Inconsistency of set theory via evaluation

M. Pfender*
C. C. Nguyen
J. Sablatnig
TU Berlin

July 28, 2020

Abstract

We introduce in an axiomatic way the categorical theory PR of primitive recursion as the initial cartesian category with Natural Numbers Object. This theory has an extension into constructive set theory \mathbf{S} of primitive recursion with abstraction of predicates into subsets and two-valued (boolean) truth algebra. Within the framework of (typical) classical, quantified set theory \mathbf{T} we construct an evaluation of arithmetised theory PR via Complexity Controlled Iteration with witnessed termination of the iteration, witnessed termination by availability of Hilbert's iota operator in set theory. Objectivity of that evaluation yields inconsistency of set theory \mathbf{T} by a liar (anti)diagonal argument.

[^0]
Contents

Introduction and overview 3
1 Categorical theory PR of primitive recursion 5
1.1 Cartesian category structure 5
1.2 Endomap iteration 9
1.3 Full schema of primitive recursion 10
1.4 Freyd's (commuting) diagram (FR!) 11
2 PR predicates 13
2.1 Boolean truth object 14
2.2 FERMAT free-variables p.r. predicates 15
3 Strings and polynomials 15
4 Complexity controlled iteration 16
5 Evaluation of PR within set theory T 17
5.1 Coding, "gödelisation" 18
5.2 Iterative evaluation transformation 18
5.3 PR-evaluation within T 24
5.4 Recursive characterisation of evaluation 25
5.5 Evaluation objectivity 27
6 Inconsistency proof for set theory 28
7 WAY OUT 30
References 32

Introduction and overview

The problem with 19th/20th century mathematical foundations, clearly stated in Skolem 1919, ${ }^{1}$ is unbounded infinitary (non-constructive) formal quantification ' \forall ' and ' \exists ', needed for set theoretical introduction of maps to consist (in general) out of an actual infinity of element pairs.

In this paper we attempt to deduce inconsistency of classical, quantified set theories as in particular Zermelo-Fraenkel set theory $\mathbf{Z F}$.

In order to reach this result, we proceed as follows:

- Section 1 on Primitive Recursion first states the axioms of cartesian categorical free-variables theory $\mathbf{P R}$ of primitive recursion and deduces the full schema of primitive recursion, deduces it from Freyd's uniqueness axiom for the initialised iterated map, taken as last axiom of theory PR.
- Section 2 discusses p.r. ${ }^{2}$ predicates, their abstraction into subsets of PR's objects (in turn nested cartesian products of one-object $\mathbb{1}$ and Natural Numbers Object \mathbb{N}), two-elements (boolean) truth algebra 2 , and states the FERMAT theorems as free-variable $\mathbf{P R}$ predicates.

[^1]- Section 3 on strings and polynomials introduces ordinal semiring $\mathbb{N}[\omega]$ needed as domain of complexity values for Complexity Controlled iteration; evaluation is defined as such a CCI.
- Section 4 introduces terminating Complexity Controlled Iteration CCI in general, terminating by availability of Hilbert's iota operator given as a weak choice operator.
- In section 5 we code, "gödelise", arithmetise theory PR - just its maps - in a very simple, litteral way into an internal theory PR, construct - central part of the paper evaluation transformation ev as terminating (descending) Complexity Controlled Iteration CCC_{τ} - terminating because Hilbert's iota operator is available in set theory \mathbf{T} taken as frame -, and show a characterisation theorem for the evaluation as well as evaluation objectivity.
- Section 6 is to prove - based on evaluation objectivity - inconsistency of (typical) set theory \mathbf{T} and hence of all classical, quantified set theories. The argument is an (anti)diagonal construction of a "liar" truth value map, equal to its own negation.
- Final section 7 sketches a way out by weakening set theory into recursive theory $\pi \mathbf{R}=\mathbf{S}+(\pi)$ of non-infinitely descending complexity-controlled iteration.

1 Categorical theory PR of primitive recursion

Here we state the axioms of cartesian categorical free-variables theory $\mathbf{P R}$ of primitive recursion and deduce the full schema of primitive recursion, deduce it from Freyd's uniqueness axiom for the initialised iterated map, taken as last axiom of theory PR.

1.1 Cartesian category structure

Let us start with the axioms of the cartesian category CA with a ("naked") natural number object $\mathbb{N}=\langle\mathbb{N}, 0, s\rangle$.

Categorical theory CA, subsystem of - typical - set theory \mathbf{T} comes with objects

- $\mathbb{1}$ terminal object, origin of pointer maps to "elements" of any - countably many - objects $\mathbb{1} \equiv\{0\}$, one-element set of set theory \mathbf{T} in particular $\mathbf{T}=\mathbf{Z F}$ Zermelo/Fraenkel set theory ${ }^{3}$
- \mathbb{N}, natural numbers object, "NNO" $\mathbb{N} \equiv\{0,1,2, \ldots\}$
natural numbers set of set theory \mathbf{T}
- cartesian product(s) of objects

[^2]A, B objects
$(A \times B)$ object, cartesian product
$A \times B \equiv\{(a, b): a \in A, b \in B\}$
a set of pairs in set theory \mathbf{T}

- basic maps bas of CA subsystem of theory T
$0: \mathbb{1} \rightarrow \mathbb{N} \quad$ (zero constant)
$\mathrm{s}=\mathrm{s}(n): \mathbb{N} \rightarrow \mathbb{N} \quad$ (successor map)
$\mathrm{id}=\operatorname{id}(a)=a: A \rightarrow A \quad$ (identity map)
Single free variable a over A interpreted in (categorical)
theory CA as identity map $a:=\mathrm{id}: A \rightarrow A$
(each term of CA should designate an object or a map)

- projections

$$
\begin{aligned}
& \Pi=\Pi(a): A \rightarrow \mathbb{1} \quad(\text { terminal map }) \\
& \ell=\ell(a, b)=a: A \times B \rightarrow A \quad(\text { left projection }) \\
& r=r(a, b)=b: A \times B \rightarrow B \quad(\text { right projection }) \\
& \Pi(a)=\Pi(\mathrm{id})=\Pi \circ \mathrm{id}=\Pi-\text { see below } \\
& \ell(a, b)=\ell \circ(a, b)=\ell \circ \operatorname{id}_{A \times B}=\ell-\text { see below } \\
& r(a, b)=r \circ(a, b)=r \circ \operatorname{id}_{A \times B}=r-\text { see below }
\end{aligned}
$$

Cartesian product $\mathbb{N} \times \mathbb{N}$
with projections

$$
\begin{gathered}
\ell: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \text { and } \mathrm{r}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \\
\quad \text { pair of free variables }
\end{gathered}
$$

$$
a \text { over } A, b \text { over } B \text { interpreted as }
$$

projection maps $a:=\ell: A \times B \rightarrow A$ and $b:=r: A \times B \rightarrow B$

- associative map composition

$$
f: A \rightarrow B, g: B \rightarrow C \text { maps }
$$

$$
g \circ f=(g \circ f)(a) \equiv g(f(a)): A \xrightarrow{f} B \xrightarrow{g} C \text { map }
$$

$$
a:=\mathrm{id}: A \rightarrow A \text { free variable }
$$

$$
f: A \rightarrow B, g: B \rightarrow C, h: C \rightarrow D \text { maps }
$$

$$
\begin{aligned}
& h \circ(g \circ f)=(h \circ g) \circ f \equiv h(g(f(a))): \\
& A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D
\end{aligned}
$$

up to here: categorical theory $\mathbf{C A}=\langle\mathrm{Obj}, \mathrm{Map}, \mathrm{id}, \circ\rangle$ objects, maps, associative map composition, identity maps neutral to composition

- unique induced map into product

$$
f: C \rightarrow A, g: C \rightarrow B \mathrm{maps}
$$

Godement's DIAGRAM ${ }^{4}$

- cartesian map product

${ }^{4}$ this is the very beginning of - maps based - category theory, started by Eilenberg, Mac Lane 1945

Cartesian category CA as cartesian theory
$\mathbf{C A}=\langle\mathrm{Obj}, \mathrm{Map},=, \mathrm{id}, \circ, \mathbb{1}, \Pi, \mathbb{N}, 0, \mathrm{~s}, \times, \ell, r\rangle$ with objects, maps, map equality, identic maps, composition, one object, terminal maps,
(natural numbers object, zero map, successor map), cartesian product, projections to the factor objects.

1.2 Endomap iteration

$$
\begin{equation*}
\text { endo } f=f(a): A \rightarrow A \tag{§}
\end{equation*}
$$

$$
f^{\S}=f^{\S}(a, n) \equiv f^{n}(a): A \times \mathbb{N} \rightarrow A
$$

such that

$$
\begin{aligned}
& f^{\S}(a, 0) \equiv f^{0}(a)=a=\operatorname{id}(a) \\
& f^{\S} \circ(\operatorname{id} \times \mathrm{s})(a, n) \equiv f^{\mathrm{s} n}(a) \\
& =\left(f \circ f^{\S}\right)(a, n)
\end{aligned}
$$

5
as a commutative diagram:

[^3]Example addition $+=s^{\S}$

$$
a+0=a, a+\mathbf{s} n=\mathbf{s}(a+n)
$$

1.3 Full schema of primitive recursion

The full schema of primitive recursion reads:
A map $f=f(a, n): A \times \mathbb{N} \rightarrow B$ can be uniquely be p.r. defined by the following - characteristic - inference

$$
\begin{array}{ll}
& g=g(a): A \rightarrow B \quad \text { (anchor) } \\
& h=h((a, n), b):(A \times \mathbb{N}) \times B \rightarrow B \quad \text { (step) } \\
(\mathrm{pr}) \quad
\end{array}
$$

$$
f=f(a, n)=\operatorname{pr}[f, g]: A \times \mathbb{N} \rightarrow B
$$

such that
(anchor) $f(a, 0)=g(a)$ and
$($ step $) f(a, n+1)=h((a, n), f(a, n))$
$+(\mathrm{pr}!)$ uniqueness of such f
Example multiplication $f(a, n)=a \cdot n: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$

$$
\begin{array}{ll}
& g=g(a)=0 \Pi: \mathbb{N} \rightarrow \mathbb{1} \rightarrow \mathbb{N} \\
& h=h((a, n), b)=b+a:(\mathbb{N} \times \mathbb{N}) \times \mathbb{N} \rightarrow \mathbb{N} \\
(\operatorname{pr}) \quad & \\
& f(a, n)=a \cdot n: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}
\end{array}
$$

unique such that

$$
\begin{aligned}
& \text { (anchor) } f(a, 0)=a \cdot 0=g(a)=0 \text { and } \\
& \text { (step) } f(a, n+1)=a \cdot(n+1) \\
& \quad=h((a, n), f(a, n))=a \cdot n+a
\end{aligned}
$$

Full schema (pr) is a consequence of

- iteration schema (§)
and

- uniqueness

of the initialised iterated map
this taken as (last) axiom (FR!) for the (categorical)
theory $\mathbf{P R}$ of primitive recursion:

1.4 Freyd's (commuting) diagram (FR!)

Freyd's axiom ${ }^{6}$ of uniqueness of the initialised iterated reads as uniqueness of commutative fill-in $h: A \times \mathbb{N}$ into the following DIAGRAM:

[^4]
(FR!) diagram chase

All together the axioms of cartesian category/theory CA extended by (constructing) iteration axiom (${ }^{\S}$) and Freyd's uniqueness axiom (FR!) define the
categorical free-variables cartesian category/theory

$$
\mathbf{P R}=\left\langle\mathrm{Obj}_{\mathbf{C A}}, \mathrm{PR},=, \mathrm{id}, \circ, \mathbb{1}, \Pi, \mathbb{N}, 0, \mathrm{~s}, \times, \ell, r,{ }^{\S}\right\rangle
$$

with

- objects, maps, map equality, identic maps, composition
- one object, terminal maps
- cartesian product, projections to the factor objects
- natural numbers object, zero map, successor map and
- iteration operation \S
of categorical Primitive Recursion, subsystem of set theory \mathbf{T}.

Proof of availability of initialised iterated map $h: A \times \mathbb{N} \rightarrow B$:

Consider commuting DIAGRAM

2 PR predicates

This section discusses p.r. predicates, their abstraction into subsets of PR's objects (in turn nested cartesian products of one-object $\mathbb{1}$ and Natural Numbers Object \mathbb{N}), two-elements (boolean) truth algebra 2 , and states the FERMAT theorems as free-variable $\mathbf{P R}$ predicates.

Definition

A $\mathbf{P R}$ predicate - on object A - is a $\mathbf{P R}$ map

$$
\begin{aligned}
& \chi=\chi(a): A \rightarrow \mathbb{N} \text { such that } \\
& \mathbf{P R} \vdash \chi=\chi(a) \leq 1
\end{aligned}
$$

Add formally all of these predicates as objects/subsets to theory $\mathbf{P R}$

- via a schema of predicate-into-subset abstraction and get an embedding extension of theory $\mathbf{P R}$ into basic p.r. set theory \mathbf{S}, subsystem of \mathbf{T}.

2.1 Boolean truth object

Introduce 2-valued boolean truth object of \mathbf{S}
as \mathbf{S} set $\mathbb{Z}=\{\alpha \in \mathbb{N}: \alpha \leq 1\} \equiv\{0,1\} \subset \mathbb{N}$
and define \mathbf{S} predicates as \mathbf{S} maps of form
$\chi=\chi(a): A \rightarrow \mathcal{Q}, A$ object of \mathbf{S}.
\mathbf{S} is the basic primitive recursive set theory.

2.2 FERMAT free-variables p. r. predicates

Small fermat theorems

$$
\begin{aligned}
& a>0 \wedge b>0 \wedge c>0 \\
& \Longrightarrow \neg\left[a^{4}+b^{4}=c^{4}\right]: \\
& \quad((\mathbb{N} \times \mathbb{N}) \times \mathbb{N}) \times \mathbb{1} \rightarrow \mathbb{Z}
\end{aligned}
$$

as well as

$$
\begin{aligned}
& (a+1)^{3}+(b+1)^{3} \neq(c+1)^{3}: \\
& \quad((\mathbb{N} \times \mathbb{N}) \times \mathbb{N}) \times \mathbb{1} \rightarrow \mathbb{N} \times \mathbb{N} \xrightarrow{\neq} \mathbb{Z}
\end{aligned}
$$

Last fermat theorem ${ }^{7}$

$$
\begin{aligned}
& (a+1)^{n+3}+(b+1)^{n+3} \neq(c+1)^{n+3}: \\
& \quad(((\mathbb{N} \times \mathbb{N}) \times \mathbb{N}) \times \mathbb{N}) \times \mathbb{1} \rightarrow \mathbb{N} \times \mathbb{N} \xrightarrow{\neq} \mathbb{Q} \\
& a, b, c, \text { free and } n \in \mathbb{N} \text { free }
\end{aligned}
$$

$[\neq$ is a p.r. predicate $[m \neq n]=\neg[m=n]: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q} \rightarrow \mathbb{Z}]$

3 Strings and polynomials

This section introduces ordinal semiring $\mathbb{N}[\omega]$ needed as domain of complexity values for Complexity Controlled Iteration; evaluation is defined as such a CCI.

[^5]Strings $a=a_{0} a_{1} \ldots a_{n}$ of natural numbers are coded as prime power products

$$
\begin{aligned}
& 2^{a_{0}} \cdot 3^{a_{1}} \cdot \ldots \cdot p_{n}^{a_{n}} \in \mathbb{N}_{>0} \subset \mathbb{N} \\
& \quad \text { iteratively defined as } \\
& \left(\left(2^{a_{0}} \cdot 3^{a_{1}}\right) \cdot \ldots\right) \cdot p_{n}^{a_{n}} \in \mathbb{N}_{>0}
\end{aligned}
$$

Strings are identified with/interpreted as "their" polynomials:

$$
\begin{aligned}
& p(\omega) \equiv 0 \text { or } \\
& p(\omega)=\sum_{j=0}^{n} a_{j} \omega^{j}=a_{0}+a_{1} \omega^{1}+\ldots+a_{n} \omega^{n}, a_{n}>0
\end{aligned}
$$

ω an indeterminate for (arbitrarily) big natural numbers.
Order of polynomials is first by degree, second by pivot coefficient, and then - if these are equal - by comparison of the two polynomials with their equal pivot monomes removed, recursively, down to the zero polynomial (which has no degree).

Call $\mathbb{N}[\omega]$ the linearily ordered semiring of (coefficient strings) of these polynomials.

The linear order has - intuitively and formally within set theory - only finite descending chains, $\mathbb{N}[\omega]$ is (there) an ordinal:

There is no infinitely descending chain $c=c(n): \mathbb{N} \rightarrow \mathbb{N}[\omega]$.

4 Complexity controlled iteration

Here we introduce terminating Complexity Controlled Iteration CCI in general, terminating - within set theory \mathbf{T} - by
availability of Hilbert's iota operator ${ }^{8}$ (Bourbaki's τ operator 9) given as a weak choice operator.

This has as consequence the following \mathbf{T} schema CCI_{τ} of termination witnessed, complexity controlled iteration:

$$
\begin{aligned}
& c=c(a): A \rightarrow \mathbb{N}[\omega] \text { (complexity) } \\
& p=p(a): A \rightarrow A(\text { predecessor }) \\
& c(a)=0 \Longrightarrow p(a)=a(\text { stationarity }) \\
& \mathbb{N}[\omega] \ni c(a)>0 \Longrightarrow c p(a)<c(a) \\
& \quad \text { complexity descent }
\end{aligned}
$$

CCI_{τ}

$$
\left.\exists \tau=\tau_{c: p} \in \mathbb{N}\right)\left[(\forall n \geq \tau) c p^{n}(a)=0\right]
$$

hence $(\forall n \geq \tau)\left[p^{n}(a)=p^{\tau}(a)\right]$,
and defines p.r. map
$\operatorname{cci}=\operatorname{cci}_{c: p}=p^{\S}\left(a, \tau_{c: p}\right): A \rightarrow A$

5 Evaluation of PR within set theory T

In this section we code, "gödelise", arithmetise theory PR just its maps - in a very simple, litteral way into an internal theory PR, construct - central part of the paper - evaluation transformation ev as terminating Complexity Controlled Iteration CCC_{τ}, and show a characterisation theorem for the

[^6]evaluation as well as evaluation objectivity.

5.1 Coding, "gödelisation"

Coding ${ }^{10}$ of theory PR: internal, arithmetised theory
$\mathrm{PR}=\left\langle\mathrm{Obj}_{\mathbf{P R}}=\mathrm{Obj}_{\mathbf{C A}}, \mathrm{Map}_{\mathrm{PR}}\right.$, bás, $\left.\odot,\left\langle_{-} ;-\right\rangle,{ }^{\$}\right\rangle$

- $\operatorname{Map}_{\mathrm{PR}} \subset \mathbb{N}$ an (algebraic carrier-) set of natural numbers within set theory \mathbf{T}, set of all arithmetised $\mathbf{P R}$ maps
 with basic ($\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$) map codes ${ }^{r} 0{ }^{\top}=\operatorname{utf8}[0],{ }^{「} \mathrm{~s}^{`}=\operatorname{utf8}[\backslash \operatorname{texttt}\{\mathrm{s}\}]$ etc.
- composition operator $\odot={ }^{\circ}{ }^{\circ}{ }^{\prime}=u t f 8[\backslash$ circ]
- map inducing operator $\langle;\rangle={ }^{r}(,)^{\top}=\operatorname{utf8}[()$,
will say
$\left\langle={ }^{r}\left({ }^{\top} ;={ }^{r},{ }^{\top} \quad\right\rangle={ }^{r}\right)^{\top}$
- iteration operator ${ }^{\$}=\ulcorner$ r

5.2 Iterative evaluation transformation

evaluation step e merged with complexity c and evaluation ev in recursive construction

[^7]\[

$$
\begin{aligned}
& \mathbf{e}=\mathbf{e}(f, a)=\left(\mathbf{e}_{\text {map }}(f, a), \mathbf{e}_{\arg }(f, a)\right): \\
& \quad \mathrm{PR} \times \mathbf{X} \rightarrow \mathrm{PR} \times \mathbf{X} \\
& f \in \mathrm{PR}, a \in \mathbf{X} \text { free } \\
& \mathbf{X}=\bigcup_{A \text { in } \mathbf{P R}} A \quad \mathbf{P R} \text { - universal set, } \\
& \text { union of } \mathbf{T} \text { sets, defined recursively }
\end{aligned}
$$
\]

$\mathbf{e}_{\arg }(f, a)$ is the intermediate argument obtained by one evaluation step applied to the pair (f, a), and $\mathbf{e}_{\text {map }}(f, a)$ is the remaining map code still to be evaluated on intermediate argument $\mathbf{e}_{\arg }(f, a)$, same then applies iteratively to resp. obtained $\left(f^{\prime}, a^{\prime}\right)=\mathbf{e}(f, a)=\left(\mathbf{e}_{\text {map }}(f, a), \mathbf{e}_{\text {arg }}(f, a)\right)$.

This evaluation step \mathbf{e} is defined by recursive case distinction, controlled by $\mathbb{N}[\omega]$-valued descending complexity \mathbf{c}, and using evaluation ev in recursive construction.

evaluation step

$$
\begin{aligned}
& \mathbf{e}=\mathbf{e}(h, a)=\left(\mathbf{e}_{\text {map }}(h), \mathbf{e}_{\text {map }}(h, a)\right): \mathrm{PR} \times \mathbf{X} \rightarrow \mathbf{X} \\
& \mathbf{e}_{\text {map }}=\mathbf{e}_{\text {map }}(h): \mathrm{PR} \times \mathbf{X} \rightarrow \mathrm{PR} \\
& \mathbf{e}_{\text {arg }}=\mathbf{e}_{\text {arg }}(h): \mathrm{PR} \times \mathbf{X} \rightarrow \mathbf{X}
\end{aligned}
$$

is p.r. defined, and is iteration complexity-controlled as follows:

- Basic map cases:
－case of an identity：

$$
\begin{aligned}
& \mathbf{c}\left({ }^{\ulcorner } \mathrm{id}^{\prime}, a\right)=0 \\
& \left.\mathbf{e}\left({ }^{\ulcorner } \mathrm{id}^{\prime}, a\right):=\left({ }^{\ulcorner } \mathrm{id}\right\urcorner, a\right) \text { stationary } \\
& \left.\mathrm{ev}\left({ }^{\ulcorner } \mathrm{id}\right\urcorner, a\right)=a
\end{aligned}
$$

－remaining basic map cases ba \in bas $\backslash\{i d\}$ ：

$$
\begin{aligned}
& \mathbf{c}\left({ }^{「} \mathrm{ba}^{\text { }}, a\right):=1 \\
& \mathbf{e}\left({ }^{「} \mathrm{ba}^{\mathrm{C}}, a\right):=\left({ }^{「} \mathrm{id}{ }^{\mathrm{r}}, \mathrm{ba}(a)\right) \\
& \mathrm{ev}\left({ }^{「} \mathrm{ba}^{\prime}, a\right)=\mathrm{ba}(a) \\
& \mathbf{c}\left({ }^{\ulcorner } \mathrm{id}{ }^{\prime}, a\right)=0 \\
& \text { < } 1 \\
& =\mathbf{c}\left({ }^{\text {「 }}{ }^{\mathrm{ba}}{ }^{\text { }}, a\right)
\end{aligned}
$$

－in particular case of successor map s：

$$
\begin{aligned}
& \mathbf{c}\left({ }^{r} s^{\prime}{ }^{\prime}, n\right):=1 \\
& \mathbf{e}\left({ }^{\prime} s^{\prime}, n\right):=\left({ }^{\prime} \mathrm{id}{ }^{\prime}, \mathrm{s} n\right) \\
& \operatorname{ev}\left({ }^{\prime} \mathrm{s}^{\prime}, n\right)=\mathrm{s} n
\end{aligned}
$$

－composed map case $g \odot f$

$$
\begin{aligned}
& \mathbf{c}(g \odot f, a):=(\mathbf{c}(g, \operatorname{ev}(f, a))+\mathbf{c}(f, a))+1 \\
& \in \mathbb{N}[\omega] \text { recursively } \\
& \mathbf{e}(g \odot f, a) \\
& =\left(\mathbf{e}_{\text {map }}(g \odot f, a), \mathbf{e}_{\arg }(g \odot f, a)\right) \\
& :=\left(\mathbf{e}_{\text {map }}(g, \operatorname{ev}(f, a)), \mathbf{e}_{\arg }(g, \operatorname{ev}(f, a))\right) \\
& \operatorname{ev}(g \odot f, a):=\operatorname{ev}(g, \operatorname{ev}(f, a))
\end{aligned}
$$

complexity descent，local proof：

$$
\begin{aligned}
& \mathbf{c e}(g \odot f, a) \\
& =\mathbf{c}\left(\mathbf{e}_{\operatorname{map}}(g, \mathrm{ev}(f, a)), \mathbf{e}_{\mathrm{arg}}(g, \mathrm{ev}(f, a))\right) \\
& :=\mathbf{c}(g, \mathrm{ev}(f, a)) \\
& <(\mathbf{c}(g, \mathrm{ev}(f, a))+\mathbf{c}(f, a))+1 \\
& =\mathbf{c}(g \odot f, a)
\end{aligned}
$$

－case of an induced map：

－identities subcase：

$$
\begin{aligned}
& \mathbf{c}\left(\left\langle{ }^{「} \mathrm{id}^{`} ;{ }^{\ulcorner } \mathrm{id}^{`}\right\rangle, a\right):=1=(0+0)+1 \\
& \mathbf{e}\left(\left\langle{ }^{「} \mathrm{id}^{`} ;{ }^{「} \mathrm{id}{ }^{\top}\right\rangle, a\right):=\left({ }^{「} \mathrm{id}{ }^{\prime},(a ; a)\right) \\
& \mathrm{ev}\left(\left\langle{ }^{`} \mathrm{id}{ }^{`} ;{ }^{`} \mathrm{id}{ }^{\top}\right\rangle, a\right):=(a, a) \\
& \text { complexity descent, local proof: } \\
& \mathbf{c e}\left(\left\langle{ }^{\ulcorner } \mathrm{id}^{\top} ;{ }^{「} \mathrm{id}^{\top}\right\rangle, a\right) \\
& =\mathbf{c}\left({ }^{\mathrm{rid}}{ }^{\prime},(a, a)\right)=0 \\
& <1 \\
& =\mathbf{c}\left(\left\langle{ }^{「} \mathrm{id}{ }^{\top}{ }^{\ulcorner } \mathrm{id}^{\top}\right\rangle, a\right)
\end{aligned}
$$

－subcase f, g not both equal to ${ }^{\text {＇id }}$＇：

$$
\begin{aligned}
& \mathbf{c}(\langle f ; g\rangle, c):=(\mathbf{c}(f, c)+\mathbf{c}(g, c))+1 \\
& \mathbf{e}(\langle f ; g\rangle, c) \\
& =\left(\mathbf{e}_{\operatorname{map}}(\langle f ; g\rangle, c), \mathbf{e}_{\arg }(\langle f ; g\rangle, c)\right) \\
& :=\left(\left(\mathbf{e}_{\mathrm{map}}(f, c), \mathbf{e}_{\mathrm{map}}(g, c)\right),\left(\mathbf{e}_{\arg }(f, c), \mathbf{e}_{\mathrm{arg}}(g, c)\right)\right. \\
& \mathrm{ev}((f, g), c):=(\operatorname{ev}(f, c), \mathrm{ev}(g, c))
\end{aligned}
$$

complexity descent, local proof:

$$
\begin{aligned}
& \mathbf{c e}(\langle f ; g\rangle, c) \\
& =\mathbf{c}\left(\left\langle\mathbf{e}_{\mathrm{map}}(f, c) ; \mathbf{e}_{\operatorname{map}}(g, c)\right\rangle,\left\langle\mathbf{e}_{\arg }(f, c) ; \mathbf{e}_{\arg }(g), c\right\rangle\right) \\
& :=(\mathbf{c}(f, c)+\mathbf{c}(g, c))[>0] \\
& <(\mathbf{c}(f, c)+\mathbf{c}(g, c))+1 \\
& =\mathbf{c}(\langle f ; g\rangle, c)
\end{aligned}
$$

- cartesian-product map case $g \# f$ (redundant)

$$
\begin{aligned}
& \mathbf{c}(g \# f,(a, b)):=(\mathbf{c}(f, a)+\mathbf{c}(g, b))+1 \\
& \mathbf{e}(g \# f,(a, b) \\
& =\left(\mathbf{e}_{\operatorname{map}}(g \# f,(a, b)), \mathbf{e}_{\arg }(g \# f,(a, b))\right) \\
& :=\left(\left(\mathbf{e}_{\operatorname{map}}(f, a), \mathbf{e}_{\operatorname{map}}(g, b)\right),\left(\mathbf{e}_{\arg }(f, a), \mathbf{e}_{\arg }(g, b)\right)\right. \\
& \mathrm{ev}(g \# f,(a, b)):=(\operatorname{ev}(f, a), \operatorname{ev}(g, b))
\end{aligned}
$$

complexity descent, local proof:

$$
\begin{aligned}
& \mathbf{c e}(g \# f,(a, b)) \\
& =\mathbf{c}\left(\left(\mathbf{e}_{\text {map }}(f, a), \mathbf{e}_{\text {map }}(g, b)\right),\left(\mathbf{e}_{\arg }(f, a), \mathbf{e}_{\arg }(g, b)\right)\right) \\
& :=(\mathbf{c}(f, a)+\mathbf{c}(g, b)) \\
& <(\mathbf{c}(f, a)+\mathbf{c}(g, b))+1 \\
& =\mathbf{c}(g \# f,(a, b))
\end{aligned}
$$

- iterated map case
- identity subcase $f:={ }^{r} \mathrm{id}^{\urcorner \$} \in \mathbf{X}^{\mathbf{X} \times \mathbb{N}}$
complexity stationarity，local proof：
－iterated map case，step

$$
f^{\Phi} \in \mathbf{X}^{\mathbf{X} \times \mathbb{N}}
$$

$$
\mathbf{c}(f, a)>0
$$

$$
\begin{aligned}
& \mathbf{c e}\left({ }^{\ulcorner } \mathrm{id}^{7}{ }^{\$},(a, n)\right) \\
& =\mathbf{c}\left(\mathbf{e}_{\text {map }}\left(\mathrm{rid}^{\urcorner} \$,(a, n)\right), \mathbf{e}_{\arg }\left(\mathrm{rid}^{\urcorner}{ }^{\$},(a, n)\right)\right) \\
& =\mathbf{c}\left({ }^{\ulcorner } \mathrm{id}^{\top}, a\right) \\
& =0=0 \omega \\
& =\mathbf{c}\left({ }^{\mathrm{rid}}{ }^{\top} \text { \$ },(a, n)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{c}\left({ }^{\ulcorner } \mathrm{id}^{\top}{ }^{\$},(a, n)\right) \\
& :=\mathbf{c}\left({ }^{「} \mathrm{id}^{\prime}, a\right) \omega \\
& =0 \omega=0 \\
& \mathbf{e}\left({ }^{\mathrm{r} \mathrm{id}^{\mathrm{〕}}}{ }^{\$},(a, n)\right)
\end{aligned}
$$

$$
\begin{aligned}
& :=\left({ }^{\mathrm{r}} \mathrm{id}{ }^{\top}, a\right) \\
& \operatorname{ev}\left(\operatorname{rid}^{\top},(a, n)\right) \\
& :=\mathrm{ev}\left({ }^{\mathrm{r}} \mathrm{id}{ }{ }, a\right) \\
& =a
\end{aligned}
$$

s n

$$
\begin{aligned}
& \mathbf{c}\left(f^{\$},(a, \mathrm{~s} n)\right):=(\mathrm{s} n) \cdot \mathbf{c}(f, a) \omega+n \\
& \in \mathbb{N}[\omega] \text { recursively } \\
& \mathbf{e}\left(f^{\$},(a, \mathrm{~s} n)\right) \\
& \left.:=\left(f^{\$},(a, n)\right)\right) \\
& \operatorname{ev}\left(f^{\$},(a, \mathrm{~s} n)\right) \\
& :=\operatorname{ev}\left(f, \operatorname{ev}\left(f^{\$},(a, n)\right)\right)
\end{aligned}
$$

complexity descent, local proof:

$$
\begin{aligned}
& \mathbf{c e}\left(f^{\$},(a, \mathrm{~s} n)\right) \\
& =\mathbf{c}\left(f^{\$},(a, n)\right) \\
& :=n \cdot \mathbf{c}(f, a) \omega+\mathrm{p} n \\
& <(\mathrm{s} n) \cdot \mathbf{c}(f, a) \omega+n \\
& \quad \text { since here } \mathbf{c}(f, a)>0 \\
& =\mathbf{c}\left(f^{\$},(a, \mathrm{~s} n)\right)
\end{aligned}
$$

end evaluation step

5.3 PR-evaluation within T

$$
\begin{aligned}
& \mathrm{ev}=\operatorname{def} \mathrm{cci}_{\mathbf{c}: \mathrm{e}}=\operatorname{cci}_{\mathbf{c}: \mathrm{e}}(f, a) \text { i. e. } \\
& \mathrm{ev}=\operatorname{ev}(f, a))=\mathbf{e}^{\S}\left(f, \tau_{\mathbf{c}: \mathbf{e}}(f, a)\right): \mathrm{PR} \times \mathbf{X} \xrightarrow{r} \mathbf{X} .
\end{aligned}
$$

this gives - by domain/codomain restriction -
(contra/covariant natural transformation) family $\mathrm{ev}=\operatorname{ev}_{A, B}(f, a): B^{A} \times A \rightarrow B$

5.4 Recursive characterisation of evaluation

evaluation

$$
\begin{aligned}
& \mathrm{ev}=\operatorname{ev}(h, x)=\mathrm{cci}_{\mathbf{c}: \mathrm{e}} \\
& \quad=\text { by def } r \circ \mathbf{e}^{\S}\left(h, \tau_{\mathbf{c}: \mathrm{e}}(h, x)\right): \\
& \mathrm{PR} \times \mathbf{X} \rightarrow \mathrm{PR} \times \mathbf{X} \xrightarrow{r} \mathbf{X}=\bigcup_{A \in \mathbf{P R}} A
\end{aligned}
$$

is characterised within theory \mathbf{T} by

- $\mathrm{ev}\left({ }^{「} \mathrm{ba}^{\prime}, a\right)=\mathrm{ba}(a)$
- $\operatorname{ev}(g \odot f, a)=\operatorname{ev}(g, \operatorname{ev}(f, a))$
- $\mathrm{ev}(\langle f ; g\rangle, c)=(\operatorname{ev}(f, c), \operatorname{ev}(g, c))$
- $\operatorname{ev}(f \# g,(a, b))=(\operatorname{ev}(f, a), \operatorname{ev}(g, b))$
- Iteration cases

$$
\begin{aligned}
& -\operatorname{ev}\left(f^{\$},(a, 0)\right)=a \\
& \left.-\operatorname{ev}\left(f^{\$},(a, s n)\right)\right)=\operatorname{ev}\left(f, \operatorname{ev}\left(f^{\$},(a, n)\right)\right.
\end{aligned}
$$

Proof by recursive case distinction, recursively on $\tau=\tau_{\mathbf{c}: \mathbf{e}}(h, x): \mathrm{PR} \times \mathbf{X} \rightarrow \mathbb{N}$

- Case $h=$ ba \in bas (basic), $\tau \leq 1$

$$
\begin{aligned}
& \mathrm{ev}\left({ }^{「} \mathrm{ba}^{`}, a\right)=\mathbf{e}\left({ }^{\ulcorner } \mathrm{ba}^{`}, a\right)=\mathrm{ba}(a) \text { by definition, } \\
& \quad \text { in particular } \\
& \left.\mathrm{ev}\left({ }^{\ulcorner } \mathrm{id}\right\urcorner, a\right)=\operatorname{id}(a)=a \text { and } \\
& \operatorname{ev}\left({ }^{\ulcorner } \mathrm{s}^{`}, n\right)=\mathrm{s} n
\end{aligned}
$$

- Composition case $h=g \odot f, \tau(g \odot f, a) \geq 1$

$$
\begin{aligned}
& \operatorname{ev}(g \odot f, a)=r \circ \mathbf{e}^{\S}((g \odot f, a), \tau(g \odot f, a)) \\
& =r \circ \mathbf{e}^{\S}\left(\left(g \odot \mathbf{e}_{\text {map }}(f, a), \mathbf{e}_{\arg }(f, a)\right), \tau(g \odot f, a)-1\right) \\
& =\operatorname{ev}\left(g \odot \mathbf{e}_{\text {map }}(f, a), \mathbf{e}_{\arg }(f, a)\right)
\end{aligned}
$$

by induction hypothesis on τ

$$
=\operatorname{ev}(g, \operatorname{ev}(f, a))
$$

by iterative definition of ev

- Induced map case $h=\langle f ; g\rangle, \tau(\langle f ; g\rangle, c) \geq 1$

$$
\begin{aligned}
& \operatorname{ev}(\langle f ; g\rangle, c)=r \circ \mathbf{e}^{\S}((\langle f ; g\rangle, c), \tau((\langle f ; g\rangle, c)) \\
& =r \circ \mathbf{e}^{\S}((\langle f ; g\rangle, c), \max (\tau(f, c), \tau(g, c))+1) \\
& =r \circ \mathbf{e}^{\S}(\mathbf{e}(\langle f ; g\rangle, c), \max (\tau(f, c), \tau(g, c)) \\
& =\operatorname{ev}(\langle f ; g\rangle, c))
\end{aligned}
$$

by induction hypothesis on τ

$$
=\operatorname{ev}(\langle f, c) ; \operatorname{ev}(g\rangle, c)
$$

by iterative definition of ev

- Iteration cases

$$
\begin{aligned}
& \text { - Case }(h, a)=\left(f^{\$},(a, 0)\right), \tau\left(f^{\$},(a, 0)\right)=1 \\
& \quad \operatorname{ev}\left(f^{\$},(a, 0)\right) \\
& \quad=r \circ \mathbf{e}^{\S}\left(f^{\$},(a, 0)\right), \tau\left(f^{\$},(a, 0)\right) \\
& \left.\quad=r \circ \mathbf{e}^{\S}\left(f^{\$},(a, 0)\right), 1\right) \\
& \quad=\mathbf{e}\left(f^{\$},(a, 0)\right) \\
& \quad=\operatorname{ev}\left({ }^{\ulcorner } \mathrm{id}^{\top}, a\right)=\operatorname{id}(a)=a
\end{aligned}
$$

$$
\begin{aligned}
& - \text { Case }(h,(a, \mathbf{s} n))=\left(f^{\$},(a, \mathbf{s} n)\right) \\
& \qquad \begin{aligned}
& \tau\left(f^{\$},(a, \mathrm{~s} n)\right)=(\mathrm{s} n) \cdot \tau(f)+n \\
& \operatorname{ev}\left(f^{\$},(a, \mathbf{s} n)\right) \\
&=r \circ \mathbf{e}^{\S}\left(f^{\$},(a, \mathbf{s} n)\right), \tau\left(f^{\$},(a, \mathbf{s} n)\right) \\
&\left.=r \circ \mathbf{e}^{\S}\left(f^{\$},(a, \mathbf{s} n)\right),(\mathbf{s} n) \cdot \tau(f)+n\right) \\
&=r \circ \mathbf{e}^{\S}\left(\mathbf{e}\left(f^{\$},(a, \mathbf{s} n)\right),(\mathbf{s} n) \cdot \tau(f)+(n-1)\right) \\
&=r \circ \mathbf{e}^{\S}\left(f \odot\left(f^{\$},(a, n)\right), n \cdot \tau(f)+\mathrm{p} n\right) \\
&=\operatorname{ev}\left(f \odot\left(f^{\$},(a, n)\right)\right.
\end{aligned}
\end{aligned}
$$

by induction hypothesis on τ

q.e.d.

5.5 Evaluation objectivity

$$
\mathbf{T} \vdash \operatorname{ev}\left(\left\ulcorner f^{\urcorner}, a\right)=f(a)\right.
$$

Proof by evaluation characterisation theorem:

- case of basic map ba \in bas

$$
\begin{aligned}
& \operatorname{ev}\left({ }^{\text {「 }} \mathrm{ba}^{\top}, a\right)=\mathbf{e}\left({ }^{\text {「 }} \mathrm{ba}^{\top}, a\right) \\
& =\mathrm{ba}(a)
\end{aligned}
$$

- Case of a composed map $(g \circ f): A \rightarrow B \rightarrow C$

$$
\begin{aligned}
& \operatorname{ev}\left({ }^{\ulcorner } g \circ f^{\urcorner}, a\right)=\operatorname{ev}\left({ }^{\ulcorner } g^{\urcorner} \odot{ }^{\ulcorner } f^{\urcorner}, a\right) \\
& =\operatorname{ev}\left({ }^{\ulcorner } g^{\urcorner}, \operatorname{ev}\left(\left\ulcorner f^{\urcorner}, a\right)\right)=\operatorname{ev}\left({ }^{\ulcorner } g^{\urcorner}, f(a)\right)\right. \\
& =g(f(a))=g \circ f(a)
\end{aligned}
$$

- case of an induced map $(f, g): C \rightarrow A \times B$

$$
\begin{aligned}
& \operatorname{ev}\left({ }^{\ulcorner }(f, g)^{\urcorner}, c\right)=\operatorname{ev}\left(\left\langle{ }^{\ulcorner } f^{\urcorner} ;{ }^{「} g^{\urcorner}\right\rangle, c\right) \\
& =\left(\operatorname{ev}\left({ }^{「} f^{\urcorner}, c\right), \operatorname{ev}\left({ }^{\ulcorner } g^{\urcorner}, c\right)\right) \\
& =(f(c), g(c))=(f, g)(c)
\end{aligned}
$$

- cases of an iterated map $f^{\S}: A \times \mathbb{N} \rightarrow A$
- anchor:

$$
\begin{aligned}
& \operatorname{ev}\left({ }^{\ulcorner } f^{\S\urcorner},(a, 0)\right)=\operatorname{ev}\left({ }^{\ulcorner } f^{\urcorner} \uparrow,(a, 0)\right) \\
& =a=f^{\S}(a, 0)
\end{aligned}
$$

- step:

$$
\begin{aligned}
& \operatorname{ev}\left({ }^{\ulcorner } f^{\S\urcorner},(a, \mathrm{~s} n)\right)=\operatorname{ev}\left({ }^{\ulcorner } f^{\urcorner} \uparrow,(a, \mathbf{s} n)\right) \\
& =\operatorname{ev}\left({ }^{\ulcorner } f^{\urcorner}, \operatorname{ev}\left({ }^{\ulcorner } f^{\urcorner} \$,(a, n)\right)\right. \\
& =\operatorname{ev}\left({ }^{\ulcorner } f^{\urcorner}, f^{\S}(a, n)\right) \\
& =\left(f \circ f^{\S}\right)(a, n)=f^{\S}(a, \mathbf{s} n) \quad \text { q.e.d. }
\end{aligned}
$$

6 Inconsistency proof for set the-

ory

This section is to prove - based on evaluation objectivity ${ }^{11}$ inconsistency of (typical) set theory \mathbf{T} and hence of all classical, quantified set theories. The argument is an (anti)diagonal construction of a "liar" truth value map, equal to its own negation.

[^8]Define a＂Cretian＂map，truth value liar ： $\mathbb{1} \rightarrow \mathbb{Z}$
－called＇liar＇because it equals its own negation－ as follows：

Let ct ： $\mathbb{N} \rightarrow 2^{\mathbb{N}}$ be the－primitive recursive－count of all predicate codes on \mathbb{N} ；it comes with a（primitive recursive） inverse isomorphism $\mathrm{ct}^{-1}: \mathbb{2}^{\mathbb{N}} \rightarrow \mathbb{N}$ ：

With negated PR－evaluation－within set theory \mathbf{T}－

$$
\delta={ }_{\text {def }} \neg \circ \mathrm{ev} \circ\left(\mathrm{ct}, \mathrm{id}_{\mathbb{N}}\right): \mathbb{N} \xrightarrow{(\mathrm{ct}, \mathrm{id})} \mathbb{2}^{\mathbb{N}} \times \mathbb{N} \xrightarrow{\mathrm{ev}} \mathbb{2} \xrightarrow{\sqsupset} \mathbb{2}
$$

Consider p．r．map（truth value）liar： $\mathbb{1} \rightarrow \mathbb{2}$ ，

$$
\begin{aligned}
& \text { liar }=\text { def } \delta \circ \mathrm{ct}^{-1} \circ{ }^{\mathrm{r}} \delta^{\top} \\
& ={ }_{\text {by def }}\left(\neg \circ \mathrm{ev} \circ\left(\mathrm{ct}, \mathrm{id}_{\mathbb{N}}\right)\right) \circ \mathrm{ct}^{-1} \circ{ }^{\ulcorner } \delta^{\urcorner} \\
& =\neg \circ \mathrm{ev} \circ\left(\left(\mathrm{ct}, \mathrm{id}_{\mathbb{N}}\right) \circ \mathrm{ct}^{-1} \circ{ }^{「} \delta^{\urcorner}\right) \quad(\text { associativity of } \circ) \\
& =\neg \circ \mathrm{ev} \circ\left(\mathrm{ct}^{\circ} \mathrm{ct}^{-1} \circ{ }^{\ulcorner } \delta^{\urcorner}, \mathrm{ct}^{-1} \circ{ }^{「} \delta^{\top}\right) \quad \text { (distributivity) } \\
& =\neg \circ \mathrm{ev}\left({ }^{\mathrm{r}} \delta^{\urcorner}, \mathrm{ct}^{-1} \circ{ }^{「} \delta^{\top}\right) \\
& =\neg \circ \delta \circ\left(\mathrm{ct}^{-1} \circ^{\ulcorner } \delta^{\urcorner}\right) \quad \text { (objectivity of ev) } \\
& =_{\text {by def }} \neg \text { liar }: \mathbb{1} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}
\end{aligned}
$$

q．e．d．contradiction within theory T ．

Consequence

The following theories are all inconsistent：
Set theories as in particular $\mathbf{P M}, \mathbf{Z F}$ ，and $\mathbf{N G B},{ }^{12}$ all of these

[^9]taken with Hilbert's weak (first-order) choice operator ${ }^{13}$ iota. ${ }^{14}$

7 WAY OUT

In forthcoming book Arithmetical Foundations we replace schema CCC_{τ} of terminating descending iteration by schema

$$
\begin{aligned}
& c=c(a): A \rightarrow \mathbb{N}[\omega] \text { complexity } \\
& p=p(a): A \rightarrow A \text { predecessor endo } \\
& {[c(a)=0 \Longrightarrow p(a)=a] \text { (stationarity) }} \\
& \wedge[c(a)>0 \Longrightarrow c p(a)<c(a)] \text { (descent) }
\end{aligned}
$$

$$
\text { put together: } \operatorname{CCI}[c: f]
$$

(CCI)

$$
\begin{aligned}
& \mathrm{wh}[c>0: p]: A \rightarrow A \\
& =\mathrm{while}[c(a)>0] \text { do } a:=p(a) \text { od, formally: } \\
& D_{\mathrm{wh}}=\left\{(a, m) \in A \times \mathbb{N}: c p^{m}(a)=0\right\}, \\
& d_{\mathrm{wh}}(a, m)=a: D_{\mathrm{wh}} \rightarrow A \\
& \widehat{\mathrm{wh}}(a, m)=p^{m}(a): D_{\mathrm{wh}} \rightarrow A
\end{aligned}
$$

Iterative non-infinite-complexity-descent theory $\pi \mathbf{R}=\mathbf{S}+$ (π) is defined as strengthening of theory \mathbf{S} of primitive recursion with predicate-into-subject abstraction, by the following additional axiom schema:

13 cf. GÖDEL 1940
14 see Hilbert 1900/1970

$$
c: A \rightarrow \mathbb{N}[\omega], p: A \rightarrow A
$$

data of a complexity controlled iteration - CCI with complexity values
in ordered polynomial semiring $\mathbb{N}[\omega]$:
$[c(a)=0 \Rightarrow p(a)=a] \wedge[c(a)>0 \Rightarrow c p(a)<c(a)] ;$
$\psi=\psi(a): A \rightarrow \mathcal{L}$ a "negative" test predicate:
$\psi(a) \Longrightarrow c p^{n}(a)>0, a \in A, n \in \mathbb{N}$ free
(non-termination for all a)
(π)

$$
\psi=\text { false }_{A}=0_{A}: A \rightarrow \mathbb{Z}
$$

Non-infinite iterative descent: "Only the overall false predicate implies overall non-termination of CCI : quasi-termination."

Recursive theory $\pi \mathbf{R}=\mathbf{S}+(\pi)$ of non-infinitely descending complexity-controlled iteration turns out to be self-consistent:
$\pi \mathbf{R} \vdash \mathrm{Con}_{\pi \mathbf{R}}$ i.e.
$\pi \mathbf{R} \vdash \neg \operatorname{Prov}_{\pi \mathbf{R}}$ (n, false), $n \in \mathbb{N}$ free:
no $n \in \mathbb{N}$ is an arithmetised proof of falsity.
This means that theory $\pi \mathbf{R}$ taken as foundation is good for Hilbert's consistency program - presumably it is not a conservative extension of (categorical primitive recursive Arithmetics) $\mathbf{P R}$ and \mathbf{S}, so Hilbert's conservation program seems not to work this way.

References

[1] J. Barwise ed. 1977: Handbook of Mathematical Logic. North Holland.
[2] N. Bourbaki 1966: Éléments de mathématique. FASCIcule Xvir. Théorie des ensembles. HERMANN.
[3] S. Eilenberg, C. C. Elgot 1970: Recursiveness. Academic Press.
[4] S. Eilenberg, S. Mac Lane 1945: General Theory of natural Equivalences. Trans. AMS 58, 231-294.
[5] P. J. Freyd 1972: Aspects of Topoi. Bull. Australian Math. Soc. 7, 1-76.
[6] K. GöDEL 1931: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatsh. der Mathematik und Physik 38, 173-198.
[7] K. GÖDEL 1940: The consistency of the axiom of choice and of the generalized continuum hypothesis with the axioms of set theory. In: Feferman, S., et al. (eds.) Kurt Gödel: Collected Works, vol. II, pp. 33-101. Oxford University Press, Oxford (1990); First published in 1940 by Princeton University Press.
[8] R. L. Goodstein 1964: Recursive Number Theory. North Holland.
[9] R. L. Goodstein 1971: Development of Mathematical Logic, ch. 7: Free-Variable Arithmetics. Logos Press.
[10] D. Hilbert 1900/1970: Mathematische Probleme. Vortrag Paris 1900. Gesammelte Abhandlungen. Springer.
[11] J. Lambek 1999: An equational variant of Lawvere's natural numbers object. Preprint. McGill University Montreal.
[12] F. W. Lawvere 1964: An Elementary Theory of the Category of Sets. Proc. Nat. Acad. Sc. USA 51, 15061510.
[13] M. Pfender, M. Kröplin, D. Pape 1994: Primitive recursion, equality, and a universal set. Math. Struct. in Comp. Sc. 4, 295-313.
[14] M. Pfender, J. Sablatnig 2020: Arithmetical Foundations: Recursion.Evaluation.Consistency. Book on demand, KIEPERT Berlin.
[15] R. Reiter 1982: Ein algebraisch-konstruktiver Abbildungskalkül zur Fundierung der elementaren Arithmetik. Dissertation, rejected by Math. dpt. of TU Berlin.
[16] L. Romàn 1989: Cartesian categories with natural numbers object. J. Pure Appl. Alg. 58, 267-278.
[17] B. Russel, A. N. Whitehead 1910-1913: Principia Mathematica. Traktat.
[18] S. Singh 1997/1998 Fermats letzter Satz. Carl Hanser Verlag.
[19] Th. Skolem 1919: Begründung der elementären Arithmetik durch die rekurrierende Denkweise ohne die Anwendung scheinbarer Veränderlichen mit unendlichem Ausdehnungsbereich, Skolem 1970, pp. 153-188.
[20] Th. Skolem 1970: Selected Works in Logic. Universitetsforlaget Oslo-Bergen- Tromsö.
[21] C. Smorynski 1977: The incompleteness theorems. Part D.1, pp. 821-865 in J. Barwise ed. 1977.

[^0]: *pfender@math.tu-berlin.de

[^1]: 1 "Was ich nun in dieser Abhandlung zu zeigen wünsche ist folgendes: Faßt man die allgemeinen Sätze der Arithmetik als Funktionalbehauptungen auf, und basiert man sich auf der rekurrierenden Denkweise, so läßt sich diese Wissenschaft in folgerichtiger Weise ohne Anwendung der RusselWhitehead'schen Begriffe "always" und "sometimes" begründen." ${ }^{2}$ primitive recursive

[^2]: ${ }^{3}$ for a catgorical version of $\mathbf{Z F}$ see Osius 1974

[^3]: ${ }^{5}$ cf. Lawvere 1964 as well as Eilenberg, Elgot 1970

[^4]: ${ }^{6}$ see FREYD 1972

[^5]: ${ }^{7}$ cf. SINGH 1997/1998

[^6]: ${ }^{8}$ see Hilbert 1900/1970
 9 see Bourbaki 1966

[^7]: ${ }^{10}$ cf. Gödel 1931 and SmORYNSKi 1977

[^8]: 11 objectivity in the sense of Smorynski 1977

[^9]: 12 see BARWISE ed． 1977

