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A B S T R A C T

The contact electrification of aerosolized micro particles has been studied using a novel
technique involving laser velocimetry. This has allowed the simultaneous determination of size
and electrical charge of individual silica microspheres (in the range 1 – 8 µm). Interestingly the
particles interacting with the injector tube have been seen to become electrified with a relatively
narrow range of surface charge concentration of around Q/4πr2 ~ −100 e-/µm2 (~ −0.02 mC/
m2) for all particle sizes. Several combinations of aerosol particle and injector tube composition
were also investigated, some of which led to positive particle electrification and all of which
resulted in similar values of measured surface charge concentration. The electrification was not
seen to be strongly affected by gas composition and is in reasonable agreement with the expected
maximum surface charge observed in previous experiments (< 0.1 mC/m2). Possible explana-
tions for this effect are discussed, including the possibility of field emission at the contact site. In
the future this technique is intended also to be applied to particle-particle induced contact
electrification and its material dependence.

1. Introduction

Contact electrification (tribo-electrification) is an important physical process in the transport of fine solid materials (i.e.
micrometer scale) and especially in the generation and dynamics of solid particle aerosols, examples are in Aeolian transport,
volcanoes, atmospherics, pharmaceuticals etc. (Harrison et al., 2016; James et al., 2008; Karner & Anne Urbanetz, 2011; Merrison,
2012). Despite the importance of contact electrification and the amount of research in this field, there is little agreement upon the
mechanism of charge transfer. Generally it is now thought that there are several competing processes occurring and not one single
mechanism responsible and that this is dependent upon the nature of the interacting surfaces and especially the surface chemistry. On
the most fundamental level one may consider contact electrification to occur via charge exchange with the transfer of electrons and/
or ions, material transfer is considered to be a form of ion transfer (Tanoue, Ema, & Masuda, 1999). There are several models
involving each of these processes which have been successfully applied in respective experimental cases. A complete picture for all
materials in all cases still eludes researchers and has been a source of active debate for decades (Harper, 1998; Harrison et al., 2016;
Lowell & Rose-Innes, 1980; McCarty & Whitesides, 2008).

For non-ionic insulators (e.g. polymers and possibly including mineral sand/dust) most researchers attempt to employ electron
exchange models (Lowell & Rose-Innes, 1980; Matsusaka, Maruyama, Matsuyama, & Ghadiri, 2010). However contact
electrification does not seem to correlate with surface or bulk electron properties such as dielectric constant, atomic properties,
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ionization energy, electron affinity or electro-negativity (Wiles, Grzybowski, Winkleman, & Whitesides, 2003). Despite this some
success has been achieved with electron transfer models involving electron donor/acceptors or so called high energy electron states in
insulator-insulator contact, also known as a molecular ion state model (Bailey, 2001; Duke & Fabish, 1978; Lowell & Rose-Innes,
1980). Similar electron transfer models also involving so called high energy surface electron states (likely due to impurities/
contamination) are used in describing size dependent electrification (Bo, Zhang, Hu, & Zheng, 2013; Harrison et al., 2016; Lacks &
Mohan Sankaran, 2011).

Specific electron transfer models have been developed for electrification in metal-insulator contact, for example involving an
effective potential difference (Davies, 1969) or performing quantum chemical (electron state) calculations (Shirakawa, Ii, Yoshida,
Takashima, Shimosaka & Hidaka, 2010). Models have also studied multiple surface impacts; one involved a capacitance charging
model including charge relaxation (electrical discharge) (Matsusyama & Yamamoto, 2006).

Despite these advances in electron transfer models, similar success and progress has also been achieved using ion exchange
models specifically involving proton exchange which not only works well for ionic or ion doped materials, but also where water
layers may be involved relating to chemical properties such as pH and/or zeta potential (Diaz & Felix-Navarro, 2004; Harper, 1998;
Law, Tarnawskyj, Salamida, & Debies, 1995; Mizes, Conwell, & Salamida, 1990), however this has not been demonstrated and is not
widely accepted.

In determining (order of magnitude) limits for or expected values of contact electrification there has been considerable success
using the ratio of charge/surface area (i.e. the surface charge concentration). In a variety of experimental techniques and over a broad
range of grain sizes (µm - mm) the electrification (surface charge concentration) limit has been seen to be of order 0.1 mC/m2 (or
around 600 e/µm2) (Lacks & Mohan Sankaran, 2011; Lowell, 1986; Merrison, Jensen, Kinch, Mugford, & Nørnberg, 2004; Nieh &
Nguyen, 1988; Poppe, Blum, & Henning, 2000). Many granular electrification studies show significantly lower levels of
electrification possibly due to experimental challenges in charge collection (e.g. of order 10−3 mC/m2) e.g. (Gross, Grek, Calle, &
Lee, 2001; Sickafoose, Colwell, Horányi, & Robertson, 2001). Also in some studies the contact area is estimated, though in most cases
the total particle surface area is used.

So even lacking a detailed physical understanding of the electrification process, there is general agreement on the order of
magnitude of the electrification and this is sufficient in most cases to quantify the effect of electrification on, for example,
entrainment and transport of sand/dust.

Another common cause for observing reduced electrification in charge collection systems is charge leakage via surface water and
therefore related to humidity (Nieh & Nguyen, 1988). Also in dust collection experiments electrostatic aggregation can de-electrify
suspended dust, especially when in high concentrations and after long suspension times (Merrison et al., 2012). In relatively recent
studies using AFM techniques and well prepared surfaces significantly higher values were reported, though here no account was
made for lateral spreading of charge (Horn, Smith, & Grabbe, 1993; McCarty & Whitesides, 2008).

Importantly in many cases electrical breakdown could limit the charge on grains during separation, e.g. dielectric (Paschen)
breakdown in air which occurs with voltages above around 300 V and pressure·separation (p·L) values above around 1 mbar·cm. This
could provide a quantitative explanation for the experimentally observed upper surface charge concentration and has been supported
experimentally in detailed investigation using relatively large polymer micro-spheres (50–500 µm) where the surface charge
concentration was seen to be constant and of order 0.1 mC/m2 (or around 600 e-/µm2) (Logan S. McCarty, Winkleman, &
Whitesides, 2007). Also electrical breakdown has been directly observed in some experiments (Harper, 1998; Horn et al., 1993;
Matsusaka et al., 2010; McCarty et al., 2007; Tatsushi & Hideo, 1997).

It is widely accepted that particulates of the same composition and of differing size upon contact/separation will have a tendency
for larger particulates to electrify positively and smaller ones to electrify negatively. This size dependence has been best demonstrated
in laboratory experiments involving sand cascading (Bilici, Toth III, Sankaran, & Lacks, 2014; Forward, Lacks, & Sankaran, 2009;
Kok & Lacks, 2009; Lacks, Duff, & Kumar, 2008; Lacks & Levandovsky, 2007; Waitukaitis, Lee, Pierson, Forman, & Jaeger, 2014).
However not all experimental studies reproduce this behavior (Kunkel, 1950; Sowinski, Miller, & Mehrani, 2010; Trigwell, Grable,
Yurteri, Sharma, & Mazumder, 2003). It should also be noted that in many of these electrification studies multiple particle
interactions are involved, including particle-wall interactions, and material purity (surface composition) is not well controlled. A
more complex charge exchange behavior can therefore often not be ruled out.

Modelling has been unsuccessful in satisfactorily explaining this size dependence in contact electrification, although several
promising models are being pursued. For example one model is based upon electron transfer through so called high energy electron
surface states (Apodaca, Wesson, Bishop, Ratner, & Grzybowski, 2010; Bo et al., 2013; Lacks & Mohan Sankaran, 2011). It would be
extremely useful here to experimentally identify the precise charge/polarity dependence of contact electrification with grain size, this
though has yet to be done.

Techniques involving direct electrical charge extraction are typically ineffective when dealing with dust sized (micrometer)
particulates since they are typically well suspended and difficult to extract (e.g. into a Faraday cup). Also they will typically carry less
charge and in contact with a surface may not be electrically conductive enough to allow rapid charge extraction. For fine suspended
dust other techniques have typically been used to quantify particulate electrification. They rely upon the application of an electric
field and the drift of electrified dust grains. The field induced drift velocity can be determined using optical/laser systems to study
particle trajectories (mobility) (Kunkel, 1950; Mazumder, Ware, Yokoyama, Rubin, & Kamp, 1991; Merrison et al., 2012) or by
extracting dust onto a surface (Merrison et al., 2012). The field induced drift velocity will be proportional to the electrical force and
therefore the electrical charge and polarity of the dust grains.

There are several modern experimental techniques which are proving to be extremely informative with regard to contact
electrification, one such technique is atomic force microscopy (AFM) (Gady, Reifenberger, & Rimai, 1998; Horn et al., 1993;
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Matsusaka et al., 2010). This work promises to provide a more detailed (atomic scale) understanding of electrification and has
already led to the observation that net surface electrification appears to be made up of a ‘mosaic’ of highly electrified regions of
positive and negative patches (Baytekin, Patashinski, Branicki, Baytekin, Soh & Grzybowski, 2011).

2. Materials and methods

The goal of this study is to advance our understanding of contact electrification through a combination of novel experimental
techniques applied to aerosol dispersion of micrometer scale particles. Importantly, this study focusses upon fine particles (< 10 µm)
relevant to dust suspension and aerosols, unlike many previous experimental studies. Here many physical processes such as adhesion/
cohesion or electrical discharging may be extremely sensitive to scale.

Aerosol generation is achieved by the rapid de-compression of a small (~20 cm3) gas chamber through a tube within which a
small mass (typically around 20 mg) of powder has been placed. This gas/particle mixture expands into a large (38 m3)
environmental chamber (Holstein-Rathlou et al., 2014) (Fig. 1). Typically chamber pressures of 2.5–10 mbar and injection pressures
of 8.5–40 mbar were used. These pressures were chosen such that the settling velocity was within a measurable range (0.1–5 cm/s).
Both capacitance and Pirani type pressure sensors were used for chamber and injection pressure determination (depending on the
pressure range) (Holstein-Rathlou et al., 2014). In this pressure range both sensor types have significant inaccuracy and lead to a
major source of systematic error in size/charge determination (< 15%).

Typically in this study mono-sized silica (SiO2) microspheres from Cospheric were used. These particles are extremely spherical
and have a narrow size range (see Table 1), they are slightly porous having a mass density of 1.8 g/cm3. Nominal particle diameters
of 1, 2, 4, and 8 µm were used. In specific studies various other morphology and composition of particle were used (see Table 1) as
well as other composition of injector tube (specifically glass and quartz).

In one of the measurement techniques used here the aerosol cloud was allowed to settle through a pair of parallel electrodes

Fig. 1. Schematic of the environmental chamber housing the settling volume and electrodes, the aerosolizer system (upper right) and the Laser Doppler Velocimeter
(lower right).

Table 1
Simultaneous measurements of size and particle electrification for various combinations of particle composition, particle size (range) and injector tube composition.
For the size the mean and standard deviation are generally given both as quoted by the manufacturer and as measured. For the charge per particle (Q) and charge per
surface area (Q/4πr2) the median value is given as well as the first and third quartiles (in brackets) rather than the standard deviation since typically these distributions
are not symmetrical. Note also that these are not the error on the determination of the median value (standard error which typically was between 1–10%), but rather
an expression of the width of the distribution of determined values.

Particle type Injector material Nominal d [µm] Measured d [µm] Q Q/4πr2
[103 · e-] [e-/µm2]

Silica 1 µm Steel 1.18 (0.03) 1.45 (0.45) −0.4 (+0.2 −0.3) −70 (+12 −25)
Silica 2 µm Steel 1.86 (0.06) 1.99 (0.37) −1.4 (+0.5 −0.7) −124 (+44 −41)
Silica 4 µm Steel 3.62 (0.2) 3.95 (0.35) −4.0 (+1.2 −1.3) −85 (+30 −34)
Silica 8 µm Steel 7.75 (0.3) 8.31 (0.55) −15.6 (+7.4 −6.5) −77 (+40 −27)
Soda lime glass Steelb 1–8 2.38 (1.68) −1.1 (+0.5 −0.8) −107 (+42 −20)
Copper Glassb < 5 5.32 (3.85) +6.5 (+14.7 −3.6) +127 (+120 −54)
Tungstena Glassb 1–5 7.85 (5.07) −9.7 (+7.3 −19.5) −86 (+33 −36)
Al Oxidea Quartz 5 (mean) 4.96 (1.47) +3.5 (+5.0 −2.7) +39 (+103 −29)

a The samples are not spherical.
b Injected from the top of the environmental chamber.
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across which an alternating electric field was applied (Kunkel, 1950). A two dimensional Laser Doppler Velocimeter (Dantec LDV)
was then used to (instantaneously) measure the horizontal and vertical velocity of an individual aerosol particle. The LDV
measurement volume was around 1.3 mm3.

Assuming the particles are spherical the measured horizontal (UE) and vertical (Ug) velocities can be used to derive the respective
electrical charge (Q) and radius (r). Typically, given the particle size and gas density, drag is described by molecular scattering
(within the molecular drag regime) as characterized by a Knudsen number greater than 1 (Kn=λ/2r > 1), where λ is the mean free
path or scattering length (λ = μ
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Where μ is the molecular viscosity of the gas, ρf is its density, mmol is its molecular mass, K is the Boltzmann constant, T is the
temperature (around 300 K), E is the electric field and ρp is the particle mass density and g is the gravitational acceleration. In this
experiment the free parameter in Epstein's drag model has been taken as δ=1.15, based on a previous (unpublished) study of settling
speeds (personal communication, Jakobsen 2016).

The vertical electrodes used had a separation=2.2 cm and diameter=5 cm and voltages of 15–600 V were used corresponding to
electric fields in the range 7·102–2.7·104 V/m. An alternating electric field was used with frequency around 10 Hz in order to avoid
drift of the electrified particles out of the measurement volume. Note that for micron sized particles (even in low density gas) particles
rapidly reach terminal velocity within the chamber (typically the particle characteristic time τ<10−2 ms). Particles counted within
a time < τ with respect to the polarity-switch time were deleted from the results to ensure the terminal velocity to be reached.

Typically the aerosol injector was orientated horizontally and around 1 m from and 0.6 m above the electrodes (LDV detection
volume, see Fig. 1), however it was also possible to inject from the top of the chamber. A micrometer driven system was used to
control the orientation of the jet with respect to the measurement volume such that the electrification of different sections of the jet
structure could be sampled.

In a second measurement technique, the voltage (V) generated on the stainless steel injection tube was measured using an
oscilloscope (Tektronix DPO 2002B) attached to the electrically isolated injector tube (V). Knowing the impedance of the oscilloscope
probe (R=10 MΩ) the net electrical current leaving the injection (aerosolizing) nozzle can be determined as a function of time; dQ/
dt=V(t)/R. By integration the total electrical charge leaving the (conductive) injector system can then be obtained. Note that the
injector system will be functioning here as a Faraday cage and will therefore only be sensitive to electrical charge exiting/entering the
injector system. The oscilloscope ground was attached to the (metal) environmental chamber and a second oscilloscope probe was
used to monitor possible electrical charges entering from the gas injection side.

A high speed camera (Edgertronics) was used within the environmental chamber in order to study the spatial and temporal
structure of the aerosol jet/plume. It could also be used to correlate the observed (time dependent) particle flux with the measured
electrical current leaving the nozzle.

In the case of insulating injector tubes the injector system was externally coated in conductive material (a Faraday cage).

3. Results

The aerosol spatial structure was seen to consist of an inner, highly concentrated central jet and a more diffuse and divergent
outer vortex ring. By controlling the injector direction with respect to the LDV/electrode system these different components could be
studied individually. This can be seen in Fig. 2 showing that the outer particles are (relatively) highly electrified whereas those in the
central jet have low electrification per particle. In some cases it was difficult to isolate the individual components (see Fig. 3).

Remarkably, when looking only at the outer highly electrified particles, it is seen that they are all electrified negatively and have a
similar and size independent surface charge concentration (Fig. 3. and Fig. 4). That is to say that the electrical charge per particle
appears to be constant for a given grain size and increases with r2 (i.e. surface area). This value is seen to be around −100 e-/µm2 (or
around −0.02 mC/m2) if assumed to be uniform over the entire particle surface.

Although a maximum electrification per particle was expected from previous studies, for the µm scale particles to attain such a
narrow range of particle electrification was unexpected. The charge/grain of around 500 – 30000 e- is in reasonable agreement with
previous studies e.g. (Merrison et al., 2012) also this charge/surface area is below the expected maximum of around 0.1 mC/m2. The
results here typically consisted of several repeated aerosol injections per particle type/injection condition with 20–700 counts per
injection. For the finer particles (e.g. 1 µm diameter) it was often observed that doubly electrified grains were also seen (see Fig. 4),
this was probably due to an aggregated pair of particles, an effect which was also seen in the size distribution (Fig. 5).

In order to verify that these electrification effects were not peculiar to the use of this combination of a steel tube and silica
microspheres, other tube/powder material combinations have been tested. This has included; Soda Lime glass spheres in steel,
Tungsten in borosilicate glass, Aluminium oxide in Quartz and Copper in borosilicate glass. Interestingly for Aluminium Oxide and
Copper the particles are seen to become positively electrified, however for all particle types the magnitude of the charge per surface
area appears to be similar i.e. the same order of magnitude (see Fig. 6 and Table 1).

The jet structure, aerosol concentration (dispersion) and average electrification are all sensitive to injection geometry and
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pressure. When using the LDV measurement technique relatively low injection pressures and low chamber pressures (< 20 mbar)
were required in order to obtain sufficiently high terminal velocities. In the case of injection at low over pressure many of the
particles were not dispersed and either remained within the injector tube or were injected as aggregates which were observed to be as
large as mm size. Evidence has been seen for the build-up of microspheres within the injector tube, specifically: reduced particle
dispersion after cleaning of the injector, aerosol generation even without adding further powder material, and also evidence for
electrical breakdown after repeated injections.

In Fig. 7 the voltage generated on the injection tube is shown together with an analysis of the high speed camera observations
whereby the light intensity is quantified as a function of time within a small (400 mm3) volume just outside of the nozzle. In this time
sequence one can see that the net electrical flux leaving the tube is correlated with the observable particle flux, but is variable in time.
In addition, some of the peaks in injector voltage are associated with (mm size) aggregates leaving the tube (and are therefore
assumed to be highly electrified) while others show no detectable variation in injector voltage. The charge associated with such
aggregates was determined to be as high as e.g. Q ~ −1.5·108 e-. An estimate of the aggregate size (diameter around 1 mm) was
found from high speed video images giving calculation of its charge per surface area, assuming it is spherical, a value of ~ 55 e-/µm2,
presumably coincidentally this is a similar value with respect to the single particles surface charge concentration. In this injection the
over pressure was around 22 mbar into a chamber pressure of around 13 mbar. The effective surface voltage of the aggregate in this
case would be around ~ 400 V which is in reasonable agreement with that expected if limited by gas breakdown at this pressure-
distance range (~ 1 mbar cm).

In some cases (though not always) evidence for multiple electrical discharges were observed, this was characterized by extremely
rapid (1 ns) and intense (> 1 V) spikes seen on the injector voltage (Fig. 8). Although no observable electrical discharges were seen
at the nozzle (with the high speed camera) it is likely that this was the site for the discharges. Alternatively electrical discharges could
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Fig. 2. Electrification per surface area determined for aerosolized particles (2 µm silica microspheres) within the inner portion of the jet (blue dashed line) and
separately particles within the outer portion of the jet (red line). These different portions were isolated by careful manipulation of the injector tube orientation with
respect to the measurement volume (electrodes). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 3. Individual measurements of particle size (diameter d) and determination of electrification per surface area for a single injection (aerosolization) of Soda Lime
glass micro-spheres (1–8 µm, see Table 1). In this injection, both inner (relatively low electrification) and outer (relatively highly electrified) portions of the jet were
observed again by careful manipulation of the injector tube orientation with respect to the measurement volume (electrodes) which in this case was placed above the
electrode system (injected from the top of the environmental chamber).
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in principle generate ions such that an electrical pulse of this type would be observed. However, the particle Stokes number during
the injection process can be seen to be St = τU0/Di < 1 (with U0 the flow velocity, Di the injector diameter) for the conditions used
here, indicating that single microspheres should not be separated from the gas flow.

The dependence of these electrification (and discharging) effects on gas composition was investigated using the gases Argon and
CO2 in addition to air. These gases have differing minimum electrical breakdown voltages (of respectively around 140, 460, 330 V)
however no significant variation in electrification or discharging was observed using these various gases.

4. Discussion

The primary goal of this study was to investigate (quantify) the contact electrification process using novel, precision techniques
and advanced micro-particles (spherical and mono-sized). Specifically the particle size dependence of the process was to be studied.
Surprisingly the particles interacting with the injector tube were seen to obtain a certain (narrowly distributed) quantity of negative
charge which increased with particle surface area, giving a relatively constant observed surface concentration of around −100 e-/
µm2 (or 0.02 mC/m2) (see Fig. 4). How these observations can be explained within current models of contact/tribo-electrification will
be discussed.

Firstly the concept of a maximum surface charge concentration is well known and is supported by a broad range of experiments
(Lacks & Mohan Sankaran, 2011; Lowell, 1986; Merrison et al., 2004; Nieh & Nguyen, 1988; Poppe et al., 2000) with values
expected to be around 0.1 mC/m2. However a large set of close to identically electrified micron scale particles (with apparently
constant surface charge concentration) has not been suggested previously.

Clearly in these experiments multiple collisions and many body effects may occur, however it is not clear that this would in itself
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Fig. 4. Compiled results for determination of the surface charge concentration (Q/4πr2) for various sized silica micro-spheres (1, 2, 4 and 8 µm). Although the
distributions do have a significant width and include some fraction of relatively low electrification, they seem share a central high concentration with a value around
100 e-/µm2.
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of this article.)
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lead to the observed well defined class of uniformly electrified particles. Rather the injection process is observed to be essentially
turbulent with strong temporal and spatial variation in particle concentration and flow velocity, this might be expected lead to a
broad distribution of electrification states.

A possible explanation compatible with previous work would be a high degree of initial contact electrification combined with the
concept of a maximum charge concentration leading to essentially all of the particles attaining the same surface charge. The nature of
this limiting process might be electrical break down. However the surface voltage of these (e.g. 1 µm) microspheres can be calculated
to be only around 2 V which is well below the minimum gas breakdown voltage (of > 300 V) also the scale of the particles and gas
pressure used here should make this process extremely unlikely (pressure·diameter < 0.01 mbar·cm) given the Paschen curve for air.

Although gas discharge is not expected for single micro-particles, at the macroscopic scale of the injection tube, i.e. around 1mm,
this could explain the occasionally observed electrical discharges (see Fig. 6.) and might also limit the electrification of particle
aggregates. The minimum Paschen breakdown voltage for air is around 300 V and is expected at a value of pressure·diameter of
around 1 mbar·cm. For an electrified particle concentration of order 104/mm3 (which is not unreasonable given the potential number
of particles per injection e.g. > 108) this would generate a voltage of order 100 V between the particles and the injector tube and at a
value of p·L close to the minimum for Paschen breakdown. Electrified aggregates were observed with a charge of up to Q ~ 1.5·108e-,
this is also seen to be compatible with the gas discharge limitation i.e. a surface potential of several hundred Volts at a p·L of around 1
mbar·cm.

Many contact electrification processes (both electron and ion transfer) involve modelling of the contact area and charge exchange
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composition. Particle type/injector tube type the nominal description is used, for more information see also Table 1. For the charge per surface area (Q/4πr2) the
median value is given with the error bars denoting the first and third quartiles (i.e. spanning 50% of the distribution) rather than the standard deviation since typically
these distributions are not symmetrical. Note also that these are not the error on the determination of the median value (i.e. standard error which typically was
between 1–10%), but rather an expression of the width of the distribution of determined values.
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of the aerosol injector nozzle. The red line shows the corresponding voltage measured on the injector tube. In this time sequence one can see that the net electrical flux
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references to color in this figure legend, the reader is referred to the web version of this article.)
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increasing with this area (McCarty & Whitesides, 2008). The radius of the contact surface can be estimated as a = (3Fr/4E*)1/3

following the Hertzian model (Thornton & Ning, 1998), with r the particle radius, F=30 nN the adhesive force (Jones, Pollock,
Geldart, & Verlinden-Luts, 2004), and E* is the effective Young's modulus (40 GPa). This gives a contact surface area πa2 ~400nm2.
Assuming the measured charge to be concentrated in this contact area would give ~3·107 e-/µm2 and would lead to an electric field
on separation of around E ~ 3·1011 V/m. This ignores processes such as lateral charge spreading and roughness of the surfaces which
might increase the effective contact area. Electron field emission is expected for electric fields exceeding E>109 V/m e.g. (Harper,
1998; McCarty & Whitesides, 2008). Hence an alternative process for limiting particle electrification could be field emission at the
contact site.

This seems to be the most likely explanation, however if electrical discharging is not the cause of the observed narrow range of
single-particle surface electrification then presumably the cause must lie in the charge generation process itself.

It should also be noted that the surfaces used here are not well prepared (on a molecular level), it would therefore be somewhat
surprising if relatively well defined surface charge is generated since the condition of individual contact sites would be expected to
vary in physical/chemical condition (Baytekin et al., 2011).

Many Ion exchange models of contact electrification involve the presence of surface water layers (water bridging) which might be
less sensitive to specific properties of the contact site. Although humidity is difficult to eliminate entirely, given the low pressure (and
often dry gas) conditions employed in these experiments this would not be considered a humid environment (typically RH<2%).

It is generally accepted (based upon previous observations) that in particle-particle interaction smaller particles electrify more
negatively. Based upon this expected size dependence of contact electrification (Lacks & Levandovsky, 2007; Waitukaitis et al.,
2014) one would expect that the larger particles would have a tendency to become less negatively (more positively) electrified, which
is not consistent with these observations.

5. Conclusions

In this study novel precision techniques have been applied in order to study the contact electrification process in solid (powder)
aerosol generation. One laser based technique involves the simultaneous determination of size and electrical charge of individual
particles within the aerosol. Surprisingly when interacting with the injector tube silica microspheres were found to attain a relatively
narrow range of surface charge concentration centered around −100 e-/µm2 (or around 0.02 mC/m2) irrespective of size (in the
range 1–8 µm). Although this value is in reasonable agreement with the maximum expected electrification estimated from previous
experimental studies (< 0.1 mC/m2), its cause is not obvious from conventional models.

Several combinations of aerosol particle and injector tube composition were investigated, some of which led to positive particle
electrification and all of which resulted in similar values of measured surface charge concentration.

Various models for this electrification process have been considered here, including ion and electron transfer processes, size
dependent electrification and electrical breakdown. Although a definitive model has not been demonstrated, the most likely
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Fig. 8. Voltage measured on the injection tube during an aerosolizing injection, it should correspond to the rate of charge leaving (or entering) the system. a) shows the
first injection after cleaning of the injection system, b) shows an injection performed after repeated injections in which it is assumed that accumulation of particulates
has occurred leading to increased charge exchange and also the observation of numerous “discharge” like features, these have a rapid onset (fall lasting of the order of
1 ns) and an exponential return to previous voltage. The rapid onset is assumed to be a sudden transfer of charge between the electrified aerosol and the injector tube
within the chamber. The exponential decay is compatible the subsequent discharge of the injector tube through the oscilloscope probe resistor (10 MΩ).
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explanation for the observed uniform surface electrification seems to be that the contact electrification transfers in excess of the
observed charge and that a combination of field emission and possibly charge spreading occur as the particle leaves the surface which
then reduces the charge concentration to a specific observed value (for each particle).

Despite the persistent lack of a general model for contact electrification, experimentally determined values such as those
presented here are of considerable use in predicting and understanding electrification in aerosol generation and transport as well as
placing further requirements to possible models.

In the future these techniques could be usefully applied to study the material dependence of contact electrification and also the
particle-particle size dependence. Note also that the temperature and humidity dependence of contact electrification would be
interesting and potentially useful to study in the future.
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