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Abstract

We introduce in an axiomatic way the categorical theory

PR of primitive recursion as the initial cartesian category with

Natural Numbers Object. This theory has an extension into

constructive set theory S of primitive recursion with abstrac-

tion of predicates into subsets and two-valued (boolean) truth

algebra. Within the framework of (typical) classical, quantified

set theory T we construct an evaluation of arithmetised the-

ory PR via Complexity Controlled Iteration with witnessed

termination of the iteration, witnessed termination by avail-

ability of Hilbert’s iota operator in set theory. Objectivity of

that evaluation yields inconsistency of set theory T by a liar

(anti)diagonal argument.
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Introduction and overview

The problem with 19th/20th century mathematical founda-

tions, clearly stated in Skolem 1919,1 is unbounded infinitary

(non-constructive) formal quantification ‘∀’ and ‘∃’, needed for

set theoretical introduction of maps to consist (in general) out

of an actual infinity of element pairs.

In this paper we attempt to deduce inconsistency of classical,

quantified set theories as in particular Zermelo-Fraenkel set

theory ZF.

In order to reach this result, we proceed as follows:

• Section 1 on Primitive Recursion first states the ax-

ioms of cartesian categorical free-variables theory PR of

primitive recursion and deduces the full schema of prim-

itive recursion, deduces it from Freyd’s uniqueness axiom

for the initialised iterated map, taken as last axiom of

theory PR.

• Section 2 discusses p. r.2 predicates, their abstraction into

subsets of PR’s objects (in turn nested cartesian prod-

ucts of one-object and Natural Numbers Object ),

two-elements (boolean) truth algebra , and states the

FERMAT theorems as free-variable PR predicates.

1 “Was ich nun in dieser Abhandlung zu zeigen wünsche ist folgendes:

Faßt man die allgemeinen Sätze der Arithmetik als Funktionalbehauptungen

auf, und basiert man sich auf der rekurrierenden Denkweise, so läßt sich

diese Wissenschaft in folgerichtiger Weise ohne Anwendung der Russel-

Whitehead’schen Begri↵e “always” und “sometimes” begründen.”
2 primitive recursive
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• Section 3 on strings and polynomials introduces ordinal

semiring [!] needed as domain of complexity values for

Complexity Controlled iteration; evaluation is defined as

such a CCI.

• Section 4 introduces terminating Complexity Controlled

Iteration CCI in general, terminating by availability of

Hilbert’s iota operator given as a weak choice operator.

• In section 5 we code, “gödelise”, arithmetise theory PR

– just its maps – in a very simple, litteral way into an in-

ternal theory PR, construct – central part of the paper –

evaluation transformation ev as terminating (descending)

Complexity Controlled Iteration CCC
⌧

– terminating be-

cause Hilbert’s iota operator is available in set theory T

taken as frame –, and show a characterisation theorem

for the evaluation as well as evaluation objectivity.

• Section 6 is to prove – based on evaluation objectivity

– inconsistency of (typical) set theory T and hence of

all classical, quantified set theories. The argument is an

(anti)diagonal construction of a “liar” truth value map,

equal to its own negation.

• Final section 7 sketches a way out by weakening set the-

ory into recursive theory ⇡R = S + (⇡) of non-infinitely
descending complexity-controlled iteration.
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1 Categorical theory PR of prim-

itive recursion

Here we state the axioms of cartesian categorical free-variables

theory PR of primitive recursion and deduce the full schema of

primitive recursion, deduce it from Freyd’s uniqueness axiom

for the initialised iterated map, taken as last axiom of theory

PR.

1.1 Cartesian category structure

Let us start with the axioms of the cartesian category CA with

a (“naked”) natural number object = � ,0,s�.
Categorical theory CA, subsystem of – typical – set theory

T comes with objects

• terminal object, origin of pointer maps

to “elements” of any – countably many – objects

≡ {0}, one-element set of set theory T

in particular T = ZF Zermelo/Fraenkel set theory3

• , natural numbers object, “NNO”

≡ {0,1,2, . . .}
natural numbers set of set theory T

• cartesian product(s) of objects

3 for a catgorical version of ZF see Osius 1974
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A,B objects

(A ×B) object,
cartesian product

A ×B ≡ {(a, b) ∶ a ∈ A, b ∈ B}
a set of pairs in set theory T

• basic maps bas of CA subsystem of theory T

0 ∶ → (zero constant)

s = s(n) ∶ → (successor map)

id = id(a) = a ∶ A→ A (identity map)

Single free variable a over A interpreted in (categorical)

theory CA as identity map a ∶= id ∶ A→ A

(each term of CA should designate an object or a map)

• projections

⇧ = ⇧(a) ∶ A→ (terminal map)
` = `(a, b) = a ∶ A ×B → A (left projection)
r = r(a, b) = b ∶ A ×B → B (right projection)

⇧(a) = ⇧(id) = ⇧ ○ id = ⇧ − see below

`(a, b) = ` ○ (a, b) = ` ○ id
A×B = ` − see below

r(a, b) = r ○ (a, b) = r ○ id
A×B = r − see below
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⋅ ⋅ ⋅ ⋅
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`
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✏✏
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b

oo ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅

OO

//⋅ ⋅ 3 ⋅ x //

Cartesian product ×
with projections

` ∶ × → and r ∶ × →
pair of free variables

a over A, b over B interpreted as

projection maps a ∶= ` ∶ A ×B → A and b ∶= r ∶ A ×B → B

• associative map composition

f ∶ A→ B, g ∶ B → C maps

g ○ f = (g ○ f)(a) ≡ g(f(a)) ∶ A f�→ B

g�→ C map

a ∶= id ∶ A→ A free variable

f ∶ A→ B, g ∶ B → C, h ∶ C →D maps

h ○ (g ○ f) = (h ○ g) ○ f ≡ h(g(f(a))):
A

f�→ B

g�→ C

h�→D
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up to here: categorical theory CA = �Obj,Map, id, ○�
objects, maps, associative map composition, identity maps

neutral to composition

• unique induced map into product

f ∶ C → A, g ∶ C → B maps

=
A f(c)

C

f

22

(f,g) //

g

,,

A ×B
`

OO

r

✏✏

c

N

33

� //
p

++

(f(c), g(c))_

OO

_

✏✏

=
B g(c)

Godement’s diagram4

• cartesian map product

a

) ++
A

f

//

=
A

′
f(a)

(a,b) � 33

_

OO

_

✏✏

A ×B f×g //
`

OO

r

✏✏

=
A

′ ×B′
`

OO

r

✏✏

(f(a), g(b))_

OO

_

✏✏
b � 33B

g //
B

′
g(b)

4 this is the very beginning of – maps based – category theory, started by

Eilenberg, Mac Lane 1945
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Cartesian category CA as cartesian theory

CA = �Obj,Map,=, id, ○, ,⇧, ,0,s,×, `, r� with
objects, maps, map equality, identic maps, composition,

one object, terminal maps,

(natural numbers object, zero map, successor map),

cartesian product, projections to the factor objects.

1.2 Endomap iteration

endo f = f(a) ∶ A→ A(§)
f

§ = f §(a,n) ≡ fn(a) ∶ A × → A

such that

f

§(a,0) ≡ f0(a) = a = id(a)
f

§ ○ (id × s)(a,n) ≡ fsn(a)
= (f ○ f §)(a,n)

5

as a commutative diagram:

A × A×s //

f

§

✏✏

=

A ×

f

§

✏✏

A

(id,0⇧)
==

id
!!

= (§)

A

f //
A

5 cf. Lawvere 1964 as well as Eilenberg, Elgot 1970
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Example addition + = s§

× ×s //

s§

✏✏

+

✏✏

=

×
s§

✏✏

+

✏✏

(id,0⇧)
<<

id
""

= (+)

s //

a + 0 = a, a + sn = s(a + n)
1.3 Full schema of primitive recursion

The full schema of primitive recursion reads:

A map f = f(a,n) ∶ A × → B can be uniquely be p. r.

defined by the following – characteristic – inference

g = g(a) ∶ A→ B (anchor)

h = h((a,n), b) ∶ (A × ) ×B → B (step)(pr)
f = f(a,n) = pr[f, g] ∶ A × → B

such that

(anchor) f(a,0) = g(a) and
(step) f(a,n + 1) = h((a,n), f(a,n))
+ (pr!) uniqueness of such f

Example multiplication f(a,n) = a ⋅ n ∶ × →
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g = g(a) = 0⇧ ∶ → →
h = h((a,n), b) = b + a ∶ ( × ) × →(pr)
f(a,n) = a ⋅ n ∶ × →
unique such that

(anchor) f(a,0) = a ⋅ 0 = g(a) = 0 and

(step) f(a,n + 1) = a ⋅ (n + 1)
= h((a,n), f(a,n)) = a ⋅ n + a

Full schema (pr) is a consequence of

• iteration schema (§)
and

• uniqueness

of the initialised iterated map

this taken as (last) axiom (FR!) for the (categorical)

theory PR of primitive recursion:

1.4 Freyd’s (commuting) diagram (FR!)

Freyd’s axiom6 of uniqueness of the initialised iterated reads

as uniqueness of commutative fill-in h ∶ A× into the following

diagram:

6 see Freyd 1972
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A × A×s //

h

⌧⌧

g

§○(f× )

✏✏

A ×

h

⌧⌧

g

§○(f× )

✏✏

A

(idA,0⇧A)
==

f

!!

= = (FR!)

B

g //
B

(FR!) diagram chase

(a,n) � A×s //

h

⌧⌧

_

g

§○(f× )

✏✏

(a,sn)

h

��

_

g

§○(f× )

✏✏

a

.

(idA,0⇧A)
66

⇣

f

''

= =

f(a) = h(a,n) = gn(f(a)) � g //
g(h(a,n)) = gn+1(f(a))

All together the axioms of cartesian category/theory CA

extended by (constructing) iteration axiom (§) and Freyd’s

uniqueness axiom (FR!) define the

categorical free-variables cartesian category/theory

PR = �ObjCA,PR,=, id, ○, ,⇧, ,0,s,×, `, r ,§ �
with

• objects, maps, map equality, identic maps, composition

• one object, terminal maps
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• cartesian product, projections to the factor objects

• natural numbers object, zero map, successor map

and

• iteration operation §

of categorical Primitive Recursion, subsystem of

set theory T.

Proof of availability of initialised iterated map

h ∶ A × → B:

Consider commuting diagram

A

(idA,0A) //

f

✏✏

(f,0A)

!!

f

,,

A × A×s //

f×
✏✏

f×s

##

=

=

h

⌅⌅

A ×
f×

✏✏

=
=

h

⌅⌅

B (idB ,0B) //

idB

!!

B ×
B×s //

g

§

✏✏

==
B ×
g

§

✏✏
B

g //
B

2 PR predicates

This section discusses p. r. predicates, their abstraction into

subsets of PR’s objects (in turn nested cartesian products of

one-object and Natural Numbers Object ), two-elements

(boolean) truth algebra , and states the FERMAT theorems

as free-variable PR predicates.
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Definition

A PR predicate – on object A – is a PR map

� = �(a) ∶ A→ such that

PR � � = �(a) ≤ 1
Add formally all of these predicates as objects/subsets

to theory PR

– via a schema of predicate-into-subset abstraction –

and get an embedding extension of theory PR into

basic p. r. set theory S, subsystem of T.

2.1 Boolean truth object

Introduce 2-valued boolean truth object of S

as S set = {↵ ∈ ∶ ↵ ≤ 1} ≡ {0,1} ⊂
and define S predicates as S maps of form

� = �(a) ∶ A→ , A object of S.

S is the basic primitive recursive set theory.
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2.2 FERMAT free-variables p. r. predicates

Small fermat theorems

a > 0 ∧ b > 0 ∧ c > 0
�⇒ ¬[a4 + b4 = c4] ∶
(( × ) × ) × →
as well as

(a + 1)3 + (b + 1)3 ≠ (c + 1)3 ∶
(( × ) × ) × → × ≠�→

Last fermat theorem7

(a + 1)n+3 + (b + 1)n+3 ≠ (c + 1)n+3 ∶
((( × ) × ) × ) × → × ≠�→

a, b, c, free and n ∈ free

[ ≠ is a p. r. predicate [m ≠ n] = ¬[m = n] ∶ × → → ]

3 Strings and polynomials

This section introduces ordinal semiring [!] needed as do-

main of complexity values for Complexity Controlled Iteration;

evaluation is defined as such a CCI.

7 cf. Singh 1997/1998
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Strings a = a0 a1 . . . a

n

of natural numbers are coded as

prime power products

2a0 ⋅ 3a1 ⋅ . . . ⋅ pan
n

∈ >0 ⊂
iteratively defined as

((2a0 ⋅ 3a1) ⋅ . . .) ⋅ pan
n

∈ >0
Strings are identified with/interpreted as

“their” polynomials:

p(!) ≡ 0 or

p(!) = n�
j=0aj!

j = a0 + a1!1 + . . . + a
n

!

n

, a

n

> 0,
! an indeterminate for (arbitrarily) big natural numbers.

Order of polynomials is first by degree, second by pivot

coe�cient, and then – if these are equal – by comparison of

the two polynomials with their equal pivot monomes removed,

recursively, down to the zero polynomial (which has no degree).

Call [!] the linearily ordered semiring of (coe�cient strings)

of these polynomials.

The linear order has – intuitively and formally within set

theory – only finite descending chains, [!] is (there) an or-

dinal :

There is no infinitely descending chain c = c(n) ∶ → [!].

4 Complexity controlled iteration

Here we introduce terminating Complexity Controlled Itera-

tion CCI in general, terminating – within set theory T – by

16



availability of Hilbert’s iota operator8 (Bourbaki’s ⌧ operator9)

given as a weak choice operator.

This has as consequence the following T schema CCI
⌧

of termination witnessed, complexity controlled iteration:

c = c(a) ∶ A→ [!] (complexity)

p = p(a) ∶ A→ A (predecessor)

c(a) = 0 �⇒ p(a) = a (stationarity)

[!] ∋ c(a) > 0 �⇒ c p(a) < c(a)
complexity descent

CCI
⌧

∃⌧ = ⌧
c∶p ∈ )[(∀n ≥ ⌧) c pn(a) = 0],

hence (∀n ≥ ⌧)[pn(a) = p⌧(a)],
and defines p. r. map

cci = cci
c∶p = p§(a, ⌧

c∶p) ∶ A→ A

5 Evaluation of PR within set the-

ory T

In this section we code, “gödelise”, arithmetise theory PR –

just its maps – in a very simple, litteral way into an internal

theory PR, construct – central part of the paper – evalua-

tion transformation ev as terminating Complexity Controlled

Iteration CCC
⌧

, and show a characterisation theorem for the

8 see Hilbert 1900/1970
9 see Bourbaki 1966
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evaluation as well as evaluation objectivity.

5.1 Coding, “gödelisation”

Coding10 of theory PR ∶ internal, arithmetised theory

PR = �ObjPR = ObjCA,MapPR,bȧs,⊙, � ; �,$ �
• MapPR ⊂ an (algebraic carrier-)set of natural numbers

within set theory T, set of all arithmetised PR maps

• bȧs = { �0� , �s� , �id� , �⇧� , �`� , �r�} ⊂MapPR ⊂
with basic (LATEX) map codes

�0� = utf8[0], �s� = utf8[�texttt{s}] etc.
• composition operator ⊙ = �○� = utf8[�circ]
• map inducing operator � ; � = �( , )� = utf8[( , )]

will say

�= �(� ;= �, � � = �)�
• iteration operator

$ = �§�
5.2 Iterative evaluation transformation

evaluation step e merged with complexity c

and evaluation ev in recursive construction

10 cf. Gödel 1931 and Smorynski 1977

18



e = e (f , a) = (emap(f , a),earg(f , a)) ∶
PR ×X→ PR ×X

f ∈ PR, a ∈X free

X = �
A inPR

A PR − universal set ,
union of T sets, defined recursively

earg(f , a) is the intermediate argument obtained by one

evaluation step applied to the pair (f , a), and emap(f , a) is the
remaining map code still to be evaluated on intermediate ar-

gument earg(f , a), same then applies iteratively to resp. ob-

tained (f ′, a′) = e (f , a) = (emap(f , a),earg(f , a)).
This evaluation step e is defined by recursive case distinc-

tion, controlled by [!]-valued descending complexity c, and

using evaluation ev in recursive construction.

evaluation step

e = e (h, a) = (emap(h),emap(h, a)) ∶ PR ×X→X

emap = emap(h) ∶ PR ×X→ PR

earg = earg(h) ∶ PR ×X→X

is p. r. defined, and is iteration complexity-controlled

as follows:

• Basic map cases:

19



– case of an identity:

c ( �id� , a) = 0
e ( �id� , a) ∶= ( �id� , a) stationary
ev ( �id� , a) = a

– remaining basic map cases ba ∈ bas � {id}:
c ( �ba� , a) ∶= 1
e ( �ba� , a) ∶= ( �id� ,ba(a))
ev ( �ba� , a) = ba(a)
c ( �id� , a) = 0
< 1
= c ( �ba� , a)

– in particular case of successor map s:

c ( �s� , n) ∶= 1
e ( �s� , n) ∶= ( �id� ,sn)
ev ( �s� , n) = sn

• composed map case g ⊙ f

c (g ⊙ f , a) ∶= (c (g, ev (f , a)) + c (f , a)) + 1
∈ [!] recursively
e (g ⊙ f , a)
= (emap(g ⊙ f , a),earg(g ⊙ f , a))
∶= (emap(g, ev (f , a)),earg(g, ev (f , a)))
ev (g ⊙ f , a) ∶= ev (g, ev (f , a))

20



complexity descent, local proof :

ce (g ⊙ f , a)
= c (emap(g, ev (f , a)),earg(g, ev (f , a)))
∶= c (g, ev (f , a))
< (c (g, ev (f , a)) + c (f , a)) + 1
= c (g ⊙ f , a)

• case of an induced map:

– identities subcase:

c (� �id� ; �id� �, a) ∶= 1 = (0 + 0) + 1
e (� �id� ; �id� �, a) ∶= ( �id� , (a;a))
ev (� �id� ; �id� �, a) ∶= (a, a)
complexity descent, local proof ∶

ce (� �id� ; �id� �, a)
= c ( �id� , (a, a)) = 0
< 1
= c (� �id� ; �id� �, a)

– subcase f , g not both equal to �id� :
c (�f ;g�, c) ∶= (c (f , c) + c (g, c)) + 1
e (�f ;g�, c)
= (emap(�f ;g�, c),earg(�f ;g�, c))
∶= ((emap(f , c),emap(g, c)), (earg(f , c),earg(g, c))
ev ((f ,g), c) ∶= (ev (f , c), ev (g, c))
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complexity descent, local proof :

ce (�f ;g�, c)
= c (�emap(f , c);emap(g, c)�, �earg(f , c);earg(g), c�)
∶= (c (f , c) + c (g, c)) [> 0]
< (c (f , c) + c (g, c)) + 1
= c (�f ;g�, c)

• cartesian-product map case g#f (redundant)

c (g#f , (a, b)) ∶= (c (f , a) + c (g, b)) + 1
e (g#f , (a, b)
= (emap(g#f , (a, b)),earg(g#f , (a, b)))
∶= ((emap(f , a),emap(g, b)), (earg(f , a),earg(g, b))
ev (g#f , (a, b)) ∶= (ev (f , a), ev (g, b))

complexity descent, local proof :

ce (g#f , (a, b))
= c ((emap(f , a),emap(g, b)), (earg(f , a),earg(g, b)))
∶= (c (f , a) + c (g, b))
< (c (f , a) + c (g, b)) + 1
= c (g#f , (a, b))

• iterated map case

– identity subcase f ∶= �id� $ ∈XX×

22



c ( �id� $, (a,n))
∶= c ( �id� , a)!
= 0! = 0
e ( �id� $, (a,n))
= (emap( �id� $, (a,n)),earg( �id� $, (a,n)))
∶= ( �id� , a)
ev ( �id� $, (a,n))
∶= ev ( �id� , a)
= a

complexity stationarity, local proof :

ce ( �id� $, (a,n))
= c (emap( �id� $, (a,n)),earg( �id� $, (a,n)))
= c ( �id� , a)
= 0 = 0!
= c ( �id� $, (a,n))

– iterated map case, step

f

$ ∈XX×
c (f , a) > 0

23



sn

c (f$
, (a,sn)) ∶= (sn) ⋅ c (f , a)! + n

∈ [!] recursively
e (f$

, (a,sn))
∶= (f$

, (a,n)))
ev (f$

, (a,sn))
∶= ev (f , ev (f$

, (a,n)))
complexity descent, local proof :

ce (f$
, (a,sn))

= c (f$
, (a,n))

∶= n ⋅ c (f , a)! + pn
< (sn) ⋅ c (f , a)! + n
since here c (f , a) > 0
= c (f$

, (a,sn))
end evaluation step

5.3 PR-evaluation within T

ev =def ccic∶e = ccic∶e(f , a) i. e.

ev = ev(f , a)) = e§(f , ⌧c∶e(f , a)) ∶ PR ×X r�→X.

this gives – by domain/codomain restriction –

(contra/covariant natural transformation) family

ev = ev
A,B

(f , a) ∶ BA ×A→ B

24



5.4 Recursive characterisation of evalua-

tion

evaluation

ev = ev(h, x) = ccic∶e
=bydef r ○ e§(h, ⌧c∶e(h, x)) ∶

PR ×X→ PR ×X r�→X = �
A∈PR

A

is characterised within theory T by

• ev( �ba� , a) = ba(a)
• ev(g ⊙ f , a) = ev(g, ev(f , a))
• ev(�f ;g�, c) = (ev(f , c), ev(g, c))
• ev(f#g, (a, b)) = (ev(f , a), ev(g, b))
• Iteration cases

– ev(f$
, (a,0)) = a

– ev(f$
, (a,sn))) = ev(f , ev(f$

, (a,n))
Proof by recursive case distinction, recursively

on ⌧ = ⌧c ∶e(h, x) ∶ PR ×X→
• Case h = ba ∈ bas (basic), ⌧ ≤ 1

ev( �ba� , a) = e ( �ba� , a) = ba(a) by definition,

in particular

ev( �id� , a) = id(a) = a and

ev( �s� , n) = sn
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• Composition case h = g ⊙ f , ⌧(g ⊙ f , a) ≥ 1
ev(g ⊙ f , a) = r ○ e§((g ⊙ f , a), ⌧(g ⊙ f , a))
= r ○ e§((g ⊙ emap(f , a),earg(f , a)), ⌧(g ⊙ f , a) − 1)
= ev(g ⊙ emap(f , a),earg(f , a))
by induction hypothesis on ⌧

= ev(g, ev(f , a))
by iterative definition of ev

• Induced map case h = �f ;g�, ⌧(�f ;g�, c) ≥ 1
ev(�f ;g�, c) = r ○ e§((�f ;g�, c), ⌧((�f ;g�, c))
= r ○ e§((�f ;g�, c),max(⌧(f , c), ⌧(g, c)) + 1)
= r ○ e§(e (�f ;g�, c),max(⌧(f , c), ⌧(g, c))
= ev(�f ;g�, c))
by induction hypothesis on ⌧

= ev(�f , c); ev(g�, c)
by iterative definition of ev

• Iteration cases

– Case (h, a) = (f$
, (a,0)), ⌧(f$

, (a,0)) = 1
ev(f$

, (a,0))
= r ○ e§(f$

, (a,0)), ⌧(f$
, (a,0))

= r ○ e§(f$
, (a,0)),1)

= e (f$
, (a,0))

= ev( �id� , a) = id(a) = a
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– Case (h, (a,sn)) = (f$
, (a,sn)),

⌧(f$
, (a,sn)) = (sn) ⋅ ⌧(f) + n
ev(f$

, (a,sn))
= r ○ e§(f$

, (a,sn)), ⌧(f$
, (a,sn))

= r ○ e§(f$
, (a,sn)), (sn) ⋅ ⌧(f) + n)

= r ○ e§(e (f$
, (a,sn)), (sn) ⋅ ⌧(f) + (n − 1))

= r ○ e§(f ⊙ (f$
, (a,n)), n ⋅ ⌧(f) + pn)

= ev(f ⊙ (f$
, (a,n))

by induction hypothesis on ⌧

q. e. d.

5.5 Evaluation objectivity

T � ev( �f� , a) = f(a)
Proof by evaluation characterisation theorem:

• case of basic map ba ∈ bas
ev( �ba� , a) = e ( �ba� , a)
= ba(a)

• Case of a composed map (g ○ f) ∶ A→ B → C

ev( �g ○ f� , a) = ev( �g� ⊙ �f� , a)
= ev( �g� , ev( �f� , a)) = ev( �g� , f(a))
= g(f(a)) = g ○ f(a)
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• case of an induced map (f, g) ∶ C → A ×B
ev( �(f, g)� , c) = ev(� �f� ; �g� �, c)
= (ev( �f� , c), ev( �g� , c))
= (f(c), g(c)) = (f, g)(c)

• cases of an iterated map f

§ ∶ A × → A

– anchor:

ev( �f §� , (a,0)) = ev( �f� $, (a,0))
= a = f §(a,0)

– step:

ev( �f §� , (a,sn)) = ev( �f� $, (a,sn))
= ev( �f� , ev( �f� $, (a,n))
= ev( �f� , f §(a,n))
= (f ○ f §)(a,n) = f §(a,sn) q. e. d.

6 Inconsistency proof for set the-

ory

This section is to prove – based on evaluation objectivity11 –

inconsistency of (typical) set theory T and hence of all classi-

cal, quantified set theories. The argument is an (anti)diagonal

construction of a “liar” truth value map, equal to its own nega-

tion.

11 objectivity in the sense of Smorynski 1977
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Define a “Cretian” map, truth value liar ∶ →
– called ‘liar ’ because it equals its own negation –

as follows:

Let ct ∶ → be the – primitive recursive – count of

all predicate codes on ; it comes with a (primitive recursive)

inverse isomorphism ct−1 ∶ → ∶
With negated PR-evaluation – within set theory T –

� =def ¬ ○ ev ○ (ct, id ) ∶ (ct,id)���→ × ev�→ ¬�→
Consider p. r. map (truth value) liar ∶ → ,

liar =def � ○ ct−1 ○ ���
=bydef (¬ ○ ev ○ (ct, id )) ○ ct−1 ○ ���
= ¬ ○ ev ○ ((ct, id ) ○ ct−1 ○ ��� ) (associativity of ○)
= ¬ ○ ev ○ (ct ○ ct−1 ○ ��� , ct−1 ○ ��� ) (distributivity)
= ¬ ○ ev( ��� , ct−1 ○ ��� )
= ¬ ○ � ○ (ct−1 ○ ��� ) (objectivity of ev)
=bydef ¬ liar ∶ → →

q. e. d. contradiction within theory T.

Consequence

The following theories are all inconsistent:

Set theories as in particular PM, ZF, and NGB,12 all of these

12 see Barwise ed. 1977
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taken with Hilbert’s weak (first-order) choice operator13 iota.14

7 WAY OUT

In forthcoming bookArithmetical Foundations we replace schema

CCC
⌧

of terminating descending iteration by schema

c = c(a) ∶ A→ [!] complexity

p = p(a) ∶ A→ A predecessor endo

[c(a) = 0 �⇒ p(a) = a] (stationarity)
∧ [c(a) > 0 �⇒ c p(a) < c(a)] (descent)
put together: CCI[c ∶ f](CCI)
wh[c > 0 ∶ p] ∶ A⇀ A

= while[c(a) > 0] do a ∶= p(a) od, formally:

Dwh = {(a,m) ∈ A × ∶ c pm(a) = 0},
dwh(a,m) = a ∶Dwh → A

�wh(a,m) = pm(a) ∶Dwh → A

Iterative non-infinite-complexity-descent theory ⇡R = S +
(⇡) is defined as strengthening of theory S of primitive recur-

sion with predicate-into-subject abstraction, by the following

additional axiom schema:

13 cf. Gödel 1940
14 see Hilbert 1900/1970
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c ∶ A→ [!], p ∶ A→ A

data of a complexity controlled iteration – CCI –

with complexity values

in ordered polynomial semiring [!] ∶
[c(a) = 0 ⇒ p(a) = a] ∧ [c(a) > 0 ⇒ c p(a) < c(a)];
 =  (a) ∶ A→ a “negative” test predicate:

 (a) �⇒ c p

n(a) > 0, a ∈ A, n ∈ free

(non-termination for all a)(⇡)
 = false

A

= 0
A

∶ A→
Non-infinite iterative descent: “Only the overall false pred-

icate implies overall non-termination of CCI ∶ quasi-termination.”

Recursive theory ⇡R = S + (⇡) of non-infinitely descending

complexity-controlled iteration turns out to be self-consistent :

⇡R � Con
⇡R i. e.

⇡R � ¬Prov
⇡R(n, false), n ∈ free ∶

no n ∈ is an arithmetised proof of falsity.

This means that theory ⇡R taken as foundation is good for

Hilbert’s consistency program – presumably it is not a con-

servative extension of (categorical primitive recursive Arith-

metics) PR and S, so Hilbert’s conservation program seems

not to work this way.
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