge. Typical examples of
two-dimensional arrangements of output s-units are lattices or hexagons.

2. Neighborhood function. A neighborhood function A;(j) with s-unit i as its
center indicates the distance from any s-unit j in the array to the center i. A

typical choice is
: d(i, j
A(j) = exp (_ (J)>,

2
20}

where d is a distance measure defined on the output space with a given geo-
metrical layout, and o; is a time-dependent width parameter that is gradually
decreased.

3. Learning rule: Suppose that ¢* is the winning s-unit of the competition for a
given input X. Note that the winner i* of Kohonen competition is defined in the
same way as for structural competitive learning. The learning rule is then of the
form

Yj Y +nhi () (X = Yj),

where 7; € Ry, is an optimal relabeling of X to Y. The idea behind this rule is
to make the winner and s-units from the neighborhood of the winner more likely
to respond to inputs that are similar to the current input X.

14.3.3 Learning Structure Quantization

Vector quantization exploits the structure of the input vectors for data compression
[111]. Learning vector quantization is a supervised version of vector quantization

294

Structural Competitive Learning

proposed by Kohonen [215] to define class regions of the input space.1 We discuss
both techniques of competitive learning in the context of attributed graphs.

In structure quantization, an input space Z is divided into a number of regions.
When presenting a new input graph X, the quantizer first determines in which
region the graph X lies. Next, X is encoded by a code word associated with that
region. A code word can simply be an index referring to an appropriate region.
Thus, we can store or transmit the much smaller code word than the original input
graph at the expense of some distortion. The code words can be decoded to a
quantized structure (model), which can be viewed as a representation of any input
graph associated with the code word. A structure quantizer with minimum encoding
distortion is called a nearest neighbor quantizer.

The relation to structural competitive learning networks is immediate. The
winner ¢* defined by

i* = arg Zin D(X,Y;) (14.4)
determines the code word of a given input X. Decoding X results in a quantized
structure Yj«.

To find an appropriate set of quantized structures in an unsupervised way, we can,
for example, apply any structural clustering method that is capable of minimizing
the average distortion defined in (8.2).

Learning structure quantization is a supervised technique that uses label infor-
mation to define class regions. The algorithm differs from structural competitive
learning in the way the quantized structures are updated and, optionally, in the
choice of the distortion measure D. Let i* denote the winning s-unit for a given
input X of class Cx according to the best matching criterion (14.4). The quantized
structure Y;« is adjusted as follows:

Yie + (X" = Y) : Cp=Cx
Y —
Yie =n(X™—=Y) : Cp #Cx

where m € Rx,y is an optimal relabeling of X towards Y;« and Cj is the label of
the region represented by Y;«. No other quantized structures are modified.

14.4 Conclusion

In this chapter, we extended unsupervised competitive learning to the domain of
attributed graphs and discussed structural versions of Adaptive Resonance Theory,
Kohonen maps, and Vector Quantization. As in the previous chapters, the focus

1. Although learning vector quantization is a supervised learning technique, we consider
it in league with unsupervised neural learning machines, because of its relation to the best
matching criterion realized by WTA networks.

14.4 Conclusion

295

was on basic principles rather than on an exhaustive mathematical analysis of the
proposed systems.

We conclude the last of three chapters on structural neural learning machines with
an outlook for further research directions. Of striking interest are the convergence
properties and overall dynamics of structural competitive learning. This might
be a challenging problem since even for the standard Kohonen map, convergence
properties have only been proved for limited settings. Another objective is concerned
with the extent to which a structural Kohonen map preserves statistical properties
of the data as a nonlinear approximation of principal component analysis. A third
objective is to construct other unsupervised structural learning machines based on
subgradient techniques. A first example is the structural K-means algorithm [183].

15

Experiments

This chapter serves to illustrate that structural neural learning machines can — at
least in principle — generalize over a given training sample. The focus is on checking
the theoretical framework for its potential applicability, rather than providing a
comprehensive study. Consequently, results are presented for a selection of more or
less simple problems with an emphasis on issues related to learnability, rather than
experimental exhaustion. Sections 15.1 and 15.2 apply a structural neural learning
machine to function approximation problems, Section 15.3 to classification, and
Section 15.4 to cluster analysis.

We used the ACS algorithm to approximate the structural inner dot products.
The algorithms were implemented in Java using JDK 1.2. All experiments were run
on a multi-server Sparc SUNW Ultra-4.

15.1 Function Approximation I

The aim of our first experiment is to check whether the theory developed in
Chapters 9-13 also works in a practical setting. Moreover, we want to know whether
an s-network can generalize. To this end, we tested a multi layer s-network on a
function approximation problem.

Problem Formulation

Let X be a random weighted graph. The task is to learn the structural function

> (i j)erx) [px (i, 5]
IX[(Ix1-1)

68 —100,1, X

where G20 denotes the set of all random weighted graphs X of order | X | < 20 with
weights drawn from a N (0, 1) Gaussian distribution with zero mean and standard
deviation one. Null attribute is € = 0. Evaluation of f at X measures the weighted
edge density of a graph X.

298

FExperiments

—— err_train
rrrrr err_valid
11e-3] —— err_test

0 100 200 300 400 500
epoch

Figure 15.1 Result for estimating the weighted edge density of random weighted
graphs. Shown are the training (solid red line), validation (dashed green line), and
test error (solid blue line) as a function of the number of epochs.

FEvaluation Procedure

1. Setting of s-network: We used a two layer s-network consisting of 10 s-units
with tanh-activation function and one linear output unit. Each weight graph
in the first hidden layer was of order 3. We set the initial learning rate n and
the momentum term « to 0.1. The learning rate was slowly decreased at each
iteration step according to the rule n < 0.99 - n. We trained the network using
the standard mean sum-of-squares error (MSE) function.

2. Training sample: To compile the data, we generated 1,250 graphs from a
uniform distribution over the set gfg’. The sample was divided into a training,
validation, and test set composed of 500, 250, and 500 weighted graphs, respec-
tively.

Numerical Results

Figure 15.1 plots the training, validation and test error against the number of passes
through the training set. The result shows that

® the s-network is robust against approximations of the structural dot product.
Since determining the structural dot product is NP-complete, this observation is
important for practical issues;

® the theory developed in Chapters 9-13 can be applied to practical problems. As
shown by the curve of the training error, approximating the subgradient learning
rule minimizes the structural MSE function;

® the s-network generalizes over the training sample.

In addition, all three error rates have converged by maintaining a small oscillation
around FEjqin = 0.0066, E,q:9 = 0.008, and Fiesy = 0.0077. Since n — 0, the
oscillations are due to the randomness of the approximate solution of the structural
dot product. From the plot we see that training, validation, and test error all

15.2 Function Approzimation I 299

converge at approximately the same time, that is, no over-fitting occurs. We assume
that approximating the structural dot products introduces random noise, which
prevents over-fitting of the training data.

15.2 Function Approximation II

In this experiment, we applied a multi layer s-network to a regression problem in
quantitative structure-property relationship (QSPR) analysis. This experiment has
been conducted in a diploma thesis by P. Bonke [39].

Problem Formulation

The QSPR problem consists in predicting the boiling points of saturated hydro-
carbons up to decanes. Boiling points are in the range of [~161.5°C, 219°C]. The
dataset is described in [306]. It consists of all saturated hydrocarbon structures up
to 10 C atoms with known boiling points giving a total of 531 structures.

Graph-Based Representation

Each hydrocarbon structure was represented by an attributed graph. Vertices
represented C' atoms. Bonds between C' atoms were represented by edges. We
assigned the attribute value 1 to all edges and the value 0 to all other items.

FEvaluation Procedure

1. Setting of s-network: We used a two layer s-network (SN) consisting of seven
structural units and a single output unit. The weight graphs associated with
the s-units were of order n = 10. The s-units used the hyperbolic function
g(u) = tanh(u) as activation function and the output unit the identity function.
The learning rate was initially set to 0.1 and slowly decreased at each iteration
step according to the rule n «— 0.99 - n. We set the momentum term to 0.1.
Learning was terminated after 500 epochs. The SN minimized the squared error
function. In contrast to all other experiments, we used the Graduated Assignment,
algorithm [116] for approximating the structural dot product.

Note that the goal was to show that SN can generalize reasonably well. Hence,
neither model selection nor other systematic experimentation with varying data
representation and graph matching algorithms has been conducted.

2. Selected learning algorithms: We compared the SN with the following four
learning algorithms:

300

FExperiments

RecNN Recursive cascade correlation neural network

STK; Support vector regression using a string kernel

TK, STK; with subsequent application of an RBF kernel
TK- Support vector regression using a tree kernel

TK, TK; with subsequent application of an RBF kernel

For a detailed description of the recursive neural network and the support vector
machines, we refer to [260].

3. Protocol: To provide a fair comparison, we used the same protocol as in [260].
We focused on a subset of our dataset consisting of all 150 acyclic alcanes, and
performed a 10-fold cross validation protocol to estimate the prediction error.

Numerical Results

Table 15.2 summarizes the results. As in our first experiment, we see that structural
neural learning machines are able to generalize even when using approximate solu-
tions to the structural dot products. Although structural neural learning machines
are in its infancy, generalization of SN performs on an average level.

As expected, the results indicate that the tree kernels better capture the relevant
structural information for predicting boiling points of acyclic alcanes as both string
kernels. On the other hand, SN worked in the more complex domain of attributed
graphs, rather than exploiting the acyclic structure of alcanes. Approximate solu-
tions for the more complex problem resulted in a loss of relevant structural infor-
mation. Note that the loss is more controlled than for string kernels. Since acyclic
alcanes are simple structures, which can be represented by unlabeled trees, RecNN
and tree kernel methods are most appropriate for predicting boiling points.

We emphasize that SN becomes an interesting choice for noisy structures where
real-valued attribute vectors are assigned to the vertices and the edges. For those
type of graphs, recurrent neural networks are not directly applicable, and fully
general graph kernels are computationally inefficient. One problem with support
vector regression in this experiment is that at least 1/3 of the structures from
the training set are support vectors. This is computationally inacceptable for more
complex problems with large training sets consisting of arbitrary graphs.

SN RecNN STK1 STKa TK; TKa
Eirain 3.39+£0.49 2.15+£0.12 252+£041 2.16%£0.32 3.70+£0.21 2.43+0.24
Fiest 447+£1.28 286+0.74 7.03£1.84 549+1.64 4.70£1.06 2.93+0.92
N 7.0 140.1 85.4 110.4 113.2 52.5

Table 15.1 Results for predicting boiling points of 150 acyclic alcanes up to 10 C
atoms. The quantities Firqin and Eies: refer to the average absolute training and
generalization error. By N we denote the average number of hidden units for SN,
RecNN and of support vectors for STK;, STK,, TK;, TK,.

15.8 Classification

301

Figure 15.2 Images of handwritten characters’ X’ and 'Y”. The first column shows

the model images. Column 2-6 are samples of corrupted images with increasing noise
level o = 2,4,6,8,10. For the sake of presentation no rotation is shown.

15.3 Classification

In this test series, we investigated how generalization of a single s-unit depends on
structural variation and noisy attributes. For this, we considered the problem of
classifying noisy copies of handwritten characters 'X’ and 'Y”.

Problem Formulation

Consider the two handwritten characters C = {Cx, Cy } shown in the first column
of Figure 15.2. The model characters were drawn using an X windows interface.
The black pixels of each model were expressed as a set of points in the 2D plane.
Given a corrupted version X of a model character C' € C, the goal was to identify
the model C' that generates the data X. Corrupted inputs were generated from the
handwritten characters by a similar perturbance model as in Section 7.5.2:

. Select model character C' € C and copy to X.
. Randomly rotate X around its barycenter.

. Delete each point of X with 10% probability.

= W N =

. Add Gaussian noise N(0, o) to the coordinates of each point of X.
Figure 15.2 shows examples of corrupted data images generated by the above
procedure for standard deviations o € {2,4,6,8,10}.

Graph-Based Representation

Given an input image as a point set of black pixels, we randomly selected points
so that the pairwise normalized distances between the chosen points were larger
than a given threshold 9.1 The resulting point set P was transformed to a fully

1. The value 8 depends on the implementation. To reproduce the experiments, # should
be chosen so that the estimated expected cardinality of the point sets equals the values in
Table 15.2.

302

FExperiments

2.0 4.0 6.0 8.0 10.0
mean | 16.8/20.5 | 21.7/25.9 | 27.2/32.9 | 31.6/38.2 | 36.0/43.3
var | 0.9/1.1 | 3.7/41 | 4.8/64 | 6.8/74 | 7.4/9.4

A 6.0/6.0 | 11.0/12.0 | 12.0/16.0 | 17.0/14.0 | 15.0/19.0

Table 15.2 Structural variations of the character dataset. Shown are the mean,
variance, and the maximal difference A = max —min of vertices for varying noise
levels o. For each entry z/y the numbers = and y refer to character ‘X’ and 'Y,
respectively.

connected attributed graph. Vertices v(p) represent the points p € P, and edges an
abstract line between the corresponding points. To each vertex v(p), we assigned a
three-dimensional attribute vector @ = (ay, as, az). Attribute a; is the normalized
distance of point p to the barycenter of the input image, attribute as is the average
distance from point p to all other points g € P, and attribute ag is the variance of
the distances from point p to all the other points g € P. Each edge was colored by
the normalized distance between the corresponding points. To each edge connecting
vertex v(p) and v(q), we assigned a two-dimensional attribute vector b = (by, ba).
The first attribute is the normalized distance between p and q. The second attribute
measures the normalized distance from the abstract line passing through p and ¢
to the barycenter of the input image.

By construction, each graph represents an input image invariant to rotation,
translation, and scaling. Table 15.2 summarizes the structural variation of a random
dataset consisting of 50 corrupted input images from each category giving a total
of 100 examples.

Fvaluation Procedure

1. Setting of s-network: For evaluation, we used a single s-unit (SU) with logistic
sigmoid activation function. The weight graph W was of order |W| = 20. The
learning rate was initially set to 0.1 and slowly decreased at each iteration step
according to the rule n «— 0.99 - . We set the momentum term to 0.2. The
s-network minimized the cross-entropy error function.

2. Selected classifiers: We compared the s-unit classifier with the following four
support vector (SV) classifiers:

(SVl) Pairwise proximities classifier proposed by [140].

(S Vz) SVi-classifier using an RBF kernel.

(S5V3) support vector classifier using the structural dot product [170].

(S V4) SVs-classifier with RBF kernel applied on structural Frobenius norm.

The pairwise proximity classifiers SV, SVa, and SV, operated on approximations
of the structural Frobenius metric as a proximity measure. The SV3-classifier used
approximations of the structural dot product.

15.8 Classification

303
o 2 4 6 8 10
SU 001 2 2
Svi 0 0 6 8 29
SVa 0 0 4 6 23
SVs 0 0 5 4 29
SVy 0 0 5 4 20

Table 15.3 Classification results for synthetic characters. Shown are the estimated
predictive errors (in %) for the s-unit (SU) and the four SV;i-classifiers for varying
noise levels o. Error estimates are from a 10-fold cross-validation protocol. Results
of the SV; classifiers were taken from [170]. Standard deviation from the estimated
prediction errors for the proposed SU-classifier was 1.5% at most in all five experi-
ments. Standard deviations for the other classifiers have not been reported.

3. Training sample: To provide a fair comparison, we used the same setup as
in [170]. For each noise level o € {2,4,6,8,10}, we generated a well-balanced
training sample consisting of 50 examples from each category, and performed a
10-fold cross validation protocol to estimate the prediction error.

Numerical Results

Table 15.3 presents the estimated prediction errors of all five classifiers. As expected,
the estimated predictive error increased for all classifiers with increasing noise level.
Prediction of the proposed SU-classifier was robust to strong noise and structural
variation.

To point to an attractive feature of s-networks, consider the classification problem
at noise level ¢ = 10. As shown by Table 15.2, the average order of all graphs in
the training sample is about 40. In order to classify an unseen image, the SVj-
classifiers approximated a number of structural proximities where both graphs
under consideration were composed of about 40 vertices. In contrast, the SU-
classifier approximated exactly one structural dot product of an input graph of
expected order 40 and a weight graph of order 20. Hence, we may expect that the
SU-classifier is much faster than the SV;-classifiers. In addition, the SU-classifier
performs order reduction to relevant structural parts of the data.

304 FExperiments

(d) P3 (e) Ps

Figure 15.3 Sample images of arm postures.

15.4 Clustering

One important problem in computer vision and human-machine interaction is to
sense gestures and postures of people for directing computers or robots. This
problem arises in many areas such as e.g. a policemen giving signs to regulate
the traffic, directing a crane, navigating a vehicle into a parking lot, or medical
monitoring of patients in a hospital or nursing home.

In this experiment, we applied the structural competitive learning algorithm to
learn the class structure of arm postures as shown in Figure 15.3.

Dataset

We considered five different categories of 235 arm postures:

(Py) UNKNOWN

(P1) NOARMS
(P2) RIGHTARM
(P;) LEFTARM
(Py) BOTHARMS

Each category refers to the lifted arms of a person. Table 15.4 provides a description
of the five categories, where 0 denotes an arm pointing downwards and 1 denotes an

15.4 Clustering

305

. category
category right arm left arm distribution
Py * * 37
P, 0 0 50
P, 1 0 50
Ps 0 1 50
Py 1 1 48

Table 15.4 Description of arm postures and their distributions.

arm pointing straight out from the shoulders parallel to the floor. By * we denote
the don’t care symbol.

Graph-Based Representation

The graph-based representations of the images was provided by [30]. Each image
was obtained by automatically localizing a person in video data from a camera.
The localized person was enclosed in a bounding box. Position of body parts, like
head and hands of the person, were identified by skin color. We transformed each
image to a fully connected attributed graph. The vertices represent the upper left
and right corner of the bounding box and the identified body parts (head and
hands). The order of graphs varied between 3 and 5. Variation of the order was
caused by segmentation errors. Vertices were assigned a three-dimensional binary
attribute vector a = (ay,az,a3) € B3. Attribute vector (1,0, 0) represents the left
corner, (0,1, 0) the right corner, and (0,0,1) a body part. Edge attributes were the
distances between the corresponding components in the image.

FEvaluation Procedure

1. Setting of s-network: We used a structural competitive learning network
consisting of 5 inhibitory connected s-units. The weight graphs associated with
the s-unit were of order 5. The learning rate was initially set to 0.1 and slowly
decreased at each iteration step according to the rule n < 0.99- 7.

2. Initialization: Since the performance of simple competitive learning depends
on a proper initialization of the models, we may expect the same behavior from
the structural competitive network. Therefore, we randomly selected five images
from the dataset, one from each category to initialize the models.

Numerical Results
Figure 15.4 presents the results. From subfigure (a) we see that the structural

competitive learning rule minimizes the average distortion E(M,Y, X’) until con-
vergence after about 5 epochs. The quality of the cluster structure discovered by

306

FExperiments
Co ¢, G C3 C,

P0

35 T T T T T T T T Pl
30 1

25 1 R
w20 r b

15] P
10 b

5 e R T— p

1 2 3 4 5 6 7 8 9 10 4

epoche
(a) (b)

Figure 15.4 Results of clustering arm postures. Subfigure (a): Shown are the
average distortion as a function of the number of epochs. Subfigure (b): Shown is
the pairwise distance matrix between the learned models representing the clusters
Ch,...,Cs and the input samples ordered by arm posture P,...,Ps. Brighter
shadings indicate closer structural Frobenius distance.

structural competitive learning is visualized in subfigure (b). Table 15.5 shows the
error rate of the nearest neighbor classifiers using the models after initialization
(NNo) and clustering (NN;). The results presented in Table 15.5 indicate that learn-
ing shifts the initial models closer to the centers of the respective categories.
Table 15.6 shows the confusion matrices before and after clustering. The ith
row of both confusion matrices shows the distribution of members of class P;
into clusters C1, ...,y using the nearest neighbor rule applied on the structural
Frobenius norm. Misclassification of images from category RIGHTARM as images
from category NOARMS are caused by an initial model representing category
NOARMS with a slightly lifted right arm. The same holds for misclassification of
images from category LEFTARM as images from category BOTHARMS. Here, the
model representing category LEFTARM is an image with the left arm lifted and a

PO Pl P2 P3 P4 E
(37) (48) 48) (48) (48) [%]

NNo 3 15 44 40 0 44.5
NN; 3 0 0 1 0 17

Table 15.5 Classification results of arm postures. Shown are the number of
misclassified samples by NNo and NN, for each class and the total percentage error rate
E. The numbers in parenthesis indicate the number of images of the corresponding
class.

15.5 Conclusion 307

C 0 C 1 C: 2 C 3 C4 Co Cl C2 CB C4

Py 30 5 2 0 0 3 0 0 2 0
P 0 25 25 O 0 0 43 0 7 0
P 0 50 0 0 0 0 49 0 1
Ps 0 0 0 12 38 0 3 0 45 2
Py 0 0 0 0 48 0 0 5 0 43

Table 15.6 Confusion matrices. Each row shows the distribution of all samples of
a posture P; into clusters. Left table: Before clustering. Right table: After clustering.

slightly raised right arm. To summarize, as in supervised learning, the subgradient
competitive learning rule minimizes the average structural distortion to recover the
cluster structure of the data.

15.5 Conclusion

In this chapter, we presented and discussed experiments on structural learning
problems. The key results are:

® Subgradient learning rules can minimize structural error functions.
® The learned s-networks can generalize.

® Learning and generalization is robust against approximations of the structural
dot product.

The first result confirms the theory developed in Chapters 9-14. The second result
justifies further research on structural neural learning machines. Finally, the third
result makes structural neural learning machines amenable to practical problems.

The focus of this chapter was to provide an empirical justification of the the-
ory developed in the second part of this work. Therefore, simple learning problems
were selected to illustrate the behavior of structural neural learning machines. To
establish structural neural learning machines as an alternative solution for con-
ventional techniques in structural pattern recognition, extensive experimentation is
imperative.

16

Conclusion

The main contribution of this thesis is the construction of structural neural learning
machines for arbitrary attributed graphs. Its theoretical foundation is a chief
mathematical result that dwarfs all other contributions of this thesis: We are now
in the position to pull the powerful machinery of differential analysis to the domain
of attributed graphs. As a consequence, we believe that structural neural learning
machines are only a first example of potential applications that exploit gradient-like
information. Basically, the theory applies to any problem that aims at minimizing a
locally Lipschitz continuous structural function on attributed graphs. But the field
of structural neural learning machines is already large enough to make an exhaustive
treatment infeasible. Therefore, we provided basic principles and mechanisms of
structural neural learning machines and hope that, in such, a solid theoretical
ground has been laid for exploring advanced issues.

Construction of structural neural learning machines deals with both fundamen-
tal problems of structural pattern recognition, namely computational and analytical
intractability. The first part of this thesis was concerned with the issue of compu-
tational intractability arising in the feedforward pass to determine the output of a
structural unit. Part IT was devoted to the issue of analytical intractability arising
in the formulation of structural learning rules to appropriately adjust the weight
graphs. The partial results that contribute to the overall thesis are also interesting
on their own accord, and are summarized as follows:

Part 1

® We established a generic view of graph matching problems with a p-closed
domain in terms of a maximum weight clique problem in an association graph.
This eliminates a common misconception that clique search is a special technique
for solving a narrow class of graph matching problems. In addition, the scattered
plethora of structural proximity measures, including the graph-edit distance, are
now summarized under a pure graph-theoretical umbrella of maximum clique
weight. Hence, any solution to the maximum weight clique problem is also a

solution to p-graph matching problems.1

1. As opposed to the literature, the maximum weight clique problem asks for a clique with
maximum total vertex and edge weight.

310

Conclusion

® [n a mathematical analysis, we derived an equivalent continuous quadratic pro-
gram of the maximum weight clique problem to enable continuous optimization
methods. The attractive feature of the proposed quadratic formulation is that its
constrained local minima are in one-to-one correspondence with the solutions of
the original problem.

= To approximately solve the quadratic formulation of the maximum weight
clique problem, we proposed a selective attention control system (ACS). The
proposed system ensures convergence to feasible solutions, requires no tuning of
system parameters, and adapts its system parameters optimally during run time.
In particular, the latter feature makes the ACS algorithm extremely fast and
suitable for large scaled problems.

® Existing neural network techniques failed as a practical alternative for solving
the graph isomorphism problem. We proposed a two-stage neural network ap-
proach that outperformed the fastest solutions reported in the neural network
literature by a factor of up to 10° for standard isomorphism problems. In addi-
tion, the proposed system significantly outperformed known existing methods to
inexact graph isomorphism problems.

= We presented a real-time neural network for combinatorial optimization prob-
lems that can be interrupted at any point in time and provide meaningful results.
In addition, the quality of results improves with increasing computation time.

= To improve the utility of template matching procedures, we developed a self-
organizing WTA classifier that combines techniques from anytime computing
with the principle elimination of competition. The system dynamically allocates
computing resources to promising input-model pairs in a self-organizing manner.
This approach results in a fast classifier suitable for recognition problems with
pairwise dissimilar models.

Part 1T

® As a counterpart of the standard dot product, we formulated the structural dot
product. We showed that the structural dot product has the same geometrical
properties as the standard dot product. The results lead to another geometry of
structures.

®m Based on the generalized and structural Frobenius metric induced by the
structural dot product, we developed the theory of differential analysis for
structural functions on attributed graphs. The most important result is that
the gradient of a smooth structural function is a well-defined graph pointing in
the direction of steepest increase.

® Since the structural dot product is nonsmooth, we accommodated techniques
from nonsmooth analysis to minimize structural functions built upon the struc-
tural dot product. We showed that the structural dot product is regular and
therefore smooth almost anywhere.

Conclusion

311

® For two-category problems, a single structural unit determines two decision
regions, one for each class. We showed that the decision surface implemented by
a structural unit is composed of hyperplane segments.

= We extended Rosenblatt’s perceptron to attributed graphs and proved a weak
form of the structural perceptron convergence theorem.

® Three results concerning the representational capabilities of structural multi
layer feedforward networks have been presented. We showed that an s-network
can represent any dichotomy on binary graphs, approximate any decision region
to arbitrary accuracy, and approximate any smooth structural function on a
compact subset to arbitrary accuracy.

® The back-propagation algorithm is extended to a subgradient back-propagation
algorithm to determine the derivatives of a structural error criterion with respect
to the weights.

® We extended WTA learning, Self-Organizing Maps, Vector Quantization, and
Adaptive Resonance Theory to attributed graphs.

Outlook

In the course of this thesis, we addressed many open questions. In the following, we
will discuss four topics, which I consider to be most interesting for further research
in the area of structural neural learning machines.

® Forgettable ACS models: Since the ACS procedure requires no tuning of system
parameters and optimally adapts its parameters during run time, it might serve
as a manageable and fast alternative to existing methods for clique problems. In
particular, introducing intelligent schemes of a forgetting mechanism combined
with selective attention may result in a useful solution for large-scaled prob-
lems, because forgetting reduces the problem size to relevant parts. In addition,
transferring the theoretical results of ACS to other combinatorial optimization
problems might be beneficial.

® Hierarchical decomposition of graphs: One approach to reduce the complexity
of graph matching problems, to improve the solution quality, and to provide more
meaningful results is to hierarchically decompose the graphs into concepts. This
is a challenging problem, because even for sparse graphs like chemical structures,
hierarchical decomposition is not necessarily unique. In addition, reduction with
loss of structural information yields fast solutions with degraded solution quality
[241, 364]. Conversely, reduction without loss of structural information can be
computationally inefficient [319]. Satisfactory results have been obtained for
simple toy examples [257] and network decompositions [258]. The components
of network decompositions, however, are meaningless in the sense that they do
not necessarily represent a semantic part of the object described by a graph.
In computer vision, hierarchical decomposition by pyramidical structures is one
direction of research [196]. Attempts to exploit hierarchical segmentations to

312

Conclusion

compare structural descriptions can be found in [30, 113].

» Differential Analysis of Structural Functions: The theory of differentiable struc-
tural functions is a key result of this thesis, which enables us to formulate and
analyze structural neural learning machines. Expanding differential analysis of
structural functions is not only interesting from a purely mathematical point of
view, but may also provide powerful techniques for intelligent data analysis in
the domain of graphs.

® Structural Neural Learning Machines: A number of problems concerning struc-
tural neural learning machines remains open.

s Theoretical issues: Of particular interest are results for and related to the
learning capability of structural networks. Other important issues are con-
cerned with approximation properties of feedforward s-networks, regulariza-
tion, and convergence of structural self-organizing maps. Note that this list
is far from being complete.

s Optimization methods: Since any optimization method for minimizing a
structural error function evaluates the structural dot product, statements
on practical issues about nonsmooth optimization methods do not directly
transfer to the structural domain. Therefore, devising minimizers tailored to
the specific needs of structural error functions and adopting sophisticated
approaches like bundle methods play a striking role in structural learning.

v Ezxperimental validation: In the second part of this thesis, the emphasis
was placed on theoretical issues. First experiments served to underpin that
structural neural learning machines can learn. To justify and establish the
proposed approach as an alternative tool in structural pattern recognition,
extensive empirical validation is imperative.

App. A

Algorithms

This chapter presents pseudocode of known algorithms that have been implemented
for the purpose of comparison or application, and their default parameter settings.
Some of the algorithms have been slightly modified for solving the MWCP.

Uunless otherwise stated, X = (V, E, X) is a normalized graph of order | X| = n.
The function to be minimized is of the form

1
maximize E(x) = —§mTW;1: —h'z
subject to x € B,

where W = A\(Ox — pA) and h = Mdx. The matrix Ox = X — Dx denotes the
off-diagonal matrix of X.
For all x € U”, we define

(@) w(Cq) : represents a clique Cyp
w(x) =
0 : otherwise.

A.1 Hopfield Models

In this section we describe the following algorithms and their parameter settings

Selective Attention Control System
Repeated Attention Control
Steepest Descent

Exterior Point Penalty Networks
Stochastic Steepest Descent
Mean-Field Annealing

Potts Mean-Field Annealing

NS o W=

For the Selective Attention Control System we only present the parameter settings.
Algorithms (3)-(6) were originally proposed to solve the MCP and systematically
investigated by Jagota [167]. We extend the networks for the MWCP. Parameter
settings for algorithms (3)-(6) are largely taken from [167]. Potts Mean-Field
Annealing replaces the dynamics of Mean-Field Annealing by the Potts dynamics

31

Algorithms

and uses a quenched annealing schedule.
A.1.1 Selective Attention Control System

The algorithm is described in Section 4.5.2. The parameters were selected as follows:
We set ¢ = 10710, The initial activation for each unit ¢ was of the form

u; = A(degw (2) + x4i)-
A.1.2 Repeated Attention Control

Let AC'S(u) denote the clique weight returned by ACS given the initial activation
u. Algorithm 17 describes the RAC procedure.

Algorithm 17 (RAC — Repeated Attention Control)

Input:

X - normalized graph X = (V, E, X)

€ — small positive constant

R — number of repeated runs of ACS
Initialization:

set w=20
Procedure:

for i =[1: R]

set w € Un

w = max(w, ACS(u))

Output: w

€ R

Parameter Settings: —————
1071 n/10

We initialized w in the i-th run as follows: Let k denote the vertex with the i-th
largest value degy (k) + xkk. Then the initial activation of unit j is given by

1 c j=k
u; = (degyw (k) + xki)/n+v : j€ N(k)
—-10 : otherwise

where v is random noise drawn from a uniform distribution over the interval
[—0.005, +0.005].

Note that RAC uses the principle of selective attention from the very start of
each run. The active units are the selected k and its neighbors. All other units are
passive. Thus, attention is shifted to the neighborhood of a selected unit.

A.1 Hopfield Models

A.1.3 Steepest Descent

Algorithm 18 (SD — Steepest Descent)

Input:
X — normalized graph X = (V, E, X)

Initialization:
set € = g € B™
set pu > | X|
set W =0Ox — uA
set h = dx

Procedure:
repeat
fori=[1:n]
AE; = (1 —2z;))(Wax + h;)
i« = argmin AFE;
if AE;, <Othenz;, =1—x;
until AE;, >0

*

Output: w(x)

. Zo
Parameter Settings:
n e,

316 Algorithms

A.1.4 Exterior Point Penalty Networks

Algorithm 19 (EPP — Exterior Point Penalty Network)

Input:
X - normalized graph X = (V, E, X)
po — initial value of penalty parameter
«a — rate at which the temperature is increased

Initialization:
set € = xg € B"
set = o
set h = dx
Procedure:
repeat
W =0x —pA
run procedure of SD
b= ap
until > | X]|

Output: w(x)

« o

Parameter Settings: _fo @ To
1/8 2 e,

A.1 Hopfield Models 317

A.1.5 Stochastic Steepest Descent

Algorithm 20 (SSD — Stochastic Steepest Descent)

Input:
X - normalized graph X = (V, E, X)
R - number of repeated runs of stochastic SD

Initialization:
set pu > | X|
set W =0x — uA
set h = dx

set w =20

Procedure:
for r =[1: R]
set & = xg € B"
repeat (stochastic SD)
fori=[1:n]
AE; = (1 —2x;))(Wax + h;)
if AE; > 0 then AE; =0
Zi=AEi + -+ AE;
if Z, > 0 then
draw p from a uniform distribution over [0, 1]
select ix With Z;_1/Zn < p < Z;/Zn
T, =1—x;,
until Z,, == 0

w = max(w,w(x))

Qutput: w

. Q Lo
Parameter Settings:

n n/5 ey

318

Algorithms

A.1.6 Mean-Field Annealing

Algorithm 21 (MFA — Mean-Field Annealing)

Input:
X - normalized graph X = (V, E, X)
pu — penalty parameter
A — step size
T — temperature
To — initial value of temperature
Ty — minimum value of temperature
« — rate at which the temperature is decreased
IT — maximum number of iterations at each value of T

Initialization:
set & = ¢g € U"
set W =0Ox — pA
set h =dx
set temperature T = Ty

set iteration t = 0

Procedure:
repeat (anneal)
settr =0
repeat (update)
u=Wz+h
2= (1 Ne+ gy (u)
tp =tp + 1
until t7 = I
T =aT
until ' < T
x = O(x)

Output: w(x)

LA T, T; o Ir

Zo

Parameter Settings:
4n 0.1 3(1-p)n® 1.0 sb. n

(

1

2

+u) [

To define Ty, we use the density

2|E|
nin—1)

of X. There are two values for a:

1. a = 0.9 for the first three annealing loops.

2. a = 0.5 for the remaining time.

A.2 Other Meta-Heuristics 319

By v we denote a noise vector drawn from a uniform distribution on [—0.05, +0.05]™.
A.1.7 Potts Mean-Field Annealing
Potts Mean-Field Annealing is almost of the same form as Mean-Field Annealing.

We merely replace the update rule of Mean-Field Annealing by the Potts dynamics
(4.10) described in Section 4.3.5. Moreover, other parameters have been used:

A TO Tf @ IT o
01 n 1.0 sb. 1 (3+V)e,

Parameter Settings:

The setting for a and @ are explained in the previous section.

A.2 Other Meta-Heuristics

In this section we describe

1. Replicator Equations [280] and
2. Simulated Annealing [146]

The default parameter settings of the Replicator equations slightly differ from [280].
The parameters of simulated annealing are taken from [146].

A.2.1 Replicator Dynamics

In [280] Pelillo suggested the Exponential Replicator Equations (REP) to approxi-
mately solve a regularized Motzkin-Strauss formulation of the MCP [271, 35]. The
Replicator Equations are a continuous dynamical system derived from evolutionary
game theory [144]. The regularized Motzkin-Strauss formulation of the MCP is the
quadratic program

maximize flx)=2" Xz
subject to xTe=1 (A1)
x >0,

where X = X + 1I,. It is shown in [35] that the local minima of (A.1) are in
one-to-one correspondence with the maximal cliques of X. In addition, the minima

320

Algorithms

are strict and the optimum value of (A.1) is

1
2(1 - f(1c))’
where 1¢ is the characteristic vector of a maximum clique C' of X. For an extension
of the Motzkin-Strauss formulation to the MVCP we refer to [37]. It is unclear how
to generalize (A.1) to the MWCP in its most general form. Algorithm 22 describes
the REP algorithm for solving program (A.1).

Algorithm 22 (REP — Exponential Replicator Equations)

Input:
X — normalized graph X = (V, E, X)
€ — precision
K — exponentiation constant

Initialization:
set @ such that zTe~ 1
set W =X + %In

Procedure:
repeat
7 =exp (kW)
for alli € [1:n]
x; = ximiJaT
perturb @ if it is a saddle point

until ||z — 1¢|| < e for some maximal clique C

Output: w(x)

3 K b o)
107 10 (I/n+v)e,

Parameter Settings:

By v we denote a noise vector drawn from a uniform distribution over [—e, +&]™.
A.2.2 Simulated Annealing

To solve the MCP, Homer and Peinado [146] combined simulated annealing and
the exterior point penalty method using a quenched annealing schedule for both
parameters, the temperature 7', and the penalty u. We adopt this strategy for the
MWCP.

A.2 Other Meta-Heuristics 321

Algorithm 23 (SA — Simulated Annealing)

Input:
X - normalized graph X = (V, E, X)
pno — initial value of penalty parameter
pny — final value of penalty parameter
oy — amount at which p is increased
To — initial value of temperature
Ty — final value of temperature
ar — amount at which T is decreased
I. — maximal number of iterations

Initialization:

set € = g € B"

set p = o
set T' =Ty
set h = dx
Procedure:
fort=[1:1]

W =0x — uA

draw i from a uniform distribution over [1 : n]
AE; = (1 —2x;))(Wa + h;)

draw p from a uniform distribution over [0, 1]
if p < exp(—AE;/T) thenz; =1 —z;

n= [+ fa

T=T-T,

Output: w(x)

Ho pf oy To Ty oar I. =
0.7 1.2 05/, 1.0 0.0 sb. n? e,

Parameter Settings:

There are two values for ar:

H
2

N
I

2

T for t € [1: L. /4]
2

2. ap = 37 for t € }I*/4 : I*]

The temperature T is linearly reduced from 1 to 0.5 during the first 25% of the
time and from 0.5 to 0 during the remaining 75%.

App. B Experimental Settings

B.1 Performance Evaluation

Performance profiles proposed by [75] are a useful tool for benchmarking and
comparing optimization algorithms. What makes them so useful is that they
combine the best features of other common tools for analyzing benchmarking
results.

The performance profile of an algorithm for a performance metric is a cumulative
distribution function. Assume that we are given a set A of algorithms and a set P
of problem instances. Let us denote by the number of problems n, = |P|. For time
measures, we use performance ratios, and for measures of solution quality, we use
performance deviations.

B.1.1 Performance Profile for Time Metrics

We first describe the performance profile of an algorithm for time metrics. For each
problem p € P and each algorithm a € A, we define

tp,q = time until termination of algorithm a to solve problem p.

Examples of time metrics are the clock time and the number of iterations. We
compare the performance of algorithm a on problem p with the best performance
by any algorithm from A on this problem. For this, we use the performance ratio

tp.a
min{t,, : a € A}’

Tpa =

The performance profile of algorithm a for a time metric is then defined by

B |{p€73 : Tpa §T}|
= .)

Pa(T)

The quantity p,(7) estimates the probability that a performance ratio r, , is within
a factor 7 of the best possible ratio. The function p, is the estimated cumulative
distribution function for the performance ratio.

324

Ezperimental Settings

B.1.2 Performance Profile for Metrics of Solution Quality

Next, we describe the performance profile of an algorithm for metrics of solution
quality. Let

p,o = solution quality of algorithm a on problem p.

An example of a metric of solution quality is a structural similarity of two given
graphs or the weight of a clique. The performance deviation is of the form

dp,a
max{qp, : a € A}’

dpa =1—

As for time metrics, the performance profile of algorithm a for a metric of solution
quality is defined by

B |{p€’P : dp,agr}’
— o)

Pa (T)

The quantity p,(7) estimates the probability that performance deviation dp ,
deviates 100 - 7 percent from the best solution. The function p, is the estimated
cumulative distribution function for the performance deviation.

B.1.3 Properties of Performance Profiles

Performance profiles have the following properties:

1. Given a performance metric, the performance profile p, : R — [0,1] for an
algorithm « is a non-decreasing step function.

2. For time metrics, the value p,(1) is the estimated probability that algorithm
a € A terminates first for a class of problems represented by a finite sample set
P. If we consider metrics of solution quality, the value p,(0) is the estimated
probability that algorithm a € A finds the best solution for the same class of
problems.

3. An algorithm a outperforms algorithm a’ with respect to a performance metric
if po > par and p, # pa. Thus, rapid increase of a performance profile to the
value 1 indicates better performance rather than slow increase.

B.2 Datasets

B.2.1 Segmented Images

The segmented image dataset has been kindly provided by Stefan Bischoff of the
Heinrich Hertz Institute, Berlin. The dataset consists of complete attributed graphs
describing visual properties of 39 segmented images. Vertices of a graph represent

B.2 Datasets

325

segments. Each vertex is labeled with a 166 dimensional feature vector (MPEG-
7 descriptors) describing visual properties of a segment. Each pair of vertices is
connected by an edge labeled by the Euclidean distance between the centers of
the corresponding segments. The segmentation procedure and feature extraction
process of the MPEG-7 descriptors is described in Bischoff’s dissertation [30]. The
images are shown in Figure 4.9 of Section 4.6.

Table B.1 summarizes some characteristics of the graphical representations with
respect to the number of vertices.

data min max mean dev
images 20 50 31.6 7.2

Table B.1 Shown are the minimum, maximum, mean, and standard deviation
with respect to the number of segments.

B.2.2 Mutagenesis Dataset

The MUTAGENESIS dataset is a benchmark dataset for relational learning origi-
nating from the ILP community. The dataset consists of 230 chemical compounds
[342]. The mutagenicity of a chemical compound is closely related to its cancero-
genicity. A particular problem lies in discovering rules to predict mutagenicity in a
database of nitro-aromatic compounds (see [342]).

The MUTAGENESIS dataset is usually divided into two subsets containing
188 and 42 examples, respectively. Each compound in the dataset is described
by its atoms and their bonds. An atom is characterized by its element symbol,
its type (e.g. aromatic) and a partial electrical charge. Bonds are either simple,
double, or aromatic. Attributes that describe global properties of a molecule are
not considered.

The following table shows some characteristics of the MUTAGENESIS dataset
with respect to the number of atoms in a compound.

data min max mean dev
188 14 40 26.03 6.3
42 13 39 23.83 8.2

230 13 40 25.63 6.73

Table B.2 Shown are the minimum, maximum, mean, and standard deviation
with respect to the number of atoms of the 188 dataset, the 42 dataset, and all 230
compounds.

326 Ezperimental Settings

B.3 Synthetic Test Graphs
B.3.1 Simple Graphs

1. Random Graphs: Let V be a vertex set of a graph X consisting of n elements
and p € [0,1] be a number called edge probability. An n-vertex p-random graph
is a simple graph of order n where each pair of vertices is connected by an edge
with probability p.

We generate n-vertex p-random graphs as follows: For each pair {i,j} € V2
we decide by a random experiment whether or not {i,j} shall be an edge in X.
A random experiment for {i,j} consists of drawing a number p from a uniform
distribution over U. We accept {i,7} as an edge for X if, and only if, p < p.
Generating random graphs with varying edge probability p is a simple method
for obtaining graphs that almost surely exhibit different graph properties like
(non)-connectivity, (non)-planarity, (non)-existence of Hamiltonians, etc. Note
that the clique size of a random graph is relatively small compared to its density.

2. k-Random Cliques Graphs: A k-random cliques graph of order n is the union
of k randomly generated cliques of various size. This type of graphs has a wider
range of different clique sizes than random graphs. Therefore, the MCP for k-
random cliques graphs is considered to be harder than for random graphs [167].
We generate a k-random cliques graph as follows:

Algorithm 24 (k-Random Cliques Graph Generator)

Input:
n — number of vertices
k — number of cliques

Initialization:
set V =[1:n]
set E =10

Procedure:
fori=[1:k]

draw p from a uniform distribution over [0, 0.5]

set C =10

for j = [1:n]
draw p; from a uniform distribution over U
if p<pjthenC =CU{j}

E=EucH

Output: X = (V, E, X)

B.3 Synthetic Test Graphs 327

B.3.2 Weighted Graphs

Let X = (V, E, X) be a simple graph. We cousider the following sampling methods
to randomly assign weights to the vertices and edges of X.

1. IID Sampling: Fach vertex and each edge of X is assigned an independent
identically distributed value drawn from]0, 1].

2. IGD Sampling: To assign a weight x; for a vertex- or edge-item %, we proceed
as follows: First, we draw a mean p and standard deviation o from a uniform
distribution over [0, 1]. Next, we draw a value w from a Gaussian distribution
with mean £ and standard deviation o. Finally, we assign the weight z; = [w]g,
where [.|5 is the limiter function with gain 8 = 1. Note that we delete an edge
whenever [w]g = 0.

3. Irregular Uniform Sampling: In an irregular uniform weighting scheme, the
vertex and edge weights are drawn from a non-independent uniform distribution
over 10, 1]. Algorithm 25 describes the irregular uniform sampling scheme.

Algorithm 25 (Irregular Uniform Sampling)

Input:
X — simple graph X = (V, E, X)

Initialization:
set X' =O0nn

Procedure:
for i =[1:n]
draw p from a uniform distribution over]0, 1]
draw p;; from a uniform distribution over]0, 1]
set xj; = ppii
for j =]i:n]
draw p;; from a uniform distribution over |0, 1]
set :(:;j = ppij
set a7, = x;
set X = X'

Output: X = (V, E, X)

References

10.

11.

12.

13.

E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines. John
Wiley & Sons, 1989.

M. Abdulrahim and M. Misra. A graph isomorphism algorithm for object
recognition. Pattern Analysis and Application, 1(3):189-201, 1998.

D.H. Ackley, G. Hinton, and T. Sejnowski. A learning algorithm for Boltzmann
machines. Cognitive Science, 9:147-169, 1985.

K. Aihara, T. Tabake, and M. Toyoda. Chaotic neural networks. Physics
Letters A, 144(6/7):333-340, 1990.

S.V.B. Aiyer. Solving combinatorial optimization problems using neural net-
works. Technical Report CUED/F-IN-FENG /TRR&9, Engineering Department,
Cambridge University, 1991.

S.V.B. Aiyer, M. Niranjan, and F. Fallside. A theoretical investigation into the
performance of the hopfield model. IEEE Transactions on Neural Networks,
1(2):204-215, 1990.

Y. Akiyama, A. Yamashita, M. Kajiura, and H. Aiso. Combinatorial opti-
mization with Gaussian machines. In Proceedings of the IEEE International
Conference on Neural Networks, volume 1, pages 533-540, 1989.

H.A. Almohamad. A polynomial transform for matching pairs of weighted
graphs. Journal of Applied Mathematical Modeling, 15(4), 1991.

H.A. Almohamad and S.0. Duffuaa. A linear programming approach for the
weighted graph matching problem. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15(5):522-525, 1993.

A.P. Ambler, H.G. Barrow, C.M. Brown, R.M. Burstall, and R. J. Popple-
stone. A versatile computer-controlled assembly system. In International
Joint Conference on Artificial Intelligence, pages 298 307. Stanford Univer-
sity, California, 1973.

D.J. Amit. Modeling Brain Function: The world of attractor neural networks.
Cambridge University Press, 1989.

A.F.R. Aratjo and A. Barreto. Context in temporal sequence processing: A
self-organizing approach and its application to robotics. IEEE Transactions
on Neural Networks, 13(1):45-57, 2002.

R. Azam. Studies on Quasi-Newton Methods for Nonsmooth Conver Opti-

330

References

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

mization. PhD thesis, Dept. of Information Systems, Graduate School of In-
formation Science, Nara Institute of Science and Technology, 1998.

A. Baddeley. Working memory. Clarendon Press, 1986.

A.T. Balaban, editor. Chemical Applications of Graph Theory. Academic
Press, London, 1976.

E. Balas and C.S. Yu. Finding a maximum clique in an arbitrary graph. SIAM
Journal of Computing, 15(4):1054 1068, 1986.

D.H. Ballard, P.C. Gardner, and M.A. Srinivas. Graph problems and con-
nectionist architectures. Technical Report TR 167, Dept. Computer Science,
University of Rochester, 1987.

A. Barreto, A.F.R. Araiijo, and S.C. Kremer. A taxonomy for spatiotemporal
connectionist networks revisited: the unsupervised case. Neural Computation,
15:1255-1320, 2003.

H. Barrow and R. Burstall. Subgraph isomorphism, matching relational
structures and maximal cliques. Information Processing Letters, 4:83—84, 1976.

H. Barrow and R.J. Popplestone. Relational descriptions in picture processing.
Machine Intelligence, 6:377-396, 1971.

R. Battiti and M. Protasi. Reactive local search for the maximum clique
problem. Algorithmica, 29(4):610-637, 2001.

S. Behnke, M. Pfister, and R. Rojas. A study on the combination of classifiers
for handwritten digit recognition. In Proceedings of Neural Networks in
Applications, pages 39—46, 1998.

R.E. Bellmann. Dynamic Programming. Princeton University Press, 1957.

E. Bengoetxea. Inexact Graph Matching using Estimation of Distribution
Algorithms. PhD thesis, Ecole Nationale Supérieure des Télécommunications
(Paris), Département Traitement du Signal et des Images, 2002.

L.T. Benjamin, J.R. Hopkins, and J.R. Nation. Psychology. Macmillan, New
York, 3rd edition, 1994.

D.P. Bertsekas. Nonlinear Programming. Athena Scientific, 2 edition, 1999.

D.P. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, 1996.

D.P. Bertsekas and J.N. Tsitsiklis. Gradient convergence in gradient methods.
SIAM Journal on Optimization, 10:627-642, 2000.

R. Bhattarcharya. Transformation of Linear Control Algorithms into Opera-
tionally Optimal Real-Time Tasks. PhD thesis, University of Minnesota, 2003.

S. Bischoff. Konstruktion einer Suchmaschine fir segmentierte Bilder, die
speziell durch interpretierte Graphen beschrieben werden. PhD thesis, Dept. of
Electrical Engineering and Computer Science, Technical University of Berlin,
2005.

S. Bischoff, D. Reuss, and F. Wysotzki. Applied connectionist methods in

References

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44.

45.

46.

47.

331

computer vision to compare segmented images. In A. Giinter, R. Kruse, and
B. Neumann, editors, KT 2003: Advances in Artificial Intelligence. 26th Annual
Conference on Al volume 2821 of LNAI, pages 312—326. Springer-Verlag, 2003.

C.M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press,
Oxford, 1995.

M. Boddy and T.L. Dean. Solving time-dependent planning problems. In Pro-
ceedings of the 11th International Joint Conference on Artificial Intelligence,
pages 979-984, 1989.

M. Boddy and T.L. Dean. Deliberation scheduling for problem solving in time
constrained environments. Artificial Intelligence, 67(2):245—-285, 1994.

LM. Bomze. Evolution towards the maximum clique. Journal of Global
Optimization, 10:143-164, 1997.

.M. Bomze, M. Budinich, P.M. Pardalos, and M. Pelillo. The maximum clique
problem. In D.-Z. Du and P.M. Pardalos, editors, Handbook of Combinatorial
Optimization, volume 4, pages 1-74. Kluwer Academic Publishers, Boston,
MA, 1999.

LM. Bomze, M. Pelillo, and V. Stix. Approximating the maximum weight
clique using replicator dynamics. IEEFE Transactions on Neural Networks,
11:1228-1241, 2000.

D. Bonchev. Chemical Graph Theory: Introduction and Fundamentals. Taylor
and Francis, 1991.

P. Boncke. Funktionslernen iiber strukturierten Objekten mit mehrschichti-
gen neuronalen netzen. Master’s thesis, Dept. of Electrical Engineering and
Computer Science, Technical University of Berlin, 2005.

N.K. Bose and P. Liang. Neural network fundamentals with graphs, algorithms,
and applications. McGraw-Hill, Inc., 1996.

L.M. Brégman. Certain properties of nonnegative matrices and their perma-
nents. Dokl. Akad. Nauk SSSR, 211:27 30, 1973.

D.P. Brown. Matrix tests for period 1 and 2 limit cycles in discrete threshold
networks. IEEE Transactions onSystems, Man and Cybernetics, 22(3):552—
554, 1992.

J. Bruck. On the convergence properties of the Hopfield model, 1990.

J. Buhmann and H. Kiihnel. Complexity optimized data clustering by com-
petitive neural networks. Neural Computation, 5(3):75-88, 1993.

J.M. Buhmann. The Handbook of Brain Theory and Neural Networks, chapter
Data clustering and learning, pages 278-281. MIT Press, 1995.

H. Bunke. On a relation between graph edit distance and maximum common
subgraph. Pattern Recognition Letters, 18(8):689-694, 1997.

H. Bunke. Recent developments in graph matching. In Proceedings of the 15th
International Conference on Pattern Recognition, volume 2, pages 117-124,

332

References

48.

49.

50.

o1.

52.

53.

54.

95.

56.

o7.

58.

59.

60.

61.

62.

Barcelona, Spain, 2000.

H. Bunke and G. Allermann. Inexact graph matching for structural pattern
recognition. Pattern Recognition Letters, 1(4):245-253, 1983.

H. Bunke, X. Jiang, and A. Kandel. On the minimum common supergraph of
two graphs. Computing, 1:13-25, 2000.

H. Bunke and K. Shearer. A graph distance metric based on the maximal
common subgraph. Pattern Recognition Letters, 19, 1998.

E.R. Caianiello. Outline of a theory of thought and thinking machines. Journal
of Theoretical Biology, 1:204 235, 1961.

M. Carcassoni and E.R. Hancock. Weighted graph-matching using modal
clusters. In 3rd IAPR-TC15 Workshop on Graph-based Representations in
Pattern Recognition, pages 260-269, 2001.

G. A. Carpenter and S. Grossberg. A massively parallel architecture for a self-
organising neural pattern recognition machine. Computer Vision, Graphics,
and Image Processing, 37:54—115, 1987.

C.-W.K. Chen and D.Y.Y. Yun. Toward solving maximal overlap set problems.
Technical Report TR-LIPSC&Y96a, Laboratory of Intelligent and Parallel
Systems, University of Hawaii, 1996.

C.-W.K. Chen and D.Y.Y. Yun. Unifying graph-matching problem with a
practical solution. In Proceedings of International Conference on Systems,
Signals, Control, Computers, 1998.

L. Chen and K. Aihara. Chaotic simulated annealing by a neural network
model with transient chaos. Neural Networks, 8(6):915-930, 1995.

W.J. Christmas, J. Kittler, and M. Petrou. Structural matching in computer
vision using probabilistic relaxation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 17(8):749-764, 1995.

F.H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons, NY,
1983.

M. Cone, R. Venkataraghavan, and F. McLafferty. Molecular structure com-
parison program for the identification of maximal common substructures.
Journal of the American Chemical Society, 99:7668-7671, 1977.

D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching
in pattern recognition. International Journal of Pattern Recognition and
Artificial Intelligence, 18(3):265-298, 2004.

D.J. Cook and L.B. Holder. Substructure discovery using minimum description
length and background knowledge. Journal of Artificial Intelligence Research,
1:231-255, 1994.

P. Cooper. Structure recognition by connectionist relaxation: Formal analysis.
In R. Goebel, editor, Proceedings of the Seventh Biennial Conference of the
Canadian Society for Computational Studies of Intelligence, pages 148 155,

References

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.
74.
75.

76.

e

78.

79.
80.

338

1988.

L.P. Cordella, P. Foggia, C. Sasone, and M. Vento. Evaluating performance
of the VF graph matching algorithm. In Proceedings of the 10th International
Conference on Image Analysis and Processing, pages 1172-1177, 1999.

D.G. Corneil and R.A. Mathon. Algorithmic techniques for the generation
and analysis of strongly regular graphs and other combinatorial configurations.
Annals of Discrete Mathematics, 1:1-32, 1978.

P. Crescenzi and V. Kann (eds.). A compendium of NP optimization problems.
URL: http://www.nada.kth.se/~viggo/wwwcompendium/, 1994-2004.

V. Crespi. Structural and Computational Properties of Certain Permanents.
PhD thesis, University of Milan, 1997.

A.D.J. Cross, R.C. Wilson, and E.R. Hancock. Inexact graph matching with
genetic search. Pattern Recognition, 30(6):953-970, 1997.

B. D’Ambrosio. Resource bounded-agents in an uncertain world. In Pro-
ceedings of the Workshop on Real-Time Artificial Intelligence Problems (IJ-
CAI’89), 1989.

N. Das, B.B. Bhattacharya, and J. Dattagupta. Isomorphism of conflict graphs
in multistage interconnection networks and its application to optimal routing.
IEEE Transaction on Computers, 42(6):665-677, 1993.

J.W. de Fockert, G. Rees, C.D. Frith, and N. Lavie. The role of working
memory in visual selective attention. Science, 291:1803-1806, 20001.

T.L. Dean. Intractability and time-dependent planning. In M.P. Georgeff and
A.L. Lansky, editors, Proceedings of the 1986 Workshop on Reasoning about
Actions and Plans, 1987.

T.L. Dean and M. Boddy. An analysis of time-dependent planning. In
Proceedings of the Tth National Conference on Artificial Intelligence, pages
49-54, 1988.

P. Deuflhard and A. Hohmann. Numerische Mathematik I. de Gruyter, 2002.
P. Deuflhard and A. Hohmann. Numerische Mathematik II. de Gruyter, 2002.

E.D. Dolan and J.J. More. Benchmarking optimization software with perfor-
mance profiles. Mathematical Programming, pages 201-213, 2002.

G.M. Downs and P. Willett. Similarity searching in databases of chemical
structures. In K.B. Lipkowitz and D.B. Boyd, editors, Reviews in Computa-
tional Chemistry, volume 7, pages 1-66. VCH Publishers, Inc., 1996.

R.O. Duda, P.E. Hart, and D.G. Storck. Pattern Classification. J. Wiley &
Sons, 2nd edition, 2001.

R. Durbin and D. Willshaw. An analogue approach to the travelling salesman
problem using an elastic net method. Nature, 326:689-691, 1987.

S. Edelman. Representation and Recognition in Vision. MIT Press, 1999.
D. Ellis, J. Furner-Hines, and P. Willett. Measuring the degree of similarity

334

References

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.
95.

between objects in text retrieval systems. Perspectives in Information Man-

agement, 3:128-149, 1993.

E. Erkut, T. Baptie, and B. von Hohenbalken. The discrete p-maxian loca-
tion problem. Computers and Operations Research and their Application to
Problems of World Concern, 17:51 61, 1990.

M.A. Eshera and K.S Fu. A graph distance measure for image analysis. IEEE
Transactions on Systems Man and Cybernetics, 14(3):353-363, 1984.

M.A. Eshera and K.S Fu. An image understanding system using attributed
symbolic representation and inexact graph-matching. IEFE Transactions on
Pattern Analysis and Machine Intelligence, 8(5):604—618, 1986.

M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of
the internet topology. In Proceedings of the SIGCOMM 99 Symposium on
Communications Architectures and Protocols, pages 251-262, 1999.

Y. Fang, M.A. Cohen, and T.G. Kincaid. Dynamics of a winner-take-all neural
network. Neural Networks, 9(7):1141-1154, 1996.

0. Faugeras and M. Berthod. Improving consistency and reducing ambiguity in
stochastic labeling: An optimization approach. FEE Transactions on Pattern
Analysis and Machine Intelligence, 3(4):412-424, 1981.

O. Faugeras and K. Price. Semantic labelling of aerial images using stochastic
relaxation. IEEFE Transactions on Pattern Analysis and Machine Intelligence,
3(6):633 642, 1981.

J.A. Feldmann and D.H. Ballard. Connectionist models and their properties.
Cognitive Science, 6:205-254, 1982.

M.-L. Fernandez and G. Valiente. A graph distance metric combining maxi-
mum common subgraph and minimum common supergraph. Pattern Recog-
nition Letters, pages 753 758, 2001.

A.M. Finch, R.C. Wilson, and E.R. Hancock. Matching delaunay triangu-
lations by probabilistic relaxation. In Proceddings of the 8th International
Conference on Image Analysis and Processing, pages 350-358, 1995.

A.M. Finch, R.C. Wilson, and E.R. Hancock. An energy function and contin-
uous edit process for graph matching. Neural Computation, 10(7):1873-1894,
1998.

I. Fischer. FEnumeration of perfect matchings: Rhombus tilings and Pfaffian
graphs. PhD thesis, University Vienna, 2000.

M.A. Fischler and R.A. Elschlager. The representation and matching of
pictorial structures. IEEE Transactions on Computers, 22(1):67-92, 1973.

R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, 1987.

P. Foggia, C. Sasone, and M. Vento. A performgance comparison of five
algorithms for graph isomorphism. In 3rd TAPR -TC-15 Workshop on Graph-
based Representations in Pattern Recognition. CUEN ed, 2001.

References

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

335

S. Fortin. The Graph Isomorphism Problem. Technical Report TR 96-20,
Dept. of Computing Science, University of Alberta, Canada, 1996.

P. Frasconi, M. Gori, and A. Sperduti. A general framework for adaptive pro-
cessing of data structures. IEEE Transactions on Neural Networks, 9(5):768—
786, 1998.

E.C. Freuder and R.J. Wallace. Partial constraint satisfaction. Artificial
Intelligence, 58:21-70, 1992.

N. Funabiki and S. Nishikawa. A neural network model for finding a near-
maximal clique. Journal of Parallel and Distributed Computing, 14(3):340-344,
1992.

N. Funabiki, Y. Takefuji, and K.C. Lee. Comparisons of energy-descent
optimization algorithms for maximum clique. IFICE Trans. Fundamentals,
E79-A(4):452-460, 1996.

A.A. Gaivoronski. Convergence properties of backpropagation for neural

networks via theory of stochastic gradient methods. Optimization Methods
and Software, 4:117-134, 1994.

G. Galan-Marin, E. Mérida-Casermeiro, and J. Mufioz-Pérez. Modelling
competitive Hopfield networks for the maximum clique problem. Computers
& Operations Research, 30:603—624, 2003.

J.M. Gallone and F. Charpillet. Hopfield neural network for scheduling.
In Proceedings of the 12th Furopean Conference on Artificial Intelligence
(ECAI’1996), pages 223-227, 1996.

M. Garey and D. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

T. Géartner. Exponential and geometric kernels for graphs. In NIPS Workshop
on Unreal Data: Principles of Modeling Nonvectorial Data, 2002.

T. Géartner. A survey of kernels for structured data. SIGKKD Fxplorations,
5(1):49 58, 2003.

A. Garvey and V. Lesser. A survey of research in deliberative real-time
artificial intelligence. The Journal of Real-Time Systems, 6:317-347, 1994.

P. Geibel, B.J. Jain, and F. Wysotzki. SVM learning with the SH inner prod-
uct. In M. Verleysen, editor, Proceedings of the 12th Furopean Symposium on
Artificial Neural Networks (ESANN) 2004, pages 299 304. D-Facto, Brussels,
2004.

S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6:721-741, 1984.

D. Gentner. Structure-mapping: A theoretical framework for analogy. Cog-
nitive Science, 7(2):155-170, 1983.

A. Gersho and R.M. Gray. Vector Quantization and Signal Compression.

336

References

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

Kluwer, 1992.

L.E. Gibbons, D.W. Hearn, P.M. Pardalos, and M.V. Ramana. Continuous
characterizations of the maximum clique problem. Mathematics of Operations
Research, 22:754-768, 1997.

R. Glantz, M. Pellilo, and W.G. Kropatsch. Matching segmentation hierar-
chies. International Journal for Pattern Recognition and Artificial Intelligence,
18(3):397-424, 2004.

F. Glover. Tabu search — Part I. ORSA Journal on Computing, 1(3):190-206,
1989.

F. Glover. Tabu search — Part II. ORSA Journal on Computing, 2(1):4-32,
1989.

S. Gold and A. Rangarajan. A graduated assignment algorithm for graph
matching. IEEE Transactions on Pattern Analysis and Machine Intelligence,
18(4):377-388, 1996.

S. Gold and A. Rangarajan. Softmax to softassign: Neural network algo-
rithms for combinatorial optimization. Journal of Artificial Neural Networks,
2(4):381-399, 1996.

S. Gold, A. Rangarajan, and E. Mjolsness. Learning with preknowledge:
Clustering with point and graph matching distance measures. In G. Tesauro,

D. Touretzky, and T. Leen, editors, Advances in Neural Information Processing
Systems, volume 7, pages 713 720. MIT Press, 1995.

R.M. Golden. Mathematical Methods for Neural Network Analysis and De-
stgn. MIT Press, 1996.

L. Goldfarb. A new approach to pattern recognition. In L.N. Kanal and
A. Rosenfeld, editors, Progress in Machine Intelligence and Pattern Recogni-
tion, pages 1 156. Elsevier Science Publishers, 1985.

L. Goldfarb, J. Abela, V. C. Bhavsar, and V. N. Kamat. Can a vector space
based learning model discover inductive class generalization in a symbolic
environment? Pattern Recognition Letters, 16:719-726, 1995.

R.L. Goldstone. Similarity, interactive activation, and mapping. Journal of
Ezperimental Psychology: Learning, Memory, and Cognition, 20(3):3—-28, 1994.

R.L. Goldstone. MIT Encyclopedia of the Cognitive Sciences, chapter Simi-
larity. MIT Press, 1999.

E. Goles. Antisymmetrical neural networks. Discrete Applied Mathematics,
13(1), 1986.

C. Goller. A connectionist approach for learning search control heuristics for
automated deduction systems. PhD thesis, Technical University of Munich,
Germany, 1997.

T. Graepel, R. Herbrich, P. Bollmann-Sdorra, and K. Obermayer. Classifica-
tion on pairwise proximity data. In Advances in Neural Information Processing

References

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.
139.

140.

141.

142.

143.

337

Systems, NIPS 11, pages 438-444, 1999.

W.E.L. Grimson. Object Recognition by Computer: The Role of Geometric
Constraints. The MIT Press, 1990.

L. Grippo. A class of unconstrained minimization methods for neural network
training. Optimization Methods and Software, 4:135-150, 1994.

S. Grossberg. Adaptive resonance theory. Technical Report CAS/CNS-
2000-024, Boston University, Center for Adaptive Systems and Department
of Cognitive and Neural Systems, 2000.

S. Giinter and H. Bunke. Adaptive self-organizing map in the graph domain.
In H. Bunke and A. Kandel, editors, Hybrid Methods in Pattern Recognition,
pages 61-74. World Scientific, 2002.

S. Giinter and H. Bunke. Self-organizing map for clustering in the graph
domain. Pattern Recognition Letters, 23:401-417, 2002.

R. Hahnloser. On the piecewise analysis of networks of linear threshold
neurons. Neural Networks, 11:691-697, 1998.

B. Hammer. Learning with recurrent neural networks. Springer, 2000.

B. Hammer and B.J. Jain. Neural methods for non-standard data. In
Proceedings of the 12th Furopean Symposium on Artificial Neural Networks
(ESANN), pages 281-292. D-Facto, Brussels, 2004.

B. Hammer and J.J. Steil. Perspectives on learning with recurrent networks.
In M. Verleysen, editor, Proceedings of the 10th FEuropean Symposium on
Artificial Neural Networks (ESANN) 2002. D-Facto, Brussels, 2002.

D.A. Harville. Matriz Algebra from a Statistican’s Perspective. Springer,
1997.

D. Haussler. Convolution kernels on discrete structures. Technical Report

Tech. Rep. UCSC-CRL-99-10, Department of Computer Science, University of
California at Santa Cruz, 1999.

S. Haykin. Neural Networks. Prentice Hall, Inc., 2nd edition, 1999.

L. Herault, R. Horaud, F. Veillon, and J.J. Niez. Symbolic image matching by
simulated annealing. In Proceedings of the British Machine Vision Conference,
pages 319-324, 1990.

R. Herbrich. Learning Kernel Classifiers. The MIT Press, Cambridge, MA,
2002.

A.V.M. Herz. Models of Neural Networks III, chapter Global Analysis of
Recurrent Neural Networks. Springer, 1996.

D. Hidovié¢ and M. Pelillo. Metrics for attributed graphs based on the maximal
similarity common subgraph. International Journal on Pattern Recognition
and Artificial Intelligence, 18(3):299-313, 2004.

M.W. Hirsch. Convergent activation dynamics in continuous time networks.
Neural Networks, 2:331 349, 1989.

338

References

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

J. Hofbauer and K. Sigmund. Evolutionary Games and Population Dynamics.
Cambridge University Press, UK, 1998.

T. Hofmann and J.M. Buhmann. Pairwise data clustering by deterministic
annealing. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(1):1 14, 1997.

S. Homer and M. Peinado. On the performance of polynomial-time clique
approximation algorithms. In D.S. Johnson and M. Trick, editors, Cliques,
Coloring, and Satisfiability: Second DIMACS Implementation Challenge, DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science.
American Mathematical Society, 1996.

J.J. Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings National Academy of Sciences, 79:2554—
2558, 1982.

J.J. Hopfield. Neurons with graded respose have collective computation
properties like those of two-state neurons. Proceedings National Academy of
Sciences, 81:3088-3092, 1984.

J.J. Hopfield and D.W. Tank. Neural computation of decisions in optimiza-
tion problems. Biological Cybernetics, 52:141-152, 1985.

J.J. Hopfield and D.W. Tank. Computing with neural circuits: A model.
Science, 223:625-633, 1986.

R. Horaud and T. Skordas. Stereo correspondence through feature grouping
and maximal cliques. IFEFE Transactions on Pattern Analysis and Machine
Intelligence, 11(11):1168-1180, 1989.

E.J. Horvitz. Reasoning about beliefs and actions under computational
resource constraints. In Proceedings of the 3rd Workshop on Uncertainty in
Artificial Intelligence (UAI’1987), pages 429-444, 1987.

E.J. Horvitz. Computation and Action Under Bounded Resources. PhD
thesis, Stanford University, California, 1990.

E.J. Horvitz and J.S. Breese. Ideal partition of resources for metareason-
ing. Technical Report KSL-90-26, Stanford Knowledge Systems Laboratory,
Stanford, California, 1990.

E.J. Horvitz, H.J. Suermondt, and G.F. Cooper. Bounded conditioning;:
Flexible inference for decisions under scarce resources. In Proceedings of the 5th
Conference on Uncertainty in Artificial Intelligence (UAI’89), pages 182-193,
1989.

M.W. Howard, D.S. Rizzuto, J.C. Caplan, J.R. Madsen, J. Lisman,
R. Aschenbrenner-Scheibe, A. Schultze-Bonhage, and M.J. Kahana. Gamma
oscillations increase with working memory load in humans. Cerebral Corter,
13:1369-1374, 2003.

B. Huet and E.R. Hancock. Shape recognition from large image libraries by
inexact graph matching. Pattern Recognition Letters, 20(11-13):1259-1269,

References

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

339

1999.

J.E. Hummel and K.J. Holyoak. Distributed representation of structure: A
theory of analogical access and mapping. Psychological Review, 104(3):427—
466, 1997.

R. Hummel and S. Zucker. On the foundations of relaxation labeling pro-
cesses. IEEE Transactions on Pattern Analysis and Machine Intelligence,
5(3):267-287, 1983.

M. Hunting. Relazation Techniques for Discrete Optimization Problems. PhD
thesis, University of Twente, 1998.

M. Hunting, U. Faigle, and W. Kern. A lagrangian relaxation approach to
the edgeweighted clique problem. European Journal of Operational Research,
131(1):119 131, 2001.

D. Hwang and F. Fatouhi. Modifications of discrete hopfield neural opti-
mization in maximum clique problem. In Proceedings of the International
Joint Conference on Neural Networks, pages 1189-1194, 2002.

S. Ishii and M. Sato. Doubly constrained network model for combinatorial
optimization problems. In Proceedings of the 1995 International Symposium
on Nonlinear Theory and Its Applications, pages 371-374, 1995.

S. Ishii and M. Sato. Constrained neural approaches to quadratic assignment
problems. Neural Networks, 10:941-963, 1998.

Y. Ishitani. Model matching based on association graph for form image un-
derstanding. In Proceedings of the 3rd International Conference on Document
Analysis and Recognition, volume 1, pages 287-292, 1995.

R.G. Palmer J. Hertz, A. Krogh. Introduction to the Theory of Neural
Computation. Addison-Wesley, Redwood City, CA, 1991.

A. Jagota. Approximating maximum clique with a Hopfield network. IEEFE
Transactions of Neural Networks, 6:724-735, 1995.

A K. Jain, M.N. Murty, and P.J. Flynn. Data clustering: a review. ACM
Computing Surveys, 31(3):264-323, 1999.

B.J. Jain, P. Geibel, and F. Wysotzki. Combining recurrent neural networks
and support vector machines for classifying structured data. In 27th Annual

German Conference on Artificial Intelligence (KI), pages 241-255. Springer,
2004.

B.J. Jain, P. Geibel, and F. Wysotzki. SVM learning with the SH inner
product. Neurocomputing, 2005. In press.

B.J. Jain and F. Wysotzki. Distance-based classification of structures within
a connectionist framework. In R. Klinkenberg et al., editor, Proceedings
Fachgruppentreffen Maschinelles Lernen, 2001.

B.J. Jain and F. Wysotzki. Efficient pattern discrimination with inhibitory
WTA nets. In Proceedings of the 11th International Conference on Artificial

340

References

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

Neural Networks (ICANN) 2001, LNCS 2130, pages 827-834. Springer, 2001.

B.J. Jain and F. Wysotzki. On the short-term-memory of WTA nets. In
M. Verleysen, editor, Proceedings of the 9th European Symposium on Artificial
Neural Networks (ESANN) 2001, pages 289-294. D-Facto, Brussels, 2001.

B.J. Jain and F. Wysotzki. Fast winner-takes-all networks for the maximum
clique problem. In M. Jarke, J. Koehler, and G. Lakemeyer, editors, KI
2002: Advances in Artificial Intelligence, volume 2479 of LNAI pages 163—
173. Springer, 2002.

B.J. Jain and F. Wysotzki. Self-organizing recognition and classification of
relational structures. In W. Gray and C. Schunn, editors, The 24th Annual
Meeting of the Cognitive Science Society (COGSCI) 2002, pages 163-173.
Springer, 2002.

B.J. Jain and F. Wysotzki. An associative memory for the automorphism
group of structures. In M. Verleysen, editor, Proceedings of the 11th European
Symposium on Artificial Neural Networks (ESANN) 2003, pages 107-112. D-
Facto, Brussels, 2003.

B.J. Jain and F. Wysotzki. Automorphism partitioning with neural networks.
Neural Processing Letters, 17:205-215, 2003.

B.J. Jain and F. Wysotzki. A competitive winner-takes-all architecture
for classification and pattern recognition of structures. In E. Hancock and
M. Vento, editors, Graph Based Representations in Pattern Recognition, LNCS
2726, pages 259-270. Springer, 2003.

B.J. Jain and F. Wysotzki. A k-winner-takes-all classifier for structured
data. In A. Giinter, R. Kruse, and B. Neumann, editors, KI 2003: Advances in
Artificial Intelligence., volume 2821 of LNAI, pages 342—354. Springer-Verlag,
2003.

B.J. Jain and F. Wysotzki. A neural graph isomorphism algorithm based
on local invariants. In M. Verleysen, editor, Proceedings of the 11th Furopean
Symposium on Artificial Neural Networks (ESANN) 2003, pages 79-84. D-
Facto, Brussels, 2003.

B.J. Jain and F. Wysotzki. A novel neural network approach to solve
exact and inexact graph isomorphism problems. In Proceedings of the 13th
International Conference on Artificial Neural Networks (ICANN) 2003, LNCS
2714, pages 299-306. Springer, 2003.

B.J. Jain and F. Wysotzki. Perceptron learning in the domain of graphs.
In Proceedings of the International Joint Conference on Neural Networks
(IJCNN) 2003, 2003.

B.J. Jain and F. Wysotzki. Central clustering of attributed graphs. Machine
Learning Journal. Special Issue: Theoretical Advances in Data Clustering,
56(1-3):169 207, 2004.

B.J. Jain and F. Wysotzki. Discrimination networks for maximum selection.

References

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

341

Neural Networks, 17(1):143-15, 2004.

B.J. Jain and F. Wysotzki. Learning with neural networks in the domain of
graphs. In Proceedings Fachgruppentreffen Maschinelles Lernen, 2004.

B.J. Jain and F. Wysotzki. The maximum weighted clique problem and
Hopfield networks. In M. Verleysen, editor, Proceedings of the 12th European
Symposium on Artificial Neural Networks (ESANN) 2004, pages 331-336. D-
Facto, Brussels, 2004.

B.J. Jain and F. Wysotzki. Multi-layer perceptron learning in the domain
of attributed graphs. In Proceedings of the International Joint Conference on
Neural Networks (IJCNN) 2004, 2004.

B.J. Jain and F. Wysotzki. Structural perceptrons for attributed graphs. In
Joint TAPR International Workshops on Structural and Syntactical Pattern
Recognition and Statistical Pattern Recognition. Accepted for publication, pages
85 94, 2004.

B.J. Jain and F. Wysotzki. Solving inexact graph isomorphism problems
using neural networks. Neurocomputing, 63:45—67, 2005.

H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.-L. Barabasi. The large-
scale organization of metabolic networks. Nature, 407:651-654, 2000.

D.S. Johnson and M. Trick, editors. Cliques, Coloring, and Satisfiability:
Second Dimacs Implementation Challenge, volume 26 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science. American Mathe-
matical Society, 1996.

M. Johnson. Some constrains on embodied analogical understanding. In D.H.
Helman, editor, Analogical Reasoning. Perspectives of Artificial Intelligence,
Cognitive Science, and Philosophy. Kluwer Academic Publishers, 1988.

M.A. Johnson. Relating metrics, lines and variables defined on graphs to
problems in medicinal chemistry. In Y. Alavi, G. Chartrand, L. Lesniak, D.R.
Lick, and C.E. Wall, editors, Graph Theory With Applications to Algorithms
and Computer Science, pages 457-470. Wiley, 1985.

M.A. Johnson, M. Naim, V. Nicholson, and C.C. Tsai. Unique mathematical
features of the substructure metric approach to quantitative molecular simi-
larity analysis. In R.B. King and D.H. Rouvray, editors, Graph Theory and
Topology in Chemistry, pages 219 225. Elsevier Science, 1987.

J.M. Jolion. Graph matching: What are we really talking about? In Graph-
based Representations in Pattern Recognition, 3rd IAPR-TC-15 Workshop,
2001.

J.M. Jolion and A. Rosenfeld. A Pyramid Framework for FEarly Vision.
Kluwer, 1994.

F. Kaden. Graphmetriken und Distanzgraphen. In Beitrdge zur angewandten
Graphentheorie. ZKI-Informationen, Berlin, 1982.

E.R. Kandel, J.H. Schwartz, and T.M. Jessel. The Principles of Neuroscience.

342

References

199.

200.

201.

202.

203.

204.

205.
206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

McGraw-Hill, 2000.

V. Kann. On the approximability of NP-complete optimization problems.
Master’s thesis, Dept. of Numerical Analysis and Computing Science, Royal
Institute of Technology, Stockholm, 1992.

R.M. Karp. Reducibility among combinatorial problems. In R. Miller and
J. Thatcher, editors, Complezity of Computer Computations, pages 85—-104.
Plenum Press, New York, 1972.

H. Kashima and A. Inokuchi. Kernels for graph classification. In ICDM
Workshop on Active Mining, 2002.

H. Kashima and T. Koyanagi. Kernels for semi-structured data. In Pro-
ceedings of the 19th International Conference on Machine Learning. Morgan
Kaufmann, 2002.

P.W. Kasteleyn. Graph theory and crystal physics. In F. Harary, editor,
Graph Theory and Theoretical Physics, pages 43—110. Academic Press, 1967.
M.T. Keane, T. Ledgeway, and S. Duff. Constraints on analogical mapping:
A comparison of three models. Cognitive Science, 18:387—438, 1994.

J.L. Kelley. General Topology. D. van Nostrand Company, Inc., 1955.

V.M. Kibardin. Decomposition into functions in the minimization problem.
Automation and Remote Control, 40:1311-1323, 1980.

S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671 680, 1983.

H. Kitaoka, Y. Park, J. Tschirren, J.M. Reinhardt, M. Sonka, G. McLennan,
and E.A. Hoffman. Automated nomenclature labeling of the bronchial tree in
3D-CT lung images, pages 1-11. LNCS 2489. Springer, 2002.

J. Kittler and E.R. Hancock. Combining evidence in probabilistic relaxation.
International Journal of Pattern Recognition and Artificial Intelligence, 3:29—
52, 1989.

J.M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal
of the ACM, 46(5):604-632, 1999.

M. Klin, Ch. Riicker, G. Riicker, and G. Tinhofer. Algebraic Combinatorics
in Mathematical Chemistry. Methods and Algorithms. I. Permutation Groups
and Coherent (Cellular) Algebras. Communications in mathematical and in
computer chemistry, pages 1-138, 1999.

J. Kobler, U. Schoning, and J. Toran. The graph isomorphism problem: its
structural complexity. Birkhauser, 1993.

T. Kohonen. Self-organized formation of topologically correct feature maps.
Biological Cybernetics, 43:59-69, 1982.

T. Kohonen. Self-Organization and Associative Memory. Springer-Verlag,
Berlin, 1984.

T. Kohonen. Self-Organizing Maps. Springer-Verlag, Berlin, 1995.

References

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

230.

231.

348

S. Kosinov and T. Caelli. Inexact multisubgraph matching using graph
eigenspace and clustering models. In T. Caelli, A. Amin, R. Duin, M. Kamel,
and D. de Ritter, editors, Proceedings of the Joint IAPR International Work-
shops Structural, Syntactic, and Statistical Pattern Recognition (SSPR and
SPR) 2002, LNCS 2396, pages 133—142. Springer, 2002.

K. Koutroumbas and N. Kalouptsidis. Qualitative analysis of the parallel and
asynchronous modes of the hamming network. IEFEE Transactions on Neural
Networks, 15(3):380-391, 1994.

R. Kree and A. Zippelius. Recognition of topological features of graphs.
Journal of Physics A: Mathematical and General, 21:813-818, 1988.

S.C. Kremer. Spatiotemporal connectionist networks: a taxonomy and review.

Neural Computation, 13:249-306, 2001.

C.L. Krumhansl. Concerning the applicability of geometric models to simi-
larity data: The interrelationship between similarity and spatial density. Psy-
chological Review, 85(5):445-463, 1978.

M.J. Kuby. Programming models for facility dispersion: the p-dispersion and
maxisum dispersion models. Geographical Analysis, 19:315-329, 1987.

P. Langley. Systematic and nonsystematic search strategies. In Artificial
Intelligence Planning Systems: Proceedings of the First International Confer-
ence, pages 145-152, 1992.

A. Lapedes and R. Farber. How neural nets work. In D. Z. Anderson, editor,
Neural Information Processing Systems, pages 442—456. American Institute of
Physics, 1987.

J. LaSalle and S. Lefschetz. Stability by Ljapunov’s Direct Method. Academic
Press, 1961.

C. Lemaréchal. Handbooks in Operations Research and Management Science,
volume 1, chapter Nondifferentiable Optimization, pages 529-572. Elsevier
Science Publishers, 1989.

V. Lesser, J. Pavlin, and E. Durfee. Approximate processing in real-time
problem-solving. AI Magazine, 9(1):49-61, 1988.

V. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics-Doklady, 10:707-710, 1966.

G. Levi. A note on the derivation of maximal common subgraphs of two
directed or undirected graphs. Calcolo, 9:341-352, 1972.

J. Levy and H.E. Pashler. Target-distractor phase and selective attention:
Idle resources do the devil’s work? under review.

W. Li and N.M. Nasrabadi. Object recognition based on graph matching
implemented by a hopfield—style neural network. In International Joint Con-
ference on Neural Network, (IJCNN) 1989, pages 287-290. IEEE Press, 1989.

R.P. Lippman. An introduction to computing with neural nets. IEEE ASSP

344

References

232.

233.

234.

235.

236.

237.

238.

239.

240.

241.

242.

243.

244.

245.

Magazine, pages 4-22, April 1987.

R.P. Lippman, B. Gold, and M.L. Malpass. A comparison of hamming and
hopfield neural nets for pattern classification. Technical Report TR-769, MIT
Lincoln Laboratory Technical Report, 1988.

W.A. Little. The existence of persistent states in the brain. Mathematical
Bioscience, 19:101-119, 1974.

J.W.S. Liu, K. Lin, W. Shih, and A.C. Yu. Algorithms for scheduling
imprecise computations. IEEE Computer, 24(5), 1991.

J. Llados, J. Lopez-Krahe, and E. Mart. Hand drawn document understand-
ing using the straight line hough transform and graph matching. In Proceedings
of the 13th International Conference on Pattern Recognition, pages 497-501,
1996.

B.C. Love. A computational level theory of similarity. In L.R. Gleitman and
A K. Joshi, editors, The 22th Annual Meeting of the Cognitive Science Society
(COGSCI) 2002, pages 316-321. Springer, 2000.

M.A. Lozano and F. Escolano. ACM attributed graph clustering for learning
classes of images. In E. Hancock and M. Vento, editors, Graph Based Repre-
sentations in Pattern Recognition. Jth IAPR International Workshop, GbRPR
2003, LNCS 2726, pages 247-258. Springer-Verlag, 2003.

M.A. Lozano and F. Escolano. A significant improvement of softassign with
diffusion kernels. In A. Fred, T. Caelli, R.P.W. Duin, A. Campilho, and
D. de Ridder, editors, Proceedings of the Joint IAPR International Workshops
Structural, Syntactic, and Statistical Pattern Recognition (SSPR and SPR)
2004, LNCS 3138, pages 76 84. Springer, 2004.

D.G. Luenberger. Introduction to Linear and Nonlinear Programming. Ad-

dison Wesley, 1973.

L. Luksan and J. Vlcek. Introduction to nonsmooth analysis. theory and
algorithms. Technical Report DMSIA, Serie Didattica 1/2000, Universita degli
Studi di Bergamo, Bergamo, 2000.

W. Lukutin and C. Vorwoold. Hierarchisches Graphmatching mit Neuronalen
Netzen. Unpublished technical report, 2003.

A. Lumini, D. Maio, and D. Maltoni. Inexact graph matching for fingerprint
classification. Machine GRAPHICS and VISION, Special issue on Graph
Transformations in Pattern Generation and CAD, 8(2):231-248, 1999.

B. Luo and E.R. Hancock. Structural graph matching using the em algorithm
and singular value decomposition. In Asian Conference on Computer Vision
2002, pages 75-80, 2002.

B. Luo, R.C. Wilson, and E.R. Hancock. Spectral embedding of graphs.
Pattern Recognition, 36(10):2213-2223, 2003.

Z. Luo. On the convergence of the LMS algorithm with adaptive learning
rate for feedforward network. Neural Computing, 3:226-245, 1991.

References

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

258.

259.

260.

261.

845

Z.Q. Luo and P. Tseng. Analysis of an approximate gradient projection
method with applications to the backpropagation algorithm. Optimization
Methods and Software, 4:85-101, 1994.

W. Maass. On the computational power of winner-take-all. Neural Compu-
tation, 12(11):2519 2536, 2000.

E.M. Macambira and C.C. de Souza. The edge-weighted clique problem: valid
inequalities, facets, and polyhedral computations. Technical Report IC-97-14,
Instituto Computacao, Universidade Estadual de Campinas, Brazil, 1996.

E. Majani, R. Erlanson, and Y. Abu-Mostafa. On the k-winner-take-all
network. Advances in Neural Information Processing Systems, 1:634—642,
1989.

M.M. Mikeld and P. Neittaanméki. Nonsmooth optimization: Analysis and
algorithms with applications to optimal control. World Scientific Publishing
Company, Singapore, 1992.

O.L. Mangasarian and M.V. Solodov. Serial and parallel backpropagation

convergence via nonmonotone perturbed minimization. Optimization Methods
and Software, 4(2), 1994.

C.M. Marcus and R.M. Westervelt. Dynamics of iterated-map neural net-
works. Physical Review A, 40(1):501-504, 1989.

W.S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5:115 133, 1943.

J.J. McGregor. Backtrack search algorithms and the maximal common
subgraph problem. Software Practice and Ezrperience, pages 23-34, 12.

B.D. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45
87, 1981.

T. Meiers, I. Keller, and T. Sikora. Image visualization and navigation based
on MPEG-7 descriptors. In Proceedings of Conference on Augmented, Virtual
Environments and 3D Imaging, EUROIMAGE, 2001.

O. Meincke. Hierarchisches Strukturmatching mit Winner-Takes-All-Netzen.
Master’s thesis, Technical University of Berlin, 2002.

B. Messmer and H. Bunke. A network based approach to exact and inexact
graph matching. Technical Report TAM-93-021, University of Bern, 1993.

P. Michel and J.P. Penot. Calcul sous-diff’erential pour des fonctions lips-
chitziennes et non lipschitziennes. Comptes Rendues de I’Academie des Sci-
ences Paris, 298:269-27, 1984.

A. Micheli, F. Potera, and A. Sperduti. A preliminary empirical comparision
of recursive neural networks and tree kernel methods on regression tasks for
tree structured domains. Neurocomputing, 64:73-92, 2005.

A. Micheli, A. Sperduti, A. Starita, and A.M. Bianucci. Analysis of the
internal representations developed by neural networks for structures applied to

346

References

262.

263.

264.

265.

266.

267.

268.

269.

270.

271.

272.

273.

274.

275.

276.

277.

quantitative structure-activity relationship studies of benzodiazepines. Journal
of Chemical Information and Computer Sciences (ACS Publications), 41, 2001.

A. Micheli, A. Sperduti, A. Starita, and A.M. Bianucci. Soft Computing
Approaches in Chemistry, chapter A Novel Approach to QSPR/QSAR Based
on Neural Networks for Structures, pages 265—296. Springer, 2003.

H. Minc. Upper bounds for permanents of (0,1)-matrices. Bulletin of the
American Mathematical Society, pages 789-791, 1963.

M. Minoux. Mathematical Programming: Theory and Algorithms. John Wiley
& Sons, 1986.

E. Mjolsness, G. Gindi, and P. Anandan. Optimization in model matching
and perceptual organization. Neural Computation, 1:218-229, 1989.

B. Moore. ART 1 and pattern clustering. In G. Hinton, D. Touretzky, and
T. Sejnowski, editors, Proceedings of the 1988 Connectionist Models Summer
School, Pittsburgh, pages 174-185. Morgan Kaufmann, 1988.

B.S. Mordukhovich. Maximum principle in problems of time optimal control
with nonsmooth constraints. Journal of Applied Mathematics and Mechanics,
40:960-969, 1976.

B.S. Mordukhovich. Approximation Methods in Problems of Optimization
and Control. Nauka, Moscow, 1988.

H.L. Morgan. The generation of a unique machine description for chemical
structures. Journal of Chemical Documentation, 5:107-112, 1965.

F. Moscheni, S. Bhattacharjee, and M. Kunt. Spatiotemporal segmentation
based on region merging. IEEE Transactions on Patern Analysis and Machine
Intelligence, 20(9):897-915, 1998.

T.S. Motzkin and E.G. Strauss. Maxima for graphs and a new proof of a
Theorem of Turan. Canadian Journal of Mathematics, 17:533-540, 1965.

R. Myers, R.C. Wilson, and E.R. Hancock. Bayesian graph edit distance.
IEEFE Transactions on Pattern Analysis and Machine Intelligence, 22(6):628—
635, 2000.

A. Nedi¢ and D.P. Bertsekas. Convergence rate of incremental subgradient

algorithms. Stochastic Optimization: Algorithms and Applications, pages 263—
304, 2000.

R.M. Nosofsky. Stimulus bias, asymmetric similarity, and classification.
Cognitive Psychology, 13:87-108, 1991.

G.B. Orr and K.R. Miiller, editors. Neural Networks: Tricks of the Trade.
Springer, 1998.

P.M. Pardalos and J. Xu. The maximum clique problem. Journal of Global
Optimization, 4:301-328, 1994.

E. Pekalska. Dissimilarity Representations in Pattern Recognition. Concepts,
Theory and Applications. PhD thesis, Delft University of Technology, 2005.

References

278.

279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

347

E. Pekalska, P. Paclik, and R.P.W. Duin. A generalized kernel approach
to dissimilarity-based classification. Journal of Machine Learning Research,
Special Issue on Kernel Methods, 2(2):175-211, 2002.

M. Pelillo. A unifying framework for relational structure matching. In Pro-
ceedings of the 14th International Conference on Pattern Recognition (ICPR)
1998, pages 13161319, 1989.

M. Pelillo. Replicator equations, maximal cliques, and graph isomorphism.
Neural Computation, 11(8):1933-1955, 1999.

M. Pelillo. Replicator equations, maximal cliques, and graph isomorphism. In
M.S. Kearns, S.A. Solla, and D.A. Cohn, editors, Advances in Neural Informa-
tion Processing Systems, volume 11, pages 550-556. MIT Press, Cambridge,
MA, 1999.

M. Pelillo. Matching free trees, maximal cliques, and monotone game dy-
namics. [FEE Transactions on Pattern Analysis and Machine Intelligence,
24(11):1535-1541, 2002.

M. Pelillo and A. Jagota. Feasible and infeasible maxima in a quadratic
program for maximum clique. Journal of Artificial Neural Networks, 2:411—
420, 1995.

M. Pelillo, K. Siddiqi, and S.W. Zucker. Matching hierarchical structures
using association graphs. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(11):1105-1120, 1999.

C. Peterson and B. Soderberg. A new method for mapping optimization
problems onto neural networks. International Journal of Neural Systems, 1:2—
33, 1989.

C. Peterson and B. Soderberg. The Handbook of Brain Research and Neural
Networks, chapter Neural Optimization. Bradford Books/The MIT Press,
1998.

E.G.M. Petrakis and C. Faloutsos. Similarity searching in medical image
databases. IEEE Transactions on Knowledge and Data Engineering, 9(3):435—
447, 1997.

P. Pipenbacher, A. Schliep, S. Schneckener, A. Schnhuth, D. Schomburg,
and R. Schrader. ProClust: Improved clustering of protein sequences with an
extended graph-based approach. Bioinformatics, 1(1):1 10, 2002.

B.T. Polyak. Introduction to Optimization. Optimization Software Inc., NY,
1987.

A. Rangarajan, S. Gold, and E. Mjolsness. A novel optimizing network
architecture with applications. Neural Computation, 8(5):1041-1060, 1996.

A. Rangarajan and E. Mjolsness. A Lagrangian relaxation network for graph
matching. TEEE Transactions on Neural Networks, 7(6):1365-1381, 1996.

A.C. Rao and D.V. Raju. Application of the hamming number technique to
detect isomorphism among kinematic chains and inversions. Mechanism and

348

References

293.

294.

295.

296.

297.

298.

299.

300.

301.

302.

303.

304.

305.

306.

307.

308.

Machine Theory, 26(1):55-75, 1991.

S.S. Ravi, D.J. Rosenkrantz, and G.K. Tayi. Heuristic and special case
algorithms for dispersion problems. Operations Research, 42(2):299-310, 1994.

J.W. Raymond, E.J. Gardiner, and P. Willett. Heuristics for similarity search-
ing of chemical graphs using a maximum common edge subgraph algorithm.
Journal of Chemical Information and Computer Sciences, 42(2):305-316, 2002.

J.W. Raymond, E.J. Gardiner, and P. Willett. RASCAL: Calculation of
graph similarity using maximum common edge subgraphs. Computer Journal,
45(6):631-644, 2002.

J.W. Raymond and P. Willett. Efectiveness of graph-based and fingerprint-

based similarity measures for virtual screening of 2d chemical structure
databases. Journal of Computer-Aided Molecular Design, 16:59 71, 2002.

R.C. Read and D.G. Corneil. The graph isomorphism disease. Journal of
Graph Theory, pages 339-363, 1977.

M.M. Richter. Classification and learning of similarity measures. In Pro-
ceedings of the Jahrestagung der Gesellschaft fir Klassifikation: Studies in
Classification, Data Analysis and Knowledge Organisation. Springer, 1992.

H. Ritter. A spatial approach to feature linking. In Proc. INNC’90 Interna-
tional Neural Network Conference Paris, volume 2, pages 898 901, 1990.

H. Ritter and K. Schulten. Kohonen’s Self-Organizing Maps: Explorating
their computational capabilities. In IEEE International Conference on Neural
Networks, pages 109-116. New York: IEEE, 1988.

R.T. Rockafellar. Convex Analysis. Princeton University Press, Princeton,
NJ, 1970.

F. Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65:386-408, 1958.

F. Rosenblatt. Principles of Neurodynamics. Spartan Book, 1962.

A. Rosenfeld, R. Hummel, and S. Zucker. Scene labeling by relaxation
operations. IEFEE Transactions on Systems, Man and Cybernetics, 6:420—433,
1976.

N. Rouche, P. Habets, and M. Laloy. Stability Theory by Liapunov’s Direct
Method. Springer, 1977.

G. Riicker and C. Riicker. On topological indices, boiling points, and
cycloalkanes. Journal of Chemical Information and Computer Sciences,
39(5):788-802, 1999.

S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 1995.

J. Russell and S. Zilberstein. Composing real-time systems. In Proceedings
of the 12th International Joint Conference on Artificial Intelligence, pages
212-217, 1991.

References

309.

310.

311.

312.

313.

314.

315.

316.

317.

318.

319.

320.

349

A. Sanfeliu and K.S. Fu. A distance measure between attributed relational
graphs for pattern recognition. IEFEE Transactions on Systems, Man, and
Cybernetics, 13:353-362, 1983.

B. Le Saux and H. Bunke. Feature selection for graph-based image classifiers.
In TAPR Iberian Conference on Pattern Recognition and Image Analysis
(IbPRIA’05), 2005 (to appear).

K. Schédler. Die Ermittlung struktureller Ahnlichkeit und struktureller Merk-
male bei komplexen Objekten: Fin konnektionistischer Ansatz und seine An-
wendungen. PhD thesis, Dept. of Computer Science, Technical University of
Berlin, 1999. In DISKI 228, infix, Akademische Verlagsgesellschaft Aka GmbH,
Berlin, 2000.

K. Schadler and F. Wysotzki. Klassifizierungslernen mit Hilfe spezieller
Hopfield-Netze. In W. Dilger, M. Schlosser, J. Zeidler, and A. Ittner, ed-
itors, Procceedings of the Fachgruppentreffen Maschinelles Lernen der GI-
Fachgruppe 1.1.3, Chemnitzer Informatik-Berichte CSR-96-06. Technische
Universitdt Chemnitz-Zwickau, 1996.

K. Schidler and F. Wysotzki. Theoretical foundations of a special neural
net approach for graphmatching. Technical Report 96-26, Dept. of Computer
Science, TU Berlin, 1996.

K. Schéadler and F. Wysotzki. Comparing structures using a Hopfield-style
neural network. Applied Intelligence, 11:15 30, 1999.

C. Schellewald and C. Schnorr. Subgraph matching with semidefinite pro-
gramming. Technical report, Dept. of Mathematics and Computer Science,
University of Mannheim, Germany, 2002.

A. Schenker, M. Last, H. Bunke, and A. Kandel. Comparison of distance mea-
sures for graph-based clustering of documents. In E. Hancock and M. Vento,
editors, Graph Based Representations in Pattern Recognition. 4th IAPR In-
ternational Workshop, GbRPR 2003, LNCS 2726, pages 203—-213. Springer-
Verlag, 2003.

A. Schenker, M. Last, H. Bunke, and A. Kandel. Comparison of algorithms
for web document clustering using graph representaions of data. In A. Fred,
T. Caelli, R.P.W. Duin, A. Campilho, and D. de Ridder, editors, Proceedings of
the Joint IAPR International Workshops Structural, Syntactic, and Statistical
Pattern Recognition (SSPR and SPR) 2004, LNCS 3138, pages 190-197.
Springer, 2004.

S. Scholtes. Introduction to piecwise differentiable equations. Habilita-
tion Thesis, Preprint No. 54/1994, Institut fiir Statistik und Mathematische
Wirtschaftstheorie, Universitat Karlsruhe, Germany, 1994.

H. Schiilzke, M. Schade, and E. Chandravati. Hierarchisches Graphmatching
mit Neuronalen Netzen. Unpublished technical report, 2005.

G. Scott and H. Longuet-Higgins. An algorithm for associating the features

350

References

321.

322.

323.

324.

325.

326.

327.

328.

329.

330.

331.

332.

333.

334.

335.

336.

of two patterns. In Proceedings of the Royal Society London, volume B244,
pages 21-26, 1991.

O. G. Selfridge. Pandemonium: A paradigm for learning. In D.V. Blake
and A.M. Uttley, editors, Proceedings of the Symposium on Mechanisation of
Thought Processes, pages 511 529. H.M. Stationary Office, London, 1959.

S.M. Selkow. The tree-to-tree editing problem. Information Processing
Letters, 6(6):184-186, 1977.

L.G. Shapiro and J.M. Brady. Feature-based correspondence: An eigenvector
approach. Image and Vision Computing, 10(5):283-288, 1992.

L.G. Shapiro and R.M. Haralick. Structural descriptions and inexact
matching. IEEE Transaction on Pattern Analysis and Machine Intelligence,
3(5):514 519, 1981.

L.G. Shapiro and R.M. Haralick. A metric for comparing relational de-
scriptions. IEEE Transaction on Pattern Analysis and Machine Intelligence,
7(1):90-94, 1985.

K. Shearer, H. Bunke, and S. Venkatesh. Video indexing and similarity
retrieval by largest common subgraph detection using decision trees. Pattern
Recognition, 34:1075-1091, 2001.

S. Shekhar and S. Dutta. inimizing response times in real time planning and
search. In Proceedings of 11th International Joint Conference on Artificial
Intelligence (IJCAI’89), pages 238 242, 1989.

A. Shokoufandeh and S. Dickinson. Graph-Theoretical Methods in Computer
Vision, pages 148-174. LNCS 2292. Springer, 2002.

N.Z. Shor. Minimization Methods for Nondifferentiable Functions. Springer,
1985.

K. Siddiqi, A. Shokoufandeh, S. Dickinson, and S. Zucker. Shock graphs and
shape matching. International Journal of Computer Vision, 30:1-24, 1999.

T. Sikora. The MPEG-7 visual standard for content description — an
overview. IEEE Transactions on Circuits and Systems for Video Technology,
11(6), 2001.

P.D. Simié¢. Constrained nets for graph matching and other quadratic assign-
ment problems. Neural Computation, 3:268-281, 1991.

H.A. Simon. Models of bounded rationality,. MIT Press, 1982.

M. Singh, A. Chatterjee, and S. Chaudhury. Matching structural shape
descriptions using genetic algorithms. Pattern Recognition, 30(9):1451-1462,
1997.

R. Sinkhorn. A relationship between arbitrary positive matrices and doubly
stochastic matrices. Annals of Mathematical Statistics, 35:876 879, 1964.

K.A. Smith. Neural networks for combinatorial optimisation: A review of
more than a decade of research. INFORMS Journal on Computing, 11(1):15—

References

337.

338.

339.

340.

341.

342.

343.

344.

345.

346.

347.

348.

349.

350.

351.

352.

851

34, 1999.

F. Sobik. Graphmetriken und Klassifikation strukturierter Objekte. In
Beitrdge zur angewandten Graphentheorie. ZKI-Information. Berlin, 1982.

M.V. Solodov and S.K. Zavriev. Error stability properties of generalized
gradient-type algorithms. Journal of Optimization Theory and Applications,
98(3):663-680, 1998.

H. Spéath. Heuristically determining cliques of given cardinality and with

minimal cost within weighted complete graphs. Zeitschrift fir Operations
Research, 29:125-131, 1985.

A. Sperduti and A. Starita. Supervised neural networks for the classification
of structures. IEEE Transactions on Neural Networks, 8(3):714-735, 1997.

A. Srinivasan, S. Muggleton, R. King, and M. Sternberg. Mutagenesis:
ILP experiments in a non-determinate biological domain. In S. Wrobel,
editor, Proceedings of the Fourth International Workshop on Inductive Logic
Programming, number 237 in GMD Studien, pages 217-232, 1994.

A. Srinivasan, S. Muggleton, R. King, and M. Sternberg. Theories for
mutagenicity: a study of first-order and feature based induction. Journal of
Artificial Intelligence, 85(1,2):277-299, 1996.

D. Steinhausen and K. Langer. Clusteranalyse: Finfihrung in Methoden und
Verfahren der automatischen Klassifikation. Walter de Gruyter, 1977.

P. Suganthan. Structural pattern recognition using genetic algorithms. Pat-
tern Recognition, 35(9):1883-1893, 2002.

P. Suganthan, E. Teoh, and D. Mital. Pattern recognition by graph matching
using potts mft networks. Pattern Recognition, 28:997 1009, 1995.

P. Suganthan and H. Yan. Recognition of handprinted chinese characters
by constrained graph matching. Image and Vision Computing, 16(3):191-201,
1998.

J.P.F. Sum and P.K.S. Tam. Note on the maxnet dynamics. Neural Compu-
tation, 8(3):491-499, 1996.

H. Szu and R. Hartley. Fast simulated annealing. Physics Letters A, 122:157—
162, 1987.

Y. Takahashi, Y. Satoh, H. Suzuki, and S. Sasaki. Recognition in largest
common structural fragment among a variety of chemical structures. Analytical
Science, 3:23-28, 1987.

Y. Takefuji and H. Szu. Design of parallel distributed Cauchy machines. In
Proceedings of the IEEE International Joint Conference on Neural Networks
(IJCNN) 1989, volume 1, pages 529-532, 1989.

O.N. Temkin, A.V. Zeigarnik, and D. Bonchev. Chemical Reaction Networks:
A Graph-Theoretical Approach. CRC Press, 1996.

A. Torsello. Matching Hierarchical Structures for Shape Recognition. PhD

352

References

353.

354.

355.

356.

357.

358.

359.

360.

361.
362.

363.

364.

365.

366.

367.

368.

thesis, Dept. of Computer Science, University of York, UK, 2004.

A. Torsello and E.R. Hancock. Efficiently computing weighted tree edit dis-
tance using relaxation labeling. In A.K. Jain M. Figueiredo, J. Zerubia, editor,
Energy Minimization Methods in Computer Vision and Pattern Recognition:
Third International Workshop, EMMCVPR 2001, volume 2134 of LNCS, pages
438-453. Springer, 2001.

A. Torsello, D. Hidovic, and M. Pelillo. Four metrics for efficiently comparing
attributed trees. In Proceedings of the 17th International Conference on
Pattern Recognition, volume 2, pages 467-470, 2004.

J.S. Treiman. Finite dimensional optimality conditions: B-gradients. Journal
of Optimization Theory and Applications, 62:139-150, 1989.

J.S. Treiman. Optimal control with small generalized gradients. SIAM
Journal of Control and Optimization, 28:720-732, 1990.

A.M. Treisman. Strategies and models of selective attention. Psychological
Review, 76(3):282-299, 19609.
W.H. Tsai and K.S. Fu. Error-correcting isomorphism of attributed relational

graphs for pattern recognition. IEEFE Transactions on Systems, Man, and
Cybernetics, 9:757-768, 1979.

W.H. Tsai and K.S. Fu. Subgraph error-correcting isomorphism for syntactic
pattern recognition. IEEFE Transactions on Systems, Man, and Cybernetics,
13:48 62, 1983.

P. Tseng. An incremental gradient(-projection) method with momentum
term and adaptive stepsize rule. SIAM Journal on Optimization, 2:506-531,
1998.

A. Tversky. Feature of similarity. Psychological Review, 84(4):327-350, 1977.

J.R. Ullman. An algorithm for subgraph isomorphism. Journal of the ACM,
23(1):31-42, 1976.

S. Umeyama. An eigen decomposition approach to weighted graph matching
problems. IEEE Transactions on Pattern Analysis and Machine Intelligence,
10(5):695-703, 1988.

A. Uretmen. Hierarchisches Graph Matching mit Neuronalen Netzen. Mas-
ter’s thesis, Technical University of Berlin, 2004.

L. Valiant. The complexity of computing the permanent. Theoretical Com-
puter Science, 8:189-201, 1979.

P.J.M. van Laarhoven and E.H.L. Aarts. Simulated Annealing: Theory and
Applications. Kluwer Academic Publishers, 1987.

B.J. van Wyk. Kronecker Product, Successive Projection, and Related Graph
Matching Algorithms. PhD thesis, University of the Witwatersrand, Johan-
nesburg, 2003.

B.J. van Wyk and M.A. Van Wyk. The spherical approximation graph match-

References

369.

370.

371.

372.

373.

374.

375.

376.

377.

378.

379.

380.

381.

382.

358

ing algorithm. In Proceedings of the International Workshop on Multidisci-
plinary Design Optimisation, pages 280288, 2000.

B.J. van Wyk, M.A. Van Wyk, and F. Virolleau. The CGGM algorithm and
its DSP implementation. In Proceedings of the 3rd European DSP Conference
on Education and Research, pages CD-ROM, 2000.

M.A. van Wyk and J. Clark. An algorithm for approximate least-squares
attributed graph matching. Problems in Applied Mathematics and Computa-
tional Intelligence, pages 67-72, 2000.

M.A. van Wyk, T.S. Durrani, and B.J. van Wyk. A RKHS interpolator-
based graph matching algorithm. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(7):988-995, 2003.

V. Venkateswar and R. Chellappa. Hierarchical stereo and motion corre-
spondence using feature groupings. International Journal of Computer Vision,
15:245 269, 1995.

A.Y. Chervonenkis V.N. Vapnik. On the uniform convergence of relative
frequencies of events to their probabilities. Theory of Probability and Its
Applications, 16:264—280, 1971.

C. von der Malsburg. Pattern recognition by labeled graph matching. Neural
networks, 1:141-148, 1988.

S.V. Vrbsky and J.W.S. Liu. Producing monotonically improving approxi-
mate answers to database queries. In Proceedings of the IEEE Workshop on
Imprecise and Approximate Computation, pages 72—76, 1992.

R.J. Wallace and E.C. Freuder. Anytime algorithms for constraint satisfaction
and sat problems. SIGART Bulletin, 7(2), 1996.

W.D. Wallis, P. Shoubridge, M. Kraetz, and D. Ray. Graph distances using
graph union. Pattern Recognition Letters, 22(6/7):701 704, 2001.

R.L. Wang, Z. Tang, and Q.P. Cao. An efficient approximation algorithm for
finding a maximum clique using hopfield network learning. Neural Computa-
tion, 15(7):1605-1619, 2003.

X. Wang, A. Jagota, F. Botelho, and M. Garzon. Absence of cycles in
symmetric neural networks. In D.S. Touretzkya, M. Mozer, and M. Hasselmo,
editors, Proceedings of the 9th Neural Information Processing Systems (NIPS)
1996. MIT Press, 1996.

C. Watkins. Dynamic alignment kernels. Technical report, Department of
Computer Science, Royal Holloway, University of London, 1999.

J.W. Weibull. Ewvolutionary Game Theory. MIT Press, Cambridge, MA,
1995.

M.P. Wellman and C.L. Liu. State-space abstraction for anytime evaluation
of probabilistic networks. In Proceedings of the 10th Conference on Uncertainty
in Artificial Intelligence (UAI’94), pages 567-574, 1994.

854

References

383.

384.

385.

386.

387.

388.

389.

390.

391.

392.

393.

394.

395.

396.

397.

H. Wersing. Spatial Feature Binding and Learning in Competitive Neural
Layer Architectures. PhD thesis, Faculty of Technology, University Bielefeld,
2000.

M.L. Williams, R.C. Wilson, and E.R. Hancock. Deterministic search for
relational graph matching. Pattern Recognition, 32(7):1255 1271, 1999.

G.V. Wilson and G.S. Pawley. On the stability of the travelling salesman
problem algorithm of Hopfield and Tank. Biological Cybernetics, 58:63-70,
1988.

R.C. Wilson and E.R. Hancock. Structural matching by discrete relaxation.
IEEFE Transactions on Pattern Analysis and Machine Intelligence, 19(6):634—
648, 1997.

F. Wysotzki. Artifical intelligence and artifical neural nets. In L. Budach, ed-
itor, Neural Informatics. Proceedings of an International Workshop, 12/1989,
pages 43 51. Akademie der Wissenschaften der DDR, Berlin, GDR, 1989.

F. Wysotzki. Artifical intelligence and artifical neural nets. In Proceedings
of the 1st Workshop on Artificial Intelligence, Shanghai, September 1990. TU
Berlin and Jiao Tong University Shanghai.

F. Wysotzki. Structural matching with artificial neural networks. In Wis-
senschaftliche Zeitschrift, volume 37, pages 113-119. Technische Hochschule
Ilmenau, GDR, 1991.

J. Xu. GMA: A generic match algorithm for structural homomorphism,
isomorphism, and maximal common substructure match and its applications.
Journal of Chemical Information and Computer Science, 36(1):25-34, 1996.

L. Xu and I. King. A PCA approach for fast retrieval of structural patterns
in attributed graphs. IEEE Transactions on Systems, Man, and Cybernetics,
Part B, 31(5):812-817, 2001.

L. Xu and E. Oja. Improved simulated annealing, boltzmann machine, and
attributed graph matching. In L.B. Almeida and C.J. Wellekens, editors,
Neural Networks, pages 151-161. Springer, 1990.

Y. Yamada, E. Tomita, and H. Takahashi. A randomized algorithm for finding
a near-maximum clique and its experimental evaluations. In Transactions of
IEICE Japan, volume J76-D-I(2), pages 46-53, 1993.

J.-C. Yen, F.-J. Chang, and S. Chang. A new winner-take-all architecture in
artifical neural networks. IEEE Transactions on Neural Networks, 5(5):838—
843, 1994.

J.-C. Yen and S. Chang. Improved winner-take-all neural network. FElectronic
Letters, 28(7):662-664, 1992.

B. Zelinka. On a certain distance between the isomorphism classes of graphs.
C'asopis pro péstovani matematiky, 100:371-373, 1975.

W.P. Ziemer. Weakly differentiable functions. Sobolev spaces and functions
of bounded variation. Springer, 1989.

References 355

398. S. Zilberstein. Operational Rationality through Compilation of Anytime
Algorithms. PhD thesis, University of California, Berkely, 1993.

399. S. Zilberstein. Resource-bounded sensing and planning in autonomous sys-
tems. Autonomous Robots, 3:31-48, 1996.

400. S. Zilberstein. Using anytime algorithms in intelligent systems. AT Magazine,
17(3):73-83, 1996.

