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Vorwort des Herausgebers 

Der Austausch von Produktmodelldaten ist seit vielen Jahren Gegenstand 
internationalen Engagements durch Wissenschaft und Industrie. In dem Bestreben, 
aktuelle Systementwicklungen zu berücksichtigen, schreitet die Entwicklung und 
Standardisierung von Datenmodellen und Austauschformaten fort.  

Speziell der Austausch von CAD-Modellen konzentriert sich dabei im Wesentlichen 
auf die Abbildung des Konstruktionsergebnisses in Form der Produktgestalt. 
Standard-Austauschformate, wie IGES oder nach VDA oder STEP, haben sich 
etabliert. Sie verhindern jedoch die weitere Bearbeitung der ausgetauschten Modelle 
mit modernen Mitteln des Feature-basierten Modellierens.  

Die vorliegende Arbeit stellt eine neue Methode des Austausches Feature-basierter 
CAD-Daten vor. Ausgangspunkt ist die Überlegung, dass sowohl für die Definition 
als auch für die Manipulation eines Teilemodells strukturelle Mechanismen des 
Feature-Modells ausschlaggebend sind, und dass deshalb eine systemneutrale 
Modellrepräsentation primär strukturorientiert organisiert sein muss. Der Autor 
entwickelt hierfür einen Ansatz der impliziten Repräsentation, die auf die Abbildung 
umfangreicher Gestaltdaten verzichtet. Teil des Konzeptes ist auch eine Strategie für 
die Identifikation von Gestaltelementen aus dem Feature-Modell heraus, das der 
Fachwelt gemeinhin als „persistent naming problem“ bekannt ist. Die Methode des 
strukturorientierten Austausches adressiert auch eine XML-basierte Strategie für den 
Transfer von Produktmodelldaten und zeigt Mechanismen für eine fehlertolerante 
und anwenderorientierte Unterstützung für integrierte Prozessketten auf.  

Der Autor beschreibt weiterhin die Implementierungsaktivitäten auch für kommer-
zielle CAD-Systeme. Stellungnahmen der Industrie und eine Kosten-Nutzen-Analyse 
runden die Arbeit ab.  

Insgesamt zeigt die Arbeit einen neuen Weg für den Austausch Feature-basierter 
Produktmodelldaten auf, der sich hier auf CAD-Umfeld konzentriert. Die 
vorgestellte Methode lässt jedoch das Potenzial erkennen, auch für die Integration 
anderer CA-Systeme einen Beitrag leisten zu können. Mit dem strukturorientierten 
Austausch von Produktmodelldaten steht somit ein neuer und wichtiger methodischer 
Baustein für den Aufbau durchgängiger Prozessketten in der Produktentstehung zur 
Verfügung. 

 

Berlin, September 2004 Frank-Lothar Krause 
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Strukturorientierter Austausch von 
Produktmodelldaten  
(German Summary) 

Produktentwickelnde Unternehmen reagieren auf steigende Marktanforderungen mit 
Strategien zur Effizienz- und Effektivitätssteigerung für Neugestaltung ihrer Pro-
duktentstehungsprozesse. Der Produktdatenaustausch als nicht-produktive und zeit-
raubende Aufgabe steht dabei im besonderen Fokus der Optimierung. Die Entwick-
lung von Produkten erfordert einen effektiveren Datenaustausch entlang des Produkt-
entstehungsprozesses und eine flexiblere Unterstützung verschiedener Austausch-
situationen, die über den bloßen Dateitransfer hinausgehen.  

Der Modellaustausch zwischen CAD-Systemen ist hier von zentralem Interesse. Es 
werden Austauschmechanismen benötigt, welche die Produktgestalt unverändert 
über Systemgrenzen hinweg zu transferieren vermögen. Darüber hinaus sollten die 
ausgetauschten Modelle änderbar sein, das heißt, sie sollen sich im importierenden 
System wie native Modelle verhalten. Derartige Austauschmechanismen sollten 
standardisiert sein, um Kosten für die Schnittstellenentwicklung zu minimieren und 
Investitionen zu sichern.  

Die Betrachtung des Standes der Technik zu Repräsentation und Austausch von 
Produktmodelldaten führt zu der Erkenntnis, dass weder etablierte Standardaus-
tauschformate, hier ist primär die STEP-Technologie zu nennen, noch bekannte 
Forschungsaktivitäten adäquate Lösungen für diese Erfordernisse bereitstellen. Aus 
dieser Divergenz zwischen industriellen Anforderungen und verfügbaren Technolo-
gien heraus wird das Ziel der vorliegenden Arbeit definiert: Es soll eine neue 
Methode für den Austausch von Produktmodelldaten entwickelt werden. Die 
Methode soll eine systemneutrale Repräsentation sowie eine Transferstrategie für 
Produktmodelle beinhalten. Dabei wird der Anwendungsbereich auf den Austausch 
Feature-basierter Modelldaten zwischen CAD-Systemen eingegrenzt.  

Eine Diskussion wesentlicher Anforderungen führt zur Definition der Strukturorien-
tierung als struktur- und gestalterhaltende Charakteristik der systemneutralen 
Modellrepräsentation. Es werden zwei methodische Ansätze zu solch einer struktur-
orientierten Repräsentation identifiziert. Der explizite Ansatz verbindet strukturelle 
Informationen mit einer Hierarchie von Gestaltmodellen. Der implizite Ansatz macht 
sich den Umstand zunutze, dass die Modellstruktur alle für die Generierung und 
Modifikation eines CAD-Modells essentiellen Informationen enthält. Der Datenaus-
tausch reduziert sich somit auf die Modellstruktur; auf den Austausch von Gestalt-
daten kann, bis auf bestimmte Ausnahmen, verzichtet werden.  

In Hinblick auf technische Anforderungen ist der implizite Ansatz vorzuziehen. Hier-
für wird eine systemneutrale Repräsentation für Feature-basierte Modelle entwickelt. 
Als standardisierte Basis für die Austauschmethode wird eine generalisierte Feature-
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Bibliothek empfohlen. Für Modellstruktur, benutzerdefinierte Features, Parametrik- 
und Constraintmodelle, Baugruppenstrukturen und andere Modellinhalte werden 
detaillierte Repräsentationsmechanismen erarbeitet. Eine erzeugungsorientierte 
Taxonomie für Freiform-Features wird vorgeschlagen.  

Ein weithin diskutiertes Problem im Zusammenhang mit Feature-basierter Produkt-
modellierung ist die Identifikation von Gestaltelementen – bekannt als das persistent 
naming problem – das einen Gegenstand aktueller Forschungen darstellt. Es wird ein 
Mechanismus zur intelligenten Koordinatenreferenzierung vorgeschlagen. Entgegen 
der generellen Literaturmeinung erübrigt sich somit die Applikation eindeutiger 
Bezeichner (identifier) für die explizite Referenzierung von Gestaltelementen.  

Als Grundlage für eine Transferstrategie für strukturorientierte CAD-Modelldaten 
werden drei Austauschszenarien definiert, die – in Erweiterung des klassischen 
Dateitransfers – Austauschsituationen in Web-basierten und systemintegrierenden 
Umgebungen beschreiben. Auf Basis dieser Szenarien werden zentrale Funktionali-
täten und Komponenten für den Modelltransfer identifiziert. Als optimale Technolo-
gie für die Definition des physischen Austauschformates wird XML ausgewählt und 
ein entsprechendes Funktionskonzept für Modellanalyse, Transkription und CAD-
Interaktion entwickelt. Als Voraussetzung für eine vollständige und effiziente Reali-
sierung der Konzepte wird eine implizite CAD-API vorgeschlagen, deren Charakte-
ristik und Funktionalität beschrieben werden. Die Integration dieser Funktionalitäten 
in eine zukünftige Version der OMG CAD-Services Spezifikation wird empfohlen. 
Zu diesem Zweck wird eine entsprechende Spezifikation präsentiert.  

Die Realisierung der vorgestellten Konzepte verlief in zwei Phasen. Eine Umsetzung 
grundlegender Mechanismen war Gegenstand eines Forschungsprojektes, in dessen 
Verlauf Prozessoren für die universitären Feature-Modelliersysteme FEAMOS und 
EMOS implementiert wurden. Eine formale Feature-Definitions- und Austausch-
sprache (Feature Definition and Exchange Language – FEADEL) stellt Konstrukte 
für die Repräsentation von Feature-Typen und Feature-basierten Modellen auf Basis 
der Gestaltmodellier-Bibliothek ACIS bereit.  

Die zweite Phase adressierte eine konzeptionelle Detaillierung der Austauschme-
thode und ihre Anpassung an kommerzielle CAD-Systeme und industrielle 
Austauschsituationen. Die Realisierung fand für die Systeme Unigraphics und I-Deas 
statt. Die Austauschprozessoren wurden sowohl in eine Web-basierte als auch in eine 
systemintegrierende Infrastruktur implantiert. Als Benutzungsschnittstelle für erwei-
terte Austauschfunktionalitäten wird ein interaktiver Austausch-Client vorgestellt, 
der einen selektiven Modellaustausch und eine integrierte Konsistenzanalyse bereit-
stellt. Für eine Bewertung des Austauschverhaltens wurden industrielle Modelle 
herangezogen, die auch für die ProSTEP AP214 Prozessoren-Benchmarks Verwen-
dung finden. Die erzielten Ergebnisse können im Hinblick auf die zuvor definierten 
Benutzeranforderungen als erfolgreich bewertet werden.  

Die Implementierung für kommerzielle CAD-Systeme und die Ergebnisbewertung 
legen dar, dass es sich bei dem impliziten Ansatz für einen strukturorientierten CAD-
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Datenaustausch um eine neue und qualifizierte Lösung handelt, die den Anforde-
rungen an eine zeitgemäße Technologie gerecht wird. Stellungnahmen bekannter 
Unternehmen unterstreichen die Anwendbarkeit im industriellen Umfeld.   
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I had a real problem and needed a real solution and I used the 
tools, environment, and know-how then available to me in a new 
and unique way to provide that real solution. Isn’t that what 
“design” really is – whether computer-aided or not? Isn’t that 
what engineering is all about?  
Douglas T. Ross [1] 
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1 Introduction 

Globalisation has noticeable effects on export-oriented economies as it generates 
high market pressure on producing companies. Not only in Germany enterprises have 
to realise a near economic recession situation and a consolidation of established 
markets. Aiming at a constantly increasing productivity, engineering industries apply 
concepts like profit centres and “make or buy” strategies that have led to rather 
diversified supply chains. In German automotive industry, OEMs have repositioned 
themselves to system integrators, whereas nearly 80 % of the value chain is obtained 
by suppliers [2].  

As illustrated in Figure 1-1, producing companies have developed strategies to raise 
efficiency of production processes in general and of product creation processes in 
particular: 

• Reduction of development time; 

• Increasing collaboration; and 

• Efficient IT strategies ([3], [4]). 
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Figure 1-1 Situation of engineering industries and product development strategies 
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Reduction of development time is realised by concepts like platforming, extreme 
frontloading, parallelisation of product development and production planning. 
Essential for a comprehensive development process in platform engineering is the 
design of a so-called product architecture that allows the integration of different 
product models into an overall model [5]. Special effort is raised for synchronisation 
of corresponding processes and for harmonisation of information flows: Early 
product concepts containing requirements, functionality, and shape information form 
the basis for design, validation and planning processes and are updated constantly. 
Data from former development projects is re-used as early conceptual input until the 
new product has reached a certain stage.  

Increasing engineering collaboration within virtual enterprises has lead to a complex 
net of interrelated partners and processes [6]. Mechanical, electric, hydraulic, and 
other components are developed simultaneously and in close information cycles. 
Product evaluation methods like FMEA are applied as a means for quality assurance 
among the partners. The number of development tools for design, calculation, 
simulation, or NC planning, increases with the number of engineering partners in-
volved.  

Consequently, business strategies are also concerned with the efficient and effective 
application of IT systems and infrastructures. In the beginning of computer aided 
product development and planning, various different systems were introduced which 
in many cases has led to a complex environment of isolated system islands. Today’s 
efforts aim at integrating these islands into a cross-company infrastructure to which 
also cooperating partners are granted access. Mechanisms like application service 
providing and Web-based front-ends and online-interfaces to product development 
databases and PDM systems are realised [4], [7]. On the systems side, companies 
have tried to reduce the number of software tools anticipating that a one-system-
strategy would solve the problem of data incompatibility hindering the inter-process 
information flows [8]. Nevertheless, a consequent one-system or even one-provider 
strategy has not been realised today due to the enormous number of systems applied 
for various purposes. Furthermore, considering the virtual enterprise as a whole, a 
one-system strategy is little effective. OEMs force their first-tier suppliers to provide 
native design data, which increases the number of systems applied by the suppliers.  

The strategies described attain greatest effects on the information flows within and 
among the involved partners’ product creation processes (Figure 1-2): Information 
exchange occurs earlier, more frequently, and often implying intermediate instead of 
final results. Especially, CAD concept and shape data is frequently transferred. Due 
to the large number of systems, a corresponding variety of data formats demands 
powerful data exchange mechanisms. Especially OEMs in automotive and aerospace 
industries depend on the ability to migrate product data from their suppliers to an 
overall product design. For example, the application of feature-based modelling 
increases with the availability of feature-based CAD systems. With increasing 
feature-based designs grows the demand for exchange formats capable of handling 
corresponding data without loss of information.   
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Figure 1-2 Effects on engineering information flow 

 

The example shows that an effective information flow and the ability to migrate 
various product data formats in a way that provides the necessary data for every 
development step is a key factor for efficient product creation. Migration in this 
context implies the possibility to integrate all relevant engineering data into a 
compound product model in a reusable form. This demands for exchanging more 
information in quality and quantity and for enhancing the information flow across 
product creation phases.  

Unfortunately, compared to the aggregation of product information and the corre-
sponding diversification of corresponding product data, mechanisms for an effective 
engineering data exchange – be it native or based on standard formats – are rather 
underdeveloped (Figure 1-3). In this context, CAD model data exchange is the 
critical point because beyond all others, CAD models represent the core result of 
product development – the product’s shape. 

When examining the field of CAD model data exchange in detail, it can be noted that 
single-system strategies are not only followed to meet the demand for aggregation. 
Another reason lies within the fact that later modification of CAD models provided 
by third parties is only possible when using the same CAD system. Standardised 
exchange formats for CAD model data do not provide the necessary data integrity, 
whereas the development of powerful native interfaces for all involved systems 
appears to be too costly.  
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For CAD model exchange the transfer of exact product shape and dimensions is the 
most important requirement. Subsequent product development phases strongly 
depend on the availability of correct shape information. Nevertheless, for the 
integration of product creation processes the exchange of pure shape information is 
insufficient. Design results represented by CAD models contain further information, 
such as parametric and constraint information for product functionality, calculation, 
assemblies and variant parts, and other semantic content like tolerances, material and 
surface quality data. Two examples may be outlined:  

1. In CAM operation planning, a complex and failure-prone feature recognition 
facility is needed if the original feature information was lost during data 
exchange between CAD and CAM system.  

2. In mechatronic systems development, mechanical and electronic components 
are designed using different systems. The inability to exchange the complete 
mechanical model to the ECAD system results in a complicated change 
processes whenever a modification of an electronic component requires 
changes to the mechanical parts (and vice versa).  

The examples illustrate the demand for an exchange mechanism capable of represen-
ting all relevant product information and of providing means for later alterability of 
the imported data model within the receiving system.  
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Figure 1-3 Aggregating product information along the product life cycle – ideal development 
of product knowledge and diversification of product data and data exchange 
formats 
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Regarding business strategies of engineering industries, the demand for adequate 
data exchange mechanisms can be summarised:  

• The application of product data exchange mechanisms increases. The demand 
evolves towards representation of more and high-level product information. 

• Data exchange methods based on standardised representation and transfer can 
be assumed as the economically most reasonable approach. Available 
standard formats, however, do not provide adequate solutions.  

• Further effort must be made to overcome engineering system borders by 
enabling a fully alterable “behaviour” of exchanged data models within the 
receiving system.  

• CAD data exchange can be identified as a central concern within the 
information flow of product creation.  

• Data exchange strategies must be compliant with modern collaboration and 
IT infrastructure concepts.  

 

This dissertation describes the development of a new strategy to the exchange of 
CAD model data. It proposes a so-called structure-oriented method as a solution to 
the demand for a more powerful data exchange mechanism as illustrated above. The 
scientific procedure will be as follows:  

Chapter 2: Summary of the state of the art in product model data exchange. 
Model representation and model transfer methods and known 
approaches are outlined separately. Complementing findings are 
described as an input to conceptual discussion.  

Chapter 3:  Discussion of shortcomings of the state of the art and derivation of 
precise objectives and scope of application for the development of a 
new exchange strategy; definition of requirements from an 
application specific perspective; postulation of a thesis statement 
identifying a structure-oriented data exchange as a solution for the 
new exchange strategy.  

Chapter 4:  Definition and conceptual development of a structure-oriented 
representation method by introducing and discussing an explicit and 
an implicit approach of which one is selected according to technical 
requirements; specification of various detailed aspects of 
standardised model representation; definition of representative 
exchange scenarios; development of a model transfer method; 
synthesis of both representation and transfer method. 
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Chapter 5: Two phases of concept realisation for the structure-oriented data 
exchange as a proof of concept: implementation of representation 
principles using university feature modelling systems, and 
adaptation to commercial CAD systems and industrial exchange 
infrastructures; description of applied use-cases; proving and 
evaluation of concepts; cost-benefit analysis.  

Chapter 6: Summary of scientific findings and outlook to consecutive research 
work. 
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2 State of the Art in Product Model 
Data Exchange 

2.1 Model Representation Technologies 

2.1.1 System Architecture and Internal Model 
Representation 

In this chapter, the state of the art in product model data exchange is summarised. 
Primarily, for later discussion in a conceptual context four main disciplines have to 
be distinguished:  

1. The internal architecture of CAD systems and corresponding model content;  

2. Technologies for product model representation with the aid of system neutral 
formats; 

3. Transfer strategies for product model data for the exchange between CAD 
systems; and  

4. Complementing findings that deal with side effects and less related technolo-
gies. 

This section will illustrate technologies for system internal representation of product 
models. 

General CAD System Architecture and Model Representation 
General CAD system architectures and strategies for internal model representation 
are described, for instance by SPUR / KRAUSE in [9], [10]. By systematising these 
general disquisitions and including CAD system vendors’ product descriptions [11], 
[12], [13], [14] it is possible to depict an abstract CAD system architecture (Figure 
2-1): A part modeller usually comprises a feature modelling engine which is separate 
from but depends on the shape modeller, often referred to as a geometric core 
modeller. An assembly modeller usually is a separate application.  

A system internal model architecture represents and handles the corresponding shape 
model, feature model and additional data in separate structures. The overall part 
model strongly interrelates these models by means of object referencing (bi-
directional associations) and appropriate algorithms for parametric values, 
constraints and further more. Following, the characteristics of modelling and, 
specifically, representation of shape, features, parametric, free-formed shape and 
assembly information will be discussed in further detail.  
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Figure 2-1 Generalised CAD system model architecture 

 

Shape Modelling and Representation 
A preliminary remark may be made to the term shape: In this dissertation shape is 
considered to consist of inter-dependent structures of geometry and topology entities. 
Literature often does not distinguish between geometry, topology and shape in this 
hierarchy. Instead, geometry is referred to in synonym to shape. In order to avoid 
misunderstandings the author will strictly abide to the term shape in the above sense. 

Commercial shape modelling systems or libraries are, for instance, ACIS [15], 
Designbase [16] or Parasolid [17]. An overview on shape modelling and 
representation principles is given by SPUR / KRAUSE [10], classifying shape models 
into wireframe, surface and solid models. Solid modelling systems today are usually 
hybrid in the sense of being capable of handling surfaces and solids in one shape 
model. As shown in Figure 2-2, WEILER [18] further classifies solid models into  

• Explicit or generative, 

• Object-oriented or space-oriented, 

• Volume- or boundary-oriented.  
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Figure 2-2 Classification of solid models [18] 

 

The established representation of today’s solid shape modelling systems is boundary 
representation (b-rep) [19], [20], [21], [22]. A b-rep structure defines spaces of nth 
order by boundaries of n-1st order, i.e. solids by faces, faces by edges, edges by 
vertices. These topology objects (body, shell, face, loop, edge, vertex, etc.) are 
defined with reference to geometry objects (volume, surface, curve, point, etc.): a 
topological vertex resides at a geometric point in space, a straight edge on a line, a 
planar face on a plane, and so forth. This structure of topology and geometry objects 
is common to commercial shape modellers and standardised exchange formats, such 
as STEP [23].  

The importance of CSG operations on b-rep shape structures as a basis for feature-
based modelling was already stressed by, e.g. PRATT [24]. Different to boundary 
representation, shape information in constructive solid geometry (CSG) is 
represented as a sequence of Boolean operations onto solids. The resulting structure 
is a so-called CSG tree. Boolean operations may be union, difference or intersection. 
Today’s shape modellers are based on the b-rep philosophy and additionally support 
CSG functions. This hybrid behaviour is the foundation for modern feature 
modelling capabilities. The interested reader will find a detailed explanation of b-rep 
and CSG representation philosophies and of corresponding data structures and 
modelling algorithms in, e.g. [25] and [26]. 
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There exists a variety of further representation methods for product shape, such as 
facetted surfaces, octrees, voxel or other structure [27], [28]. Those are usually 
applied in DMU and other non-constructive tools rather than in CAD systems [29]. 
For that reason they will not be discussed here.  

Feature Modelling and Representation 
As early as 1991, the great variety of feature concepts and modelling approaches in 
literature and in software was classified by Shah [30]. Traditionally two main 
categories are distinguished for creating feature-based product models, known as 
feature recognition and design by features. In the feature recognition approach, a 
pure shape model is created first, then features are created by either a software 
algorithm that processes the resulting model to automatically find features, or by a 
human user interactively picking entities in a shape presenting image of the part [31], 
[32], [33], [10].  

In today’s general understanding, features are the main modelling objects of modern 
CAD systems. Feature-based CAD systems support the design by feature approach 
by providing the user with a set of feature types that are instantiated and interrelated 
in order to define shape and other characteristics of the product. The term 
feature itself was subject to harmonisation by the so-called Feature Modelling 
Experts (FEMEX) group. FEMEX was an international and interdisciplinary 
researchers and developers association from universities and industry, which has 
generated a unified view upon feature-based product development. Main results were 
a unified feature definition as well as a classification of fields of application, 
modelling methods and tools [34], [35], [36]. These results were summarised in the 
guideline number 2218 released by the Society of German Engineers (Verein 
Deutscher Ingenieure – VDI) [37], [38].  

The lexical feature definition traces back to approaches from SHAH, SALOMONS to 
RIEGER [39], [40], [41]. According to the standardised definition, a feature is 
considered to contain semantic and (optional) shape information:  

feature := semantic V form-feature 

RIEGER also describes essential feature characteristics:  

• The possibility for the user to define new features;  

• The ability of the feature to represent semantic, not necessarily shape-related 
information;  

• The capability to be identifiable throughout the shape model; and  

• The representation of dynamic content.  

Furthermore, RIEGER classifies features as being:  

• Shape generating, i.e. feature instantiation initially generates shape elements; 
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• Shape manipulating, i.e. feature instantiation manipulates existing shape 
elements; 

• Shape neutral, i.e. feature instantiation refers to existing shape elements 
without altering the shape model; or 

• Shape independent, i.e. feature does not refer to any shape element.  

Although feature objects are individually defined within every CAD system, 
regarding orientation in space, parameterisation, etc., the above characteristics can be 
considered as common to feature objects of practically all modern feature-based 
CAD systems.  

Regarding their semantic and shape content, features in modern CAD systems can be 
considered as being complex design objects, characterised by a set of attributes or 
properties that determine the resulting behaviour of the feature within the CAD 
model and, specifically, the shape model. The semantic content varies with the scope 
of application of features and system. Features for design, assembly, manufacturing 
or quality assurance contain different information specific to their application [10].  

An instantiated feature object may – to some extent – be altered by the user: changes 
to parameter values, suppression or deletion, repositioning within a structural tree (if 
admitted by the system’s modelling logic). These alterations cause minor or major 
changes to the corresponding shape model.  

The concept of user-defined feature (UDF) enables the user to define her/his own 
design objects according to specific requirements, application or design context. 
Feature-based CAD systems provide functionality for defining such re-useable 
design elements. Usually, a parameterised part model can be saved as a UDF in a 
local management facility that also handles those feature types pre-defined by the 
CAD system.   

Parametric and Constraint-Based Modelling and Representation 
Today’s CAD systems provide parametric and constraint-based design both in shape 
and feature modelling. The user may assign values to dimensional and feature 
variables (synonymously spoken of as parameters) or may define constraints, i.e. 
mathematical formulas that do so. The so defined constraint system is calculated by a 
constraint solving engine. From the user’s point of view, so-called geometric 
constraints, i.e. shape elements being parallel, intersecting, co-planar, rectangular, 
etc., and constraints on parameters owned by feature, part or assembly objects, have 
to be distinguished. Additionally, CAD systems provide means for defining shape or 
feature independent variables.  

From the system’s internal management perspective, two constraint satisfaction 
algorithms have to be distinguished, as classified by SHAH [42]:   



12 Structure-Oriented Exchange of Product Model Data 
    
 

(Fully) Parametric: Parametric systems solve constraints by sequentially apply-
ing assignments to model variables, where each assigned value is computed 
as a function of the previously assigned values. Unlike procedural systems, 
the order of the assignments is flexible, determined by a constraint 
propagation algorithm. 

Variational: Variational systems solve constraints by constructing a system of 
equations representing the constraints, and solving all constraints of the 
system simultaneously on the basis of a numerical equation-solving proce-
dure or some equivalent method. 

Although SHAH propagates this classification with regard to constraints in shape 
models, it analogously applies to constraints on feature, part and assembly parame-
ters. SHAH also reports that some disadvantages of variational models have led some 
researchers to look at hybrid techniques that try to decouple constraint equations in 
subsets that can be processed sequentially; see e.g. [43] [44].  

Variational constraint systems within CAD systems are typically under- or well-
determined, over-constrained systems also occur. An overview on relevant strategies 
and algorithms may be found in, e.g. [45]. The interested reader may also delve into 
[46] as one exemplary description of representation and solving strategies of a 
geometric constraint solver. More actual discussions on the subject matter are 
presented by LEE ET. AL. [47]. A comprehensive introduction to constraint program-
ming is given by FRÜHWIRTH [48]. GUESGEN and HERZTBERG discuss specific 
consistency questions of constraint systems [49].  

Free-Formed Shape and Feature Modelling and Representation 
In addition to analytically represented shape elements created by form-features, CAD 
systems also support the generation of surfaces and curves that cannot be analytically 
described, i.e. they cannot be represented by simple non-parametric equations. These 
complex curves and surfaces are also referred to as free-form shape [10]. In the field 
of mechanical engineering, free-form elements are applied for the design of outer 
skin and vertical frame of airplanes, for propeller design in shipbuilding, for car body 
design, and further more [50].  

Parameterised representations for free-from shape are of the form x = x (u) for 
curves, and x = x (u,v) for surfaces. An overview on approximation methods for the 
system internal representation of free-form shape is given by MÜLLER [51]. The de-
facto standard for free-from representation is non-uniform rational B-splines 
(NURBS) as they contain most of the geometry formats used in existing CAD/CAM 
systems, and are the most flexible transfer and storage format existing for sculptured 
surface geometry [52] as special cases. More detailed information about the 
theoretical fundament of NURBS and their application can be found in [53], [54], 
[55], [56]. In the future, free-form representations based on subdivision surfaces 
could replace NURBS as a mathematical basis due to their “more intelligent” 
behaviour [57], [58]. At the time of writing, subdivision surfaces are, however, not 
state of the art in free-form representation in commercial CAD systems.  
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Due to many of today’s CAD systems being hybrid in modelling solids and surfaces, 
free-form generation is supported via curve and surface generating free-form 
features. These elements can again be used to generate or manipulate solid elements, 
e.g. generate a solid via a loft feature based on a free form curve; KRAUSE / STIEL 
propose feature modelling functionality for free-from shape in [59]. 

Assembly Modelling and Representation 
The assembly model is needed to drive several engineering analyses and applications 
like interference detection between parts, motion simulation, constraint satisfaction, 
assembly analysis, and assembly manufacturing planning [60]. According to SHAH / 
MÄNTYLÄ, the information that needs to be captured and represented at the assembly 
level by an assembly modeller includes the following:  

• Hierarchical relations (assemblies, sub-assemblies, components, features, 
etc.); 

• Mating conditions (geometric constraints, fits, contact, etc.); 

• Component  / sub-assembly positions (global or relative); 

• Degrees of freedom (possible relative motions of parts or sub-assemblies). 

Positioning of assembly entities is achieved by coordinate referencing, which 
requires all positioned entities to have their own coordinate system, or – preferably, 
because more flexible in case of model changes – by mating conditions, e.g. facing 
or coplanar faces, co-axial axes, coincident points. SHAH / MÄNTYLÄ also emphasize 
the importance of assembly features that allow assembly creation at a higher level by 
storing mating and constraint information and thus enabling parametric feature 
modelling functionality rather than geometric constraint handling at shape level.  

In principle, the situation in constraint handling in assemblies is little different from 
that in part modelling. In detail, assembly constraints may be used for specific 
questions like assembly testing and tolerance handling. KRAMER has developed a 
degree of freedom approach for solving assembly constraints [61]. 

NOORT presents an integrated part and assembly modelling method and system. A 
multiple-view technique is applied to support feature-based part and assembly 
modelling for a product. A special system environment is proposed to support both 
part and assembly design [62].    

2.1.2 System External Model Representation 
General Approaches to the Exchange of Product Model Data  

Since the 1950s, when the use of computer programs for defining products and 
manufacturing was first experienced, there was a need to exchange the corresponding 
product descriptions among these programs. Product descriptions emerged from 
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simple drawing information to highly complex data models handled by today’s 
generation of product development systems. In the same time, strategies for data 
exchange emerged from ad hoc solutions for system-to-system data exchange to the 
use of neutral formats. Latter are those approaches to data exchange that the 
following summary will concentrate on. The interested reader may consult, e.g. [63], 
for more detailed descriptions of the development of data exchange strategies and 
formats.  

In the domain of data exchange within the whole product life cycle, the Standard for 
the Exchange of Product Model Data – STEP (ISO 10303) was identified as a key 
technology already in 1990 [64], [65], [66]. Today, the STEP technology is 
considered the third generation of data exchange strategies. The STEP Product Data 
Representation and Exchange standardisation initiative covers computer-interpret-
able representation of product data, and its exchange. The objective of ISO 10303 is 
to provide means of describing product data throughout the product life cycle 
independent from any particular computer system. A general introduction to the 
STEP methodology is given in, e.g. [67], [68], [69], [70].  

Shape Representation 
In part 42 STEP defines general shape representation constructs that are applied in 
almost every product data model concerned with shape content in any form [23]. 
This schema is the basic understanding of shape modelling capabilities and shape 
model management that emerged from the early IGES, VDA and SET standards until 
today. Nevertheless, it is worth mentioning that many fundamental concepts were 
taken over from the ACIS [11] shape modelling library that is still available and 
applied as a commercial tool. STEP part 42 specifies geometry, topology and – based 
on these two – geometric model schemas for explicit representation of the shape of a 
product model. Both, b-rep and CSG representations are provided.  

Procedural approaches to represent CAD shape model content started using general-
purpose programming languages, such as Lisp or C [71]. An approach to represent 
shape model descriptions using a special-purpose formal language was developed by 
KRAUSE ET. AL. in the IMPPACT project at the Technical University of Berlin [72]. 
The IMPPACT modeller used the textual geometry definition language PDGL (Part 
Design Graph Language). Different aspects of the geometry definition covered by 
PDGL include geometry of form-features, derivable attributes, constraints, rules, and 
technology definitions for process planning applications. 

A rather shape-related procedural approach to constructive constraint-based model 
representation is proposed by SOLANO / RUNET [73]. 

SHAH describes the ASU Testbed Procedural Language as an approach to represent 
feature specifications and CSG operations for geometric modelling using a 
procedural language for geometry definition [74]. The approach aims at the 
representation of so-called feature producing volumes (FPV) in a formal language by 
describing the generation and manipulation of the CAD shape model and its entities. 
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Feature Harmonisation and Library Concepts 
There are projects and standards to be named that mainly, or as part of a larger 
product model, harmonise CAD design elements.  

A feature taxonomy spanning a larger variety of design and manufacturing features 
has been defined in the CAM/I project [75]. A sheet metal features classification can 
be found in [60] 

STEP shows various approaches to standardise design objects: 

• ISO 10303-48 [76] was one of the first attempts to standardise form-features 
within the STEP methodology. Scope of part 48 was to provide for the 
characterisation and representation of shapes that are of broad industrial 
interest. These shape generating features were parameterised and strictly 
limited to shape relating content, i.e. they did not to contain any semantic 
meaning apart from the ability to identify themselves through the correspond-
ing shape, which was to be represented by means of STEP part 42. 
ISO 10303-48 was abandoned before being finished.  

• ISO 10303-214 is a so-called application protocol. Its scope of application 
comprises products of automotive manufacturers and of their suppliers 
including parts, assemblies of parts, tools, assemblies of tools, and raw 
materials [77]. The conformance classes CC14/15 specifies form-features for 
shape representation sub-structures. Two methods are supported: Firstly, 
form-features can be defined through recognition of represented b-rep sub-
structures as a unit. Secondly, for multiple instantiation, b-rep sub-structures 
may be pre-defined as a form-feature. These rather macro-like approaches are 
specifically suitably for pattern instantiation. Other typical feature content, 
e.g. parametric or semantic information, is not represented. 

• ISO 10303-224 [78] is another STEP application protocol. Its scope is 
mechanical product definition for process planning using machining features. 
AP224 supports the definition of a mechanical piece part, utilising form-
features that are of particular value in process planning. The geometry of 
slots, holes, faces, etc., can be explicitly stated using these features, which 
can then be related during process planning to machining operations. The aim 
is to enable standardised exchange of product data to manufacturing planning 
software rather than among mechanical design systems. The feature infor-
mation does not necessarily reflect a design history, nor is it meant to enable 
later alterability of the feature-based model.  

• ISO 10303-111 Construction history features [79] specifies the resource con-
structs for the representation of modelling or design features supported by 
modern CAD systems. It is intended to facilitate the exchange of intelligent 
models that contain the history of the design operations. In scope are features 
that represent operations that capture filleting and chamfering; representation 
of features that enable the result of offsetting, thickening, and shelling 
operations; features that model operations associated with several types of 
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holes, pockets, and slots; representation of patterns of features, such as 
circular and rectangular arrangements. Out of scope is representation of 
features as aspects of the shape of a model, and features that explicitly relate 
to manufacturing operations or processes. The documentation has the status 
of a working draft and represents ongoing work at concept level.  

HOFFMANN’S Editable Representation (EREP) [80] has been an early attempt to use 
a standardised set of features for model exchange purposes. The sequence of feature 
creation, modification and deletion operations should be captured and replayed for 
model regeneration. The concept is limited to pure feature modelling and does not 
cover shape based modelling operations like revolves and protrusions based on 2D 
sketches or shape manipulations like blends and chamfers.  

Specification of Feature Types and User-Defined Features 
At the Institute for Machine Tools and Factory Management (IWF) of the Technical 
University of Berlin, a so-called Feature Modelling System – FEAMOS has been 
developed [81]. The FEAMOS system demonstrates how internal management 
mechanisms and interrelationships between feature model and shape model can be 
organised. A similar approach has led to the development of a feature-based modeller 
for prismatic work pieces at the Institute for Production Engineering and Machine 
Tools (IFW) of the University of Hannover. The so-called Elementorientiertes 
Modelliersystem – EMOS [82] (element-oriented modelling system; an technical 
element is regarded as a synonym to a feature) aims at generating models specifically 
suitable for cutting machining operation planning.  

The further development of PDGL (see above) has facilitated representation of 
feature types as a general modelling basis for the FEAMOS system. With the 
procedural TEBES language (Technische Elemente Beschreibungssprache – 
technical elements description language) a similar approach occurred for the EMOS 
system [83] [82]. The languages provide constructs for the declaration of features, 
their parameters and for the specification of functional relations between these 
parameters. Additionally, feature functionality can be described through object 
methods. A creation method, analogously to a constructor of a C++ class, is 
obligatory for the instantiation of feature objects by the feature modeller [41]. The 
languages differ in their main emphasis of application. While TEBES puts the main 
emphasis on workpiece modelling (with sculptured surfaces) and the integration of 
CAD/CAPP (vertical data exchange), PDGL puts the main emphasis on design and 
modelling (representation of assemblies and modular feature libraries) and horizontal 
data exchange [84]. Common to both languages is the procedural declaration of 
shape down to the level of topological b-rep faces. They also enable UDF 
specification via a CSG operation tree. A UDF is represented as a shape modelling 
result, i.e. the feature is represented without modelling structure on feature-level. 

MUN ET. AL. present a set of standard modelling commands as part of the macro-
parametric approach (see below) [85]. In five levels, a hierarchy of standard 
modelling commands is proposed that unifies capabilities of the six commercial 
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CAD systems CATIA, Pro/Engineer, Unigraphics, I-DEAS, Solid-Works, and 
SolidEdge.  

Representation of Parametric and Constraint Information 
Representation of parametric and constraint information has been of interest in the 
area of parametric and constraint-based shape modelling before recently the achieved 
mechanisms were also applied to feature-based models.  

SHAH distinguishes between two approaches to parametric geometry definition for 
data exchange [42]: 

Procedural parametric geometry definition: Geometry definitions are encoded 
in a procedural language that combines the definition of geometric entities 
and relationships among the entities with procedures for computing the 
resulting geometry.  

Declarative parametric geometry definition: Geometry definitions are encoded 
in a nonprocedural language where the declaration of entities and their 
relationships is decoupled from the computation of the same. Roles and con-
straints are two important methods for declarative geometry definition.  

 

The ENGEN project (Enabling Next GENeration mechanical design) has aimed at 
extending STEP EXPRESS information models with parameterisation and constraint 
information [86]. The emerged ENGEN Data Model (EDM) mainly explicitly 
represents shape model information similar to ISO 10303-42.  

SHAH, KHAN and SOLKHAN describe constraint specification and constraint 
representation techniques and algorithms for geometric constraint specification in 
declarative modelling. Here, shape entities and their parametric interrelationships are 
represented and solved with the aid of hierarchical constraint graphs. The concepts 
emerged from the ENGEN project [87].  

ISO 10303-108 [88] is currently under development. It will provide facilities for 
representing parameterisation and geometric constraints, as they apply to explicit 
shape models. The topic of features is not addressed in the part 108 context [89]. 
Concepts from the ENGEN project will be included and made compatible with other 
STEP shape containing product models. As a basis for STEP part 108 SHAH / BETTIG 
describe a standard set of geometric constraints for parametric modelling and data 
exchange [90].  

CHOI ET. AL. propose a macro-parametric approach to exchange design intent in 
CAD models between different CAD systems [91]. The models are exchanged in the 
form of macro files, which are a sequence of modelling commands used by the 
designer in the modelling process (Figure 2-3). Since the approach necessarily 
includes the transcription of user selection operations, an identification mechanism 
for selected shape entities is needed. Missing information for the mapping of selected 
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entities is generated by the use of an external shape model generated by an ACIS 
kernel.  

 

 

Figure 2-3 Standard modelling commands for the macro-parametric approach [91] 

 

Free-Form Shape and Feature Representation 

The established standardised exchange formats, such as IGES, VDA-FS, and STEP, 
delimit the representation of free-form model information to pure shape. They are 
based on an explicit representation.  

AURICH [92] distinguishes between the implicit and the explicit representation of 
free-form features: The implicit form describes a free-form feature through a set of 
general, simple, and additional complex geometric attributes and their values. The 
explicit form consists of a number of faces, at least one of them being free-formed 
and controlled by a set of simple and complex parameters that result in a non-
manifold volume.  

TÖNSHOFF provides an overview and evaluation of approaches on free-form feature 
classifications [93]. He also proposes a representation schema for free-formed 
features.  
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Assembly Representation 
There are various methods and schemas for assembly representation in existing 
standards. Approaches to system independent representation of assembly models can 
be found in, e.g. [94], [95], [96], [97].  

STEP considers assembly structure in various parts. AP214 being the most applied 
exchange standard for mechanical parts, provides means for assembly design with 
3D shape representation (CC2), and product data managements purposes and 
configuration controlled design (CC6–10). Latter are supposed to enable exchange of 
management data between CAD and PDM rather than between CAD systems [77]. 
An integrated application resource part 109 is currently under development and will 
address cinematic and geometric constraints for assembly models.  

A strategy for mapping product structures between CAD and PDM using UML is 
proposed by OH ET. AL. [98]. The mechanism is based on the STEP AP214 PDM 
schema and concentrates on mapping part structures within an assembly model.  

ZHA presents in [99] a STEP-based data model that supports integrative design for 
assembly method and a corresponding assembly planning algorithm. The assembly 
data model contains connector features as a means for inter-part relationships instead 
of direct positioning. The data model is the basis for knowledge-based assembly 
planning procedures based on an assembly process model. His concepts are based on 
findings by HEISSEMANN/MATTIKALLI about representing relationships in hierarchi-
cal assemblies [100]. 

2.2 Model Transfer Technologies 
Model transfer technologies imply all techniques that either transport information 
items from one system to another, or facilitate the interconnection of computer appli-
cations. An information item in this connection may be a file or data stream com-
pliant with a certain specification or schema. Of all those means for system intercon-
nection, generalised interfaces, i.e. APIs, and communicational infrastructures, are of 
the most interest for standardised data exchange.  

Exchange Formats for Product Model Data 
The STEP methodology specifies its own model transfer formats. For consistent, 
contradiction-free and semantically explicit description of STEP product models, the 
formal description language EXPRESS and its graphical representation EXPRESS-G 
have been defined [101]. The EXPRESS data modelling language was published as 
the first international standard for the specification of data models. Due to an object-
oriented approach, various kinds of model information can be represented:  

• Objects (entities) with properties (attributes); 

• Inheritance rules; 
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• Integrity conditions (local rules for objects and global rules for overall object 
characteristics); 

• Object classes (schemas); 

• Relationships between object classes (schema-interoperability). 

EXPRESS is a specification language for the logical description of information 
models, i.e. it is not designed for programming purposes. EXPRESS has object-
oriented characteristics as well as such defined through the entity relationship 
method. It enables the formal, unambiguous, and complete description of a static 
product model through objects, relations and conditions.  

STEP also defines different strategies for product model transfer. The physical file 
specification was designed to transfer EXPRESS data models as clear text encoded 
files. The mapping from the EXPRESS language to the syntax of the exchange 
structure is specified in ISO 10303-21 [102]. Due to its EXPRESS-orientation, STEP 
physical files are not able to represent parametric information and constraints. There 
are activities within the STEP community to extend part 21 accordingly. Figure 2-4 
illustrates the representation of two-dimensional objects by an EXPRESS class 
description and the mapping to a STEP physical file [103].  

The STEP Standard Data Access Interface (SDAI) defines a low-level application 
programmable interface to EXPRESS defined data. STEP defines a set of general 
SDAI operations in ISO 10303-22 [104]. These operations are implemented in a 
specific programming language by a language binding. SDAI bindings have been 
defined for C, C++, and Java. Functionality for manipulating EXPRESS-based data 
is provided, e.g. set attribute A with value B, which can be used with any application 
protocol or other EXPRESS information model. SDAI does not provide any 
functions that understand higher-level semantics, e.g. get/set the owner of a product, 
get/set the length unit that applies to the product geometry [105].  

Other formats for information transfer have emerged for and within the world-wide 
web. The Extensible Markup Language (XML) [106] was originally envisioned as a 
language for defining new document formats. XML is derived from the Standard 
Generalized Markup Language (SGML, ISO 8879), and can be considered a meta-
language, i.e. a language for defining markup languages. SGML and XML are text-
based formats that provide mechanisms for describing document structures using 
markup tags or key words. As the use of XML has grown, it is now generally 
accepted that XML is not only useful for describing new document formats for the 
Web but is also suitable for describing structured data. Examples of structured data 
include information that is typically contained in spreadsheets, program 
configuration files, and network protocols. XML is preferable to previous data 
formats as it is capable of representing any kind of structured information. This has 
led to the widespread adoption of XML as the lingua franca of information 
interchange [107]. Further information on XML and XML-based programming is 
provided, e.g. by GOLDFARB and PRESCOD [108]. 

http://www.w3.org/TR/REC-xml
http://xml.coverpages.org/sgml.html
http://xml.coverpages.org/sgml.html
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Figure 2-4 EXPRESS class description of two-dimensional circles and mapping to STEP 
physical file [103] 

 

Product Data Markup Language (PDML) is an Extensible Markup Language (XML) 
vocabulary designed to support the interchange of product information among 
commercial systems, such as PDM systems, or government systems, such as 
JEDMICS. PDML is being developed as part of the Product Data Interoperability 
(PDI) project under the sponsorship of the Joint Electronic Commerce Program 
Office (JECPO), and supported by several other federal government agencies and 
commercial entities in the USA. Three major PDM vendors are active participants in 
the PDI program and are developing prototype implementations of PDML. The 
initial focus of PDML development is legacy product data systems that support the 
operation of the Defence Logistics Agency (DLA) [109], [110].  

Generalising Interfaces for CAD Systems 
Since the early days of commercial CAD systems, various projects have addressed 
the exchange of product model data between these systems on the basis of neutral 
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representation formats. There have been several activities to define standardised 
procedural interfaces, i.e. APIs, for CAD systems. The usual objective has been to 
provide a means of linking external application programs to CAD systems in a 
modeller-independent manner. ROLLER describes the value of an open CAD system 
architecture for the implementation of higher level design applications [111].  

As early as 1979, the international research consortium CAM-I (Consortium for 
Advanced Manufacturing International, Inc.), Texas, USA, started to develop the 
CAM-I Applications Interface Specification (AIS) [112]. AIS should provide a 
standardized procedural or programming interface for CAD solid modelling systems, 
as a means for accessing their internal functionality and to facilitate the creation of 
integrated design and manufacturing systems. The object-oriented specification is 
independent from a specific programming language (with a C binding available), 
covers a lager scale of ISO 10303-42 entities and concentrates on solid shape 
modelling. Parameterisation and constraints are somewhat addressed on that level. 
Some versions of the AIS specifications were implemented and tested in practical 
implementations [113], [75]. A broader support by CAD software vendors is not 
noticeable.   

Another procedural CAD interface for a standardised CAD model exchange has been 
defined by the CAD*I project [114].  

The solid modeller API specification Djinn [115], [116], [117] unifies solid 
modelling capabilities on shape level. The specification is independent from the 
shape representation form and thus provides mapping on both b-rep and CSG data 
structures. Djinn does not support parametric, constraint-based or feature modelling.  

For CAD systems residing on PC platforms and Microsoft operating systems, the 
Design and Manufacturing Automation Corporation (DMAC) [118] defines a 
runtime CAD interface based on Microsoft’s OLE (Object Linking and Embedding) 
technology. The so-called OLE for Design and Modelling, provides query operations 
to CAD model entities, whereas model generation functionality is not addressed. 
Entities are accessible at the level of shape entities, shape structure and assembly 
structure. Persistent identifiers are provided. The full specification is available to 
DMAC members only.  

ISO 13584 (Parts Library) [119] is concerned with the standardised means of 
representation and information access for standard parts in computer-based libraries. 
Parts Library facilitates the parameterised representation of families of parts, to avoid 
the need for separate representations of each member of what may be an extensive 
collection. Part 31 deals with geometric programming interfaces and defines a 
procedural interface for the generation of parameterised product shape models. The 
aim of part 31 is to enable shape modelling systems to implant standard parts from 
the library into the CAD system. Its model creation capabilities are based on a very 
limited subset of ISO 10303-42 and thus concentrate on pure shape modelling 
operations for CSG representation. Although its models are parameterised, it does 
not allow the definition of geometric or part level constraints. Included are few query 
operations and no modification operations apart from parameter changes. 
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The Open CASCADE technology is a software development platform freely available 
in open source. It includes components for 3D surface and solid modelling, 
visualisation, data exchange and rapid application development [120]. Modelling 
capabilities mainly address shape modelling in terms of 2D and 3D geometry and 
topology. Form features are supported as geometric primitives and for more 
complicated shape modelling tasks like splits. Open CASCADE also provides 
interfaces for standard based data exchange based on IGES 5.3 and STEP. The STEP 
processor supports import and export of 3D geometry and topology data compliant 
with AP202 and AP214. 

PRATT / ANDERSON propose a shape modelling applications programming interface 
for the STEP standard [89]. They summarise the required functionality for a general-
purpose API to contain creation, deletion, modification and query operations for 
high-level and shape-level modelling. It is to provide functions for creation of all the 
fundamental shape-defining entities defined in ISO 10303-42 and ISO 10303-108.   

The OMG CAD Services [121] specification is an interface standard for mechanical 
CAD systems that enables the interoperability of CAD, CAM and CAE tools. The 
aim is to provide an interface for seamless integration of engineering applications 
through a CORBA interface. The specification focuses on establishing mechanical 
CAD system interfaces that provide geometry and topology data to analysis and 
manufacturing applications and tools. Feature modelling capabilities are intended for 
future versions of the CAD Services specification.  

Communicational Technologies for System Integration 
For establishing inter-system communication, several technologies have been 
developed. Essential functionalities are referred to as middleware technologies, 
which provide a standardised layer of software between the underlying network and 
the application. Specific middleware technologies are Sockets, Remote Message 
Invocation (RMI), Distributed Component Object Model (DCOM), Common Object 
Request Broker Architecture (CORBA) and Web-services. Of all of these technolo-
gies, only those shall be discussed that have been applied by major engineering 
system integration initiatives.  

The Object Management Group (OMG) is a non-profit consortium created in 1989 
with the purpose of promoting theory and practice of object technology in distributed 
computing systems. One of the major standards that emerged from OMG activities is 
the CORBA standard [122]. CORBA specifies a system which provides interoperabil-
ity between objects in a heterogeneous, distributed environment. The central compo-
nent of CORBA is the Object Request Broker (ORB). It encompasses the entire 
communication infrastructure necessary to identify and locate objects, handle con-
nection management and deliver data.  

For Web-based environments, the Simple Object Access Protocol (SOAP) [123] has 
been developed as an XML-based protocol to let applications exchange information 
and access Web services. SOAP Version 1.2 is a lightweight protocol intended for 
exchanging structured information in a decentralized, distributed environment. It 
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uses XML technologies to define an extensible messaging framework providing a 
message construct that can be exchanged over a variety of underlying protocols. The 
framework has been designed to be independent of any particular programming 
model and other implementation specific semantics. 

A Web-service is a software application identified by an Universal Resource 
Identifier (URI), whose interfaces and bindings are capable of being defined, 
described and discovered by XML artefacts, and supports direct interactions with 
other software applications using XML-based messages via internet-based protocols, 
such as SOAP. An overview on Web-services development is given by, e.g. [124], 
[125]. 

As application example for engineering application integration in a Web-environ-
ment the PDTnet project can be identified. Within the joint project the automotive 
industry has developed an industry-wide solution for the manufacturer/supplier 
integration in the area of product data applying available communication 
technologies. The results are claimed to also be valid for other industries. PDTnet 
provides the fundament for the electronic supply chain based on coordinated 
solutions and implemented standards [126]. Specifically, Web-services technologies, 
such as XML / SOAP, are applied to transfer STEP compliant data as specified by 
the automotive application protocol AP214 (Figure 2-5).  

 

 

Figure 2-5 PDTnet approach and standardisation [126] 
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As another example for a engineering application integration initiative the German 
Lead-Project integrated Virtual Product Creation (integrierte Virtuelle 
Produktentstehung – iViP) can be highlighted [3]. As a means for on-line system 
integration, the iViP project has developed a CORBA-based iViP integration 
platform. This platform consists of a data bus, system services and an arbitrary 
dynamically changing number of components called iViP-tools, such as „Software 
on Demand” services, and one or more iViP Clients. The iViP Client provides a 
homogenous user interface to utilise components in a harmonised way, regardless 
different services functionality hosted by different applications. An Object Request 
Broker enables communication between platform, clients and the accessed 
components. Components that emerged from the project are realised with a CORBA 
compatible interface. Legacy systems are plugged in via a wrapping mechanism 
[127].  

 
Finally, an abstraction philosophy shall be mentioned. The Object Modelling Group 
proposes the so-called Model Driven Architecture (MDA), which is a new way of 
writing specifications and developing applications without anticipation of a specific 
middle-ware technology, such as CORBA or Web-services. By this means, MDA 
divorces implementation details from business functions (Figure 2-6). Thus, it is not 
necessary to repeat the process of modelling an application or system's functionality 
and behaviour each time a new communication technology emerges. Key standards 
that make up the MDA suite of standards include Unified Modelling Language 
(UML); Meta-Object Facility (MOF); XML Meta-Data Interchange (XMI); and 
Common Warehouse Meta-model (CWM) [128]. 

 

 

Figure 2-6 OMG Model Driven Architecture (MDA) [128] 
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2.3 Complementing Findings 

Shape Model Entity Identification – Persistent Naming Problem 
Out of a large number of research findings somewhat related to data exchange, the 
so-called persistent naming problem may be named as an input to later conceptual 
discussion.  

As a means for internal data management, CAD systems need to be able to identify 
those elements of their shape model that for further modelling operations have been 
selected, i.e. picked, by the user. As an example, an edge of a body is selected by the 
user as an input to a blend or chamfer operation. Even if the original entity has lost 
validity due to later model alterations, the originally selected entity must remain 
identifiable for the system. For that purpose, the application of persistent identifiers 
has been proposed. The strategy for assigning persistent identifiers to shape entities 
is not trivial. In literature, it is referred to as the persistent naming problem [129]. 

For system internal application, some heuristic solutions to persistently naming of 
model entities have been proposed for shape modelling (see for example [130], 
[129], [131], [132]). KRIPAK describes an application for history-based parametric 
solid modelling systems in [133].  

All these proposals do not provide a closed solution to the persistent naming 
problem. The authors limit their investigations to the scope of system internal model 
management. An adaptation to the area of product model exchange is not known.  
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3 Preconditions for the Structure 
Oriented Model Exchange  

3.1 Identification of Technological 
Shortcomings  

In the preceding chapter, the state of the art in product model exchange has been 
summarised. In the following, the presented findings will be analysed to identify 
technological gaps and shortcomings and to explain the need for a new exchange 
method. Objectives and scope of application will be defined from which a set of 
requirements will be derived that also suite as a means for results evaluation in 
chapter 5. Finally, a thesis statement will introduce the idea of a structure-oriented 
representation and transfer as a new approach to product model exchange. 

The motivation for a new approach to data exchange has been discussed in chapter 1: 

• In order to be efficient, product creation processes have to be integrated into 
process chains via an continuous information flow; 

• Consequently, data exchange mechanisms have to become more efficient 
regarding quantity and aggregation of data through the product life cycle and 
more effective regarding the range of information types within a product 
model; 

• Further processing and, specifically, alteration of the transferred product 
model must be guaranteed in the receiving system, while the basic informa-
tion – the product shape – remains unchanged by the exchange procedure;  

• Exchange of CAD model data can be identified as the most critical point 
within the product creation process. 

 

As measured by this situation, currently available technologies for the exchange of 
product model data among CAD systems only limitedly provide sufficient solutions.  

Although still subject to optimisation, exchange of shape models via STEP and other 
standardised data models is well supported and established in industry. Additional 
activities have started to address parametric and constraints information. Higher-
level model information is only selectively represented. Feature information is either 
limited to shape-centred form elements, or to a certain modelling philosophy or 
application domain or system architecture.  

Known exchange strategies mainly provide a static data exchange, i.e. they represent 
and transfer the result of a modelling process at exchange time. Apart from single 
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exceptions, possible alterations to the imported models within the receiving systems 
are not considered. The STEP methodology particularly focuses on transmission of 
the final shape model from which the original shape creating design elements cannot 
be reconstructed.  

Regarding model transfer mechanisms, the established way of data transmission is 
based on physical files. Only a few activities have addressed different technologies 
and exchange situations.  

The variety of scientific disquisitions permits a generalisation on CAD system inter-
nal modelling and representation mechanisms. For CAD model exchange, estab-
lished standardised formats are not suitable. Available technologies and some of the 
ongoing activities and scientific approaches may suite as enablers for a new 
exchange method.  

3.2 Determination of Objectives and Scope 
of Application 

Objective of this dissertation is the development of a new method for the exchange 
of product model data. This method shall convey product models while retaining 
product shape and semantic information and while guaranteeing further processing 
and alterability within the receiving system.  

The situation in engineering, as described in chapter 1, would require an adequate 
solution for the whole product creation process. However, from the engineering per-
spective it appears evident that data exchange during product definition phases, i.e. 
while product model is generated, is the fundament of all later product creation 
processes. Thus, the scope of application for this dissertation will be delimited to 
data exchange between CAD applications (Figure 3-1).  

Explicitly, as in-scope will be regarded: 

• The product design phase, namely embodiment and detailed design in which 
3D shape modelling is the main focus;  

• Product data exchange among different CAD systems, so-called horizontal 
exchange, based on a system neutral representation; 

• Feature-based CAD systems due to their ability to manage hierarchical high- 
level structures above shape level, and for their provision of design-by-
feature modelling mechanisms; 

• Exchange of parts and assemblies, with the main emphasis on the former; 

• General-purpose CAD modellers and models, i.e. no principle limitation 
regarding the type of product, although the main experiences of the author 
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descend from the field of mechanical design; specialties of, e.g. ECAD 
systems, would be interesting to examine but are not considered here.  
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Figure 3-1 Thematic delimitation 

 

The following aspects are regarded as being out-of-scope, which means that they are 
not considered regarding their specialties but also not explicitly excluded from the 
conceptual discussion: 

• Pure shape modelling applications that do not handle and manage structural 
design elements on for instance feature level,  

• Other CA system applied in design, like CAE systems for finite elements 
analysis, calculation, kinematic and other analysis tasks performed during 
part and assembly design, which require specialised data formats; 

• Further methods like quality function deployment and failure mode and effect 
analysis;  

• So-called vertical exchange, i.e. exchange from CAD to CAM, assembly 
planning, and other manufacturing planning applications; 

• Representation and transfer functionality specific to CAD-to-PDM inter-
facing with special requirements on the mapping of CAD assembly hierarchy 
and part interrelationships onto the PDM part structure;  
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• Feature-based product models emerging from feature recognition methods; as 
recognised features usually cover only certain areas of the product shape and 
do not necessarily provide a complete view of the shape model. 

3.3 Requirements Definition 
Based on the engineering situation and industrial strategies, as illustrated in chap-
ter 1, essential requirements on a new exchange method can be outlined from a user’s 
perspective. These business requirements, shown in Table 3-1, shall be formulated 
with regard to the scope of application set above. They will also suite as a matter of 
decision making in the conceptual phase in chapters 4 and for result evaluation in 
chapter 5. 

 

Business requirements 

Retain design results: 
Guarantee for product shape to be transferred in its full spectrum and unaltered 

Enable model alterability:  
Support design of different components and even regions of a single part by different 
people by enabling model alterability after data import from different CAD system 

Shorten engineering cycle times: 
Reduce amount of time spent for non-creative jobs, i.e. for data exchange and manual 
rework of imported models 

Reduce data traffic: 
Reduce file or equivalent data stream in size and transfer time 

Support multi-CAD part library: 
Enable central administration of one part library for multiple CAD systems 

Maintain design systematics: 
Transfer parametric and semantic model content 

Support multi-disciplinary design: 
Support necessary data exchange between tools for mechanical, electrical, hydraulic, and 
software part design (horizontal alterability)  

Support iterative process chains: 
Support data loop-backs between conceptual and embodiment design and technological 
planning processes (vertical alterability) 

Support selective model analysis: 
Enable CAD model analysis with focus on special information types, e.g. on surface 
quality as a basis for technological planning or cost analysis  

Support data management: 
Support small and large scale data distribution and management strategies 



 Preconditions for the Structure Oriented Model Exchange 31 
    
 

Support collaboration: 
Support modern Web-based exchange mechanisms 

Provide fault tolerance:  
Ignore or compensate information incompatibilities even for different CAD architectures 

Support CA systems interaction: 
Enable / enhance direct information exchange at systems run-time 

Provide applicable strategy: 
Ensure feasibility for an industrial application 

Table 3-1 Requirements on a new exchange method from a business’ perspective 

 

3.4 Thesis Postulation 
At this point, a solution to the challenge of a new exchange method shall be 
formulated as a thesis statement:  

1. The fundamental information that enables model alterability is contained in 
the product model structure, specifically in the feature and part structure of a 
CAD model; the new exchange method must therefore be structure-oriented, 
i.e. it must include structural information that is associated with the shape 
model and that the user still can alternate or change. 

2. There are two possible approaches to a structure-oriented exchange, distin-
guished into the explicit and the implicit approach. Regarding shape infor-
mation, the explicit approach is based on a discrete shape representation 
based on, for instance, the STEP methodology. The implicit approach utilises 
the structural feature model for data exchange, from which the shape model is 
regenerated by the receiving system. 

3. Regarding requirements, the implicit approach is preferable and can be de-
tailed to a structure-oriented exchange method. This method consists of two 
elements:  

• A method for a system neutral representation of CAD model data, and 

• A corresponding model transfer strategy supporting the actual data trans-
mission process. 

Both elements of the structure-oriented exchange method will be developed in the 
following chapter.  
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4 Concept of a Structure-Oriented 
Exchange Method 

4.1 Characteristics Definition for a Structure-
Oriented Exchange Method 

In the preceding chapter, the objective of this dissertation has been defined as the 
development of a structure-oriented method for CAD model exchange. Requirements 
have been formulated from a business-perspective. This chapter deals with the 
development of a concept for the new exchange method. Firstly, central challenges 
are analysed by defining and discussing the characteristics of a structure orientation 
and by mapping requirements from a business into a technical view.  

In the following sections, two general approaches to a structure-oriented CAD model 
exchange are developed from which one is selected according to technical require-
ments. A detailed model representation concept is developed for this approach. A 
subsequent definition of representative exchange scenarios leads to the development 
of model transfer strategy for the new exchange method. Finally, these individual 
conceptual parts will be synthesized to an overall technical concept for the realisation 
of a structure-oriented method for the exchange of CAD model data. 

The two main aspects of the new exchange method have already been mentioned:  

1. A model representation schema or data structure, i.e. a set of data objects and 
interdependencies between these objects, that in its whole represent the CAD 
model content outside the system’s environment; 

2. A model transfer strategy, including algorithms for converting the system 
internal from and to the system neutral model representation, a technical 
infrastructure for the interconnection of CAD systems and for transportation 
of model data streams between the systems involved in the exchange process. 

In this context, the two most important requirements on the new exchange method, 
namely the conservation of product shape and the guarantee of later model 
alterability, primarily have influence on model representation. Thus, model 
representation is in the focus of the following discussion.  

Conservation of product shape is a general requirement on every exchange method 
for CAD model data and has always been the main concern in the development of 
standardised exchange formats. As product shape defines the result of later 
manufacturing processes in terms of the physical border of a work piece, its 
dimensions, position, surface quality, etc., it quasi constitutes an invariant element in 
data exchange. From the shape representation perspective, this demands for the 
ability to regenerate a shape model with an alike – but not necessarily identical – 
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outer b-rep structure. A corresponding CSG structure may also differ from the 
original. This “alike” shape model shall be referred to as the resulting shape.  

For a discussion of the second main requirement, the guarantee of model alterability 
within the receiving system, CAD capabilities for product modelling may be 
illustrated (Figure 4-1). The CAD system enables the user to create or delete shape 
generating or shape manipulating features, to define feature parameter values and 
constraints, and to order features within the feature structure of the part by the aid of 
Boolean operations. Considering the CAD system’s internal model representation, as 
generalised in the state of the art discussion, modelling operations and alterations of 
corresponding internal representation elements can be identified, as summarised in 
Table 4-1.  

 

 

 

Figure 4-1 General CAD product modelling capabilities 
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CAD Modelling Operation  Corresponding CAD Model Elements 

Create, delete model entities: 
Create a new assembly or part model, insert 
parts or features, coordinate systems, etc.  

Assembly, part, feature entities, auxiliary 
geometry, coordinate systems 

Reposition model entities:  
by direct positioning via translation or 
rotation with respect to coordinate systems 
or by indirect positioning via adjacency 
relationships of topological entities (mating 
faces, collinear edges, equal or opposed 
directions, etc.) 

Coordinate systems, part mates, auxiliary 
geometry, transformation matrices  

Modify parameter values of model 
elements, i.e. alter parameter values of one 
specific model element 

Part, feature parameters, part mates, shape 
dimensions and distances, constraints on 
part / feature parameters 

Alter element spanning constraints, i.e. 
change value of parameters defined 
independently from any specific element; 
define constraints spanning parameters of 
various elements 

Feature and part independent parameters, 
constraints including parameters of more 
than one feature / part 

Alter input references, e.g. redefine the set 
of edges to be blended 

Features, feature parameters, auxiliary 
geometry, sketches 

Change Boolean / CSG operations in 
elements hierarchy to arrange shape to be 
united or subtracted  

Change semantic sign of Boolean 
operation on features / parts 

Table 4-1 Correspondence of CAD model modifications with internal representation 

 

An exchange method guaranteeing that an imported model is fully alterable by the 
user must represent all necessary elements that corresponding modelling operations 
rely on. An overview of possible modifications to a CAD model and effected 
representation elements is given in Figure 4-2. In any case, modifications to product 
shape are performed via alterations to high-level model entities, namely to either 
feature parameters or to the feature structure within the part model. Modifications to 
an assembly model are realised through alterations to the part structure, analogously. 
Specifically, the position of shape elements, dimensions, parameter values, and 
feature internal constraints are part of and are altered via feature attributes. Feature 
spanning constraints, position of and Boolean operations on features within the 
structural tree are managed and modified through the part structure. Shape model 
elements are only addressed directly when they have been explicitly defined by the 
user, e.g. sketched curves as a basis to extrude or revolve features. A modification of 
these elements is usually initiated through the corresponding feature. The same 
applies to curves for loft and sweep features and for shape manipulating features 
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creating blends or chamfers to a given set of edges. Apart from these exceptions, the 
b-rep structure is altered through variation of feature parameters. 

It can be noted that CAD modelling operations performed by the user generate a 
high-level management structure. The instantiation of this structure results in the 
generation of the corresponding product shape. It can further be noted that all 
modifications to the CAD model are initiated through the same structural model 
elements, whereas the shape model is not subject to direct modifications. Exceptions 
are explicitly generated of referenced shape entities.  

It can be concluded that these structures must be part of a system neutral representa-
tion in order to guarantee for alterability of the imported model and of product shape 
in particular. This prerequisites the representation of such structures in a system 
neutral form that is compatible with the wide range of CAD system internal 
representation mechanisms – or can at least be mapped onto them. This does not 
necessarily mean that the original model structure needs to be represented 
completely. Considering the objective of this dissertation, it is sufficient to represent 
only those model entities that are necessary for a regeneration and modification of 
the product model.  
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Figure 4-2 Correspondence of CAD model modification to internal representation 
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Regarding the actual semantic content and structural condition of a specific product 
model, it may be considered that not all imaginable modifications are sensible, and 
are supported by the CAD system only in certain circumstances. For instance, the 
system will probably allow the user to delete or suppress a feature which later 
modelling operations depend on, but will not be able to generate a proper shape 
model. Adjustments to dimensions and other feature parameters may result in 
inconsistencies and unpredictable behaviour of the shape model, usually due to 
implicit geometric constraints.  

It is not the aim of an exchange method to heal inconsistencies of product models. 
Neither is its aim to enlarge the product modelling capabilities within the receiving 
CAD system. This leads to a hypothesis for the development of a new exchange 
method: 

1. The product model to be exchanged is consistent within itself according to 
the internal representation of the sending system.  

2. Alterations to the imported model are limited to the modelling capabilities of 
the receiving system. It is assumed that these alterations are meaningful 
according to the system internal model management structures and algo-
rithms, i.e. they are performed without failures. 

Summarising the characteristics of a new exchange method discussed above, the 
following system of concepts shall be defined as shown in Figure 4-3. The 
conservation of product shape requires the regeneration of a resulting shape 
representing the product’s outer appearance. In that sense the new exchange method 
is to be shape preserving, i.e. is to transfer the resulting shape unchanged. 
Furthermore, the new exchange method must be structure preserving, i.e. it needs to 
be capable of representing and transferring the model structure allowing for later 
alterability within the receiving system. The combination of the latter two character-
istics shall be referred to as structure orientation. The new exchange method will 
therefore be referred to as a structure-oriented exchange method. 

 

 

 

Figure

 

structure-oriented : = structure preserving  Λ shape preserving 

structure preserving : = representing and transferring a model 
structure that allows model alterations 

shape preserving : = transferring the resulting shape unchanged 

resulting shape : = subset of the product shape determining its
outer appearance 
 4-3 Characteristics of a new method for the exchange of CAD model data 
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Having defined the characteristics of the new exchange method, the objective of this 
dissertation can be re-formulated as the development of a structure-oriented method 
for the exchange of CAD model data.  

According to this objective, the requirements to this exchange method, as defined in 
section 3.3, can now be converted into a technical specification (Table 4-2). At this 
point, only model representation aspects are considered. Requirements regarding the 
model transfer strategy will be discussed in section 4.5.1.  

 

Business Requirements Technical Requirements 

Retain design results: 
Guarantee for product shape to be 
transferred in its full spectrum and 
unaltered 

Preserve resulting shape: 
Guarantee for resulting product shape to 
retain in its outer form, dimension, position 

Enable model alterability:  
Guarantee for fully alterability of imported 
model within receiving CAD system 

Provide model structure: 
Transfer a model structure as a means for 
fully alterability of assembly and part 
models  

Shorten engineering cycle times: 
Reduce amount of time spent for non-
creative jobs, i.e. for data exchange and 
manual rework of imported models 

Shorten data exchange time: 
Minimize effort for manual model 
regeneration / post-processing after import 

Reduce data traffic: 
Reduce file or equivalent data stream in 
size and transfer time 

Reduce processed data volume: 
Reduce number of data bytes (compressed 
or exempt from white-spaces) 

Support multi-CAD part library: 
Enable central administration of one part 
library for multiple CAD systems 

Provide CAD independent feature 
specification: 
Provide standardised features; enable 
specification of user-defined features 
(UDF)  

Maintain design systematics: 
Transfer parametric and semantic model 
content 

Maintain model systematics: 
Support shape generating, shape 
manipulating, shape neutral, shape 
independent (semantic) features; transfer 
feature parameters and model constraint 
systems 
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Support multi-disciplinary design: 
Support distributed mechanical, electrical, 
hydraulic design (horizontal alterability)  

Support iterative process chains: 
Support data loop-backs between 
conceptual and embodiment design and 
technological planning (vertical alterability)

Support CA model exchange: 
Enable regeneration of basic CAD model 
content to support design changes (at least 
minor ones) in e.g. ECAD systems  

Support selective model analysis: 
Enable CAD model analysis with focus on 
special information types, e.g. on surface 
quality as a basis for technological planning 
or cost analysis  

Enable selective model analysis:  
Provide means for identification of model 
entity types and content specific model 
analysis; enable selection of model subset 
for regeneration 

Table 4-2 Requirements on the structure-oriented model representation from business and 
technical perspective 

 

4.2 Development and Discussion of Two 
General Methodical Approaches 

4.2.1 Introduction of Two Approaches 
After identifying the technical objective of this dissertation as the development of a 
structure-oriented exchange method, general approaches shall be discussed in this 
section.  

In the state of the art summary, a so-called macro-parametric approach to data 
exchange has been named. CHOI ET. AL. propose a realisation that has long been 
discussed as the idea of a history-based data exchange. The idea is to protocol user 
interactions with the CAD system in log-file while he is modelling a product. This 
log-file can then suite as an input for a model regeneration algorithm.  

There are several reasons why such a history-based logging mechanism is not 
sufficient for a structure-oriented data exchange method. At first the basic 
instruments of a CAD system’s history has to be considered: Many systems generate 
a report of user interactions, i.e. a sequence of user interactions with the graphical 
interface. This sequence is usually stored in an operation list, or log-file, and 
represents the design history of the CAD model. The initial purpose of such a model 
history is the support of the CAD system’s undo and redo functions. It contains all 
user actions including those that may have emerged from design mistakes and forced 
the user to delete and redesign significant parts of the model. It also contains 
selections, such as picking of edges as an input for a blend operation. In the case of a 
redo call, literal inputs, like object names and parameter values, are newly requested 
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from the user and are not consistently stored. Consequently, a re-processing of a 
history file is not possible without the user’s assistance. 

Another aspect is essential for the idea of using such a history file as a means for data 
exchange. User interactions as recorded according to the system’s modelling philoso-
phy. The kind and structure of a history file strongly depends on the internal 
modelling mechanisms and specifically on the level of granularity the system allows 
for atomic user operations, regarding e.g. input options and menu hierarchy. All 
modelling operations invoke internal procedures that the system provides to the 
interface. This set of procedures varies with the different “look-and-feel” concepts of 
commercial CAD systems. Furthermore, the set of available modelling procedures is 
usually not distributed to the public and is therefore of doubtable value for the 
development of standardised exchange methods.  

It can be summarised that an approach to CAD model exchange that makes use of a 
history file, storing user modelling interactions with the system’s graphical interface, 
is afflicted with technical problems and fundamental incompatibilities. It is also 
doubtful that these incompatibilities can be harmonised as part of a standardisation 
process.  

There are two possible approaches to a structure-oriented method for the exchange of 
feature-based CAD models that shall be introduced and discussed in the following:  

1. A shape-centred approach that makes use of standardised shape 
representation techniques provided by the STEP methodology and adds 
further structural information. This idea shall be referred to as the explicit 
approach. 

2. A feature-centred approach that makes use of the structured feature model 
representation as the central information of a CAD model. It aims at solely 
exchanging the feature model and leaves the regeneration of the shape model 
to the modelling facilities of the receiving CAD system. This approach shall 
be referred to as the implicit approach.  

 

4.2.2 The Explicit Approach 
The explicit approach is based on the state of the art in CAD model representation. 
As summarised in chapter 2, STEP data models available today are basically shape-
centred and provide a snap-shot of the model at exchange time. Several data 
structures must be added to the standardised shape model in order to achieve the 
characteristics of a structure-oriented exchange (Figure 4-4).  

Analogously to the generalised CAD model architecture, an assembly model, a part 
model and a shape model is to be represented with uni- or bi-directional associations 
between their entities. These associations have to be represented at export time and 
re-established at import time.  
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On assembly level, a part structure model F (A,…,Z) is required representing a 
hierarchy of parameterised parts and assemblies. Positioning information and a 
system of part spanning constraints is also included. The representation of a part 
model requires a feature structure f (A,…,Z) with parameterised features as design 
elements and Boolean operations as structural elements. Positioning information and 
a system of features spanning constraints is necessary analogously.  
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Figure 4-4 Explicit model representation 

 

The representation of the corresponding shape model g (a,…,z) is shown in 
Figure 4-5. A feature structure of a part P can be understood as a tree-like hierarchy 
of instantiated design feature objects Fi in a certain status with a corresponding shape 
g (Fi). Every inner node Bi of this structure represents a design step with a 
corresponding resulting shape model g. Every additional inner node B results in a 
new shape model. The final part model results in the final shape model g (P).  
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Figure 4-5  Explicit shape model representation strategies 

 

In order to be alterable, the resulting shape model for every design step g (Bi) must 
be available. The simple representation of the resulting shape model, as provided by 
e.g. STEP data formats, is insufficient. Two strategies can be identified, to guarantee 
that every shape model status can be referenced:  

1. An incremental shape representation strategy, or 

2. An absolute shape representation strategy.  
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The incremental strategy represents the resulting shape model g (P) and additionally 
stores the shape generated by every single feature g (Fi). This way, an algorithm can 
compute the intermediate design steps. The absolute strategy represents a complete 
shape model for every design step g (Bi) so that it can be addressed directly.  

The explicit approach to structure-oriented data exchange altogether has the advan-
tage of availability of shape representation data formats. STEP part 42 and 
corresponding protocols such as AP214 can be applied. Schemas for the 
representation of constraints are under development. On the other hand, a suitable 
representation for features and feature structure is not available.  

The main disadvantages of the explicit approach is the great shape representation 
effort. Both the incremental and the absolute shape representation strategy suffer 
from a strategic inconvenience: the shape models must either be represented or 
computed which is costly in either file size or exchange time. Independent from the 
chosen strategy, the resulting data volume will significantly extend the size of 
conventional STEP files.  

Another disadvantage can be identified in the unification of system internal model 
representation strategies that would be the result of a standardised explicit data 
model. Experiences from the development and application of STEP AP214 proces-
sors have shown that the specification of a representation schema constitutes a 
unifying abstraction of the system internal data model – with the natural incompati-
bilities that such an abstraction always results in. The history of commercial AP214 
processor benchmarks highlight the great difficulties in overcoming these incompati-
bilities [134], [135]. This problem will principally be aggravated when structural 
representation schemas for the feature models are specified whose data items are 
strongly associated with the shape model. Constraint systems and positioning 
mechanisms must also be included. A standardisation of these schemas is compara-
ble with the standardisation of the complete system internal modelling algorithm. 
This in itself appears to be an enormous challenge.  

4.2.3 The Implicit Approach 
Compared to the explicit approach to structure-oriented data exchange the implicit 
approach operates the opposite way: it does not aspire to represent the complete 
CAD model including feature structure and shape model. Instead, it aims at 
transferring as much information as possible with the smallest data volume possible.   

The central idea emerges from the discussion about design capabilities for model 
generation and modification in section 4.1. It has been identified that high-level 
model structures, i.e. feature model and structure, are those elements of the CAD 
model that are affected by user modifications. It has also been noted that these model 
structure are the same elements, which are generated while the product is initially 
modelled. This leads to the conclusion that the system neutral model representation 
can be limited to these high-level structures, whereas representation of the actual 
shape model content is obsolete.  



44 Structure-Oriented Exchange of Product Model Data 
    
 
As shown in Figure 4-6, an implicit exchange of a part model requires the representa-
tion of the feature model, i.e. feature structure, features, and constraint system. 
Positioning information and feature parameter values are part of the feature 
information. Only this high-level information is transferred to the receiving system, 
whereas the regeneration of the resulting shape model is complete left to its own 
modelling capabilities, similar to the original design operations invoked by the user. 
Associations between part model and shape model entities are established 
automatically by the receiving system.  

On assembly level, part structure and additional features, part spanning constraints 
and positioning information must be represented. At that point, the necessary effort 
does not essentially differ from the explicit exchange.  

The main challenge of the implicit approach lies within the representation of shape 
entities that were directly modelled by the user or are directly referenced by a shape 
manipulating feature, as identified in chapter 2. If shape information is not subject to 
data exchange, an alternative mechanism must be found. This specialty will be 
discussed in section 4.3.4. At present, it may be stated that explicitly represented 
shape elements can well be handled within an implicit exchange method. 

An advantage of the implicit approach is the comparably small amount of necessary 
data sets. As the shape model is not part of the neutral model representation a 
significant reduction of transferred data volume can be expected. Another advantage 
is the high abstraction level of the corresponding representation schema. As the 
number of high-level model entities is comparably small to the number of shape 
entities, a harmonisation can be limited to a relatively small section of CAD 
modelling capabilities.   

In general, the strategy of the implicit approach is to make optimal use of the CAD 
system’s modelling capabilities instead of limiting them due to a rigid harmonisation.  
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Figure 4-6 Implicit model representation 

 

4.2.4 Comparison and Selection 
After introducing the implicit and the explicit approach to structure-oriented ex-
change, both approaches are to be assessed. This will provide a basis for a selection 
of one of these two approaches for a detailed conceptual development. The technical 
requirements on model representation, as set up in section 4.1 (Table 4-2), suite as 
assessment criteria. Requirements regarding aspects of model transfer have little 
influence on the assessment. These will be discussed in section 4.5. 

Table 4-3 shows an assessment of the implicit and explicit approach considering 
these technical requirements. Advantages towards one or the other approach are 
marked by an emphasis of the corresponding table cell.  
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Technical Requirements Implicit Approach Explicit Approach 

Preserve resulting shape Capable Capable 

Provide model structure  Capable,  
comparably little effort 

Capable, 
comparably high effort 

Shorten data exchange time Capable Capable 

Reduce data volume 
processed 

Promising Inferior 

Provide CAD independent 
feature specification 

Capable; UDF specification 
is method immanent 

Set of feature types not 
open; UDF specification 
complicated 

Maintain model systematics Capable; shape 
manipulating features 
probably complicated 

Capable 

Support CA model 
exchange  

Suitable, promises little 
compatibility problems at 
level of feature structure  

Less suitable, promises 
heavy incompatibilities at 
shape model level  

Enable selective model 
analysis 

Promising, as structural 
information drives shape 
model 

Nearly impossible, as 
structural information 
depends on complete shape 
model  

Table 4-3 Comparison of explicit and explicit approach considering technical requirements 

 

A comparison of the approaches shows that, in principle, both ideas are capable of 
realising a structure-oriented exchange. Both approaches are also capable of reducing 
the effort for manual rework after model import and thus of shortening data exchange 
time. The explicit approach has the advantage of an easy access to shape information, 
be it directly or indirectly generated. The implicit approach has major advantages 
regarding the resulting file size and further feature based exchange functionality.  

The resulting data volume that needs to be transferred between engineering systems 
is one of the most important criteria. An implicit exchange method promises to 
decrease the data volume significantly. Compared to today’s technology, an explicit 
data exchange will even increase data volumes. Regarding common complains from 
applying industry about unmanageably huge STEP files from large designs, this 
becomes a crucial disadvantage of the explicit approach.  

Regarding the effort for establishing and standardising high-level feature based 
model representation mechanisms, the implicit approach promises higher efficiency. 



 Concept of a Structure-Oriented Exchange Method 47 
    
 

Outside the scope of CAD model exchange this advantage is a prerequisite for the 
ability of integrating other CA systems. A realisation of selective data exchange is 
rather uncomplicated, whereas for an explicit exchange it seams almost impossible.  

Summarising, with respect to technical requirements fundamental advantages can be 
identified for the implicit approach. It is therefore chosen as the solution and subject 
to detailed conception for a structure-oriented exchange method.  

4.3 Development of a Structure-Oriented 
Model Representation 

4.3.1 Elements of an Implicit Model Representation  
Conceptual development of a structure-oriented model representation following the 
implicit approach starts with a detailed discussion of CAD model content. Necessary 
elements of a neutral representation schema can be derived from generalised CAD 
modelling and representation mechanisms, as sketched in section 4.2 (Figure 4-7): 

1. A part structure contains main information at assembly level. 

2. At part level, design elements of a CAD model have to be characterised: 
feature objects carry semantic and shape-related information; a set of feature 
types has to be specified as part of a feature library concept. 

3. A representation must be defined for the structural information of the part 
model: the feature model structure.   

4. A clarification is required about which shape model elements need to be 
transferred, and a concept is needed for their representation. 

5. The representation of parameter values, constraints and constraint systems 
needs conceptual care. Specifically, compatibility of different constraint 
solving mechanisms requires special attention.  

6. The ability of specifying user defined features (UDFs), i.e. application 
specific features designed by the user for later reuse, has an impact on the 
part model representation.  

7. Finally, representation of free-formed shape and features that generate such 
shape require a separate discussion.  
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Figure 4-7 Central elements of an implicit CAD model representation 

 

A representation of an implicit structure-oriented CAD model consists of an 
assembly model, a part model or a representation for single shape elements. A 
separate shape representation may optionally be part of an assembly or part model 
(Figure 4-8).  
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Figure 4-8 Structure-oriented model representation schema 

 

4.3.2 Unified Feature Library 
Within the conceptual discussion, a feature is considered the central design element 
in the sense of the generalised definition in VDI Guideline 2218 (see section 2.1.1), 
as it offers the most flexible understanding of feature technology and covers the 
capabilities of today’s CA systems. CAD systems that are not feature-based have 
been excluded from the scope of application of this dissertation. The realisation of an 
exchange method for feature-based CAD models has to consider the different sets of 
feature types provided by various feature modellers.  

In principle, all these feature types define the modelling capabilities of a CAD 
system and must therefore be considered by a standardised exchange format. As a 
prerequisite for shape model exchange, the STEP community has harmonised a set of 
shape model entities in part 42. Analogously, harmonisation of a set and structure of 
feature types as a basis for a structure-oriented exchange method is proposed, in the 
following referred to as a unified feature library. 

The elements of this library have to be specified in a harmonising and system neutral 
manner in order to guarantee that feature objects can be instantiated with identical 
effects on the resulting shape models. As it cannot be purpose of an exchange 
method to transfer modelling capabilities between CAD systems, the unified feature 
library is limited to those features common to a broad variety of CAD system. 
Features that require modelling algorithms, which in this specialty is unique to few 
systems, may in fact be standardised but will probably not be supported by other 
systems.  
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A transfer of missing modelling functionality from one CAD system to another as 
part of the data exchange is admittedly imaginable. This would require the 
standardisation of a system interface, i.e. API functionality at shape modelling level 
and a transfer of high-level functions as a sequence of low-level API calls, e.g. as a 
binary library or as a interpretable algorithm coded in a formal language. Research 
work has been undertaken in this direction and has indeed shown first hints of 
feasibility [136]. Nevertheless, this approach is not subject to further conceptual 
discussion.  

The most suitable of existing approaches to a unified feature library can be identified 
in STEP part 111. Standardisation within ISO 10303 ensures general applicability. 
Furthermore, these concepts are closest to the capabilities required for a structure-
oriented exchange method. As a matter of efficient specification, features sets should 
be grouped in conformance classed according to their scope of application, e.g. basic 
design feature, mould and die design features, rotational and prismatic machining 
features, piping features, and further more. This enables the standardisation 
community to develop feature sub-libraries in parallel to the advancement of 
commercial CAD system’s modelling capabilities.  

Following RIEGER’s classification, elements of a unified feature library can be 
grouped in shape generating, shape altering, shape neutral and shape independent 
features. Since the implicit approach generally does not exchange the actual shape 
information resulting from feature modelling operations, the instantiation of features 
has to produce deterministic effects on the shape model. This presupposes an 
appropriately meticulous specification of shape-related library features. At least the 
following properties have to be specified for every feature type: 

• A graphical and literal description of the resulting shape produced at feature 
instantiation time; 

• A type and name declaration;  

• The origin of its local coordinate system relative to the world coordinate 
system;  

• Its orientation in space; 

• A set of attributes that determine dimensions, and other shape behaviour; and 

• A Boolean operand stating whether the resulting shape can be added or 
subtracted from an existing solid.   

 

Figure 4-9 shows an exemplary description of a form feature producing a rectangular 
block with given dimensions at a given position in space.  
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Figure 4-9 Form feature representation – specification of a block feature 

 

Numerous approaches can be applied for the representation of shape generating form 
features creating shape primitives or pattern-like instances in multiple and given 
positions. Specifications of shape primitives and form-features found in STEP 
part 42, part 48, AP214, AP224, and within in CAM-I and Part-Library are to be 
harmonised and enhanced by mechanisms for representation of arbitrary parameters 
and constraints. 

The semantic content of a feature can cover a large variety of information. Generally, 
the ability of features to recognise themselves, and the shape entities it created, as a 
modelling unit may be understood as the first level of semantic content. Any other 
information stored as semantic attributes of a feature usually is dependent on its 
design purpose and on the philosophy of the application module of the specific CAD 
system. In this way, semantic content and corresponding modelling functionality are 
somewhat special, if not unique, to the CAD system and therefore difficult to 
harmonise. On the other hand, the industrial need to exchange this particular infor-
mation among a broad variety of CAD systems will assumedly be negligible.  

At exchange time, feature instances have to be described in a way that allows the 
receiving system to regenerate a corresponding feature instance within its own 
modelling environment. Feature type, name, parameter names, values and value 
defining constraints, local position, are obligatory attributes. Feature spanning 
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constraints are represented within the part model. Preferably, a feature instance 
representation is independent from a specific type of feature and feature attribute. An 
example for a representation of a block feature instance is shown in Figure 4-10.  

 

<featureNode isAlive="true" isSuppressed="false" name="BLOCK">
<coorsys>
<origin>

<x>0</x>
<y>0</y>
<z>0</z>

</origin>
</coorsys>
<expression>
<pair name=“LENGTH" type=“dimension” value="100"/>
<pair name=“DEPTH"  type=“dimension” value="100"/>
<pair name=“HEIGHT" type=“dimension” value="100"/>

</expression>
</featureNode>  

Figure 4-10 Example of a block feature instance in XML notation 

 

4.3.3 Feature Model Structure Representation 
Central challenge of an implicit exchange is the representation of the feature model 
structure in which features are only one type of element. Feature instances are 
combined to a hierarchical construction that constitutes the logical behaviour of a 
design. To find a representation schema for this feature structure, adequate elements 
have to be identified.  

Considering the CAD system internal modelling mechanisms at part level, as 
generalised in section 2.1.1, a feature structure can be recognised as a binary tree. 
The elements of this tree are:  

• The root node, representing the modelling result for the part; 

• Inner nodes, representing a combination operation on the sub-branches or leaf 
nodes of the tree;  

• Leaf nodes, i.e. feature objects.  

 
This tree structure principally resides in every feature modeller, even though the 
appearance of its presentation to the user may differ. In some systems, the feature 
structure is reduced to a linear list, in which the inner combining nodes are not 
shown. The features are still combined in a Boolean manner.  
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The representation itself is equivalent. An example of a feature model tree structure 
is given in Figure 4-11.  
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Figure 4-11 Example of a feature model tree 

 

Feature nodes contain all information belonging to or associated with a feature 
instance as discussed in the previous section. The feature model automatically 
represents both structural and semantic information, which is an elegant consequence 
of the feature-based approach. Inner nodes combine these features by applying 
structural operations. Structural nodes may perform a 

• Unite, 

• Subtract, 

• Intersect, or 

• Modify 

operation. The type of operation corresponds to the effect on the resulting shape 
model. New shape entities are added to or subtracted from the part. Else, the final 
shape results from a shape intersection or from the modification of the original shape 
by a shape manipulation feature applying, e.g. rounds, fillets or chamfers, to the part. 
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The structural operations are similar to CSG operations at shape modelling level, 
apart from the fact that they are applied to features and do not necessarily carry out a 
CSG operation. In the case of a shape neutral or shape independent feature, a unite 
operation has no effect on the resulting shape; it simply adds the feature to the tree. 
An illustration of the part model representation schema is shown in Figure 4-12.  
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Figure 4-12 Example of a feature model tree 

 

Some additional aspects of feature structure representation shall be mentioned. The 
position of a feature is part of the feature representation. Nevertheless, a part may 
have additional coordinate systems next to the global or world coordinate system. If 
a feature is located relatively to one of these origins, the corresponding association 
has to be represented within the feature. Definition of feature spanning constraints 
and constraint system solving is discussed below. Feature instantiation is performed 
by the import processor according to the numerical parameter values.  

Another challenge emerges from the fact that some CAD systems do not totally 
support hybrid shape models in which b-rep and CSG functions are allowed; the 
Pro/Engineer system is one example. Pro/Engineer does not allow the existence of 
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more than one solid within a part model, which automatically prohibits CSG-like 
modelling. Instead, shape must be added via a protrusion or revolve operation based 
on a sketch that must reside on the part’s surface. At feature level this leads to a one-
sided tree.  

A prerequisite for alterability of an imported part model is the adequate association 
of feature and shape model entities. Only if resulting shape entities can be identified 
from single feature objects, and only if the corresponding feature can be identified 
from a selected shape entity, the part model is fully operational and can be modified 
by the user. The central idea of the implicit approach is the regeneration of the shape 
model through the feature model. The complete shape model is generated via feature 
instantiation and combination operations. As these processes are invoked using 
native, i.e. internal, modelling mechanisms, it can be presumed that all necessary 
associations between feature and shape model entities are also generated. This 
mechanism is therefore inherent in the implicit approach.  

4.3.4 Shape Representation 
Generally, the concept of a unified feature library specifying the resulting shape for 
every feature type guarantees that every CAD system implicitly regenerates an 
identical resulting b-rep model. As the structural elements of the feature model 
structure are also well defined, one of the two major requirements to a structure-
oriented exchange, the conservation of the resulting shape, is fulfilled.  

Two exceptions to the implicit shape regeneration have already been mentioned: 
shape elements that where either explicitly defined as a basis for shape generating 
features, or that are explicitly referenced as an input for shape manipulating features. 
In order to illustrate the actual challenge of explicitly represented shape elements 
within an implicit exchange method, these two cases shall be explained before 
possible solutions are discussed.  

Various shape generating features require shape elements as an input information 
that the user has to model explicitly. Examples are protrusion and revolve operations, 
creating a solid from a loop of edges within a plane. A sweep feature generates a 
surface by “moving” a curve in space along another curve; both curves have to be 
defined explicitly by the user. Figure 4-13 shows the example of a part model 
designed with the SolidWorks system. A collar is created by a revolve feature with a 
revolve angle of 360 degrees and based on a planar sketch of a closed edge loop. The 
representation logic is illustrated in a procedural notation of the function call creating 
a revolve feature with given parameter values and sketched edges.  

It is obvious that these explicitly defined shape elements require explicit representa-
tion, as they were not created by a feature. Fortunately, representation of 2D sketches 
and arbitrary curves in space is a solved issue. The STEP technology provides appro-
priate schemas, e.g. in part 42 that can be applied without modification. Concepts of 
part 108 will add the necessary schema for parameterisation and constraints.  
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edge_1 := edge (vertex_1, vertex_2); 
…
edge_24 := edge (vertex_24, vertex_1); 
sketch_info := closed_sketch (edge_1,…,edge_24);
rev_angle := 360; 
axis := line (point1, point2);
feature collar := feature_revolve (rev_angle, axis, sketch_info);

Baumann 2004

edge_1 := edge (vertex_1, vertex_2); 
…
edge_24 := edge (vertex_24, vertex_1); 
sketch_info := closed_sketch (edge_1,…,edge_24);
rev_angle := 360; 
axis := line (point1, point2);
feature collar := feature_revolve (rev_angle, axis, sketch_info);

Baumann 2004Baumann 2004

 
 

Figure 4-13 Solid generation from explicitly defined shape and revolve feature 

 

Different from shape generating features, those features that manipulate the existing 
shape model do not refer to shape elements the user explicitly defines. Instead, they 
refer to any set of existing shape entities as an input to the modelling operation they 
carry out. Blend and chamfer features are the most common examples. When 
choosing a blend feature to round one or several edges, the user manually picks these 
edges out of the part presented by the graphical interface. In terms of modelling 
commands, elements are selected from the graphical presentation of the shape model. 
System internal mechanisms derive the corresponding shape representation items and 
establish an association to these items as an input for the blend feature.  

Apart from the fact that the persistence of these associations within system internal 
representation is still an open issue (see section 2.1.1), for model exchange purposes 
a mechanism is needed capable of uniquely identifying those shape elements that are 
explicitly referenced from shape manipulating features. The challenge is to find an 
identification mechanism for shape model entities that, due to the implicit character 
of the chosen approach to structure-oriented exchange, shall not be represented.  
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There are basically three approaches to this challenge: 

1. Representation of feature shape elements; 

2. Identification via persistent IDs 

3. Identification via coordinate referencing. 

When using PDGL as a means for the specification of feature type, RIEGER tackled 
the same questions. Using the ACIS modelling engine for feature instantiation within 
the FEAMOS system, he chose topological faces as the lowest level of feature shape 
representation. For shape manipulating features, lower-dimensional elements, i.e. 
edges and vertices, where calculated from intersections of these faces. Disregarding 
that representation of faces is not compatible with the idea of implicit model 
exchange, the mechanism is insufficient for other reasons: Not in all cases does the 
intersection of two-dimensional shape result in exactly one edge or vertex. For 
example, the intersection of a plane and a cylindrical face, with the middle axis of the 
cylinder being parallel to the plane face, may have none, one, or two resulting edges; 
in the latter case, the system might identify the wrong edge. There are further 
examples leading to the conclusion that calculation of lower-level topological entities 
from intersecting higher-dimensional ones is no sufficient approach [89].  

As a solution to the persistent naming problem, i.e. the persistent identification of 
topological elements, naming convention mechanisms have been proposed (see 
section 2.3). These mechanisms address the scope of system internal model 
representation. They are based on the prerequisite of being executed as part of the 
system’s internal modelling engine and thus having access to all representation items 
and structure. For model exchange the situation is different. A naming algorithm 
must be deterministic even outside and without having access to the system’s 
management environment. Furthermore, a naming algorithm for implicit exchange 
must identify shape elements that are not actually represented.  

Figure 4-14 illustrates the application of a persistent naming algorithm according to 
HOFFMANN / CHEN [130]. A round feature is applied to a block that has already been 
“named”. The round feature refers to an edge identified as V3 according to the 
system’s internal naming convention. For model import, a processing engine must be 
able to identify this edge without the corresponding shape representation. This 
presumes a standardised naming algorithm that allows ID mapping from and to 
system internal representations. Unfortunately, it is most presumably impossible to 
standardise persistent naming algorithms for CAD system because they strongly 
depend on the shape representation philosophy, which, in return, strongly varies with 
the internal shape modeller.  
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FB := feature_block (height, length, depth); 
edge_reference := FB.E(V3); 
FR := feature_round (r, edge_reference); 
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Figure 4-14 Persistent naming example for implicit model representation according to [130] 

 

A third approach to identification of shape elements is coordinate referencing. Given 
its type and characteristic position, a topological item can be identified directly 
within a shape model. The characteristics depend on the type of element, e.g. a circle 
is determined by its centre point, the radius or diameter, and a second point residing 
on the circle; a straight edge is characterised by its start and end position. This 
information is sufficient for uniquely defining a topological element within an 
implicit model representation. Nevertheless, for the receiving system it may not be 
sufficient for identifying the element within its internal shape model. Due to 
differences in shape generation or numerical accuracy, the system may not be able to 
identify a specific type of topological entity at the given position.  

Approaches to provide a certain fault-tolerant behaviour are two-fold: The processor 
may search the shape entity within an adjustable neighbourhood and may apply 
topology analysis functions. Entity search with adjustable neighbourhood intervals 
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has been applied successfully in topology healing algorithms for free-formed shape. 
Topology analysis can help in cases where more than one entity is found at the given 
position. For example, only outer edges constitute a valid input to a round feature. 

This intelligent coordinate referencing mechanism will probably not be successful in 
every possible case. Further research will have to be conducted on fault-tolerance 
optimisation. On the other hand, an implementation is possible and appears to 
applicable from the user’s perspective.  

The following conclusions can be made:  

1. In order to support revolve, protrusion and other operations based on explic-
itly defined shape, the corresponding shape entities have to be represented 
explicitly.  

2. Support of shape manipulating features requires special effort for identifi-
cation of shape elements that are not explicitly represented.  

3. Shape identification based on persistent naming algorithms is not a promising 
approach, but subject to further research. 

4. Instead, an intelligent coordinate referencing mechanism is proposed for 
shape identification.   

 

4.3.5 User Defined Features Representation  
Modern features-based CAD systems allow the user to define his own design ele-
ments according to his special requirements and design scope. A designed part may 
be stored and reused as a user defined feature (UDF). Different from pre-defined 
feature types for which a standardisation as a unified feature library has been 
proposed, UDFs must generally be considered as unknown to the receiving system.  

Following the proposal of a unified feature library, user defined features could also 
be subject to standardisation. Various types of features for different design domains 
could be unified by a permanent working group within a standardisation organi-
sation. The resulting library could be published on a regular basis. The idea is both 
ineffective and inefficient. On the one hand, system vendors could hardly be moti-
vated to regularly implement additional import and export processor functionality. 
On the other hand, harmonisation of design domains and corresponding features 
would soon extend the harmonisation effort for pre-defined features.  

If CAD model exchange shall not be limited to pre-defined features, a mechanism 
must be developed that notifies UDFs to the receiving system. Such a UDF notifica-
tion mechanism has to represent and transfer the UDF specification that enables the 
receiving system to instantiate corresponding feature objects.  
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As described in section 2.1.2, the formal languages PDGL and TEBIS were created 
to specify features at type level. These languages can also suite as a means for a 
standardised description of user defined features. A UDF representation is created by 
a post-processor from the CAD system’s internal UDF model. This specification 
noted in a PDGL dialect is transferred to the receiving system and interpreted by a 
pre-processor, which generates a system internal UDF representation. PDGL 
describes feature types at shape modelling level. The application of such a formal 
language requires harmonised shape modelling operations and representation 
mechanisms in order to be compatible with a wide range of CAD systems. In 
principle, a harmonisation can be based on the STEP shape modelling and 
representation philosophy.  

A different idea for UDF notification aims at reproducing the actual procedure of 
feature definition. A user defined feature usually is a part consisting of pre-defined or 
available user defined features. The design procedure is no different from regular 
part design. A UDF consequently consists of a feature model, and it can be specified 
by a normal feature model structure. In other words, UDF representation is equal to 
part representation. The mechanism must be recursive as UDFs may be used for 
further UDF specifications.  

Figure 4-15 shows the example of an electric connector modelled with Unigraphics. 
Variants of the connector shall be designed with different systems. The electric 
interface is standardised and shall be reused. In order to be unique for all subsequent 
connectors, the interface is declared a UDF by exporting the corresponding sub-tree 
of the feature structure.  

A UDF notification, i.e. the transfer of a UDF specification to another CAD system, 
can either be content of a separate data stream or part of the model in which the UDF 
is applied.  

STEP AP214 incorporates two mechanisms for features definition from a shape 
model: a subset of the shape model is declared a feature, which is similar to the idea 
of sub-tree definition, or a feature is declared in advance including its shape 
representation. AP214 provides these mechanisms for the support of shape patters. 
Analogously they are also meaningful for the application of user defined features, as 
UDFs are design patterns on feature level.  
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Figure 4-15 UDF specification via feature model sub-tree definition 
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4.3.6 Parametric Data Representation 
Parameters and constraints are important elements of feature-based design. Objects at 
all levels of the CAD model, assemblies, parts features and shape entities, carry 
attributes that automatically or on the user’s invocation are assigned values. 
Parameters can also result from the calculation of one or several constraints defined 
on one or several parameters. The totality of parameters, constraints or constraint 
system, and resulting values shall be referred to as the parametric model of a part or 
assembly model.  

The parametric model is an important aspect of model alteration. The specific behav-
iour of a parametric model is strongly dependent on the constraint solving 
philosophy the CAD system incorporates, namely fully parametric or variational. 
This behaviour cannot be “transferred”. Nevertheless, the parametric model is the 
modelling foundation and must be represented and transferred as part of a structure-
oriented model exchange. Four challenges can be identified:  

1. Representation of part and feature parameters and values;  

2. Representation of constraints and constraint systems; 

3. Constraint system solution representation and instantiation support; con-
sidering different constraint solving characteristics;  

4. Representation of parametric shape elements and geometric constraints.  

 

The representation of parts and features as parametric entities requires additional 
representation items. Obligatory, the following parameter information must be 
represented: 

• Unique identifier, i.e. an identifier assigned by the system; 

• Name, i.e. an identifier assigned by the user; 

• Type, e.g. numeric, Boolean, string, etc.; 

• Unit, distinguishing e.g. millimetres from inches;  

• Value, i.e. the current result from the last (and consistent) calculation of the 
constraint system or a simple value assignment.  

The unique identifier is specifically important for the representation of constraints. 
An additional name is part of the design semantic and supports human understand-
ing. Type and unit declaration support constraint plausibility analysis. Alternatively, 
the system of units can be represented within the part model header. Basic parameter 
types have already been defined by the STEP methodology. A reference type of 
feature attributes is needed for the association of shape elements with a shape 
manipulating feature, e.g. a blend feature will contain a “shape entity list” of edges 
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and vertices to be blended. Also, revolve or protrusion features will refer to a 
“sketched curve” as an input their modelling operation.  

A constraint defines a formal mathematical interrelationship of variables by 
formulating a computable term. A constraint system consists of a list of constraints. 
Variables in a part model are either feature parameters or freely defined variables. A 
system neutral representation of a parametric model consequently consists of a list of 
feature independent variables and the list of constraints at part model level. Grammar 
and syntax for constraint model representation can be defined in accordance with, 
e.g. STEP part 108 [88]. The mechanisms for referencing shape parameters within a 
constraint are principally equal to those needed for referencing feature parameters.  

The main challenge in exchanging a parametric model is to guarantee that the 
transferred system of parameters and constraints can be managed by the receiving 
system. To “manage” in this connection means the ability to represent the imported 
constraint system and to calculate an appropriate solution. The solution is appropriate 
when it results in the original values of parameters and variables, and when feature 
instantiation induces the original resulting shape model.  

At this point, the CAD system’s parametric modelling philosophy is the crucial 
aspect. Main characteristics of fully parametric and variational constraint modelling 
and solving have been introduced as part of the state of the art summary in 
section 2.1.1. The possibility in variational modelling to define undirected constraints 
and to compute a numerical result from the complete constraint system is only partly 
compatible to fully parametric design. In principle, four cases have to be discussed 
for the exchange of parametric models:  

Case 1 – fully parametric to fully parametric:  
The constraint solving result is dependent on the order in which constraint are 
defined and solved. Consequently, model import, constraint representation 
and model import must retain the original order. Computed results can be 
compared with the original values to ensure appropriate exchange results.  

Case 2 – variational to variational:   
It shall be assumed that generation of over-defined constraint systems is 
inhibited by the variational constraint modeller. Well-defined constraint 
systems have exactly one solution. In order to ensure that this solution is 
found by the receiving system, representing the original solution is helpful in 
the case of different solving strategies. The most common situation is an 
under-defined constraint system, which has theoretically infinite, but in 
practice at least a large number of solutions. Here, the representation and 
instantiation of the original solution to the constraint system is obligatory. A 
variational constraint solver usually does not search for a new solution to a 
constraint system if the existing one is currently valid. Therefore, all 
parameters should be assigned the original values as a local solution to the 
constraint system. It can be assumed that the receiving system will normally 
accept this solution.  
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Case 3 – fully parametric to variational:  
From the mathematical perspective, assignments are a trivial case of 
variational constraint modelling in which each mathematical relation is 
limited to exactly one variable on the left side; and the relation must be an 
assignment. It can be concluded that a fully parametric constraint system can 
generally be handled by a variational modelling engine. Again, transfer of the 
original parameter values ensures that the variational constraint solver finds 
the intended solution.  

Case 4 – variational to fully parametric:   
This is the reversion of the latter case: a set of general mathematical relations 
must be mapped onto parameter assignments. Science does not provide a 
closed strategy to this problem. Generally, variational constraint systems 
cannot be handled by fully parametric CAD systems. In order to prevent a 
total incompatibility, a workaround solution shall be proposed: The CAD 
model is regenerated on the basis of the original parameter values. Following, 
parameter assignments are regenerated, whereas undirected constraints are 
ignored. Along with these relations, substantial behavioural intelligence of 
the parametric model is lost. Nevertheless, the imported model is still fully 
operational, i.e. its resulting shape is conserved and the user can apply 
arbitrary modifications.  

There may be situations in which a constraint solver insists on computing a new 
solution different to the given one. In addition, a variational constraint solver may 
not accept a given solution. These inconvenient circumstances are subject to system 
specific development and cannot be discussed in further detail in this dissertation.  

From the perspective of fault tolerance, the original solution to the constraint system 
should be exchanged in any case. Even if not required for solution finding, the 
original values may suite for solution comparison. Furthermore, they allow the 
import processor to regenerate a valid part or assembly model even if restoration of 
the constraint system fails due to unpredictable reasons.  

The described mechanisms for the management of parameters and constraint within 
feature-based part and assembly models can also be applied to numerical constraints 
in two-dimensional sketches, whereas geometric constraints require a different 
solution. Activities described by SHAH / BETTING [90] and the emerging STEP 
part 108 illustrate that representation of geometric constraints is being worked at. 
The results can be included into an implicit model representation schema.  

The behaviour of shape modelling engines strongly varies among CAD systems. On 
the other hand, geometric constraints in 2D sketches usually suite as a modelling 
assistance rather than a necessary attribute of the resulting shape. On the instantiation 
of feature from these sketches, internal geometric constraints have no effect. 
Specifically, aspects of resulting shape conservation and model alterability are not 
interfered. It is therefore recommended to exclude geometric constraints from a 
structure oriented model representation. 
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4.3.7 Free-Form Shape Representation 
Free-form modelling is an extraordinary discipline even for modern CAD systems, 
and not all systems provide a free-from modelling engine. Free-form feature 
representation should be based on a classification of corresponding design elements. 
According to the implicit approach to structure-oriented exchange, the representation 
of free-form features should minimise the amount of explicitly represented shape 
elements. Specialised structural elements for the integration of free-form features 
into the feature model are also to be discussed.  

A conceptual treatment of free-form feature representation requires an appropriate 
classification of these features, as discussed by AURICH [92] and TÖNSHOFF [93]. A 
specific free-form feature taxonomy is proposed by STIEL [137] regarding the 
resulting shape as classifying characteristic. This approach is not optimal for feature 
representation. Rather, a classification according to free-form feature instantiation is 
more adequate (Figure 4-16).  
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Figure 4-16  Taxonomy of free-form features according to instantiation principles 
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Presupposing a hybrid shape modelling engine, feature-based CAD systems support 
two methods for of free-form feature generation: shape-oriented or application-
oriented. Shape-oriented free-form feature generation can be distinguished according 
to the type of input information: 

• Mathematical methods generate free-from shape on the basis of mathematical 
definition, i.e. curves and faces are created from NURBS or Bézier poly-
nomials; the necessary input is more or less directly retrieved from the user.  

• Explicit methods generate free-formed curves and faces by applying higher-
level modelling functions, such as sweep and loft functions. The necessary 
input information abstracts from the polynomial definition. The user directly 
describes the shape modelling result rather than its mathematical content.  

• Implicit methods support an indirect generation of free-formed shape. The 
modelling result is generated from the definition of bounding curves, 
bounding conditions, e.g. degree of continuity, through blends on adjacent 
faces and further more.  

Application-oriented free-form feature generation apply shape modelling algorithms 
specific to a certain design domain. These algorithms create shape elements from 
given technological constraints. The user input defines the modelling result in terms 
of engineering conditions. For example, a free-formed face is created due to criteria 
like minimised surface area, optimised mass distribution, minimised air drag 
coefficient, or a given optical or acoustical behaviour.  

An ideal solution to structure-oriented exchange would support all these methods. It 
must be noticed, however, that mathematical, implicit and application-oriented 
methods to free-form generation are a specialty to few CAD systems. Unification of 
corresponding features will assumedly not be supported by most system vendors.  

The great majority of free-form shape generating features are of the class explicitly 
shape-oriented. From the algorithmic point of view, these features behave similarly 
to a revolve or protrusion feature: explicit shape is handled to create the intended 
free-formed shape. Figure 4-17 shows the example of a variational sweep feature that 
creates a solid from three given planar sketches as illustrated in a procedural 
notation. Analogously to protrusions features, the three closed loops have been 
explicitly defined by the user and must be explicitly represented.   

To avoid cases, in which a free-form generating feature is not standardised, and thus 
cannot be imported, an explicit representation of the resulting free-form shape can be 
contemplated. Of cause, this is not a preferable solution and it quasi foils the idea of 
implicit data exchange, but it still provides an option to prevent the complete loss of 
information due to incompatibility.  

The mathematical foundation of free-form shape representation are parameterised 
polynomials like Bézier, Lagrange, B-splines and NURBS. NURBS have the 
advantage of representing both rational and non-rational faces and are therefore 
considered the most universal representation [138]. The resulting free-formed curve 
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or surface explicitly represented by a NURBS will consequently consist of the 
necessary shape parameters, like sampling nodes, weights, degree of the polynomials 
etc. A corresponding representation schema has been developed by Stiel [137] and 
can be adopted.  

Like all other design elements, free-from features are combined to existing shape by 
structural nodes within the feature structure. In the case the resulting shape is a solid, 
the usual Boolean operations can be applied (see section 4.3.3). For the combination 
of solids and free-formed faces, additional node types are required that allow 
trimming of solids and provide the possibility to use these curves and faces as an 
input to protrusion and revolve features.  

The application of free-form features within the scope of implicit structure-oriented 
exchange generally aims at, directly or indirectly, generating a solid. In the area of 
pure surface modelling, several other questions arise, which shall not be addressed in 
this dissertation.  

 

 

sketch1 := closed_sketch ( cycle(r, vertex10) ); 
sketch2 := closed_sketch ( rectangle(vertex6, vertex7, vertex8, vertex9) ); 
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Figure 4-17 Variational sweep from explicitly represented sketched curve loops 
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4.3.8 Assembly Models Representation 
Part and assembly modelling is usually performed by the aid of different systems or 
system modules. Consequently, representation of part and assembly models should 
be specified by different schemas. The STEP assembly representation schema is one 
example. An implicit assembly representation has to  

• Identify the elements of an assembly model; 

• Define the structural interrelationships within the assembly part structure; and 

• Express positioning and parametric information.  

A generalised view on assembly models has been proposed in section 2.1.1. An 
assembly consists of a hierarchical tree of sub-assemblies, with parts as leaf nodes. 
For some assembly modellers the definition of a master part is mandatory. A master 
part is the first part onto which other parts are assembled. The definition of a master 
part constitutes no loss to generality. Modellers that do not demand a master part 
may ignore the corresponding attribute. In the opposite case, the first part entry of an 
assembly representation can be interpreted as a master part. 

The occurrence of independent features within an assembly model is the universal 
case, which is not supported by all assembly modellers. An example for an 
independent feature interfering with two assembled parts is a tolerated bore hole 
through the hubs of two flanged shafts. The occurrence of features in assemblies 
does not require a specific representation schema.  

Parts and features are parameterised objects. In analogy to a parametric part model, 
additional variables and constraints may be defined in order to determine parameter 
values according to the assembly context. Generally, parametric modelling at 
assembly level does not differ from parametric modelling at part or feature level. The 
proposed concepts can be adopted.  

Interrelationships between assembly model elements are different from those 
between features in a part model: Parts are assembled without intersection of their 
physical borders. Therefore, the required structural combinations basically aggregate 
parts and assemblies to higher-level objects. The structural node “is assembled to” 
can be applied at all hierarchy levels of the assembly. For independent features, a 
structural node is needed that expresses the application of a shape generation, e.g. 
SUBTRACT in case of a bore hole, or the association of a shape neutral or shape 
independent feature to the assembly, e.g. a neutral COMBINE node in case of a 
semantic feature.  

Two different positioning mechanisms for assembly elements are common:  

1. Positioning via absolute or relative coordinate referencing, 

2. Positioning via mating conditions.  
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Positioning via coordinate referencing, also referred to as discrete positioning, is the 
method usually applied by standard exchange formats, such as IGES or STEP. A part 
is positioned relative to a world coordinate system or to a master part. Corresponding 
representation schemas can be adopted for the implicit exchange.  

Problems with numerical tolerances, which may lead to mispositions, are 
occasionally discussed in literature. This is a general effect that cannot be “cured” by 
the implicit exchange approach. Fortunately, different from the case of shape 
manipulating features, the exact position of a part within an assembly is not crucial to 
a successful model import. Deviation in part positions usually occur at decimal 
places and may result in minimal overlaps of adjacent part. These collisions can be 
identified and eliminated by the user. The major objections of the structure-oriented 
exchange, shape conservation and model alterability, are not compromised.   

Positioning via mating conditions is normally provided as add-on functionality to 
discrete positioning. Mating conditions specify the relative position of shape ele-
ments, i.e. collinear axes, coplanar faces, coincident vertices, and further more. For 
example, a bolt may be assembled into a flange by defining its middle axis as 
collinear with the middle axis of the bore hole, and the bottom face of the bolt head 
as facing and touching the face of the flange. More convenient modelling capabilities 
enable the user to define assembly characteristics for each part. When assembled, 
these parts automatically orientate themselves according to these pre-defined mating 
conditions [139]. This functionality requires special structural elements for the 
assembly part structure.  

An applicable approach to elegantly representing adjacency interrelationships of 
mating parts is realised in the FEAMOS system: Mating conditions are represented 
in shape neutral adjacency features. Mating shape elements are referenced by 
corresponding feature attributes, which constitutes another case of explicit shape 
representation, as already discussed in section 4.3.4. The proposed solution, i.e. 
identification of shape elements by type and coordinate referencing, is also applica-
ble for identification of mating shape entities.  

4.3.9 Miscellaneous Model Content 
The above described elements of part and assembly models contain the essential 
information of a CAD model. Their representation is essential for a structure-
oriented exchange method. There are further information objects of lesser importance 
or originally defined as out of the scope of this dissertation, but nevertheless worth 
mentioning. 

A CAD model carries organisational information, such as date of creation and last 
change date and time, model version, system of units, type of constraint system, and 
other meta-data, that may e.g. be used for product data management purposes. Other 
information has already been addressed, e.g. coordinate systems, auxiliary geometric 
elements, like symmetry axes, geometric points, and other more. Established 
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exchange methods have already found a suitable representation for these objects; 
thus, they do not have to be discussed in detail here.  

Modern CAD systems provide many more part and assembly modelling capabilities 
that have not been addressed yet, but would still need a representation concept. 
Variant and complex part modelling, kinematic mechanisms, tolerances and semantic 
annotations of any kind, bill of material generation, and 2D technical drawings, are 
examples, which must be left open to future research.  

Apart from model exchange among CAD systems, the so-called vertical exchange 
along the process chain of product creation comprises several consumers of CAD 
model data. Along this process chain, an implicit CAD model provides easy and even 
selective access to design data and may suite as a container for data aggregation. For 
example, manufacturing operations are based on a mapping of design features to 
manufacturing features, as addressed by BAUM [140] and ULBRICH [141]. These 
algorithms can selectively extract the feature information from an implicit CAD 
model. Time consuming regeneration of the complete model, and of the shape model 
in particular, becomes obsolete.  

Knowledge-based engineering (KBE) methods aim at providing context specific 
information to the designer. KBE algorithms often analyse CAD model content as an 
input to their functionality. In many cases, the structural information of the CAD 
model is essential, whereas the resulting shape is of minor interest. The realisation of 
such KBE algorithms can therefore be enhanced by the application of structure-
oriented exchange. For example, an algorithm for a knowledge-based generation of 
welding sequences is based on the welding feature information within the CAD 
model and on the positions of these features in the design part [142]. This 
information can efficiently be extracted from an implicit model. Complete model 
regeneration and analysis, including feature recognition algorithms, as would be 
required for STEP models, can be omitted.  

4.4 Definition of Representative Exchange 
Scenarios 

After discussing conceptual approaches to an implicit representation of feature-based 
product model data, this section will address the area of model transfer between 
different CAD systems. At first, relevant exchange scenarios shall be identified, 
which define the functionality of a transfer model strategy.  

In chapter 1 the situation of engineering companies on today’s markets has been 
reflected that have led to three product creation strategies: reduction of development 
time, increasing cooperation and efficient IT strategies. Summarising the 
introductory illustration of these strategies, three main scenarios for product data 
exchange can be identified with varying, but altogether representative exchange 
conditions (Figure 4-18):  
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A) Product data exchange based on pure file transfer;  

B) Product data exchange in a world-wide web environment;  

C) Product data exchange in a direct system integration environment.  
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Figure 4-18 Three representative scenarios for product data exchange 
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The established and most common practice for the transfer of product models among 
different CAD systems is the exchange of data files. Different from the information 
flow to and from a data base management system, data files are comparatively small 
in size and easy to store. Required functionality for data file transfer is ubiquitous 
and inexpensive, which makes file-based data exchange the first choice for small and 
medium sized companies. The transfer of an implicit model file does not differ from 
the transfer of, e.g. a STEP physical file: the export data stream is stored to the local 
hardware, transferred by any means of file transportation, copied to the receiving 
hardware system, and finally imported into the receiving CAD system.  

World-wide web or simply Web technology is increasingly applied in automotive 
and other industries as a means for supplier integration. Within a virtual private 
network, access is granted to data storages utilising a Web user interface, i.e. client-
based, or through a Web portal, i.e. sever-based. The actual product data may reside 
on a product data management system or any other Web-enabled storage. A 
structure-oriented model may be transferred either via a direct Web interface or via a 
Web-enabled storage facility, e.g. a PDM system. A Web client establishes direct 
communication to a distant CAD system and may directly communicate with an in-
house CAD system. A PDM system provides Web access through a portal that may 
be interfaced with any Web browser. Data is transferred as a byte stream and locally 
stored as a file before it is imported into the receiving CAD system.  

For the establishment of integrated process chains, a direct system interaction is often 
necessary or at least desirable. Tools for calculation, simulation and other engineer-
ing tasks profit from direct communication to the CAD system. The computer-aided 
conceptual design tool FOD (Function-Oriented Design), which has emerged from 
the iViP project [3], [143] can be named as one example. The FOD system generates 
a parametric and constrained component structure as part of a product concept. This 
part structure is transferred to the CAD system via a direct CAD interface. The 
transferred data is little different from the content of an implicit part model. System 
integration is achieved by direct interfacing or via a communicational platform. An 
interactive client suits as a user interface for data transfer and may provide additional 
services, such as visualisation of model content, selection of single model elements 
or compliance analysis.  

4.5 Development of a Model Transfer 
Strategy 

4.5.1 Model Transfer Requirements and Functionality 
With regard to the representative exchange scenarios classified above, a model 
transfer strategy shall be developed in the following sections. Detailed conception of 
necessary components is preceded by a discussion of technical requirements and 
general transfer functionality that fulfils all three scenarios.  



 Concept of a Structure-Oriented Exchange Method 73 
    
 

Requirements on the new exchange method have been set up from a business 
perspective in section 3.3 (see Table 3-1 on page 31). Model transfer related aspects 
can be translated into technical requirements as listed in Table 4-4. 
 

Business requirements Technical requirements 

Support data management: 
Support small and large scale data 
distribution and management strategies 

Provide flexible data format: 
Arrange data flow to be applicable for 
established interfacing technologies 

Support collaboration: 
Support modern Web-based exchange 
mechanisms 

Support Web-based exchange: 
Ensure compatibility with Web data 
formats and transfer protocols 

Support CA systems interaction: 
Enable / enhance direct information 
exchange at systems run-time 

Support direct system communication: 
Ensure data format to enable both off-line 
and on-line communication and data flow 

Provide parametric compatibility: 
Ensure parametric model import regardless 
solving strategy 

Provide fault tolerance:  
Ignore or compensate information 
incompatibilities even for different CAD 
architectures 

Support fragmentary model regeneration: 
Regenerate model despite incomplete or 
incompatible model entities (as far as 
possible)  

Provide applicable strategy: 
Ensure feasibility for an industrial 
application 

Ensure commercial implementation: 
Ensure realisation of interfaces, processors 
and infrastructure with commercial CAD 
systems at feasible implementation effort 

Table 4-4 Requirements on a new product model transfer strategy from business and 
technical perspective  

 

Considering these requirements, basic model transfer functionality for the three 
exchange scenarios can be derived as arranged in Table 4-5. Principle components 
and information flow for model export is illustrated in Figure 4-19. A processing 
engine retrieves the native CAD model from the system’s API. The native model is 
post-processed into an implicit run-time representation and transcribed into a data 
stream, which can be stored in a physical file or communicated by means of Web- or 
other technology. An external client may analyse and present the implicit model, i.e. 
provide a graphical view, and support user interaction for, e.g. sub-model definition. 
For model import the corresponding information flow is analogue. The functional 
disjunction of model processing and transcription allows the installation of multiple 
transcription engines generating different data formats. The selection of an 
appropriate format and conceptual aspects of CAD interfacing, export and import 
processing and transfer communication shall be discussed in the following sections.  
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Function Description 

X X X Model post-processing Conversion of system internal model into 
system neutral implicit representation 

X X X Model pre-processing  Regeneration of a native CAD model from a 
system neutral implicit representation  

 X X Implicit model 
presentation  

Provide view on implicit model content to 
human user  

 X X Implicit sub-model 
definition 

Enable the user to select subsets of the implicit 
model 

 X X Implicit model 
consistency analysis 

Perform consistency check on implicit model 
structure 

X X X Export transcription Translation of the implicit representation into a 
transferable data stream 

X X X Import transcription Translation of transferred data stream into 
implicit representation 

X X X 
CAD direct interfacing Establishment of communication to CAD 

system according to the system’s interfacing 
capabilities 

 X  
Web-based interfacing Establishment of communication to 

engineering applications utilising standard Web 
technologies 

  X Platform-based 
interfacing 

Establish communication according to platform 
specifications  

  X Platform-based 
communication 

Provide means for unified communication of 
engineering applications 

X X X File storage interfacing Storage and recovery of byte stream to and 
from a physical file 

Table 4-5 Basic model transfer functionality  
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Figure 4-19 Principle components of a model transfer strategy and information flow for 
model export 

 

4.5.2 Exchange Format 
The purpose of a physical format is to formalise a data stream into a well-defined 
sequence of data items, each of them specified in type and structure. A physical 
format provides the envelope for the transfer of the implicitly represented model 
data. It is duty of the transcription function to transform the implicit representation 
into a byte stream compliant to the physical format. The conceptual discussion of all 
other components is dependent on the specification of the data format.  

Some approaches and existing solutions for physical data formats have been 
discussed in section 2.2. Of those technologies, two are preferable for the transfer of 
implicitly represented CAD model data.  

The STEP part 21 physical file specification was designed to transfer EXPRESS data 
models as text files. EXPRESS entities are arranged in an enumerated list; the entries 
themselves are symbolised independent from a specific representation schema. 
Interrelationships between entities are established by references on their number 
position. This mechanism can also be used to established tree-like structures of the 
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implicit representation. Resulting files are compact and communicable as files on-
line data stream. Within Web environments, STEP physical files are not directly 
supported. The data stream can be transferred as an anonymous text stream, a content 
specific treatment is not provided. Contained data has to be converted to HTML or 
XML in order to be presentable by a Web browser. Due to the limited capability of 
representing parametric model content, specific representation constructs will have to 
be added. A fragmentary or aggregating transfer of model content is not supported. 
For application interface development, a limited number of software tools is 
available. The application of STEP physical files as a transfer format for implicit 
models requires an implicit model representation schema in EXPRESS or 
EXPRESS-G.  

The XML technology has been developed to be applied within the scope of world-
wide Web. Mechanisms as configured view provision in a Web browser are 
technology immanent. In this area, XML can be considered the best solution for data 
transfer. Due to its hierarchical entity structure, the XML format automatically 
corresponds to the hierarchical CAD model structure. The format can also support 
selective model representation. Independent schema definition and schema mapping 
capabilities, e.g. by utilising XSLT mapping descriptions, guarantee for an 
uncomplicated transcription into native application formats. An XML schema or 
DTD for implicit model representation has to be defined. The effort is similar to a 
schema specification in EXPRESS-G. XML schemas are specified in XML, which 
provides certain flexibility for the extension of the unified feature library. Feature 
types can be changed or added without implementation effort for an adaptation of the 
transcription engines. Availability of a large variety of tools and development 
environments optimally facilitates the implementation of XML-based solutions. The 
PDT-net project has proven that the XML technology is sufficiently applicable for 
data transfer between engineering and CA systems in an industrial environment. 
Communication can be based on Web protocols like SOAP. [126]  

Comparing the characteristics of STEP physical files and XML technology, the XML 
approach appears more flexible, and less laborious in realisation. It shall therefore be 
chosen as the technical basis for the transfer of implicitly represented product model 
data.  

Adapted to an XML document type definition, an implicit part model representation 
is shown in Figure 4-20.  
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<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT part (unit?, featureNode*)>
<!ATTLIST part path CDATA #IMPLIED>
<!ELEMENT unit EMPTY>
<!ATTLIST unit value CDATA #REQUIRED>
<!ELEMENT featureNode

(origin?, direction?, parameter*, curveData*)>
<!ATTLIST featureNode name CDATA #REQUIRED

ttype (BLEND | BLOCK | CHAMFER | CYLINDER | 
EXTRUDE | REVOLVE | SPHERE | SUBTRACT | 
UNITE | INTERSECT | CONE) #REQUIRED

isAlive CDATA #REQUIRED
isSuppressed CDATA #REQUIRED>

<!ELEMENT parameter EMPTY>
<!ATTLIST parameter

name CDATA #REQUIRED
value CDATA #REQUIRED>

<!ELEMENT curveData (form, istOffen, firstVertex, 
secondVertex, center, radius, point1, point2, 
point3, nornalVec)>

<!ELEMENT firstVertex ( x, y, z)>
<!ELEMENT secondVertex (x, y, z)>
<!ELEMENT poin1 (x, y, z)>
<!ELEMENT point2 (x, y, z)>
<!ELEMENT point3 (x, y, z)>
<!ELEMENT center (x, y, z)>
<!ELEMENT form (#PCDATA)>
<!ELEMENT ist_open (#PCDATA)>
<!ELEMENT direction (x, y, z)>
<!ELEMENT origin (x, y, z)>
<!ELEMENT radius (#PCDATA)>
<!ELEMENT nornalVec (x, y, z)>
<!ELEMENT x (#PCDATA)>
<!ELEMENT y (#PCDATA)>
<!ELEMENT z (#PCDATA)>

 

Figure 4-20 XML DTD for implicit part model representation 

 

4.5.3 CAD Interfacing  
Realisation of standardised data exchange is best supported when based on 
standardised system interfaces. This perception has lead to several activities of 
standardising CAD programmable interfaces, as summarised in section 2.2. 
Unfortunately, none of the available results provides the necessary capabilities of 
handling feature-based models and associated information. For that reason, a 
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standardised CAD API with special functionality for structure-oriented model 
exchange is proposed, referred to as the implicit CAD API.  

Necessary capabilities of an implicit CAD API can be derived directly from the 
implicit model representation concept. All model information essential for the 
generation of an implicit model representation must become retrievable from the 
interface. In return, functionality is needed that enables the instantiation of a native 
CAD model from the implicit representation. Main API characteristics address: 

• Unified feature library support: all feature types must be applicable;  

• Establishment of inter-system communication; 

• Administrative data exchange: retrieve of system type and release; retrieve, 
load and store available models, etc.  

• Assembly and part model analysis and retrieval: navigation within the model 
structure; request feature types, parameter values, parametric model informa-
tion; retrieve associated model elements, i.e. get shape model from feature 
and get features from shape elements; request for auxiliary geometry and 
inactive shape elements, e.g. meanwhile deleted or replaced entities, split 
edges and faces; etc.  

• Assembly and part model generation: instantiation of feature objects; 
variables and constraint definition; parameter value assignment; invocation of 
constraint solving.   

• Shape modelling: generation of sketches and auxiliary geometry elements. 

Communication mechanisms have to be specified in an abstract form. According to 
the OMG MDA paradigm, specific communication technology bindings can be 
derived regarding CAD specific capabilities [128]. Realisation of inter-system 
communication itself is no functionality specific to structure-oriented data exchange. 
By choosing XML as the exchange format, prerequisites are fulfilled to support all 
three exchange scenarios. Communication may be based on a specific middleware, 
such as CORBA, RMI, or Web-services, or on a higher-level platform concept, such 
as J2EE or the iViP integration platform.  

The application of an implicit CAD API enables the realisation of a standardised 
processing engine for a structure-oriented model exchange (Figure 4-21).  
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Figure 4-21 Abstraction of native modelling capabilities through an implicit CAD API 

 
Apart from a generalised communication establishment and retrieval of available 
models at run-time, standardisation of CAD interfaces at ISO and OMG have not 
developed as far as required to support implicit model exchange functionality. 
Nevertheless, the proposed functionality can be adopted. As a tribute to compatibility 
to the OMG CAD-Services specification version 1.1, two new methods for the class 
CadSystem are proposed, covering the complete implicit model import and export 
(Figure 4-22). 

 
public String export_cadModel (String modelName) 

throws ModelNotFoundException;

public void import_cadModel (String xmlFile) 
throws XMLDocNotValidException;

 

Figure 4-22 Proposal of import and export method for OMG CAD Services 

 
As a proposal to future versions of the OMG CAD Services specification, a set of 
detailed functions are proposed that cover important export and import functionality 
for a structure-oriented model exchange (see annex 1). Once included, the CAD 
Services specification would provide the basis for the realisation of an implicit CAD 
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API through which – in a long-term vision – separate model processing and tran-
scription engines could become obsolete.  

4.5.4 Model Processing 
The choice of XML as a format for the structure-oriented transfer strategy leads to 
specific main functions of the processing engine. Figure 4-23 shows these functions 
for the case of model export: A CAD model analysis function provides model 
information to a DOM generation function. This XML document object model 
constitutes the implicit run-time representation of the CAD model. The transcription 
function generates an XML data stream according to the XML schema, as defined in 
Figure 4-20. Model import information flow is orientated conversely: An XML data 
stream is transcribed into an implicit run-time representation, i.e. an XML DOM, 
which is passed on to a CAD model regeneration algorithm.  

In the following, mechanisms of CAD model analysis and regeneration shall be 
discussed in detail. These mechanisms can be derived from the characteristics of the 
implicit representation for CAD model data.  

For model export, the part structure at assembly level can be mapped directly. 
Adjacency, relationships are either converted into coordinate references or trans-
formed into corresponding feature objects. If not explicitly identified, the first part 
object is declared the master part.  

At part level, the feature tree is mapped into a binary DOM tree. The representation 
of feature objects may require a mapping of position and direction according to the 
unified feature library specification. Explicitly generated or referenced shape 
elements are retrieved from the CAD system and represented by type, name, and 
characteristic position that guarantees for unique identification. The constraint model 
is represented in a separate list of constraints, free variables and the corresponding 
local solution.  

Model regeneration mechanisms operate analogously. At assembly level, the master 
part and further parts and features are instantiated and positioned. A part model is 
generated by means of feature instantiation according to the unified feature library 
specification. The corresponding shape model is generated automatically by the CAD 
system. Instantiation of structural feature nodes results in a Boolean operation of the 
associated shape models. Explicitly generated shape, i.e. 2D sketches and auxiliary 
geometry like rotation axes, is created by means of the implicit CAD API.  

Explicitly referenced shape elements will have been created at the time they are 
referenced from a shape manipulating feature. These entities are retrieved from the 
shape modeller by the aid of characteristic coordinate references. To achieve higher 
fault tolerance, shape entities can be searched for in an adjustable neighbourhood of 
the given position. If necessary, additional plausibility analysis checks on the near-by 
topology can be applied (intelligent coordinate referencing; see section 4.3.6).  



 Concept of a Structure-Oriented Exchange Method 81 
    
 

 

CAD Model

Representation
Ba

um
an

n 
20

04
Post-

Processor

Implicit

Representation
Tran-

scriptor

Implicit

Data Stream

f (A,…,Z) = 0

g (a,…,z) = 0

F (A,…,Z) = 0

Implicit
DOM

generation

CAD
model

analysis
via

CAD API

DOM
to

XML
transcription 

using
XML

schema

<A> ___
<B> ___
</B>
<B> ___

<C> ___
</C>

</B>
</A> 

2

1

1

implicit_part_model

feature_structure

CSG_op

CSG_operand

CSG_op_type CSG_op_modification

CSG_op_UNITE

CSG_op_SUBTRACT

CSG_op_…

CSG_op_filet

CSG_op_round

CSG_op_chamfe
r

feature_instance

feature_model

constraint_model

CSG_op_INTERSECT

implicit_part_model

feature_structure

CSG_op

CSG_operand

CSG_op_type CSG_op_modificationCSG_op_modification

CSG_op_UNITECSG_op_UNITE

CSG_op_SUBTRACTCSG_op_SUBTRACT

CSG_op_…

CSG_op_filet

CSG_op_round

CSG_op_chamfe
r

feature_instance

feature_model

constraint_model

CSG_op_INTERSECTCSG_op_INTERSECT

Native CAD
Model Data Implicit DOM XML Stream

Processing Engine

CAD Model

Representation
Ba

um
an

n 
20

04
Post-

Processor

Implicit

Representation
Tran-

scriptor

Implicit

Data Stream

f (A,…,Z) = 0

g (a,…,z) = 0

F (A,…,Z) = 0

Implicit
DOM

generation

CAD
model

analysis
via

CAD API

DOM
to

XML
transcription 

using
XML

schema

<A> ___
<B> ___
</B>
<B> ___

<C> ___
</C>

</B>
</A> 

2

1

1

implicit_part_model

feature_structure

CSG_op

CSG_operand

CSG_op_type CSG_op_modification

CSG_op_UNITE

CSG_op_SUBTRACT

CSG_op_…

CSG_op_filet

CSG_op_round

CSG_op_chamfe
r

feature_instance

feature_model

constraint_model

CSG_op_INTERSECT

implicit_part_model

feature_structure

CSG_op

CSG_operand

CSG_op_type CSG_op_modificationCSG_op_modification

CSG_op_UNITECSG_op_UNITE

CSG_op_SUBTRACTCSG_op_SUBTRACT

CSG_op_…

CSG_op_filet

CSG_op_round

CSG_op_chamfe
r

feature_instance

feature_model

constraint_model

CSG_op_INTERSECTCSG_op_INTERSECT

Native CAD
Model Data Implicit DOM XML Stream

Processing Engine

 

Figure 4-23 Main functions of an XML-based model processing engine and information flow 
for model export 

 

The parametric model is instantiated after the complete assembly or part model is re-
generated with explicit parameter values. As discussed in section 4.3.6, the 
installation of the parametric model depends on constraint system compatibility. 
Fully parametric constraint systems must be re-installed in the exact order of their 
definition. Variational constraint systems have to be re-installed completely before a 
re-calculation is invoked. For a fully parametric solver, a variational constraint 
system is ignored.  

Two additional aspects of fault tolerance shall be mentioned. The question of 
geometric accuracy is combined with the problem of mismatching topological shape 
entities that arise from computation of corresponding geometry entities – which is 
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subject to errors. Generally, this is a minor problem to the implicit exchange because, 
as the complete shape model is generated by the receiving system, the accuracy by 
which these mismatches are handled is not “transferred” from one system to another. 
It is also less a problem for 2D than for 3D shape [89]. Nevertheless, for regeneration 
of explicitly exchange shape elements it still necessary to consider computed 
geometry as in curves and free-from faces. For that purpose, a tolerance dimension 
can be specified that enables the import processor to adjust the accuracy criteria of 
the receiving system. This presupposes the availability of such a functionality 
through the system’s API. 

If identification of explicitly referenced shape entities fails completely, the import 
processor may skip instantiation of the concerned feature and try to continue model 
regeneration at the next structural level. In many cases, shape manipulating features, 
like blends and chamfers, are included with no dependencies to later feature objects. 
Ignoring these features will still result in a stable and consistent model.  

4.6 Synthesis of the Structure-Oriented 
Exchange Method 

In the preceding sections, alternative solutions for various conceptual aspects of an 
implicit model representation and transfer strategy have been examined. Summa-
rising the conceptual discussion, the final methodical approach shall be outlined, 
which is proposed as the new structure-oriented exchange method. 

Main characteristic of the implicit model representation is its utilisation of feature 
technology capable of representing semantic and shape model information. As the 
object-orientation of parameterised features completely abstracts from shape model-
ling, features are the fundament of the implicit approach.  

A unified feature library is proposed that standardises design objects common to all 
CAD systems. Preferably, sub-libraries should be standardised according to different 
fields of design applications.  

The feature model structure is represented as a system-neutral binary tree combining 
features and structural nodes to a design structure. User defined features are 
represented as a sub-model of the feature structure using the same modelling 
operations as provided for part modelling.  

The CAD shape model is only represented, when explicitly defined by the user, i.e. 
2D sketches, swept curves and auxiliary geometry, or explicitly referenced from 
shape manipulating features. The identification issue is resolved by an intelligent 
coordinate referencing strategy that makes use of plausibility assumptions on the 
topology adjacent to the searched element. Different from current opinion in 
literature, a persistent naming mechanism is not necessary.  
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In order to assure constraint solving compatibility, the parametric model is 
instantiated preferably after the feature model has been re-generated. Both fully 
parametric and variational modelling is supported. For mathematical reasons, 
variational constraint systems cannot be transformed into fully parametric constraint 
systems. However, structure-oriented model exchange is still operational if the 
parametric model is skipped in this case.  

For free-from modelling, a taxonomy is proposed according to feature instantiation 
principles. Free-from features are classified into application- and shape-oriented 
elements; the latter are distinguished into mathematical, explicit and implicit free-
form features. Explicit and implicit free-from shape generating features are 
represented analogously to their regular shape generating counterparts. For 
mathematically defined free-form features, NURBS are chosen as external 
representation mechanism.  

Assembly part structures are represented as n-dimensional trees of part and feature 
elements. Positioning is realised by absolute or relative coordinate referencing. 
Adjacency relationships are represented by shape neutral placement features. Main 
characteristic of implicit model representation is the application of one structuring 
mechanism for the definition of parts, assemblies and user defined features.  

As a basis for a model transfer strategy, three representative scenarios have been 
defined which characterise today’s situation in product model exchange: pure file 
transfer, exchange within a web-based environment, and direct system integration. 
With regard to these scenarios, XML is identified as the optimal choice of a physical 
format for structure-oriented product model data. An XML document type definition 
is proposed for implicit model representation. For the generation of corresponding 
XML data streams, separation of implicit model representation and transcription into 
the physical format is identified as an important characteristic.  

The Implicit CAD API is proposed as a standardised functionality of application 
programmable interfaces to CAD systems. As a contribution towards its realisation, a 
set of interface functions essential for structure-oriented model exchange is proposed 
to be included in the OMG CAD Services specification. Furthermore, of import and 
export processing functionality is specified in detail.  
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5 Realisation, Proving and Evaluation 

5.1 Realisation of Representation Principles 
In the last chapter, an implicit approach to structure-oriented data exchange has been 
developed, consisting of an implicit representation method and a corresponding 
transfer strategy. Realisation of these concepts has taken place and is going to be 
described in two stages: Firstly, principles of implicit model representation have 
been realised as part of a nationally funded research project. The implementation was 
based on exploratory feature modelling systems in order to achieve a proof of 
concept. Secondly, the concepts have been adapted to commercial CAD systems 
considering industrial exchange situations.  

Following, both realisation activities and applied use cases are outlined. Results are 
evaluated in consideration of business requirements and with regard to the thesis 
statement in section 3.4. It shall be verified whether the implementation shows 
feasibility of the proposed concepts for a structure-oriented model exchange. 
Industrial statements are quoted assessing the findings from their company’s 
perspective. Finally, investment costs and possible benefits are analysed.  

Realisation of an implicit exchange mechanism was subject of a research project 
titled “Exchange of Semantic Information on the Basis of Implicit Feature-oriented 
Product Descriptions” (”Austausch semantischer Informationen auf der Basis impli-
ziter Feature-orientierter Produktbeschreibungen”), funded by the Deutsche For-
schungsgemeinschaft (DFG). The DFG project KR 785/11-1,2 was located at the 
Institute for Machine Tools and Factory Management (IWF) at the Technical Univer-
sity of Berlin, Germany, under the supervision of Professor Dr.-Ing. F.-L. Krause. 
Mr. M. Wang was involved in the implementation. Cooperation was established with 
the Institute of Production Engineering and Machine Tools (IFW) at the University 
of Hannover, Germany. The corresponding DFG project To 56/134-1,2 was 
conducted by Mr. P.-O. Wölk under the supervision of Professor em. Dr.-Ing. Dr.-
Ing. E.h. H. K. Tönshoff.  

The project had emerged from experiences in feature-based modelling and 
corresponding feature modelling systems FEAMOS and EMOS at both institutes. On 
the basis of the formal feature representation languages PDGL and TEBES, the 
project aimed at realising a new method for the exchange of semantic information 
across both systems [136]. Distinct views upon the product development process and 
corresponding product model data were assumed: exchange of pure product design 
information among CAD systems (horizontal exchange) was distinguished from the 
exchange of product models along the process chain of design to manufacturing 
planning (vertical exchange). In the project, IWF concentrated on horizontal, 
whereas IFW was concerned with vertical exchange. Unless otherwise noted, the 
following realisation summary is limited to findings on horizontal exchange the 
author was responsible for at IWF.  
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Implicit representation principles for feature-based models have been implemented 
for the FEAMOS and EMOS systems. The system neutral representation consists of 
two substantial parts: a feature library specifies available design elements and corres-
ponding instantiation methods in a generic form; and a structural description repre-
sents feature instances and feature model structure. The representation format is 
derived from the PDGL and TEBES languages (see also section 2.1.2) which have 
been harmonised to be compatible with both feature modellers. The resulting format 
has been published under the name Feature-based Definition and Exchange 
Language (FEADEL) [84].  

FEADEL defines syntax and grammar for the system neutral specification of feature 
types as well as for the definition of a CAD model at instance level. FEADEL 
representation capabilities include parameterised semantic and form-features that can 
be specified by a large variety of feature attributes and shape aspects, Boolean 
operations on feature instances, constraint definitions following the variational 
design philosophy, free-form features based on mathematical, i.e. NURBS-based, 
representation. Representation of assembly structures and additional multi-medial 
information has been added by IFW. Another capability is the exchange of modelling 
functionality through representation of additional feature methods describing higher-
level modelling algorithms. This is achieved by implementing a run-time interpreter 
for these modelling functions. In this connection, FEADEL also suits as a scripting 
language for CAD modelling functionality.  

Implementation has included adaptation of the existing PDGL language and the 
corresponding interpreting engine to the FEADEL concept and realisation of addi-
tional CAD model pre- and post-processors (Figure 5-1). CAD models are trans-
ferred as human readable text files; Web-based and procedural system integration has 
not been considered.  

FEADEL is based on a set of CAD API functions harmonised for both feature 
modellers. As both systems incorporate the same ACIS shape modelling kernel, the 
CAD API is basically an abstracted subset of the ACIS library suitable for hybrid 
shape modelling. Additional instructions were added for feature-based and 
parametric modelling. As FEADEL emerged from the harmonisation of PDGL and 
TEBES, the support of user defined features is language immanent but limited to the 
capabilities of the ACIS API. UDFs are represented as a modelling result on shape 
level and insofar different from the concept proposed in section 4.3.5.  

The FEADEL processor for FEAMOS has been implemented using the FLEX and 
BISON. These interpreter development tools allow for a comparably comfortable 
realisation of lexical scanning and grammar parsing modules for formal languages. 
Implementation has been carried out on an IRIS system environment on a Silicon 
Graphics workstation. Programming language is C / C++.  
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Figure 5-1 Implicit exchange using FEADEL for Feature Modelling System 

 

5.2 Realisation of a CAD Model Exchange 
Environment  

The second stage of realisation has aimed at proving conceptual adaptability to 
commercial CAD systems considering industrial exchange situations. Cand. ing. 
Masoud Gholchin participated in the implementation of major software modules.  

Representative for the variety of commercial feature-based CAD systems, two 
modellers from different vendors have been chosen: Unigraphics version 18 by UGS 
PLM Solutions and I-Deas Version 8 by SDRC1. The systems have been selected 
according to availability at the institute and system openness through a well-
documented API. Unlike the first realisation stage for the university feature 

                                                 
1  At the time writing, SDRC has been taken over by UGS, and both systems are being migrated. 

Nevertheless, realisation and evaluation as described in this dissertation, is based on the system 
versions available when both systems and companies were totally disjoint.  
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modellers FEAMOS and EMOS, which both are based on the ACIS, the second 
phase should prove feasibility for commercial CAD systems operating on different 
shape modelling kernels. I-Deas utilises a native kernel, whereas Unigraphics is 
based on the Parasolid engine, which, similar to ACIS, is available as a commercial 
stand-alone shape modeller.  

For both systems, implicit part representation and XML-based model transfer via an 
interactive client has been realised (Figure 5-2). For implicit representation, a 
number of parameterised shape generating and shape manipulating features have 
been harmonised, creating blocks, cylinders, cones, spheres, blends, filets, chamfers 
or blind holes. Additionally, extrude and revolve features support solid generation 
from 2D sketches. Protrusions generate linear sweeps from a closed edge loop with 
given protrusion angle and distance; a revolve operation creates a rotational part with 
given rotation angle and axis.  
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Figure 5-2 Implemented components and information flow for commercial CAD model 
exchange 

 

As curve elements within 2D sketches, straight lines, circles and circular arcs are 
supported. The coordinate referencing approach has been implemented for shape 
entity identification. Explicitly sketched elements are located by a necessary number 
of points characterising start, end, centre and additional positions. For the export of 
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round and chamfer features, the original edges had to be calculated, as corresponding 
API functions were not available. For model regeneration, these edges can be identi-
fied in a neighbourhood of the calculated position. The search interval is chosen 
according to blend radius or chamfer width respectively.  

The part model feature structure is represented as a binary tree of features and 
structural nodes. Combinations include unite (join), subtract and intersect operations.  

Implemented aspects of the model transfer strategy comprise one processing server 
for each of the systems, incorporating an implicit run-time representation engine and 
a XML transcription unit based on the implicit XML representation schema. In order 
to support the three exchange scenarios, an implicit CAD server for I-Deas and 
Unigraphics provide file-based as well as direct communication.  

The interactive exchange client communicates with both CAD servers and suites as a 
user interface to exchange functionality (Figure 5-3). The user may request a list of 
available models from the sending CAD server and may invoke the model export 
procedure on a selected model. The implicit model is presented to the user. Feature 
structure, feature type, name and identifier, attributes, position, parameter values, and 
further information are shown in a liner list. The client also indicates, whether the 
feature is suppressed, i.e. has not effect on the modelling result.  

The complete or a sub-set of the part model can be transferred to the receiving CAD 
server. In order to prevent the user from generating an inconsistent sub-model, the 
client performs a validity analysis on the user’s entity selection, as shown in the 
smaller dialog window in Figure 5-3. This guarantees that structural rules of the 
implicit representation are obeyed. Furthermore, all feature types are checked for 
support through the import processor of the receiving system.  

According to the application integration exchange scenario, a transfer infrastructure 
has been realised. Figure 5-4 illustrates the resulting architecture. For I-Deas, the 
OpenIdeas API was used which provides a CORBA-based server for implementation 
purposes. The UGopen interface to Unigraphics consists of a C library. Import and 
export engines for Unigraphics have been realised in separate executables written in 
C. For DOM generating and XML transcription modules, the XERCES C library 
version 1.2.0 has been applied [144]. The processing engines for I-Deas are 
integrated in the implicit I-Deas CAD server; the modules have been implemented in 
Java. The DOM generating and XML transcription modules have been realised using 
the DOM4J library version 1.1 [145].  
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Figure 5-3 The interactive exchange client enables selective model exchange 

 

For the application integration scenario a CORBA-based middle-ware has been 
chosen, since OpenIdeas communication is already based on CORBA. The implicit 
CAD servers and the interactive client have been equipped with their own Orbacus 
ORB version 4.1 [146]. Communication is established via usual CORBA object calls 
and referencing within a local network (intranet).  
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Figure 5-4 Communication of implemented components in an application integration 
scenario 

 

According to the Web-based exchange scenario, the exchange components are 
equipped with corresponding communication units (Figure 5-5). An implicit CAD 
servers servlet reside on a Tomcat Web-server. Tomcat is a component of the Sun 
Java Web-Services Development Pack, applied in version 1.2 [147]. Being imple-
mented as a Java application, the interactive client can either be installed as a stand-
alone component or be executed as an applet within a Web-browser. The client 
communicates via SOAP messages transferring implicit CAD models as XML 
streams from and to the CAD servers. 
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Figure 5-5 Communication of implemented components in a Web-based exchange scenario 

5.3 Use Case Description  
Implementation results of both realisation phases have been evaluated considering 
two use cases. For verification of representation principles implemented in phase 
one, a friction gearbox has been schematically designed in FEAMOS and EMOS 
(Figure 5-6). The primary emphasis has been put on a balanced representation of 
different information types within the modelled parts and features. An application-
oriented design was considered less important for the evaluation purpose.  
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Figure 5-6 Evaluation use case: friction gearbox and shaft 

 

Form-features, such as blocks and cylinders, and shape manipulating features, such 
as blends and chamfers, are used in the gearbox model. Semantic features represent 
technology information, such as surface roughness of the bearing carrier and 
tolerated shaft diameters. An additional semantic feature groups design spanning 
variables, e.g. transmission ratio Z, fillet radius R and r, torsional moment M, and 
connecting diameters D1 and D2. Each part has been stored as a user defined feature 
and applied for gearbox design.  

Functional associations within and between the parts are represented by parametric 
references. For example, the blend radii R and r are applied for all blends and fillets 
features; and the inner friction wheel and bearing bush diameters are calculated from 
outer shaft diameters and given tolerances. The complete design consists of 280 parts 
and features. By application of complex user defined features for housing top and 
bottom case, shafts, friction wheels, location pins, and design spanning variables, the 
resulting assembly is reduced to less than 30 elements (Figure 5-7).  

User defined features and assembly design have been exchanged as FEADEL files. A 
multi-parsing strategy is needed that firstly installs unknown feature types to the 
system and secondly re-generates feature instances, model structure and parametric 
model. As the feature modellers have been open to the developers by source code, 
processor development has been completed until the entire model content could be 
exchanged. All design elements are instantiated by native modelling functionality 
and thus are fully alterable. Dissimilarities in the resulting shape model cannot be 
perceived.  
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Figure 5-7 Friction gearing and shaft (FEAMOS model) 

 

The use case for results evaluation of the second implementation phase includes 
exchange of numerous models. Most of the exchanged parts have been recruited 
from the seventh and eighth STEP AP214 processor benchmarks [134], [135]. These 
benchmarks are performed by the ProSTEP-iViP Association on a regular basis. The 
author likes to express his thanks for the friendly provision of the I-Deas and 
Unigraphics native files. The tested components are parts of a vehicle pump 
assembly originally provided by Volkswagen.  
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All parts are successfully transferred from and to both CAD systems. All features 
and attributes are accessible, models can be altered by normal modelling functions of 
the receiving systems. Features can be suppressed, reordered and replaced within the 
feature structure. Altogether, part models behave natively even after several 
exchange cycles during which numerous modifications have been made to the 
designs. Comparison of the resulting shape models reveal no deviations.  

For an evaluation of the interactive client, the java bean has been tested in a 
CORBA-environment and within a Web-browser. Model transfer assessment has 
included establishment of run-time connections to both CAD servers according to 
OMG CAD Services regulations, requests for available CAD models, export and 
graphical presentation of selected CAD models, sub-model definition, consistency 
validation, and import to the receiving CAD system.  

5.4 Evaluation and Thesis Proving  
After examining the implemented software components in two use cases, all con-
ceptual aspects of structure-oriented CAD model exchange have been addressed. 
Focusing on model representation, general feasibility of the implicit approach can be 
ascertained. Exchanged models appear equal in shape and provide further alterability 
through all native modelling capabilities.  

Due to different feature specifications provided by the different CAD APIs, the pro-
cessors have to perform shape mapping during model re-generation. Implementation 
and run-time computing effort for these algorithms emerged as unexpectedly high. 
This underlines the conceptual demand for a unified feature library as an element of 
an internationally standardised CAD API.  

The coordinate referencing strategy for identification of explicitly referenced shape 
elements worked out rather stable. This proves that implicit model representation is 
not limited to shape generating features. Comparatively long computing time for 
shape identification in I-Deas demands for specific API functionality.  

Implementation of UDF representation and transfer using FEADEL for university 
feature modelling systems has proven feasible at least for the case of identical shape 
modellers. For a general application of this concept, a harmonisation of shape 
modelling capabilities is required. The sub-tree definition concept, which specifies a 
user defined feature as a sub-set of a part model feature structure, has been realised 
for I-Deas. It constitutes the more general approach and thus is preferable.  

Feature instances can be generated including parameters and their values. The 
exchange of semantic features has been realised for the university feature modellers 
using FEADEL as a specification language for features at type level. As correspond-
ing semantic feature modelling capabilities in commercial CAD systems are 
comparably rudimentary, the evolution of a unified feature library is probably the 
more promising approach. The exchange of assembly models and variational 
constraint systems among the feature modellers has also been successful.  



96 Structure-Oriented Exchange of Product Model Data 
    
 
The resulting size of transferred XML files has been compared with corresponding 
STEP physical files generated from Unigraphics AP214 processors. Although the 
XML structure is principally less compact than a STEP physical files, the latter 
averaged out to a factor of five to ten larger that the XML files. The actual difference 
in size depends on the amount of explicitly represented shape elements.  

With respect to user requirements defined in section 3.3, the evaluation of achieved 
results can be summarised as shown in Table 5-1.  

 

Business requirements Assessment 

Retain design results Fulfilled 

Enable model alterability  Fulfilled 

Shorten engineering cycle times Fulfilled:  
No additional effort for manual reword  

Reduce data traffic Fulfilled: 
Reduction by  50–90 %  

Support multi-CAD part library Fulfilled 

Maintain design systematics Fulfilled 

Support multi-disciplinary design  Not implemented 

Support iterative process chains Fulfilled for horizontal exchange 

Support selective model analysis  Fulfilled  

Support data management Enabled 

Support collaboration and modern WEB 
based exchange mechanisms 

Fulfilled 

Provide fault tolerance Fulfilled 

Support CA systems interaction  Fulfilled 

Provide applicable strategy Fulfilled 

Table 5-1 Evaluation of structure-oriented exchange method with respect to user 
requirements  

 

Implementation has also demonstrated that structure-oriented model exchange can be 
organised to effectively facilitate industrial exchange situations even for commercial 
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CAD software. Choosing XML as a physical format for data transmission allows for 
a synergetic conception of processor components. Separation of model processing 
and communication functionality has led to efficient implementations for different 
communicational environments.  

The application of an interactive client provides additional exchange functionality to 
the user. Specifically, selective model exchange and consistency validation are valu-
able and prototypically demonstrate the integration of other engineering applications 
based on the structure-oriented exchange method.  

Regarding run-time behaviour, short export and import cycles demand for specific 
CAD API functionality and direct library access. The provision of a CORBA-based 
CAD server for I-Deas is somewhat comfortable for realisation of client-server 
communication, but for implementation of model processing engines insufficiently 
slow.  

In section 3.4, a thesis for this dissertation has been postulated in tree statements:   

1. The model structure is the essential information responsible for creation as 
well as for modification of the CAD model, which leads to the introduction of 
structure-oriented model exchange. 

2. Two possible approaches to a structure-oriented exchange method can be 
identified, referred to as the implicit and the explicit approach.  

3. The implicit is suitable and the preferable approach.  

The first aspect has been developed as part of the characteristics definition for the 
new exchange method in section 4.1. The implicit approach has been identified as the 
superior alternative in consideration of technical requirements (section 4.2.4). By 
conception and realisation of an implicit approach, central characteristics have been 
achieved: The implicit representation method is shape preserving, i.e. it retains the 
resulting shape of the product. It is also structure preserving, i.e. it transfers a 
structural model that allows later alteration within the receiving system. According to 
the definition in Figure 4-3 on page 37, the implicit approach fulfils the characteris-
tics of a structure-oriented exchange, which proves the thesis statement.  

Furthermore, evaluation of implementation results has demonstrated the fulfilment of 
requirements on the structure-oriented exchange, which verifies that an applicable 
strategy has been developed and realisation. Suitability for industrial application has 
been a subject of exploratory discussions with various engineering companies. 
Following, some of these industrial opinions shall be quoted. 

UGS PLM Solutions1 as a representative CAD system provider evaluates the implicit 
approach to a structure-oriented exchange of CAD model data to be of interestingly 

                                                 
1  The author thanks Mr. Uwe Stach, UGS PLM Solutions, Germany, for his friendly engagement in 

discussing the project’s goals and achievements. 
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high potential. The prototype implementation proves the feasibility of central 
mechanisms for part model exchange like sketch- and primitive-based modelling. 
The solution found for identification of shape elements for blend and chamfer 
features appears promising. Crucial for commercial appliance appears a rather high 
tolerance level regarding features and modelling operations applied by the user. 
Industrial acceptance will strongly depend on the independence of the exchange 
format from the model content. A “design for exchange” situation must be avoided 
by any means. The concept for supporting user-defined features is a helpful step in 
this direction.  

CADsys GmbH, Chemnitz, Germany, specialises in development of core modelling 
functionality for product development tools such as the feature modelling kernel of 
the CADdy ++ mid-range CAD system and the CACD tool FOD. According to 
CADsys1, the proposed method is the only and long awaited alternative to 
established exchange strategies. Even in comparison to various direct CAD-to-CAD 
interfaces which usually ignore important structural model content the structure-
oriented exchange promises to be an achievement. Nevertheless, for the industrial 
application further feature representation details need to be implemented. Widely 
applied are features that do not generate a stand-alone shape instance, such as blocks 
or cylinders, but directly add or subtract shape to or from a selected face, such as a 
bore-hole feature, need to represent the input shape entities at instantiation time. This 
is similar to blend or chamfer features directly referencing to the corresponding 
edges or vertices they operate on. Since the mechanism for referencing to faces or 
datum planes seems little different from referencing to edges and vertices the 
proposed exchange method, in principle, appears to be meeting this requirement.  

The European Airbus consortium2, being one of the largest users of CAD 
technology, is using data exchange procedures for company internal processes as 
well as in cooperation with suppliers. As part of the migration efforts to CATIA V5 
many design models originally created in CADDS5 or Pro/Engineer need to be 
converted to CATIA V5. Furthermore, much of the design experience modelled in 
user-defined features impends to get lost during that migration. From this 
perspective, the structure-oriented method for CAD data exchange is expected to 
improve the migration results substantially. Model alterability and transfer of UDF 
definitions after import are functionalities that can help reduce migration expenses. 
For industrial application the identification of referenced off-set faces is considered 
an important capability. The solution found for identifying referenced curves in 
blend and chamfer operations shows that the proposed exchange method is generally 
applicable.  

                                                 
1  The author thanks Mr. Frieder Swoboda, managing director and head of CADsys central 

development, for his time and interest in the subject and for the fruitful discussion on special 
representation and transfer issues.  

2  The author thanks Mr. Arnd Rothe, project manager in the Airbus CAD department for his kind 
support and interest in the research results and for the helpful discussion about crucial aspects of 
their industrial application.  
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Finally, Bosch1 stresses the possible impact of the structure-oriented method on data 
exchange to other than CAD systems. Every product component is evaluated in one 
or several simulation processes, such as FEM and multi-body simulation, thermal 
and acoustic analysis or others. Specialised simulation engineers spend a significant 
percentage of their efforts on the generation of digital mock-ups, i.e. analogues 
models suitable for various simulations purposes, out of the corresponding CAD 
model. In order to increase simulation quality, the original product shape is modified. 
For instance, shape complexity is reduced by eliminating details like blends and 
chamfers and other elements irrelevant for the physical effect addressed by the 
specific simulation routine. Today’s simulation systems are usually provided with a 
shape model from which the simulation model is derived. A simulation specialist has 
to import a shape model exported from CAD and adjust it to his requirements by 
means of low-level shape modelling mechanisms. Alternatively, a corresponding 
change request has to be directed to the original designer.  

At Bosch, several hundred experts are engaged in simulation activities spending a 
significant amount of their time on regenerating shape models or on waiting for 
adequately adjusted models. In principle, product model adjustments on structural 
level are by circa 70 to 90 percent more efficient than on shape level. Assuming that 
a simulation engineer had access to a structure-oriented CAD model that could be 
passed on to a corresponding import mechanism for simulation tools, an immense 
benefit would be achievable.  

5.5 Cost-Benefit Analysis 

5.5.1 Investment Cost Estimation 
Realisation of structure-oriented exchange as a commercial software solution neces-
sitates initial as well as periodic implementation. These efforts have to be calculated 
per CAD system applied in a company, as implementation will presumably be taken 
over by the corresponding CAD system vendors.  

Realisation of basic exchange functionality includes implementation of a model 
analysis and regeneration engine and of a XML-based transcription processor. 
Presupposing adequate programming experiences, this functionality can be realised 
in 1.5 to 2 person-years. Periodically, model exchange functionality has to be 
updated with the constant development of the CAD system. Usually, system vendors 
publish new system revisions every 6 to 12 months. The estimated effort for 
exchange processor adaptation is 2 to 4 person-months a year. 

                                                 
1 The author tanks to Dr. Ralf Mendgen, Section Manager CAD/CAM Techniques; Corporate 

Research and Development at Robert Bosch GmbH for his interest in the subject and for the 
friendly provision of corresponding statistics. 
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Comfortable Web-based or system integration functionality implementation requires 
further 6 to 12 person-months. Adaptations to new versions of applied communi-
cation standards, such as CORBA or Web-services, have to be considered although 
reliable cost estimation cannot be given. Additionally, license fees may be granted 
for XML development, communication and other libraries.  

A commercial version of the interactive exchange client can be realised in circa 
eight person-months. Periodical updates to future CAD system releases will not 
exceed four person-months per year.  

These realisation efforts will probably lead to a periodical licence agreement. Most 
practically, a structure-oriented exchange processor and interactive exchange client 
will be part of an exchange functionality package that also includes STEP, IGES and 
other exchange processors. The license agreement will then cover proportionate 
initial and periodical expenses. 

Considering the comparably high complexity of STEP AP214 compliant processors, 
implementation of a structure-oriented model exchange is less costly and will reach 
stable software revisions far earlier. It can be estimated that license cost for a 
structure-oriented exchange processor may constitute less than 50 percent of a STEP 
AP214 processor.  

Additional hardware investments will not be necessary.  

5.5.2 Benefit Estimation 
Benefit analysis for companies that want to install structure-oriented exchange tech-
nology is complex, and reliable statistics on key parameters are not publicly avail-
able. The main difficulty results from the fact that industrial product development 
processes are arranged to avoid direct model exchange between different CAD 
systems. Reengineering of these processes is usually subject to mid-term projects; 
corresponding project volumes are company specific.  

For benefit estimation, a product development process is assumed in which shape 
models are exchanged among several CAD systems. A known number of engineers 
is engaged in shape model adaptation and in regeneration of other model content that 
is not exchange by conventional processors. The benefit mainly results from 70 to 90 
higher efficiency of features-based and parametric modelling compared to pure shape 
modelling. The following parameters have to be considered:  

N – Number of CAD engineers; 

p1 – Percentage of engagement in model adjustment or regeneration (in %); 

p2 – Percentage of time saving by feature-based and parametric modelling 
compared to pure shape modelling (in %); 

C – Average annual personnel cost (in Euro per person); 
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b – Annual benefit per person (in Euro per person); 

B – Total annual benefit (in Euro). 

 

The annual benefit per CAD engineer calculates as follows:  

b = 0.0001 · C · p1 · p2.  

 

The total annual benefit results to: 

B = 0.0001 · N · C · p1 · p2.   

 

For a product developing company an arbitrary number of 1’000 CAD engineers 
shall be assumed who spend at least 10 percent of their time with shape model 
adaptation and model regeneration. Considering average annual personnel cost of 
200’000 Euro, the annual benefit results to 14’000 to 18’000 Euro per engineer or to 
a total of 1.4 to 1.8 Million Euro per year.  

For product simulation processes similar to the situation at Bosch (see above), the 
possible benefit can be estimated analogously. It shall be assumed that Europe-wide 
a number of N = 400 to 800 simulation experts are spending at least p1 = 20 percent 
of their time on regenerating shape models or on waiting for adequately adjusted 
models. Implementation of structure-oriented exchange would enable these engineers 
to transfer the feature-based CAD model to a corresponding import mechanism for 
simulation tools. The economisation results to 28’000 to 36’000 Euro per engineer or 
to a total of 11.2 to 28.8 Million Euro per year.  
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6 Summary and Outlook 

Product developing companies react on increasingly high market pressure with 
strategies for raising efficiency and effectiveness in product development processes. 
A special optimisation focus is placed on the exchange of product model data as a 
time consuming but non-productive task. Product engineering demands higher 
quality data exchange along the product creation process and for flexible support of 
different exchange scenarios reaching beyond pure file exchange mechanisms.  

Exchange of product model data between different CAD systems is most carefully 
considered. Specific demand is expressed for exchange technologies not only capable 
of transmitting the exact product shape across system borders but also supporting 
model alterability within the receiving system. These exchange technologies should 
be standardised to avoid costly development of native interfaces and to assure 
investments.  

A survey on the state of the art in product model representation and exchange reveals 
that neither established standardised exchange technologies and formats, primarily 
the STEP technology, nor other research activities offer adequate solutions to these 
demands. Starting from this divergence of industrial needs and available technology, 
the objective of this dissertation is defined as the development of a new method for 
the exchange of product model data. This method shall consist of a system neutral 
model representation and a model transfer strategy. The scope of application is set to 
the exchange among feature-based CAD systems.  

Discussion on main requirements leads to the definition of structure-orientation as 
structure and shape preserving characteristics of model representation. Two 
methodical approaches to structure-oriented model representation can be identified. 
The explicit approach adds structural information to a hierarchy of sub-models of 
shape representation. The implicit approach takes advantage of the fact that the 
product model structure incorporates the information, which is essential for model 
generation and modification. For that matter, apart from distinct exceptions, shape 
model representation is obsolete altogether.  

Regarding technical requirements, the implicit approach is preferable. A system 
neutral feature-based model representation is developed. A unified feature library is 
recommended as a standardised basis for the exchange method. Representation 
concepts for part model structure, user defined features, parametric data and 
constraints systems, assembly model structure and miscellaneous model content are 
discussed in detail. A free-from features taxonomy according to instantiation princi-
ples is proposed.  

A widely discussed issue concerning feature-based modelling is the identification of 
shape elements, known as the persistent naming problem, which currently is subject 
to research. Contrary to opinions in literature, an intelligent coordinate referencing 
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mechanism is proposed instead of assigning persistent identifiers to explicitly 
referenced shape elements.  

As a fundament for a structure oriented transfer strategy, three exchange scenarios 
are defined that – in addition to classical file-based transmission – describe CAD 
data exchange situations in a Web-based and in an application integrating 
environment. Regarding these exchange scenarios, central transfer functionality and 
components are identified. XML is chosen as the most suitable technology and 
physical transfer format, and a corresponding functional concept is developed for 
model processing, transcription and CAD interfacing. Characteristics and 
functionality of an implicit CAD API are proposed, as a prerequisite for a fully 
operative and efficient implementation. Integration of this functionality into the 
OMG CAD services is recommended. A functional specification is presented for that 
purpose.  

Realisation of the proposed concepts has taken place and is described in two phases. 
Realisation principles have been subject of a research project. Processors are 
implemented for the university feature modelling systems FEAMOS and EMOS. A 
formal Feature Definition and Exchange Language (FEADEL) provides constructs 
for the representation of feature types and feature-based models based on the ACIS 
shape modelling library.  

The second realisation phase has addressed further conceptual development of the 
exchange method and adaptation to commercial CAD systems and industrial 
exchange situations. Implementation is accomplished for the Unigraphics and I-Deas 
system. The processing components are installed into a Web-based environment and 
into an application integration infrastructure. An interactive client is presented as a 
user interface to advanced exchange functionality, like selective model exchange and 
consistency analysis. Implemented mechanisms have been tested in two different use 
cases. Part models applied for exchange evaluation between the commercial CAD 
systems are recruited from ProSTEP AP214 processor benchmarks. Achieved results 
are successfully assessed in consideration of prior defined business requirements.  

Realisation and evaluation demonstrate the implicit approach to structure-oriented 
exchange as a new and qualified solution that meets the demands for CAD model 
exchange technology applicable to commercial systems and industrial environments.  

Future developments may address the application of the proposed concepts for other 
CAD systems, further specification of a unified feature library and standardisation of 
a harmonised CAD API.  

Additional applications can be perceived in those fields of product creation that have 
been identified introductory but have been excluded from the scope of this 
dissertation. Structure-oriented exchange may suite for the integration of early design 
phases by enabling information flow from conceptual design to embodiment design 
and production planning. Specifically, the new exchange method may facilitate data 
exchange between CACD and CAD systems. Realisation of interdisciplinary design 
may be supported by an integration of, e.g. ECAD and MCAD modellers. 
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Annex – Proposal of Additional 
Functionality for OMG CAD Services 
Specification 

The following classes and methods are proposed for future versions of the OMG 
CAD Services specification. The proposal comprises basic functionality necessary to 
establish structure-oriented exchange of feature-based CAD models.  

 

 

Class CadServer 
CadSystem connect (String CadSystemName, String pw, ...); 
 
Class CadSystem 
CadModel         openModel           (String modelName); 
ModelCastFactory getModelCastFactory (); 
 
Class CadModel 
Node     getRootNode    (); 
Assembly createAssembly (String name, ...); 
Part     createPart     (String name, ...); 
 
Class Node 
boolean isAssembly (); 
boolean isPart     (); 
boolean isFeature  (); 
 
Class ModelCastFactory 
Assembly castToAssembly (Node); 
Part     castToPart     (Node); 
Feature  castToFeature  (Node); 
 
Class Assembly 
AssemblyNode getRootNode    (); 
Assembly     createAssembly (String name, ...); 
Part         createPart     (String name, ...); 
 
Class AssemblyNode 
boolean      isAssembly    (); 
boolean      isPart        (); 
AssemblyNode getLeftChild  (); 
AssemblyNode getRightChild (); 
 
 



118 Structure-Oriented Exchange of Product Model Data 
    
 
 
Class Part 
PartCastFactory getPartCastFactory ();  
Feature         getRootNode        (); 
Feature         getLeftChild       (); 
Feature         getRightChild      (); 
 
Feature performOperation (Feature f1, Feature f2, 
                          Type operationType, ...); 
 
Feature  createFormFeature (String name, Type type, ...); 
Face[]   getFaces          (); 
Edge[]   getEdges          (); 
Vertex[] getVertices       (); 
 
Class Feature 
Boolean isOperationFeature (); 
Boolean isFormFeature      (); 
S
 
tring  getName            (); 

Class PartCastFactory 
OperationFeature castToOperationFeature (Feature); 
FormFeature      castToFormFeature      (Feature); 
 
Class OperationFeature 
boolean IsAddOperation       ();    
boolean IsSubtractOperation  ();    
boolean IsIntersectOperation ();    
Feature getFirstFeature      ();                      
Feature getSecondFeature     ();                  
 
Class FormFeature          
FormFeatureCastFactory getFormFeatureCastFactory (); 
boolean                isCylinder                ();  
boolean                isBlend                   (); 
boolean                isChamfer                 (); 
boolean                commit                    (); 
Face[]                 getFaces                  (); 
Edge[]                 getEdges                  (); 
V
 
ertex[]               getVertices               (); 

Class FormFeatureCastFactory   
Cylinder castToCylinder (); 
Blend    castToBlend    (); 
C
 
hamfer  castToChamfer  (); 

Class Blend 
Edge[] getBlendedEdges();                              
 
Class Chamfer 
E
 
dge[] getChamferedEdges ();                          
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Class Cylinder 
CylinderParameter getClinderParameter  (); 
void              setCylinderParameter (CylinderParameter p); 
 
Class CylinderParameter 
double getRadius (); 
Void   setRadius (double r); 
            
Class ExtrudedParameter 
CurveCastFactory  getCurveCastFactory (); 
Curve[]           getCurves           (); 
void              setCurve            (Curve[] curves);                     
 
Class Edge 
CurveCastFactory  getCurveCastFactory (); 
Curve             getCurve            (); 
 
Class Curve 
boolean isLine();  
 
Class CurveCastFactory   
CircularCurve castToCircularCurve (Curve c); 
             
Class CircularCurve 
Point3D[]  Get3Points     ();                                               
Point3D    getStartPoint  (); 
Point3D    getEndPoint    (); 
Point3D    getMiddlePoint ();                                
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