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We determine the tropicalizations of very affine surfaces over 
a valued field that are obtained from del Pezzo surfaces of 
degree 5, 4 and 3 by removing their (−1)-curves. On these 
tropical surfaces, the boundary divisors are represented by 
trees at infinity. These trees are glued together according to 
the Petersen, Clebsch and Schläfli graphs, respectively. There 
are 27 trees on each tropical cubic surface, attached to a 
bounded complex with up to 73 polygons. The maximal cones 
in the 4-dimensional moduli fan reveal two generic types of 
such surfaces.

© 2016 Published by Elsevier Inc.

1. Introduction

A smooth cubic surface X in projective 3-space P3 contains 27 lines. These lines 
are characterized intrinsically as the (−1)-curves on X, that is, rational curves of self-
intersection −1. The tropicalization of an embedded surface X is obtained directly from 
the cubic polynomial that defines it in P3. The resulting tropical surfaces are dual to 
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regular subdivisions of the size 3 tetrahedron. These come in many combinatorial types 
[15, §4.5]. If the subdivision is a unimodular triangulation then the tropical surface is 
called smooth (cf. [15, Prop. 4.5.1]).

Alternatively, by removing the 27 lines from the cubic surface X, we obtain a very 
affine surface X0. In this paper, we study the tropicalization of X0, denoted trop(X0), 
via the embedding in its intrinsic torus [11]. This is an invariant of the surface X. The 
(−1)-curves on X now become visible as 27 boundary trees on trop(X0). This distin-
guishes our approach from Vigeland’s work [27] on the 27 lines on tropical cubics in 
TP3. It also highlights an important feature of tropical geometry [17]: there are different 
tropical models of a single classical variety, and the choice of model depends on what 
structure one wants revealed.

Throughout this paper we work over a field K of characteristic zero that has a non-
archimedean valuation. Examples include the Puiseux series K = C{ {t} } and the p-adic 
numbers K = Qp. We use the term cubic surface to mean a marked smooth del Pezzo 
surface X of degree 3. A tropical cubic surface is the intrinsic tropicalization trop(X0) de-
scribed above. Likewise, tropical del Pezzo surface refers to the tropicalization trop(X0)
for degree ≥ 4. Here, the adjective “tropical” is used solely for brevity, instead of the 
more accurate “tropicalized” used in [15]. We do not consider non-realizable tropical 
del Pezzo surfaces, nor tropicalizations of surfaces defined over a field K with positive 
characteristic.

The moduli space of cubic surfaces is four-dimensional, and its tropical version is the 
four-dimensional Naruki fan. This was constructed combinatorially by Hacking, Keel 
and Tevelev [11], and it was realized in [20, §6] as the tropicalization of a very affine 
variety Y0, obtained from the Yoshida variety Y in P39 by intersecting with (K∗)39. The 
Weyl group W (E6) acts on Y by permuting the 40 coordinates. The maximal cones in 
trop(Y0) come in two W (E6)-orbits. We here compute the corresponding cubic surfaces:

Theorem 1.1. There are two generic types of tropical cubic surfaces. They are contractible 
and characterized at infinity by 27 metric trees, each having 10 leaves. The first type has 
73 bounded cells, 150 edges, 78 vertices, 135 cones, 189 flaps, 216 rays, and all 27 trees 
are trivalent. The second type has 72 bounded cells, 148 edges, 77 vertices, 135 cones, 
186 flaps, 213 rays, and three of the 27 trees have a 4-valent node. (For more data see 
Table 1.)

Here, by cones and flaps we mean unbounded 2-dimensional polyhedra that are affinely 
isomorphic to R2

≥0 and [0, 1] ×R≥0 respectively. The characterization at infinity is anal-
ogous to that for tropical planes in [12]. Indeed, by [12, Theorem 4.4], every tropical 
plane L in TPn−1 is given by an arrangement of n boundary trees, each having n − 1
leaves, and L is uniquely determined by this arrangement. Viewed intrinsically, L is the 
tropicalization of a very affine surface, namely the complement of n lines in P2. Theo-
rem 1.1 offers the analogous characterization for the tropicalization of the complement 
of the 27 lines on a cubic surface.
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Tropical geometry has undergone an explosive development during the past decade. 
To the outside observer, the literature is full of conflicting definitions and diverging 
approaches. The text books [15,17] offer some help, but they each stress one particular 
point of view.

An important feature of the present paper is its focus on the unity of tropical geometry. 
We shall develop three different techniques for computing tropical del Pezzo surfaces:

• Cox ideals, as explained in Section 2;
• fan structures on moduli spaces, as explained in Section 3;
• tropical modifications, as explained in Section 4.

The first approach uses the Cox ring of X, starting from the presentation given in [26]. 
Propositions 2.1 and 2.2 extend this to the universal Cox ideal over the moduli space. 
For any particular surface X, defined over a field such as K = Q(t), computing the 
tropicalization is a task for the software gfan [13]. In the second approach, we construct 
del Pezzo surfaces from fibers in the natural maps of moduli fans. Our success along 
these lines completes the program started by Hacking et al. [11] and further developed 
in [20, §6]. The third approach is to build tropical del Pezzo surfaces combinatorially 
from the tropical projective plane TP2 by the process of tropical modifications in the 
sense of Mikhalkin [16]. It mirrors the classical construction by blowing up points in P2. 
All three approaches yield the same results. Section 5 presents an in-depth study of 
the combinatorics of tropical cubic surfaces and their trees, including an extension of 
Theorem 1.1 that includes all degenerate surfaces.

We now illustrate the rich combinatorics in our story for a del Pezzo surface X of 
degree 4. Del Pezzo surfaces of degree d ≥ 6 are toric surfaces, so they naturally tropi-
calize as polygons with 12 − d vertices [17, Ch. 3]. On route to Theorem 1.1, we prove 
the following for d = 4, 5:

Proposition 1.2. Among tropical del Pezzo surfaces of degree 4 and 5, each has a unique 
generic combinatorial type. For degree 5, this is the cone over the Petersen graph. For 
degree 4, the surface is contractible and characterized at infinity by 16 trivalent metric 
trees, each with 5 leaves. It has 9 bounded cells, 20 edges, 12 vertices, 40 cones, 32 flaps, 
and 48 rays.

To understand degree 4, we consider the 5-regular Clebsch graph in Fig. 1. Its 16
nodes are the (−1)-curves on X, labeled E1, . . . , E5, F12, . . . , F45, G. Edges represent 
intersecting pairs of (−1)-curves. In the constant coefficient case, when K has trivial 
valuation, the tropicalization of X is the fan over this graph. However, over fields K with 
non-trivial valuation, trop(X0) is usually not a fan, but one sees the generic type from 
Proposition 1.2. Here, the Clebsch graph deforms into a trivalent graph with 48 = 16 · 3
nodes and 72 = 40 + 32 edges, determined by the color coding in Fig. 1. Each of the 16
nodes is replaced by a trivalent tree with five leaves. Incoming edges of the same color 
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Fig. 1. Tropical del Pezzo surfaces of degree 4 illustrated by marking the edges of the Clebsch graph. (For 
interpretation of the references to color in this figure, the reader is referred to the web version of this 
article.)

(red or blue) form a cherry (= two adjacent leaves) in that tree, while the black edge 
connects to the non-cherry leaf.

Corollary 1.3. For a del Pezzo surface X of degree 4, the 16 metric trees on its tropical-
ization trop(X0), obtained from the (−1)-curves on X, are identical up to relabeling.

Proof. Moving from one (−1)-curve on X to another corresponds to a Cremona trans-
formation of the plane P2. Each (−1)-curve on X has exactly five marked points arising 
from its intersections with the other (−1)-curves. Moreover, the Cremona transforma-
tions preserve the cross ratios among the five marked points on these 16 P1’s. From the 
valuations of all the various cross ratios one can read off the combinatorial trees along 
with their edge lengths, as explained in e.g. [15, Proposition 6.5.1] or [20, Example 5.2]. 
We then obtain the following relabeling rules for the leaves on the 16 trees, which live 
in the circular nodes of Fig. 1.
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Fig. 2. The bounded complex of the tropical del Pezzo surface in degree 4. (For interpretation of the references 
to color in this figure, the reader is referred to the web version of this article.)

We start with the tree G whose leaves are labeled E1, E2, E3, E4, E5. For the specific 
example in Fig. 1, this is the caterpillar tree ({E1, E4}, E3, {E2, E5}). Now, given any 
trivalent tree for G, the tree Fij is obtained by relabeling the five leaves as follows:

Ei �→ Ej , Ej �→ Ei, Ek �→ Flm, El �→ Fkm, Em �→ Fkl. (1.1)

Here {k, l, m} = {1, 2, 3, 4, 5}\{i, j}. The tree Ei is obtained from the tree G by relabel-
ing

Ei �→ G and Ej �→ Fij where j �= i. (1.2)

This explains the color coding of the graph in Fig. 1. �
The bounded complex of trop(X0) is shown in Fig. 2. It consists of a central rectangle, 

with two triangles attached to each of its four edges. There are 12 vertices, four vertices 
of the rectangle, labeled S, and eight pendant vertices, labeled T. To these 12 vertices 
and 20 edges, we attach the flaps and cones, according to the deformed Clebsch graph 
structure. The link of each S vertex in the surface trop(X0) is the Petersen graph (Fig. 3), 
while the link of each T vertex is the bipartite graph K3,3. The bounded complex has 
16 chains TST consisting of two edges with different colors. These are attached by flaps 
to the bounded parts of the 16 trees. The Clebsch graph (Fig. 1) can be recovered from 
Fig. 2 as follows: its nodes are the TST chains, and two chains connect if they share 
precisely one vertex. Out at infinity, T vertices attach along cherries, while S vertices 
attach along non-cherry leaves. Each such attachment between two of the 16 trees links 
to the bounded complex by a cone.
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Fig. 3. The tropical del Pezzo surface trop(M0,5) is the cone over the Petersen graph.

2. Cox ideals

We study del Pezzo surfaces over K of degrees 5, 4 and 3. Such surfaces X are obtained 
from P2 by blowing up 4, 5 or 6 points in general position, and we obtain moduli by 
varying these points. From an algebraic perspective, it is convenient to represent X by 
its Cox ring

Cox(X) =
⊕

L∈Pic(X)

H0(X,L). (2.1)

The Cox ring of a del Pezzo surface X was first studied by Batyrev and Popov [4]. 
We shall express this ring explicitly as a quotient of a polynomial ring over the ground 
field K:

Cox(X) = K
[
xC : C is a (−1)-curve on X

]
modulo an ideal IX generated

by quadrics.

The number of variables xC in our three polynomial rings is 10, 16 and 27 respectively. 
The ideal IX is the Cox ideal of the surface X. It was conjectured already in [4] that 
the ideal IX is generated by quadrics. This conjecture was proved in several papers, 
including [25,26].

The Cox ring encodes all maps from X to a projective space. Such a map is given by 
the N-graded subring Cox(X)[L] =

⊕
m≥0 H

0(X, mL) for a fixed line bundle L ∈ Pic(X). 
The image of the map X → Proj(Cox(X)[L]) is contained in the projective space PN , 
where N = dim(H0(X, L)) −1, provided Cox(X)[L] is generated in degree 1. This applies 
to both the anticanonical map and to the blow-down map to P2.

In what follows, we give explicit generators for all relevant Cox ideals IX . Some of 
this is new and of independent interest. The tropicalization of X0 we seek is defined 
from the ideal IX . So, in principle, we can compute trop(X0) from IX using the software
gfan [13]. Recall that X0 denotes the very affine surface obtained from X by removing 
all (−1)-curves.
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Del Pezzo surfaces of degree 5
Consider four general points in P2. This configuration is projectively unique, so there 
are no moduli. The surface X is the moduli space M0,5 of rational stable curves with 
five marked points, see for example [14]. The very affine variety X0 is simply M0,5, the 
moduli space of rational curves with five distinct marked points. It is the complement 
of a hyperplane arrangement whose underlying matroid is the graphical matroid of the 
complete graph K4. The Cox ideal is the Plücker ideal of relations among 2 × 2-minors 
of a 2 × 5-matrix:

IX = 〈 p12p34 − p13p24 + p14p23, p12p35 − p13p25 + p15p23,

p12p45 − p14p25 + p15p24, p13p45 − p14p35 + p15p34, p23p45 − p24p35 + p25p34 〉.

The affine variety of IX in K̄10 is the universal torsor of X, now regarded over the 
algebraic closure K̄ of the given valued field K. From the perspective of blowing up P2

at 4 points, the ten variables (representing the ten (−1)-curves) fall in two groups: the 
four exceptional fibers, and the six lines spanned by pairs of points. For example, we 
may label the fibers by

E1 = p15, E2 = p25, E3 = p35, E4 = p45,

and the six lines by

F12 = p34, F13 = p24, F14 = p23, F23 = p14, F24 = p13, F34 = p12.

The Cox ideal IX is homogeneous with respect to the natural grading by the Picard 
group Pic(X) = Z5. In Plücker coordinates, this grading is given by setting deg(pij) =
ei+ej , where ei represents the i-th standard basis vector in Z5 = Pic(X). This translates 
into an action of the torus (K̄∗)5 = Pic(X) ⊗Z K̄∗ on the universal torsor in K̄10. We 
remove the ten coordinate hyperplanes in K̄10, and we take the quotient modulo (K̄∗)5. 
The result is precisely the very affine del Pezzo surface we seek to tropicalize:

X0 = M0,5 ⊂ (K̄∗)10/(K̄∗)5. (2.2)

The 2-dimensional balanced fan trop(X0) is the Bergman fan of the graphical matroid 
of K4. It is known from [2] that this is the cone over the Petersen graph. This is also easy 
to check directly with gfan on IX . This fan is also the moduli space of 5-marked rational 
tropical curves, that is, 5-leaf trees with lengths on the two bounded edges (cf. [15, §4.3]).

Del Pezzo surfaces of degree 4
Consider now five general points in P2. There are two degrees of freedom. The moduli 
space is our previous del Pezzo surface M0,5. Indeed, fixing five points in P2 corresponds 
to fixing a point (p12, . . . , p45) in M0,5, using Cox–Plücker coordinates as in (2.2). Explic-
itly, if we write the five points as a 3 × 5-matrix then the pij are the Plücker coordinates 
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of its kernel. Replacing K with the previous Cox ring, we may consider the universal 
del Pezzo surface Y. The universal Cox ring is the quotient of a polynomial ring in 
26 = 10 + 16 variables:

K[Y] = Cox(M0,5)[E1, E2, E3, E4, E5, F12, F13, . . . , F45, G]/IY . (2.3)

As before, Ei represents the exceptional divisor over point i, and Fij represents the line 
spanned by points i and j. The variable G represents the conic spanned by the five 
points.

Proposition 2.1. Up to saturation with respect to the product of the 26 variables, the 
universal Cox ideal IY for degree 4 del Pezzo surfaces is generated by the following 45
trinomials:

Base Group p12p34−p13p24+p14p23 p12p35−p13p25+p15p23 p12p45−p14p25 + p15p24,

p13p45−p14p35 + p15p34 p23p45−p24p35+p25p34

Group 1 F23F45−F24F35+F25F34 p23p45F24F35−p24p35F23F45−GE1
p23p45F25F34−p25p34F23F45−GE1 p24p35F25F34−p25p34F24F35−GE1

Group 2 F13F45−F14F35+F15F34 p13p45F14F35−p14p35F13F45−GE2
p13p45F15F34−p15p34F13F45−GE2 p14p35F15F34−p15p34F14F35−GE2

Group 3 F12F45−F14F25+F15F24 p12p45F14F25−p14p25F12F45−GE3,

p12p45F15F24−p15p24F12F45−GE3 p14p25F15F24−p15p24F14F25−GE3

Group 4 F12F35−F13F25+F15F23 p12p35F13F25−p13p25F12F35−GE4
p12p35F15F23−p15p23F12F35−GE4 p13p25F15F23−p15p23F13F25−GE4

Group 5 F12F34−F13F24+F14F23 p12p34F13F24−p13p24F12F34−GE5
p12p34F14F23−p14p23F12F34−GE5 p13p24F14F23−p14p23F13F24−GE5

Group 1’ p25F12E2−p35F13E3+p45F14E4 p24F12E2−p34F13E3+p45F15E5
p23F12E2−p34F14E4+p35F15E5 p23F13E3−p24F14E4+p25F15E5

Group 2’ p15F12E1−p35F23E3+p45F24E4 p14F12E1−p34F23E3+p45F25E5
p13F12E1−p34F24E4+p35F25E5 p13F23E3−p14F24E4+p15F25E5

Group 3’ p15F13E1−p25F23E2+p45F34E4 p14F13E1−p24F23E2+p45F35E5
p12F13E1−p24F34E4+p25F35E5 p12F23E2−p14F34E4+p15F35E5

Group 4’ p15F14E1−p25F24E2+p35F34E3 p13F14E1−p23F24E2+p35F45E5
p12F14E1−p23F34E3+p25F45E5 p12F24E2−p13F34E3+p15F45E5

Group 5’ p14F15E1−p24F25E2+p34F35E3 p13F15E1−p23F25E2+p34F45E4
p12F15E1−p23F35E3+p24F45E4 p12F25E2−p13F35E3+p14F45E4

Proposition 2.1 will be derived later in this section. For now, let us discuss the struc-
ture and symmetry of the generators of IY . We consider the 5-dimensional demicube, 
here denoted D5. This is the convex hull of the following 16 points in the hyperplane 
{a0 = 0} ⊂ R6:
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{
(1, a1, a2, a3, a4, a5) ∈ {0, 1}6 : a1 + a2 + a3 + a4 + a5 is odd

}
. (2.4)

The group of symmetries of D5 is the Weyl group W (D5). It acts transitively on (2.4). 
There is a natural bijection between the 16 variables in the Cox ring and the vertices 
of D5:

E1 ↔ (1, 1, 0, 0, 0, 0), E2 ↔ (1, 0, 1, 0, 0, 0), . . . , E5 ↔ (1, 0, 0, 0, 0, 1),
F12 ↔ (1, 0, 0, 1, 1, 1), F13 ↔ (1, 0, 1, 0, 1, 1), . . . , F45 ↔ (1, 1, 1, 1, 0, 0),

G ↔ (1, 1, 1, 1, 1, 1).
(2.5)

This bijection defines the grading via the Picard group Z6. We regard the pij as scalars, 
so they have degree 0. Generators of IY that are listed in the same group have the same 
Z6 degrees. The action of W (D5) on the demicube D5 gives the action on the 16 variables.

Consider now a particular smooth del Pezzo surface X of degree 4 over the field K, 
so the pij are scalars in K that satisfy the Plücker relations in the Base Group. The 
universal Cox ideal IY specializes to the Cox ideal IX for the particular surface X. That 
Cox ideal is minimally generated by 20 quadrics, two per group. The surface X0 is the 
zero set of the ideal IX inside (K̄∗)16/(K̄∗)6. The torus action is obtained from (2.5), in 
analogy to (2.2).

Proof of Proposition 1.2. We computed trop(X0) by applying gfan [13] to the ideal IX . 
If K = Q with the trivial valuation then the output is the cone over the Clebsch graph
in Fig. 1. This 5-regular graph records which pairs of (−1)-curves intersect on X. This 
also works over a field K with non-trivial valuation. The software gfan uses K = Q(t). 
If the vector (p12, . . . , p45) tropicalizes into the interior of an edge in the Petersen graph 
then trop(X0) is the tropical surface described in Proposition 1.2. Each node in Fig. 1
is replaced by a trivalent tree on 5 nodes according to the color coding explained in 
Section 1. The surface trop(X0) can also be determined by tropical modifications, as in 
Section 4. �

The same tropicalization method works for the universal family Y0. Its ideal IY is 
given by the 45 polynomials in 26 variables listed above, and Y0 is the zero set of IY
in the 15-dimensional torus (K̄∗)10/(K̄∗)5 × (K̄∗)16/(K̄∗)6. The tropical universal del 
Pezzo surface trop(Y0) is a 4-dimensional fan in R26/R11. We compute it by applying
gfan to the universal Cox ideal IY . The Gröbner fan structure on trop(IY) has f-vector 
(76, 630, 1620, 1215). It is isomorphic to the Naruki fan described in [20, Table 5] and 
discussed further in Section 3.

Del Pezzo surfaces of degree 3 (Cubic surfaces)
There exists a cuspidal cubic through any six points in P2. See e.g. [19, (4.4)] and [20, 
(6.1)]. Hence any configuration of six points in P2 can be represented by the columns of 
a matrix
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D =

⎛
⎝

1 1 1 1 1 1
d1 d2 d3 d4 d5 d6
d3
1 d3

2 d3
3 d3

4 d3
5 d3

6

⎞
⎠ .

The maximal minors of the matrix D factor into linear forms,

[ijk] = (di − dj)(di − dk)(dj − dk)(di + dj + dk), (2.6)

and so does the condition for the six points to lie on a conic:

[conic] = [134][156][235][246] − [135][146][234][256]
= (d1 + d2 + d3 + d4 + d5 + d6) ·

∏
1≤i<j≤6(di − dj).

(2.7)

The linear factors in these expressions form the root system of type E6. This corre-
sponds to an arrangement of 36 hyperplanes in P5. Similarly, the arrangement of type 
E7 consists of 63 hyperplanes in P6, as in [19, (4.4)]. To be precise, for m = 6, 7, the 
roots for Em are

di − dj for 1 ≤ i < j ≤ m,

di + dj + dk for 1 ≤ i < j < k ≤ m,

di1 + di2 + · · · + di6 for 1 ≤ i1 < i2 < · · · < i6 ≤ m.
(2.8)

Linear dependencies among these linear forms specify a matroid of rank m, also de-
noted Em.

The moduli space of marked cubic surfaces is the 4-dimensional Yoshida variety Y
defined in [20, §6]. It coincides with the subvariety Y0 of (K̄∗)26/(K̄∗)11 cut out by the 
45 trinomials in Proposition 2.1. This is the embedding of Y0 in its intrinsic torus, as in 
[20, Theorem 6.1], and it differs from the embedding of Y0 into (K̄∗)40/(K̄∗) referred to 
in Section 3 below.

The universal family for cubic surfaces is denoted by G0. This is the open part of the 
Göpel variety G ⊂ P134 constructed in [19, §5]. The base of this 6-dimensional family is 
the 4-dimensional Y0. The map G0 → Y0 was described in [11]. Thus the ring K[Y] in 
(2.3) is the natural base ring for the universal Cox ring for degree 3 surfaces.

At this point it is essential to avoid confusing notation. To aim for a clear presentation, 
we use the uniformization of Y by the E6 hyperplane arrangement. Namely, we take 
R = Z[d1, d2, d3, d4, d5, d6] instead of K[Y] as the base ring. We write X for the universal 
cubic surface over R. The universal Cox ring is a quotient of the polynomial ring over 
R in 27 variables, one for each line on the cubic surface. Using variable names as in [26, 
§5], we write

Cox(X ) = R[E1, E2, . . . , E6, F12, F13, . . . , F56, G1, G2, . . . , G6]/IX . (2.9)

This ring is graded by the Picard group Z7, similarly to (2.5). The role of the 
5-dimensional demicube D5 is now played by the 6-dimensional Gosset polytope with 
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27 vertices, here also denoted by E6. The symmetry group of this polytope is the Weyl 
group W (E6).

Proposition 2.2. Up to saturation by the product of all 27 variables and all 36 roots, the 
universal Cox ideal IX is generated by 270 trinomials. These are clustered by Z7-degrees 
into 27 groups of 10 generators, one for each line on the cubic surface. For instance, the 
10 generators of IX that correspond to the line G1 involve the 10 lines that meet G1. 
They are

(d3−d4)(d1+d3+d4)E2F12 − (d2−d4)(d1+d2+d4)E3F13 + (d2−d3)(d1+d2+d3)E4F14,

(d3−d5)(d1+d3+d5)E2F12 − (d2−d5)(d1+d2+d5)E3F13 + (d2−d3)(d1+d2+d3)E5F15,

(d3−d6)(d1+d3+d6)E2F12 − (d2−d6)(d1+d2+d6)E3F13 + (d2−d3)(d1+d2+d3)E6F16,

(d4−d5)(d1+d4+d5)E2F12 − (d2−d5)(d1+d2+d5)E4F14 + (d2−d4)(d1+d2+d4)E5F15,

(d4−d6)(d1+d4+d6)E2F12 − (d2−d6)(d1+d2+d6)E4F14 + (d2−d4)(d1+d2+d4)E6F16,

(d5−d6)(d1+d5+d6)E2F12 − (d2−d6)(d1+d2+d6)E5F15 + (d2−d5)(d1+d2+d5)E6F16,

(d4−d5)(d1+d4+d5)E3F13 − (d3−d5)(d1+d3+d5)E4F14 + (d3−d4)(d1+d3+d4)E5F15,

(d4−d6)(d1+d4+d6)E3F13 − (d3−d6)(d1+d3+d6)E4F14 + (d3−d4)(d1+d3+d4)E6F16,

(d5−d6)(d1+d5+d6)E3F13 − (d3−d6)(d1+d3+d6)E5F15 + (d3−d5)(d1+d3+d5)E6F16,

(d5−d6)(d1+d5+d6)E4F14 − (d4−d6)(d1+d4+d6)E5F15 + (d4−d5)(d1+d4+d5)E6F16.

The remaining 260 trinomials are obtained by applying the action of W (E6). The variety 
defined by IX in P5 × (K̄∗)27/(K̄∗)7 is 6-dimensional. It is the universal family X 0.

Proof of Propositions 2.1 and 2.2. We consider the prime ideal in [19, §6] that defines 
the embedding of the Göpel variety G into P134. By [19, Theorem 6.2], G is the ideal-
theoretic intersection of a 35-dimensional toric variety T and a 14-dimensional linear 
space L. The latter is cut out by a canonical set of 315 linear trinomials, indexed by the 
315 isotropic planes in (F2)6. Pulling these linear forms back to the Cox ring of T , we 
obtain 315 quartic trinomials in 63 variables, one for each root of E7. Of these 63 roots, 
precisely 27 involve the unknown d7. We identify these with the (−1)-curves on the cubic 
surface via

di − d7 �→ Ei, di + dj + d7 �→ Fij , −dj +
7∑

i=1
di �→ Gj . (2.10)

Moreover, of the 315 quartics, precisely 270 contain a root involving d7. Their images 
under the map (2.10) are the 270 Cox relations listed above. Our construction ensures 
that they generate the correct Laurent polynomial ideal on the torus of T . This proves 
Proposition 2.2.

The derivation of Proposition 2.1 is similar, but now we use the substitution

di − d6 �→ Ei, di + dj + d6 �→ Fij ,

6∑
di �→ G.
i=1
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We consider the 45 quartic trinomials that do not involve d7. Of these, precisely five 
do not involve d6 either. They translate into the five Plücker relations for M0,5. With 
this identification, the remaining 40 quartics translate into the ten groups listed after 
Proposition 2.1. �
Remark 2.3. The relations (2.10) is not unique. The non-uniqueness comes from both the 
symmetry of E7 and the choice of ± sign for each variable Ei, Fij , Gj . For the rest of this 
paper, we fix the relations (2.10). Other choices give the same result up to symmetry.

We now fix a K-valued point in the base Y0, by replacing the unknowns di with 
scalars in K. In order for the resulting surface X to be smooth, we require (d1 : d2 : d3 :
d4 : d5 : d6) to be in the complement of the 36 hyperplanes for E6. The corresponding 
specialization of IX is the Cox ideal IX of X. Seven of the ten trinomials in each degree 
are redundant over K. Only three are needed to generate IX . Hence, the Cox ideal IX
is minimally generated by 81 quadrics in the Ei, Fij and Gi. Its variety is the surface 
X0 = V (IX) ⊂ (K̄∗)27/(K̄∗)7.

Proposition 2.4. Each of the marked 27 trees on a tropical cubic surface has an involution.

Proof. Every line L on a cubic surface X over K, with its ten marked points, admits a 
double cover to P1 with five markings. The preimage of one of these marked points is the 
pair of markings on L given by two other lines forming a tritangent with L. Tropically, 
this gives a double cover from the 10-leaf tree for L to a 5-leaf tree with leaf labelings 
given by these pairs. The desired involution on the 10-leaf tree exchanges elements in 
each pair. �

For instance, for the tree that corresponds to the line L = G1, the involution equals

E2 ↔ F12, E3 ↔ F13, E4 ↔ F14, E5 ↔ F15, E6 ↔ F16.

Indeed, this involution fixes the 10 Cox relations displayed in Proposition 2.2. The in-
duced action on the trees corresponding to the tropicalization of the lines can be seen 
in Figs. 4 and 5, where the involution reflects about a vertical axis. The corresponding 
5-leaf tree is the tropicalization of the line in

Proj(K[E2F12, E3F13, E4F14, E5F15, E6F16]) 
 P4

that is the intersection of the 10 hyperplanes defined by the polynomials in Proposi-
tion 2.2.

We aim to compute trop(X0) by applying gfan to the ideal IX . This works well for 
K = Q with the trivial valuation. Here the output is the cone over the Schläfli graph
which records which pairs of (−1)-curves intersect on X. This is a 10-regular graph 
with 27 nodes. However, for K = Q(t), our gfan calculations did not terminate. Future 
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implementations of tropical algorithms will surely succeed, see also Conjecture 5.3. To 
get the tropical cubic surfaces, and to prove Theorem 1.1, we used the alternative method 
explained in Section 3.

3. Sekiguchi fan to Naruki fan

In the previous section we discussed the computation of tropical del Pezzo surfaces 
directly from their Cox ideals. This worked well for degree 4. However, using the cur-
rent implementation in gfan, this computation did not terminate for degree 3. We here 
discuss an alternative method that did succeed. In particular, we present the proof 
of Theorem 1.1.

The successful computation uses the following commutative diagram of balanced fans:

Berg(E7) −−−−→ trop(G0)⏐⏐�
⏐⏐�

Berg(E6) −−−−→ trop(Y0)

(3.1)

This diagram was first derived by Hacking et al. [11], in their study of moduli spaces of 
marked del Pezzo surfaces. Combinatorial details were worked out by Ren et al. in [20, 
§6]. The material that follows completes the program that was suggested at the very end 
of [20].

The notation Berg(Em) denotes the Bergman fan of the rank m matroid defined by 
the (36 resp. 63) linear forms listed in (2.8). Thus, Berg(E6) is a tropical linear space in 
TP35, and Berg(E7) is a tropical linear space in TP62. Coordinates are labeled by roots.

The list (2.8) fixes a choice of injection of root systems E6 ↪→ E7. This defines coor-
dinate projections R63 → R36 and TP62 ��� TP35, namely by deleting coordinates with 
index 7. This projection induces the vertical map from Berg(E7) to Berg(E6) on the left 
in (3.1).

On the right in (3.1), we see the 4-dimensional Yoshida variety Y ⊂ P39 and 
the 6-dimensional Göpel variety G ⊂ P134. Explicit parametrizations and equations 
for these varieties were presented in [19,20]. The corresponding very affine varieties 
G0 ⊂ (K̄∗)135/K̄∗ and Y0 ⊂ (K̄∗)40/K̄∗ are moduli spaces of marked del Pezzo sur-
faces [11]. Their tropicalizations trop(G0) and trop(Y0) are known as the Sekiguchi fan
and Naruki fan, respectively. The modular interpretation in [11] ensures the existence of 
the vertical map trop(G0) → trop(Y0). This map is described in [11, Lemma 5.4], in [20, 
(6.5)], and in the proof of Lemma 3.1 below.

The two horizontal maps in (3.1) are surjective and (classically) linear. The linear map 
Berg(E7) → trop(G0) is given by the 135 × 63 matrix A in [19, §6]. The corresponding 
toric variety is the object of [19, Theorem 6.1]. The map Berg(E6) → trop(Y0) is given by 
the 40 ×36-matrix in [20, Theorem 6.1]. We record the following computational result. It 
refers to the natural simplicial fan structure on Berg(Em) described by Ardila et al. in [3].
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Lemma 3.1. The Bergman fans of E6 and E7 have dimensions 5 and 6. Their f-vectors 
are

fBerg(E6) = (1, 750, 17679, 105930, 219240, 142560),
fBerg(E7) = (1, 6091, 315399, 3639804, 14982660, 24607800, 13721400).

The moduli fans trop(Y0) and trop(G0) have dimensions 4 and 6. Their f-vectors are

ftrop(Y0) = (1, 76, 630, 1620, 1215),
ftrop(G0) = (1, 1065, 27867, 229243, 767025, 1093365, 547155).

Proof. The f-vector for the Naruki fan trop(Y0) appears in [20, Table 5]. For the other 
three fans, only the numbers of rays (namely 750, 6091 and 1065) were known from 
[20, §6]. The main new result in Lemma 3.1 is the computation of all 57273155 cones 
in Berg(E7). The fans Berg(E6) and trop(G0) are subsequently derived from Berg(E7)
using the maps in (3.1).

We now describe how fBerg(E7) was found. We did not use the theory of tubings in [3]. 
Instead, we carried out a brute force computation based on [10] and [21]. Recall that a 
point lies in the Bergman fan of a matroid if and only if the minimum is obtained twice 
on each circuit. We computed all circuits of the rank 7 matroid on the 63 vectors in the 
root system E7. That matroid has precisely 100662348 circuits. Their cardinalities range 
from 3 to 8. This furnishes a subroutine for deciding whether a given point lies in the 
Bergman fan.

Our computations were mostly done in sage [24] and java. We achieved speed by 
exploiting the action of the Weyl group W (E7) given by the two generators in [19, (4.2)]. 
The two matrices derived from these two generators using [19, (4.3)] act on the space R7

with coordinates d1, d2, . . . , d7. This gives subroutines for the action of W (E7) on R63, 
e.g. for deciding whether two given sequences of points are conjugate with respect to this 
action.

Let r1, . . . , r6091 denote the rays of Berg(E7), as in [11, Table 2] and [20, §6]. They 
form 11 orbits under the action of W (E7). For each orbit, we take the representative ri
with smallest label. For each pair i < j such that ri is a representative, our program 
checks if ri + rj lies in Berg(E7), using the precomputed list of circuits. If yes, then ri
and rj span a 2-dimensional cone in Berg(E7). This process gives representatives for the 
W (E7)-orbits of 2-dimensional cones. The list of all cones is produced by applying the 
action of W (E7) on the result. For each orbit, we keep only the lexicographically smallest 
representative (ri, rj).

Next, for each triple i < j < k such that (ri, rj) is a representative, we check if 
ri+rj+rk lies in Berg(E7). If so, then {ri, rj , rk} spans a 3-dimensional cone in Berg(E7). 
The list of all 3-dimensional cones can be found by applying the action of W (E7) on the 
result. As before, we fix the lexicographically smallest representatives. Repeating this 
process for dimensions 4, 5 and 6, we obtain the list of all cones in Berg(E7) and hence 
the f-vector of this fan.
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We now describe the procedure to derive trop(G0) by applying the top horizontal 
map φ : Berg(E7) → trop(G0). Each ray r in Berg(E7) maps to either (a) 0, (b) a ray of 
trop(G0), or (c) a positive linear combination of 2 or 3 rays, as listed in [20, §6]. For each 
ray in case (c), our program iterates through all pairs and triples of rays in trop(G0) and 
writes the image explicitly as a positive linear combination of rays. With this data, we 
give a first guess of trop(G0) as follows: for each maximal cone σ = span(ri1 , . . . , ri6) of 
Berg(E7), we write φ(ri1), . . . , φ(ri6) as linear combinations of the rays of trop(G0) and 
take σ′ ⊂ TP134 to be the cone spanned by all rays of trop(G0) that appear in the linear 
combinations. From this we get a list of 6-dimensional cones σ′. Let Φ ⊂ TP134 be the 
union of these cones.

To certify that Φ = trop(G0) we need to show (1) for each σ ∈ Berg(E7), we have 
φ(σ) ⊂ σ′ for some cone σ′ ⊂ Φ; (2) each cone σ′ ⊂ Φ is the union of some φ(σ) for 
σ ∈ Berg(E7); and (3) the intersection of any two cones σ′

1, σ′
2 in Φ is a face of both σ′

1
and σ′

2. The claim (1) follows from the procedure of constructing Φ. For (2), one only 
needs to verify the cases where σ′ is one of the 9 representatives by the action of W (E7). 
For each of these, our program produces a list of φ(σ), and we check manually that σ′

is indeed the union. For (3), one only needs to iterate through the cases where σ′
1 is a 

representative, and the procedure is straightforward. Therefore, our procedure shows that 
Φ is exactly trop(G0). Then the f -vector is obtained from the list of all cones in the fan Φ.

Finally, we recover the list of all cones in Berg(E6) and trop(Y0) by following the 
same procedure with the left vertical map and the bottom horizontal map. �
Remark 3.2. The (reduced) Euler characteristic of the link of Berg(E7) is the alternating 
sum of the entries of the f-vector of this Bergman fan. We see from Lemma 3.1 that 
this is

1 − 6091 + 315399 − 3639804+14982660 − 24607800 + 13721400

= 765765 = 1 · 5 · 7 · 9 · 11 · 13 · 17.

This is the product of all exponents of W (E7), thus confirming the prediction in [19, 
(9.2)].

The Naruki fan trop(Y0) is studied in [20, §6]. Under the action of W (E6) through 
Berg(E6), it has two classes of rays, labeled type (a) and type (b). It also has two 
W (E6)-orbits of maximal cones: there are 135 type (aaaa) cones, each spanned by four 
type (a) rays, and 1080 type (aaab) cones, each spanned by three type (a) rays and one 
type (b) ray.

The map trop(G0) → trop(Y0) tropicalizes the morphism G0 → Y0 between very affine 
K-varieties of dimension 6 and 4. That morphism is the universal family of cubic surfaces. 
In order to tropicalize these surfaces, we examine the fibers of the map trop(G0) →
trop(Y0). The next lemma concerns the subdivision of trop(Y0) induced by this map. 
By definition, this is the coarsest subdivision such that each cone in trop(G0) is sent to 
a union of cones.
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Lemma 3.3. The subdivision induced by the map trop(G0) → trop(Y0) is the barycentric 
subdivision on type (aaaa) cones. For type (aaab) cones, each cone in the subdivision is 
a cone spanned by the type (b) ray and a cone in the barycentric subdivision of the (aaa) 
face. Thus each (aaaa) cone is divided into 24 cones, and each (aaab) cone is divided 
into 6 cones.

Proof. The map π : trop(G0) → trop(Y0) can be defined via the commutative dia-
gram (3.1): for x ∈ trop(G0), take any point in its preimage in Berg(E7), then follow 
the left vertical map and the bottom horizontal map to get π(x) in trop(Y0). It is well-
defined because the kernel of the map Berg(E7) → trop(G0) is contained in the kernel 
of the composition Berg(E7) → Berg(E6) → trop(Y0). With this, we can compute the 
image in trop(Y0) of any cone in trop(G0). For each orbit of cones in trop(Y0), pick a 
representative σ, and examine all cones in trop(G0) that map into σ. Their images reveal 
the subdivision of σ. �

Lemma 3.3 shows that each (aaaa) cone of the Naruki fan trop(Y0) is divided into 24
subcones, and each (aaab) cone is divided into 6 subcones. Thus, the total number of 
cones in the subdivision is 24 ×135 +6 ×1080 = 9720. For the base points in the interior 
of a cone, the fibers are contained in the same set of cones in trop(G0). The fiber changes 
continuously as the base point changes. Therefore, moving the base point around the 
interior of a cone simply changes the metric but not the combinatorial type of marked 
tropical cubic surface.

Corollary 3.4. The map trop(G0) → trop(Y0) has at most two combinatorial types of 
generic fibers up to relabeling.

Proof. We fixed an inclusion E6 ↪→ E7 in (2.8). The action of StabE6(W (E7)) on the 
fans is compatible with the entire commutative diagram (3.1). Hence, the fibers over two 
points that are conjugate under this action have the same combinatorial type. We verify 
that the 9720 cones form exactly two orbits under this action. One orbit consists of the 
cones in the type (aaaa) cones, and the other consists of the cones in the type (aaab) 
cones. Therefore, there are at most two combinatorial types, one for each orbit. �

We can now derive our classification theorem for tropical cubic surfaces.

Proof of Theorem 1.1. We compute the two types of fibers of π : trop(G0) → trop(Y0). 
In what follows we explain this for a cone σ of type (aaaa). The computation for type 
(aaab) is similar. Let r1, r2, r3, r4 denote the rays that generate σ. We fix the vector 
x = r1 +2r2 +3r3 +4r4 that lies in the interior of a cone in the barycentric subdivision.

The fiber π−1(x) is found by an explicit computation. First we determine the direc-
tions of the rays. They arise from rays of trop(G0) that are mapped to zero by π. There 
are 27 such ray directions in π−1(x). These are exactly the image of the 27 type A1 rays 
in Berg(E7) that correspond to the roots in E7\E6. We label them by Ei, Fij , Gj as 
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Fig. 4. The 27 trees on tropical cubic surfaces of type (aaaa).

Fig. 5. The 27 trees on tropical cubic surfaces of type (aaab).

in (2.10). Next, we compute the vertices of π−1(x). They are contained in 4-dimensional 
cones σ′ = pos{R1, R2, R3, R4} with x ∈ π(σ′). The coordinates of each vertex in TP134

is computed by solving y1π(R1) + y2π(R2) + y3π(R3) + y4π(R4) = x for y1, y2, y3, y4.
The part of the fiber contained in each cone in trop(G0) is spanned by the vertices and 

the Ei, Fij , Gj rays it contains. Iterating through the list of cones and looking at this 
data, we get a list that characterizes the polyhedral complex π−1(x). In particular, that 
list verifies that π−1(x) is 2-dimensional and has the promised f-vector. For each of the 
27 ray directions Ei, Fij , Gj , there is a tree at infinity. It is the link of the corresponding 
point at infinity π−1(x) ⊂ TP134. The combinatorial types of these 27 trees are shown 
in Fig. 4. The metric on each tree can be computed as follows: the length of a bounded 
edge equals the lattice distance between the two vertices in the corresponding flap.

The surface π−1(x) is homotopy equivalent to its bounded complex. We check di-
rectly that the bounded complex is contractible. This can also be inferred from Theo-
rem 4.4. �
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Remark 3.5. We may replace x = r1 + 2r2 + 3r3 + 4r4 with a generic point x = x1r1 +
x2r2 + x3r3 + x4r4, where x1<x2<x3<x4. This lies in the same cone in the barycentric 
subdivision, so the combinatorics of π−1(x) remains the same. Repeating the last step 
over the field Q(x1, x2, x3, x4) instead of Q, we write the length of each bounded edge 
in the 27 trees in terms of the parameters. Each length either equals x1, x2, x3, x4 or is 
xi − xj for some i, j.

4. Tropical modifications

In Section 2 we computed tropical varieties from polynomial ideals, along the lines 
of the book by Maclagan and Sturmfels [15]. We now turn to tropical geometry as a 
self-contained subject in its own right. This is the approach presented in the book by 
Mikhalkin and Rau [17]. Central to that approach is the notion of tropical modification. 
In this section we explain how to construct our tropical del Pezzo surfaces from the 
plane R2 by modifications. This leads to proofs of Proposition 1.2 and Theorem 1.1
purely within tropical geometry.

Tropical modification is an operation that relates topologically different tropical mod-
els of the same variety. This operation was first defined by Mikhalkin in [16], see also 
[17, Chapter 5]. Here we work with a variant known as open tropical modifications. 
These were introduced in the context of Bergman fans of matroids in [23]. Brugallé and 
Lopez de Medrano [7] used them to study intersections and inflection points of tropical 
plane curves.

We fix a tropical cycle Y in Rn, as in [17]. An open modification is a map p : Y ′ → Y

where Y ′ ⊂ Rn+1 is a new tropical variety to be described below. One should think of 
Y ′ as being an embedding of the complement of a divisor in Y into a higher-dimensional 
torus.

Consider a piecewise integer affine function g : Y → R. The graph

Γg(Y ) =
{
(y, g(y)) | y ∈ Y

}
⊂ Rn+1

is a polyhedral complex which inherits weights from Y . However, it usually not balanced. 
There is a canonical way to turn Γg(Y ) into a balanced complex. If Γg(Y ) is unbalanced 
around a codimension one face E, then we attach to it a new unbounded facet FE in 
direction −en+1. (We here use the max convention, as in [17].) The facet FE can be 
equipped with a unique weight wFE

∈ Z such that the complex obtained by adding FE

is balanced at E. The resulting tropical cycle is Y ′ ⊂ Rn+1. By definition, the open 
modification of Y given by g is the map p : Y ′ → Y , where p comes from the projection 
Rn+1 → Rn with kernel Ren+1.

The tropical divisor divY (g) consists of all points y ∈ Y such that p−1(y) is infinite. 
This is a polyhedral complex. It inherits weights on its top-dimensional faces from those 
of Y ′. A tropical cycle is effective if the weights of its top-dimensional faces are positive. 
Therefore, the cycle Y ′ is effective if and only if Y and the divisor divY (g) are effective. 
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Given a tropical variety Y and an effective divisor divY (g), we say the tropical modifi-
cation p : Y ′ → Y is along divY (g). See [16,17,23] for basics concerning cycles, divisors 
and modifications.

Open tropical modifications are related to re-embeddings of classical varieties as fol-
lows. Fix a very affine K-variety X ⊂ (K̄∗)n and Y = trop(X) ⊂ Rn. Given a polynomial 
function f ∈ K[X], let D be its divisor in X. Then X\D is isomorphic to the graph of 
the restriction of f to X\D. In this manner, the function f gives a closed embedding of 
X\D into (K̄∗)n+1.

For the next proposition we require the tropicalization of a variety to be locally irre-
ducible. Let y be a point in a tropical variety Y . We note that

Stary(Y ) = {y′ | ∃ ε > 0 s.t. ∀ 0 < δ < ε : y + εy′ ∈ Y }

is a balanced tropical fan with weights inherited from Y . A tropical variety Y is locally 
irreducible if at every point y ∈ Y , we have that Stary(Y ) is not a proper union of two 
tropical varieties, taking weights into consideration.

Proposition 4.1. Let X ⊂ (K̄∗)n be a very affine variety. For a function f ∈ K[X], let D
be the divisor divX(f), and let X ′ = X\D ⊂ (K̄∗)n+1 denote the graph of X along f as 
described above. Let Y = trop(X) ⊂ Rn and Y ′ = trop(X ′) ⊂ Rn+1. Suppose that Y is 
locally irreducible. Then there exists a piecewise integer affine function g : Y → R such 
that divY (g) = trop(D) and the coordinate projection Y ′ → Y is the open modification 
of Y along that divisor.

Proof. The coordinate projection p : Rn+1 → Rn takes Y ′ onto Y , since tropicalization 
acts coordinate-wise. We claim that the fiber over a point y ∈ Y is either a single 
point or a half-line in the −en+1 direction. The fiber p−1(y) is 1-dimensional and closed 
in Y ′. Let y′ be an endpoint of a connected component of p−1(y). Then p(Stary′(Y ′))
has the same dimension as Y . Since otherwise, Stary′(Y ′) contains a space of linearity 
in the direction en+1 and y′ cannot be an endpoint of the fiber. If the one dimensional 
fiber p−1(y) contains two endpoints y1 and y2 then Y must be reducible at y; it can be 
split into more than one component coming from the projection of p(Stary1(Y ′)) and 
p(Stary2(Y ′)). Therefore, p−1(y) consists of either a single point, a line, or a half line. 
However, since f ∈ K[X] is a regular function, the fiber of a point y ∈ Y cannot be 
unbounded in the +en+1 direction. Thus the only possibilities are that p−1(y) is a single 
point or a half line in the −en+1 direction.

Finally, we obtain the piecewise integer affine function g by taking g(y) = p−1(y)
for y ∈ Y \trop(D) and then extending by continuity to the rest of Y . Then Y ′ is the 
modification along the function g described above. �

Any two tropical rational functions g and g′ that define the same tropical divisor on 
Y must differ by a map which is integer affine on Y , see [1, Remark 3.6]. This leads to 
the following corollary.
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Corollary 4.2. Under the assumptions of Proposition 4.1, the tropicalization of X ′ =
X\D ⊂ Rn+1 is determined uniquely by those of D and X, up to an integer affine map.

In general, trop(X ′) is not determined by the tropical hypersurface of f ∈ K[X], as the 
tropicalization of the divisor D = divX(f) may differ from the tropical stable intersection 
of trop(X ′) and that tropical hypersurface. Examples 4.2 and 4.3 of [7] demonstrate both 
this and that Proposition 4.1 can fail without the locally irreducibility hypothesis.

Suppose now that X ′ ⊂ (K̄∗)n+k is obtained from X ⊂ (K̄∗)n by taking the graph of 
a list of k ≥ 2 polynomials f1, f2, . . . , fk. This gives us a sequence of projections

X ′ = Xk → Xk−1 → · · · → X2 → X1 → X0 = X, (4.1)

where Xi ⊂ (K̄∗)n+i is obtained from X by taking the graph of (f1, . . . , fi). We further 
get a corresponding sequence of projections of the tropicalizations:

trop(X ′) = trop(Xk) → trop(Xk−1) → · · · → trop(X0) = trop(X). (4.2)

We may ask if it is possible to recover trop(X ′) ⊂ Rn+k just from trop(X) and the 
k tropical divisors trop(Di) considered in trop(X). The answer is “yes” in the special 
case when trop(X) = Rn and the arrangement of divisors trop(Di) are each locally 
irreducible and intersect properly, meaning the intersection of any l of these divisors 
has codimension l. However, in general, iterating modifications to recover trop(X ′) is a 
delicate procedure. In most cases, the outcome is not solely determined by the configu-
ration of tropical divisors in trop(X), even if the divisors intersect pairwise properly. We 
illustrate this by deriving the degree 5 del Pezzo surface trop(M0,5).

Example 4.3. This is a variation on [23, Example 2.29]. Let X = (K̄∗)2 and consider the 
functions f(x) = x1 − 1, g(x) = x2 − 1 and h(x) = ax1 − x2, for some constant a ∈ K∗

with val(a) = 0. Denote divX(f) by F , and analogously for G and H. The tropicalization 
of each divisor is a line through the origin in R2. The directions of trop(F ), trop(G), 
and trop(H) are (1, 0), (0, 1), and (1, 1) respectively. Let X ′ ⊂ (K̄∗)5 denote the graph 
of X along the three functions f , g, and h, in that order. This defines a sequence of 
projections,

X ′ −→ X2 −→ X1 −→ X = (K̄∗)2.

Here, X2 = {(x1, x2, x1 − 1, x2 − 1)} ⊂ (K̄∗)4. The tropical plane trop(X2) contains the 
face σ= {0} ×{0} ×(−∞, 0] ×(−∞, 0], corresponding to points with val(x1) =val(x2) = 0. 
Let H2 denote the graph of f and g restricted to H. This is a line in 4-space, namely,

H2 = {(x1, ax1, x1 − 1, ax1 − 1)} ⊂ X2 ⊂ (K̄∗)4.

The tropical line trop(H2) depends on the valuation of a − 1. It can be determined from

trop(G1 ∩H1) =
{(

0, 0,−val(1 − 1)
)}

.

a
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Fig. 6. The tropical divisors in Example 4.3. The positions of trop(G1 ∩ H1) in trop(X1) for three choices 
of a are marked on the downward purple edge. For a = 1 we get M0,5. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. The different possibilities for trop(H2) ∩ σ in Example 4.3.

Here, H1, G1 denote the graph of f restricted to H and G, respectively. Fig. 6 shows the 
possibilities for trop(G1 ∩H1) in trop(X1), and Fig. 7 shows trop(H2) ∩ σ in trop(X2).

We can prescribe any value v ∈ (0, ∞) for the valuation of 1
a − 1, for instance by 

taking 1
a = 1 + tv when K = C{ {t} }. In these cases, the tropical plane trop(X ′) is not a 

fan. However, it becomes a fan when v moves to either endpoint of the interval [0, −∞]. 
For instance, v = 0 happens when the constant term of 1

a is not equal to 1 and trop(X ′)
is the fan obtained from R2 by carrying out the modifications along the pull-backs of 
the tropical divisors on the left in Fig. 6. See Definition 2.16 of [23] for pull-backs of 
tropical divisors. The other extreme is when a = 1. Here, F , G, H are concurrent lines 
in (K̄∗)2, and trop(H2) contains a ray in the direction e3 + e4. Upon modification, we 
obtain the fan over the Petersen graph in Fig. 3. This is the tropicalization of the degree 
5 del Pezzo surface in (2.2). Thus beginning from the tropical divisors trop(F ), trop(G), 
and trop(H) in R2, we recover trop(M0,5) if we know that they represent tropicalizations 
of concurrent lines in (K̄∗)2.
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The open tropical modification described above represents the tropicalization of the 
very affine variety M0,5. The compactification of M0,5 which produces the del Pezzo 
surface of degree 5 is the tropical compactification given by the fan trop(M0,5), (see 
[15, §6.4] for an introduction to tropical compactifications). There is no direct connec-
tion between open tropical modifications and birational transformations. Relationship 
depends a choice of compactification of the very affine variety. Upon removing divisors 
one can find more interesting compactifications of the complement. For example, (K∗)2
cannot be compactified to a del Pezzo surface of degree less than 6, but upon deleting 
the three divisors above one can compactify the complement to a del Pezzo surface of 
degree 5. ♦

We now explain how this extends to a del Pezzo surface X of degree d ≤ 4. As before, 
we write X0 for the complement of the (−1)-curves in X. Then X ′ = X0 is obtained 
from (K̄∗)2 by taking the graphs of the polynomials f1, . . . , fk of the curves in (K̄∗)2
that give rise to (−1)-curves on X. More precisely, fix p1 = (1 : 0 : 0), p2 = (0 : 1 : 0), 
p3 = (0 : 0 : 1), p4 = (1 : 1 : 1), and take p5, . . . , p9−d to be general points in P2. If 
d = 4 then there is only one extra point p5, we have k = 8 in (4.1), and f1, . . . , f8 are 
the polynomials defining

F14, F15, F24, F25, F34, F35, F45, G. (4.3)

For d = 3, there are two extra points p5, p6 in X, we have k = 18, and f1, . . . , f18
represent

F14, F15, F16, F24, F25, F26, F34, F35, F36, F45, F46, F56, G1, G2, G3, G4, G5, G6. (4.4)

We write Pi = trop(pi) ∈ TP2 for the image of the point pi under tropicalization. 
The tropical points P1, P2, . . . are in general position if any two lie in a unique tropical 
line, these lines are distinct, any five lie in a unique tropical conic, and these conics are 
distinct in TP2. A configuration in general position for d = 4 is shown in Fig. 8. Our next 
result implies that the colored Clebsch graph in Fig. 1 can be read off from Fig. 8 alone. 
For d = 3, in order to recover the tropical cubic surface from the planar configuration, 
the points Pi must satisfy further genericity assumptions, to be revealed in the proof of 
the next theorem.

Theorem 4.4. Fix d ∈ {3, 4, 5} and points p1, . . . , p9−d in P2 whose tropicalizations Pi

are sufficiently generic in TP2. The tropical del Pezzo surface trop(X0) can be con-
structed from TP2 by a sequence of open modifications that is determined by the points 
P1, . . . , P9−d.

Proof. The sequence of tropical modifications we use to go from R2 to trop(X0) is de-
termined if we know, for each i, the correct divisor on each (−1)-curve C in the tropical 
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Fig. 8. The tropical conic and the tropical lines determined by the 5 points for a marked del Pezzo surface of 
degree 4. The diagram is drawn in R2 on the left and in TP2 on the right. The 16 trivalent trees corresponding 
to the (−1)-curves of the del Pezzo surface, seen at the nodes in Fig. 1, arise from the plane curves shown 
here by tropical modifications. (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.)

model trop(Xi). Then, the preimage of C in the next surface trop(Xi+1) is the modi-
fication C ′ of the curve C along that divisor. By induction, each intermediate surface 
trop(Xi) is locally irreducible, since it is obtained by modifying a locally irreducible 
surface along a locally irreducible divisor. With this, Theorem 4.4 follows from Proposi-
tion 4.1, applied to both the i-th surface and its (−1)-curves. The case d = 5 was covered 
in Example 4.3. From the metric tree that represents the boundary divisor C of X0 we 
can derive the corresponding trees on each intermediate surface trop(Xi) by deleting 
leaves. Thus, to establish Theorem 4.4, it suffices to prove the following claim: the final 
arrangement of the (16 or 27) metric trees on the tropical del Pezzo surface trop(X0) is 
determined by the locations of the points Pi in TP2.

Consider first the case d = 4. The points P4 and P5 determine an arrangement of 
plane tropical curves (4.3) as shown in Fig. 8. The conic G through all five points looks 
like an “inverted tropical line”, with three rays in directions P1, P2, P3. By the genericity 
assumption, the points P4 and P5 are located on distinct rays of G. These data determine 
a trivalent metric tree with five leaves, which we now label by E1, E2, E3, E4, E5. Namely, 
P4 forms a cherry together with the label of its ray, and ditto for P5. For instance, in 
Fig. 8, the cherries on the tree G are {E1, E4} and {E2, E5}, while E3 is the non-cherry 
leaf. This is precisely the tree sitting on the node labeled G in Fig. 1. The lengths of the 
two bounded edges of the tree G are the distances from P4 resp. P5 to the unique vertex 
of the conic G in R2. Thus the metric tree G is easily determined from P4 and P5. The 
other 15 metric trees can also be determined in a similar way from the configuration 
of points and curves in R2 and by performing a subset of the necessary modifications. 
Alternatively, we may use the transition rules (1.1) and (1.2) to obtain the other 15 trees 
from G. This proves the above claim, and hence Theorem 4.4, for del Pezzo surfaces of 
degree d = 4.
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Consider now the case d = 3. Here the arrangement of tropical plane curves in R2 ⊂
TP2 consists of three lines at infinity, F12, F13, F23, nine straight lines, F14, F15, . . . , F36, 
three honest tropical lines, F45, F46, F56, three conics that are “inverted tropical lines” 
G4, G5, G6, and three conics with one bounded edge, G1, G2, G3. Each of these looks 
like a tree already in the plane, and it gets modified to a 10-leaf tree, like to ones in 
Figs. 4 and 5. We claim that these labeled metric trees are uniquely determined by the 
positions of P4, P5, P6 in R2.

Consider one of the 9 straight lines in our arrangement, say, F14. If the points P4, 
P5, P6 are generically chosen, 7 of the 10 leaves on the tree Fij can be determined from 
the diagram in R2. These come from the 7 markings on the line F14 given by E1, E4, 
F23, F25, F26, F35, F36. The markings E1 and F23 are the points at infinity, the marking 
E4 is the location of point P4, and the markings F25, F26, F35, F36 are the points of 
intersection with those lines. Under our hypothesis, these 7 marked points on the line 
F14 will be distinct. With this, F14 is already a metric caterpillar tree with 7 leaves. The 
three markings which are missing are G1, G4 and F56. Depending on the positions of 
P4, P5, P6, the intersection points of these three curves with the line F14 may coincide 
with previously marked points. Whenever this happens, the position of the additional 
marking on the tree F14 can be anywhere on the already attached leaf ray. Again, the 
actual position of the point on that ray may be determined by performing modifications 
along those curves. Alternatively, we use the involution given in Corollary 2.4. The 
involution on the ten leaves of the desired tree F14 is

E1 ↔ G4, E4 ↔ G1, F23 ↔ F56, F25 ↔ F36, F26 ↔ F35.

Since the involution exchanges each of the three unknown leaves with one of the seven 
known leaves, we can easily construct the final 10-leaf tree from the 7-leaf caterpillar.

A similar argument works the other six lines Fij, and the conics G4, G5, G6. In these 
cases, 8 of the 10 marked points on a tree are determined from the arrangement in the 
plane, provided the choice of points is generic. Finally, the conics G1, G2, G3 are dual 
to subdivisions of lattice parallelograms of area 1. They may contain a bounded edge. 
Suppose no point Pj lies on the bounded edge of the conic Gi, then the positions of all 
10 marked points of the tree are visible from the arrangement in the plane. If Gi does 
contain a marked point Pj on its bounded edge, then the tropical line Fij intersects Gi

in either a bounded edge or a single point with intersection multiplicity 2, depending on 
the dual subdivision of Gi. In the first case the position of the marked point Fij is easily 
determined from the involution; the distance from a vertex of the bounded edge of Gi

to the marked point Fij must be equal to the distance from Pj to the opposite vertex of 
the bounded edge of Gi.

If Gi ∩ Fij is a single point of intersection multiplicity two, then Pj and Fij form 
a cherry on the tree Gi which is invariant under the involution. We claim that this 
cherry attaches to the rest of the tree at a 4-valent vertex. The involution on the 10-leaf 
tree can also be seen as a tropical double cover from our 10-leaf tree to a 5-leaf tree, 
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h : T → t, where the 5-leaf tree t is labeled with the pair of markings interchanged by 
the involution. As mentioned in Corollary 2.4, this double cover comes from the classical 
curve in the del Pezzo surface X. In particular, the double cover locally satisfies the 
tropical translation of the Riemann–Hurwitz condition [5, Definition 2.2]. In our simple 
case of a degree 2 map between two trees, this local condition for a vertex v of T is 
deg(v) −dh,v(deg(h(v)) −2) −2 ≥ 0, where deg denotes the valency of a vertex, and dh,v
denotes the local degree of the map h at v. Suppose the two leaves did not attach at a 
four valent vertex, then they form a cherry, this cherry attaches to the rest of the tree 
by an edge e which is adjacent to another vertex v of the tree. The Riemann–Hurwitz 
condition is violated at v, since deg(v) = deg(h(v)) = 3 and dh,v = 2.

We conclude that the tree arrangement can be recovered from the position of the 
points P1, P2, . . . in R2. Therefore it is also possible to recover the tropical del Pezzo 
surface trop(X0) by open modifications. In each case, we recover the corresponding 
final 10 leaf tree from the arrangement in TP2 plus our knowledge of the involution in 
Corollary 2.4. �
Remark 4.5. Like in the case d = 4, knowledge of transition rules among the 27 met-
ric trees on trop(X0) can greatly simplify their reconstruction. We give such a rule in 
Proposition 5.2.

In this section we gave a geometric construction of tropical del Pezzo surfaces of 
degree d ≥ 3, starting from the points P1, . . . , P9−d in the tropical plane TP2. The lines 
and conics in TP2 that correspond to the (−1)-curves are transformed, by a sequence of 
open tropical modifications, into the trees that make up the boundary of the del Pezzo 
surface. Knowing these well-specified modifications of curves ahead of time allows us to 
carry out a unique sequence of open tropical modifications of surfaces, starting with R2. 
In each step, going from right to left in (4.1), we modify the surface along a divisor given 
by one of the trees.

This gives a geometric construction for the bounded complex in a tropical del Pezzo 
surface: it is the preimage under (4.1) of the bounded complex in the arrangement in R2. 
For instance, Fig. 2 is the preimage of the parallelogram and the four triangles in Fig. 8.

The same modification approach can be used to construct (the bounded complexes of) 
any tropical plane in TPn from its tree arrangement. This provides a direct link between 
the papers [12] and [23]. That link should be useful for readers of the text books [15]
and [17].

5. Tropical cubic surfaces and their 27 trees

This section is devoted to the combinatorial structure of tropical cubic surfaces. 
Throughout, X is a smooth del Pezzo surface of degree 3, without Eckhart points, and 
X0 the very affine surface obtained by removing the 27 lines from X. Recall that an 
Eckhart point is an ordinary triple point in the union of the (−1)-curves. Going well 
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beyond the summary statistics of Theorem 1.1, we now offer an in-depth study of the 
combinatorics of the surface trop(X0).

We begin with the construction of trop(X0) from six points in TP2, as in Section 4. 
The points P5 and P6 are general in R2 ⊂ TP2. The first four points are the coordinate 
points

P1 =(0 : −∞ : −∞), P2 = (−∞ : 0 : −∞), P3 = (−∞ : −∞ : 0), P4 =(0 : 0 : 0). (5.1)

Theorem 4.4 tells us that trop(X0) is determined by the locations of P5 and P6 when the 
points are generically chosen. There are two generic types, namely (aaaa) and (aaab), 
as shown in Figs. 4 and 5. This raises the question of how the type can be decided from 
the positions of P5 and P6. To answer that question, we shall use tropical convexity [15, 
§5.2]. There are five generic types of tropical triangles, depicted here in Figs. 11 and 12. 
The unique 2-cell in such a tropical triangle has either 3, 4, 5 or 6 vertices. Two of these 
have 4 vertices, but only one type contains a parallelogram. That is the type which 
gives (aaaa).

Theorem 5.1. Suppose that the tropical cubic surface constructed as in Theorem 4.4 has 
one of the two generic types. Then it has type (aaaa) if and only if the 2-cell in the 
tropical triangle spanned by P4, P5 and P6 is a parallelogram. In all other cases, it has 
type (aaab).

Note that the condition that the six points Pi are in general position is not sufficient 
to imply that the tropical cubic surface is generic. In some cases, the corresponding point 
in the Naruki fan trop(Y0) will lie on the boundary of the subdivision induced by the 
map from trop(G0), as described in Section 3 and below. If so, the tropical cubic surface 
is degenerate.

Proof of Theorem 5.1. The tree arrangements for the two types of generic surfaces con-
sist of distinct combinatorial types, i.e. there is no overlap in Figs. 4 and 5. Therefore, 
when the tropical cubic surface is generic, it is enough to determine the combinatorial 
type of a single tree. We do this for the conic G1. Given our choices of points (5.1) in 
TP

2, the tropical conic G1 is dual to the Newton polygon with vertices (0, 0), (1, 0), (0, 1), 
and (1, 1). The triangulation has one interior edge, either of slope 1 or of slope −1. We 
claim the following:

The tropical cubic surface trop(X0) has type (aaaa) if and only if the following holds:

1. The bounded edge of the conic G1 has slope −1 and contains a marked point Pj, or
2. the bounded edge of the conic G1 has slope 1 and contains a marked point Pj, and 

the other two points Pj, Pk lie on opposite sides of the line spanned by the bounded 
edge.
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Fig. 9. Markings of a conic G1 which produce trees of type (aaab).

Fig. 10. Markings of a conic G1 which produce trees of type (aaaa).

To show this, we follow the proof of Theorem 4.4. For each configuration of P4, P5, P6
on the conic G1, we draw lines with slope 1 through these points. These are the tropical 
lines F14, F15, F16. Each intersects G1 at one further point. These are the images of E4, 
E5, E6 under the tree involution, i.e. the points labeled F14, F15, F16 on the tree G1. 
Together with E2, E3, F12 and F13 lying at infinity of TP2, we can reconstruct a tree 
with 10 leaves. Then, we can identify the type of the tree arrangement. We did this for all 
possible configurations up to symmetry. Some of the results are shown in Figs. 9 and 10. 
The claim follows.

To derive the theorem from the claim, we must consider the tropical convex hull of the 
points P4, P5, P6 in the above cases. As an example, the 2-cells of the tropical triangle 
corresponding to the trees in Figs. 9 and 10 are shown in Figs. 11 and 12 respectively. 
The markings of G1 producing a type (aaaa) tree always give parallelograms. Finally, if 
the marking of a conic produces a type (aaab) tree then the 2-cell may have 3, 4, 5, or 6
vertices. However, if it has 4 vertices, then it is a trapezoid with only one pair of parallel 
edges. �

We next discuss some relations among the 27 boundary trees of a tropical cubic 
surface X. Any pair of disjoint (−1)-curves on X meets exactly five other (−1)-curves. 
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Fig. 11. The tropical triangles formed by points on G1 as in Fig. 9, giving type (aaab).

Fig. 12. The tropical triangles formed by points on G1 as in Fig. 10, giving type (aaaa).

Thus, two 10-leaf trees T and T ′ representing disjoint (−1)-curves have exactly five leaf 
labels in common. Let t and t′ denote the 5-leaf trees constructed from T and T ′ as in 
the proof of Proposition 2.4. Thus T double-covers t, and T ′ double-covers t′. Given a 
subset E of the leaf labels of a tree T , we write T |E for the subtree of T that is spanned 
by the leaves labeled with E.

Proposition 5.2. Let T and T ′ be the trees corresponding to disjoint (−1)-curves on a 
cubic surface X, and E the set of five leaf labels common to T and T ′. Then t = T ′|E
and t′ = T |E.

Proof. The five lines that meet two disjoint (−1)-curves C and C ′ define five points 
on C and five tritangent planes containing C ′. The cross-ratios among the former are 
equal to the cross-ratios among the latter modulo C ′, see [18, Section 4]. The proposition 
follows because the metric trees can be derived from the valuations of all the various 
cross ratios. �
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Table 1
All combinatorial types of tropical cubic surfaces.

Type #cones in moduli Vertices Edges Rays Triangles Squares Flaps Cones

0 1 1 0 27 0 0 0 135

(a) 36 8 13 69 6 0 42 135
(a2) 270 20 37 108 14 4 81 135
(a3) 540 37 72 144 24 12 117 135
(a4) 1620 59 118 177 36 24 150 135
(b) 40 12 21 81 10 0 54 135

(aa2) 540 23 42 114 13 7 87 135
(aa3) 1620 43 82 156 22 18 129 135
(aa4) 540 68 133 195 33 33 168 135
(a2a3) 1620 43 82 156 22 18 129 135
(a2a4) 810 71 138 201 32 36 174 135
(a3a4) 540 68 133 195 33 33 168 135
(ab) 360 26 48 123 16 7 96 135
(a2b) 1080 45 86 162 24 18 135 135
(a3b) 1080 69 135 198 34 33 171 135

(aa2a3) 3240 46 87 162 21 21 135 135
(aa2a4) 1620 74 143 207 31 39 180 135
(aa3a4) 1620 74 143 207 31 39 180 135
(a2a3a4) 1620 74 143 207 31 39 180 135
(aa2b) 2160 48 91 168 23 21 141 135
(aa3b) 3240 75 145 210 32 39 183 135
(a2a3b) 3240 75 145 210 32 39 183 135

(aa2a3a4) 3240 77 148 213 30 42 186 135
(aa2a3b) 6480 78 150 216 31 42 189 135

Proposition 5.2 suggests a combinatorial method for recovering the entire arrangement 
of 27 trees on trop(X0) from a single tree T . Namely, for any tree T ′ that is disjoint 
from T , we can recover both t′ and T ′|E . Moreover, for any of the 10 trees Ti that 
are disjoint from both T and T ′, with labels Ei common with T , we can determine 
T ′|Ei

as well. Then T ′ is an amalgamation of t′, T ′|E , and the 10 subtrees T ′|Ei
. This 

amalgamation process is reminiscent of a tree building algorithm in phylogenetics known 
as quartet puzzling [9].

We next examine tropical cubic surfaces of non-generic types. These surfaces are 
obtained from non-generic fibers of the vertical map on the right in (3.1). We use the 
subdivision of the Naruki fan trop(Y0) described in Lemma 3.3. There are five types 
of rays in this subdivision. We label them (a), (b), (a2), (a3), (a4). A ray of type (ak) 
is a positive linear combination of k rays of type (a). The new rays (a2), (a3), (a4) 
form the barycentric subdivision of an (aaaa) cone. With this, the maximal cones in the 
subdivided Naruki fan are called (aa2a3a4) and (aa2a3b). They are known as the generic 
types (aaaa) and (aaab) in the previous sections. A list of all 24 cones, up to symmetry, 
is presented in the first column of Table 1.

The fiber of trop(G0) → trop(Y0) over any point in the interior of a maximal cone 
is a tropical cubic surface. However, some special fibers have dimension 3. Such fibers 
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Fig. 13. The bounded complex of the tropical cubic surface of type (a).

Fig. 14. The 27 trees on the tropical cubic surface of type (a).

contain infinitely many tropical cubic surfaces, including those with Eckhart points. 
Removing such Eckhart points is a key issue in [11]. We do this by considering the stable 
fiber, i.e. the limit of the generic fibers obtained by perturbing the base point by an 
infinitesimal. Alternatively, the tree arrangement of the stable fiber is found by setting 
some edge lengths to 0 in Remark 3.5. We computed representatives for all stable fibers. 
Our results are shown in Table 1.

We explain the two simplest non-trivial cases. The 36 type (a) rays in the Naruki fan 
are in bijection with the 36 positive roots of E6. Fig. 13 shows the bounded cells in the 
stable fiber over the (a) ray corresponding to root r = d1 + d3 + d5. It consists of six 
triangles sharing a common edge. The two shared vertices are labeled by P and Q. Recall 
the identification of the roots of E6 involving d7 with the 27 (−1)-curves from (2.10). 
Then, considering Ei, Fij and Gi as roots of E6, exactly 15 of them are orthogonal to r. 
The other 12 roots are

E1, F35; E3, F15; E5, F13; F24, G6; F26, G4; F46, G2. (5.2)

These form a Schläfli double six. The 36 double six configurations on a cubic surface are 
in bijection with the 36 positive roots of E6. Each of the six pairs forms an A2 subroot 
system with d1 + d3 + d5. The non-shared vertices in the (a) surface are labeled by these 
pairs.

The 12 rays labeled by (5.2) emanate from Q, and the other 15 rays emanate from P . 
Each other vertex has 7 outgoing rays, namely its labels in Fig. 13 and the 5 roots 
orthogonal to both of these. Fig. 14 shows the resulting 27 = 12 + 15 trees at infinity.
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Fig. 15. The bounded complex of the tropical cubic surface of type (b).

Fig. 16. The 27 trees on the tropical cubic surface of type (b).

The 40 type (b) rays in the Naruki fan are in bijection with the type A×3
2 subroot sys-

tems in E6. Fig. 15 illustrates the stable fiber over a point lying on the ray corresponding 
to

d1 − d3, d1 + d2 + d5, d2 + d3 + d5,

d2 − d5, d2 + d4 + d6, d4 + d5 + d6,

d4 − d6, d1 + d3 + d4, d1 + d3 + d6.

(5.3)

This is the union of three type A2 subroot systems that are pairwise orthogonal. The 
bounded complex consists of 10 triangles. The central triangle P1P2P3 has 3 other tri-
angles attached to each edge. The 9 pendant vertices are labeled with the roots in (5.3). 
The 3 vertices in the triangles attached to the same edge are labeled with 3 roots in a 
type A2 subroot system.

Each of P1, P2 and P3 is connected with 9 rays, labeled with the roots in E7\E6
that are orthogonal to a type A2 subroot system in (5.3). Each of the other vertices is 
connected with 6 rays. The labels of these rays are the roots in E7\E6 that are orthogonal 
to the label of that vertex but are not orthogonal to the other two vertices in the same 
group.

All of the 27 trees are isomorphic, as shown in Fig. 16. In each tree, the 10 leaves 
are partitioned into 10 = 4 + 3 + 3, by orthogonality with the type A2 subroot systems 
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in (5.3). The bounded part of the tree is connected by two flaps to two edges containing 
the same Pi.

We close this paper with a brief discussion of open questions and future directions. 
One obvious question is whether our construction can be extended to del Pezzo surfaces 
of degree d = 2 and d = 1. In principle, this should be possible, but the complexity of the 
algebraic and combinatorial computations will be very high. In particular, the analogues 
of Theorem 4.4 for 7 and 8 points in TP2 are likely to require rather complicated genericity 
hypotheses.

For d = 4, we were able compute the Naruki fan trop(Y0) without any prior knowledge, 
by just applying the software gfan to the 45 trinomials in Proposition 2.1. We believe 
that the same will work for d = 3, and that even the tropical basis property [15, §2.6]
will hold:

Conjecture 5.3. The 270 trinomial relations listed in Proposition 2.2 form a tropical 
basis.

This paper did not consider embeddings of del Pezzo surfaces into projective spaces. 
However, it would be very interesting to study these via the results obtained here. For 
cubic surfaces in P3, we should see a shadow of Table 1 in TP3. Likewise, for complete 
intersections of two quadrics in P4, we should see a shadow of Figs. 1 and 2 in TP4. 
One approach is to start with the following tropical modifications of the ambient spaces 
TP3 resp. TP4. Consider a graded component in (2.1) with L very ample. Let N + 1 be 
the number of monomials in Ei, Fij , Gk that lie in H0(X, L). The map given by these 
monomials embeds X into a linear subspace of PN . The corresponding tropical surfaces 
in TPN should be isomorphic to the tropical del Pezzo surfaces constructed here. In 
particular, if L = −K is the anticanonical bundle, then the subspace has dimension d, 
and the ambient dimensions are N = 44 for d = 3, and N = 39 for d = 4. In the 
former case, the 45 monomials (like E1F12G2 or F12F34F56) correspond to Eckhart tri-
angles. In the latter case, the 40 monomials (like E1E2F12G or E1F12F13F45) are those 
of degree (4, 2, 2, 2, 2, 2) in the grading (2.5). The tropicalizations of these combinatorial 
anticanonical embeddings, X ⊂ P3 ⊂ P44 for d = 3 and X ⊂ P4 ⊂ P39 for d = 4, should 
agree with our surfaces here. This will help in resolving remaining issues surrounding 
the excess of lines in tropical cubic surfaces. Examples of the superabundance of tropical 
lines on generic smooth tropical cubic hypersurfaces were first found by Vigeland [27]
and these examples were later considered in [6] and [8].

One last consideration concerns cubic surfaces defined over R. A cubic surface 
equipped with a real structure induces another involution on the 27 metric trees cor-
responding to real (−1)-curves. These trees already come partitioned by combinatorial 
type, depending on the type of tropical cubic surface. One could ask which trees can 
result from real lines, and whether the tree arrangement reveals Segre’s partition of real 
lines on cubic surfaces into hyperbolic and elliptic types [22]. For example, for the (aaaa) 
and (aaab) types, if the involution on the trees from the real structure is the trivial one, 
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then the trees with combinatorial type occurring exactly three times always correspond 
to hyperbolic real lines.
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